
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Eslam El-Sherbieny 166778IVSM/B66096

TTU SELF DRIVING CAR MASTER

CONTROLLER EMBEDED SOFTWARE

TESTING

Master’s thesis

Supervisor: PhD Mairo Leier

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Eslam El-Sherbieny 166778IVSM/B66096

TTÜ ISESÕITVA AUTO

JUHTKONTROLLERI TARKVARA

TESTIMINE

Magistritöö

Juhendaja: PhD Mairo Leier

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Eslam El-Sherbieny

07.05.2018

4

Abstract

The objective of this thesis is to research the available embedded software testing

frameworks, select the most suitable one based on the requirements and cover the existing

functionality with tests.

The framework used is developed by Throwtheswitch community [1]. It is an open source

unit testing framework following the Junit testing techniques.

Tests results shows the advantage of integrating such a lightweight module into the

project and taking advantage of its rich set of assertions, with almost no intrusion on the

original code and negligible performance overhead.

This thesis is written in English and is 48 pages long, including 6 chapters, 39 figures and

3 tables.

5

List of abbreviations and terms

TTU

PC

I/O

Tallinn Technical University

Personal Computer

Input/Output

GPS

LIDAR

RTOS

CAN

IDE

USART

ISR

USB

Global Positioning System

Light Detection and Ranging

Real Time Operating System

Controller Area Network

Integrated Development Environment

Universal Synchronous and Asynchronous Receiver-

Transmitter

Interrupt Service Routine

Universal Serial Bus

6

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

List of abbreviations and terms .. 5

Table of contents .. 6

List of figures ... 8

List of tables ... 10

1 Introduction ... 11

1.1 Software Testing History .. 12

1.2 Background ... 12

 Self-Driving Car Project .. 13

 Functional Testing ... 15

 Non-Functional Testing ... 15

 Software Types .. 16

2 Research... 18

2.1 System Requirements ... 18

2.2 Testing Framework Selection Criteria .. 19

2.3 Integration Trials .. 19

3 Integration .. 22

3.1 Project Structure ... 22

3.2 Tests Structure .. 23

 Test Runner ... 24

 Test Task ... 24

 Test Data Structure .. 25

 Test Suites ... 25

3.3 Hardware .. 25

 The Board .. 25

 Debug Logging Connection .. 26

3.4 Software Configuration .. 27

3.5 Implementation ... 27

7

4 Testing ... 29

4.1 Initialization Functions Tests.. 29

4.2 Function Arguments Mock Testing .. 31

4.3 Interrupt Service Routine Functions Tests ... 33

4.4 Inapplicable Functions .. 35

5 Results and Analysis .. 37

5.1 Tests Results ... 38

 Main Module ... 38

 App_Ethernet Module ... 38

 CAN Module ... 39

 ROS Module .. 39

 Ethernetif Module .. 40

 RTC Module .. 40

 Normal Tests Summary ... 40

 Interrupt Service Routine Tests ... 40

5.2 Detected bugs and Possible Code Improvements ... 41

 Failed Tests .. 41

5.3 Inapplicable Tests Alternatives .. 44

6 Summary .. 45

References .. 47

8

List of figures

Figure 1 The Self-driving car model [4] ... 13

Figure 2 Predefined road [4] ... 14

Figure 3 Vehicle hardware diagram [4] .. 14

Figure 4 Testing Frameworks Requirements ... 19

Figure 5 Software Structure .. 22

Figure 6 STM32F767 Board [15] ... 26

Figure 7 Board diagram (back-side) with debug connections [17] 27

Figure 8 Unit Testing Module Main Function ... 29

Figure 9 Initialization Function with global access [18] .. 30

Figure 10 Initialization Function Tests ... 30

Figure 11 Initialization Function without global access [18] ... 31

Figure 12 Initialization of the function in test suite.. 31

Figure 13 Initialization Function Test .. 31

Figure 14 Function with Arguments 1 [18] .. 32

Figure 15 Function with Arguments Test 1 .. 32

Figure 16 Function with Arguments 2 [18] .. 33

Figure 17 Function with Arguments test 2 ... 33

Figure 18 ISR Function example [18] .. 34

Figure 19 ISR Function Task.. 35

Figure 20 ISR Function Test .. 35

Figure 21 Inapplicable Function 1 [18] .. 36

Figure 22 Inapplicable Function 1 Test .. 36

Figure 23 Inapplicable Function 2 [18] .. 36

Figure 24 Requirements/Tests register ... 38

Figure 25 Test Report: Main Module ... 38

Figure 26 Test Report: App_Ethernet Module ... 38

Figure 27 Test Report: CAN Module ... 39

Figure 28 Test Report: ROS Module .. 40

Figure 29 Test Report: Ethernetif Module ... 40

9

Figure 30 Test Report: RTC Module .. 40

Figure 31 Test Report: Normal Tests Summary ... 40

Figure 32 Test Report: ISR Functions Tests .. 41

Figure 33 User Notification Function [18] ... 41

Figure 34 Function called by User Notification Function [18] 42

Figure 35 Failed Test of LD1 Variable with GPIO_PIN_SET variation 42

Figure 36 Failed Test of LD3 with GPIO_PIN_RESET .. 42

Figure 37 Store_Miev_Data Function(part) [18] ... 43

Figure 38 Failed Test of iMievData.update_status and STATE_UPDATING 43

Figure 39 Failed Test of iMievTime.update_status and STATE_UPDATE 44

10

List of tables

Table 1 Testing Methodology Comparison .. 16

Table 2 Board to USART converter pinout .. 26

Table 3 Testing Coverage ... 37

11

1 Introduction

Testing is a primary factor in any project, through it, a user can check and refactor any

part of the project to correct and enhance it. With testing it can be guaranteed that the

final product will work as it was intended, providing a secure, safe and efficient result to

the end-user.

Whether the project is in the field of engineering, medical, physics, etc. Testing is a

crucial milestone that has to be thoroughly applied.

Embedded software engineering is not different when it comes to the importance of

testing, the development of efficient, functional and error free software is something of a

great importance in the embedded field. This is due to the critical nature of almost all the

applications of embedded systems, failure means some problem is imminent, a fatal one.

In this thesis I am developing the embedded software tests of Tallinn Technical University

autonomous vehicle project. There are a lot of concepts and proven methodologies out

there that will be discussed in the next section, which defines how I will approach the

testing phase of the project.

I focus on developing a testing functionality to perform low level master controller

software tests. The master controller, responsible for command and communication

between various embedded devices which are in turn responsible for controlling the

vehicle’s inputs (steering, velocity, brakes, etc.). Testing starts with individual testing of

each code module, and gradually it should integrate testing suites to cover a broader cycle

of the project, eventually it should cover the whole system.

This thesis can be divided into three chapters; In the first chapter, I look for suitable

testing frameworks that would suit the software needs. The second chapter is dedicated

to the installation trials of the selected frameworks into the existing software code and the

validation of how well it works and how much interference it has on the processing of the

existing system. In the last chapter, covers the testing phase where I create a testing suite

for every testable module.

12

1.1 Software Testing History

In the early days of computing, back when cross-platform programming languages like C

were not yet invented and programs depended heavily on assembly code that worked on

only one specific type of computer chip, software was rarely designed to run in multiple

environments. That made configuration testing unnecessary, since there were fewer

configurations to test for [1].

Users would have almost identical computers to the developers, otherwise the software

would not work. By the 1980s when IBM introduced the first PC as a commercial product,

the industry evolved dramatically, by the 1990’s many PC variations were on the market

and high demand for cross-platform software pushed the programmers to develop their

products to be compatible with any type of computer that was advertised as PC-

compatible. Another change was the increasing demand for more frequent software

releases, which was derived by the commercialization of PCs and the growing importance

of the internet [1].

Releasing software that worked on any PC and the expectation that these software will

frequently be updated to improved versions with new features in a fast pace raised the

stakes for software testing. It required careful configuration and testing on many possible

environment variables. [1]

1.2 Background

Testing is the process which focuses on finding defects in a system, testing is a crucial

building block in system development; it works towards improving the system’s quality,

and avoid risks of software failures after deployment to the commercial market. [2].

In software development, we gather requirements, create high level designs, low level

design, develop the code, test it, refactor, test again, and refactor until we are satisfied,

then we integrate and start a final testing round before deployment. Since most projects

run late, testing sometimes is sacrificed partially to mitigate the delays that happened

through the project cycle, in order to deliver on time. This is a bad habit that many

companies are avoiding these days [3].

13

Best practice development includes frequent code checks, but these only find typically

70% of the system’s bugs, so a thorough testing plan is essential to every software

product. In all other disciplines of engineering, testing is considered fundamental,

whether it's architectural, mechanical, etc. [3].

Embedded systems software testing shares much in common with application software

testing. However, some important differences exist between application testing and

embedded systems testing. [3]

 Self-Driving Car Project

The software to be tested is being developed in the Technical University of Tallinn,

Estonia. Its aim is to produce a system for a self-steered vehicle which would allow the

vehicle to safely pass through the predetermined route traffic. The vehicle has predefined

parameters of speed, dimensions, engine power, etc [4].

Figure 1 The Self-driving car model [4]

The vehicle’s control system would follow a set of predefined Global Positioning System

(GPS) coordinates along the TUT campus available for public use, it's would respect the

barriers (parked cars, pedestrians, etc.) and passes them safely [4].

14

Figure 2 Predefined road [4]

The self-driving project consist of many parts that works together to achieve the main

goal of the project:

 Master controller (where this thesis tests are applied to)

 Drive controller (slave controller responsible for the car actions)

 Body controller

 Several sensors, communication devices, drivers

 Car actuators, battery, wireless network module (which connects to a data center

through 5G)

 PC Autoware connected to the master controller and to other sensors through

Ethernet.

Figure 3 Vehicle hardware diagram [4]

Given the sensitivity and criticality of the project’s application, it was crucial to apply

testing to the code being developed for this project. It was important to guarantee that the

15

system is behaving as per design and within the safety regulations required in the

automotive industry.

 Functional Testing

It is the testing approach that focuses on the software’s validity with respect to the

requirements. Checking that each function and module operates as per the intended design

of the program. It consists of three different variations, black-box testing, white-box

testing and grey-box testing [3].

 Black-box testing focuses on testing the functional behaviour of the code,

without knowing the actual code. It depends on testing the Input/Output (I/O) of

the function, program and/or the device.

 White-box testing focuses on testing the reliability and correctness of the code

itself, checking every functions logic, execution flow, statement coverage,

decision coverage if conditional logic is found.

 Grey-box testing is a mix of both of the above types, it gives the tester some space

to intrude the function’s logic but not stressing too much on his knowledge of the

code.

Functional testing follows the requirements and specifications provided by the

management which were used by the design and implementation teams when developing

the program.

 Non-Functional Testing

This type of testing focuses on the performance, usability and reliability of the program

among other things. It tests the non-functional requirements compiled by the management

of the project, which are not addressed in the functional testing.

 Stress tests: putting the system limits to the test and checking the response,

overloading inputs and memory [5].

 Scalability tests: testing the ability to increase the defined limits of any of the non-

functional requirements [5].

 Compatibility tests: testing the software’s ability to coordinate with different

hardware and software that it should work with [5].

 Usability tests: tests that verifies that the software is user friendly and easy to use.

16

Functional Testing Non-Functional Testing

Cover business requirements Covers performance requirements

Executed first Executed later after functional testing is

done

Tests how the program is behaving Tests how the program is performing

Handles customer requirements Handles customer expectations

Types includes: Unit testing, Integration

testing, Smoke/Sanity, User Acceptance,

Localization, Globalization, Interoperability,

etc.

Types includes: Performance, Endurance,

Load, Volume, Scalability, Usability, etc.

Table 1 Testing Methodology Comparison

In this thesis functional testing is used, focusing on the functions’ behavior in each

module. I used a mix of both Black and White box testing wherever one was more suitable

than the other, depending on the function’s logic.

 Software Types

Knowing how the software typically fails should influence how to select the tests, since

embedded systems depend heavily on asynchronous events, which are by nature

unpredictable, the tests should cover failures that can exist from these kinds of events. In

every real-time system, a sequence of events, would cause a great delay from the event

trigger to its response. The embedded test suite should be capable of generating all these

sequences and measuring the associated response time [6].

 Embedded software must be reliable to run for a long time without problems [6].

 Embedded software is often used in critical applications that involves human lives

[6].

 Embedded systems always work in resource constrained environments, which

gives no chance for the software to be inefficient [6].

 Embedded software must act as a problem solver to mitigate hardware faults [6].

 Real-world events are usually asynchronous and nondeterministic; therefore, no

simulation tests can be depended on [6].

 Failure probably means disaster or crisis.

17

 Embedded developers often have access to hardware-based tools for testing that

are generally not used in application development [7].

 Most embedded systems are resource-constrained real-time systems, more

performance and capacity testing are required [6].

 Some real-time trace tools can be used to measure how well the tests are covering

the code [8].

 Testing need to be aiming for a higher level of reliability than if you were testing

application software. [6]

18

2 Research

In order to approach the task in a correct way, detailed analysis of the system, the devices

involved, the running operating system, programming languages, communication

protocols, and the functional objectives of the software is gathered and studied.

The main microcontroller is at the vehicle's core, other microcontrollers are integrated,

multiple sensors, ranging from multiple ultrasonic to one primary Light Detection and

Ranging (LIDAR) sensor. All microcontrollers are running freeRTOS [9] a real time

operating system, the core programming languages are C and C++. Internal connections

and communication are mostly in Controller Area Network (CAN) and some in Ethernet.

As for the functional objectives: autonomous steering, braking, cruise control, object

detection, GPS localization, velocity and odometry measurement, live data streaming to

servers for analysis and observation, etc.

The software code skeleton is built using STM32CubeMx code generator with

specifications decided by the design and implementation teams. The development is done

in System Workbench; an Integrated Development Environment (IDE) based on Eclipse

made by OpenSTM32 community [10]. This thesis scope is the parts developed by the

teams and not the generated code.

2.1 System Requirements

First phase of the project is to find a suitable testing framework, many exists on the market

already with different properties and variations. Due to the nature of the system I am

targeting, certain preferences are taken into account when considering candidates of

frameworks.

 The software is being developed in an embedded environment, which means that

the resources would be scarce.

 Power, time and processing consumption are to be minimized.

 Support for Real Time Operating System (RTOS) tasks and interrupts.

 Testing automation support.

 Performance testing.

19

 Compatible with Windows operating system as the implementation teams are

using it as the development system.

 Free if possible.

2.2 Testing Framework Selection Criteria

With the above factors in mind, a number of requirements that would help in choosing

the correct framework for the software is compiled. Online search for all the available

testing frameworks for C and C++ and cross checking the properties of each with the pre-

defined requirements is done.

Figure 4 Testing Frameworks Requirements

During my research 18 potential frameworks were found, some of could not be tested,

either the developers gave incomplete documentation regarding the features and setup,

the framework was not compatible with windows, or it was not for free.

2.3 Integration Trials

Most of the frameworks found were tried with the project to some degree, for each, I

downloaded the program in the available format (source code, executable, etc.) placed it

within the project as a new module and started trying to build, compile and run the

software to see if it will work, how good can it be utilized in the code and how much will

it be affecting the performance.

20

 AceUnit, EmbUnit, CHEAT, Seatest

 Small, frameworks developed in C and focusing on Embedded testing, in

JUnit4.x style, they were integrated successfully with program. The

negative aspect of these frameworks was the scarcity of built in

assertions. I had to compose my own if I had to proceed.

 GNU Autounit

 A small, framework for testing C and other languages, it was not made

for Embedded projects, it lacked the documentation and it was depending

on using GNU Autoconf [11] in the projects to be tested. Therefore, I did

not go through with the integration trials

 CUnit, CuTest, HWUT, µnit, greatest

 Those frameworks shared similar characteristics, lightweight, they are

built as a static library or just a header file and linked with the testing

code that would be developed, they were successfully integrated into the

project but proved to be needing a lot of work to setup tests, write a test

suite with and some lacked the automation feature

 Criterion, CMocka

 Very simple frameworks for testing C, they were built and compiled with

the project with no issues, but they lacked the ability to output their

results through Universal Synchronous and Asynchronous Receiver-

Transmitter (USART) serial port as the project is run, test suites had to

be run independently from terminal to get the results out, which proved

to be impractical.

 CppUnit, Google Test

 Frameworks that are built in C++ proved to be troublesome when

compiling with C based projects and C based compiler configurations. I

discarded those options due to the large number of errors produced when

compiling.

 Parasoft, VisualGDB

 These frameworks promised a much better option for unit testing, they

had large libraries of unit tests and support from their developing

companies, but they were not for free.

 Unity, Cmockery

 Both were lightweight, and worked with the software with no issues.

21

I decided to work with Unity testing framework, an open source framework built by

Throwtheswitch community [12]. It proved to be lightweight, portable (which was the

same case as Cmockery) and yet very rich in assertions, and it supported centralized

testing automation and reports with results summary and clear success/failure identifiers

that were easily hooked up with USART serial port and rendered the results back into the

terminal while the project ran.

22

3 Integration

In order to get actual live readings from CAN and Ethernet connections in the car that is

being tested in the testing environment of the project, the tests need to read values from

interrupt states and incoming data streams that is only possible to read on the

microcontroller itself, therefore Unity source code is installed into the project as one of

its modules. Even if during these tests I have no access to the live system, it is better to

prepare the environment for live testing so in future it can be easily integrated and used.

3.1 Project Structure

The software skeleton is generated using STM32CubeMx with target platform System

Workbench. A new folder is created in the project for Unity, which has the source and

include subfolders for its files. A Tests folder is created with source and include

subfolders to include sources and headers for each module in the project, Unity is

downloaded from their project’s Git repository [13]. In Tests folder I first created a test

runner which included a source and header that would act as the tests automation tool,

calling tests at the desired time.

Figure 5 Software Structure

23

For each module, a test suite is created, that would cover each function in the module

(that can be tested), in each function for clarity reasons, every variable to be tested is

given a separate testing function of its own. This is because Unity stops execution of a

single test function upon the first failure and moves on to the next function. So to clarify

which part of the function failed in test, it proved beneficial to create the tests as:

 If a function manipulates several variables, a test for each variable in that

structure is created.

 If a function has a return value, a separate test would cover it.

The Project consist of the main source folder where the program main logic resides, in

each module, there are two types of code, the generated code, which is not tested and the

user code which is created by the implementation teams in the project and this is where

the code to be tested resides. Various other folders in the project consist of drivers,

helpers, libraries and many other modules that are related to the hardware, the CubeMx

generator, etc.

3.2 Tests Structure

A main test file (runner) is created to consolidate all tests runner into one initialization

point, all other test related helpers also resided in this file, this approach simplifies tracing

all the tests starting points and separates the tests module from the rest of the software.

The source file runner.c includes all the headers of the test files created for each module,

the FreeRTOS, tasks headers for creating semaphores and tasks that are needed when

testing functions that work in the Interrupt Service Routine (ISR) and of course the Unity

header itself.

A runner header file is included in the software main file to initialize all tests’ variables

and run the test suites at the desired point in the process. A test source and header with

the naming convention Test[filename] (where filename is the name of source file name

being tested) are created for each module that would be tested, the header of that module

would be included in the test source to access the needed functions and variables that can

be accessed and tested.

24

 Test Runner

A single-entry point for all tests, this is where the tests are called to run and return their

results to the output print stream where they are read and logged. The file contains a main

void function with void parameter, called runUnityTests() which starts with the Unity

macro UNITY_BEGIN() that is responsible for initializing Unity’s process and get things

ready for the incoming test calls which are made with the macro RUN_TEST(test_name)

and takes one parameter which is the test function name that is to be run. At the end the

test runner is stopped by calling the macro UNITY_END() which collect the previous test

results, calculate the totals and print out a summary of successes, failures and ignores.

This approach proved to be working fine with normal functions, but for the ones in the

ISR, a more invasive approach was needed to be able to access the functions and variables

at the right moment when they are called into action. For that a freeRTOS semaphore

dedicated to the tests and a task is created, that would be called whenever the test

semaphore is given from within an ISR function, in order to run the tests and do the

needed calculations and asserts outside of the ISR domain to avoid further disruption to

the original software's functionality.

A global data structure is created in the runner and included wherever it is needed to

capture some values from an ISR function and test it outside in the test suite, the needed

variables would be assigned to one or more of the structure variables and read in the suite

and asserted that the correct values are manipulated in the intended way.

 Test Task

For ISR based functions, A task runner function in runner.c is created and inside the test

semaphore test_sem_handle is called and once it is woken, the needed ISR tests are called

using RUN_TEST macro, for a more organized way the test calls are wrapped in a

UNITY_BEGIN() and UNITY_END() to separate these tests from the normal tests and

have their own summary or results.

The test task along with the test semaphore are initialized through an init() function in

runner.c and called at the beginning of the code from the main class.

25

 Test Data Structure

A structure of arrays is created in the runner header file and initialized in its source, it

contains multiple arrays of different data types to hold various values and transfer them

from functions in the project to the test suites for assertion. It is initialized also from the

main class at the beginning of the code before the scheduler starts, if needed, the data in

it is cleared before using it in another function or module.

 Test Suites

For each module in the project, a test suite is created (a test source and header files), the

source file includes the target module header file in the suite, Unity, runner and other files

as per the testing needs. One test suite had to have a startUp(void) and tearDown(void)

functions because it is required by Unity to have at least one of each in the program,

adding more of those helpers proved to invoke multiple definition errors by the compilers,

so it is removed and aliases are used instead in other suites since they are optional anyway.

These functions originally were intended to be used as helpers where startUp is called at

the beginning of the test suite and tearDown at the end of each. I managed to mimic the

behaviour in a more manual fashion in other suites where it is implicitly called at the

beginning of a test function in a suite, if its needed.

Each test suite contains multiple test void functions and in each one a single assertion is

called for a single variable or return value in the project.

3.3 Hardware

For the testing purposes, I was provided with a microcontroller board of the same model

that is being used in the development of low level controller functionality. The board is

connected to a host PC and the project along with the test modules are compiled and

flashed onto the board for live testing.

 The Board

The STM32F767ZIT6-Nucleo-144 manufactured by STMicroelectronics [14]. It features

an ARM© Cortex©-M7 core at 216MHz, a 2 Mbytes of flash memory, Embedded ST-

26

LINK/V2-1 debugger/programmer which I use to connect to the board through a micro-

b Universal Serial Bus (USB) port on it.

Figure 6 STM32F767 Board [15]

 Debug Logging Connection

In order to get a logging mechanism working to print out the testing results from within

the board, one way is to utilize the USART port communication of the board and by using

a USART to USB converted I am able to get the results back to the host PC through USB

and read them using a Serial port enabled terminal called TeraTerm© [16]. As shown in

Figure 7 connections were made from the board to the USB converter as follows:

Board USART

PA1 TXD

PA4 RXD

PC0 GND

Table 2 Board to USART converter pinout

27

Figure 7 Board diagram (back-side) with debug connections [17]

3.4 Software Configuration

In order to correctly run the tests within the project, some minor configuration setup is

done, the Unity and Tests sources and headers locations are included in the software paths

on the IDE. The board USART was used for serial debugging, a serial to USB converter

was connected to USART ports on the board and connected to the PC, then a TeraTerm©

[16] terminal was configured with baud rate of 115200 to match the board’s

configuration.

3.5 Implementation

The project’s code structure follows a similar pattern in all the modules that are generated

by STM32CubeMx, through each module, in each section and function there are two

types of code, the generated code and the user code, the former is not identified but treated

as the main code in the file, the latter is identified by a comment

/* USER CODE BEGIN (keyword here) */

User Code Here

28

/* USER CODE END(keyword here) */

In place of keyword above there are various types clarifying which user code should go

in this section, there are sections for includes, private variables, private function

prototypes, and user code which are presented in a numbering convention (e.g. /* USER

CODE BEGIN 0 */) in each function there is a section that contain these comments and

there a user should add his/her code.

This approach which is automatically provided by STM32CubeMX software gave the

code a more organized and readable style and it is mandatory to use these regions in order

to keep the code in place if the implementation team needs to change some configuration

and regenerate the code again, any code inside those comments regions is not touched,

this provides very high flexibility and portability throughout the project. Of course if a

user creates a custom module from scratch, it also won't be touched when regenerating.

I am concerned with only the user made code, the generated code testing is out of scope

of this thesis.

29

4 Testing

The project consists of different types of functions; initialization functions that creates a

data structure or something similar, functions with parameters, and ISR functions. Mostly

all the functionality is handled by the RTOS scheduler. For each type of functions, a

different testing approach is needed, some are simply passing data or saving it into a data

variable, so all that is needed to do is capture that variable and test it after or during the

function call, some have more complex nature whether it’s an ISR which prevents us from

heavily intruding the code, functions that depends on incoming data streams are very

difficult to test without the live environment.

In almost all test cases, they are called from the main module after all the initializations

have been done and just before the scheduler takes over, this is done by called a simple

function runUnityTests() and it then starts executing the test suites automatically.

Figure 8 Unit Testing Module Main Function

4.1 Initialization Functions Tests

Functions that are called early in the execution, they initialize structures and other data

types responsible for transferring and/or saving data for later usage. In these functions,

either the same data is checked in the test suite after it is initialized or another variable

30

with the same datatype is created and initialized, then the values are tested. The actual

function that is to be tested is shown in the figure below, it consists of a two data structures

that are initialized with values, in Figure 9, an example of testing one of those assigned

values after the original function is called. It is possible to access the structures in the core

code from the testing module, so no mocking is needed in that case.

Figure 9 Initialization Function with global access [18]

Figure 10 Initialization Function Tests

In other cases, I have to create my own data similar to the core ones in order to test them,

since there is no global access to those variables as shown in the following figures,

external variables with same data types and names are created in the test suite and the

initialization function called one time at the execution of the first test case.

31

Figure 11 Initialization Function without global access [18]

Figure 12 Initialization of the function in test suite

Figure 13 Initialization Function Test

4.2 Function Arguments Mock Testing

Functions that take input arguments when called and do some manipulation on the data

or transfer it further in the execution cycle, these functions needs to have mocks to copy

the same behavior of the function as if it has actual inputs when called in the test module,

since there is no way of knowing the exact values that would be coming to some of the

functions from my testing environment, I decided as a temporary solution to copy the

values of both the assignee and assigned and test them separately in the test module.

32

In some cases, (Figure 14) the values are simple, just one value assigned to a variable and

tested in the suite (Figure 15)

Figure 14 Function with Arguments 1 [18]

Figure 15 Function with Arguments Test 1

In other cases, it is an array of values incremented or pushed through some loop, for these

cases, the values are added instead of dynamically assigning them and test their sums as

an assertion, since I am not aware of the incoming data length and nature which is in most

cases, live readings from some CAN or Ethernet connection.

33

Figure 16 Function with Arguments 2 [18]

Figure 17 Function with Arguments test 2

4.3 Interrupt Service Routine Functions Tests

Interrupt Service Routine (ISR) functions proved to be tricky to capture at the needed

time to get correct readings, since they are always called by the RTOS scheduler and once

the scheduler started, all other execution ceases and I cannot invoke testing unless through

a scheduler task. ISR constrained environment also prevents me from adding too much

testing related functionality inside, since everything inside this routine should be

lightweight, and quickly executed. Therefore, I create a custom RTOS task for testing

purposes and call it using semaphores from within the ISR that I need to test, and for

passing the data values needed to be tested I use the globally declared testData structure.

In Figure 18 an ISR callback function that is invoked by RTOS scheduler whenever a

CAN data transmission is completed and inside the CAN data is analyzed and actions

34

taken based on these analysis, almost all the actions are simple thread calls to start

separate threads outside the ISR responsible for more complex executions. Figure 19

shows the testing thread task runner which is in the main runner.c file and its main

responsibility is calling the ISR test suites in the correct time whenever the task is called

from ISR, these tests are then executed in their respective test suites and the results are

printed outside the ISR adding no extra processing load on such states as we can see in

Figure 20

Figure 18 ISR Function example [18]

35

Figure 19 ISR Function Task

Figure 20 ISR Function Test

With this approach I am able to invoke the needed tests at the correct time frame where

the values being manipulated still resides in their respective memory addresses, these

values are copied to my structure and their validity is tested elsewhere.

4.4 Inapplicable Functions

There are functions that cannot be tested for various reasons. Some functions are not yet

completed, some are not fully implemented, when tested they resulted in strange behavior

and sometimes system crashes. Other functions are deemed not important and I am

advised to ignore them.

36

Figure 21 Inapplicable Function 1 [18]

In some cases, the tests fail to execute due to the fact that this function gets its input from

CAN data stream and since I have no live data stream, I will skip these kinds of functions.

As a future solution, two boards with CAN and Ethernet connections should be used to

mimic the actual environment the software is supposed to work in.

Figure 22 Inapplicable Function 1 Test

Other functions are not tested because their purpose is to pass data to some other function

and there are no return values from these function calls, so no way of testing what happens

there (to my knowledge).

Figure 23 Inapplicable Function 2 [18]

Finally, other functionality is not tested for lack of time during this project, but same

approach can be followed and the system can be fully tested in the future. It took the

larger span of the thesis time to check the frameworks, find the one to use and set it up.

37

5 Results and Analysis

Using the TeraTerm© [16] application it is possible to get the printing output on its

terminal and also using the logging feature that comes with it, I am able to log the results

of each test run into a text file and save it for reference. In total during the time this thesis

is written there are 32 functions, 14 were tested, and 18 skipped due to the lack of time,

the means to test them, as per advice from the implementation team or they are not yet

completed.

Module Functions Covered Skipped Coverage

app_ethernet 2 1 1

can 8 6 2

ethernetif 2 2 0

main 2 2 0

ros 2 2 0

rtc 4 1 3

server_netconn 5 0 5

udpclient 5 0 5

utils 2 0 2

 32 14 18 43.75%

Table 3 Testing Coverage

As a mean of synchronization between the implementation team and testing, a

requirements/testing register was created and is being updated by implementation

whenever a new functionality is added to the requirements, and for each one a test suite

is created or to be created in the future.

38

Figure 24 Requirements/Tests register

5.1 Tests Results

The test results are consolidated into report files; each function is broken down into

segments each one covering one variable that is being tested.

 Main Module

All tests passed

Figure 25 Test Report: Main Module

 App_Ethernet Module

2 tests passed and 2 failed

Figure 26 Test Report: App_Ethernet Module

39

 CAN Module

26 tests passed, 2 failed

Figure 27 Test Report: CAN Module

 ROS Module

All tests passed

40

Figure 28 Test Report: ROS Module

 Ethernetif Module

2 tests passed, 1 ignored

Figure 29 Test Report: Ethernetif Module

 RTC Module

1 test passed

Figure 30 Test Report: RTC Module

 Normal Tests Summary

Note that Unity consider the end result as a failure if one or more tests failed

Figure 31 Test Report: Normal Tests Summary

 Interrupt Service Routine Tests

These tests are consolidated in a different task function that is called later when the

scheduler calls the ISR function that is to be tested

3 tests passed

41

Figure 32 Test Report: ISR Functions Tests

5.2 Detected bugs and Possible Code Improvements

In total there are 4 failed tests from 94 test cases, surely more problems would be

uncovered with more tests and with live readings from the car that is being operated by

the software in development.

 Failed Tests

File: app_ethernet

The function (User_notification) objective as per the documentation, is to notify the user

about the network interface configuration status.

Figure 33 User Notification Function [18]

In order to test this functionality, each one of the four HAL_GPIO_WritePin function

calls are tested separately, viewing the actual login behind this function it shows that it

assign a value to a certain LD Pin

42

Figure 34 Function called by User Notification Function [18]

So I call the function in each test case and then check the new value assigned in the

GPIO_Pin variable

Figure 35 Failed Test of LD1 Variable with GPIO_PIN_SET variation

However, the returned value is not equal to the value assigned in the LD1_GPIO_Port-

>BSRR.

The second failed case in app_ethernet is of the same function but a different LD pin

Figure 36 Failed Test of LD3 with GPIO_PIN_RESET

43

Same as the first failed case, although the same logic applied to the first ASSERT

parameter as the original HAL_GPIO_WritePin function, still the values are not the same.

File: can

There are 2 failed cases in the can module, both are in the Store_Miev_Data function.

Which has the objective of saving incoming CAN data into the structure.

The first case is testing the structure iMievData variable update_status, that it contains

the correct value of STAT_UPDATING.

Figure 37 Store_Miev_Data Function(part) [18]

The values are added to the testData structure created by me for moving the test data that

are not globally accessible outside the module.

Figure 38 Failed Test of iMievData.update_status and STATE_UPDATING

The values do not match when tested, it is probably because there is no actual data stream

incoming to be saved while testing.

The second case was similar to the first, testing that STAT_UPDATING value is saved

in the iMievTime structure variable update_status.

44

Figure 39 Failed Test of iMievTime.update_status and STATE_UPDATE

Same as case 3, the value assigned does not match the expected and it is also probably

due to the lack of the actual data stream that is supposed to be incoming in the live

environment.

It is noted that some modules are entirely created by the implementation teams, for

example the modules udpclient, ros, and utils. if there is a possibility to replace some of

these modules with auto generated code using STMCubeMx or something similar, it

would serve to reduce the possibility of human errors, thus reducing the overall

percentage of software bugs.

5.3 Inapplicable Tests Alternatives

For the functions that are not tested, it is advised that access to the live environment would

be granted to the future testing teams in order to have access to live readings from the

car’s sensors and outputs. With this kind of information, it would be possible to test all

the functions that depends on incoming data from CAN or Ethernet connections, validate

readings coming from the car and going into the car’s control points and test more

thoroughly different cases and possibilities that the car might face in normal/abnormal

driving conditions.

Regarding the functions that contained input arguments and are tested using global data

structure to copy data to the test environment, a less intrusive approach would be to create

mock data examples of all the arguments as well as mocks for the expected outputs of

these functions. That would require the implementation teams to provide these examples

during the implementation itself and document them for later use by the testing teams.

45

6 Summary

The main purpose of this thesis was to establish a unit testing environment for the

software being developed, test as much as possible of the existing code, and provide a

portable way of adding further test suites for newly developed modules without adding

too much intrusion on the software.

The framework chosen is open source, flexible and can be redesigned for more complex

purposes in the future in case the current features proves to be insufficient to cover all

possible test cases.

The test module has been created as a separate entity that can be added to any other

version of the software with minimal changes required, the test suites calls are

consolidated in one main runner file for easier enabling/disabling of specific tests.

The tests have been conducted in a non-live environment using a development board same

as the ones being used in the actual project, the results obtained from these tests shows

that the code is working properly in most cases, the data is being transferred as intended

and there are minor cases of failures that are clearly stated and logged by the framework.

The installed test module had negligible effect on the execution performance of the main

project, and that it will have similar effect during live tests as well.

46

Acknowledgments

This work was supported by the Department of Computer Systems of the Tallinn

University of Technology.

47

References

[1] S. Labs, “Quality Assurance and Software Testing: A Brief History,” 12 July

2016. [Online]. Available: https://saucelabs.com/blog/quality-assurance-and-

software-testing-a-brief-history. [Accessed 20 April 2018].

[2] S. P. A. R. M. a. G. C. J. Karmore, “Development of Software Interface for

Testing of Embedded System,” 2013 15th International Conference on Advanced

Computing Technologies (ICACT),, pp. 1-6, 2013.

[3] A. Berger, “The Basics of Embedded Software Testing: Part 1,” 07 February

2011. [Online]. Available:

https://www.embedded.com/design/other/4212929/2/The-basics-of-embedded-

software-testing--Part-1. [Accessed 10 February 2018].

[4] “Project's Google Drive,” 29 April 2018. [Online]. Available:

https://drive.google.com/drive/folders/0B9SJu3UyveivdmVNTFB2SGlMMTA.

[5] “Types of Non Functional Software Testing,” 1 February 2012. [Online].

Available: https://www.testing-whiz.com/blog/types-of-non-functional-software-

tests. [Accessed 17 February 2018].

[6] A. Berger, “The Basics of Embedded Software Testing: Part 2,” 07 February

2011. [Online]. Available:

https://www.embedded.com/design/other/4212937/The-basics-of-embedded-

software-testing--Part-2-. [Accessed 16 February 2018].

[7] J. Ganssle, Embedded Systems: World Class Designs, Oxford: Newnes, 2007.

[8] “Tunghai University - DOE_Project,” [Online]. Available:

http://www2.thu.edu.tw/~emtools/DOE_project/NTCU/ppt_to_%AAF%AE%FC

/Overview.ppt. [Accessed 15 March 2018].

[9] “The FreeRTOS™ Kernel. Market Leading, De-facto Standard and Cross

Platform RTOS kernel,” 25 April 2018. [Online]. Available:

https://www.freertos.org/.

[10] “Home Page,” [Online]. Available: http://www.openstm32.org/HomePage.

[Accessed 20 March 2018].

[11] “Autoconf,” 28 April 2018. [Online]. Available:

http://www.gnu.org/software/autoconf/autoconf.html.

[12] “Home Page,” 15 March 2018. [Online]. Available:

http://www.throwtheswitch.org/.

[13] “ThrowTheSwitch/Unity Simple Unit Testing for C,” ThrowTheSwitch,

[Online]. Available: https://github.com/ThrowTheSwitch/Unity. [Accessed 8

January 2018].

[14] “Home - STMicroelectronics,” STMicroelectronics, [Online]. Available:

http://www.st.com/content/st_com/en.html. [Accessed 24 April 2018].

[15] “Nucleo STM32F767,” 28 April 2018. [Online]. Available:

https://www.ittgroup.ee/1602-large_default/nucleo-stm32f767.jpg.

48

[16] “Tera Term Home Page,” 25 April 2018. [Online]. Available:

https://ttssh2.osdn.jp/index.html.en.

[17] “UM1974 User manual STM32 Nucleo-144 boards,” 28 December 2017.

[Online]. Available:

http://www.st.com/content/ccc/resource/technical/document/user_manual/group0

/26/49/90/2e/33/0d/4a/da/DM00244518/files/DM00244518.pdf/jcr:content/transl

ations/en.DM00244518.pdf.

[18] “TTÜ iseauto projekti master kontrolleri embedded soft,” 27 April 2018.

[Online]. Available: https://gitlab.pld.ttu.ee/iseauto/master_controller.

49

