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Abstract:  

Digital twin technology in the automotive industry is a rapidly expanding trend that offers 

precise, cost-effective simulation and testing environments, as well as advanced platforms 

for predictive maintenance. Autonomous vehicles stand out as a unique case due to their 

extensive sensor arrays and the vast amounts of data they generate, enabling the creation 

of highly detailed models and environments for testing and analysis. For managing this 

extensive data, a robust and reliable connection is crucial for accurate analysis and 

maintenance prediction. 

This thesis aims to establish a seamless connection between digital twin hardware —

specifically, motors that simulate road load for electric vehicle propulsion drive systems—

and visualization software with a user interface. Real-time connectivity is a primary 

requirement for the digital twin project, so this work also carefully selects the appropriate 

microcontroller to ensure the fastest possible data transmission. Selection of the right 

microcontroller is key to achieving accurate, efficient data analysis and reliable predictive 

maintenance. To select the proper microcontroller number of tests were conducted to 

compare the performance of each microcontroller. 
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1  INTRODUCTION 

In the dynamic landscape of modern industrial and technological advancements, the 

convergence of Digital Twins (DT), simulation environments, and user interfaces (UI) 

has emerged, revolutionizing the way people conceptualize and interact with complex 

systems. As people all around the world adopt the exciting possibilities of Industry 4.0 

and the Internet of Things (IoT), combining real-world things with their digital versions 

is extremely important for moving technology forward. This mix of physical hardware 

and its digital representations changes the whole life cycle of the product, technology 

or service and it helps speed up new ideas, accelerate prototyping, make things work 

better, predict when maintenance is needed, and make the resource consumption more 

environmentally friendly. It's a big deal for many different industries, like making things, 

healthcare, energy, and transportation. 

In the exciting future of digital technology, a significant challenge lies in ensuring 

seamless communication between real-world objects, their digital representations (incl. 

dedicated models), and the control mechanisms, enabling the transmission of accurate 

data at desired speeds to facilitate thorough data analysis. This is particularly crucial in 

applications where human life might be at risk, and even a few milliseconds of delay 

can prove fatal, such as in autonomous vehicles. This underscores the importance of 

robust communication systems capable of delivering data swiftly and accurately. 

Moreover, proper data analysis could lead to better power consumption and 

optimization, further highlighting the significance of effective communication protocols. 

This thesis is dedicated to addressing communication challenges by focusing on the 

development of reliable communication between physical objects and their models in 

the virtual environment, with the ultimate aim of enhancing safety and efficiency in 

such sort of applications. 

This thesis work is a part of the research project, which is focused on developing a DT 

for the Propulsion drive of Autonomous Electric Vehicle (EV), that is supported by the 

Estonian Research Council under grant PSG453. The thesis aims to create reliable 

communication between the real physical motors, which serve as loading drive systems 

of a called demonstrator and visualization environment Unity by implementing Robot 

Operating System (ROS) middleware. For this, selecting of the appropriate 

microcontroller unit (MCU) is crucial to ensure the transmission and reception of data 

at the required frequency. Moreover, to be able to send and receive digital and/or 

analog signals to the personal computer (PC), the implementation of an MCU is 

necessary, adding to the complexity and depth of the project. 
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2 LITERATURE REVIEW 

2.1 Digital twins 

At the intersection of academia and industry, DTs have merged as a game-changing 

idea that is revolutionizing the way we design, monitor, and optimize complex systems. 

The main function of the DTs is to give a detailed, functional, physical, and 

comprehensive description of the system as a whole that can operate simultaneously 

with real systems. DTs are virtual models that realistically replicate the characteristics, 

actions, and behaviours of the physical part’s entities. Stated otherwise, virtual models 

and real-world entities have comparable appearances and behaviours – that is, they are 

twins [1]. 

DT has found widespread implementation across various fields, changing the way 

industries operate and innovate. In manufacturing, DTs enable virtual prototyping, 

optimize production processes, and facilitate predictive maintenance, leading to 

increased efficiency and reduced downtime [1]. In agriculture, the DTs with their real-

time virtual representation and union of data, modeling, and what-if simulation create 

a solution to overcome limitations in automation and decision-making support in diverse 

agricultural fields [2]. In healthcare, DTs are utilized for personalized medicine, patient 

monitoring, and surgical simulations, allowing for better diagnosis and treatment 

planning [3]. Urban planning benefits from DTs by optimizing city infrastructure, 

enhancing traffic management, and simulating environmental impacts for sustainable 

development [4]. With their versatility and transformative potential, DTs continue to 

redefine how we conceptualize, design, and manage systems across diverse domains, 

promising a future of innovation and efficiency. Their vast potential can be implemented 

across various fields, as shown in Figure 2.1, including the automotive industry. 
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Figure 2.1 Analysis of DT potential implementation across different industry fields 
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2.1.1 Application of digital twin  technology within the automotive 

industry 

Among growing concerns about climate change, the automotive industry faces 

increasing pressure to transition towards sustainable transportation solutions. With 

transportation accounting for 18% of global carbon dioxide emissions as of 2019, there's 

an urgent need to adopt measures to reduce this number [5]. DT technology presents 

a promising avenue for achieving this transition by enabling the development of more 

energy-efficient and environmentally friendly vehicles. By creating virtual replicas of 

cars and their components, DTs facilitate advanced simulations and optimizations that 

lead to reduced fuel consumption, lower emissions, and improved overall sustainability 

in the automotive sector. 

Almeaibed et al. [6] highlights the importance of addressing safety and security 

concerns in autonomous vehicles. In light of the ongoing digital revolution, the adoption 

of intelligent, data-driven systems holds promise for enhancing safety, efficiency, and 

security across transportation processes. At the core of this transformative change lies 

the concept of DTs, which allows sophisticated simulations and continuous real-time 

monitoring. Through a case study on a vehicle follower model, the article demonstrates 

the effectiveness of DTs in automating decision-making processes and reducing risks 

associated with cyber-attacks and accidents. Emphasizing the need for robust data 

transmission, reception, and processing, the article calls for heightened attention to 

privacy, safety, and security considerations in the development of autonomous vehicles. 

In [7] Eaty and Bagade discussed the application of DT technology in the field of 

electrical vehicle battery management, aiming to improve predictive maintenance and 

prolong battery lifespan. With the increasing number of electrical vehicles worldwide, 

battery state monitoring become a significant concern, encompassing various challenges 

such as safety and range estimation. The article presents a DT framework for electrical 

vehicle battery management, where the State of Health (SOH) is predicted in the cloud 

while the State of Charge (SOC) is estimated on the vehicle. This framework employs a 

continuous learning method for SOH prediction and utilizes the Kalman filter for SOC 

estimation and experimental results show promising accuracy in predicting SOH. 

DT technology is also being implemented in the driver assistant field. Liao et al. [8] 

introduce a DT framework for connected vehicles, integrating physical and cyber layers 

with various modules. Specifically, an advanced driver assistance system utilizing 

vehicle-to-cloud communication is developed. Through vehicle-to-cloud, data is 

uploaded from on-board devices to a server, which then creates a virtual world, 
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processes the data, and sends it back to vehicles. A case study on cooperative ramp 

merging demonstrates the framework's benefits for mobility and environmental 

sustainability, despite communication delays and packet losses. 

The potential applications of DTs technology in the automotive industry are vast. As 

depicted in Figure 2.2, various facets of automotive operations can benefit from DTs 

implementation. From autonomous navigation to manufacturing processes, predictive 

maintenance, and even customer service, DTs offer a range of solutions to enhance 

efficiency, productivity, and innovation throughout the automotive value chain. By 

providing virtual representations of physical vehicles and systems, DTs enable detailed 

simulations, real-time monitoring, and data-driven decision-making.  

 

Figure 2.2 Possible applications of DT technology in automotive industry[5] 
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By synthesizing insights and data from various DT application fields, the automotive 

industry can adopt a comprehensive, interconnected strategy for design, production, 

navigation, and customer satisfaction. This integrated approach ultimately enhances 

efficiency, safety, and innovation across the entire value chain. 

For instance, non-invasive diagnosis and life-accelerated testing in the converters and 

inverters field can significantly improve health monitoring, particularly in evaluating a 

vehicle's overall health. Real-time degradation estimation provides crucial data for 

monitoring individual components like braking systems and electric motors, enabling 

timely maintenance and improved safety. 

In another example, integrating autonomous navigation with battery management 

optimizes motion planning and predictive modeling. By including battery data, such as 

SOC and SOH, autonomous vehicle navigation can adjust to battery constraints, 

extending the driving range and maximizing energy efficiency. Smart charge control can 

also influence propulsion drive control, enabling vehicles to make more energy-

conscious decisions based on their battery status. 

These strategies can help refine vehicle manufacturing and usage, reducing the 

consumption of materials and resources while promoting a more sustainable and 

efficient automotive industry. 

 

 

2.1.2 Digital twin for propulsion drive of autonomous electric 

vehicle 

DT for propulsion drive of autonomous EV is a project with the goal to develop and 

create an unsupervised prognosis and control platform for EV propulsion drive system 

(PDS) performance estimation and monitoring. This goal includes developing physical 

models of different energy systems components, development and implementation of 

virtual sensors for DT concept and additionally develop an artificial intelligence-based 

system that can use virtual sensors. The research platform is based on the ISEAUTO 

self-driving shuttle [9]. 

The DT of this project consists of the real physical entity, virtual entity, service entity, 

data and connections between all the parts. The general concept of DT and it parts is 

shown in the Figure 2.3. 
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Figure 2.3 DT concept of the DT for PDS of autonomous EV project [9] 

In the real world, the physical entity is presented by the ISEAUTO, but in order to be 

able to collect the data in a controlled environment, the reduced demonstrator or test 

bench (TB) was built to collect the data in the laboratory environment. TB consists of 

an EV PDS system identical to the ISEAUTO self-driving shuttle, which consists of a 

Mitsubishi i-MiEV PMSM traction motor drive and dedicated mechanical transmission. 

Commercial motor Y4F1 is controlled by an ABB HES880 frequency converter, which 

adjusts the power supplied to the motor according to predetermined parameters. The 

HES880, is powered by a Cinergia B2C+ battery tester and emulation system. The 

output of the Y4F1 motor is transmitted through a gearbox to a shaft. This shaft is 

connected to two loading motors (ABB induction motors 3GAA132214-ADE), which 

simulate the loads placed on the traction motor. Each loading motor is linked to an ABB 

ACS880 frequency converter, which regulates the torque supplied to the motor based 

on predetermined parameters. The principal diagram and general view of studied TB is 

shown in Figure 2.4. 
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(a) 

 
(b) 

Figure 2.4 Principal diagram (a) and general view in the laboratory (b) of the test bench 
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The virtual entity is represented by the virtual environment provided by the Unity 

engine, where the 3D model of the ISEAUTO vehicle and the road are presented. 

Through the UI, users can specify road conditions such as slope and road surface 

conditions for both the left and right sides of the road separately. Currently, available 

road surfaces are dry asphalt, snow, and ice. Additionally, users can control the vehicle 

speed and adjust the mass of the vehicle, which represents factors such as the number 

of occupants. As for feedback, the virtual environment can display the torque currently 

applied to each wheel. The virtual environment is represented in Figure 2.5. 

 

Figure 2.5 DT virtual environment with ISEAUTO 3D model and user interface 

Service entity presents an integrated platform that supplies the needs of both physical 

and virtual systems. It encompasses systems that provide services related to data 

modeling, optimization, and prediction. The data generated by these systems, including 

physical, virtual, and service systems, is combined to create a more comprehensive and 

consistent dataset. The DT can utilize this combined data to optimize its performance, 

potentially employing deep learning tools for optimization before implementation on the 

physical machine [9]. 
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2.2  Middleware layer 

In modern technological solutions, many sensors and actuators are used to collect data 

about different physical conditions. These peripheral devices present a hardware layer. 

The gathered data is sent to the different programs or mathematical models that process 

the data, which present the software layer. If there is a lot of components on both of 

the layers the end working solution can be very complex and look like the scheme shown 

in Figure 2.6. For the user that needs to work with this system, it could be very hard to 

understand what data is sent to what program and what controls what. 

 

Figure 2.6 Example scheme of how can be arranged connection between hardware and software 

layer in the technical solution. 

To simplify and optimize the connection between hardware layer components and 

different software solutions, middleware can be used. Middleware is a middle layer 

between sensors, services, and applications that manages the data flow and allows them 

to interoperate [10]. Middleware can be considered as a roundabout that connects 

different roads and manages to send the vehicles to the needed endpoint instead of 

connecting all the houses with direct roads. The illustrative example of middleware 

implementation is shown in Figure 2.7. In this case middleware layer will take the data 

from the hardware layer and store it in its folders or files, where every software would 

be able to get this data, process it, and send the commands to another file or folder. 

Actuators that need to react to those commands will see them and act accordingly. This 

solution reduces the number of connections and structures of the end solution making 

it more clear for the end user to understand the data flow in the system. 
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Figure 2.7 Example scheme of how can be arranged connection between hardware and software 

layer in technical solution by implementing middleware layer 

This thesis is focused on the implementation of a middleware solution for the DT for PDS 

of autonomous EV project, aiming to establish a connection between the loading motors 

of DT TB, the middleware, and the virtual environment for UI and visualization. 

 

 

2.2.1 Middleware choice for Digital Twin Project 

The selection of middleware hinges on various factors, and as outlined in [11], the 

project criteria were comprehensively assessed while comparing different middleware 

options. Among frameworks such as Yet Another Reverse Proxy (YARP), Lightweight 

Communications and Marshalling (LCM), and Robot Operation System (ingl. ROS and 

ROS2), ROS2 emerged as the ideal choice due to its robust publish-subscribe messaging 

architecture, real-time support, distributed network topology, active developer 

community, native embedded compatibility, and extensive documentation. Moreover, 

ISEAUTO self-driving shuttle is using ROS based application Autoware [12] and further 

implementation of developed DT will be smoother. 
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2.3 ROS  

ROS is open-source middleware that contains a set of software libraries and tools. 

Despite the name, ROS is not an operating system (OS) but rather a collection of tools 

and libraries that provide a standardized way for robot hardware to communicate with 

each other or to communicate with the environment [13]. 

ROS originated from projects at Stanford University in the mid-2000s, such as the 

Stanford AI Robot and Personal Robots programs. In 2007, Willow Garage Inc., a 

robotics incubator, played a significant role in extending the system's concepts and 

facilitating collaboration among researchers. The software was developed openly under 

a BSD license, leading to widespread adoption in the robotics research community. 

Initially viewed as challenging due to decentralized development across multiple 

institutions, this model eventually became a strength, as it allowed various groups to 

establish their repositories, fostering recognition, collaboration, and technical feedback. 

Today, ROS boasts tens of thousands of users globally, supporting diverse robotics 

applications ranging from hobbyist projects to industrial automation [14]. 

ROS has a list of different functionalities such as message-passing between processes, 

hardware abstraction, low-level device control, package management, and 

implementation of commonly used functionality. Additionally, ROS has many tools that 

help users in developing their robotics projects such as Gazebo 3D simulator, RViz, etc. 

ROS is used in academia, research institutions, and industry to develop, control, and 

integrate robotic systems into various platforms [14].  

ROS has main concepts that provide a standardized way to build and integrate software 

for robotic systems, helping streamline development, ensure compatibility across 

projects, and leverage shared tools, libraries, and best practices. Mastering these 

concepts allows developers to create more innovative and efficient robotic applications 

that can interact seamlessly with other ROS-based systems. The main concepts of ROS 

[15]: 

• Nodes - individual software processes that perform specific tasks. Nodes 

communicate with each other by publishing and subscribing to messages on 

topics. 

• Topics - named buses over which nodes exchange messages. Nodes can publish 

messages to a topic or subscribe to receive messages from it. 
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• Messages - the data structures used to communicate between nodes. They can 

be predefined types or custom-defined by users. 

• Services - allow nodes to send requests and receive responses. They are 

synchronous communication channels that enable more complex interactions 

compared to topics. 

• Actions - provide a way to execute long-running tasks in a more flexible and 

robust manner compared to services. They enable asynchronous communication 

with feedback and goal tracking. 

• Launch files - XML files used to launch multiple nodes with specific parameters 

and configurations in a single command. 

• Packages - the organizational unit of ROS code. They contain nodes, launch 

files, configuration files, and other resources related to a specific functionality or 

robot component.  

 

 

2.3.1 ROS vs ROS2 

ROS has two main versions: ROS1 and ROS2. ROS1 is the first version of ROS, which 

was released in 2009 and is no longer being developed. Instead, ROS2 was released in 

2017 to adapt to modern changes in robotics and improve ROS. The differences between 

ROS1 and ROS2 are presented in Table 2.1. 

Table 2.1 Comparision of ROS1 and ROS2 

ROS1 ROS2 

Supported OS platforms 

Ubuntu 
Ubuntu, macOS, Windows, Red Hat 

Enterprise Linux (RHEL) 

Languages 

Python 2 and 3; C++ 98, 11, 14 Python 3; C++ 11, 14, 17 

Real-time communication support 

No Yes 

Development 

Not developing anymore, the last 

distribution will reach the end of a 

lifetime in May 2025 

The new distribution of ROS2 is released 

every year 
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As the table shows, ROS2 supports newer versions of programming languages, can be 

used on more OS platforms, supports real-time communication, and is still being 

developed by the community. Compared to ROS1, ROS2 is a more suitable choice for 

developing robotic systems nowadays, and it has real-time communication support, 

which is crucial for DT development. 

 

 

2.3.2 ROS implementation in robotic systems 

ROS has proven to be a versatile and widely adopted framework in the realm of robotics. 

The main real-world applications for ROS are industrial robots and autonomous vehicles. 

These fields are suitable for ROS implementation as they have a big data flow that needs 

to be structured and optimized for better performance. 

In [16], the integration of the ABB industrial robot manipulator with ROS is described.  

The workflow involves connecting a ROS environment to a DT of ABB robots in an 

automated welding process station via RobotStudio. The work was tested in an 

automated welding process for steel looped hooks, demonstrating the efficiency of LERP-

based planning for point-to-point trajectories. The results highlight the advantages of 

LERP-based planning, showing fast planning times, consistent path findings, and a 0% 

collision rate, outperforming widely used path planning algorithms. 

One example of ROS usage with unmanned aerial vehicles (UAVs) is described in [17]. 

Research is focused on solving the problem of autonomous navigation when UAVs can 

not get external assistance in the complex environment of the coal mine. The UAV runs 

the visual simultaneous localization and mapping (vSLAM) algorithm under the 

framework of ROS, which helps to independently complete the positioning and 

navigation tasks. 

ROS is widely used for different autonomous vehicles that ride on different surfaces 

(ground, sand, snow, water, etc.). The research of using ROS on an unmanned surface 

vehicle that rides on water is written in [18]. This study presents the development of a 

ROS-based autonomous navigation system for vessels, encompassing simultaneous 

localization and mapping (SLAM), path planning, and obstacle avoidance. 

However industrial robots and autonomous vehicles are not the only fields where ROS 

can be used. In [1], a development of ROS-based software architecture for DT creation. 
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Its primary function is to allow direct communication and interaction, making it easier 

the exchange of data and information between diverse components, both hardware and 

software included, in a versatile robotized manufacturing environment. This work also 

shows that ROS can be used in DT solutions for communication and to provide a reliable 

connection for this kind of task. 

Based on those works it is clear that ROS is a powerful tool that helps researchers to 

develop their ideas by providing different tools and libraries that can be used for robot 

systems development and other applications. 

 

 

 

2.4 Section summary 

In this section, the main concepts of DT technology and its implementation across 

various industries are explored. The focus is on the automotive industry, particularly 

how DTs offer optimization and monitoring solutions for electric vehicles. The potential 

of DTs in this sector is underscored by their role in advanced simulations and data-

driven decision-making, which lead to improved vehicle efficiency and sustainability. 

An overview of the DT framework for propulsion drive of autonomous EV project is 

provided. This framework requires a robust connection between the visualization and 

hardware components of the TB. The research gap identified involves the integration of 

visualization and hardware, emphasizing the need for seamless communication between 

them. 

To address this gap, a comprehensive review of the ROS middleware and its application 

areas is conducted. ROS2 is presented as the ideal middleware solution for this project 

due to its ability to facilitate real-time, distributed communication across various 

components of the DT system. Its advanced features will enable efficient data flow and 

seamless integration between the physical and virtual entities, ultimately enhancing the 

performance and reliability of the DT system. 
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3 MICROCONTROLLERS 

DT system for PDS architecture can be divided into five layers for a clear understanding 

of each layer and how they interact with each other. The architecture consists of 

visualization and UI, middleware, signal processing, hardware control, and actuators 

and sensors. The architecture is shown in Figure 3.1. 

 

Figure 3.1 The architecture of the digital twin system for propulsion drive of autonomous 

electrical vehicle 

Detailed description of each layer, as well as their connections: 

• The visualization and UI layer serves as the front end of the DT system, 

providing graphical representations and UIs to interact with the digital model. It 

visualizes data, allows user inputs, and displays real-time system statuses. For 

this purpose, the Unity engine is used. It has a connection with middleware (in 

this case ROS2) to transmit user commands and receive feedback through the 

middleware layer to ensure the user’s interactions are reflected in the system 

accurately. 

• The middleware layer acts as the communication hub of the system, linking 

the UI with lower-level operations. It processes data from the UI and translates 
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it into actionable commands for the lower layer while also handling data coming 

back from lower layers to deliver it to the end user. 

• The signal processing layer processes the commands and data into a form 

that can be used to control hardware devices. It can convert digital commands 

into analog signals, filter and analyse sensor data, and perform necessary 

calculations or data transformations. 

• The hardware control layer includes the physical controllers (like motor 

drivers and frequency converters) that directly interface with the hardware 

components. It interprets the signals from the signal processing layer and 

translates them into specific actions performed by the hardware. 

• The actuators and sensors layer is the physical layer that interacts with the 

real-world environment. Actuators execute physical actions based on the 

commands received via the hardware control layer, and sensors monitor 

conditions and send data back through the system. 

This structured approach allows each layer to focus on its specific role while supporting 

the seamless function of the overall system. By understanding how each layer operates 

and connects, developers and engineers can better optimize each part of the DT for 

efficiency, performance, and reliability. 

For the signal processing layer, one of the most common solutions is using MCUs. MCUs 

are compact, integrated circuits that serve as the brains of countless electronic devices, 

providing the computational power necessary for their functionality, which can be easily 

integrated with PCs through USB or other types of connections. These boards usually 

come with a central processing unit (CPU), memory, and input/output peripherals. The 

variety of MCUs nowadays is extensive, with numerous companies producing different 

kinds of MCUs with different functionalities, because of which choosing the suitable one 

could be challenging[19]. 

This thesis focuses on controlling the loading motors of a DT system that receives road 

load information from the Unity virtual environment associated with the DT. The control 

of the loading motor is facilitated by an ABB ACS880 frequency converter, which utilizes 

analog input signal pins to regulate the motor's torque. The voltage range of the analog 

signal can be adjusted on the inverter to align with the capabilities of the MCU. 

Consequently, a crucial criterion for selecting an MCU is its ability to generate the 

required voltage output. This can be achieved through either a Digital-to-Analog 
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Converter (DAC) or Pulse Width Modulation (PWM). The seamless flow of this data into 

the motor control system is crucial for the accurate physical representation of virtual 

scenarios. 

 

 

3.1 Overview of relevant microcontrollers 

One important criterion for selecting proper MCUs for the final solution is their capability 

to connect with ROS2. For this purpose, ROS2 has micro-ROS that can be installed on 

the 32-bit MCUs, and only certain models of MCUs can support that. Table 2.2 provides 

a comprehensive list of all MCUs officially supported by ROS2, comparing them across 

various factors[20]. According to [21], the Espressif ESP32 series boards are supported. 

However, it is important to note that a successful connection has specifically been 

demonstrated with the Espressif ESP32-DevKitC-32E. Therefore, this board will be used 

for comparison in tests. Additionally, from the list of comparisons, the Crazyflie 2.1 

Drone has been excluded since its application is specifically targeted at drones and not 

suitable for broader MCU testing scenarios. 

Table 3.1 Overview of microcontrollers compatible with micro-ROS  

MCU CPU 
Dimensions 

(mm) 

Price 

(euros)* 

Renesas EK RA6M5 ARM Cortex M-33 core @ 200 MHz 80 x 180 199.00 

Espressif ESP32-

DevKitC-32E 

Xtensa dual-core 32-bit LX6 

microprocessor, up to 240 MHz 
54.4 x 27.9 10.00 

Arduino Portenta H7 
Dual-core Arm Cortex-M7 and 

Cortex-M4 
25.40 x 66.04 99.00 

Raspberry Pi Pico 

RP2040 
Dual-core Arm Cortex-M0+ 21.0 x 51.3 5.00 

ROBOTIS OpenCR 

1.0 
ARM Cortex-M7 STM32F746ZGT6 105 x 75 210.00 

Teensy 3.2 ARM Cortex-M4 MK20DX256VLH7 17.80 x 36.26 20.00 

Teensy 4.0 ARM Cortex-M7 iMXRT1062 17.80 x 36.26 25.00 

Teensy 4.1 ARM Cortex-M7 iMXRT1062 17.80 x 61.66 32.00 

STM32L4 Discovery 

kit IoT 
ARM Cortex-M4 STM32L4 250 x 210 50.00 

Olimex LTD STM32-

E407 
STM32F407ZGT6 Cortex-M4F 101.6 x 86 30.00 

*Prices are given for 08.12.2023 
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Considering the future utilization of the MCU within the DT TB and, ultimately, in a real 

vehicle, the board should be as compact as possible to facilitate easy installation in 

spaces where availability may be limited. Furthermore, since multiple boards will be 

employed for various tasks and controls, cost-effectiveness is also a priority to ensure 

budget efficiency. Based on these criteria—size and cost—the selection process focused 

on identifying the smallest and most affordable MCUs. The boards selected for testing 

include the ESP32-DevKitC-32E, Raspberry Pi Pico RP2040, Teensy 3.2, Teensy 4.0, and 

Teensy 4.1. It is noted that the Teensy 3.2 shares the same dimensions as the Teensy 

4.0 but features a less powerful CPU. Between these two, the Teensy 4.0 presents more 

potential due to its superior processing capabilities. 

All these MCUs support various communication protocols compatible with micro-ROS. 

However, they all share one common protocol, USB, which will be utilized for speed 

testing. The primary distinction between the Teensy 4.1 and the Teensy 4.0 is that the 

former offers additional pins and includes an Ethernet module[22], which is not 

necessary for this phase of testing as it focuses solely on USB communication protocols. 

Given the similarity in CPUs between these two boards and the additional features of 

the Teensy 4.1 not being required, the Teensy 4.1 will be excluded from the testing. 

The final list of MCUs that will be used for testing includes: 

• Raspberry Pi Pico RP2040 

• ESP32-DevKitC-32E 

• Teensy 4.0 

All the chosen MCUs are shown in Figure 3.2 for their size comparison. 
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Figure 3.2 MCUs chosen for the testing: a - Teensy 4.0, b - ESP32-DevKitC-32E, c - Raspberry 

Pi Pico RP2040 

This selection is tailored to ensure that the boards meet the compact size and cost 

requirements essential for their intended use in limited spaces and varied control 

applications within the DT framework. 

 

 

3.1.1 Raspberry Pi Pico RP2040 

The Raspberry Pi Pico RP2040 is a compact and powerful microcontroller designed by 

the Raspberry Pi Foundation. Pico is built around the RP2040, a dual-core ARM Cortex-

M0+ processor clocked at up to 133 MHz, making it a versatile board suitable for various 

applications from hobbyist projects to more complex industrial controls. It comes 

equipped with 264 KB of SRAM and 2 MB of onboard Flash memory, which can be used 

for running programs and storing data. The board measures just 21 mm x 51.3 mm, 

making it highly compact and easy to incorporate into a variety of projects. The Pico 

provides 26 multi-function GPIO pins, including 3 analog inputs. It supports a range of 

interfaces such as SPI, I2C, UART, and USB. This makes it easy to connect a wide array 

of external devices. The board can be programmed using C/C++ SDK or the official 

MicroPython port, which is tailored specifically for the RP2040. This allows for flexibility 
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in development approaches according to the user’s expertise or project requirements. 

The Raspberry Pi Pico can be powered via the micro-USB connection or an external 

source, which can be anywhere between 1.8 V and 5.5 V, providing flexible power 

management options. Its low cost and easy-to-use interface make it ideal for different 

fields, from education to industry [23]. 

 

 

3.1.2 ESP32-DevKitC-32E 

The ESP32-DevKitC-32E is a versatile and powerful development board based on the 

ESP32 chipset, designed and manufactured by Espressif Systems. It is part of the ESP32 

series, which is renowned for its high performance, wide range of features, and 

suitability for various applications. The ESP32-DevKitC-32E is equipped with the ESP32 

chip, which includes a dual-core Tensilica Xtensa LX6 microprocessor that can be clocked 

at up to 240 MHz. It features substantial memory capabilities with 520 KB of internal 

SRAM and external flash memory that can be expanded up to 16 MB, depending on the 

module version. The board measurements are 54,4 x 27,9 mm which makes it compact, 

making it easy to embed in a variety of devices or projects. The board offers 34 GPIO 

pins with support for various functions such as ADC, DAC. Comprehensive interface 

support includes SPI, I2C, UART, CAN, Ethernet, IR, PWM, DAC, and ADC. Notably, the 

ESP32-DevKitC-32E supports Wi-Fi and Bluetooth 4.2/LE, making it ideal for IoT 

applications. This development board can be programmed using the ESP-IDF, Arduino 

IDE, and can also support scripting languages like MicroPython and JavaScript, providing 

flexibility for various development preferences. Power can be supplied via micro-USB or 

through an external supply pin. The ESP32-DevKitC-32E stands out for its powerful 

ESP32 chip, robust I/O capabilities, and comprehensive network connectivity options, 

making it a versatile platform for developers looking to explore advanced IoT, wearable, 

or industrial applications[24]. 

 

 

3.1.3 Teensy 4.0 

The Teensy 4.0 is a high-performance microcontroller board designed and developed by 

PJRC. It stands out due to its incredible processing power, compact form factor, and the 
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extensive range of features it offers, making it an excellent choice for both hobbyist 

projects and professional applications requiring significant computational capabilities. 

Teensy 4.0 features an ARM Cortex-M7 processor at 600 MHz, one of the fastest 

microcontrollers in the market in terms of clock speed. It is equipped with 1 MB of flash 

memory and 512 KB of RAM, plus an additional 2 MB of flash memory accessible via the 

SPI bus. The board is notably small, with dimensions of just 17,8 x 36,26 mm, making 

it incredibly versatile for size-sensitive projects. Teensy 4.0 offers 40 digital I/O pins, 

including several capable of PWM, and others supporting various serial protocols. 

Includes support for multiple communication interfaces like SPI, I2C, UART, and CAN 

bus. Can act as a USB host or USB device, offering significant flexibility for interfacing 

with other USB devices. Features 14 high-resolution analog inputs, which is substantially 

more than typical microcontrollers. Contains a built-in real-time clock for time-sensitive 

applications even when disconnected from power. Programmable via the Arduino IDE 

with a Teensyduino add-on, simplifying the development process while offering 

advanced features for power users. Teensy 4.0 stands out in the microcontroller world 

due to its impressive processing speed, extensive I/O capabilities, and compact size. Its 

support for advanced audio processing and robust interfacing options makes it 

particularly valuable in projects where performance and space are critical[22]. 

 

 

 

3.2 Testing microcontrollers 

3.2.1 Latency test 

After selecting the MCUs, the next step is to conduct tests to determine the most suitable 

MCU for dedicated tasks and future project plans. The most critical criterion for the MCU 

selection is the response time, or latency, since in the DT development project, this 

parameter is crucial for effectively monitoring the power consumption of the motors and 

detecting problems in the motor system. Additionally, one of the project's key criteria 

is real-time communication, which necessitates that latency be as minimal as possible 

to ensure accurate and timely data transmission. 

Another important factor is the data transmitting distance. Since MCUs may be installed 

on the DT TB close to the devices they control or monitor (which is more convenient), 

it is essential to consider how latency is affected by cable length. The USB cables used 
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can vary in length, and understanding how this impacts communication latency is 

crucial. Based on these considerations, the latency test will include different MCUs and 

cable lengths. 

The latency test framework utilizes the ROS Publish-Subscribe messaging type. This test 

aims to measure the time it takes for an MCU to receive a message from a PC and 

respond to it. The test code for the MCUs was developed using the PlatformIO extension 

for Visual Studio Code, which allows code to be written for all boards on the same 

platform without the need for different integrated development environments (IDEs). 

Both the PC and the MCU will have one publisher and one subscriber. The PC publisher 

sends a message containing a PC timestamp and message ID to a topic “latency_ping” 

that the MCU is subscribed to. Upon receiving a message, the MCU publishes the same 

message to a “latency_ping” topic to which the PC is subscribed. After receiving the 

message, the PC sends a new message with a new timestamp and a message ID that is 

incremented by one. Figure 3.3 shows the latency test code scheme and Table 3.2 

describes the structure of both “latency_pong” and “latency_ping” messages as they 

are identical. The full code of the latency test is shown in Appendix 1. 

Table 3.2 Description of "latency_ping" and "latency_pong" messages structure 

Parameter type Parameter name 

builtin_interfaces/Time pc_stamp 

int32 message_id 
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Figure 3.3 Scheme showing latency test working principle. 

To avoid clock desynchronization and further complications, only the PC timestamp is 

used. This process is repeated until the PC and MCU have exchanged 100 000 messages. 

The test was conducted with all the chosen MCUs and USB cable lengths of 5 m, 2 m, 

1 m, and 0.2 m. The difference between the average time for passing one message is 

shown in Figure 3.4. 

 

Figure 3.4 Comparison of the average time taken by different MCUs to transmit a single message 
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Among the tested boards, the Teensy 4.0 consistently demonstrated the shortest 

average message transmission time, clocking in at approximately 0,6 ms across all cable 

lengths. The Raspberry Pi Pico RP2040 came in second, with an average transmission 

time of around 3,6 ms, also consistent across varying cable lengths. Even though 

ESP32-DevKitC-32E has a bigger clocking speed of the CPU than Raspberry Pi Pico 

RP2040, it exhibited the longest transmission time, averaging about 12,7 ms regardless 

of the cable length. These results indicate that the Teensy 4.0 is the fastest performer 

in terms of message passing on average, followed by the Raspberry Pi Pico RP2040 and 

the ESP32-DevKitC-32E is the slowest out of three. 

Additional parameters gained during the latency tests are presented in Table 3.3, along 

with the minimum and maximum time for one message exchange and the total amount 

of time it took to send 100 000 messages. 

Table 3.3 Additional results of latency test for each MCU 

MCU 

Cable 

length 

(m) 

Minimum 

time 

(ms) 

Maximum 

time 

(ms) 

Total time for 

100 000 messages 

(min) 

ESP32-DevKitC-32E 

0.2 10.490 36.427 21.204 

1 10.439 27.737 21.182 

2 10.799 26.204 21.176 

5 10.653 114.047 21.181 

Raspberry Pi Pico 

RP2040 

0.2 2.609 104.592 6.126 

1 2.659 104.403 6.132 

2 2.740 105.455 6.130 

5 2.599 104.697 6.136 

Teensy 4.0 

0.2 0.316 101.891 1.125 

1 0.322 102.073 1.112 

2 0.335 101.461 1.095 

5 0.329 101.633 1.098 

 

Based on the testing results, the Teensy 4.0 board consistently exhibited the shortest 

latency among the devices tested. The disparity in data transmission speeds between 

the boards is apparent from the average time and the total time taken to send all 

messages. Specifically, it took the ESP32-DevKitC-32E 21 times longer to complete the 
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message exchanges compared to the Teensy 4.0, and 3.5 times longer than the 

Raspberry Pi Pico RP2040. 

Interestingly, the length of the USB cable did not significantly affect message latency 

across most test cases, as results remained within a consistent range regardless of cable 

length. However, a notable exception was observed with the ESP32-DevKitC-32E when 

using a 5 m cable, where the maximum time recorded deviated significantly from the 

expected latency pattern. This anomaly suggests that while cable length generally does 

not impact latency, certain configurations or specific conditions may lead to unexpected 

latency increases. 

It was also noticed that during the latency test, all the MCUs had some distinct jumps 

in latency values. In Figures 3.5-3.7 are shown latency test results for each board with 

a cable length of 0,2 m and the average value of latency.  

 

Figure 3.5 Message transmitting time for ESP32-DevKitC-32E with cable length 0,2 m 
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Figure 3.6 Message transmitting time for Raspberry Pi Pico RP2040 with cable length 0,2 m 

 

Figure 3.7 Message transmitting time for Teensy 4.0 with cable length 0,2 m 

The latency test graphs reveal that some messages took significantly longer to transmit 

compared to the average latency time. For the ESP32-DevKitC-32E, the message 

transmission time remained closer to the average, with smaller spikes indicating more 

consistent performance. 
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In the case of the Raspberry Pi Pico RP2040, there were more pronounced spikes, with 

some exceeding 100 ms, but these occurred intermittently and didn't greatly affect the 

overall average latency. When values above 100 ms were excluded, the average latency 

time for the Raspberry Pi Pico RP2040 decreased slightly, from 3,675 ms to 3,671 ms. 

Teensy 4.0 also exhibited significant spikes reaching 100 ms, but these occurred more 

frequently, which impacted the average latency time more heavily. After excluding 

values above 100 ms, the average latency time of the Teensy 4.0 decreased from 

0,675 ms to 0,646 ms. 

The stark difference between the average values and the latency spikes, consistently 

around 100 ms, suggests potential issues in data transmission, such as noise 

interference, code problems, or other technical challenges that warrant further 

investigation. Understanding the root cause of these spikes is crucial for optimizing the 

latency performance of these devices. 

Conclusively, while the Teensy 4.0 board demonstrated the shortest latency overall, 

making it a superior choice for applications where speed is critical, the influence of cable 

length on message latency, particularly under specific conditions, warrants further 

investigation. Additional tests with a focus on varying environmental conditions, 

different types of USB cables, and perhaps even alternative communication protocols 

could provide deeper insights into optimizing the system’s real-time communication 

capabilities. 

 

 

3.2.2 MCU temperature test 

During the latency test, it was observed that some MCUs began to generate heat. Given 

that in the future, the MCU may be installed in a test bench within a closed housing to 

protect the MCU and conceal connections, managing the MCU's temperature becomes 

critical. If the housing is to be 3D printed, selecting a material capable of withstanding 

the temperature generated by the MCU is crucial to prevent MCU overheating or 

equipment damage. Consequently, additional tests will be conducted to measure each 

MCU's temperature during data transmission. 

Furthermore, although power consumption tests are typically prioritized for devices 

operating on batteries or limited power supplies, in this scenario where MCUs operate 
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via USB, power consumption is deemed less critical. However, it may be considered for 

future tests to ensure the overall efficiency and sustainability of the system. 

For the MCU temperature measurements, it was decided to conduct these 

simultaneously across all MCUs to ensure uniform test conditions. The temperatures 

were measured using a FLIR C3-X thermal camera, which can measure temperatures 

ranging from 20°C to 300°C with an accuracy of ±3°C/3% [25]. This level of accuracy 

is suitable for this test as the precise temperature is less critical than understanding the 

general temperature range. 

The same latency test setup was used for temperature monitoring, but instead of 

stopping at 100 000 messages, the test ran continuously for two hours. Before starting 

the test, the ambient temperature was recorded using a different kind of temperature 

sensor, which showed an environmental baseline of 22°C. Figure 3.8 demonstrates the 

measurement process of the MCUs during the temperature test from the thermal 

camera. 

 

Figure 3.8 View from the thermal camera during the MCU temperature test 

The results of the temperature measurements are presented in Table 3.4. 
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Table 3.4 Results of temperature measurement of the MCUs 

MCU Maximum temperature during test (C) 

Raspberry Pi Pico RP2040 29 

ESP32-DevKitC-32E 33 

Teensy 4.0 47 

 

This test was conducted without any casing surrounding the MCUs, in an environment 

free from additional heating sources nearby, and with the MCUs not operating at full 

computational capacity. Given these conditions, the temperature of the Teensy 4.0 was 

notably high, signalling potential thermal management challenges in future 

deployments. 

Considering a scenario where the MCU is enclosed within a casing and potentially 

surrounded by other heat-generating equipment, the Teensy 4.0 board could experience 

even higher temperatures. This raises significant concerns for thermal management, 

especially in tightly confined or poorly ventilated spaces. Therefore, selecting an 

appropriate material for the casing that can withstand higher temperatures without 

deforming is crucial. 

For instance, Polylactic Acid (PLA) plastic, which is commonly used in 3D printing, begins 

to deform at around 60 °C [26]. This characteristic highlights the risk of using PLA for 

enclosures housing components like the Teensy 4.0, which may approach these 

temperatures under normal operational stress. Alternative materials should be 

considered for 3D printing that can withstand higher temperatures than PLA. Using a 

metal casing could also be beneficial, as it can serve as a heat sink, helping to dissipate 

some of the heat away from the MCU. These solutions provide better safety margins for 

thermal management, ensuring the stability and longevity of both the MCUs and their 

casings.  

Other solutions to reduce the temperature of MCU could include the implementation of 

active cooling solutions, such as small fans or heat sinks, which are essential for 

maintaining safe operational temperatures. Another consideration is designing the 

casing with adequate ventilation openings or using thermally conductive materials to 

help dissipate heat more effectively. Additionally, integrating temperature sensors 

within the housing could provide continuous monitoring, enabling preventive measures 

if temperatures approach critical thresholds. 
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3.3 Selection of microcontroller for the current project 

After conducting a series of tests, it was found that the Teensy 4.0 exhibited the shortest 

delay time compared to other MCUs, which is important for real-time communication. 

However, it had some high spikes in message passing time that should be considered 

in the future and reduced as much as possible. Additionally, it also tended to heat up 

significantly more than its counterparts. This observation underscores the necessity for 

careful selection of materials and the potential inclusion of extra cooling methods in 

projects that incorporate Teensy 4.0, especially in test bench applications. 

Despite the heating issue, the Teensy 4.0’s superior latency performance makes it the 

preferred choice for this thesis and future project endeavours. Consequently, addressing 

the heating concerns is crucial to fully benefit from Teensy 4.0’s capabilities. 

Implementing effective thermal management strategies is essential to ensure the device 

operates within safe temperature ranges without compromising its performance. 

 

 

 

3.4 Section summary 

In this section, the foundational architecture of the DT project is outlined, along with 

the rationale behind implementing various MCUs. To establish a more reliable and faster 

connection, different types of MCUs were tested. Based on the choice of middleware, 

only specific types of MCUs could be assessed, and three were selected for testing. 

Latency emerged as the most crucial test, and the communication distance was also 

evaluated to understand how latency changes with increasing distance. Interestingly, 

cable length did not significantly affect communication speed, but there was a 

considerable latency difference among the boards. The fastest board was the Teensy 

4.0, followed by the Raspberry Pi Pico RP2040, and finally, the ESP32-DevKitC-32E. 

A temperature test was also conducted to determine how much each board heats up 

during continuous operation. The Teensy 4.0 reached a temperature of 47°C, which 

should be carefully considered in future work to prevent overheating and potential 

equipment damage. The Teensy 4.0 was chosen to be used for the current work with 
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consideration of the potential overheating and choosing the proper materials for the 

mounting because of that.  
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4 METHODOLOGY 

The primary objective of this thesis is to establish a connection between the test bench 

loading motors, which simulate the load experienced by a bus during travel, and the 

Unity virtual environment. In this virtual setting, users can select various driving 

conditions to test motor behaviour. The complete system is designed to automatically 

control the torque produced by the loading motors based on the parameters set by the 

user in the virtual entity and then provide feedback to the user. 

For this task, the ROS2 Humble Hawksbill distribution was chosen. Although the newer 

stable ROS2 distribution, Iron Irwini, is available, it was not selected due to its 

approaching end-of-life date in November 2024. In contrast, Humble Hawksbill is 

supported until May 2027, offering a longer period of utility and support[27]. Although 

ROS2 is compatible with various OSs, Ubuntu 22.04 OS was specifically chosen for 

installation due to its stability and the availability of a dedicated Debian package that 

facilitates integration with ROS2 Humble Hawksbill. Ubuntu 22.04 is the latest long-term 

support version, ensuring a smooth and stable operation of ROS2.  

Ubuntu 22.04 was installed on the computer as the second OS alongside with the 

Windows 11 OS. Another choice was to install Ubuntu on a Virtual Machine. The decision 

to install Ubuntu as the second OS was to avoid problems that could appear with 

communicating with devices through a Virtual Machine. 

 

 

 

4.1 Controlling the loading motor 

The loading motor is linked to an ABB ACS880 frequency converter, which represents 

the hardware control level of the system and is capable of controlling various parameters 

of the motor. The module receives analog input signals to determine the torque value. 

The Teensy 4.0 generates voltage signals ranging from 0 to 3.3 V using PWM. The 

analog input signal of the converter accepts a voltage value that can be adjusted as 

needed; thus, the voltage range was set from 0 to 3.3 V accordingly. The converter's 

logic is designed such that the maximum value represents 100% torque in one direction, 

while the minimum value signifies 100% torque in the opposite direction, with 1.65 V 

serving as the zero point. 
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For testing purposes, a smaller TB was used, as shown in Figure 4.1. It comprises an 

ABB ACS880 frequency converter, also employed in the main TB, and an ABB three-

phase 0,75 kW motor. In the main TB, the motors used for road load simulation have a 

power rating of 7,5 kW. The purpose of the smaller TB is to verify that the connection 

works and that the motor can be controlled via Unity before conducting further tests in 

the laboratory using the main TB. 

 

Figure 4.1 Small loading motor test bench used to create and test the connection between Unity 

and hardware 

The Teensy 4.0 board is going to be subscribed to the topic where the car and road 

conditions will be published. The torque calculation will be done on the board itself, and 

after, the corresponding voltage signal will be sent to the converter, and the torque 

value will be sent to another topic. To write the code for the Teensy 4.0 board, 

PlatformIO extension was used for Visual Studio Code, and the code was written based 

on the micro-ROS. For computer to be able to communicate with the MCU, on the PC 

the micro-ROS agent needs to be launched. The agent is responsible for data exchange 

from the MCU to the whole ROS system. 
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4.1.1 Torque calculation 

In [28] is described as a model development for the PDS load for ISEAUTO that 

considers different parameters that can influence the load, such as vehicle geometry, 

road surface, gravitational acceleration, etc. The forward motion of the vehicle is 

powered by the tractive effort, FTE. This force must surpass several resistances, including 

rolling resistance (FRR), aerodynamic drag (FAD), climbing resistance force (FCR), and the 

force needed for acceleration (if velocity isn't constant). Consequently, the total road 

load, FRL, comprises the sum of rolling resistance, aerodynamic drag, and climbing 

resistance force as follows: 

 𝐹𝑅𝐿 = 𝐹𝑅𝑅 + 𝐹𝐴𝐷 + 𝐹𝐶𝑅. (4.1) 

The uphill resistance force caused by the road's incline relies on factors such as the 

vehicle's mass (m), the angle of the road in degrees (), and the gravitational 

acceleration (g): 

 𝐹_𝐶𝑅 = 𝑚𝑔 ∙ sin⁡(𝛼𝜋/(180°)). (4.2) 

The rolling resistance depends on the coefficient of the rolling friction between the road 

and the tire Crf and the normal force FN which is represented by the vehicle’s weight (m) 

and gravitational acceleration (g): 

 𝐹_𝑅𝑅 = 𝐶_𝑟𝑓 ∙ 𝑚𝑔 ∙ 𝑐𝑜𝑠(𝛼𝜋/(180°)). (4.3) 

Aerodynamic drag is important, especially it becomes increasingly significant at higher 

velocities. It is contingent upon air density (ρ), the coefficient of drag (Cd), the frontal 

area of the vehicle (A), and the relative velocity of the vehicle (v) with respect to the 

air: 

 𝐹_𝐴𝐷 = ⁡1/2⁡𝐶_𝑑⁡𝜌𝐴𝑣^2.  (4.4) 

To accurately compute the torque applied on a wheel, it is necessary to perform a 

multiplication of the road load force (FRL) by the radius of the wheel (r). This calculation 

effectively determines the rotational force, or torque, that influences the wheel's 

movement. 

 𝑇 = 𝐹𝑅𝐿 ∙ 𝑟 (4.5) 
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The constant parameters presented in Table 4.1 are used for calculation and are taken 

from ISEAUTO vehicle parameters. From [29] are taken the rolling resistances for 

different types of roads for high-performance tires. 

Table 4.1 Constant parameters used for road load torque calculations for ISEAUTO 

Parameter Value Unit 

Gravitational acceleration 9.81 m/s2 

Dry asphalt rolling friction 0.014 - 

Wet asphalt rolling friction 0.017 - 

Gravel rolling friction 0.02 - 

Hard-packed snow rolling friction 0.016 - 

Ice rolling friction 0.014 - 

Air density 1.225 kg/m3 

Aerodynamic drag coefficient 0.8 - 

Frontal area 2.77 m2 

Wheel diameter 0.57 m 

 

Considering all the parameters and the fact that the ISEAUTO's maximum speed is 

20 km/h, the road load torque can be calculated based on speed. The graph in Figure 

4.2 illustrates the changes in torque value on a 0-degree slope across different road 

types. Dry asphalt and ice are represented by a single line due to their identical rolling 

friction coefficients. From this graph, can be observed the maximum and minimum road 

load torque values that can be applied to the vehicle on a 0-degree slope.  
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Figure 4.2 Road load torque changes depending on the speed of ISEAUTO on different types of 

roads with road incline of 0 

The code subscribes to the “car_param” topic where the parameters from the Unity 

virtual environment will be published. The parameters are sent as numbers. Each type 

of road surface has its identifying number based on what the proper rolling friction is 

selected. The torque calculation is done on an MCU that calculates all the forces and the 

torque value which is then converted to voltage. 3,3 V corresponds to motor nominal 

torque and 0 V corresponds to the negative value of motor nominal torque. To calculate 

the nominal torque on a smaller TB that is shown in Figure 4.1 is needed to calculate 

the angular velocity of the motor: 

 𝜔 = (2𝜋 ∙ 𝑛)/60,  (4.6) 

where 

  - angular velocity (rad/s) 

 n – motor speed (RPM). 

To calculate the nominal torque: 

 𝑇 = 𝑃/𝜔, (4.7) 

where 

 P – power of the motor (W). 
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The motor speed at 50 Hz is 2840 RPM, and the power of the motor is 750 W. Based on 

those parameters, the nominal torque of the motor is equal to 2,52 Nm. This torque 

value is not enough to simulate the actual torque that will be applied to the car wheels 

during the simulation of the ride. This motor is used for verification purposes to see that 

the whole system works because it is controlled by the same frequency converter that 

is controlling loading motors on the main TB. Signals are sent to the motor, the motor 

starts spinning, its rotation can be controlled, and the torque values are sent back to 

the visualization. 

The real test bench currently uses more powerful motors that have, according to [30], 

a rated torque of 49 Nm. The full code used on the MCU that subscribes to the 

“car_param” topic, calculates the road load, and sends the value to the frequency 

converter and to the ROS topic is shown in Appendix 2. 

 

 

 

4.2 Hardware connection with visualization model 

To seamlessly integrate the Unity virtual environment with the DT system, establishing 

a connection with ROS2 is essential. Thankfully, Unity offers a dedicated solution: the 

ROS TCP Connector package. This package serves as a vital bridge between Unity and 

ROS, leveraging TCP connections for communication. Installation involves deploying the 

ROS TCP Connector on the Unity side, while on the ROS side, the ROS TCP Endpoint is 

necessary. Together, these components facilitate the exchange of messages between 

the Unity environment and ROS. Given that Unity is predominantly coded in C#, while 

ROS primarily employs C++ or Python, the ROS TCP Connector handles the critical task 

of message serialization and deserialization. This ensures smooth communication 

between the two environments, overcoming language barriers seamlessly. 

To ensure a successful connection on the Unity side, it is imperative to specify in Unity 

both the version of ROS being utilized and the IP address associated with ROS. This step 

is crucial for establishing connectivity. By specifying the IP address, users gain the 

flexibility to run the ROS network and visualize data in Unity on separate computers, 

enhancing scalability and versatility. Moreover, it is essential on the Unity side to define 

the types of messages being exchanged. This involves providing the file paths to the 

ROS message files containing the message structure, enabling Unity to properly 
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interpret and handle the data being transmitted. This step ensures seamless 

communication and accurate interpretation of messages between Unity and ROS, 

facilitating efficient collaboration and interaction within the integrated system. 

A C# script was developed to enable Unity to subscribe to ROS topics. This script 

establishes a ROS connection and manages both a publisher and a subscriber. The 

publisher is responsible for transmitting user-defined parameters from the interface—

such as speed, mass, incline, left-wheel road surface, and right-wheel road surface—to 

the "car_param" topic. The parameters are sent only when some of the parameters 

change their value by the user. The structure of the message sent to the "car_param" 

topic is shown in Table 4.2.  

Table 4.2 Structure of the message sent to the "car_param" topic from the Unity 

Parameter type Parameter name 

float32 speed 

float32 mass 

float32 incline 

int32 surface_l 

int32 surface_r 

 

The subscriber component of the script listens to the " torque_left_wheel" and 

"torque_right_wheel" topics. Those topics receive torque values calculated by the MCU 

for the left and right wheels. The messages sent to those topics have only one float type 

parameter. The received torque values are then displayed to the user on the main 

visualization screen, providing real-time feedback on the system's operation. The whole 

system scheme is shown in Figure 4.3. The full code used on the Unity side to publish 

to "car_param" topics and subscribe to the torque topics is shown in Appendix 3. 
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Figure 4.3 Overview scheme of created connection between virtual entity and hardware 

 

 

 

4.3 Overview of the final solution 

The results of the current thesis demonstrate the successful implementation of the ROS2 

middleware and establish a working connection between the TB loading motors and the 

visualization software. This connection operates bidirectionally, allowing data to flow 

seamlessly from Unity to the MCUs and vice versa. Specifically, data gathered by the 

MCUs can be transmitted back to Unity, while Unity can also send information to the 

MCUs. 

This solution is versatile and can be easily adapted to hardware that supports control 

through analog or digital signals. By leveraging the flexibility of the ROS2 middleware, 

it enhances the interoperability between different components, enabling efficient data 

exchange for various applications. Ultimately, this implementation lays the groundwork 

for scalable and robust system architectures that can accommodate a wide range of 

devices and control protocols. 
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4.4 Section summary 

This section offers a comprehensive overview of the final solution, highlighting the 

integration between the ROS-MCU connection and the implementation of road load 

torque calculations. It delves into how road load torque was calculated for various road 

surface types, providing insight into the factors influencing performance. The ROS-Unity 

connection was also established, enabling seamless data exchange and real-time 

control. Testing demonstrated the effectiveness of this setup by controlling a real motor 

through the Unity UI, showcasing the system's capability to interact with the physical 

environment. Further refinement of these connections could involve enhancing 

communication protocols, streamlining data transmission, and optimizing system 

responsiveness, resulting in a robust, high-performance solution. 
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5 FUTURE WORK 

In the future, the plan is to establish connections and test different communication 

protocols with all physical components of the TB system (including Cinergia B2C+ 

battery tester and emulator, the main traction motor and inverter, mechanical 

transmission, and all necessary sensors) and virtual component (developed models). 

On the software side, the aim is to connect the system not only with Unity but also with 

MATLAB and custom neural network code to enhance the data analysis and processing 

capabilities. This comprehensive integration will enable real-time monitoring and 

seamless data exchange across all critical components. 

Moreover, the wheel-testing TB, also developed in the lab, will provide the DT with 

crucial information about the wheel pressure status, offering valuable insights into real-

world performance. Establishing a reliable connection between the DT and this testing 

TB will strengthen predictive analytics and allow for more accurate diagnostics. 

As more components and sensors are integrated, the system's scalability must be 

carefully considered. It is essential to ensure that the system architecture remains 

efficient as new elements are added. This will involve developing strategies to handle 

increasing data flows while maintaining low latency and reliable message delivery. 

Regarding the MCUs, further testing is necessary to determine the root cause of 

occasional latency spikes that lead to longer messaging times than usual. One possible 

explanation is overheating, which requires additional investigation. Additionally, the 

performance of one-way communication, where no acknowledgment is sent confirming 

message receipt, should be assessed to identify potential latency issues in this setup. 

Adding additional cooling methods to the MCUs could also help establish a more reliable 

and faster connection. 

Besides the USB communication testing, additional tests using different types of 

communication protocols can be also performed. For example, ESP32-DevKitC-32E also 

supports communication through Wi-Fi, which can be useful in applications where using 

cables will not be possible or they will be really long. 
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SUMMARY 

DT technology holds significant potential across various fields, ranging from agriculture 

to aerospace and healthcare. Particularly in the automotive industry, its implementation 

can optimize production processes and enhance the effectiveness of industry 

monitoring. The DT for the propulsion drive of autonomous EV project focuses on 

developing and creating an unsupervised prognosis and control platform for the EV PDS, 

aimed at performance estimation and monitoring. This framework necessitates a robust 

connection between the visualization (Unity) and hardware components of the TB. 

In this thesis, the overall architecture of the DT project was outlined, and from this, the 

choice of a suitable MCU was considered to ensure compatibility with different layers of 

the DT system. Various MCUs were reviewed and tested to identify the most suitable for 

real-time communication. Latency tests were conducted for each MCU using different 

cable lengths to examine how communication speed is affected by changes in cable 

length. The Teensy 4.0 demonstrated the best performance, maintaining an average 

latency of 0.6 ms regardless of cable length. In comparison, the Raspberry Pi Pico 

RP2040 and ESP32-DevKitC-32E showed average latencies of approximately 3.7 ms and 

12.7 ms, respectively. 

Additionally, a temperature test was performed to determine how much the MCUs heat 

up during operation. The Teensy 4.0 heated up the most, reaching up to 47°C, while 

the ESP32-DevKitC-32E and Raspberry Pi Pico reached maximum temperatures of 33°C 

and 29°C, respectively. Considering latency test values Teensy 4.0 was chosen as the 

final solution, with caution over temperature management. 

The implementation uses the ROS2 Humble Hawksbill distribution. The Unity ROS-TCP 

package manages the connection between ROS and Unity, while the connection between 

ROS and the MCU is facilitated by micro-ROS. User inputs in the Unity UI are published 

to a ROS topic, which the MCU is subscribed to. Based on the received data about road 

conditions, the MCU calculates the road load and converts it into an analog signal sent 

to a frequency converter that controls the loading motor. The torque values for both 

wheels are also sent to ROS topics, to which Unity subscribes and displays the values 

to the user. 

The primary objective of the thesis has been achieved—to establish a connection 

between the DT hardware and visualization software. Additionally, a comparison of 

various MCUs was conducted. The final solution still holds considerable potential for 

further research and development. One significant area for future work is the continued 
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testing of the connection and implementation of MCUs. Another area is that the DT 

project has many additional components and sensors that still need to be connected to 

the virtual entities. 
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KOKKUVÕTE 

Digitaalse kaksiku tehnoloogial on märkimisväärne potentsiaal erinevates 

valdkondades, alates põllumajandusest kuni lennunduse ja tervishoiuni. Autotööstuses 

võib selle rakendamine optimeerida tootmisprotsesse ja tõhustada tööstuse 

järelevalvet. Autonoomse elektrisõiduki veoajami digitaalse kaksiku projekt keskendub 

elektrisõiduki veoajami süsteemi järelevalveta prognoosi- ja juhtimisplatvormi 

väljatöötamisele ja loomisele, mis on suunatud jõudluse hindamisele ja jälgimisele. See 

raamistik nõuab tugevat ühendust testplatvormi visualiseerimise (Unity) ja 

riistvarakomponentide vahel. 

Käesolevas lõputöös toodi välja digitaalse kaksiku projekti üldine arhitektuur ning sellest 

lähtuvalt kaaluti sobiva mikrokontrolleri valikut, et tagada ühilduvus digitaalse kaksiku 

süsteemi erinevate kihtidega. Vaadati üle ja testiti erinevaid mikrokontrollereid, et leida 

reaalajas suhtluseks sobivaim. Iga mikrokontrolleri jaoks viidi läbi latentsus testid, 

kasutades erinevaid kaabli pikkusi, et uurida, kuidas kaabli pikkus mõjutab sidekiirust. 

Teensy 4.0 näitas parimat jõudlust, säilitades keskmise latentsuse 0,6 ms olenemata 

kaabli pikkusest. Võrdluseks näitasid Raspberry Pi Pico RP2040 ja ESP32-DevKitC-32E 

keskmised latentsusajad vastavalt ligikaudu 3,7 ms ja 12,7 ms. 

Lisaks viidi läbi temperatuuritest, et teha kindlaks, kui palju mikrokontrollerid töötamise 

ajal kuumenevad. Teensy 4.0 kuumenes kõige rohkem, ulatudes kuni 47 °C-ni, samas 

kui ESP32-DevKitC-32E ja Raspberry Pi Pico saavutasid maksimumtemperatuurid 

vastavalt 33 °C ja 29 °C. Arvestades latentsus testi väärtustele, valiti lõplikuks 

lahenduseks Teensy 4.0, arvestades mikrokontrolleri temperatuuriga. 

Lõplik lahendus kasutab ROS2 Humble Hawksbilli distributsiooni. Unity ROS-TCP pakett 

haldab ühendust ROS-i ja Unity vahel, samas kui ROS-i ja mikrokontrolleri vahelist 

ühendust hõlbustab mikro-ROS. Unity kasutajaliidese kasutajasisendid avaldatakse 

ROS-i topic-us, mida mikrokontroller jälgib. Teeolude kohta saadud andmete põhjal 

arvutab mikrokontroller teekoormuse ja teisendab selle analoogsignaaliks, mis 

saadetakse laadimismootorit juhtivale sagedusmuundurile. Mõlema ratta 

pöördemomendi väärtused saadetakse ka ROS-I topic-utele, mida Unity jälgib ja kuvab 

saadud väärtusi kasutajale. 

Lõputöö esmane eesmärk oli saavutatud – luua ühendus digitaalse kaksiku riistvara ja 

visualiseerimistarkvara vahel. Lisaks viidi läbi erinevate mikrokontrollerite võrdlus. 

Lõplik lahendus sisaldab endiselt märkimisväärset potentsiaali edasiseks uurimis- ja 

arendustegevuseks. Üks oluline valdkond edaspidiseks tööks on mikrokontrollerite 
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ühendamise ja juurutamise jätkuv testimine. Teine valdkond on see, et digitaalse 

kaksiku projektil on palju lisakomponente ja andureid, mida tuleb veel ühendada 

virtuaalseteüksustega. 
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APPENDICES 

Appendix 1 Latency test code 

#include <Arduino.h> 

#include <micro_ros_platformio.h> 

 

#include <rcl/rcl.h> 

#include <rclc/rclc.h> 

#include <rclc/executor.h> 

 

#include <std_msgs/msg/float32.h> 

#include <std_msgs/msg/int32.h> 

#include <psg453_interfaces/msg/latency_ping.h> 

#include <psg453_interfaces/msg/latency_pong.h> 

 

#if !defined(MICRO_ROS_TRANSPORT_ARDUINO_SERIAL) 

#error This example is only avaliable for Arduino framework with serial 

transport. 

#endif 

 

// Define message types 

psg453_interfaces__msg__LatencyPing msg_in; 

psg453_interfaces__msg__LatencyPong msg_out; 

 

// Create ROS concepts 

rcl_publisher_t publisher; 

rcl_subscription_t subscriber; 

rclc_executor_t executor; 

rclc_support_t support; 

rcl_allocator_t allocator; 

rcl_node_t node; 

 

#define RCCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc != 

RCL_RET_OK)){error_loop();}} 

#define RCSOFTCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc != 

RCL_RET_OK)){}}  

 

// Error handle loop 

void error_loop() { 

  while(1) { 

    delay(100); 

  } 

} 
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// Function to be executed when a new message is published to latency_ping 

topic 

void subscription_callback(const void * msgin) 

{ 

  // Cast received message to used type 

  const psg453_interfaces__msg__LatencyPing * msg = (const 

psg453_interfaces__msg__LatencyPing *)msgin; 

  // Rewrite received message to another message and publish it to the 

latency_pong topic 

  msg_out.message_id = msg->message_id; 

  msg_out.pc_stamp.sec = msg->pc_stamp.sec; 

  msg_out.pc_stamp.nanosec = msg->pc_stamp.nanosec; 

  RCSOFTCHECK(rcl_publish(&publisher, &msg_out, NULL)); 

} 

 

void setup() { 

  // Configure serial transport 

  Serial.begin(230400); 

  set_microros_serial_transports(Serial); 

  delay(2000); 

 

  allocator = rcl_get_default_allocator(); 

 

  // Create init_options 

  RCCHECK(rclc_support_init(&support, 0, NULL, &allocator)); 

 

  // Create node 

  RCCHECK(rclc_node_init_default(&node, "micro_ros_platformio_node", "", 

&support)); 

 

  // Create publisher 

  RCCHECK(rclc_publisher_init_default( 

    &publisher, 

    &node, 

    ROSIDL_GET_MSG_TYPE_SUPPORT(psg453_interfaces, msg, LatencyPong), 

    "latency_pong")); 

   

  // Create subscriber 

  RCCHECK(rclc_subscription_init_default( 

    &subscriber,  

    &node, 

    ROSIDL_GET_MSG_TYPE_SUPPORT(psg453_interfaces, msg, LatencyPing),  

    "latency_ping")); 

 

  // Create executor 

  RCCHECK(rclc_executor_init(&executor, &support.context, 2, &allocator)); 

  RCCHECK(rclc_executor_add_subscription( 
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    &executor,  

    &subscriber,  

    &msg_in, 

    &subscription_callback, ON_NEW_DATA)); 

 

} 

 

void loop() { 

  // Run the executor 

  RCSOFTCHECK(rclc_executor_spin_some(&executor, RCL_MS_TO_NS(100))); 

} 
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Appendix 2 Code used on MCU to calculate road load 

#include <Arduino.h> 

#include <micro_ros_platformio.h> 

 

#include <rcl/rcl.h> 

#include <rclc/rclc.h> 

#include <rclc/executor.h> 

 

#include <std_msgs/msg/float32.h> 

#include <std_msgs/msg/int32.h> 

#include <psg453_interfaces/msg/car_param.h> 

 

 

#if !defined(MICRO_ROS_TRANSPORT_ARDUINO_SERIAL) 

#error This example is only avaliable for Arduino framework with serial 

transport. 

#endif 

 

// Creating ROS concepts 

rcl_publisher_t left_wheel_publisher; 

rcl_publisher_t right_wheel_publisher; 

rcl_subscription_t subscriber; 

rclc_executor_t executor; 

rclc_support_t support; 

rcl_allocator_t allocator; 

rcl_node_t node; 

 

// Defining message types 

psg453_interfaces__msg__CarParam msg_in; 

std_msgs__msg__Float32 left_wheel_msg; 

std_msgs__msg__Float32 right_wheel_msg; 

 

// Definig constants used for calculation 

const float g = 9.81;               // Gravitational acceleration 

const float air_dens = 1.225;       // Air density 

const float drag = 0.8;             // Aerodynamic drag coefficient 

const float area = 2.77;            // Frontal area 

const float dry_asphalt = 0.014;    // Rolling friction of dry asphalt  

const float wet_asphalt = 0.017;    // Rolling friction of wet asphalt 

const float gravel = 0.02;          // Rolling friction of gravel 

const float snow = 0.016;           // Rolling friction of packed snow 

const float ice = 0.014;            // Rolling friction of ice 

const float pi = 3.1415927; 

const float wheel_radius = 0.285;   // Wheel radius in meters 

const float motor_torque = 49;      //Calculated motor nominal torque (Nm) 
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const int motor_pin = 2;            // Pin to which motor frequency 

converter is connected 

float surface_l; 

float surface_r; 

 

#define RCCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc != 

RCL_RET_OK)){error_loop();}} 

#define RCSOFTCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc != 

RCL_RET_OK)){}}  

 

// Error handle loop 

void error_loop() { 

  while(1) { 

    delay(100); 

  } 

} 

 

// Function to be executed when a new message is published to car_param 

topic 

void subscription_callback(const void * msgin) 

{ 

  // Cast received message to used type 

  const psg453_interfaces__msg__CarParam * msg = (const 

psg453_interfaces__msg__CarParam *)msgin; 

  // Defining values received from car_param topic 

  float speed = msg->speed; 

  float mass = msg->mass; 

  float incline = msg->incline; 

 

  // Define what type of surface is used for the left wheel 

  switch (msg->surface_l){ 

    case 0: 

      surface_l = dry_asphalt; 

      break; 

     

    case 1: 

      surface_l = wet_asphalt; 

      break; 

     

    case 2: 

      surface_l = gravel; 

      break; 

     

    case 3: 

      surface_l = snow; 
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      break; 

     

    case 4: 

      surface_l = ice; 

      break; 

  } 

 

  // Define what type of surface is used for the right wheel 

  switch (msg->surface_r){ 

    case 0: 

      surface_r = dry_asphalt; 

      break; 

     

    case 1: 

      surface_r = wet_asphalt; 

      break; 

     

    case 2: 

      surface_r = gravel; 

      break; 

     

    case 3: 

      surface_r = snow; 

      break; 

     

    case 4: 

      surface_r = ice; 

      break; 

  } 

 

  // Calculation of road load  

  float climb_resistance = mass*g*sin((incline*pi)/180); 

  float left_rolling_resistance = surface_l*mass*g*cos((incline*pi)/180); 

  float right_rolling_resistance = surface_r*mass*g*cos((incline*pi)/180); 

  float aerodynamic_drag = (drag*air_dens*area*pow(speed, 2))/2; 

 

  float left_wheel_road_load = (climb_resistance + left_rolling_resistance + 

aerodynamic_drag)*wheel_radius; 

  float right_wheel_road_load = (climb_resistance + right_rolling_resistance 

+ aerodynamic_drag)*wheel_radius; 

 

  // Converting torque value to voltage 

  int voltage = map(left_wheel_road_load, -motor_torque, motor_torque, 0, 

255); 

  if (voltage > 255){ 

    voltage = 255; 

  } 
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  else if (voltage < 0){ 

    voltage = 0; 

  }  

  analogWrite(motor_pin, voltage); 

 

  // Sending the data to torque_left_wheel and torque_right_wheel topics 

  left_wheel_msg.data = left_wheel_road_load; 

  right_wheel_msg.data = right_wheel_road_load; 

 

  RCSOFTCHECK(rcl_publish(&left_wheel_publisher, &left_wheel_msg, NULL)); 

  RCSOFTCHECK(rcl_publish(&right_wheel_publisher, &right_wheel_msg, NULL)); 

} 

 

void setup() { 

  // Configure serial transport 

  Serial.begin(230400); 

  set_microros_serial_transports(Serial); 

  delay(2000); 

 

  // Defining motor pin as an output 

  pinMode(motor_pin, OUTPUT); 

 

  allocator = rcl_get_default_allocator(); 

 

  // Create init_options 

  RCCHECK(rclc_support_init(&support, 0, NULL, &allocator)); 

 

  // Create node 

  RCCHECK(rclc_node_init_default(&node, "torque_calculation_node", "", 

&support)); 

 

  // Create torque_left_wheel publisher 

  RCCHECK(rclc_publisher_init_default( 

    &left_wheel_publisher, 

    &node, 

    ROSIDL_GET_MSG_TYPE_SUPPORT(std_msgs, msg, Float32), 

    "torque_left_wheel")); 

   

  // Create torque_right_wheel publisher 

  RCCHECK(rclc_publisher_init_default( 

    &right_wheel_publisher, 

    &node, 

    ROSIDL_GET_MSG_TYPE_SUPPORT(std_msgs, msg, Float32), 

    "torque_right_wheel")); 

   

  // Create subscriber 

  RCCHECK(rclc_subscription_init_default( 
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    &subscriber,  

    &node, 

    ROSIDL_GET_MSG_TYPE_SUPPORT(psg453_interfaces, msg, CarParam),  

    "car_param")); 

 

  // Create executor 

  RCCHECK(rclc_executor_init(&executor, &support.context, 3, &allocator)); 

  RCCHECK(rclc_executor_add_subscription( 

    &executor,  

    &subscriber,  

    &msg_in, 

    &subscription_callback, ON_NEW_DATA)); 

 

} 

 

void loop() { 

  // Run the executor 

  RCSOFTCHECK(rclc_executor_spin_some(&executor, RCL_MS_TO_NS(100))); 

} 
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Appendix 3 Code used on Unity to connect to ROS 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using Unity.Robotics.ROSTCPConnector; 

using RosMessageTypes.Psg453Interfaces; 

using Float = RosMessageTypes.Std.Float32Msg; 

 

public class RosBridge : MonoBehaviour 

{ 

 

    ROSConnection ros; 

    public string topicName = "car_param";     

 

    // Setup for variable access from GUI and SurfaceDetector 

    public GameObject interfaceObject; 

    private GuiManager gui; 

    public GameObject carObject; 

    private SurfaceDetector surfaceDetector; 

 

    // All variables to be transmitted 

    public float speed; 

    public float mass; 

    public float incline; 

    public int surface_l; 

    public int surface_r; 

    public float torqueL; 

    public float torqueR; 

 

    public bool valueChanged = true;    // flag changes when speed, mass or 

incline are changed from UI 

 

    void Start() 

    { 

        // Start the ROS connection 

        ros = ROSConnection.GetOrCreateInstance(); 

        // Create publisher and subscribers 

        ros.RegisterPublisher<CarParamMsg>(topicName); 

        ros.Subscribe<Float>("torque_left_wheel", TorqueLeftChange); 

        ros.Subscribe<Float>("torque_right_wheel", 

TorqueRightChange);                                 

         

        gui = interfaceObject.GetComponent<GuiManager>(); 

        surfaceDetector = carObject.GetComponent<SurfaceDetector>(); 

    } 
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    // Rceives the data from torque_left_wheel topic and displays it in UI 

    void TorqueLeftChange(Float torqueLeftMessage) 

    {    

        torqueL = torqueLeftMessage.data; 

        Debug.Log("Torque left: " + torqueLeftMessage.data); 

    } 

 

    // Rceives the data from torque_right_wheel topic and displays it in UI 

    void TorqueRightChange(Float torqueRightMessage) 

    {    

        torqueR = torqueRightMessage.data; 

        Debug.Log("Torque right: " + torqueRightMessage.data); 

    } 

 

    void Update() 

    { 

        // if ANY (speed, mass, incline, 2x surface) value is changed then 

assing new values and publish them to the topic 

        if ((gui.valueChanged != valueChanged) || 

            (surface_l != surfaceDetector.detectedRoadTypeL) || 

            (surface_r != surfaceDetector.detectedRoadTypeR)) 

        { 

            // Assigning new values 

            speed = gui.speed; 

            mass = gui.mass; 

            incline = gui.incline; 

            surface_l = surfaceDetector.detectedRoadTypeL; 

            surface_r = surfaceDetector.detectedRoadTypeR; 

            Debug.Log("speed = " + speed + "| mass = " + mass + "| incline = 

" + incline + "| surfaceL = " + surface_l + "| surfaceR = " + surface_r); 

             

            CarParamMsg carParams = new CarParamMsg(      

                speed, 

                mass, 

                incline, 

                surface_l, 

                surface_r 

            ); 

            // Send the message to car_param topic 

            ros.Publish(topicName, carParam); 

            valueChanged = gui.valueChanged;    //flag reset 

        } 

 

    } 

} 


