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In this research paper, the optimal material orientation problem is studied, considering 

the strain energy density as the objective function. The Euler angles corresponding to 

the global minimum of the strain energy density have been determined. Different 

evolutionary and gradient-based optimization methods are utilized, and the obtained 

results are compared. Finally, the best technique is determined based on accuracy and 

computational cost. 

 

Keywords: Optimal material orientation, 3D orthotropic materials, Strain energy, Euler 

angles, and Global extremes 
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1. INTRODUCTION 

In recent decades, optimization of the material structure has been a significant research 

course for development in terms of time and expenses [10,65]. For the composite 

materials, structural applications have been expanding and generating the need to 

advance analysis and design techniques to keep up with the pace as the area evolving. 

Distinctive characteristics, such as high strength and stiffness, ultra-light in weight, and 

others, can be designed freely to suit the particular application in aircraft, automobiles, 

and infrastructure [34]. Still, considering composite material's design and mechanical 

properties seems complicated and arduous for structural design compared to the 

conventional material structure [27]. Moreover, attaining the maximum and minimum 

stiffness of materials while designing composite structures remains a practical challenge 

requiring continuous testing and experimentation to address various phases. On the 

other hand, the size, shape, topology, thermal effects, and structure of advanced 

composite materials for optimal stiffness/flexibility need to be determined [25, 26]. 

 

For academics worldwide, the optimal orientation problem of orthotropic materials has 

been a substantial area of research interest and potential to the future direction. 

Sahadevan et al. [63] explored the composite wing structure of laminate material 

design and offered the meta-heuristic weight reduction optimization solution. Banichuk 

proposed elastic energy density as a measurement criterion of the stress-strain state 

by an energy-based formulation [4] for resolving the optimal material orientation 

problem. Later many others also applied the approach in their research and analysis. 

In another study, Pedersen [57] suggested a strain-based method considering the strain 

field constant about the deviations of the fiber orientation variable. For the 

determination of oriental layout problems, divergent nonlinear elastic material models 

are introduced in [40,41,58], and effective strain (stress) has been considered as a 

scalar measure of the strain (stress) state. In [12,61,62,64], the authors denoted the 

stress, and strain tensors are coaxial at the optimum while analyzing orientational 

design problems for 3D orthotropic materials. Moreover, to illustrate periodic 

composites with the auxetic and isotropic response [39], topology optimization is used. 

However, designing an isotropic material system facilitating adjustable auxetic behavior 

for the non-complicated manufacturing process requires further analysis. 

 

Previous optimization studies of composite structures pursued methods based on 

gradients of the objective and constraints functions concerning the design variables [2]. 

In [21], the optimization methods have been discussed to optimize composites 

laminates with constant stacking sequence through the intact structure. Various 
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optimization techniques involving gradient-based and direct search methods, 

specialized algorithms are developed, and the attributes for composite lay-up design 

are compared. These research results have a downside due to the constrained to limited 

values processed during the manufacturing and causes the design to fall over on a 

distinct optimization conundrum. Hence, as an alternative to the gradient-based 

methods, other optimization techniques have been tested. Nevertheless, the 

implementation of a genetic algorithm (GA) has exhibited superiority over others 

because of the adjustability nature of the composite optimization problems. To avoid 

early convergence and concentrate on the process's local optimal region, the GA applies 

numerous search points in the design space. 

 

Ample experimental research has been conducted on resolving the orientation problem 

of the composite structure, and different approaches are introduced. However, a 

simplified algorithm that provides results faster and precisely deserves further 

assessment. In [50], Majak and Pohlak introduced the decomposition method to fill this 

gap for the strain energy density function. However, to better understand the 

optimization practices used in optimal material orientations, comparing the derived 

results and determining the necessary criteria has been considered necessary.  

 

Therefore, the main goal of the current study is to analyze and compare different 

optimization methods/algorithms for solving 3D optimal material orientation problems 

of linear elastic materials to determine the most computationally cost-effective 

algorithms for particular problems or classes of problems. 

 

In this paper, the optimal material orientation problem developed in [50] considering 

the strain energy density as a measure of the structure's stiffness has been revisited.  

Two numerical methodologies – constrained and unconstrained (real and integer 

variables)- are designed and evaluated in the study. Numerical algorithms based on 

local (gradient techniques) and global optimization techniques (GA, PSO, and hybrid 

GA) are applied as an alternative solution. Finally, the results are compared to discover 

the efficient algorithm in a similar design optimization problem. A MATLAB optimization 

toolbox is utilized to find the optimal numerical solution. 

 

The paper is organized as follows. Chapter 2 presents the general background/literature 

overview of the composite structure, and later Chapter 3 illustrates different numerical 

optimization techniques applied in previous studies. Section 4 formulates the problem 

and necessary criteria for optimal material orientation of 3D orthotropic material. 

Problem formulation and analysis for constrained optimization have been overviewed. 
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Section 5 presents the test of the different optimization techniques for optimal material 

orientation of 3D orthotropic material, numerical analysis, and discusses the results. 

Finally, the summary surmises the results and findings of the study. 
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2. BACKGROUND STUDIES 

The following chapter presents an overview of previous findings on the optimization 

problem of composite material and techniques to address. The primary purpose is to 

explore the topics that have been analyzed associated with the proposed study. 

2.1 Optimal design problem  

The problem formulation of composite material concerning design optimization 

generally focuses on attaining the optimal material design for the most superior 

performance in definite constraints environment. The minimization of the desired 

objective function has been the primary goal of the optimization process. The objective 

functions have been tailored, encompassing mass, volume, bending stiffness, buckling 

loads, natural frequency, and maximum deflection by choosing the individual integral 

materials, volume fragments, fiber orientation angles, and laminas measurement and 

quantity due to the manufacturing strategy [45, 47, 52]. In [27], for a particular 

orthotropic material maximum, principal material stresses before incurring failure have 

been studied, and the objective function is to determine the maximum stress failure 

criterion. 

 

In engineering applications, fabrication cost, maximum product reliability, maximum 

stiffness/weight ratio, minimum aerodynamic drag, maximum natural frequencies, 

maximum critical shaft speeds, and so-forth. have been distinguished as noteworthy 

targets, whereas alignment, dimensions, and sizes of components, and material 

attributes as design variables [19,47,68]. For the design of structural components, key 

design variables are also stipulated in various studies. For instance, the covering of skin 

panels' thickness and space, size, and form of the transverse and longitudinal stiffeners 

are considered design variables in [47] for a similar function area. In the automobile 

design structure, the design variables are also defined independently. Apart from the 

size and thickness of covering skin panels, the size and shape of the transverse and 

longitudinal stiffeners are examined here [47]. The orientation of the fibers and the 

ratio can also be studied as additional variables for stiffeners composed of layered 

composites. 
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Figure 2.1 illustrates a general form of an approach to design and devise optimization 

problems with single and multicriteria objectives. 

 

 

Figure 2.1 Design of optimization process [47] 

 

The design optimization process primarily investigates the chosen design variables (Xn) 

to achieve the best results within the distinct boundary conditions (gj(X)). Thus, 

considering specific environmental restrictions such as system performance, admissible 

stresses, geometrical properties, and other factors, the goal of optimality is determined 

as a vector of objective functions (Fk(X)). As mentioned above the Figure 2.1 represents 

a general understanding of the optimization procedures. However, there is additional 

consideration necessary to address while analyzing discrete problems or classes of 

problems. Therefore, several additional detailed suggestions can be outlined based on 

the literature analysis [X1, X2]. 

 



15 

1. Firstly, in most optimization problems, the ranges for design variables, i.e., 

design domain, are needed to specify. The limitations on the design domain can 

also be applied to determine local/global extremes in subdomains. 

2. Secondly, in the case of evolutionary methods, the second block, "Estimate (in 

fact specify) initial design," is commonly "automated." Thus, the initial 

designs/solutions are generated randomly. 

3. Thirdly, the update design block is mainly generic. It may include selecting 

optimization strategies like weighted summation, Pareto concept, application of 

various optimization techniques like gradient methods, evolutionary methods, 

hybrid methods, structural analysis for determining the strength and stiffness 

characteristics, response modeling of the objective and constraint functions, 

along with others.  

 

The selection of suitable optimization techniques can be designed based on pair-wise 

analysis of the optimization criteria. 

 

1. If the two optimality criteria appear not controversial, these criteria can be 

combined into one criterion by applying some weighted summation, etc., 

approaches.  

2. If the two optimality criteria appear controversial, the Pareto approach should 

be applied. 

 

The multicriteria optimization problem can be formulated as 

 

Minimize functions, 

F(x)= [F1(x), F2(x),……,Fr(x)]                                                        (1) 

Subjected to- 

gj(x) ≤ 0,        j = 1, … , k,          (inequality constrains)                                            (2)

0)( =xhk        lk ,...,1= ,   (equality constraints)                                                     (3) 

xi* ≤ xi ≤ xi
*,    i = 1, … ,m,                                                                                      (4)

 

where *ix and 
*

ix stand for the lower and upper limits of the design variables ix . 
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If some of the original objective functions are subjected to maximization or the values 

of the objective functions are not in the same range, the following normalization can be 

performed. 

 

*

*

* )(

ii

ii
i

FF

xFF
f

−

−
=     ,                                                                                         (5)  

*

*

*)(

ii

ii
i

FF

FxF
f

−

−
= .                                                                                             (6) 

The formulas (5) can be applied when the original objective function )(xFi  is subjected 

to maximization and formula (6) for depreciation. The 
*

iF and *iF in (5)-(6) denote the 

upper and lower estimates of the objective function. 

2.2 Orientation problem in the composite structure 

Material scientists usually customize laminated composite by experimenting with the 

laminae's thickness, number, and orientation to develop material with excellent 

mechanical properties. However, the manufacturing and experimental data limitations 

show that a small set of values is available for the ply thickness and orientation angles 

[38]. Hence, discovering optimum strength designs for fiber-reinforced composite 

laminates has been a challenge for academics. The relation between fiber orientation 

and unidirectional lamina strength has been studied in [5], and the result revealed that 

it could be maximized under in-plane stresses. The findings of another research [74] 

showed that optimal fiber orientation contingent on the relative value of transverse and 

in-plane shear strengths and the stress state of laminated material. The optimization 

method can be intricate and specific while analyzing for maximum strength of a 

multidirectional composite laminate. 

 

In various studies, the stresses in each lamina in the principal material coordinates are 

primarily considered to analyze the failure of laminated composite materials [34]. Figure 

2.2 below is a generalized schema that has been drawn to illustrate the principal 

material coordinates and fiber direction in composite laminates. The maximum stress 

theory explains that the failure can be projected after maximum stress in the principal 

material coordinates exceeds the respective strength. 
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Figure 2.2 Principal material coordinates of a typical lamina [43] 

 

For analyzing a laminate, composite plate nine stress components σij (i,j=1,2,3) can be 

used to articulate the stress state at a point in a general continuum. As illustrated in 

Figure 2.3, the elements can operate parallelly on an elemental cube to the axes, 

referring to a coordinate system. 

 

Figure 2.3 State of stress at a point of a continuum [13] 

 

In general, the classical laminate theory is applied for resolving in-plane stress 

problems. In this case, plane stress components are assumed to be zero. As depicted 
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in Figure 2.4, in-plane stress components correlate to the strain components regarding 

the coordinate system [1]. 

 

Figure 2.4 A scheme of a composite plate under in-plane stress  [1] 

 

The orientation of the fibers has a significant impact on the material properties of 

composite materials. Therefore, the fiber-reinforced composite structure has a 

continuous research goal to enhance the properties concentrating on multiple directions 

and woven fibers at different angles. Furthermore, achieving material behavior similar 

to isotropic materials is another desirable goal. Still, in some cases, anisotropic material 

properties are likely to be more compatible [60]. Thus, the direction of fibers is 

preferred to be composed in the same direction. The material's microstructure embodies 

the favorable and unfavorable factors of the fiber and the matrix material when 

required. 

 

The fiber orientation is used as the design parameters in [30], and variables like a fixed 

set of values, the fiber matrix ratio, and the stacking configuration of the associated 

lamina for a microstructure are considered. The study offers a solution for the optimum 

fiber distribution of microstructure orientation. Suzuki and Kikuchi (1991) developed a 

direct approach to the design problem [69]. The finding reveals that when orientations 

of fibers are in the same direction, the principal stress results in the best stiffness 

regarding a microstructure. In another research, Gea and Luo (2004) discovered that 

the method provides acceptable results limited to the orthotropic materials with limited 

and a few intense shear stress [20]. 
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In [8], multiple loaded cases have been considered for computing microstructure 

orientation angles, and in [14], eigenvector problems are studied. Bruyneel and Fleury 

(2002) and Lindgaard and Lund (2011) used the Continuous Fibre Angle Optimization 

(CFAO) method to express the optimal orientation of the fibers in the microstructure of 

the material, and the orientation angle was studied as the design variable [6,42]. 

Conversely, the optimization problem associated with numerical treatment confronts 

various challenges when using continuous design angle. Nomura et al.  (2014) 

introduced an orientation optimization method, a three-dimensional formulation, for 

any desired material property. 

 

For 3D orthotropic materials, orientational design problems have been studied in [12, 

61, 62, 64] and revealed that the potential energy of deformation and the specific elastic 

energy density are subjected to depreciation. Seregin and Troitski (1982) derived the 

optimality conditions for general orthotropic material and discussed the solution modes 

[64]. Euler angles have been used to formulate the optimization problem in [61] and 

derive the symmetric properties of principal orientations of stress and strain at the 

optimum from the stationary condition of the strain energy density. In addition, the 

study offers an analytical solution for a body with cubic symmetry regarding strains. 

 

In [23,28,44,70], researchers have described the mechanical response of transversely 

isotropic materials by proposing fundamental models. Specifically, a model was 

introduced based on hyperelastic or viscoelastic theories to incorporate transverse 

anisotropy under finite deformation [32]. For biological materials, an anisotropic hyper-

elastic constitutive model has been formed in [59]. Moreover, describing compressible 

soft tissues, an isotropic visco-hyperelastic model is proposed in [75]. However, as the 

mentioned models are based on elasticity, they have limited application in large inelastic 

deformation. Thus, to address the shortcoming, a transversely isotropic model for 

porous materials based on a neo-Hookean strain energy function has been proposed 

[23, 24]. However, the parameter values that correspond with experiments differ with 

the direction of loading. 

2.3 Optimization techniques in orientation problem 

An optimization problem to explore in an n-dimensional space where the minimum value 

of the overall objective function operates within the boundary conditions representing 

the constraint functions and resolving iterative techniques is usually applied [47]. In the 

design space, a succession of guided design adjustments is rendered among the 

consecutive points. In [46], researchers classified optimization techniques based on the 
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approach of selecting the search direction. The study employed numerical optimization 

methods such as conjugate gradients, conjugate directions, and random search. 

As the gradient-based methods provide better computational efficiency for general-

purpose industrial applications, the algorithms are commonly used in optimization 

software. However, probabilistic and non-gradient have been studied to a broad extent. 

For solving global optimization problems, the heuristic methods are considered to find 

the global optimum with a high probability and accuracy at the same time. The genetic 

algorithms (GAs) and the simulated annealing technique are the heuristic methods that 

analogize to the physiological and biological phenomenon to approach the global 

optimum [47]. Based on natural genetics and natural selection principles, GAs do not 

employ any gradient information [54,73]. The metaheuristic optimization technique 

involves undertaking crossover, mutation, and selection operations to evolve candidate 

solutions via progressing a population inspired by Darwinian evolution [33].  

When the objective achieves the desired value, or convergences to extreme, or end of 

a fixed number of maximum generations, the algorithm terminates. GAs have 

demonstrated a high degree of robustness in achieving ideal solutions to complex 

optimization problems by selecting well-designed operators and optimal parameters 

[22,29]. Notably, researchers applied GA and various failure mechanisms in [36] to 

attain an optimal composite structure regarding different failure criteria. However, some 

limitations, like the tendency to reach the solution close to global optimum but not to 

exact optimally, require comparatively prolonged calculating time. However, it has been 

the most efficient stochastic technique for global optimization. Besides, the sampling 

capability of GAs is greatly affected by population size and local search algorithms such 

as a memetic algorithm.  

Katoch et al. combined Baldwinian, Lamarckian, and local search with GAs to address 

the above issues. [35]. This hybridization optimization technique offers better solution 

quality, efficiency, guarantee of feasible solutions, and optimized control parameters 

[16]. However, the parameter setting is another challenge in GAs to find control 

parameters. Thus, a hybrid GA is developed in [48] at both local and global levels using 

a symbolic-numerical algorithm based on reducing nonlinear relations. 

Moreover, for solving complex problems of optimal structural design, another 

probabilistic search algorithm called particle swarm optimization algorithm (PSOA) is 

also investigated in numerous research. Kennedy and Eberhart [15,36] first introduced 

the algorithm, which is inspired by the behavior of a group of species, such as a swarm 

of insects like wasps, bees, ants, and a school of fish or a folk of birds [47]. The method 

is particularly appropriate for solving problems containing optimal solutions in a 
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multidimensional space of the parameter. The particles, inspired from the natural 

analogy, act as an agent are illustrated considering both a position and a velocity 

allowing to move around in the search space [51]. As a metaheuristic nature, the 

method allows finding results for non-differentiable problems as well. The PSO algorithm 

can ameliorate predicaments with irregular, noisy, or dynamically changing with time in 

versatile computer science and applied mathematics domains. 

Several scholars studied the PSO algorithm in [11,37,66,67] to solve various multimodal 

mathematical problems with little focus on practical challenges. However, Fourie and 

Groenwold applied PSO for structural and multidisciplinary optimization, considering 

shape and size optimization [18] and topology optimization [17]. Venter and 

Sobieszczanski-Sobieski (2003) studied both continuous and integer/discrete versions 

of the cantilevered beam problem, focusing on enhancing the basic PSO algorithm [72]. 

In [55], authors used the algorithm to reach a required strength of a composite structure 

under different failure criteria while minimizing weight and total cost. 

In this chapter, optimal design problems of the composite structures are revisited, and 

the optimization techniques applied in the various studies are overviewed. From the 

background studies, it is evident that several types of research have taken place to 

achieve optimal criteria for composite materials and still require comparative 

experimentation with optimization methods in design research. 

 

 

 

 



22 

3. METHODS AND TECHNIQUES USED 

In chapter 3, a short overview of methods and techniques used in this study has been 

presented. Based on the discussion in 2.3, the primary attention is paid to global 

optimization techniques for covering both real and integer design optimization problems. 

The gradient method is considered one of the fastest solutions, and the Lagrange 

multipliers method is introduced mainly to derive the necessary optimality conditions. 

Amongst many global optimization techniques available from literature are selected two 

widely used methods in engineering (GA, PSO).  

3.1 Gradient method 

Diverse gradient methods for optimization like the steepest descent method, Newton 

method, quasi-Newton method, and others. have been applied in many studies.  

In the current thesis, the gradient method is not applied separately since  

− Strongly nonlinear optimization problem has been considered, including a large 

number of local extremes. 

− Gradient methods possess the limited capability to find global extreme; instead, 

they converge to the nearest extreme. 

However, in this thesis, the gradient method is combined with a genetic algorithm to 

exploit the advantages of both. There is no significant preference for applying a specific 

gradient method for the problem designed in the study. In a hybrid algorithm, a 

substantial amount of computing time is consumed by GA. Additionally, considered 

gradient methods are principally faster than GA. When applying gradient methods, one 

solution is updated, but the population is updated in GA.  

In the steepest descent method, the solution is modified incrementally by the following 

rules [53,71] (see Figure 3.1 for 1D and Figure 3.2 for 2D) 

𝑥𝑛+1 = 𝑥𝑛 − 𝛾𝑛∇F(𝑥𝑛), 𝑛 = 1,2,…,                                                             (7)  

where 𝛾𝑛 is a stepsize and ∇F(𝑥𝑛) is a gradient for the objective function. The starting 

point 𝑥1 (assumed) is opted as an initial value. In (7) 𝑥 is a vector of design variables 

(in the 1D problems case scalar). 
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Figure 3.1 Steepest descent method, in the 1D case  [71] 

 

 

Figure 3.2 Steepest descent method, in the 2D case  [53] 

 

The value of the objective function in each line of Figure 3.2 is the same (level lines).    

Similarly, in the Newton method, the rule for modification of the design variables is 

outlined as follows- 

𝑥𝑛+1 = 𝑥𝑛 − 𝛾𝑛H
−1(𝑥𝑛)∇F(𝑥𝑛), 𝑛 = 1,2,…,                                          (8)  

 where  𝐻−1(x𝑛) stand for Hess matrix. 

The end part of the algorithm of the steepest descent and Newton methods can be 

determined by the value of the gradient or the difference between 𝑥𝑛+1  and 𝑥𝑛 

(includes in formulas (7,8)). When the algorithm is not convergent, the maximum 
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number of iterations is defined and applied to control continuous run and computation 

time.  

Both discussed methods have advantages since the steepest descent method has a 

broader convergence area, and the Newton method has a higher convergence speed, 

i.e., is faster. However, in the hybrid algorithm, the steepest descent method can be 

preferred since the computing time is determined mainly by GA. 

3.2 Genetic algorithm 

There are a considerable number of different real and binary-coded GA algorithms are 

available. However, for this research, a general scheme of the GA has been delineated 

as follows [7]: 

 

 

Figure 3.3 Genetic algorithm program flowchart  [7] 
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At first, the initial population is generated using a random generator. In the case of 

classical binary coding, the bit value is generated by random. When population 

generated, the fitness function values are computed. The next step is employing the 

selection operator, and the principal task is to select parents for new children. Some 

widely used algorithms for selecting the parents can be listed as roulette wheel selection, 

group selection, tournament selection. In the roulette wheel selection method, the 

probability 𝑝(𝑘)  of an individual, 𝑘 is selected as a parent, proportional to the fitness 

function of the individual (Depicts in Figure 3.4). 

𝑝(𝑘) =
𝑓(𝑘)

∑ 𝑓(𝑖)𝑁
𝑖=1

.                                                                                         (9) 

In (9) 𝑓(𝑘) and 𝑁 stand for fitness function and size of the population, respectively. 

 

 

Figure 3.4 Roulette wheel selection  [9] 

 

The next operator is the crossover operator. Based on each two selected parents, two 

children (offspring) are composed. Each child receives chromosomes from two parents. 

However, the proportion of how many chromosomes come from each parent can be 

determined by applying randomly. Typical fragment on composing two children's 

(offspring) from the parents can be designed as follows- 
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Figure 3.5 Double point crossover operator  [3] 

 

According to Figure 3.5, the first offspring gets the first two bits from parent 1, the 

subsequent three bits from parent 2, and the last four bits again from parent 1. The 

second offspring gets all data units not used for the first offspring. The next operator is 

the mutation operator. The mutation of a bit is meant to change its values from 0 to 1 

and vice-versa. The mutation of chromosomes is performed with appointed mutation 

probability (mutation coefficient, small value 0.005). Mutations assist in finding new 

extremes during the convergence process. 

 

After the mutation operator, the fitness values for each population member are 

computed, and the assigned number of survivors (population size) is determined based 

on fitness values. Finally, the termination condition can be defined by the number of 

generations and values of convergence parameters and others. 

3.3 Particle swarm optimization 

The population of outcomes is termed as a swarm and individuals as particles. Each 

particle has speed and coordination for moving in multidimensional space. The flying is 

adjusted according to the individual particle's flying experience and other particles 

present in the swarm. The particles accumulate memory, and each keeps track of its 

previous personal best (pbest) position. The current global best position of the 

population is denoted as gbest.  
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Eberhart and Shi (1998) introduced a standard PSO algorithm in [67] and the formula 

as follow: 

vid (t+1) = 𝝎vid (t)+ c1r1 (Localbest (t)- xid(t)+c2r2 Globalbest(t)-xid(t),                 (10)                        

xid (t+1) = xid (t)+ vid (t+1)                                                                               (11) 

Here, 

- Xi = (xi1, xi2, ………., xiD); represents the position of ith particle in D-dimension 

- Vi = (vi1, vi2, ……., viD); denotes the velocity of ith particle in D-dimension 

direction of searching 

- i = 1, 2, … N; the population of the group particles 

- d = 1, 2, … D; the maximum number of iterations 

- r1, r2 implies the random values between [0,1] to maintain the group particles' 

diversity. 

- c1, c2 entails the learning coefficient. 

- 𝝎 represents inertia weight used to control the velocity, calculated by the 

equation (12). 

                                                                                        

                                                                                 (12) 

 
 

Shi and Eberhart (1998) used inertia factor (𝝎), enhancing the performance of PSO 

convergence by regulating the influence on the present particle by the previous particle's 

velocity. In global searching proceeding, a more considerable value of 𝝎 has been shown 

comparatively better result whereas smaller 𝝎 during local search [67].  

 

 

Figure 3.6 The illustration velocity update of a particle in PSO  [56]. 
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Figure 3.6 depicts a particle (xi) that renews the velocity and position from the previous 

state in each step (t). With the summation of previous velocity (vi(t)), the best position 

attained to this point by the particle (pi) and the best position reached by the entire 

swarm (pg), the new velocity (vi (t + 1)) is derived. Finally, the new position can be 

calculated by adding the new velocity to the equation (11). 

 

In [31], a general schema is introduced to illustrate the basic steps entailed in PSO and 

depicted as follows in Figure 3.7: 

 

 

Figure 3.7 Flow diagram illustrating the particle swarm optimization algorithm.  [31]. 

 

Usually, the PSO algorithm is more straightforward than GA due to the absence of 

crossover and mutation operators. However, the PSO has several variations, and some 

of them include mutation operators. 
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3.4 Lagrange multipliers method 

As the Lagrange multipliers method requires the derivatives/gradients of the functions 

while analyzing numerical functions, it is applicable where objective and constraints 

functions are differentiable. 

In the current research, the Lagrange multipliers method is developed for derivation of 

the necessary optimality conditions. The Lagrange function for optimization problem 

(13)-(15) with one objective function read. 

𝐿 = 𝐹(𝑥) + ∑ 𝜆𝑘ℎ𝑘(𝑥)
𝑙
𝑘=1 + ∑ 𝜇𝑗𝑔𝑗(𝑥)

𝑚
𝑗=1 . (13)

  

The necessary optimality conditions can be obtained by: 

− Equalizing the derivatives of the Lagrange function concerning design variables 

to zero i.e.  

𝜕𝐿

𝜕𝑥𝑖
=

𝜕𝐹(𝑥)

𝜕𝑥𝑖
+ ∑ 𝜆𝑘

𝜕ℎ𝑘(𝑥)

𝜕𝑥𝑖

𝑙
𝑘=1 + ∑ 𝜇𝑗

𝜕𝑔𝑗(𝑥)

𝜕𝑥𝑖

𝑚
𝑗=1 = 0,𝑖 = 1,… , 𝑛,            (14) 

− adding the equality constraints (3), 

− adding the following equations 

𝜇𝑗𝑔𝑗(𝑥) = 0,  j=1,…m.                                                                       (15) 

The meaning of the equations (15) is that one of two possibilities take place: 

− the inequality constraint will take the form of equality (𝑔𝑗(𝑥) = 0) or  

− corresponding Lagrange multiplier is equal to zero (𝜇𝑗 = 0). 

The necessary optimality conditions derived can be used to validate the local extreme 

of the objective function. The optimality conditions derived by the Lagrange multipliers 

method represent a set of algebraic equations (linear and nonlinear) that can be solved 

for determining the optimal solution of the initial optimization problem. 

In this chapter, numerical methods have been briefly studied to approach both local and 

global optimum addressing the constrained and unconstrained optimization problem. 

The following two chapters will apply the referred techniques to resolve the designed 

problem. 
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4. OPTIMAL MATERIAL ORIENTATION OF 3D 

ORTHOTROPIC MATERIALS 

Chapter 4 formulates the problem and necessary conditions for optimal material 

orientation for orthotropic material. The orthotropic materials, both 2D and 3D, are the 

most widely used reinforced composite due to axisymmetric properties. In 2D 

orthotropic materials, the closed-form analytical solution was derived by P.Pedersen 

[57]. Later constraint optimization has been analyzed considering GA and Lagrange 

multipliers techniques to draw a comparison.  

4.1 Problem formulation 

The strain energy density is subjected to minimization to obtain a material/structure 

with maximum stiffness properties [41]. 

 

min,
2

1
→= Cεε

T

gyDensityStrainEnerJ
                                                                           (16) 

where C and  ε  stand for the orthotropic constitutive matrix and strain vector, 

respectively. 
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The elements of the constitutive matrix describe materials properties and can be 

determined from material tests.  
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In the case of 3D linear elasticity, the transformation formulas for strains are formulated 

as follows. 

ε11 = (((e1 − e2) ∗ cos2(θ3) − e1 + e3) ∗ cos
2(θ2) + (e1 − e2) ∗ cos

2(θ3) + e2

− e3) ∗ cos2(θ1) − 2 ∗ sin(θ1) ∗ sin(θ3) ∗ cos(θ2) ∗ cos(θ3) ∗ (e1 − e2)

∗ cos(θ1) + ((−e1 + e2) ∗ cos
2(θ3) + e1 − e3) ∗ cos

2(θ2) + e3, 

ε22 = (−(cos2(θ2) + 1) ∗ (e1 − e2) ∗ cos
2(θ3) + (e1 − e3) ∗ cos

2(θ2) − e2 + e3)

∗ cos2(θ1) + 2 ∗ sin(θ1) ∗ sin(θ3) ∗ cos(θ2) ∗ cos(θ3) ∗ (e1 − e2)

∗ cos(θ1) + (e1 − e2) ∗ cos
2(θ3) + e2, 

ε33 = cos2(θ3) ∗ cos
2(θ2) ∗ e1 − cos

2(θ3) ∗ cos
2(θ2) ∗ e2 − cos

2(θ3) ∗ e1 +

cos2(θ3) ∗ e2 − cos
2(θ2) ∗ e1 + cos

2(θ2) ∗ e3 + e1,  

ε12 = −2 ∗ sin(θ3) ∗ cos(θ2) ∗ cos(θ3) ∗ (e1 − e2) ∗ cos
2(θ1)

− (((e1 − e2) ∗ cos2(θ3) − e1 + e3) ∗ cos
2(θ2) + (e1 − e2) ∗ cos

2(θ3)

+ e2 − e3) ∗ sin(θ1) ∗ cos(θ1) + sin(θ3) ∗ cos(θ2) ∗ cos(θ3)

∗ (e1 − e2) ,  

 
 

ε23 = −(−cos(θ2) ∗ ((e1 − e2) ∗ cos(dθ3)
2 − e1 + e3) ∗ cos(θ1) + sin(θ1) ∗ sin(θ3)

∗ cos(θ3) ∗ (e1 − e2)) ∗ sin(θ2),  

ε31=(sin(θ1)*((e1-e2)*cos(θ3)^2-e1+e3)*cos(θ2)+sin(θ3)*cos(θ1)*cos(θ3)*(e1-

e2))*sin(θ2).                                                                                 (18) 

 

The Euler angles θ1,  θ2 and θ3 mentioned above are design variables describing the 

orientation of the material. 

 



32 

4.2 Selection of optimization methods and techniques 

As for complex theoretical and practical optimization problems, selecting suitable and 

effective optimization methods and techniques is crucial.   

Let proceed from suggestions outlined in section 2 to select optimization methods and 

techniques for considered optimal orientation. 

 

1. Selection of optimization criteria, variables. 

The optimization criterion, the design variables, the design domain, and constraints 

are determined by problem formulation stated in section 4.1. The constraints on the 

design domain will be applied to determine extremes in subdomains since a large 

number of solutions exist. In addition, some of them correspond to the same value 

of the objective function. The latter fact is caused due to symmetric properties of 

the orthotropic material.  

 

2. Selection of optimization methods. 

Since the considered problem is strongly nonlinear, the gradient methods are not 

suitable (fast but as a rule converges to the nearest extreme). In general, the 

evolutionary algorithms (EA) provide convergence to the global extreme (not 

guaranteed). Herein two widely used EA-s: genetic algorithms and particle swarm 

optimization algorithms, are selected. Another reason for the selection of EA 

algorithms because there are two options of the solution:  

− Solution in terms of real variables  

− Solution in terms of integer variables.  

 

The solution procedure can speed up using a hybrid algorithm (GA+gradient or 

PSO+gradient) in a real variable problem. In both cases, the first stage of the algorithm 

(GA or PSO) provides convergence to the global extreme. The second stage of the 

algorithm (Gradient method) provides higher convergence speed and avoids 

perturbations near extreme, habitual for GA. Concerning an integer variables-based 

solution, the GA/PSO can be combined with integer programming methods (Hill 

climbing, cutting plane methods, and others). Herein, the hybrid approach is not applied 

regarding the integer problem since the solution set is substantially restricted, which 

provides faster convergence. 
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4.3 Necessary optimality conditions 

Before the optimality analysis, it is essential to define the optimality conditions and 

operational arrangements. The necessary optimality conditions are needed to check and 

ensure that the solution determined corresponds to the extreme value of the objective 

function. Even so, the proposed condition may not ensure that the extreme will be 

global. Moreover, the necessary optimality conditions are applicable when the problems 

have differentiable objective and constraint functions and real continuous variables. 

Thus, it is not applicable in mixed-integer variables or even for the real variables with 

discrete values. 

With regards to the unconstrained optimization problem formulated in section 4.1, the 

necessary optimality conditions can be derived by equalizing derivatives of the objective 

function concerning design variables (Euler angles) to zero i.e. 

             1,2,3.=i,0=











=





i

T

i

Energy
C

J







                                                      (19) 

The conditions (19) can be used to check the correctness of the solution and solve an 

initial optimization problem. However, despite to formal simplicity of the conditions (19), 

these conditions are strongly nonlinear equations with a large number of solutions ( the 

strain components equations (18) will assist in understanding the complexity of the 

conditions (19). Herein, the optimality conditions (19) are applied for validation of the 

solution. For analytical calculation derivatives (19), the MAPLE function diff has been 

used, and the obtained final formulas are copied to MATLAB.  

4.4 Constrained optimization 

In general, the constrained optimization is more complex in comparison with 

unconstrained ones. However, the approach largely depends on a specific problem and 

the corresponding method used.  

4.4.1 Problem formulation 

In the current formulated problem in section (4.1), an alternate approach has been 

designed, which is likely to be effective in some instances. Namely, the posed problem 

can also be solved in two stages: 

− First, determine an optimal solution in terms of strains, 

− Second, compute Euler angles based on known strain components values. 
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Thus, the strain components are considered design variables, and formulas (18) will not 

be substituted (16). The energy expression (16) can be expressed in detail as 
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However, the constrained optimization problem is formulated in terms of strains for 

strain components to hold good, 

{
 

 
0332211 =−−−++ IIIIII 

02

31

2

23

2

12332233112211 =−−−−−−++ IIIIIIIIIIII 

02 2

1233

2

3122

2

2311312312332211 =−−−−+ IIIIII 

,                            (21) 

where 𝜀𝐼 , 𝜀𝐼𝐼 and 𝜀𝐼𝐼𝐼 stand for principal strains.  

Finally, in terms of strains, the optimization can be formulated to minimize the objective 

function (20) subjected to constraints (21). 

4.4.2 Problem solution using GA 

The strain components 
11 , 

22 , 33 , 
12 , 23  and 31 are considered as design variables, 

and the objective function (20) is minimized considering constraints (21) by applying 

some optimization techniques. Herein the genetic algorithm is applied (MATLAB software 

functions are used. and details in Appendix 3). In GA, the population size 350 and 

number of generations 350 have been employed. As results of the solution, the optimal 

values of six strain components are obtained, also the value of the objective function: 

-0.759811 = , -0.981922 = , -3.259233 = , 1268.512 =  5126.423 = ,   4.666431 = , 

4273.957=EnergyJ GPa. 

Here E-Glass/Vinilester is used, detailed material data are presented in the next chapter.   

 

 

 

 

 



35 

As a second step, the optimal values of the Euler angles can be computed utilizing the 

following formulas [67] 
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The formulas (22) are derived by combining the equations (18). 

An approach where the above posed constrained optimization problem is solved directly 

using GA is the most time-consuming as the average computing time is ~100 sec. In 

addition, it is 30-300 times slower than other solutions considered. Therefore, in most 

cases, unconstrained optimization is preferable if it can solve the same problem. In 

practice, usually, apart from few problems, both approaches can be applied. Therefore, 

the considered optimal material orientation problem is instead an exception where 

different formulations are available. 

4.4.3 Problem solution using Lagrange multipliers method 

There are several approaches to resolving constrained optimization problems like 

constraints in the form of penalties, the Lagrange multipliers method, etc. The GA 

algorithm is used in this study, which satisfies the linear and bound constraints of 

applying mutation and crossover functions that exclusively generate feasible points even 

if the nonlinear constraints fail to satisfy during the convergence process. However, 

ultimately the algorithm can reach expected results in the final solution.  

In this study, the Lagrange multipliers method is applied to derive the Karush-Kuhn-

Tucker necessary optimality conditions. First, the Lagrange function summarizes the 

objective function and the constraints multiplied by corresponding Lagrange multipliers. 
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In (23) 
1 , 

2  and 3  stand for Lagrange multipliers. The necessary optimality conditions 

can be obtained by equalizing the derivatives of the Lagrange function L concerning 

strain components with zero i.e. 

𝜕𝐿

𝜕𝜀11
= 0, 

𝜕𝐿

𝜕𝜀22
= 0, 

𝜕𝐿

𝜕𝜀33
= 0, 

𝜕𝐿

𝜕𝜀12
= 0, 

𝜕𝐿

𝜕𝜀23
= 0, 

𝜕𝐿

𝜕𝜀31
= 0                  (24) 

The problem includes nine variables (6 strain components+3 Lagrange multipliers) and 

nine equations (6 equation in (24) +3 constraints (21)). In general, applying the 

Lagrange multipliers method will convert the initial optimization problem into a system 

of algebraic equations. The obtained algebraic system can be solved analytically or 

numerically depending on the complexity of the formulated specific problem. In the case 

of considered problems and orthotropic material, the algebraic system is firmly nonlinear 

and complicated. The analytical solutions can be determined for particular cases where 

at least one shear strain equals zero [41]. In the most complicated case where all shear 

strains are nonzero, the numerical solution can be utilized. However, based on the 

literature, the global minimum of the strain energy density can be achieved in this most 

complicated case, where the numerical solution is required [49]. 

Instead of a direct solution of the optimality conditions, it is reasonable to perform the 

first detailed analysis of the optimality conditions, and if possible, to simplify these 

conditions by eliminating a set of variables. By analyzing the problem, the three 

Lagrange multipliers and the shear strains can be eliminated. The expressions for the 

shear strain can be presented as follows [67]- 

,
2

2

3

32

12
D

F

D

F
=     

3

3

1

12

23
D

F

D

F
= ,   .

2

2

1

12

31
D

F

D

F
=                                                                  (25)

    

In (25) 1D , 2D  and 3D  are given in terms of material parameters as 

),(2 31312323

1 EED −=   ),(2 12123131

2 EED −=   ),(2 23231212

3 EED −=                                  (26) 
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but 
1F , 

2F  and 3F  include the strain components 
11 , 

22 , 33  and materials parameters 
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The equations (27) are linear concerning strain components. By combining initial 

optimality conditions (24) and the strain invariants (21), the simplified optimality 

conditions can be derived as [49] 
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The simplified optimality conditions (28) can be solved concerning three strain 

components 11 , 
22  and 33 . However, further simplification of the equations (28) is 

available, leading to lengthy derivations and extremely huge expressions. Herein the 

system (28) is solved numerically using a MATLAB solver. (Appendix 3). 

If strain components 11 are determined, the shear strains can be computed using 

formulas (25). After deriving all strain components, the strain energy density can be 

evaluated using (20). Finally, the Euler angles can be computed only for an optimal 

solution using formulas (22). Compared with the solution obtained in section (4.5), the 

average computing time has been reduced several magnitudes from 100 sec to 3 sec. 
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In the case of E-Glass/Vinilester (detailed material data are presented in the next 

chapter), the Euler angles corresponding to optimal material orientation are given as 

𝜃1 = 0.7456 (42.72°) 𝜃2 = 1.5261 (87.44°), 𝜃3 = 0.5326 (30.52°).   

Here the Euler angles are presented in radians and the optimal value of the obtained 

strain energy density. 

4174.795=EnergyJ GPa 

The obtained value of the strain energy density is in good agreement with the 

corresponding value found in section 4.6 using a different approach (performing 

optimization with constraints). 

In this chapter, for the 3D orthotropic material objective function, constraints and design 

variables have been formulated to address the orientational design problem. Later 

necessary optimality condition is also set for the optimality analysis. In addition, 

constrained optimization analysis was performed to draw a comparison applying the 

Lagrange multiplier and GA for a composite E-Glass/Vinilester. From the result, it is 

evident that constrained optimization is more complex and requires higher computation 

time. Compared with the GA and Lagrange multipliers method, the latter method is 

more effective as it operates within less computation time.  
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5. NUMERICAL RESULTS AND ANALYSIS 

In Chapter 5, the numerical analysis has been conducted as a problem formulated in 

chapter 4 by applying the optimization techniques outlined in chapter 3.  For this 

purpose, two different orthotropic materials are considered E-Glass/Vinilester and 

Graphite/Epoxy, and computation time has been compared concerning the applied 

methods. 

5.1 E-Glass/Vinylester 

The properties of the material are described with the following values of engineering 

parameters 25=1E  
GPa, 8.242 =E  

GPa, 5.83 =E  GPa, 5.612 =G  GPa, 2.413 =G  GPa, 5.423 =G  

GPa, 1.012 = , 28.013 = , 3.023 =  (stiffness characteristics). The compliance matrix can 

be computed based on engineering parameters as 
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The constitutive matrix can be computed as the inverse of the compliance matrix. 

𝐶 = 𝑆−1 =



























−

650.000000

0420.00000

00450.0000

000908.0301.0284.0

000301.0604.2345.0

000284.0345.0614.2

 

And used in the objective function (16). 

The principal strain values for this composite are presented as ,8=
I

 ,7−=
II
 6−=

III
 . 
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Table 5.1 illustrates the optimal values of the Euler angles, minimum strain energy 

density in GPa-s according to the different methods used in the analysis. The detailed 

MATLAB code is available in Appendix 1 and 2. 

Table 5.1 E-Glass/Vinilester, solutions using GA+Gradient, GA, PSO, and integer variables GA 

Method Min. strain energy 

density (GPa) 

*
1  *

2  *
3  

GA+Gradient 795.4174 0.7456  

(42.72°) 

1.5261 

(87.439°) 

0.5326 

(30.516°) 

GA 795.4188 0. 7490 

(42.915°) 

1. 5305 

(87.691°) 

0.5324 

(30.504°) 

PSO 795.4173 0.7456 

(42.72°) 

1.5261 

(87.439°) 

0.5326 

(30.516°) 

GA, Integer, 1 

degree 

795.4699 43° 88° 31° 

GA, Integer, 5 

degrees 

795.6845 45° 90° 30° 

GA, Integer, 10 

degrees 

797.6317 40° 80° 30° 

GA, Integer, 15 

degrees 

795.6845 45° 90° 30° 

 

First of all, it can be observed from Table 5.1 that the results obtained by applying GA 

and PSO are in good agreement. The first to the third row of the results corresponding 

to real variable-based optimization. If the HGA (GA+Gradient) method was applied, the 

results obtained using different algorithms' runs would coincide. However, if GA is used 

(row 2), some perturbations appear in the optimal solution values because of the 

mutation operator used in GA. The results presented in the first two rows of Table 5.1 

derived from applying HGA are in good agreement with the results exhibited in [50]. 
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The last four rows of Table 5.1 represent integer solutions corresponding to a minimal 

change of Euler angles of 1, 5, 10, and 15 degrees. In practice, orientation angles are 

used with different step sizes depending on a specific problem. In general, the nearest 

integer values to real solutions (rounding) may not lead to the best integer solution. For 

the step size of Euler angles 1,5 and 15 degrees, the integer solutions are close to 

available to real value-based solutions. However, it is not the case in the case of step 

size of Euler angles 10 degrees.  

 

Due to the symmetric nature of the objective function, four different equivalent solutions 

exist for the posed problem (for real variables). Since the objective function values 

coincide for these solutions, even EA algorithms are inadequate to discover all these 

solutions if the design domain is not restricted temporarily. The four equivalent solutions 

and their calculating formulas are exhibited in Table 5.2 for the HGA (GA+ Gradient) 

method. There is no justification for repeating all other solutions because their values 

can be calculated by similar formulas that remain effective for real variable solutions 

only.  

Table 5.2 E-Glass/Vinilester, four equivalent optimal solutions. 

Method Min. strain 

energy 

density (GPa) 

 *
1            *

2   *
3  

GA+Gradient 795.4174 0.7456 

(42.72°) 

1.5261 

(87.439°) 

0.5326 

(30.516°) 

GA+Gradient 795.4174 0.7456 

(42.72°) 

π-1.5261 

(180°-87.439°) 

π-0.5326 

(180°-30.516°) 

GA+Gradient 795.4174 π-0.7456 

(180°- 42.72°) 

1.5261 

(87.439°) 

π-0.5326 

(180°-30.516°) 

GA+Gradient 795.4174 π-0.7456 

(180°- 42.72°) 

π-1.5261 

(180°-87.439°) 

0.5326 

(30.516°) 
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Despite four equivalent global optimal solutions, the considered problem has a 

considerable number of local extremes.  

 

 

Figure 5.1 E-Glass/Vinilester, distribution of the strain energy as function of Euler angles θ2 and 

θ3 (θ1 is constant) 

 
Figure 5.1 depicts the strain energy density by fixing the Euler angle θ1 =

𝜋

2
 to perceive 

the energy distribution behavior in 3D. However, the original objective function contains 

three design parameters, and the result is calculated in 4D. For this plot, the energy 

density function is a function of the Euler angle θ2 and θ3. It is also apparent from the 

figure the presence of a number of local extremes. 
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Figure 5.2 E-Glass/Vinilester, distribution of the strain energy as function of Euler angles θ3 and 

θ1 (θ2 is constant) 

 

Figure 5.2 represents the strain energy density by setting the Euler angle θ2 =
𝜋

2
 . For 

this plot, the energy density function is considered as a function of the Euler angle θ3 

and θ1 to perceive the energy distribution behavior in 3D from a different perspective. 

The original objective function contains three design parameters, and the result is 

calculated in 4D. Similarly to Figure 5.1, it is also apparent from the figure that the 

presence of a number of local extremes and complexity of the designed problem. 
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Figure 5.3 E-Glass/Vinilester, distribution of the strain energy as function of Euler angles θ1 and 

θ2 (θ3 is constant) 

 

Figure 5.3 depicts the strain energy density for the composite E-Glass/Vinilester by 

considering the Euler angle θ3 =
𝜋

2
 to observe the energy distribution behavior in 3D. For 

this diagram, the energy density function is a function of the Euler angle θ1 and θ2. The 

illustration would assist in comprehending the nature of the distribution because the 

original objective function contains three design parameters, and the result is calculated 

in 4D. The presence of numerous local extremes can also be visible, like in Figure 5.1 

and Figure 5.2.  
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In table 5.3, average computation times from three consecutive runs are listed of the 

consecutive methods applied for the optimization analysis. The average value is 

necessary for the assessment since the studied algorithms operate as random, and a 

single run may not depict the real scenario.  

Table 5.3 E-Glass/Vinylester, computing time 

Method Computing Time (Sec.) 

GA+Gradient 1.7253 

GA 2.5453 

PSO 1.4032 

GA, Integer, 1 degree 0.9834 

GA, Integer, 5 degrees 0.8020 

GA, Integer, 10 degrees 0.7345 

GA, Integer, 15 degrees 0.7031 

 

By considering the real value variables-based algorithms, it can be observed from Table 

5.3 that the fastest method appears PSO algorithm and slowest GA algorithm. The HGA 

(GA+Gradient) is faster than GA since theoretically, the gradient method is faster than 

GA, and part of algorithm computing faster. In GA, HGA, and PSO, the equal population 

size 200 and number of generations 150 have been used. Also, the computing times for 

real value-coded algorithms are notably close, with minor differences. 

 

In the case of integer coded algorithms, the maximum population size is not determined 

since it is determined indirectly by a combination of possible values of the design 

variables, i.e., 3𝐿𝑒𝑣𝑒𝑙𝑠 Where levels are 90, 18, 9, and 6 for the step size 1, 5, 10, and 

15, respectively, for this reason, it can be observed that reducing computing time when 

step size rises. Thus, in the context, a rise in the step size implies reducing the number 

of levels.  
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5.2 Graphite/Epoxy 

In the following, another orthotropic reinforced composite Graphite/Epoxy is considered 

for this study. The properties of the Graphite/Epoxy can be given in terms of engineering 

parameters as 181=1E  
GPa, 3.102 =E

 
GPa, 3.103 =E  GPa, 17.712 =G  GPa, 713 =G  

GPa, 323 =G  GPa, 28.012 = , 27.013 = , 6.023 = . The compliance matrix can be 

computed in terms of engineering.  
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Next, the constitutive matrix is computed as the inverse of the compliance matrix as 

follows- 

𝐶 = 𝑆−1 =



























072.000000

0070.00000

00030.0000

000164.0099.0072.0

000099.0164.0073.0

000072.0073.0850.1

 

And substituted into the objective function (16). 

The principal strain values introduced above are used. ( ,8=
I

 ,7−=
II
 6−=

III
 )  
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In addition, in Table 5.4, optimal Euler angles and minimum strain energy density in 

GPa are listed corresponding to the applied methods.  

Table 5.4 Graphite/Epoxy, solutions using GA+Gradient, GA, PSO, and integer variables GA 

Method Min. strain energy 

density (GPa) 

*
1  *

2  *
3  

GA+Gradient 964.3666 π/2 

(90°) 

0.8700 

(49.847°) 

π/2 

(90°) 

GA 964.3674 π/2 

(90°) 

0.8702 

(49.859°) 

π/2 

(90°) 

PSO 964.3666 π/2 

(90°) 

0.8700 

(49.847°) 

π/2 

(90°) 

GA, Integer, 1 degree 964.4766 90° 50° 90° 

GA, Integer, 5 degrees 964.4766 90° 10° 90° 

GA, Integer, 10 degrees 964.4766 90° 50° 90° 

GA, Integer, 15 degrees 997.0620 45° 75° 15° 

 

Regarding the real value-based optimization, the results obtained using HGA 

(GA+Gradient), GA, and PSO methods are presented in excellent agreement [50]. In 

HGA (GA+Gradient) and PSO methods, the results obtained in several runs coincide. 

However, for GA, the case is quite different, where each run may lead to different 

results. Usually, perturbation occurs near the global optimum, but GA converges to the 

local optimum in some cases. 

 

Considering integer optimization, step size 1, 5, and 10 degrees are the nearest possible 

integer values to real value solution. In the case of step size of Euler angles 15 degrees, 

a different solution has been found. The values of design variables vary significantly, 

yet the change in the objective function is not substantial (3-4% deviation). This result 

confirms an acknowledged fact that, in general, the integer solution cannot be deduced 
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from the real value solution by rounding it to the nearest integer. It is essential to run 

several times for the integer GA to achieve global optimum. 

 

Furthermore, four different equivalent solutions can be derived based on one global 

extreme (for real value solutions) to save computing time. These solutions demonstrate 

a preferable outcome due to the symmetry of the objective function.    

Table 5.5 Graphite/Epoxy, four equivalent optimal solutions. 

Method Min. strain 

energy density 

(GPa) 

*
1  *

2  *
3  

GA+Gradient 964.3666 π/2 

(90°) 

0.870 

(49.847°) 

π/2 

(90°) 

GA+Gradient 964.3666 π/2 

(90°) 

π-0.870 

(180-49.847°) 

π/2 

(90°) 

GA+Gradient 964.3666 π/2 

(90°) 

0.870 

(49.847°) 

π/2 

(90°) 

GA+Gradient 964.3666 π/2 

(90°) 

π-0.870 

(180-49.847°) 

π/2 

(90°) 

 

In table 5.5 are given results for HGA (GA+Gradient) method, but these rules are valid 

for real value variable-based solutions. 
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Figure 5.4 Graphite/Epoxy, distribution of the strain energy as function of Euler angles θ2 and θ3 
(θ1 is constant) 

 
Figure 5.4 illustrates the strain energy density for the composite Graphite/Epoxy by 

fixing the Euler angle θ1 =
𝜋

2
 to perceive the energy distribution behavior in 3D. However, 

the original objective function contains three design parameters, and the result is 

computed in 4D. For this plot, the energy density function is a function of the Euler 

angle θ2 and θ3. It is also apparent from the figure the presence of a number of local 

extremes. 
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Figure 5.5 Graphite/Epoxy, distribution of the strain energy as function of Euler angles θ3 and θ1 
(θ2 is constant) 

 
Figure 5.5 represents the strain energy density by fixing the Euler angle θ2 =

𝜋

2
 to 

comprehend the energy distribution behavior in 3D. Whereas the initial objective 

function contains three design parameters, and the result is derived in 4D. For this plot, 

the energy density function is considered as a function of the Euler angle θ3 and θ1. 

Similarly to Figure 5.4, it is also apparent from the figure that the presence of a number 

of local extremes and complexity of the designed problem. 
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Figure 5.6 Graphite/Epoxy, distribution of the strain energy as function of Euler angles θ1 and θ2 
(θ3 is constant) 

 
Figure 5.6 depicts the strain energy density considering the Euler angle θ3 =

𝜋

2
 to observe 

the energy distribution behavior in 3D. For this plot, the energy density function is a 

function of the Euler angle θ1 and θ2. Nevertheless, the original objective function 

contains three design parameters, and the result is calculated in 4D. The presence of 

several local extremes can also be perceptible, like in Figure 5.5 and Figure 5.6.for this 

material.   
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The computing times for each calculated methods are presented in Table 5.6  

Table 5.6 Graphite/Epoxy, computing time 

Method Computing Time (Sec.) 

GA+Gradient 0.6027 

GA 2.0953 

PSO 1.3021 

GA, Integer, 1 degree 1.2284 

GA, Integer, 5 degrees 0.7916 

GA, Integer, 10 degrees 0.7389 

GA, Integer, 15 degrees 0.7106 

 

From Table 5.6, it can be observed that the HGA (GA+Gradient) algorithm appears to 

be the fastest, and the GA algorithm is the slowest among the real coded algorithms. In 

this case, PSO is slower than the HGA and faster than pure GA. Though PSO executes 

global and local searches concurrently, the gradient method, for this material, 

performed quite faster, combining with pure GA as HGA to reach global extremes. 

Moreover, the population size 200 and number of generations 150 have been considered 

regarding the real coded algorithms. Detailed MATLAB code is available in Appendix 1 

and 2. 

In integer coded algorithms, the maximum population size is given by 3𝐿𝑒𝑣𝑒𝑙𝑠 , where 

levels values are 90, 18, 9, and 6 for the step size 1, 5, 10, and 15, respectively. Thus, 

reducing computing time can be followed from Table 5.6 when step size and max 

population size reduce. 

In this chapter, unconstrained optimization has been examined considering both real 

and integer variables. For real coded variables, three different algorithms – GA, HGA, 

and PSO applied on the two different materials and regrading accuracy and computation 

time PSO algorithm performed better in a similar condition and framework. Additionally, 

for the designed integer variable, GA has been applied. The results revealed that the 

accuracy decreased as the step size increases, but the computation time reduced.  
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SUMMARY 

The topic of the thesis is "Numerical algorithms for the orientational design of 3D 

orthotropic materials ". The optimal material orientation problem is one of the critical 

issues in the design of advanced composite materials. Although the problem is currently 

more studied in 2D anisotropic materials, 3D materials are yet less studied, especially 

orthotropic and general anisotropic materials.  

The study's principal goal is to analyze and compare different optimization algorithms 

for solving 3D optimal material orientation problems to determine the most 

computationally cost-effective algorithms for particular problems or classes of problems. 

The thesis is divided into five chapters. In chapter 1, an introduction to composite 

materials and optimization methods used is given. Chapter 2 presents the general 

background/literature overview covering the general formulation of the constrained 

multicriteria optimization problem, optimal material orientation problem in the 

composite structure, and techniques applied in previous studies for orientational design. 

In chapter 3 is given a detailed description of the four optimization methods used in the 

current study (gradient/steepest descent & Newton methods, genetic algorithm, particle 

swarm optimization algorithm, and Lagrange multipliers method). In chapter 4, the 

algorithms mentioned above are utilized for optimal material orientation of 3D linear 

elastic orthotropic materials. Finally, the obtained numerical results are discussed and 

analyzed in chapter 5, considering two different E-Glass/Vinilester and Graphite/Epoxy 

materials.   

The main goal of the study is achieved. The results obtained using the above-considered 

algorithms are found to be in good agreement with each other in the case of both 

materials considered (E-Glass/Vinilester and Graphite/Epoxy). The results are in 

agreement also those available in the literature for the GA+Gradient method.  

To sum, for the real variable design and considered problem or class of problems 

(orientational design of 3D materials), the most effective appears the PSO algorithm. 

In the case of integer variable design, the GA algorithm was employed. The results 

obtained were close to that of real variable design when the step size of the Euler angle 

was 1 degree. However, the approach introduced in this study is novel as the results 

covering integer variable optimal design of 3D linear elastic orthotropic materials are 

not addressed in the previous literature. 
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KOKKUVÕTE 

Antud magistritöö teemaks on „ Numbrilised algoritmid 3D ortotroopse materjali optimaalse 

orientatsiooni määramiseks. Kaasaegsete komposiitmaterjalide projekteerimisel on 

optimaalne materjali orientatsioon üks võtmeküsimusi. Optimaalse orientatsiooni probleemi 

on uuritud peamiselt 2D anisotroopsete materjalide korral, 3D materjale on vähem uuritud, 

eriti ortotroopseid ja üldisi anisotroopseid. 

Töö peamiseks eesmärgiks on analüüsida ja võrrelda erinevaid optimeerimise algoritme 

3D ortotroopse materjali optimaalse orientatsiooni määramiseks, leida väikseima 

arvutusmahuga algoritm antud probleemi või probleemide klassi jaoks. 

 

Töö on jaotatud viide peatükki. Esimene peatükk tutvustab komposiitmaterjale ja neile 

rakendatud optimeerimise algoritme. Teine peatükk sisaldab kitsendustega 

multikriteriaalse optimeerimisülesande üldist formulatsiooni, põhjalikumat kirjanduse 

ülevaadet materjali optimaalse orientatsiooni määramisest ning kasutatud 

optimeerimise meetoditest. Kolmanda peatükis on toodud detailsem kirjeldus antud 

töös kasutatud optimeerimismeetoditele (gradiendi meetod/kiireima lamguse &Newtoni 

meetod, geneetiline algoritm, osakeste parve algoritm ja Lagrange kordajate meetod).  

Neljandas peatükis on rakendatud eespooltoodud meetodeid 3D ortotroopse materjali 

optimaalse orientatsiooni määramiseks. Saadud numbrilised tulemused on kirjeldatud 

viiendas peatükis, kus on vaadeldud kahte materjali (E-Glass/Vinilester ja Graphite/Epoxy) 

 

Töö eesmärk on täidetud. Erinevate algoritmide abil saadud tulemused on heas 

kooskõlas omavahel mõlema vaadeldud materjali korral ja on kooskõlas ka kirjanduses 

olemasolevate GA+gradiendi meetodi abil saadud tulemustega.   

 

Peamine järeldus on et reaalarvulise lahendi korral osutus antud probleemi või 

probleemude klassi jaoks (3D ortotroopsed materjalid) parimaks osakeste parve 

algoritm. 

 

Täisarvuliste muutujate korral on rakendatud GA algoritmi. Väikese sammu suuruse 

korral (1 kraad) saadud tulemused osutusid heas kooskõlas olevateks reaalarvulise 

lahendusega. Töö autorile teadaolevalt pole kirjanduses antud probleemi täisarvuliste 

lahendite korral uuritud.  
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APPENDICES 

The below MATLAB codes explicitly reveal the details of the proposed objective function 

and design variable to address the optimal orientational design problem for 

unconstrained (Real and Integer) and constrained optimization.    

 

Appendix 1 
 

Unconstrained Optimization (Real variable solution) 

 
Genetic Algorithm (GA) 
 

clear all 

tic 

 

%mat1 Graphite/Epoxy 

 

E1=181e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9; G23=3e9; G31=7e9; ny12=0.28; 

ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

% E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

                  

A=[]; b=[]; 

Aeq=[]; beq=[]; 

lb=[0,0,0]; 

%ub=[pi,pi,pi]; 

ub=[pi/2,pi/2,pi/2]; 

%ub=[90,90,90]; 

numOfVar=3; 

ea(1)=8; ea(2)=-7; ea(3)=-6;  % principal strains 

  

intcon=[] 

options= optimoptions('ga','Generations',150,'PopulationSize', 200); 

  

[x,Uval,exitf] = 

ga(@(x)pr_ob1(x,C,ea),numOfVar,A,b,Aeq,beq,lb,ub,[],intcon, options); 

format long 

x=x 

U=Uval 

Computing_Time=toc 

%d1=pi/2; 

d2=pi/2; 

%d3=pi/2; 

D1=linspace(0,pi,100); 

%D2=linspace(0,pi,100); 

D3=linspace(0,pi,100); 

%[d2,d3] = meshgrid(D2,D3);  

%[d1,d2] = meshgrid(D1,D2); 
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d3,d1] = meshgrid(D3,D1);  

Fu=plot1(d1,d2,d3,C,ea); 

%mesh(d2,d3,Fu) 

mesh(d3,d1,Fu) 

%mesh(d1,d2,Fu) 

 

HGA (GA+Gradient) 
 

clear all 

tic 

 

%mat1 Graphite/Epoxy 

 

%E1=181.0e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9; G23=3.0e9; G31=7.0e9; 

ny12=0.28; ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

  

% For Local optima analyais(fmincon) 

  

A=[]; b=[]; 

Aeq=[]; beq=[]; 

lb=[0.001,0.001,0.01];  % trivial solution x=0 is omitted  

%ub=[pi,pi,pi]; 

ub=[pi/2,pi/2,pi/2]; 

%ub=[pi/4,pi/4,pi/4]; 

numOfVar=3; 

ea(1)=8; ea(2)=-7; ea(3)=-6;  % principal strains 

  

%x0=[0.9, 0.5, 0.8]; 

%x0=[0.12, 0.09, 0.098]; 

%x0=[0.02, 0.07, 0.055]; 

x0=[0.6, 1, 1.5]; 

options= optimoptions('ga','Generations',150,'PopulationSize', 200); 

[x,Uval,exitf] = 

ga(@(x)pr_ob1(x,C,ea),numOfVar,A,b,Aeq,beq,lb,ub,[],options) 

  

x0=x 

  

[x,Uval,exitf] = fmincon(@(x)pr_ob1(x,C,ea),x0,A,b,Aeq,beq,lb,ub,[]); 

format long; 

x=x 

U=Uval 

Computing_Time=toc  

d1=pi/2; 

%d2=pi/2; 

%d3=pi/2; 

%D1=linspace(0,pi,100); 

D2=linspace(0,pi,100); 

D3=linspace(0,pi,100); 

[d2,d3] = meshgrid(D2,D3);  

%[d1,d2] = meshgrid(D1,D2); 
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%[d3,d1] = meshgrid(D3,D1);  

Fu=plot1(d1,d2,d3,C,ea); 

mesh(d2,d3,Fu) 

%mesh(d3,d1,Fu) 

%mesh(d1,d2,Fu) 

 

 

Particle Swarm Optimization (PSO) 
 

clear all 

tic 

 

%mat1 Graphite/Epoxy 

 

 

%E1=181e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9;  G23=3e9;  G31=7e9;  

ny12=0.28; ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

  

A=[]; b=[]; 

Aeq=[]; beq=[]; 

lb=[0,0,0]; 

%ub=[pi,pi,pi]; 

ub=[pi/2,pi/2,pi/2]; 

%ub=[pi/4,pi/4,pi/4]; 

numOfVar=3; 

ea(1)=8; ea(2)=-7; ea(3)=-6;  % principal strains 

  

options = 

optimoptions('particleswarm','SwarmSize',200,'MaxIterations',150); 

% options = 

optimoptions('particleswarm','SwarmSize',100,'HybridFcn',@fmincon); 

[x,Uval,exitf] = 

particleswarm(@(x)pr_ob1(x,C,ea),numOfVar,lb,ub,options); 

x=x 

U=Uval 

Computing_Time=toc 
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Objective functions 
 

function [U] = pr_ob1(x,C,ea) 

d1=x(1); 

d2=x(2); 

d3=x(3); 

e1=ea(1);e2=ea(2); e3=ea(3); 

aep12=-2*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)^2-(((e1-e2)*cos(d3)^2 

e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*sin(d1)*cos(d1)+sin(d3)*cos(d2)*cos(d3)*(e1-e2);     

aep31=(sin(d1)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)+sin(d3)*cos(d1)*cos(d3)*(e1-e2))*sin(d2); 

aep23=-(-cos(d2)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d1)+sin(d1)*sin(d3)*cos(d3)*(e1-e2))*sin(d2); 

aep11=(((e1-e2)*cos(d3)^2-e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*cos(d1)^2-2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+((-

e1+e2)*cos(d3)^2+e1-e3)*cos(d2)^2+e3; 

aep22=(-(cos(d2)^2+1)*(e1-e2)*cos(d3)^2+(e1-e3)*cos(d2)^2-

e2+e3)*cos(d1)^2+2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+(e1-

e2)*cos(d3)^2+e2; 

aep33=cos(d3)^2*cos(d2)^2*e1-cos(d3)^2*cos(d2)^2*e2-

cos(d3)^2*e1+cos(d3)^2*e2-cos(d2)^2*e1+cos(d2)^2*e3+e1; 

U=0.5*C(1,1)*aep11^2+ C(1,2)*aep11*aep22+ 

C(1,3)*aep11*aep33+0.5*C(2,2)*aep22^2+C(2,3)*aep22*aep33+0.5*C(3,3)*aep33

^2+2*C(6,6)*aep12^2+2*C(4,4)*aep23^2+2*C(5,5)*aep31^2; 

End 

 

 

Plot functions 
 

 

function [U] = plot1(d1,d2,d3,C,e) 

ea(1)=(e(1)+e(2))/2; 

ea(2)=(e(2)-e(1))/2; 

ea(3)=e(3)-ea(1); 

aep12=(sin(d2).^2).*sin(2.*d1)*ea(3)/2+(cos(d2).*cos(2.*d1).*sin(2.*d3)+(

1+cos(d2).^2)*sin(2.*d1).*cos(2.*d3)/2)*ea(2);     

aep31=sin(d2).*(sin(d1).*cos(d2)*ea(3)-

(cos(d2).*sin(d1).*cos(2.*d3)+sin(2.*d3).*cos(d1))*ea(2)); 

aep23=sin(d2).*(cos(d1).*cos(d2)*ea(3)-(cos(d2).*cos(d1).*cos(2.*d3)-

sin(2.*d3).*sin(d1))*ea(2)); 

aep11=sin(d2).^2*(1-

cos(2.*d1))*ea(3)+(cos(d2).*sin(2.*d1).*sin(2.*d3)+(cos(d2).^2*(1-

cos(2.*d1))-(1+cos(2.*d1))).*cos(2.*d3)/2)*ea(2)+ea(1); 

aep22=sin(d2).^2*(1+cos(2.*d1))*ea(3)+(-

cos(d2).*sin(2.*d1).*sin(2.*d3)+(cos(d2).^2*(1+cos(2.*d1))-(1-

cos(2.*d1))).*cos(2*d3)/2)*ea(2)+ea(1); 

  

aep33=-sin(d2).^2.*(ea(3)-cos(2.*d3).*ea(2))+e(3); 

U=0.5.*C(1,1).*aep11.^2+ C(1,2).*aep11.*aep22+ 

C(1,3).*aep11.*aep33+0.5.*C(2,2).*aep22.^2+C(2,3).*aep22.*aep33+0.5.*C(3,

3).*aep33.^2+2.*C(4,4).*aep23.^2+2.*C(5,5).*aep31.^2+2.*C(6,6).*aep12.^2; 

end 
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Appendix 2 
 

Unconstrained Optimization (Integer variable solution) 
 
Step Size 10 

 

clear all 

tic 

 

%mat1 Graphite/Epoxy 

 

%E1=181e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9;  G23=3e9;  G31=7e9;  

ny12=0.28; ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

             

A=[]; b=[]; 

Aeq=[]; beq=[]; 

lb=[0,0,0]; 

ub=[90,90,90]; 

numOfVar=3; 

ea(1)=8; ea(2)=-7; ea(3)=-6;  % principal strains 

  

x0=[0.6, 0.15, 0.3]; 

intcon=[1,2,3] 

[x,Uval,exitf] = 

ga(@(x)pr_ob2Degrees(x,C,ea),numOfVar,A,b,Aeq,beq,lb,ub,[],intcon); 

format long 

x=x 

U=Uval 

Computing_Time=toc 

 

Objective functions 
 

function [U] = pr_ob2Degrees(x,C,ea) 

d1=deg2rad(x(1)); 

d2=deg2rad(x(2)); 

d3=deg2rad(x(3)); 

e1=ea(1);e2=ea(2); e3=ea(3); 

aep12=-2*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)^2-(((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*sin(d1)*cos(d1)+sin(d3)*cos(d2)*cos(d3)*(e1-e2);     

aep31=(sin(d1)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)+sin(d3)*cos(d1)*cos(d3)*(e1-e2))*sin(d2); 

aep23=-(-cos(d2)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d1)+sin(d1)*sin(d3)*cos(d3)*(e1-e2))*sin(d2); 
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aep11=(((e1-e2)*cos(d3)^2-e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*cos(d1)^2-2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+((-

e1+e2)*cos(d3)^2+e1-e3)*cos(d2)^2+e3; 

aep22=(-(cos(d2)^2+1)*(e1-e2)*cos(d3)^2+(e1-e3)*cos(d2)^2-

e2+e3)*cos(d1)^2+2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+(e1-

e2)*cos(d3)^2+e2; 

aep33=cos(d3)^2*cos(d2)^2*e1-cos(d3)^2*cos(d2)^2*e2-

cos(d3)^2*e1+cos(d3)^2*e2-cos(d2)^2*e1+cos(d2)^2*e3+e1; 

U=0.5*C(1,1)*aep11^2+ C(1,2)*aep11*aep22+ 

C(1,3)*aep11*aep33+0.5*C(2,2)*aep22^2+C(2,3)*aep22*aep33+0.5*C(3,3)*aep33

^2+2*C(6,6)*aep12^2+2*C(4,4)*aep23^2+2*C(5,5)*aep31^2; 

end 

 

 

Step Size 50 

clear all 

tic 

 

%mat1 Graphite/Epoxy 

 

%E1=181e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9;  G23=3e9;  G31=7e9;  

ny12=0.28; ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

               

A=[]; b=[]; 

Aeq=[]; beq=[]; 

lb=[0,0,0]; 

ub=[18,18,18]; 

numOfVar=3; 

ea(1)=8; ea(2)=-7; ea(3)=-6;  % principal strains 

  

x0=[0.6, 0.15, 0.3]; 

intcon=[1,2,3] 

[x,Uval,exitf] = 

ga(@(x)pr_ob2Degrees5(x,C,ea),numOfVar,A,b,Aeq,beq,lb,ub,[],intcon); 

format long 

x=x 

U=Uval 

Computing_Time=toc 
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Objective functions 

 

function [U] = pr_ob2Degrees5(x,C,ea) 

d1=deg2rad(5*x(1)); 

d2=deg2rad(5*x(2)); 

d3=deg2rad(5*x(3)); 

e1=ea(1);e2=ea(2); e3=ea(3); 

aep12=-2*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)^2-(((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*sin(d1)*cos(d1)+sin(d3)*cos(d2)*cos(d3)*(e1-e2);     

aep31=(sin(d1)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)+sin(d3)*cos(d1)*cos(d3)*(e1-e2))*sin(d2); 

aep23=-(-cos(d2)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d1)+sin(d1)*sin(d3)*cos(d3)*(e1-e2))*sin(d2); 

aep11=(((e1-e2)*cos(d3)^2-e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*cos(d1)^2-2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+((-

e1+e2)*cos(d3)^2+e1-e3)*cos(d2)^2+e3; 

aep22=(-(cos(d2)^2+1)*(e1-e2)*cos(d3)^2+(e1-e3)*cos(d2)^2-

e2+e3)*cos(d1)^2+2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+(e1-

e2)*cos(d3)^2+e2; 

aep33=cos(d3)^2*cos(d2)^2*e1-cos(d3)^2*cos(d2)^2*e2-

cos(d3)^2*e1+cos(d3)^2*e2-cos(d2)^2*e1+cos(d2)^2*e3+e1; 

U=0.5*C(1,1)*aep11^2+ C(1,2)*aep11*aep22+ 

C(1,3)*aep11*aep33+0.5*C(2,2)*aep22^2+C(2,3)*aep22*aep33+0.5*C(3,3)*aep33

^2+2*C(6,6)*aep12^2+2*C(4,4)*aep23^2+2*C(5,5)*aep31^2; 

end 

 

Step Size 100 

clear all 

tic 

 

%mat1 Graphite/Epoxy 

 

%E1=181e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9; G23=3e9; G31=7e9; 

ny12=0.28; ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

               

A=[]; b=[]; 

Aeq=[]; beq=[]; 

lb=[0,0,0]; 

ub=[9,9,9]; 

numOfVar=3; 

ea(1)=8; ea(2)=-7; ea(3)=-6;  % principal strains 

  

x0=[0.6, 0.15, 0.3]; 

intcon=[1,2,3] 

[x,Uval,exitf] = 

ga(@(x)pr_ob2Degrees10(x,C,ea),numOfVar,A,b,Aeq,beq,lb,ub,[],intcon); 

format long 
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x=x 

U=Uval 

10*x 

Computing_Time=toc 

 

Objective functions 

 

function [U] = pr_ob2Degrees10(x,C,ea) 

d1=deg2rad(10*x(1)); 

d2=deg2rad(10*x(2)); 

d3=deg2rad(10*x(3)); 

e1=ea(1);e2=ea(2); e3=ea(3); 

aep12=-2*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)^2-(((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*sin(d1)*cos(d1)+sin(d3)*cos(d2)*cos(d3)*(e1-e2);     

aep31=(sin(d1)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)+sin(d3)*cos(d1)*cos(d3)*(e1-e2))*sin(d2); 

aep23=-(-cos(d2)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d1)+sin(d1)*sin(d3)*cos(d3)*(e1-e2))*sin(d2); 

aep11=(((e1-e2)*cos(d3)^2-e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*cos(d1)^2-2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+((-

e1+e2)*cos(d3)^2+e1-e3)*cos(d2)^2+e3; 

aep22=(-(cos(d2)^2+1)*(e1-e2)*cos(d3)^2+(e1-e3)*cos(d2)^2-

e2+e3)*cos(d1)^2+2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+(e1-

e2)*cos(d3)^2+e2; 

aep33=cos(d3)^2*cos(d2)^2*e1-cos(d3)^2*cos(d2)^2*e2-

cos(d3)^2*e1+cos(d3)^2*e2-cos(d2)^2*e1+cos(d2)^2*e3+e1; 

U=0.5*C(1,1)*aep11^2+ C(1,2)*aep11*aep22+ 

C(1,3)*aep11*aep33+0.5*C(2,2)*aep22^2+C(2,3)*aep22*aep33+0.5*C(3,3)*aep33

^2+2*C(6,6)*aep12^2+2*C(4,4)*aep23^2+2*C(5,5)*aep31^2; 

end 

 

Step Size 150 

clear all 

tic 

 

%mat1 Graphite/Epoxy 

 

%E1=181e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9;  G23=3e9;  G31=7e9;  

ny12=0.28; ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

 

A=[]; b=[]; 

Aeq=[]; beq=[]; 

lb=[0,0,0]; 

ub=[6,6,6]; 

numOfVar=3; 

ea(1)=8; ea(2)=-7; ea(3)=-6;  % principal strains 
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x0=[0.6, 0.15, 0.3]; 

intcon=[1,2,3] 

[x,Uval,exitf] = 

ga(@(x)pr_ob2Degrees15(x,C,ea),numOfVar,A,b,Aeq,beq,lb,ub,[],intcon); 

format long 

x=x 

U=Uval 

15*x 

Computing_Time=toc 

 

Objective functions 
 

function [U] = pr_ob2Degrees15(x,C,ea) 

d1=deg2rad(15*x(1)); 

d2=deg2rad(15*x(2)); 

d3=deg2rad(15*x(3)); 

e1=ea(1);e2=ea(2); e3=ea(3); 

aep12=-2*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)^2-(((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*sin(d1)*cos(d1)+sin(d3)*cos(d2)*cos(d3)*(e1-e2);     

aep31=(sin(d1)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d2)+sin(d3)*cos(d1)*cos(d3)*(e1-e2))*sin(d2); 

aep23=-(-cos(d2)*((e1-e2)*cos(d3)^2-

e1+e3)*cos(d1)+sin(d1)*sin(d3)*cos(d3)*(e1-e2))*sin(d2); 

aep11=(((e1-e2)*cos(d3)^2-e1+e3)*cos(d2)^2+(e1-e2)*cos(d3)^2+e2-

e3)*cos(d1)^2-2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+((-

e1+e2)*cos(d3)^2+e1-e3)*cos(d2)^2+e3; 

aep22=(-(cos(d2)^2+1)*(e1-e2)*cos(d3)^2+(e1-e3)*cos(d2)^2-

e2+e3)*cos(d1)^2+2*sin(d1)*sin(d3)*cos(d2)*cos(d3)*(e1-e2)*cos(d1)+(e1-

e2)*cos(d3)^2+e2; 

aep33=cos(d3)^2*cos(d2)^2*e1-cos(d3)^2*cos(d2)^2*e2-

cos(d3)^2*e1+cos(d3)^2*e2-cos(d2)^2*e1+cos(d2)^2*e3+e1; 

U=0.5*C(1,1)*aep11^2+ C(1,2)*aep11*aep22+ 

C(1,3)*aep11*aep33+0.5*C(2,2)*aep22^2+C(2,3)*aep22*aep33+0.5*C(3,3)*aep33

^2+2*C(6,6)*aep12^2+2*C(4,4)*aep23^2+2*C(5,5)*aep31^2; 

end 
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Appendix 3 
 

Constrained Optimization 

 
Genetic Algorithm (GA) 
 

clear all 

tic 

 

%mat1 Graphite/Epoxy 

 

%E1=181e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9; G23=3e9; G31=7e9; 

ny12=0.28; ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

  

A=[]; b=[]; 

Aeq=[]; beq=[]; 

lb=[-8,-7,-6, -8,-8,-8]; 

ub=[8,7,6,6,6,6]; 

numOfVar=6; 

ea(1)=8; ea(2)=-7; ea(3)=-6;  % principal strains 

  

intcon=[] 

options= optimoptions('ga','Generations',350,'PopulationSize', 350); 

Aeq=[]; 

beq=[]; 

[x,Uval,exitf] = 

ga(@(x)pr_ob1_constrained_opt(x,C,ea),numOfVar,A,b,Aeq,beq,lb,ub,@(x)nonl

in(x,ea),intcon, options); 

format long 

x=x 

U=Uval 

  

temp=((x(3)-ea(3))*(x(3)+ea(3)-ea(1)-ea(2))+x(4)^2+x(5)^2)/((ea(1)-

ea(3))*(ea(3)-ea(2))); 

Theta2=asin(sqrt(temp)); 

temp2=(x(4)^2-x(2)*x(3)-x(1)*ea(3)+ea(3)*(ea(1)+ea(2)))/(temp*(ea(1)-

ea(3))*(ea(3)-ea(2))); 

Theta1=asin(sqrt(temp2)); 

temp3=2*(ea(3)-0.5*(ea(1)+ea(2))-(ea(3)-x(3))/temp)/(ea(2)-ea(1)); 

Theta3=(acos(temp3))/2; 

[Theta1,Theta2,Theta3] 

Computing_Time=toc 

e1=ea(1); 

e2=ea(2); 

e3=ea(3); 

kontr=(x(4)*x(4)+x(5)*x(5)+(x(3)-e3)*(x(3)+e3-e1-e2))/((e1-e3)*(e3-e2)) 

dd2=asin(sqrt(kontr)) 
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Objective functions 
 

 

function [U] = pr_ob1_constrained_opt(x,C,ea) 

aep11=x(1); aep22=x(2);  aep33=x(3);  aep12=x(6);  aep23=x(4);  

aep31=x(5); 

U=0.5*C(1,1)*aep11^2+ C(1,2)*aep11*aep22+ 

C(1,3)*aep11*aep33+0.5*C(2,2)*aep22^2+C(2,3)*aep22*aep33+0.5*C(3,3)*aep33

^2+2*C(6,6)*aep12^2+2*C(4,4)*aep23^2+2*C(5,5)*aep31^2; 

end 

 

 
function [c,ceq] = nonlin(x,e) 

c=[]; 

ceq(2)=x(1)*x(2)+x(2)*x(3)+x(3)*x(1)-x(4)^2-x(5)^2-x(6)^2-e(1)*e(2)-

e(2)*e(3)-e(3)*e(1); % second invariant 

ceq(3)=x(1)*x(2)*x(3)+2*x(4)*x(5)*x(6)-x(1)*x(4)^2-x(2)*x(5)^2-

x(3)*x(6)^2-e(1)*e(2)*e(3); 

ceq(1)=x(1)+x(2)+x(3)-e(1)-e(2)-e(3); 

end 

 

 

Lagrange multipliers method 
 

clear all 

tic 

initime = cputime; 

 

%mat1 Graphite/Epoxy 

  

%E1=181.0e9; E2= 10.3e9; E3=10.3e9; G12=7.17e9;  G23=3.0e9;  G31=7.0e9;  

ny12=0.28; ny13=0.27; ny23=0.6; 

  

%mat2 E-Glass/Vinylester 

  

E1=25e9; E2=24.8e9; E3=8.5e9; G12=6.5e9; G23=4.5e9; 

G31=4.2e9;ny12=0.1;ny13=0.28;ny23=0.3; 

  

S=[1/E1, -ny12/E1, -ny13/E1,0,0,0;-ny12/E1, 1/E2, -ny23/E2, 0,0,0; -

ny13/E1,-ny23/E2, 1/E3,0, 0,0;... 

0,0,0, 1/G23, 0,0;0,0,0,0,1/G31,0;0,0,0,0,0,1/G12]; 

C=S^-1; 

  

  

e(1)=8; e(2)=-7; e(3)=-6;  % principal strains 

ea=e; 

x0=[-0.8,-1,-3]; 

[x,fval,exitf] = fsolve(@(x)OptConditions(x,C,e),x0) 

  

f1=(C(1,1)-C(1,2)-2*C(6,6))*x(1)-(C(2,2)-C(1,2)-2*C(6,6))*x(2)+(C(1,3)-

C(2,3))*x(3); 

f2=(C(1,2)-C(1,3))*x(1)+(C(2,2)-C(2,3)-2*C(4,4))*x(2)-(C(3,3)-C(2,3)-

2*C(4,4))*x(3); 

f3=(C(1,3)-C(1,1)+2*C(5,5))*x(1)+(C(2,3)-C(1,2))*x(2)+(C(3,3)-C(1,3)-

2*C(5,5))*x(3); 

D1=2*(C(4,4)-C(5,5)); 

D2=2*(C(5,5)-C(6,6)); 

D3=2*(C(6,6)-C(4,4)); 

x(4)=sqrt(f1*f3/(D1*D3)); 

x(5)=sqrt(f1*f2/(D1*D2)); 
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x(6)=sqrt(f2*f3/(D2*D3)); 

temp=((x(3)-ea(3))*(x(3)+ea(3)-ea(1)-ea(2))+x(4)^2+x(5)^2)/((ea(1)-

ea(3))*(ea(3)-ea(2))); 

Theta2=asin(sqrt(temp)); 

temp2=(x(4)^2-x(2)*x(3)-x(1)*ea(3)+ea(3)*(ea(1)+ea(2)))/(temp*(ea(1)-

ea(3))*(ea(3)-ea(2))); 

Theta1=asin(sqrt(temp2)); 

temp3=2*(ea(3)-0.5*(ea(1)+ea(2))-(ea(3)-x(3))/temp)/(ea(2)-ea(1)); 

Theta3=(acos(temp3))/2; 

[Theta1,Theta2,Theta3] 

  

fintime = cputime; 

fprintf('CPUTIME: %g\n', fintime - initime); 

Computing_Time=toc  

 

Objective functions 
 

function [F] = OptConditions(x,C,e) 

f1=(C(1,1)-C(1,2)-2*C(6,6))*x(1)-(C(2,2)-C(1,2)-2*C(6,6))*x(2)+(C(1,3)-

C(2,3))*x(3); 

f2=(C(1,2)-C(1,3))*x(1)+(C(2,2)-C(2,3)-2*C(4,4))*x(2)-(C(3,3)-C(2,3)-

2*C(4,4))*x(3); 

f3=(C(1,3)-C(1,1)+2*C(5,5))*x(1)+(C(2,3)-C(1,2))*x(2)+(C(3,3)-C(1,3)-

2*C(5,5))*x(3); 

D1=2*(C(4,4)-C(5,5)); 

D2=2*(C(5,5)-C(6,6)); 

D3=2*(C(6,6)-C(4,4)); 

F(1) = x(1)+x(2)+x(3)-e(1)-e(2)-e(3); 

F(2) = x(1)*x(2)+x(2)*x(3)+x(3)*x(1)-f2*f3/(D2*D3)-f2*f1/(D2*D1)-

f1*f3/(D1*D3)-e(1)*e(2)-e(3)*e(2)-e(3)*e(1); 

F(3) = x(1)*x(2)*x(3)+2*f1*f2*f3/(D1*D2*D3)-x(1)*f1*f3/(D1*D3)-

x(2)*f1*f2/(D1*D2)-x(3)*f2*f3/(D2*D3)-e(1)*e(2)*e(3); 

end 

 


