TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

IDU7OLT
Oleg East 1113791APM

COMPARATIVE ANALYSIS OF
RELATIONAL AND GRAPH DATABASE
BEHAVIOR ON THE CONCRETE WEB
APPLICATION

Master’s thesis

Supervisor: Ingmar Pappel
Master of Science

Lecturer

Tallinn 2016

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

IDU7OLT
Oleg East 1113791APM

RELATSIOON- JA GRAAFANDMEBAASI
VORDLEMINE KONKREETSE
VEEBIPOHILISE RAKENDUSE PEAL

Magistritoo

Juhendaja: Ingmar Pappel
Magistrikraad
Lektor

Tallinn 2016

Declaration

Herewith | declare that this thesis is based on my own work. All ideas, major views and data from
different sources by other authors are used only with a reference to the source. The thesis has not

been submitted for any degree or examination in any other university.

(date) (signature)

Autorideklaratsioon

Kinnitan, et olen koostanud antud 16put66 iseseisvalt ning seda ei ole kellegi teise poolt varem
kaitsmisele esitatud. Kdik t60 koostamisel kasutatud teiste autorite t66d, olulised seisukohad,

kirjandusallikatest ja mujalt parinevad andmed on t66s viidatud.

(kuupaev) (allkiri)

Comparative analysis of relational and graph
database behavior on the concrete web application

Abstract

This thesis is written in English and is 68 pages long, including 6 chapters, 35 figures and 17

tables.

The first commercially available RDBMS was released in 1979 and has been dominating for
storing and retrieving data for a long time until nowadays. [8] But since the amount of storing
data is growing from day to day, the way of representing it is becoming more and more
complex, because of dependence on a rigid schema which makes it difficult to add new
relations between data. One of solutions to this problem is to use the graph database which
was specially developed to solve such kind of problems, as a graph is a natural way of storing
connections between objects. The Graph databases is a more modern concept of storing data
and it is already used by a lot of known companies today, because the network data is simpler
to represent as nodes are connected by relations and not by a large number of joined together

tables.

The aim of this work is to try out the new concept of representing and storing data as graph
principles on the developing web application which uses relational database management
system. Software application itself represents a dictionary with words and lexemes connected
by relations. The idea of it is to show how words are connected together in a dictionary. So
the final results are shown as a graph with lexemes and relation strengths. The realization was
made with relational database PostgreSQL. That is why an idea to try out a new concept with

some graph database for this application has appeared.

In this work there will be a short introduction of the application, its data model, use cases and
comparison of two different database approaches. We will try to change the codebase of our
application so it would work with two databases in parallel. For this work we have chosen
most popular graph database Neo4j. Ultimately, we would test our application for the

response time, CPU and memory usage.

Relatsioon- ja graafandmebaasi vordlemine
konkreetse veebipdhilise rakenduse peal

Annotatsioon

LAputdd on kirjutatud inglise keeles ning sisaldab teksti 68 lehekiiljel, 6 peatlikki, 35 joonist,
17 tabelit.

Esimene kaubanduslikult saadav relatsioonanmebaas ilmus aastal 1979. [8] Tanasepédevani
see oli domineeriv mudel andmete hoidmise ja hankimiseks. Kuid salvestatud andmete maht
kasvab iga péaev, selle esindamise viis muutub ka keerulisemaks. See juhtub sellepérast, et
mudel on viga sotluv skeemast, mis teeb raksemaks uute sBltuvuste lisamist. Uks
vOimalikutest lahendustes on kasutada graafiandmemudeli, mis oli spetsiaalselt arendatud
andmebaasi mudeli lihtsustamiseks ja sarnase probleemi lahendamiseks, sest graaf on
loomulik viis andmete sdltuvuste salvestamiseks. Graafiandmebaasid on kaasaegne
kontseptsioon andmete salvestamiseks ja on juba kasutusel paljudes tuntutes ettevotetes, sest
vOrguandmed on palju lihtsam esindada s6lmedena mis on thendatud seostega, aga mitte

suure hulga liitunud tabelitena.

Selle t60 eesmérk on proovida uue kontseptsiooni andmete salvestamiseks ja esindamiseks
graafiprintsiibidena juba olemasolevas arenevas rakenduses, mis kasutab tavalise
relatsioonandmebaasi. Tarkvararakendus ise on sdnastikute hulk, kus on sénad ja sdnade
lekseemid Uhendatud seostega. Selle idee on ndidata graafina, kuidas sdnad on seotud
Uksteisega sOnastikus ja kui tugevad s6ltuvused on erinevatel sénadel. Rakendus on tehtud
relatsioonandmebaasiga PostgreSQL ja just sellepérast tuli idee proovida uue graafimudeli

andmete salvestamiseks.

Selle t66 kaigus tuleb lihike sissejuhatus arendatavast rakendusest, selle andmemudel,
kasutuslood ja kahe erineva andmebaasi mudeli vordlemine. Me muudame meie rakenduse
koodi nii, et see tootaks kahe erineva andmebaasiga paraleelselt. Selleks me valisime Uhe
védga populaarse graafi andmebaasi Neo4j. Lopuks me testime meie susteemi reaktsiooniaja,

CPU ja malukasutust.

Quantitative data

Lexeme

D3.js

RDBMS
PostgreSQL
Neo4j

MVC

Front-end
Back-end

HTML

Data access layer
Hibernate

loC

AOP

List of abbreviations and terms

Data that can be quantified and verified, and is amenable to statistical
manipulation. Quantitative data gives the definition, whereas qualitative

data provides the description.

A meaningful linguistic unit that is an item in the vocabulary of a

language.

D3.js is a JavaScript library which helps you to represent data with
powerful visualization components as dynamic and interactive graphical

forms which can be run in a web browser.

Relational Database Management System.

The world’s most advanced open source relational database.
The world’s leading graph database.

Model-view-controller pattern.

Interface between user and server side back-end.
Application business logic and data management.

Hypertext Markup Language.

A layer of a computer program which provides simplified access to data.
Obiject-relational mapping framework for Java language.
Inversion of control pattern.

Aspect-oriented programming.

ORM

SQL

Cron job
JSON
Depth-first and
breadth-first
Lucene

Directed acyclic
graph (DAG)

Eden space

Obiject-relational mapping.
Structured Query Language.
Time-based job scheduler.

An open standard format that uses human-readable text to transmit data
objects consisting of attribute—value pairs.

An algorithm for traversing or searching tree or graph data structures.

Free and open-source information retrieval software library.

A directed graph with no directed cycles

Part of Java Heap where the JVM initially creates any objects

List of figures

FIgUIE 1. Graph SITUCTUIEcveeieee ettt et e et e e e staenneenes 13
Figure 2. Retrieval time of queries by Neo4j and MySQL (100 0bjects).......cccccvevvvriverrrnene. 17
Figure 3. Retrieval time of queries by Neo4j and MySQL (500 0bjects).......cccccevvrvvervenenne. 17
Figure 4. Qlaara main page. Graph VIBW.c.ccuiiiiiiiiiiei e 24
Figure 5. Qlaara main page. Table VIEW.cciveiiiiieircic e s 25
FIgure 6. Main SYSTEIM USE-CASES.everrirtirtiriiaieaiiesteie sttt sttt se e ss e b bbbt ebe e e e e e 27
Figure 7. User and dictionary management.ccoouevvereieeiieesesieseesieseeseeseeseesnee e enesns 28
Figure 8. Qlaara's entity relationship diagram. ..o 30
Figure 9. Qlaara's default Hibernate Native QUENY.cocoviieiieieiie e 32
Figure 10. Qlaara's default ORM MEtNOd.coooiiiiiii e 33
Figure 11. Qlaara’'s Word.Class StrUCIUIE.ccveieiieiecie et 34
Figure 12. Qlaara's Dataloader.Classccoiiieiiiiiiiiseee e 35
Figure 13. Qlaara’'s DataParser.Class.ccciveieeieiie it 36
Figure 14. Saving words into the database. ... 36
Figure 15.Saving senses into the database.cccoovevieii s 37
Figure 16. Saving relations into the database.ccccooiiiiiiiiiiie e, 37
Figure 17. Resetting Ne04j databasecccccoveieeieiiieiiecic et 39
Figure 18. Saving words and senses to Neo4j database.ccocveveieeienenenenescseeeeeee 40
Figure 19. Methods for saving words and senses into the Neo4j.ccccoeeveeviiceiec e, 41
Figure 20. Saving relations into the Neo4j database............cccoovriiiiiiiiiiiiene e 41
Figure 21. Neo4j transaction creating methodscccoviieiieie e 42
Figure 22. Controller methods for retrieving data from databases.cccccevvvniniiiinieienn, 43
Figure 23. Graph tuple for retrieving data from PostgreSQL.cccccevveiiiiieie e 44
Figure 24. Hibernate SQL for retrieving graph tuples from PostgreSQL..........cc.ccoovvivrieinennn. 45
Figure 25. SQL's exact and prefixX Search. ... 46
Figure 26. Collecting the ro0t tUPIES.oiiiiiiiieee e 47
Figure 27. Populate graph tuples to the word 0bjectccooveviiiiiiciiccce e 48
Figure 28. Compose the collected results as JSON.ccccoiiiiiiiiiiiee e 49
Figure 29. DataService INTErfaCe............coveieiiiiece e 50
Figure 30. WOrdRepoSitory INTEITACE.ccceiiiiiieieieie et 51
Figure 31. Composing relations of the Word object.cccooveviieiieiiccceece e 52
Figure 32. RelatedWOordsEValUator PArt L.ccoceoeiereneninenieeeeeeesee e 53
Figure 33. RelatedWordsEvaluator Part 2.ccceoeeiieie i 54
Figure 34. PostgreSQL vs. Neo4j with graph depth 2. ... 57
Figure 35. PostgreSQL vs. Neo4j with graph depth 3. ..o 58

List of tables

Table 1. Query Results in MiIllISECONGS.cooiiiiiieie e 17
Table 2. Databases WIth SIZES.coeiiiiiiiiiie e 19
Table 3. Query results, In MIIISECONS. ..o 20
Table 4. Query results with integer values, in milliSeCoNds.cccccveveiviiiieveieieee e, 20
Table 5. Query results with character values, in milliSeCONdS...........cccocvviiiiiieiienieecens 21
Table 6. PostgreSQL response time with graph depth 2............cocooveiieie i, 56
Table 7. PostgreSQL response time with graph depth 3., 56
Table 8. Neo4j response time with graph depth 2.ccooveii i, 57
Table 9. Neo4j response time with graph depth 3. ..., 57
Table 10. PostgreSQL CPU usage with graph depth 2.cccocoeiieiieii i, 60
Table 11. PostgreSQL CPU usage with graph depth 3. ..., 60
Table 12. Neo4j CPU usage with graph depth 2.........ccooeiieiiiiiiccece e 60
Table 13. Neo4j CPU usage with graph depth 3........ccooiiiieiiieeee e 60
Table 14. PostgreSQL heap memory increase with graph depth 2...........cccoooveviiieieeicciennn, 61
Table 15. PostgreSQL heap memory increase with graph depth 3., 61
Table 16. Neo4j heap memory increase with graph depth 2., 61
Table 17. Neo4j heap memory increase with graph depth 3.........ccooiiiiiiine, 62

10

Table of Contents

O 111 70T 11 Tox {To] o ISP UR PRSP 12
1.1 Problem formulation ..o 12
1.2 Goal of the thesis and eXpected reSUILS ..., 12

2. Core concepts and Previous eXPEIMENESccveueiieieeiesie s ese e see e e e sre e see e e, 13
2.1 Graph database PrinCiPIESccviveiieie i 13
2.2 Graph databases and NOSQL data MOdelS...........cccooviiiiiiiiiieice e, 14
2.3 Previous BXPEITMENTSciieiieeieieesieeie st sie e se et e e e ste e e s e e sreaseessaesseaseesreenseans 15
2.3.1 Comparative analysis of relational and graph databases............cccccceevevivevieirennnn, 15
2.3.2 A Comparison of a Graph Database and a Relational Database.c........... 18
2.4 Gathered INFOrMatioNooeiiiiiiiei e 23

K I AN o] o] I Tor= L1 o g I (=13 o o OSSO 24
N R O LSl o= L L PP RTOTUPPTOPRURROT 26
T O A U T 101 (=T = Tod o PP PRURPRPRR 26
3.1.2 User and dictionary managementccccveeeieeieerieseeseeieeseesieeseesree e sseeseesneens 28
3.2 DAt MOUEl ... e 30
3.3 DAt@ 8CCESS TAYET ...t 32
3.4 Loading data to the PostgreSQL database............ccccvevieiieviiiieiiece e, 35

4 Database design and deVelOpMENL...........ccoviiiiiiiiiie e 38
4.1 Ne0dj INSTAITATION ..oviiiiiiiieee e 38
4.2 Cypher QUETY TaNQUAGE.........eeiveiie ettt ettt ra e sbe e naeane s 38
4.3 Loading data to the Neo4j databasecccovveiiiiiiiiiee s 39
4.4 Data access layer refaCtoring..........cooiriiiiieierieie st 43
4.4.1 Retrieving data from PostgreSQL database.............cccovvevieiiiiiiicie e 43
4.4.2 Retrieving data from Neo4j databaseccoovviiiiiiiiiiiice s 50

ST =551 110 o ST USSP U PP URPPPPRO 55
5.1 RESPONSE TIME ..eeieiiiiicie ettt ettt st e e e s be e sbe e e s reeste e e e s reeare e, 56
5.2 CPU and the MEMOIY USAQEcouirieieeiieieiiesie ettt sbe et 59

B TRESIS SUMIMIAIY ..ttt bbb bbbttt b ettt b e s s 63
6.1 FULUIE WOTK ...ttt ettt b et se e b e b 64
(0] (U 1Y 1 USSR 65
0 Fo T [0 (o o USSR 66

RETEIBINCES ...ttt b bbbt b e et s e bt ne e nre e b e e nnes 67

11

1. Introduction

Current work is made on the basis of developing application named Qlaara. Application itself
represents a web dictionary where users can see the relations between different lexemes of
words shown with their relations in a D3.js Force-Directed graph. Current project version
was developed approximately 4 months with using a relational database PostgreSQL. It was
chosen because it offers a powerful instruments and functionality for storing and managing
data with using SQL.

1.1 Problem formulation

As all the main data which is represented in Qlaara is shown as a graph with a words and
relatedness strength, became an idea to try out to store the same data neither in relational
database but in a graph database. Because the data model is simple and introduced by a word
which has one or more lexeme meaning, which in its time has one or more relation, so it can
be shown as nodes with edges and properties. Neo4j was chosen as a graph database which

will be used in this work.

1.2 Goal of the thesis and expected results

The main goal of this work is to compare behavior of two different databases with the Qlaara
application and measure the time of queries for retrieving data from the database and
displaying it for the final user. Of course the complexity of graph database’s query language
is also important, because it will take some time to learn its own syntax and start writing good

queries.

12

2. Core concepts and previous experiments

2.1 Graph database principles

A graph is a data structure composed of edges and nodes. Nodes have properties and
connections as relationships which also have properties. A traversal navigates a graph and

identifies paths which order nodes. Figure 1 shows the main graph components.

—PART_OF

number«=4

name=car

color=reg

node relationship property

Figure 1. Graph structure

Graph database technology is an effective tool for modeling data when there is a focus on the
relationships between entities. So modeling objects connected with relations means that data
structure can be represented as a graph. A property graph is a common graph type supported
by most systems. Property graphs are attributed, labeled and directed acyclic multi-graphs or
DAG. A benefit to the multi graph is that it is the most complex implementation because
every other type of graph consists of subsets of the property graph implementation. [13] It
means that a property graph can effectively model all other graph types. This dynamic data
model in which all nodes are connected by relations allows fast traversals along the edges
between vertices. A benefit is the fact that traversals do not have to take into account nodes

which are not connected, so the traversal time does not depend on the graph size.

Graph databases are really effective when working in areas where information about data
interconnectivity or topology is important. In such applications the relations between data and
the data itself are usually at the same level. Nowadays a lot of known companies use and
develop their own implementations of the graph databases in different areas — bioinformatics,

recommender systems, social networks and so on. For example, Google has BigTable,

13

Amazon has Dynamo, Facebook has Cassandra, which now belongs to Apache, LinkedIn has
a Project Voldemort, Twitter has FlockDB and many more. Of course RDBMS can be also

used for this needs, but in much more limiting and expensive way.

Getting information out of the graph needs what is known as a traversal or “walking” along
the elements of the graph. One main difference between traversal and SQL query is that
traversals are localized. This means that the size of the graph has no impact in traversal
performance and in expensive JOIN operations. It is important to know that global indexes
exist, but they are only used in finding the starting point. So it would require a linear scan of
all elements without indices. Determining if a particular element has a particular property
would require a linear scan of all elements at a cost of O(n) without indices, n being the
number of elements in the collection. Alternatively, the cost of a lookup on an index is much
lower at O(log2n). [13]

There has been no standardization of good graph database yet, so it has led to the huge
amount of different implementations and frameworks for data interaction. It means that
developers should learn a lot before getting started to use or understanding what is more
suitable for the system. Gremlin and Cypher are two primary user languages for graph
traversals. Gremlin is a domain-specific language, it is based on the top of the Groovy
programming language and is closely tied to Java. It seeks to be a standard language that can
be used in all major graph databases. Cypher in its way is a declarative language and inspired
by SQL and is still under intense development.

2.2 Graph databases and NoSQL data models

NoSQL (“Not only SQL”’) movement brought many interesting solutions offering many
different data models and database systems, that are suitable for different cases. Implying that
in software or product design gives a lot of storage opportunities that could be applied based
on the design. Using the data structure as modelled by developers has given a rise to the
movement away from relational modelling towards aggregate models. An aggregate is a
collection of data that we interact with as a unit. [16] That forms only one dedicated view of

your data.

Most NoSQL databases store sets of disconnected aggregates and this makes it difficult to use

them for connected data and graphs. One known strategy is to embed an aggregate’s

14

identifier inside the field belonging to other aggregate — foreign keys. But this requires
joining aggregates at the application level, which quickly becomes prohibitively expensive.
[15]

Graph databases handle fine-grained networks of information providing any perspective on
your data that fits your use-cases. All key-value stores can always be represented as a graph.
The same happens with document stores. The structured hierarchy of a document
accommodates a lot of schema-free data that can easily be represented as a tree. Although
trees are a type of graph, a tree represents only one projection of your data.

2.3 Previous experiments

Before the start we decided to gather some information of previous experiments with Neo4;j

and some relational database comparison. So we have found a couple of articles to be savvier.

2.3.1 Comparative analysis of relational and graph databases

The first article is written by Shalini Batra and Charu Tyagi where they tried to compare the
different sides of a Neo4j and MySQL database management system. They took several
evaluation parameters for comparison and made a little experiment on calculating the
response time of both databases with the same tasks. So let us have a look at the comparison

and experimental results.

The first parameter they took is the level of support or maturity. Level of support indicates
a specific extent of technical assistance in the total range of assistance that is provided by an
information technology product (such as a software product) to its customers. [9] So since the
relational database management system exists for over the 30 years, while Neo4j version 1.1
was released in February 2010 and it is obvious that Neo4j is less stable and less mature.
Relational databases have a unified language SQL and it does not differ much between
implementations, whereas Neo4j’s supported languages (SPARQL, Gremlin and Cypher
Query) do. But the Neo4j is still growing and maturing and has not undergone the same

rigorous performance testing as relational databases. [1]

Security is the second important point. It was said in the article that MySQL has extensive
multi user support, however Neo4j does not have any built in mechanisms for managing

security restrictions and multiple users. But since the article is 4 years old we decided to have

15

a look for the change log of Neo4j database and found that in version 2.2 at May 2015 a
possibility of authentication was added. Also was added a full support of profiling. [10]

The last point is flexibility. The schema of relational database is fixed and it makes it
difficult to extend other databases. Also it is very difficult to add relations between objects if

you want to change database structure. For example, there is a structure like this:
1) Marko is a human and Fluffy is a dog.

2) Marko and Fluffy are good friends.

3) Human and dog are subclass of mammal.

It is very simple to represent such data in the both databases. But if we want to add a
condition that Marko and Fluffy are mammals, it would be more difficult to do it with
relational database compared to graph database. So with the Neo4j variant we just need to
add two relations and two nodes, but with MySQL we have to change the structure of one
table and add an additional one. These operations sometimes are very expensive, if you have

a database with thousands of records and table relations.

A very important point was said in the article, “Neo4 has an easily mutable schema while
Relational databases are less mutable. It has been theoretically said that relational model
works best when there are a relatively small and static number of relationships between
objects. When the data sets become larger they require expensive join operations because
they search all of the data to find the data that meets the search criteria. The larger the data set
is, the longer it takes to find matches. Conversely, a graph database does not scan the entire
graph to find the nodes that meet the search criteria. It looks only at records that are directly
connected to other records, increasing the number of nodes does not increase the retrieval

time.” [1] A proof experiment was carried out too.

Let us imagine that we have MySQL and Neo4j databases with such kind of data:
1)User: user_id, user_name

2)Friends: user_id, friend_id

3)Fav_movies: user_id, movie_name

16

4)Actors: movie_name, actor_name

And we test these databases with 3 simple queries:

S0: Find all friends of Esha.

S1: Find the favorite movies of Esha’s friends.

S3: Find the lead actors of Esha’s friends favorite movies.

The response time for these queries will be something like that.

Table 1. Query Results in Milliseconds.

No of MySQL:SO | Neo4j:SO | MySQL:S1 | Neo4j:S1 | MySQL:S2 | Neo4j:S2
objects

100 19.56 8 33 12.65 111.334 19.57
500 281.38 10 333.96 17 620.56 21

And the test with the 100 and 500 of users.

50 o

40 A

30 A

retrieval times

20

10 A

60 —

/

ql qz2 q3
querles

—e— MySQL
—t— [\ e0d)

Figure 2. Retrieval time of queries by Neo4j and MySQL (100 objects).

700 +
600
500
400
300 A

refrieval times

200
100

ql qz2 q3

queries

—a—MySQL
—— Neod]

Figure 3. Retrieval time of queries by Neo4j and MySQL (500 objects).

In conclusion it was said that, despite of the advantages of relational databases in maturity

and security, there is a huge advantage of graph databases in retrieval time. Also it is more

17

flexible in developing, without the need to restructure the schema again. Apart from that,

Neo4j can be definitely used in commercial purposes.

2.3.2 A Comparison of a Graph Database and a Relational Database.

The next research article was written by a group of colleagues working in Department of
Computer and Information Science in University of Mississippi. The goal is to determine
whether a traditional relational database system like MySQL, or a graph database, such as
Neo4j, would be more effective as the underlying technology for the development of a data

provenance system. [11]

The article starts with very interesting principles which describe relational model. They are:
atomicity, consistency, isolation and durability (ACID). So this set of governing principles
guarantees database reliability, while NoSQL rejects them. However, NoSQL movement has

its own potential flags that the data might be more suitable for a NoSQL system.

1) Having tables with lots of columns, each of which is only used by a few rows.
2) Having attribute tables.

3) Having lots of many-to-many relationships.

4) Having tree-like characteristics.

5) Requiring frequent schema changes.

So if your database model meets several of these criteria, it will be fitting to investigate
NoSQL solutions to the provenance storage problem.

A total of twelve MySQL databases have been constructed for testing purposes. The
databases only contain necessary structural information to represent the directed acyclic
graph. Graphs were created to contain approximately 1000, 5000, 10000 and 100000 nodes.
The information which was loaded consisted of random integers, random 8KB strings, and

random 32KB strings.

18

Table 2 gives details about the databases and disk space required for each.

Table 2. Databases with sizes.

Database Nodes count Data type MySQL size Neo4j size
1000int 1000 Int 0.323M 0.428M
5000int 5000 Int 0.828M 1.7M
10000int 10000 Int 1.6M 3.2M
100000int 100000 Int 15M 31M
1000char8k 1000 8K char 18M 33M
5000char8k 5000 8K char 87M 146M
10000char8k 10000 8K char 173M 292M
100000char8k 100000 8K char 1700M 2900M
1000char32k 1000 32K char 70M 85M
5000char32k 5000 32K char 504M 406M
10000char32k 10000 32K char 778M 810M
100000char32k | 100000 32K char 6200M 7900M

Both databases used full-indexing. And in general Neo4j databases was about 1.25 to 2 times

the size of the corresponding relational databases. Only once the MySQL database was

larger.

In total there were 6 queries generated to test these databases:

SO0: Find all orphan nodes. This is for finding all nodes in the graph that are singletons, with

no incoming edges and no out coming edges.

S4: Traverse the graph to the depth of 4 and count the number of reachable nodes.

S128: Traverse the graph to the depth of 128 and count the number of reachable nodes.

11: Count the number of nodes whose payload data is equal to some value.
12: Count the number of nodes whose payload data is less than some value.

C1: Count the number of nodes whose payload data contains some search string (length

ranges from 4 to 8). Applies to character databases only.

19

Table 3 shows the results of the experiment:

Table 3. Query results, in milliseconds.

Database MySQL S4 | Neo4j S4 | MySQL Neo4j S128 | MySQL | Neo4j
S128 SO SO
1000int 38.9 2.8 80.4 15.5 1.5 9.6
5000int 14.3 1.4 97.3 30.5 7.4 10.6
10000int 10.5 0.5 75.5 12.5 14.8 23.5
100000int 6.8 2.4 69.8 18.0 187.1 161.8
1000char8k 1.1 0.1 21.4 1.3 1.1 11
5000char8k 1.0 0.1 34.8 1.9 7.6 7.5
10000char8k 1.1 0.6 37.4 4.3 14.9 14.6
100000char8k | 1.1 6.5 40.9 13.5 187.1 146.8
1000char32k 1.0 0.1 12.5 0.5 1.3 1.0
5000char32k 2.1 0.5 29.0 1.6 7.6 7.5
10000char32k | 1.1 0.8 28.1 2.5 15.1 15.5
100000char32k | 6.8 4.4 39.8 8.1 183.4 170.0

As it is seen in the table, traversal queries SO,

S4 and S128 on Neo4j were clearly faster,

sometimes even 10 times faster. The query to find orphan nodes resulted in fairly comparable

results between two databases, that is why both systems are used to iterate the whole list to

check each node.

Then a test with 11 and 12 queries was made and results are presented in the Table 4:

Table 4. Query results with integer values, in milliseconds.

Database MySQL I1 Neo4j 11 MySQL 12 Neodj 12
1000int 0.3 33.0 0.0 40.6
5000int 0.4 24.8 0.4 27.5
10000int 0.8 33.1 0.6 34.8
100000int 4.6 33.1 7.0 43.9

For the integer data relational database demonstrated the efficiency, because Neo4j uses

Lucene for querying, and it is treated by default all data as a text. So these queries are not

very fast, since conversion is required.

20

The test with the characters’ data is shown in the Table 5 (d is the length of data):

Table 5. Query results with character values, in milliseconds.

Database Rel Neo Rel Neo Rel Neo Rel Neo Rel Neo

d=4 | d=4 d=5 | d=5 d=6 | d=6 d=7 | d=T7 d=8 | d=8
1000char8k 26.6 | 35.3 15.0 | 41.6 6.4 | 41.6 11.1 | 41.6 15.6 | 36.3
5000char8k 1354 | 41.6 131.6 | 41.8 112.5 | 36.5 126.0 | 33.0 919 | 41.6
10000char8k 301.6 | 38.4 269.0 | 41.5 257.8 | 41.5 263.1 | 426 249.9 | 41.5
100000char8k 3132.4 | 41.5 3224.1 41.5 3009.1 | 42.6 3077 .4 41.8 2834.4 | 36.4
1000char32k 59.5 | 41.5 41.6 | 42.6 30,9 | 41.5 31.9 | 414 31.9 | 354
5000char32k 253.4 | 42.3 242.9 | 41.5 2204 | 35.3 188.5 | 38.5 152.0 | 41.5
10000char32k 458.4 | 36.3 468.8 | 41.6 468.3 | 41.6 3821 | 415 208.8 | 36.3
100000char32k 3911.3 | 41.4 4859.1 33.3 6234.8 | 37.3 4703.3 | 41.5 2769.6 | 41.5

For the last test with characters’ data there were generated 4 databases with 8K characters
data and four with 32K characters data. So when conducting tests on fully random data with
letters, MySQL outperformed Neo4j. But with the more real-world data like words MySQL

was much slower than Neo4j database.

In the second part of the article authors compared systems in maturity, ease of programming,

flexibility and security.

In maturity and level of support the vote goes definitely for relational database. As it was
written in previous article, relational databases are more mature and have a lot of support,

while graph databases are younger and does not have much support.

The next comparison is the ease of programming. As soon as relational databases use SQL
and it is very similar in different system implementations, graph databases are language-
specific and have their own APIs. But the actual ease of programming is task-dependent,
because, for example, graph traversals are simpler in graph databases. There are a lot of
functionalities of doing it. In its turn, scanning a table for a particular attribute can be
extremely easy with relational database. The last important thing is that relational databases

have an ability to store graph data, while graph databases do not.

In flexibility the vote goes for graph database, because it has an easily mutable schema and
relational system schema can be altered once the database is deployed, but doing so is a much

more significant undertaking with graph database.

In security the relational databases are much more mature and have built-in multi-user
support and functionalities for that. Neo4j in its turn have a user management at the

application level. But as we found earlier it was in older versions.

21

In conclusion it was said that both systems performed well on the objective benchmark test.
Graph database did better at the structural type queries and significantly better than the
relational database in full-text character search. Speed issues related to index searching in
Neo4j for numbers are related to the Lucene and its known problem. It is being developed for
Lucene. But overall, for the data provenance project, it seems premature to use the graph

database for a production environment.

22

2.4 Gathered information

If we compare these two articles we can find that both affect a very important aspect, they are
the level of support or maturity, security, flexibility and ease of programming. As we got to
know, there are some advantages of relational databases in security and level of support,
because these databases are supported and developed for decades, since graph databases is a

more modern concept.

In testing parts, the graph databases showed themselves deservedly for both experiments and
authors claimed that graph databases should definitely be used in systems which structure

contains a large number of relations.

23

3 Application design

Qlaara is a Java application, which is developing with using Spring Framework. It has simple
MVC design for representing data to the end-user. Front end itself is performed with a
Thymeleaf engine, which provides an elegant and well-formed way of creating templates.
Some of the common solutions were made with JavaScript libraries for simple data
requesting. Word relations are represented with a Force-Directed graph performed with a
D3.js library. Application's main page is shown on the Figure 4.

Related words © Grapn 1 Lastseen ~ Selectlanguage ~ Views per month: 96

muusikakool

s
>
>
k4
k4
bl
k4
>
>
k4
k4
bl

kutsekoel

Parameters Frequancy: @ Lengtn: 4 Valence: 0.452 | Emotion:]

Attributes

Explanation

Morphology

Figure 4. Qlaara main page. Graph view.

Qlaara’s main search page view is very simple (Figure 4). It has four main sections, where
every piece of information is represented. First of all, the navigation panel at the top, where
users can search for a word in which they are interested in. Search is made by a word prefix.
The left side sector shows the results of found words. The middle sector shows lexemes,
which are connected to the selected word. The amount of lexemes of one word can be 1 or
more and the last right sector shows the relations of the lexemes connected to the selected
one. The amount is a configured option and it is set to 5. Graph view also shows the strength
of the connection in range of 1 to 10 pixels. That means that 10 is 100% similarity or 1.

24

There are also possibilities to choose from the graph and table view, for more precise view of

the connection strength. Here is the table view of main page (Figure 5).

Senses Sense details

Related words

e ‘Word kool
) koolduma

© koole Related word Relatedness
© Koolera !

© oo

€ kooliaasta

O rooliaed

Q Kooliaeg

& rooiiaegne

G Kooliaigus

© rootarst

© rooliasi

Shaow mare _ (168)

Parameters Frequency 9 Length 4 Valence 0452 Emation: 8
Anributes
Explanation

Morphalogy

Figure 5. Qlaara main page. Table view.

In the Figure 5 you can see the table view, which shows the same relations as graph view, but
it helps users to see the strength of the connection in numeric value. In addition to this there
is an implemented language filter, which helps to sort words by their language in the

dictionary.

25

3.1 Use cases

3.1.1 User interactions

Here are important cases to note. The search can be done in two ways: the simple one with a
word match or word prefix and detail search by different parameters like word length, status,
ratio, comments etc. Detailed search can be saved and shared with other users. After the
search there should be the possibility to view found lexemes. The relations between can be
viewed in a graph of table look and can be filtered by language. Every single lexeme has
attributes, examples, explanation, morphology forms and comments. In addition, there should
be possibility to add, edit, delete or vote for the liked lexeme. Lexemes and their parameters

have different permissions to view, vote, and edit for the users.

The main system interactions between the system and the end user are shown in the Figure 6.

26

Chose dictionary

Logging for
extended search

Simple search

User permissions

Save detail
search query

detail search
query

Detail search

Search by prefix {'search by exact

macth

imiting the scope,
of the search :

Save detail
search

Search

Search by
language

Search by status

Search by word
length

Search by
comment

Search by
attribute

Search by
attribute

Search by
jorphology form

Show search
results

Permissions

Write feedback

Show feedback

Feedback

Loggin to view
lexeme
parameters

Add lexeme

Delete word
Delete comment

Show lexeme

Open lexeme

Related lexemes
as graph

Calculate lexeme

ratios

Add comment

Add example

Edit morphology

clated lexemes
as table

Show lexeme
4 "
é

Show attributes

Change lexeme
ratio

A Add lexeme S

Add word
Delete lexeme

Add explanation

Delete example

Edit example

Vote for lexeme

Lexeme

Show examples

Show

explanations

ratio

Change lexeme
relations

Connect lexeme
ith another one,

Delete attribute

Add attribute

Edit explanation

Delete
explanation

Figure 6. Main system use-cases.

27

3.1.2 User and dictionary management

There should be a possibility to use the system as anonymous or registered user. Apart from
this, Users can also manage their own and public dictionaries. All possible interactions are

shown in the Figure 7.

Users
. Add user
Register as user
Edit user data
Retrieve password
Change password
Project
Add dictionary

Show dictionary data Update dictionary data
Show list of dictionaries

Dictionary join request

Add users to the
dictionary

- . pt or decline
Show dictionary list of dictionary join request
users ‘

Manage dictionary user
permissions
Select dectionary
Show dictionary word
statuses
Add dictionary word
status

Delete dictionary word Update dictionary word
status status

Figure 7. User and dictionary management.

28

As shown in the Figure 7 all users can register for the system users. User password can be
restored and changed in the system. Users can add their own dictionaries and words.
Dictionary owners can add other users to administer their dictionaries or users can send a
request to become a dictionary administrator. On the dictionary page users can add, delete
and edit word statuses and choose a default status. One of the interesting functionalities is
that users can merge their accounts. For example, if a user has two accounts with different e-

mails and he wants to remove one, but without losing his permissions and purchases.

29

3.2 Data model

The interesting part here is how Qlaara’s data is represented in database. Figure 8 shows

Qlaara’s data structure representations in the PostgreSQL.

dictionary
ohid
#luserid

name
description

| sense_wote_weight

[, reletion_vote weight

[, default_relatedness

| public_sense_properties

mex_marph ology_frequency

[state
[state time
A
dictionaly_id:id
T status
l‘«'ﬁ' ! : = 7 language
&1, dictionary_id dicionaiy_idid dictionaly,_id:id
Lwalue
is_public Sl
is_default
lang: Fode
statru—vj_' :id '—
T ward language_code: code
#id

7 dictionary_language

#llang &
Li
[frequen
| Z*h = #1 dictionary_id
en
| s default
::.::n #1 language_cade
1 stetus_id
[state
[state time
word?d:id
I menze
#hid
Fhword id
[frequency
walence
ematian
[retio
[state
[stete time
—_— L N O O S
—— fpetoidid senseazid b i
7 sense_marphology Tre T relation T sense_comment — o
sense_attribute sense_ex planation
flhid o flhid #lid e
i i
1 senze_id o ‘m“ = f,sensel_id 1 senzeid t" —
#1 morphalogy_classifier_id #l senzez_id [, crested
[farm & ""I'"‘ [reletedness value ’°|'”“
value value
[frequency type 1 uzer_id
state state
[state e [state author_name dote t
e time e.time
[stote time = [stote time author_smail =

sense_morpIology_id:id

Figure 8. Qlaara's entity relationship diagram.

In the Figure 8 we can see, that there are dictionaries at the top of the model. It was meant
because Qlaara can have more than one dictionary. There are public and user private
dictionaries for holding different kinds of words. So dictionary can have zero or more words.
Words can be in different languages and have such attributes like frequency of usage, length,

valence and emotion. Also it has a status, which can be public or private. In its way word can

30

have zero or more lexemes or within our project we would name them senses. Senses are
lexemes or the words’ meaning. For example the word “type‘ has multiple meanings or
lexemes. The first one is to write something on a typewriter or computer by pressing the keys.
The second one is a category of people or things having common characteristics. Lexemes
also have attributes like frequency, valence and emotion. Besides they have ratios. The ratio
is the number, which defines the strength of the lexeme. The total sum of ratios of word’s
lexemes is also 100. So the mentioned two lexemes of word type can have ratios like 50/50 of
40/60 for example. The senses in its way have attributes, morphology forms, relations of

other senses, comments of the users and explanations.

31

3.3 Data access layer

Spring offers good solutions for proper data access layers, using 10C pattern through
templating and applying AOP interceptors for the ORM technologies [4]. The purpose of this
layer is to get data from the database with querying and writing entities. In Qlaara all the
database access methods and relational mapping are written in *DbService classes, which
only can be used from the *Service classes. This allows Data access layer to be protected
from the access outside of the layer. Hibernate provide option to execute native SQL queries
through the use of SQLQuery object. The default method for accessing data is very simple,

shown in the Figure 9:

335 o public imt getWordsCount(String prefix, Status status) {
336

337 String sqlQueryStr =

I3E O "select count(w.id) cnt "

339 + "from "

340 + WORD TAELE NAME + " w, ™

341 + DICTIONARY TABLE NANE + " d ™

342 + "where ™

343 + "d.id = w.dictionary id *

344 + "and d status = :status

345 + "and w.value like :prefix

a2 + "and w.status = :status '

347 Session session = sessionFactory.getCurrentSession();
348 SQLQuery sqlQuery = session.createSQLQuery (sqlQuerySt
340 sglQuery.addScalar(cnt™, new IntegerType());

350 sqlQuery.setString (“prefix™, prefix + "%");

351 sqlQuery.setString(status™, status.name());

352 Integer count = (Integer) sqlQuery.uniqueResult();
S=d

354 return count;

3B/ O}

Figure 9. Qlaara's default Hibernate native query.

This method (Figure 9) is using a native SQL query. As you can see it is very simple and
handy, because we can execute database specific queries that are not supported by Hibernate
API.

Here we are using Session.createSQLQuery(String query) to create the SQLQuery object and
execute it. This simple method counts the number of words in dictionaries by word prefix and
status. As a result we only need the number, so we execute uniqueResult() method to get the

Integer number. But it also allows us to get objects straight from the database.

32

So let us have a look at the default Qlaara method with getting the list of objects or, in our

case, the list of words (Figure 10).

357 B public List<Word= getWords(String prefix, Status status, imt limit) {
358

359 String sqlQueryStr =

360 0 "select w.id as id, w.value as value, w.lang as lang, w.status as status, d.name as dictionaryName ™
361 + “from "

362 + WORD_TABLE_NAME + " w, ™

363 + DICTIONARY _TABLE NAME + ™ d "

364 + "where "

365 + "d.id = w.dictionary_id

366 + "and d.status = :status "

367 + "and w.value like :prefix ™

368 + "and w.status = :status ™

369 O + "order by value ';

370 if (limit = 0) {

371 sqlQueryStr += "limit :limit™;

372 b

373 Session session = sessionFactory.getCurrentSession();
374 SOLQuery sqlQuery = session.createSQLQuery(sqlQueryStr);
375 sqlQuery.addScalar(*id™, new LongType()):

376 sqlQuery.addScalar(*value”, new StringType()):

377 sqlQuery.addScalar(*lang™, new StringType()):

378 sqlQuery.addScalar(status™, new StringType()):

379 sqlQuery.addScalar(dictionaryName™, new StringType()):
380 sqlQuery.setString(“prefix™, prefix + "%");

381 sqlQuery.setString(“status™, status.name()):

382 if (limit = @) {

383 sqlQuery.setInteger ("limit™, 1imit):

384 H

385 sqlQuery.setResultTransformer(new AliasToBeanResultTransformer(Word.class)):
386 List<Word> words = sqlQuery.list();

387

388 return words;

389 =] h

Figure 10. Qlaara's default ORM method.

In the Figure 10 method is used to get a list of words by prefix and status with the limit. It is
used then we need the limited number of words, for example if we need to get top5 relations
of the word to draw in the graph and we do not need others, because the graph area is not so
huge to reflect all the words and this will not be clear for a final user. So, as in the previous
example, we are using the same structure except from using uniqueResult() method. Here we
need to get objects so we transform our results to the Word.class as
setResultTransformer(new AliasToBeanResultTransformer(Word.class)) and this

successfully finds the needed setters in our class.

33

The Word.class is shown on the Figure 11:

14} BgNodeEntity

15 ‘ @lsonSerialize

16: ©@@ElsonInclude (JsonInclude.Include. NON NULL)

17 public class Word implements Serializable {

18

19 private static final long serialVersionlUID = 1L;
20

21 @GraphId

22 private Long id;

23

24 @lndexed{indexType = IndexType.FULLTEXT, indexName = "walue™)
25 private String value;

26

27 private List=Sense> senses;

28

29 private String lang;

30

31 private String logicalld;

32

33 private String status;

34

35 private String dictionaryMame;

36

37 o public Long getId() { return id; }

40

a1 ™ public void setIdi{Long id) { this.id = id; ¥
44

Figure 11. Qlaara's Word.class structure.

So all the parameters like id, value, language, status, dictionaryName are set as they have

same names as in the Word.class (Figure 11) and query.

34

3.4 Loading data to the PostgreSQL database

As soon as there are millions of words in different languages and dictionaries, it is very hard
to add words manually. So there was a csv file parser made in order to save available data
from file to database. The basic concept of this is to read every single row in a file, to split it

for pieces of data and save it to the database. See Figure 12.

DataParser dataParser = applicationContext.getBean(DataParser.class);

logger.debug ("Reseting database...™);

final String dbCreateFilePath = *./fileresources/sql/create_tables.sql™;
dataParser.executeScriptsFile (dbCreateF1lePath);

final String dbDefaultDataFilePath = *./fileresources/sql/data.sql™;
dataParser.executeScriptsFile (dbDefaultDataFilePath);

final long dictionaryId = 1000;
dataParser.transfurmérumCsvEdataFilePath, dictionaryId, lang):

Figure 12. Qlaara's DatalLoader.class

First of all, we should reset our database by creating new tables and indexes in our database
(Figure 12). So as long as all changes in database are created in the tables.sql we can easy
execute them before loading new data to the database. The second step is creating default
records. They are test users, default dictionaries, languages etc. As in the beginning we had
only Estonian dictionary’s data, we chose the default dictionary id 1000 for it. The final step
is to transform data and save it. Needed csv file format for it is simple and has 5 columns:

word_value, sense_id, sense_ratio, related _sense_id and relatedness of these two lexemes.

35

The data parser is shown in the Figure 13.

private DataFileRow readline (BufferedReader dataBufferedReader) throws Exception {

String dataLine = dataBufferedReader.readlLine();
if (datalLine == mull) {
return null;
K
datalLine = StringUtils.remove(dataline, *\"');
stringl]l cellValues = StringUtils.split(datalLine, csvValueSeparator);

if (cellvalues.length != 8) {
throw new QlaaraDataException(*Wrong number of elements at data row \'' + dataline + ""\"™');
H

try {
String word = cellvalues[1];
long senseld = Long.parselong(cellvalues[2]);
imt senseRatio = Integer.parseInt(cellvalues([3]);
long relatedSenseld = Long.parselong(cellvalues([4]);
float relatedness = O;
if (NumberUtils.istvumber(cellValues[5])) {
relatedness = Float.parsefloat(cellvalues[5]);
T

return new DataFileRow(word, senseld, senseRatio, relatedSenseId, relatedness);

1 catch (Exception e) {
throw new QlaaraDataException(“Illegal data format at data row ™' + dataline + "\, e);
H

b

Figure 13. Qlaara's DataParser.class.

DataFileRow is an object made specially for holding an information about the parsed file

row.

Then, when we got a list of DataFileRows with the size equal to the file rows we could easily
start saving them to our tables. We already got a default dictionary where our words would be
related, consequently then we had to save words, senses and relations in tables. We will do it

one by one.

First of all, we create words in database (Figure 14).

public void createWordi{Long 1d, Long dictionaryId, String word, String lang, Status status) {

Session session = sessionFactory.getcCurrentSession();
String sqlQueryStr = “insert imto " + WORD JABLE WAME + ™ (id, dictionary id, value, lang, status) values (:id, :dictionaryld, :value, :lang, :status)"
SQLQuery sqlQuery = session.createSQLQuery(sglQueryStr);
sqlQuery.setlong("id", id);
sqlQuery.setlong("dictionaryId”, dictionaryId):
sqlQuery.setString(“value”, word);
sqlQuery.setString(*lang”, lang);
sqlQuery.setString("status”, status.name());
sqlQuery.executeUpdate(}:
H

Figure 14. Saving words into the database.

As we discussed in Data access layer paragraph we simply define native sql query with
giving it parameters: dictionary_id, word_value, word_language and the status (Figure 14).

36

Status is the value marked as Active or Invalid, as long as we did not delete data from
database straightly we define it as invalid. Further we can delete marked data with

asynchronous cron service.

Next we save senses in the database (Figure 15).

public void freateSense(Long id, Long wordId, Integer ratio, Status status) {

Session session = sessionFactory.getCurrentSession();
String sqlQueryStr = “insert imto " + SENSE_TABLE NAME + ' (id, word id, ratio, status) values (:id, :wordId, :ratio, :status)”
SQLQuery sqlQuery = session.createSQLQuery(sqlQueryStr);
sqlQuery.setlong (“id", id);
sqlQuery.setlong (“wordId”, wordId);
sqlQuery.setInteger(“ratio”, ratio);
sqlQuery.setString (“status™, status.name(});
sqlQuery.executelpdate();
}

Figure 15.Saving senses into the database.

Here is the same pattern. Senses have word_id, this is an id of related word, sense_ratio,

discussed in the Data model and the status (Figure 15).

Finally, we save relations. See Figure 16.

public Long createRelation{Long senselld, Long sense2Id, Float relatedness, Status status) {

Session session = sessionFactory.getCurrentSession();
String sqlQueryStr = “insert imto " + RELATION TABLE WAME + " (sensel id, sense? id, relatedness, status) ™
+ "walues (:senselld, :sense2Id, :relatedness, :status) returning 1d";
SQLQuery sqlQuery = session.createSQLQuery(sqlQueryStr);
sqlQuery.addScalar(“id”, new LongType()):
sqlQuery.setlong(“senselld”, senselld);
sqlQuery.setlong(“sense2Id”, sense2Id);
sqlQuery.setFloat (“relatedness™, relatedness);
sqlQuery.setString(“status™, status.name());
Long 1d = {Long) sqlQuery.uniqueResult();
return id;
}

Figure 16. Saving relations into the database.

Relations have sensel_id and sense2_id. These are ids of related senses. For example, a
school and a university. The relatedness is the number between 0 and 1 and define the
strength of the connection. As an example a school and a university has stronger connection
than a school and a prison (Figure 16).

Finally, we got a database with a table of 90000 words, 90000 senses and 4410000 records
with relations.

37

4 Database design and development

This section will be the main part of the work. Here we will make our changes by connecting
same application layer with both PostgreSQL and Neo4j databases. The idea is to write two
services which will work with different databases and that can retrieve different amount of

data for further testing.

4.1 Neo4j installation

First of all, we need to install Neo4j database. It is very simple we just need to download the
latest release from the manufacturer’s server and then start it. All the instructions are on

WWW.Neo4j.com.

4.2 Cypher query language

Cypher is a declarative graph query language that allows efficient querying of the graph
database. It is a relatively simple and very powerful language, but still different from SQL.

The creators of Cypher claim that it is very simple as for developers as for operations
professionals, so even complex things are possible with it. The language itself is based on the
English prose and most of the keywords like WHERE and ORDER BY are inspired by SQL.
Pattern matching borrows expression approaches from SPARQL and some of the collection
semantics have been borrowed from languages such as Haskell and Python.

38

4.3 Loading data to the Neo4) database

So when we have our Neo4j database up and running let us try to load some data to it.

It took a couple of times to set up libraries and try out a couple of examples found on the

Internet. But after a while we were able to write solution.

As with relational database, first of all after the shutdown we will need to reset our database
simply be deleting the database file. It was made for that case if we had already something in

it after a couple of experiments. Figure 17 shows the initializing process.

@value ("${neodj .datastorei")
String graphDbDirectory;

public woid initGraphDatabaseService (boolean allowDbsShutdown) throws IOException {

this. allowDbShutdown = allowDbShutdown;
if (allowDbsShutdown) {

if (graphDatabaseService != null) {

graphDatabaseService. shutdown () ;

File graphCb = new File(graphDbDirectory);
if (graphDb.exists()) {
try {
FileUtils.deleteRecursively (graphDb);
logger.info("Removed existing database.™);

} catch (ICException e) {
logger .error(“Unable to delete database: ' + graphDbDirectory);

b

graphDatabaseService = new GraphDatabaseFactory().newEmbeddedDatabase (graphDbDirectory);
neodjTenplate = new Neo4jTemplate (graphDatabaseService);
T else {
try {
startTransaction();
neodjTemplate. query ("HATCH (n) OPTIONAL HATCH (n)-[rl-() DELETE n,r", Collections.ENPTY MAP):

endTransaction();
I catch (Exception e) {
logger.error{"Error occurred when starting transaction.", e);

¥

startTransaction();

b

Figure 17. Resetting Neo4j database

First we close all active sessions in our database and delete the file with our data (see Figure
17). Then we create a new database using our graphDirectory. All the functionalities are very
simple straight, and available by org.neo4j java libraries. So we do not even need to write our
own methods for resetting database. All the examples can be found on the developers’ page

and developers’ forums.

39

The second part of the statement is made for the test database, there we delete all records by
hand with using a transaction method. This method matches all records in the database and

then deletes them.

When our database is empty and ready to use we start to add data to it.

As earlier with relational database we will add all the words, next the senses and finally

relations. See Figure 18.

logger.info(*'Start loading word and sense nodes ...");
do {

csvRowValues = readline (dataBufferedReader);

try {

if (csvRowvalues == null || csvRowValues.length < 5) {
logger.error(“Line contains less than 5 tokens: line number=" + lineCounter);
comtinue;

ks

wordId = Long.parselong(csvRowValues[2]);

senseld = wordId;

word = csvRowValues([1];

ratio = Integer.parselnt (csvRowValues[3]);

if (!senselds.containskey(senseld)) {
Word wordhode = dbService.saveWord (wordId, word, lang);
Sense senseMode = dbService.saveSense(senseld, wordNode, ratio);
senselds.put(senseld, senseNode);

¥
if (lineCounter % 500000 == 0) {
t2 = System.currentTimeMillis();
logger.info(*{} lines processed. Spent time {} ms", lineCoumter, (t2 - t1)):

T catch (Exception e) {
logger.error(“Unable to import line

+ lineCounter + ™. ** + e.toString());

.
} while (csvRowValues != null);

Figure 18. Saving words and senses to Neo4j database.

The same way as with relational database. We parse all the rows in csv file and then save
them (Figure 18). Neo4j library suggests pretty easy way for storing data. All we need is to

define a method for storing our data with giving it needed values.

40

For saving words and senses we created such methods. See Figure 19.

public Word FaveWord(long id, String wordvalue, String lang) {
Map<=String. Object> properties = new HashMap==>():

properties.put(“value”, wordvValue);
properties.put ("logicalId”, "w_™ + id);

properties.put(*lang™, lang};

prepareTransaction();
Word word = neodjTemplate. createNodeds (Word.class, properties);

return word;

}
public Sense saveSense (long id, Word word, imt ratio) {

Map<String, Object= properties = nmew HashMap<=();
properties.put ("logicalId”, *'s ™ + id):

prepareTransaction();
Sense sense = neodjTemplate.createNodeAs (Sense.class, properties);

Map<String., Object> relationProperties = new HashMap<>();
relationProperties.put(“ratio”, ratio);

Node wordNode = neodjTemplate.getPersistentState (word);
Node senseNode = neodjTemplate.getPersistentState(sense);

prepareTransaction();
neodjTemplate. createRelationshipBetween (wordNode, senseMode, RelationshipTypes.COMMECTED.toString(), relationProperties);

return sense;
}

Figure 19. Methods for saving words and senses into the Neo4j.

What we have to do is to put our parameters into the map and then create an object into the
database with the same class (Figure 19). The neo4jTemplate will create the needed node in
the database. There is similar logic in creating word and sense, except of that while creating
sense node we have to create a relation between sense and the word. That relation will be set
with property ratio, so we could find needed senses by ratio. The connection will be named

simply CONNECTED. Neo4j allows choosing connection names.

After words and senses we save relations. See Figure 20.

public woid saveRelation(5Sense sensel, Sense sense2, double relatedness) {
Node senselNode = neod4jTemplate.getPersistentState(sensel);
Node sense2Mode = neod4jTemplate.getPersistentState(sense2);

Map<String, Object= relationProperties = new HashMap==();
relationProperties.put (“relatedness”, relatedness);

prepareTransaction();
neodjTemplate.createRelationshipBetween (senselNode, sense2Mode, RelationshipTypes.RELATED.toString(), relationProperties);
1

Figure 20. Saving relations into the Neo4j database.

When words and senses are created, the next step is creating relations. The relation is a
connection between two senses with the property relatedness. So we get needed senses from
the database as nodes and create a relation between them. We name the connection as
RELATED.

41

We created some additional methods for helping us with transactions in graph database. See

Figure 21.

public void prepareTransaction() {
incrementOperationsCount () ;
if (shouldCreateNewTransaction{)) {
commitAndStartNewTransaction();
}
b

private boolean fhouldCreateNewTransaction() {
if (operationsCount.get() == operationsThreshold) {
return true;
h
return false;

¥

private void commitAndStartNewTransaction() {
imt ftotalMoOfTransactions = totalOperationsCount.addAndGet (operationsCount.getandSet(0));
/flogger. debug(" ========== Refreshing transaction, total: " + totalNoOfTransactions);
endTransaction();
startTransaction();

¥

private void incrementOperationsCount() { operationsCount.incrementAndGet(); ¥

Figure 21. Neo4j transaction creating methods

As we make thousands of transactions in a row we need to be sure that all of them will be
delivered to the database. So we commit every 100000 query to the database, end the

transaction and start new.

42

4.4 Data access layer refactoring

Now when we have our data in the database, let us rewrite a little data access layer so we

could retrieve data as from PostgreSQL database as from Neo4j.

For testing purposes we would create some controller methods for retrieving data from both
databases in JSON format.

4.4.1 Retrieving data from PostgreSQL database

There would be two methods same for PostgreSQL and for Neo4j. See Figure 22.

@RequestMapping(value = "searchlike/{wordValuel}/{graphDepth}/{relationLimit}", method = RequestMethod.GET)
public void searchLike(
@PathVariable ("wordValue") String wordValue, @PathVariable(*'graphDepth™) imt graphDepth, @PathVariable(“relationLimit™) imt relationLimit,
HttpServletResponse response) throws Exception {
composeResult(response, wordValue, graphDepth, relationLimit, false);

@RequestMapping(value = "searchexact/{wordValue}/{graphDepth}/{relationLinit}", method = RequestMethod.GFT)

public void searchExact(
@PathVariable ("wordValue™) String wordValue, @PathVariable(*'graphDepth™) imt graphDepth, @PathVariable(“relationLimit™) imt relationLimit,
HttpServletResponse response) throws Exception {

composeResult(response, wordValue, graphDepth, relationLimit. true):

Figure 22. Controller methods for retrieving data from databases.

In these two methods we will test if there are any database performance differences in
searching for exact match or by word prefix (Figure 22). These methods will be mapped for
reldb/** and graphdb/** controllers. Methods themselves have 3 parameters. They are word
value or prefix, graph depth, and relations limit. Graph depth is the parameter which defines
how deep we would like to search, as sense have their own senses we would search for any
found sense relations their own relations, so the graph can grow exponentially. That is why
we are adding this parameter in order to limit the size of the graph. The last parameter is the
relation limit; this will limit the count of the relations connected to one sense. As well as one

sense can have zero or more relations, for testing we would like to limit this parameter.

Then let us have a look at the SQL and this is the most problematic place here. As far as we
need a recursive search in database, because every single found related sense can have its
own relations. The second problem is that we cannot simply get needed word as object from
database, because word has a sense as object and sense has relations as object, in their way
relations have words as object and so on. So the solution here is to make so called graph

tuples, which would have all the needed ids and represent nodes in the graph.

43

Graph tuple will have a structure, as shown on the Figure 23.

public class [graphTuple {
private String dictionaryName;
private Long wordId;
private String word;
private String wordLang;
private String wordStatus;
private Long relatedwWordId;
private String relatedwWord;
private String relatedWordlLang;
private Long senseld:
private Long relatedSenseld;
private Integer senseRatio;
private Float relatedness;

private Integer step:;

Figure 23. Graph tuple for retrieving data from PostgreSQL.

As shown in Figure 23 graph tuple is having all the needed information about the words,
senses and relations. The step here shows if this node is selected or not. This information is
needed for composing these nodes as word, sense and relation objects, also for drawing the

graph.

44

Here is an SQL for retrieving these tuples. See Figure 24.

String sqlQueryStr =
"“with recursive graph_node("
+ "dictionary_name, word id, word_value, word _lang, word status, related word_id, "
+ "sense_id, related_sense_id, sense_ratio, relatedness, step, pairs, cycle"
+" as ("
+ "(select
+ "dl.name, wl.id, wl.value, wl.lang, wl.status, w2.id, "
+ "sl.id, s2.id, sl.ratio, r.relatedness, 1, arraylrow(wl.id, w2.id)], false "

“from "

WORD_TABLE NAME + ™ wl, ™
WORD_TABLE NAME + ™ w2, ™
DICTIONARY _TABLE_NAME + ™ d1, ™
SENSE_TABLE_NAME + " s1, ™
SENSE_TABLE_NAME + " s2, ™
RELATION_TABLE NAME + " r ™
“where ™

wordMatchFragment

dictionarylStatusMatchFragment
“and dl.id = wl.dictionary_id "
wordStatusMatchFragment
“and wl.id = sl.word_id "
“and w2.id = s2.word_id "
senseStatusMatchFragment
“and sl1.id = r.sensel_id "
“and s2.id = r.sense2_id "
relationStatusMatchFragment

+ "order by r.relatedness desc) ™
+ "union all *

+ "(select

+ "d2.name, w2.id, w2.value, w2.lang, w2.status, wl.id, "
+ "s2.id, sl.id, s2.ratio, r.relatedness, g.step + 1, pairs || row(w2.id, wl.id), row(w2.id, wl.id) = any(g.pairs) "

“from "
WORD_TABLE NAME + ™ wl, ™
WORD_TABLE NAME + ™ w2, ™
DICTIONARY _TABLE_NAME + " d2, ™
SENSE_TABLE_NAME + " s1, ™
SENSE_TABLE_NAME + " s2, ™
RELATION_TABLE NAME + " 1, ™
“graph_node g "
“where 1=1 "
dictionary2StatusMatchFragment
“and d2.id = w2.dictionary_id "
wordStatusMatchFragment
“and wl.id = sl.word_id "
“and w2.id = s2.word_id "
senseStatusMatchFragment
“and sl1.id = r.sensel_id "
“and s2.id = r.sense2_id "
relationStatusMatchFragment
“and r.sensel_id = g.related sense_id "
“and g.step < :depth "
“order by r.relatedness desc) "

B e S S S S S R A R AR R i

I I T A A

-y
“select

“dictionary_name dictionaryName,
“word_id wordId, "

“word_value word, "

"word_lang wordLang, "

"“word status wordStatus, "

+ "related word id relatedWordId, ™
"sense id senseld, "

"related sense id relatedSenseId, ™
"sense ratio senseRatio, ™
"relatedness relatedness, "

"step step "'
"from graph_node
"where not cycle"

ot +

o+ o+

return su.:ﬂQue rystr;

Figure 24. Hibernate SQL for retrieving graph tuples from PostgreSQL.

This is the main part of this layer. As we can see in the Figure 24, it is not the simplest SQL
query as far as it has a lot of connections between tables, temporary tables connected
together. For a skilled developer this would take a half of the day or even more to write such

SQL query.

45

The problem here is that this is a recursive SQL and we cannot limit the number of found

relations. So it would search for all relations in the database.

We will add an if clause for exact and the prefix search (Figure 25)

String wordValueMatchFragment;

String wordValueMatchCriterion;

if (exactMatch) {
wordvalueMatchFragment = "wl.value = :wordValue ;
wordValueMatchCriterion = wordValue;

T else {
wordValueMatchFragment = "wl.value like :wordValue '';
wordWalueMatchCriterion = wordValue + "S";

b
Figure 25. SQL's exact and prefix search.
And this is not the end point of getting data. After that we need to compose our tuples for the
Word, Sense and Relation objects. So in the final result we would have a single word object

which will contain all the needed information.

First of all, we need to know which tuples are root nodes and which are the connections. That
is why we needed the step in the graph tuples. It is an integer value and it can have only 2
values 1 or 2. 1 means that it is a root tuple, and 2 meant that it is a relation.

46

The method is shown in the Figure 26.

public ResultBuilderData collect(List<GraphTuple> graphTuples) {

Map=Long. List=GraphTuple== graphTupleMap = new HashMap<-=()};
List<Long=> rootWordIds = new ArraylList<-=(};

ResultBuilderData resultBuilderData = new ResultBuilderData():
resultBuilderData.setGraphTupleMap (graphTupleMap];
resultBuilderData.setRootWordIds (rootWordIds);

List<GraphTuple> mappedGraphTuples:
Long wordId;

for (GraphTuple graphTuple : graphTuples) {
wordId = graphTuple.getWordId(};
mappedGraphTuples = graphTupleMap.get(wordId);
if (mappedGraphTuples == null) {
mappedGraphTuples = mew ArraylList<GraphTuple=(J);
graphTupleMap.put(wordId, mappedGraphTuples);
if (graphTuple.getStep() == null) {
rootWordIds.add (wordId);
T else if (graphTuple.getStep() == 1) {
rootWordIds.add (wordId);
L
ks
mappedGraphTuples.add (graphTuple);

b

return resultBuilderData;
T

Figure 26. Collecting the root tuples.

Here we will create an object which will help us in collecting needed data. We named it
ResultBuilderData (Figure 26) and it is having the map with keys as collected word root id’s
and the value as a list of connected to that word graph tuples. Also it has a list of root id’s,

this will simplify our work further.

The next step is to check whether the list of id is empty or not. This will tell us if we have
found something or not. So we could easily return null as a result and not proceed with

further steps.

47

The final step is a population of the graph tuples to the word, sense, relation objects. See

Figure 27.

public Word populate(Long wordId, Map<Long, List<GraphTuple== graphTupleMap, imt relationLimit. imt graphDepth, inmt graphStep) {
Word = null;
if (graphStep == graphDepth) {

List<GraphTuple> mappedGraphTuples = graphTupleMap.get(wordId);
if (mappedGraphTuples != null) {

List<Sense= senses;

List<Relation> relations:

Sense sense;

Relation relation;

Word relatedword;

Long relatedwordId;

int relationCount = ©;

Set<Long> alreadyBindedRelatedWordIds = new HashSet<Long=();

for (GraphTuple graphTuple : mappedGraphTuples) {
relatedwordId = graphTuple.getRelatedwordId();
if (alreadyBindedRelatedwordIds.contains(relatedwordId)) {
comtinue;
1

alreadyBindedRelatedWordIds. add (relatedWordId);
if (word == null) {
word = convertWord (graphTuple);

¥
relatedWord = populate(relatedWordId, graphTupleMap, relationLimit, graphDepth. graphStep + 1):
if (relatedWord == null) {

comtinue;

senses = word.getSenses();

if (senses == null) {
senses = new ArrayList<Sense=();
word.setSenses (senses);

}

sense = findSense(graphTuple.getSenseId(), senses);

if (sense == null) {
sense = convertSense(graphTuple):
senses.add(sense);

}

relations = sense.getRelations();

if (relations == null) {
relations = new ArraylList<Relation=();
sense.setRelations (relations);

relation = convertRelation(relatedWord, graphTuple);
relations.add(relation);
if (++relationCount == relationLimit) {
break;
H

¥

Figure 27. Populate graph tuples to the word object

This is the recursive method which calls himself as we need to compose the next connected
word (Figure 27). The goal of this method is to return a word object which has senses, sense
it their way will have relation objects. Relation objects will have word objects and so on, until
the graph depth is exceeded.

48

In the Figure 28 shows the method, which composes the result object to the JSON

protected vold composeResult(
HttpServletResponse response, String wordValue, imt graphDepth. imt relationLimit, boolean exactMatch) throws Exception {

logger . debug(“Search by word \"{}\" with graph depth {} and relations limit {}", wordValue, graphDepth, relationLimit};
Object result;
if (exactMatch) {

result = getDataService().getWord(wordvalue, graphDepth, relationLimit, null);

T else {
result = getDataService().getwprds (wordvalue, graphDepth, relationLimit, null);

response. setHeader (“Content-Type™, “application/json; charset=UTF-8"};
response.setCharacterEncoding (“UTF-8");

ServletOutputStream responseCutputStream = response.getOutputStream();

ObjectMapper objectMapper = new ObjectMapper();
objectMapper.writerWithDefaultPrettyPrinter().writeValue (responseOutputStream, result);

response. flushBuffer();
responseOutputStream.close();

}

Figure 28. Compose the collected results as JSON.

So when the needed word object is composed for an exact search or list of word objects
composed for prefix match we will return them to the end user as a JSON format (Figure 28).
This is very comfortable format for us, because it is human-readable and it will be easy to test

further our services.

49

4.4.2 Retrieving data from Neo4j database

So we already have a RelDbController class which was mapped to get PostgreSQL data. Here
we will use the same pattern, apart from that we will create a DataService interface to map

needed methods for relational and graph databases. See Figure 29.

public interface pataService {

1 ok
* B
*

1 X
Word getWord(String wordValue, imt graphDepth, imt relationLimit, Status status) throws Exception:

-
*
*

] ko
Word getWord(Long wordId, imt graphDepth, imt relationLimit, Status status) throws Exception;

-
* Returns lis
*

1 o

eturns count of active words matching the prefix

1 *
int getWordsCount(String prefix) throws Exception:

k3

* Returns plain list of active words metching the prefix

E ¥ :

List<Word= getWords(String prefix, imt limit) throws Exception;

1 E

1 ¥/
void deleteword(Long wordId) throws Exception;

1 E2

* Creates and returnes new sense 1d with associated word and first sense relation.
1 *f

Long relateSense(Long wordId, Long senseld, Long relatedSenseId., Float relatedness) throws Exception;

h

Figure 29. DataService interface.

These methods in the interface will be mapped to retrieve data as from graph database, as
from PostgreSQL (Figure 29).

The next step here is to implement the first getWord method in the interface. The problem
here is that we cannot simply use standard repository methods suggested by neo4j repository.
So as with PostgreSQL we will first get the needed words as objects and then traverse

through the database for finding needed connections.

50

First of all, let us implement the repository methods which will help us to find the needed

words. See Figure 30.

public inmterface WordRepository extends GraphRepository<Word= {
@Query ("HATCH (w:Word) WHERE w.value =~ {value} RETURN w"')
List<Word= findByValue (@Paramn(“value™) String value);

@Juery (“MATCH (w:Word) WHERE w.value =~ {regex} RETURN w ORDER BY w.value")
List<Word= findByValueRegex (@Faram(regex") String value);

@Query ("HATCH (w:Word:Word {value:{@83}}) RETURN w™)

Word getWordByValue(String word);

@Query ("HATCH (w:Word) RETURN count(w)")}
Leng getWordModeCount(];

ks
Figure 30. WordRepository interface.

The Cypher language is not very hard to understand so it takes a couple of minutes to start
writing neo4j queries. The first and the second methods are similar, apart from that we will
use first for the exact search and the second for regular expression search needed to search by
prefix (Figure 30).

So in the first step we will use one of these methods to find the list of searching words. For

the exact search we will have:

List<Word> words = wordRepository.findByValue(wordValue);

And in the second case:

List<Word> words = wordRepository.findByValueRegex(prefix + *.*’);

As with relational database in the next step we will check whether the list is empty or not, so

we could return a feedback to the user that the search did not give any results.

The next step is very important for understanding, so we will compose our results and travel

through the graph with the TraversalDescription class to find needed data.

51

So we get a composing method in final results, as shown on the Figure 31.

@ransactional
public Word getRelationsFor(Word word, imt depth) {

K

int countModes = O;

depth = depth +2;
Node wordNode = neodjTemplate.getPersistentState(word);
RelatedWordsEvaluator calculateRelatedWords = new RelatedWordsEvaluator(depth):

TraversalDescription traversalDescription = graphDatabaseService.traversalDescription()
.depthFirst()
.relationships(RelationshipTypes. CONNECTED)
.relationships(RelationshipTypes.RELATED)
.evaluator(Evaluators. teDepthidepth))
cevaluator(calculateRelatedWords);

Traverser traverser = traversalDescription.traverse(wordhode);

for (Node node : traverser.nodes()) {
countNodes++;
H
logger.info("TraversalDescription query all nodes count: ™ + countNodes);
logger.info("TraversalDescription query sense relations count: " + calculateRelatedWords.getCountSenseRelations());

return calculateRelatedwords.getWordwithRelations();

Figure 31. Composing relations of the Word object.

This step is very important and it needs some time to understand how it works (Figure 31).

Although the Cypher language is very simple for learning the usage of the Spring Data Neo4j

project is not so trivial.

The interesting part here is the TraversalDescription object, which helps us to travel through

the database and collect the needed nodes. First of all we define which algorithm we will use

to search for the data. It suggests depth first and breadth first search. We will use the first

one. Next we will define all relationships to be traversed for any given node: CONNECTED

and RELATED. And in the final step we define how deep we will go in the graph and what

we will do with the collected data.

52

Now let us take a look on what we are doing while traversing the nodes. We created a helper

class named RelatedWordsEvaluator. See Figure 32.

public class RelatedWordsEvaluator implements Evaluator {
private static Logger logger = LoggerFactory.getlogger (GraphImportDbService.class);

word rootwWord;

Sense currentSense;

Sense previousLevel Sense

Relation currentRelation;

List<Sense> rootSenses = new ArraylList<=();
Map<Long, String=> senseWords = new HashMap<=(}:
imt depth = ©;

imt countDistanced = @;

int previousSenseDistance = 0;

imt countSenseRelations = O;

int countSenses = 0;

] public RelatedWordsEvaluator(imt depth) { this.depth = depth; }

] public Word getWordwithRelations() {
logger.info(* TraversalDescription query all senses count: ™ + coumtSenses);
rootWord. setSenses (rootSenses);
return this. rootWord;

1 ¥

@0verride
1 public Evaluation evaluate(Path path) {
final imt distance = path.length();

Node node = path.endode():
Relationship relationship = path.lastRelationship();

debugRow(path, node, relationship, distance);
if (distance == 0) {
rootWord = new Word():
rootWord. setId(node.getId());
if (node.hasProperty(“value™)) {
rootiWord.setValue ((String) node.getProperty(*value™));

logger.info(*Root node: ** + node);
K

else if (d == 1 && node.haslLabel(GraphLabels.Sense) && relationship != null && relationship.isType(RelationshipTypes.CONNECTED)) {
Sense rootSense = new Sense();
rootSense.setId(node.getId());
if (relationship.hasProperty(“ratio™)) {
rootSense . setRatio((Integer) relationship.getProperty(*ratio™));
rootSenses.add(rootSense);
currentSense = rootSense;
countSenses++;

i

Figure 32. RelatedWordsEvaluator part 1.

Here we defined all the needed variables, which will help us with collecting data, but the
main part here is to evaluate method which is overridden by Neo4j Evaluator class (Figure
32). That is the place where we collect needed data depending on the level of the search, the

type of the node and the type of the connection.

53

The second part of RelatedWordsEvaluator is shown in the Figure 33.

¢ related sense

else if -(dis‘-cance < depth && node.haslLabel(GraphLabels.Semse) && relationship != null && relationship

.isType (RelationshipTypes. RELATED)) {

'/ It's a new level sense relation

if (distance > previousSenseDistance) {
previousLevelSense = currentSense;
t 11 oaaer debimaf "mova on') .

}
else if (distance < previousSenseDistance) {
int relationDepth = 1;
previousLevelSense = rootSenses.get(rootSenses.size() - 1);
while (relationDepth < distance - 1) {
previousLevelSense = previousLevelSense.getRelations().get(previousLevelSense.getRelations().size() - 1).getSense():

relationDepth++:

Sense sense = new Sense();
sense.setId(node.getId());
Relation relation = new Relation();
relation.setId(relationship.getId());
if (relationship.hasProperty (relatedness™)) {
relation.setRelatedness(((Double) relationship.getProperty(“relatedness”)).floatvalue());
}

relation.setSense(sense);
List<Relation> senseRelations = previousLevelSense.getRelations();
if (senseRelations == null) {
senseRelations = new ArraylList<=();
previouslLevelSense.setRelations (senseRelations);

senseRelations. add(relation);

curremtSense = sense;
currentRelation = relation;

countSenseRel ations++;
previousSenseDistance = distance;

countSenses++;
S .
els:a-:f. -(n;aé:.hééLét-JelldiG;aphLabels.h’ord] && relationship != null && relationship.isType(RelationshipTypes.CONNECTED)) {

Word word = new Word():
word.setId(node.getId());
if (node.hasProperty (“value™)) {
word.setValue ((String) node.getProperty(*'value™});

H
if (relationship.hasProperty ("ratio™)) {
currentSense, setRatio((Integer) relationship.getProperty(“ratio™));
}
currentRelation. setword (word);

¥
return Evaluation.INCLUDE_AND CONTINUE;

Figure 33. RelatedWordsEvaluator part 2.

While the data is collected the node can be included to or excluded from the search, we can

also continue or prune the search (Figure 33).

After all the data is collected in the single word object, we return it in JSON to the user, as it

was made with PostgreSQL.

At last we acquired 4 URL’s for testing:

o [reldb/searchexact/{word}/{graph depth}/{relations limit}
o /reldb/searchlike/{prefix}/{graph depth}/{relations limit}
o /graphdb/searchexact/{word}/{graph depth}/{relations limit}
« /graphdb/searchlike/{prefix}/{graph depth}/{relations limit}

54

5 Testing

To determine which database is better to use for such kind of systems, let us define what
parameters are making our system better.

Response time. It is really important for the end user to get requested data fast. Nobody
would wait minutes for the response. Even if the response takes several seconds it is really

annoying if you would like to make dozens of requests.

CPU usage. Since our system should work not on the local machines only, but on the remote
servers, so everybody could use it. It would be very nice if it was lightweight. Less the CPU

usage is, the more users can use it, the more processes we can run on the server.
Memory usage. Here is the same problem. Less the memory usage is the better it is.
Environment settings:

e Memory: 8 GiB

e Processor: Intel Core i5-4310U CPU @ 2.00Ghz x 4
e OS: Ubuntu 15.4

e RDBMS: PostgreSQL 9.4.5

e GraphDB: Neo4j 2.2.0

e Word count: 90000
e Senses count: 90000
e Relations count: 4410000

55

5.1

Response time

Here we will measure the response time of the system with different databases, relations limit

and the graph depth. First we will test the relational database by increasing the number of

relations and graph depth. To get more precise results we will take an average of 3 tests for a

response time.

Table 6. PostgreSQL response time with graph depth 2.

Test | Graph depth | Relations limit | Query time (ms) x | Structure build Avg. total
No 3 (ms) x 3 time (ms)
1 2 9) 1166 | 1198 | 1144 | 1 2 1 1171

2 2 10 1157 | 1216 | 1320 | 1 1 1 1232

3 2 15 1136 | 1179 | 1156 | 1 1 1 1158

4 2 20 1188 | 1178 | 1208 | 1 1 2 1193

5 2 25 11441 1181 | 1364 | 1 2 3 1232
Table 7. PostgreSQL response time with graph depth 3.

Test | Graph depth | Relations limit | Query time (ms) x | Structure build (ms) | Avg. total
Ne 3 X 3 time (ms)
1 3 5 3044 | 3092 | 3377 | 29 18 10 3190

2 3 10 3080 | 3025 | 3028 | 25 26 19 3068

3 3 15 3088 | 3057 | 3055 | 30 28 30 3096

4 3 20 3086 | 2999 | 3114 | 33 35 32 3100

5 3 25 3107 | 3005 | 3393 | 40 38 34 3906

As it was mentioned in the Paragraph 3.4.1 the recursive sgl is searching for all relations in

the database and there is no way to limit the connections in the SQL query time. This caused

a problem, because the query does not work with the graph depth more than 3. The amount of

data is so huge that it gives OutOfMemory exception. In fact, our system’s requirements do

not mean to work with data further when first level relations, because we show for the users

only the connections of the searched word.

56

Let us have a look at the response time of the Neo4j database.

Table 8. Neo4j response time with graph depth 2.

Test | Graph depth | Relations limit | Query time (ms) x | Structure build (ms) | Avg. total
No 3 X 3 time (ms)
1 2 5 164 | 105 130 | 32 32 31 165
2 2 10 164 | 106 102 | 32 31 35 157
3 2 15 185 | 132 102 | 34 30 30 171
4 2 20 155 | 137 116 | 30 30 30 166
5 2 25 194 | 120 132 | 44 44 32 189

Table 9. Neo4j response time with graph depth 3.

Test | Graph depth | Relations limit | Query time (ms) x | Structure build (ms) | Avg. total
No 3 X 3 time (ms)
1 3 5 98 |171 109 | 68 79 96 207
2 3 10 145 | 189 131 | 73 77 68 228
3 3 15 107 | 188 101 | 82 73 65 205
4 3 20 107 | 174 134 | 67 77 68 209
5 3 25 104 | 102 104 | 150 |66 67 198

So it is very fast and despite of the PostgreSQL it works with very big graph depth numbers.

The difference is very huge. So it will be clearer if we translate the same data on the line
graph (Figure 34, 35).

1800
1600
1400
1200
1000
800
600
400

200

PostgreSQL Neo4j

Figure 34. PostgreSQL vs. Neo4j with graph depth 2.

57

4500
4000
3500
3000
2500
2000
1500
1000

500

PostgreSQL Neo4j

Figure 35. PostgreSQL vs. Neo4j with graph depth 3.

The result is to the fore. In case of the graph depth 2 (Figure 34) the Neo4j database is around
7 times faster, and in case of the graph depth 3 (Figure 35) approximately in 15 times.
Superiority is huge.

What we can notice in that test is that the average response time does not depend on relations
graph limit. It is because in both cases we pass all the nodes in the graph depth and sort the
needed ones in the end. So it does not matter whether we limit with 5 relations or with 25.
The response time is growing immediately with the graph depth and the PostgreSQL takes

much more time to retrieve data.

58

5.2 CPU and the memory usage

First of all, we will find out what are the minimum hardware requirements for both databases.
It is said that PostgreSQL minimum requirements are:

e 64bit CPU

e 64bit Operating System
e 2 Gigabytes of memory
e Dual CPU/Core

e RAID1

And for the Neo4j system should have:

e Intel Corei3
e 2 Gigabytes of memory
e 10 Gigabytes of SATA

e Ext4 or similar filesystem

The requirements are more or less similar. In fact, that servers and computers are nowadays

much faster, it should not be a problem of using and installing these databases.

But let us have a look at the project and service performance in particular. For this test we
installed a YourKit Java Profiler, so we could measure the CPU usage of our services
working with Neo4j or PostgreSQL.

YourKit is an intelligent tool for profiling Java & .NET applications. It allows users to
measure CPU and memory usage with maximum productivity and zero overhead and is used
by a lot of big and small companies. It can be used at both development and production
stages. [14]

59

First of all, let us measure the CPU usage of our application working with PostgreSQL.

Table 10. PostgreSQL CPU usage with graph depth 2.

Test | Graph depth | Relations limit | CPU usage x 3 Avg. CPU
No usage

1 2 5 10% | 3% | 15% | 9%

2 2 10 5% | 7% | 5% | 6%

3 2 15 4% | 3% | 11% | 6%

4 2 20 3% 3% |4% | 3%

5 2 25 3% | 4% | 4% | 4%

Table 11. PostgreSQL CPU usage with graph depth 3.

Test | Graph depth | Relations limit | CPU usage x 3 Avg. CPU
No usage

1 3 5 16% | 15% | 14% | 15%

2 3 10 22% | 23% | 19% | 21%

3 3 15 22% | 14% | 10% | 15%

4 3 20 16% | 17% | 23% | 19%

5 3 25 20% | 43% | 37% | 33%

And then with the Neo4j.

Table 12. Neo4j CPU usage with graph depth 2.

Test | Graph depth | Relations limit | CPU usage x 3 Avg. CPU
No usage

1 2 5 6% |6% |13% | 8%

2 2 10 10% | 5% | 6% | 7%

3 2 15 5% |10% [6% | 7%

4 2 20 12% | 10% | 4% | 9%

5 2 25 5% | 7% |[9% | 7%

Table 13. Neo4j CPU usage with graph depth 3.

Test | Graph depth | Relations limit | CPU usage Avg. CPU
No usage

1 3 5 21% | 5% | 10% | 12%

2 3 10 9% |14% | 7% | 10%

3 3 15 16% | 10% | 8% | 11%

4 3 20 6% |6% |[5% |6%

5 3 25 9% |9% |[6% |8%

60

As we can see the CPU usage does not increase with the number of relations. It grows if we
go deeper to the graph. In case of the PostgreSQL the average CPU usage with graph depth 2
was 5,6% of all CPU and with graph depth 3 — 20,6%. The CPU usage with a Neo4j in graph
depth 2 was a little more — 7,6%, but the impact of the depth was not bigger. With graph
depth 3 the usage is 9,4%.

Because of that java is a JVM language all the memory usage is under Garbage Collector’s
control. So the collector decides whether to reclaim the memory or not. So it is very hard to
draw conclusion, because it might be close to 0 MB or might take a half of GB. But let us try
to measure the Eden Space of the JVM in the time after the request is made and take the
difference between memory allocated before the request. In total we have allocated 2048 MB

of RAM for our Java application. Let us have a look at the results with the PostgreSQL.

Table 14. PostgreSQL heap memory increase with graph depth 2.

Test | Graph depth | Relations limit | Memory Avg. memory
Ne increase (MB) | increase (MB)
1 2 5 11 |10 |5 9
2 2 10 7 5 12 |8
3 2 15 8 9 6 8
4 2 20 7 9 10 |9
5 2 25 8 6 12 19

Table 15. PostgreSQL heap memory increase with graph depth 3.

Test | Graph depth | Relations limit | Memory Avg. memory
No increase (MB) | increase (MB)
1 3 5 244 | 253 | 240 | 246
2 3 10 244 | 240 | 242 | 242
3 3 15 242 | 249 | 246 | 246
4 3 20 244 | 247 | 258 | 250
5 3 25 247 | 246 | 242 | 245

And the same tests for Neo4j.

Table 16. Neo4j heap memory increase with graph depth 2.

Test | Graph depth | Relations limit | Memory Avg. memory
No increase (MB) | increase (MB)
1 2 5 168 | 167 | 161 | 165
2 2 10 164 | 161 | 164 | 163
3 2 15 164 | 161 | 163 | 163
4 2 20 160 | 163 | 164 | 162
5 2 25 160 | 161 | 160 | 160

61

Table 17. Neo4j heap memory increase with graph depth 3.

Test | Graph depth | Relations limit | Memory Avg. memory
No increase (MB) | increase (MB)
1 3 5 180 | 179 | 180 | 180
2 3 10 185 | 183 | 179 | 182
3 3 15 181 | 183 | 183 | 182
4 3 20 181 | 184 | 187 | 184
5 3 25 181 | 180 | 184 | 182

So the average growth of the memory for the depth 2 is very impressive — 8,6 Megabytes. But
it is increased a lot with the graph depth 3 and reached 245,8 Megabytes. And we can believe
that it will grow rapidly if the data increases. In case of the Neo4j the usage is more or less

stable and does not grow so much with the depth. 162,6 megabytes in first case and 182 with

the depth 3.

62

6 Thesis summary

We have looked at the problem from different sides, starting with installation, learning a
query language and writing server side services for retrieving data from two different
databases to compare. We changed our project’s codebase so it was working with two
different databases in parallel. With two absolutely identical services we managed to test two

databases for a response time, CPU and memory usage.

Let us sum up what results we got considering the work. As we saw in the test phase the
response time of the Neo4j database was much faster compared to the PostgreSQL, so with
the depth 3 it was approximately 15 times faster. It is a huge advantage, because such systems
should handle thousands requests at a time. Also we noticed that PostgreSQL cannot handle
requests with the graph depth more than 3, because of the huge amount of data and recursive
SQL query. Concerning the CPU and memory usage, our tests showed that the PostgreSQL
system consumption is rather exponential as it needs more CPU and memory with the growth
of the amount of data, but it is less on the depth 2 especially with the memory usage. We

believe that it depends on the processes after retrieving data, and traversing the graph.

As for developer it was not so hard to learn the basics of new technology, as it could have
happened. The Neo4j documentation is clear enough for understanding. It is simple and
interesting in use. It is definitely better for such kind of systems when you have a lot of
different connection types and complex relations between objects, because they store
relationships at the data level whereas RDBMS use a declarative approach. This is the main
advantage of graph databases, because instead of doing tons of joins, they just pick a record

and follow his relationships.

The main idea for this work was to check if the system can work better with using different
database approach and how hard it is to refactor the system for that changes. The conclusion
is that system can definitely work faster with such kind of data. Graph database algorithms

are specially made for the system like ours, and should be used further.

63

6.1 Future work

The problem is that the latest developing project version today is far from the tested version
and there are much more functionalities that it can handle beside of the showing the relations
between word lexemes. So it is not so easy to just throw the database and rewrite the
codebase. The best approach for this problem is to use graph database for the relations and
nodes - for the fast querying and PostgreSQL database for the rest like user and dictionaries

management systems.

64

Kokkuvotte

Vaatasime probleemi peale erinevaatest suunatest, alustades andmebaasi paigaldamisega,
paringu keele dppimisega ja serveri teenuste arendamisega. Me muutsime meie koodi, et see
tootaks kahe erinevate andmebaasidega paraleelselt. Kahe teenusega, mis to6tavad

samamoodi me suutsime testida andmebaaside reaktsiooniajad, CPU ja malukasutust.

Vaatame luhidalt mis tulemused me saime selles t60s. Nagu me ndgime testfaasil
reaktsiooniaeg Neo4j andmebaasil oli palju kiirem, kui PostgreSQL, otsingu sligavusega 3
see oli 15 korda kiirem. See on véga suur eelis, sest sellised siisteemid peavad taotlema
tuhandeid paringud. Samuti, me mérkasime, et meie susteem isegi ei saa hakkama otsinguga,
mille stigavus on rohkem kui 3, sellepérast, et PostgreSQL'i paring on rekursiivne laadib véaga
palju andmeid. Vaadates CPU ja méalu kasutamisele, meie tesitid nditasin, et PostgreSQL-i
stisteemi kasutamise kasv on pigem eksponentsiaalne ja kiiresti kasvab andmete suurusega,
kuid on vaiksem alguses vorreldes Neo4j-ga. Me arvame, et see on seotud protsessidega, mis
toimuvad peale péringut ja Neo4j andmete tootlemisega.

Arendajana, see ei olnud nii keeruline 6ppida uue tehnoloogiat, nagu see voiks juhtuda.
Neo4j dokumentatsioon on paris lihtne ja arusaadav. See on huvitav ja lihtne kasutamises.
See on absuluutselt kdige parem lahendus selliste stisteemide jaoks nagu meie, kui teil on
vdaga palju erinevdid uhendusi objektide vahel, sest andmebaas salvestab neid andmete
tasemel, kusjuures RDBMS kasutab deklaratiivle Idhenemise. See on kdige suurem eelis
graafi andmebaasidel, sellepérast, et ei ole vaja teha tuhandeid tabelite thendusi, andmebaas

lihtsalt vOtab objecti ja jalgib selle ihendust tiste objektidega.

Selle t66 peamine ulesanne oli vaadata, kas saab teha stiiisteemi paremini kasutades erineva
andmebaasi stisteemi ja kui raske on muuta stisteemi selleks, et ta to6taks erineva
andmebaasiga. Kokkuvottes me saime, et slisteem saab kindlasti todtada paremini meie
andmetegal. Graafi andmebaasid on spetsiaalselt tehtud selle slisteemide jaoks nagu meie, ja

peaks votta kasutusele edaspidises susteemie arendamises.

65

Edasine t66

Probleem on selles, et praeguse siisteemi versioon on palju kaugemal testitud siisteemi
versioonilt ja on lisatud palju rohkem funktsionaalsust millega susteem saab hakkama peale
sOnade lekseemi (ihenduste nditamist. See tdhendab, et me ei saa nii lihtsalt kustutada
olemasoleva andmebaasi ja kirjutada tmber koodi. Kdige parem variant on kasutada graafi
andmebaasi lekseemide ja seotse jaoks ja PostgreSQL teiste andmete jaoks nagu kasutajate ja

sonastikute haldamine.

66

References

[1] Shalini Batra, Charu Tyagi. Comparative analysis of relational and graph databases.
International Journal of Soft Computing and Engineering (IJSCE), May 2012.

[2] Quantitative data definition. [WWW]
http://www.businessdictionary.com/definition/quantitative-data.html (07.03.2015)

[3] Lexeme definition. [WWW] http://www.merriam-webster.com/dictionary/lexeme
(07.03.2015)

[4] Data-Driven Documents. [WWW] http://d3js.org/ (07.03.2015)

[5] Spring. [WWW] http://docs.spring.io/ (07.03.2015)

[6] Qlaara’s blog. [WWW] http://blog.glaara.com/ (07.03.2015)

[7] Neo4j. [WWW] http://neo4dj.com/ (07.03.2015)

[8] Oracle Database. [WWW] https://en.wikipedia.org/wiki/Oracle Database (29.12.2015)

[9] Level of support definition. [WWW] http://searchcrm.techtarget.com/definition/level-of-
support (22.02.2016)

[10] Release Notes: Neo4j 2.2.0 [WWW] http://neodj.com/release-notes/neo4j-2-2-0/
(1.03.2016)

[11] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, Dawn
Wilkins. A Comparison of a Graph Database and Relational Database, 2010.

[12] Apache Lucene. [WWW] https://lucene.apache.org/ (7.03.2016)

[13] Justin J. Miller. Graph Database Applications and Concepts with Neo4j, March 2013

[14] YourKit Java Profiler. [WWW] https://www.yourkit.com/ (21.04.2016)

[15] How Graph Databases Relate To Other NoSQL Data Models. [WWW]
http://neo4j.com/developer/graph-db-vs-nosql/ (2.05.2016)

67

http://www.businessdictionary.com/definition/quantitative-data.html
http://www.merriam-webster.com/dictionary/lexeme
http://spring.io/
http://spring.io/
http://docs.spring.io/
http://blog.qlaara.com/
http://neo4j.com/
https://en.wikipedia.org/wiki/Oracle_Database
http://searchcrm.techtarget.com/definition/level-of-support
http://searchcrm.techtarget.com/definition/level-of-support
http://neo4j.com/release-notes/neo4j-2-2-0/
https://lucene.apache.org/
https://www.yourkit.com/
http://neo4j.com/developer/graph-db-vs-nosql/

[16] NoSQL Databases: An Overview. [WWW]
https://www.thoughtworks.com/insights/blog/nosgl-databases-overview (2.05.2016)

[17] Jeevan Joishi, Ashish Sureka. Performance Comparison and Programming Process
Mining Algorithms in Graph-Oriented and Relational Database Query Languages, 2015

[18] Mario Miller, Damir Medak, Drazen Odobasic. The shortest path algorithm performance
comparison in graph and relational database on a transportation network, 2013

68

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

