TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Eslam El-Sherbieny 1667781\VSM/B66096

TTU SELF DRIVING CAR MASTER
CONTROLLER EMBEDED SOFTWARE
TESTING

Master’s thesis

Supervisor: PhD Mairo Leier

Tallinn 2018

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Eslam El-Sherbieny 1667781\VSM/B66096

TTU ISESOITVA AUTO
JUHTKONTROLLERI TARKVARA
TESTIMINE
Magistritoo
Juhendaja: PhD Mairo Leier

Tallinn 2018

Author’s declaration of originality

I hereby certify that | am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Eslam EI-Sherbieny

07.05.2018

Abstract

The objective of this thesis is to research the available embedded software testing
frameworks, select the most suitable one based on the requirements and cover the existing

functionality with tests.

The framework used is developed by Throwtheswitch community [1]. It is an open source

unit testing framework following the Junit testing techniques.

Tests results shows the advantage of integrating such a lightweight module into the
project and taking advantage of its rich set of assertions, with almost no intrusion on the

original code and negligible performance overhead.

This thesis is written in English and is 48 pages long, including 6 chapters, 39 figures and
3 tables.

TTU
PC
I/0

GPS
LIDAR
RTOS
CAN
IDE
USART

ISR
USB

List of abbreviations and terms

Tallinn Technical University
Personal Computer
Input/Output

Global Positioning System

Light Detection and Ranging

Real Time Operating System
Controller Area Network

Integrated Development Environment

Universal Synchronous and Asynchronous Receiver-
Transmitter

Interrupt Service Routine
Universal Serial Bus

Table of contents

Author’s declaration of OriINAlityccceoviiiiiiiiiiie 3
N 0L = Uod ST PPROPRRN 4
List of abbreviations and terMScoeiiiiiiiirerie e s 5
TabIE OF CONTENTS ...ttt bbb nneas 6
LISE OF FIQUIES ...ttt bbbt 8
(I ES 0] 8 7= o] OSSR 10
1 INEPOTUCTION 1.ttt ettt bbb enes 11
1.1 Software Testing HISTOrYccoii i 12
1.2 BACKGIOUNT ..ottt bbbttt 12
1.2.1 Self-Driving Car PrOJECE........coiiiiiieieieiee e 13
1.2.2 FUNCEIONAL TESTING ...evveveieiieciesiieiesiiee ettt 15
1.2.3 NON-FUNCEIONAL TESEING .. .cviiveiiiiiiiiieiieieie ettt 15
1.2.4 SOTEWAIE TYPES ...ttt bbbttt bbb ene s 16

p A =T o o TSRS 18
2.1 SYSteM REQUITEMENTSeveeveeie sttt et nte e sreenas 18
2.2 Testing Framework Selection Criteria..........cccocvevveiieiiieie e 19
2.3 INtegration TTHAIScoi i 19

I 11 (=T o [£ 1A o] o P TSRS U PR PT PP 22
3.1 PrOJECE STIUCLUIE ..ottt ettt et te e sne e e 22
3.2 TESES STIUCKUIE ...ttt ettt re e ne e 23
321 TESERUNNET it 24
3.2. 2 TESE TASK 1veeieeieeiie ittt ettt et e e te et eeneesraeneeereenraeneeas 24
3.2.3 TeSt Data SITUCTUIE ..ot 25

3. 2.4 TESE SUILES ..ottt ettt ettt sbe e 25

BB HAITUWAIE ...ttt ettt es 25
00 T B I 0 T= T T - (o USSR 25
3.3.2 Debug Logging CONNECLIONcceiieiiieienie e 26

3.4 Software ConfigUIationcccveiiiiiieiie e 27
3.5 IMPIEMENTALION ...t e 27

IS U oo USRS 29

4.1 Initialization FUNCHIONS TESES......iiieiieiiiie ittt 29
4.2 Function Arguments MOCK TESEINGcccveiveriiiiieieeie e 31
4.3 Interrupt Service Routine FUNCLIONS TESESccveiieiieiieir e 33
4.4 Inapplicable FUNCLIONS..........ocoiiiiiiiiieee e 35

5 RESUIES AN ANAIYSIS ...t 37
5.1 TESES RESUIS ...ttt bbb eneas 38
5.1.1 MAINIMOAUIE ... 38
5.1.2 App_Ethernet MOdUIEooiiiiiieeee e 38
5.1.3 CAN MOUUIE ...ttt sre e 39
5.1.4 ROS MOQUIE ..ottt et 39
5.1.5 Ethernetif MOAUIE..........c.ooiiiiiiie e 40
ST RTC MOUUIE ..o e et 40
5.1.7 Normal TestS SUMMAIYccooiiiiiiieieees e 40
5.1.8 Interrupt Service ROULING TESISvvviieiiieie e e 40

5.2 Detected bugs and Possible Code IMprovements...........ccccocveeeveeresieseese s 41
O B o 1] =T I I £ SRS SRS 41

5.3 Inapplicable Tests AIEINALIVESccooiiiiiiiiieiee e 44

B SUIMIMAIY ..ttt ittt ettt ettt et e e e st e e sa e e sa b e e s st e e e ss b e e e snb e e e nbbe e e nbeeeeneeennnneas 45
RETEIBNCES ...ttt b e b bbbt esbe e 47

List of figures

Figure 1 The Self-driving car model [4].......ccooi i 13
Figure 2 Predefined road [4].......cooeeeeeie s 14
Figure 3 Vehicle hardware diagram [4]......cccoveieiieiiiieiie e 14
Figure 4 Testing Frameworks REQUIFEMENTSccceevieiieriiiieieese e 19
Figure 5 SOTtWAre STFUCTUIE.........coiiieieieie e 22
Figure 6 STM32F767 BOArd [15].....ccoviiiiiiiriiiieiisesieieie e 26
Figure 7 Board diagram (back-side) with debug connections [17]cccccveveivieiriennene 27
Figure 8 Unit Testing Module Main FUNCLIONc.coeiiiiiiiiiiece e 29
Figure 9 Initialization Function with global access [18].........ccccovviiiiiiiiicire 30
Figure 10 Initialization FUNCEION TESES.....cc.oiiiiiiiiiieieee s 30
Figure 11 Initialization Function without global access [18].........ccccevvviveiiveieiiieiienns 31
Figure 12 Initialization of the function in test SUIte...........cccccvevieiieie i 31
Figure 13 Initialization FUNCEION TESE......ccviiiiiiiiiiieiee s 31
Figure 14 Function with Arguments 1 [18].......cccooiiiiriiiineiesereeeee s 32
Figure 15 Function with Arguments TSt L........ccccvveiiiieiieiecie e 32
Figure 16 Function with Arguments 2 [18].......ccccovveiiiiiieeiece e 33
Figure 17 Function with Arguments teSt 2ccuiiiiriiieiese s 33
Figure 18 ISR Function example [18]cccooiiiiiiiiiiieese s 34
Figure 19 ISR FUNCLION TASK.......ccueiieiiiieiie ettt s sre e 35
Figure 20 ISR FUNCLION TESEiiieiiicie ettt sre e 35
Figure 21 Inapplicable FUNCHION 1 [18]ccoiiiiiiiiiiiieieese s 36
Figure 22 Inapplicable FUNCHION 1 TEST.....c.coiiiiiiiiiiiee s 36
Figure 23 Inapplicable FUNCHION 2 [18]cc.oiiiiiiiiiiiiee s 36
Figure 24 Requirements/TeStS rEQISTENcciuiiiii e 38
Figure 25 Test Report: Main ModUIE..........ccooiviiiiiiiicc e 38
Figure 26 Test Report: App_Ethernet Module ... 38
Figure 27 Test Report: CAN MOdUIEcooiiiiiiei s 39
Figure 28 Test Report: ROS MOUIE..........cooviiiiiiececee e 40
Figure 29 Test Report: Ethernetif Module ... 40

Figure 30 Test Report: RTC MOUIE...........coiiiiiiiiieeee s 40

Figure 31 Test Report: Normal TestS SUMMAIY........cccoeieiiriiiniiieeeeee s 40
Figure 32 Test Report: ISR FUNCLIONS TESIScveiveiiieieiieciece e 41
Figure 33 User Notification FUNCLION [18]........cccooiveiiiiiiiece e 41
Figure 34 Function called by User Notification Function [18]ccccccoviiiininiinnne. 42
Figure 35 Failed Test of LD1 Variable with GPIO_PIN_SET variationc...c....... 42
Figure 36 Failed Test of LD3 with GPIO_PIN_RESETc.ccoeiiiiiiiiiie e 42
Figure 37 Store_Miev_Data Function(part) [18]cccccoviieriiieiiieiiere e 43
Figure 38 Failed Test of iMievData.update_status and STATE_UPDATING.............. 43
Figure 39 Failed Test of iMievTime.update_status and STATE_UPDATE.................. 44

List of tables

Table 1 Testing Methodology COMPAriSONcccecvveiieiieiieieere e
Table 2 Board to USART CONVEIEr PINOUL........ccecveiieiicie e
Table 3 TeStING COVEIAGE.......ciueiieeeieieeite ettt

10

1 Introduction

Testing is a primary factor in any project, through it, a user can check and refactor any
part of the project to correct and enhance it. With testing it can be guaranteed that the
final product will work as it was intended, providing a secure, safe and efficient result to

the end-user.

Whether the project is in the field of engineering, medical, physics, etc. Testing is a
crucial milestone that has to be thoroughly applied.

Embedded software engineering is not different when it comes to the importance of
testing, the development of efficient, functional and error free software is something of a
great importance in the embedded field. This is due to the critical nature of almost all the
applications of embedded systems, failure means some problem is imminent, a fatal one.

In this thesis | am developing the embedded software tests of Tallinn Technical University
autonomous vehicle project. There are a lot of concepts and proven methodologies out
there that will be discussed in the next section, which defines how | will approach the
testing phase of the project.

| focus on developing a testing functionality to perform low level master controller
software tests. The master controller, responsible for command and communication
between various embedded devices which are in turn responsible for controlling the
vehicle’s inputs (steering, velocity, brakes, etc.). Testing starts with individual testing of
each code module, and gradually it should integrate testing suites to cover a broader cycle

of the project, eventually it should cover the whole system.

This thesis can be divided into three chapters; In the first chapter, I look for suitable
testing frameworks that would suit the software needs. The second chapter is dedicated
to the installation trials of the selected frameworks into the existing software code and the
validation of how well it works and how much interference it has on the processing of the
existing system. In the last chapter, covers the testing phase where | create a testing suite

for every testable module.

11

1.1 Software Testing History

In the early days of computing, back when cross-platform programming languages like C
were not yet invented and programs depended heavily on assembly code that worked on
only one specific type of computer chip, software was rarely designed to run in multiple
environments. That made configuration testing unnecessary, since there were fewer

configurations to test for [1].

Users would have almost identical computers to the developers, otherwise the software
would not work. By the 1980s when IBM introduced the first PC as a commercial product,
the industry evolved dramatically, by the 1990°s many PC variations were on the market
and high demand for cross-platform software pushed the programmers to develop their
products to be compatible with any type of computer that was advertised as PC-
compatible. Another change was the increasing demand for more frequent software
releases, which was derived by the commercialization of PCs and the growing importance
of the internet [1].

Releasing software that worked on any PC and the expectation that these software will
frequently be updated to improved versions with new features in a fast pace raised the
stakes for software testing. It required careful configuration and testing on many possible

environment variables. [1]

1.2 Background

Testing is the process which focuses on finding defects in a system, testing is a crucial
building block in system development; it works towards improving the system’s quality,

and avoid risks of software failures after deployment to the commercial market. [2].

In software development, we gather requirements, create high level designs, low level
design, develop the code, test it, refactor, test again, and refactor until we are satisfied,
then we integrate and start a final testing round before deployment. Since most projects
run late, testing sometimes is sacrificed partially to mitigate the delays that happened
through the project cycle, in order to deliver on time. This is a bad habit that many

companies are avoiding these days [3].

12

Best practice development includes frequent code checks, but these only find typically
70% of the system’s bugs, so a thorough testing plan is essential to every software
product. In all other disciplines of engineering, testing is considered fundamental,

whether it's architectural, mechanical, etc. [3].

Embedded systems software testing shares much in common with application software
testing. However, some important differences exist between application testing and

embedded systems testing. [3]
1.2.1 Self-Driving Car Project

The software to be tested is being developed in the Technical University of Tallinn,
Estonia. Its aim is to produce a system for a self-steered vehicle which would allow the
vehicle to safely pass through the predetermined route traffic. The vehicle has predefined

parameters of speed, dimensions, engine power, etc [4].

Figure 1 The Self-driving car model [4]

The vehicle’s control system would follow a set of predefined Global Positioning System
(GPS) coordinates along the TUT campus available for public use, it's would respect the

barriers (parked cars, pedestrians, etc.) and passes them safely [4].

13

Figure 2 Predefined road [4]

The self-driving project consist of many parts that works together to achieve the main

goal of the project:

= Master controller (where this thesis tests are applied to)

= Drive controller (slave controller responsible for the car actions)

= Body controller

= Several sensors, communication devices, drivers

= Car actuators, battery, wireless network module (which connects to a data center
through 5G)

= PC Autoware connected to the master controller and to other sensors through
Ethernet.

Covered in thesis's testing scope

Autoware

Manual
e ",{ PC

Al & Drive algerithm

ETH
Low level control

CAN3 [MASTER controller

CAN2

Body Controller
J

Drive Controller

Battory
asconnect SW
D IO l\zc Do Int. DAC
Current Gear Gas pedal
oo 1 oner || one =][
|—| {Torque signal

Handbreak Steering
actuator motor Driver

i-MiEV ECU —
— 1 ==
Steering -
Angle sensor

Figure 3 Vehicle hardware diagram [4]

Break
actuator

N

Given the sensitivity and criticality of the project’s application, it was crucial to apply

testing to the code being developed for this project. It was important to guarantee that the

14

system is behaving as per design and within the safety regulations required in the

automotive industry.
1.2.2 Functional Testing

It is the testing approach that focuses on the software’s validity with respect to the
requirements. Checking that each function and module operates as per the intended design
of the program. It consists of three different variations, black-box testing, white-box

testing and grey-box testing [3].

= Black-box testing focuses on testing the functional behaviour of the code,
without knowing the actual code. It depends on testing the Input/Output (1/O) of
the function, program and/or the device.

= White-box testing focuses on testing the reliability and correctness of the code
itself, checking every functions logic, execution flow, statement coverage,
decision coverage if conditional logic is found.

= Grey-box testing is a mix of both of the above types, it gives the tester some space
to intrude the function’s logic but not stressing too much on his knowledge of the

code.

Functional testing follows the requirements and specifications provided by the
management which were used by the design and implementation teams when developing

the program.
1.2.3 Non-Functional Testing

This type of testing focuses on the performance, usability and reliability of the program
among other things. It tests the non-functional requirements compiled by the management

of the project, which are not addressed in the functional testing.

= Stress tests: putting the system limits to the test and checking the response,
overloading inputs and memory [5].

= Scalability tests: testing the ability to increase the defined limits of any of the non-
functional requirements [5].

= Compatibility tests: testing the software’s ability to coordinate with different
hardware and software that it should work with [5].

= Usability tests: tests that verifies that the software is user friendly and easy to use.

15

Functional Testing Non-Functional Testing

Cover business requirements Covers performance requirements

Executed first Executed later after functional testing is
done

Tests how the program is behaving Tests how the program is performing

Handles customer requirements Handles customer expectations

Types includes: Unit testing, Integration Types includes: Performance, Endurance,

testing, Smoke/Sanity, User Acceptance, Load, Volume, Scalability, Usability, etc.

Localization, Globalization, Interoperability,

etc.

Table 1 Testing Methodology Comparison
In this thesis functional testing is used, focusing on the functions’ behavior in each
module. I used a mix of both Black and White box testing wherever one was more suitable

than the other, depending on the function’s logic.
1.2.4 Software Types

Knowing how the software typically fails should influence how to select the tests, since
embedded systems depend heavily on asynchronous events, which are by nature
unpredictable, the tests should cover failures that can exist from these kinds of events. In
every real-time system, a sequence of events, would cause a great delay from the event
trigger to its response. The embedded test suite should be capable of generating all these

sequences and measuring the associated response time [6].

= Embedded software must be reliable to run for a long time without problems [6].

» Embedded software is often used in critical applications that involves human lives
[6].

= Embedded systems always work in resource constrained environments, which
gives no chance for the software to be inefficient [6].

» Embedded software must act as a problem solver to mitigate hardware faults [6].

= Real-world events are usually asynchronous and nondeterministic; therefore, no
simulation tests can be depended on [6].

= Failure probably means disaster or crisis.

16

Embedded developers often have access to hardware-based tools for testing that
are generally not used in application development [7].

Most embedded systems are resource-constrained real-time systems, more
performance and capacity testing are required [6].

Some real-time trace tools can be used to measure how well the tests are covering
the code [8].

Testing need to be aiming for a higher level of reliability than if you were testing

application software. [6]

17

2 Research

In order to approach the task in a correct way, detailed analysis of the system, the devices
involved, the running operating system, programming languages, communication

protocols, and the functional objectives of the software is gathered and studied.

The main microcontroller is at the vehicle's core, other microcontrollers are integrated,
multiple sensors, ranging from multiple ultrasonic to one primary Light Detection and
Ranging (LIDAR) sensor. All microcontrollers are running freeRTOS [9] a real time
operating system, the core programming languages are C and C++. Internal connections
and communication are mostly in Controller Area Network (CAN) and some in Ethernet.
As for the functional objectives: autonomous steering, braking, cruise control, object
detection, GPS localization, velocity and odometry measurement, live data streaming to

servers for analysis and observation, etc.

The software code skeleton is built using STM32CubeMx code generator with
specifications decided by the design and implementation teams. The development is done
in System Workbench; an Integrated Development Environment (IDE) based on Eclipse
made by OpenSTM32 community [10]. This thesis scope is the parts developed by the

teams and not the generated code.

2.1 System Requirements

First phase of the project is to find a suitable testing framework, many exists on the market
already with different properties and variations. Due to the nature of the system | am
targeting, certain preferences are taken into account when considering candidates of

frameworks.

= The software is being developed in an embedded environment, which means that
the resources would be scarce.

= Power, time and processing consumption are to be minimized.

= Support for Real Time Operating System (RTOS) tasks and interrupts.

= Testing automation support.

= Performance testing.

18

= Compatible with Windows operating system as the implementation teams are
using it as the development system.

= Free if possible.

2.2 Testing Framework Selection Criteria

With the above factors in mind, a number of requirements that would help in choosing
the correct framework for the software is compiled. Online search for all the available
testing frameworks for C and C++ and cross checking the properties of each with the pre-

defined requirements is done.

Title Supported Embedded RTOSsupport Performance Test Resource OS support Cost Preparations

languages Focused test support automation Constrained needed to
support support support Keil

AceUnit c Yes - No - Ne v Yes ~ Yes ~ Windows Free not available
GNU Autounit C, Guile No - No - No v Yes ~ No ~ No ~ Free not available
CUnit C No - No - No - Yes ~ No ~ | Windows Free not available
CuTest c No - No - No - No ~ No ~ Windows Free not available
CppUnit C, C++ No - Yes - Yes - Yes - No ~ | Windows Free not available
embUnit c Yes v Yes - Ne v Yes ~ Yes ~ Windows Free not available
MinUnit c Yes - No - No - No ~ Yes ~ Windows Free not available
CMocka c Yes - No - No - No ~ No ~ | Windows Free not available
Criterion C,C+t+ No - No - No ~ Yes ~ No ~ Windows Free not available
HWUT C and others No - No - No v Yes ~ No ~ Windows Free not available
Google Test Framew C, C++ No - No ~ Yes - Yes ~ Yes ~ Windows Free not available
CMock
Ceedling
CException
CMockery c No - No - No - Yes - Yes ~ | Windows Free not available
Cheat c Yes - No - Ne v Yes ~ Yes ~ Windows Free not available
Seatest c No - No - No v Yes ~ Yes ~ Windows Free not available
unit C,C++ No - No - Yes - Yes ~ No ~ Windows Free not available
Parasoft C,C++ Yes - No ~ Yes ~ Yes ~ Yes ~ Windows No Supported
greatest C No - No - No - Yes - No ~ | Windows Free not available
VisualGDB

C,C++ Yes - No ~ Yes ~ Yes ~ Yes ~ Windows No Supported .

Figure 4 Testing Frameworks Requirements

During my research 18 potential frameworks were found, some of could not be tested,
either the developers gave incomplete documentation regarding the features and setup,

the framework was not compatible with windows, or it was not for free.

2.3 Integration Trials

Most of the frameworks found were tried with the project to some degree, for each, |
downloaded the program in the available format (source code, executable, etc.) placed it
within the project as a new module and started trying to build, compile and run the
software to see if it will work, how good can it be utilized in the code and how much will

it be affecting the performance.

= AceUnit, EmbUnit, CHEAT, Seatest

Small, frameworks developed in C and focusing on Embedded testing, in
JUnit4.x style, they were integrated successfully with program. The
negative aspect of these frameworks was the scarcity of built in

assertions. | had to compose my own if | had to proceed.

= GNU Autounit

A small, framework for testing C and other languages, it was not made
for Embedded projects, it lacked the documentation and it was depending
on using GNU Autoconf [11] in the projects to be tested. Therefore, I did
not go through with the integration trials

* CUnit, CuTest, HWUT, punit, greatest

Those frameworks shared similar characteristics, lightweight, they are
built as a static library or just a header file and linked with the testing
code that would be developed, they were successfully integrated into the
project but proved to be needing a lot of work to setup tests, write a test

suite with and some lacked the automation feature

= Criterion, CMocka

Very simple frameworks for testing C, they were built and compiled with
the project with no issues, but they lacked the ability to output their
results through Universal Synchronous and Asynchronous Receiver-
Transmitter (USART) serial port as the project is run, test suites had to
be run independently from terminal to get the results out, which proved

to be impractical.

= CppUnit, Google Test

Frameworks that are built in C++ proved to be troublesome when
compiling with C based projects and C based compiler configurations. |
discarded those options due to the large number of errors produced when

compiling.

= Parasoft, VisualGDB

These frameworks promised a much better option for unit testing, they
had large libraries of unit tests and support from their developing

companies, but they were not for free.

= Unity, Cmockery

Both were lightweight, and worked with the software with no issues.

20

| decided to work with Unity testing framework, an open source framework built by
Throwtheswitch community [12]. It proved to be lightweight, portable (which was the
same case as Cmockery) and yet very rich in assertions, and it supported centralized
testing automation and reports with results summary and clear success/failure identifiers
that were easily hooked up with USART serial port and rendered the results back into the

terminal while the project ran.

21

3 Integration

In order to get actual live readings from CAN and Ethernet connections in the car that is
being tested in the testing environment of the project, the tests need to read values from
interrupt states and incoming data streams that is only possible to read on the
microcontroller itself, therefore Unity source code is installed into the project as one of
its modules. Even if during these tests | have no access to the live system, it is better to
prepare the environment for live testing so in future it can be easily integrated and used.

3.1 Project Structure

The software skeleton is generated using STM32CubeMx with target platform System
Workbench. A new folder is created in the project for Unity, which has the source and
include subfolders for its files. A Tests folder is created with source and include
subfolders to include sources and headers for each module in the project, Unity is
downloaded from their project’s Git repository [13]. In Tests folder I first created a test
runner which included a source and header that would act as the tests automation tool,

calling tests at the desired time.

~ rc:'ﬂ’ > stm32f767 [master_controller testing]

s

[Includes

3 Drivers

#F Inc

%3 Middlewares

i3 > Sre

o4 = Tests/Src
~ 5} Unity

v [Fy Inc

Binaries

[} unity_internals.h
[k} unity.h
17 unity.c
(53 startup
= Debug
v Gy v Tests
v (& = Inc
lIE} runnerh
li} Testapp_ethernet.h
[IE} Testcan.h
lIiy} Testethernetif.h
[i5} Testrmain.h
lIE} = Testros.h
Iz} Testrtc.h
v iy > Sre
|} = runner.c
|} Testapp_ethernet.c
) Testcan.c
|7} Testethernetif.c
[} Testmain.c
|} = Testros.c
|7} Testrtc.c
¥y = MUCLEOQ-F767ZLxml
|v3 README.md
- @ stm32f767 Debug.cfg
i stm32f767_(vd.22).iec
y stm32f767.ioc
1) STM32F767ZITx_FLASH.IA

Figure 5 Software Structure

22

For each module, a test suite is created, that would cover each function in the module
(that can be tested), in each function for clarity reasons, every variable to be tested is
given a separate testing function of its own. This is because Unity stops execution of a
single test function upon the first failure and moves on to the next function. So to clarify

which part of the function failed in test, it proved beneficial to create the tests as:

= If a function manipulates several variables, a test for each variable in that
structure is created.

= |fafunction has a return value, a separate test would cover it.

The Project consist of the main source folder where the program main logic resides, in
each module, there are two types of code, the generated code, which is not tested and the
user code which is created by the implementation teams in the project and this is where
the code to be tested resides. Various other folders in the project consist of drivers,
helpers, libraries and many other modules that are related to the hardware, the CubeMx
generator, etc.

3.2 Tests Structure

A main test file (runner) is created to consolidate all tests runner into one initialization
point, all other test related helpers also resided in this file, this approach simplifies tracing
all the tests starting points and separates the tests module from the rest of the software.
The source file runner.c includes all the headers of the test files created for each module,
the FreeRTOS, tasks headers for creating semaphores and tasks that are needed when
testing functions that work in the Interrupt Service Routine (ISR) and of course the Unity

header itself.

A runner header file is included in the software main file to initialize all tests’ variables
and run the test suites at the desired point in the process. A test source and header with
the naming convention Test[filename] (where filename is the name of source file name
being tested) are created for each module that would be tested, the header of that module
would be included in the test source to access the needed functions and variables that can

be accessed and tested.

23

3.2.1 Test Runner

A single-entry point for all tests, this is where the tests are called to run and return their
results to the output print stream where they are read and logged. The file contains a main
void function with void parameter, called runUnityTests() which starts with the Unity
macro UNITY BEGIN() that is responsible for initializing Unity’s process and get things
ready for the incoming test calls which are made with the macro RUN_TEST (test_name)
and takes one parameter which is the test function name that is to be run. At the end the
test runner is stopped by calling the macro UNITY_END() which collect the previous test

results, calculate the totals and print out a summary of successes, failures and ignores.

This approach proved to be working fine with normal functions, but for the ones in the
ISR, amore invasive approach was needed to be able to access the functions and variables
at the right moment when they are called into action. For that a freeRTOS semaphore
dedicated to the tests and a task is created, that would be called whenever the test
semaphore is given from within an ISR function, in order to run the tests and do the
needed calculations and asserts outside of the ISR domain to avoid further disruption to

the original software's functionality.

A global data structure is created in the runner and included wherever it is needed to
capture some values from an ISR function and test it outside in the test suite, the needed
variables would be assigned to one or more of the structure variables and read in the suite

and asserted that the correct values are manipulated in the intended way.
3.2.2 Test Task

For ISR based functions, A task runner function in runner.c is created and inside the test
semaphore test_sem_handle is called and once it is woken, the needed ISR tests are called
using RUN_TEST macro, for a more organized way the test calls are wrapped in a
UNITY_BEGIN() and UNITY_END() to separate these tests from the normal tests and

have their own summary or results.

The test task along with the test semaphore are initialized through an init() function in

runner.c and called at the beginning of the code from the main class.

24

3.2.3 Test Data Structure

A structure of arrays is created in the runner header file and initialized in its source, it
contains multiple arrays of different data types to hold various values and transfer them
from functions in the project to the test suites for assertion. It is initialized also from the
main class at the beginning of the code before the scheduler starts, if needed, the data in

it is cleared before using it in another function or module.
3.2.4 Test Suites

For each module in the project, a test suite is created (a test source and header files), the
source file includes the target module header file in the suite, Unity, runner and other files
as per the testing needs. One test suite had to have a startUp(void) and tearDown(void)
functions because it is required by Unity to have at least one of each in the program,
adding more of those helpers proved to invoke multiple definition errors by the compilers,
so it is removed and aliases are used instead in other suites since they are optional anyway.
These functions originally were intended to be used as helpers where startUp is called at
the beginning of the test suite and tearDown at the end of each. | managed to mimic the
behaviour in a more manual fashion in other suites where it is implicitly called at the

beginning of a test function in a suite, if its needed.

Each test suite contains multiple test void functions and in each one a single assertion is

called for a single variable or return value in the project.

3.3 Hardware

For the testing purposes, | was provided with a microcontroller board of the same model
that is being used in the development of low level controller functionality. The board is
connected to a host PC and the project along with the test modules are compiled and

flashed onto the board for live testing.
3.3.1 The Board

The STM32F767Z1T6-Nucleo-144 manufactured by STMicroelectronics [14]. It features
an ARMO© Cortex©-M7 core at 216MHz, a 2 Mbytes of flash memory, Embedded ST-

25

LINK/V2-1 debugger/programmer which | use to connect to the board through a micro-
b Universal Serial Bus (USB) port on it.

Figure 6 STM32F767 Board [15]

3.3.2 Debug Logging Connection

In order to get a logging mechanism working to print out the testing results from within
the board, one way is to utilize the USART port communication of the board and by using
a USART to USB converted | am able to get the results back to the host PC through USB
and read them using a Serial port enabled terminal called TeraTerm© [16]. As shown in

Figure 7 connections were made from the board to the USB converter as follows:

Board USART
PAl TXD
PA4 RXD
PCO GND

Table 2 Board to USART converter pinout

26

'S A LA 444 4 4
"R A 42444 4

.‘\-"'\‘\’\"i.\.\‘.\&!&q-b
E 2 A R A A ARERREEDN.
C/1852/1858918S (»n BE18S
. : £ @
$218512185/918SN88
] 59188
= 19166 e
N
e+

8 A8y [CLLaN

o ¥ RXIRAXI ZIR 4 e 7 3
£ o & R > 4 R &
LA R N B N] - LE R RN}
LLEXEEEE X KX K L B AN
B o2%BBY R > 5 Y 5% % D%
PCO-->GND ‘ PA1--> TXD
PA4 -->RXD

Figure 7 Board diagram (back-side) with debug connections [17]

3.4 Software Configuration

In order to correctly run the tests within the project, some minor configuration setup is
done, the Unity and Tests sources and headers locations are included in the software paths
on the IDE. The board USART was used for serial debugging, a serial to USB converter
was connected to USART ports on the board and connected to the PC, then a TeraTerm©
[16] terminal was configured with baud rate of 115200 to match the board’s

configuration.

3.5 Implementation

The project’s code structure follows a similar pattern in all the modules that are generated
by STM32CubeMx, through each module, in each section and function there are two
types of code, the generated code and the user code, the former is not identified but treated

as the main code in the file, the latter is identified by a comment
/* USER CODE BEGIN (keyword here) */

User Code Here

27

/* USER CODE END(keyword here) */

In place of keyword above there are various types clarifying which user code should go
in this section, there are sections for includes, private variables, private function
prototypes, and user code which are presented in a numbering convention (e.g. /* USER
CODE BEGIN 0 */) in each function there is a section that contain these comments and
there a user should add his/her code.

This approach which is automatically provided by STM32CubeMX software gave the
code a more organized and readable style and it is mandatory to use these regions in order
to keep the code in place if the implementation team needs to change some configuration
and regenerate the code again, any code inside those comments regions is not touched,
this provides very high flexibility and portability throughout the project. Of course if a

user creates a custom module from scratch, it also won't be touched when regenerating.

I am concerned with only the user made code, the generated code testing is out of scope
of this thesis.

28

4 Testing

The project consists of different types of functions; initialization functions that creates a
data structure or something similar, functions with parameters, and ISR functions. Mostly
all the functionality is handled by the RTOS scheduler. For each type of functions, a
different testing approach is needed, some are simply passing data or saving it into a data
variable, so all that is needed to do is capture that variable and test it after or during the
function call, some have more complex nature whether it’s an ISR which prevents us from
heavily intruding the code, functions that depends on incoming data streams are very

difficult to test without the live environment.

In almost all test cases, they are called from the main module after all the initializations
have been done and just before the scheduler takes over, this is done by called a simple

function runUnityTests() and it then starts executing the test suites automatically.

void runUnityTests(void){

printf(
e UNITY TESTING START--------mmmmmmmmmmmmm e e o \n\n");
//UnityBegin("Testmain.c");
UNITY BEGIN();
printf("----- START || TESTING: main.c ---------- \n");

RUN_TEST(test MPU Config RNR);
RUN_TEST(test_MPU_Config_RBAR);
RUN_TEST(test _MPU Config RASR);

RUN_TEST(test CPU CACHE Enable SCB_EnableICache ICIALLU);
RUN TEST(test CPU CACHE Enable SCB EnableICache CCR);
RUN_TEST(test CPU_CACHE_Enable_SCB_EnableDCache CSSELR);
RUN_TEST(test CPU_CACHE Enable SCB EnableDCache CCR);
printf("----- END || TESTING: main.c ---------- \n\n");

printf("----- START || TESTING: app_ethernet.c ---------- \n");
RUN TEST(test User notification LD1 SET);
RUN_TEST(test_User_notification_LD1_RESET);
RUN_TEST(test User notification LD3 SET);

RUN_TEST(test_User_notification_LD3_RESET);
printf("----- END || TESTING: app ethernet.c ---------- \n\n");

Figure 8 Unit Testing Module Main Function

4.1 Initialization Functions Tests

Functions that are called early in the execution, they initialize structures and other data
types responsible for transferring and/or saving data for later usage. In these functions,

either the same data is checked in the test suite after it is initialized or another variable

29

with the same datatype is created and initialized, then the values are tested. The actual
function that is to be tested is shown in the figure below, it consists of a two data structures
that are initialized with values, in Figure 9, an example of testing one of those assigned
values after the original function is called. It is possible to access the structures in the core
code from the testing module, so no mocking is needed in that case.

void CAN1_Config Filters(void) {

CAN_FilterConfTypeDef sFilterConfig;
hcanl.Instance = CAN1;

//#i#-2- Configure the CAN Filter #HHHHHHHHHHHHHHHEHHEHHHHEHHEHEHHHHHRHERHEHS
sFilterConfig.FilterNumber = ©;
sFilterConfig.FilterMode = CAN_FILTERMODE IDMASK;
sFilterConfig.FilterScale = CAN _FILTERSCALE 32BIT;
sFilterConfig.FilterIdHigh = 0x0000;
sFilterConfig.FilterIdLow = @x0000;
sFilterConfig.FilterMaskIdHigh = @x0000;
sFilterConfig.FilterMaskIdLow = 0x0000;
sFilterConfig.FilterFIFOAssignment = 0@;
sFilterConfig.FilterActivation = ENABLE;
sFilterConfig.BankNumber = @;

if(HAL_CAN ConfigFilter(&hcanl, &sFilterConfig) != HAL OK) {
// Filter configuration Error
Error_Handler();

}

//H##-3- Configure Transmission process HHHHHEHARHAHHAHHEHHEHAHHAHHAHHEHASHE
hcanl.pTxMsg->StdId = 0x321;

hcanl.pTxMsg->ExtId = 0x@1;

hcanl.pTxMsg->RTR = CAN_RTR DATA;

hcanl.pTxMsg->IDE = CAN_ID STD;

hcanl.pTxMsg->DLC = 8;

Figure 9 Initialization Function with global access [18]

void test_CAN1_Config_Filters_StdId(void) {
TEST_ASSERT_EQUAL_UINT32(0x321, hcanl.pTxMsg->StdId);

}

/J-c)-c

* Test: CAN1 Config Filters ExtId
Target method: CAN1 Config Filters
Parent method: MievCAN2Thread

Actual Value: hcanl.pTxMsg->ExtId

* @brief Testing the assigned values in hcanl.pTxMsg struct after calling CAN1 Config Filters
* Expected Value: 9Xol

*/
void test_CAN1_Config_Filters_ExtId(void) {
TEST_ASSERT EQUAL_UINT32(@X01, hcanl.pTxMsg->ExtId);

M

Figure 10 Initialization Function Tests
In other cases, | have to create my own data similar to the core ones in order to test them,
since there is no global access to those variables as shown in the following figures,
external variables with same data types and names are created in the test suite and the

initialization function called one time at the execution of the first test case.

30

void Construct_ROS_Packet(void) {|
extern struct UDPData MToROSData;
extern struct CAN2Data iMievData;
extern struct CAN2DataTime iMievTime;

MToROSData.ready can_id = CAN_ID READY;
MToROSData.ready time iMievTime.ready;
MToROSData.ready data = iMievData.ready;

MToROSData.key can_id = CAN_ID KEY;
MToROSData.key time = iMievTime.key;
MToROSData.key data = iMievData.key;

Figure 11 Initialization Function without global access [18]

extern struct UDPData MToROSData;
extern struct CAN2Data iMievData;
extern struct CAN2DataTime iMievTime;

‘void ros_startUp(void) {
Construct_ROS_Packet();

}
Figure 12 Initialization of the function in test suite

void test_Construct_ROS_Packet_can_id(void) {
// Calling startup one time to initiate the function call
ros_startUp();
TEST_ASSERT_EQUAL_UINT32(CAN_ID READY, MToROSData.ready can_id);

/%%

* Test: Construct ROS Pack ready time
* Target method: Construct ROS_Packet
* Parent method: UDPThread

*

* @brief Testing the assigned values in MToROSData struct after calling Construct_ROS_Packet
* Actual ValueMToROSData.ready timele
* Expected ValueiMievTime.readyle

*/
void test_Construct_ROS_Pack_ready_time(void) {
TEST_ASSERT_EQUAL_UINT32(iMievTime.ready, MToROSData.ready time);
1

Figure 13 Initialization Function Test

4.2 Function Arguments Mock Testing

Functions that take input arguments when called and do some manipulation on the data
or transfer it further in the execution cycle, these functions needs to have mocks to copy
the same behavior of the function as if it has actual inputs when called in the test module,
since there is no way of knowing the exact values that would be coming to some of the
functions from my testing environment, | decided as a temporary solution to copy the
values of both the assignee and assigned and test them separately in the test module.

31

In some cases, (Figure 14) the values are simple, just one value assigned to a variable and
tested in the suite (Figure 15)

// Find safety brake status

idType = MSG_TYPE_SAFETY BRAKE;

idPosition = 18;

if (memcmp(&buf[idPosition], &idType, 1) == @) {
odometry.safety brake = buf[idPosition+1];

){:-(:-(
* Testing Area

*/

testData.uint8 value[@] = buf[idPosition + 1];
testData.uint8 value[1] 135;

Figure 14 Function with Arguments 1 [18]

®

Test: handle odometry packet safety brake
Target method: handle_odometry packet
Parent method: udp_serve

@brief Testing the assigned values in odometry struct after calling handle_odometry packet
Actual Value: odometry.safety brake
Expected Value: buf[i + idPosition + 1]

2 I I

*/
void test_handle_odometry_packet_safety_brake(void) {

TEST ASSERT EQUAL UINT8(testData.uint8 value[1], testData.uint8 value[@]);

Figure 15 Function with Arguments Test 1
In other cases, it is an array of values incremented or pushed through some loop, for these
cases, the values are added instead of dynamically assigning them and test their sums as
an assertion, since | am not aware of the incoming data length and nature which is in most

cases, live readings from some CAN or Ethernet connection.

32

void handle_odometry_packet(char *buf) {
uint8 t idType; // ID value
uint8 t idPosition; // Byte location from where to look for ID
volatile uint8 t j = 3;

// Find velocity
idType = MSG_TYPE_VELOCITY;
idPosition = @; // Which byte is wvelocity ID
if (memcmp(&uf[idPosition], &idType, 1) == 0) {
for(int i = @; i<sizeof(float); i++) { /[Extract velocity data
odometry.velocity[j--] = buf[i+idPosition+1];

f{:-c:-c
* Testing Area -- collect totals instead if looping
*/

test data_init();

testData.string value[®] += buf[i + idPosition + 1];
testData.string value[1l] += odometry.velocity[]--];

Figure 16 Function with Arguments 2 [18]

Test: handle_odometry_packet_st wheel angle
Target method: handle_odometry_ packet
Parent method: udp serve

@brief Testing the sum of assigned array values in gdometry struct after calling handle_odometry packet
Actual Value: odometry.st_wheel_angle
Expected Value: buf[i + idPosition + 1]

SRR I

*/
void test_handle_odometry_packet_velocity(void) {

TEST_ASSERT_EQUAL_STRING(testData.string_value[3],
testData.string value[2]);

Figure 17 Function with Arguments test 2

4.3 Interrupt Service Routine Functions Tests

Interrupt Service Routine (ISR) functions proved to be tricky to capture at the needed
time to get correct readings, since they are always called by the RTOS scheduler and once
the scheduler started, all other execution ceases and | cannot invoke testing unless through
a scheduler task. ISR constrained environment also prevents me from adding too much
testing related functionality inside, since everything inside this routine should be
lightweight, and quickly executed. Therefore, | create a custom RTOS task for testing
purposes and call it using semaphores from within the ISR that | need to test, and for

passing the data values needed to be tested I use the globally declared testData structure.

In Figure 18 an ISR callback function that is invoked by RTOS scheduler whenever a

CAN data transmission is completed and inside the CAN data is analyzed and actions

33

taken based on these analysis, almost all the actions are simple thread calls to start
separate threads outside the ISR responsible for more complex executions. Figure 19
shows the testing thread task runner which is in the main runner.c file and its main
responsibility is calling the ISR test suites in the correct time whenever the task is called
from ISR, these tests are then executed in their respective test suites and the results are
printed outside the ISR adding no extra processing load on such states as we can see in

Figure 20

void HAL_CAN_RxCpltCallback(CAN HandleTypeDef* CanHandle) {

long task_woken = 0;
uint8_t data_length = 0;
uint32_t data_id = 0;
uint8_t data_id_type = 0;

data_length = CanHandle->pRxMsg->DLC;
data_id = CanHandle->pRxMsg->StdId;
data_id type= CanHandle->pRxMsg->IDE;

// Forward message CAN1 -> ETH
if ((data_id == CAN_ID HANDBRAKE)||(data id == CAN_ID WHEEL POSITION)) {
xSemaphoreGiveFromISR(CANBinarySemHandle, &task woken); // Execute CAN thread
if (task woken) {
portYIELD FROM ISR(task woken);

¥
HAL_GPIO TogglePin(LD3_GPIO Port, LD3 Pin);

} else if (CanHandle->Instance == CAN2) {
// Save CAN2 received data into structure
Store Miev Data(&hcan2, data length, data id);

/x
* Testing Area (taking I/0 values and testing them)
* x/
test_data_init();
testData.uint32_value[@] = data_id;
testData.uint32_value[1] = CanHandle->pRxMsg->StdId;
testData.uint8 value[@] = data_length;
testData.uint8 value[1] = CanHandle->pRxMsg->DLC;
testData.uint8 value[2] = data_id_type;
testData.uint8 value[3] = CanHandle->pRxMsg->IDE;

xSemaphoreGiveFromISR(test _sem_handle can, &task woken);// Execute Testinglthread

if (task_woken) {
portYIELD _FROM ISR(task woken);

¥
Figure 18 ISR Function example [18]

34

void test_task_runner(void *p) {

while (1) {
if (xSemaphoreTake(test_sem_handle_can, portMAX_DELAY)) {
printf(

UNITY BEGIN();
RUN_TEST(test HAL CAN RxCpltCallback data _id);
RUN_TEST(test_HAL_CAN_RxCpltCallback_data_id_type);
RUN_TEST(test HAL CAN RxCpltCallback data length);

UNITY_END();

Figure 19 ISR Function Task

* Test: HAL_CAN RxCpltCallback data_id
* Target method: HAL_CAN RxCpltCallback
* Parent method:

* @brief Testing the assigned data values in call back function of receiving CAN messages
* Actual Value: data id which is stored in testData.uint32 value[@]
* Expected Value: CanHandle->pRxMsg->StdId which is stored in testData.uint32 value[1]
*/
void test_HAL_CAN_RxCpltCallback_data_id(void) {
TEST_ASSERT_EQUAL_UINT32(testData.uint32 value[1],
testData.uint32_value[@]);

}
* Test: HAL CAN RxCpltCallback data id type[]
void test_HAL_CAN_RxCpltCallback_data_id_type(void) {
TEST_ASSERT_EQUAL UINT8(testData.uint8 value[3], testData.uint8 value[2]);

}
* Test: HAL_CAN_RxCpltCallback_data_id_length[]

void test_HAL_CAN_RxCpltCallback_data_length(void) {
TEST_ASSERT_EQUAL_UINT8(testData.uint8 value[1], testData.uint8 value[0]);

}

Figure 20 ISR Function Test
With this approach | am able to invoke the needed tests at the correct time frame where
the values being manipulated still resides in their respective memory addresses, these
values are copied to my structure and their validity is tested elsewhere.

4.4 Inapplicable Functions

There are functions that cannot be tested for various reasons. Some functions are not yet
completed, some are not fully implemented, when tested they resulted in strange behavior
and sometimes system crashes. Other functions are deemed not important and | am

advised to ignore them.

35

// TBD

uint8 t CAN2_Rx(void) {
while(!CAN2->RFOR&CAN RFOR_FMPO); // Wait for a message complete in FIFO®@
uint8_t RxD = (CAN2->sFIFOMailBox[@].RDLR) & OxFF; // Read data bytes
CAN2->RFOR |= CAN_RFOR_RFOMO; // Release FIFOO output mailbox

return RxD;

Figure 21 Inapplicable Function 1 [18]

In some cases, the tests fail to execute due to the fact that this function gets its input from
CAN data stream and since | have no live data stream, | will skip these kinds of functions.
As a future solution, two boards with CAN and Ethernet connections should be used to
mimic the actual environment the software is supposed to work in.
void test_CAN2_Rx(void) {

uint8 t retval = CAN2 Rx();

TEST_ASSERT_EQUAL_UINT8 MESSAGE(retval,

((CAN2->sFIFOMailBox[@].RDLR) & OxFF), "Test CAN2 Rx 1 Failed");
Figure 22 Inapplicable Function 1 Test

Other functions are not tested because their purpose is to pass data to some other function
and there are no return values from these function calls, so no way of testing what happens

there (to my knowledge).

void ethernetif_notify_conn_changed(struct netif *netif) {

MX_LWIP Init();
User_ notification(&gnetif);

Figure 23 Inapplicable Function 2 [18]
Finally, other functionality is not tested for lack of time during this project, but same
approach can be followed and the system can be fully tested in the future. It took the

larger span of the thesis time to check the frameworks, find the one to use and set it up.

36

5 Results and Analysis

Using the TeraTerm© [16] application it is possible to get the printing output on its
terminal and also using the logging feature that comes with it, | am able to log the results
of each test run into a text file and save it for reference. In total during the time this thesis
is written there are 32 functions, 14 were tested, and 18 skipped due to the lack of time,

the means to test them, as per advice from the implementation team or they are not yet

completed.
Module Functions Covered Skipped Coverage
app_ethernet 2 1 1
can 8 6 2
ethernetif 2 2 0
main 2 2 0
ros 2 2 0
rtc 4 1 3
server_netconn 5 0 5
udpclient 5 0 5
utils 2 0 2

32 14 18 43.75%

Table 3 Testing Coverage

As a mean of synchronization between the implementation team and testing, a
requirements/testing register was created and is being updated by implementation
whenever a new functionality is added to the requirements, and for each one a test suite

is created or to be created in the future.

37

Group
ROS - iMlie
ROS - iMiev
Drive - ROS
Drive - ROS
Drive - ROS
Drive - ROS

Drive - ROS
Drive - ROS

ROS - itliev

iMiev - Drive

ROS - iMiev

Requirements Functionality Devel. status Responsible
~ Recieve alliMiev messages over CANZ bus Finished -
- Store all messages from iMiev to corresponding data structure Finished
- Recieve all drive controller messages over CAN1 bus Finished

Store all messages froim drive controlier to corresponding data
~ structure Under development ~
~ Retieve UDP packet from ROS containing odometry information Finished -
- Store odemetry information from ROS te comesponding date structure Finished

Construct CAN message based on odometry information recieved from
~ ROS Finished
- Forward odometry CAN messages to drive controller over CAN1 bus Finished

Each CAN message that is sent out from conroller has last byte
counter that is increased affer every sending and re-initialized after
overflow. If massge length is already 8 bytes then counter will not be

- added.

Notimplemented ~
Construct CAN messages with steefing
angle, velocity and gear infromation and

Forward velocity, steering angle and gear information from iMiev CAN forward them to drive controller over CAN1

~ 1o drive controller

bus Finished
Construct a UDP packet from iMiev and

Send out UDP packet to ROS periodically every X ms and after drivs controller messages. Forward UDP
- recieving certain CAN messages from drve controller packet to ROS over Ethemet Under development ~

5.1 Tests Results

Figure 24 Requirements/Tests register

Test state
Finished
Finished
Finished

Pending
Finished

Pening

Test result
2 Passed

8 Pass 2 Fail
3 Passed

3 Passed

Tested by

Eslam
Eslam
Eslam

Eslam

Test date

25.04.2018
24.04.2018
25.04.2018

Comments! Reccomendations

Called from ISR callback function by inwt
Stored /0 in data siruct and fested therf
Stored 1/0 in data struct and tested ther

|
I
need to know why function does that |
Stored I/0 in data siruct and tested therr
1

need to know why function does that |

__

The test results are consolidated into report files; each function is broken down into

segments each one covering one variable that is being tested.

5.1.1 Main Module

All tests passed

../Tests/Src/runner.c:93:
../Tests/Src/runner.c:94:
../Tests/Src/runner.c:95:
../Tests/Src/runner.c:96:

-START || TESTING: main.c ----------

../Tests/Src/runner.c:90:test_MPU_Config_ RNR:PASS
../Tests/Src/runner.c:91:test_MPU_Config_RBAR:PASS
../Tests/Src/runner.c:92:test_MPU_Config_RASR:PASS

-END || TESTING: main.c ----------

Figure 25 Test Report: Main Module

5.1.2 App_Ethernet Module

2 tests passed and 2 failed

START || TESTING:
:33:test_User_notification_LD1_SET:FAIL: Expected 1 Was ©

../Tests/Src/runner.c
../Tests/Src/runner.c
../Tests/Src/runner.c
../Tests/Src/runner.c

END || TESTING:

app_ethernet.c ----------

:101:test_User_notification_LD1_RESET:PASS
:65:test_User_notification_LD3_SET:FAIL: Expected 16384 Was ©
:103:test_User_notification_LD3_RESET:PASS

app_ethernet.c ----------

Figure 26 Test Report: App_Ethernet Module

38

test_CPU_CACHE_Enable_SCB_EnableICache_ICIALLU:PASS
test_CPU_CACHE_Enable_SCB_EnableICache_CCR:PASS
test_CPU_CACHE_Enable_SCB_EnableDCache_CSSELR:PASS
test_CPU_CACHE_Enable_SCB_EnableDCache_CCR:PASS

5.1.3 CAN Module

26 tests passed, 2 failed

----- START || TESTING: can.c ----------

../Tests/Src/runner.c:187:test_CAN1_Config_Filters_StdId:PASS
../Tests/Src/runner.c:108:test_CAN1_Config_Filters_ExtId:PASS
../Tests/Src/runner.c:109:test_CAN1_Config_Filters_RTR:PASS
../Tests/Src/runner.c:110:test_CAN1_Config_Filters_IDE:PASS
../Tests/Src/runner.c:111:test_CAN1_Config_Filters_DLC:PASS
../Tests/Src/runner.c:112:test_CAN2_Config_Filters_StdId:PASS
../Tests/Src/runner.c:113:test_CAN2_Config_Filters_ExtId:PASS
../Tests/Src/runner.c:114:test_CAN2_Config_Filters_RTR:PASS
../Tests/Src/runner.c:115:test_CAN2_Config_Filters_IDE:PASS
../Tests/Src/runner.c:116:test_CAN2_Config_Filters_DLC:PASS
../Tests/Src/runner.c:117:test_CAN3_Config_Filters_StdId:PASS
../Tests/Src/runner.c:118:test_CAN3_Config_Filters_ExtId:PASS
../Tests/Src/runner.c:119:test_CAN3_Config_Filters_RTR:PASS
../Tests/Src/runner.c:120:test_CAN3_Config_Filters_IDE:PASS
../Tests/Src/runner.c:121:test_CAN3_Config_Filters_DLC:PASS
../Tests/Src/runner.c:248:test_Store_Miev_Data_iMievData_update_status:FAIL: Expected 1 Was @
../Tests/Src/runner.c:262:test_Store_Miev_Data_iMievTime_update_status:FAIL: Expected 1 Was ©
../Tests/Src/runner.c:124:test_Store_Miev_Data_iMievData_ready:PASS
../Tests/Src/runner.c:125:test_Store_Miev_Data_iMievTime_ready:PASS
../Tests/Src/runner.c:126:test_Store_Miev_Data_iMievData_key:PASS
../Tests/Src/runner.c:127:test_Store_Miev_Data_iMievTime_key:PASS
../Tests/Src/runner.c:128:test_Store_Miev_Data_iMievData_switch_cases:PASS
../Tests/Src/runner.c:129:test_Store_Miev_Data_iMievTime_switch_cases:PASS
../Tests/Src/runner.c:130:test_Store_Miev_Data_iMievData_update_status_2:PASS
../Tests/Src/runner.c:131:test_Store_Miev_Data_iMievTime_update_status_2:PASS
../Tests/Src/runner.c:132:test_CAN_TX_STATE:PASS
../Tests/Src/runner.c:133:test_CAN_TX_type:PASS
../Tests/Src/runner.c:134:test_CAN_TX_size:PASS

----- END || TESTING: can.c ----------

Figure 27 Test Report: CAN Module

5.1.4 ROS Module

All tests passed

----- START || TESTING: ros.c ----------
../Tests/Src/runner.c:141:test_Construct_ROS_Packet_can_id:PASS
../Tests/Src/runner.c:142:test_Construct_ROS_Pack_ready_time:PASS
../Tests/Src/runner.c:143:test_Construct_ROS_Packet_ready_data:PASS
../Tests/Src/runner.c:144:test_Construct_ROS_Packet_key_can_id:PASS
../Tests/Src/runner.c:145:test_Construct_ROS_Packet_key_time:PASS
../Tests/Src/runner.c:146:test_Construct_ROS_Packet_key_data:PASS
../Tests/Src/runner.c:147:test_Construct_ROS_Packet_charger_temp_can_id:PASS
../Tests/Src/runner.c:148:test_Construct_ROS_Packet_charger_temp_time:PASS
../Tests/Src/runner.c:149:test_Construct_ROS_Packet_charger_temp_data:PASS
../Tests/Src/runner.c:15@:test_Construct_ROS_Packet_motor_temp_rpm_can_id:PASS
../Tests/Src/runner.c:151:test_Construct_ROS_Packet_motor_temp_rpm_time:PASS
../Tests/Src/runner.c:152:test_Construct_ROS_Packet_motor_temp_rpm_data:PASS
../Tests/Src/runner.c:153:test_Construct_ROS_Packet_driving_range_can_id:PASS
../Tests/Src/runner.c:154:test_Construct_ROS_Packet_driving_range_time:PASS
../Tests/Src/runner.c:155:test_Construct_ROS_Packet_driving_range_data:PASS
../Tests/Src/runner.c:156:test_Construct_ROS_Packet_amps_volts_can_id:PASS
../Tests/Src/runner.c:157:test_Construct_ROS_Packet_amps_volts_time:PASS
../Tests/Src/runner.c:158:test_Construct_ROS_Packet_amps_volts_data:PASS
../Tests/Src/runner.c:159:test_Construct_ROS_Packet_charging_status_can_id:PASS
../Tests/Src/runner.c:160:test_Construct_ROS_Packet_charging_status_time:PASS
../Tests/Src/runner.c:161:test_Construct_ROS_Packet_charging_status_data:PASS
../Tests/Src/runner.c:162:test_Construct_ROS_Packet_ac_amps_volts_can_id:PASS
../Tests/Src/runner.c:163:test_Construct_ROS_Packet_ac_amps_volts_time:PASS
../Tests/Src/runner.c:164:test_Construct_ROS_Packet_ac_amps_volts_data:PASS
../Tests/Src/runner.c:165:test_Construct_ROS_Packet_ac_status_can_id:PASS
../Tests/Src/runner.c:166:test_Construct_ROS_Packet_ac_status_time:PASS
../Tests/Src/runner.c:167:test_Construct_ROS_Packet_ac_status_data:PASS
../Tests/Src/runner.c:168:test_Construct_ROS_Packet_gas_can_id:PASS
../Tests/Src/runner.c:169:test_Construct_ROS_Packet_gas_time:PASS
../Tests/Src/runner.c:170:test_Construct_ROS_Packet_gas_data:PASS
../Tests/Src/runner.c:171:test_Construct_ROS_Packet_break_pedal_can_id:PASS

39

Figure 28 Test Report: ROS Module

5.1.5 Ethernetif Module
2 tests passed, 1 ignored

----- START || TESTING: ethernetif.c ----------
../Tests/Src/runner.c:192:test_sys_jiffies:PASS

../Tests/Src/runner.c:193:test_sys_now:PASS
../Tests/Src/runner.c:50:test_ethernetif_notify_conn_changed:IGNORE: Method not implemented

----- END || TESTING: ethernetif.c ----------

Figure 29 Test Report: Ethernetif Module

5.1.6 RTC Module
1 test passed

----- START || TESTING: rtc.c ----------
../Tests/Src/runner.c:198:test_RTC_CalendarConfig:PASS
----- END || TESTING: rtc.c ----------

Figure 30 Test Report: RTC Module

5.1.7 Normal Tests Summary

Note that Unity consider the end result as a failure if one or more tests failed

FAIL

Figure 31 Test Report: Normal Tests Summary

5.1.8 Interrupt Service Routine Tests

These tests are consolidated in a different task function that is called later when the

scheduler calls the ISR function that is to be tested

3 tests passed

40

../Tests/Src/runner.c:52:test_HAL_CAN_RxCpltCallback_data_id:PASS
../Tests/Src/runner.c:53:test_HAL_CAN_RxCpltCallback_data_id_type:PASS
../Tests/Src/runner.c:54:test_HAL_CAN_RxCpltCallback_data_length:PASS

OK

Figure 32 Test Report: ISR Functions Tests

5.2 Detected bugs and Possible Code Improvements

In total there are 4 failed tests from 94 test cases, surely more problems would be
uncovered with more tests and with live readings from the car that is being operated by
the software in development.

5.2.1 Failed Tests
File: app_ethernet

The function (User_notification) objective as per the documentation, is to notify the user
about the network interface configuration status.

if (netif _is up(netif)) {
/* Turn On LED 1 to indicate ETH and LwIP init success*/
HAL_GPIO WritePin(LD1_GPIO Port, LD1_Pin, GPIO PIN SET);
HAL_GPIO WritePin(LD3_GPIO Port, LD3_Pin, GPIO PIN RESET);
} else {
/* Turn On LED 3 to indicate ETH and LwIP init error */
HAL_GPIO WritePin(LD3_GPIO Port, LD3 Pin, GPIO PIN SET);
HAL_GPIO WritePin(LD1_GPIO Port, LD1 Pin, GPIO PIN RESET);

Figure 33 User Notification Function [18]

In order to test this functionality, each one of the four HAL_GPIO_WritePin function
calls are tested separately, viewing the actual login behind this function it shows that it

assign a value to a certain LD Pin

41

‘void TYMGIGEERTIN|(GPIO TypeDef* GPIOx, uintlé t GPIO Pin,
{
/* Check the parameters */
assert_param(IS_GPIO PIN(GPIO Pin));
assert_param(IS_GPIO PIN ACTION(PinState));

if(PinState |= GPIO PIN RESET)

{
GPIOx->BSRR = GPIO Pin;
¥
else
{
GPIOx->BSRR = (uint32 t)GPIO Pin << 16;
}

Figure 34 Function called by User Notification Function [18]

So 1 call the function in each test case and then check the new value assigned in the
GPIO_Pin variable

/3\(:(

* Test: User notification LD1 SET

* Target method: User_notification

* Parent method: ethernetif notify conn_changed

@brief Testing the assigned values in LD1 GPIO Port struct after calli
method with GPIO PIN SET

Actual Value: LD1_GPIO_Port->BSRR

Expected Value: LD1 Pin

* X % X X %

*/
void test_User_notification_LD1_SET(void) {
HAL_GPIO WritePin(LD1_GPIO_Port, LD1_Pin, GPIO_PIN SET);
TEST_ASSERT_EQUAL_UINT16(LD1_Pin, LD1_GPIO_Port->BSRR);

Figure 35 Failed Test of LD1 Variable with GPIO_PIN_SET variation

However, the returned value is not equal to the value assigned in the LD1_GPIO_Port-
>BSRR.

The second failed case in app_ethernet is of the same function but a different LD pin

/xxl
* Test: User notification LD3 RESET
Target method: User notification
Parent method: ethernetif_notify_conn_changed

* @brief Testing the assigned values in LD1 GPIO Port struct after calling HAL GPIO WritePin
* method with GPIO_PIN_RESET

* Actual Value: LD1_GPIO_Port->BSRR

* Expected Value: ((uint32 t)LD3 Pin << 16)

*/
void test_User_notification_LD3_RESET(void) {

HAL_GPIO WritePin(LD3_GPIO Port, LD3_Pin, GPIO PIN RESET);
TEST_ASSERT_EQUAL_UINT16(((uint32 t)LD3_Pin << 16), LD3_GPIO Port->BSRR);

Figure 36 Failed Test of LD3 with GPIO_PIN_RESET

42

Same as the first failed case, although the same logic applied to the first ASSERT
parameter as the original HAL_GPIO_WritePin function, still the values are not the same.

File: can

There are 2 failed cases in the can module, both are in the Store_Miev_Data function.

Which has the objective of saving incoming CAN data into the structure.

The first case is testing the structure iMievData variable update_status, that it contains
the correct value of STAT_UPDATING.

iMievData.update_status = STAT_UPDATING;
iMievTime.update status = STAT_UPDATING;

testData.uint8 value[@] = iMievData.update_ status;
testData.uint8 value[1l] = iMievTime.update status;

Figure 37 Store_Miev_Data Function(part) [18]

The values are added to the testData structure created by me for moving the test data that

are not globally accessible outside the module.

* Test: Store_Miev_Data_iMievData_ update_status
* Target method: Store_ Miev Data
Parent method:

@brief Testing the assigned values in iMievData struct after calling Store_Miev_Data
Actual Value: iMievData.update status which is stored in testData.uint8 value[@]
Expected Value: STAT_UPDATING

*
%
®
*

*
®
x /

void test_Store_Miev_Data_iMievData_update_status(void) {
TEST ASSERT EQUAL UINT8(STAT UPDATING, testData.uint8 value[0]);

¥
Figure 38 Failed Test of iMievData.update_status and STATE_UPDATING

The values do not match when tested, it is probably because there is no actual data stream

incoming to be saved while testing.

The second case was similar to the first, testing that STAT_UPDATING value is saved

in the iMievTime structure variable update_status.

43

* Test: Store Miev Data iMievTime update status

* Target method: Store_Miev Data

* Parent method:

* @brief Testing the assigned values in iMievTime struct after calling Store Miev Data

* Actual Value: iMievTime.update_ status which is stored in testData.uint8 value[1]
* Expected Value: STAT_UPDATING

void test_Store_Miev_Data_iMievTime_update_status(void) {
TEST_ASSERT_EQUAL_UINT8(STAT UPDATING, testData.uint8 value[1]);
¥

Figure 39 Failed Test of iMievTime.update_status and STATE_UPDATE
Same as case 3, the value assigned does not match the expected and it is also probably
due to the lack of the actual data stream that is supposed to be incoming in the live

environment.

It is noted that some modules are entirely created by the implementation teams, for
example the modules udpclient, ros, and utils. if there is a possibility to replace some of
these modules with auto generated code using STMCubeMx or something similar, it
would serve to reduce the possibility of human errors, thus reducing the overall

percentage of software bugs.

5.3 Inapplicable Tests Alternatives

For the functions that are not tested, it is advised that access to the live environment would
be granted to the future testing teams in order to have access to live readings from the
car’s sensors and outputs. With this kind of information, it would be possible to test all
the functions that depends on incoming data from CAN or Ethernet connections, validate
readings coming from the car and going into the car’s control points and test more
thoroughly different cases and possibilities that the car might face in normal/abnormal

driving conditions.

Regarding the functions that contained input arguments and are tested using global data
structure to copy data to the test environment, a less intrusive approach would be to create
mock data examples of all the arguments as well as mocks for the expected outputs of
these functions. That would require the implementation teams to provide these examples

during the implementation itself and document them for later use by the testing teams.

44

6 Summary

The main purpose of this thesis was to establish a unit testing environment for the
software being developed, test as much as possible of the existing code, and provide a
portable way of adding further test suites for newly developed modules without adding

too much intrusion on the software.

The framework chosen is open source, flexible and can be redesigned for more complex
purposes in the future in case the current features proves to be insufficient to cover all

possible test cases.

The test module has been created as a separate entity that can be added to any other
version of the software with minimal changes required, the test suites calls are
consolidated in one main runner file for easier enabling/disabling of specific tests.

The tests have been conducted in a non-live environment using a development board same
as the ones being used in the actual project, the results obtained from these tests shows
that the code is working properly in most cases, the data is being transferred as intended
and there are minor cases of failures that are clearly stated and logged by the framework.

The installed test module had negligible effect on the execution performance of the main

project, and that it will have similar effect during live tests as well.

45

Acknowledgments

This work was supported by the Department of Computer Systems of the Tallinn
University of Technology.

46

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

S. Labs, “Quality Assurance and Software Testing: A Brief History,” 12 July
2016. [Online]. Available: https://saucelabs.com/blog/quality-assurance-and-
software-testing-a-brief-history. [Accessed 20 April 2018].

S.P. A.R. M. a. G. C. J. Karmore, “Development of Software Interface for
Testing of Embedded System,” 2013 15th International Conference on Advanced
Computing Technologies (ICACT),, pp. 1-6, 2013.

A. Berger, “The Basics of Embedded Software Testing: Part 1,” 07 February
2011. [Online]. Available:
https://www.embedded.com/design/other/4212929/2/The-basics-of-embedded-
software-testing--Part-1. [Accessed 10 February 2018].

“Project's Google Drive,” 29 April 2018. [Online]. Available:
https://drive.google.com/drive/folders/0B9SJu3UyveivdmVNTFB2SGIMMTA.
“Types of Non Functional Software Testing,” 1 February 2012. [Online].
Available: https://www.testing-whiz.com/blog/types-of-non-functional-software-
tests. [Accessed 17 February 2018].

A. Berger, “The Basics of Embedded Software Testing: Part 2,” 07 February
2011. [Online]. Available:
https://www.embedded.com/design/other/4212937/The-basics-of-embedded-
software-testing--Part-2-. [Accessed 16 February 2018].

J. Ganssle, Embedded Systems: World Class Designs, Oxford: Newnes, 2007.
“Tunghai University - DOE_Project,” [Online]. Available:
http://www2.thu.edu.tw/~emtools/DOE_project/ NTCU/ppt_to_%AAF%AE%FC
/Overview.ppt. [Accessed 15 March 2018].

“The FreeRTOS™ Kernel. Market Leading, De-facto Standard and Cross
Platform RTOS kernel,” 25 April 2018. [Online]. Available:
https://www.freertos.org/.

“Home Page,” [Online]. Available: http://www.openstm32.org/HomePage.
[Accessed 20 March 2018].

“Autoconf,” 28 April 2018. [Online]. Available:
http://www.gnu.org/software/autoconf/autoconf.html.

“Home Page,” 15 March 2018. [Online]. Available:
http://www.throwtheswitch.org/.

“ThrowTheSwitch/Unity Simple Unit Testing for C,” ThrowTheSwitch,
[Online]. Available: https://github.com/ThrowTheSwitch/Unity. [Accessed 8
January 2018].

“Home - STMicroelectronics,” STMicroelectronics, [Online]. Available:
http://www.st.com/content/st_com/en.html. [Accessed 24 April 2018].

“Nucleo STM32F767,” 28 April 2018. [Online]. Available:
https://www.ittgroup.ee/1602-large_default/nucleo-stm32f767.jpg.

47

[16]

[17]

[18]

“Tera Term Home Page,” 25 April 2018. [Online]. Available:
https://ttssh2.0sdn.jp/index.html.en.

“UM1974 User manual STM32 Nucleo-144 boards,” 28 December 2017.
[Online]. Available:
http://www.st.com/content/ccc/resource/technical/document/user_manual/group0
126/49/90/2e/33/0d/4a/da/DM00244518/files/DM00244518.pdf/jcr.content/transl
ations/en.DM00244518.pdf.

“TTU iseauto projekti master kontrolleri embedded soft,” 27 April 2018.
[Online]. Available: https://gitlab.pld.ttu.ee/iseauto/master_controller.

48

49

