
TALLINN UNIVERSITY OF TECHNOLOGY
Department of Computer Science

TUT Center for Digital Forensics and Cyber Security

ITC70LT
Gvantsa Grigolia 144965

EVALUATION OF DATA OWNERSHIP SOLUTIONS

IN REMOTE STORAGE.
Master Thesis

Supervisor: Ahto Buldas
Professor

Tallinn 2016

Autorideklaratsioon

Olen koostanud antud töö iseseisvalt. Kõik töö koostamisel kasutatud teiste au-
torite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on
viidatud. Käsolevat tööd ei ole varem esitatud kaitsmisele kusagil mujal.

Autor: [Gvantsa Grigolia]

[January 2, 2017]

2

Annotatsioon

Pilevatalletusteenuste andjad kasutavad andmeedastus ja -talletuskulude vähendamiseks
ainutalletuse (dedubleerimise) tehnoloogiat, mis on küll tulus, kuid mille turvanõrkused
võivad viia potentsiaalsete rünneteni, mis ohustavad andmete konfidentsiaalsust ja
isikute privaatsust. Pärast esimeste rünnete ilmsikstulekut on viimaste aastate jook-
sul välja pakutud mitmeid lahendusi tagamaks turvalist dedubleerimist. Selle töö
eesmärk on neist lahendustest ülevaate andmine, nende funktsionaalsuse iseloomus-
tamine ja uurimine hindamaks lahenduste turvalisust, side- ja talletusvajadusi. Töös
vaadeldakse ja võrreldakse seitset turvaprotokolli, lähtudes avalikus teadus- jm kir-
janduses kättesaadavat informatsiooni, ja võttes nende majandusliku efektiivsuse
hinnangutel aluseks Amazoni veebiteenuste hinnakirja.

3

Abstract

Cloud storage providers use Data Deduplication technology to reduce the cost of
storing and transferring the data. Thought it is a beneficial technology, there are
security drawbacks leading to potential attacks. Several solutions were published
during the last years, offering a secure implementation of Data Deduplication in
the remote storage. The aim of this study is to cover those solutions, learn their
functionality and characteristics in order to evaluate the security features and their
bandwidth and disk space consumption. The study covers the seven security pro-
tocols and provides the results of their comparison from security and cost efficiency
perspectives. To evaluate the efficiency, it computes generated data for each solu-
tion and applies Amazon Web Services price list to calculate the cost. The security
evaluation is based on the solutions’ security characteristics provided in the paper
works.

4

Contents

1 Introduction 9

2 Terms and Definition 11

3 Background and Related Work 12
3.1 Data Deduplication . 12

3.1.1 Hash Based Deduplication . 12
3.1.2 Types of Deduplication . 12
3.1.3 Summary . 13

3.2 Confidentiality and Privacy Issues in Remote Storage 14
3.2.1 Potential Attacks . 14

3.3 Summary . 15

4 Approach 17
4.1 Solution # 1 . 17

4.1.1 Setup . 18
4.1.2 Security And Efficiency . 19

4.2 Solution # 2 . 21
4.2.1 Setup . 21
4.2.2 Security And Efficiency . 23

4.3 Solution # 3 . 25
4.3.1 Setup . 25
4.3.2 Security And Efficiency . 26

4.4 Solution # 4 . 27
4.4.1 Setup . 28
4.4.2 Security And Efficiency . 29

4.5 Solution # 5 . 31
4.5.1 Setup . 31
4.5.2 Security And Efficiency . 32

4.6 Solution # 6 . 34
4.6.1 Setup . 34
4.6.2 Security And Efficiency . 35

4.7 Solution # 7 . 38
4.7.1 Setup . 38
4.7.2 Security And Efficiency . 39

5

4.8 Summary . 42

5 Evaluation 43
5.1 Security Evaluation . 43
5.2 Cost Analyses . 47
5.3 Summary . 50

6 Conclusions 52

References 54

A Appendix 1 56

6

List of Figures

1 PoW overall performance[1] . 20
2 = Hash-Map Structure . 22
3 Comparison of running time on client-side [2] 24
4 CSD efficiency graph [3] . 30
5 Client uploads and stores the data on server and Users are allowed to

access (depend on their access rights) the content of stored data [4] . . 31
6 Comparison of the server side initialization phase: ce-POW, s-POW

and bf-POW [5] . 42

7

List of Tables

1 PoW 1Time Comparison . 21
2 Asymptotic analyses of schemes.POW,s-POW and s-POW1. n is the

number of challenges; m is the file size; k is a security parameter. [2] . . 24
3 Asymptotic analyses of schemes:POW,s-POW and bf-POW. F is the

file size; k is a security parameter; n is number of challenges in s-POW;
l is a PRF output size; pf is a probability of false positive in BF [6] . . . 37

4 Asymptotic analyses of schemes: ce-POW,s-POW and bf-POW. F is
the file size; k is a security parameter; n is number of challenges in
s-POW; l is a token size; pf is a probability of false positive in BF [5] . . 41

5 shows how the solutions respond on the given attacks. N/A – the
attack is irrelevant; Dash – the attack is relevant but the solution does
not provide the countermeasure; Check Mark – the attack is relevant
and the solution provides the countermeasure against it. 44

6 Comparison: Security Features . 46
7 Data traffic and storage costs based on Amazon S3 pricing. Estimated

amount of files and generated traffic is offered according the static of
one of the most popular remote storage provider - Dropbox. 51

8 Client Computation Time – POF vs PoW [7] 56

8

1. Introduction

The cloud computing gained a lot of popularity and the reason is its favorable fea-
tures for business development. Services that the cloud providers are offering are
mostly divided in three categories: Infrastructure as a Service (IaaS) – provides the
customers with the outsource hardware solutions, Platform as a Service (PaaS) – pro-
vides an environment for developers to implement and deploy their solutions, and
Software as a Service (SaaS) – offers the solutions deployed over the web to the end
users. The charming characteristics of the offered services are the elasticity and on-
demand payment. The user can easily increase or decrease the amount of resources
he is using and pay according to the consumption.

As the popularity of cloud computing grows, also the amount of customers’ gen-
erated data increases. But it turns out that customers sometimes generate identical
data.[8] As a result the redundant data is stored on the disk and transferred multi-
ple times over the network. To increase the efficiency of disk space and bandwidth
consumption, the Data Deduplication technology was introduced. The idea behind
this technology is simple – store data on the disk if it is uploaded first time, but reject
all the other attempts to upload the same data and create a reference to the existing
data instead. In order to identify the duplication, we calculate the hash digest of the
content and compare it with the hashes of existing contents on the disk. The next
section covers Data Deduplication concept in more details.

The Data Deduplication is an elegant approach, but it has several drawbacks in terms
of privacy and confidentiality. Adversary has possibility to learn the content of the
customer’s data, when cloud providers use Data Deduplication technology. Data
privacy issue is one of the aspects that could break the trust of the customers to-
wards the service providers. So those who want to stay in the market, should build
the systems, which takes into consideration privacy and confidentiality issues. To
avoid the privacy and data confidentiality attacks in remote storage, there are sev-
eral solutions, which offer secure implementation of Data Deduplication in remote
storage. The secure implementation means that the probability that the adversary
learns the content of user’s private data is negligible and depends on the security
parameter (it is tunable parameter). However there are cases when the overhead of
protocols/solutions, in order to hold desired security level is high and not worthy

9

to implement. In this work we go through the seven different solutions (some of
them are related as well to each other or are based on the outcomes form previews
papers.) and provide the detail description of their functionality, security and effi-
ciency features. The objective of this thesis is to gather such solutions, understand
their functionality, compare their security characteristics and provide the operational
cost analyses and comparison.

To understand the operational part of the secure implement of the Data Dedupli-
cation in remote storage, is an important step before diving into the efficiency and
security characteristics comparison. The solutions’ security characteristics includes
the resilience to different type of attacks, soundness of the protocol developed in
solutions, the distribution of input file – weather the given soundness is for only a
specific class of distribution or it holds for arbitrary distribution and finally it in-
cludes the leakage resilience – if the soundness still holds if the adversary has com-
pliances and can learn some information about file. The cost analyses are based on
bandwidth and disk space costs necessary to operate the offered solutions. Based
on detailed solution description it is possible to calculate the generated extra data
transfer and storage. After obtaining the generated data amount it is easy to apply
the AWS prices1 to get the final extra cost for each solution.

There are following sections included in this thesis: Terms and definition, Back-
ground and Related Work, Approach, Evaluation and Conclusions. The Terms and
definition is self explanatory section and it provides the description of the terms and
concepts that is used in the thesis in order to deliver the objectives. The Background
and Related Work covers in main concept of the Data Deduplication technology,
how it works and its types. After explaining the concept of the Data Deduplication
the section demonstrates the several attacks exploiting the Data Deduplication in
remote storage. The Approach section provides a detailed description of the seven
solutions. This part is important in order to understand how the protocols function
and deliver security. The Evaluation – compares the security characteristics and the
cost of solutions. The evaluation is based on the paper works and the implementa-
tion of the solutions is out of the scope of the thesis. And at the end we have the
Conclusions section, which provides a short summary of contribution.

1https://aws.amazon.com/s3/pricing/, last seen October 3, 2016

10

https://aws.amazon.com/s3/pricing/

2. Terms and Definition

This section provides the list of the terms frequently used in the thesis.

Remote Storage The disk space, provided by the cloud service providers.

Data Deduplication Technology to reduce the amount of data.

Client
The client side software used by users to connect the remote
storage.

Server
The server side software that runs on server side, provides the
data storage environment.

Prover
The participant of the protocol that provides the respond on the
challenge. In this thesis the client is refereed as the prover.

Verifier
The participant of the protocol that provides the challenge and
verifies the respond. In this thesis the server is refereed as the
verifier.

Hash

The string of fixed length that uniquely identifies the data. It is
the output of the special class of the functions, called hash
functions that has special properties and are widely used in
cryptography.

PoW
Proof of Ownership – Interactive protocol to implement secure
Data Deduplication in remote storage.

11

3. Background and Related Work

3.1. Data Deduplication

Cloud computing is an on-demand service. Customers are charged based on used
storage and bandwidth.2 Both service providers and customers are interested in cost
efficient solutions of a cloud storage. Data Deduplication offers disk and bandwidth
savings. Idea is simple – avoid or remove a duplicated data. This section covers
basic concepts of deduplication technology. It lists various methods and processing
types and underlines the approaches used in a cloud storage.

3.1.1. Hash Based Deduplication

To remove or avoid duplicated data, it must be detected first. Hash based Data
Deduplication uses the hash values of a file (or data chunk) as a file (or data chunk)
identifier. Hashes of files are calculated and then are kept on the server. When the
file is uploaded first time, its hash is computed and it is compared with the existing
hashes on the server. If there is a match, the file is not stored on the disk (or in
case of client-side deduplication, is not transfered at all). Instead, server creates the
reference, which points on the already existing file, with the same hash value. If
computed hash does not match with any of the hashes, the file together with the
hash value is stored on the server.[9]

3.1.2. Types of Deduplication

Data Deduplication differs based on processing methods. If it takes place before the
client application transfers the file to the server, it is known as client-side deduplica-
tion. If it takes place, after the file is uploaded on the server, it is known as server side

2"With Amazon S3, you pay only for the storage you actually use. There is no minimum fee
and no setup cost. Amazon S3 has three pricing components: storage (per GB per month), data
transfer in or out (per GB per month), and requests (per n thousand requests per month)." http:
//aws.amazon.com/s3/pricing/

12

http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/pricing/

deduplication. In client-side deduplication scenario, the client application computes
the hash of the file and sends it to the server. If the hash already exists on the server
side, client application does not send the file. If no match is found, it means,that
the file is unique and client application sends it to the server. On the other hand, if
client application directly sends file to the server and server computes the hash after
it, it is called server-side deduplication. Both processing methods save storage, but
client-side deduplication also reduces bandwidth consumption.[10]

Apart of divers processing methods, Data Deduplication differs in processing levels.
There are file and block level of deduplication. Difference between them is intuitive.
In case of file level, hash of file is calculated and as a result server stores unique files.
In block level scenario, files are divided into blocks(fixed or variable size). Hashes
of these blocks are calculated and duplicated data on block level is avoided. [10]

The last concept is, single and cross client Data Deduplication. Single client Data
Deduplication removes duplicated data in scope of one user. Duplicated data will
be stored on the server, if it belongs to different users. On the other hand, cross
client deduplication vanishes the user boundaries and unique data would be shared
among the users.[10]

3.1.3. Summary

Cloud storage providers are looking for, the most efficient way to reduce the cost.
In cross user client-side deduplication case, file or ”chunks” of file are stored only
ones on the disk and users are sharing the data. It reduces the bandwidth consump-
tion dramatically, because the deduplication takes palace on client side, and dupli-
cated files are not uploaded at all.[11] Such reductions is attractive for cloud storage
providers, but this technology has some security drawbacks. Next section covers
potential attacks exploiting the Cross-User-Client-Side Data Deduplication in cloud
storage.

13

3.2. Confidentiality and Privacy Issues in Remote Storage

Taking into consideration the behavior of the Cross-User-Client-Side Data Dedupli-
cation, it is easy to learn some general facts. This section focuses on attacks breaching
the confidentiality and privacy of remote storage customers’ data, when Cross-User-
Client-Side Data Deduplication takes place.

3.2.1. Potential Attacks

Danny Harnik was first who has demonstrated, the potential attacks in remote stor-
age related to Data Deduplication technology.[12] The paper covers three cases: file
detection, file content detection and covert channel. The first case shows, how triv-
ial is to learn whether the remote server already contains the particular file or not.
Attacker uploads the file and observes the network traffic or the time required to
upload the file. If the file already is stored on the server, there is no need to up-
load it again. Client application sends only the hash of the file to the server. The
observer detects, that amount of data is smaller then file’s size itself(Size of the hash
depends on hash function and is smaller then file size). If file is "big enough", ob-
serving the time required to upload file on server, is sufficient to learn, whether the
server already contains the file or not. The law enforcement authorities, can use this
behavior. Check if storage provider contains the file (e.g. file’s content is against the
law) and later, they can force remote storage service providers to revile the identity
of the file owner.

Data Deduplication technology opens the possibility to guess the file content. The
approach is straightforward, attacker just uploads all possible variations of file con-
tent and waits for occurrence of deduplication. Once it takes place, attacker learns
that such file (file with this content) exist on the server. The trick is that, unlike the
dictionary attacks it is not detectable. It is the legitimate way to upload new doc-
uments on the server.[12] This type of attack is easy to lunch against the files with
small min-entropy. To have batter understanding, refer to the following example.
Bob is invited at the event in the cinema. He stores his invitation ticket in the cloud.
Alice wants to learn the row and the place of Bob’s ticket. She puts the Bob’s name on
the right place and starts to brute force row and place numbers. Alice generates files

14

with different content and uploads on cloud. Once the deduplication takes place,
she will get the desired information.

The Data Deduplication technology could be used to establish covert channel. Pre-
condition for this scenario is, that attacker already have to own the victims machine.
In order to exchange one bit information "0" or "1", attacker generates two random
files and uploads one of them. If the first file is uploaded the covert channel trans-
fers "0" else it transfers "1" bit. Covert channel can transfers more information, by
altering the number of files or the meaning of file.[12]

All above stated attacks demonstrate the side channel effects of Data Deduplica-
tion. Attackers exploit the vulnerability, that Data Deduplication is detectable. But
later Halevi states that main issue is not the detectability, but using the hash value
as a proxy in remote storage.[1] He claims that, to use a hash as a proxy to retrieve
the file is vulnerable. Owning a small static piece of the file(e.g. hash of the file)
does not necessarily mean owning the entire file. He referees to the Dropship3 open
source project, as a brief example of misusing the storage provider. Dropship turn
the remote storage provider into CDN (Content Distribution Network) service. For
that time Dropbox4 was operating based on the cross-user client-side deduplication.
The users of Dropship, were able to download the file in their folder, just sending
the file’s hash for check to the Server. This open source project was considered as the
violation of Terms of Service of the company and is not operating anymore. Halevi
introduces the Proof of Ownership Protocol, which dramatically reduces the prob-
ability of the attacker to retrieve the file, without owning it. Next section covers
the detail description of Proof of Ownership Protocol and other solutions offered to
substitute the hash as a proxy approach for data ownership in a remote storage.[1]

3.3. Summary

The amount of savings offered by Data Deduplication, depends on data type and
content produced by users of such services.[8] In case of office workers as users of
remote storage, the benefit from deduplication is high. Office workers use mostly

3https://github.com/driverdan/dropship - "Instantly transfer files between Dropbox ac-
counts using only their hashes"

4https://www.dropbox.com/

15

https://github.com/driverdan/dropship
https://www.dropbox.com/

identical templates to generate the data and the portion of duplication is high. Ap-
plying Data Deduplication technology saves bandwidth and disk space. But same
time it rises privacy and confidentiality issues. The major weakness is that, client-
side deduplication is detectable and using hash as a proof of ownership is not suf-
ficient. Anyone who possesses the hash value of file, is able to retrieve the file from
the server. If the attacker obtains the hash of the file, he can retrieve the file from the
server and gain unauthorized access to it.

16

4. Approach

We have demonstrated importance of Data Deduplication technology for remote
storage services. And have determine the root cause of breaching the privacy and
confidentiality. This section covers the solutions, which refuse to use the static piece
of information (hash of the file) as a proxy and offers alternative ways to prove the
ownership of the data. We numerate the solutions from one to seven based on pub-
lished date and show how it works and what are their security and efficiency char-
acteristics.

4.1. Solution # 1

This subsections covers Proof of Ownership (PoW) protocol, introduced by Halevi.[1]PoW
involves two parties: Prover and Verifier. The goal of prover is to convince the veri-
fier, that he "owns" particular file. While the goal of verifier is to check if the affirma-
tion of the prover is true. To accomplish their tasks, verifier uses summary value of
file, while prover relies on the file itself. Paper [1] offers three solutions, and the sub-
section reviews all of them, but covers security and efficiency characteristics only for
the last one. Before we move to the solutions, we have to underline two constraints.
First, attacker may have compliances which own the file, but the total number of
bits that attacker can receive from them must be less then initial min-entropy5 of file.
And second, attacker can not interact with compliances during the proving phase.

5"The min entropy, in information theory, is the smallest of the Rényi family of entropies, corre-
sponding to the most conservative way of measuring the unpredictability of a set of outcomes, as
the negative logarithm of the probability of the most likely outcome." "A random variable X has
min-entropy k, denoted H∝(X) = k, if max

x
Pr[X = x] = 2−k "[13]

17

4.1.1. Setup

The most secure and less efficient from suggested three solutions, uses erasure code.6

Form each 90% of bits, it is possible to recover the whole file. After the file is encoded
using erasure code, next step is to build the Merkle-Tree[14] on the encoded file. The
verifier(server) keeps the root value of the computed tree and the number of leaves.
During the proof phase, verifier(server) asks the prover(client) for some number of
leaves’ values and their sibling paths. The verifier checks if all the provided sibling
paths give the valid Merkle-Tree root value. Based on the outcome, client is able to
retrieve file or not.

Computing erasure code requires access to the file and in case of large files (the
files stored on the secondary storage) it raises communication complexity. To in-
crease the efficiency of the protocol, erasure encoding is substituted with universal
hashing[15]. First the file is hashed and then the Merkle-Tree is built on the hash. The
hashing serves to reduce the size of file up to some predefined number of bits(max
length 64MByte). The second solution is more efficient then first one, but it weakens
the security. Security requirement for first solution claims: attacker can not retrieve
file from the server, if the min-entropy remained in file after attacker receives the bits
from compliances, is bigger then security parameter. Erasure encoding substitution
with universal hashing, made changes in security requirement as well. For second
solution, security requirement stress that, attacker can convince the verifier to grant
access to the file, if it receives some T bits from compliances, which can be less then
min-entropy of the file. (e.g.64MByte)

Erasure code and universal hashing solutions, both consider that the input file is
taken form an arbitrary distribution. On the other hand, the third solution claims
that, in realistic scenarios, the attacker always has some information about file which
he desires to extract. Thereof, it is reasonable to relax the security requirement and
define it for particular class of distribution. Such relaxation of security requirement
gives possibility to modify the protocol and make it more space efficient. In partic-
ular instead of working with bit vectors, it is possible to divide file into blocks and
operate over the blocks. There are three phases to prepare the input for Merkle-Tree:
initializing, reducing and mixing. First the M bit size file is divided into m blocks.

6"The basic premise of erasure coding goes as follows: Take a file and split into k pieces and encode
into n pieces. Now, any k pieces can be used to get back the file”

18

In the initializing phase, l blocks of buffer and IV (Initial Vector) are allocated. Next
comes reduction phase, which is a liner mapping. It maps, original file’s m blocks to
the allocated l buffer blocks. Each block of the file is XORed in specific number in
some locations. And locations are taken from IV, which is generated as SHA256(IV[i-
1],File[i]). Where i is the block number of the file and IV[0] is defined as SHA256-IV.7.
The same operations take palace at mixing phase. But with one difference, instead
of the file blocks, buffer blocks are taken as an input of XORing.

4.1.2. Security And Efficiency

To demonstrate the soundness of the last solution, it is better to view the file from
attacker’s perspective. Input file in this scenarios is not take form arbitrary distribu-
tion, but form some class of distribution. And it is reasonable for real life scenarios,
as attacker always know some peace of information(e.g. file format) about the file
that he tries to retrieve. M -bit file with k bits of min-entropy, can be represented from
attackers perspective as ~f ← ~w · A + ~b, where ~w ∈ {0, 1}k and is chosen randomly,
while A ∈ {0, 1}k×M and ~b ∈ {0, 1}M are chosen by attacker(based some knowledge
that attacker has). Protocol uses hash function to prepare input for Merkle-Tree,
which is linear mapping, h(~f) = ~f ·C = ~w ·AC +~bC.[1] Important part in this linear
mapping is that the linear code that is generated by AC matrix must have a large
minimum distance. And it is possible to achieve as we are choosing matrix C for
mapping. The theorem #3 proved in the paper states that the solution is the secure
proof of ownership with soundness

(
L−d+1
L

)t where L is reduce buffer, t is number
of challenges on Merkle-Tree and d is the minimum distance of the linear code gen-
erated by AC matrix.

Time efficiency is one of the important features, that characterizes the protocol and
influences decision whether to implement it or not. Halevi evaluates the perfor-
mance of PoW protocol, and compares it with non-secure Data Deduplication and
whole file transfer (without Data Deduplication) implementations of remote storage.
Overall time protocol requires, is decomposed in three parts: Client, Server and Net-

7For SHA-256, the initial hash value, H(0), consists of the eight 32-bit words, in hex. These words
were obtained by taking the first thirty-two bits of the fractional parts of the square roots of the
first eight prime numbers.https://tools.ietf.org/html/rfc4634#section-6.2 last seen
October 3, 2016

19

https://tools.ietf.org/html/rfc4634#section-6.2

work time.8 Client time is calculated as the sum of the subtasks client performs and
subtasks are: reading file from the disk, computing the SHA256 hash, going through
reduction and mixing phases and computing the Merkle-Tree. Server time – time the
server needs to check Merkle-Tree authentication signature. And Network time – re-
spectively the time necessary for data generated by prover and verifier to travel via
network. Server and Network time consumption is negligible. (E.g. checking 20 sib-
ling paths "costs" 0.6ms and data generated for transmission is around 20KB. In case
of 5Mbps network the overhead is 0.1ms. All together the overhead of Server and
Network is 0.7ms). While the main pressure comes on client side. To compare it with
insecure implementation of Data Deduplication, PoW on client side adds reduction
and mixing phases and Merkle-Tree calculation. As the result of the tests, reduction
phase adds less then 28% time over insecure solution. Mixing phase and Merkle-
Tree calculation behavior depends on the size of the file. For small size files(less
then 64MB), the time up-growth is 200% , but it stays constant(1158ms) once the file
grows above 64MB. PoW is also compared with the solution to avoid deduplication
and always send a whole file to the server.

Figure 1. PoW overall performance[1]
.

Protocol is observed in two setups: network with 5Mbps and 100Mbps. The results
are following: PoW always consumes less time in 5Mbps then transferring the whole
file. Once the file grows over the 1GB PoW requires 1% time of the file transfer. In

8"The measurements were performed on an Intel machine with Xeon X5570 CPU running at
2.93GHz. We implemented the protocol in C++ and used the SHA256 implementation from
Crypto++"

20

case of 100Mbps network, the protocol has lower bound for file size. For files larger
then 64KB, PoW consumes less time then solution without deduplication . And for
files larger then 1GB, it requires 4% of time of the whole file transfer.

Dedup Time = Td File Transfer Time = T

PoW 3.28Td + 0.7ms9 and
1.28Td + 1.165s10 0.1T 11; 0.4T 12; > T 13;

Table 1. PoW 1Time Comparison

4.2. Solution # 2

This subsection covers the solution proposed by Di Pietro[2] in his paper "Boosting
Efficiency and Security in Proof of Ownership for Deduplication". The motivation
of this work is to improve the efficiency of PoW[1] protocol and to avoid the secu-
rity assumptions that is hard to verify(refereeing to the concept that the file is taken
from some class of distribution and not from arbitrary distribution). The subsection
includes the scheme description and efficiency analyses in comparison with PoW[1]

4.2.1. Setup

Solution offered by Di Pietro is two party protocol and involvesC(Client) as a prover
and S(Server) as a verifier. He names a protocol as s-POW. Once S receives the file for
the first time it computes the n number of challenges and stores the file on the disk.
To compute the challenges S keeps the hash-map data structure =. It maps files to
the tuples and as a key it uses the hash of the file. Tuple contains four elements: ptr –
the pointer on the file; res[] – an array of generated challenges–called "responses" (K
bit strings); idc – the highest challenge computed so far ; idu – number of challenges
used so far.

The S uses file digest d (hash of the file), idc index and server’s master key as an

9For files less then 64Mb: Td + 0.28Td + 2Td + 0.7ms
10For files more then 64Mb: Td + 0.28Td + 2Td + 0.7ms
11In 5Mbps network and file size more then 1Gb
12In 100Mbps network and file size more then 1Gb
13In 5Mpbs for any size of file and In 100Mbps for files larger then 64K

21

Figure 2. = Hash-Map Structure
.

input for the pseudo-random generator F to produce random seed s. The s is an
integer and satisfies the following inequality 0 < s < file_size. The random seed
s serves for calculation of random position in file – represented as bit vector and is
unique for each challenge. At the end using the random position and the file as an
input, get − bit macros outputs the bit value. Concatenation of such outputs repre-
sents the response, which is K bits log and is stored in res[] array. Server computes n
number of responses at a time. This approach reduces I/O operations. Computation
of responses takes place only, when the client uploads the file, which did not exist
on server before or when all the pre-computed responses are depleted.(idc and idu

control which responses is still valid and how many valid ones are remained.)

If client C attempts to upload the file already located on the server S, S challenges
the client. It sends the random seed s and waits for valid response. Client receives s
and use same get−bitmacro to produce aK bit length response. If received response
is the same as pre-computed one, the client succeeds to convince the server.

The s-POW protocol has two other modifications, which are designed to improve
efficiency and are more convenient in particular cases. In one case the hash function
which is used to calculate the key of the hash-map is substitute with calculation of
response(K bit strings) based on the file and the public seed Spub. (This response
serves as the key of hash-map) . In second case the file size is used as the key of the
hash-map. The second solution is worthy only for large files, as the collision will be
extremely high otherwise.

22

4.2.2. Security And Efficiency

To demonstrate the security of s-POW protocol, Di Pietro shows the probability of
adversary to convince the verifier and it is assumed that adversary already owns
some large part of file. The Probability of adversary to guess the single bit for the
K bit length response is: P (succ1) = 1 − ε(1 − g), where ε is fraction of file that is
unknown for attacker and g is the probability to guess unknown bit correctly. To
convince the server, the adversary should guess the whole K bit length response,
and as guessing each bit from K bit vector are independent events, the probability
of convincing server is: P (succ) = (1 − ε(1 − g))K . It means that the success prob-
ability of adversary to convince the server depends on K, which is possible to tune
based the security requirement. E.g. if the requirement is , P (succ) ≤ 2−k, where k is
a security parameter, then K = dk·ln(2)

ε(1−g)e

Efficiency analyses comprises the CPU computation, I/O in bought client and server
side and bandwidth consumption. Di Pietro evaluates his proposed schemes(s-POW
and s-POW1 14) and compares it with PoW.15 On client-side both s-POW and s-POW1
schemes are faster then PoW. The complexity up growth of s-POW and PoW schemes
are equivalent of file size growth. It is reasonable because in both cases the dominant
operation is hashing. While in s-POW1 computation cost becomes constant for large
files. As in the s-POW1 no hashing is used and only random disk access is needed
to get required bit. For visualization it is better to refer the diagrams provided by
authors:

To demonstrate the server-side performance, it is convenient to divide it in two
phases: initialization and regular execution. When the file is first uploaded on
server-side, that represents initialization phase and all other communication be-
tween client and server is the regular execution phase. In initialization phase PoW
and s-POW both perform file hashing. It follows with reduction and mixing phase
and Merkle-Tree calculation in case of PoW and n challenge computation in s-POW
case. In s-POW when all pre-calculated challenges are used, server should calculate
them again but this is considered to be a part of regular execution phase. In regular
execution phase the PoW performs Merkle-Tree verification while the s-POW per-

14Modification of s-POW protocol, which uses K bit string instead of file hash as a key in hash-map
15"We have run our implementation of both schemes on a 64-bit RedHat box with an Intel Xeon

2.27GHz CPU, 18 GiB of RAM and an IBM 42D0747 7200 RPM SATA hard disk drive.[2]"

23

Figure 3. Comparison of running time on client-side [2]
.

forms only look-up to get the correct tuple and the valid response from res[] array.
But in addition to look-up, s-POW needs to recalculate the challenges(responses).
Dispite the pre-calculated challenges, which are done in order to decrees the file
access, on server side PoW is faster then provided s-POW. It is also important to
mention the storage efficiency, PoW needs only Merkle-Tree root value to store on
server side, while s-POW for operation requires storing of the hash-map data struc-
ture. Based on the performed analyses and execution, authors give the asymptotic
analyses of schemes.

PoW s-POW s-POW1

Client-side computation O(m)hash O(m)hash
O(k)PRNG16

Client-side I/O O(m) O(m) O(k)
Server-side computation
(initialization phase) O(m)hash O(m)hash O(nk)PRNG

Server-side computation
(regular execution phase) O(1) O(nk)PRNG O(nk)PRNG

Server-side I/O (initialization
phase) O(m) O(m) O(nk)

Server-side I/O (regular
execution phase) 0 O(nk) O(nk)

Server-side storage O(1) O(nk) O(nk)
Bandwidth O(k log k) O(k) O(k)

Table 2. Asymptotic analyses of schemes.POW,s-POW and s-POW1. n is the number
of challenges; m is the file size; k is a security parameter. [2]

16Pseudorandom number generator

24

4.3. Solution # 3

The subsection reviews the solution offered by Chao Yang in his work "Provable
Ownership of File in De-duplication Cloud Storage".[7] Provable Ownership of File,
referred as a POF scheme, is two party protocol and helps the client to prove to
the server that it indeed owns the file. The subsection first describes the scheme,
followed by the security and efficiency analyses. To demonstrate the advantage of
their scheme, authors make comparison with PoW protocol.

4.3.1. Setup

POF is a cryptographic protocol that obliges a client to prove to the server that it
owns the whole file. The client first sends the hash of the file to the server and if
such hash already exist on the server side, the POF protocol invokes and the server
challenges the client to prove the file possession. The POF consists of two phases:
setup and challenge. In setup phase server decomposes the file F in f blocks. It
chooses a random number Rc and generates session key Ks = hsk(Rc) (where sk is
pre-shared symmetric key) and two random seeds S1 and S2. Those random seeds
are used in challenge phase to choose the blocks of the file. The server provides the
client with random number Rc, in order to generate the same session key Ks. Client
generates theKs session key and sends back to server the hKs(Rc, TS)||TS (where TS
is the current time stamp) value to confirm the generation of session key. The session
keyKs is kept in secret and is used in challenge phase, while theRc could be deleted.

In challenge phase server sends the c number of blocks(1 6 c 6 f) and two random
seeds S1, S2 to the client. Random seeds S1 and S2 are used to produce block indices
iτ and dynamic coefficient δτ where (1 6 τ 6 c). Client decomposes the whole file in
f block F = (b1, b2, b3, ..bf) and computes the proof as hash of concatenation of the
hashes of choose block and dynamic coefficients.

V ′ = hKss(hKs(bi1 , δ1)||hKs(bi2 , δ2)||...||hKs(biτ , δτ)) (1)

Client sends to the server the generated proof V ′, server makes the same calculation,
but uses the original file and generates the V proof. If V ′ = V the server is convinced
that the client owns the file.

25

4.3.2. Security And Efficiency

The POF has three major security requirement. First – randomness of indices for
the blocks of the file. Second – the original file must be involved for calculation the
proof. And third – the calculated proof should be different for different times. When
all these three security requirements holds the scheme resistance to cheating is as
high as the resistance of collision attack of the hash function used in POF. The au-
thors provide the proof of the following theorem: "For the proposed POF scheme,
the complexity for cheating of the ownership verification is at least as difficult as
performing strong collision attack of the hash function"

To demonstrate the efficiency of the POF scheme, it is compared with PoW. The
authors execute both schemes in the same setup17 and demonstrate the results for
each of them in milliseconds. Two protocols computation time is decomposed in
three parts: client, server and network computation time.

Client computation time is covered in details. For POF protocol it includes, time to
read randomly chosen parts of original file, key derivation time and time to compute
the proof. While PoW for simplicity, includes just whole file reading and Merkle-Tree
calculation time on original file.(reducing and mixing phases are omitted) And even
in this scenario POF is more time efficient on client side. In POF file’s portions read-
ing time increases as file size increase, but the time for proof computation could stay
the same and does not depend on file size. For PoW – the whole file reading time
and Merkle-Tree computation time, both increase as file size grows. Based on re-
sults,(see Appendix 1) we can demonstrate the difference in client time computation
(in average), between POF and PoW schemes. The schemes had run on different size
of files and the file size was doubling each time. The starting size was 0.015625MB

and it had increased till 1024MB. We can see that the file size was increased 65536
times. As file size was growing the time consumption was changing. In case of POF
for the disk reading , the time was increased approximately 37 times and key deriva-
tion and proof computation time was remained mostly constant(around 0.62ms). So
the total time was increased 8 times (at stating point the total time was 0.77 and at

17The experiments were conducted on an Intel 3.0GHz Intel Core 2 Duo system with 64KB cache,
1333MHz EPCI bus, and 2048MB of RAM. The system runs Ubuntu10.04, kernel version 2.6.34. We
used C++ for the implementation. We also used the SHA256 from Crypto++ version 0.9.8b[16]. The
files are stored on an ext4 file system on a Seagate Barracuda 7200.7 (ST23250310AS) 250GB Ultra
ATA/100 drive.

26

the ending point – 6.15ms). In case of PoW – disk reading was increased 28684 times
and Merkle-Tree computation approximately 40955 times, overall 39296 time for total
time. (at stating point the total time was 0.66 and at the ending point – 25926.39ms).

Server side computation time is considered to be same or less then client side com-
putation for POF. In case of PoW it is to check the Merkle-Tree authentication signa-
ture, which is not time consuming. Network transmitting time, is the time required
to transfer the data generated by protocols. In the given setup the data generated for
both protocols was less then 1KB. The server and network times both are negligible
and based on the client computation time it was demonstrated that, the POF is more
efficient then PoW.

4.4. Solution # 4

The subsection covers solution offered by Jia Xu and his colleagues in the paper work
"Weak Leakage-Resilient Client-side Deduplication of Encrypted Data in Cloud Storage".[3]
In previous solutions reviewed in this work, the server is considered as a honest
player and effort is directed to prevent malicious clients. While this paper addresses
both client and server side threats. Paper underlines the importance of confidential-
ity of user’s sensitive data. It claims that, the remote storage provider should not
have access to the users sensitive information and proposes the solution of Proof of
Work protocol over the encrypted files on client side. Jia Xu expends the security re-
striction of Halevi’s PoW protocol, from specific class of file distribution to arbitrary
file distribution. But on the other hand it restricts the data leakage size and security
holds if the leakage takes place only before the protocol starts, while in PoW leakage
could happen any time, but not during the protocol communication.

Using encryption on client side delivers confidentiality of sensitive information but,
on the other hand it rises the risk of Poison Attack, also known as Target Collision
attack.[17] When encrypted file is uploaded on server side, server is not able to check
consistency between file and meta-data (e.g. hash of the file). This feature opens pos-
sibility to attacker to substituted the encrypted file with the same size malicious one.
And if later the owner of the file retrieves it, she gets poisoned file not the original
one. Solution demonstrated in this subsection, takes into consideration these type of
threats and offers solid security over some restricted leakage conditions.

27

4.4.1. Setup

The Weak Leakage-Resilient Client-Side Deduplication scheme, is refereed as CSD
shortly and is represented with four probabilistic polynomial-time algorithms E, D,
P , V . E is an encryption algorithm: E(F, 1λ)→ (τ, C0, C1), where F is file, λ is secu-
rity parameter, τ encryption key and C0 and C1 are cipher-texts: C0 – encrypted key
and C1 – encrypted file. D(τ, C1) → F – decodes C1 cipher. P (F) → y0, y0 ∈ {τ,⊥}
– prover algorithm , which interacts with verifier algorithm and outputs the encryp-
tion key τ . V (C0)→ (y1, y2), y1 ∈ {Accept;Rejectg} and y2 ∈ {hash(C1),⊥} – verifier
algorithm, which interacts with prover algorithm.

The CSD protocol involves the client and the server. When a client uploads the
file first time on the server, it generates the random AES[18] key τ and two ciphers:
CF and Cτ . Where CF is an encrypted file, using AES encryption and generated key
τ and is almost as large as original file. While Cτ is the encrypted random key τ

generated by client, using some custom encryption method and the file F as a key.
And the size of Cτ is small number – upper bounded by |τ |. After the key and ci-
phers are generated, client sends hash value of original file F , together with two
cipher CF and Cτ . Server receives the data form client, stores the encrypted file CF
in secondary storage(large but slow storage). While meta-data of encrypted file is
stored in primary storage and is represented as key-value pair entry in the lookup
database: (key = hash(F); value = (hash(CF), Cτ)) , where hash(CF) is calculated
by server and hash(F) and Cτ is received from client.

If client tries to upload the file – already located on the server side, it first sends
the hash(F) to the server. Based on the received hash(F), the server identifies the
tuple (hash(CF), Cτ) in the lookup database. It retrieves the Cτ value and sends back
to client. If the client indeed owns the file, she can decrypt the cipher Cτ using the
file as a decryption key and retrieve the ASE key τ . After obtaining the AES key τ ,
client encrypts the original file, computes the hash of it and sends the hash(CF) as a
proof to the server. Server compares the received hash(CF) hash value, with the one
kept in its database. If the values are equal then the client gains the access to the file,
otherwise access is forbidden. After client is identified as honest, she can remove the
original file and keep only the ASE key τ , which she will use later for decrypting the
downloaded file.

28

4.4.2. Security And Efficiency

To demonstrate the security of the CSD scheme, authors use the game-based secu-
rity proof. The security definition states that, adversary can not learn anything new
about the a single bit of the file(thereof about the file in whole), from client-side
deduplication process, besides the side channel leakage. Security game GCSD

A be-
tween challenger and PPT(Probabilistic Polynomial Time) A adversary consists of
two learning and two guessing phases. In first learning phase, adversary receives
the output of some PPT function y from the challenger. y < (ε0 − ε1) , where ε0 is
a minimum min-entorpy of the file and (ε0 − ε1) – is a max length of bits adversary
is allowed to learn about the file. For it’s part ε0 > ε1 ≥ λ, where λ is a security
parameter. Adversary chooses the v indices (i1, ...iv) and the challenger chooses the
subsequence α ∈ {0, 1}v of the file, such that the each bit chosen based on v indices
from that subsequence α corresponds the bit from the file F also chosen based those
indices. The challenger chooses the bit b ∈ {0, 1} and sets αb = α and α1−b ∈R {0, 1}v

and sends those α0 and α1 to the adversary. It is followed with the first guessing
phase, where an other extractor A∗ produces the guess of b bit, bA∗ ∈ {0, 1}. In the
second guess phase the adversary tries to guess the b bit, bA ∈ {0, 1}.

The CSD is secure in (ε0, ε1) if the probability of guessing b single bit by extractor
A∗ plus some negligible in security parameter negl(λ), is grater or equal then prob-
ability of adversary A guessing the same b bit: Pr[bA = b] ≤ Pr[bA∗ = b] + negl(λ).
Authors construct the secure CSM in the paper and have provide the proof of the
security statement in their work.

The CSD scheme efficiency is measured based on running the prover P and the
verifier V interactive algorithms.18It is compared with the running time of trans-
ferring files without deduplication or encryption. The graph provided by authors
shows, that it is more efficient to use CSD scheme for secure deduplication rather
then avoid it at all and transfer whole files via network.

18"The test machine is a laptop computer, which is equipped with a 2.5GHz Intel Core 2 Duo mobile
CPU (model T9300), a 3GB PC2700-800MHZ RAM and a 7200RPM hard disk. The test machine runs
32 bits version of Gentoo Linux OS with kernel 3.1.10. The file system is EXT4 with 4KB page size" [3]

29

Figure 4. CSD efficiency graph [3]
.

30

4.5. Solution # 5

The subsection reviews the solution offered by Nesrine Kaaniche and Maryline Lau-
rent in their paper work "A Secure Client Side Deduplication Scheme in Cloud Stor-
age Environments".[4] Like the last solution, it addresses both the malicious clients
and the curious-server issues. It provides the means to control the integrity of both
players, neither server no client gets fooled. In addition it address the private file
shearing issues. The subsection first covers how the solution operates and provides
security and efficiency analyses later.

4.5.1. Setup

The security scheme is implemented on OpenStack Swift 19 platform and is based on
convergent encryption concept[19], but for identification it uses Merkle-Tree signa-
ture. The authors give a clear and simple scheme of cloud storage architecture. When

Figure 5. Client uploads and stores the data on server and Users are allowed to
access (depend on their access rights) the content of stored data [4]

.

data owner desires to outsource the file F on the remote server, he first encrypts it,

19The open-source cloud storage project - https://www.swiftstack.com/product/
openstack-swift, last seen October 4, 2016

31

https://www.swiftstack.com/product/openstack-swift
https://www.swiftstack.com/product/openstack-swift

and uses the file content hashKF as an encryption key. He builds the Merkle-Tree on
the encrypted file and uses the root value MTF as the file identifier, which is unique
on the remote storage. Client sends the MTF identifier20 to the server and checks
whether the file already is located on the server or not. The server checks in the
database and if the received identifier does not matches, asks client to upload the
file. The client in his turn, sends the encrypted file and the encryption key KF – en-
crypted by the public keys of the authorized users (users with whom client desires
to share the file). Later the encrypted key KF is included in the file meta-data. After
the server stores the file, it sends the acknowledgement message to client, which in-
cludes the stored file’s URI(Uniform Resource Identifier).21

If the file is already located on the server, then the server sends to the client some
number of random indices of Merkle-Tree leaves. The client calculates the sibling
paths of chosen leaves and sends (leaves together with sibling paths) as proof of
ownership to the server. The server validates the received proof and if it holds, it
sends acknowledgment on storing the file and the URI of requested file to the client.
Otherwise, client is failed to access the file.

When client desires to access the outsourced data he owns – he sends the file URI
to the server. The server, checks in the database, whether the client owns the file. If
the client is the owner of the requested file, server sends encrypted file to the client.
After receiving the file, client first extracts the file meta-data(i.e. encrypted KF en-
cryption key), decodes the encrypted KF key with own private key and use KF to
decode extracted file.

4.5.2. Security And Efficiency

Authors offered very brief overview of security, without any game-based or simulation-
based security proof. They address three main issues in their scheme: Data confi-
dentiality, privacy and access control. When client wants to store new data to the
remote storage, he calculates the Merkle-Tree over the encrypted file and sends the

20The client also adds nonce n to the identifier to avoid a replay attack
21The solution is implement on Swift, which is an object store, so each file could be reached by URI

32

root value together with nonce n. Nonce prevents from replay attacks22(stilling the
identifier), while transferring the data. But if the adversary still will be able to obtain
the identifier (root value of the Merkle-Tree), he is required to prove the ownership
of the file and this proof is based on Merkle-Tree lemma [20] and prevents malicious
client to access the confidential data. Scheme also prevents curios servers to reach
the users’ private data and built users’ profile. The server is not able to access the
data, because it is encrypted and the encryption key is secured with asymmetric en-
cryption. Access control is managed by embedding the symmetric encryption key
KF encrypted by public keys of the users who are authorized to access the file.

To evaluate the performance of the solution, authors implement the OpenStack swift
framework and integrate it with their own scheme for security.23 The scheme’s per-
formance time is decomposed in two parts: Client and Server computation time. The
client computation time consists of the data encryption/decryption time and data
upload/download time. For encryption/decryption of file the scheme uses sym-
metric AES(Advanced Encryption Standard) in CBC(Cipher Block Chaining) mode.
The authors examine the performance of file encryption/decryption using different
key sizes(key size = 128, 192 or 256bits) of AES encryption and different file input
sizes (file size = k ∗ 105 where k ∈ {1, 2, ..10}). The results exposes – the computa-
tion time depends on a key size and a file size and as they are increasing the time
of computation increases as well. The encryption/decryption time for the smallest
key(128bits) and the smallest input file size(0.1MB) is 1 ms, while with the largest
key size and input file size (key size = 256bits, file size = 1MB) is less then 12 ms.
The authors examine the upload/download time and the result shows – uploading
time is greater then downloading time. Also time remains constant for small files
(file size < 5 ∗ 104 bits), while for larger files it depends on file size and time in-
crease as the file size increases. To compare the cryptographic operations to the file
transfer operation on client-side, it is easy to see that cryptographic operations are
consuming much less time, then file upload/download. And the comparisons that
is given in the paper [19] claims, that encrypting of the 0.8MB size file takes 0.1ms,
while uploading it takes 10s, which means the encryption operation is 1% of upload-
ing operation. For securing the AES encryption key, the scheme uses ECC (Elliptic

22"Replay attacks are the network attacks in which an attacker spies the conversation between the
sender and receiver and takes the authenticated information"

23"For our tests, we used 1000 samples in order to get our average durations. In addition, we
conducted our experiments on an Intel core 2 duo, started on single mode,where each core relies on
800 MHz clock frequency (CPU).[19]"

33

Curve Cryptography).[21] Unfortunate the paper[19] does not covers the server time
consumption and there is no any comparisons with other schemes.

4.6. Solution # 6

This subsection is dedicated to a paper work "A Tunable Proof of Ownership Scheme
for Deduplication Using Bloom Filters".[6] The paper offers the data ownership proof
scheme based on Bloom Filter.[22] The bloom filter is a time and space efficient data
structure. It serves to identify, whether the element is the member of the set or not.
The issue with this data structure – it has false positives. The element which does not
belongs to the set, could be considered as the member, but never vice-versa. Bloom
filter allocates s bits length vector (all bits set to 0) and uses n number of different
evenly distributed hash factions. To add the element in bloom filter, the element is
hashed with the n different hash functions. The results of hashes is the indecies in the
s bits length vector and in those indecies bits are set to 1. To check if the particular
element belongs the set, it must be hashed using the n different hash functions to
produce the indecies. After the indecies are produced, the vector is examined in
those indecies and if all the bits are set to 1, then the element belongs the set.

4.6.1. Setup

The Proof of Ownership Scheme for Deduplication Using Bloom Filters, also referred
as bf-POW is the two party protocol. It represents an interaction between C as a
client and the S as a server. There are two scenarios, first when uploading the file
first time on the server and second trying to upload the file already located on the
server. In the first scenario, client sends the hash of the file hf to the server. The
server identifies that the file is unique, based on the fingerprint hf and asks the client
to upload the whole file f and initializes all the required data structures, including
bloom filter. After receiving the file f , server divides it into the equal size chunks,
then computes the tokens, using some hash function: H : {0, 1}B → {0, 1}l, where
the B is a chunk size and l is a token size. And finally the indecies are generated
form token using some pseudo random function, PRF : {0, 1}l → {0, 1}n where n is
a positive integer. Those indecies are inserted in the bloom filter BF data structure.

34

The server keeps the associative array A, which use the hash of the file hk as a key
and the tuple {f,BF,AL} as a value. In the tuple the f is the content of the file, BF
represents the bits in the bloom filter and the AL is the list of the client identifiers
id(C), who are owning the file. After the file is uploaded first time on the server , the
entry is added to the array A.

In the second scenario, when the file is already located on the server, there is no
need to upload the file, instead the client must proof that he indeed owns it. The
server initializes the array pos, which holds the randomly chosen chunks’ indecies
and J is the length of the pos array. The server sends pos array to the client and waits
for the tokens generated based on pos array. The client performs the same operation
as the server, in order to generate the tokens and creates the array res which holds
the generated tokens. res[i] ← H(f [pos[i]]) where 0 ≤ i < J and J is the number
of randomly chosen indecies. The client sends res array to server and the server
generates the indeces based the PRF and the res array and checks whether each
output PRF belongs to bloom filter or not. If all outputs belongs to bloom filter then
the client is considered as the file owner and the id(C) is added to the A[hf].AL list.
Otherwise the client fails to prove the file ownership. Later when client request to
download the file , the server will check, if the id(C) ∈ A[hf].AL

4.6.2. Security And Efficiency

To demonstrate the security of the bf-POW scheme, authors evaluate a probability
of the adversary C̄ convincing the server without owning the file. The adversary is
allowed to communicate with file owners and receive some information about the
file (but not during while the protocol takes place). The probability that adversary
knows the B bits long randomly chosen chunk of the file is p. And the probability
to guess the randomly chosen byte is g. In order to pass the proof the adversary C̄
should provide J tokens, based on randomly chosen J chunks by the server. And
those tokens used as seeds of PRF should produce the indecies which will belong to
the bloom filter for the given file f . In order to succeed there are two options. First
C̄ should produce the correct token and the second – occurrence of false positive
when checking for bloom filter membership. The probability of false positive in
bloom filter is – pf . The pf depends on the size of the bloom filter and the number of

35

hash functions.24 The probability to produce one randomly chosen token from the J
tokens correctly is

P (ini) = P (toki) + pf ∗ P (¯toki) (2)

where ini and toki are both events: ini – i-th generated token, is a seed of the index
which is the member of bloom filter; toki – adversary generates token correctly. In its
part probability of event toki is decomposed as the probability of knowing the chunk
and probability of guessing it. The p is the probability that the adversary knows the
i-th chunk. If adversary knows the i-th chunk, it means that he is able to compute the
i-th token correctly. If he does not know, he should guess. Probability of guessing B
bits long chunk is lower, then probability of guessing l bit token directly, gB << 0.5l.
From adversary perspective better to guess directly a chunk.

P (toki) = p+ (1− p) ∗ 0.5l (3)

In order to succeed adversary needs to produce J number of tokens form randomly
chosen chunks. To compute the probability of success, we use these two formulas :
(2) and (3)

P (succ) = P (ini)
J = (P (toki) + pfP (toki))

J

= (p+ (1− p) ∗ 0.5l + pf ∗ (p+ (1− p) ∗ 0.5l))J

= (p+ (1− p) ∗ 0.5l) + pf (1− p)(1− 0.5l)J

= (p+ (1− p)(0.5l) + pf (1− 0.5l))J

(4)

We can see that the probability of success dependents on J . And it is possible to
choose J in such a way that the P (succ) ≤ 2−k , which is negligible in the security
parameter k.

Authors provide the asymmetric analyses and the results of the experiments of bf-
POW, in comparison with POW and s-POW schemes. In bf-POW each time the client
tries to upload the file, he hashes it. Also the client is required to calculate the tokens,
meaning the J times hashing operation over the l length chunks. On server side there
are two phases, with different computation complexity in each phase. In initializa-
tion phase (when the file is uploaded first time on server side) the dominant cost is

24If J is a total number of elements that could be inserted in the bloom filter and pf is the probability
of false positives, then the size of bloom filter is s = d−N ln pf

(ln2)2 e and the number of independent hash
functions is n = d s

N ln2e

36

the hashing operations used to insert elements in bloom filter. As there are n dif-
ferent functions, it requires n hashing operations. Also in initialization phase server
should load the whole file into the memory, while in execution phases (when the
file is already located on the server) the server needs only bloom filter to be loaded
in the memory, and the indecies are generated by hashing the tokens received from
client.(res[] array). In terms of bandwidth efficiency, bf-POW generates J tokens.
(the client sends tokens to the server in order to prove ownership). The complex-
ity of the schemes is represented in big-O notation, is provided by authors in the
following table :

PoW s-POW bf-POW
Client computation O(F)hash O(F)hash O(F)hash
Client I/O O(F) O(F) O(F)
Server init computation O(F)hash O(F)hash O(F)hash
Server regular
computation O(1) O(nk)PRF O(

l∗k∗(log1/pf)
pf

)hash

Server init I/O O(F) O(F) O(F)
Server regular I/O O(0) O(nk) O(0)

Server memory usage O(1) O(nk) O(
log(1/pf)

l
)

Bandwidth O(k log k) O(k) O(lk
pf

)

Table 3. Asymptotic analyses of schemes:POW,s-POW and bf-POW. F is the file size;
k is a security parameter; n is number of challenges in s-POW; l is a PRF output
size; pf is a probability of false positive in BF [6]

The authors have implemented POW, s-POW and their bf-POW schemes, in order
to compare the time performance results to each other. 25 The results show that in
bf-POW the better performance depends on the size of token, which in its part also
decries bandwidth consumption. Smaller tokens influence the size of bloom filter
and increase it in order to keep the security in place.(decries the probability of false
positives.) In the worst case bloom filters require 2MB additional storage per file.
Bf-POW is always faster then s-POW scheme on server side and is the fastest among
those three on server side for specific p (p is the probability that adversary knows the
randomly chosen chunk of the file). On client side, bf-POW is faster then POW and
is a little slower then s-POW.

25"The benchmarks are run on an Intel Xeon 2.27GHz CPU with 18 GiB of RAM running RHEL
Server release Santiago (6.1). The input files contain random data, and their size ranges from 1 MiB
to 4 GiB, with the size doubled at each step."

37

4.7. Solution # 7

"An efficient confidentiality-preserving Proof of Ownership for Deduplication" pa-
per work[5], is the last solution, refereed as the ce-POW, covered in this thesis. The
ce-POW scheme addresses the privacy and confidentiality issues in remote storage
and considers both malicious client and honest-but-curios server as an adversary. It
uses the mix of convergent encryption and proof of ownership protocol, and ensures
to avoid poison attack, which is considered to be the drawback of original solution
of convergent encryption. Like the previous subsections, this also covers setup of
the scheme, describes how it operates and analyses its security and efficiency.

4.7.1. Setup

The ce-POW is two party protocol, involving client C as a prover (each client C has
its’ own identifier id(C)) and the server S as a verifier. The protocol has two phases:
initialization and challenge. When client uploads the file first time on the server, it
is considered as an initialization phase. Client sends the file size to the server, in
order to receive the number of chunks to dived the file. After the client obtains the
number N , he divides the file f into N chunks, encrypts each of them using conver-
gent encryption26, hashes each encrypted chunk token[i] = H2(EH2(f [i])f [i]) using the
H2 : {0, 1}B → {0, 1}l whereB is the chunk size and the l is a token size and f [i] is the
i-th chunk of the file. And based on array of token[] generates the fingerprint hc, us-
ing the hash function H1 : {0, 1}∗ → {0, 1}n. The client sends to the server all the en-
crypted chunks together with the fingerprint hc. After server receives the data from
the client, based on encrypted chunks it calculates the hc in order to avoid the poi-
son attack. If the calculate fingerprint is the same as the received one from the client,
the server inserts the entry in the associative array A, which exist on server side and
takes part in challenge phase. The associative arrayA uses the fingerprint hc as a key
and {ENC,CH,RES,AL} tuple as a value, where A[hc].ENC stores the encrypted
chunks; A[hc].CH – 10 000 challenges, each represents the J number of chunk inde-
cies; A[hc].RES – expected responses on the challenges and A[hc].AL keeps the list
of legitimate file owners.

26CE – convergent Encryption uses the content hash as an encryption key, in this case it use H2 :
{0, 1}B → {0, 1}l

38

If client tries to upload the file already located on the server, it is the challenge phase
and client sends the hc and the server identifies that the file f , with the fingerprint
hc already located on the disk and there is no need to upload it.(If there is no entry
in the associative array A, with the key hc, the initialization phase stars.) Instead the
server challenge the client to prove the file ownership. The server picks the first un-
used challenge – pos[] which is J size in order to hold the randomly chosen J chunks’
indecies and sends it to the client. The client picks the indecies form the pos[] array,
calculates the tokens based on those indecies and generates the res[] array, which
holds i-th token on i-th position. The client sends the array res[] to the server and
server compares pre-calculate responses A[hc].RES[i]. If the match is found then the
client is added in the list of file owner id().AL, otherwise the proof of ownership is
failed.

4.7.2. Security And Efficiency

The security requirement of the ce-POW, claims that the scheme is secure if the prob-
ability of the adversary convincing the server is negligible in security parameter k
, when the adversary does not owns the part of the file, which is larger then some
predefined threshold Smin.The adversary is allowed to communicate with file own-
ers and receive some information about the file (but only before protocol starts). The
probability that adversary knows the B bits of randomly chosen chunk of the file is
p. And the probability to guess the randomly chosen byte is g. In order to pass the
proof the adversary C̄ should provide J tokens, based on randomly chosen J chunks
by the server. And the probability of success is:

P (succ) = P (toki)
J (5)

where toki is an event that adversary generates i-th token correctly.

The probability of event toki is decomposed as the probability of knowing the chunk
and probability of guessing it. The p is the probability that the adversary knows
the i-th chunk. If adversary knows the i-th chunk, it means that he is able to com-
pute the i-th token correctly. If he does not know, he should guess. Probability of

39

guessing B bits long chunk is lower, then probability of guessing l bit token directly,
gB << 0.5l(gB – probability of guessing B bits;0.51 – probability of guessing l bit
token). From adversary perspective better to guess directly a token. Then the prob-
ability of guessing the i-th token correctly is:

P (toki) = p+ (1− p) ∗ 0.5l (6)

Substitute P (toki) in formula (5) with formula (6):

P (succ) = P (toki)
J = (p+ (1− p) ∗ 0.5l)J (7)

We can see that the probability of success dependents on J . And it is possible to
choose J in such a way that the P (succ) ≤ 2−k , which is negligible in the security
parameter k.

To demonstrate the efficiency of the the ce-POW scheme, authors provide the asymp-
totic analyses and experimental results of the implementation. The ce-POW is com-
pared with s-POW and bf-POW solutions. In client side ce-POW requires encryption
and computation of two hashes, while bf-POW computes the hash of the whole file
each time it makes a request to the server. On server side in initialization phase, the
bf-POW make n number of hash operations in order to insert the element in bloom
filter. For ce-POW the cost is two hashing operations. The bandwidth consumption
for ce-POW is J 27 tokens that, a client sends to server in order to prove the data
ownership. The number of tokens increases as the security parameter k is increas-
ing. The bf-POW has similar bandwidth consumption, in difference that the number
of J tokens could be shortened in exchange of rising the false positives in bloom
filter. While the s-POW needs only to transfer K bits of randomly chosen from file.
Authors provide asymptotic analyses in the table :

Three schemes ce-POW, s-POW and bf-POW was implement, in order to compare
their performance results. 28 For ce-POW implementation the parrameters was
chosen in following way: security parameter k was set to 66, threshold of leakage
Smin = 64MB, tokens size l ∈ {16, 64, 256, 1024}, probability of adversary know-
ing the chunk of file p ∈ {0.5; 0.75; 0.9; 0.95} and number of requested challenges

27 the implementation has 4 different size of tokens 16, 64, 256 and 1024 bits
28"The experiments have been performed on a AMD Athlon(tm) II x2 220 processor with 4GB of

RAM. Input fles have been randomly generated and their sizes range from 4MB to 2GB doubling the
size at each step."

40

ce-PoW s-POW bf-POW

Client computation O(B) ∗ CE ∗ hash ∗
hash

O(F)hash O(F)hash

Client I/O O(F) O(F) O(F)
Server init
computation O(B) ∗ hash ∗ hash O(F)hash O(F)hash

Server regular
computation O(n ∗ l ∗ k) ∗ PRNG O(nk)PRF O(

l∗k∗(log1/pf)
pf

)hash

Server init I/O O(F) O(F) O(F)
Server regular I/O O(0) O(nk) O(0)
Server memory
usage O(n ∗ l ∗ k) O(nk) O(

log(1/pf)

l
)

Bandwidth O(l ∗ k) O(k) O(lk
pf

)

Table 4. Asymptotic analyses of schemes: ce-POW,s-POW and bf-POW. F is the file
size; k is a security parameter; n is number of challenges in s-POW; l is a token size;
pf is a probability of false positive in BF [5]

J ∈ {91, 182, 457, 914}. The results shows that in initialization phase on server side
the fastest scheme is bf-POW. In bf-POW the server initializes and inserts the ele-
ments in bloom filter. To insert the element in bloom filter server divides the file
in chunks, computes the tokens form chunks which is hashing operation and then
computes the indecies , which are inserted in bloom filter. For s-POW, server in ini-
tialization phase pre-computes beforehand the n = 10000 challenges, using some
PRF on randomly chosen J bits. While in ce-POW, server hashes each encrypted
chunks and then pre-computes n = 10000 challenges. The time that takes ce-POW
solution includes the effort to check for poison attacks and defend against the hones-
but-curios-server, which is not considered neither in s-POW no in bf-POW solutions.
The authors put the result on the chart:

On the client side the picture is the same – bf-POW is the fastest solution while
the s-POW is the slowest. The ce-POW is much better then s-POW solution and
is comparable with bf-POW, but again it is important to see that only the ce-POW
addresses the privacy and confidentiality issues fro both client and server side.

41

Figure 6. Comparison of the server side initialization phase: ce-POW, s-POW and
bf-POW [5]

.

4.8. Summary

The section Approach covered the seven different solutions, which address the pri-
vacy and the confidential issues in remote storage during the data deduplication.
It is fundamental to understand in details the state-of-art solution, also refereed
as PoW introduced by Halevi. He addresses the cause of the problem (using the
hash-as-a-proxy) and offers the novel solution to deal with it. All the other so-
lutions covered in previews subsections were inspired by Halevi’s work. Some of
them(Solutions 4, 5, 7) expend the attack vectors and implement the mix of encryp-
tion and proof of ownership, in order to prevent the cloud services providers from
profiling the customers’ data. Most of them improve the security, by avoiding the
restriction of choosing the file from the particular class of distribution, which is hard
to prove. Detail understanding of how each scheme works and what are their secu-
rity and efficiency criteria, helps to move on the next section and evaluate them in
comparison with each other.

42

5. Evaluation

Previews section had covered the details of the existing solutions for proof of data
ownership in remote storage during the data deduplication. Implementing of those
solutions and evaluate their efficiency in terms of I/O and CPU performance is out of
scope of this work. Instead this section addresses a bandwidth and a space consump-
tion, which could be calculated without implementation of the solutions. Based on
the results, we can see additional cost that should be payed to maintain the security
level. Calculation is based on the AWS prices. 29. But before the cost analyses, we
cover the security aspects of the schemes and evaluate them based on their charac-
teristics described in previews sections.

5.1. Security Evaluation

It is not straightforward to compare the security of the provide solutions. In the most
cases the probability of breaking the security of the scheme is negligible in the given
security parameter k and k is always tunable. But the diversity follows from the
variety of the attacks that the schemes are addressing and also from the restrictions
in security definition of the protocols. We have demonstrated five general type of
attacks in previews sections: File Detection (the adversary uploads the file and ob-
servers, whether the deduplication occurs or not), Content Detection (brute-forcing
the content of the file with low min-entropy, detection via deduplication),CDN (us-
ing the remote storage as a Content Distribution Network, while it is not meat to
be the one), Honest-but-curios-servers(Servers are able to access the private data of
the user as it is available in clear text) and Poison Attack (When encrypted file is
uploaded on server side, server is not able to check consistency between file and
meta-data (e.g. hash of the file)). In the table below it is demonstrated which solu-
tions address to which particular attacks.

Under the security of the scheme/protocol, we imply the probability of the ad-
versary to pass the protocol and convince the verifier. The lower the probability is
, more secure is the scheme. In most cases it is demonstrated that the probability of

29https://aws.amazon.com/s3/pricing/, last seen October 3, 2016
30the scheme does not uses convergent encryption and the Poison Attack is not applicable.

43

https://aws.amazon.com/s3/pricing/

File
Detection

Content
Detection CDN

Honest-but-
curios-
servers

Poison
Attack

Solution 1 PoW – N/A30

Solution 2 s-POW – N/A
Solution 3 POF N/A – N/A
Solution 4 CSD
Solution 5
OpenStack based
Solution 6
bf-POW – N/A

Solution 7
ce-POW

Table 5. shows how the solutions respond on the given attacks. N/A – the attack is
irrelevant; Dash – the attack is relevant but the solution does not provide the coun-
termeasure; Check Mark – the attack is relevant and the solution provides the coun-
termeasure against it.

success is negligible in security parameter. To demonstrate the soundness of their
schemes authors use different approaches. The Solution 1 - PoW uses simluation-
based approach, and claims that the scheme is secure with soundness

(
L−d+1
L

)t where
L is reduce buffer, t is number of challenges on Merkle-Tree and d is the minimum
distance of the linear code. The variables L, d and t, all are tunable and leads to the
negligible probability of adversary’s success to convince the verifier. The Solution 2 -
s-PoW, also uses simulation-based approach and demonstrates the negligible prob-
ability of adversary to cheat the verifier. P (succ) = (1 − ε(1 − g))K , where ε is a
fraction of the file that is unknown for the attacker and g is the probability to guess
unknown bit correctly and K is the length of response bit string. It is possibility to
choose K (depends on security parameter), in such a way that the P (succ) became
negligible in security parameter. Security analyses in Soltuion 3 - POF is superficial.
The scheme provides the proof that the cheating of the scheme is at least as hard as
"performing strong collision attack of the hash function". And the probability of col-
lision attack is calculated based on Birthday Paradox31. The probability of collision
P = 1 − ε

−k(k−1)
2N , where k is number of inputs, N is a number of all possible hash

values(outputs) and ε = 2.71828 is an euler’s number .(e.g for SHA-256 probability

of collision p = ε
−k(k−1)

2∗2256 ≈ ε−
k2

2∗2256 ≈ ε−
1
2
(k
2128

)2). The security analyses of the Solution

31"Given k randomly generated values, where each value is a non-negative integer less than N,
what is the probability that at least two of them are equal?" http://preshing.com/20110504/
hash-collision-probabilities/ last seen October 3, 2016

44

http://preshing.com/20110504/hash-collision-probabilities/
http://preshing.com/20110504/hash-collision-probabilities/

4 - CSD, differs from other solutions, as it uses the game-based security proof ap-
proach. Based on two players A - adversary and A∗ – extractor, is defined, that the
scheme is secure in (ε0, ε1) if the probability of guessing b single bit by extractor A∗
plus some negligible in security parameter negl(λ), is grater or equal then probabil-
ity of adversary A guessing the same b bit: Pr[bA = b] ≤ Pr[bA∗ = b] +negl(λ).Where
ε0 is a minimum min-entropy of the file and (ε0 − ε1) – is a max length of bits ad-
versary is allowed to learn. The security analyses are practically missing (or are
provided very briefly) in Solutions 5 and do not cover the probability of success of
adversary. The last two solutions both offer the security analyses and demonstrate
the probability of adversary convincing the verifier, which are negligible in security
parameter and depend in both cases on J – number of tokens generated by prover
as the response on the challenge received from verifier. For Solution 6 - bf-POW
the probability of success is (p + (1 − p)(0.5l) + pf (1 − 0.5l))J . While for Solution 7
- ce-POW P (succ) = (p + (1 − p) ∗ 0.5l)J . Where in both cases p is the probability
that adversary knows the randomly chosen chunk, g is the probability to guess the
randomly chosen byte, l is a token size and pf in Solution 6 is a probability of false
positive in BF.

Besides the soundness of the scheme, it is significant to underline the leakage re-
silience and restrictions of the schemes. The most of the solutions defines a threshold
T of data leakage, and if the adversary learns up to T bits, the security of the scheme
still holds(e.g. PoW the threshold is set to 64Mb). In some solutions the adversary
can communicate with accomplices and receive the information up to given thresh-
old, but it should take place before or after the protocol is running. While the last
solution (ce-POW) allows receiving the information about file only before the pro-
tocol starts. It is important to underline that in PoW, the files are take from specific
class of distribution, while later schemes build their security definition based, on ar-
bitrary file distribution. The summary of security analyses, is provided in the table
below.

32L is reduce buffer, t is number of challenges on Merkle-Tree and d is the minimum distance of the
linear code.

33ε is a fraction of the file that is unknown for attacker and g is the probability to guess unknown
bit correctly and K is the length of response bit string.

34.ε0 is a minimum min-entropy of the file and (ε0−ε1) – is a max length of bits adversary is allowed
to learn

35p is the probability that adversary knows the randomly chosen chunk, g is the probability to guess
the randomly chosen byte, l is a token size and pf is a probability of false positive in BF

36p is the probability that adversary knows the randomly chosen chunk, g is the probability to guess
the randomly chosen byte, l is a token size

45

Input File Leakage Resilience Soundness

Solution 1 PoW Specific Class
of Distribution

(
L−d+1
L

)t 32

Solution 2
s-PoW

Arbitrary
Distribution P (succ) = (1− ε(1− g))K33

Solution 3 POF N/A – Probability of Collision in
Hash Function

Solution 4 CSD Arbitrary
Distribution

Pr[bA = b] ≤ Pr[bA∗ =
b] + negl(λ)34

Solution 5
OpenStack
based

Arbitrary
Distribution N/A Security Based on

Merkle-Tree lemma[20]

Solution 6
bf-POW

Arbitrary
Distribution

P (succ) = (p+ (1−
p)(0.5l) + pf (1− 0.5l))J 35

Solution 7
ce-POW

Arbitrary
Distribution

P (succ) =
(p+ (1− p) ∗ 0.5l)J 36

Table 6. Comparison: Security Features

The results demonstrate that most preferable choices in terms of security are the so-
lution 4 and the solution 7. They ensure that the client and the server both are the
honest players. Both avoid the file and content detection attacks by implementing
the proof of ownership, avoid confidential data profiling by implementing encryp-
tion and avoid poisoning attack by implementing additional check over encrypted
files. Their security is build on the files taken from arbitrary distribution and allow
the predefined amount of data leakage, which prevents from CDN attack. On the
other hand less preferable choices are solution 3 and Solution 5. The Solution 3 does
not cover the honest-but-curios-server’s issue and also the authors do not provide
the discussion about leakage resilience in a straightforward manner. There for it is
also not clear to measure the tolerance to the CDN attack. As regards to the Solu-
tion 5 - the paper covers the security analyses of the scheme superficially and do not
provide the probability of success of adversary. It is also hard to calculate the leak-
age resilience of the scheme. But the solution addresses the data privacy issues in
the remote storage and uses encryption and Merkle-Tree to avoid the cheating from
both players(client and server). The drawback of Solution 2 and Solution 6 is that
they consider the server as a honest player and does not ensure the client data pri-
vacy. But both of them have the clear image of the probability of success of adversary
to cheat the scheme and it is calculated based on arbitrary distributed files in both
cases. A disadvantage of the first solution-PoW is that it builds the security on the
assumption that the files are taken from the specific distribution class and it is hard

46

to prove such assumption. Also it does not address the honest-but-cures-server’s
issues.

5.2. Cost Analyses

The aim of the data deduplication is the reduction of bandwidth and disk space con-
sumption. All the solutions covered above, carry the extra calculation in order to
maintain the security. It increases the bandwidth and storage consumption in com-
parison with not secure "hash-as-a-proxy" solution. But those seven solutions still
are more efficient then "whole file transfer" approach. This section evaluates the ad-
ditional generated data traffic and disk space for each scheme, and calculates the
cost based on the Amazon S3 Pricing.37

In the Solution 1 – PoW, the server asks for the randomly chosen 20 leaves and their
sibling paths of the Merkle-Tree. Sibling path consists of the sibling node of the given
leaf and also all the parent and their sibling node values, from the sibling leaf till the
roof of the tree. So the client generates the sibling path P = (vs, vn0 , vn1 , ..., vni), where
vs is a value of the sibling node 38, i is the hight of the Merkle-Tree and vn0 , vn1 , ..., vni
are the values of the parent nodes. The maximum buffer size is 64MB. The leaf size
is 256 bits. So in worst case the Merkle-Tree has 64∗1024∗1024∗8

256
= 26∗210∗210∗23

28
= 221

leafs and the height of tree is 21.The size of sibling path is 2 ∗ 21 ∗ 256 = 10752 bits
≈ 1.3KB. The traffic generated by PoW is 20 times sibling path size, which is ap-
proximately 26KB "Data Transfer In" operation for remote storage. As regards to
the extra disk space consumption, the server requires to store the root value (plus
number of leaves, which is negligible size) – output of hash function, 256 bits long
string (hash function used in implementation is SHA256).

For the Solution 2 – s-POW – generated traffic includes: the random seed s, which
server sends to the client and the client’s response: K bits long string called response.
s is an integer 0 < s < file_size, so it is negligible(4 bytes), and the response length
is tunable, the maximum size used in paper is 1830 bits. The traffic generated during
the proof is approximately 0.23KB. To look at the space consumption, for each file

37https://aws.amazon.com/s3/pricing/, last seen October 3, 2016
38The value of the node of the Merkle-Tree is the corresponding block if the node is a leaf or the

hash of the left and right children if it is an intermediate node.

47

https://aws.amazon.com/s3/pricing/

it is a tuple the server keeps in the database. The tuple contains 4 elements: ptr – the
pointer on the file –8 byte long. res[] – an 10000 length array of generated challenges,
called "responses" – each for 1830 bits length string; idc – the highest challenge com-
puted so far – integer 2 bytes; idu – number of challenges used so far– integer 2 bytes
and finally it uses the hash of the file as a key. The following formula calculates total
extra space: 256 bits (hash of file) + 64 bits(ptr) + 10000 ∗ 1830 bits(array) + 32 bits
(idc) + 32 bits (idu) = 18300384 bits ≈ 2.29MB.

During the POF protocol in the Solution 3, the client and the server exchange the
following data: The hash value of file h(F) (hash function is SHA256) ; Rc the ran-
dom number Rc ←R {0, 1}∗ – for calculation consider the length of the Rc to be 256

bits; Two random seeds – S1 ←R {0, 1}∗ and S2 ←R {0, 1}∗ – consider them as 256 bits
long; The integer c – number of blocks – 32 bits long; Client confirmation of obtain-
ing the session key hKs(Rc, TS)||TS – concatenation of hash value and TimeStamp
– output of SHA256 plus the value of unix Timetamp(32 bit length); And finally the
summary value, the proof– hash of concatenation of hashes of chosen blocks – 256

bits long (again using the SHA256). To sum up the generated data, we will have
a following result: total data transfer In = 256 bits (hash of file) + 256 bits (hash of
Rc with session key) + 32 bits(TimeStamp)+ 256 bits (the proof) = 100 Bytes and to-
tal data transfer Out = 32 bits (c number of blocks) + 256 bits (Rc) + 2 ∗ 256 bits (S1

and S2) = 80 Bytes. The solution 3 generates in total approximately 0.1KB traffic,
which is very efficient. And the protocol is even more efficient in terms of the disk
space consumption, it occupies only extra 256 bits (hash value of file) per file same
as "hash-as-a-proxy" solution.

The Solution 4 adds encryption over the proof of ownership protocol and gener-
ates the following traffic. The client sends the hash of the file hash(F) to the server
- 256 bits string. The server challenges the client and sends back the encrypted AES
key Cτ– less then 256 bits length string. To prove the ownership of the file the client
sends the hash value of AES encrypted file – also the size is 256 bits. The gener-
ated traffic per file is totaling to: 2 ∗ 256 = 512 bits = 64 Bytes for data transfer
In and 32 Bytes - data transfer Out. Disk space required for protocol consists of
the encrypted file and the meta-data. The size of encrypted file is approximately
same as the plain file.39 And the size of meta-data is the size of the following key-

39The AES-256 output calculation: CipherTextsize = PlainTextsize + Blocksize(256) −
(PlainTextsize MOD Blocksize(256))

48

value pair: (key = hash(F); value = (hash(CF), Cτ)). Total 256 bits (hash(F)) + 256

bits(hash(CF)) + 256 bits(Cτ) ≈ 0.1KB. The additional storage is ≈ 0.1KB.

Data exchange between the client and the server in the Solution 5 looks as follow-
ing: the client first sends the Merkle-Tree root value over the encrypted file to the
server – 256 bits string. The server request the super-logarithmic number of leaves
and the sibling paths, same as the Solution 1 scenario , meaning the approximately
26KB data transfer In. And if the proof holds then the server sends the URI of the
requested file. Swift restriction – length of container is maximum 256Bytes and the
maximum length of object name is 1024Bytes.40 Hence the generated data transfer
Out is 1280 Bytes. As for extra disc space – it is only 256 bits long and represents the
Merkle-Tree root value of encrypted file.

In Solution 6 the bandwidth and storage consumption, both are depending on to-
ken size. If token size is small – bandwidth consumption is low, while the required
disk space grows. The growth of tokens size cause the growth of data traffic, but the
decrease of storage consumption. In worst case scenario the extra storage consump-
tion is 2MB = 2000KB for the tokens 128 bits length, but it could be decreased to
40 bytes = 0.04KB . In order to prove the ownership the following data is generated:
256 bits (the hash of the file) + J ∗ 32 bits (the J length array(pos[]) of the integers)+
J ∗ 1024 bits (the J length array(res[]) of tokens(max length of token size in paper
is 1024 bits) = 256 bits + 1040 ∗ J bits. Where J ∈ {102, 204, 509, 1017}. Taking into
consideration a worst case scenario, the generated data during the bf-POW protocol
is 256+1024∗1017 = 1041664 bits ≈ 130KB In and 32∗1024 = 32768 bits ≈ 4KB Out
data transfer, while it could be decreased till 256 + 128 ∗ 102 = 13312 bits ≈ 1.7KB In
and 32 ∗ 128 = 512 Bytes Out data transfer.

The last solution Solution 7 is similar to the Solution 6 in terms of bandwidth con-
sumption. First client sends the file identifier – output of SHA-1 160 bits. Then server
challenges the client and sends the J length pos[] array of integers – J ∗ 32 bits. In
response the client sends back to the server the J length array res[] of tokens(max
length of token size in paper is 1024 bits). And the J ∈ {91, 182, 457, 914}. In worst
case scenario the ce-POW protocol generates 160+914∗32 ≈ 3.6KB data transfer Out
and 1024 ∗ 914 + 160 = 936096 ≈ 117KB data transfer In. The additional disk space

40http://docs.openstack.org/developer/swift/api/object_api_v1_overview.
html, last seen October 3, 2016

49

http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html
http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html

required for protocol is the sum of the identifier (output of SHA1 – 160 bits), 10000

length array of J numbers(10000 ∗ 914 bits) and same length array of pre-calculated
responses (10000 ∗ 914 ∗ 1024 bits). Total = 160 + 10000 ∗ 914(1 + 1024) = 9368500160

bits ≈ 1.1GB.

In order to demonstrate the extra cost of the solutions, the table contains the cal-
culation using the Amazons S3 - simple monthly calculator 41. To have an approxi-
mate picture of volume of the average remote storage providers, I have refereed to
the statistics of one of the most popular storage provider – Dropbox.42. The num-
bers are impressive, Dropbox daily receives 1.2 billion files and by the year of 2015,
it was storing 35 billion Microsoft Office files. Taking into consideration also the
deduplication ration – 4 : 143 (this is an average ratio, when the nature of data is
unknown) we can assume that the remote storage provider could duplicate daily
1200000000

3
4

= 900000000 files – 30 monthly, and store more the 35 Billion files.(As 35
billion is the number of only Microsoft office files and the user’s content is much
more reach then just the office files)

In terms of the cost we can see from the table that most efficient is Solution 1 - PoW,
which has the same expense as the non secure "Hash-as-a-proxy" solution. After
comes Solution 3, with $ 39.33 in month. Third and fourth places are respectively
for Solution 4 and Solution 5. The Solution 6 is on fifth position with $ 2335.65 per
month and after come the Solution 2 and Solution 7 where the price dramatically
grows and is practically not affordable.

5.3. Summary

The section Evaluation compared the security characteristics and additional costs
for required bandwidth and storage of the solutions. We have identified the most
preferable solution from the security point of view and they are: Solution 4 and So-
lution 7. As the Solution 7 is no affordable and the cost of the Solution 4 is quite
realistic – $ 107.34 per month, we can see that the Solution 4 is the optimal choice for

41https://calculator.s3.amazonaws.com/index.html last seen September 29, 2016
42http://expandedramblings.com/index.php/dropbox-statistics/, last seen

September 29, 2016
43https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/

wiki/Tivoli+Storage+Manager/page/Deduplication+FAQ last seen September 29, 2016
50

https://calculator.s3.amazonaws.com/index.html
http://expandedramblings.com/index.php/dropbox-statistics/
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli+Storage+Manager/page/Deduplication+FAQ
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli+Storage+Manager/page/Deduplication+FAQ

Traffic Storage Total Cost
Solution 1 26KB ∗ 9∗108= 23.4TB(In) 256 Bits ∗ 35∗109 = 1.12TB $ 34.2 see the monthly bill

Solution 2 0.23KB ∗ 9∗108 = 193GB(In) 2.29MB ∗ 35∗109 = 80.15PB $ 2390882.94 see details

Solution 3
100 Bytes ∗ 9∗108=90GB(In)

80 Bytes ∗ 9∗108=72GB(Out)
256 Bits ∗ 35∗109 = 1.12TB $ 39.33 see the monthly bill

Solution 4
64 Bytes ∗ 9∗108 = 57.6GB(In)

32 Bytes ∗ 9∗108 = 28.8GB(Out)
0.1KB ∗ 35∗109= 3.5TB $ 107.34 see the monthly bill

Solution 5
26KB ∗ 9∗108 = 23.4TB(In)

1280 Bytes ∗ 9∗108 = 1.15TB(Out)
256 Bits ∗ 35∗109 = 1.12TB $ 128.84 see the monthly bill

Solution 6

130KB ∗ 9∗108 = 117TB(In)

4KB ∗ 9∗108 = 3.6TB(Out)

or
1.7KB ∗ 9∗108 = 1.5TB(In)

512Bytes ∗ 9∗108 = 430GB(Out)

1.7KB ∗ 35∗109= 59.5TB

or
132KB ∗ 35∗109= 4.62PB

$ 2335.65 see details

or
$ 145198.87 see details

Solution 7
117KB ∗ 9∗108 = 105.3TB(IN)

3.6KB ∗ 9∗108 = 3.24TB(Out)
1.1GB ∗ 35∗109= 38500PB $ 1143495895.96 see details

"Hash-as-a-
proxy"

32 Bytes ∗ 9∗108 = 28.8GB(In) 256 Bits ∗ 35∗109 = 1.12TB $ 34.2 see the monthly bill

Table 7. Data traffic and storage costs based on Amazon S3 pricing. Estimated
amount of files and generated traffic is offered according the static of one of the
most popular remote storage provider - Dropbox.

implementation. But if the Hones-but-curios servers is not an issue then it is better to
choose the Solution 1 as it has the lowest cost. Despite the low cost still not preferable
choices are the Solution 3 and the Solution 5 because of their security characteristics.
Choosing the Solution 6 is also not reasonable, because it has the same security fea-
tures as the first solutions, in difference that the input files are taken from arbitrary
distribution, but the cost is 68 times more. In most cases the decision which solution
to choose depends on implementation’s objectives, but in any case solutions 2, 6 and
7 are out of the game, because of extremely high cost.

In real life scenario to take a decision, it is also important to have the results of I/O
and CPU efficiency. To obtain the result, it is required to implement all the solution
in same environment, which is out of scope of this work.

51

https://calculator.s3.amazonaws.com/index.html#key=calc-965FEE16-BA20-4E18-859A-E7C9B0C0642F
 https://calculator.s3.amazonaws.com/index.html#r=IAD&s=S3&key=calc-EBD5E29A-89DA-489E-8D03-1278B9B3868D
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=S3&key=calc-09D057D3-F7C4-451A-8A8B-A809B8823C21
https://calculator.s3.amazonaws.com/index.html#key=calc-86396F9E-A16F-4F71-BF27-AC06643F652F
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=S3&key=calc-1FCB17FA-8FF2-417E-B0EF-0961F732045A
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=S3&key=calc-21352AB8-9DB2-42E4-98A1-520A2A0D9074
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=S3&key=calc-F542BEAC-D18B-48CB-876F-B5FD926FD93E
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=S3&key=calc-0F562F39-A8CB-4A30-93EE-614F360CC1ED
https://calculator.s3.amazonaws.com/index.html#r=IAD&s=S3&key=calc-827C7B47-F08D-4275-8F06-38845EB73750

6. Conclusions

This study is dedicated to the privacy and confidentiality issues in remote storage,
that uses the Data Deduplication technology. The trivial solution is to refuse to use
the Data Deduplication at all. But this technology has a lot of benefits in terms of
cost reduction, and the cloud service providers are keen to look some alternative so-
lutions. The main requirement for those solutions is to hold desired security level,
while not to increasing the cost of provided services significantly. The authors of
papers addressing this issue revealed that the problem in Data Deduplication is that
the process is detectable, and to prove the data ownership a small piece of infor-
mation – hash of the content – is used. This thesis gathers the solutions, which are
proposing to substitute the hash as a proxy approach with interactive protocols, in
order to prove the data ownership in remote storage.

The thesis covers seven solutions, and provides the detail overview of their func-
tionality. It takes into consideration that the cloud service providers are looking for
cost efficient solutions, but at the same time it is important to hold the security. In
this work we provide security and cost analyses. The security analyses identifies the
security characteristics of the solutions and compares them to each other based on
the following criteria:

� How resilient is the solution to the attacks listed in the thesis?

� How resilient is the solution to the data leakage?

� What is the soundness of the protocol? What is the probability that adversary
passes the protocol?

� Does the soundness holds for arbitrary distribution of file or it works for the
specific class of distribution?

The study declares the Solution 4 and the Solutions 7 as the most preferable choices,
from security point of view.

The cost analyses involves the bandwidth and the disk space cost calculation for
each solution. After diving into the operational part of the solutions, it was easy

52

to calculate the required bandwidth and disk space for reach solution. We used
the statistics from Dropbox to have the idea about the scale of the remote storage
(amount of files stored on the disk) and we use the Amazon Web Services’ price list
to see the cost of each solution. To see the result of the analyses refer to the Table
7. To take into consideration the result of both analyses the study suggests to imple-
ment the Solution 4, as a secure and affordable solution.

The decision – which solution to implement in the remote storage, depends on the
priority of the remote storage itself. In some cases the key factor is price or perfor-
mance efficiency, while in other confidentiality and privacy plays an important roll.
This study helps to make the decision according to the cost and security criteria,
while CPU and I/O efficiency is out of scope of this work.

53

References

[1] B. P. Shai Halevi, Danny Harnik and A. Shulman-Peleg, “Proofs of ownership
in remote storage systems,” ACM Conference on Computer and Communications
Security, pp. 491–500, 2011.

[2] A. S. Roberto Di Pietro, “Boosting efficiency and security in proof of owner-
ship for deduplication,” the 7th ACM Symposium on Information, Computer and
Communications Security, pp. 81–82, 2012.

[3] J. Z. Jia X, Ee-Chien Changn, “Weak leakage-resilient client-side deduplication
of encrypted data in cloud storage,” Proceedings of the 8th ACM SIGSAC sympo-
sium on Information, computer and communications security, pp. 195–206, 2013.

[4] M. L. Nesrine Kaaniche, “A secure client side deduplication scheme in cloud
storage environments,” 2014 6th International Conference on New Technologies,
Mobility and Security (NTMS), pp. 1–7, 2014.

[5] A. O. Lorena Gonzalez-Manzano, “An efficient confidentiality-preserving proof
of ownership for deduplication,” Journal of Network and Computer Applications,
vol. 50, pp. 49–59, 2015.

[6] A. O. A. S. Jorge Blasco, Roberto Di Pietro, “A tunable proof of ownership
scheme for deduplication using bloom filters,” Communications and Network Se-
curity (CNS), 2014 IEEE Conference on, pp. 481–489, 2014.

[7] J. M. Chao Yang, Jian Ren, “Provable ownership of file in de-duplication cloud
storage,” 2013 IEEE Global Communications Conference (GLOBECOM), pp. 695–
700, 2013.

[8] M. Dutch, “Understanding data deduplication ratios,” pp. 5–9, 2009.

[9] M. B. Babette Haeusser, Alessio Bagnaresi and A. Woodcock, Guide to Data De-
duplication:The IBM System Storage TS7650G ProtecTIER De-duplication Gateway.
IBM Redbooks, 2008, pp. 20–27.

[10] S. Srinivasan, Security, Trust, and Regulatory Aspects of Cloud Computing in Busi-
ness Environments. USA: Information Science Reference (an imprint of IGI
Globalo), 2014, pp. 77–78.

54

[11] M. H. T. K. M. R. U. V. Moritz Borgmann, Tobias Hahn and S. Vowe, On the
Security of Cloud Storage Services. Germany: SIT Technical Reports, 2012, pp.
55–110.

[12] B. P. Danny Harnik and A. Shulman-Peleg, “Side channels in cloud services,
the case of deduplication in cloud storage,” IEEE Security and Privacy Magazine,
vol. 8, no. 2, pp. 40–47, 2010.

[13] L. Reyzin, “Some notions of entropy for cryptography,” Information Theoretic
Security, vol. 6673, pp. 138–142, 2011.

[14] R. C. Merkle, “A certified digital signature,” In Proceedings on Advances in cryp-
tology, vol. CRYPTO, no. 89, pp. 218–238, 1989.

[15] P. B. Miltersen, “Universal hashing,” Lecture note, p. 12, 1998.

[16] W. Dai, “Crypto++ library, 5.6.1,” last accessed - Jan 2011. [Online]. Available:
http://www.cryptopp.com/

[17] D. L. E. M. Mark Storer, Kevin Greenan, “Secure data deduplication,” ACM
international workshop on Storage security and survivabilit, pp. 1–10, 2008.

[18] NIST, “Announcing the advanced encryption standard (aes),” 2001.

[19] J. P. J. W. Can Wang, Zhi-guang Qin, “A novel encryption scheme for data dedu-
plication system.” Communications, Circuits and Systems (ICCCAS), 2010 Interna-
tional Conference on, pp. 265–269, 2010.

[20] R. C. Merkle, “A digital signature based on a conventional encryption func-
tion.” Advances in Cryptology — CRYPTO ’87, vol. 293, pp. 369–378, 1988.

[21] A. M. Darrel Hankerson and S. Vanstone, Guide to Elliptic Curve Cryptography.
Springer-Verlag New York, 2003.

[22] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors.”
Communications of the ACM, vol. 13, pp. 422–426, 1970.

55

http://www.cryptopp.com/

A. Appendix 1

POF – PERFORMANCE MEASUREMENTS AND COMPARISON

PoW (ms) POF (ms)

Size (MB) Disk Read Merkle
Tree Total Disk Read Algorithm Total

0.015625 0.09 0.57 0.66 0.15 0.62 0.77
0.03125 0.13 1.07 1.2 0.16 0.42 0.58
0.0625 0.19 1.73 1.92 0.17 0.62 0.79
0.125 0.34 4.01 4.35 0.2 0.63 0.83
0.25 0.62 6.82 7.44 0.24 0.63 0.87
0.5 1.17 12.51 13.68 0.27 0.58 0.85
1 2.03 21.08 23.11 0.29 0.62 0.91
2 4.44 42.46 46.9 0.31 0.62 0.93
4 8.19 84.46 92.65 0.55 0.63 1.18
8 14.76 168.43 183.19 0.66 0.65 1.31
16 28.62 334.88 363.5 0.82 0.64 1.46
32 56.75 669.38 726.13 1.32 0.67 1.99
64 112.58 1352.01 1464.59 4.34 0.64 4.98
128 223.08 2692.07 2915.15 5.56 0.65 6.21
256 437.84 5393.64 5831.48 2.11 0.65 2.76
512 1269.46 10932.49 12201.95 5.53 0.64 6.17
1024 2581.56 23344.83 25926.39 5.52 0.63 6.15

Table 8. Client Computation Time – POF vs PoW [7]

56

	Introduction
	Terms and Definition
	Background and Related Work
	Data Deduplication
	Hash Based Deduplication
	Types of Deduplication
	Summary

	Confidentiality and Privacy Issues in Remote Storage
	Potential Attacks

	Summary

	Approach
	Solution # 1
	Setup
	Security And Efficiency

	Solution # 2
	Setup
	Security And Efficiency

	Solution # 3
	Setup
	Security And Efficiency

	Solution # 4
	Setup
	Security And Efficiency

	Solution # 5
	Setup
	Security And Efficiency

	Solution # 6
	Setup
	Security And Efficiency

	Solution # 7
	Setup
	Security And Efficiency

	Summary

	Evaluation
	Security Evaluation
	Cost Analyses
	Summary

	Conclusions
	References
	Appendix 1

