
TALLINN UNIVERSITY OF TECHNOLOGY
School of Science

Denis Akimov 186044YAFB

Inverse problems for fractional oscillators

Bachelor’s thesis

Supervisor: Jaan Janno
Professor

Tallinn 2024



TALLINNA TEHNIKAÜLIKOOL
Loodusteaduskond

Denis Akimov 186044YAFB

Pöördülesanded murrulistele ostsillatoritele

Bakalaureusetöö

Juhendaja: Jaan Janno
Professor

Tallinn 2024



Author’s declaration of originality and supervisor’s resolution

I hereby certify that I am the sole author of this thesis. All the used materials, references to
the literature and the work of others have been referred to. This thesis has not been presented
for examination anywhere else.

Author: Denis Akimov
Signature:

17.05.2024

This work corresponds to bachelor’s thesis requirements in force.

Supervisor: Jaan Janno
Signature:

17.05.2024

1



Abstract
Inverse problems for fractional oscillators

The goal of this bachelor’s thesis was to use the Laplace transform method to construct
solutions for inverse problems of model estimation concerning fractional oscillators and to
assess the correctness and stability of obtained solutions using numerical simulations in Python.
This involves problems for linear differential equations with Caputo type operators of certain
order range.

In the first chapter, important definitions and basics of fractional calculus were brought in. In
the second chapter initial value problem and forcing term problem were evaluated for equations
with one fractional derivative, and the general algorithm for numerical methods in Python
was introduced. In the third chapter, forcing term problems were evaluated for equations with
two fractional derivatives of non-equal order.

As a result of this work inverse problem solutions that estimate model parameters with good
precision for theoretical data were constructed, but the stability of each solution got worse
with each newly introduced unknown parameter. Under small random interference some of
the solutions gave relative errors of more than 100%. From this the conclusion was drawn that
without further research on improving stability of inverse problem solutions obtained using
this method, only the simplest of them would be suitable for working with real measurements.
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Annotatsioon
Pöördülesanded murrulistele ostsillatoritele

Käesoleva bakalaureusetöö eesmärgiks oli kasutada Laplace’i teisenduse meetodit, et kon-
strueerida lahendid murrulistele ostsillaatoritele püstitatud mudelhinnanguvate pöördülesan-
nete jaoks ja kontrollida saadud lahendite täpsust ja stabiilsust arvutuslike simulatsioonide
abil Pythonis. Tegemist on ülesannetega Caputo tüüpi operaatoreid sisaldavatele lineaarsetele
diferentsiaalvõrranditele teatavas järguvahemikus.

Esimeses peatükkis toodi sisse olulised definitsioonid ja murrulise analüüsi alused. Teises
peatükkis uuriti algväärtustega ülesannet ja vabaliikmega ülesannet võrranditele, mis sisaldavat
ühte murrulist tuletist ja toodi sisse arvutusmeetodite põhialgoritm Pythonis. Kolmandas
peatükis uuriti vabaliikmetega ülesandeid kahte erineva järguga murrulist tuletist sisaldavatele
võrranditele.

Töö tulemusena saadi pöördülesannete lahendid, mis hindavad mudelite parameetreid hea
täpsusega teoreetiliste andmete korral, kuid iga lisatud tundamatu parameetriga lahendi
stabiilsus halvenes. Väikese juhusliku häirituse korral mõned lahendid andsid relatiivse vea,
mis on suurem kui 100%. Sellest sai teha järelduse, et ilma stabiilsuse parandamiseks tehtavate
lisauuringuteta sobivad ainult lihtsaimad kasutatud meetodiga koostatud pöördülesannete
lahendid tööks reaalsete mõõtmistega.
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1. Introduction

Majority of questions solved in mathematical sciences are so called direct problems. We have
cause f and the model L, and our goal is acquiring the effect x. For a linear operator L, this
can take a form of equation:

Lx = f (1.1)

For direct problems we assume that model L is well-defined and continuous, for any unique
cause f there is an unique effect x, and small errors within f do not lead to big errors within
x (in other words, the problem is well-posed). Examples of direct problems are numerous:
figuring out an object’s trajectory from its starting position, velocity and mass; finding plane
projections of a three dimensional geometric figure; writing a summary based on a read text.

Given the presented direct problem, two different inverse problems can be posed. Those are
known as problems of causation (knowing the model L and effect x, figuring out the cause f)
and model identification (knowing both the cause f and effect x, figuring out the model L). It
is not guaranteed that an inverse problem will be well-posed. In fact, most of them are ill-posed
and will show big errors with little perturbation within input data.[1] Inverse problems have
several applications in various fields, including but not limited to: medical imaging, industrial
processes monitoring, ozone layer tomography and financial market modelling.[2]

Another growing research interest is the fractional calculus. Apart from providing math-
ematically beautiful results, generalising operators from classical calculus to non-integer
orders recently found many applications in different fields of research including physics[3],
bioengineering[4] and economics[5].

In this thesis Laplace transform method will be used to construct solutions to inverse problems
of model identification for linear fractional differential equations with Caputo derivatives of
order between 1 and 2. Such equations are known as fractional oscillators. Statement of the
inverse problem is as follows: knowing the solution x(t) and the cause represented by the
forcing term or the initial values, we must restore the linear differential operator L:

L =

(
a1

dα1

dtα1
+ a2

dα2

dtα2
+ ...+ an

dαn

dtαn
+ an+1

)
(1.2)

by recovering the constants a1, a2, ..., an, an+1 and α1, α2, ..., αn. Then the stability of obtained
inverse problem solution should be evaluated by perturbing the input data with small random
interference. This will be done numerically using scripts written in Python language (code is
presented in Appendix 2).

In Chapter 2 important definitions and properties used in this work will be introduced, as well
as basics of fractional calculus and fractional oscillators. It should be noted that everything is
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presented under assumption that functions of time are causal, i.e vanishing for every t ≤ 0. In
Chapter 3 and Chapter 4 we will look at concrete examples of equations with n = 1 and n = 2

respectively.
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2. Preliminaries

2.1 Laplace transform

We will start by introducing a very powerful mathematical tool that was used throughout the
whole work. It is the Laplace transform, which is defined as value of the following improper
integral:

L {f(t)} = F (s) :=

∫ ∞

0
f(t)e−stdt, (2.1)

for values of s where the integral makes sense. Variable s is the complex frequency, so time-
domain function f(t) is called the Laplace original and respective complex frequency domain
function F (s) is called the Laplace image. Functions f and F constitute a Laplace transform
pair commonly written with the following notation:

f(t)÷ F (s). (2.2)

The Laplace transform existence theorem states that L {f(t)}(s) exists for all s > α if f(t)
is piecewise continuous on every finite interval in [0,∞) and satisfies |f(t)| ≤ Meαt for all
t ∈ [0,∞). In other words, the function must be of exponential order α. Directly from the
integral definition it follows that Laplace transform is linear:

L {cf(t) + dg(t)}(s) = cL {f(t)}(s) + dL {g(t)}(s). (2.3)

The Laplace transform is unique, which means that for two functions f(t) and g(t) that
produce the same Laplace transform F (s), function n(t) = f(t)− g(t) is a null function, i.e
function for which the integral: ∫ a

0
n(t)dt = 0, (2.4)

for every a > 0. If f(t) is continuously differentiable n − 1 times on (0,∞), then Laplace
transform of an n-order derivative is given by:

L {f (n)(t)} = snF (s)−
n−1∑
k=1

sn−k lim
t→0+

dk−1

dtk−1
f(t). (2.5)

This property makes the Laplace transform very useful in solving differential equations, as they
can be transformed into algebraic equations for F (s).[6] On the other hand, n-order derivative
in frequency domain can be obtained by applying it directly to the definition:

F (n)(s) =

∫ ∞

0
f(t)(−t)ne−stdt. (2.6)

If it is possible to analytically continue the Laplace image to the left of the imaginary axis and
there exists an abscissa of convergence σs for which function F (s) is analytic in the half-plane
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Re (s) ≥ σs, then the inverse Laplace transform can be introduced by the so-called Bromwich
contour integral:

L −1{F (s)}(t) = f(t) =
1

2πi

∫ σ+i∞

σ−i∞
estF (s)ds, σ ≥ σs. (2.7)

By choosing a specific contour the Bromwich integral can be expressed as the integral of a
real-valued function of a real variable, which is then evaluated analytically or numerically.[7]

2.2 Convolution of two functions

Convolution of two functions (common notation ∗ is used) is an operation that produces a
third function. It can be seen as a form of multiplication, and is used alongside addition to
construct algebraic structures for function spaces. For f(t) and g(t) supported for t ∈ [0,∞),
we define convolution f ∗ g as an integral:

(f ∗ g)(t) :=
∫ t

0
f(τ)g(t− τ)dτ, (2.8)

which represents overlap one function has when shifted over the other. Convolution operation
is commutative, associative and distributive:

(f ∗ g) = (g ∗ f), (2.9)

f ∗ (g ∗ h) = (f ∗ g) ∗ h, (2.10)

f ∗ (g + h) = f ∗ g + f ∗ h. (2.11)

For functions f(t) and g(t) that have Laplace transforms F (s) and G(s) the following statement
holds:

f ∗ g ÷ F ·G. (2.12)

So convolution in time domain is equal to multiplication in complex frequency domain. This
is called the convolution theorem and it will prove itself useful when solving inhomogeneous
differential equations further on.

2.3 Gamma function

Gamma function is defined for all z ∈ C\{−n : n ∈ N ∪ 0} as a limit:

Γ(z) := lim
n→∞

n!nz

z(z + 1)(z + 2)...(z + n)
. (2.13)

In the half-plane Re (z) > 0 the function can be represented with the following indefinite
integral:

Γ(z) =

∫ ∞

0
tz−1e−tdt. (2.14)

9



With a property Γ(1 + z) = zΓ(z) the function is used to naturally extend the factorial
operation on natural numbers to real or complex values of the argument. For n ∈ N:

Γ(n+ 1) = n!. (2.15)

Due to this Gamma function is sometimes called a continuous factorial.[8]

2.4 Mittag-Leffler functions

The class of special functions known as Mittag-Leffler functions plays a major role in fractional
calculus. The throughout overview of those functions and their properties was given in [9],
some of which are going to be brought in here. First of all, consider the known Taylor expansion
of an exponential function:

ex =
∞∑
k=0

xk

k!
. (2.16)

Factorial operation in the denominator can be replaced with the Gamma function:

ex =

∞∑
k=0

xk

Γ(k + 1)
. (2.17)

Classical Mittag-Leffler function is defined as value of the power series:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
. (2.18)

With α = 1 we get back the exponential function, so Mittag-Leffler can be seen as direct
generalisation of it. The series converges in the whole complex plane for Re (α) > 0, and
diverges everywhere for Re (α) < 0 at C \ {0}. For Re (z) = 0, radius of convergence is equal
to e

π
2
|Im (α)|. For all z ∈ C, following relations are valid:

E1(±z) = e±z, (2.19)

E2(−z2) = cos(z), (2.20)

E2(z
2) = cosh(z). (2.21)

For practical purposes Mittag-Leffler function of a real variable t and a real parameter α is
used. For the Mittag-Leffler function at ±tα the following Laplace transform pair is valid:

Eα(±tα)÷ sα−1

sα ∓ 1
. (2.22)

A straightforward generalisation of a classical Mittag-Leffler function is obtained by introducing
a second complex parameter β. Two-parametric Mittag-Leffler function is defined as a power
series:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,Re (α) > 0, β ∈ C, (2.23)

10



with a simple relationship with the classical ML function:

Eα,1(z) = Eα(z). (2.24)

For a real variable t, the following Laplace transform pair is valid:

tβ−1Eα,β(λt
α)÷ sα−β

sα − λ
. (2.25)

Two-parametric Mittag-Leffler function can be differentiated using the following formula:

dm

dtm
[tβ−1Eα,β(t

α)] = tβ−m−1Eα,β−m(zα),m ≥ 1. (2.26)

A special case of the two-parametric ML function that is commonly used is so called α-
exponential, defined in the following way:

ezα,λ := zα−1Eα,α(λz
α), z ∈ C \ {0}, λ ∈ C. (2.27)

From (2.25) Laplace transform pair for the α-exponent can be deduced:

etα,λ ÷ 1

sα − λ
. (2.28)

It should be noted that the main property of a regular exponential function generally does not
hold for α-exponential functions:

eaα,λe
b
α,λ ̸= ea+b

α,λ . (2.29)

Further generalisation is the Prabhakar function (also known as third parametric Mittag-Leffler
function), which is defined as value of the following power series:

Eγ
α,β =

∞∑
k=0

(γ)k
k!Γ(αk + β)

zk,Re (α) > 0,Re (β) > 0, γ > 0, (2.30)

where (γ)k is the Pochhammer’s symbol, defined as:

(γ)k = γ(γ + 1)(γ + 2)...(γ + k − 1) =
Γ(γ + k)

Γ(γ)
. (2.31)

For γ = 1 we get the two-parametric ML function:

E1
α,β =

∞∑
k=0

zk

Γ(αk + β)
. (2.32)

For γ = β = 1 we get the classical ML function:

E1
α,1 =

∞∑
k=0

zk

Γ(αk + 1)
. (2.33)
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Following Laplace transform pair is valid for the Prabhakar function:

tβ−1Eγ
α,β(λt

α)÷ s−β

(1− λs−α)γ
. (2.34)

2.5 Fractional calculus

Fractional calculus deals with generalisations of classical operations like differentiation and
integration to fractional orders. Information in this section was primarily taken from [10]
and [11]. More physical approach can be found in [12]. We will begin by defining classical
integer-order operators. By xD, we denote the derivative operator with respect to x:

xDf(x) :=
df(x)

dx
. (2.35)

By xIα we denote the integral operator with base-point a on function that is Riemann-integrable
on [a, b]:

xIαf(x) :=

∫ x

a
f(t)dt, a ≤ x ≤ b. (2.36)

Assuming a = 0 we drop the subprefix:

xIf(x) =

∫ x

0
f(t)dt. (2.37)

In some suitable function space operator D can be seen as the left inverse of Ia:

DIaf = f. (2.38)

For n ∈ N we denote n-fold iterates of D and Iα as Dn and Inα :

xD
nf(x) =

dn

dxn
f(x), (2.39)

xI
n
a f(x) =

∫ x

a

∫ t1

a
...

∫ tn−1

a
f(tn)dtn...dt2dt1. (2.40)

Using Cauchy’s formula for repeated integrations we can compute xI
n
a as:

xI
n
a f(x) =

1

(n− 1)!

∫ x

a
(x− t)n−1f(t)dt. (2.41)

Inversion property still holds:
DnIna f = f. (2.42)

Semigroup properties apply to both operators:

DmDnf = DnDmfDn+mf, (2.43)

Ima Ina f = Ina I
m
a f = In+m

a f. (2.44)
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Notably, with m > n and n-times differentiable function on [a, b] the following equation holds:

Dnf = DmIm−n
a f. (2.45)

Now we can start looking at generalisations of operators 2.39 and 2.40 to fractional order α.
Riemann-Liouville fractional integral of order α at base point a is defined as:

tI
α
a f(t) :=

1

Γ(α)

∫ t

a
(t− τ)α−1f(τ)dτ. (2.46)

This integral exists if f(t) is the locally integrable function and for t → 0 behaves like O(t−ν)

with ν < α. The definition can be directly obtained from (2.41) by replacing the factorial
operation with the Gamma function. Semigroup properties of a classical operator are conserved:

Iαa I
β
a = Iβa I

α
a = Iα+β

a . (2.47)

To find Laplace transform of a Riemann-Liouville fractional integral with a = 0, we must
consider that it is in fact a convolution integral:

tI
αf(t) =

1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ =

tα−1

Γ(α)
∗ f(t). (2.48)

Using the convolution theorem we can obtain:

L { t
α−1

Γ(α)
∗ f(t)}(s) = 1

Γ(α)
L {tα−1}(s) · F (s) =

Γ(α)

Γ(α)
· F (s)

sα
=

F (s)

sα
. (2.49)

Returning to the property (2.45):

Dnf = DmIm−n
a f,

we replace the classical integral operator with Riemann-Liouville fractional integral, taking
n = α and m = ⌈α⌉ (where ⌈·⌉ denotes greatest closest integer, also known as the ceiling
function). Riemann-Liouville fractional derivative for α > 0 is defined as:

tD
α
a f(t) := tD

m
tI

m−α
a f(t), (2.50)

or by expanding the definition:

tD
α
a f(t) :=

1

Γ(m− α)

dm

dtm

∫ t

a
(t− τ)m−α−1f(τ)dτ. (2.51)

Riemann-Liouville derivative is a left-inverse of Riemann-Liouville integral:

Dα
aL

α
af = f. (2.52)
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Unlike the Riemann-Liouville fractional integral, in general the semigroup property does not
hold for the fractional derivatives. Equation:

Dα
aD

β
af = Dα+β

a f (2.53)

holds only under assumptions: α, β ≥ 0 and f = Iα+β
a ϕ, where ϕ is integrable on [a, b].

Formula (2.51) shows an important difference between classical and fractional derivative
operators. Classical operator is local, which means that calculating tD

nf(t) requires to know f

in a small neighbourhood of t. Indeed, we do not need to know the whole function to find the
slope of a tangent. Fractional derivative on the other hand is not local. Calculating tD

α
a f(t)

requires integration, and therefore knowing f on the entire interval [a, t]. This property
makes fractional derivatives useful for modelling phenomena with memory effects, meaning
the present is affected by each point in the past. But Riemann-Liouville’s definition has clear
disadvantages when working with physical models. First of all, consider the Riemann-Liouville
fractional derivative of a power function:

tD
αtν =

Γ(1 + ν)

Γ(1 + ν − α)
tν−α, (2.54)

which is actually a direct generalisation of a n-th derivative formula (it should be noted
that similar generalisations for other classical derivative formulas may not correspond to the
Riemann-Liouville definition). From here, Riemann-Liouville derivative for a constant function
f(t) = 1 can be calculated:

tD
α1 = tD

αt0 =
t−α

Γ(1− α)
. (2.55)

This is the first unfortunate result. Riemann-Liouville derivative with fractional order α of a
constant function is not equal to zero. It can be seen that at integer orders, the derivative
vanishes due to reciprocal Gamma function having zeroes at 0 and negative integers. The
Laplace transform of a RL derivative can be found by applying it directly to the definition:

L {tDn
tI

m−αf(t)}(s) = sαF (s)−
m∑
k=1

sm−k lim
t→0+

tD
k−1

tI
m−αf(t). (2.56)

Here it can be seen that initial values for differential equations with Riemann-Lioville fractional
operators must be provided as derivatives of a function tI

m−αf(t), which are cumbersome to
use. While there exist attempts to find physical meaning in those values, currently there is
no way to obtain them by direct measurements. This and the result for constant functions
are notable disadvantages that RL fractional derivatives have when modelling real-world
phenomena with differential equations. A slightly different approach to fractional derivatives is
obtained by inverting the order of operators in definition (2.50). Caputo fractional derivative
for α > 0 is defined as:

C
tD

α
a f(t) := tI

m−α
a tD

mf(t), (2.57)

with a prefix C added not to confuse the new operator with the Riemann-Liouville definition.
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With the fractional integral acting on the derivative, we now require that f is m-times
differentiable, and its m-order derivative is integrable on [a, b]. This is much more strict, but
it already comes with an advantage - Caputo derivative of a constant function is always equal
to zero:

CDα
aC = Im−α

a DmC = In−α0 = 0. (2.58)

Expanding the definition of Caputo derivative leads to:

C
tD

α
a f(t) :=

1

Γ(m− α)

∫ t

a
(t− τ)m−α−1 dm

dτm
f(τ)dτ, (2.59)

so the operator still has the non-local properties. Relationship between Caputo and Riemann-
Lioville definitions is given by:

C
tD

α
a f(t) = tD

α
a

(
f(t)−

m−1∑
k=0

fk(a)
(t− a)k

k!

)
. (2.60)

From here it can be seen that if the function f(t) and first m − 1 integer order derivatives
are 0 at t = a, Caputo and Riemann-Lioville definitions become one of the same. Laplace
transform of a Caputo derivative is given by:

L {tIm−α C
tD

mf(t)}(s) = sαF (s)−
m∑
k=0

sα−k lim
t→0+

dk−1

dtk−1
f(t). (2.61)

Initial values for equations with Caputo derivative are given by n− 1 integer order derivatives
of f(t). For those needed data usually has clear meaning and can be provided with suitable
measurements. For example, if x(t) is displacement in time, then ẋ and ẍ correspond to
velocity and acceleration respectively. At the same time Caputo operator maintains the useful
non-local properties. For this reason Caputo approach is preferred when describing physical
phenomena with fractional differential equations. Now we can move on to defining fractional
oscillators.

2.6 Fractional oscillators

Classical harmonic oscillator is a model described by the following differential equation:

mtD
2x+ kx = 0. (2.62)

Here m represents the mass and k represents the spring strength. We assume m > 0 and k > 0

so the equation makes physical sense. The solution to the equation is a sine wave:

x(t) = A cos(ωt+ ϕ), (2.63)
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where ω =
√

k
m . If the friction force is present, a term with first order derivative proportional

to a viscous damping coefficient γ > 0 is added, modifying the equation:

mtD
2x+ γtDx+ kx = 0. (2.64)

If 4km > γ2, the solution is an exponentially damped sine wave (Fig 2.1):

x(t) =
A

2
√
4km− γ2

e−t γ
2m cos(ωt+ ϕ), (2.65)

where ω =

√
4km−γ2

2m . This is one of the most fundamental results in classical physics.[12]

Figure 2.1. Exponentially decaying oscillation.

Now we generalise equation (2.62) by replacing the second order derivative with 2α order
Caputo type operator, where 1

2 < α ≤ 1. We get a fractional oscillator equation:

m C
tD

2αx+ kx = 0. (2.66)

With the set conditions operator CD2α becomes:

C
tD

2αx(t) :=
1

Γ(2− α)

∫ t

0
(t− τ)1−αx′′(τ)dτ. (2.67)

This is not entirely correct. Physically we want every term in the equation to have the same
units (in this case units of force). Operator tD

n has dimension T−n, so it would be natural to
assume that operator C

t D
2α has dimension of T−2α. In order to correct that problem a new
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parameter σ with dimension T is introduced, defined as:

dim

[
1

σ1−α tD
α

]
= T−1. (2.68)

Parameter σ is called fractional time component and it can be related to fractional order α

in a way that is specific for each model.[13] The dimensionally correct fractional oscillator
equation would be:

m

σ2(1−α)
C
tD

2αx+ kx = 0. (2.69)

We will write the first parameter with dimension MT 2α−2 as µ:

µ =
m

σ2(1−α)
. (2.70)

Finally the equation takes form:
µ C

tD
2αx+ kx = 0. (2.71)

Solving the equation leads to two linearly independent solutions:

x1(t) = E2α(−ωt2α), (2.72)

x2(t) = tαE2α,α+1(−ωt2α), (2.73)

where ω = k
µ . As it can be seen on Fig. 2.2, the oscillation experiences damping despite not

being affected by any external friction. Furthermore, for t → ∞ and α ∈ (0, 1):

E2α(−ωt2α) =
x−2α

ωΓ(1− 2α)
(1 + o(1)), (2.74)

tαE2α,α+1(−ωt2α) =
x1−2α

ωΓ(2− 2α)
(1 + o(1)). (2.75)

The solution dampens algebraically, in other words much slower than the exponential decay seen
in the solution for classical oscillator with friction.[10] Physical interpretation of a fractional
oscillator is presented in [14] as the average of an ensemble of ordinary harmonic oscillators.
Those oscillators have approximately the same frequency, so each response is compensated by
an antiphase response of another oscillator. From this follows the intrinsic absorption property.
Inverse problems for models of type (2.71) are evaluated in Chapter 3.
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Figure 2.2. Graphs of E2α(−t2α) and tαE2α,α+1(−t2α) at different α values. At α = 1, cos(t)
and sin(t) are recovered. Note the number of zeroes which tends to ∞ as α → 1.

A more general equation can be obtained by adding a new term with Caputo operator of order
2β, where 0 < β ≤ 1 and β < α:

µ C
tD

2αx+ γ C
tD

2βx+ kx = 0. (2.76)

For the equation to make physical sense parameter γ here would need to have dimension
MT 2β−2. An example of an equation of that type is Bagley-Torvik equation which found
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applications in theory of viscoelasticity:

mD2x+ 2S
√
µρD

3
2x+ kx = 0, (2.77)

which describes movement of a plate of mass m and surface area S as it is attached to a spring
with strength k and submerged into a liquid with viscocity µ and density ρ.[15] Bagley-Torvik
equation represents a specific case in which α = 1 and β = 3

4 . Inverse problems for models of
type (2.76) are evaluated in Chapter 4.
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3. Inverse problems for fractional harmonic oscillators with one
Caputo type operator

3.1 Initial value problem

In this section we will evaluate the following model:

C
tD

2αx+ ωx = 0;x(0+) = x0;x
′(0+) = v0, (3.1)

where ω = k
µ .

3.1.1 Direct problem solution

To solve the direct problem for equation (3.1) we will apply the Laplace transform using
property (2.61). In s-space the equation changes:

s2αX(s)− s2α−1x0 − s2α−2v0 + ωX(s) = 0. (3.2)

Solving for X(s) we have:

X(s) =
x0s

2α−1

s2α + ω
+

v0s
2α−2

s2α + ω
. (3.3)

And now using (2.25) we can take the inverse Laplace transform and get the desired solution:

x(t) = x0E2α(−ωt2α) + v0tE2α,2(−ωt2α). (3.4)

Now let us move on to solving an inverse problem.

3.1.2 Inverse problem solution

For an inverse problem we measured the function x(t) itself and we also know the initial values
x0 and v0 as input. Our goal is to identify the model, in this case find values of parameters ω

and α. With x(t) presented as a time series, measured at t = [0,M ], and assuming x(t)e−st

approaches zero with t → M and s > 0 fast enough, we can evaluate the Laplace transform
directly from the definition (2.1) using quadrature formulas:

X(s) ≈
∫ M

0
x(t)e−stdt. (3.5)
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Composite Simpson’s rule defined in SciPy module for Python[16] was used in this work.
Additionally, s-space derivatives of X can be evaluated using the relation:

Xn(s) ≈
∫ M

0
(−1)ntnx(t)e−stdt. (3.6)

With this, we can use (3.3) to construct a system of equations for ω and α. The best option is
to use X(1) and X ′(1), as derivative takes α away from exponential and then s = 1 gets rid of
it. First of all, we must find derivative of X(s) analytically:

d

ds

[
x0s

2α−1

s2α + ω
+

v0s
2α−2

s2α + ω

]
=

x0s
2α−2(−2αω + s2α + ω)

(s2α + ω)2
+

v0s
2α−3(−αω + s2α + ω)

(s2α + ω)2
. (3.7)

With s = 1:
X(1) =

x0 + v0
1 + ω

, (3.8)

X ′(1) =
−α(2x0ω + v0ω) + (x0 + v0)(1 + ω)

(1 + ω)2
. (3.9)

Finally, we get the required parameters:

ω =
x0
v0

X(1), (3.10)

α =
1

2(x0 + v0)(1− p)

(
X ′(1)

p
+ x0 + 2v0

)
, (3.11)

where p = 1
1+ω2 .

3.1.3 Numerical results

Now that we found the inverse problem solution, we must check if it is in fact valid and how
stable it is. For this an algorithm was used: input parameters ω and α and solve the direct
problem numerically at very high precision (500000 sample points), reduce the number of
points to 5000 for simulating more realistic measurement rate and apply the inverse problem
to the acquired time-series x(t). Calculated parameters ω∗ and α∗ should be, in theory,
approximately close to the input parameters for the direct problem. Now, realistically there
are always measurement errors within our data. To simulate this we take small δ > 0 and
perturb x(t) with random normally distributed error:

xδ(t) = x(t) + δE,E ∼ N(0, 1). (3.12)

Then the inverse problem is applied to the perturbed data and parameters ω∗ and α∗ are
obtained again. This is done 100 times, and then the average relative error to the direct
problem input parameters is calculated:

δω =
|ω − ω∗|

ω
, δα =

|α− α∗|
α

. (3.13)
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For solving the direct problem Python module numfracpy was used, which allows calculating
Mittag-Leffler functions of one, two and three parameters [17]. Results for 3 different models
are presented below (δ set to 10−3):

Model 1:
D2x+ 3x = 0;x(0+) = 2;x′(0+) = 0. (3.14)

Figure 3.1. Direct problem solution to 3.14

α∗ = 0.9999999280473856

ω∗ = 3.0000005761273796

|α− α∗|
α

= 0.009%

|ω − ω∗|
ω

= 0.08%

Model 2:
CD2·0.75x+ 2.5x = 0;x(0+) = 1;x′(0+) = 1. (3.15)
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Figure 3.2. Direct problem solution to 3.15

α∗ = 0.749995279295238

ω∗ = 2.500026168062272

|α− α∗|
α

= 0.008%

|ω − ω∗|
ω

= 0.08%

Model 3:
CD2·0.95x+ x = 0;x(0+) = 3;x′(0+) = 2. (3.16)
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Figure 3.3. Direct problem solution to 3.16

α∗ = 0.949999798982163

ω∗ = 1.000000245078731

|α− α∗|
α

= 0.005%

|ω − ω∗|
ω

= 0.009%

The results seem quite promising, we got good precision and little mean relative errors for the
parameters. It should be noted that for models 3.14 and 3.15 mean error for ω is one order
bigger than that of α. This is a behaviour that will be more noticeable further on. For now
we will move to evaluating a forcing term problem for a similar equation.

3.2 Forcing term problem

In this section we will evaluate the model:

µD2αx+ kx = f(t);x(0+) = 0;x′(0+) = 0. (3.17)

Recalling (2.60), with initial values at zero Caputo and Riemann-Lioville definitions become
equal, so we can drop the prefix. We assume that forcing term function f(t) is piecewise
continuous and is of exponential order.
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3.2.1 Direct problem solution

As before, to solve the direct problem for (3.17) we apply the Laplace transform to the equation.
In s-space the equation takes form:

µs2αX(s) + kX(s) = F (s), (3.18)

and solving for X(s) yields:

X(s) =
F (s)

µs2α + k
. (3.19)

The solution of out equation in s-space can be seen a product of two functions:

X(s) =

(
1

µs2α + k

)
· F (s). (3.20)

We will now take the first multiple and try to find the inverse transform for it. Let us call
that function G(s) and do a little transformation:

G(s) =
1

µs2α + k
=

1

µ

1

s2α + ω
. (3.21)

Comparing the result with (2.28) leads to inverse Laplace transform of function G, given by
an α-exponential function:

g(t) =
1

µ
et2α,−ω. (3.22)

Now using the convolution theorem (2.12) we obtain the full solution to the equation:

x(t) =
1

µ

∫ t

0
et−τ
2α,−ωf(τ)dτ. (3.23)

Directly evaluating the convolution integral numerically can be cumbersome. To obtain the
results a convolution function defined in SciPy’s signal processing submodule was used, which
convolves two discrete sets of data using fast Fourier transforms.[18]

3.2.2 Inverse problem solution

For the inverse problem we have measured the function x(t), and we have the function f(t) as
input. Our goal is to determine parameters µ, k and α. To do this we come back to (3.19).
Denoting the function in the denominator as Q(s), we can write that as:

X(s) =
F (s)

Q(s)
, (3.24)

and solving for Q:

Q(s) =
F (s)

X(s)
. (3.25)

We can calculate Laplace transform F (s) and X(s) and s-space derivatives of those function
using the same methods as described in the previous section. For derivatives of Q(s) we require
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a rule for n-th derivative for quotient of two functions, similarly to how Leibniz’s rule provides
derivatives for product of two functions. An iterative formula for repeated differentiation of
quotients was evaluated in [19], in our case taking the form:

Q(n)(s) =
1

X(s)

F (n)(s)− n!
n∑

j=1

X(n+1−j)(s)

(n+ 1− j)!

Q(j−1)(s)

(j − 1)!

 . (3.26)

On the other hand:
Q(s) = µs2α + k. (3.27)

We take a derivative from both sides and do some more transformations:

Q′(s) = (2α)µs2α−1| · s1−2α,

Q′(s)s1−2α = 2αµ|()′,(
Q′(s)s1−2α

)′
= 0.

Expanding this leads to:
Q′′(s)s+Q′(s)(1− 2α) = 0.

Solving for α we get:

α =
1

2
+

sQ′′(s)

2Q′(s)
. (3.28)

Having obtained α, calculating parameters µ and k is a matter of constructing a linear system
of equations using (3.27). Infinite number of equation can be obtained. With:

Q(i)(j) = Ai,jµ+Bik, (3.29)

where:

Bi =

1, i = 0

0, i > 0
, (3.30)

Ai,j = j2α−i Γ(2α+ 1)

Γ(2α− i+ 1)
. (3.31)

The system we get is: [
Ai1,j1 Bi1

Ai2,j2 Bi2

][
µ

k

]
=

[
Q(i1)(j1)

Q(i2)(j2)

]
(3.32)

. With the equation matrix:

A =

[
Ai1,j1 Bi1

Ai2,j2 Bi2

]
. (3.33)

Ideally we want to pick a matrix A with the smallest condition number κ(A). Condition
number can be calculated as:

κ(A) = ||A−1|| · ||A|| ≥ 1, (3.34)
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where || · || denotes the matrix norm. The further away it is from 1, the more ill-conditioned
the system is. We will use L2 norm, for which the condition number is given by:

κ(A) =
σmax

σmin
. (3.35)

Here σmax and σmin are largest and smallest singular values of A respectively.[20] We can
calculate the condition number with 2-norm using a function defined in NumPy’s linalg
module.[21] A necessary requirement is i = 0 for the first equation, since only with this
condition parameter k doesn’t disappear. Calculated condition numbers for different equations
with α = 0.75 are provided in the table below:

(i,j) (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)
(0,1) ∞ 5.85 7.01 2.42 2.69 3.04 3.09 4.05 4.85
(0,2) 5.85 ∞ 15.56 7.36 6.20 5.89 12.67 17.44 21.17
(0,3) 7.01 15.56 ∞ 20.11 15.26 13.30 38.06 53.31 65.08

Table 1. Condition numbers for different pairs of equations at α = 0.75.

The best option in this case is to pick (0, 1) and (1, 1). Plotting the condition number vs α

value reveals it doesn’t change significantly at [0.5, 1] (see Fig 3.4)

Figure 3.4. Condition number for system of equations with (0, 1) and (1, 1) with α ∈ [0.5, 1]

With this we get a system: µ+ k = Q(1)

µ(2α) = Q′(1)
. (3.36)
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with simple solution:

µ =
Q′(1)

2α− 1
; k = Q(1)− µ. (3.37)

So the inverse problem solution takes the final form:
α = 1

2 + Q′′(1)
2Q′(1)

µ = Q′(1)
2α

k = Q(1)− µ

. (3.38)

3.2.3 Numerical results

Similarly to the model with initial value problems, we will now check the correctness and
stability of our inverse problem solution on 3 concrete models. δ once again is 10−3.

Model 1:
3D2·0.90x+ 4x = e−2t. (3.39)

Figure 3.5. Direct problem solution to 3.39

α∗ = 0.899983162730104

µ∗ = 2.999662924024965

k∗ = 3.9997095092241297

28



|α− α∗|
α

= 0.2%

|µ− µ∗|
µ

= 0.7%

|k − k∗|
k

= 0.9%

Model 2:
D2·0.84x+ x = t(t− 30). (3.40)

Figure 3.6. Direct problem solution to 3.40

α∗ = 0.8400000542036778

µ∗ = 1.000002050682682

k∗ = 1.0000020418830877

|α− α∗|
α

= 0.02%

|µ− µ∗|
µ

= 0.008%

|k − k∗|
k

= 0.02%
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Model 3:
4D2·0.63x+ 5x = cos(t). (3.41)

Figure 3.7. Direct problem solution to 3.41

α∗ = 0.6299212061401331

µ∗ = 4.000148503576592

k∗ = 4.9991980561112195

|α− α∗|
α

= 0.2%

|µ− µ∗|
µ

= 0.8%

|k − k∗|
k

= 2%

We still got more or less stable results, but the mean error is getting larger than in previous
section. In the following chapter we will add one more derivative to the equation, increasing
the number of parameters that must be estimated.
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4. Inverse problems for fractional harmonic oscillators with two
Caputo type operators

4.1 Derivatives of order 2α and α

In this section we will evaluate the following fractional equation:

µD2αx+ γDαx+ kx = f(t), x(0+) = 0, x′(0+) = 0. (4.1)

At α = 1 it becomes the classical damped oscillation equation:

mD2x+ γDx+ kx = f(t), (4.2)

so it can be seen as a direct generalisation of that case.

4.1.1 Direct problem solution

As always, we begin with taking the Laplace transform from both sides of the equation. In
s-space it takes form:

µs2αX(s) + γsαX(s) + kX(s) = F (s). (4.3)

And solving for X(s) gives us:

X(s) =
F (s)

µs2α + γsα + k
. (4.4)

Solution for the equation in the time-domain is given by:

x(t) =

∫ t

0
f(τ)g(t− τ)dτ, (4.5)

where g(t) is inverse Laplace transform of:

G(s) =
1

µ2α + γsα + k
.

The denominator is in fact a square polynomial in respect to sα, so it can be expanded as:

G(s) =
1

µ(sα − b1)(sα − b2)
,

b1 =
−γ

2µ
+

√
γ2 − 4kµ

2µ
,

b2 =
−γ

2µ
−
√
γ2 − 4kµ

2µ
.
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We now perform fractional decomposition:

G(s)

m
=

1

(sα − b1)(sα − b2)
=

A

sα − b1
+

B

sα − b2
=

A ∗ (sα − b2) +B ∗ (sα − b1)

(sα − b1)(sα − b1)
.

We get the relation:
A ∗ sα −A ∗ b2 +B ∗ sα −B ∗ b1 = 1,

which gives us the following system of equations:A+B = 0

A ∗ b2 +B ∗ b1 = −1
.

Solving for A and B gives:

A =
−1

b2− b1
;B =

1

b2− b1
.

Giving us the desired fractional decomposition:

G(s)

m
=

−1
b2−b1

sα − b1
+

1
b2−b1

sα − b2
=

1

b2− b1
∗ ( 1

sα − b2
− 1

sα − b1
),

b2− b1 =
−γ

2µ
−
√
γ2 − 4kµ

2µ
− −γ

2µ
−
√
γ2 − 4kµ

2µ
= −

√
γ2 − 4kµ

µ
,

G(s) =
1√

γ2 − 4kµ
(

1

sα − b1
− 1

sα − b2
).

Now we take the inverse Laplace transform, which once again involves the α-exponentials:

g(t) =
etb1,α − etb2,α√

γ2 − 4kµ
. (4.6)

And now by convolving g(t) and f(t) we obtain the full solution:

x(t) =

∫ t

0

eτb1,α − eτb2,α√
γ2 − 4kµ

f(t− τ)dτ, (4.7)

b1 =
−γ

2µ
+

√
γ2 − 4kµ

2µ
,

b2 =
−γ

2µ
−
√
γ2 − 4kµ

2µ
.

4.1.2 Inverse problem solution

For an inverse problem for equation (4.1), we must find parameters µ, γ, k and α. The function
Q(s) in this case takes form:

Q(s) = µs2α + γsα + k. (4.8)
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Taking the derivative from both sides:

Q′(s) = 2αµs2α−1 + αγsα−1.

And multiplying by s1−α:
s1−αQ′(s) = 2αµsα + αγ.

We can continue this procedure:

(s1−αQ′(s))′ = 2α2µsα−1 ⇒

s1−α(s1−αQ′(s))′ = 2α2µ ⇒[
s1−α(s1−αQ′(s))

]′
= 0.

Expanding the last equation leads to:

(1− α)(1− 2α)Q′(s) + 3(1− α)sQ′′(s) + s2Q′′′(s) = 0.

Now we choose different values s1 and s2, which gives us two equations:

(1− α)(1− 2α)Q′(s1) + 3(1− α)sQ′′(s1) + s21Q
′′′(s1) = 0,

(1− α)(1− 2α)Q′(s2) + 3(1− α)sQ′′(s2) + s22Q
′′′(s2) = 0.

We multiply the first equation by Q′(s2) and the second equation by Q′(s1), and then subtract
the second equation from the first. This leads to:

3(1− α)
[
s1Q

′′(s1)Q
′(s2)− s2Q

′′(s2)Q
′(s1)

]
= s22Q

′′′(s2)Q
′(s1)− s21Q

′′′(s1)Q
′(s2).

Before going further we must control that s1Q
′′(s1)Q

′(s2) − s2Q
′′(s2)Q

′(s1) is not equal to
zero. Considering that:

sQ′′(s) = 2α(2α− 1)µs2α−1 + α(α− 1)γsα−1,

Q′(s) = 2αµs2α−1 + αγsα−1.

We get:

s1Q
′′(s1)Q

′(s2)− s2Q
′′(s2)Q

′(s1) = .... = 2α3µγsα−1
1 sα−1

2 (sα1 − sα2 ) ̸= 0.

With this, we can directly obtain α:

α = 1− 1

3

[
s22Q

′′′(s2)Q
′(s1)− s21Q

′′′(s1)Q
′(s2)

s1Q′′(s1)Q′(s2)− s2Q′′(s2)Q′(s1)

]
. (4.9)
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With α in our hands, once again figuring out rest of the parameters requires constructing a
linear system of equations using:

Q(i)(j) = Ai,jµ+Bi,jγ + Cik, (4.10)

Ai,j = j2α−i Γ(2α+ 1)

Γ(2α− i+ 1)
, (4.11)

Bi,j = jα−i Γ(α+ 1)

Γ(α− i+ 1)
, (4.12)

Ci =

1, i = 0

0, i > 0
. (4.13)

With the equation matrix:

A =

Ai1,j1 Bi1,j1 Ci1

Ai2,j2 Bi2,j2 Ci2

Ai3,j3 Bi3,j3 Ci3

 . (4.14)

Condition number wise, the best option is to use equations (0, 1), (1, 1) and (2, 1). Plot for
the κ(A) versus α can be seen on Fig 4.1. The system gets more unstable as α is decreased
and is at its best in range α = [0.8, 0.9].

Figure 4.1. Condition number for system of equations with (0, 1), (1, 1) and (2, 1) with
α ∈ [0.5, 1]
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4.1.3 Numerical results

As in previous sections, we will now numerically apply our inverse model to 3 concrete model
examples. δ is set to 10−3.

Model 1:
2D2·0.90 + 3D0.90 + 4x = e−t. (4.15)

Figure 4.2. Direct problem solution to 4.15

α∗ = 0.8995681009135778

µ∗ = 2.00318531440018

γ∗ = 2.9962319063620044

k∗ = 4.000037143956829

|α− α∗|
α

= 4%

|µ− µ∗|
µ

= 33%

|γ − γ∗|
γ

= 35%

|k − k∗|
k

= 3%
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Model 2:
5D2·0.69x+D0.69x+ 1.5x = 0.1sin(2t). (4.16)

Figure 4.3. Direct problem solution to 4.16

α∗ = 0.6900266351019029

µ∗ = 4.999435488569127

γ∗ = 1.000746460940464

k∗ = 1.4998401003295614

|α− α∗|
α

> 100%

|µ− µ∗|
µ

> 100%

|γ − γ∗|
γ

> 100%

|k − k∗|
k

> 100%

Model 3:
3D2·0.84x+ 3D0.84x+ x = t(t− 30). (4.17)
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Figure 4.4. Direct problem solution to 4.17

α∗ = 0.8399932728146717

µ∗ = 3.0000917655332184

γ∗ = 1.000746460940464

k∗ = 1.0000148087619336

|α− α∗|
α

= 1%

|µ− µ∗|
µ

= 17%

|γ − γ∗|
γ

= 20%

|k − k∗|
k

= 2%

As we can see, the inverse problems for this type of equation are much more unstable, and the
mean error grows as α gets smaller. Errors for parameters µ and γ are one order bigger than
those for parameters α and k.
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4.2 Derivatives of order 2α and 2β

In this section we will evaluate a lot more general fractional equation:

µD2αx+ γD2βx+ kx = f(t), x(0+) = 0, x′(0+) = 0, (4.18)

where it is assumed that β ≤ α. With β = α
2 we get equation (4.1).

4.2.1 Direct problem solution

Solution to the equation (4.18) in the Laplace transform space takes form:

X(s) =
F (s)

µ2α + γ2β + k
, (4.19)

and solution in the time domain:

x(t) =

∫ t

0
g(t− τ)f(τ)dτ, (4.20)

where g(t) is inverse Laplace transform of G(s):

G(s) =
1

µs2α + γs2β + k
. (4.21)

Analytical solution is available only for some special cases of the equation. A solution to
Bagley-Torvik equation with α = 1, β = 3

4 , µ = 1, γ = 2 and k = 2 is presented in [10],
with the inverse Laplace transform of G(s) taking form of a functional series with Prabhakar
functions:

g(t) =

∞∑
k=0

(−1)k
2k

k!
t2k+1Ek

0.5,2+3k/2(−2t0.5). (4.22)

To provide a full numerical solution for general equation, inverse Laplace transform function
provided within the mpmath module for Python was used. The algorithm works by replacing
the Bromwich contour integral with a series obtained after application of the trapezoidal rule,
convergence of which is then accelerated using a linear acceleration method [22]. As suggested,
multiprocessing was used for parallel computation and even faster result.

4.2.2 Inverse problem solution

Now polynomial Q(s) for us takes the following form:

Q(s) = µs2α + γs2β + k. (4.23)

For an inverse problem, we now have to determine 5 parameters: α, β, µ, γ and k. An
additional condition that we introduce is β < α. Now we will use the same procedure as in
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the previous section to get rid of parameters µ, γ and k:

Q(s) = µs2α + γs2β + k ⇒

Q′(s) = 2αµs2α−1 + 2βγs2β−1 ⇒

s1−2αQ′(s) = 2αµ+ 2βγs2β−2α ⇒

[s1−2αM ′(s)]′ = 2β(2β − 2α)γs2β−2α−1 ⇒

s1+2α−2β[s1−2αM ′(s)]′ = 2β(2β − 2α)γ.

We arrive at equation:
[s1+2α−2β[s1−2αQ′(s)]′]′ = 0.

Expanding it leads to the following expression:

(1− 2β − 2α+ 4αβ)Q′(s) + (3− 2α− 2β)sQ′′(s) + s2Q′′′(s) = 0,

which can be rewritten as:

(2α+ 2β)[1 +
sQ′′(s)

Q′(s)
]− 4αβ = 1 +

3sQ′′(s)

Q′(s)
+

s2Q′′′(s)

Q′(s)
.

Now for simplicity we will define two parameters P1 and P2:

P1(s) = 1 +
sQ′′(s)

Q′(s)
, (4.24)

P2(s) = 1 +
3sQ′′(s)

Q′(s)
+

s2Q′′′(s)

Q′(s)
. (4.25)

With this we have:
(2α+ 2β)P1(s)− 4αβ = P2(s).

For two different points s1 and s2:(2α+ 2β)P1(s1)− 4αβ = P2(s1)

(2α+ 2β)P1(s2)− 4αβ = P2(s2)
. (4.26)

With:
X = 2α+ 2β,

Y = 4αβ,

we get a linear system of equations:X · P1(s1)− Y = P2(s1)

X · P1(s2)− Y = P2(s2)
. (4.27)
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Before solving the system, we must ensure that it is not in fact singular. Determinant of the
system would be:

P1(s1)− P1(s2) = 1 +
s1Q

′′(s1)

Q′(s1)
− 1− s2Q

′′(s2)

Q′(s2)
=

s1Q
′′(s1)

Q′(s1)
− s2Q

′′(s2)

Q′(s2)
⇒

P1(s1)− P1(s2) =
s1Q

′′(s1)Q
′(s2)− s2Q

′′(s2)Q
′(s1)

Q′(s1)Q′(s2)

This expression will not be equal to 0 if the numerator is not equal to 0:

s1Q
′′(s1)Q

′(s2)− s2Q
′′(s2)Q

′(s1) ̸= 0.

Recalling that:
sQ′′(s) = 2α(2α− 1)µs2α−1 + 2β(2β − 1)γs2β−1,

Q′(s) = 2αµs2α−1 + 2βγs2β−1.

We get:

s1Q
′′(s1)Q

′(s2)− s2Q
′′(s2)Q

′(s1) = ... = 8αβµγ(α− β)(s1s2)
2β−1(s2α−2β

1 − s2α−2β
2 ) ̸= 0.

So the system (4.27) is not singular and therefore can be solved. We compute:

X =
P2(s1)− P2(s2)

P1(s1)− P1(s2)
,

Y = X · P1(s1)− P2(s1),

and get the following system for parameters α and β:2α+ 2β = X

4αβ = Y
, (4.28)

α+ β = X
2

αβ = Y
4

. (4.29)

The system corresponds to a quadratic equation:

p2 − X

2
· p+ Y

4
= 0,

with solutions:

p1,2 =
−X

2 ±
√

X2

4 − Y

2
.

Due to our condition that α > β we select:

max(p1, p2) = α

min(p1, p2) = β

40



Now that we have α and β, once again we construct a linear system of equations:

Q(i)(j) = Ai,jµ+Bi,jγ + Cik, (4.30)

Ai,j = j2α−i Γ(2α+ 1)

Γ(2α− i+ 1)
, (4.31)

Bi,j = j2β−i Γ(2β + 1)

Γ(2β − i+ 1)
, (4.32)

Ci =

1, i = 0

0, i > 0
. (4.33)

Best option is still to use equations (0, 1), (1, 1) and (2, 1), although the condition number is
larger than that acquired for the system in previous section.

4.2.3 Numerical results

Let us try again to apply the newly acquired inverse problem numerically. δ is set to 10−3.

Model 1:
D2x+ 3D

3
2x+ 2x =

1√
2π

e−
(x−5)2

2 . (4.34)

Figure 4.5. Direct problem solution to 4.34

α∗ = 0.9997590303280529

41



β∗ = 0.7498932901349323

µ∗ = 1.0021682890722818

γ∗ = 2.997866072355463

k∗ = 1.9999776248307295

|α− α∗|
α

> 100%

|β − β∗|
β

> 100%

|µ− µ∗|
µ

> 100%

|γ − γ∗|
γ

> 100%

|k − k∗|
k

> 100%

This problem is the most unstable so far. Let us reduce the δ to 10−4 and see what happens.

Model 2:
6D2·0.95x+ 2D2∗0.75x+ x = e−0.4t. (4.35)

Figure 4.6. Direct problem solution to 4.35
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α∗ = 0.9493693634264985

β∗ = 0.7479471903249001

µ∗ = 6.037660024096634

γ∗ = 1.9621752145976479

k∗ = 0.9998027361804949

|α− α∗|
α

= 3%

|β − β∗|
β

= 16%

|µ− µ∗|
µ

= 27%

|γ − γ∗|
γ

= 80%

|k − k∗|
k

= 2%

Model 3:
2.3D2·0.75x+ 1.5D2∗0.56x+ 1.4x = t2(t− 30). (4.36)

Figure 4.7. Direct problem solution to 4.36
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α∗ = 0.7501305405909421

β∗ = 0.560260460781982

µ∗ = 2.2964954417283288

γ∗ = 1.503470764302789

k∗ = 1.4000455509451897

|α− α∗|
α

= 0.6%

|β − β∗|
β

= 2%

|µ− µ∗|
µ

= 27%

|γ − γ∗|
γ

= 8%

|k − k∗|
k

= 0.1%

Reducing size of the random perturbations slightly improved the results. Mean errors for some
of the parameters are still order bigger than for others.
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5. Summary

Throughout this work, Laplace transform method was used to construct inverse problem
solutions for fractional oscillators with one and two Caputo derivative operators, and then the
stability of each solution was controlled numerically. Despite all obtained solutions giving good
results for unperturbed data, with each new introduced parameter the stability of an inverse
problem got largely worse. One of the solutions for a model with 5 unknown parameters gave
mean errors larger than 100% for every parameter after introducing small random interference
into the input data. It can be concluded from this that only the simplest inverse problem
solutions obtained with the used method are usable for real measurements, but opens up
possibilities for further research in improving stability for solutions with two or potentially
more fractional derivative operators.
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Appendix 2 - Python Scripts

Python scripts used to obtain numerical results in this work. Non-standard packages expected:
mpmath, numfracpy, multiprocessing. CPU with 6 cores, 12 threads and 2200 MHz clock
speed was used.

Script used for Section 3.1.3:

import matplotlib.pyplot as plt

import numpy as np

import numfracpy as nfp

import scipy as sc

def laplace_transform(s,x,t,der):

x_laplace_int=x*((-t)**der)*np.exp(-s*t)

X=sc.integrate.simpson(x_laplace_int, x=t)

return X

def g_sol(t,p,x0):

a=p[0]

w=p[1]

return [x0[0]*nfp.Mittag_Leffler_one(-w*i**(2*a), 2*a) +\

x0[1]*i*nfp.Mittag_Leffler_two(-w*i**(2*a), 2*a, 2) for i in t]

def caputo_inverse(t,x,X0):

X=laplace_transform(1,x,t,0)

DX=laplace_transform(1,x,t,1)

w2_c = ((X0[0]+X0[1])/X)-1

p=1/(1+w2_c)

p1=1/((X0[0]+X0[1])*(1-p))

p2=X0[0]+2*X0[1]+(DX/p)

a_c=0.5*p1*p2

return [a_c,w2_c]

a=0.95
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w=1

p=[a,w]

M=30.

N=500000

x0=[3,2]

t = np.linspace(0, M, N)

x=g_sol(t,p,x0)

plt.plot(t,x)

plt.savefig("31_m3.png")

t_new=t[0::500]

x_new=x[0::500]

inv=caputo_inverse(t_new,x_new,x0)

print(inv)

err=1e-3

a_err=np.zeros(100)

w_err=np.zeros(100)

for i in range(99):

x_err=np.array([i + err*np.random.normal(loc=0.0, scale=1.0) for i in x_new])

inv_err=caputo_inverse(t_new, x_err, x0)

a_err[i]=np.abs(a-inv_err[0])

w_err[i]=np.abs(w-inv_err[1])

print(np.mean(a_err))

print(np.mean(w_err))

Script used for Section 3.2.3::

import matplotlib.pyplot as plt

import numpy as np

import numfracpy as nfp

import math

import scipy as sc

def laplace_transform(s,x,t,der):

x_laplace_int=x*((-t)**der)*np.exp(-s*t)
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X=sc.integrate.simpson(x_laplace_int, x=t)

return X

def convolution(x,f,t,dt):

n=len(t)

g_t=sc.signal.fftconvolve(x,f, mode=’full’)

g=np.array(g_t[:n])

return np.real(g*dt)

def g_sol(t,p):

a=p[0]

m=p[1]

k=p[2]

g=[(1/m)*(i**(2*a-1))*nfp.Mittag_Leffler_two((-k/m)*i**(2*a), 2*a, 2*a) for i in t]

return g

def Q(t,s,n,f,x):

X=np.zeros(n+1)

F=np.zeros(n+1)

Q=np.zeros(n+1)

for i in range(n+1):

X[i]=laplace_transform(s,x,t,i)

F[i]=laplace_transform(s,f,t,i)

Q[0]=F[0]/X[0]

for i in range(1,n+1):

sm=0

for j in range(1,i+1):

sm=sm + (X[i+1-j]*Q[j-1])/(math.factorial((i+1-j))*math.factorial((j-1)))

Q[i]=(1/X[0])*(F[i] - math.factorial(i)*sm)

return Q

def caputo_inhom_inverse(x,f,t):

Q1=Q(t,1,2,f,x)

a_r = 0.5 + (Q1[2]/(2*Q1[1]))

m_r = Q1[1]/(2*a_r)

k_r = Q1[0] - m_r

return [a_r,m_r,k_r]

a_c=0.7

m_c=3
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k_c=4

p = [a_c,m_c,k_c]

def f(t):

return np.exp(-2*t)

st=1e-30

sp=30

n=500000

t=np.linspace(st,sp,n)

dt=(sp-st)/n

g=g_sol(t,p)

x = convolution(g,f(t),t,dt)

plt.plot(t,x)

plt.savefig(’image.png’)

t_new=t[0::500]

x_new=x[0::500]

inv=caputo_inhom_inverse(x_new,f(t_new),t_new)

print(inv)

err=1e-3

a_err=np.zeros(100)

m_err=np.zeros(100)

k_err=np.zeros(100)

for i in range(99):

x_err=np.array([i + err*np.random.normal(loc=0.0, scale=1.0) for i in x_new])

inv_err=caputo_inhom_inverse(x_err,f(t_new),t_new)

a_err[i]=np.abs(a_c-inv_err[0])

m_err[i]=np.abs(m_c-inv_err[1])

k_err[i]=np.abs(k_c-inv_err[2])

print(np.mean(a_err))

print(np.mean(m_err))

print(np.mean(k_err))
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Script used for Section 4.1.3::

import matplotlib.pyplot as plt

import numpy as np

import numfracpy as nfp

import scipy as sc

import math

import cmath

def laplace_transform(s,x,t,der):

x_laplace_int=x*((-t)**der)*np.exp(-s*t)

X=sc.integrate.simpson(x_laplace_int, x=t)

return X

def convolution(x,f,t,dt):

n=len(t)

g_t=sc.signal.fftconvolve(x,f, mode=’full’)

g=np.array(g_t[:n])

return np.real(g*dt)

def Q(t,s,n,f,x):

X=np.zeros(n+1)

F=np.zeros(n+1)

Q=np.zeros(n+1)

for i in range(n+1):

X[i]=laplace_transform(s,x,t,i)

F[i]=laplace_transform(s,f,t,i)

Q[0]=F[0]/X[0]

for i in range(1,n+1):

sm=0

for j in range(1,i+1):

sm=sm + (X[i+1-j]*Q[j-1])/(math.factorial((i+1-j))*math.factorial((j-1)))

Q[i]=(1/X[0])*(F[i] - math.factorial(i)*sm)

return Q

def g_sol(t,p):

a=p[0]

m=p[1]

u=p[2]

k=p[3]

z1=(-u+cmath.sqrt(u**2 - 4*k*m))/(2*m)

z2=(-u-cmath.sqrt(u**2 - 4*k*m))/(2*m)
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A=1/(cmath.sqrt(u**2-4*k*m))

v1=(t**(a-1))*nfp.Mittag_Leffler_two(z1*(t**a), a, a)

v2=(t**(a-1))*nfp.Mittag_Leffler_two(z2*(t**a), a, a)

v=A*(v1-v2)

return np.real(v)

def caputo_damped_inverse(x,f,t):

Q1=Q(t,1,3,f,x)

Q2=Q(t,2,3,f,x)

a_n=4*Q2[3]*Q1[1]-Q1[3]*Q2[1]

a_d=3*(Q1[2]*Q2[1]-2*Q2[2]*Q1[1])

a=1-(a_n/a_d)

eq_l=[[1,1,1],[2*a,a,0], [2*a*(2*a-1),a*(a-1),0]]

eq_r=[Q1[0],Q1[1],Q1[2]]

s=sc.linalg.solve(eq_l,eq_r)

m=s[0]

u=s[1]

k=s[2]

return [a,m,u,k]

a_c=0.84

m_c=3

u_c=3

k_c=1

p = [a_c,m_c,u_c,k_c]

def f(t):

return t*(t-30)

st=1e-30

sp=30

n=500000

t=np.linspace(st,sp,n)

dt=(sp-st)/n

g=[g_sol(i,p) for i in t]

x = convolution(g,f(t),t,dt)
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plt.plot(t,x)

plt.savefig(’41_m3.png’)

t_new=t[0::500]

x_new=x[0::500]

inv=caputo_damped_inverse(x_new,f(t_new),t_new)

print(inv)

err=1e-3

a_err=np.zeros(100)

m_err=np.zeros(100)

u_err=np.zeros(100)

k_err=np.zeros(100)

for i in range(99):

x_err=np.array([i + err*np.random.normal(loc=0.0, scale=1.0) for i in x_new])

inv_err=caputo_damped_inverse(x_err,f(t_new),t_new)

a_err[i]=np.abs(a_c-inv_err[0])

m_err[i]=np.abs(m_c-inv_err[1])

u_err[i]=np.abs(u_c-inv_err[2])

k_err[i]=np.abs(k_c-inv_err[3])

print(np.mean(a_err))

print(np.mean(m_err))

print(np.mean(u_err))

print(np.mean(k_err))

Script used for Section 4.2.3::

import matplotlib.pyplot as plt

import numpy as np

import scipy as sc

import mpmath

import math

import cmath

from multiprocessing.pool import Pool

from functools import partial

import tqdm

def laplace_transform(s,x,t,der):
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x_laplace_int=x*((-t)**der)*np.exp(-s*t)

X=sc.integrate.simpson(x_laplace_int, x=t)

return X

def convolution(x,f,t,dt):

n=len(t)

g_t=sc.signal.fftconvolve(x,f, mode=’full’)

g=np.array(g_t[:n])

return np.real(g*dt)

def g_sol(t,p):

a=p[0]

b=p[1]

m=p[2]

u=p[3]

k=p[4]

lg= lambda s: 1/(m*(s**(2*a))+u*(s**(2*b)) + k)

g=float(mpmath.invertlaplace(lg, t, method = ’cohen’))

return g

def Q(t,s,n,f,x):

X=np.zeros(n+1)

F=np.zeros(n+1)

Q=np.zeros(n+1)

for i in range(n+1):

X[i]=laplace_transform(s,x,t,i)

F[i]=laplace_transform(s,f,t,i)

Q[0]=F[0]/X[0]

for i in range(1,n+1):

sm=0

for j in range(1,i+1):

sm=sm + (X[i+1-j]*Q[j-1])/(math.factorial((i+1-j))*math.factorial((j-1)))

Q[i]=(1/X[0])*(F[i] - math.factorial(i)*sm)

return Q

def caputo_two_inverse(t,x,f):

M1=Q(t,1,3,f,x)

M2=Q(t,2,3,f,x)

P11 = (M1[1]+M1[2])/M1[1]

P12 = (M2[1] + 2*M2[2])/M2[1]
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P21 = (M1[1] + 3*M1[2] + M1[3])/M1[1]

P22 = (M2[1] + 3*2*M2[2] + 4*M2[3])/M2[1]

X=(P21-P22)/(P11-P12)

Y=X*P11-P21

B=-X/2

C=Y/4

D=(B**2)-4*C

sD=np.abs(cmath.sqrt(D))

a1 = (-B+sD)/2

a2 = (-B-sD)/2

if a1>=a2:

a=a1

b=a2

else:

a=a2

b=a1

eq_l=[[1,1,1],[2*a,2*b,0], [2*a*(2*a-1),2*b*(2*b-1),0]]

eq_r=[M1[0],M1[1],M1[2]]

s=sc.linalg.solve(eq_l,eq_r)

m=s[0]

u=s[1]

k=s[2]

return [a,b,m,u,k]

def f(t):

return (t**2)*(t-30)

if __name__ == "__main__":

p = Pool()

st=1e-30

sp=30

n=500000

t=np.linspace(st,sp,n)

dt=(sp-st)/n

a=0.75

b=0.56

m=2.3

u=1.5
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k=1.4

par=[a,b,m,u,k]

g_func = partial(g_sol, p=par)

mapped_values = list(tqdm.tqdm(p.imap(g_func, t), total=len(t)))

p.close()

p.join()

g=mapped_values

x = convolution(g,f(t),t,dt)

plt.plot(t,x)

plt.savefig(’42_m3.png’)

t_new=t[0::500]

x_new=x[0::500]

inv_sol=caputo_two_inverse(t_new,x_new,f(t_new))

print(inv_sol)

err=1e-4

samples=100

a_err=np.zeros(samples)

b_err=np.zeros(samples)

m_err=np.zeros(samples)

u_err=np.zeros(samples)

k_err=np.zeros(samples)

for i in range(samples-1):

x_err=np.array([i + err*np.random.normal(loc=0.0, scale=1) for i in x_new])

inv_err=caputo_two_inverse(t_new,x_err,f(t_new))

a_err[i]=np.abs(a-inv_err[0])/a

b_err[i]=np.abs(b-inv_err[1])/b

m_err[i]=np.abs(m-inv_err[2])/m

u_err[i]=np.abs(u-inv_err[3])/u

k_err[i]=np.abs(k-inv_err[4])/k

print(np.mean(a_err))
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print(np.mean(b_err))

print(np.mean(m_err))

print(np.mean(u_err))

print(np.mean(k_err))

Script used for calculating system condition numbers:

import numpy as np

import scipy as sc

import matplotlib.pyplot as plt

def C(i):

if i==0:

return 1

else:

return 0

def A(i,j,a):

r = (j**(2*a-i))*(sc.special.gamma(2*a+1)/sc.special.gamma(2*a-i+1))

return r

def B(i,j,b):

r = (j**(2*b-i))*(sc.special.gamma(2*b+1)/sc.special.gamma(2*b-i+1))

return r

def Amatrix(q1,q2,q3,a,b):

return [[A(q1[0],q1[1],a), B(q1[0],q1[1],b) ,C(q1[0])],\

[A(q2[0],q2[1],a), B(q2[0],q2[1],b) ,C(q2[0])],\

[A(q3[0],q3[1],a), B(q3[0],q3[1],b) ,C(q3[0])]]

a = 0.75

b = 0.60

q1=[0,1]

q2=[0,2]

q3=[1,1]

Ak = np.linalg.cond(Amatrix(q1,q2,q3,a,b))

print(Ak)
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