
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

IDU70LT

Oleg East 111379IAPM

COMPARATIVE ANALYSIS OF

RELATIONAL AND GRAPH DATABASE

BEHAVIOR ON THE CONCRETE WEB

APPLICATION

Master’s thesis

Supervisor: Ingmar Pappel

 Master of Science

 Lecturer

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

 IDU70LT

Oleg East 111379IAPM

RELATSIOON- JA GRAAFANDMEBAASI

VÕRDLEMINE KONKREETSE

VEEBIPÕHILISE RAKENDUSE PEAL

Magistritöö

Juhendaja: Ingmar Pappel

 Magistrikraad

 Lektor

3

Declaration

Herewith I declare that this thesis is based on my own work. All ideas, major views and data from

different sources by other authors are used only with a reference to the source. The thesis has not

been submitted for any degree or examination in any other university.

(date) (signature)

4

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

5

Comparative analysis of relational and graph

database behavior on the concrete web application

Abstract

This thesis is written in English and is 68 pages long, including 6 chapters, 35 figures and 17

tables.

The first commercially available RDBMS was released in 1979 and has been dominating for

storing and retrieving data for a long time until nowadays. [8] But since the amount of storing

data is growing from day to day, the way of representing it is becoming more and more

complex, because of dependence on a rigid schema which makes it difficult to add new

relations between data. One of solutions to this problem is to use the graph database which

was specially developed to solve such kind of problems, as a graph is a natural way of storing

connections between objects. The Graph databases is a more modern concept of storing data

and it is already used by a lot of known companies today, because the network data is simpler

to represent as nodes are connected by relations and not by a large number of joined together

tables.

The aim of this work is to try out the new concept of representing and storing data as graph

principles on the developing web application which uses relational database management

system. Software application itself represents a dictionary with words and lexemes connected

by relations. The idea of it is to show how words are connected together in a dictionary. So

the final results are shown as a graph with lexemes and relation strengths. The realization was

made with relational database PostgreSQL. That is why an idea to try out a new concept with

some graph database for this application has appeared.

In this work there will be a short introduction of the application, its data model, use cases and

comparison of two different database approaches. We will try to change the codebase of our

application so it would work with two databases in parallel. For this work we have chosen

most popular graph database Neo4j. Ultimately, we would test our application for the

response time, CPU and memory usage.

6

Relatsioon- ja graafandmebaasi võrdlemine

konkreetse veebipõhilise rakenduse peal

Annotatsioon

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 68 leheküljel, 6 peatükki, 35 joonist,

17 tabelit.

Esimene kaubanduslikult saadav relatsioonanmebaas ilmus aastal 1979. [8] Tänasepäevani

see oli domineeriv mudel andmete hoidmise ja hankimiseks. Kuid salvestatud andmete maht

kasvab iga päev, selle esindamise viis muutub ka keerulisemaks. See juhtub sellepärast, et

mudel on väga sõtluv skeemast, mis teeb raksemaks uute sõltuvuste lisamist. Üks

võimalikutest lahendustes on kasutada graafiandmemudeli, mis oli spetsiaalselt arendatud

andmebaasi mudeli lihtsustamiseks ja sarnase probleemi lahendamiseks, sest graaf on

loomulik viis andmete sõltuvuste salvestamiseks. Graafiandmebaasid on kaasaegne

kontseptsioon andmete salvestamiseks ja on juba kasutusel paljudes tuntutes ettevõtetes, sest

võrguandmed on palju lihtsam esindada sõlmedena mis on ühendatud seostega, aga mitte

suure hulga liitunud tabelitena.

Selle töö eesmärk on proovida uue kontseptsiooni andmete salvestamiseks ja esindamiseks

graafiprintsiibidena juba olemasolevas arenevas rakenduses, mis kasutab tavalise

relatsioonandmebaasi. Tarkvararakendus ise on sõnastikute hulk, kus on sõnad ja sõnade

lekseemid ühendatud seostega. Selle idee on näidata graafina, kuidas sõnad on seotud

üksteisega sõnastikus ja kui tugevad sõltuvused on erinevatel sõnadel. Rakendus on tehtud

relatsioonandmebaasiga PostgreSQL ja just sellepärast tuli idee proovida uue graafimudeli

andmete salvestamiseks.

Selle töö käigus tuleb lühike sissejuhatus arendatavast rakendusest, selle andmemudel,

kasutuslood ja kahe erineva andmebaasi mudeli võrdlemine. Me muudame meie rakenduse

koodi nii, et see töötaks kahe erineva andmebaasiga paraleelselt. Selleks me valisime ühe

väga populaarse graafi andmebaasi Neo4j. Lõpuks me testime meie süsteemi reaktsiooniaja,

CPU ja mälukasutust.

7

List of abbreviations and terms

Quantitative data Data that can be quantified and verified, and is amenable to statistical

manipulation. Quantitative data gives the definition, whereas qualitative

data provides the description.

Lexeme A meaningful linguistic unit that is an item in the vocabulary of a

language.

D3.js D3.js is a JavaScript library which helps you to represent data with

powerful visualization components as dynamic and interactive graphical

forms which can be run in a web browser.

RDBMS Relational Database Management System.

PostgreSQL The world’s most advanced open source relational database.

Neo4j The world’s leading graph database.

MVC Model-view-controller pattern.

Front-end Interface between user and server side back-end.

Back-end Application business logic and data management.

HTML Hypertext Markup Language.

Data access layer A layer of a computer program which provides simplified access to data.

Hibernate Object-relational mapping framework for Java language.

IoC Inversion of control pattern.

AOP Aspect-oriented programming.

8

ORM Object-relational mapping.

SQL Structured Query Language.

Cron job Time-based job scheduler.

JSON An open standard format that uses human-readable text to transmit data

objects consisting of attribute–value pairs.

Depth-first and

breadth-first

An algorithm for traversing or searching tree or graph data structures.

Lucene Free and open-source information retrieval software library.

Directed acyclic

graph (DAG)

A directed graph with no directed cycles

Eden space Part of Java Heap where the JVM initially creates any objects

9

List of figures

Figure 1. Graph structure ... 13
Figure 2. Retrieval time of queries by Neo4j and MySQL (100 objects). 17

Figure 3. Retrieval time of queries by Neo4j and MySQL (500 objects). 17
Figure 4. Qlaara main page. Graph view. .. 24
Figure 5. Qlaara main page. Table view. ... 25
Figure 6. Main system use-cases. .. 27
Figure 7. User and dictionary management. .. 28

Figure 8. Qlaara's entity relationship diagram. .. 30
Figure 9. Qlaara's default Hibernate native query. .. 32
Figure 10. Qlaara's default ORM method. ... 33
Figure 11. Qlaara's Word.class structure. .. 34
Figure 12. Qlaara's DataLoader.class .. 35

Figure 13. Qlaara's DataParser.class. ... 36
Figure 14. Saving words into the database. ... 36

Figure 15.Saving senses into the database. .. 37
Figure 16. Saving relations into the database. ... 37

Figure 17. Resetting Neo4j database ... 39
Figure 18. Saving words and senses to Neo4j database... 40

Figure 19. Methods for saving words and senses into the Neo4j. ... 41
Figure 20. Saving relations into the Neo4j database. ... 41
Figure 21. Neo4j transaction creating methods ... 42

Figure 22. Controller methods for retrieving data from databases. ... 43
Figure 23. Graph tuple for retrieving data from PostgreSQL. ... 44

Figure 24. Hibernate SQL for retrieving graph tuples from PostgreSQL. 45
Figure 25. SQL's exact and prefix search. ... 46

Figure 26. Collecting the root tuples.. 47
Figure 27. Populate graph tuples to the word object ... 48

Figure 28. Compose the collected results as JSON. .. 49
Figure 29. DataService interface.. 50
Figure 30. WordRepository interface. ... 51

Figure 31. Composing relations of the Word object. ... 52
Figure 32. RelatedWordsEvaluator part 1. .. 53

Figure 33. RelatedWordsEvaluator part 2. .. 54
Figure 34. PostgreSQL vs. Neo4j with graph depth 2. .. 57
Figure 35. PostgreSQL vs. Neo4j with graph depth 3. .. 58

10

List of tables

Table 1. Query Results in Milliseconds. .. 17
Table 2. Databases with sizes. ... 19
Table 3. Query results, in milliseconds. ... 20

Table 4. Query results with integer values, in milliseconds. ... 20
Table 5. Query results with character values, in milliseconds. .. 21
Table 6. PostgreSQL response time with graph depth 2. ... 56
Table 7. PostgreSQL response time with graph depth 3. ... 56
Table 8. Neo4j response time with graph depth 2. .. 57

Table 9. Neo4j response time with graph depth 3. .. 57
Table 10. PostgreSQL CPU usage with graph depth 2. ... 60
Table 11. PostgreSQL CPU usage with graph depth 3. ... 60
Table 12. Neo4j CPU usage with graph depth 2. ... 60
Table 13. Neo4j CPU usage with graph depth 3. ... 60

Table 14. PostgreSQL heap memory increase with graph depth 2. ... 61
Table 15. PostgreSQL heap memory increase with graph depth 3. ... 61

Table 16. Neo4j heap memory increase with graph depth 2. ... 61
Table 17. Neo4j heap memory increase with graph depth 3. ... 62

11

Table of Contents

1. Introduction .. 12

1.1 Problem formulation ... 12

1.2 Goal of the thesis and expected results ... 12

2. Core concepts and previous experiments ... 13

2.1 Graph database principles ... 13

2.2 Graph databases and NoSQL data models .. 14

2.3 Previous experiments .. 15

2.3.1 Comparative analysis of relational and graph databases 15

2.3.2 A Comparison of a Graph Database and a Relational Database. 18

2.4 Gathered information .. 23

3 Application design .. 24

3.1 Use cases ... 26

3.1.1 User interactions .. 26

3.1.2 User and dictionary management .. 28

3.2 Data model .. 30

3.3 Data access layer ... 32

3.4 Loading data to the PostgreSQL database... 35

4 Database design and development .. 38

4.1 Neo4j installation .. 38

4.2 Cypher query language.. 38

4.3 Loading data to the Neo4j database .. 39

4.4 Data access layer refactoring... 43

4.4.1 Retrieving data from PostgreSQL database... 43

4.4.2 Retrieving data from Neo4j database .. 50

5 Testing .. 55

5.1 Response time ... 56

5.2 CPU and the memory usage .. 59

6 Thesis summary .. 63

6.1 Future work ... 64

Kokkuvõtte ... 65

Edasine töö ... 66

References .. 67

12

1. Introduction

Current work is made on the basis of developing application named Qlaara. Application itself

represents a web dictionary where users can see the relations between different lexemes of

words shown with their relations in a D3.js Force-Directed graph. Current project version

was developed approximately 4 months with using a relational database PostgreSQL. It was

chosen because it offers a powerful instruments and functionality for storing and managing

data with using SQL.

1.1 Problem formulation

As all the main data which is represented in Qlaara is shown as a graph with a words and

relatedness strength, became an idea to try out to store the same data neither in relational

database but in a graph database. Because the data model is simple and introduced by a word

which has one or more lexeme meaning, which in its time has one or more relation, so it can

be shown as nodes with edges and properties. Neo4j was chosen as a graph database which

will be used in this work.

1.2 Goal of the thesis and expected results

The main goal of this work is to compare behavior of two different databases with the Qlaara

application and measure the time of queries for retrieving data from the database and

displaying it for the final user. Of course the complexity of graph database’s query language

is also important, because it will take some time to learn its own syntax and start writing good

queries.

13

2. Core concepts and previous experiments

2.1 Graph database principles

A graph is a data structure composed of edges and nodes. Nodes have properties and

connections as relationships which also have properties. A traversal navigates a graph and

identifies paths which order nodes. Figure 1 shows the main graph components.

Figure 1. Graph structure

Graph database technology is an effective tool for modeling data when there is a focus on the

relationships between entities. So modeling objects connected with relations means that data

structure can be represented as a graph. A property graph is a common graph type supported

by most systems. Property graphs are attributed, labeled and directed acyclic multi-graphs or

DAG. A benefit to the multi graph is that it is the most complex implementation because

every other type of graph consists of subsets of the property graph implementation. [13] It

means that a property graph can effectively model all other graph types. This dynamic data

model in which all nodes are connected by relations allows fast traversals along the edges

between vertices. A benefit is the fact that traversals do not have to take into account nodes

which are not connected, so the traversal time does not depend on the graph size.

Graph databases are really effective when working in areas where information about data

interconnectivity or topology is important. In such applications the relations between data and

the data itself are usually at the same level. Nowadays a lot of known companies use and

develop their own implementations of the graph databases in different areas – bioinformatics,

recommender systems, social networks and so on. For example, Google has BigTable,

14

Amazon has Dynamo, Facebook has Cassandra, which now belongs to Apache, LinkedIn has

a Project Voldemort, Twitter has FlockDB and many more. Of course RDBMS can be also

used for this needs, but in much more limiting and expensive way.

Getting information out of the graph needs what is known as a traversal or “walking” along

the elements of the graph. One main difference between traversal and SQL query is that

traversals are localized. This means that the size of the graph has no impact in traversal

performance and in expensive JOIN operations. It is important to know that global indexes

exist, but they are only used in finding the starting point. So it would require a linear scan of

all elements without indices. Determining if a particular element has a particular property

would require a linear scan of all elements at a cost of O(n) without indices, n being the

number of elements in the collection. Alternatively, the cost of a lookup on an index is much

lower at O(log2n). [13]

There has been no standardization of good graph database yet, so it has led to the huge

amount of different implementations and frameworks for data interaction. It means that

developers should learn a lot before getting started to use or understanding what is more

suitable for the system. Gremlin and Cypher are two primary user languages for graph

traversals. Gremlin is a domain-specific language, it is based on the top of the Groovy

programming language and is closely tied to Java. It seeks to be a standard language that can

be used in all major graph databases. Cypher in its way is a declarative language and inspired

by SQL and is still under intense development.

2.2 Graph databases and NoSQL data models

NoSQL (“Not only SQL”) movement brought many interesting solutions offering many

different data models and database systems, that are suitable for different cases. Implying that

in software or product design gives a lot of storage opportunities that could be applied based

on the design. Using the data structure as modelled by developers has given a rise to the

movement away from relational modelling towards aggregate models. An aggregate is a

collection of data that we interact with as a unit. [16] That forms only one dedicated view of

your data.

Most NoSQL databases store sets of disconnected aggregates and this makes it difficult to use

them for connected data and graphs. One known strategy is to embed an aggregate’s

15

identifier inside the field belonging to other aggregate – foreign keys. But this requires

joining aggregates at the application level, which quickly becomes prohibitively expensive.

[15]

Graph databases handle fine-grained networks of information providing any perspective on

your data that fits your use-cases. All key-value stores can always be represented as a graph.

The same happens with document stores. The structured hierarchy of a document

accommodates a lot of schema-free data that can easily be represented as a tree. Although

trees are a type of graph, a tree represents only one projection of your data.

2.3 Previous experiments

Before the start we decided to gather some information of previous experiments with Neo4j

and some relational database comparison. So we have found a couple of articles to be savvier.

2.3.1 Comparative analysis of relational and graph databases

The first article is written by Shalini Batra and Charu Tyagi where they tried to compare the

different sides of a Neo4j and MySQL database management system. They took several

evaluation parameters for comparison and made a little experiment on calculating the

response time of both databases with the same tasks. So let us have a look at the comparison

and experimental results.

The first parameter they took is the level of support or maturity. Level of support indicates

a specific extent of technical assistance in the total range of assistance that is provided by an

information technology product (such as a software product) to its customers. [9] So since the

relational database management system exists for over the 30 years, while Neo4j version 1.1

was released in February 2010 and it is obvious that Neo4j is less stable and less mature.

Relational databases have a unified language SQL and it does not differ much between

implementations, whereas Neo4j’s supported languages (SPARQL, Gremlin and Cypher

Query) do. But the Neo4j is still growing and maturing and has not undergone the same

rigorous performance testing as relational databases. [1]

Security is the second important point. It was said in the article that MySQL has extensive

multi user support, however Neo4j does not have any built in mechanisms for managing

security restrictions and multiple users. But since the article is 4 years old we decided to have

16

a look for the change log of Neo4j database and found that in version 2.2 at May 2015 a

possibility of authentication was added. Also was added a full support of profiling. [10]

The last point is flexibility. The schema of relational database is fixed and it makes it

difficult to extend other databases. Also it is very difficult to add relations between objects if

you want to change database structure. For example, there is a structure like this:

1) Marko is a human and Fluffy is a dog.

2) Marko and Fluffy are good friends.

3) Human and dog are subclass of mammal.

It is very simple to represent such data in the both databases. But if we want to add a

condition that Marko and Fluffy are mammals, it would be more difficult to do it with

relational database compared to graph database. So with the Neo4j variant we just need to

add two relations and two nodes, but with MySQL we have to change the structure of one

table and add an additional one. These operations sometimes are very expensive, if you have

a database with thousands of records and table relations.

A very important point was said in the article, “Neo4 has an easily mutable schema while

Relational databases are less mutable. It has been theoretically said that relational model

works best when there are a relatively small and static number of relationships between

objects. When the data sets become larger they require expensive join operations because

they search all of the data to find the data that meets the search criteria. The larger the data set

is, the longer it takes to find matches. Conversely, a graph database does not scan the entire

graph to find the nodes that meet the search criteria. It looks only at records that are directly

connected to other records, increasing the number of nodes does not increase the retrieval

time.” [1] A proof experiment was carried out too.

Let us imagine that we have MySQL and Neo4j databases with such kind of data:

1)User: user_id, user_name

2)Friends: user_id, friend_id

3)Fav_movies: user_id, movie_name

17

4)Actors: movie_name, actor_name

And we test these databases with 3 simple queries:

S0: Find all friends of Esha.

S1: Find the favorite movies of Esha’s friends.

S3: Find the lead actors of Esha’s friends favorite movies.

The response time for these queries will be something like that.

Table 1. Query Results in Milliseconds.

No of

objects

MySQL:S0 Neo4j:S0 MySQL:S1 Neo4j:S1 MySQL:S2 Neo4j:S2

100 19.56 8 33 12.65 111.334 19.57

500 281.38 10 333.96 17 620.56 21

And the test with the 100 and 500 of users.

Figure 2. Retrieval time of queries by Neo4j and MySQL (100 objects).

Figure 3. Retrieval time of queries by Neo4j and MySQL (500 objects).

In conclusion it was said that, despite of the advantages of relational databases in maturity

and security, there is a huge advantage of graph databases in retrieval time. Also it is more

18

flexible in developing, without the need to restructure the schema again. Apart from that,

Neo4j can be definitely used in commercial purposes.

2.3.2 A Comparison of a Graph Database and a Relational Database.

The next research article was written by a group of colleagues working in Department of

Computer and Information Science in University of Mississippi. The goal is to determine

whether a traditional relational database system like MySQL, or a graph database, such as

Neo4j, would be more effective as the underlying technology for the development of a data

provenance system. [11]

The article starts with very interesting principles which describe relational model. They are:

atomicity, consistency, isolation and durability (ACID). So this set of governing principles

guarantees database reliability, while NoSQL rejects them. However, NoSQL movement has

its own potential flags that the data might be more suitable for a NoSQL system.

1) Having tables with lots of columns, each of which is only used by a few rows.

2) Having attribute tables.

3) Having lots of many-to-many relationships.

4) Having tree-like characteristics.

5) Requiring frequent schema changes.

So if your database model meets several of these criteria, it will be fitting to investigate

NoSQL solutions to the provenance storage problem.

A total of twelve MySQL databases have been constructed for testing purposes. The

databases only contain necessary structural information to represent the directed acyclic

graph. Graphs were created to contain approximately 1000, 5000, 10000 and 100000 nodes.

The information which was loaded consisted of random integers, random 8KB strings, and

random 32KB strings.

19

Table 2 gives details about the databases and disk space required for each.

Table 2. Databases with sizes.

Database Nodes count Data type MySQL size Neo4j size

1000int 1000 Int 0.323M 0.428M

5000int 5000 Int 0.828M 1.7M

10000int 10000 Int 1.6M 3.2M

100000int 100000 Int 15M 31M

1000char8k 1000 8K char 18M 33M

5000char8k 5000 8K char 87M 146M

10000char8k 10000 8K char 173M 292M

100000char8k 100000 8K char 1700M 2900M

1000char32k 1000 32K char 70M 85M

5000char32k 5000 32K char 504M 406M

10000char32k 10000 32K char 778M 810M

100000char32k 100000 32K char 6200M 7900M

Both databases used full-indexing. And in general Neo4j databases was about 1.25 to 2 times

the size of the corresponding relational databases. Only once the MySQL database was

larger.

In total there were 6 queries generated to test these databases:

S0: Find all orphan nodes. This is for finding all nodes in the graph that are singletons, with

no incoming edges and no out coming edges.

S4: Traverse the graph to the depth of 4 and count the number of reachable nodes.

S128: Traverse the graph to the depth of 128 and count the number of reachable nodes.

I1: Count the number of nodes whose payload data is equal to some value.

I2: Count the number of nodes whose payload data is less than some value.

C1: Count the number of nodes whose payload data contains some search string (length

ranges from 4 to 8). Applies to character databases only.

20

Table 3 shows the results of the experiment:

Table 3. Query results, in milliseconds.

Database MySQL S4 Neo4j S4 MySQL

S128

Neo4j S128 MySQL

S0

Neo4j

S0

1000int 38.9 2.8 80.4 15.5 1.5 9.6

5000int 14.3 1.4 97.3 30.5 7.4 10.6

10000int 10.5 0.5 75.5 12.5 14.8 23.5

100000int 6.8 2.4 69.8 18.0 187.1 161.8

1000char8k 1.1 0.1 21.4 1.3 1.1 1.1

5000char8k 1.0 0.1 34.8 1.9 7.6 7.5

10000char8k 1.1 0.6 37.4 4.3 14.9 14.6

100000char8k 1.1 6.5 40.9 13.5 187.1 146.8

1000char32k 1.0 0.1 12.5 0.5 1.3 1.0

5000char32k 2.1 0.5 29.0 1.6 7.6 7.5

10000char32k 1.1 0.8 28.1 2.5 15.1 15.5

100000char32k 6.8 4.4 39.8 8.1 183.4 170.0

As it is seen in the table, traversal queries S0, S4 and S128 on Neo4j were clearly faster,

sometimes even 10 times faster. The query to find orphan nodes resulted in fairly comparable

results between two databases, that is why both systems are used to iterate the whole list to

check each node.

Then a test with I1 and I2 queries was made and results are presented in the Table 4:

Table 4. Query results with integer values, in milliseconds.

Database MySQL I1 Neo4j I1 MySQL I2 Neo4j I2

1000int 0.3 33.0 0.0 40.6

5000int 0.4 24.8 0.4 27.5

10000int 0.8 33.1 0.6 34.8

100000int 4.6 33.1 7.0 43.9

For the integer data relational database demonstrated the efficiency, because Neo4j uses

Lucene for querying, and it is treated by default all data as a text. So these queries are not

very fast, since conversion is required.

21

The test with the characters’ data is shown in the Table 5 (d is the length of data):

Table 5. Query results with character values, in milliseconds.

For the last test with characters’ data there were generated 4 databases with 8K characters

data and four with 32K characters data. So when conducting tests on fully random data with

letters, MySQL outperformed Neo4j. But with the more real-world data like words MySQL

was much slower than Neo4j database.

In the second part of the article authors compared systems in maturity, ease of programming,

flexibility and security.

In maturity and level of support the vote goes definitely for relational database. As it was

written in previous article, relational databases are more mature and have a lot of support,

while graph databases are younger and does not have much support.

The next comparison is the ease of programming. As soon as relational databases use SQL

and it is very similar in different system implementations, graph databases are language-

specific and have their own APIs. But the actual ease of programming is task-dependent,

because, for example, graph traversals are simpler in graph databases. There are a lot of

functionalities of doing it. In its turn, scanning a table for a particular attribute can be

extremely easy with relational database. The last important thing is that relational databases

have an ability to store graph data, while graph databases do not.

In flexibility the vote goes for graph database, because it has an easily mutable schema and

relational system schema can be altered once the database is deployed, but doing so is a much

more significant undertaking with graph database.

In security the relational databases are much more mature and have built-in multi-user

support and functionalities for that. Neo4j in its turn have a user management at the

application level. But as we found earlier it was in older versions.

22

In conclusion it was said that both systems performed well on the objective benchmark test.

Graph database did better at the structural type queries and significantly better than the

relational database in full-text character search. Speed issues related to index searching in

Neo4j for numbers are related to the Lucene and its known problem. It is being developed for

Lucene. But overall, for the data provenance project, it seems premature to use the graph

database for a production environment.

23

2.4 Gathered information

If we compare these two articles we can find that both affect a very important aspect, they are

the level of support or maturity, security, flexibility and ease of programming. As we got to

know, there are some advantages of relational databases in security and level of support,

because these databases are supported and developed for decades, since graph databases is a

more modern concept.

In testing parts, the graph databases showed themselves deservedly for both experiments and

authors claimed that graph databases should definitely be used in systems which structure

contains a large number of relations.

24

3 Application design

Qlaara is a Java application, which is developing with using Spring Framework. It has simple

MVC design for representing data to the end-user. Front end itself is performed with a

Thymeleaf engine, which provides an elegant and well-formed way of creating templates.

Some of the common solutions were made with JavaScript libraries for simple data

requesting. Word relations are represented with a Force-Directed graph performed with a

D3.js library. Application's main page is shown on the Figure 4.

Qlaara's main search page view is very simple (Figure 4). It has four main sections, where

every piece of information is represented. First of all, the navigation panel at the top, where

users can search for a word in which they are interested in. Search is made by a word prefix.

The left side sector shows the results of found words. The middle sector shows lexemes,

which are connected to the selected word. The amount of lexemes of one word can be 1 or

more and the last right sector shows the relations of the lexemes connected to the selected

one. The amount is a configured option and it is set to 5. Graph view also shows the strength

of the connection in range of 1 to 10 pixels. That means that 10 is 100% similarity or 1.

Figure 4. Qlaara main page. Graph view.

25

There are also possibilities to choose from the graph and table view, for more precise view of

the connection strength. Here is the table view of main page (Figure 5).

In the Figure 5 you can see the table view, which shows the same relations as graph view, but

it helps users to see the strength of the connection in numeric value. In addition to this there

is an implemented language filter, which helps to sort words by their language in the

dictionary.

Figure 5. Qlaara main page. Table view.

26

3.1 Use cases

3.1.1 User interactions

Here are important cases to note. The search can be done in two ways: the simple one with a

word match or word prefix and detail search by different parameters like word length, status,

ratio, comments etc. Detailed search can be saved and shared with other users. After the

search there should be the possibility to view found lexemes. The relations between can be

viewed in a graph of table look and can be filtered by language. Every single lexeme has

attributes, examples, explanation, morphology forms and comments. In addition, there should

be possibility to add, edit, delete or vote for the liked lexeme. Lexemes and their parameters

have different permissions to view, vote, and edit for the users.

The main system interactions between the system and the end user are shown in the Figure 6.

27

Figure 6. Main system use-cases.

28

3.1.2 User and dictionary management

There should be a possibility to use the system as anonymous or registered user. Apart from

this, Users can also manage their own and public dictionaries. All possible interactions are

shown in the Figure 7.

Figure 7. User and dictionary management.

29

As shown in the Figure 7 all users can register for the system users. User password can be

restored and changed in the system. Users can add their own dictionaries and words.

Dictionary owners can add other users to administer their dictionaries or users can send a

request to become a dictionary administrator. On the dictionary page users can add, delete

and edit word statuses and choose a default status. One of the interesting functionalities is

that users can merge their accounts. For example, if a user has two accounts with different e-

mails and he wants to remove one, but without losing his permissions and purchases.

30

3.2 Data model

The interesting part here is how Qlaara’s data is represented in database. Figure 8 shows

Qlaara’s data structure representations in the PostgreSQL.

Figure 8. Qlaara's entity relationship diagram.

In the Figure 8 we can see, that there are dictionaries at the top of the model. It was meant

because Qlaara can have more than one dictionary. There are public and user private

dictionaries for holding different kinds of words. So dictionary can have zero or more words.

Words can be in different languages and have such attributes like frequency of usage, length,

valence and emotion. Also it has a status, which can be public or private. In its way word can

31

have zero or more lexemes or within our project we would name them senses. Senses are

lexemes or the words’ meaning. For example the word “type“ has multiple meanings or

lexemes. The first one is to write something on a typewriter or computer by pressing the keys.

The second one is a category of people or things having common characteristics. Lexemes

also have attributes like frequency, valence and emotion. Besides they have ratios. The ratio

is the number, which defines the strength of the lexeme. The total sum of ratios of word’s

lexemes is also 100. So the mentioned two lexemes of word type can have ratios like 50/50 of

40/60 for example. The senses in its way have attributes, morphology forms, relations of

other senses, comments of the users and explanations.

32

3.3 Data access layer

Spring offers good solutions for proper data access layers, using IoC pattern through

templating and applying AOP interceptors for the ORM technologies [4]. The purpose of this

layer is to get data from the database with querying and writing entities. In Qlaara all the

database access methods and relational mapping are written in *DbService classes, which

only can be used from the *Service classes. This allows Data access layer to be protected

from the access outside of the layer. Hibernate provide option to execute native SQL queries

through the use of SQLQuery object. The default method for accessing data is very simple,

shown in the Figure 9:

Figure 9. Qlaara's default Hibernate native query.

This method (Figure 9) is using a native SQL query. As you can see it is very simple and

handy, because we can execute database specific queries that are not supported by Hibernate

API.

Here we are using Session.createSQLQuery(String query) to create the SQLQuery object and

execute it. This simple method counts the number of words in dictionaries by word prefix and

status. As a result we only need the number, so we execute uniqueResult() method to get the

Integer number. But it also allows us to get objects straight from the database.

33

So let us have a look at the default Qlaara method with getting the list of objects or, in our

case, the list of words (Figure 10).

Figure 10. Qlaara's default ORM method.

In the Figure 10 method is used to get a list of words by prefix and status with the limit. It is

used then we need the limited number of words, for example if we need to get top5 relations

of the word to draw in the graph and we do not need others, because the graph area is not so

huge to reflect all the words and this will not be clear for a final user. So, as in the previous

example, we are using the same structure except from using uniqueResult() method. Here we

need to get objects so we transform our results to the Word.class as

setResultTransformer(new AliasToBeanResultTransformer(Word.class)) and this

successfully finds the needed setters in our class.

34

The Word.class is shown on the Figure 11:

Figure 11. Qlaara's Word.class structure.

So all the parameters like id, value, language, status, dictionaryName are set as they have

same names as in the Word.class (Figure 11) and query.

35

3.4 Loading data to the PostgreSQL database

As soon as there are millions of words in different languages and dictionaries, it is very hard

to add words manually. So there was a csv file parser made in order to save available data

from file to database. The basic concept of this is to read every single row in a file, to split it

for pieces of data and save it to the database. See Figure 12.

Figure 12. Qlaara's DataLoader.class

First of all, we should reset our database by creating new tables and indexes in our database

(Figure 12). So as long as all changes in database are created in the tables.sql we can easy

execute them before loading new data to the database. The second step is creating default

records. They are test users, default dictionaries, languages etc. As in the beginning we had

only Estonian dictionary’s data, we chose the default dictionary id 1000 for it. The final step

is to transform data and save it. Needed csv file format for it is simple and has 5 columns:

word_value, sense_id, sense_ratio, related_sense_id and relatedness of these two lexemes.

36

The data parser is shown in the Figure 13.

Figure 13. Qlaara's DataParser.class.

DataFileRow is an object made specially for holding an information about the parsed file

row.

Then, when we got a list of DataFileRows with the size equal to the file rows we could easily

start saving them to our tables. We already got a default dictionary where our words would be

related, consequently then we had to save words, senses and relations in tables. We will do it

one by one.

First of all, we create words in database (Figure 14).

Figure 14. Saving words into the database.

As we discussed in Data access layer paragraph we simply define native sql query with

giving it parameters: dictionary_id, word_value, word_language and the status (Figure 14).

37

Status is the value marked as Active or Invalid, as long as we did not delete data from

database straightly we define it as invalid. Further we can delete marked data with

asynchronous cron service.

Next we save senses in the database (Figure 15).

Figure 15.Saving senses into the database.

Here is the same pattern. Senses have word_id, this is an id of related word, sense_ratio,

discussed in the Data model and the status (Figure 15).

Finally, we save relations. See Figure 16.

Figure 16. Saving relations into the database.

Relations have sense1_id and sense2_id. These are ids of related senses. For example, a

school and a university. The relatedness is the number between 0 and 1 and define the

strength of the connection. As an example a school and a university has stronger connection

than a school and a prison (Figure 16).

Finally, we got a database with a table of 90000 words, 90000 senses and 4410000 records

with relations.

38

4 Database design and development

This section will be the main part of the work. Here we will make our changes by connecting

same application layer with both PostgreSQL and Neo4j databases. The idea is to write two

services which will work with different databases and that can retrieve different amount of

data for further testing.

4.1 Neo4j installation

First of all, we need to install Neo4j database. It is very simple we just need to download the

latest release from the manufacturer’s server and then start it. All the instructions are on

www.neo4j.com.

4.2 Cypher query language

Cypher is a declarative graph query language that allows efficient querying of the graph

database. It is a relatively simple and very powerful language, but still different from SQL.

The creators of Cypher claim that it is very simple as for developers as for operations

professionals, so even complex things are possible with it. The language itself is based on the

English prose and most of the keywords like WHERE and ORDER BY are inspired by SQL.

Pattern matching borrows expression approaches from SPARQL and some of the collection

semantics have been borrowed from languages such as Haskell and Python.

39

4.3 Loading data to the Neo4j database

So when we have our Neo4j database up and running let us try to load some data to it.

It took a couple of times to set up libraries and try out a couple of examples found on the

Internet. But after a while we were able to write solution.

As with relational database, first of all after the shutdown we will need to reset our database

simply be deleting the database file. It was made for that case if we had already something in

it after a couple of experiments. Figure 17 shows the initializing process.

Figure 17. Resetting Neo4j database

First we close all active sessions in our database and delete the file with our data (see Figure

17). Then we create a new database using our graphDirectory. All the functionalities are very

simple straight, and available by org.neo4j java libraries. So we do not even need to write our

own methods for resetting database. All the examples can be found on the developers’ page

and developers’ forums.

40

The second part of the statement is made for the test database, there we delete all records by

hand with using a transaction method. This method matches all records in the database and

then deletes them.

When our database is empty and ready to use we start to add data to it.

As earlier with relational database we will add all the words, next the senses and finally

relations. See Figure 18.

Figure 18. Saving words and senses to Neo4j database.

The same way as with relational database. We parse all the rows in csv file and then save

them (Figure 18). Neo4j library suggests pretty easy way for storing data. All we need is to

define a method for storing our data with giving it needed values.

41

For saving words and senses we created such methods. See Figure 19.

Figure 19. Methods for saving words and senses into the Neo4j.

What we have to do is to put our parameters into the map and then create an object into the

database with the same class (Figure 19). The neo4jTemplate will create the needed node in

the database. There is similar logic in creating word and sense, except of that while creating

sense node we have to create a relation between sense and the word. That relation will be set

with property ratio, so we could find needed senses by ratio. The connection will be named

simply CONNECTED. Neo4j allows choosing connection names.

After words and senses we save relations. See Figure 20.

Figure 20. Saving relations into the Neo4j database.

When words and senses are created, the next step is creating relations. The relation is a

connection between two senses with the property relatedness. So we get needed senses from

the database as nodes and create a relation between them. We name the connection as

RELATED.

42

We created some additional methods for helping us with transactions in graph database. See

Figure 21.

Figure 21. Neo4j transaction creating methods

As we make thousands of transactions in a row we need to be sure that all of them will be

delivered to the database. So we commit every 100000 query to the database, end the

transaction and start new.

43

4.4 Data access layer refactoring

Now when we have our data in the database, let us rewrite a little data access layer so we

could retrieve data as from PostgreSQL database as from Neo4j.

For testing purposes we would create some controller methods for retrieving data from both

databases in JSON format.

4.4.1 Retrieving data from PostgreSQL database

There would be two methods same for PostgreSQL and for Neo4j. See Figure 22.

Figure 22. Controller methods for retrieving data from databases.

In these two methods we will test if there are any database performance differences in

searching for exact match or by word prefix (Figure 22). These methods will be mapped for

reldb/** and graphdb/** controllers. Methods themselves have 3 parameters. They are word

value or prefix, graph depth, and relations limit. Graph depth is the parameter which defines

how deep we would like to search, as sense have their own senses we would search for any

found sense relations their own relations, so the graph can grow exponentially. That is why

we are adding this parameter in order to limit the size of the graph. The last parameter is the

relation limit; this will limit the count of the relations connected to one sense. As well as one

sense can have zero or more relations, for testing we would like to limit this parameter.

Then let us have a look at the SQL and this is the most problematic place here. As far as we

need a recursive search in database, because every single found related sense can have its

own relations. The second problem is that we cannot simply get needed word as object from

database, because word has a sense as object and sense has relations as object, in their way

relations have words as object and so on. So the solution here is to make so called graph

tuples, which would have all the needed ids and represent nodes in the graph.

44

Graph tuple will have a structure, as shown on the Figure 23.

Figure 23. Graph tuple for retrieving data from PostgreSQL.

As shown in Figure 23 graph tuple is having all the needed information about the words,

senses and relations. The step here shows if this node is selected or not. This information is

needed for composing these nodes as word, sense and relation objects, also for drawing the

graph.

45

Here is an SQL for retrieving these tuples. See Figure 24.

Figure 24. Hibernate SQL for retrieving graph tuples from PostgreSQL.

This is the main part of this layer. As we can see in the Figure 24, it is not the simplest SQL

query as far as it has a lot of connections between tables, temporary tables connected

together. For a skilled developer this would take a half of the day or even more to write such

SQL query.

46

The problem here is that this is a recursive SQL and we cannot limit the number of found

relations. So it would search for all relations in the database.

We will add an if clause for exact and the prefix search (Figure 25)

Figure 25. SQL's exact and prefix search.

And this is not the end point of getting data. After that we need to compose our tuples for the

Word, Sense and Relation objects. So in the final result we would have a single word object

which will contain all the needed information.

First of all, we need to know which tuples are root nodes and which are the connections. That

is why we needed the step in the graph tuples. It is an integer value and it can have only 2

values 1 or 2. 1 means that it is a root tuple, and 2 meant that it is a relation.

47

The method is shown in the Figure 26.

Figure 26. Collecting the root tuples.

Here we will create an object which will help us in collecting needed data. We named it

ResultBuilderData (Figure 26) and it is having the map with keys as collected word root id’s

and the value as a list of connected to that word graph tuples. Also it has a list of root id’s,

this will simplify our work further.

The next step is to check whether the list of id is empty or not. This will tell us if we have

found something or not. So we could easily return null as a result and not proceed with

further steps.

48

The final step is a population of the graph tuples to the word, sense, relation objects. See

Figure 27.

Figure 27. Populate graph tuples to the word object

This is the recursive method which calls himself as we need to compose the next connected

word (Figure 27). The goal of this method is to return a word object which has senses, sense

it their way will have relation objects. Relation objects will have word objects and so on, until

the graph depth is exceeded.

49

In the Figure 28 shows the method, which composes the result object to the JSON

Figure 28. Compose the collected results as JSON.

So when the needed word object is composed for an exact search or list of word objects

composed for prefix match we will return them to the end user as a JSON format (Figure 28).

This is very comfortable format for us, because it is human-readable and it will be easy to test

further our services.

50

4.4.2 Retrieving data from Neo4j database

So we already have a RelDbController class which was mapped to get PostgreSQL data. Here

we will use the same pattern, apart from that we will create a DataService interface to map

needed methods for relational and graph databases. See Figure 29.

Figure 29. DataService interface.

These methods in the interface will be mapped to retrieve data as from graph database, as

from PostgreSQL (Figure 29).

The next step here is to implement the first getWord method in the interface. The problem

here is that we cannot simply use standard repository methods suggested by neo4j repository.

So as with PostgreSQL we will first get the needed words as objects and then traverse

through the database for finding needed connections.

51

First of all, let us implement the repository methods which will help us to find the needed

words. See Figure 30.

Figure 30. WordRepository interface.

The Cypher language is not very hard to understand so it takes a couple of minutes to start

writing neo4j queries. The first and the second methods are similar, apart from that we will

use first for the exact search and the second for regular expression search needed to search by

prefix (Figure 30).

So in the first step we will use one of these methods to find the list of searching words. For

the exact search we will have:

List<Word> words = wordRepository.findByValue(wordValue);

And in the second case:

List<Word> words = wordRepository.findByValueRegex(prefix + ’.*’);

As with relational database in the next step we will check whether the list is empty or not, so

we could return a feedback to the user that the search did not give any results.

The next step is very important for understanding, so we will compose our results and travel

through the graph with the TraversalDescription class to find needed data.

52

So we get a composing method in final results, as shown on the Figure 31.

Figure 31. Composing relations of the Word object.

This step is very important and it needs some time to understand how it works (Figure 31).

Although the Cypher language is very simple for learning the usage of the Spring Data Neo4j

project is not so trivial.

The interesting part here is the TraversalDescription object, which helps us to travel through

the database and collect the needed nodes. First of all we define which algorithm we will use

to search for the data. It suggests depth first and breadth first search. We will use the first

one. Next we will define all relationships to be traversed for any given node: CONNECTED

and RELATED. And in the final step we define how deep we will go in the graph and what

we will do with the collected data.

53

Now let us take a look on what we are doing while traversing the nodes. We created a helper

class named RelatedWordsEvaluator. See Figure 32.

Figure 32. RelatedWordsEvaluator part 1.

Here we defined all the needed variables, which will help us with collecting data, but the

main part here is to evaluate method which is overridden by Neo4j Evaluator class (Figure

32). That is the place where we collect needed data depending on the level of the search, the

type of the node and the type of the connection.

54

The second part of RelatedWordsEvaluator is shown in the Figure 33.

Figure 33. RelatedWordsEvaluator part 2.

While the data is collected the node can be included to or excluded from the search, we can

also continue or prune the search (Figure 33).

After all the data is collected in the single word object, we return it in JSON to the user, as it

was made with PostgreSQL.

At last we acquired 4 URL’s for testing:

 /reldb/searchexact/{word}/{graph depth}/{relations limit}

 /reldb/searchlike/{prefix}/{graph depth}/{relations limit}

 /graphdb/searchexact/{word}/{graph depth}/{relations limit}

 /graphdb/searchlike/{prefix}/{graph depth}/{relations limit}

55

5 Testing

To determine which database is better to use for such kind of systems, let us define what

parameters are making our system better.

Response time. It is really important for the end user to get requested data fast. Nobody

would wait minutes for the response. Even if the response takes several seconds it is really

annoying if you would like to make dozens of requests.

CPU usage. Since our system should work not on the local machines only, but on the remote

servers, so everybody could use it. It would be very nice if it was lightweight. Less the CPU

usage is, the more users can use it, the more processes we can run on the server.

Memory usage. Here is the same problem. Less the memory usage is the better it is.

Environment settings:

 Memory: 8 GiB

 Processor: Intel Core i5-4310U CPU @ 2.00Ghz x 4

 OS: Ubuntu 15.4

 RDBMS: PostgreSQL 9.4.5

 GraphDB: Neo4j 2.2.0

Data:

 Word count: 90000

 Senses count: 90000

 Relations count: 4410000

56

5.1 Response time

Here we will measure the response time of the system with different databases, relations limit

and the graph depth. First we will test the relational database by increasing the number of

relations and graph depth. To get more precise results we will take an average of 3 tests for a

response time.

Table 6. PostgreSQL response time with graph depth 2.

Test

№

Graph depth Relations limit Query time (ms) x

3

Structure build

(ms) x 3

Avg. total

time (ms)

1 2 5 1166 1198 1144 1 2 1 1171

2 2 10 1157 1216 1320 1 1 1 1232

3 2 15 1136 1179 1156 1 1 1 1158

4 2 20 1188 1178 1208 1 1 2 1193

5 2 25 1144 1181 1364 1 2 3 1232

Table 7. PostgreSQL response time with graph depth 3.

Test

№

Graph depth Relations limit Query time (ms) x

3

Structure build (ms)

x 3

Avg. total

time (ms)

1 3 5 3044 3092 3377 29 18 10 3190

2 3 10 3080 3025 3028 25 26 19 3068

3 3 15 3088 3057 3055 30 28 30 3096

4 3 20 3086 2999 3114 33 35 32 3100

5 3 25 3107 3005 3393 40 38 34 3906

As it was mentioned in the Paragraph 3.4.1 the recursive sql is searching for all relations in

the database and there is no way to limit the connections in the SQL query time. This caused

a problem, because the query does not work with the graph depth more than 3. The amount of

data is so huge that it gives OutOfMemory exception. In fact, our system’s requirements do

not mean to work with data further when first level relations, because we show for the users

only the connections of the searched word.

57

Let us have a look at the response time of the Neo4j database.

Table 8. Neo4j response time with graph depth 2.

Test

№

Graph depth Relations limit Query time (ms) x

3

Structure build (ms)

x 3

Avg. total

time (ms)

1 2 5 164 105 130 32 32 31 165

2 2 10 164 106 102 32 31 35 157

3 2 15 185 132 102 34 30 30 171

4 2 20 155 137 116 30 30 30 166

5 2 25 194 120 132 44 44 32 189

Table 9. Neo4j response time with graph depth 3.

Test

№

Graph depth Relations limit Query time (ms) x

3

Structure build (ms)

x 3

Avg. total

time (ms)

1 3 5 98 171 109 68 79 96 207

2 3 10 145 189 131 73 77 68 228

3 3 15 107 188 101 82 73 65 205

4 3 20 107 174 134 67 77 68 209

5 3 25 104 102 104 150 66 67 198

So it is very fast and despite of the PostgreSQL it works with very big graph depth numbers.

The difference is very huge. So it will be clearer if we translate the same data on the line

graph (Figure 34, 35).

Figure 34. PostgreSQL vs. Neo4j with graph depth 2.

0

200

400

600

800

1000

1200

1400

1600

1800

PostgreSQL Neo4j

58

Figure 35. PostgreSQL vs. Neo4j with graph depth 3.

The result is to the fore. In case of the graph depth 2 (Figure 34) the Neo4j database is around

7 times faster, and in case of the graph depth 3 (Figure 35) approximately in 15 times.

Superiority is huge.

What we can notice in that test is that the average response time does not depend on relations

graph limit. It is because in both cases we pass all the nodes in the graph depth and sort the

needed ones in the end. So it does not matter whether we limit with 5 relations or with 25.

The response time is growing immediately with the graph depth and the PostgreSQL takes

much more time to retrieve data.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

PostgreSQL Neo4j

59

5.2 CPU and the memory usage

First of all, we will find out what are the minimum hardware requirements for both databases.

It is said that PostgreSQL minimum requirements are:

 64bit CPU

 64bit Operating System

 2 Gigabytes of memory

 Dual CPU/Core

 RAID 1

And for the Neo4j system should have:

 Intel Core i3

 2 Gigabytes of memory

 10 Gigabytes of SATA

 Ext4 or similar filesystem

The requirements are more or less similar. In fact, that servers and computers are nowadays

much faster, it should not be a problem of using and installing these databases.

But let us have a look at the project and service performance in particular. For this test we

installed a YourKit Java Profiler, so we could measure the CPU usage of our services

working with Neo4j or PostgreSQL.

YourKit is an intelligent tool for profiling Java & .NET applications. It allows users to

measure CPU and memory usage with maximum productivity and zero overhead and is used

by a lot of big and small companies. It can be used at both development and production

stages. [14]

60

First of all, let us measure the CPU usage of our application working with PostgreSQL.

Table 10. PostgreSQL CPU usage with graph depth 2.

Test

№

Graph depth Relations limit CPU usage x 3 Avg. CPU

usage

1 2 5 10% 3% 15% 9%

2 2 10 5% 7% 5% 6%

3 2 15 4% 3% 11% 6%

4 2 20 3% 3% 4% 3%

5 2 25 3% 4% 4% 4%

Table 11. PostgreSQL CPU usage with graph depth 3.

Test

№

Graph depth Relations limit CPU usage x 3 Avg. CPU

usage

1 3 5 16% 15% 14% 15%

2 3 10 22% 23% 19% 21%

3 3 15 22% 14% 10% 15%

4 3 20 16% 17% 23% 19%

5 3 25 20% 43% 37% 33%

And then with the Neo4j.

Table 12. Neo4j CPU usage with graph depth 2.

Test

№

Graph depth Relations limit CPU usage x 3 Avg. CPU

usage

1 2 5 6% 6% 13% 8%

2 2 10 10% 5% 6% 7%

3 2 15 5% 10% 6% 7%

4 2 20 12% 10% 4% 9%

5 2 25 5% 7% 9% 7%

Table 13. Neo4j CPU usage with graph depth 3.

Test

№

Graph depth Relations limit CPU usage Avg. CPU

usage

1 3 5 21% 5% 10% 12%

2 3 10 9% 14% 7% 10%

3 3 15 16% 10% 8% 11%

4 3 20 6% 6% 5% 6%

5 3 25 9% 9% 6% 8%

61

As we can see the CPU usage does not increase with the number of relations. It grows if we

go deeper to the graph. In case of the PostgreSQL the average CPU usage with graph depth 2

was 5,6% of all CPU and with graph depth 3 – 20,6%. The CPU usage with a Neo4j in graph

depth 2 was a little more – 7,6%, but the impact of the depth was not bigger. With graph

depth 3 the usage is 9,4%.

Because of that java is a JVM language all the memory usage is under Garbage Collector’s

control. So the collector decides whether to reclaim the memory or not. So it is very hard to

draw conclusion, because it might be close to 0 MB or might take a half of GB. But let us try

to measure the Eden Space of the JVM in the time after the request is made and take the

difference between memory allocated before the request. In total we have allocated 2048 MB

of RAM for our Java application. Let us have a look at the results with the PostgreSQL.

Table 14. PostgreSQL heap memory increase with graph depth 2.

Test

№

Graph depth Relations limit Memory

increase (MB)

Avg. memory

increase (MB)

1 2 5 11 10 5 9

2 2 10 7 5 12 8

3 2 15 8 9 6 8

4 2 20 7 9 10 9

5 2 25 8 6 12 9

Table 15. PostgreSQL heap memory increase with graph depth 3.

Test

№

Graph depth Relations limit Memory

increase (MB)

Avg. memory

increase (MB)

1 3 5 244 253 240 246

2 3 10 244 240 242 242

3 3 15 242 249 246 246

4 3 20 244 247 258 250

5 3 25 247 246 242 245

And the same tests for Neo4j.

Table 16. Neo4j heap memory increase with graph depth 2.

Test

№

Graph depth Relations limit Memory

increase (MB)

Avg. memory

increase (MB)

1 2 5 168 167 161 165

2 2 10 164 161 164 163

3 2 15 164 161 163 163

4 2 20 160 163 164 162

5 2 25 160 161 160 160

62

Table 17. Neo4j heap memory increase with graph depth 3.

Test

№

Graph depth Relations limit Memory

increase (MB)

Avg. memory

increase (MB)

1 3 5 180 179 180 180

2 3 10 185 183 179 182

3 3 15 181 183 183 182

4 3 20 181 184 187 184

5 3 25 181 180 184 182

So the average growth of the memory for the depth 2 is very impressive – 8,6 Megabytes. But

it is increased a lot with the graph depth 3 and reached 245,8 Megabytes. And we can believe

that it will grow rapidly if the data increases. In case of the Neo4j the usage is more or less

stable and does not grow so much with the depth. 162,6 megabytes in first case and 182 with

the depth 3.

63

6 Thesis summary

We have looked at the problem from different sides, starting with installation, learning a

query language and writing server side services for retrieving data from two different

databases to compare. We changed our project’s codebase so it was working with two

different databases in parallel. With two absolutely identical services we managed to test two

databases for a response time, CPU and memory usage.

Let us sum up what results we got considering the work. As we saw in the test phase the

response time of the Neo4j database was much faster compared to the PostgreSQL, so with

the depth 3 it was approximately 15 times faster. It is a huge advantage, because such systems

should handle thousands requests at a time. Also we noticed that PostgreSQL cannot handle

requests with the graph depth more than 3, because of the huge amount of data and recursive

SQL query. Concerning the CPU and memory usage, our tests showed that the PostgreSQL

system consumption is rather exponential as it needs more CPU and memory with the growth

of the amount of data, but it is less on the depth 2 especially with the memory usage. We

believe that it depends on the processes after retrieving data, and traversing the graph.

As for developer it was not so hard to learn the basics of new technology, as it could have

happened. The Neo4j documentation is clear enough for understanding. It is simple and

interesting in use. It is definitely better for such kind of systems when you have a lot of

different connection types and complex relations between objects, because they store

relationships at the data level whereas RDBMS use a declarative approach. This is the main

advantage of graph databases, because instead of doing tons of joins, they just pick a record

and follow his relationships.

The main idea for this work was to check if the system can work better with using different

database approach and how hard it is to refactor the system for that changes. The conclusion

is that system can definitely work faster with such kind of data. Graph database algorithms

are specially made for the system like ours, and should be used further.

64

6.1 Future work

The problem is that the latest developing project version today is far from the tested version

and there are much more functionalities that it can handle beside of the showing the relations

between word lexemes. So it is not so easy to just throw the database and rewrite the

codebase. The best approach for this problem is to use graph database for the relations and

nodes - for the fast querying and PostgreSQL database for the rest like user and dictionaries

management systems.

65

Kokkuvõtte

Vaatasime probleemi peale erinevaatest suunatest, alustades andmebaasi paigaldamisega,

päringu keele õppimisega ja serveri teenuste arendamisega. Me muutsime meie koodi, et see

töötaks kahe erinevate andmebaasidega paraleelselt. Kahe teenusega, mis töötavad

samamoodi me suutsime testida andmebaaside reaktsiooniajad, CPU ja mälukasutust.

Vaatame lühidalt mis tulemused me saime selles töös. Nagu me nägime testfaasil

reaktsiooniaeg Neo4j andmebaasil oli palju kiirem, kui PostgreSQL, otsingu sügavusega 3

see oli 15 korda kiirem. See on väga suur eelis, sest sellised süsteemid peavad taotlema

tuhandeid päringud. Samuti, me märkasime, et meie süsteem isegi ei saa hakkama otsinguga,

mille sügavus on rohkem kui 3, sellepärast, et PostgreSQL'i paring on rekursiivne laadib väga

palju andmeid. Vaadates CPU ja mälu kasutamisele, meie tesitid näitasin, et PostgreSQL-i

süsteemi kasutamise kasv on pigem eksponentsiaalne ja kiiresti kasvab andmete suurusega,

kuid on väiksem alguses võrreldes Neo4j-ga. Me arvame, et see on seotud protsessidega, mis

toimuvad peale päringut ja Neo4j andmete tootlemisega.

Arendajana, see ei olnud nii keeruline õppida uue tehnoloogiat, nagu see võiks juhtuda.

Neo4j dokumentatsioon on päris lihtne ja arusaadav. See on huvitav ja lihtne kasutamises.

See on absuluutselt kõige parem lahendus selliste süsteemide jaoks nagu meie, kui teil on

väaga palju erineväid ühendusi objektide vahel, sest andmebaas salvestab neid andmete

tasemel, kusjuures RDBMS kasutab deklaratiivle lähenemise. See on kõige suurem eelis

graafi andmebaasidel, sellepärast, et ei ole vaja teha tuhandeid tabelite ühendusi, andmebaas

lihtsalt võtab objecti ja jälgib selle ühendust tiste objektidega.

Selle töö peamine ülesanne oli vaadata, kas saab teha süüsteemi paremini kasutades erineva

andmebaasi süsteemi ja kui raske on muuta süsteemi selleks, et ta töötaks erineva

andmebaasiga. Kokkuvõttes me saime, et süsteem saab kindlasti töötada paremini meie

andmetegal. Graafi andmebaasid on spetsiaalselt tehtud selle süsteemide jaoks nagu meie, ja

peaks võtta kasutusele edaspidises süsteemie arendamises.

66

Edasine töö

Probleem on selles, et praeguse süsteemi versioon on palju kaugemal testitud süsteemi

versioonilt ja on lisatud palju rohkem funktsionaalsust millega süsteem saab hakkama peale

sõnade lekseemi ühenduste näitamist. See tähendab, et me ei saa nii lihtsalt kustutada

olemasoleva andmebaasi ja kirjutada ümber koodi. Kõige parem variant on kasutada graafi

andmebaasi lekseemide ja seotse jaoks ja PostgreSQL teiste andmete jaoks nagu kasutajate ja

sõnastikute haldamine.

67

References

[1] Shalini Batra, Charu Tyagi. Comparative analysis of relational and graph databases.

International Journal of Soft Computing and Engineering (IJSCE), May 2012.

[2] Quantitative data definition. [WWW]

http://www.businessdictionary.com/definition/quantitative-data.html (07.03.2015)

[3] Lexeme definition. [WWW] http://www.merriam-webster.com/dictionary/lexeme

(07.03.2015)

[4] Data-Driven Documents. [WWW] http://d3js.org/ (07.03.2015)

[5] Spring. [WWW] http://docs.spring.io/ (07.03.2015)

[6] Qlaara’s blog. [WWW] http://blog.qlaara.com/ (07.03.2015)

[7] Neo4j. [WWW] http://neo4j.com/ (07.03.2015)

[8] Oracle Database. [WWW] https://en.wikipedia.org/wiki/Oracle_Database (29.12.2015)

[9] Level of support definition. [WWW] http://searchcrm.techtarget.com/definition/level-of-

support (22.02.2016)

[10] Release Notes: Neo4j 2.2.0 [WWW] http://neo4j.com/release-notes/neo4j-2-2-0/

(1.03.2016)

[11] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, Dawn

Wilkins. A Comparison of a Graph Database and Relational Database, 2010.

[12] Apache Lucene. [WWW] https://lucene.apache.org/ (7.03.2016)

[13] Justin J. Miller. Graph Database Applications and Concepts with Neo4j, March 2013

[14] YourKit Java Profiler. [WWW] https://www.yourkit.com/ (21.04.2016)

[15] How Graph Databases Relate To Other NoSQL Data Models. [WWW]

http://neo4j.com/developer/graph-db-vs-nosql/ (2.05.2016)

http://www.businessdictionary.com/definition/quantitative-data.html
http://www.merriam-webster.com/dictionary/lexeme
http://spring.io/
http://spring.io/
http://docs.spring.io/
http://blog.qlaara.com/
http://neo4j.com/
https://en.wikipedia.org/wiki/Oracle_Database
http://searchcrm.techtarget.com/definition/level-of-support
http://searchcrm.techtarget.com/definition/level-of-support
http://neo4j.com/release-notes/neo4j-2-2-0/
https://lucene.apache.org/
https://www.yourkit.com/
http://neo4j.com/developer/graph-db-vs-nosql/

68

[16] NoSQL Databases: An Overview. [WWW]

https://www.thoughtworks.com/insights/blog/nosql-databases-overview (2.05.2016)

[17] Jeevan Joishi, Ashish Sureka. Performance Comparison and Programming Process

Mining Algorithms in Graph-Oriented and Relational Database Query Languages, 2015

[18] Mario Miller, Damir Medak, Dražen Odobašic. The shortest path algorithm performance

comparison in graph and relational database on a transportation network, 2013

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

