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INTRODUCTION

T he advent of digital images has facilitated the use of computer systems
for improved characterization of underlying biological or anatomical

structures. Until the 1990s, biomedical and medical images were typically
analyzed using low-level image processing methods and mathematical models
to solve particular radiological or clinical tasks [1–3]. Although these often
semi-automated methods enabled radiologists/clinicians to analyze different
abnormalities, they were limited due to computational power and the requirement
of constant manual intervention. Lately, increased computational power and
evolution of: image acquisition, image analysis, and neural networks-based
methods has revolutionized the landscape of automated analysis frameworks.
The technological advancements of imaging devices have also elucidated the
biological and anatomical behavior of previously unknown complex processes.
However, this successful digital transition of imaging devices has also uncovered
numerous challenges for the clinicians as well as the image analysts and
researchers.

An example of such digital imaging devices is transmission electron microscopy
(TEM) which allows structural analysis of biological samples at the nm scale.
The comprehensive structural analysis is crucial to extract clinically relevant
information. Such analysis typically follows a manual diagnostic procedure,
which is labor-intensive, monotonous, error-prone, and time-consuming. For
instance, to diagnose a rare genetic disorder: Primary Ciliary Dyskinesia (PCD),
pathologists commonly analyze around 50 perfectly perpendicularly cut cilia
structures in several high-resolution (∼ 1 nm) TEM images. Manually acquiring
such images while navigating through a huge search space to cover the whole
sample is impractical, requiring two hours/patient. On the other hand, it is viable
to steer and detect plausible cilia regions at low-magnification (LM), followed
by the acquisition of high-magnification (HM) images only of the detected
regions. However, manual detection of cilia at LM (an inevitable requisite
for automation of PCD analysis) is itself a challenging task due to inadequate
ultrastructural information and high similarities to the non-cilia (Publication A).
Another possibility to digitally improve and automate the imaging and analysis
process regarding resolution, speed and risk (to damage/destroy the sample) is
to acquire, denoise and register short exposure images. This will minimize
the influence of imaging artifacts on the automated or the manual diagnostic
procedure (Publication B).
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Another imaging modality, computed tomography (CT), provides a high-
contrast resolution and volumetric characterization of anatomical structures as
small as 1 mm. The multi-planer reformation in CT benefits radiologists to
simultaneously interpret the anatomical structures in three orthogonal planes, i.e.,
axial, coronal, and sagittal. In a usual clinical setting, radiologists often analyze
100-500 cross-sectional images of a single volume to conclude some decision
about abnormalities. Interpreting such an amount of images, e.g., thoracic CT
scans during large-scale cancer screening trials as well as in routine practices to
detect early-stage pulmonary nodules, is laborious, monotonous, and could take
up to 10-15 minutes/scan (Publication C). The diagnostic procedure becomes
even more challenging due to the high variability among pulmonary nodules, and
their high similarity to the blood vessels when visually analyzed in a 2D slice
by slice fashion. Another challenging task for radiologists is to quantify and
detect the vascular pathologies in CT angiography (CTA) images. CTA imaging
is often used for volumetric characterization of blood vessels in the whole body
by injecting a contrast medium intravenously, resulting in a large amount of
complex data (Publication E).

Given the enormous amount of data and complexity from, e.g., the
aforementioned imaging techniques, development of the automated analysis
framework is indeed of high desire to assist clinicians in the otherwise error-prone
and time-consuming processes.
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1. COMPUTER-AIDED DETECTION (CAD)

Computer-aided detection (CAD) is an umbrella term that covers a broad
spectrum of the research area in clinical, biomedical and medical imaging. The
foremost objective of a CAD framework is to assist clinicians in detecting
abnormalities. Clinicians are required to analyze enormous amounts of data in
relatively short time, which might lead to erroneous outcomes. Studies have
shown that clinicians occasionally misinterpret some visible abnormalities [4–9].
Such errors may lead to a perilous repercussion on patient’s health. Therefore,
assimilation of CAD frameworks is worthwhile to reduce the interpretation time
and also the detection errors.

The CAD framework can be perceived as a pattern recognition system that
impersonates the human observers to perform any specific task [10]. Pattern
recognition is a technical perspective associated with the scientific field of
Artificial Intelligence. Pattern recognition is dedicated to developing programs
that enable computers to learn the underlying patterns, and thereby to make
reasonable decisions using those learned patterns. For example, to identify
impairments in thoracic CT scans, the CAD will quest for the size and shape
patterns of nodules; or to perform a PCD analysis, the CAD will quest for
the textures and ultrastructural patterns of potential cilia. Indeed, strategized
modular components are essential requirements for a CAD to comprehend such
complex learning. In a sequential setting, a traditional CAD system can typically
be composed of three modules: image preprocessing, candidate-screening, and
classification [2].

The image preprocessing module usually consists of the procedures to
enhance the image quality. This module aims to reduce the influence of artifacts
caused by the imaging devices. Typical preprocessing steps are noise removal,
normalization of intensity non-uniformities, isotropic interpolation, etc.

The candidate-screening module includes techniques to segment and locate
structures of interest in the preprocessed image. Segmentation is commonly used
to separate objects from the background or to detect pertinent structures in the
image. This module aims to locate a substantial amount of plausible structures
while rapidly screening through the entire image.

The classification module aims at classifying the structures using a set
of discriminative features within an empirically optimized classifier. The
features are often task-oriented and are computed from the characteristics of the
segmented regions. For instance, circularity, elongation, contrast, homogeneity,
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and spiculation1 are some typical features of interest for classifying cancerous
nodules and non-nodules. However, not every feature possibly exhibits the same
discriminative power or could even be pernicious when performing the same task
for solving two different application challenges. For example, circularity is a
useful shape feature to discriminate between nodules and non-nodules; however,
it will not have the same usefulness while discriminating cilia from non-cilia
since both structures tend to be circular. Hence, careful selection of extracted
features is a crucial step prior to classification. Once the discriminative features
are selected, they are fed as an input to the classifier. In an iterative learning
process (training) using a substantial amount of labeled data, the classifier
determines the optimal boundaries for classifying structures/classes (e.g., normal
and abnormal) in the multi-dimensional feature space. Since it involves learning
from the labeled data, this learning procedure is typically referred to as supervised
learning. During testing, the classifier predicts the unlabeled input structures as
one of the classes.

Figure 1.1 The distribution of the predictions obtained by a classifier. For every possible
threshold value, the classifier discriminates the samples into true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) fractions.

Once the output from the classifier is obtained, the significance of the
CAD system is determined using different evaluation metrics. The predictions
obtained by the classifier are typically divided into four fractions and follow a
distribution as shown in Fig. 1.1. The true positives (TP) and true negatives
(TN) fractions correspond to the samples correctly classified as abnormal
and normal, respectively. The false positives (FP) and false negatives (FN)
fractions correspond to the samples wrongly classified as abnormal and normal,
respectively. Using these fractions, the performance of a classifier to discriminate
abnormal and normal cases is often determined by the following statistics:

Sensitivity, Recall = TP

TP + FN
, (1.1)

Specificity = TN

TN + FP
, (1.2)

1spiculation is associated to the subjective assessment of the malignancy likelihood
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Precision = TP

TP + FP
, (1.3)

F -score = 2 × Precision × Recall

Precision + Recall
, (1.4)

In this thesis, the receiver operating characteristic (ROC) analysis and the
free-response operating characteristic (FROC) [11] analysis are also used to
evaluate the performance of a CAD framework. The ROC curve plots the
sensitivity as a function of the false positive rate (1-specificity) for all possible
threshold points. The area under the ROC curve (AUCR) is a typical evaluation
metric derived to determine the performance of a classifier. An AUCR score of
one corresponds to perfect discrimination whereas the score of 0.5 corresponds
to random guessing. The FROC [12] curve is not limited to an upper bound on
the negative object axis, i.e., false positive rate (FPR). It plots the sensitivity as
a function of the average number of FPs per image and has higher statistical
discriminative power [12]. It is more sensitive at detecting small differences
between performances when multiple abnormal regions are present in a single
image.

Considering the profundity of the detection associated tasks, it is crucial
that the CAD systems manifest a high sensitivity with as low FPR as possible.
The FPs are responsible for the potential detection errors, resulting in increased
analysis time, while the FNs represent missed detections, which may have fatal
impact. Although each module has its importance, the classification module
is predominantly the most pivotal in this sequential setting when determining
the overall significance of the CAD. Generally, the methods employed in the
candidate-screening module yield a high sensitivity but at a high FPR. Conversely,
the classification module attempts to reduce the high FPR while maintaining
the high sensitivity, and thereby potentially called-for rigorous learning-based
methods to overcome the complexities induced by the former module.

1.1. Deep Neural Networks for CAD

Due to the involvement of machine learning methods such as neural networks,
random forests, support vector machine (SVM), etc. for learning the
discriminative features in the classification module, this approach is often
referred to as feature-based machine learning [13]. Until recently, feature-based
learning remained as the critical approach for the classification. Acknowledging
that the extraction and selection of task-oriented features at hand are intensively
exhaustive and challenging, CAD practitioners started to incline toward generic
methods that rely on learning from the raw data. Such image-based machine
learning approaches (or end-to-end learning approaches) [13] directly use the
raw pixel values of an image as features for the classification instead of explicit
computation of task-oriented features. Although this perspective of exploiting
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data benefited the practitioners profoundly, it was still confined due to low
computational power and training data [2, 14].

Figure 1.2 CAD systems for classifying lesions. (a) Feature-based, and (b) Image-based.
The prime distinction between them is direct (or end-to-end) learning from pixel values.

Lately, increasing computation power and evolution of neural network-
based learning approaches have exalted the CAD paradigm. The deep neural
networks (DNN)-based learning approaches, and specifically, convolutional
neural networks (CNN) are commonly referred to as deep learning methods.
Although the existence of DNN dates back to the 1970’s [15] and they were
already exploited in 1995 [16] for medical image analysis, they were not
widely recognized until 2012 [17]. Since then, they have become the foremost
technique of interest for many computer vision and image analysis problems. The
impulse of employing CNN is indeed galvanized by many factors such as data
augmentation, development of new techniques for the training of sophisticated
DNN, and parallel computing using graphical processing units (GPU). The
schematic of the CAD systems using traditional feature-based machine learning
and image-based machine learning (or DNN) are illustrated in Fig. 1.2.

The inception of deep learning methods has rationalized the perspective of
the CAD systems. CAD researchers have conspicuously experienced many
advantages by leveraging the DNN-based methods over feature-based learning
methods. Apart from the automated learning of discriminative features, they
can also simultaneously locate multiple impairments in a particular image.
Additionally, DNN-based methods have also preluded the concept of fine-tuning,
allowing the inference of the pre-trained models for the domain-agnostic
problems. For instance, the VGG16 – a popular DNN-based method, trained
on the ImageNet (one of the largest annotated dataset of natural images) to
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classify 1000 classes can be fine-tuned to comprehend the underlying features of
pulmonary nodules in CT images for binary classification [18].

1.2. Problem Statement and Research Objectives

Aiming at addressing the aforementioned challenges, this thesis focuses on the
development of automated analysis frameworks for digital images captured using
the TEM and the CT imaging modalities. This has been accomplished both by
pushing the limits of well-established techniques such as feature-based methods,
as well as by penetrating the contemporary pattern recognition techniques such
as DNN-based methods.

The primary goal of this thesis is to develop and compare computer-aided
detection (CAD) framework solutions ranging from traditional image analysis
and machine learning methods to modern DNNs-based representation learning
methods. This involves implementation and applications of DNNs in the
classification of objects in medical (CT) images, as well as in the classification
and denoising of objects in biomedical (TEM) images.

To this end, four radiological or clinical problems related either to image
analysis or acquisition are investigated by setting up the following objectives:

1 To develop a DNN-based method for classifying automatically
detected cilia in low magnification TEM images;

2 To develop a DNN-based method for ultrastructural enhancement
by denoising short exposure TEM images;

3 To develop a traditional image analysis-based method for the
detection of different sizes of pulmonary nodules in CT images and
to develop a DNN-based method for classifying them;

4 To develop a traditional image analysis-based method for the
detection of pulmonary micronodules in CT images and to develop
a DNN-based method for classifying them;

5 To develop a DNN-based method for classifying cross-sections of
vascular skeletons in CTA images.

1.3. Contribution of This Thesis

With deluge of data in the current clinical practices, the clinicians are likely to
misinterpret subtle abnormalities, resulting in erroneous diagnostic observations.
Thus, it is vital to facilitate the clinicians with resilient CAD systems in the
time-consuming, labor-intensive and error-prone tasks. However, existing CAD
systems are restrained due to the heterogeneity induced by the biological or
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anatomical structures and low computation power. Until recently, designing
highly discriminative feature sets was considered as one of the involved
challenges in the CAD research.

Lately, the renaissance of DNN-based methods as a compelling technique has
unequivocally remolded the CAD systems. As stated earlier, this thesis aims at
rejuvenating the CAD systems using DNN-based methods. Given the general
framework mentioned in Section 1, this thesis mainly focuses on providing
solutions for the classification and denoising modules using DNN-based methods.
Acknowledging the potency of the deep neural networks, potential solutions have
been contemplated for the challenges imposed by both TEM and CT imaging
modalities.

The main contributions of this PhD thesis are summarized as follows:

1 A CNN classifier is developed to reduce the false positives detected
by an existing template matching (TM) method in low-magnification
TEM images. Given the small amount of training data, curriculum
learning and data augmentation techniques are applied to improve
the performance of the classifier. The framework is tested on
multiple sets of images. Adding a CNN classifier improved the
overall F-score from 0.47 to 0.59.

2 Aiming at the restoration of the short exposure HM MiniTEM™2

images, a novel multi-stream CNN module is developed and
compared with three state-of-the-art denoising methods. Techniques
such as batch normalization and residual learning are harnessed
to improve the overall performance of the CNN module. Using
a large set of 100 image sequences, three experimental studies
are conducted to determine the optimal denoising strategy. The
proposed CNN module is only trained for the first experimental
study and used as it is for the other two studies to manifest the
transfer learning aspect of deep learning (DL). The presented CNN
model achieved an improved peak-signal-to-noise ratio (PSNR) of
40.84 dB.

3 Given the heterogeneity among pulmonary nodules in CT scans, an
automated CAD system is developed for the early manifestation
of lung cancer. Methods for both lung segmentation and nodule
detection in a candidate-screening module are developed using
traditional image analysis methods. An upgraded voxel-based
feature extraction approach is developed to discriminate the
candidates using a multi-layer perceptrons (MLP) classifier. The
proposed CAD system is evaluated on altogether 1052 CT scans
taken from four publicly available datasets. The presented CAD
system achieved an overall sensitivity of 85.6% with only 8 FPs/scan.

2A tabletop low-voltage TEM hardware solution from Vironova AB, Stockholm, Sweden
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4 An automated CAD system is developed for the detection of
micronodules in CT scans. Methods for both lung segmentation and
nodule detection in a candidate-screening module are developed
using traditional image analysis methods. A novel 3D CNN model
for automatic feature extraction is developed and compared with
traditional hand-crafted feature extraction techniques. The methods
are evaluated on altogether 598 CT scans taken from the largest
publicly available dataset, and achieved an overall sensitivity of
86.7% with only 8 FPs/scan.

5 The existing knowledge-based filters for the vascular skeleton
extraction generate a large number of false positive nodes. Aiming
at simplified extraction workflow, a patch-based CNN classifier
is developed to classify the cross-sections of multi-size arteries.
Using 25 CTA volumes of the lower limbs, the performance of the
developed CNN classifier is evaluated and compared to the existing
method. The workflow employing a CNN classifier generates
the final vascular skeleton in a single algorithm pass, thereby
eliminating the requisite to locate the skeletons of small arteries in
the subsequent iteration. Adding a CNN classifier improved the
overall F-score from 0.43 to 0.82.

1.4. Thesis Outline

This Ph.D. thesis is divided into 5 chapters. After introducing the pathological
and radiological challenges associated with the TEM and the CT imaging
modalities, this chapter elucidates the concept of CAD systems and its generic
modules. Next, it also covers the transition of the classification module
from the feature-based machine learning to the image-based machine learning
methods. Given the challenges from the conventional feature-based machine
learning methods, this chapter also briefly explains how DNN-based methods
have benefited the CAD researchers.

Chapter 2 presents the technical perspective of DL. It explains underlying
concepts of the DNNs used in this thesis and their existing variants in the current
practices. It also highlights the commonly known loss functions, optimization
algorithms, and regularization techniques for DNN used in this thesis.

Chapter 3 focuses on two problems associated with current manual TEM
imaging. Firstly, FP reduction of cilia detected in low magnification TEM images
using CNN. At LM level, the non-cilia candidates exhibit high similarities to
cilia candidates. It is hence vital to employ learning-based methods such as
CNN for fast and effective automated image analysis. Secondly, denoising of
short exposure high-magnification TEM images for ultrastructural enhancement
using a CNN. Acquiring short exposure images is required to minimize the
issues of imaging artifacts, however, at the cost of signal-dependent noise.
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Denoising is a well-studied ill-posed problem. Aiming at preserving the structural
information, three state-of-the-art methods are exploited and compared with a
novel multi-stream denoising CNN explicitly developed for the short exposure
images acquired using the low-voltage table-top MiniTEM™.

Chapter 4 tackles the problem of automatic detection of multi-sizes pulmonary
nodules in CT scans. To do so, two CAD systems are developed. The first
CAD system presents a conventional feature-based CAD system for the early
manifestation of lung cancer. Until now, the proposed CAD system is the only
CAD system that has been tested on four publicly available datasets. The second
CAD system employs a 3D CNN to detect micronodules for the manifestation of
silicosis. Manual interpretation of micronodules in CT images is labor-intensive,
erroneous, and time-consuming. Given the success of CNN, it is worthwhile to
exploit the 3D CNN for detection of the micronodules. This is the first study
to be reported on the automatic detection of micronodules in the Lung Image
Database Consortium/Image Database Resource Initiative (LIDC/IDRI) dataset.

Chapter 5 focuses on a CNN-based solution to the problem associated with
the extraction of vascular skeletons in the CT angiography images. Current
practices of delineating vascular skeletons seek for fast, automated, and simplified
extraction techniques. Conventional image analysis methods suffer from a large
amount of multi-size FP; thereby CAD researchers potentially seek for rigorous
learning-based methods such as CNN.

Finally, the thesis is concluded by highlighting the possible future perspectives.
Figure 1.3 shows an infographic overview of this Ph.D. thesis.
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Figure 1.3 Infographical overview of the overall PhD thesis work
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2. BACKGROUND: DEEP NEURAL NETWORKS

I n 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts
provided an insight into the functionality of the brain by mimicking its

working mechanism, and consequently formalized the first computational model
of neural networks (NN) [19]. Their mathematical model transpired a new
scientific perspective- artificial neural networks (ANN).

Inspired by that Bernard Widrow and Marcian Hoff conceptualized the first
ANN ―ADALINE for a real-world problem in 1959 [20]. However, the
research slowed down in the 1970’s since a perceptron was not capable enough
to approximate functions outside a very narrow class [21]. By 1986, some of
the limitations were overcome and the interest in NN rejuvenated because of
the backpropagation algorithm1 [22]. Henceforth, ANN are continually proving
themselves as a very effective and a powerful tool to solve complex tasks.
Figure 2.1 shows the milestones in the evolution of ANN.

Figure 2.1 Milestones in the development of deep neural networks (DNN)

2.1. Artificial neural networks

An ANN model is inspired by the biological nervous systems, which consists
of a group of artificial neurons (or perceptrons). A perceptron is a single
processing entity comprised of some functions such as partial summation, a bias

1Lesser known fact about backpropagation: The minimisation of errors through
gradient descent is even dated back to the 1847. http://people.idsia.ch/~juergen/
who-invented-backpropagation.html
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to control the influence of perceptrons, and an activation function (explained in
Section 2.4) to stimulate a nonlinear behavior. Several such weighted neurons
are interconnected with each other. The weight parameters define the connection
strength among these neurons, as shown in Fig. 2.2.

Figure 2.2 A single neuron with inputs xi=1,··· ,n, bias b, non-linear activation function
f (·), and predicted output ȳ.

In this canonical process, each input data point xi is multiplied by its
corresponding weight parameter wi, followed by the summation of weighted
inputs and bias b. The bias parameter adds an offset to the data. This linear
combination is transformed by a non-linear activation function f (·) to predict
the output. For instance, the neuron with multiple inputs xi=1,··· ,n computes the
output ȳ as follows:

ȳ = f
( n∑

i=1
wixi + b

)
, (2.1)

where the parameters wi=1,··· ,n are weights, b is bias and f (·) is a non-linear
activation function, also refered to as a transfer function.

2.2. From Perceptrons to Multilayer Perceptrons

A perceptron is a simple algorithm that can only solve linearly separable
problems [21]. However, cascading of several such neurons in multiple layers
forms a richer hierarchical model commonly known as multilayer perceptrons
(MLP) where all neurons in the previous layer are densely (or fully)-connected2

to the neurons of succeeding layer. For example, the MLP in Fig. 2.3(a) consists
of three densely-connected layers, i.e., an input layer, a hidden layer, and an
output layer. For a given set of inputs xi=1,··· ,n with one hidden layer hj=1,··· ,m,
the output ȳ can be computed as follows:

ȳ = fout

( m∑
j=1

wjhj + b1
)
, hj = fh

( n∑
i=1

wixi + b0
)

, (2.2)

where parameters wi, b0 and fh(·) are respectively the weights matrices, the
bias, and the transfer function associated to input and hidden layers; wj , b1, and

2The connectivity pattern of a DNNs is referred to as the network’s architecture.
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fout(·) are the weights matrices, the bias, and the transfer function associated to
hidden and output layers. The neural networks model with a depth of more than
two layers are generally referred to as a Deep neural networks (DNN).

2.3. Learning Process

Before introducing the currently most popular variation of DNN, i.e., convolutional
neural networks (CNN), it is worthwhile to get acquainted with the underlying
learning configuration that makes them so powerful. Both MLP and CNN follow
the same learning process.

The DNN aim to solve a particular task through learning from a given
set of d instances, d ∈ {1, 2, · · · , p}, which consists of an input vector
xd = [x1, x2, · · · , xn] and corresponding label yd. The process of learning is
typically referred to as training process and often associated with the supervised
learning. This thesis is based on supervised learning approaches. In a supervised
learning scenario, when discrete outputs are desired (as in Papers I, III-V),
the task is associated to a classification problem whereas when continuous
outputs are desired (as in Paper II), the task becomes more of a regression
problem. The training process, as shown in Fig. 2.3, includes multiple steps:
input normalization, weights initialization, forward propagation, loss function
evaluation, backward propagation, and weights update.

The input normalization is a transformation performed as a data preprocessing
step to standardize the range of data points in a close bounded range. This step is
essential to prevent the network from generalizing towards dominating features.
In this thesis, the normalization is performed by subtracting the minimum data
point variable and dividing by the difference between maximum and minimum
data point variables, resulting in normalized values in the range [0,1]. In addition,
the z-score standardization is also performed in this thesis by subtracting the
mean and dividing by the standard deviation, resulting in a standard normally
distributed data.

The weights initialization step assigns random weights to neurons as a starting
point. The initial values of weights significantly influence the learning process.
Large weight values can saturate the transfer function, causing complete loss of
gradient3 through saturated neurons (or exploding the gradients). Small weight
values can result in very small gradients, causing the vanishing gradient problem
(discussed in Section 2.4). The weights should not be assigned symmetrically to
not receive the same updates during training. As suggested in [23], the weights w
should be initialized using a Gaussian distribution with zero mean and variance:

variance(w) = 2
nin + nout

, (2.3)

3Partial derivatives are often referred to as gradients by the deep learning community. It is a
measure of how much the error changes with respect to a change in a weight or bias value. The
gradient at any point is the product of all the previous gradients up to that point when traversing
the network backward.
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Figure 2.3 Building blocks and learning process of a DNN. (a) An MLP with an
input layer, a hidden layer, and an output layer. The neurons in each layer are
densely-connected to all neurons of the subsequent layer. Given a set of inputs xi=1,.,3
with randomly initialized weights wi, neuron activations are calculated and propagated
forward to the next layer to obtain the output ȳ. (b) An example is showing the forward
propagation by zooming in on one perceptron hj=2, which computes the weighted
non-negative activation using the ReLU transfer function. (c) Optimization of the loss
function L(θ) using a gradient-based learning algorithm. In each step, the current
weights (red dot) are moved along the steepest direction Δθ (direction arrow) by learning
rate (step size) η, where θ = (w, b). A high learning rate can overshoot and miss an
optimum along a steep direction as shown by the dotted arrows. Decaying the learning
rate over time allows to explore different domains of the loss function by jumping over
valleys at the beginning, and fine-tune parameters with smaller learning rates in later
stages.

where nin and nout are respectively the number of inputs and outputs of a
corresponding layer. This initialization benefits the training in practice since
the weights are sufficiently large to propagate gradients smoothly across the
network. However, the choice of weight initialization strategy is rather empirical
and varies according to the problem.

The forward propagation step propagates the inputs through the hidden
layer(s) to calculate the output. In a sequential flow, the input layer propagates
non-linear outputs (or activations) to the hidden layer. Using the outputs from
the hidden layer as inputs, this process is repeated for the output layer neurons.
Figure 2.3(b) shows an example of forward propagation step where the output
of a hidden layer neuron is computed using the weighted activations of the input
layer.

A loss function is essential to evaluate the learning performance of the
network. The loss function quantifies the difference between the predicted label
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ȳ and true label y. After the forward propagation step, the total loss (or error) of
the network is estimated using a loss function L. For example in Fig. 2.3(a), the
sum of squared error (SSE) loss is computed as:

L =
p∑

d=1

1
2

(
yd − ȳd

)2
, (2.4)

The backward propagation step propagates the loss from the output to input
layers to calculate the gradients of the loss function. Once the total loss is
computed, the gradients are calculated by applying the chain rule for derivatives.
For instance, the partial derivatives of the total error with respect to the weight
wi in Fig. 2.3(a) are computed as:

∂L
∂wi

= ∂L
∂ȳ

∂ȳ

∂hj

∂hj

∂wi
, (2.5)

where
∂L
∂ȳ

corresponds to the partial derivative of total loss with respect to the

output of the network,
∂ȳ

∂hj
corresponds to the partial derivative of the output

with respect to the jth neuron in the hidden layer,
∂hj

∂wi
is the partial derivative

of the jth neuron with respect to the ith weight.
The weights update step is performed after computing all the gradients of the

network during backward propagation. The weights are updated iteratively in
the opposite direction of the gradient (w.r.t. some learning rate η) to find a local
(or global) minimum using an optimization (or learning) algorithm. The iterative
methods belong to the gradient-based optimization. For instance, Gradient
descent (GD) is a popular optimizer, which minimizes the loss by updating
the weights so that the difference between a true label and a predicted label is
minimized. Learning is performed by taking small steps η in the direction of
the slope created by the loss function (Figure 2.3(c)). A high learning rate
corresponds to bigger steps and may speed up the learning to converge to an
optimal set of weights. However, it could also overshoot and miss an optimal
minimum along a steep direction.

2.4. Activation Functions

An activation (or transfer) function f (·) is used to perform a non-linear
transformation on the linear perceptrons (or neurons). The choice of activation
functions in DNN has a significant effect on the training process and performance.
Typically, DNN performs linear operations (e.g., inner product or convolution)
on inputs and their weights, which are then followed by a f (·) operation to
perform thresholding on the calculated output. The usage of the activation
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function depends on the DNN type and also on the type of layer in which they
operate.

The sigmoid function is a particular type of logistic function, which is often
used as an activation function to obtain the output of the hidden layer neurons.
It takes real-valued inputs and squashes them monotonically into a range of 0 to
1, i.e., f(x) ∈ (0, 1) while centering at the value of 0.5. It implies that the large
negative values become 0 and large positive values become 1. Given that it has
an exponential in its function, the derivative f ′(x) can be calculated as shown
in Fig. 2.4(a). During backpropagation, the gradients for the neurons whose
output is close to 0 or 1 become nearly zero (or minimal), and thus, almost
no signal flows through those saturated neurons to their weights. If the initial
weights are too small, most of the neurons will be saturated, and the network
will not converge to optimal parameters. This issue is commonly referred to as
“vanishing gradients”.

On the contrary, weights initialized with large values can cause a large
change in the loss, and thus the gradients will also grow exponentially to large
values. This issue is commonly referred to as “exploding gradients”. Exploding
gradients can saturate the activation functions and result in an unstable network
that can no longer be updated. Therefore, it is critical to initialize weights of
sigmoid neurons carefully or to clip the norm of the gradient at some threshold
(known as gradient clipping).

Figure 2.4 Plots of the activation functions with their corresponding derivatives: (a)
Sigmoid, (b) Tanh, (c) ReLU, and (d) Swish functions.

The hyperbolic tangent (tanh) function is a preferable alternative to the
sigmoid function which is also used for hidden layer neuron output. It takes
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real-valued inputs and squashes them monotonically into a range of -1 to 1
(Figure 2.4(b)). As for the sigmoid activation, it also suffers from the saturation
and vanishing gradient problem.

The ReLU function was introduced to address the vanishing gradient problem.
It is resistant to this problem at least in the positive region (x > 0), which means
that the neurons do not propagate all zeros backward to the network. The range of
ReLU is between 0 to +∞ (Figure 2.4(c)). Given that it inherits the behavior of
a positive linear function, the convergence of SGD is accelerated in comparison
to the sigmoid or tanh functions. However, ReLU activated neurons tend to be
fragile during training and can be inactive during the entire learning process. For
instance, if x < 0 during the forward propagation, the neuron remains inactive
and thereby kills the gradient while propagating back through the network.
Several variations of ReLU are introduced to overcome its limitations such as
leaky ReLU [24], and parametric ReLU [25]. Recently, researchers at Google
brains introduced a self-gated activation function – Swish [26]. This function is
a modified version of the sigmoid function and reported to perform better than
the variants of ReLU function (Figure 2.4(d)). The ReLU activation function is
used in Papers I, II, IV, and V.

The softmax function (or classifier) is a generalization of the logistic function.
When dealing with classification problems, the linear functions such as ReLU
compute unbounded output ȳ values. Softmax is a normalized exponential
function that squashes the values of each neuron in the output layer to be between
0 and 1 and divides each output in such a way that the total sum of the outputs is
equal to 1. The output of the softmax is equivalent to a categorical probability
distribution. It is often utilized with negative log-likelihood (or cross-entropy)
loss function. The arbitrary values ȳ ∈ RC are transformed into normalized
probability estimations p ∈ RC to compute softmax for a single instance as:

pk = exp ȳk

C∑
i=1

exp ȳi

, (2.6)

where k, i ∈ {1, . . . , C} range over classes, and pk, ȳk, ȳi refer to class
probabilities and values for a single instance. The Softmax is used in Papers I,
III, IV, and V.

2.5. Loss Functions

The loss function has a key role in the optimization of the DNN. The value of the
loss function L shows the discrepancy between the predicted values ȳ and true
values y. The minimization of the loss implies that a model starts converging to
an optimal set of parameters. The loss function is also referred to as empirical
risk term and does not contain any trainable parameters. Much like for the
activation functions, the choice of the loss function is influenced by the task at
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hand. If the task is a linear regression problem, the variants of squared errors can
be a suitable loss function. In case of logistic regression such as classification
tasks, the cross-entropy error is a more suitable loss function.

Let’s consider θ as the parameters of a model to be learned (or optimized),
f (·) represents the activation function and xi = {x1

i , x2
i , · · · , xm

i } ∈ Rm is a
training sample. To introduce generic loss functions, the empirical risk term can
be represented as:

L(θ) = 1
n

n∑
i=1

(
yi, f(xi, θ)

)
, (2.7)

Mean Squared Error

The mean squared error (MSE) or quadratic loss is often used as a performance
measure for linear regression problems. It is computed as:

L = 1
n

n∑
i=1

(yi − ȳi)2 , (2.8)

It minimizes the residual sum of squares, i.e., (yi − ȳi). However, it suffers from
slow convergence when used with sigmoid activation, which is not the case with
ReLU or linear activations. This is because when the output of the sigmoid is
zero or 1, the derivatives become nearly zero. If the loss L is too large or too
small, the derivatives get closer to zero, and thus, slows down the convergence.
The mean squared error is used in Paper II.

Mean Squared Logarithmic Error

The mean squared logarithmic error (MSLE) measures the logarithmic difference
of the estimated and true values. It penalizes under-estimated values more than
the over-estimated values. It is computed as:

L = 1
n

n∑
i=1

(
log(yi + 1) − log(ȳi + 1)

)2
, (2.9)

Least Squares Error (L2 - norm)

The L2 - norm (or regularized expectation loss) minimizes the squared differences
between the estimated and existing true values. It is highly sensitive to outliers
in the training set because of the squared differences which lead to much larger
errors. It is mathematically similar to MSE without a division by n samples. It
is computed as:

L =
n∑

i=1
(yi − ȳi)2 , (2.10)
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Mean Absolute Error

The mean absolute error (MAE) minimizes the absolute difference between the
estimated and existing true values. In comparison to the MSE, it is more robust
to outliers since it does not make use of square. It is computed as:

L = 1
n

n∑
i=1

∣∣yi − ȳi

∣∣ , (2.11)

Cross-entropy loss

Cross-entropy loss is useful when dealing with classification problems using
DNN. It quantifies the discrepancy between the probability distributions of
estimated and true values. In comparison to MSE where sigmoid and softmax
activations suffer from saturation and slow learning, the use of cross-entropy
loss greatly improves the performance of models with these activations. A large
cross-entropy loss means that the difference between two distributions is large
whereas small loss implies that two distributions are similar to each other. It is
computed as:

L = − 1
n

n∑
i=1

[
yi log(ȳi) + (1 − yi) log(1 − ȳi)

]
, (2.12)

Negative Log Likelihood

Negative log likelihood (softmax loss) is often used to estimate the accuracy of a
classifier. It is a soft accuracy measure that incorporates the idea of probabilistic
confidence. It is used when the model outputs a probability for each class (binary
or multiple classes), rather than just the most likely class. It is computed as:

L = − 1
n

n∑
i=1

log(ȳi) , (2.13)

The cross-entropy loss function is used in Papers I, III, IV, and V.

2.6. Representation Learning Using Convolutional Neural Networks

Put simply, CNN is a powerful version of MLP. From a biological perspective, the
CNN emulates the functionality of the visual cortex, which uses a combination
of simple and complex cells to encode richer representations 4 progressively
in an image [27]. Similarly, the CNN also employs several convolutional
layers (simple cells) using different filters and pooling layers (complex cells)
in a hierarchical structure to encode discriminative representations [28]. Since

4In the context of convolutional neural networks, the parameters are often synonymized as
representations or feature maps.
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CNN’s are capable of exploiting multi-dimensional data in a matrix form, they
are a much-enriched model for classification (or detection) tasks compared to
the shallow MLP where the multi-dimensional input is structured into a vector
form and, consequently lose the connectivity between local substructures.

The two principal factors of CNN’s are parameters sharing and pooling layers.
First, CNN’s have a benefit in the fact that they are translation-equivariant 5,
wherein they share the same filters (also refered to as kernels or parameters) in
a local sub-region (or receptive field6) of the input layer to encode low-level
representations of the objects or region, independently from their positions within
an image. Shared parameters drastically reduce parameters that are mapped to
the hidden layer, unlike the global receptive field of the MLP where neurons
in the hidden layers are densely connected to the input layer. For instance,
if an image of 500 × 500 × 1 pixels is given as an input to the MLP, it will
have 25 millions parameters (500 × 500 × 1 × 100) for 100 neurons in just one
hidden layers, and even gets much bigger when multiple layers are cascaded.
On the other hand, one convolution layer consisting of 64 feature maps using
5 × 5 × 1 filters will have only 1 664 parameters (5 × 5 × 1 × 64 + 64). Second,
the subsampling or pooling layers benefit CNN by conferring a certain amount of
translation-invariance5, and spatial-dimensionality reduction, and thus restricting
the network from overfitting.

A typical CNN architecture consists of several convolutional layers and
pooling layers on top of the dense layers, as shown in Fig. 2.5(a). The convolution
layers encode several different representations by convolving over the entire
image. The initial convolutional layers comprehend the low-level features such
as a circle, an edge, and a vertical line and higher layers encode more complex
representations such as textures. These representations are then captured by
the activations (or feature maps). Once the representations are extracted, the
classification is performed using dense layers.

Convolution Layer

The convolutions are the fundamental operations of the convolutional layer. The
convolutional layer consists of several small kernels or filters that are applied to
the whole input image to compute the output. To compute the output for a given
2D image Ix × y, a set of small kernels k of size m × m are defined to cover the
local receptive fields. The kernels shift over the whole image for computing the
output and followed by adding a bias term for each k filter. Finally an activation
function f(·) is employed for all of the pixels of the output images to induce
nonlinearity. An example is shown in Fig. 2.5(b). The single output image

5One common misapprehension: Convolution layers are translation-equivariant instead of
translation-invariant. The equivariance allows CNN to generalize edge, texture, and shape
detection in different locations. Pooling passes over the max value in its receptive field regardless
of its spatial position brings the ability of translation-invariance to the CNN.

6The receptive field is a hyperparameter defined as the spatial extent of connectivity where
each neuron in the layer is connected to only a local region of the input data.
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Figure 2.5 Building blocks of a CNN architecture. (a) A typical CNN architecture
consists of several convolutional layers and pooling layers on top of the dense layers,
(b) convolution filter k3×3 that convolves throughout the whole input image I7×7, (c)
an example of max-pooling operation using a filter of size 2× 2 with the stride of 2
applied on the input, and (d) an example of residual mapping with one convolution
block consisting of a convolutional layer, a batch normalization (BN) layer, and a ReLU
activation function.

channel of a convolutional layer for a kernel k and bias b can be formalized as
follows:

conv(I, )xy = f

b +
m∑

i=1

m∑
j=1

kij · Ix+i−1,y+j−1

 , (2.14)

The dimensions of the resulting feature maps are controlled by three
hyperparameters which are required to be specified before the convolution step is
performed such as depth, stride, and zero-padding. First, the depth corresponds
to the number of kernels use for the convolution operation. In the network shown
in Fig. 2.5(a), the convolution operation is performed on the input image using
x kernels, thus producing a depth of x different representation maps. Second,
the stride is the number of pixels by which the filter shifts over the input image
in each step to compute the next pixel in the result. It specifies the overlap
between individual output pixels. For instance, when the stride is 1, the filters
shift by one pixel at a time, and when it is 2, the filters shift over 2 pixels in each
step. Third, convolution operation using a kernel larger than 1 × 1 reduces the
output dimension of an image. Therefore, padding is often desired to keep output
spatial dimensions the same as input where the image is sufficiently padded with
zeros at the borders. For instance, a kernel of size m × m is used then a zero
padding of size m−1

2 is added to the border of the input image. For a given input
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image of hight or width Iy with a stride S and padding P , the dimensions of the
output of any given convolutional layer C can be obtained as:

C = Iy − m + 2P

S
+ 1 , (2.15)

Pooling Layer

The pooling layer is often synonymized as a subsampling (or downsampling)
layer which usually follows the convolutional layers. Pooling layer can be seen as
a regularization layer that controls the overfitting of a network. It progressively
reduces the spatial dimensions of the given representation maps and thus leading
to less computational heads for the next layers.

There are several operations to implement pooling such as max-pooling, L2
norm pooling and global average pooling. However, max-pooling, which find
the maximum value of the input patch, is the most popular for the classification
tasks. Max-pooling is often applied using filters of size 2 × 2 and a stride of 2 at
every depth slice. An example of a max-pooling operation using a filter of size
2 × 2 with the stride of 2 applied on the input is shown in Fig. 2.5(c).

Dense layer

The dense (or fully-connected) layers follow the same connectivity as in an
MLP where each neuron of the input layer is connected to every neuron in
the succeeding layers. The convolution layers are modeled to extract the
discriminative representations (as a feature extractor), whereas the dense layers
are modeled for classifying the objects in their respective classes. Therefore,
this connectivity is different from the local connection style employed in the
convolutional layers. The dense layers are implemented by structuring (or
flattening) the input feature maps into a vector, followed by vector-matrix
multiplication, then a bias term is added to it. Finally, a transfer function is
applied to induce the non-linearity as follows:

hl = f
(
bl + W l hl−1) , (2.16)

where hl is the output feature vector of the layer l which is obtained by flattening
the input feature maps hl−1 of the l − 1 layer; W l, bl, and f(·) are respectively
the weight matrix, the bias term, and the transfer function.

Residual connections

Increasing network depth imposes challenges from the optimization perspective
and also regarding the overall performance of the CNN. With increasing depth
of the network, the accuracy saturates and starts to degrade rapidly due to the
vanishing gradient problem. To overcome such challenges, residual (or skip)
connections can be added to the network topology.
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The key concept of residual mapping is to introduce modularity 7 in the deep
networks where identical mapping is performed by summing the input of one
layer to the output of at least one skipped layer [29]. The residual mapping is
based on the approximation of the residual function instead of the original one
directly from a convolutional layer H (·), and is expressed as:

H(xout) = xin + F(xin, {Wk}) , (2.17)

where, xin and xout are its input and output; F (·) is a residual mapping
associated with a set of parameters {Wk} where k ≥ 1, means skipping at least 1
convolutional block, consisting of a convolutional layer, a batch normalization
(BN) layer and rectified linear unit (ReLU) activation layer (Figure 2.5(d)). From
learned feature weights sharing perspective, residual connection enables feature
reuse at no extra parameters and computational complexity. In addition, it allows
the gradient to flow through them during the backward propagation easily. The
residual connections are used in Papers II and IV.

2.7. Supervised Optimization of Deep Neural Networks

The performance of DNN is optimized in conjunction with minimizing the
objective (or loss) function, which is challenging since the loss function is
high dimensional and non-convex. Provided this, it is reasonable to employ
iterative-based optimization algorithms for finding a parameter configuration to
minimize the objective function L.

Most of the iterative algorithms are based on the GD method. The GD
minimizes the objective function by updating the parameters (θ = [w, b]) in the
negative gradient direction of the objective function ∇θ L(θ). The step size is
determined by the learning rate η. It can operate in the batch, stochastic, and
mini-batch learning modes.

Batch Gradient Descent (BGD) updates the parameters after computing
gradients of all the samples at once. It can be very slow and is not feasible for
large datasets.

θ = θ − η · ∇θ L(θ) , (2.18)

Stochastic Gradient Descent (SGD) updates the parameter for each training
sample xi and label yi by performing one update at a time. Although it is faster
than BGD, its frequent updates lead to high variance in the parameters. These
fluctuations of parameters overshoot the loss function to different suboptimal
minima, and thus, ultimately leads to unstable convergence.

θ = θ − η · ∇θ L(θ; xi; yi) , (2.19)
7Modularity refers to as a small network that can be repeated to increase the depth of the

network.
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Mini-Batch Gradient Descent (MBGD) is an improved variant of BGD and
SGD optimizers. It updates the parameters on a smaller batch of n training
samples. In comparison to SGD, it converges smoothly due to reduced variance
in the parameters. Typically, the batch sizes range between 32 and 256. The
MBGD learning algorithm is used in Papers II and III.

θ = θ − η · ∇θ L(θ; x(i:i+n); y(i:i+n)) , (2.20)

Momentum is an adaptive version of MBGD [30]. It accelerates MBGD by
softening its convergence in irrelevant directions. Since MBGD are prone to
stick in saddle points8, Momentum navigates it along the relevant direction by
using an average gradient over the previous steps.

vt = γvt−1 + η ∇θ L(θ) ,

θ = θ − vt ,
(2.21)

where γ is the momentum term, vt, and vt−1 are respectively the current and
previous updates to the parameters.
Adaptive Gradient (Adagrad) is an adaptive optimization algorithm [31],
which is best-suited for the sparse data. It updates the learning rate by scheduling
a priority for each parameter. It means that the infrequent parameters are
prioritized with larger updates whereas frequent parameters are assigned with a
priority of small updates. The update for each parameter, θi, with a different
learning rate at step k is computed as:

θk+1,i = θk − η√
Gk,i + ϵ

∇θ L(θk,i) , (2.22)

where Gk,i is a diagonal matrix with each diagonal entry as the sum squared of
the gradients of θi up to step k and ϵ is a small value to prevent division by zero.

Root mean square propagation (RMSProp) is also an adaptive optimization
algorithm [32], eliminating the problem of gradient accumulation9. It overcomes
the issue of radical diminishing of learning rates raised by Adagrad. It updates the
parameters iteratively with a running average of squares of previous gradients. It
prevents gradients from exploding by decreasing the step size for larger gradients,
and from vanishing by increasing the step size for small gradients. The average
squared gradient, E[g2]k, for step k is defined on the average at step k − 1 and
the current gradient as:

E[g2]k = 0.9E[g2]k−1 + 0.1g2
k ,

θk+1 = θk − η√
E[g2]k + ϵ

gk ,
(2.23)

8Saddle point is a point where one dimension slopes up while another slope down, usually
surrounded by a plateau of about equal error. Regardless of the direction, it is difficult for the
non-adaptive variants of GD to converge since surrounded gradients are nearly zero.

9Accumulation means running summation. The gradients are a running summation of every
new batch which is computed after propagating backward on one batch at a time.
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where gk = ∇θk L(θk), and ϵ is a small value to prevent division by zero. There
are several other variations of adaptive optimizier that are not discussed but a
comprehensive overview can be easily found in [33]. The RMSProp learning
algorithm is used in Papers I, IV, and V.

2.8. Regularization of Deep Neural Networks

Overfitting is one of the challenges that is often encountered when training DNN.
It occurs when the parameters of a model are optimized well without capturing
the underlying representations of the data. It implies that certain complexities in
the model may restrict the model to generalize well even though it fits well with
the training data. Regularization is a technique which reduces overfitting and
variance in the model by penalizing its complexity. It is added to the model so
that it can fit adequately to the training data but at the same time it can generalize
better to unseen data.

Regularization can directly be added as a penalty term to the loss function
that penalizes the parameter outliers in the model, i.e., large weights. This kind
of regularization is often referred to as parameter norms or weight penalty terms.
A slightly different approach is to modify the network by dropping its parameters
randomly while training which can be achieved using “dropout layers”. In this
thesis weight decay, data augmentation and dropout have been used to prevent
overtraining and to improve generalization.

Dataset augmentation

Limited amounts of annotated data pose severe challenges while training a
supervised DNN model. Given that CNN has a large number of parameters and
hyperparameters10 to be optimized, overfitting is thus highly probable to occur
when training a model with very few samples. Availability of more data can
certainly improve the overall performance of a model. One possible solution is
to artificially augment the dataset by generating a moderate amount of new yet
correlated training samples.

The choice of selecting an augmentation technique is often problem specific11.
For instance, pulmonary nodules on CT scans pose a great variability regarding
contextual surrounding, shape, size, and orientation. Generic augmentation
techniques such as rotation and translation can be employed to augment the
training set for a classification problem. In such a way, the model can learn
rotational- and translational-invariant features, and thus improve the overall
performance of the classifier.

10Hyperparameters represent the configurable values used when building a network such as
filter sizes, learning rate, dropout, gradient clipping threshold, etc; whereas parameters constitute
the learnt values (weights) obtained while optimizing the loss function.

11An interesting fact: There are 48 unique lossless permutations of 3D images possible
as opposed to only 8 for 2D images. https://en.wikipedia.org/wiki/Octahedral_
symmetry#The_isometries_of_the_cube
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Cross-validation

In supervised learning, the performance of a model is often measured by holding
out a validation set from the training data. Since there is typically a shortage of
data to train a model, removing a part of the data for validation poses a problem
of underfitting. In case of data scarcity, cross-validation is an efficient statistical
method for evaluating the performance of a model which also helps in the overall
generalizability of a model.

In a typical k-fold cross-validation scheme, the data is randomly split into
Fk equally sized folds (e.g., k = 5). Subsequently, k iterations of training and
validation are performed in such a way that within each iteration a different fold
is used for validation while the remaining Fk−1 folds are used for training. In
such a way, each data point in the training and validation sets cross-over in
successive rounds and gets a chance of being validated against themselves. The
final results are determined by either taking a mean or median of measures over
the k folds. However, it is also recommended to perform the final evaluation
using a completely unseen test set since cross-validation might bias the model to
generalize to both the training and validation data due to cross-over sampling.
The 5-fold cross-validation scheme is used in Papers I, II, IV, and V.

Dropout

Dropout regularizes a model by reducing the interdependent learning amongst
the neurons and eventually prevents it from overfitting. Dropout can be seen as
a version of bagging where some neurons are randomly dropped out at every
iteration so that they will not interact with the network. It implies that the
weights for those dropped neurons are not updated, and they do not affect the
optimization of other neurons in the network.

In such a way, a sparse network composed of several networks is developed
where each network is trained with a single sample. Such transformation of a
network into an ensemble hugely decreases the possibility of overfitting. Since
the influence of individual neurons on learning is averaged, it helps a network to
generalize better and also increases accuracy. The Dropout technique is used in
Papers I, II, IV, and V.

Batch Size

Training a CNN with GD optimizers on relatively larger batch sizes12 can
influence the convergence to sharp minimizers13 (Fig. 2.3(c)), and thus, potentially
affect the network generalizability. On the other hand, training with smaller
batches can lead the convergence to flat minimizers13 (Fig. 2.3(c)) due to the
inherent noise in the gradient estimation. In either case, the network will not

12Batch or mini-batch size is referred to as the number of training samples in one
forward/backward propagation.

13Flat minimizers is defined as the size of the connected region around the minimum where
the training loss is relatively similar. Consider the error as a one-dimensional curve, a minimum
is flat if there is a wide region around it with roughly the same error; otherwise, it’s sharp.
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be possibly able to converge to an optimal set of parameters and will result in
poorer generalization. Although determining a batch size is a somewhat empirical
practice, it is still an important hyperparameter which also influences the overall
generalizability of a network [34].

Batch normalization

Variations in the parameters from each layer (i.e., internal covariate shift)
slow down the network training with saturated activations and small learning
rate. This can adversely affect the training of the CNN with a risk of poor
generalization performance [16]. Lately, batch normalization (BN) has enabled
the CNN to learn faster with a better generalization of the network and overcome
the issue of internal covariate shift14. While training with BN, each feature map
computed by a linear operation (e.g., convolution) is normalized separately over
the mini-batch12 to have a mean µ of zero and variance σ2 of 1. For example,
a layer with an input X = (x1,· · · , xm), where m is the total number of feature
maps computed after applying a linear operation. Each xn is formed by all the
corresponding feature maps of the candidates in the mini-batch (e.g., 128). The
BN for nth feature map can be expressed as:

x̂n = xn − µ(xn)√
σ2 [xn]

, (2.24)

However, just simply normalizing the feature map can constrain the representation
capabilities of the network. Therefore, a pair of learning parameters (learned
along with the original model parameters) for scaling by γn and shift by βn is
applied to the normalized feature map x̂ n as:

yn = γnx̂n + βn , (2.25)

By employing BN, the network converges much faster and also improves
the overall generalization of the network. Although BN reduces the strong
dependence on initialization, it is still often beneficial with proper initialization
of weights. The batch normalization technique is used in Papers II, IV, and V.

Weight penalty

Penalizing the weights while training is one of the conventional techniques to
regularize a network. With an implicit assumption that a model with small
weights is somehow simpler than the one with large weights, the penalties try to
reduce the complexity of a model by keeping the weights small. The structural
risk (or loss) function using the regularization term, and empirical risk term from
Equation 2.7 can be expressed as:

L(θ) = 1
n

n∑
i=1

(
yi, f(xi, θ)

)
+ λ Φ(θ) , (2.26)

14Internal covariate shift refers to as the change in the distribution of network activations due
to the change in network parameters during training.
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where λ is the regularization hyperparameter to control the influence of
regularization term Φ(θ). Larger values of λ imply more regularization, i.e.,
smaller values for the model parameters θ. The regularization terms can either
be L2 norm (Ridge Regression) or L1 norm (Lasso Regression). The L2 norm
adds a penalty proportional to the squared magnitude of each weight as follows:

ΦL2(θ) = 1
2

∑
j

θ2
j , (2.27)

The L2 norm penalizes larger weights more (weights are squared) and restricts
the parameters to small non-zero values. The L1 norm penalizes the absolute
value of the weights and is defined as:

ΦL1(θ) =
∑

j

|θj | , (2.28)

It introduces sparsity in the network by equally penalizing the smaller and larger
weights. This sparse property is often helpful when selecting important features.
The L2 norm weight penalty is used in Papers II and III.

Early stopping

In supervised learning, the given set of data points is split into a training set and a
test set. The training set is further divided into a training subset and a validation
subset. The training subset is used to find the hyperparameters (learning process),
and the validation subset is used to tune the parameters (hyperparameter tuning).
At any given point of the learning process, the test set is not used for optimizing
the hyperparameters. The test set is used for model selection or for accessing
the performance of individual model trained using cross-validation schemes.
Skipping the test set is not a feasible choice since the algorithm that performed
well during the cross-validation does not guarantee a good performance due to
the possibility of inheriting noise in the cross-validation set.

When training a model using iterative-based learning algorithms, the
performance (e.g., loss function or accuracy) on the training subset cannot be
used as an assessment criterion since the model may get tuned to the noise present
in the training data. In that case, the validation subset is used for evaluating the
performance of a model. However, the error on the validation subset might begin
to grow when the network starts overfitting to the data. When the validation error
increases for a specified number of iterations in a row, the training is stopped,
and the parameters at the minimum of the validation error are returned. This is
usually considered as early stopping and implies a similar regularization like L2
norm regularization. The early stopping is used in Papers II, III, and IV.

Curriculum Learning

Curriculum learning is inspired by the fact that systematically organized learning
can lead to better understanding of complex concepts (much like human learning).
It helps a model to generalize better by increasing the influence of simple
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data-points. In curriculum learning, the core feature to enable is to rank the
data-points based on their level of presumed difficulty and then train a model
with simple data-points first before gradually progressing to harder data-points.

This strategized learning can be employed by assigning larger weights to the
simple data-points in a loss function or by sampling them more frequently. An
appropriate curriculum strategy, therefore, both acts to help the learning process
and to regularize by giving rise to lower generalization error for the same training
error. One such learning strategy is used for training a CNN classifier in Paper I.

2.9. Transfer learning

The concept of transfer learning is one of the extended benefits of DNN-based
methods where a model trained on one task can be reused to comprehend the
problems associated with another related task. On a conceptual level, transfer
learning is intrinsically connected to the idea of generalization. The primary
distinction is that transfer learning is often used for transferring knowledge
across tasks instead of generalizing within a specific task. More specifically,
transfer learning uses the representations learned from tasks for which a lot of
labeled data is available compared to the settings with only little-labeled data.

To leverage the transfer learning perspective, a pre-trained DNN model can
be employed either as for feature extraction or for fine-tuning it on a new task.
As a feature extractor, a pre-trained model with optimized parameters is used to
extract representations for a new set of data points. Then, the dense layers are
trained using those representations for the classification task. In a fine-tuning
process, the parameters of a pre-trained model are re-optimized by continuing
the backpropagation using a small learning rate to refine the parameters for a
new dataset. It is possible to fine-tune each layer or to fine-tune later layers of
a pre-trained CNN. It is often recommended to fine-tune later layers since the
earlier layer extracts more generic representations that could be useful to many
tasks, later layers become progressively more problem-specific to the details of
the classes in the respective dataset. One such aspect of transfer learning is
shown in Paper II and V.
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3. CAD FOR PCD ANALYSIS IN TEM IMAGES

M anually diagnosing primary ciliary dyskinesia (PCD) using transmis-
sion electron microscopy (TEM) is time-consuming, subjective, and

monotonous. Automation of the process is thus highly desirable to assist
pathologists. However, developing an automated workflow to mimic the manual
diagnostic procedure imposes several challenges regarding image acquisition and
analysis. Amongst many of such challenges, this chapter explicitly focuses on
the problems associated with the detection and denoising.

To improve the performance of an automated PCD analysis workflow, two
CNN–based methods are developed to 1) classify cilia and non-cilia instances
in low-magnification TEM images (Paper I), and 2) denoise short exposure
high-magnification TEM images for enhanced ultrastructural analysis (Paper
II). This chapter summarizes the background, material, methods, results, and
contributions presented in the appended publications (A and B).

3.1. Overview

Cilia are hair-like structures protruding from cells surface. Dysfunctional cilia
are often associated with a genetic disorder –Primary Ciliary Dyskinesia (PCD),
which can lead to pulmonary infections, reduced female fertility, and infertility
in males [35, 36]. Early and accurate diagnosis is highly desirable to control the
progression. In 1976, Afzelius reported that the ultrastructural defects of cilia
lead to immotile cilia and are primarily responsible for immotile cilia syndrome
(ICS) [37]. Later, the term ICS was replaced by PCD to distinguish genetic
ciliary defects (primary) from defects due to viral respiratory tract infections or
exposure to toxic agents (secondary) [35, 38, 39].

The prevalence of PCD is rather difficult to estimate since most of the patients
often remain undiagnosed due to nonspecific symptoms, insufficient knowledge
of the disease, and limited diagnostic facilities [40]. The estimated prevalence
varies between one in 2,000-40,000 [41,42]. PCD diagnosis is challenging since
there is specifically no such diagnostic test which is accurate enough to be used
as a stand-alone test. European Consensus guidelines recommend combining
tests, including nasal nitric oxide, high-speed video microscopy, TEM, and
genetic culture testing [43–45]. Such tests are often expensive, requiring
highly-skilled staff and technically advanced equipment, which limits them to
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highly specialized centers [40]. This work is explicitly centered on facilitating
the manual diagnostic procedure of PCD analysis using TEM.

To diagnose the disorder, a trained pathologist analyzes the morphological
appearances of at least 50 perfectly perpendicularly cut cilia (∼220–250 nm in
diameter) in high-resolution TEM images [46]. TEM can reveal morphological
structures up to a resolution of 1 nm; however, it is an expensive and
technically complex imaging technique [47, 48]. In a typical clinical setting,
pathologists steer at different magnification levels to identify diagnostic-relevant
cilia instances. Manually locating and analyzing such nanostructures in the large
search space a tissue sample constitutes is monotonous, and time-consuming
(this could take up to two hours per patient). Automated image acquisition and
analysis are thus vital to improve the PCD analysis using TEM.

3.2. False Positive Reduction in Low Magnification TEM Images

Diagnostic quality cilia instances are rare, very small, and are often unevenly
spread throughout the sample in the form of clusters. To cover a large
search space of tissue sample in a reasonable time, it is important to use as
low-magnification as possible. This entails the analysis of LM images [I].
Automatically locating potential regions of interest at low magnification, and
acquiring high-magnification images only at selected locations, is therefore
highly beneficial.

Automated detection of cilia in low-magnification TEM images is challenging
due to the heterogenic quality among cilia instances and their similar characteristics
with non-cilia candidates. In a 4K×4K LM image with a FOV of ∼ 60 ̉um,
a cilium instance is of about 20 pixels in diameter, and thus its characteristics
can be barely resolved to compute discriminative features [I]. Previously, a
template matching method to detect cilia candidates in low-magnification TEM
images [46] has been proposed. This method achieves considerable detection
performance; however, it also introduces a large number of FPs. The template
matching-based methods often depend on a local cross-correlation that is
relatively sensitive to noise and therefore potentially detects a substantial fraction
of FPs [49, 50].

While aiming at locating highly populated regions of diagnostic-quality cilia
for further high magnification image acquisition and analysis, it is imperative that
such regions are not misled by a large number of FPs. Given this, it is crucial to
employ an FP reduction module in the automated workflow to improve the overall
detection performance. Lately, increased computational power and availability
of a large amount of data has increased the applicability of DNN-based methods
in the biomedical image analysis field [51–54]. The capacity of CNN to encode
the discriminative representations in a supervised learning regime makes them
efficacious for automated detection of structures. Motivated by that, a CNN
classifier is developed with a particular focus on reducing the number of FPs
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Figure 3.1 An overview of the overall workflow consisting of the CNN model.

and is integrated with the existing template matching-based candidate-screening
module.

Method

The schematic illustration of the overall detection workflow is shown in Fig. 3.1.
It consists of two stages: (1) template matching to detect the plausible cilia
candidates, and (2) further FP reduction using a 2D CNN model. This chapter
only focuses on the FP reduction (Publication A) whereas the former part of the
workflow is comprehensively explicated in [46].

Template matching based on normalized cross-correlation (NCC) and a
customized synthetic template are used to detect the initial cilia candidates.
Subsequently, patches of 23×23 pixels are extracted for the initially detected
candidates as the input for the CNN classifier. The patch contains a cilium
(∼ 19–20 pixels in diameter) and some local background around it (∼ 3 pixels)
to include sufficient context information.

Given the complexity of cilia detection in the LM images, it is worthwhile
to employ an organized training strategy where the complex candidates are
introduced systematically. Such organized training is typically associated with
curriculum learning (discussed in Chapter 2). To infer curriculum learning,
a training set of cilia, as well as non-cilia candidates, is extracted from the
training image. The training set includes all 136 true cilia instances regardless
of their NCC values. In addition, it also includes 272 non-cilia candidates from
different NCC levels to represent non-cilia candidates with high similarity to
good cilia (136 randomly chosen non-cilia objects with NCC values ≥ 0.5) as
well as non-cilia candidates less similar to cilia (136 randomly chosen objects
with NCC threshold values between 0.2 and 0.5).

An imbalanced dataset can mislead the optimization algorithm to converge to
a local minimum, wherein the predictions can be skewed towards the candidates
of the majority class. Therefore, candidates from both classes (i.e., cilia and
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non-cilia) are augmented to overcome the overfitting issues. To balance the
sets, horizontal flipping is applied only to the cilia candidates. After that, seven
random angular rotations (0–360◦), six random scalings within ±10% range and
five random shearings within 5% range in both x- and y- directions are applied,
resulting in 1050 augmented variations for each candidate.

The CNN classifier is an adapted version of the LeNet model [55]. It consists
of two convolutional layers and two max-pooling layers, as shown in Fig. 3.1.
Firstly, the input patches are padded with a three-pixel thick frame of zeros to
keep the spatial sizes of the patches identical after the first convolutional, as
well as to keep the border information up to the last convolutional layer. The
first convolution layer generates 32 feature maps using 6×6 convolutions. The
second convolution layer generates 48 feature maps using 5×5 convolutions.
The max-pooling layer downsamples the feature maps by selecting the maximum
feature response in windows of size 2×2. The fully connected layer consists of
20 neurons and is followed by a Softmax layer to predict the final probability
distribution of the input candidate. Each convolution layer and fully connected
layer is followed by a ReLU [56] non-linear activation.

Before the training, the patches are normalized by subtracting the mean and
dividing by the standard deviation. The weights are initialized using Glorot
normal distribution [23], and the biases are initialized with zeros. The weights
are adaptively updated in mini-batches of 128 candidates using the RMSProp
optimizer [32]. The training runs for 50 epochs in a five-fold cross-validation
scheme with a learning rate of 0.001. A dropout [57] layer with a probability
of 0.5 is implemented on the output of the last pooling layer and the output of
the fully connected layer. The error loss is measured using the softmax loss
function. The 2D CNN is implemented using Theano backend in Keras.

Material and Evaluation Criteria

Two low-magnification (LM) TEM images from different patients, consisting
of ca. 200 cilia instances, are used for training and testing purposes. Both
images are acquired with an FEI Tecnai G2 F20 TEM, and a bottom mounted
FEI Eagle 4K×4K HR CCD camera, resulting in 16-bit grayscale TIFF images
of size 4096×4096 pixels. For each LM image field, a set of mid-magnification
(MM) images are acquired, where the true cilia candidates of diagnostic quality
are manually marked by an expert pathologist (author AD in Paper I). Some
examples of extracted patches of marked cilia candidates are shown in Fig. 3.2.
The FOV for a MM (2900×) image is 15.2 µm and 60.6 µm for a LM (690×)
image. The performance is evaluated using AUCP R and F-score (discussed in
Section 1).

Results and Discussion

The performance of CNN is investigated at different NCC threshold levels
(0.2 - 0.5) determined by the template matching method. The F-score curves for
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Figure 3.2 Low magnification TEM image of 4096×4096 pixels utilized for training
purpose with the magnified view of 350×350 pixel bounding box (marked in red) with
indicated ground truth marked by an expert pathologist. Here, cilia candidates marked
with blue dots are of the suitable quality. (b) Some examples of patches extracted by the
previously reported method [46], the first and second rows contain TP whereas patches
in the third row are FP.

the detection workflow with and without using CNN classifier at different NCC
threshold levels are shown in Fig. 3.3.

Figure 3.3 F-score curves, for the test image, showing the improvement in the
performance by a CNN classifier with template matching method [46] at different NCC
threshold levels.

Although the CNN classifier considerably reduces the FPs at all these NCC
values, it is not practically suitable as lowering the NCC threshold increases the
number of candidates to analyze tremendously while only rather few additional
true candidates are detected. Hence, the NCC threshold value is set to 0.5,
resulting in an improved F-Score of 0.59 compared to 0.47 for the template
matching method. The CNN also significantly improves the AUCP R to 0.82
and 0.71 compared to the previous AUCP R of 0.48 and 0.42 for the template
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Figure 3.4 Illustration of cilia detection results. (a) The 4096×4096 test image, (b) a
650×650 example subregion of the test image, (c) same sub-region after initial template
matching method, and (d) after proposed CNN classifier. The numbers are given for the
whole image and for the ROI is in parenthesis. Here, blue circles, red crossed circles,
and green squares represent the TP, FP, and FN, respectively.

matching method, for the training and test images, respectively, at an NCC
threshold level of 0.5.

Detection results of the proposed CNN model on an ROI of 650×650 pixels,
in the LM test image, at an NCC level of 0.5, are shown in Fig. 3.4. It shows
the detection results of the initial candidate detection step template matching
method [46] (Fig. 3.4(c)) and the improved results achieved by incorporating
the CNN classifier as an FP reduction step (Fig. 3.4(d)). In these images, the
blue circles, red crossed circles, and green squares represent the candidates that
have been correctly detected (TP), the candidates that have been erroneously
detected as cilia (FP), and the cilia that were missed with respect to the manually
ascertained ground truth delineations and initial detection step (FN), respectively.
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These results show the potential of proposed CNN model for cilia detection in
low-magnification TEM images.

3.3. Denoising of Short Exposure High Magnification TEM Images

Both manual and automated analysis of TEM images are negatively influenced by
many imaging artifacts such as non-optimal microscope alignment and focusing,
as well as motion artifacts due to sample drift and vibrations (Publication B).
Besides that, acquiring high magnification images can potentially damage the
sample due to contentious exposure to electrons for a relatively longer period. The
imaging artifacts can be reduced by decreasing the electron dose and acquisition
time. However, this results in images with more noise and thereby questing for
denoising as a potential preprocessing step for improved analysis.

In the past decades, several denoising methods have been proposed to improve
the quality of the images [58–61]. Although the traditional methods [62–68]
have shown promising performance on image denoising task, these methods
typically involve a complex optimization problem during the testing stage and
requires manual selection of parameters [58,69]. To overcome these challenges,
several learning-based methods using CNN have been proposed [58, 69–73].
The most significant difference between learning-based methods and traditional
methods is that they learn parameters for image restoration directly from training
data rather than relying on image priors [69]. However, most of these methods
are carefully designed only for a certain type of noise, i.e., Gaussian noise, and
thereby limiting their potential inference for the imaging devices with mixed
noise distribution.

The noise induced by TEM is non-additive and signal-dependent which
can be modeled by a mixed Poisson-Gaussian (PG) distribution [74, 75].
Acknowledging the superior performance of CNN in denoising, a novel
multi-stream CNN framework is developed to denoise the short exposure high
magnification TEM images. The idea of employing a multi-stream architecture
is inspired by the adequate performance of the approaches proposed in [58, 72].
Recently, such ensemble learning for denoising have also been proposed for
fluorescence microscopy where the outputs from five pre-trained CNN models
are cascaded to obtain the final denoised image [76].

Method

The architectural view of developed multi-stream CNN framework is shown
in Fig. 3.5. The training of both streams is performed using the contextual
information spread over patches of 128×128 pixels. The patches are extracted
with an overlapping stride of 16 pixels. It is often the case that the information
in a small patch is not sufficient to preserve the structural information. Although
the training is performed using patches of size 128×128 pixels, the trained CNN
framework can be used for the arbitrary size of patches during the testing stage.
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Figure 3.5 The two-stream DCNN architecture. The sizes of the output feature maps
of each block are shown on top of each block and generated using 3 × 3 convolutions.
The last 1 × 1 convolution blocks of each stream use linear and sigmoid activations,
respectively, instead of ReLU.

The first stream consists of four convolution blocks, two transposed
convolution blocks and one residual block. The convolution block encodes
the image representations while removing the noise, whereas the transposed
convolution block decodes these representations to restore the noise-free image
content. The residual block contains two convolution blocks. The BN [77]
layer is used as regularization before ReLU [56] activation to deal with internal
covariate shift. To elevate the training performance, skip connections are used
and followed by a BN layer. The second stream consists of four convolution
blocks, two up-sampling blocks, two max-pooling layers, and one residual block.

Before the training, the patches are normalized to the range [0, 1]. The
training is performed averaging the outputs of both streams. The weights are
initialized using Glorot normal distribution [23], and the biases are initialized
with zeros. The weights are adaptively updated in mini-batches of 16 patches
using SGD [78] optimizer. The training continues for 15 epochs in a five-fold
cross-validation scheme. The initial learning rate is set to 0.001 and reduced
to 1/10 of the current value after every epoch. The error loss is measured
using both MSE and a binary cross-entropy function. The multi-stream CNN is
implemented using Tensorflow backend in Keras.

Material and Evaluation Criteria

A series of 100 noisy short exposure (2 ms) images, captured at the same spatial
location in a cell section sample (FOV = 2000 nm) are used for the training
and testing purposes. All images are of size 2048 × 2048 pixels and acquired
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with the low-voltage MiniTEM™1 system. A low-noise ground-truth image
is obtained by registering each short exposure image to the first image of
the series using rigid registration, followed by aggregating the information by
computing the pixel-wise median value, illustrated in Fig. 3.6. The training of
the CNN model is performed using 10 images. These 10 images are also used
for explorative parameter tuning of three other classical methods (discussed in
Paper II). The remaining 90 images are used for the evaluation and comparison
of each method. Apart from evaluating the performances on denoising single
images, the performance of each method is also evaluated for two additional
denoising strategies 1) denoising of 5 aggregated short exposure images, and 2)
aggregation of 5 denoised short exposure images.

Figure 3.6 Left: Short exposure TEM image (2048 × 2048 pixels) from a series of 100
images. Right: Ground truth created by co-registration and aggregation of the stack to
the left. The two insets show magnified views (250 × 250 pixels) of one cilium.

The performance is evaluated using the peak-signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) [79]. The PSNR is a ratio (in
decibels) between the maximum possible value of a signal and the power of
distorting noise that affects the quality of its representation. As indicated in [80],
different levels of degradations applied to the same image can yield the same
PSNR. As SSIM is proposed with the aim to compare structural changes in
images imitating what the human visual system does, this measure is considered
a more reliable measure of visual similarity of images. Typically, the higher
values of both PSNR and SSIM correspond to better image quality.

To validate the level of agreement between the quantitative results and visual
(qualitative) results, a subjective visual evaluation conducting a two-step voting
process by six of the authors is performed. In the first step, involving only
the classical methods, the authors rated the results (1st, 2nd, and 3rd best) on the
cilium sub-image produced by each of the methods with different parameter
settings. The displayed seven images spanned a parameter range centered around
the maximal SSIM for that method. The procedure was repeated for the above

1Vironova AB, Stockholm, Sweden
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mentioned two strategies of aggregating 5 short exposure images. The second
step involves all four methods. The images resulting from the two aggregation
strategies utilizing the tuned parameter settings as decided in the first Step,
together with the CNN results were displayed (random, unknown order) and the
authors rated them again (as the 1st, 2nd, and 3rd best).

Figure 3.7 Noisy and denoised close ups of a cilium instance obtained with the
considered methods. Top: Denoising of a single image. Middle: Denoising of 5
aggregated noisy images. Bottom: Aggregation of 5 denoised single images. The red
frame (bottom left) indicates the ground truth for single noisy images. The green frame
indicates the best ranked image in the two-step visual voting process.

Results and Discussion

Three classical methods suited for Gaussian and PG noise: a block matching
(BM3D) [62], wavelet domain (Pure-LET) [67], and energy minimization
(EM) [81] are evaluated and compared with the CNN framework. For the single
image denoising task overall 90 images from the test set, the developed CNN
framework achieves the highest PSNR as shown in Table 3.1. On the other hand,
The EM method marginally performs better than the CNN framework regarding
SSIM.

For the denoising of 5 aggregated short exposure images strategy, a set of
5 short exposure images are registered and aggregated by the pixel-wise median,
resulting in a set of 18 images. A noisy cilium instance from this strategy and
the corresponding denoised results obtained with all 4 methods are shown in the
middle row of Fig. 3.7. For the aggregation of 5 denoised short exposure images
strategy, five sequentially acquired short exposure images are denoised, then
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registered and aggregated by the pixel-wise median. The corresponding results
on the cilium sub-image are shown in the bottom row of Fig. 3.7.

From the quantitative and qualitative results in Table 3.1 and Fig. 3.7, it is
clear that denoising improved both single and aggregated short exposure images.
Both of the two aggregation strategies improve the results approximately equally
well. Based on the visual assessment, the output of the BM3D method from
the aggregation of 5 denoised short exposure images strategy produces the most
appealing result. Overall, CNN gives the highest quantitative scores as confirmed
by the average PSNR and the SSIM in Table 3.1. Given that the CNN is trained
using the single frame images, it is impressive that the CNN also performs
equally well on the other two strategies, thus, showing the transfer learning
perceptive of learning-based methods.

Table 3.1 Results on the test data set. Average PSNR and SSIM (± standard deviation)
over 90 single images are given in the 1st and 2nd rows. Rows 3 and 4 contain average
PSNR and SSIM over 18 aggregated groups of 5 short exposure images followed by
denoising. Average PSNR and SSIM over 18 images each obtained by aggregating 5
denoised short exposure images, are given in rows 5 and 6. Best performances are
marked in bold.

Initial BM3D (σbm) PURE-LET (σpl) EM (λ) DCNN

1 PSNR 22.25 37.39 ± 0.30 37.38 ± 1.09 37.80 ± 0.27 38.04± 0.21
SSIM 0.019 0.233 ± 0.007 0.219 ± 0.007 0.255± 0.027 0.252 ± 0.002

2 PSNR 27.88 40.45 ± 1.09 40.19 ± 1.06 40.19 ± 0.54 40.86± 0.37
SSIM 0.037 0.270 ± 0.019 0.263 ± 0.017 0.277 ± 0.017 0.282± 0.011

3 PSNR 22.25 39.65 ± 1.04 40.21 ± 0.48 39.92 ± 0.93 40.84± 0.45
SSIM 0.019 0.261 ± 0.013 0.265 ± 0.011 0.273 ± 0.021 0.276± 0.009
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4. CAD FOR PULMONARYNODULES IN CT IMAGES

T he early manifestation1 of lung impairments, e.g., lung cancer is vital for
effective treatment planning and thus considered as key to minimizing the

high risk of death. However, manual interpretation of thoracic CT scans for the
detection of different sizes of pulmonary nodules is a tedious, labor-intensive,
and time-consuming task.

To facilitate the manual interpretation process, two discrete CAD systems
as assistive tools are developed for the early manifestation of multiple sizes of
nodule candidates in CT scans. The first CAD system (Paper III) is discussed
in Section 4.2, and aims to detect pulmonary nodules associated with lung
cancer using a combination of classical image analysis and neural network-based
methods. The second CAD system (Paper IV) is discussed in Section 4.3, and
aims to detect micronodules associated with the fatal and incurable occupational
pulmonary disease (silicosis) using a combination of classical image analysis and
3D CNN-based methods. This chapter summarizes the background, material,
methods, results, and contributions presented in the appended publications (C
and D).

4.1. Overview

Cancer is the leading cause of death around the world, and lung cancer is the
second most common cancer, following prostate and breast cancers in men and
women, respectively [82]. American Cancer Society estimates that lung cancer
accounts for 27% of new cancer cases and 23% of cancer deaths in 2018, i.e., one
out of four cancer deaths [82]. With an estimated 275 700 deaths (approximately
20%), lung cancer is the leading cause of all cancer deaths in Europe [83]. The
overall 5-year survival rate for men and women in Europe is only 11.2% and
13.9%, respectively [84]. Unfortunately, the majority of cases are diagnosed in
the late stages of cancer progression, resulting in ineffective treatment planning
and a high mortality rate. Considering that the 5-year survival rate is 56% for
early-stage cancer [85], it is worthwhile to detect pulmonary nodules in the early
stages.

Smoking is by far the most influential risk factor for lung cancer which is
further influenced by the quantity and duration of smoking. Although smoking

1In this chapter manifestation refers to detection

60



accounts for 80% of all cancer deaths, occupational hazards such as exposure
to silica dust, asbestos, radon and air pollution are also risk factors [85].
Five randomized cancer screening trials were initially conducted using chest
radiography as primary imaging modality [86–90]. However, none of them
resulted in a substantial reduction of pulmonary cancer mortality rate. Chest
radiography can detect nodules in the advanced stages, but it is not sensitive
enough to detect nodules as small as 1 mm [91,92]. With the advent of low dose
multi-slice computed tomography (LDCT), detection of small pulmonary nodules
is possible in much earlier stages due to its high sensitivity and volumetric
characterization.

Using LDCT, the national lung cancer screening trial (NLST) reported a
substantial reduction of 20% in the lung cancer mortality rate. The NLST is
the largest screening trial in the world, including 53 454 participants from 33
centers in the United States [93]. Inspired by the substantial outcome of NLST,
the European Society of Radiology (ESR) and the European Respiratory Society
(ERS) have also provided new recommendations for lung cancer screening in
Europe [94]. Since then, several randomized screening trials have been initiated
across the world, including the Dutch-Belgian screening trial (NELSON) with
15 822 participants, the largest study in Europe and the second largest in the
world [95]. An overview of the randomized controlled trials conducted for lung
cancer screening in Europe and the United States is presented in [96].

Figure 4.1 A CT volume with its three orthogonal planes: axial (left), coronal (middle),
and sagittal (right) is showing an example of a large juxta-pleural nodule.

Computed Tomography

CT is commonly regarded as the primary imaging modality for the diagnosis of
thoracic impairments. Its inherent high-contrast resolution allows distinguishing
tissues that differ in physical density by less than 1% in comparison to 10% in
conventional radiography [97]. The CT scanners incorporate a radiation source
and a set of detectors. The radiation source along with the detector rotate around
the patient’s body for measuring the attenuation of the radiation through the
body at different angles. It uses X-rays to generate 2D cross-sectional slices
of the body. During acquisition, a thin axial section of a patient is imaged
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by transmitting X-rays through this section from different directions. In such
a way, several continuous cross-sectional slices are acquired to reconstruct a
three-dimensional image using a filtered back-projection technique. The smallest
2D element in a slice corresponds to a pixel whereas the smallest 3D element in
a volume corresponds to a voxel. The size of a voxel can be isotropic (uniform
in all three dimensions) or anisotropic (non-uniform). The CT scans are often of
anisotropic resolution i.e., voxels where ∆ z > ∆ x∧ ∆ x= ∆ y.

All volumetric scans in this chapter are from the thorax region. One example
of a CT volume with three orthogonal planes, i.e., axial, coronal, and sagittal are
shown in Fig. 4.1. These scans typically have the dimension of 512×512×Nz

voxels, where Nz=100 – 500 is the total number of 2D slices in the volume. The
CT scanners usually create images with an in-plane pixel resolution between
0.4 – 0.9 (in the x-, y- directions) and a resolution 0.6 – 5 mm (z- direction). The
intensity of each voxel in a CT scan corresponds to the attenuation coefficients
density of the tissue type. These attenuations are transformed on the Hounsfield
scale. The Hounsfield scale ranges from - 1000 to + 4000 Hounsfield Units (HU),
where each value corresponds to the beam attenuation of different tissues. It is
likely that a voxel in a CT scan with thick slices might cover multiple tissues,
resulting in an averaged HU value of the contained tissues for the voxel. This
artifact is typically referred to as partial volume artifacts and responsible for
the blurred boundaries between tissue regions [98]. Also, CT imaging tends to
suffer from intensity noise, star or streak artifacts caused by metallic implants,
motion blur caused by patient movements, and equipment malfunctions [98].

Figure 4.2 Different types of pulmonary nodules. The first, second, and third rows
of a, b, and c are respectively the nodule candidates of small-size, medium-size, and
large-size.
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Pulmonary Nodules

Pulmonary nodules can be benign (non-communicable extensive mass of tissues)
or malignant (extensive mass of tissues that can spread to the other body parts)
nodules. Pulmonary nodules are radiologically characterized as the well- or
poorly- defined round or oval opacities with diameters up to 30 mm [99]. The
nodules on CT scans manifest high variability regarding tissue appearances, size,
and shape. Some examples of different types of pulmonary nodules on CT scans
are shown in Fig. 4.2.

Based on the tissue appearance, nodules can be radiologically delineated
as solid, non-solid, and part-solid nodules [99]. Solid nodules exhibit a
homogenous soft-tissue attenuation on the CT scans; non-solid nodules are
manifested as irregular cavities with a hazy attenuation, and part-solid nodules
depict the characteristics of both solid and non-solid nodules. Although part-
or non-solid nodules are less prevalent, they articulate a high likelihood of
malignancy as compared to the solid nodules [100]. Based on the shape, nodules
can be characterized as well-circumscribed (or isolated), juxta-vascular (vessels),
pleural (lung lobes border) tail, and juxta-pleural. The well-circumscribed
nodules are delineated as the circular mass of tissue without any connections
to vasculature, whereas vascularized nodules are explicitly connected to the
surrounding vessels. The pleural tail nodules are connected both to pleura and
a thin structure (vessel), whereas the periphery of the juxta-pleural nodule is
connected to the pleural surface.

In addition to these radiological hallmarks, nodules are also delineated on
the basis of their sizes as micronodules, small, medium, and large nodules.
Micronodules are characterized as well-defined solid nodules < 3 mm and are
associated with silicosis [99,101]. Silicosis is one of the common and incurable
occupational abnormalities following long and continuous exposure to silica dust.
Progression of these lesions could lead to lung cancer [101]; thus, early detection
is an inevitable requisite. Small nodules range from 3 mm to 6 mm, medium
nodules range from 6 mm to 10 mm and are of radiological interest for the early
manifestation of lung cancer. Large nodules > 10 mm pose a higher likelihood of
malignancy and are often considered for further clinical diagnosis [102, 103].

Consolidation of CAD to Detect Pulmonary Nodules

The ability of CT to characterize structures > 1 mm makes it as an absolute
choice over chest radiography for the early manifestation of thoracic impairments
such as silicosis and lung cancer. Although the sub-millimeter resolution
of helical CT scans certainly facilitates the radiological diagnostic procedure,
manual interpretation of a large number of images for nodule detection is still
labor-intensive and could take up to 10–15 minutes/scan (Publication C). In
addition, high similarities of nodules with surrounding anatomical structures,
e.g., cross-sectional vessels, further complicate the manual assessment, and
contribute to the performance variability among radiologists in the detection
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of nodules [104–106]. Increasing amounts of imaging data from the ongoing
and future screening trials show an unequivocal requisite of CAD to assist
radiologists. Acknowledging the exigence of CAD, the ESR and the ERS have
explicitly recommended the adoption of the CAD for lung nodule evaluation [94].

The CAD frameworks can be subsumed either as the first, second or
concurrent reader [107]. As a first reader, the CAD provides the clinicians
with plausible candidates to perform further analysis on them only. This setting
potentially results in less reading efforts for clinicians; however, this is precarious
since it might overlook some of the suspicious abnormalities. In a second
reader scenario, the clinicians perform the usual diagnostic procedure to identify
suspicious abnormalities first and then use the CAD findings in a subsequent
step for reconsideration of the highlighted markings. Although this setting
certainly improves the detection performance, it is still ineffective since it will
be time-consuming and labor-intensive in routine practices and even more so in
large-scale screening trials. In the concurrent reading, the clinicians perform
the detection procedure alongside the CAD frameworks simultaneously. Such a
setting allows clinicians to accept or reject the CAD findings and to combine
their markings with the CAD markings simultaneously.

In 1998, the US Food and Drug Administration (FDA) approved the integration
of the first CAD framework as the second reader for breast cancer detection in
mammograms [108]. Acknowledging that the second reader scenario is still
laborious, researchers have lately proposed some rigorous methods and protocols
to envisage CAD as a concurrent reader as well as a first reader [106, 109–114].

For the potential realization of the CAD systems as a first reader in the
cancer-screening trials, it is imperative that the CAD should exhibit a high
sensitivity with a low false positive rate (FPR) for all sizes of nodules. It should
also comprehend the dissimilar image acquisition parameters and annotation
criteria of different screening sites.

4.2. CAD for the Early Manifestation of Lung Cancer

During the last decade, a substantial amount of research has been put into CAD
to detect different sizes of nodules [115–120]. By exploiting the discriminative
capabilities of DNN as an FP reduction module, CAD researchers have shown
promising results for the detection of pulmonary nodules [18, 121–123]. A
summary of some existing methods is listed in Publication C. Although existing
CAD systems have shown considerable detection performance; they are still
limited to exhibit a high sensitivity at low FP rate and also often miss detecting
subgroups of suspicious nodules. This is because most of the methods are either
only tested on small datasets or limited to a single dataset, consequently limiting
their potential inference as an assistive tool. Aiming at alleviating the limitations
associated with the current lung nodule CAD systems, an automated workflow
is developed to reduce the performance gap of CAD systems for the detection
of different sizes of nodules. The proposed CAD with an efficient MLP based
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FP reduction module is tested on four heterogeneous datasets consisting of CT
scans from both cancer-screening trials and clinical routine (Publication C).

Method

The developed CAD system is comprised of two phases (or modules): 1) primary
module and 2) final module, as shown in Fig. 4.3. A comprehensive overview of
the developed CAD can be found in Publication C and is briefly summarized here.
The primary module (candidate-screening stage) aims at locating the plausible
nodule candidates in the segmented lung regions whereas the final module (FP
reduction stage) aims at reducing the FPs using discriminative features within an
optimized NN-based classifier.

Figure 4.3 Overview of the developed CAD pipeline. The grey and black arrows show
the general flow and parts for performance evaluation of the CAD pipeline, respectively.

In the primary module, the lungs are first extracted as the region of
interest (ROI) using a threshold-based method. The method consists of the steps:
lung masks extraction, thorax region mask extraction, thorax region removal,
trachea removal, left and right lungs separation, segmentation refinement, and
grayscale masks extraction. Although the intensity-based threshold methods
are computationally less expensive and well-suited for isolated nodules, they
often fail to include the juxta-pleura nodules in the segmented lungs due to
their similar intensity characteristics to the pleural surface. The pleural surface
of the segmented lungs often appears as holes when the juxta-pleura nodules
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are excluded, and thereby potentially entails for a further lung segmentation
refinement step. However, the refinement step globally enlarges the area of
segmented lungs and could include irrelevant anatomical regions (such as hilar
and lung borders) in the segmentation; yet, it still ensures the potential inclusion
of pleura nodule candidates.

The next step in the primary module is to localize the plausible nodule
candidates within the extracted lung regions. This is a challenging task
since nodules pose a high variability regarding shape, size, density, contextual
surrounding, and orientation. Considering that the higher threshold level often
attenuates the small juxta-pleura nodules and that the lower threshold introduces
a large number of FPs, an intensity threshold of -700 HU is empirically
determined and applied to identify the initial candidate regions. Thereafter, three
sub-algorithm modules are implemented for the detection of small candidates
(3 mm ≤ diameter < 6 mm), medium candidates (6 mm ≤ diameter < 10 mm), and
large candidates (diameter ≥ 10 mm), respectively. Each sub-algorithm module
comprises multiple steps of feature-based thresholding and morphological
operations. The sub-algorithm modules for the detection of both small- and
medium- candidates proceed in three steps, whereas the module for the detection
of large candidates consists of six stages. Since the morphological characteristic
of large nodules is comparatively distinctive from their anatomical surroundings,
a combination of morphological opening and feature-based thresholding should
be enough to detect most of the large nodules. However, the large nodules are
often interweaved with vessels and pleura structures, and thereby potentially
complicates the parameter selection process.

The candidates detected in the initial module follow an imbalanced data
distribution where the nodule dataset is much smaller than the non-nodule dataset.
Acknowledging that this imbalance can negatively influence the training of the
classifier, data augmentation techniques are applied only on the existing nodule
dataset to balance the distribution. The nodules are composed of solid tissue and
should not be extensively skewed, and therefore only translational and rotational
transformations are performed on each nodule candidate. By doing so, the
classifier is modeled to learn translational-, and rotational- invariant features.

In the final module, feature extraction is performed to discriminate between
the nodules and non-nodules candidates. The computed features are associated
with the intensity using raw pixel values, cluster (or morphology), and texture
characteristics of the candidates and account for altogether 515 features. Due to
variability in the sizes of the candidates, it is challenging to compute a feature
vector of the same size for each candidate. An upgraded voxel-based approach is
developed to quantify the density characteristic of a candidate. In this approach,
a candidate is first isotropically resampled using cubic interpolation and then
further resized to an object I10×10×5. Although such transformations could
influence the density characteristic of the candidates, the intrinsic reconstruction
mechanism of the neural networks potentially enables them to handle the unusual
averaging effects to some extent. Seven morphological features are computed
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to determine the morphological characteristic of candidates. The morphological
feature set consists of diameter, volume, solidity, eccentricity, and size of the
segmented candidate in the x-, y-, and z- dimensions. Before computing the
texture features, the densities of the isotropic candidates are quantized to a
smaller number of gray levels using the Lloyd-Max quantization algorithm. After
that, eight gray level co-occurrence matrix (GLCM) features (energy, contrast,
entropy, homogeneity, correlation, sum average, variance, and dissimilarity) are
calculated for the quantized candidate.

Once the features are computed, the candidates are classified using an MLP
classifier. All features are normalized to zero mean and unit standard deviation.
Before training of the classifier, the dataset is randomly split into a training set to
learn the parameters, a validation set to optimize the training parameters, and a test
set to determine the performance of the optimized parameters. The augmentation
scheme is applied separately for each set to ensure the independence of the
training set from the validation and test sets. The weights of the network are
optimized using a scaled conjugate gradient descent algorithm in 3000 iterations.
Softmax loss function (cross-entropy error loss) is used to measure the loss.
L2 regularization and early stopping criteria are applied to control the potential
overfitting and to improve the network generalization on the test set.

Material and Evaluation Criteria

The developed CAD system is validated using CT scans (DICOM formatted) from
the four publically available datasets Lung Image Database Consortium/Image
Database Resource Initiative (LIDC/IDRI), ELCAP, PCF, and SPIE-AAPM. The
datasets are highly heterogeneous regarding image acquisition and reconstruction
parameters. The LIDC/IDRI is one of the most referenced and largest publically
available dataset, consisting of 1018 CT scans [124]. The CT scans with slice
thickness > 3 mm are rejected due to their inadequate quality in the clinical and
screening trials, resulting in 899 CT scans. In a two-phase annotation process,
four radiologists delineated nodules < 3mm, non-nodules, and nodules ≥ 3 mm in
every CT scan. The nodules that are accepted by at least three radiologists are
selected, resulting in a set of 1 390 nodules in the reference set. The diameter,
volume, and nodule boundaries of each nodule candidate are averaged to deal
with the variation in the annotation of multiple readers. The ELCAP [125]
dataset consist of 50 LDCT scans with 403 nodules annotated by two radiologists.
The PCF [125] dataset consists of 33 CT scans (from three different subsets)
with 40 nodules annotated by two radiologists. The SPIE-AAPM [126] dataset
consists of 70 CT scans with 83 nodules annotated by two radiologists.

The candidate-screening stage is evaluated using a criterion that if a candidate
hits within a three pixels range of the center-of-mass of the respective nodule in
the reference set, it is considered as a TP candidate, else an FP candidate. The
performance of the FP reduction stage is evaluated using the area under the ROC
curve (AUCR) and the competition performance metric (CPM). The CPM [127]
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determines the average sensitivity of the CAD system at different operating
points of the FROC that are commonly used in the screening trials points.

Results and Discussion

The CAD system is designed to detect a broad spectrum of nodule candidates.
The overall performance of the CAD system is influenced by the performance of
the primary module. The optimization of the lung segmentation is an important
step to maximize the inclusion of nodules in the primary module. Including a
morphological based refinement step, the detection rate of the candidate-screening
step is improved. Examples of the successful lung segmentation refinement are
shown in Fig. 4.4(a). Although the refinement step partially includes the nodules
in some cases, such lesions are still detected by the candidate-screening step.

(a)

(b)

(c)

Figure 4.4 Examples of (a) lung segmentation refinement method. The first row
shows the CT slices after the initial lung segmentation method wherein the pleural
nodules are not included. the second row shows the corresponding CT slices after the
refinement process. (b) Examples of different types of nodules detected by CAD system
in SPIE-AAPM dataset. (c) Nodules not marked in the ground-truth list of PCF subset
but detected by the proposed CAD.

The candidate-screening step is initially optimized using 15% of randomly
selected CT scans from the LIDC/IDRI dataset and then validated on the full
dataset along with the three other datasets. Table 4.1 shows that the developed
method can locate most of the different sizes of nodules in the datasets. Such
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high detection rate is realized at the cost of a large number of FPs. Some
examples of the detected nodules in the SPIE-AAPM dataset are shown in Fig.
4.4(b). Figure 4.4(c) shows examples of unannotated nodules from the PCF
dataset that are still detected by the CAD system.

Table 4.1 Performance of initial candidate detection module on different dataset. The
results for independent dataset marked with an asterisk are evaluated from FROC curve.

Candidate set Scan True nodules Detected nodules Sensitivity FPs
LIDC−IDRI

Small candidate

899

603 569 94.3% 502 957
Medium candidate 498 476 95.6% 176 856

Large candidate 289 273 94.4% 51 673
Combined set 1,390 1,318 94.8% 731 486

Independent dataset*
ELCAP 40 396 327 82.6% 27 239

PCF 33 40 35 87.5% 18 058
SPIE-AAPM 70 83 69 83.2% 50 462

On the 899 CT scans from the full LIDC/IDRI dataset, the developed CAD
system achieved an overall sensitivity of 85.6% at 8 FPs/scan and an AUCR of
0.957. On the given 153 CT scans from the other three datasets, the CAD system
achieved an average sensitivity of 68.4% at 8 FPs/scan. The performance of the
CAD system on the three datasets is adequate, especially considering that not a
single of these CT scans is used for the optimization of the CAD system, so
the test set is really representative for generalization to a real clinical situation.
Sensitivities at seven operating points along with average CPM and AUCR for
each dataset are summarized in Table 4.2.

Table 4.2 Quantitative performance of CAD system on different CT scan datasets.
Sensitivities at 7 operative points and area under ROC are also listed.

FPs/scan 1/8 1/4 1/2 1 2 4 8 Avg. AUCR

LIDC/IDRI 0.531 0.629 0.790 0.835 0.843 0.848 0.856 0.763 0.957
SPIE 0.194 0.305 0.442 0.628 0.640 0.640 0.663 0.501 0.831

ELCAP 0.313 0.538 0.566 0.629 0.712 0.712 0.718 0.598 0.879
PCF 0.225 0.330 0.387 0.461 0.540 0.596 0.689 0.463 0.804

4.3. CAD for the Early Manifestation of Silicosis

In contrast to CAD workflow for the early manifestation of lung cancer is an
active field of research, automated detection of micronodules in thoracic CT
scans still an underexplored domain. Their high similarities to cross-sectional

69



vessels and obscure symptoms, impose challenges in the detection task. While
acknowledging the performances of CNN’s in the early manifestation of lung
cancer, leveraging the discriminative power of CNN’s to deal with the challenges
associated with micronodules is a promising choice.

In order to facilitate the interpretation of thoracic CT scans for silicosis
detection, a CAD system employing a 3D CNN as a FP reduction module is
developed for the detection of micronodules (Publication D).

Method

The outline of the developed CAD system is shown in Fig. 4.5. It follows
a two-stage classification process where the potential candidates are initially
localized by the candidate-screening module and are further scrutinized by the
FP reduction module. The comprehensive overview of the developed CAD is
elucidated in Publication D.

Figure 4.5 An overview of the proposed CAD system. The system is divided into
a candidate-screening and a false positive reduction module. Initial candidates are
detected from the segmented lung ROI’s using 2D and 3D features-based thresholding
operations. The false positive reduction module is implemented using a 3D CNN. The
architecture is shown using an example of an extracted 20×20×7 voxels candidate.

In the candidate-screening module, the CT scans are resampled to an isotropic
voxel size of 0.6 mm3 using cubic interpolation. Isotropic resolution is often
beneficial for the implementation of generic image analysis operations while
dealing with the inconsistent slice-thickness across different CT scans. Next, the
lung regions are extracted using the method described in Section 4.2. Once the
lung regions are obtained, the plausible micronodule candidates are localized.
This is challenging due to the high similarity of micronodules with cross-sectional
vessels in CT scans. Although a sliding window method can be employed where
each voxel is a potential center, it is impractical since it yields few positives and
a large amount of FP. Instead of relying on generic methods such as selective
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search to reduce the search space, an algorithm is specifically designed to identify
plausible micronodule candidates. First, an intensity threshold of -700 HU is
applied to identify the initial candidate regions. Next, two 2D shape descriptors
(area and eccentricity) and two 3D shape descriptors (elongation and sphericity)
are used to discard FP candidates.

In the FP reduction module, the original anisotropic CT scans are used so that
this module can also be employed independently of the former module. Small
nodules (up to 4 mm) in anisotropic CT scan typically range over up to nine
voxels and four slices due to the lower resolution in the z-direction. Considering
that the CT scans are often sampled more densely in the x-, y- directions than
in the z-direction, a bounding box of 20×20×7 voxels is extracted to include
sufficient contextual information as an input to the classifier. To deal with the
class imbalance, the dataset of true candidates is augmented using translation,
flipping, and rotation transformations. Before the training, the intensities of
each candidate are clipped to the interval (-1000, 1000 HU) and normalized to
the range (0, 1). After that, the developed 3D CNN exploits the contextual
information of the candidates to yield the final prediction.

To encode the discriminative representations (feature maps), the 3D CNN
is developed by cascading four convolutional blocks, one pooling layer, one
fully connected (dense) layer, and one Softmax layer. The convolutional block
consists of one 3D convolutional layer, one BN layer [77], and one ReLU [56]
nonlinear activation. Each convolution block generates 64 feature maps by
convolving 3×3×3 filters, except the third convolution which convolves 3×3×1
filters to generate 64 feature maps. The maximum pooling layer of size 2×2×1
downsamples the output of the first convolution block. The fully connected
layer consists of 200 neurons and is followed by a Softmax layer to predict
the final probability distribution of the input candidate. To further improve the
performance of the classifier, residual (skip) connection (discussed in Chapter 2)
is employed by adding the output of the second convolution block to the input
of the fourth convolution block.

The weights of the 3D CNN are initialized using Glorot normal distribution
[23], and the biases are initialized with zeros. The weights are adaptively
updated in mini-batches of 128 candidates using the RMSProp optimizer [32].
The network is trained for 50 epochs in a five-fold cross-validation scheme
with a learning rate of 0.01. A dropout [57] layer with a probability of 0.5 is
implemented on the output of the dense layer to avoid the overfitting. The error
loss is analyzed using Softmax loss function. The 3D CNN is implemented using
Tensorflow backend in Keras.

Results and Discussion

The developed CAD system is validated on 598 CT scans from the LIDC/IDRI
dataset, including 872 micronodules annotated by at least two radiologists as
discussed in Section 4.2. The overall performance of the developed CAD system
is evaluated using the criteria discussed in Section 4.2. Before that, multiple
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experiments are conducted to analyze the impact of three crucial parameters
on the performance of the 3D CNN configuration. The three parameters are
associated with the effect of 1) the BN layer, 2) residual connection, and 3) size
of the receptive field across z- direction.

The effect of the BN layer is evaluated by repeating the experiments without
including it in the 3D CNN with a residual connection. It is observed that
the inclusion of the BN layer improves the training performance of the model
and that converges faster in comparison to the one without it (Publication D).
Also, the 3D CNN with BN layer achieves a higher validation accuracy due to
its regularizing effect and stable propagation of gradients. The impact of the
residual connection is evaluated by repeating the experiments without including
it in the 3D CNN model. The inclusion of residual connections exhibits high
discriminability due to that it enables gradients to flow smoothly through the
skip connection during the backward pass of the training. The effect of the
receptive field across z- direction is evaluated by conducting experiments using
an elongated volume of 20×20×20 for a new 3D CNN model. The architectural
design of this model is described in Paper IV. The size of the receptive field
potentially influences the final predicted probability of the classifier. The large
receptive field can possess more redundancy due to relatively larger contextual
surrounding, and thereby more generalized to ambiguous contextual information.

Table 4.3 Quantitative performance of CAD system with different CNN settings on the
LIDC/IDRI dataset. Sensitivities at 7 operative points, CPM and AUC are also listed.

FPs/scan 1/8 1/4 1/2 1 2 4 8 CPM AUCR

3D CNNr 0.549 0.629 0.680 0.743 0.792 0.832 0.867 0.727 0.988
3D CNN 0.505 0.571 0.642 0.707 0.772 0.793 0.845 0.691 0.957
3D CNNe 0.280 0.401 0.485 0.593 0.682 0.760 0.814 0.573 0.943

Shallow NN 0.125 0.330 0.377 0.441 0.510 0.556 0.609 0.421 0.884

Furthermore, a shallow NN trained with conventional features is compared
with the CNN features. The computed set consists of 21 intensity and 6
morphological features from two spherical regions centered on the candidates.
All features are normalized to zero mean using unit standard deviation. The
conventional features are not able to yield a high CPM as compared to the
CNN features. The traditional features are often affected by the similar intensity
distribution of nearby blood vessels and tissues in the segmentation results from
the candidate-screening module.

On the given 872 nodules in 598 CT scans from the LIDC/IDRI dataset,
the candidate-screening module generates an average of 447 candidates/scan,
including 91.6% (799/872) of all micronodule candidates. For quantitative
comparison, the sensitivities at seven operating points along with average CPM
and AUCR for each CNN configuration are listed in Table 4.3. By employing the
best 3D CNN configuration, the developed workflow identifies 86.7% (756/872)
of micronodules at 8 FPs/scan and achieves an AUCR of 0.988. The sensitivities
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Figure 4.6 FROC curve for the different CNN configurations tested on the LIDC/DIRI
dataset. The dashed curve shows the 95% bootstrap confidence interval. The number
of false positives are shown on a logarithmic scale.

at seven operating points along with average CPM and AUCR for each CNN
configuration are listed in Table 4.3. Most of the FPs detected at 1 FP/scan
are the small vessels, nodule-like structures, and scaring. All these structures
have the same characteristics as micronodules. Some examples of detected
micronodules and FPs are shown in Fig. 4.7.

Figure 4.7 Examples of lesions detected by the CAD system. The left and right set of
lesions are respectively the micronodules and the FP candidates detected at 1 FP/scan.

73



5. CLASSIFICATIONOFVASCULARSKELETONCROSS-
SECTIONS IN CTA IMAGES

G iven the complexity and abundance of CT angiography (CTA) imaging
data, radiologists continually seek faster and more accurate computerized

methods for segmenting vascular structures. The existing methods are mostly
skeleton-based and require a vessel skeleton extracted prior the segmentation.
The previous method developed by the collaborators employs hand-engineered
filters for fast vascular skeleton extraction. This method generates enormous
amounts of FPs and also operates multiple times to detect different sizes of
vascular nodes.

To simplifying the existing workflow, a patch-based 2D CNN classifier is
developed that classifies cross-sections of different sizes of vascular nodes in
a single pass (Paper V). Instead of developing a workflow from scratch, this
work focuses on improving the node-classification step and is consolidated with
already existing workflow. This chapter summarizes the background, material,
methods, results, and contribution presented in the appended publication E.

5.1. Overview

Vascular image analysis is essential both for diagnostic and meticulous treatment
planning [128]. Modern non-invasive vascular imaging techniques such as CTA
provide enhanced volumetric characterization, which allows clinicians to perform
a diagnosis at the high-resolution level and thereby facilitating the diagnostic
procedure. Also, non-invasive surgeries benefit patients by reducing the risk of
complications and improving their comfort [129]. However, such benefits are
realized at the cost of large amounts of imaging data. Acknowledging that manual
interpretation of such an amount of data is monotonous, labor-intensive and
error-prone, automation is highly desirable for fast vascular skeleton extractions
and accurate vessel segmentation in the CTA.

Such an automated workflow for fast vascular skeleton extraction has
previously described [130]. Tubular vessels are usually visualized as bright
elliptical-like regions on darker background of 2D orthogonal CT slices. Due
to the injected contrast medium, the intensity of vessels is higher than the
surrounding tissue intensities, however, is equal to the intensity of spongy
trabecular bone. One step in the previous workflow employs a set of
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hand-engineered filters for classifying 2D orthogonal cross-sections of vascular
and non-vascular nodes. The hand-engineered filters achieve a satisfactory
detection performance but also introduce an enormous amount of FPs. Moreover,
this method operates in multiple iterations with a different set of filers since the
same set of filters were not suitable for all types and sizes of the vessels. Given
the adequate performance of the CNN’s in reducing FPs, a patch-based 2D CNN
classifier is employed to classify different sizes of vascular cross-sections of
healthy as well as diseased vessels. In the existing workflow, the hand-engineered
filters are replaced with the developed classifier, which significantly reduces the
FPs in a single algorithm pass.

5.2. Method

The workflow is composed of four steps as shown in Fig. 5.1. This chapter
solely focuses on the node-candidate classification step whereas the remaining
three steps [129] are briefly described in Publication E.

Figure 5.1 The pipeline of the proposed method (green, top) produces the final vascular
skeleton in one algorithm pass compared to the pipeline of the previous method [130]
(blue, bottom) which detect skeletons of larger arteries in the first iteration and adds
the skeletons of smaller arteries in the second iteration

Initially, patches of 31×31 pixels centered on the node candidates are
extracted as the input to the classifier. The pixel values of the patches are kept in
HU not to lose the density characteristics of the nodes. Given the heterogeneity
of vascular cross-sections regarding contextual surrounding, shape, size, and
orientation, it is worthwhile to model such variability in a classifier for additional
performance gain. However, the dataset of true vascular nodes is much smaller
compared to the dataset of non-vascular (or false vascular) nodes, and thereby
negatively influences the performance. To overcome this issue, new samples are
generated using the translation of 1 pixel in both x- and y- directions, horizontal
and vertical flipping, and six random rotations (0-180◦) transformations, resulting
in 10 augmented variations for each vascular node. Acknowledging that the
initially detected nodes are often decentered from local anatomical structures,
such transformations capacitate the CNN with orientation-independent features.
Once the data is prepared, the candidates are classified using a 2D CNN classifier.
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Before the training, the patches are normalized by subtracting the mean and
dividing by the standard deviation.

The CNN classifier consists of four convolutional layers and two max-pooling
layers as shown in Fig. 5.2. Firstly, the input patches are padded with a
two-pixel thick frame of zeros to keep the spatial sizes the same as the original
size after the first convolutional layer. The first and second convolutional layers
generate 32 feature maps respectively using 3×3 convolutions. The third and
fourth convolutional layers generate 64 feature maps respectively using 3×3
convolutions. Each convolution layer is followed by a BN [77] layer. The
max-pooling layer downsamples the feature maps by selecting the maximum
feature response in windows of size 2×2. The fully connected (dense) last layer
consists of 512 neurons and is followed by a softmax layer to predict the final
probability distribution of the input candidate. ReLU [56] nonlinear activation
is applied after every convolutional and dense layer.

Figure 5.2 A schematic overview of proposed CNN classifier, showing the output of
each convolution filter applied to an example patch of a vessel. Here, the grayscale
intensities are shown in color for suitable visualization.

The weights of the CNN are initialized using Glorot normal distribution [23]
and the biases are initialized with zeros. The weights are adaptively updated in
mini-batches of 128 candidates using the RMSProp [32] optimizer. The training
continues for 20 epochs in a five-fold cross-validation scheme with a learning
rate of 0.01. A dropout [57] layer with a probability of 0.25 is implemented
on the output of each pooling layer whereas a probability of 0.5 is used on the
output of the dense layer. The error loss is measured using the softmax loss
function. The 2D CNN is implemented using Theano backend in Keras.

Material and Evaluation Criteria

The classifier is validated on 25 CTA volumes of the lower limbs. The dataset
was obtained from the clinical routine of the Radiology department at University
Hospital, Linköping, Sweden. An expert radiologist (author ÖS in Paper V) used
a semi-automatic segmentation tool to delineate the ground-truth in four CTA
volumes. In these four annotated volumes, the node-candidate detection step
identifies 352 523 different sizes of cross-sections of vascular and non-vascular
nodes. These cross-sections are categorized into small cross-sections (< 4 mm),
medium cross-sections (4-20 mm), and large cross-sections (> 20 mm).
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A reference set is constructed using the medium-sized cross-sections only,
which consists of altogether 138 302 cross-sectional patches (24 625 vascular
and 113 677 non-vascular). The smaller cross-sections are excluded due to
their insufficient contextual information during training which may influence
generalization of the network. The larger cross-sections are also excluded due
to their larger size than the chosen patch size. However, both, smaller and
larger candidate cross-sections are used for testing the CNN classifier. Given
the limited amount of annotated samples, the reference set is divided into two
subsets: model-development subset and model-evaluation subset.

The model-development subset, consisting of 20 000 candidates from each
class, is divided into training, validation, and test sets. The training and validation
sets are used for the cross-validation, and the test set is used for the model
selection. The training set consists of 12 000 candidates from each class, whereas
both the validation and test sets consist of 4 000 candidates from each class.

The model-evaluation subset, consisting of 4 625 vessels and 93 677 non-
vessels samples, is used for the quantitative evaluation of the workflow employing
the CNN classifier. The reason for keeping the distribution of samples in the
model-evaluation subset imbalance is to test the workflow in a real clinical
scenario. The performance is quantified regarding precision, recall, AUCP R,
and F-score. The remaining unannotated twenty-one CTA volumes are used for
the qualitative evaluation and comparison purposes.

Table 5.1 Comparative evaluation of CNN classifier and hand-engineered filters.

Set Prec. Rec. F-score AUCP R

small 0.66 0.71 0.65 0.69
CNN medium 0.81 0.83 0.82 0.90

large 0.70 0.75 0.72 0.86
small 0.29 0.78 0.42 –

filters medium 0.28 0.89 0.43 –
large 0.06 0.58 0.11 –

5.3. Results and Discussion

For the 98,302 medium-sized vessel nodes in the model-evaluation subset, the
workflow employing the CNN classifier yields a precision of 0.81 compared
to 0.28 for the workflow utilizing hand-engineered filters. In addition, the
developed CNN classifier achieves an AUCP R of 0.90 for the medium-sized
nodes. Given that the CNN classifier is trained using only one candidate group,
it is noteworthy that the CNN performs competently well also for the other
candidate groups. Table 5.1 summarizes the performance of the classifier for
each candidate group. Employing a CNN classifier is ultimately simplifying the
previous vascular skeleton extraction workflow.
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(a) Volume A (b) Volume B

Figure 5.3 Results after each algorithm step for 2 volumes; result after the 1st step is
same for both methods.

For qualitative comparison, the results of both workflows for two representative
volumes are shown in Fig. 5.3. The results for Volume A confirm that the
suggested workflow leads to a fewer number of false-positives, including
more vascular branches compared to the previous method. Comparatively, the
workflow employing hand-engineered filters detects a large number of FPs,
especially in the pelvic region. However, in some cases, the CNN classifier
missed detecting small or diseased true vessel candidates, leading to completely
missed vessel branches as shown in Volume B. This is justified by the fact
that the CNN classifier needs a substantial amount of such diseased samples to
classify them correctly.
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SUMMARYAND CONCLUSIONS

T echnologically sophisticated imaging modalities such as TEM and CT have
phenomenally aided the pathologists and the radiologists in detecting

and diagnosing subtle abnormalities (e.g., genetic disorders and lung cancer).
However, clinicians often feel overburden by interpreting (or analyzing) images
manually, and thus, they quest for CAD systems.

In this thesis, various challenges associated with CAD systems for the TEM
and the CT imaging modalities have been investigated and addressed. As a
result, several contributions in topics related to detection, false positive reduction
(classification), and denoising have been made. Several DNN-based methods
have been developed for the detection of objects in CT and CTA images to realize
their potential for medical applications. Given this improved performance,
the capabilities of CNN-based methods have also been leveraged for problems
concerning more complex structures such as cilia in TEM images.

After introducing the current problems associated with manual diagnosis,
Chapter 1 elucidated the term “CAD” as an answer to how the diagnostic
procedures can be automated. This chapter also provided an insight into the
generic structure of the CAD systems. Acknowledging the limitations of the
conventional CAD systems employing hand-engineered features, this chapter
also revealed the perspective of contemporary CAD systems by employing
DNN as an answer to what can be done to improve the performance further.
By explaining the technical background of DNN, the Chapter 2 discussed the
different components that have been used to develop the DNN-based models in
this thesis. While discussing the overall contributions of this thesis, the last three
chapters answered how the CAD systems have been developed using DNN-based
methods. In particular, this has been accomplished by focusing on the research
objectives listed in Section 1.2.

Summary of Claims

This section lists the claims of novelty that were shown in this PhD work. The
claims correspond to Contributions 1 – 5 and are reflected in Papers I – V.

Claim 1: The proposed CNN model complements the automated workflow
for the detection of cilia in low-magnification TEM images. No CNN
model as an FP reduction module has been proposed or published
previously for automated PCD diagnosis in TEM images.
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Claim 2: The proposed novel multi-stream CNN model enhances the
structural information by denoising short-exposure high-magnification
TEM images. The CNN model has not been proposed previously for
denoising TEM images.

Claim 3: The proposed CAD system complements the other existing CAD
solutions since it can comprehend multiple sizes of nodules in CT scans
without being affected by any image acquisition parameters. It is the only
CAD system that has been extensively tested on four publicly available
CT datasets including the largest dataset, i.e., LIDC/IDRI, and thus it is
the first study conducted on such a large scale.

Claim 4: The proposed novel 3D CNN model shows promising results for
the early detection of micronodules in CT scans. This is the first study to
present a CAD system that employs a 3D CNN model for the detection of
silicosis.

Claim 5: The proposed CNN model complements the automated workflow
for vascular skeleton extraction. In comparison to multiple passes with
hand-engineered filters [130], the model classifies cross-sections of
different sizes of vascular nodes in a single algorithm pass. The model
substantially reduces the false positives in the vascular cross-sectional
images, and thus improves the overall classification performance.

Concluding Remarks and Future Opportunities

The unique capabilities of DNN have undoubtedly emerged it as the
leading learning-based methods for discovering multiple levels of distributed
representations. Provided this, the CAD researchers have embraced DNN in
the form of CNN for several biomedical and medical image analysis tasks such
as image classification, object detection, image retrieval, objects segmentation,
and others. Their inherent highly discriminative capabilities have motivated the
increasing research interests. In addition, CNN learns from data and often relies
minimally on domain experts, and thus, making development easier and faster.

The CNN-based methods have surpassed or substantially improved the
performance compared to the conventional methods for CAD, and therefore,
substantiating a great potential to advance in the computerized image analysis
research field. On a similar note, this thesis is an effort to facilitate the manual
diagnostic procedure through computerized analysis frameworks. This thesis
has elucidated the applicability of DNN-based methods for the classification
and denoising of objects in TEM and CT images. It is thus evident from this
thesis that DNN has competencies to penetrate multiple aspects of biomedical
and medical image analysis. Given the astonishing results of CNN’s on diverse
applications, several directions can be drawn for future research topics.

The field of computerized image analysis has seen a transition from purely
hand-engineered representations to automated discriminative neuron-crafted
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representations. Currently, both paradigms are combined to deploy more sensitive
CAD systems where hand-engineered features are often used for identifying
plausible candidates, followed by feature extraction and their classification using
CNN. Although the presented CAD system employing image-based machine
learning for the detection of pulmonary nodules in CT images has shown a
substantial performance, it is envisioned that the performance can be boosted
further by exploiting a 3D CNN framework. On the other hand, this approach
can also be taken to the next level by leveraging CNN’s as a single module
for both: initial candidate detection and classification, and thus, removing the
requisite of feature engineering entirely.

Since research interest is transiting further to end-to-end trained CNN’s for
object recognition and localization simultaneously in images, it also indicates
a possibility to develop CAD systems that can simultaneously locate multiple
abnormalities in images. Training requires a substantial amount of labeled data
to leverage the full potential of CNN’s; however; it is not a case for CT-based
pulmonary imaging due to the availability of sufficient data. One can efficiently
use this data to train CNN’s for entirely different correlated modalities such as
mammography. Such research innovation is presented by [122] where they have
trained a DNN model for pulmonary nodule’s detection and further inferred it to
detect breast cancer. However, their work is still limited to binary classification
likewise the work in this thesis. This approach can be extended by exploiting
a single CNN model for multi-class classification problems in pulmonary or
breast imaging. Therefore, one striking conclusion can be drawn is that a single
architecture is capable enough to deal with multiple tasks if trained at hand.

The accurate diagnosis of abnormalities mostly depends on both image
acquisition and image analysis. Contrary to medical imaging where image
acquisition has relatively improved since devices acquire images at a much faster
rate and increased resolution, it is still a bit challenging with biomedical imaging
modalities. The potential advantages of CNN’s are not merely that they are better
feature extractors. As illustrated in this thesis, CNN’s can be used in other ways
as well, to produce filtered images, i.e., denoising image to improve the image
quality for enhanced diagnosis, and thus, illustrating their power and potential
for biomedical imaging applications as well.
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ABSTRACT
Classification and Denoising of Objects in TEM and CT
Images Using Deep Neural Networks

T he digitization of biomedical and medical images has benefited the clinicians
in comprehending (or detecting) obscure abnormalities. However, manual

analysis is labor-intensive and time-consuming. Since the last few decades,
computer-aided detection (CAD) systems employing learning-based methods
and conventional image analysis-based methods have successfully paved the
landscape for the detection (and/or classification) of deadly abnormalities. Lately,
the inception of deep neural networks (DNN) (often synonymized as deep
learning) as a powerful recognition module has shifted the research interest from
problem-specific solutions to increasingly problem-agnostic methods that rely
on learning from data. In particular, convolutional neural networks (CNNs)
have rapidly become a primary choice for many CAD systems due to their
astonishing results. This impulse has been sparked by increased computational
power (graphical processing units) and the evolution of learning-based methods.

This thesis presents a total of five solutions: four DNN-based solutions for
classification of structures in biomedical and medical images, and one solution
for denoising of biomedical images to improve the image quality. This thesis is
focused on the applications of two variants of DNN: the CNN, and the multi-layer
perceptrons (MLP).

From a biomedical image analysis perspective, the first solution is
associated with improving the performance of automated workflow for primary
ciliary dyskinesia (PCD) analysis. To classify cilia and non-cilia structures
in low-magnification (LM) transmission electron microscopy (TEM) images,
a CNN-based classifier is developed as a false positives (FP) reduction
module. Although computing discriminative features of cilia structures at very
low magnification is challenging, the developed CNN classifier substantially
improves the F-score from 0.47 to 0.59.

The second solution takes a side step from classification and focuses on
denoising. Denoising is often considered as a preprocessing step to improve the
image quality for automated analysis. Given this, the second solution is associated
with enhancing the structural information in short exposure high-magnification
TEM images. A novel multi-stream CNN-based model is developed to denoise
100 short exposure HM images acquired at the same spatial location in the cell
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section. Three different strategies for combining denoising and image merging
are investigated to determine the optimal structure enhancing strategy. The CNN
denoising model is only trained for one strategy and used as it is for other two
strategies, thus presenting the transfer learning perspective of DNN as a potential
add-on to automated analysis. The presented model achieves an improved PSNR
of 40.84 dB.

From a medical image analysis perspective, the third solution is associated
with improving the performance of a CAD system for the early detection of
multiple sizes of nodules (3 - 30 mm) in computed tomography (CT) scans. To
classify nodules and non-nodules, an MLP-based classifier is developed as an FP
reduction module. The CAD is extensively tested on four publically available
CT datasets; this makes it the only system to be successfully validated on such
large scale. The developed CAD system achieves a high sensitivity of 85.6%
with only 8 FPs/scan.

Until recently, conventional CAD systems employing learning-based methods
depended on handcrafted representations (features). Designing features by hand
is challenging and often result in limited discriminative power; thus, this is
insufficient to classify micronodules (≤ 4 mm) and cross-sectional vessels. The
fourth solution is associated with developing a CAD system for the detection of
micronodules in CT scans. To classify micronodules and small cross-sectional
vessels, a novel 3D CNN classifier is developed as an FP reduction module.
Using the largest publically available CT dataset, the developed CAD system
achieves a high sensitivity of 86.7% with only 8 FPs/scan.

The fifth solution is associated with improving the performance and efficiency
of automated workflow for detecting multiple sizes of vascular nodes in CT
angiography (CTA) scans. To classify cross-sections of different sizes of vessel
and non-vessel nodes, a patch-based CNN classifier is developed as an FP
reduction module. On the given 25 CTA volumes from the clinical routine, the
presented classifier substantially improves the F-score from 0.43 to 0.82.
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KOKKUVÕTE
Objektide klassifitseerimine ja müratustamine TEM ja KT
kujutistelt sügavate närvivõrkude abil

M editsiiniliste ja biomeditsiinitehniliste kujutiste digiteerimine on kliiniliselt
abiks võimalike ebanormaalsuste mõistmisel (või avastamisel). Potensi-

aalsed võimalused realiseeruvad aga suure hulgal pildiandmete töötlusel. Samas
on kujutiseandmete hulga käsitsi tõlgendamine töömahukas ja aeganõudev.
Arvestades andmete rohkust kujutiste eri modaalsustest, püüavad teadlased
arendada automaatseid analüüsimeetodeid või arvutipõhist avastamist (CAD),
et abistada arste selles monotoonses töös. Viimastel aastakümnetel on
automatiseeritud biomeditsiiniliste (ja meditsiiniliste) piltide analüüs edukalt
sillutanud teed CAD-süsteemidele, mis kasutavad masinõppepõhiseid meetodeid
ja tavapärast pildianalüüsi. Kõigi õpipõhiste meetodite seas on närvivõrgud
(NN-d) suutlikud tuvastama (ja/või klassifitseerida) eluohtlikke kõrvalekaldeid ja
omavad klassifitseerimiseks suurt potentsiaali. Kuid CAD-süsteemide toimivus
on viimase kümne aasta jooksul olnud piiratud mitteküllaldase arvutusvõimsuse
tõttu. Viimasel ajal on sügavate närvivõrkude (sügavõppe sünonüümina)
loomine võimsaks tuvastusmooduliks. Probleemipõhistest lahendustest pärineva
uurimistöö huvi on järjest enam nihkunud probleemi-agnostilistele lahendustele,
mis põhinevad andmetest õppimisel. Eriti on konvolutsioonilised närvivõrgud
(CNN-d) muutunud esmaseks valikuks paljude CAD-süsteemide puhul nende
suurepäraste tulemuste tõttu. Seda arengut on põhjustanud arvutusvõimsuse
suurenemine, eriti graafikaprotsessorite (GPU) ja õpimeetodite arengu tõttu.

Arvestades DNNide prevaleerumist, esitatakse käesolevas doktoritöös kokku
viis lahendust: neli DNN-põhist lahendust struktuuride klassifitseerimiseks
nii biomeditsiinilistelt kui ka meditsiinilistelt piltidelt ja üks lahendus on
biomeditsiiniliste kujutiste müratustamiseks, et parendada pildikvaliteeti. See
väitekiri keskendub DNN-ide kahe variandi - mitmekihiliste pertseptronite (MLP)
ja CNN-ide - rakendustele.

Biomeditsiinilise pildianalüüsi perspektiivist on esimene lahendus seotud
primaarse tsiliaarse düskineesia (PCD) analüüsi automatiseeritud töövoo täius-
tamisega. Väikse suurendusega (LM) transmissioon-elektronmikroskoopia
(TEM) piltidelt tsiiliate ja mitte-tsiiliate klassifitseerimisel on valepositiivse (FP)
vähendusmoodulina välja töötatud CNN-põhine klassifikaator. Kuigi tsiiliate
omadusi saab vaevu eristada, arvutamaks diskrimineerivaid funktsioone väga
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väikese kujutise suurendusega, parendab CNN klassifikaator oluliselt F-skoori
(0,47-0,59-ni).

Teine lahendus liigub klassifitseerimiselt kõrvale ja keskendub kujutiste
müratustamisele. Pildikvaliteedi parendamist müratustamisega peetakse au-
tomaatsel analüüsil tihti eelprotsessiks. Seda arvestades on teine pakutud
lahendus seotud struktuurialase teabe täiustamisega MiniTEM™-i abil oman-
datud lühikese säritusega suure suurendusega (HM) TEM-kujutistel. Uuendusliku
mitmekanalilise CNN-põhise mudeli väljatöötamisel võetakse 100 vähesäritatud
HM-pilti, mis on saadud raku sektsiooni samas ruumilises asukohas. Optimaalse
müratustamisstrateegia kindlaksmääramiseks uuritakse kolme erinevat stratee-
giat. Mudelit on õpetatud ainult ühe strateegia jaoks ja seda kasutatakse ka
kahe teise strateegia puhul; esitades seega DNN-ide ülekandeõppe perspektiivi
automatiseeritud analüüsi võimaliku lisana. Esitatav mudel saavutab parema
PSNRi (signaal-mürasuhte tippväärtus) - kuni 40,84 dB.

Meditsiinilise kujutise analüüsi vaatepunktist on kolmas lahendus seotud
kompuutertomograafia (CT) skaneerimisega eri suurusega noodulite (3 ... 30 mm)
varajase avastamise CAD süsteemi täiustamisega. Noodulite ja mittenoodulite
efektiivseks liigitamiseks on vale-positiivsete (FP) vähendamise moodulina välja
töötatud MLP-põhine klassifikaator. CAD on põhjalikult testitud nelja avalikult
kättesaadava CT-andmestikuga; seega tegemist on ainukese CAD-süsteemiga,
mida on sellisel suurel määral edukalt valideeritud. Arendatud CAD-süsteem
saavutab parema tundlikkuse (kuni 85,6%) vaid 8 valepositiivse tulemusega
skänni kohta.

Kuni viimase ajani sõltusid tavapärased CAD-süsteemid, mis kasutasid
õpipõhiseid meetodeid, käsitsi ettevalmistatud esitustest (funktsioonidest). Funk-
tsioonide käsitsi kavandamine on tülikas ja sageli on piiratud diskrimineeriv
jõudlus; seega pole see mikronoodulite ( < 4 mm) ja ristlõikeliste veresoonte
liigitamiseks piisav. Neljas lahendus on seotud CAD-süsteemi väljatöötamisega
mikronoodulite tuvastamiseks CT-skaneerimisel. Mikronoodulite ja väikese
ristlõikega veresoonte klassifitseerimiseks on FP vähendusmoodulina välja töö-
tatud uudne 3D-CNN klassifikaator. Kasutades suurimat avalikult kättesaadavat
CT-andmestikku võib väita, et arendatud CAD-süsteem on kõrge tundlikkusega
(86,7%), vaid 8 valepositiivsega skänni kohta.

Meditsiinilise kujutise analüüsi vaatepunktist on lõplik lahendus seotud
automatiseeritud töövoo efektiivsuse ja tõhususe parendamisega CT angiograafia
(CTA) skaneerimisel arvukate veresoonte sõlmede tuvastamiseks. Veresoonte ja
mitte-veresoonte sõlmede erineva suurusega ristlõigete klassifitseerimiseks on
FP vähendusmooduliks paketipõhine CNN klassifikaator. Antud kahekümne viie
CTA kliinilisest rutiinist annab CNN-põhiste klassifikaator oluliselt parendatud
F-skoori (0,43 asemel 0,82).
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Abstract. Automated detection of cilia in low magnification transmis-
sion electron microscopy images is a central task in the quest to relieve
the pathologists in the manual, time consuming and subjective diagnos-
tic procedure. However, automation of the process, specifically in low
magnification, is challenging due to the similar characteristics of non-
cilia candidates. In this paper, a convolutional neural network classifier
is proposed to further reduce the false positives detected by a previ-
ously presented template matching method. Adding the proposed con-
volutional neural network increases the area under Precision-Recall curve
from 0.42 to 0.71, and significantly reduces the number of false positive
objects.

Keywords: Convolutional neural network · Primary Ciliary Dyskine-
sia · Template maching · Transmission electron microscopy

1 Introduction

Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder resulting in dys-
functional cilia - the hairlike structures protruding from certain cells. Dysfunc-
tionality of cilia can result in severe chronic respiratory infection, and infertility
in both genders. To diagnose the disorder, pathologists examine the morpholog-
ical appearance of cilia (∼220–250 nm) using transmission electron microscopy

c© Springer International Publishing AG 2017
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(TEM). Qualitative analysis of cilia in the TEM images is still largely subjec-
tive and manual diagnosis is laborious, monotonous, and hugely time consuming
(diagnosis takes ca. two hours per sample). An expert pathologist has to zoom
in and out at locations of cilia which possibly exhibit structural information nec-
essary for correct diagnosis. Navigation through the huge search space, together
with change of magnification, is very demanding. Hence, there is an inevitable
requisite for the automation of the cilia detection and diagnosis process. However,
it is not feasible to acquire images which cover the whole sample at a magni-
fication that allows structural analysis; such an acquisition would take tens of
hours. Furthermore, objects of interest are rare, very small, and not spreading
over more than a couple of percents of the total sample. Locating these regions
of interest at low magnification, and acquiring high magnification images only
at selected locations, would therefore be highly beneficial.

Automated detection of cilia structures (of a quality sufficient for diagnosis)
at low magnification is a challenging task due to (1) their similar characteris-
tics with the large number of non-cilia structures, and (2) variance in the size,
shape and appearance of the individual cilia structures. The task becomes more
complicated also due to noise and the non-homogeneous background at low mag-
nification, see Fig. 1.

Lately, availability of large amounts of data and strong computational power
have rapidly increased the popularity of machine learning approaches (deep learn-
ing). Convolutional neural networks (CNN) [10] have outperformed the state-of-
the-art in many computer vision applications [8]. Similarly, the applicability of

Fig. 1. (a) Low magnification TEM image of 4096× 4096 pixels utilized for training
purpose with the magnified view of 350× 350 pixel bounding box (marked in red) with
indicated ground truth marked by an expert pathologist. Here, cilia candidates marked
with blue dots are of the suitable quality. (b) Some examples of patches extracted by
previously reported method [15], the first and second rows contain true positives (TP)
whereas patches in the third row are false positives (FP). Note the high similarity
between the classes, this makes the problem a serious challenge. (Color figure online)
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CNN is also investigated in the medical image analysis field [1,11]. In particu-
lar, their capability to learn discriminative features while trained in a supervised
fashion makes them useful for automated detection of structures in, e.g., elec-
tron microscopy images. For instance, Ciresan et al. [5] reported a CNN model to
segment the neuronal membranes in electron microscopy images; in [19], a CNN
with autoencoder for automated detection of nuclei in high magnification (HM)
microscopy images was employed.

Previously, a template matching (TM) method to detect cilia candidates in
low magnification TEM images was proposed [15]. Considering that we aim at
locating regions highly populated by good quality cilia, for further HM image
acquisition and analysis, it is crucial that the identification of such regions is
not misled by a large number of false positives (FP). In the current work, we
aim at improving the performance by incorporating a dedicated CNN model in
the cilia detection scheme with the special focus on reducing the number of FP.
A performance benchmark for the proposed model is presented, and independent
validation on an additional image is performed.

2 Image Data

Two low magnification (LM) TEM images from different patients, each with ca.
200 cilia structures, are used for training and independent validation purposes.
Both images are acquired with a FEI Tecnai G2 F20 TEM and a bottom mounted
FEI Eagle 4K × 4K HR CCD camera, resulting in 16-bit gray scale TIFF images
of size 4096 × 4096 pixels.

For each LM image field, a set of mid magnification (MM) images are
acquired, where the ground truth, i.e., true cilia candidates of promising qual-
ity for diagnosing at HM (not dealt with in this paper), are manually marked
by an expert pathologist (author AD). Some examples of extracted patches of
marked cilia candidates are shown in Fig. 1(b). The field of view (FOV) for a
MM (2900×) image is 15.2µm and for a LM (690×) image, it is 60.6µm.

3 Method

The overall detection workflow consists of two stages: (1) Template matching as
described in [15], and (2) further FP reduction using a 2-D CNN model, which
is the core of this paper.

3.1 Initial Candidate Detection

Template matching based on normalized cross-correlation (NCC) and a cus-
tomized synthetic template is used to detect the initial cilia candidates. The
cross correlation image is thresholded at a suitable threshold, followed by area
filtering and position filtering, meaning that only the best hit in a local region
is kept as a candidate [15].
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3.2 Data Partitioning and Augmentation

For each candidate position, we extracted patches of 23× 23 pixels centered at
a given position p = (x, y). The patch size was chosen in order to contain a cilia
object (∼19–20 pixels diameter), and some local background around the cilia
instances (∼3 pixels) to include sufficient context information.

A training set of cilia, as well as non-cilia candidates, was extracted from the
training image based on ground truth markings made by our expert pathologist
(author AD), in MM images covering the same area of the sample. All true
cilia (a total of 136) regardless of their match score, i.e., their NCC values,
were chosen. A set of 272 non-cilia candidates was extracted from different NCC
levels in order to represent non-cilia objects with high similarity to good cilia
(136 randomly chosen non-cilia objects with NCC values ≥ 0.5) as well as non-
cilia objects more different from true cilia (136 randomly chosen objects with
NCC threshold values between 0.2 and 0.5).

While training a CNN model, an imbalanced dataset can mislead the opti-
mization algorithm to converge to a local minimum, wherein the predictions can
be skewed towards the candidates of the majority class, resulting in an over-
fitted model. To avoid overfitting, candidates from both classes (i.e. cilia and
non-cilia) are augmented. Augmentation on test data has shown a considerable
improvement in terms of robustness of the system, as it, if designed properly for
the problem at hand [3].

Prior to the augmentation step, the candidates are randomly divided into
training, validation and test sets. The training set consists of 82 cilia and 164
non-cilia candidates whereas the validation and test sets, each consists of 27 cilia
and 54 non-cilia candidates. The candidates are augmented using affine trans-
formations (rotation, scaling and shear) and bilinear interpolation. Horizontal
flipping is applied to the cilia candidates to balance the sets. A fully automated
script is created to perform the combination of seven random angular rotations
(0–360◦), six random scalings within ±10% range and five random shearings
within 5% range in both x- and y- directions, resulting in 1050 augmented vari-
ations for each candidate. The augmentation scheme is applied separately for
each subset to ensure independency of the training set from the validation and
test sets.

3.3 2-D CNN Configuration

The architecture of the proposed CNN model is initially derived from the LeNet
architecture [9]. The motivation behind this choice is its efficiency, as well as
lower computational cost compared to the architectures such as Alexnet [8] and
VGGnet [13]. These models have extended the functionality of LeNet into a
much larger neural network with often better performance but at a cost of a
massive increase in number of parameters and computational time. Training of
such large networks is still difficult due to the lack of powerful ways to regularize
the models and large feature sizes in many layers [16]. Hence, we decided to
empirically modify the LeNet architecture to fit our application.
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Fig. 2. Performance curves of different configuration: (a) validation accuracy for differ-
ent activation functions and pooling layer combinations; (b) training loss for different
optimizers with zero-padding and kernel of 1× 1.

In our modified architecture, the default activation function i.e., hyperbolic
tangent (tanh) [18] is replaced with Rectified linear units (ReLU) [12]. In com-
parison to the tanh, the constant gradient of ReLUs results in faster learning
and also reduces the problem of vanishing gradient. We also implemented the
maxpooling layer instead of average pooling as subsampling layer [8]. A compar-
ative performance of both activation functions with different subsampling layers
are shown in Fig. 2(a). The figure shows the accuracy for each configuration at
different number of epochs. It is noticeable that the performance is better when
ReLU was configured with maxpooling layer, resulting in higher accuracy after
50 epochs.

We also compared the usability of zero-padding and 1× 1 convolution filters
(as suggested in [16]) for two different optimizers, Adam [7] and RMSProp [17].
A kernel of size 1 × 1 in the first convolutional layer reduced the number of
parameters (difference of 1 120 parameters compared to the zero-padding), thus
keeping the computations reasonable. Comparatively, in either configuration,
RMSProp with zero-padding resulted in a better training loss, as shown in
Fig. 2(b). We thus, selected the configuration with minimum training loss. More-
over, several parameters (number of layers, kernel size, training algorithm, and
number of neurons in the dense layer) were also experimentally determined.

In the proposed CNN classifier, the input patches are initially padded with a
three pixels thick frame of zeros in order to keep the spatial sizes of the patches
constant after the convolutional layers, as well as to keep the border information
up to the last convolutional layer. Next, two consecutive convolutional layers
and subsampling layers are used in the network. The first convolutional layer
consists of 32 kernels of size 6 × 6 × 1. The second convolutional layer consists of
48 kernels of size 5 × 5 × 32. The subsampling layer is set as the maximum values
in non-overlapping windows of size 2× 2 (stride of 2). This reduces the size of
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the output of each convolutional layer by half. The last layer is a fully connected
layer with 20 neurons followed by a softmax layer for binary classification. ReLU
are used in the convolutional and dense layers, where the activation y for a given
input x is obtained as y = max (0, x ). The architecture of the proposed CNN
model is shown in Fig. 3.

Fig. 3. An overview of the proposed CNN model.

3.4 Network training

The training of the classifier was performed in a 5-fold cross-validation scheme.
For each fold, the candidates were randomly split into five blocks to ensure that
each set was utilized as test set once. The distribution of candidates in each fold
was kept as shown in Table 1.

Table 1. The number of cilia and non-cilia candidates in the different sets. Candidates
marked in bold are finally utilized for building the model.

Set Training Validation Test

Cilia 82 27 27

Aug (cilia) 172 364 56 754 56 754

Non-cilia 164 54 54

Aug (non-cilia) 172 364 56 754 56 754

Final set 344 728 113 508 113 508

On the given training dataset, RMSProp [17] is used to efficiently optimize
the weights of the CNN. RMSProp is an adaptive optimization algorithm, which
normalizes the gradients by utilizing the magnitude of recent gradients. The
weights are initialized using normalized initialization as proposed in [6] and
updated in a mini-batch scheme of 128 candidates. The biases were initialized
with zero and learning rate was set to 0.001. A dropout of 0.5 is implemented
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as regularization, on the output of the last convolutional layer and the dense
layer to avoid overfitting [14]. Softmax loss (cross-entropy error loss) is utilized
to measure the error loss. The CNN model is implemented using theano backend
in Keras [4]. The average training time is approximately 48 s/epoch on a GPU
GeForce GTX 680.

4 Experimental Results and Discussion

The performance of the proposed CNN model was evaluated in terms of Preci-
sion, Recall, Area under the Precision-Recall curve (AUC), and F-score, defined
as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F–score = 2 × Precision × Recall

Precision + Recall
, AUC =

∫ 1

0

P (r)dr.

The AUC is the average of precision P(r) over the interval (0 ≤ r ≤ 1), and
P(r) is a function of recall r. Additionally, for different NCC threshold levels, the
Free-response Receiver Operating Characteristic (FROC) curve [2] was utilized
to measure the sensitivities at a specific number of false positives per image.
The FROC curve is an extension of the receiver operating characteristic (ROC)
curve, which can be effective when multiple candidates are present in a single
image. It plots the Recall (Sensitivity) against the average number of false posi-
tives per images. FROC is more sensitive at detecting small differences between
performances and has higher statistical discriminative power [2].

4.1 Quantitative results

Figures 4(a) and (b) show the precision-recall curves corresponding to cilia detec-
tion for the CNN classifier applied after thresholding the template matching at
different NCC levels (0.2, 0.3, 0.4, and 0.5), as well as the detection when using
only template matching (which includes NCC thresholding at 0.546), as pro-
posed in [15], for the training and test image, respectively. In the figures, the
AUC is also stated. The results show that adding a CNN classifier significantly
improves the AUC to 0.82 and 0.71 compared to the AUC of 0.48 and 0.42, for
both the training and test image, respectively, at an NCC threshold level of 0.5.

The FROC curve for the proposed CNN applied to the training and test
images when the template matching result was thresholded at different NCC
levels (0.2, 0.3, 0.4, and 0.5) is shown in Fig. 5(a)–(b). This corresponds to the
sensitivity of the classifier against total number of FP per image.

A classification confusion matrix is also shown in Table 2. The matrix shows
the performance of the classifier for both the training and test image, in terms of
TP (true positive), FP (false positive), FN (false negative), and TN (true nega-
tive), at equal error rate. At an NCC threshold level 0.5, the template matching
method detected 212 (73 cilia and 139 non-cilia) candidates as potential cilia can-
didates. Amongst these, in the Table 2(A), the proposed CNN classifier correctly
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Fig. 4. Precision-recall curves of the CNN classifier at different NCC threshold levels
shown together with the AUC for the template matching approach(TM) [15] for (a)
training, (b) test images

Fig. 5. FROC curves of the CNN classifier for (a) training image (b) test image at
different NCC threshold levels. The number of FP are shown on a logarithmic scale.

classified 47 (TP) out of 73 (TP+FN) cilia candidates whereas from the set of
139 (FP+TN) non-cilia candidates, 26 non-cilia candidates (FP) were wrongly
classified as cilia candidates by our proposed CNN classifier. We observe, in the
training image, at equal error rate (Table 2(A)), the classifier also performed well
when tested with the candidates extracted at an NCC threshold level of 0.4, but
it eventually underperformed for the test image. The achieved results led us to
finally conclude that the proposed CNN model yields a stable performance if it is
incorporated with the candidates extracted at an NCC threshold level of 0.5. This
observation is supported by the F-Score curves, shown in Fig. 6. Comparatively for
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Table 2. Classification matrix of the CNN classifier at different NCC threshold levels
for: (A) training image and (B) test image; at equal error rate.

A: Training image (Equal error rate)

0.2 0.3 0.4 0.5

TP FP 51 85 50 80 64 51 47 26

FN TN 85 48 004 80 18 035 51 1 113 26 113

B: Test image (Equal error rate)

0.2 0.3 0.4 0.5

TP FP 38 67 37 66 37 60 37 36

FN TN 67 45 926 66 18 348 60 2 658 36 188

Fig. 6. F-score curves, for the test image, showing the improvement in overall per-
formance by adding a CNN classifier with template matching approach(TM) [15] at
different NCC threshold levels

the test image, at an NCC level of 0.546 (as suggested in [15]), the proposed CNN
model increases the overall F-Score from 0.47 to 0.59.

4.2 False positive reduction results

Detection results of the proposed CNN model on a ROI of 650 × 650 for the test
LM TEM image, at an NCC level of 0.5, are shown in Fig. 7(c)–(d). Figure 7(c)
shows the detection results of the initial candidate detection step (template
matching method, [15]) whereas Fig. 7(d) shows the improved results achieved
by incorporating the proposed CNN model as an FP reduction step. In these
images, the blue circles, red crossed circles, and green squares represent the
candidates that have been correctly detected (TP), the candidates that have been
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Fig. 7. Illustration of cilia detection results. (a) The 4096× 4096 test image, (b) a
650× 650 example subregion of the test image, (c) same subregion after initial template
matching method, and (d) after proposed CNN classifier. The numbers are given for
the whole image and for the ROI is in parenthesis. Here, blue circles, red crossed circles,
and green squares represent the TP, FP, and FN, respectively. (Color figure online)

erroneously detected as cilia (FP), and the cilia that were missed with respect
to the manually ascertained ground truth delineations and initial detection step
(FN), respectively. These results show the potential of our CNN model for cilia
detection in low magnification TEM images.

Examples of classified candidate image patches in the test image are shown
in Fig. 8. The images marked in the first row are the TP and FP candidates from
both methods (i.e., TM and CNN). In the second row, TP candidates detected
by TM but erroneously classified as FN by CNN; and FP candidates detected
by TM, which are successively classified as TN by proposed classifier.
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Fig. 8. Examples of candidates (with their corresponding NCC values) detected or
missed by the proposed CNN model in the test image at an NCC level of 0.5. The first
row shows TP’s and FP’s of both methods. The second row shows TP and FP candi-
dates which are missed and successively classified by the CNN method, respectively.

5 Conclusion

In this paper, a CNN classifier is presented as a false positive reduction step for
automated detection of cilia candidates in low magnification TEM images. The
results suggest that adding a CNN classifier as a FP reduction step certainly
improves the performance and results in an increased F-Score from 0.47 to 0.59.
It was also investigated whether utilizing a CNN classifier as an additional refine-
ment step would allow for using a lower NCC threshold in order to not discard
true cilia objects in the template matching step. This was however, not found to
be practically suitable as lowering the NCC threshold increases the number of
candidates to analyze tremendously while only rather few additional true candi-
dates are detected. It will be interesting in the future to develop and investigate
a CNN model for the whole automated cilia detection problem, without relying
on a first template matching step. This is currently not possible as it requires
more training and test data.
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Buda Bajić1∗ , Amit Suveer2∗, Anindya Gupta3∗, Ivana Pepić1
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ABSTRACT
Transmission Electron Microscopy (TEM) is commonly used
for structural analysis at the nm scale in material and biologi-
cal sciences. Fast acquisition and low dose are desired to min-
imize the influence of external factors on the acquisition as
well as the interaction of electrons with the sample. However,
the resulting images are very noisy, which affects both manual
and automated analysis. We present a comparative study of
block matching, wavelet domain, energy minimization, and
deep convolutional neural network based approaches to de-
noise short exposure high-resolution TEM images of cilia. In
addition, we evaluate the effect of denoising before or after
registering multiple short exposure images of the same imag-
ing field to further enhance fine details.

Index Terms— Denoising, Convolutional Neural Net-
works, TEM, Cilia

1. INTRODUCTION

Transmission Electron Microscopy (TEM) is an imaging
technique providing nm resolution. It is therefore well suited
and often used to analyze structural details in biological sam-
ples and tissue sections for research and clinical diagnostics.
However, both manual and automated analysis of TEM im-
ages are negatively affected by a number of imaging factors,
such as sample preparation artefacts, non-optimal microscope
alignment and focusing, electrons interacting with and modi-
fying the sample, and motion artefacts from e.g. sample drift
and vibrations. Preprocessing with an aim to enhance the
relevant details (ultrastructures) is often applied.

The imaging artefacts can be reduced by decreasing the
electron dose and acquisition time. However, this results in
images with more noise and increases the need for denois-
ing. The noise induced by TEM is non-additive and signal-
dependent. It can be modeled by a mixed Poisson-Gaussian

*These authors have contributed equally.

(PG) distribution [1, 2]. However, in short exposure images,
the Gaussian noise dominates. We consider three classical
methods suited for Gaussian and PG noise: a block matching
[3], wavelet domain [4], and energy minimization [5] based
method, and evaluate their performances on short exposure
TEM images of cilia in a cell section sample, Fig. 1. More-
over, observing that convolutional neural networks (CNNs)
have recently been shown to perform well in denoising [6, 7],
we have developed a suitable denoising CNN model and in-
cluded it in the comparison. To the best of our knowledge,
this is the first denoising CNN evaluated on TEM noisy data.

Denoising is commonly performed on a single image.
However, our ultimate goal is to enhance fine details in TEM
images, which, in theory, can be achieved by generating
synthetic long exposure images by aggregating (median) a
number of short exposure ones. We, therefore, also investi-
gate two strategies of combining aggregation and denoising:
(1) co-registration and aggregation of a number of short ex-
posure images is performed first and followed by denoising
of the aggregation; (2) short exposure images are denoised
and the resulting ones are then co-registered and aggregated.
Enhancement of structural information by registration and
aggregation of scanned lines, images or objects, is commonly
used in other biomedical imaging techniques, e.g., in scan-
ning transmission electron microscopy (STEM) [2, 8], and
cryo-EM [9].

2. DENOISING METHODS

2.1. Block-matching and 3D filtering (BM3D)

Block matching based techniques utilize self similarities
present in the image. The BM3D algorithm [3] is suitable for
images with structural redundancy, which is common in bio-
logical images, and also in our case. BM3D has successfully
been used for denoising light microscopy images [10] and
STEM images [11].



Fig. 1: Left: Short exposure TEM image (2048×2048 pixels)
from a series of 100 images. Right: Ground truth created by
co-registration and aggregation of the stack to the left. The
two insets show magnified views (250 × 250 pixels) of one
cilium.

2.2. PURE-LET

In the PURE-LET [4] method the denoising process is ex-
pressed as a linear expansion of thresholds (LET). The
threshold optimization solely relies on a data-adaptive un-
biased estimation of the mean squared error (MSE), derived
in a non-Bayesian framework (PURE: Poisson−Gaussian
unbiased risk estimate, defined in the Haar wavelet domain).
The method is suitable for light microscopy images, as pre-
sented in the original paper, and it also performs well in
restoring STEM images as shown in [12].

2.3. Energy minimization (EM)

Many denoising methods are based on solving an inverse
problem through energy minimization. We perform de-
noising by minimizing an energy function which includes
a quadratic data fidelity term, suited for Gaussian noise, and
a regularization term which provides numerical stability and
noise suppression. We use Total Variation (TV) regularization
[13] smoothed by the Huber potential function [14], resulting
in well preserved edges in images [5]. We have previously
shown applicability of this approach to cilia ultrastructure en-
hancement in long exposure images [15], where we applied
a generalized version of the method suited to PG noise and
blind deblurring.

2.4. Denoising Convolutional Neural Network (DCNN)

Inspired by the good performance of the approaches in [16,
17], we jointly train two CNNs as an ensemble. The archi-
tecture is shown in Fig. 2. The training of both streams is
performed on image patches of size 128 × 128 with an over-
lapping stride of 16 pixels. Prior to the training, the patches
are normalized to the range [0,1]. The first stream consists of
four convolution blocks, two transposed convolution blocks
and one residual block. The convolution block encodes the
image representations while removing the noise, whereas the

Fig. 2: The two-stream DCNN architecture. The sizes of out-
put feature maps of each block are shown on top of each block
and generated using 3×3 convolutions. The last 1×1 convo-
lution blocks of each stream use linear and sigmoid activation,
respectively, instead of ReLU.

transposed convolution block decodes these representations to
restore the noise-free image content. The residual block con-
tains two convolution blocks. Batch normalization (BN) [18]
is used as regularization before rectified linear unit (ReLU)
activation to deal with internal covariate shift. To elevate the
training performance, skip connections are used and followed
by a BN layer. During experiments, we found that the pre-
diction made by the first stream restores most content with
blur. Considering that, we incorporated a second stream con-
sisting of four convolution blocks, two up-sampling blocks,
two max-pooling layers, and one residual block. The recon-
structed output of the second stream contains high-frequency
content, however, with an inconsistent illumination in respect
to corresponding ground truth. Motivated by the above ob-
servations, we performed an end-to-end training by averaging
the outputs of both streams, which resulted in an improved
output. We used stochastic gradient descent (SGD) to opti-
mize the weights in a mini-batch scheme of 16 patches. The
initial learning rate was set to 0.001, and reduced to 1/10 of
the current value after every epoch. We used MSE and binary
cross-entropy as loss function. The DCNN is implemented
using Tensorflow backend in Keras [19] and trained for 15
epochs in a five-fold cross validation scheme. The average
training time is 300 s/epoch on a GPU GeForce GTX 1080.

3. EXPERIMENTS AND RESULTS

3.1. Quantitative evaluation

The dataset consists of a series of 100 noisy short expo-
sure (2 ms) images, captured at the same spatial location in
the cell section sample (FoV=2000 nm). All images are of
size 2048 × 2048 pixels and acquired with the low-voltage



Table 1: Results on the test data set. Average PSNR and SSIM (± SD) over 90 single images are given in the 1st and 2nd rows.
Rows 3 and 4 contain average PSNR and SSIM over 18 aggregated groups of 5 short exposure images followed by denoising.
Average PSNR and SSIM over 18 images each obtained by aggregating 5 denoised short exposure images, are given in rows 5
and 6. Optimal parameters (in parentheses) estimated during the training phase are used. Best performances are bolded.

Initial BM3D (σbm) PURE-LET (σpl) EM (λ) DCNN
Denosing of PSNR 22.25 37.39 ± 0.30 (105) 38.44 ± 1.09 (75) 37.80 ± 0.27 (0.25) 38.04 ± 0.21

single images SSIM 0.019 0.233 ± 0.007 (95) 0.219 ± 0.007 (55) 0.255 ± 0.027 (0.20) 0.252 ± 0.002
Denoising of 5 aggregated PSNR 27.88 40.45 ± 1.09 (95) 40.19 ± 1.06 (35) 40.19 ± 0.54 (0.125) 40.86 ± 0.37

noisy images SSIM 0.037 0.270 ± 0.019 (35) 0.263 ± 0.017 (25) 0.277 ± 0.017 (0.10) 0.282 ± 0.011
Aggregation of 5 denoised PSNR 22.25 39.65 ± 1.04 (95) 40.21 ± 0.48 (55) 39.92 ± 0.93 (0.10) 40.84 ± 0.45

single images SSIM 0.019 0.261 ± 0.013 (25) 0.265 ± 0.011 (45) 0.273 ± 0.021 (0.075) 0.276 ± 0.009

MiniTEM1 system. A low-noise image, used as a ground-
truth, is estimated by registering each short exposure image to
the first image of the series using rigid registration, followed
by aggregating the information by computing the pixel-wise
median value, illustrated in Fig. 1.

We utilize 10 images for the training of the DCNN2 and
explorative parameter tuning of each method – the regulariza-
tion weight λ for EM, and the expected std. of Gaussian noise,
σbm and σpl, for BM3D3 and PURE-LET4, respectively. The
tuned parameters are used to compare the performance of
each method on the remaining 90 images. Apart from evalu-
ating the performances on denoising single images, we addi-
tionally tune parameters and evaluate the performances of the
methods when used to 1) denoise the resulting image after
registering and aggregating (median) five short exposure im-
ages, and 2) when registering and aggregating (median) five
denoised short exposure images.

The performance is evaluated using well known and of-
ten used the peak-signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) [20]. As indicated in [21],
different levels of degradations applied to the same image can
yield the same PSNR. We observe that PSNR performs poorly
on discriminating structural content in images which plays an
important role in ultrastructural analysis of TEM images. As
SSIM is proposed with the aim to compare structural changes
in images imitating what the human visual system does, this
measure is considered a more reliable measure of visual sim-
ilarity of images.

Denoising of single short exposure images – The aver-
age PSNR and SSIM over all 90 images from the test dataset
are given in Table 1, along with the parameters tuned dur-
ing the training. The EM method marginally outperforms
the remaining methods in terms of SSIM. On the other hand,
DCNN outperforms all classical methods in terms of PSNR.
A cilium from a single noisy image and the corresponding de-
noised instances obtained with all 4 methods are presented in

1Vironova AB, Stockholm, Sweden
2https://bitbucket.org/anindya_gupta/tem-denoising/
3http://www.cs.tut.fi/˜foi/GCF-BM3D
4http://bigwww.epfl.ch/algorithms/denoise/

the first row of Fig. 3.
Denoising of 5 aggregated short exposure images –

We register groups of 5 short exposure images and aggregate
them by the pixel-wise median. We denoise the resulting 18
images by all 4 considered methods. The average PSNR and
SSIM (over 18 images) are given in Table 1. As confirmed
by both average PSNR and SSIM, the DCNN method out-
performs the other methods. A noisy cilium instance from
aggregating 5 short exposure images and the corresponding
denoised results obtained with all 4 methods are presented in
the middle row of Fig 3.

Aggregation of 5 denoised short exposure images – We
denoise 5 sequentially acquired short exposure images, then
register them and aggregate them by the pixel-wise median.
The average PSNR and SSIM for the 18 resulting images are
given in Table 1. The corresponding results on the cilium
subimage are shown in the bottom row of Fig. 3. Note that the
first image is the ground truth, i.e., the median aggregated 100
short exposure images. In this strategy as well, the DCNN
produces the highest PSNR and SSIM.

3.2. Qualitative evaluation

To validate the level of agreement between the quantitative
results and visual (qualitative) results, we performed a subjec-
tive visual evaluation conducting a two-step voting process by
six experts. In the first step, involving only the classical meth-
ods, the experts rated the results (1st, 2nd, 3rd best) on the
cilium subimage produced by each of the methods with dif-
ferent parameter settings. The displayed images (7 for each
method) spanned a parameter range centered around the max-
imal SSIM for that method. The procedure was repeated for
the two strategies of aggregating 5 short exposure images (de-
noising prior or post registering and aggregation). The second
step involves all four methods. The images resulting from
the two aggregation strategies utilizing the tuned parameter
settings as decided in Step 1, together with the DCNN re-
sults were displayed (random, unknown order) and the experts
rated them again (as the 1st, 2nd, 3rd best). The denoised im-
age with the majority of votes is highlighted in Fig. 3.
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Fig. 3: Noisy and denoised close ups of a cilium instance obtained with the considered methods. Top: Denoising of a single
image. Middle: Denoising of 5 aggregated noisy images. Bottom: Aggregation of 5 denoised single images. The red frame
(bottom left) indicates the ground truth. The green frame indicates the best ranked image in the two-step visual voting process.

In the first step of the voting procedure, the experts’
votes agreed well with the quantitative results based on
SSIM. However, in some cases, the experts visually pre-
ferred slightly less regularized images. This is not surprising
since humans prefer to see sharp details and can ”ignore”
noise to some degree. The results corresponding to maximal
PSNR were consistently judged as over-regularized.

4. DISCUSSION AND CONCLUSION

Short exposure time reduces the influence of motion blur and
electron interaction with the sample. That, however, affects
the image quality. We have quantitatively and qualitatively
compared four different denoising methods that can be used
to improve the resulting poor image quality. To additionally
enhance ultrastructural information in TEM images, we have
investigated two strategies i.e., denoising of aggregated series
of noisy images and aggregation of several denoised short ex-
posure images of the same view.

From the quantitative and qualitative results in Table 1
and Fig. 3 it is clear that denoising can improve both single
and multiple aggregated short exposure images. Compara-
tively, noisy single images require more regularization. It is

also interesting to note that the optimal parameter values for
the classical methods differ a lot depending on whether single
short exposure or aggregated images are to be denoised. Note
that the DCNN was only trained on single frames also for the
strategies using aggregated images. Overall, DCNN gives the
highest quantitative scores, but based on the visual assessment
BM3D applied to noisy images prior to aggregation produced
the most appealing result.

Both of the two aggregation strategies, denoising the reg-
istered and aggregated image or registering and aggregating
after denoising the short exposure images, improve the results
approximately equally well. One advantage with the former
aggregation strategy is that only one denoising computations
is performed instead of five.
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Detection of Pulmonary Micronodules in CT
Images and False Positive Reduction Using

3D Convolutional Neural Networks
Anindya Gupta, Tõnis Saar, Olev Märtens, Member, IEEE, Yannick Le Moullec, and Ida-Maria Sintorn

Abstract—Purpose: Micronodules are small lesions that are
radiologically characterized to manifest the fatal and incurable
occupational pulmonary disease silicosis. Identifying scattered
micronodules in computed tomography (CT) scans is a tedious
and challenging task for radiologists. We present a novel CAD
system specifically dedicated to detect micronodules in thoracic
CT scans.
Method: The proposed system consists of a candidate-screening
module and a false positive reduction module. The candidate-
screening module is initiated by a lung segmentation algorithm
which is refined using a morphological closing operation to
include small lesions attached to pleura. Next, the micronodules
are identified through a combination of 2D/3D rule based thresh-
olding and morphological operation steps. In the false positive
(FP) reduction module, each identified candidate is classified by
a 3-D convolutional neural networks (CNN). It automatically
encodes the discriminative representations derived from training
data by exploiting the volumetric information of each candidate.
Result: On 598 CT scans of the publically available LIDC/IDRI
database, the CAD system achieves detection sensitivities of
74.3% (648/872) and 86.7% (756/872) at 1 FP/scan and 8
FPs/scan, respectively.
Conclusion: Our proposed CAD system efficiently identifies
micronodules in thoracic scans with only a small number of
FPs. Our experimental results showed that the automatically
generated features by the 3-D CNN are highly discriminant,
making it a well-suited FP reduction module of a CAD system.

Index Terms—Computed tomography, convolutional neural
networks, false positive reduction, micronodules.

I. INTRODUCTION

OCCUPATIONAL pulmonary diseases are one of the most
common causes of lung impairments around the world.

Amongst all, silicosis is one of the prevalent and incurable
abnormalities following long and continuous exposure (more
than 5 years) to silica dust. In current radiological practices,
silicosis is typically characterized as widespread, well-defined
solid pulmonary micronodules< 4 mm [12], [17]. Existence of
silicosis is well known since ancient times; but it has in present
times grown to a global public health problem, reporting
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thousands of cases every year. Although, the prevalence has
decreased compared with past decades, it is still an obscured
and underreported disease [6]. Late stage silicosis can lead to
lung cancer [22], thus early detection is essential to control the
progression.

The current guideline of the International Labor Organi-
zation (ILO) recommends to employ chest radiography as the
primary diagnostic modality for the progression analysis of sil-
icosis. Since imaging and clinical history are critical diagnostic
resources for silicosis progression analysis, clinicians are, in
addition, required to perform a follow-up examination relating
the radiological manifestation and dust exposure history [10].
Radiographs can visualize micronodules in quite advanced
stages, but the micronodules are visible and detectable in
much earlier stages by computed tomography (CT) due to its
volumetric characterization and high sensitivity, thus enabling
the early manifestation of small nodules [16].

Aiming at early manifestation of pulmonary nodules, lung
cancer screening trials have already suggested CT as the
primary imaging modality. The outcome of the National Lung
Screening Trial (NLST) shows that CT is better and more
accurate than conventional radiographs, reporting a substantial
amount of micronodules in the reference repository, i.e.,
the Lung Image Database Consortium (LIDC) and Image
Database Resource Initiative (IDRI) [1]. Such high sensitivity,
however, realizes at a cost of enormous amounts of volumetric
data, resulting in increased reading efforts for radiologists dur-
ing routine practices and screening trials, which can typically
take up to 15 min/scan [16]. Manual detection and marking of
small lesions, specifically micronodules, is still challenging
due to absence of symptoms and high similarities to cross-
sectional vessels (as shown in Fig. 1). It is thus essential
to develop computer-assisted detection (CAD) schemes to
facilitate clinicians in this monotonous, error-prone and time-
consuming process.

II. BACKGROUND

CAD schemes typically consist of two modules i.e., candi-
date screening and false positive reduction. In the candidate
screening module, methods comprising of multiple operations
(e.g., intensity thresholding, contextual and morphological
operations) aim to detect a considerable amount of candidates
while rapidly screening through the CT scan, resulting in
high sensitivity at a high false positive (FP) rate. The FP
reduction module aims at reducing the high FP rate using a
set of discriminative features within an empirically optimized
classifier [7]. In such a sequential setting, methods in the
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Fig. 1: Seven axial CT slices illustrating the detection task for micronodules (< 4 mm). The micronodules are shown in the
yellow bounding boxes. The manual detection of micronodules for silicosis is indeed a tedious and challenging task.

candidate-screening module are often unspecific while the FP
reduction module indeed stands as the decisive module and
performs an in-depth assessment on candidates to provide the
final detection results.

The FP reduction module usually relies on an underlying
set of extracted intensity, contextual and texture features.
Generally, extraction of discriminative features is in high
correlation with the quality of the results from the candidate-
screening module (i.e., precise segmentation and enhancement
of potential candidates). In addition, such conventional or
handcrafted features also tend to suffer from limited rep-
resentation capability and are insufficient to deal with the
large contextual variation [4], which could negatively affect
the performance of the classifier. Lately, several methods
have reported promising results by employing deep learning
techniques, specifically, convolutional neural networks (CNNs)
in the FP reduction module. For instance, Roth et al. [19]
proposed a 2.5D CNN model for lymph node detection using
image patches from three axes-oriented 2D patches of a 3D
volume. Setio et al. [20] presented a fusion of several 2D multi-
view CNNs to learn the discriminative representations from
different axes-oriented 2D patches of nodules (3-30 mm) and
reported a state-of-the-art sensitivity of 90.1% at 4 FP/scan
on the benchmark LIDC/IDRI dataset. Although their method
demonstrated the effectiveness of the CNN, it was still limited
in the full utilization of the 3D spatial information. Lately,
Dou et al. [7] presented a multilevel contextual 3D CNN frame-
work by integrating three different sizes of receptive fields and
surpassed previous works employing handcrafted features or
2D CNN with a reported sensitivity of 90.7% at 4 FP/scan.

Despite the progress in the development of CAD schemes
for automatic detection of pulmonary nodules, very little work
has been reported for the automatic detection of micronodules
in CT scans. Initially, Brown et al. [2] presented a method for
the detection of micronodules using 15 CT scans containing a
total of 57 micronodules. They employed thresholding based
segmentation of lunch parenchyma and segmented micronod-
ule candidate by filtering on anatomical features (size, shape
and location). No further FP reduction step was applied,
resulting in a sensitivity of 70% with 15 FP/scan. Following
that, Zhao et al. [25], proposed a CAD scheme for the detection
of small nodules in low dose CT. They utilized a local density
maximum (LDM) method to identify the potential candidates
and incorporated 2D/3D features for further FP reduction. The
method was validated on 28 multi-slice CT scans including

165 nodules, resulting in an overall sensitivity of 66.7%
with 8.7 FPs/scan. Lately, Jacobs et al. [16] presented the first
automated CAD scheme for early detection of micronodules
by employing a lung segmentation, template matching, and
a k-nearest neighbor classifier. The system was validated on
54 low-dose CT scans from a controlled study group of a
private lung cancer screening trial and yielded a sensitivity
of 84% with an average of 8.4 FPs/scan.

Although these results are encouraging, it is still possible
to boost the performance by exploiting the discriminative
capabilities of deep neural networks for the automatic de-
tection of micronodules. This will have several advantages
over the conventional methods. For instance, these techniques
directly learn discriminative features and effectively leverage
the feature interaction and hierarchy within itself. In addition,
the performance of network-crafted features are improved in a
systematic fashion within the optimization of the same model.

A. Contributions

In this study, we present an automated CAD system for the
detection of micronodules in thoracic CT scans. The system is
built and evaluated on the LIDC/IDRI dataset. The major focus
of this work is to develop an efficient FP reduction module,
which can also be integrated with other candidate detection
methods to further improve the performance of CAD schemes
for micronodules in general. We demonstrate the potency of
encoding discriminative representations from the 3D CNN in
complicated anatomical surrounding environments to improve
the detection accuracy. In addition,this is, to the best of our
knowledge, first study to present an automated system for
the detection of micronodules evaluated on the LIDC/IDRI
dataset.

III. MATERIAL

We used CT scans from the LIDC/IDRI dataset to train and
validate our method. The LIDC/IDRI is the largest publicly ac-
cessible dataset of annotated thoracic CT scans [1]. It consists
of 1018 CT scans captured at seven institutions with heteroge-
neous image acquisition and reconstruction parameters. Four
expert radiologists annotated every case in a two-phase process
to maintain the inter-reader variability. During the first (blind)
annotation process, each radiologist independently annotated
the suspicious lesions as either non-nodule, nodule< 3 mm,
or nodule≥ 3 mm. In the second process, each radiologist
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Fig. 2: An overview of the proposed CAD system. The system is divided into a candidate-screening and a false positive
reduction module. Initial candidates are detected from the segmented lung ROIs using 2D and 3D features-based thresholding
operations. The false positive reduction module is implemented using a 3D CNN. The architecture of the proposed 3D CNN is
shown using an example of an extracted 3D scans of 20×20×7 voxels with the candidate in the center. The locally connected
convolutional layers encode highly discriminative representations for a given candidate. Once the discriminative representations
are computed, the candidates are connected to the classifier (softmax) via a fully-connected (FC) layer. The Softmax performs
classification by predicting the final probability for each candidate in the range of 0 to 1. The grey arrows represent the general
flow of the CAD.

compared their marking with the markings from the other
radiologists to conclude the final decision.

The annotations include the subjective ratings and outer
boundary markings of nodules≥ 3 mm and only the center-
of-mass for nodules< 3 mm due to their smaller size and
challenging interpretation. We selected CT scans with slice
thickness below 3 mm for training and validation purposes,
resulting in 598 CT scans. Thicker CT scans were rejected
due to their unsuitability in current clinical practices [24]. The
distribution of section thickness (z-) across the 598 CT scans
taken from the LIDC-IDRI dataset are shown in Fig. 3. The
pixel sizes range from 0.461 to 0.977 mm in the x- and y-
dimensions. We considered a volume of 34mm3 correspond-
ing to a sphere size of 4 mm in diameter as a size threshold
criterion and selected only those lesions that were agreed on
by at least two radiologists, resulting in 872 micronodules in
the reference set.

IV. METHOD

The outline of the automated CAD scheme for detection of
micronodules is shown in Fig. 2. It consists of a candidate-
screening module with lung segmentation and candidate de-
tection steps, and a FP reduction module with candidate ex-
traction and a 3D CNN to classify the micronodule candidates.

Fig. 3: Distribution analysis of slice thickness across the 598
CT scans taken from the LIDC/IDRI dataset.

A. Candidate screening module

1) Preprocessing: We resampled the CT scans to an
isotropic voxel size of 0.6mm3 using cubic interpolation to
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Fig. 4: Overview of the lung segmentation process based on the extraction of multiple masks.

deal with the inconsistencies across different CT scans in
the candidate-screening module. In addition, having isotropic
resolution is often beneficial for the implementation of image
analysis operations.

2) Lung Segmentation: The lung regions are extracted by
the method reported in [11], and the steps are illustrated
in Fig. 4. The method proceeds section-by-section and first
applies a threshold of -400 HU to create a binary mask for each
slice. Next, the binary mask is inverted and morphological
hole-filling and 2D connected component labeling is applied
to extract the largest component as the thorax region mask. An
intermediate mask consisting of two lung lobes and the trachea
is identified by the logical AND applied to the thorax region
mask and thorax region mask. Next, the trachea is removed
by identifying the two largest components (left and right
lungs) by applying morphological hole-filling, followed by 2D
connected component labeling and area based filtering. Note
that, if the area of the second largest component is less than
half of the area of the largest component, the single component
is considered as a lung. The two identified components are
later superimposed on two black background mask of the same
dimensions as the input image. To refine these lung mask, a
morphological closing using a disk shaped structuring element
with 1% (5 pixels) size of the original image is applied. Next,
the grayscale masks are extracted by superimposing the refined
masks on the input image. Finally, the lung ROI is obtained
by adding the individual grayscale masks.

3) Initial candidate detection: Localization of micronod-
ules is a challenging task due to their high similarity with
cross-sectioned vessels. We observed during multiple experi-
ments that a high threshold diminishes micronodules whereas
lower thresholds introduce a large number of false positives.
We hence, apply an empirically computed threshold of -
700 HU on the extracted lung regions, followed by a morpho-
logical erosion using a disk shaped structuring element of a 1-
pixel radius on the labeled objects. Subsequently, we employ a
sub-algorithm module consisting of 2D and 3D features-based
thresholding to identify the initial candidates. We utilized

area (R1) and eccentricity (R2) as 2D rules, resulting in high
sensitivity with a large number of false positives. Area is
calculated as the total number of pixels in the object region
times the pixel size inmm3, whereas eccentricity (ranges from
zero to 1) is defined as the ratio of the length of the major axis
and the length of the minor axis of the object. An object will be
considered for further processing if the following expression is
true: (R1> 15 && R1< 78) && R2> 0.70) where && corre-
sponds to the logical AND. This allows to distinguish between
a circular object and a sticklike object in the 2D slices. The 2D
features can possibly eliminate some of the connected voxels
at the beginning or end of a (true) 3D object (micronodule),
but they are still beneficial in order to exclude large and
sparsely connected 3D (false) objects. Prior to 3D features-
based thresholding, 3D connected component labelling using
26-point connectivity scheme is performed.

Next, we apply elongation and sphericity as 3D feature
thresholds on the candidates of size up to 34mm3 (equiv-
alent to a 4 mm diameter sphere) to further eliminate FPs.
Elongation (R3) is defined as the ratio of the minimum
dimension in the x, y, or z direction over the largest dimension
in any direction. Whenever a candidate satisfies the criterion
i.e., R3> 0.60, it is considered for the next rule. The sphericity
(R4) is defined as 6

√
πV A−3/2, where V and A are the

volume and area of an object. Only those that fulfills the
criterion i.e., R4> 0.40, will be considered as plausible small
candidates. These defined parameters and conditions ensure
that the considered objects have relatively compact shapes
in three dimensions (R3 and R4) and fall into the desired
size range. The specific selection of rules and their thresholds
were empirically determined in a pilot study (consisting of
25% of randomly chosen CT cases from the training set). The
results of the candidate detection sub-algorithms, applied on
an example slice, are shown in Fig. 5.

B. False positive reduction module
1) Candidate extraction: Small lesions in anisotropic CT

scans typically range over up to nine voxels (x, y) and four
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Fig. 5: Outputs of the features-based candidate detection module. The first row shows the flow on a 3D volume, wherein
candidates are marked in red and the true micronodule is placed in the blue bounding box. The second row shows the flow
in 2D, when applied on an example slice of the same volume wherein plausible candidates are marked in green and the true
micronodule is placed in the yellow bounding box. The border of all images are trimmed for illustration purposes.

slices [8] due to the lower sampling and, hence, resolution
in the z direction. We extracted scans of 20×20×7 voxels
from the original anisotropic CT scans, to include sufficient
contextual information, as input to the classifier. For example,
if a candidate is centered at V(x,y,z), we extract an input
volume v̂ = V(x−(m+1):x+m,y−(m+1):y+m,z−k:z+k), where V is
the CT volume, m=10, and k = 3.

2) 3D Convolutional Neural Network architecture: The
architecture of our proposed 3D CNN is as shown in the
bottom half of Fig. 2. The network architecture and its
hyper-parameters, such as number of layers, kernel size, and
learning rate, were determined during multiple experiments.
We cascade four convolutional blocks, one pooling layer,
one fully connected layer, and a softmax layer to encode
the discriminative volumetric representations (feature maps).
The convolutional block consists of one 3D convolution layer
followed by batch normalization as regularization and rectified
linear unit (ReLU) nonlinear activation. Each 3D convolutional
layer (consisting of multiple neuron activated feature maps)
encodes diverse representations by convolving 3D kernels over
the output of the preceding layer. All convolutional blocks
generate 64 feature maps using 3×3×3 convolutions, except
the third convolutional layer which generates 64 maps using
3×3×1 convolutions to simplify the feature concatenation
step. We used a maximum pooling layer with a pool size of
2×2×1 to downsample the output of the first convolutional
block. The maximum pooling layer considers the maximum
activation in non-overlapping cubic windows to encode the
translation and scale invariant representations. The fully-
connected (dense) layer, consisting of 200 neurons, is densely
connected to the flattened output from the preceding layer and
is followed by a softmax layer to yield the final probability
distribution predicted by the network.

Generally, variations in the parameters from each layer (i.e.,
internal covariate shift) slow down the network training due
to saturating nonlinearities and requires a low learning rate.
This can adversely affect the training of the CNN with a
risk of poor generalization performance [15]. Lately, batch
normalization (BN) has enabled the CNNs to learn faster with
better generalization of the network and overcome the issue of
internal covariate shift. While training with BN, each feature
map computed by a linear operation (here convolution) is
normalized separately over the mini-batch to have a mean (µ)
of zero and variance (σ2) of 1. For example, a layer with an
input X = (x1,.,.,xm), where m is the total number of feature
maps computed after applying a linear operation (here, 64
feature maps after the 1st convolutional layer). Each xn is
formed by all the corresponding feature maps of the candidates
in the mini-batch (here, 128). The BN for nth feature map can
be expressed as:

x̂n =
xn − µ(xn)√

σ2 [xn]
(1)

However, just simply normalizing the feature map can con-
strain the representation capabilities of the network. Therefore,
a pair of learning parameters (learned along with the original
model parameters) for scaling by γn and shift by βn is applied
to the normalized feature map x̂n as:

yn = γnx̂n + βn

We applied BN between each layer of 3D convolutions and
nonlinear activation to reduce the internal covariate shift and to
accelerate the network training. For an additional performance
gain, we employed a residual (skip) connection by adding the
output of the second convolution block to the input of the
fourth convolutional blocks. Residual connections have lately
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shown an improvement in the classification performance [13].
The skip connections are connections, which skip one or more
layers and perform identical mapping by summing the input
of one layer to the output of at least one skipped layer.
The residual mapping is based on the approximation of the
residual function instead of the original one directly from a
3D convolutional layer H (·), and is expressed as:

H(xout) = xin + F(xin, {Wk})

where, xin and xout are its input and output; F (·) is a 3D
residual mapping associated with a set of parameters {Wk}
where k=1, i.e., skipping 1 convolutional block, consisting
of a 3D convolutional layer, a BN layer and ReLU non-
linear activation layer. From a learned feature weights sharing
perspective, a residual connection enables feature reuse at no
extra parameters and computational complexity. In addition,
the gradient can easily flow through skip connections during
the backward pass of the training.

3) Candidate augmentation: To deal with the severe class
imbalance (here, 1 true candidate for every 447 false candi-
date), we performed augmentation of the existing true candi-
dates. The issue of training with unbalanced datasets is that the
learned representations can be skewed towards the most fre-
quent sample type, resulting in limited or biased capabilities of
the trained classifier. We used translation, flipping, and rotation
to perform the augmentation. First, we randomly translated the
centroid of the candidate by± 2 voxels, then flipped in left-
right and up-down directions, followed by rotation by [90◦,
180◦, 270◦], resulting in a set of altogether 0.25 million true
candidates. By this, we preserve the anatomical surrounding of
the candidates and allow the classifier to encode rotation and
translation invariant representations. Prior to the classification,
we clipped the intensities of each candidate to the interval (-
1000, 1000 HU) and normalized to the range (0, 1).

4) Training: On the given training dataset, RMSProp [23]
was used to efficiently optimize the weights of the 3D CNN.
RMSProp is an adaptive optimization algorithm, which nor-
malizes the gradients by utilizing the magnitude of recent
gradients. The weights were initialized using normalized ini-
tialization as proposed in [9] and updated in a mini-batch
scheme of 128 candidates (as described above). The biases
were initialized with zero and the learning rate was set to
0.001. A dropout [21] of 0.5 was implemented on the output
of the dense layer to avoid overfitting. Softmax loss (cross-
entropy error loss) was utilized to measure the error loss.
With a set of N training sample pairs {Xi,Yi}i=1...,N and Θ
parameters of the network, where Yi is the label corresponding
to the input sample Xi, the cross-entropy loss (L ) is computed
as:

L = − 1

N

N∑
i=1

Yi · log p(Yi|Xi;Θ)

The 3D CNN model was implemented using Tensorflow
backend in Keras [5] and trained for 50 epochs. The average
training time was approximately 350 s/epoch on a GPU
GeForce GTX 1080.

C. Evaluation strategy

To evaluate the candidate-screening module, we employed
a criterion that if a candidate lies within a three-pixel range
of the centerofmass of the respective micronodule from the
reference set then it is considered as a true positive candidate,
else a FP candidate.

To evaluate the FP reduction module, we used a five-
fold cross-validation scheme, and measured two performance
metrics: 1) Area under the ROC curve (AUC) and 2) Compe-
tition Performance Metric (CPM) [18]. The AUC shows the
performance of CNN on classifying candidates. The CPM
measures the average sensitivity at different operating points
of the free-response operating characteristic (FROC) curve [3]:
1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs/scan. The FROC curve plots
the Recall (Sensitivity) against the average number of FPs per
scan. It is more sensitive at detecting small differences between
performances when multiple lesions are present in a single
scan and has higher statistical discriminative power. We also
computed the 95% confidence interval using bootstrapping
with 1 000 bootstraps, as detailed in [8], to determine the upper
and lower confidences of the CAD system.

V. RESULT AND DISCUSSION

We first report on a systematic evaluation of crucial CNN ar-
chitecture parameters and then report the overall performance
of our proposed CAD system.

A. Analysis of network configuration

To investigate performance with regard to the network
configuration, we conducted a series of experiments to analyze
the impact of three crucial parameters: 1) Batch normalization
(BN) layer, 2) residual (skip) connection, and 3) size of recep-
tive field in the z- direction. The architecture and parameters
for analyzing the effect of the skip connection and receptive
field is shown in Table I.

TABLE I: Architecture and parameters of CNN configurations
investigated. Here, each convolution (C) layer employs 64
filters and M1, RC and FC1 layers stands for maxpooling,
residual connection and fully-connected, respectively.

3-D CNNResidual 3-D CNN 3-D CNNElongatedRF

Layer Kernel Parameters Kernel Parameters Kernel Parameters
C1 (3×3×3) 2K (3×3×3) 2K (5×5×5) 808
M1 (2×2×1) N/A (2×2×1) N/A (2×2×2) N/A
C2 (3×3×3) 110K (3×3×3) 110K (3×3×3) 110K
C3 (3×3×1) 37K (3×3×1) 37K (3×3×3) 110K
RC Yes N/A No N/A Yes N/A
C4 (3×3×3) 110K (3×3×3) 110K (3×3×3) 110K

FC1 200 320K 200 320K 250 1024K
Softmax 2 402 2 402 2 502

1) Effect of batch normalization layers: To evaluate the
impact of batch normalization (BN) layers on the network,
we repeated the experiments without incorporating it in the 3D
CNN with residual connection. Figure 6 shows the comparison
in terms of error loss and accuracy across the number of
epochs on the validation set. As observed, the BN improves
the overall performance of the classifier through faster con-
vergence. In addition to the speed improvements, it also
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enables the use of higher learning rates while overcoming
the problem of saturated nonlinearities. Overall, the batch
normalized model achieves higher validation accuracy, which
is due to its regularizing effect and more stable gradient
propagation. It is, thus, worthwhile to incorporate the BN
layers in the network since it prevents model divergence and
results in better generalization.

Fig. 6: Comparison of the mean accuracy and mean loss for the
networks with and without batch normalization (BN) layer on
the five-folds of cross-validation sets. The shaded area spans
the maximum and the minimum scores for each plot.

2) Effect of residual (skip) connections: The inclusion of
a residual (skip) connection for summing-up the learned rep-
resentations (features) is worthwhile to overcome the gradient
degradation and also to improve the overall performance of the
CAD system. To investigate this, we repeated the experiments
without incorporating a skip connection in the same network
architecture (the middle architecture in Table I compared to
the left architecture). Table II shows that including the skip
connection certainly alleviates the overall performance with
a CPM score of 0.727. We consent that the representations
of the 3D CNN employing skip connection exhibit better
discriminability in comparison to the one without it.

3) Size of receptive field: Inspired by the good perfor-
mance of the method [14] on pulmonary nodule detection,
we also conducted experiments using an elongated volume
(20×20×20) to train a 3D CNN. We intended to observe
the influence of the size of receptive field in the z- direction
on the detection performance of the classifier, since the input
images have different slice thicknesses. The receptive field of
a network is the size of the volume, which can influence the
prediction in a position. As can be noticed from Fig. 7, the
3D CNN with the elongated receptive field as input was not
able to yield a substantial performance in comparison to the
network with an input of (20×20×7). This is because the large
receptive field possesses more redundancy due to much larger
contextual surrounding in training, perhaps more generalized
to ambiguous contextual information, resulting in degraded
discrimination capabilities of the network. As reported in [8],

we also believe that the amount of surrounding contextual
information exploited by the network has a great impact on
the final predicted probabilities of the classifier. It is, thus,
crucial yet challenging to determine an optimal receptive field
for the detection of micronodules. Although we have shown
a preliminary comparison, determining an optimal receptive
field is still an interesting and open topic for future research.

B. Comparison of conventional and CNN features

For comparative purposes, we computed a set of 27 conven-
tional features, typically used for developing traditional pul-
monary CAD systems; to train a shallow three-layer artificial
neural networks (ANN) model. We computed 21 intensity and
6 morphological features from two spherical regions centered
on the candidate with a diameter of 4 mm and 10 mm, respec-
tively. The first region considers the intensity in a spherical
region around the segmented candidate whereas the second
region takes into consideration the intensity of a wider con-
textual surrounding of the lesions. The set of intensity features
consist of energy, entropy, skewness, variance, kurtosis, max-
imum, minimum, mean, standard deviation of both regions,
and the ratio of maximum, minimum and mean intensities of
the first region to the second region. The six morphological
features consist of the size dimensions (mm) of the segmented
candidates in the x, y, and z directions, volume, eccentricity,
and sphericity. All features were normalized to zero mean
and unit standard deviation. We used L2 regularization to
control the model overfitting. The weights were optimized
using scaled conjugate gradient descent (SGD) algorithm in
3 000 iterations. Softmax loss function (cross-entropy error
loss) was used to measure the loss.

Table II shows that the conventional features were not able
to yield a very high CPM compared to the CNNs features.
This is because the conventional features are highly dependent
on the results from the candidate-screening module. The
conventional features are typically affected by the similar
intensity distribution of nearby blood vessels and tissues in the
segmentation results, and thus resulting in less discriminating
power. In addition, task-specific feature engineering is a chal-
lenging and time-consuming task, and even optimized feature
sets often result in uncertainties when testing on independent
heterogeneous datasets. Considering the sensitivity to subtle
changes and complicated optimization process of traditional
feature extraction techniques, it is highly beneficial to employ
the 3-D CNNs to extract discriminating features. Although our
reported observations exhibit the potency of neuron-crafted
features over the conventional features, careful optimization
of CNNs is still a crucial requisite to obtain a substantial
performance throughput.

C. Quantitative and Qualitative Analysis

On the full dataset of 598 CT scans, the 2D rules of the
candidate-screening module detected 94.8% (827/872) micron-
odules at an average 670 FPs/scan. These false positives were
further reduced by the 3D rules, where after 91.6% (799/872)
of all micronodules at an average of 447 candidates/scan were
detected. For quantitative comparison, the FROC curves for
the different 3D CNN configurations tested on the dataset are



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX XXXX 8

TABLE II: Quantitative performance of the CAD system with different CNN configurations on the LIDC/IDRI dataset.
Sensitivities at 7 operative points along with CPM and AUC are also listed.

FPs/scan 1/8 1/4 1/2 1 2 4 8 CPM AUC(Az)
3-D CNNresidual 0.549 0.629 0.680 0.743 0.792 0.832 0.867 0.727 0.988

3-D CNN 0.505 0.571 0.642 0.707 0.772 0.793 0.845 0.691 0.957
3-D CNNElongated 0.280 0.401 0.485 0.593 0.682 0.760 0.814 0.573 0.943

Shallow NN 0.125 0.330 0.377 0.441 0.510 0.556 0.609 0.421 0.884

Fig. 7: FROC curve for the different CNN configurations
tested on the LIDC/DIRI dataset. Here, the RC (residual
connection) and Non-RC configurations are trained with an
input of 20×20×7 and the Elongated configuration is trained
with an input of 20×20×20 elongated receptive field. The
dashed curve shows the 95% bootstrap confidence interval.
The number of FPs are shown on a logarithmic scale.

shown in Fig. 7. The average number of FPs are shown on
a logarithmic scale. The figure also shows the average CPM
and the 95% bootstrap confidence interval.

For each network evaluated as the FP reduction module, the
sensitivities at seven operating points along with average CPM
and AUC are provided in Table II. Given a set of candidates for
the classification task, the 3D CNNs reach an AUC of 0.988.
By employing the best 3D CNN configuration, the proposed
method identifies 74.3% (648/872) and 86.7% (756/872) of the
micronodules at 1 FP/scan and 8 FPs/scan, respectively. Note
that the maximum sensitivity of the classifier is bounded by the
sensitivity of the initial candidate detection module, i.e., 91.6%
(799/872). This indicates that the classification stage correctly
classifies 81.1% (648/799) and 94.6% (756/799) of the initially
detected candidates at 1 and 8 FPs/scan, respectively.

Some examples of detected micronodules and false positives
are shown in Fig. 8. We observed that a substantial number
of false positives detected at 1 FP/scan are small vessels,
nodular- like structures, and scaring. All these structures
depict the same characteristics as micronodules and manual
interpretation of these small lesions can be exhaustive and
challenging. Unlike the radiologists detection of micronodules,
vessels that have nodule like appearances in the plane should
not mislead the computer interpretation. This is because the

detection algorithm can distinguish between a spherical small
lesion and a cylindrical vascular structure.

The FP reduction module was validated in a five-fold
cross validation scheme. However, the CT cases from
the LIDC/IDRI were still minimally used to optimize the
candidate-screening module. For the completeness of the pro-
posed system, further testing on an independent set is still
an essential requisite. Since our FP reduction module can be
employed independently to the proposed candidates-screening
module, the overall sensitivity can possibly be alleviated by
integrating with more efficient candidate-screening modules.
In addition, the practical usefulness and significance of our
method can be determined by performing an observer study
with and without it. Although the dedicated CAD systems
are developed with a primary aim of efficient diagnosis of
CT scans, the proposed detection system can alternatively be
employed as a second reader to further validate the primary
annotations.

Fig. 8: Examples of lesions detected by the CAD system. The
left set of lesions are micronodules detected at 1 FP/scan. The
right set shows the false positives candidates detected at 1
FP/scan.

VI. CONCLUSION

Using 598 annotated CT scans from the LIDC/IDRI, we
present an automated CAD system specifically designed to
detect pulmonary micronodules with a diameter of up to 4 mm.
The proposed system integrates a candidate-screening module



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX XXXX 9

and a FP reduction module. A high detection sensitivity of the
candidate-screening module is crucial to determine the upper-
bound quality of the CAD system. Aiming at high sensitivity,
we designed a simplified candidate-screening module which
detects most of the candidates but at a relatively high FP rate.
To further eliminate the large number of FPs, we presented a
novel 3D CNN framework as an efficient FP reduction module.
We showed that the proposed FP reduction module can detect
the vast majority of highly suspicious lesions in thoracic CT
scans at an expense of only small number of false positives.
Hence, we conclude that our proposal CAD system employing
3D CNN as a FP reduction module could be highly beneficial
for radiologists to identify small lesions and to overcome the
labor intensive process of interpretation. The promising results
shows that the proposed CAD system can be considered as an
assistive tool.
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Abstract. Recent advances in Computed Tomography Angiography pro-
vide high-resolution 3D images of the vessels. However, there is an in-
evitable requisite for automated and fast methods to process the in-
creased amount of generated data. In this work, we propose a fast method
for vascular skeleton extraction which can be combined with a segmenta-
tion algorithm to accelerate the vessel delineation. The algorithm detects
central voxels - nodes - of potential vessel regions in the orthogonal CT
slices and uses a convolutional neural network (CNN) to identify the
true vessel nodes. The nodes are gradually linked together to generate
an approximate vascular skeleton. The CNN classifier yields a precision
of 0.81 and recall of 0.83 for the medium size vessels and produces a
qualitatively evaluated enhanced representation of vascular skeletons.

Keywords: Vascular skeleton, CT angiography, Convolutional neural
networks, Classification

1 Introduction

Vascular diseases are among the leading causes of death around the world. To
diagnose a vascular disease, a detailed description of the state of each major
artery in the arterial tree is needed. Such a description can be obtained by non-
invasive vascular imaging techniques. The evolutionary success of the Computed
Tomography Angiography (CTA), in terms of resolution quality, has benefited
the clinicians with enhanced image details but at a cost of huge amount of
data. Processing of such amount of data is a monotonous, error-prone and time
consuming task, which certainly a↵ects the e�ciency of the clinicians. Hence,
automation of the vessels segmentation in CTA is highly desirable to facilitate
a quick and accurate diagnosis.
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The tubular shape of the blood vessels o↵ers a great possibility to develop a
simple and fast method for vessel segmentation. For instance, the vascular skele-
ton can first be extracted and used as an initialization step for the vessel seg-
mentation in subsequent stages. A method for fast vascular skeleton extraction
was presented in our previous work [1]. In that method, a set of knowledge-based
filters is applied to the centeral voxels of potential vessels to distinguish between
voxels located inside and outside of the vessel. Voxels that passed through the fil-
ters are then connected to generate an approximate vascular skeleton. However,
the set of knowledge-based filters also introduces a large number of false positive
(FP) nodes. The FPs are further eliminated in the final step of the algorithm
- the anatomy-based analysis, which removes most of the spurious branches by
examining the shape of their connection.

In this paper, we propose an alternative method for vascular skeleton extrac-
tion, where we replace the knowledge-based filters with an e�cient convolutional
neural networks (CNN) classifier. We evaluate the performance of the CNN clas-
sifier using the CTA of the lower limbs in order to compare it with the results
obtained by the knowledge-based filters from our previous work. A visual, quali-
tative, comparison of the resulting skeletons obtained by the two versions of the
algorithm is also included.

2 Related work

Due to the large impact of vascular diseases on public health, many scientists
are dedicated to research regarding vascular segmentation or vascular centerline
extraction. A detailed overview of other vascular segmentation techniques was
presented in papers [2, 3]. Here, we briefly review the work that is most relevant
for our approach.

Charbonnier et al. [4] recently proposed a method which uses a CNN classifier
to improve an airway tree segmentation. In this approach, an initial airway
segmentation was provided to classify short airway branch segments into airway
or leakage. Each airway candidate was represented by a set of three 2D cross-
sectional patches, i.e, the beginning, middle and end of the segment. This set of
patches was used as an input for a CNN classifier. Utilizing the CNN classifier
significantly improved the quality of a given leaky airway segmentation.

Another method, proposed by Merkow et al. [5] utilized a 3D-CNN to predict
the location of the boundary in volumetric data. They demonstrated the per-
formance of their method for the detection of the vascular boundary, but, their
approach is not limited to this application. CNN for vessel detection in volu-
metric images was recently utilized by Gülsün et al. [6]. In their work the blood
vessel centerlines were first automatically extracted and then a 1D CNN classi-
fier was used for removing extraneous paths from the detected centerlines. Our
proposed method, in comparison, uses the 2D CNN classifier for cross-sectional
classification.
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3 Dataset

In this work, we utilized 25 CTA volumes of the lower limbs, taken from the
clinical routine, to train and validate our proposed method. Initially, four vol-
umes were given to an experienced radiologist for ground-truth labeling. The
remaining 21 CTA volumes were kept for independent validation of the method.
The radiologist utilized a semi-automatic segmentation tool based on the active
contour method, provided by ITK-SNAP [7], to perform the vascular segmenta-
tion. The four labeled volumes were used for the detection of the initial nodes
and in total provided a set of 352,523 nodes of multi-size vessels and non-vessels.

4 Proposed method

The proposed method is based on the observation that the vessels, being tubular
structures, often appear on orthogonal CT slices as bright elliptical-like regions.
The method detects voxels located in the middle of such 2D regions, referred
to as vessel nodes, and extracts a 2D patch around each node. A CNN classi-
fier is accommodated to classify the patches into two categories, i.e., vessel or
non-vessel nodes. Vessel nodes are connected with straight lines, referred to as
edges, which results in tree-graph structures. Given a 3D CTA scan of the lower
limbs, the method returns one or more tree-graphs representing an approximate
skeleton of the vasculature of the lower limbs.

The proposed method for vascular skeleton extraction is a modified version
of our previous algorithm [1]. It comprises of four steps that are shown in Fig. 1.
This work focuses on improving the nodes classification step. To do so, we replace
the previously reported method based on a set of knowledge-based filters with a
CNN classifier. Other steps remain the same.

4.1 Node candidates detection

A prerequisite for detecting the bright elliptical regions with the vessel node
candidates is the knowledge of the intensity range that corresponds to blood

Fig. 1: The pipeline of the proposed method (green, top) produces the final vas-
cular skeleton in one algorithm pass compared to the pipeline of the previous
method [1] (blue, bottom) which detect skeletons of larger arteries in the first
iteration and adds the skeletons of smaller arteries in the second iteration.
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in the input CTA volume. Blood becomes visible on the CTA scan due to the
injected contrast medium, which increases its intensity above the intensity of
the surrounding muscle tissue. Due to variations in hemodynamics and timing
between injection and image acquisition, the blood intensity can di↵er between
di↵erent patients and di↵erent scans. In [1], we proposed an algorithm based on
fitting a sum of Gaussian curves to the image histogram. For each patient input
volume, the fitted Gaussian curves automatically define the intensity ranges for
three types of tissues: fat, muscle and blood. The intensity range [✓b

low

, ✓b
high

] of
the blood in each volume is needed for the node candidates detection step and
is defined by using this algorithm.

To detect the node candidates, we scan the input volume through all axis
oriented planes (axial, sagittal, coronal). Any of the scanned voxels that has an
intensity within the range of blood vessel intensities [✓b

low

, ✓b
high

] and its position
is central within the area of similar intensities, is considered as a node candidate.
The central position of the voxel is verified by casting four rays into four main
directions starting from the voxel position outwards and confirming that the pair
of opposite-pointing rays traversed the same distance until they reached three
consecutive voxels with intensities outside of the [✓b

low

, ✓b
high

] range. Casting four
rays is a su�cient and fast way to verify the central position of the potential
nodes. However, not all detected areas are true vessel cross-sections. Due to the
partial volume e↵ect, a bone surface, noise, metallic implants or other imaging
artifacts, may have intensities similar to blood. Therefore, the detected nodes
need to be further classified as either vessel or non-vessel nodes.

4.2 Node candidates classification using CNN

Patch extraction For each node candidate detected in the orthogonal slice,
we calculated the biggest diameter and added 2 extra pixels around it to ensure
the inclusion of the boundary information. We chose a patch size of 31⇥31 pixels
as an input for the CNN classifier. The patch size of 31⇥31 pixels was chosen
to cover su�cient contextual information of the candidates. At the same time,
it provides a good trade-o↵ between a detailed view of the smaller vessels and
the possibility to include intermediate and large vessels. The patch pixel values
were kept in Hounsfield units, in order not to lose the fine-grained details of the
candidates. Some examples of extracted patches are shown in Fig. 2.

Fig. 2: Some examples of extracted patches of multi-size candidates. The first
and the second row shows the patches of vessels and non-vessels, respectively,
after intensity normalization.
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From all the initially detected candidates, we considered only those having
a diameter between 6-27 pixels (ca. 4-20 mm) as a reference set for training the
classifier. This resulted in a set of 138,302 potential candidates (24,625 vascular
nodes and 113,677 non-vascular nodes). It is not meaningful to train a CNN
model on candidates with a diameter smaller than 6 pixels due to insu�cient
spatial information, leading to inadequate training. Additionally, it is di�cult to
ensure that the ground truth segmentation of tiny vessels is absolutely correct as
it is very tedious if at all possible, to detect all vessels of such small size in lower
limb CTA. Candidates having a diameter bigger than 27 pixels were excluded
from the reference training set since they were bigger than the chosen patch
size (31⇥ 31 pixels; including the margin of 2 pixels around the candidate) and
hence needed to be resampled to this size. However, both, smaller and larger
candidates than the reference candidates, were utilized for testing purposes.

Data partitioning and augmentation We randomly split the reference set
into two subsets. One subset was utilized for CNN model development (refer as
the model-development subset) and the second one was used for its independent
evaluation (refer as the model-evaluation subset). The model-development subset
consists of 20,000 samples of each class, whereas the model-evaluation subset was
kept imbalanced and contained 4,625 vessels and 93,677 non-vessels samples. The
reason for such an imbalanced setting is to evaluate the trained model as per
the real clinical scenario, where the frequency of false positives (FP) samples
is much higher than the true positives (TP) samples. The model-development
subset was again randomly split into training, validation, and testing subsets.
Training and validation sets are utilized for cross-validation scheme whereas the
test set is utilized for the final model selection. The training set contained 12,000
samples of each class (true vessel nodes and false vessel nodes). The validation
and the test sets, both consisted of 4,000 samples of each class.
Generally, the vessels have large variability in terms of contextual surrounding,
shape, size, and orientation. Lets assume that such variability can be modeled to
a CNN by data-driven approaches. In such way, the classifier (CNN) can learn
the orientation-invariant features. However, the number of vessel candidates are
usually fewer than the number of non-vessel candidates, which can negatively
a↵ect the training of the classifier.We applied several transformations to gen-
erate a moderate number of new yet correlated training candidates. Each class
of candidates was augmented using the image transformations: horizontal and
vertical flipping, translation on x and y axes, and six random angular rotations
(0-180�). The translation was limited in moving the candidate position 1 pixel
from the center, in order to keep the candidate properly in the patch. This aug-
mentation scheme resulted in 10 augmented variations for each candidate. In
such way, classifier will learn the orientation-invariant features. This could be
important because the candidates identified by the initial stage are not always
centered at the local anatomical structures. Each subset (training and validation)
is augmented separately to ensure their independency from each other.

False positive Reduction: CNN configuration The false positive reduction
stage is constructed by utilizing a CNN classifier. The architectural design of
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our CNN classifier is empirically determined by modifying the network itself.
We modified several parameters (i.e. number of layers, kernel size, and types
of pooling layer) in a structured way to obtain a better validation accuracy.
Amongst all, we further analyzed the usability of two parameters, namely (1)
pooling layer and (2) batch normalization (BN). To do so, we developed two
models: (1) CNN model with pooling layers and (2) fully-connected convolutional
network (FC-CNN) model without pooling layers.
First, we developed a CNN classifier consisting of four convolutional layers, with
a max-pooling layer after every second convolution layer. The first convolutional
layer consists of 32 kernels of size 3⇥3 and padded with a two pixels thick frame
of zeros. This is done to keep the spatial sizes of the patches same after the first
convolutional layer. The second, third and the last convolutional layers consist of
32, 64 and 64 kernels of size 3⇥3, respectively. The max-pooling layer reduces the
size of feature maps by selecting the maximum feature response in overlapping or
non-overlapping windows of size 2⇥2 (stride of 2). The illustration of the CNN
model is shown in Fig. 3.

In the FC-CNN model, the pooling layers (maxpooling) were completely
removed from the network which resulted in a network of only four convolutional
layers. As reported in [12], the FC-CNN could result in an improved performance
if the pooling layers are replaced with convolutional layers. In such setting, the
network does not lose the spatial representation of the patch. However, such
a network can be computationally expensive due to an increased number of
network parameters. On the other hand, the feature-wise ordering of the pooling
layers can lead to fast optimization, as well as further improve the translation
invariance produced by the convolutional layers [12].

In both architectures, we also implemented the recently published Batch
Normalization (BN) method [13], after the non-linear (activation function) layers
of the network. It normalizes the activations of a feature map for each mini-
batch at every optimization step and improves the overall network performance.
For the activation function, we utilized the rectified linear units (ReLU) [14]
after every convolutional and dense layer. In both networks, the last layer is
followed by a dense layer consisting of 512 neurons, which is further connected
to the Softmax layer for the final classification into vessels and non-vessels. A
comparative evaluation of both models is reported in the result section.

Training Before feeding the training data to the network, we normalize the
intensity for each patch by subtracting the mean and dividing by the standard
deviation. In such a way, the uneven distribution of intensities is scaled into
a normalized intensity distribution and lead to a better convergence. The same
procedure was applied during testing. The classifier was trained in a 5-fold cross-
validation scheme. The candidates were randomly split into five blocks to ensure
that each set was utilized as validation set once in each fold.

The RMSProp [8] is used to e�ciently optimize the weights of the CNN.
It normalizes the gradients by utilizing the magnitude of recent gradients. The
weights are initialized as proposed in [9] and updated in a mini-batch scheme
of 128 candidates at a rate of 0.001. The biases were initialized with zero. A
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dropout [10] of 0.25 is implemented on the output of each pooling layer and a
dropout of 0.5 is implemented on the output of the dense layer. Softmax loss
is utilized to predict the final output. The CNN model is implemented using
Theano backend in Keras [11]. The training continued for 20 epochs with an
average training time of 103 seconds/epoch on a GPU GeForce GTX 680.

4.3 Nodes connection

The nodes that were classified by the CNN classifier as true vessel nodes are,
in this step, linked together by using simple connection rules. First, each node
is considered a separate graph. A link between two nodes is established, if the
two nodes are close neighbors, all voxels on the line connecting these two nodes
have an intensity within the range [✓b

low

, ✓b
high

] and these two nodes were not yet
connected via other nodes. After all possible connections between the nodes have
been created the preliminary vascular tree-graph structure is obtained which
needs to be cleaned from possible spurious branches.

4.4 Anatomy-based analysis

The anatomy-based analysis step cleans the preliminary tree-graph structure
from spurious non-vessel graphs or graph segments. The cleaning is based on
the observation that vessel nodes are connected into straight or slightly corru-
gated branches whereas non-vessel nodes, often arising on the bone surface, are
linked into unorganized and zigzag branches. Calculating the average angle be-
tween the line segments per branch allows distinguishing between true and false
graph segments depending on the average angle being greater than 135� or not,
respectively. The anatomy-based analysis step also closes small gaps between
two segments and removes very short graphs (for details see [1]). Finally, it re-
turns clean tree-graph structure that corresponds to the approximate vascular
skeleton.

5 Evaluation and Results

We compare the performance of two architectures, CNN and FC-CNN. Subse-
quently, the performance of the whole algorithm for vascular skeleton extraction,

Fig. 3: An overview of the proposed CNN classifier, showing the output of each
convolution filter applied to an example patch of a vessel. Here, the greyscale
intensities are shown in color for suitable visualization.
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Fig. 4: Performance curves of di↵erent configurations at di↵erent number of
epochs: (a) Test accuracy, (b) Training loss of both networks with and with-
out batch normalization (BN) method.

using the proposed method is qualitatively evaluated and compared to the pre-
vious skeleton extraction method [1].

5.1 CNN versus FC-CNN

A comparative performance of both networks with and without BN is shown
in the Fig. 4(a)-(b). The left figure shows the test accuracy of each configura-
tion at di↵erent number of epochs on the test subset of the model development
set (consisting 4000 samples of each class). It is noticeable that both networks
with BN yield a better accuracy in comparison to the networks without BN.
Interestingly, in the case of non-batch normalization configuration, the FC-CNN
classifier also achieves a higher accuracy than the CNN classifier. Both networks
trained with BN resulted in a better training loss. These results are in line with
similar findings on the original BN work [13]. Comparatively, the CNN, trained
with BN, resulted in better accuracy as the FC-CNN classifier (validated by
paired t-test) with less number of parameters. The FC-CNN and CNN classi-
fiers consist of total ca. 30.1 million and 1.2 million parameters, respectively.
Therefore, we decided to utilized the CNN classifier for our application.

5.2 CNN and knowledge-based filters evaluation

Knowledge-based filters The knowledge-based filters, proposed in [1] are
simple filters derived from the characteristic appearance of vessels. They quickly
remove the node candidates that do not fulfill the vessel characteristics. These fil-
ters examine: (1) if the artery lumen is homogeneously filled with blood, (2) if the
inside of the artery is brighter than the outside, (3) if the vascular cross-section
has regular elliptical or circular shape and (4) if the close artery neighborhood
contain only intensities corresponding to fat, muscles or blood. The reason for
the last filter is that a vessel can be adjacent to either fat, muscles or bones, but
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the partial volume e↵ect will cause the surface of the bone to have decreased
intensities that overlap with blood intensities.

Quantitative evaluation Quantitative evaluation was performed on the model-
evaluation subset (4,625 vessels and 93,677 non-vessels) of patches not used in the
model development process. The performance of the proposed CNN model and
knowledge-based filters was evaluated on this subset in terms of Precision, Recall,
and F-score. Additionally, for the CNN model, the Area under the Precision-

Recall curve (AUC) is also presented in Fig. 5. The evaluation was performed
separately for small vessels (< 4 mm), medium-sized vessels (4-20 mm) and large
vessels (> 20 mm). This division is motivated by the fact that the CNN classifier
was trained for the middle-sized vessels, however, it was used to classify small
and large vessel candidates as well. Table 1 shows the resulting values for each
evaluation measure per classifier and per candidate group.

Qualitative evaluation Qualitative evaluation was performed by visual com-
parison of the resulting skeletons extracted from 21 CTA volumes of lower limbs
by using two pipelines, the proposed algorithm pipeline and the pipeline pre-
sented in our previous work [1]. The schematic illustration of the pipelines in
Fig. 1, shows that the previous filter-based algorithm needs to run in two iter-
ations. The skeleton of large vessels, extracted in the first iteration serves as a
basis for distinguishing between true and spurious graphs of small arteries de-
tected in the second iteration. Small artery candidates are easier to mistake for
noise or candidates detected on the bone surface and a useful indication about
their true belongingness is the connection to the graph established in the first it-
eration. Since the proposed CNN classifier improves the false positive candidate

Fig. 5: Precision-Recall curves showing
the performance of CNN classifier for
the test subset of di↵erent sizes of can-
didates.

Set Prec. Rec. F-score AUC

small 0.66 0.71 0.65 0.69

C
N
N

medium 0.81 0.83 0.82 0.90

large 0.70 0.75 0.72 0.86

small 0.29 0.78 0.42 –

fi
lt
er
s

medium 0.28 0.89 0.43 –

large 0.06 0.58 0.11 –

Table 1: Comparative evaluation of
CNN classifier and knowledge-based fil-
ters.
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(a) Volume A (b) Volume B

Fig. 6: Results after each algorithm step for 2 volumes; result after the 1st step
is the same for both methods.

rate, having two iterations is not relevant anymore and it is possible to simplify
the pipeline while still obtaining better results.

It is crucial to determine a suitable threshold level for the decision boundary
of the CNN classifier. We experimented with several threshold values ranging
from 0.9 (corresponds to high precision) to 0.45 (corresponds to high recall). We
observed that the skeleton, resulting from the higher thresholds, rarely contains
the spurious branches and does not need the further anatomy-based analysis
step. However, it also reduces the number of true vessel candidates and leads
to fewer vessel branches. On the other hand, a lower threshold value detects a
larger number of false positives and many spurious branches. This resembles the
behavior of the simple knowledge-based filters. After this empirical analysis, we
finally decided to select 0.65 as the suitable threshold level for our application.
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From 21 resulting skeletons, we selected two representative results that demon-
strate the merits and demerits of both methods. Figure 6 shows a comparison of
the final skeletons along with the partial results obtained after each algorithm
step by both algorithms. The results, after the second step, confirmed that the
CNN classifier improves the FP rate and keeps a fewer number of candidates
from which the majority are true vessel candidates. The final results of volume
A (Fig. 6a) show that the proposed method detects more vascular branches, and
compared to the previous method does not contain spurious graph segments in
the pelvis region. On the other hand, we also observed some cases where the CNN
classifier discarded a larger amount of true vessel candidates, which led to miss-
ing a complete vessel branch. The final results of volume B depict an example
of such a case. After an in-depth analysis of these vessels, we noticed that these
vessels were either very small or they were very diseased. The CNN classifier
was not trained for classifying such small vessels, which explains the lower per-
formance in case of small vessels. In a case of diseased vessels, there exist many
di↵erent variations between the appearance of diseased vessels depending on the
type and the seriousness of the disease. Our dataset is taken from a clinical rou-
tine and contains large variations between the patient material. Therefore, using
patches of four volumes in the training process was not su�cient enough to cover
all the possible clinical variability. In the case of volume B, the knowledge-based
filters were more inclusive in keeping true and false candidates, which resulted
in a better skeleton compared to the proposed method.

Computation time The computation time needed to process a set of 130,000
patches which is approximately the average number of patches per volume in
our dataset, was measured for both classifiers. The knowledge-based filters took
ca. 22 seconds to process the patches, whereas the CNN classifier took ca. 30
seconds.

6 Discussion and Conclusions

Our main goal to reduce the false positive rate by using a CNN classifier was
successfully fulfilled. Both the quantitative and qualitative evaluations support
this. In comparison to our previous work, the detection of vessel nodes can now be
processed in a single iteration, resulting in a simplified methodological pipeline.

Interestingly, in some cases, our previously proposed simple knowledge-based
filters in combination with the anatomy-based analysis step, also performed well
in comparison to the proposed method. One reason for the occasional lower per-
formance of the proposed method could be the high variance in the diseased
arterial vessels of each patient. To improve on this, the network could be re-
modeled with a bigger training set of vessels with a wider variation of arterial
diseases. To do so, a reliable and consistent labeling of ground truth segmenta-
tion is desired, which is a tedious and di�cult task; especially for the small and
tiny vessels.

In order to further improve the performance, multiple patches from the dif-
ferent axes oriented planes can be utilized to remodeled the CNN model. Alter-
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natively, the 3D clusters of the candidates can be extracted to train a 3D CNN
model for classification.
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