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Abstract

Neurological disorder assessment tests, such as the Clock Drawing Test, have been
used by neurology specialists as a manual tool for spotting signs of dementia and
evaluating its development levels for many years. Recent technological breakthroughs
allow neurology specialists to conduct such tests on tablet computers, expanding
the possibilities to compute and analyze test parameters faster, discovering patterns
previously unnoticed by a human eye.

The clock drawing test analysis with technological appliances has been a relatively
prominent research topic in the academia. Previous works on the topic provide a
thorough overview of the quantitative and semantic elements of the clock drawing
test, introducing different approaches for extracting the elements of the test. Due to
the rapid technological change and new data becoming available, the present work
aims to enhance prior research with the contemporary methodology and additional
kinematic analysis.

The primary goal of the current thesis is to analyze semantic and kinematic features
found in the Clock Drawing Test and, according to our discoveries, describe the
differences in the parameters describing the test process between the groups of healthy
controls subjects, individuals diagnosed with Parkinson’s disease and patients with
mild cognitive impairment.

Achieving the main goal requires a classification system for the elements of the
drawing. A combination of advanced deep learning and classical machine learning
techniques is used for the test element extraction. The final result is assessed through
performance of the classifiers, trained and validated on the element features with the
highest discriminatory power between the subjected group.

The thesis is written in English and contains 44 pages of text, 6 chapters, 13 figures,
18 tables.
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Annotatsioon

Neuroloogiliste häirete hindamise teste, nagu kella joonistamise testi, on neu-
roloogiaspetsialistid juba aastaid kasutanud dementsuse tunnuste märkamiseks ja selle
arengutaseme hindamiseks, kuid seda tehti alati käsitsi. Hiljutised tehnoloogilised
läbimurded võimaldavad neuroloogiaspetsialistidel selliseid katseid teha tahvelarvu-
tites, laiendades võimalusi testiparameetrite kiiremaks arvutamiseks ja analüüsimiseks,
avastades varem inimsilmale märkamatuid mustreid.

Kella joonistamise testi analüüs tehnoloogiliste meetmetega on olnu akadeemilises
ringkonnas üsna levinud uuringuteema. Varasemad tööd käesolevale teemale an-
navad põhjaliku ülevaate kella joonistamise testi kvantitatiivsest ja semantilisest
taustast, tutvustades samal aja erinevaid lahendusi testelementide eraldamiseks.
Tänu kiirete tehnoloogiliste muutustele ja uute andmete kättesaadavusele on käesol-
eva töö eesmärgiks saanud varasema lähenemise kaasaegsete tehnikate ja täiendava
kinemaatiliste parameetrite analüüsiga parendamine.

Käesoleva lõputöö esmane eesmärk on analüüsida kella joonistamise testis leiduvaid
semantilisi ja kinemaatilisi tunnuseid ning, vastavalt avastustele, leida ja kirjeldada
parameetre, mis võimaldavad eristada terveid inimesi Parkinsoni tõvega diagnoositud
isikutest ja omakorda eristada viimaseid kerge kognitiivse häirega patsientidest.

Põhieesmärgi saavutamiseks on vajalik luua testielementide klassifitseerimissüsteemi.
Testielemendi väljavõtmiseks edasise analüüsi jaoks on kasutusele võetud täiustatud
süvaõppe, sealhulgas arvutinägemise, ja klassikaliste masinõppevõtete kombinat-
siooni. Lõpptulemus on hinnatud klassifikaatorite toimivuse põhjal. Klassifikaatorid
on treenitud suurima diskrimineerimise jõuga parameetrite peal ning valideeritud
kasutades ristviitamise meetodikat.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 44 leheküljel, 6 peatükki, 13
joonist, 18 tabelit.
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List of abbreviations and terms

MNIST Modified National Institute of Standards and Technology,
large data set of handwritten digits

YOLO You Only Look Once algorithm
DBSCAN Density-Based Spatial Clustering of Applications with

Noise algorithm
PD Parkinson’s Disease
MCI Mild Cognitive Impairment
CV Computer Vision
CNN Convolutional Neural Network
EM Expectation–maximization algorithm
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1. Introduction

Dementia is a term used to describe a set of symptoms that cover a wide range of
medical conditions caused by significant loss in brain function. The deterioration
in cognitive abilities affects memory, thinking, comprehension, decision making and
judgement – crucial aspects of our daily life. Alzheimer’s disease is the most common
form of dementia and contributes to around 60-70% of cases [1], while other types of
dementia are distributed among the rest 30-40%.

Parkinson’s disease is another neurodegenerative condition. Unlike Alzheimer’s,
Parkinson’s disease mainly affects the motor system; however other dementia symp-
toms, such as slowness in thinking, memory loss and decrease in attention[2], can
also occur in later stages of the disease.

Although there is no treatment currently available to cure such conditions, early
diagnosis is proven to ease the progressive development of the disease by providing
better care and condition management to patients and their caretakers.

For many decades, the main tools for screening and spotting signs of neurodegenera-
tive disorders were pen and paper. Various tests - including Clock Drawing Test -
were invented for analyzing the fine motor skills of a person and their understanding
of the task. Tasks may vary, but most require the patient to draw a figure, a line or
write a sentence. The tests are manually analyzed according to a scoring system and
likely to base on a subjective judgement of the clinician.

Nowadays, the use of tablet computers and digital pens made it possible to conduct the
assessments digitally, allowing neurology specialists to detect kinematic features and
semantic elements, track the movement and discover patterns previously unnoticed
by a human eye.

The focus of the present thesis is to develop a system for analysis of digitized
Clock Drawing Tests, completed by the healthy control group, patients with mild
cognitive impairment and individuals diagnosed with Parkinson’s disease. The first
sub-problem of this work is to recognize all drawing elements by applying modern
deep learning algorithms with classic machine learning. The second sub-problem is
semantic and kinematic features’ extraction and analysis. The desired outcome is to
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distinguish one group of individuals from another. Feature analysis should provide
an overview of differentiation between the groups and ultimately answer the main
questions: can we separate one group of dementia patients from another; how vast
is the difference between dementia and healthy control groups, based on a set of
computed features.

1.1 Background

1.1.1 The Clock Drawing Test

The Clock Drawing Test (CDT) is a tool for cognitive impairment and dementia
screening, measure and diagnosis. It requires the subject to draw a clock face with
numbers and clock hands placed inside the contour. In some CDT cases, individuals
are asked to draw a clock face from memory, completing a specific task along the
way. For instance, they can be asked to a draw a clock indicating a certain time.
Other tests might come with a pre-drawn contour.

Completion of the test requires the patient’s attention, comprehension, memory and
visual-spatial knowledge [3]. Since dementia affects precisely the aspects of cognitive
abilities described previously, the CDT is considered successful in assessing dementia.

The CDT can be visually separated into three distinct groups of elements:

• Circle - contour of the clock face
• Digits - numeric representation of time
• Hands - time indicators

In order to assess the CDT, neurology and psychology specialists use scoring systems
of different levels of complexity and thoroughness.

1.1.2 Semantic Features in the Context of the Current Work

The semantic feature is an aspect of a unit that describes and provides meaning to it.
Although the term originates from the field of linguistics, the present thesis uses it to
describe an aspect of every element found in a clock drawing. Under the circumstance
that CDT can form groups of elements by their meaning to the evaluation and the
clock face in general, the use of the term is appropriate in the context of the current
research. To provide a "meaning" to elements of the CDT, it has been has decided
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Figure 1. Example of a Clock Drawing Test with all elements present.

Figure 2. Example of a Clock Drawing Test drawn by an MCI patient.

to define the aforementioned features based on Freund’s scoring scale.

Freund’s Scoring Scale

Freund’s scoring scale is a 7 points system for CDT assessment. This system is a
good fit for the problem of defining semantic features since it focuses on three major
categories: numbers, spacing and time setting. Semantic features of the elements
are assigned and calculated according to their meaning and role in the evaluation
process.

Table 1. Freund CDT Scoring Scale[4]
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Time
(3 points)

One hand points 2 (or symbol representative of 2)
Exactly two hands
Absence of intrusive marks, e.g., writing or hands in-
dicating incorrect time, hand points to number 10; tic
marks, time written in text (11:10; ten after eleven)

Numbers
(2 points)

Numbers are inside the clock circle
All numbers 1–12 are present, no duplicates or omissions

Space
(2 points)

Numbers spaced equally or nearly equally from each
other
Numbers spaced equally or nearly equally from the edge
of the circle

1.2 Problem Statement

Until recently, the CDT was used as a manual tool for screening and spotting signs
of dementia. Nowadays, technological breakthroughs allow neurology and psychology
specialists to conduct various tests on tablet computers, expanding the possibilities
to compute and analyze test parameters faster and with higher accuracy.

Systems that would recognize different components of the drawing and automatically
evaluate the result of a CDT are not available for public use just yet. A system
developed by Ilja Mašarov for his master’s thesis in 2017 [5] is considered a pilot
version of what can potentially solve the problem stated above. The author was able
to successfully implement a digitized version of CDT and extract its elements. Since
the time from the initial development has passed, the system needs an update.

The main goal of the present research is to describe the differences in kinematic and
semantic parameters describing the CDT process between the groups of PD patients,
subjects affected by dementia and similar by age and gender distribution group of
healthy controls subjects. Achieving the main goal requires solving the following
sub-problems:

1. Extract and recognize different elements (digits, hands, and circle) from the
drawn test;

2. Extract semantic and kinematic features describing each element;
3. Perform statistical hypothesis testing to answer the question of distinguishabil-

ity;
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4. Among the distinguishable parameters, select those possessing the highest
discriminating power to distinguish between different groups;

5. Evaluate the performance of simple classifiers.

For the first sub-problem, goodness is evaluated if at least one element is recognized
and extracted. Sub-problem 2 is the set of numeric calculations that do not require to
be validated. For sub-problem three, let the level of significance be α = 0.05, which
is usual for similar types of problems. Considering the sample size is relatively small,
only two or three parameters possessing the highest discriminating power should be
selected for each classifier. Finally, the last sub-problem goodness threshold is set to
be 0.7 for the accuracy, precision, recall and f1 scores. This value is most commonly
reported in the literature.

A complete description of the approach and methods can be found in Methodology
and Data section.

1.3 Workflow

The workflow of the current work if separated into two major parts.

The first part of the research is the classification of the CDT elements. The classifi-
cation is achieved by a combination of advanced deep learning and classical machine
learning methods (Table 3, DL methods are marked with a blue color, ML is marked
with a yellow color). The analysis of the clock drawing test elements for correct
diagnosis of a cognitive impairment has been described in the earlier research [5], [6],
[7]. The uniqueness of the current work lies in implementation of the deep learning
methods for classification of the elements.

The second part of the research is the analysis of classified CDT elements by their
semantic and kinematic features. The main goal of the feature analysis is to explore
and define the significance of the difference between the subject groups. The discovery
of features with high discrimination power makes it possible to build high-performing
classifiers for predicting the diagnosis - or its absence - by the digitized CDT sample.
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Figure 3. Workflow: Extraction and Classification of the CDT elements.

Figure 4. Workflow: Semantic and Kinematic Analysis
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2. Related Works

2.1 Digital Clock Drawing Test Implementation and Analysis

The master’s thesis "Digital Clock Drawing Test Implementation and Analysis" [5],
written by Ilja Mašarov in 2017, is the main inspiration for the current research. The
author implemented a digitized version of the clock drawing test and a pilot version
of the CDT elements’ classification system.

The approach to classify elements of the test is based on the motion-mass parameters
of the strokes, for the exception of the digits, which were classified by a convolutional
neural network. The current work is based on the combination of newer deep learning
and classical machine learning methods for stroke classification.

2.2 Analysis of Interpretable Anomalies and Kinematic Pa-

rameters in Luria’s Alternating Series Tests for Parkin-

son’s Disease Modeling

The master’s thesis "Analysis of Interpretable Anomalies and Kinematic Parameters
in Luria’s Alternating Series Tests for Parkinson’s Disease Modeling" [8], written by
Konstanti Bardõš in 2015, is used as a basis for the extraction of kinematic features.
The original analysis in the work was build on Luria’s alternating series test. In the
current work, a similar approach is based on the clock drawing test.

7



3. Data

The current chapter will introduce the data that was used for the research and
analysis.

3.1 Digitized CDT

The present subsection answers the question of what is a digitized clock drawing test
and what set of data was used for the research.

A digitized CDT is a JSON file that contains an array of strokes drawn on a tablet
computer with a digital pen. In essence, the stroke is represented as a vector of
points [p1, p2, ..., pn−1, pn], where n is the number of points in the stroke. Each
stroke starts when a pen touches the surface of a tablet and ends when it detaches
from the screen. The position on the screen (x and y, in Cartesian system), pressure,
azimuth and altitude angles of the pen and a timestamp is described for each point
in the vector. The pressure is estimated as the force of the touch, where 1.0 is the
force of an average touch [5].

For this research, two distinct sets of CDT were subjected for the analysis: one set
is gathered from the healthy controls group and PD patients from Estonia, the other
- from the healthy controls group and MCI patients from Spain.

3.1.1 Addressing Differences in Data

It is necessary to point out that both data were collected independently, using
different tablet computers and, essentially, data acquisition software. Nevertheless,

Table 2. A sample from the unified CDT dataframe

x altitude azimuth y pressure timestamp stroke_id

372.1719 0.872218 0.590648 -244.1602 0.333333 5.315888e+08 0
370.5156 0.872218 0.590648 -245.4961 0.333333 5.315888e+08 0
368.5938 0.872218 0.590648 -246.7500 0.333333 5.315888e+08 0
367.2656 0.872218 0.590648 -247.8164 0.333333 5.315888e+08 1
365.9375 0.872218 0.590648 -249.2695 0.333333 5.315888e+08 1
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the difference between sets is insignificant and limited to the JSON structure and
naming convention of stroke parameters.
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4. Methodology

In the present chapter, an introduction and description of the methodology and tools
used to solve the thesis can be found.

4.1 Tools

The development language of the current research is Python due to the wide range
of machine learning and data science libraries available for and compatible with this
language. Additionally, most of analysis was done in Jupyter environment, which is
an interactive computational notebook for Python.

All the plots were made with Matplotlib library; NumPy and Pandas libraries
were used for most of the computations, data handling and maintenance. Scikit-
learn library was used for classical machine learning algorithms. For object detection
and recognition from an image, OpenCV library and YOLOv4 algorithms were
used, the latter being trained on MNIST handwritten-digits dataset, gathered with
the help of the Keras API module from Tensorflow library.

4.2 Classification of CDT Elements

In order to analyze the drawing, all elements need to be separated from each
other. The workflow consists of three major components whereas these components
constitute the combination of classical machine learning techniques and advanced
deep learning methods.

First step is the separation of the stroke - or strokes - that form a circle from
the initial drawing. Second step is the separation of the digits. Both methods use
advanced computer vision and deep learning techniques. As for the remaining strokes,
a classical data clustering algorithm was applied to identify potential strokes that
form clock hands and separate them from the remaining strokes - outliers. For the
time being, outliers and other miscellaneous elements that could be found in the
process are neglected, since analysis of such elements is outside of the scope of current
research. The final result of the process it to label all elements of interest: circle
points are labeled as "0", hands as "20" and digits labels lie withing the range from
"1" to "12".
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4.2.1 Object Recognition with OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision
and machine learning software library [9]. OpenCV contains a comprehensive set of
classic and state-of-the-art machine learning and computer vision algorithms that
can be used to perform various task including, but not limited to, face detection and
recognition, and identification of objects and shapes.

OpenCV works solely with images and video frames. The colors of the image have
to be converted from the blue-green-red color space to gray, as it is necessary for the
detection algorithm to correctly identify contours - areas of pixels with similar color
and intensity. Each notable change in color or density implies that a new contour
area has started. In order to find contours, however, the Canny edge detector has
been applied as it helps to mark separate objects by making their border of the same
white color and intensity, while keeping the background black as in Figure 7a.

4.2.2 Object Detection with YOLOv4

You Only Look Once (YOLO) is a real-time object detection system [10]. Object
detection in YOLO happens by applying bounding boxes and probabilities around
the objects using a Bounding Box regression [11] function. The bounding box wraps
around the object of a pretrained class (or a cluster) and returns center points
coordinates, width and height.

YOLO v4 is built on a single neural network applied to a full image that divides
it into smaller regions by compressing features down through a CNN backbone.
CSPDarknet53 is the backbone for YOLO v4 and contains 29 convolutional layers
3x3, a 725x725 receptive field and 27.6M parameters [11]. YOLO is a one-stage
object detector, meaning it predicts the object localization and classification at once.

Figure 5. Structure of an object detector[11]
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It is possible to train YOLO on a set of custom images to detect any object of
choice. In case with YOLO, the backbone network’s pretrained weights are adapted
to identify relevant features out-of-the-box. In the process of training on custom data,
they will be adjusted according to the features of new images and object detection
settings.

Training Data Preparation

The custom detection requires some additional preparation of the data that YOLO
will be trained on. Firstly, all the images have to be stored in one place. Secondly,
there must be a label file that contains information about bounding boxes and classes
related to the ground truth objects for every image. Each row is assigned to one
object, and has the following structure: <object-class> <x> <y> <width> <height>.
Positional arguments x and y of a bounding box predicted by YOLO can be described
as a normalized relative position between first and last pixels, while width and height
are calculated as proportion. The information on the location of image sets, the
number of classes in total and their name is stored in the configuration file that is
being read upon the start of training process.

4.2.3 Clustering with DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a clus-
tering algorithm that uses the individual data points in dense regions as building
blocks after classifying them by their density [12]. DBSCAN method requires only
information about the density τ and radius ε of the dense region. The density of a
point is defined by the amount of points that remain inside of the ε of that point.
The densities are used to distinguish border, core and noise points. The core has to
contain at least τ points within the ε, while border need at least one core point to
lie within its ε. Together they form a whole cluster.

Figure 6. Border, core and noise points[12]
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Major advantage of using DBSCAN algorithm for the current research is its ability
to discover clusters of arbitrary shapes.

4.3 Analysis of CDT Distinguishability

The labeling of the CDT elements allows us to proceed with the analysis of semantic
and kinematic features. Once features are extracted, classifiers should be build and
trained on the attributes with the most discriminatory power. The classifier must be
able to correctly distinguish the HC, PD and MCI groups by previously described
parameters.

4.3.1 Identifying Parameters

Parametric Statistical Hypothesis Tests: Student’s t-test

To quantify the difference between the means of two or more samples of data, a
parametric statistical hypothesis test needs to be applied. The Student’s t-test, one
of such tests, determines whether the means of two independent samples are differ
significantly. The hypotheses of t-test can be described by two hypothesis statements:

• H0: the means of the samples are equal
• H1: the means of the samples are not equal

The test results can be described through a calculated p-value. The p-value can be
interpreted as the probability of observing the two data samples under null-hypothesis.
If the p-value is below the significance level α (0.05), then the null-hypothesis is
rejected, and the alternative hypothesis is accepted.

Fisher’s Score

The Fisher score is designed to measure the ratio of the average interclass separation
to the average intraclass separation between attributes [12]. The ratio is described
with the following equation,

F =

∑k
i=1 pi(µi − µ)2∑k

i=1 piσ
2
i

(4.1)

where µi and σi are the mean and standard deviation of data points belonging to
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class i for a single feature, pi is the subset of data points of class i, and µ is the
global mean of the data on the evaluated feature. The greater the discriminatory
power of the attribute, the higher is its Fisher’s score.

4.3.2 Classifiers

K-Nearest Neighbors

K-nearest neighbor (KNN) is a supervised machine learning algorithm for classi-
fication. It operates by memorizing the training dataset and is considered fairly
straightforward. KNN requires the knowledge about the number of k neighboring
points and a distance metric. Then, it finds the k-nearest neighbors of the sample
and assigns the class label according to the prevalent class among the neighbours.

Decision Tree

Decision Tree is another supervised machine learning classification and regression
algorithm. The tree-like model predicts the class label of a sample by making a
decision based on simple decision rules, generated by breaking the training data
down into smaller subsets.

Random Forest

Random forests is defined as an ensemble of decision trees. Each individual tree in
the model makes a prediction of a class label and the final prediction depends on
the prevalence of votes. The class with the most votes is considered the model’s
prediction. The randomness has explicitly been inserted into the model building
process of each decision tree [12], creating a low correlation between them.

Logistic Regression

Logistic Regression is a simple algorithm for preforming linear and binary classi-
fications. Logistic regression can be viewed as a linear classifier, meaning that a
linear hyperplane is used to separate the classes [12]. It preforms via the logistic
function that exponentiates the distances between classes and a plane, defining the
class localization.

Cross-Validation

The cross-validation is a method used for model evaluation by providing estimates
of the model’s performance on an unseen data. To perform cross-validation, the
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original dataset has to be split into training, validation and test sets. In the case of
the K-fold cross-validation resampling technique, the set is split into k sets, where
k - 1 folds are used for training and 1 for performance evaluation; the process is
repeated until k models are evaluated and a performance estimates are generated.
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5. Implementation

The current section describes the actual application of methods described in previous
chapter and final implementation of the thesis solution. The classification of the
CDT elements is achieved by the combination of deep learning and classical machine
learning techniques, which is the defining characteristic of the present research when
compared with other related works. The practical reason behind this approach is
described further in the section.

5.1 Circle Classification

As it has been implied earlier in the research, the detection of a circle in CDT
happens by applying a computer vision algorithm for contour detection. The first
step in the process of finding the circle is converting the JSON file with CDT data to
an image file, as OpenCV only works with images. The image file is obtained from
the plot as its parameters are useful to compare resolutions and translate images
back to JSON.

Once the data is converted into a compatible format, the contour detection process
can be started. Applying Canny edge detector to the grayscale image of a CDT will
generate a set of all possible contours, however, there is only one circle contour that
needs to be extracted.

Under the assumption that circle contour has the biggest area compared to the other
elements of a drawing, it is reasonable to set an additional area threshold to ignore
smaller items. Once the contour of interest is found, the minimum enclosing circle
function is applied. It finds a circle that covers the object with minimum area and
returns its central points (x, y) and a radius. These parameters are used to separate
the corresponding points from the original CDT data by comparing closeness of each
stroke center and length to the same parameters found in a contour.

The final result is visualized in the Figure 3b, where the circle contour is marked
with the green colour, and contours that are left for further analysis are marked
with red. The minimum enclosing circle and its center are painted with cyan colour.
Separating the circle element from the CDT and labeling all stroke points as "0"
allows us to proceed to the digit detection.
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(a) Canny edge detector output (b) Final output

Figure 7. Circle recognition process

5.2 Digit Classification

For the current research, it has been decided to use YOLO for digit detection and
localization. Although YOLO comes with an impressive set of pre-trained weights
and is able to detect some objects upon the very first run, it is not possible to detect
digits without training it on a custom dataset first.

5.2.1 Preparing Custom MNIST Dataset

The digit detection has been realized through training and tesing YOLO algorithm on
the MNIST handwritten digits dataset. MNIST contains 60000 examples of training
and 10000 of testing sets [13], respectively. Each example is a 28x28 image of a
handwritten digit. This resolution, however, appears to be too narrow for YOLO to
be trained. Training image’s resolution should be at least 320x320 up to 608x608
with a step of 32 pixels. Therefore, the dataset has been modified according to the
requirements, keeping the image resolution at 416x416.

It has been decided to train YOLO to detect 12 classes, a sequence of digits from 1
to 12, instead of 10, as there are single digits in total, from 0 to 9. This approach
allows us to neglect additional checks of closeness of two digits to form a two-digit
CDT class that would have been inevitable in the case of recognizing just one digit at
a time. Since all the numbers in MNIST are single-digit, two-digit classes "10", "11"
and "12" were generated from the combination of "0", "1" and "2" MNIST examples.
The generated training data consists of chaotically distributed handwritten digits
examples. A new position of digits on the training image is calculated upon every
generation.
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Figure 8. YOLO compatible MNIST dataset

6 0.78125 0.298077 0.067308 0.067308
1 0.211538 0.033654 0.067308 0.067308
0 0.668269 0.778846 0.067308 0.067308
3 0.579327 0.552885 0.067308 0.067308
0 0.165865 0.651442 0.067308 0.067308
3 0.478365 0.153846 0.067308 0.067308
8 0 .25 0.334135 0.067308 0.067308
4 0.389423 0.216346 0.067308 0.067308
8 0.064904 0.112981 0.067308 0.067308
5 0.302885 0.824519 0.067308 0.067308

Figure 9. YOLO darknet label file for MNIST object

The final training dataset consists of 15816 generated data files, half of which is
images (Figure 8) and the other half is the label files for ground truth objects (Figure
9). The central points, width and height of each bounding box are relative to the
training image resolution. The width and height of single-digit classes are the same as
in the original MNIST sample, while positional coordinates are generated at random
and positioned without overlapping one another. The two-digit classes are generated
similarly except for the bounding box being 1.5 times wider.

5.2.2 Training Process and Detection Results

According to the YOLO documentation, 2000 iterations for each object is sufficient
enough to stop the YOLO training process. In the best interest of the research, after
each 1000 iterations a weight file has been saved and tested. The best detection
results were established after 10000 training iterations.
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Although YOLO performance in identifying an actual digit object is significant, often
with nearly 100% prediction accuracy, it is important to acknowledge that some of
the detected classes did not resemble an actual digit object, despite being recognized
as such. For instance, YOLO would label a smaller area in a clock hand as an object
of class "1" (Figure 10). This has lead to applying an additional rule that checks
whether all points of the stroke fit the bounding box or not. Another restriction is
the exclusiveness of the element - each digit class can appear in the drawing only
once. The rule is implemented by considering the element with the highest prediction
confidence, if the same class label is predicted more that once on the same sample.

Figure 10. YOLO predicted Digit classes

In order to assign a correct digit-class label to the CDT strokes, bounding box
parameters need to be converted into the Cartesian coordinate system, corresponding
to original CDT metrics. Since the predicted parameters are relative to the image
resolution, the conversion is done by multiplying the width and height by axes lengths
and finding positional parameters by adding x and y offsets to the starting point of
the corresponding axis.

The strokes are labeled as digits only under condition where (xmin, ymin) and (xmax,
ymax) points of the stroke lie within the predicted bounding box area (Figure 11).
Finally, when all potential digit strokes are labeled according to the YOLO predicted
bounding boxes, clock hands, if they are present, should be labeled as well.
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Figure 11. Final Digit classes in the original CDT space

5.3 Clock Hands Classification

The circle identification with a computer vision algorithm has been quite simple
because of the triviality of the shape, and digit detection has been efficient due to
the accessibility of MNIST handwritten digits dataset for training a CNN. However,
it is not the case with the classification of the clock hands’ element.

There are plenty of possibilities to draw clock hands and the absence of an extensive
data with exclusive examples makes it the most difficult CDT element to classify
using deep learning methods. An attempt to train YOLO on a custom dataset of
hands, drawn on an iPad resulted in very poor detection performance, hence was
neglected. It has been decided to approach the problem of hands’ classification with
classical machine learning methods.

The DBSCAN algorithm has been chosen to preform the final classification due to its
capability in discovering arbitrary shapes. The unclassified strokes are run through
the DBSCAN model from scikit-learn library with a relatively high ε value and
fairly low τ number of samples, as the hands shape is likely to be quite narrow.

As a result of performing DBSCAN clustering on the remaining unlabeled stroke
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Figure 12. Potential Hands cluster found with DBSCAN

points, an array of corresponding labels is returned. In case of a correctly drawn clock,
only one label must be assigned (Figure 12). In case if more than one unique label
have been found, the closest cluster to the drawing’s center by Euclidean distance is
treated as the final clock hands object. The distance is described in the equation
(5.1),

d(h, c) =
√
(cx − hx)2 + (cy − hy)2 (5.1)

where h and c are the central coordinates of a potential hand’s cluster and the circle
stroke, respectively.

The last step in the classification process is to remove all unlabeled points as they
are not in the focus of the current research. At the end of the process, an additional
detect_class attribute of the original CDT data is filled with the corresponding
values. The values are "0", "1" to "12" and "20", and stand for circle, digit_n and
hands, respectively. In the subsequent sections, the vector points [c1, c2, ... , cn − 1,
cn] of the CDT element, is referred to as class or element.
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5.4 Feature Setting

5.4.1 Semantic Features

The reason for analyzing the semantic features in the current research is the explo-
ration of the distinguishability between healthy individuals and dementia patients by
semantic features. If it occurs that the groups are distinguishable, the identification
of discriminating power between the subject groups by semantic features has to be
assessed as well. The semantic features are used in the subsequent classifier creation.

As it has been previously mentioned, some semantic features of a CDT are formed by
following Freund’s CDT scoring guidelines. The process can be though as defining
features that can be used for an actual CDT evaluation per Freund. The process is
different for each group of CDT elements.

In the following section, a semantic feature is explained through comparison of each
element with the corresponding connotation in the Freund’s scoring system. Some
of the features are unrelated to the Freund system, but rather deducted from the
interest in discovering patterns within different groups of tested individuals.

Circle Features

Exploring the Freund CDT scoring scale (Table 1), the following connection is found:

• Numbers spaced equally or nearly equally from the edge of the circle
• Numbers are inside the clock circle

A couple of conclusions regarding semantic meaning of a circle can be drawn from
the excerpts above. Firstly, in order to state whether the numbers lie inside the
circle or not, the radius and the center of a circle need to be found. Secondly, to
evaluate the equality of the spacing between numbers and circle edge, identical set
of values can be used. Provided this knowledge, the radius, center_x, center_y were
extracted.

Additionally, the standard deviation of the circle coordinates have also been gathered,
due to the significance of the coordinates deviation found specifically in the circle
stroke. Although the standard deviation features are not connected to Freund’s scale,
it might positively impact the further analysis and classifier.
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Table 3. Description of semantic features found in a circle

Circle Feature Description

radius radius of the circle element

center_x x-coordinate of the circle’s center

center_y y-coordinate of the circle’s center

std_x standard deviation of the element by x

std_y standard deviation of the element by y

Digit Features

Following the same procedure, the identified connection is:

• Numbers spaced equally or nearly equally from the edge of the circle
• Numbers spaced equally or nearly equally from each other
• Numbers are inside the clock circle

In the case of numbers - or digits -, the information about digit positions must be
obtained. Moreover, the distance from the edge of the circle and from the neighboring
class can be useful for building a well-performing classifier as it might detect patterns
in spacing between the CDT elements in different groups of individuals.

Table 4. Description of semantic features found in a digit

Digit Feature Description

radius radius of the circle element

center_x x-coordinate of the digit’s center

center_y y-coordinate of the digits’s center

distance_from_edge standard deviation of the element by x

distance_from_neighbor standard deviation of the element by y

Hands Features

The process of finding semantic features in a clock hand is differs from the same
process for the circle and digits. Mainly, it has occurred due to the importance of
the hands in the evaluation per Freund scale.

• One hand points 2
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• Exactly two hands
• Hands indicate correct time

An additional analysis of the hands class needs to be done in order to successfully
proceed with the evaluation. The initial classification implied the hands class to
be inseparable, hence the element could be analyzed as a whole cluster. The initial
approach is not particularly suitable for the current route of the evaluation and
semantic analysis. Hence, hands must be separated.

The hands separation is done by applying the Expectation-Maximization algorithm.
It is a clustering algorithm that finds classes by estimating the missing samples,
optimizing the model and repeating the process until full convergence of the data
sample [14]. By setting the EM model to find two clusters of hands, we achieved the
desired outcome of separating the hands.

(a) Detected hand’s clusters (b) Same-stroke rule applied

Figure 13. Clock hand’s separation

It is important to foresee that, although EM algorithm performs well in separating
the n number of clusters, in some occasions only one clock hand is actually present on
the CDT. The EM algorithm will do its best to create two-classed vector, resulting
in a element that was not supposed to occur. Of course, it is considered a mistake
by the scoring system, but even a single element is a very important bit of data for
further analysis of the test groups.

To approach the problem of identifying the number of correctly separated hands,
vector points’ stroke_id attributes are set in comparison with the cluster labels of
the same stroke. Provided the whole stroke has a unique label, if more that one
label is assigned to the corresponding sample after prediction, then the prediction is
considered inaccurate. In the case of inaccurately predicted labels, the statistical
maximum label is assigned to the data sample. The final result is a set of labels with
either one or two reoccurring values.

Once hands are processed, the following semantic features can be obtained (Table
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5). The rotation, max_x and max_y features are calculated from the covariance
between cluster points and the corresponding eigenvectors.

Table 5. Description of semantic features found in a clock hand

Digit Feature Description

radius biggest radius of the epsilon around the
hand’s cluster

center_x x-coordinate of the hand’s center

center_y y-coordinate of the hand’s center

max_x x-coordinate of the hand’s tip

max_y y-coordinate of the hand’s tip

rotation rotation angle counter-clockwise

time_class label of the digit, indicated by the hand (clos-
est digit)

distance_from_digit euclidean distance from the closest digit

5.4.2 Kinematic Features

Kinematic parameters of handwritten assets have proven to produce high level of
discriminating power between Parkinson’s disease patients and healthy subjects in
the previous research [8]. In the favour of the current work, additional set of MCI
patients is analysed alongside with the PD and HC group to support the statement
of high distinguishability by kinematic features as well as potentially discover the
significance between all subjected groups, especially interesting is significance between
MCI and PD patients.

Kinematic feature set describes each vector of the CDT element separately. On the
contrary to the semantic feature extraction process, additional separation steps are
not required, as elements are treated equally, as a single arbitrary vector of points.

The higher-order kinematic parameters are velocity, acceleration, and jerk. For each
high-order feature the mean, mass and number of changes are calculated and used
for further analysis and classifiers. Additionally, the duration, trajectory_length and
pressure features are being extracted to compare the current result with the previous
research on the topic. The description of the kinematic features are inspired by K.
Bardõš’s master’s thesis [8], where a similar problem was approached.
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Table 6. Description of kinematic features [8]

Feature Description

duration time period between first and last point of
the class

trajectory_length sum of Euclidean distances between neigh-
bouring points in stroke

velocity_mass sum of all velocities in a class

velocity_mean average velocity of a class

velocity_nc number of velocity changes in a class

acceleration_mass sum of all acceleration values in a class

acceleration_mean average acceleration of a class

acceleration_nc number of acceleration changes in a class

jerk_mass sum all jerk values in a class

jerk_mean average jerk of a class

jerk_nc number of jerk changes in a class

pressure_diff_mean average difference in pressure between neigh-
bouring points

pressure_mass sum of pressure values in a class

pressure_nc number of pressure changes in a class

The process of features’ selection is repeated for all available sets of CDT. In total,
there are 7 HC and 17 PD samples from Estonia, and 12 HC and 11 MCI samples
from Spain subjects.

5.5 Analysis of Features

The current section is dedicated to the description of feature analysis. The progress
is similar for both semantic and kinematic features. The goal of the feature analysis
is to examine the distinguishability between different groups of individuals. Sets of
CDT samples are separated by the background of the test subjects.

5.5.1 Feature Extraction by Discriminating Power

The higher the discriminating power of a feature is, the better grounds it provides to
a build classifier on.
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There are multiple ways to assess distinguishability of the data. In the current
research, it has been accomplished by calculating both p-value and Fisher’s score of
the independent samples.It is worth noting that the features selected by either of the
metrics are ultimately the same, which is an expected outcome. For this reason, the
main metric of reference will be p-value as it provides more clarity about the equality
of samples. The two samples are thought to come from a different distribution if the
p-value is below the significance level α (0.05).

The distinguishability is assessed based on opposing pairs of groups. The samples
are compared by every CDT element separately, providing the context about the
most distinguishable features and the elements they were found in. Each result table
indicates what element is being analyzed. The indicator consists of the pair’s group
indicators and the CDT class label at the end. For instance, pd_hc_0 means that
the pair is formed from PD and HC samples, and the features belong to the circle
element. Only 2-3 best features are selected for the classification model training.

5.5.2 Feature Extraction Results

HC vs HC

The HC group from Estonia and HC group from Spain were the first pair in the
process, and for a good reason. Under the assumption that the HC groups are
indistinguilshable, there is an urge to unite the two group into one, since it would
have provided a bigger and more diverse set of samples for the subsequent analysis.
However, there was no evidence the assumption is valid, therefore, before merging
the groups, they have to be proved inseparable.

Obtaining the p-values from the Student’s t-test proved that, while the minority of
the elements did show some high discriminating level, overall it is safe to merge the
groups into one, both by kinematic and semantic features. The example of p-values
can be observed in Table 7. Values are sorted in ascending order.

feature controls_1

jerk_mean 0.270795

jerk_mass 0.272199

acceleration_mass 0.272237

Table 7. Example of low discriminating level (p-value)
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The subsequent reference to HC implies the merged group of Estonian and Spanish
HC.

PD vs HC

Evaluation of the PD and HC groups supported the common knowledge that the
CDT samples have high distinguishability by nearly every element of the drawing.
The samples are kinematically most separable by the circle element, with selected
features being jerk_mass, velocity_mass and acceleration_mass. Semantically, the
circle element also differs significantly by center_x and y_sdt features.

feature hc_pd_0

jerk_mass 6.94028e-05

velocity_mass 0.000228664

acceleration_mass 0.000276653

Table 8. Kinematic features selected from PD/HC assessment

feature hc_pd_0

center_x 0.0390078

y_std 0.118333

Table 9. Semantic features selected from PD/HC assessment

MCI vs HC

Interestingly, the evaluation of distinguishability in MCI and HC features did not
provide such dramatic results as in the previous pair. In fact, most of the p-values
for the samples appeared to be high enough to assume that the data samples come
from the same distribution. However, low p-value was found in the digit element of
class "8". No significant semantic features were discovered for the pair.

feature hc_mci_8

pressure_mass 0.0116476

duration 0.020174

Table 10. Kinematic features selected from MCI/HC assessment
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PD vs MCI

It is already possible to make a conclusion about the significance of difference between
PD and MCI pair from the previous results. The p-values for all of the elements
indicated that the samples are unequal, implying the high distinguishability of the
pair. According to the results, PD/MCI pair has the highest discriminating power
out of all assessed pairs by kinematic features. However, by semantic features the
pair is nearly inseparable, supporting the conclusion that, with the current approach,
overall separability by semantic features is not as successful as it is by kinematic
parameters.

feature pd_mci_0

jerk_mass 5.56758e-06

velocity_mass 8.57844e-06

acceleration_mass 2.00937e-05

Table 11. Kinematic features selected from PD/MCI assessment

feature pd_mci_9

distance_from_neighbor 0.0210383

center_y 0.0611824

Table 12. Semantic features selected from PD/MCI assessment

5.5.3 Classification Results

Following the feature extraction phase, it is now possible to build and train classifiers
to predict the group label of the incoming sample. The classifiers are build by analogy
with the feature extraction, pair-wise. The main classifiers of interest are build on
the features that with highest difference perform quite well. Nevertherless, some
models have shown better performance in another classes, trained on a different set
of features.

The classifiers are evaluated by precision, recall and f-score values, as well as accuracy,
generated during cross-validation of the model.
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Classification by Kinematic Features

The most well-preforming classifiers by kinematic features are the following:

precision recall f-score accuracy std

K-Nearest Neighbors 0.633333 0.625 0.619048 0.88 0.160000

Decision Tree 0.500000 0.500 0.466667 0.59 0.352704

Random Forest 0.633333 0.625 0.619048 0.75 0.232379

Logistic Regression 0.250000 0.500 0.333333 0.44 0.048990

Table 13. Classifier build for differentiating PD and HC by kinematic features of a
digit (class 4)

precision recall f-score accuracy std

K-Nearest Neighbors 0.866667 0.6 0.633333 0.766667 0.200000

Decision Tree 0.900000 0.8 0.819048 0.933333 0.133333

Random Forest 0.900000 0.8 0.819048 0.800000 0.163299

Logistic Regression 0.900000 0.8 0.819048 0.866667 0.163299

Table 14. Classifier build for differentiating MCI and HC by kinematic features of a
digit (class 8)

precision recall f-score accuracy std

K-Nearest Neighbors 0.925926 0.888889 0.895726 0.960000 0.08000

Decision Tree 0.925926 0.888889 0.895726 0.960000 0.08000

Random Forest 0.925926 0.888889 0.895726 0.960000 0.08000

Logistic Regression 0.604938 0.777778 0.680556 0.626667 0.03266

Table 15. Classifier build for differentiating PD and MCI by kinematic features of a
circle (class 0)
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Classification by Semantic Features

The most well-preforming classifiers by semantic features are the following:

precision recall f-score accuracy std

K-Nearest Neighbors 0.687500 0.666667 0.657143 0.635714 0.150509

Decision Tree 0.757143 0.750000 0.748252 0.585714 0.171429

Random Forest 0.757143 0.750000 0.748252 0.610714 0.228236

Logistic Regression 0.611111 0.583333 0.555556 0.642857 0.255551

Table 16. Classifier build for differentiating PD and HC by semantic features of a
circle (class 0)

precision recall f-score accuracy std

K-Nearest Neighbors 0.904762 0.714286 0.757143 0.733333 0.161589

Decision Tree 0.904762 0.714286 0.757143 0.616667 0.323179

Random Forest 0.928571 0.857143 0.874459 0.733333 0.161589

Logistic Regression 0.904762 0.714286 0.757143 0.633333 0.113039

Table 17. Classifier build for differentiating MCI and HC by semantic features of a
digit (class 3)

precision recall f-score accuracy std

K-Nearest Neighbors 0.714286 0.714286 0.714286 0.83 0.235797

Decision Tree 0.510204 0.714286 0.595238 0.53 0.297658

Random Forest 0.510204 0.714286 0.595238 0.68 0.211187

Logistic Regression 0.510204 0.714286 0.595238 0.62 0.112250

Table 18. Classifier build for differentiating PD and MCI by semantic features of a
digit (class 4)

According to the received results, most of the classifier models were able to reach
the threshold of 0.7 accuracy rate for at least one element of the CDT, despite
being trained on a relatively small set of data. However, there is a noticeable
difference in results of the classifiers build on kinematic features and semantic features.
The classifiers for differentiating the samples by kinematic features is performing
significantly better. The reason for such difference might be that kinematic features
are extracted and measured directly from the arbitrary vector points of the CDT
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element. In the kinematic analysis the measures that cannot be visually extracted
from the test are taken into account, while semantic features are build on the visual
comprehension of the drawing test.

Nevertheless, the results of the classification allow to state that, despite the small
amount of available data, it is possible to build well-preforming classifiers for dis-
tinguishing a healthy subject from a person diagnosed with Parkinson’s disease, a
healthy individual from a person diagnosed with mild cognitive impairment, and a
Parkinson’s disease patient from a dementia patient.
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6. Summary

The goal of the current research was to discover whether there is a distinguishability
between the healthy subjects, Parkinson’s disease patients and people diagnosed
with mild cognitive impairment through the analysis of the semantic and kinematic
features found in a digitized clock drawing test. In order to achieve the goal, a
program to detect and classify the elements of a drawing was created using the
combination of advanced deep learning and classical machine learning techniques.

In the first part of the research, the elements of the drawing needed to be classified.
It has been discovered in the process of development that the current implementation
is preforming very well on the visually clear examples of the drawings. However,
there is a room for improving the cases of not so successful drawings. In the current
research, plenty of elements were neglected by the detector, creating an obstacle for
the further detection and classifying the visually present classes as outliers, which
leads to decrease in the data subjected for analysis.

In the second part of the work, the classified elements of the test were analyzed
by the kinematic and semantic features. The kinematic features were extracted
directly from the clock elements and calculated according to the physical equations.
The semantic features were defined for each group of the drawing independently,
concluding the definition from Freund scale directive.

The results of the analysis concluded that the elements, found in the drawings from
different groups, are distinguishable between one another both by kinematic and
semantic features. The highest distinguishability is found between the Parkinson’s
disease and dementia patients, while dementia patients and health control subject
are the least different. Although the discriminatory power is higher in kinematic
features than in semantic features, the current research has opened new possibilities
for further research of semantic feature extraction and analysis. Perhaps, a better
feature definition and closer analysis of the semantics of a clock drawing test could
make a greater difference in the future works.

33



Bibliography

[1] World Health Organization. Dementia. url: https://www.who.int/news-
room/fact-sheets/detail/dementia.

[2] National Parkinson Foundation. Parkinson’s Dementia. url: https://www.
parkinson.org/sites/default/files/PD%20Dementia.pdf.

[3] Freedman MI et al. In: Clock Drawing. A Neuropsychological Analysis. Oxford:
Oxford University Press, 1994.

[4] Barbara Freund et al. “Measures. Table 1”. In: Drawing Clocks and Driving
Cars: Use of Brief Tests of Cognition to Screen Driving Competency in Older
Adults. Journal of General Internal Medicine, 2005.

[5] Ilja Mašarov. In: Digital Clock Drawing Test Implementation and Analysis.
2017.

[6] Mohamed Bennasara et al. “Feature Selection Based on Information Theory
in the Clock Drawing Test”. In: 17th International Conference in Knowledge
Based and Intelligent Information and Engineering Systems - KES2013. 2013,
pp. 902–911. doi: https://doi.org/10.1016/j.procs.2013.09.173.

[7] Sven Nõmm et al. “Interpretable Quantitative Description of the Digital Clock
Drawing Test for Parkinson’s Disease Modelling”. In: 2018 15th International
Conference on Control, Automation, Robotics and Vision (ICARCV). 2018,
pp. 1839–1844. doi: 10.1109/ICARCV.2018.8581074.

[8] Konstantin Bardõš. In: Analysis of Interpretable Anomalies and Kinematic Pa-
rameters in Luria’s Alternating Series Tests for Parkinson’s Disease Modeling.
2015.

[9] OpenCV. url: https://opencv.org/about/.

[10] YOLO. url: https://pjreddie.com/darknet/yolo/.

[11] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4:
Optimal Speed and Accuracy of Object Detection”. In: (2020). url: https:
//arxiv.org/abs/2004.10934.

[12] Charu C. Aggarwal. In: Data Mining: The Textbook. Springer International
Publishing, 2015.

[13] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.
url: http://yann.lecun.com/exdb/mnist/.

34

https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.parkinson.org/sites/default/files/PD%20Dementia.pdf
https://www.parkinson.org/sites/default/files/PD%20Dementia.pdf
https://doi.org/https://doi.org/10.1016/j.procs.2013.09.173
https://doi.org/10.1109/ICARCV.2018.8581074
https://opencv.org/about/
https://pjreddie.com/darknet/yolo/
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
http://yann.lecun.com/exdb/mnist/


[14] Jason Brownlee. A Gentle Introduction to Expectation-Maximization (EM
Algorithm). url: https://machinelearningmastery.com/expectation-
maximization-em-algorithm/.

35

https://machinelearningmastery.com/expectation-maximization-em-algorithm/
https://machinelearningmastery.com/expectation-maximization-em-algorithm/


Appendices

Appendix 1 - Lihtlitsens lõputöö reprodut-
seerimiseks ja lõputöö üldsusele kättesaa-
davaks tegemiseks

Mina, Jekaterina Viltšenko

1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose
"Kella joonistamise testi semantiliste ja kinemaatiliste parameetrite analüüs",
mille juhendaja on Sven Nõmm
(a) reprodutseerimiseks lõputöö säilitamise ja elektroonse avaldamise eesmärgil,

sh Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil
kuni autoriõiguse kehtivuse tähtaja lõppemiseni;

(b) üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna
kaudu, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu
kuni autoriõiguse kehtivuse tähtaja lõppemiseni.

2. Olen teadlik, et käesoleva lihtlitsentsi punktis 1 nimetatud õigused jäävad alles
ka autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi
ega isikuandmete kaitse seadusest ning muudest õigusaktidest tulenevaid õigusi.

25.05.2021

36


	List of Figures
	List of Tables
	Introduction
	Background
	The Clock Drawing Test
	Semantic Features in the Context of the Current Work

	Problem Statement
	Workflow

	Related Works
	Digital Clock Drawing Test Implementation and Analysis
	Analysis of Interpretable Anomalies and Kinematic Parameters in Luria's Alternating Series Tests for Parkinson's Disease Modeling

	Data
	Digitized CDT
	Addressing Differences in Data


	Methodology
	Tools
	Classification of CDT Elements
	Object Recognition with OpenCV
	Object Detection with YOLOv4
	Clustering with DBSCAN

	Analysis of CDT Distinguishability
	Identifying Parameters
	Classifiers


	Implementation
	Circle Classification
	Digit Classification
	Preparing Custom MNIST Dataset
	Training Process and Detection Results

	Clock Hands Classification
	Feature Setting
	Semantic Features
	Kinematic Features

	Analysis of Features
	Feature Extraction by Discriminating Power
	Feature Extraction Results
	Classification Results


	Summary
	Bibliography
	Appendices
	Appendix 1 - Lihtlitsens lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks

