

тимае
TALLINNA POLUTEHNILISE INSTITUUDI TOIMETISED BS
ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

UDK 681. 3. 06.

DATA PROCESSING,

COMPILER WRITING,

PROGRAMMING

Transactions of the Faculty of Economics
LIX

Tallinn 1986

Contents

1. В, Tamm, E. Tyugu. Knowledge Application in
CAD and Control 3

2. L. Vyhandu, Fast Methods of Data Analysis
and Processing 15

3. J. Tepandi, T, Luczkovsky. Software Systems
Installation 25

4. J, Tepandi. Data-Driven Matrix Forms 31
5. E, Ounapuu. STATCS - a Computer System for

Socio-Economic Data Analysis 43
6. J. Henno. A Precedence Grammar for ADA 51
7. J. Henno, Some Remarks on ADA Reference Manual

Grammar and Syntax 63
8. D, Liib. A Technology for Building a Compiler-

Writing System . 77
9. M, Depp, A, Vooglaid, L. Vyhandu, EIMA as an

Instrumental System for Building Practical
Programming Systems 85

10, P, Vyhandu. New Ideas in Data Base Segmentation 93
11, J. Laast-Laas, Data Base Infological Design

in Practice 107
12, A, Renzer, Informational Aspects of Business

Analysis Systems Design 113

3

No 614

tallinna poltTtehnilise instituudi toimetised
шда ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО института

В. Tamm Е. Tyugu
UDK 681.3.06.65.015.11

KNOWLEDGE APPLICATION IN CAD AND CONTROL

Abstract

Knowledge representation and processing is presently a major
concern in the studies of artificial intelligence. In this paper

we attempt to discuss some elements of knowledge process-

ing applied to CAD and control.

1, Introduction

Knowledge representation and processing is presently
а major concern in the studies of artificial intelligence,
A number of companies have been established for software
production to develop programs, using knowledge bases for
problem solving. Expert systems used for geological ex-
ploration Cl], diagnosing in medicine [2] and in engineer-
ing [33, in system design [43 are more impressive.

We attempt to discuss some elements of knowledge
processing applied to CAD and control, showing some par-
ticular examples. The corresponding systems enjoy several
merits:

- adaptivity to the environment changes
- provision of computer interaction convenient to

the user, in particular, communication in some
language close to the natural one and a dialogue
on an adaptive scenario

- ease of extension by addition of new knowledge
- high reliability due to common nucleus which

remains unaltered with the knowledge changing.

4

2, What is knowledge?

The concept of machine knowledge was introduced into
the field of artificial intelligence in the mid 19603,
when question-answer systems C5,63 and task solvers C7,Bj
were developed in a number of dissertations. Knowledge
was represented in the form of certain networks, particu-
larly, through semantic networks. In the mid 1970 a a
further major step was made when M, Minski introduced the
concept of a frame, implying knowledge module of an
object or a situation. A review on knowledge representa-
tion is given in the paper C93 , However, this concept is
not adequately defined, and the question of "What is
knowledge?" - might be answered in one of the following
ways:

- text (i.e, data) in the knowledge representation
language

- data controlling computations in different kinds
of programs

- programs developed automatically at problem solv-
ing without the human task supplier

- object and situation description
- information to be used at the purposeful action

in different situations.

The first definition directly implies the semantics
of the knowledge representation language which is difficult
to be provided. The second and third definitions are too
narrow with respect to orientation to programs and computa-
tions, For the fourth definition the description concept
is to be further specified. The fifth definition associates
knowledge with information usefulness. Thus, not a single
definition considered is adequate. Let us recall how
difficult it is to give a satisfactory definition for
"data", although everyone involved in computing knows
from his own experience what data is. The knowledge content
is to be derived from one’s experience, for instance, from
a discussion of examples. Prior to the discussion of the
examples of knowledge application in various fields, we
will describe their basic properties, briefly featured in
the answers above.

5

1, Knowledge can be represented in the data form,
in particular, in the text form in a formal language, in
the network form, providing different kinds of connec-
tions between knowledge elements. There exists the problem
of knowledge translation from one representation form to
another. It is a matter of technology, since each knowl-
edge representation language claims to be universal in a
sense. At least they assure extension by adding new re-
lation and program types, "elementary meanings" or new
connection types. Language expressiveness gives ground to
the convenience of language application, since knowledge
representation languages worked out in detail, are always
developed for a particular application field,

2, Knowledge has the capability of controlling in-
formation processes (computations). It means that in the
knowledge application system process flow is determined
by knowledge and is almost independent of system structure.
The latter determines only the constraints for process run
(with regard to qualitative characteristics). Here lies
the essential difference between knowledge and, for in-
stance, numerical data, implemented to control a dynamic
object*

3, Knowledge may encompass a procedural component,
i,e, programs. But the application of these programs is
controlled by knowledge. For instance, parameter linkage
and program start is performed automatically within a
knowledge application system without the human who started
the process,

4, Knowledge is divided into separate fragments:
descriptions of objects, processes, situations, events.
These fragments (knowledge modules) are called frames.
Methods for running frames have been developed. They are
similar to a great extent to the methods employed for
classes and for describing abstract data types in pro-
gramming languages. But they differ from abstract data
types, since frames always have a close connection by
means of mutual references.

6

3, Knowledge in Control Systems

Let us consider a model of a heat exchanger shown
in Figure 1, The parameters include bulk velocities
V 2, temperature differences DT^, DT 2 , specific heat ca-
pacities c^, c 2 and heat quantities СЦ , Q 2, Stationary
conditions are described by the classroom equations:

Figure 1

= Q 2» = = Tli*

In the knowledge representation language, for instance,
in the input language of PRIZ system this model can be
expressed in the text form:

HEATJ3XCHANGER: (V,,, V 2: BULK^VELOCITY
Tllt Tl2, T2l , T2 2: temperature;

, Q 2: HEAT;

DTlt DT 2 s TEMPERATURE^J) IFF;

olt c 2: S^HEAO^CAPACITY
= Q?*
* V 1 к x o 1;

q 2 в v 2 « dt 2 x c 2;

T 2/j — ,

DT 2“ T 22
“ Tl2^*

In the simplest case, the concepts of bulk velocity,
temperature, heat quantity, temperature difference and

7

specific heat capacity can be specified as real values:

BULKJ/ELOCITY, TEMPERATURE, HEAT, IFF,
SP HEAT .CAPACITY:REAL?

Any one concept can be described in more detail. For in-
stance, we could have described temperature difference by
the following frame:

TEMPERATURE^JDIFF: (DT sREAL;
VIRTUAL TlfT 2

; REAL;

DT = T 2 - T 1),

and then omit in the description of the heat exchanger
variables T 11» Tl2* T 2l* T 22 and the last two equations,
since they are involved in and DT 2,

The same knowledge can be provided, describing the
heat carrier concept;

HEAT^CARRIER:(Q: HEAT;
DT; TEMPERATURE,J)IFF*,
V: BULKJ/ELOCITY;
c: sp^heai^capacity;
Q a V « DT 3f c);

and through that concept a heat exchanger can be specified:

HEATJJARRIER;
A 1 к Q a A 2 * Q.)

The amount of knowledge provided in the last three

descriptions is equal to that of the first one, only now
the descriptions are shortened, and instead of one, three
concepts are specified; temperature difference, heat
carrier and heat exchanger.

Thus, knowledge representation languages enable us
to provide mathematical models in an adequately natural
form. Actually, the first heat exchanger description can
be considered as: 1) a record of a mathematical model
containing also explanations of the values V^, V 2, T^,
etc,; 2) frame (knowledge module) of a heat exchanger;
5) an abstract data type or a class description, as it
is referred to in programming.

8

Frame representation of knowledge on an object is
convenient also because input-output variable models are
not fixed. Any one of the twelve variables in the heat
exchanger model can be both an input or output one, de-
pending on the task being solved. Using this background,
over 16 million tasks with different sets of input-out-
put variables can be formulated. Certainly there are con-
siderably fewer meaningful tasks and still fewer solvable
ones. The universality of knowledge representation in the
form of computation frames is proved right here. If the
heat exchanger frame is used concurrently with other knowl-
edge for solving more complex tasks, then any task may
come up in the course of decision retrieval, since the
problem of meaningfulness of a task in a computer is more
difficult to be judged than its solvability is to be
cheeked.

We will proceed with the problem of process descrip-
tion in control systems. The processes going on in the
modules can be given in the module descriptions. Let us
discuss the process frame involved in the whole system.

We shall use general equations of a dynamic system:

X» = Ф (X,U,t)
V ж V(X,U,t)

where X - system state in the moment t,
X 1 - system state in the next observed moment,
U,V - system input-output values in the moment t.
Let us proceed to the recursive relations for i ж

= О.'l » •••

4+i * i.vV
* vcx^u^tp,

4+l ■ 4 + At *

We shall include process start, time variation,
transition to the next process state in the process
concept,. Functions Ф and Ц* will be described by the
system frame, presented in the process concept in the

9

form of an indefinite type component MODEL, Let us uae
the following notationa:

T 0 - initial time moment

T 2 - end time moment

TM - step in time

X 0 -r initial state of the system
X - current state of the system

XI - next state of the system

PROCESS!(MODELsINDEP’ ;TO, T2, TMs REAL
XO, X, XI! MEMORY*

RESULT: MEMORY*
�
The component RESULT involves the form of process re-

presentation (table, diagram, etc,),
MODULE* COMPOSITION INP'MODEL,ALL »

, INITSTATE
CUTP'X* X 0

MODULE* COMPOSITION INP'MODEL,ALL•, NEXTSTATE
outp'xi;

MODULE!* DECOMPOSITION INP'X
ODTP’MODEL,ALL'STATE;

MODULE* MODELLING INP*TO,T2,TM,XO
OUTP* RESULT
ARG* X
RES’ X1).

The first two relations in the process concept pick
up the initial state and new state of the system from
the states of system elements. The third relation decom-
poses system states into states of components. It is
assumed that all subsystems and system modules which are
its components have standard names for the initial state
(INITSTATE), next state (NEXTSTATE) and current state
(STATE),

The process concept described in this way suits for
modelling the behaviour of a constant step in time system.
If the program MODELLING only attributes the value X 1 to
the variable X for the next time moment, then the program
is appropriate for the modelling systems with elements of

10

independent behaviour. But the program MODELLING can be
written also in a more specific way. Eor instance, for
the systems in which different parts consume common re-

sources, and thus the transition to the next state of
each separate element depends on the states of all
system elements. These are specifically ecological and
demographic systems,

4, Knowledge in CAD

Though a great variety of CAD systems are available,
they are all oriented on knowledge, CAD developers are
avoiding the term "knowledge" and are using knowledge pro-
cessing methods spontaneously, but researchers of arti-
ficial intelligence have accepted CAD as an area for
approbating their methods.

An analysis of the performance of a design engineer
shows the following,

1, A multitude of relatively small tasks are solved
in the design, each of which is readily formalized and
solved on a computer. The difficulty lies in the diver-
sity of these tasks, specifically, in the fact that it
is inconceivable to write ready made "strict" programs to
solve any feasible tasks,

2, The design task discussed in its entirety, does
not subject to algorithmization, but there exist engineer-
ing design methods based on knowledge application (under-
graduates are taught these methods on the examples of
practical projects),

3, Engineering graphics is of considerable import-
ance in the design. In CAD computer graphics and geometric
modelling correspond to it. The latter in conjunction with
recognition and visualization of complex spatial forms is
an application area for the methods of artificial intel-
ligence,

4, The bulk of engineering tasks are ambiguously de-
scribed and therefore expert knowledge is required. A com-

mon engineering calculation involves multiplication of the
calculation result by the correction coefficient (which,
can vary from 0,5 to 10 or more), but coefficient selec-
tion is based on expert knowledge.

5. Engineering objects are, aa a rule, well struc-
tured, With the provision of their elements’ and con-
nections’ description (i,e, relations between objects),
models of any complex design objects can be built.

Knowledge processing systems related to simple data
rather than simple data themselves, where for the first
time procedure sequences were described in the program
text and synthetized, were intended for calculating cut-
ting tool movement and technological data. Thus, to solve
a task described in a certain command, both subsequent
and previous commands had to be considered simultaneously
in the task description. The next example is related to
the SAP-2 CIOJ (Fig, 2) and illustrates the determina-
tion of a geometric point on the basis of data and rules
of its description, using data and rules of other geometric
elements which have indirect relation to the unknown point.

Figure 2

11

12

Presently CAD systems are built up on complex pro-
gramming tools [11,12], comprising adequately developed
means for knowledge processing. Let us discuss briefly v

the metamonitoring system MEMO MEMO includes the
MEMOGEN language to describe new subsystems and extend
the existing ones. Let us assume that we have to add a
new subsystem (SS) which enables to make the required
geometric calculations, into an application package or
into an application system at our disposal. The new

system called "GEOMETRY” can readily be described in the
MEMOGEN language, as follows.

к MEMOGEN
ADD SUBSYST 'GEO* ’GEOMETRY' PASSWORD 'GB4*

SEPARATORS GLOB ',' SPEC

,
Descriptions of other

, general characteristics of the SS
ADD COMMAND »PT’ 'POINT*

«

, Description of the command 'PT*

END COMMAND
*

,
Description of other commands of the S 3

END SUBSYST

к END

In the structure of the program text (called a
language model in terms of MEMO) in addition to the names
SS one or several abbreviations are supplied which reduce
information redundancy, and the password SS, A description
of general characteristics, for instance, of parameters
follows. Further, all sybsystem commands are describe^.
It should be noted that the family of programming lan-
guages included in MEMO consists of command languages. In
these languages the command is the major module or lan-
guage frame, containing a certain volume of knowledge on
the object characterized by it, and an inner logical

13

structure which provides for the application of these
knowledge in accordance with the given initial condi-
tions, A detailed description of such command is given
in E142.^

5, Conclusion

The knowledge processing systems discussed above
enjoy the merit of extending the class of solvable tasks
and a substantial reduction of expenses on programming.

This paper covers only a few applications of
knowledge processing in engineering and manufacturing,
but we hope it has demonstrated that new means for
representation of facts and regularities, and new pro-
gramming methods are effectively applied to solve diverse
design and control tasks.

References

1, Gashing J, Application of the PROSPECTOR system
to geological exploration problems //Machine Intelligence.
J. Wiley & Sons, 1982, No 10. P, 301-325.

2, Kleshchev A.S., Linetsky A,1,, Ghernyahovskaya M.Y.
Application of artificial intelligence methods for
diagnostics of diseases, Vladivostok, Academy of Sciences,
USSR, 1978 (in Russian, preprint),

3, Vesander G.T., Stolfo S.J., Zielinski J.E,,
Miller F.D., Copp D,H, ACE: An expert system for telephone
cable maintenance // Proc, IJCAI-83, Karlsruhe, 1985.
P, 116-121,

4, Dermolt J,Mc, R 1: A rule-based configurer of
computer systems // Techn, Report, Pittsburgh-Carnegie-
Mellou Univ,, Department of Computer Science,

5, Quillan M.R, Semantic memory// Doct, diss,,
Carnegie Inst, of Technol,, Pittsburgh, Pa., Oct, 1966,

6, Black, Fisher, A deductive cjuestions-anawering
system // Doct, diss, in appl. math,, Div, of Eng, and
Appl, Phys,, Harvard Univ, Cambridge, Mass,, June 1984,

7, Bobrow D, A question-answering system for high
school algebra word problems // Proc, AFIPS Ann, Pall
Joint Computer Conf,, 1964. P, 591-614.

14

8, Martin W,A. Symbolic mathematical laboratory //

Doct. diss., MIT, Cambridge, Mass,, Jan, 1967.
9, Kleahchev A,S, Knowledge representations, Methr

odology, formalism, calculations handling and program-
ming support // Applied Informatics, Moscow, 1983. P.49-
94 (in Russian),

10, Tamm B.G, Description of the SAP-2 language for
programming machine-tool operation // Algorithms and
Algorithm Languages, 197°» No 5 (in Russian),

11, Tamm 8.G,, Kyttner R,, Pruuden J, An approach to
integrated GAD systems implementation // Advances in CAD/
/CAM. North Holland P.C., 1982. P. 315-534,

12, Kalja A,P,, Kahro M.1., Tyugu E,H,,lnstrumental
programming system ES EVM (PRIZ ES), Moscow, 1981 (in
Russian),

13, Pruuden J,, Markush A, Monitoring system SAPR
for computer-aided design in manufacturing technology //

Computing in Socialist Countries, No 11, Moscow, 1982.
P, 57-63 (in Russian),

14, Tamm B.G, Data base in automatic control //

Applied Informatics, No 1, Moscow, 1984 (in Russian),

15

No 614

TALLINNA POLIfTEHNILISE INSTITUUDI TOIMETISED
ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

L. Vyhandu
IЛЖ 681.3.06

FAST METHODS FOR DATA ANALYSIS AND PROCESSING

Abstract

Some effective methods to open the structure of multidimen

sional data are described. The notion of standardized data

base schema is introduced to provide automatic generation
of application programs.

This paper preaenta some ideas of theory and prac-
tice, which have been useful for the author and his
colleagues at the Department of Data Processing of Tal-
linn Technical University, Our concern was to build an
effective data analysis and processing package, having
powerful graphical data representing methods for cre-

ative analysis as well as different report generators
suited to users* standard administrative needs.

To achieve both goals, our methods can be described
as using the main part of inner degrees of freedom of
data, to quickly reach a crude solution. This solution
can be brought (transformed) to the required accuracy
(quality).

The main tools to do it are
- fast orthogonal transformations
- theory of monotonic systems developed by our

group
- standardized data base schemas with automatic

program generation.

16

1, Data analysis using fast orthogonal

tranaformationa
Let us have a NxM-matrix A, repreaenting data for

N objects with M variablea. With computer uae we need 0
(NM) operations just to have a look at the unknown data.
Therefore any method of analyaia haa to be alower than
thia lower bound.

If data have been meaaured at leaat on interval

scale, different leaat squares methods can be used to
open the structure of M-dimenaional objects. There are
auch well-known methods as Principal Component Analysis,
Factor Analyaia, Clustering, Pattern Recognition, Multi-
dimensional Scaling, Those techniques are nowadays
standard and any data analysing package haa them.

But aren’t there methods to give a general view of
data in much shorter time? We want to get results which
can compete with PCA, FA, C and MDS, Yea, there arej They
uae well-known orthogonal transformations ПЗ with some
additional handling Г2И,

To reach a maximum speed for M-dimensional data
structure representation, first we uae fast Haar trans-
formation and then rotations of Jacoby type. Fast Haar
transformation takes only 0 (NM) operationa. It is re-
cursively defined as follows!

k/2
,4 f 1 Z \ /Dpk 2 Ik\

ш (I) Dp m 1) DQk+li e(k/2 2)
'l-1/ 2 V D2k -2 I2k/

where I is a unit matrix of order p.
Through Haar transformation B=sAD the columns of В

are much more orthogonal than those of A, To make them
still more orthogonal we uae- additional Jacoby type rota-
tions of columns of B, Taking two columns of В p and r
such that bp> br (b p and br are sums of squares of el-
ements of columns p and r), we can make two columns or-
thogonal using rotation angle

tan 24> .2 Z b lp
• btr/(Гъ2р - Zbfr).

But we do not rotate the vectors p and г automatically.

17

Namely, the sum of squares for vector p will grow by the
amount

l(b 2
p
- b 2

p) ain 24>/(I-2ain2tp).

If the change is too small, we do not rotate at all.
Moreover, in view of the precision of graphical representa-
tion little work is needed to obtain the first eigenvectors
with adequate accuracy.

Another way is to use Thurstone's diagonal method
C33 directly on В-matrix (not pn correlation matrix) to
represent the objects in a low-dimensional apace.

We have also developed a very efficient method for
multidimensional scaling without using gradient methods.
Taking quadratic splines and optimizing coordinate-wise,
we have achieved excellent results [4],

2, Nominal data ordination with orthogonal

transformations
Let us now have a NxM data table A with nominal

data. We define a frequency transformation for A as fol-
lows, For every variable we take its histogram and change
every value я h to its frequency in the histogram.
The row sums describe the conformity of objects in the
data system.

The new matrix Z is called the frequency matrix of
a data matrix. If the number of categories for variables
differs, we have to multiply frequencies by the number

of categories We get an equalization of

frequencies for all columns of Z, (In practice we keep
the original data naturally unchanged and use histograms
of all variables directly in computations).

Using either Hadamard or Haar transformation and
the strategy of section 1, we get one-, two- or more-
dimensional ordination for nominal data. The importance
of every coordinate is measured analogously to the im-
portance of principal components.

Another way to get interesting results is to use
the scale of influence,;

18

We define a measure of variation for every object

as a sum m

S 4 - T ■ .1 ij

The larger the sum the more conform to group
behavior is object i. Further we will define a measure
of variation for the whole system as

N

S ж S^,
i«1

We define the influence of the object i on the set
of objects as a change in the sum of squares when
object i is eliminated from the system. It is easy to
find that the influence of object i can be calculated as

M
К. Ж ij * where

j*l

id - 24 j - +1

The set of numbers si(i), i=l, ~,, N is called a
scale of influence.

It is easy to see that talcing a series of trans-
formations

A - Z H

we can use orthogonal transformations to open the struc-
ture of multidimensional nominal data.

3, Mopotonlc systems in data clustering

Classical clustering methods are fairly slow and
some difficulties occur in interpretation of clustering,
results. For the last twelve years our team has success-
fully used the monotonic systems theory for multidimen-
sional data structuring. Here are some general ideas of
this method.

Let us suppose that there is a system W with a
finite number of elements. Each element has a numerical

19

measure of its weight (influence) in the system. Further
let us suppose that for every element «.e W there is a
feasible discrete operation which changes as well aa the
weight of oo and the weights of any other element of
the system. If the elements in W are independent, then
it is natural to suppose that a change in the weight of
ol does not change the value of another element ji

System W is called monotonic, if the operation of
weight change of any element d.eW brings about changes
in the weight levels of other elements only in the
direction in which «- itself is changed.

To use the method of monotonic systems we have
to meet three conditions,

1, There has to be a function % which gives a
measure (weight) TC(w) of influence for every element w
of the monotonic system W,-

2, There have to be rules f to recompute the in-
fluences of the elements of the system in case there is
a change in the weight of one element,

3, The rules for influence recomputing have to be
commutative.

These conditions leave a lot of freedom to the
researcher to choose the influence functions and rules
of influence change in the system. The only constraint
we have to keep in mind is that the functions f and JT ,

have to be compatible in the sense that after eliminat-
ing all elements w of the system W the final weigths of
weW must be equal to zero.

We study all'2 IW ' subsets of the set W, Let oceHcW
and jt

+H(c*.) or 7C“H(ot) be the value of function ЯГ on the
element л , We define a kernel H® (or H®) of a system
W as a subset of W on which there is global maximum of
function F of subsets H

F (H) a min % ~H(ot)
oceH

or global minimum of function F (H) a max 5T +H(a.),
+ <*eH

The main theorem guarantees finding of the so-called
determining sequence which defines exactly the extremal
subset of W,

commutative.

20

We will demonstrate how to use this theory on data
matrices.

Let us have a NxM nominal data matrix A, If we take
the influence function for a data element as ij *

я2a -3z �l. then we can define different monotonio
id id

systems on our data matrix:
- objects (rows of the data, matrix)
- objects and variables (rows and columns of the

data matrix)
- elements of the data matrix.

Changes in the algorithm dependent on different monotonic
systems are trivial.

For simplicity we describe here very briefly but
without any programming shortcuts only the first case
(object clustering), using plus-influence,

Al. Find the sums P(i) ж Я

A2, 1 Find R ж max P(i) with index k,*
i

A 3« Copy object к as a new object into the system,

A4, Label object кas taken and calculate new
influences P(i),

A5, Find R* ж max P(i) with index k*,
KMO

A6,< If R* » R then go to A3,

A7, All the objects from step A3 belong to the
kernel,

AB, If there are more objects, eliminate the first
kernel and go to A2,

Our practice has shown that for interpretation it
is beat to use both objects and variables as elements
of the monotonic system.

If the data are real numbers, we shall use as an
influence function for a data element

g(a ij) * a ij +Ri + C j»

21

where is the sum of i-th row and C.. - aum of the 3-th
column.

For i-th row we have an influence function G(i) ж
M N

ж sl_ g(a. .) and for j-th column G(3) ■ 2L g(a..,),
3жl 3,3 Iжl 13

For a multiplicative сазе one can take as an in-
fluence function

g’Caij) * а^О^-а^КС^-а^).
4, Effective data processing systems building

To uae data baae ayatema directly ia not enough. The
aoftware build-up for a given client muat be evolutionary.
In practice a typical data baae will atabilize after in-
itial booting in 2-4 yeara.

To apeed up the deaign and to ahorten the tuning-in
process, we have developed apecial technologiea. They
are called principlea of "lazy programming" and "view of
the innocent bystander",

Uaing the firat principle we practically never aolve
a problem in the way our client aeea it. We generalize it
into aome claaa of taaka and try to uae powerful report
generatora C63, liat processors, faat logic queries C6l,
compiler writing ayatem ELMA L7l aa a grammatical form-
alism and tool for ' programming CB3, The зо-called stan-
dardized data baae schemas have proved especially useful.
We have found that 3 tunable schema classes help to bring

a client directly into the data processing ayatem crea-
tion, The firat schema is very simple (Fig, 1a) and has
only one main record type.

The records are broken into aubaeta by upper struc-
tures to apeed up the processing. Below there are all
kinds of versions for one CASE,

The second schema (Fig, 1b) ia more interesting.
Here we have two tunable schemas A and В which are in-
terleaved by aome N:M relations.

It is easy to go through and add aome more easily
tunable schemas to A and B, For those standardized schemas
we have built up specification languages, to describe data

Figure 1

and the desired results with nonprocedural languages. Our
main result along this line is:

Standardized data base schemas + specification
languages * automatic program generation.

We get our first implementation draft usually very
quickly running. After that the appetite of our client
is likely to grow and the tuning starts to make the system
more effective. What is really important - the client is
able to use the system from the very beginning. That is
psychologically important. The client feels that he him-
self was creating the system and his frustrations are
usually minimal.

We have developed some fairly large permanent data
systems with our standard technology, E,e, cancer registers
of the Estonian SSR and the Lithuanian SSR are built
using this technology. The technology is applied by the
Estonian Ministry for Health for a statistical system CBD,

References

1, Ahmed N,, Rao K.R, Orthogonal transforms for
digital signal processing, Berlin, Heidelberg, New York,
Springer, 1975.

2, Vyhandu L, Some problems of data analysis theory //

Trans, of Tallinn Tech, Univ, 1974-, No 366. P, 3-15 (in
Russian),

22

23

3, Thurstone L.L, Multiple factor analysis, Chicago,
University of Chicago Press, 19^7.

4, Vyhandu L, a,o. Nonlinear transformation of a set
of hyperspace points onto a plane // Programs for direct
synthesis of models. 111, Kiev, Institute of Cybernetics,1
1975 (in Russian),

5, Mullat J,, Vyhandu L, Monotonic systems in scene
analysis // Symposium, Mathematical Processing of Carto-
graphic Data, Tallinn, 1979. P. 63-66,

6, Vyhandu L, a,o, A system to manage and process
discrete information // Control Systems and Machines,
1981, No 1. P. 99-102 (in Russian),

7, Vooglaid A, a,o. Input languages of ELMA system//
Trans, of Tallinn Tech, Univ, 1982, No 524, P, 79-96 (in
Russian),

8, Vyhandu L, a,o. Technology of building problem-
oriented data processing systems // Trans, of Tallinn Tech,
Univ, 1983, No 554. P, 13-19 (in Russian).

25

No 614

TALLINNA POLffPEHNILISE INSTIfUUDI TOIMETISED
ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

J. Tepandi T. Luczkovsky
UDK 681.3.06

SOFTWARE SYSTEMS INSTALLATION

Abstract

A classification of software system users is given by their

experience, habits, prejudices and work style. It is sug-

gested that quality features alone do not assure the suc-

cessful installation of the systems. The vendors must care-

fully prepare every installation step according to the users’
specific needs.

1, Introduction
Every programmer thinks that he is the one who makes

the best programs in the world and that he la just taking
part in creating the beat software system. So he hopes
that his new system will have a great future and that most
of the potential users are only waiting for a chance to
use this system. In practice, however, it is not so fine
moat of the times. According to CID, very many software
projects are completed, but never used. One of the rea-
sons is that software system developers too often do not
take into account the specific needs of a potential user,
his requirements and wishes.

We are not pretending to solve this problem in its
whole complexity. Instead, we should like to describe the
experience we have had with Installing our software
systems C2,33 for various kinds of users around the USSR,

This paper might be useful both for those engaged
in systems development and in installation and maintenance.

For clarity let us mention that by the word "instal-
lation" we mean the set of actions from unloading system on
the user’s site to the point when the user is able to cope
with the delivered system.

26

2, All the user*a men
During the installation process, the vendor - is

contacting various kinds of people. By their functions
they are traditionally called as follows С4O»

- end-user who needs the information provided by
the system

- data processing manager who decides which system
to obtain..

- application programmer who solves the end-user»s
problems

- maintenance programmer who helps the application
programmer and changes the software when necessary,'

The functions are not the only thing the vendor must
deal with. The users differ also by their experience, habits,
prejudices and work style. Ignoring such differences may
lead to unnecessary complications. Therefore let us classify
the users by these additional qualities.

Experience in automatic data processing. The users
may have*

- no previous experience
- experience with another task, but not with solving

this particular task
- experience in solving the same task with the aid

of a different system.

Depending on the nature of his experience, the end-
user may have different work habitat

- no habits
- getting the-information through other people

(secretary and/or. application programmer)
- working online with computer.
The users may also have prejudices against/in favour

of the new systems
- active willingness to use the system
- willingness to try out automatic data processing
- disinterest in installing the new software system
- active or passive unwillingness.
Moreover, the user*s staff may be ready and willing

to support the vendor whenever possible, or they may hope
that the vendor will handle all the installation problems.

27

3. Preliminaries to a successful Installation
Like other activities, the installation process needs

planning and preparations,'
Firstly, relationships between the vendor and the

user must be clearly fixed. Apart from other concerns, the
specific tasks before, during and after the installation
must be linked to each participating person.

Furthermore, the user must be psychologically and
technically prepared for the new system. If needed, the
vendor must lessen the user’s unfounded optimism and be-
lief into the computers* omnipotence. If the client is
pessimistic, the vendor should avoid advertising unexisting
features of his system. To achieve fast and successful in-
stallation, the required preparations on the user’s site
should be fixed and carried out,*

Secondly, the vendor must pay sufficient attention
to different qualities of his system. In each case, accord-
ing to the situation, he must emphasize the proper aspects
of his system. Let us discuss it in detail,

4-, The requirements and the users
The most important requirements to a software system

are Z3h reliability, flexibility, performance, functional
modularity, compatibility, ease-of-use, portability, eaae-
of-installation. Now let us discuss the meaning of these
requirements in the installation situation.

Software reliability is always important. Usually it
takes quite a while to learn it. So the user has a better
attitude towards a system which has enjoyed a long main-
tenance practice in other organisations. If the new system
has not been installed elsewhere, the vendor must assure
his support for a certain period after installation.

Software flexibility is significant for the user,
who is going to solve different tasks with the same system.
Otherwise the flexibility might be superfluous from the
user’s point of view* it makes the system more complicated
and diminishes its performance. Therefore, it is not always
reasonable to give the user all the information about the
system capabilities.

Software performance is of major importance for the

28

user, desiring to replace his/her old system, and for the
pessimistic user. It implies the vendor must know the per-,
formance of the previous system before advertising his
own one.

In many cases the performance factor is of less im-
portance than usually presumed, especially when a new
system is installed for a friendly user. Nevertheless the
vendor must be ready to improve the performance if it is
necessary.

Functional modularity and compatibility is of prime
importance when the user has experience with another soft-
ware system and wishes to detach some functions of the new;
system for combining them with the existing software. It
gives the vendor a chance to sell the functional subsystems
of his software,

Ease-of-use is highly appreciated by the end-user,
who is going to work on-line. In the contrary situation,
the system is chosen by those not in direct working
contact, so the vendor must not overestimate this require-
ment.

Portability is of interest for the user, only if he
is planning to replace or renew his hardware. Otherwise he
hardly takes this factor into account,

Base-of-installation enhances the user’s trust in
the system. It may help to overcome the unwillingness of
the pessimistic user,

5, Conclusions
The quality features alone do not assure the success-

ful installation of software systems. The vendors must
carefully prepare every installation step according to
the users specific needs.

References

1, Jensen R.W,, Tonies C.C, Software engineering,
Prentice-Hall Inc., 1979.

2. Дучковскжй Т.Ф., Микли Т.И. , Рензер А.В. Эконо-
мические информационные системы коллективного пользования//
Труды Таллинского политехнического института. 1982. № 524.
С. 23-27.

29

3, Дучковский Т.ф,, Тепанди Я.Я., Хершшн М.П. Ошт
внедрения и эксплуатации систем обработки данных - над-
строек СУБД сетевого типа // Труды Таллинского политех-
нического института. 1983. № 554. С. 3-12,

4, Glass R, , Noiaeux R.A, Software maintenance
guidebook, Prentice Hall Inc., 1981,

5, Gilb T, Software metrics, Winthrop Pulbishera,
1977.

31

No 614

TALLINNA POLffTEHHILISE INSTITUUDI TOIMBTISED

ТРУДУ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

J. Tepandi
ШЖ 681.3.06

DATA-DRIVEN MATRIX FORMS

Abstract

The generation of statistical accounts is discussed the con-

tents of which are determined by two groups of conditions;
one for rows and the other for columns.*

The general principles are given of how to use DBMS tools

to describe the accounts. The SEQUEL-2 serves as an

example DBMS.

1, Introduction

Office Information Systems are becoming increasingly
important both in terms of commercial products and re-
search directions Cl], The users of an office information
system are expected to be nonprogrammer professionals. It
is necessary to develop a nonprocedural language as an
interface between the user and the computer system. The
system's language must be user-friendly so that non-
experts can easily understand and use it with a minimum
of training. It also must be powerful enough to provide
facilities for the set-up and maintenance of a whole range
of user applications C2],

The SHODI system design C4] is based on these prin-
ciples, It serves as a tool for building application
packages. Their most important functions are (I) data
input and updating, (2) producing output forms. We shall
distinguish between three types of output forms: reports,
statistical reports and matrix forms.

By a report we mean a tabel which usually contains
some data from the data base. The reports are formed by
report generators, e,g, RPG C5J* a relational DBMS re-
lation may be considered as such a report. Statistical re-

port is also a table, but it contains mostly derived data.
The contents of such reports are determined by two groups
of conditions: one condition per row and one per column

ln addition, there is a data selection criterion for
the whole report, A matrix form is a generalization of the
statical report, ..

The SHODI system is built on a Codaayl-type DBMS,
The DBMS is used to form a data file for the statistical
report generation. Each cell of the report is filled in
with the number of records in the file, satisfying simul-
taneously the selection criterion, the corresponding row's
condition and the corresponding column’s condition.

Example 1, To illustrate what we mean by reports and
statistical reports, consider the relational schema of
Figure 1, describing a store database. The STORE relation
describes a set of stores, giving the store number, branch
name, number of employees in the store, and location name.
The BRANCH relation gives the branch name and branch number.
The LOCATION relation describes the district names and
types of the locations, A fragment of the store data base
is given in Figure 2,

STORE (STNO, BRNAME, EMPS, LOG)
BRANCH (BRNAME, BRNO)
LOCATION (LOG, TYPE, DINAME)
Figure 1, Example data base

STNO BRNAME EMPS LOG pttNO

110 GROCERY 22 KEILA GROCERY 1
215 STATIONERY 16 ELVA STATIONERY 2
521 GROCERY 17 ELVA PERFUMERY 3
416 PERFUMERY 5 KEILA JEWELLERY 4
501 GROCERY 77 NYO DEPARTMENT-ST 0
508 GROCERY 25 ELVA
605 GROCERY 5 ELVA Relation BRANCH

108 DEPARTMENT-ST 45 KEILA
111 DEPARTMENT-ST 120 TOWN 1
112 DEPARTMENT-ST 150 TOWN 2

Relation STORE

32

33

LOO TYPE DINAME
KEILA TOWN HARJU

ELVA TOWN TARTU
NT О SETTLEMENT TARTU
KALLASTE TOWN TARTU
TCWNI TOWN DISTI
TOWN2 TOWN DIST 2

, Relation LOCATION

Figure 2, Example data base fragment

A typical report query example: "List the grocery
stores in Tartu district having more than 10 employees,
with their locations'*. The corresponding report:

STNO LOO
321 ELVA
508 ELVA

A statistical report example is given in Figure 3.
This report is determined by the data selection criterion
(BRNAME 4 'DEPARTMENT-ST»), three row conditions (LOO «

= ‘ELVA*, LOG 4 ’-ELVA*, LOG 'ELVA* AND BRNAME = 'GROCERY')
and two column conditions (EMPS<2O, EMPS>IO),

Number of Stores (excluding department stores)
Less than 20 More than 10
employees employees

InJDlva 3 2
The rest (total) 2 1

The rest (Grocery) 1 1

Figure 3

In practical applications, there may be hundreds of
different reports (usually 3° ... Ю0), Their sizes vary
greatly, the average being about 15 rows and 6 columns,-

34

Every condition may hold tens of comparisons. In the SHQDI

system, a 15x6 report description requires 1 + 15 + 6 ■ 22
conditions. If every cell were described separately, there

would have to be 15x6 =9O conditions. Besides, changing

the report query would be a difficult task: modifying a
column content would require changing of 15 cell conditions

The real-world applications demand more powerful

tools than those of SHQDI, Consequently, the aim of this
paper is to generalize the concept of the statistical re-

port and its generation methods/
In the next section we will introduce the concept of

a matrix form - a generalization of the statistical report.
In the third section, a minimum matrix form description

language (МАРШ) will be proposed. The last section will be
devoted to matrix forma in the context of the relational
DBMS; in particular, the notion of a matrix aggregate
function will be introduced,

2, Matrix forms

More than twenty applications built using SHODI, show
that inclusion of the following features would be highly
appreciated:

- determination of the number of rows, the number of
columns, the corresponding conditions and texts, that
depend on the data in the data base (notice that in typical
reports the number of rows is mostly determined by the
data);

- determination of the hierarchical reports with
rows and columns organized into a hierarchical structure
(SHODI provides for imitation of the outward appearance of
the hierarchical reports C73, but the content description
of such a report has a linear structure - for example, a
row condition is formed as a conjunction of the conditions
at all hierarchy levels for this row);

- performance of the arithmetical operations on the
groups of rows or columns;

- association of.the conditions and the correspond-
ing texts, for example, by using the same variable in
both cases.

35

Example 2. SHODI is not best suited to design and
maintain effectively the table in Figure 4, The main
reason is that the table size depends on the data in the
data base: adding a new location, for example, requires
addition of a new column, and consequently changing the
table query in SHODI, Furthermore, the first two rows
should require a single condition (BRNAMEe ’GROCERY’), as

The stores having more than 15 employees

Figure 4,

well аз the following pairs of rows; the "Total" column
requires addition of all columns; the number of employees
appear both in the selection criterion (IMPS >l5) and in
the heading text. Finally, creation of such tables re-
quires a tight interface with the DBMS: for example, the
names of the branches may be taken from one relation
(BRANCH), the names of the locations from another (LOCA~

TION), the table may be formed using the STORE relation.
To include all the enumerated features into a unified
framework, we introduce the concept of the (data-driven)
matrix form - a generalization of the concept of the
statistical account.

Matrix form. Intuitively, we shall introduce a
matrix form as a result of mutual influence (interference)
of two description schemas (subtrees): the rows schema
and the columns schema CB], The first subtree’s leaves
define a n-element row vector, the second subtree’s leaves
a m-element column vector. The n and m values may depend
on data in the database.

36

Each element of both vectors defines a relation,
an operation, a text and a name. They may be determined
directly for the element (i,e, for the subtree’s leaf)
or may be inherited from the higher levels of the
subtree. Matrix form is a n x m matrix with row, column
and heading texts. The texts are taken from the row and
column vectors. Every cell’s content la determined by
the relations and operations of the corresponding row
and column vectors* elements.

To define a query, several types of variables are
available. Amongst them, the tuple variable (i,e, vari-
able having tuples of a given relation as its value
area) is used to describe a sequence of rows or columns-
a row or column per tuple. All the variables may be used
in conditions and texts.

Example 5. The query describing the form of Fig,4
(excluding texts) is as follows:

MATRIX RANGE X BRANCH
RANGE T LOCATION
DATA STORE WHERE EMPS >l5

ROW (WHERE BRNAME ж X.BRNAME
ROW
ROW (SUM EMPS))
COL (WHERE LOG = Y.LOG)
COL

In a tree form, this description might be as follows:

MATRIX

COL

ROW ROW(SUM,,,)

Tuple variables X, Y have their values as tuples
the relations BRANCH and. LOCATION, correspondingly.

The form table is built using the relation STORE (DATA
STORE), using the condition EMPS >ls, The descriptions
given for the higher levels of the tree are carried down
to the lower levels, so the relation STORE is used for
all the rows and columns, adding only the complementary

37

restrictions (WHERE,,,), The restriction WHERE BRNO ж

a X.BRNO determines a separate row for each branch. If
the operation name la not given, it is taken to be COUNT,
so the description ROW determines a row to be filled wltti
a number of tuples in this row's relation.

3, A simple matrix form description language

In principle, a matrix form description language
should provide a range of powerful data definition and
manipulation facilities. It would be ideal to design and
implement such a language in its entirety. We did not
follow this approach, because our goal was to develop an
еаэу-to-implement language, compatible with different
data manipulation systems. So we propose a minimum lan-
guage to deal specifically with the matrix forms (МАРШ),
In so doing, we suppose that, whenever possible, the
traditional functions (e,g, data selection using several
files) are realized by the "environment”: OS, DBMS,
high-level language, etc, (henceforth referred to as "the
environment system"). Some ways to achieve this goal vdll
be discussed in the next section.

The external representation of MARM is linear. It
is supposed, that the linear representation and its
syntax offer good tools to describe functions of a
language. Furthermore, the linear query may easily be
stored and modified. The subjects of the interactive user
dialogue, the graphic form description and the language
implementation will be presented in a separate paper,

A form description consists of the following
components:

- connection with the environment system
- data description
- data manipulation and localization
- form table description
- form, row and column heading description.

We shall describe only the last two components.
Form table description. Using the DATA and WHERE

clauses, a relation is associated with each row and
column. Every cell is associated with the intersection

38

of the corresponding row and column relations.
Similarly, every cell is associated with operations

for the corresponding row and column. They may be
aggregate operations (COUNT, SUM, ~,), row/column ma-
nipulation operations (ARIT) or READ operation.

The aggregate operations are performed first. If a
cell is associated with two aggregate operations, the cell
operation is selected according to the following tablei

Cell's content is the result of performing cell's
aggregate operation on cell's relation.

Firstly, all the cells, associated with two aggregate
operations are filled. To indicate the order of the row
or column evaluation, the row or column names may be
specified in the ORDER-clause,

Form, row and column headings specify both the fixed
part and the changing part of the form template. The texts
are described in the TEXT-clause as strings (fixed text)
and variables (changing text).

Example 4. The query for the matrix form in Figure
4:

MATRIX READ NQEMP
RANGE X BRANCH
RANGE Y LOCATION
DATA STORE WHERE EMPS > NQEMP
TEXT 'THE STORES HAVING MORE THAN» NQEMP 'EMPLOYEES*

ROW (WHERE BRNAME=X,BRNAME TEXT X.BRNAME
ROW (TEXT 'NO OP STORES’)
ROW (SUM EMPS TEXT 'NO OF EMPS’))

COL (WHERE LOGaY.LOC TEXT Y.LOC)
COL (TEXT 'TOTAL')

la the implementation we use the experience gained

39

with the SHQDI system and its predecessors C9, 6], In
those systems, the query is interpreted, A version of
a form program generator is implemented on SM-4 computer.
The generator produces a separate Fortran program for
every matrix form query CIO],

As there exist a whole range of algorithms for
optimizing different subclasses of queries, the MARM
implementation is designed to be a software tool kit
rather than a "translator" or "interpretor". Every tool
is best suited to some kind of queries, but they all
fit in the MARM language framework. Selection of the
proper tool may be performed automatically or by the
user.

4, Matrix aggregate functions

In this section we shall develop an interface be-

tween the matrix form description language and an en-
vironment system - a relational DBMS, The high level of
the relational languages (manipulating relations, not
just records) is well-compatible with MARM - a high
level specification language. We alao believe that the
difference between the reports and the matrix forms is
best illustrated by the relational language example.

The most important differences between the matrix
forma and the reports are as follows. Firstly, a matrix
form has two groups of selection conditions, whilst the
report is determined by one condition (or one group of

conditions, or one series of conditions - if we use
several relations for data selection). Secondly,a matrix
form consists mostly of derived data, a report - mostly
of "pure” data. In principle, every item in matrix foim
might be computed by means of relational DBMS aggregate
functions COUNT, SUM, etc.

An aggregate function takes a relation of an ar-
gument and returns a value as a result. For example,
the following query in SEQUEL 2 language C 52 specifies
the upper-left cell of the table in Figure 4i

SELECT COUNT (*)

FROM STORE
WHERE BRNAME='GROCERY* AND LOC='KEILA* AND

EMPS >l5.

40

In many relational query languages there is also
a possibility to partition the tuples of a relation by

equal values of a certain attribute and apply the aggre-
gate function to each subset of tuples. Such an operation

may be characterized as a vector aggregate function
a function that gets a relation and an attribute name
as input and returns a vector aa output. For example, a
SEQUEL 2 query

SELECT LOG, COUNT (»)

FROM STORE
GROUP BY LX

results in the heading and the first row of the table
in Figure 4, The length of the row depends on data in
the STORE file.

Notice that the row or column conditions of the
table in Figure 3 are not mutually exclusive. In general,
a tabel of such kind cannot be specified by means of
GROUP BY, it needs n x m COUNT-clauses, where n - number
of rows, m - number of columns. Furthermore, the usual
DBMS has no means for automated creation of forma like
that in Figure 4, In real-life forms one can see both
situations simultaneously: for example, a group of rows
with mutually exclusive selection conditions may be
followed by a couple of rows with overlapping selection
criteria,

A simple nx m form with fixed n and m may be
described as a matrix aggregate function with n+m+l ar-
guments, The arguments are a relation and n+m conditions,
specified on the attributes of the relation. The result
is an x m matrix. Every cell contains the number of
tuples, which satisfy simultaneously the row and column
conditions. For example, in SEQUEL 2 the matrix aggre-
gate function for the Figure 5 tabel might look as
follows:

SELECT MATR~PORM (ROW LX.’ELVA' LX d ’ELYA*
AND BRNAME» » GRXERY •

COL EMPS <2O EMPS >1,0)
PROM STORE
WHERE BRNAME^•DEPARTMENT-ST *,

41

Notice that the data selection operation is
performed by DBMS language (FROM- and WHEHB-clauses),

Similarly, more complex forms may be described as
matrix aggregate functions. Such a function takes one
or several relations as one input, two groups (more
precisely - two hierarchies) of relations as another
input, and returns a matrix form table as the output.

Conclusion

A subclass of widely used office documents - matrix
forms is specified, A matrix form is determined by two
hierarchical specification schemas and contains mostly
derived data. Both specification schemas determine a
data-driven series of relations, operations and texts.
The matrix form is composed as the result of interfera-
tion of these two series,

A minimum matrix form specification language is
proposed, with the assumption that the traditional data
description, manipulation and localization operations
are performed by the environment system. An interface
between this language and an environment system (a re-
lational DBMS) is proposed to take the shape of a
matrix aggregate function - a generalization of the
conventional aggregate function in the relational DBMS.

Acknowledgement

The author is grateful to L, Vyhandu and T, Mikli
for their support and encouragement. Careful reading of
the paper,by M, Laane and S, Nurk is also greatly ap-
preciated.

References

1, Tsichritzis D, Form management // Communications
of the ACM. July 1982, vol. 25, No 7, P, 453-4-78.

2, LuO D., Yao S.B, Form operation by example//
Proc, International Conference on Management of Data,
Ann Arbor, Michigan, 1981, P. 1-12,

42

3, SEQUEL 2: A unified approach to data definition,
manipulation, and control // IBM Journal of Research and
Development, 1976,November, Vol, 20, No 6, P, 560-575,

4, Vyhandu L.K,, Luczkovaky T.P., Mikli T.J.,
Tepandi J.J, A discrete information management system //

Control Systems and Machines. 1981, No 1, P, 99-102
(in Russian),

5, ES EVM, Operating System. RPG, TS, 51.804,001,
1979 (in Russian),

6, Aus T,A,, RabovSitra M.G,, Tombak M,O, Matrix
report generator // Proc, of the Tartu State University,
1974, No 30. P. 23-50 (in Russian).

7, Bernshtein E.B, Output of tables in SHODI system
// Trans, of the Tallinn Tech, Univ. 1982. No 524.
P. 39-49 (in Russian),

8, Tepandi J.J, Generation of the statistical ac-
counts in DBMS environment, // Trans, of Tallinn Tech,
Univ. 1984, No 568, P, 23-34 (in Russian).

9, Vyhandu L.K, The "SQDI" architecture // Sociology
of culture. Moscow, 1976. P, 339-368 (in Russian),

10, Tepandi J.J, Student team working on a contrac-
tual basis: report program generator for SM-4 computer //

High School Problems, Tartu State University, 1985 (in
Russian),

11, Klug A, Equivalence of relational algebra and
relational calculus query languages having aggregate
functions, // J, of ACM, 1982, July. Vol, 29, No 3, P, 699-
-717.

43

No 614

TALLINNA POLITTEHNILISE IN3TITUUDI TOIMETISED

ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

E. Õunapuu
UDK 681.3.06

STATOS - A COMPUTER SYSTEM FOR SOCIO-ECONOMIC
DATA ANALYSIS

Abstract

A general description of STATOS, a computer system for

the statistical analysis and handling of socio-economic data

is presented. The STATOS system, the control language of

the package, data management subsystem programs and the
statistical analysis programs are described.

STATOS ia a package for data handling and atatia-
tical analyaia created at the Department of Data Process-
ing of Tallinn Technical University and has been in use
since 1978, The first version waa implemented on WANG-
-2200 computer. The aecond one which ia more advanced and
powerful waa applied on EC computer under OS/TSO, The net-
work base management ayatem DDMF ia uaed for data handlirg
and manipulation, A new version for SM-4 computer ia
under development,

A general description of the ayatem will be preaente<
here, A manual published in Russian ia available CBl,
STATOS haa found many users in the USSR because of ita
flexibility, extensibility and ease of use.

1, General description of the ayatem

One of the moat important and unique aapecta of
STATOS ia ita orientation to the developed data manipula-
tion and handling techniquea. All atatiatical analyaia
programa of the ayatem read data from a special STATOS-
fiIe created by the data management subsystem. This
method has several advantages.

44

First, data may be listed, verified and, if necess-
ary, edited prior to the usage. Second, the data stored
in a file can be analysed by several statistical analysis
programs, Eventually, new files can be created by merg-
ing, transforming and partitioning of the existing files.

Figure 1 shows a general organisational schema of
STATOS,

Figure 1. An organisational schema of STATOS

STATOS programs may be split into two classes*
- data management subsystem
- statistical data analysis subsystem.

The data management subsystem may be further divided
into the following groups:
(1) Programs of data base management subsystem DDMF.

By means of these programs a network data base is
created. These programs are used by the integrated
application generation system SHODI, and are hidden
from the end-user.

45

(2) Programs of the SHODI integrated application genera-
tion system. These programs form the kernel of the
data management subsystem. With these programs all
data handling tasks are performed: updating, report
generation, reorganisation, etc,

(3) Data selecting, transforming and merging programs in
order to create STATOS-fties.

The statistical programs use the data of a STATOS-
fiIe. Before statistical analysis the STATOS-file must
be updated by the programs of this group.

As shown in Figure 1 STATOS can be used in two
main ways:

(1) Update directly STATOB-file and then make the stat-
istical analysis. This is the moat simple, helpful
and frequently used way, particularly when the
number of data entries is small,

(2) Update with the help of the application generator
system SHODI the data base. It is useful when the
number of data entries is high, data storing and
preliminary investigation are necessary.

The statistical analysis of data can be made
ing one of the following programs:

SAGETO: Generation of contingency tables and cal-
culation of table statistics

MEANST: Calculation of descriptive statistics (mean,
sample standard deviation and variance,
standard error of mean, maximum and minimum
values of population, the coefficients of
asymmetry and excess)

CORREI: Correlation and regression analysis

STEPRG: Multiple regression analysis

FNC 10: Nonlinear regression analysis

PWREGR: Piecewise regression

GRAFPE: Scatter plots and histograms

CLSTRT: Cluster analysts

46

FACTO: Factor analysis
MDISC: Discriminant analysis.
Notice should be taken of one more aspect.
One of the major principles of the implementation of

the given package is its extensibility. It can be extended
along different lines. First, to widen the package by new
methods of statistical analysis. Second, the system of the
data base used can be changed. It is achieved by using
the STATOS-file as a work-file.

All those programs are quite complex and have many
specific features enabling a client to get a better view
of his data.

2, Systems control language

To control STATOS-package one has to use a simple
key-word language to fix parameters of a given program
(a list of keyword в value type terms in any order, separ-
ated by commas). Three ways are available:

(1) name of parameter s a constant

(2) name of the element of an array в a constant
(5) name of an array « a list of constants, where

the constant may be either of the type of
integer, real or symbol; and the list of con-
stants is a sequence of the above mentioned
constants being separated by commas.

To open that list one has to use keyword &SEDA, to
close it &END,

E.g.,

& SEDA NAME « *EXMP», IND . 1,2, 3,5,
M m 10, XMISS a 0., & END
One has to keep in mind that:

(1) The order of parameters in the language is not import-
ant,

(2) The values of parameter must be written on one line
whereas the key-word and the parameter value may be
written on different lines.

(5) Blank symbols are not allowed in key-words and .con-
stants,

5, Data management subsystem

We will not describe the programs of the integrated
system SHODI, This description is presented in C2D, We
concentrate on programs to create, transform and merge
STATOS-filea.

The first of those programs FILBFM creates a STATOS-
fiIe from the data base using logical conditions and
transformations. The second program ШНЕО stores data
directly into STATOS-file, Syntactic errors are found
and displayed. Data elements are separated by special
symbols. The third program SISEI has the same goal, only
data input is organized positionally through Format state-
ment in FORTRAN, The fourth program FFORM selects records
from an old STATOS-file by logical conditions, trans-
forms them and creates a new STATOS-file,

There are also programs to transpose, sort and merge
the given STATOS-flies.

4?

Program Function Brief description

FILEFM Creation of STATOS-
file from DB

Data from the data base
are selected by the logi-
cal condition, transformed
and written to the STATOS-
file

THEO Direct entry to
STATOS-file

Data are directly stored
in the STATOS file.
Syntactic errors are
cleared out and displayed.
Special separators are
used for data.

SISE 1 1» The same work is done but
instead of separators data
are determined positionally
(Format statement in

FORTRAN)

4v Statistical analysis subsystem

When the STATOS—file la created, we may start data
analysis. As the general ideas of data analysis are well-
known, we describe only some of more interesting para-
meters or variations of implemented methods.

The program for contingency table creation gener-
ates at least "150 tables with their frequencies on one
pass of STATOS-file percentages and all kind of stat-
istics,*

The program for correlation and regression analysis
makes a lot to make the client»a life easier. It displays
maximum spanning tree of the correlation matrix and
represents the set of variables in the order of their
descending influence.

We want to make special mention of the program for
nonlinear regression analysis ENCIO which is written
along the lines of Tukey's Exploratory Data Analysis. We
have added a technique to determine the form of a non-
linear function automatically,*

4-в

Program Function Short description

FFORM Transformation of
the STATOS-file

Records are selected
Ъу logical conditions
from the old STATOS-
file, then transformed,
and the new STATOS-
file is created.

GOPTF Transposition of
the STATOS-file

The STATOS-file is
transposed.

SFSORT Sorting of the
STATOS-file

According to the key
records are sorted
in the ascending order.

MESTM Merging of the
STATOS-file

Two STATQS—files are
connected by the value
of the key and a new
STATOS-file is
created.

49

The same program is used as a subroutine for
piecewise regression where N data points are split into
К classes and for every class a nonlinear curve is fitted
(if needed),

STATOS has also employed several methods for high-
dimensional data visualization using methods represented
in Г 53,’ For data clustering we have a rich choice of
original methods based on the theory of monotonic sys-
tems.

To conclude with our system has found many fol-
lowers in the USSR due to its flexibility, extensibility
and ease of use.

References

1, Hartigan J, Clustering algorithms. New York,
Wiley, 1975.

2, СХОДИ. Утководство программиста, Таллин, 1982,

5, НИИ культуры. Труды 32. Выпуск 3. М., 1976.

4. Тыоки Дк. Анализ результатов наблюдений. Разве-
дочный анализ. М., 1981.

5. Выханду Л.К., Цунапуу Э.Х.-Т. Графические методы
обработки социально-экономических показателей // Труды
ТЛИ. 1981. » 511. С. 101-110.

6. Булко И.М., Дорожко Н.Н. и др. Диалоговая сис-
тема программирования - Дисп. М., 1981.

7. Сборник научных программ на Фортране. Руковод-
ство для программиста. Выпуск I. Статистика. М,, 1974.

8. Ыунапуу Э. Пакет прикладных программ статистиг-
ческого анализа данных СТАТОС. Таллин, 1985.

51

No 614

TALLINNA POLiTtBHNILISE INSTITUUDI TOIMETISBD

ТЕ7ДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

J. Hermo
UDK 681.3.01

A PRECEDENCE GRAMMAR FOR ADA

Abstract

An (1, l)-context precedence grammar for the program-

ming language Ada is presented. Some methods for trans-

forming grammar into the precedence form are discussed.

An Ada (1,1)-context precedence grammar ia pre-
sented here. The grammar corresponds to full ADA 1983
standard [33 as strictly aa ambiguities and inexacti-
tudes present in it allow. Changes introduced for re-
moving the drawbacks are described in another paper [23
of this volume. Methods used for removing precedence
conflicts are also discussed.

Precedence grammar is one of the quickest to parse.
However, the ease of parsing has to be paid for. The
precedence grammars tend to be rather big (the Ada gram-
mar to be presented contains ca 4-50 nonterminals and
639 productions) and are difficult to understand.
Transformations into a precedence form and compile-time
transformation of precedence grammar parse tree into
some more economical form (abstract syntax tree, e,g,
for Ada Diana [53 tree) cannot be overlooked also.

To transform the grammar into a precedence form,
i,e, remove precedence conflicts a method ia used here
which ia different from that described in [l3, 5.5.4.
Removing precedence conflicts involves the coding of left
contexts of conflicting nonterminals in the right aide
of productions, using new nonterminals. To remove a
conflict not only the left nonterminal from the con-

52

flicting pair (as in СIД), but the whole prefix of the
conflicting nonterminal ia renamed. For example, in Ada
from the production 3,8,1 C33 incomplete_typejieclaration:*
incomplete_type_declaration:=

TYPE Identifier discriminantjpart»
follows that the precedence relation Identifier = ;

holds.
But the relation Identifier ; holds also, since by produc*
tiona from 3,3,1, 3.4.5
full_type declaration **

TYPE Identifier diaoriminantjpart IS type_defini-
tion ;

type_definition :«
, , , derived_type_definition , , ,

derived_type_deftnition *« NEW aubtype_indication
and from nonterminal subtype_indication can be

derived Identificator. Which one of the relations A,< must
be used depends on the left context of the nonterminal
Identifier, Therefore to remove the conflict, a new
nonterminal typeid ia introduced*
typeid *ж TYPE Identificator

The right aides of productions for nonterminals in-
and f are

correspondingly changed. Such a method for removing con-
flicts makes the right hand aides of productions short
and compiling faster.

The grammar ia produced and tested, using Compiler
Generating System ELMA Е4Ц developed at Tallinn Technical
University, The productions in the grammar below are
mostly invertible, i,e, the right hand aide of produc-
tions uniquely determines the nonterminal on the left;
only 127 two-aide (i,e, (1,1)) context pairs have to be
remembered.

In the following, the Ada terminals are written
using capital letters only, all the other words are
nonterminals. Nonterminals starting with a capital letter
are lexemes,

Ada simple separators are »»,():■
<>+-&*/!

and composite separators <>-<>
*• /« < * « » M

:> >=

comp is comp i comp compun
compun is unit i withcl compun I used compun
unit ta prgmdcl i packdd i gendcl i geninat i

probd j subunit
withcl ia withid ;

withid is WITH Ident I withidc Ident
withidc te withid ,

used ta uaenm ;

usenmc is uaenm ,

uaenm ta USE nm I uaenmc nm
aubunit is separa nm) probd
aepars :> SEPARATE (

bdystub is prgmapec IS SEPARATE ; i taskbdid SEPARATE ;

| packbdid SEPARATE ;

idlt is Ident I idltc Ident
idltc is idlt ,

idltk is idlt s
typid is TYPE Ident
abtypid is SUBTYPE Ident IS
begatma ;= BEGIN seqatma
endl t = END ; i END Ident ;

end 2 ts endl I END String ;

idconat :■ idltk CONSTANT
idnm is idltk nm
idnme is idnm ta
idsbtp is idltk sbtpindc
idabtpe ta idabtp :■
nms Sb nm (

nma is nm*
prgma ts prgmid ; i prargaas ;

prargaaa ta praraas)

prgmid is PRAGMA Ident
prgma ta prgmid (

praraas ta prgma expr i praraasc expr i pram expr
praraaac ta praraas ,

pram ta prgms Ident I praraasc Ident

53

baadcl sa numdcl i objdcl i typdcl i prgmdcl i taakdcl I
excpdcl i rendcl i packdcl I aubtpdcl i gendcl I
geninat

objdcl ts compdcl ; I comcon I arcn ; I arena expr ;

aren sa idltk arrenatr i idconat arrenatr
arena г* arcn :k

ideonnm ss idconat nm
idconabt :b idconat abtpindc
idcone :s ideonnm :s i idconabt Ss

compcon sb dfcondef t idconabt ; I idcone expr ;

numdcl :b idconat Sb expr ;

typdcl sb flltpdcl i inctpdcl I pritpdcl
flltpdcl sa inetpiam typdef ;

inetpiam := inetpia
inetpia sb inctp IS
typdef Ss enumdef i realdef i reedef i derdef i intdef i

arrdef i accdef
aubtpdcl sb abtypid nm ; i sbtypid sbtpindc ;

abtpindc Ss nm rngc i nm fconatr
fconatr s= daim i daim rngc
daira j= DIGITS aimexpr i DELTA aimexpr
rngc ss RANGE rng I RANGE attr
rng : = aimexpr aimexpr
derdef Ss newnm i newnm rngc I newnm fconatr
newnm :« NEW nm
enumdef :s enuma)

enuma :s al enumlit i enumac enumlit
enumac s& enuma ,

enumlit : B Ident i String
al : £ (

intdef : e rngc
realdef :s fconatr
arrdef Ss arrunc I arrenatr
arraya s* ARRAY (

arrl sb arraya ind i arrlc ind
arrlc :* arrl ,

ind Sa nm RANGE < >

indlat sa arrl)QP
arrunc ss indlat nm i indlat abtpindc
arrcnl Ss arraya inden i arrcnlc inden

54

55

arrcnlc is arrcnl ,

indcn is nm i abtpindc i rng
indcnlat is arrcnl) OP
arrcnatr is indcnlat nm i indcnlat abtpindc
complat is RECORD compdcl ; | complat compdcl I

varn compdcl ;

compdcl is dacrapec i idabtpe expr
varid is RECORD CASE i complat CASE I varn CASE
varpt ts varid Ident IS WHEN I complat WHEN i varnn

WHEN i varend WHEN
varnn is varn nullatmt
varn is varchlat ->

varend is complat endcaae I varend endcaae I varnn endcaae
varchlat is varpt ch I varpth ch
varpth is varchlat I
ch is aimexpr l OTHERS I abtpindc I rng
recdef ts RECORD nullatmt endrec I varend endrec I

complat endrec
endrec i= END RECORD
accdef ts ACCESS nm i ACCESS abtpindc
typida ts typid (

dacrapec is idnm l idnme expr
diacrltc ts diacrlt ;

discrlt isstypida dacrapec I diacrltc dacrapec
inctp ts diacrlt) I typid
inctpdcl is inctp ;

declpt ts baadclit i bodyk i declpt baadclit i
declpt bodyk

baadclit ts baadcl< repel 1 uaecl l prgma l
bodyk ts probd I bdyatub
probd ts abprgmbd | packbd I taakbd
nm Js Ident i String I aelcomp 1 indcomp i attr
indcomp is indelat)

indelat ts nms inx 1 indlatc inx
indlatc ts indelat ,

inx ts expr i abtpindc i rng I chlatn
chlatn is chlat -> expr
chlat ts Ident I chlat l Ident I String l chlat i String
aelcomp ts nm,ldent i nm,String i nm.ALL
attr is nma Ident i nma DELTA I nma DIGITS I nma RANGE

aggr !e agg)

agg :■ аЗ expr i chatltn expr i aggc expr
aggc is agg ,

chatlt :b a? oh i chatlth oh i aggc ch
chatlth tat chatlt I
s 3 s« (

chatltn ts chatlt
expr ts rel i relandl i relorl i relxorl i relatl i reldel
relandl tx rel AND rel I relandl AND rel
relorl ts rel OR rel l relorl OR rel
relxorl ts rel XOR rel I relxorl XOR rel
relatl ts rel ath rel I relatl ath rel
ath ts AND THEN
reloel t= rel oe rel I reloel oe rel
oe ts OR ELSE
rel ts aimexprl i aimexprl ni rng i aimexprl ni nm |

aimexprl relop aimexprl
ni is IN 1 NOT IN
relop t= s | /в I < | <s |> | > s
aimexprl ts aimexpr i alloc
aimexpr ts terml I tmadop terml
terml ts term I terml addop term
addop ts + I - | &

unadop ts + i -

term ts fact t term multop fact
multop ts * | / i MOD i REM
fact ts prim i prim •• prim i ABS prim i NOT prim
prim ts NULL I Conat | nm i aggr | qalfexpr
qalfexpr ts nma aggr
alloc ts derdef i NEW.qalfexpr
aeqatm ts atmt i aeqatm atmt
atmt ts atm i label atm
atm ts nullatmt i aaanatmt i exitatmt i gotoatmt I

delatmt i raiaatmt i proccall I retatmt I
aboatmt i codeatmt I ifatmt I loopatmt i accatmt I
caaeatmt i block I aelatmt I prgma

label ts « Ident » i label « Ident »
nullatmt ts NULL ;

aaanatmt ts nm tx expr ;

ifatmt ts ifalg END IP ;

56

ifpt ta IP exprthn i ifpt elaifpt
exprthn ta expr THEN aeqatma
elaifpt la ELSIF exprthn

is ifpt i ifpt ELSE aeqatma
caaeatmt is alternl endcaae
endcase ta END CASE ;

altern la caaeexpr WHEN I alternl WHEN
caaechl la altern ch i caaechlh oh
caaechlh is caaechll
alternn ia caaechl —>

alternl is alternn aeqatma
loopatmt ia loopbody endloop ;

iterach ta LOOP i WHILE expr LOOP i fOrel LOOP
ford ta forid nm i forid abtpindc i forid rng
fori is FOR Ident IN
forid is fori i fori REVERSE
endl ta END LOOP
endloop ta endl i endl Ident
loopbody ia idltk iter i iter
iter is iterach aeqatma
block ta idltk blckdcl I blckdcl I blckbd
blckbd ta blckbody endl
blckdcl ia blckdcls blckbd
blckdcla ta DECLARE I DECLARE declpt
blcbody is begatma exphndlr I begatma
exitnm is EXIT i EXIT nm
exitatmt is exitnm WHEN expr ; I exitnm ;

retatmt ta RETURN J I RETURN expr J
gotoatmt ta GOTO nm ;

prgmdcl ta prgmapec ;

prgmapec ia procid i procfmpt i funret nm
funret la funid RETURN I funfmpt RETURN
procid is PROCEDURE Ident
funid is FUNCTION Ident i FUNCTION String
procida is procid (

funida ta funid (

profml is procida dacrapec i procida prmapec
profmlc dacrapec i procida prmapec

profmlc is profml ;

57

funfml ta funida dacrapec i funida prmapec I
funfmlc dacrapec I funfmlc prmapec

funfmlc ;* funfml ;

idmnm ta idltk mode nm
prmapec ta idnme expr I idmnm
Idnme 5a idmnm ta

mode ta IN l IN OUT I OUT
proofmpt ta profml)

funfmpt ta funfml)

abprgmbd ta prgmdcpt blckbody end 2
prgmdcpt ta prgmapia i prgmapia declpt
prgmapia ta prgmapec IS
proccall ta nm ;

packdcl ta packapec
packapec ta packdpt endl i packdpt privpt endl
packid ta PACKAGE Ident
packidia ta packid IS
packdpt t= packidia i packdpt baadclit
privpt ta PRIVATE l privpt baadclit
packbd ta packbdd endl i packbdd blcbd
packbod ta PACKAGE BODY
packbdid. ta packbod Ident IS
packbod ta packbdid declpt I packbdid
pritpdcl ta inctpia PRIVATE ;

inctpia LIMITED PRIVATE ;

dfcondef ta idconnm ;

rendcl ta idnm renmpt i idltk EXCEPTION renmpt |

packid renmpt i prgmapec renmpt
renmpt ta RENAMES nm ;

taakdcl ta taakapec ;

taakapec ta taakid i taakrep endl
taakid ta TASK Ident i TASK TYPE Ident
taakent ta taakid IS i taakent entdcl
taakrep ta taakent i taakrep repel
entdcl ta enid ; i enidr ; i enfmpt;
enid ta ENTRY Ident
enidr ta enida nm) i enida rng) i enids abtpindc)

enida ta enid (

enidra ta enidr (

58

enfmptl :* enida dacrapec i enidra dacrapec i
enids prmapec I enidra ргшарес I
enfmptlc dacrapec 1 enfmptlc prmapec

enfmptlc := enfmptl ;

enfmpt s= enfmptl)

taakbd s= taakbddl blckbody endl
taakbdid := TASK BODY Ident IS
taakbddl t= taakbdid i taakbdid declpt
accptid := ACCEPT Ident
accptida :» accptid (

accptind u accptida expr)

accinda :s accptind)

accfml accptida dacrapec i accptida prmapec I
accinda dacrapec I accinda prmapec I
accfmlc dacrapec i accfmlc prmapec

accfmlc :« accfml .;

accfmpt := accptida i accfml)

accatmt := accptid ; i accfmpt ; J

accfmpt DO aeqatma endl
delatmt in DELAY aimexpr ;

aelatmt :« aelwait i condentr i tmdentr
aelwait is aelaltl endael I aelorpt endael i aelelae

endael
aelbeg SELECT I SELECT WHEN expr —>

aelw is aelbeg accatmt_l aelw atmt
aeld ts aelbeg delatmt i aeld atmt
aelaltl :b aelw i aeld I aelbeg TERMINATE ;

aelor t= aelaltl OR i aelorpt OR
selorbeg s= aelor i aelor WHEN expr->
aelorw i= aelorbeg accatmt I aelorw atmt
aelord := aelorbeg delatmt I aelord atmt
aelorpt in aelorw | aelord l aelorbeg TERMINATE;
aelelae s= aelaltl ELSE i aelorpt ELSEiaelelae atmt
endael in END SELECT ;

condentr in aelelae endael
aelnm is SELECT nm ; i aelnra atmt
aelelae :» aelnm ELSE I aelelae atmt
tmdentr :si aelort endael
aelort sb aelnm OR delatmt i aelort atmt

59

60

aboatmt ts abonm »

abonm :a ABORT nm i abonmc nm
abonmc is abonm f

excpdcl ts idltk EXCEPTION ;

exphndlr is exchltn aeqatma
excwh is EXCEPTION WHEN I exphndlr WHEN
exchlt is excwh exch i exchlth exch
exchlth is exchlt I
exchltn is exchlt ->

exch is nm I OTHERS
ralaatmt is RAISE ; i RAISE nm ;

gendcl is gnfmpt prgmdcl I gnfmpt packdcl
gnfmpt ts GENERIC i gnfmpt dacrcpec I gnfmpt prmapec i

gnfmpt prltpdcl i gnfmpt gntpdef ; i
gnfmpt withpt ;

gntpdef is inctpla (О) i inctpia RANGE <> I
inctpia arrdef i inctpia accdef

withprgm is WITH prgmapec
withpt is withprgma withprgm IS nm i withprgm IS < >

gninat ts packidia newnm i prgmapia newnm i funid ia
newnm

geninat ts gninat ;

repel ts forattr aimexpr ; i forid aggr ; i
forid AT aimexpr ; 1 recrepol

forid ts FOR Ident USE
forattr ts FOR attr USE

is recrep endrec ;

aligncl ts AT МОЮ aimexpr ;

compel ts nmatamex rngc ;

nmatamex ts nm AT aimexpr
recrep ts forid RECORD i forid RECORD aligncl I

recrep compel
codeatmt ts qalfexpr ;

61

References

1. Aho A,V., Ullman J,D, The theory of parsing,
translation and compiling, vol I, Prentice-Hall, 1972,

2. Henno J, Some remarks on Ada RM grammar // In
this volume j

3. The programming language Ada Reference Manual //
Lecture Notes in Computer Science, 1983» Mo 155*

4. Vooglaid A,, Lepp M., Liib D, Metalanguages for
the system ELMA // Trans, of Tallinn Tech, Univ, 1982,
No 524-, P. 79-96 (in Russian),

5. Uhl J,, Droasopoulou, Persch G,, Goos G,, Daus-
mann M,, Winterstein G,, Kirchgaasner W, An attribute
grammar for the semantic analysis of Ada // Lecture
Notes in Computer Science, 1982, No 139* •

63

No 614

TALLINNA PQLtTTEHNILISB INSTITUUDI TOIMBTISED
ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

J. Негшо
UDK 681.3.01

SOME REMARKS ON ADA REFERENCE MANUAL GRAMMAR
AND SYNTAX

Abstract

Inexactitudes and ambiguities present in Ada Reference
Manual syntax grammar are discussed. Alternative con-
structs to improve the grammar are presented. Alterna-
tives are also suggested to remove some undesirable fea-

tures of Ada syntax (nonuniform syntax of semantically
similar constructs, etc,).

Syntax of programming languages and methods of
syntax presentation and analysis have been thoroughly
investigated. Usually language syntax is defined in two
stepsj first, the context-free features are introduced,
using a context-free (Backus-Naur) grammar or, equival-
ently, syntax charts, etc,,and then the context-dependent
restrictions are presented, Gompile-time syntax control
follows the same pattern. Syntax analyser (parser) checks
programs correspondence to the context-free syntax gram-
mar of the language. Correctness of context-dependent fea-
tures is investigated later. Thus usually even by the
word "syntax" only context-free features of syntax are
understood.

Since the pioneering works of J.W, Backus and
P, Naur it is commonly agreed that the abstract, succinct
form of grammar greatly improves syntax presentation and
makes it easier to avoid different implementations. Un-
fortunately, up to now no good formalisms for presenta-
tion of syntax context-dependent features have been
found. The only widely known attempt to give an abstract

64

presentation of the whole syntax was the Algol-68 syntax
presentation hy van Wijngaardens two-level grammar C6]*'

Syntax analyser is derived directly (in compiler-
generating systems automatically) from the syntax gram-
mar, Therefore the languages Reference Manual (RM) gram-
mar should obey some nearly obvious conditions:

a. The whole syntax must be presented in a

precise, concise way. There should be no need for ad-
ditional verbal clarifications about the context-free
features of syntax, scattered around in RM, Useless non-

terminals, which do not occur on the right hand aide of
productions should be excluded.

Besides syntax analysis parser constructs its
parse tree (derivation tree). Since this tree reflects
the semantics of the program, unambiguity is of utmost
importance, i,e, for every syntactically correct program
only one parse tree is allowed. In terms of grammar;:

b. RM grammar must be unambiguous.

Syntax grammar is also used to learn the language
syntax and to check for syntactic errors, thus

c. Grammar must be user-oriented, nonterminals
system of the grammar must be as simple as possible
and chosen according to the language semantics,

d. The syntax of the language must be designed to
help the user (semantically) similar constructs should
have similar syntax, no exceptions are allowed.

For compiler-writers the following features are
also desirable:

e. RM grammar should belong to some well-known
class of grammars to allow quick and simple methods of
analysis. Nowadays LR(I) (LALR(I)) or LL(I) grammar seems
to be moat preferable*

f. The language syntax should be as context-free
as possible, i,e, context sensitive features of syntax
should be avoided if possible. This makes the language
easier to use and compilers far more efficient.

The above features are somewhat contradictory.

65

A complete syntax description may involve some
rather incomprehensible and awkward constructs in gram-
mar , For instance, in Ada several nonterminals are de-
scribed as nonempty lists, where several choices for
every item are possible (variantjaart,
part). But some restrictions are present on the occur-
rence of choices, e,g, after occurrence of some kind
of choices only some others are allowed (in procedure
parameter passing list positional and named parameters
are allowed, but once a named parameter is used the
rest must also be the named ones). These restrictions
can be expressed by context-free productions, but it
is rather difficult to understand the result if the
general structure of productions is left unchanged, i,e,
these exceptional items are included in the list. Since
the restrictions are logical and natural, they can be
expressed verbally, as done in Ada RM, A better solu-
tion would be restructuring i of productions removing
these exceptional items from the list.

Restricting the grammar to belong to some definite
class of grammars may also involve difficulties, espec-
ially when some class of grammars different from LR(k)
is considered desirable. The precedence grammar pro-
duced at Tallinn Technical University for Ada CIJ con-
tains ca 500 nonterminals and ca 650 productions and
these figures cannot be essentially decreased; clearly
such a monster is not humanly understandable and ac-
ceptable.

However, the above features should be present in
every RH grammar as completely as possible, but this
is not the case with Ada RM grammar C33, Many problems,
discussed earlier £2,53 for Ada 1980 version C43 are
still unsolved, and even some more have come up.

The first question arises already on your first
glance at the grammar. The grammar is preceded by a
remark stating that "syntax summary is not part of
standard definition of Ada programming language". Does
this mean that Ada syntax must be inferred from the
verbal text and the examples above?

66

a,l, The grammar doea not specify the whole syntax.
From RM text it follows that attribute identifiers in-
clude reserved words (grammar terminals) DELTA, DIGITS,
RANGE to be taken into consideration in 4,1,4 (further
all.the paragraphs will be from grammar in Z3l)•

a,2, Nonterminal pragma doea not occur in the
right hand side in any production, i,e, the grammar does
not specify the occurrence of pragmas. In RM it is stated
that pragmas are allowed only "after a semicolon deli-
miter, but not within a formal part or discriminant part
and at any place where the syntax rules allow a cat-
egory whose name ends with "declaration”, "statement",
"clause" or "alternative" or one of the syntactic cat-
egories variant and exception handler, but not in place
of such a construct; also at any place where a compila-
tion unit would be allowed. Additional restrictions exist
for the placement of specific pragmas".

This passage is far longer than the one from ADA
1980 RM and involves more problems (which are to be
solved by language designers rather than by implementors).
The straightforward implementation of this definition would
imply a good deal of ambiguities e,g,, in the production
for nonterminal from 3,9 pragma
can be reduced to basio_declaration, representation clause
or - which one is correct? The first sentence
of this definition is also superfluous, since all con-
structs with semicolon as endsymbol are presented in the
following, A solution to the placement of pragmas will
be given below,

1, Pragma is introduced as an alternative of com-
ponent^declaration, i,e, the corresponding production
from 3,7 is changed to componentjieclaration t:«

identifier_list t subtype_indication i»expreasion ;

1 pragma

2, In variant part (3,7,5) pragmas can appear im-
plicitly only at the beginning of the list of variants;
after the first variant pragmas are reduced to component
declarations of the previous variants of the component

67

list to avoid ambiguities* Thus the first production of
3,7,3 has to be changed into
variant_part is«

CASE ident IS

variant
{variant}

END CASE J

3, Pragmas must be added as an alternative of
basic declarative item, thus the corresponding produc-
tion from 3.9 would be basic_declarative_item s;* basic__
declaration

I repreaentation_clause i use_clause | pragma

4, The production for nonterminal laterodedarative_
item is ambiguous (see b.B below). Thus Instead of there
pragma should be added to the production for body from
3.9
body_ tla proper_body | body_stub | pragma

Notice that there must be at least one body before
pragma in the list of basic and later declarative items,
otherwise parsing of pragmas in the declarative part is
ambiguous,

5, Pragma must be an alternative of nonterminal
case_statement_alternative, thus the corresponding pro-
duction from 5,4- should be
case_statement_alternative :t>

WHEN choice {choice} =£

sequence_of_statements
pragma

6, In task specification (9Д) both the entry
declaration and representation clause can be replaced
by pragma, which makes parsing of pragma between them
ambiguous. This is another syntactical construction,
which is rather troublesome to describe by context-free
productions and should therefore be avoided by language
designers. It can be done by adding pragma as an alter-

68

native to the representation clause, changing the cor-
responding production from 13,1 to

representation_olause
type_repreaentation_clause i addres_clause | pragma

and introducing a new nonterminal entry_llst by
entryJList its entry (entry entry_list I pragma entry-list
so that task^apecificatlon would become (9.1)
task_specification : :«

TASK TYPE identifier IS
entryJList
representation_clause

END identifier

7, Pragma must belong as an alternative to non-
terminal select_alternative, i,e, the corresponding pro-
duction from 9,7,1 should be
select_alternative ::■

WHEN condition
select_wait_alternative

pragma

8, By the above definition pragma is allowed at
any place where except!on_handler is permitted, but not
in place of it. Since exception handlers form everywhere
lists that probably means that such a list must contain
at least one exception handler among pragmas. This is
again rather awkward to describe. These lists should be
changed everywhere to the following construct*

pragma
except ion_handleг
pragma exception^handler
9, Since pragma could replace a statement, in 5.1

the corresponding production should be changed into
statement :*« ClabelJ simple_atatement | Clabel] compound_

statement
I pragma

10, Pragmas may appear as part of context clause,
preceding a compilation unit or replace a whole compile—

tion unit Id the list of compilation units (10. ID, This
again makes parsing of pragma ambiguous - it can be re-
duced either to standing alone compilation unit or to
the context clause of the next compilation unit. In the
following solution only the latter is allowed» change
the production for contextjslause in 10,1.1i t0
context_clauae tta with_clause I use_clause | pragma

a,3* Nonterminals and
precedence_operator in 4,5 are useless and the corre-
sponding productions should be removed from the grammar,

a,4, From the nonterminal declarativeJ?art an
empty string can also be derived by 3,9, Thus by 5.6
it is allowed that in block statement word DECLARE is
not followed by any declaration. Introducing such mean-
ingless words is undesirable, but can be easily cor-
rected, Only productions for nonterminals declarative_paxt
and context_clause allow derivation of an empty string.
Since Compiler Generators often do not allow such pro-
ductions, it would be better to exclude such a possi-
bility also from RM grammar. For nonterminal declarative_
part it is especially logical, since it is everywhere
used as optional, i,e, here empty string is also ambigu-
ous.

The word DECLARE is used only before block declara-
tions, in all other constructs (package, subprogram,
task) declarations are not preceded by it, what clearly
contradicts to the language syntax design principle e,
above. It would be better to omit the word also from
block (or use it everywhere). This would not imply any
new difficulties and the syntax would become more
homogeneous,

a,5, In some places grammar could be made more
exact, e,g, in the productions for exit (5,7) and goto
(5,9) statements instead of name identifier should be
used, RM explicitly states that these statements could
not transfer control out of a given program unit. Like-

6Э

70

wise, in productions for procedure_call_statement and
function_call_atatement (6,4) identifier or aelected_
component should be used instead of procedure_name, func-
tion_name, This holds also for nonterminals
package_name, genericjprocedure jiame, generic_function_
name in productions for nonterminal generic_instantiation
("•2,3) and these replacements remove some ambiguities
from the grammar (see below).

The grammar is ambiguous in many places,
b,I, A big problem is parsing strings
name (name {, name}) (1)
Nonterminals tndexed_component, slice and function_

call all may look like (1) and have the same context,
since by 4,1, 4,4
name , , , I indexed_component , , , I slice , , ,

primary :, , , | name , , , I function_call , . ,

Also nonterminal subtype_indication may appear
aa (I), if the constraint in 3,5,2
aubtype_indication ::= typejuark constraint
is either index_constraint or discriminant constraint
and again context does not help, since by 3.3.2
type_mark :is name
thus it is impossible to differentiate between the con-
straint and typemark (i,e, name).

Apparently the best solution would be to distin-
guish between these alternatives by the use of different
syntactic notations, e,g, different kinds of brackets C53;
If the syntax is left unchanged, a new nonterminal must
be introduced for every case above and the nonterminals
name and subtype_indication correspondingly changed, e,g.
subtype_indication presents only alternatives with range,
fixed- or floating-point constraints,

b. 2, Similarly, in procedurejjall_statement (6,4)
it is impossible to say whether the list in brackets is
actualj?arameter_part or belongs to procedure name (if
all actual parameters are missing, i,e, parameter asso-
ciation is entirely by position). However, a procedure
name cannot contain brackets and can be either identifi-

71

cator or aelected_component only. In this way a more
specific grammar results which removes the ambiguity,

b,5. Nonterminal "entry_call" (9*5) can be dis-
tinguished from (6,4) only semantically
therefore it must be removed from the grammar,

b,4. In parsing generic_instantion (12,5) it ia
impossible to say whether the list in brackets ia generic_
actualjpart or part of generic_package_name (generic_
procedure__name, generic_function_name). This ambiguity
can be removed either by some kind of "syntactic sugar"
or by allowing generic_procedure_name and genericjfunc-
tion__name nonterminals identifier or selected_component
only in place of genericjpackagejsame,

b,5. Parsing a string
name'ident (expression)

ia also ambiguous. Such a string can be reduced to name
either by name
::= attribute ::= prefix'attribute_designator
prefix ts= name
attributejiesignator »*= identificator (expression)
(see 4,1, 4,1,4) or by
name >:= indexed_component is* prefix (expression)
prefix ttx name t:= attribute
attribute »:=: prefix* attribute designator

attributejiesignator ::= identificator.
Expressions in parentheses which belong to

designator could be distinguished using different brackets,

b,6. Nonterminal (7.4)
may look like object_declaration (5.2) and both are basic_
declarations (5.1), i,e, they cannot be separated syntac-
tically, To make a difference, object_declaration must
be made more exact, and if the word CONSTANT appears in
object declaration, initialization must be present; un-
initialized constants are deferred constants,

b,7. Many ambiguities contain alternatives for non-
terminal primary (4,4).

Nonterminal string_literal must be removed from the
list of alternatives since it can be reduced to name

72

through operator_aymbol (6,1, 4,1),
Nonterminals funotion_call and type__converaion may

look like name (see above), thus either their syntax is
changed or they are removed from the alternatives of
nonterminal primary.

Nonterminal aggregate may look like another alter-
native (expression), thus either its syntax is changed
or only aggregate is left as an alternative of primary.

In case it has the form (expression), a semantical sub-
program of parser must analyze its meaning,

b,B. Nearly all the alternatives of nonterminal
later_declarative_ltem are also alternatives of the
nonterminal basic_declarative_item (see 3*9). Introduction
of these two nonterminals seems to follow only didactic
purposes. To avoid ambiguities later_declarative_item
should be removed from the grammar and nonterminal

(3,9) defined by production

declarative_part basic_declarative_item body

b, Introduction of nonterminals library__unit and
secondary_unit (10,1) also looks like an attempt to ex-
plain semantics of the language by means of context-free
syntax grammar. Only semantical analysis allows to
determine whether subprogram_body is to be reduced to
library or secondary unit. To remove the ambiguity these
two nonterminals should be replaced by one, which would
cover all their alternatives.

There are other questions related to nonterminals
system and structure of the grammar.

c, Why besides nonterminals name and identifier
la introduced nonterminal simple_jaame, which by 4,1
is always an identifier?

c,2. Nonterminal component jaubtypeJLndication, whidi
according to 3,7 is simply subtype_indication is also
non-essential,

c,3. Similar constructs should be described by
similar productions - this makes it easier to read the
grammar. For instance, it would be better if productions

73

describing unconstrained_array_definition and con-
strained_array_definition were similar,

c, Italicized prefixes should be part of the
grammar, i,e, instead of explaining that they are to
be ignored it would be better to add the corresponding
productions - implementors have to do it anyway,

d, Because of,ambiguities Ada grammar does not
belong to any parsing-efficient subclass of context-
free grammars. Even after removing ambiguities more
than two symbols look-ahead is needed in some places
(i,e, it cannot be directly transformed into an LR (I)
grammar, see below),

e, All other identifier declarations (object
declaration 3.2, component_declaration 5.7, diacrimi-
nant_specification 3.7,1 etc.) start with identifler_
list, but renaming_declaration (8,5) must start with
only one identifier. If similar objects can be de-
clared together, why can they not be renamed together?
Such irregularities involve difficulties not only
for the user, but also for a parser implementor. Non-
terminal identifier_list must be split into two» one
for standing alone identifier and the other consisting
of at least two identifiers; all productions contain-
ing nonterminal identifier_list must be changed accord-
ingly. Sufficient (more than two symbols) look_ahead
would be another solution to determine whether stand-
ing alone identifier must be reduced to an identifier_
list (beginning with object, etc, declaration) or not
(beginning with the renaming declaration),

e,2. Nearly all type declarations follow the
pattern (see 3.3,1) TYPE identifier discriminantjpart
IS type_definition, where the first symbol derived from
nonterminal type_definition determines the type in
question (record, array, etc,), but task type de-
finition begins for some reason TYPE TASK ... ,

e,3. Nonterminals actual_parameter_part (6,4)
and generic_actual_part (12,3) are very close seman-

74

tically and have also rather similar syntax. There is
only difference - for generic_formal_parameter it is
allowed to be also string literal. But in RM grammar
syntax description the similarity is rather difficult
to understand, RM productions
actual parameter ;:= expression variable_name

type marfc(variable_name)
generic actual_parameter *:= expression variable_name

subprogram_name entry_name type_mark
both reduce after removing syntactical ambiguities to
the same
actual_parameter ::= expression

generic_actual_parameter >:■ expression

The syntax were easier to remember, if nonterminals
actual_parameter_part and generic_actual_part had the
same syntax,

e,4, Differences between syntax of nonterminals
parameter_specification (6,1) and the first alterna-
tive of generic_parameter_specification (12,1) are
also difficult to remember. In generic_parameter_
specification it is not allowed to use alone mode OUT
and semicolon character is used as endsymbol, but for
parameter_apecification as delimiter, i,e, is missing
after the last one (in Ada 1980 version they had the
same syntax).

The suggestions made above for changing Ada
syntax (adding some syntactic "sugar") would make it
more context-free and thus Ada compilation faster.

Here are some more suggestions about Ada syntax.
Word IS in type declarations (see above) makes

them more human, easier to read and understand. This
feature would be good in object declarations too*
instead of

A, В : T;
C : CONSTANT TI *« Cl

more readable would be

A, В : VARIABLES OF TYPE T;
0 * CONSTANT OP TYPE TI *. Cl;

75

or even
A, В ARE VARIABLES OF TYPE TJ
C IS A CONSTANT OF TYPE TI EQUAL TO 01J

etc.
The last example indicates, that the syntax sug-

gested would be varying. But this is a feature usually
present in good translators - some delimiters could be
missing, word order cannot be significant, etc, Ada is
semantically rich, but its syntax is poor and rigid
and since it is the policy of Ada not to allow any
dialects, it would be better to introduce some freedom
into its syntax officially,

Ada, being a major development in "big" languages
(which are needed for big applications) is often criti-
cized along the lines "small is beautiful". But big
can also be beautiful if it is well-organized and
systematic. Hopefully some of the above remarks will
be helpful for new Ada standard developers or for
designers of other languages.

References

1, Henno, J, A precedence grammar for Ada (in
this volume),

2, Machanick P, A note on C.S, Wetherell'a "Prob-
lems with the Ada reference grammar" // SIGPLAN Notices,
1985. 18, No 5. P. 44-45.

5, The programming language Ada reference manual //
Lecture Notes in Computer Science, 1983. No 155.

4. The programming language Ada reference manual //

Lecture Notes in Computer Science, 1981, No 106,

5. Wetherell C.S, Problems with the Ada reference
grammar // SIGPLAN Notices, 1981, No 9, P, 90-104.

6. Wijngaarden,van A, Recursive definition of
syntax and semantics // Ed, T,B, Steel, Formal descrip-
tion languages for computer programm 4 ng. Amsterdam,
North-Holland, 1966.

77

No 614-

TALLINNA POLffTEHNILISE INSTITUUDI TOIMBTISBD
ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

D. Liib
ШЖ 681.3.01

A TECHNOLOGY FOR BUILDING A COMPILER-WRITING
SYSTEM

Abstract

Two aspects related to automatic production of a compiler -

writing system are discussed. The use of the compiler-

writing system for programming with grammar formalism,

and optimization of memory requirements for precedence
grammars are described.

Computer-aided technologies for programming tools
are one of the major concerns in software development.
We will discuss problems related to the automatic pro-
duction of a compiler-writing system. The main aim is
to build a compiler-writing system for practical use and
serial production. The basic aspects involved are;

- examination of the compiler-writing system for
programming with grammar formalism as immediate
programming tools for classes of structured data
processing tasks

- minimization of memory requirements for preced-
ence grammars using (1,1)-bounded canonical
context С7Л.

To use grammar formalism as a part of high-level
programming languages, the concept of a tree-structured
variable is introduced C53. This approach enables us to
describe an analytic calculation system [92 and a syntax-
oriented input generator for net structured data bases [6]

The minimization of memory requirements consists
of methods and algorithms that permit to convert the

78

initial precedence grammar into the precedence grammar
for which two linear precedence functions exist EH],
The types of conversion that change the structure of
the precedence grammar rules also change the direction
of the arcs in the linearisation graph, if the graph
is cyclic. The reason for the absence of the preced-
ence functions for the initial precedence grammar is
eliminated by these types of conversions.
Consequently, the information in the precedence matrix
can be represented by a pair of precedence functions,

p
The matrix consists of n entries and two functions
contain 2n’ entries, when n* « 4n, Such a replacement
evokes the following problems:

- context quantity minimization for reduction of
precedence grammar rules with equal right aides

- restoration of the recovery of syntactic er-
rors in time.

Tree—structured variable. To connect grammar for-
malism with high-level languages, the concept of the
tree-structured variable is introduced, A tree-struc-
tured variable like a common variable in programming
languages can be described by three attributes: name,
type and value.

In the declaration of a common variable the name
is attached to a given description of the data type.
But in case of a tree-structured variable, the name
is fixed with a number of data type descriptions. This
description is achieved by describing the rules that
are similar to the grammar formalism. To assign a value
i«o common variables, first, if needed, the conversion
of the type of the assigned value is made and after
conversion the name is connected to the value. With
a tree-structured variable its initial value is changed
to the form of a tree and the name connected to the root
of this tree.

The approach described above has been used in
creating the analytic calculations system C9D , For
example, the package for differentiation has been im-
plemented, The initial expression is converted into

79

an expression, which is the derivative of the initial
expression. The conversion is followed hy the calcu-
lation of the derivative.

The declaration of the tree-structured variable
as a universal data input system СбЗ is carried out
in three stages:

- the definition of,logical data baae schema as
a declaration of the tree-structured variable

- the description of the input data as a given
value of the tree-structured variable

- data selection from data base.
Each given value of the tree-structured variable must
be a data base subschema. Thus the relation between
the structure of the input data and the logical net-
work of the data base is determined automatically,
and on these bases the access path to a record in the
network is uniquely determined.

The minimization of the syntactic parsers. Here
we will deal with the minimization of such syntactic
parsers that work in the class of precedence grammar
using (1,1)-bounded canonical context reduction C7 l .

The use of this method in the system ELMA implies one

more conversion in the following sequence.
First the user writes his language in the form,

of the regular context-free grammar. Further the con-
text-free rules are automatically transformed into a
precedence grammar and it is verified whether the ob-
tained precedence grammar is reducible using (1,1)-
bounded canonical context or not. This verification is
done when grammar includes rules with equal right
sides. During the syntactic parse (during reduction
phase), one of the appropriate rules must be chosen.
To achieve such a choice it must have a set of (1,1)-
context (for each rule with equal right side every
possible pair of single symbol on the left and right).
Eventually, the conversions result in a grammar which
is transformed into the precedence grammar with two
precedence functions.

At this time in view of practice no effective

80

methods are available for automatic transformation of
a precedence grammar for a grammar for which two pre-
cedence functions exist. The author haa employed a
new method based on the approach of Martin 0143 and
Babitshev, Pronina, Trahtengerts C2J,

In Martin’s paper П4] it is proved that linear
precedence functions exist if and only if linearisa-
tion graph is acyclic. This graph is a partially di-
rected graph. First the partially directed graph must
be transformed into a graph with the maximum number
of directed arcs (the undirected arc corresponds to
the precedence relation ж in the precedence matrix),
on condition that the number of cycles stays unchanged.
This complemented graph orientation is carried out
straight on the precedence matrix. The changed pre-
cedence relations a> are divided into three groups and
are marked as follows;

i - i (*» U .

TSae precedence relation a related to groups i
or replacing в with •> or <• the arc is oriented
in the linearisation graph on condition that the number
of cycles remains unchanged. To the group a are
related those precedence relations s which do not
adjust even under additional orientation uniquely.

The acyclic linearisation graph is obtained with
the help of the stratifications to the left and to the
right in the precedence grammar rules, so that we can
change the direction of the required arcs.

In Cll3 it is proved that those stratifications to
the left and right make the linearisation graph acyclic
and the transformed grammar is a precedence grammar.

Up to here the linear precedence functions have
been observed separately from the syntactic parser.
These modifications which bring along the replacement
of the precedence matrix with linear precedence func-
tions in the syntactic parser will be discussed further.

Between any pair of grammar symbols there are
four precedence relations: <-,= ,•> or "blank" (no pre-

81

cedence relation between the corresponding symbols). The
"blank" entries in the matrix are not reflected in the
linear precedence functions. The correspondence between
precedence matrix M and linear precedence functions f
and g is the following:

M(X,Y)= > implies f(X)7g(T)
M(X,T)s m implies f(X) = g(Y)
M(X,Y)x <• implies f(X)<g(Y),

Consequently, both the possibility of recovering
syntactic errors in time and that of using class K 2
for reduction phase are lost. Those limitations reduce
the efficiency of syntactic parsers. To improve the
efficiency of syntactic errors recovery the concept
of partial equivalence < of syntactic parsers is in-
troduced, The rules of precedence grammar are divided
into three classes: , K 2, to improve the efficiency
of reduction phase.

Cascade technique is used for classes , K 2,

Class IL. consists of rules with different right sides.
Classes K 2 and have rules with equal right sides.
To reduce those (1,1)-bounded canonical context C.7) de-
termined on the precedence matrix is applied because
the use of class K 2 and class 1Ц is equally efficient.
The ordered vectors have been introduced for restoring
class K 2,

Ordered vectors. For all rules with equal right
sides an interval between the internal codes of the
left and right context symbols is indicated. If the
internal code of a current symbol belongs to the cor-
responding internal code during the syntactic parsing,
then the right rule is found. If it is not the case, the
next rule with the same right side is observed.

Reflective-linear ordering between the context
symbols is necessary to achieve the intervals described
above. In fact, it is possible to construct an example,
in which the reflective-linear ordering of context symbols
does not exist. In Ci2j it is proved that stratifications

82

on the rules of precedence grammar into the precedence,
grammar with two linear precedence functions (to trans-
form the initial precedence grammar into the precedence
grammar with two precedence functions) are capable of
changing the appearance of the symbol in the (1,1)-bounded
canonical context. Those stratifications lead to the
reflective-linear ordering of context symbols.

Error detection in the precedence parsers for
precedence grammar has two precedence functions. In the
paper by Ahо and Ullman D 133 the syntactic errors de-
tection has been studied. They give the division of
'’blank" entries into two groups. To the first group be-
long only those entries that are never consulted during
the parse of any input. The second group involves all
the other "blank" entries. For that reason it is necess-
ary to restore all "blank" entries for error detection
in time. The restoring of those "blank" entries does
not mean that errors remain undetected, but the proba-
bility of the recovery is reduced.

To compromise between minimization of memory re-
quirements of parsers and syntactic errors detection in
time the concept of simple equivalence of precedence
parsers is introduced. Two parsers are equivalent if they
accept the same set of inputs and print an error state-
ment in the same point of the input set. Observation of,
this condition allows to the second parser only some re-
duction phases, when the first prints out an error state-
ment.

For a precedence grammar using (1,1)-bounded ca-
nonical context reduction, the partial equivalence of
precedence parsers is introduced. To achieve the partial
equivalence of parsers some changes in the precedence
matrix must be made prior to computing of linear pre-
cedence functions and an additional matrix for terminal
symbols Cl 02 must be formed.

Practical results. Experience of finding ordered
vectors and linear precedence functions has been obtained
by the use of corresponding algorithms in the frame-
work of the compiler-writing system ELMA M, The input

83

languages of the system PARES ГB3, the metalanguages of
the system ELMA Г43 , the syntactic parser of high-level
programming language ADA C 33 and a number of problem-
oriented languages have been implemented.

In conclusion, the results of transformation of
the context-free grammar into a precedence grammar with
linear precedence functions are shown in the table below.

References

1, Aho A,, Ullman J, The theory of parsing, trans-
lation and compiling, Vol, I; Parsing, Prentice-Hall,
Inc,, Englewood Cliffs, N, J, 1979,

2, Bahitshev A,, Pronina V,, Trahtengerts E,
Context-free grammar for which precedence functions
exist // Programming, 1977. No 5, P, 45-53 (in Russian),

3, The programming language Ada reference manual //

Lecture Notes in Computer Science, 1983, No 155,

4, Vooglaid A,, Lepp M,, Liib D, Metalanguages of
the system "Elma" // Trans, of Tallinn Tech, Univ, 1982,
No 524, P, 79-96 (in Russian),

name of
language

before transformation after transformation

number
of
rules

number
of
symbols

memory foi
preced,
matrix

(Kb)

increment
of rules

memory for
linear prec;
func,, or-
dered vec,
and add,
matrix

(Kb)

1, ADA 620 459 75,2 +96 4,8
2. ATRSEM 153 153 6,1 +5 1,6
5. damal 521 440 47,3 +4 3,5
4. ELMAGUIDE 75 70 1,6 +10 0,6
5, ELMAMETA 183 176 7,6 +10 1,6
6. KLARA 22 25 0,2 +1 0,2
7. TRADEL 120 107 3,0 +3 0,8
8. TRODIK 101 114 2,6 +5 0.9

84

5, Vooglaid A., Liib D, Grammar formalism as im-
mediate tool for modular system programming // Theses,
All-Union Seminar on Methods for Synthesis of Standardized
Module Systems, Moscow, 1981. P, 77 (in Russian),

6, Vooglaid A., Liib D, Structured tool for data
processing description and realization // Theses, Auto-
matized production of packages of application programs,
Tallinn, 1980, p,4-1-43 (in Russian),

7, Vooglaid A,, Tombak M, Some reduction problems
in precedence grammar // Trans, of Tallinn Tech, Univ,
1975, No 386. P, 23-27 (in Russian).

8, Kracht W,, Eivak J, Data manipulation language
DAMAL, Tallinn, 1982 (in Russian),

9, Liib D. Instrumental tool for analytical cal-
culations // All-Union Conference on Compiling Methods,
Novosibirsk, 1981, P, 162-164 (in Russian),

10, Liib D, Effective methods for programming
languages realization. Theses, Tallinn, 1984, P, 15 (in
Russian),

11, Liib D, About conversion of the precedence
matrix to the precedence functions // Trans, of Tallinn
Tech. Univ. 1983. No 554. P. 99-109 (in Russian),

12, Liib D, Optimization of memory requirements for
precedence grammars using (1,1)-bounded canonical con-
text reduction // Trans, of Tallinn Tech, Univ, 1984,
No 558. P. 81-89 (in Russian),

13, Aho A,, Ullman J, Error detection in precedence
parsers // Mathematical Systems Theory, 1973, Vol, 7,
No 2. P. 97-113.

14, Martin D, A Boolean matrix method for the
computation of linear precedence functions // Comm, of
the ACM. 1972. Vol. 15. No 6. P. 448-454.

85

No 614

TALLINNA PdffTEHNILISE INSTITUUDI TOIMETISED
ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

M. Lepp A. Vooglaid L. Vyhandu
UDK 681.3.06

ELMA AS AN INSTRUMENTAL SYSTEM FOR BUILDING
PRACTICAL PROGRAMMING SYSTEMS

Abstract

The instrumental system ELMA is described, consisting of

two subsystems: a compiler writing system and a system as-

suring navigation between users' actions. The latter is based

on Jackson's structured programming ideas. These two sub-

systems quarantee certain functional capabilities also dis-

cussed here.

The Department of Data Processing concurrently with
a team from the Computing Center of Tallinn Technical Uni-
versity has worked in the field of compiler writing sys-
tems building over the past fifteen years. As a result,
we have now the fourth version of our system ELMA, Our
views on programming have evolved step-by-step to a
more general treatment and now ELMA can be used as

- a system to ease program package writing using
grammar formalisms as very high-level program-
ming tools

- a compiler writing system,

ELMA consists of two main subsystems, the first
(P 1) being a compiling metasystera and the second (P2) -

an interpreting metasystem to navigate between users 1

actions.
Both.subsystems have the corresponding meta-

languages - ELMAMETA and ELMAGUIDE, To realize a problem-
oriented system we have to describe system languages
lexical, syntactical and semantical levels in ELMAMETA.

86

Subsystem FI generates language-dependent parts
of the target compiler from those descriptions. The
language ELMAGUIDE determines the configuration of the
compiler and the connections with the operating system.
If a description of the source language haa been sup-
plied, target compilers with different characteristics
can easily be generated,

ELMA as a compiler writing system

We will represent the process of the description
and realization of a given source language by stages,

A. Abstract syntax of the source language is
described as a set of regularized context-free gram-
mars ,

B. Attribute technique is used to describe sem-
antics of the language. The semantic actions and at-
tributes are directly connected with the abstract
syntax. We have built up a theory of abstract at-
tribute grammars Cl] and implemented special tools
(a generator of transformations from given syntax
into an abstract one; a generator for evaluator, which
uses synthesized iterative and simple attributes, in-
itialized inherited attributes (the evaluation of which
can be planned statically) and global attributes,

C. Semantic actions are debugged separately using
an interactive debugger which simulates abstract syntax
and attribute environment,

D. Concrete syntax is described and debugged,
E. Code generator description is given. To gen-

erate a code we can use a simple syntax directed trans-
lation schema which is an addition to ELMA, implemented
through FORTH-based GWS [h],

F. The structure of the target compiler is de-
scribed in ELMAGUIDE language or the compilers struc-
ture can be selected from the ones implemented in the
ELMA-system,

The compilers generated with ELMA consist of the
following subprocesses; lexical analysis, syntactical

87

analysis, transformation of a concrete syntax into an
abstract one, semantic analysis, code generation.

Using these processes we can create one- and
multipass compilers. Every pass has to be described in
ELMAMETA languages. All these passes are connected into
one compiling through ELMAGUIDE,

The exact description of ELMAMETA and ELMAGUIDE
is given in [2,33.

ELMA as a structured programming support
system for package writing

In ELMAGUIDE all descriptions and implementations,
are implemented using a technology, which is a develop-
ment of Jackson's structured programming ideas. The
most important principle is a strict separation of
control and actions at any level of algorithm repre-
sentation. Paraphrasing Wirth we can describe our ideas
briefly,

algorithm s control + actions

The first part of the right side of the equality -

control is built up by Jackson's structure and control
conditions (for iterations and selections) which to-
gether determine the explicit behaviour of the com-
putation process. The second part - actions make up the
operational part of the algorithm. Every action in

ELMAGUIDE language is a pointer to a module implemented
in any programming language. Leaving low-level opera-
tions out of the language guarantees independence from
the problem area.

The description style of the computing process
can be called static, as it is fully defined before
the process run. We have found it convenient to have
some degrees of freedom in algorithm description and
to allow for some refinements and modifications at
runtime depending on intermediate results.

The dynamic aspect is implemented in ELMAGUIDE
using system functions. This viewpoint is especially
convenient for interactive work with an algorithm.

88

Example

Аз an example we demonstrate, how to describe and
build ELMA systems monitor itself to create ELMA's in-
teractive environment.

To work in this environment one has to use
commands initializing certain processes or giving in-
formation, for instance, about feasible commands of
the environment, i,e, commands menu. One can use the
following processes: translator constructing, editing,
debugging, executing a user’s program, etc.

In our example we have a more detailed description
for an algorithm corresponding to the creation of trans'
lators. This process is a dialogue between the ELMA
system and the client. The latter has to define the
parameters and the configuration of the translator.
Even after taking this decision his wishes can easily
be changed.

In the following we will give monitors Jackson
schema (Fig, 1) using the standard structure of the
translator from the dialogue to shorten the description
and the client’s work.

The representation of the monitor in ELMAGUIDE is
given in Figure 2,

89

Figure
1

Figure 2

90

91

References

1, Vooglaid A., Meriste M, Abstract attribute
grammars //Programming. 1982. No 5« P. 17-26 (in Russian).

2, Vooglaid A,, Lepp M., Liib D, Input languages
of the system ELMA // Trans, of Tallinn Tech, Univ, 1982,
No 524, P, 79-98 (in Russian),

5. Vader A., Vooglaid A, Description of the meta-
language in compiler writing systems // Trans, of Tal-
linn Tech, Univ, 1978, No 459, P. 83-52 (in Russian),

4, Poial J,, Soo V,, Tombat M, CWS for a micro-
computer // Coll, of papers. Individual,dialogue systems
on microcomputers, Moscow, 1984, P, 102-104 (in Russian),

5, Kracht W,, Eivak J,, Vassil M, PARES-system;
architecture and capabilities // Programming, 1984, No 5.
P, 75-82 (in Russian),

93

No 614

TALLINNA POLLrTEHNILISE INSTITUUDI TOIMBTISED

Труда ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО института

P. Vyhandu
ШЖ 681.3.06

NEW IDEAS IN DATA BASE SEGMENTATION

Abstract

In this approach a relational data base is designed such

that the data more often occurring in the same query be-

longs to one relation. In this way the need for creating
access paths is reduced. Bitmatrices allow to connect
different search techniques, Bitmatrices can be inter-

preted as monotonic systems, rows of bitmatrices as

bitmaps of objects and as hashing keys.

1, Introduction

The fast search has become a problem in very
large data sets. There are many methods for organizing
effective search [11,2], but situations always arise
where a method becomes ineffective for some reason. It
is often useful to use different search techniques in
different stages of the search process. But we are
faced with matching those techniques.

This paper presents an approach, where bitmatrices
use allows to connect different search techniques,
Bitmatrices can be interpreted as monotonic systems СЗЗ»
rows of bitmatrices as bitmaps of objects C6] and as
hashing-keys 171.

In section 2 a general description of the pro-
posed method will be given. In section 5 definitions

О
of monotonic systems and their kernels will be intro-
duced, In section 4 a more detailed description of

94

data base design and search process will be given*

2, Methods for quick search
In relational data bases data is maintained in

relations, where each relation contains one record type.
The record type usually corresponds to a real world con-
cept, In our approach relational data base is designed
such that the data more often occurring in the same
query belongs into one relation. In this way the need
for creating access paths, which is a time-consuming
process, is reduced.

To decide which data must be maintained in one
relation, an analysis of the data set is made first.
After forming relations directories are built for them.
Records in the relation are grouped to have similar re-
cords in one group. On these groups hierarchical struc-
tures, called directories, are built. Using directories
enables us to determine the groups which cannot contain
records satisfying the given query in the early stage
of search.

In such a data base a thorough search on a small
part of data base is implemented and search time be-
comes much shorter.

Concepts of the monotonic system and its kernel
are used for the preceding analysis of the data set and
clustering, Bitmatrices serve as so-called upper struc-
tures on which the main search is performed.

The structure of the data base depends completely
on data characteristics and it is impossible to predict
the number of relations in the data base, that of groups
in a relation and that of records in one group. For
that reason the extendible hash method fits well to find
the real records. This hash method has properties which
make it very convenient to use when the number of records
in the hash table is not known and the hash keys are in
the binary form. The hash method ia not dealt with here,
but its description can be found in С4-,7],

95

3, Monotonic systems. Kernel

As it was observed in the previous section data
ordering must precede the design of the data base. Con-
cepts of monotonic system and its kernel are used for
that C3], First definitions and kernel splitting al-
gorithms are given. In case of data set analysis and
record grouping we have to interpret data matrices as
different monotonic systems. Therefore different algo-
rithms for the kernel splitting are introduced.

3,1, Definitions
Let us suppose that there is a system W with a

finite number of elements. Each element has a numerical
measure of its weight (influence) in the system. Let us
suppose further that for every element «. e W there is
a feasible discrete operation which changes the weight
of оl as well as the weights of any other element [i of
the system. If the elements on W are independent, then
it is natural to suppose that a change in the weight of
<x does not change the value of any element .

System
W is called monotonic, if the operation of the weight
change of any element «. e w brings about changes on

the weight levels of other elements only in the direc-
tion in which oc itself is changed.

To use the method of monotonic systems we have to
meet two conditions:

1) There has to be a function ju which gives a

measure (weight) % (W) of influence for every element
W of the monotonic system W,

2) There have to be rules f to recalculate the
influences of the elements of the system in case there
occurs a change in the weight of one element,

A kernel of a monotonic system W is defined as
a subset H of its element on which the global minimum
of function

F(H) =s max ЭС (n,H)
WeH

is reached.

96

3,2, Kernel splitting (one-dimenaional case)

Let us have a data matrix ie1,,,,,M; j«

Let us interpret matrix A as a monotonic
ayatem, the elements of which are the rows Of A, Ka>-

nel ia a subset H of ita elements on which the global

minimum of function

F(H) я max rc (a, ,H)
al eE 1

is reached.
To measure the influence of an object on the system,
we define the function

»Z. (2njJ + +D, О)

where ia the frequency of value in the histogram
of the j-th attribute.

To split the kernel of the monotonic ayatem we
will find sequentially the elements with the greatest
influence and add copies of them to the ayatem. It has
been made clear that addition of an element to the
system altera the influences of all other elements.

Adding an element К to the system changes the in-
fluence for any other element i for

)-S(n1;j)* 16[2(ni;j+l) 2+3(ni;j+l)+

d

+l-2n^-3ni;j-1] « Z(4ni;.+s), (2)

M. m ®l-i»where 5« i kj
I°, if 4 al j»

i,e, we sum the frequencies only for these attributes
of an object i, when the value of an attribute matches
the value of an attribute of the object k. If objects
к and i have no matching attribute values, addition
of the element к to the ayatem does not influence the
element I,

The kernel splitting ia performed by ALGORITHM 1,
In this algorithm elements are not actually added to

97

the system, only the influences are computed accordingly.
By an added element we mean a labeled element with the
greatest influence.

ALGORITHM 1
Step 1, For each element i*1,..,,M compute

S 1 ■ (2n id � *>l3 *

Step 2, Find max memorize k«i, S^,
Step 3. Рог each element compute Sj^Sj+P^,

where м 4T+SL, and T is the sum of the
frequencies of the matching attribute values
of elements к and i, and L is the number of
matches.

Step 4, Find max for all elements not added to the
system.

Step 5. If max < then end of the algorithm.

Step 6, Memorize kai, S^,
Step 7* In the auxiliary table of frequencies for

every value for the element к add 1,
Step 8, Go to step 3.

On step 5 reaching the extremum of the function %

is controlled. All the elements memorized before reach-
ing the extremum of function x , belong to the kernel
of the monotonic system,

3.3, Kernel splitting (two-dimensional case)
Let us have a data matrix A*(a 1;j), i*1,.,,,M,

Let us interpret matrix A as a monotonic
system, the elements of which are rows and columns

which the global minimum of function

F(H) ш max тс (a,, a., H)
ai eH
a jCH

is reached.

98

Let ua have for every element a j, a number of its
incidences ni# Then the number of incidences having the
j-th attribute is equal to

h . я 21 n. 5 , (3)
r

° 1
where 6*| 1 ‘ if aij e1 ‘

L 0, if ж 0,

Initial influences can be computed as follows

X (2h 2
+ + 1)5 (4)

м
for the elements and

. bj(2*l*7 + 3hj+l) (5)

for the elements a^*U

To split the kernel we will add the elements with
the greatest Influence to the system. Adding an element

to the system, the influence of every other element
аг, г ш grows by

dr « nr(2h2+3h d+l)s . (6)

Adding an element to the system, influences of
elements can be computed by a formula

g d - k(2k2
+ 3k + 1),

where
k + n i (7)

and the influence of the element ar , grows by

4 r . [(2k 2
+sk+l)-(2h 2+5h d+l)] nr =

« nr[2(h^n i) 2+3(bj+n i)+l-2h2«3hi.-1] *

• nr^4ll d ni+2n i“sn 1)«nrni [2(ni +2h d)-3]. (8)

To add elements to the monotonic system up to the
kernel splitting, we use ALGORITHM 2,

99

ALGORITHM 2

Step 1, For each j, J»1,,.,,N compute the number of
incidences h. by formula (3).

J

Step 2, By formula (4) and (5) compute initial influences
g* and g^.

Step 3. Find the element with the greatest influence,
i.e
Fstmax g

g e gt U gj
Гi, if ge g. and S,*P,

Step 4, Memorize к я __ _

Lot 11 O c g j

Step 5. If max go to step 8,

Step 6 # For each r, r*1,.,,,M compute dp by formula

(6) and add it to the influence gr.

Step 7. Go to step 10,
Step 8, For each j, d*1,,,,,N compute influences by

formula (7).
Step 9. For each r, r*1,.,,,M compute gr*gr+ hr, where

Д г is computed by formula (8),

Step 10, Find p»max g. If S fc
< P go to step 4,

g e gj .

Step 11, End of algorithm,

4, Data base design

Data base design is divided into two stages:
analysis of the data set for partitioning data items
into relations and build-up of directories,

4,1, Data set analysis

For a relational data base we have the following
definitions Q53,

Attributes are indentifiers taken from a finite
set A 2 »,,.»An , Each attribute is associated
with its domain, denoted by which is a set
of-possible values for that attribute. We use the

100

letters A, В,,,,, for single attributes and the letters
X,Y y , « •| for sets of attributes,

A relation on the set of attributes ,An }

is a subset of the Cartesian product DCM(A^)xDOM(A 2)x,,,

~,xDOM(A n), The elements of the relation are called
tuples, A relation R on{A^,A2,,,.,An} is denoted as R(A,j,
Ap » •••»Ад),

Relational algebra as a data manipulation language
is introduced. There are two basic operations of interest
for us: projection and natural join.

The projection of a relation R(X,Y,Z) over the
attributes in X will be denoted RDG, and defined by
RCX]* {x I 3y 3z * (x,y,z) R>,

The natural join operation is used to make a con-
nection between attributes that appear in different re-
lations, Let R(x,y) and S(x,z) be two relations; then
the natural join R*S is the set of {(x,y,z) | (x,y) € R
and (x,z)eS); R*S.ia a relation defined over the
attributes {X,Y,Z},

Let R(X,Y,Z) be a relation; we shall say that R
is decomposable if there exist two relations S and T,
such as:

a) S and T are the projections of R*
akßCx,y]

b) the natural join of S and T is R* R*S*T,
Using the natural join operation all the relations

in the data base can be connected into one relation U,
A model matrix A can be put into correspondence with
the relation U

101

where Ф я (су, i*1,,..,m is the aet of object types,

-r * {t.}> J*1,,.,,n is the aet of attributes
J

пмЯ Гl, if an object type 0, has an attribute T.,
aii “ 1 J

d (О, otherwise.

For each object type the number of its incidences
ia also given.

Such a model can be interpreted as a monotonic
system described in section 3.3. Using ALGORITHM 2 all
kernels of the system are separated.

Let as suppose that the number of separated kernels
ia equal to p. The kernel ia denoted by Kg , ая1,,..,р.
Using the projection relation U can be de-
composed in the following way*

a) It, ■ U DC,], R 2 * U [Xg],,,• » Rp « UDy ,

b) U » Rl *R2*.,,*Rp

where X g я a j eKa and tuP lea of relation are

incidences of the object types correspond-
ing to the elements K g,

The relations created contain similar data items.
But it were more effective, if we could store data

that occurs in the same query in one relation. Then the
need to use operations of relational algebra is reduced
and therefore search time decreases.

To achieve that, queries and connections deter-
mined by the queries must be considered on the model
matrix Ain addition to object types and attributes.
The model matrix A ia presented in the following forms

102

where Q. * {(\) , 1-1,...,m denotes the set of object
types,

Z я {T.>
,

j*1,...,n denotes the set of attributes,

Я Я {Pj} , i=l,, ~, к denotes the set of queries,

X я {S.) , j-1,,..,l denotes the set of connec-
tions ,

and- if an object type has an attribute T^,
Q t jj \

[O, otherwise, i»1,,,,,m, jx1,,,,n;

гl,if a query contains an attribute T..,
*■3 \o, otherwise, i=m+l,,,, ,m+k, j*n+l,,,,, n;

M, if a query Pi determines a connection

1 0, otherwise, i=m+l,...,m+k, j=n+l,...,n+l;

Г l, if a connection contains an object
aij "j olf

otherwise, i*1,.,,,m, j=n+l,,,,,n+l.

For each object type the number of its instances
and for each query the frequency of occurrence is also
given. Analogously to the preceding model, matrix A is
interpreted as a monotonic system, all the kernels are
separated and new relations are created. Record types

103

In relations are structures where data items are not
only similar to each, but are closely connected through
occurrence in the same queries.

4.2, Bitmaps and directories

Let us have in one relation m records and n
attributes, where the J-th attribute (J*1,,..,n) has

n
N. different values. Then a bitvector of length d *5" N.3 fiT 3
can be created for each record.

The elements of the bitvector are filled as fol—-
lows t

к f'l, if record has value k,
a «-j

3 LO, otherwise, ~,,,N^,
This bitvector is called a bitmap. In C 63 the ap-

proach of directories built of the bitmaps is given.
Let us interpret the set of bitmaps as a monotonio

system. Using ALGORITHM 1 from section 3,2 all kernels
are separated. Using disjunction operator one superbitmap
is formed of bitmaps belonging to one kernel. This super-
bitmap is called an address.

Out of the formed addresses a new monotonic system
can be made and the process can be repeated. Using that
process recursively a hierarchical structure, called di-
rectory, is formed,

4.3, Search process

If the data base is created using the methods de-
scribed in this paper, a relation and its directory will
be in the form shown in Figure 1,

The data base consists of relations, A set of bit-
maps corresponds to each relation on which a directory is
built. Records in relations are connected with their
bitmaps via extendible hashing. Bitmaps and directories
are called upper structures of the data base.

104

Figure 1

The search process runs as follows*
According to a given query we have first to de-

termine in which relations the needed data is stored.
After that directories of these relations are examined.
If we find out that the group the given address is re-
presenting, cannot contain the needed data, we do not
investigate it any further, A sequential search is
performed on the set of bitmaps which may meet query
conditions. Using extendible hashing the needed records
are quickly located.

The search time is reduced because

(1) of a great probability that the needed data is stored
in one relation. The need for relational algebra opera-
tions is decreased,

(2) even in the realm of one relation the sieving process
cuts off the number of objects on which the full search
is performed.

105

References

1, Martin J, Computer data-base organization,

Prentice-Hall, 1977.
2, Salton Gr, Dynamic information and library pro-

cessing, Prentice-Hall, 1975»
3, Mullat J,, Vyhandu L, Monotonic systems in scene

analysis // Symposium, Mathematical Processing of Carto-
graphic Data, Tallinn, 1979. P. 65-66,

4-, Fagin R,, Nievergelt J,, Pippenger N,, Strong H.H,
Extendible hashing, a fast access method for dynamic
files // ACM TODS, 1979. Vol, 4, No 5, P. 315-J44,

5, Delobel C., Pichat E, The design of relational
information system according to different kinds of de-
pendencies // COMPSAC 78, Proc, lEEE, Chicago, 78,

6, Быханду Л.К. , Выханду П.Л. Быстрый поиск на бит-
матрицах // Тр. Таллинск. политех, ин-та. 1983, Л 554.
С. 49-60.

7, Быханду Л.К., Быханду П.Л. Синтез метода адрес-
ных книг и расширяющегося хэширования // Тр, Таллинск.
политех, ин-та. 1984. Jfc 568.

107

No 614

TALLINNA PQLffTEHNILISE INSTITUUDI TOIMETISED
ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

J. Laast-Laas
UDK 681.3.016

DATA BASE INFOLOGICAL DESIGN IN PRACTICE

Abstract

Some general standpoints of the data base infological ap-

proach are described. Practical data base design problems
related to the examination of user’s needs, data base de-

composition and logical integration of data are dealt with.

By the infological approach we mean a special and
useful way of handling ideas related to data base design.
It enables us to use a wide variety of system analysis,
data structure design, statistical and other methods.
We have used the approach in management information
system (MIS) data base design since the mid I97°a.

In this paper we concentrate on some general data
planning and design problems, solved using the info-
logical approach. First of all some general standpoints
will be presented.

In an organization/enterprise a distinction can be

made between at least two levels of activity: primary
actions (e,g,, making shoes in a shoe factory or re-
pairing cars in a car service) and secondary actions
(e,g,, book-keeping, statistical reporting, etc,). All
the primary actions along with the used and produced
resources are treated as the ob лес t—system. Secondary
actions with their resources (incl, information) make up
a monitoring system.

The object-system is a functioning piece of reality
being managed or sometimes only monitored. In any par-

ticular case it can be defined Just aa detailed and aa
wide aa necessary. As there exist several different
aspects of monitoring the same object system, several
respective monitoring systems could be determined,

[~A data base must be designed as a model of the object—~j

A data base designer should stay as close to the
object-system as possible and as far away from the exist-
ing data processing system as possible. There are three
arguments for that:
1) the object-system is common for all possible monitor-

ing aspects

2) the object-system is simpler to be presented in a
data base than the monitoring system

3) the architecture and behaviour of the object-system
are more stable than monitoring and data processing
problems.

Object-system modelling is natural in theory and
simple in selected school examples, but in practice
considerable difficulties are encountered. The object-
system is an abstract piece of reality, the stretch and
configuration of which are rather vague. There are no
ready concepts for its determination and description.
To determine what belongs to the object—system, what is
significant in it and how detailed it should be modelled,
the existing information system and needs of prospective
users have to be examined anyway.

The infological approach enables MIS designers and
users to find a common language between each other.

Architects, for example, seem to be in a much
better situation than MIS designers, as their clients
know quite exactly what they want and usually present
clear functional and technical requisitions, A MIS
designer gets his task in a very vague form. The "re-
quisites" often turn out to be occasional examples of
queries. The very first question that a MIS designer has

108

109

to answer is: What should it be that the client would
need? It seems that a designer has to know more about
the MIS prospective user’s needs and problems than they
know themselves. Apart from that he must be able to
predict their future needs.

If the infological approach is chosen, the situa-
tion is not so contradictory and hopeless. Interviewing
managers or examining various documents, a designer-in-
fologiat is actually concentrating only on the object-
system, He can ignore almost everything he is told about
data processing difficulties, management problems, etc.

j Record these conversations to go them through in i
i detail later. Then you will definitely be able to i

and use that information better.

An object-system can always be described in simple
and commonly understandable terms. On these counts the
common language between MIS designers and managers can
be found quickly and surprisingly well,

Г First of all learn what a manager needs information
i about, do not try to make clear what information he
i needs, how the data should be processed and presented^!

The infological approach avoids "transplantation1*

A new information system is never built up on an
empty place. There exists an old one, which obviously is
not good enough, but still has its deep roots in people’s
minds and bureaucracy. Some elements of old information
system which have lost their initial meaning and signi-
ficance in a new environment are likely to appear as
useless relics and may cause much harm. Paper documents,
for example, are equivalently transformed into file re-
cords, manual document-processing-routines are replaced
by the corresponding computer programs. Stiffness, re-
dundancy and complexity are obvious in such a data pro-
cessing system.

Usually "transplantation" does not take place in such

110

a drastic way. More often some design is performed to
make data organization more computer-like and less re-

dundant, tut the "transplantation" idea remains, A set
of information processing tasks usually called a "func-
tional subsystem", but actually being a set of routines
from the old system, is treated as a separate MIS
block. Difficulties with matching blocks arise later.
Reconstruction of some particular blocks involves cor-
rections in others,,. The MIS can never be accomplished.

What is actually wrong? - A logical mistake has
been made at the start of the design. The information
system was physically split by information processing
tasks. The tasks are not invariant and have dynamic
complex relationships between one another. Thus the MIS
architecture becomes complex and dynamic as well. It will
need frequent restructuring,

ГDo not start with examination or assignment of any~l
i data processing or monitoring tasks’ Try to de- 1
] termine the object-system first of all, study its
I behaviour, draw the framework of its model! De- i

compose the model reasonably!

The infological approach provides principles for
data base decomposition

We distinguish between physical and logical de-
composition, In both cases every separated data base
remains a model of something from the object-system.
Physical decomposition corresponds to the object-system
configuration dismemberment, A data base of an organi-
zation, for example, can be split into local data bases
for each local branch. Notice that it means reduction
of physical extent of data in single data bases, but
their logical complexity remains almost the same as it
were the general data base. Not to lose an overall view,
either an additional general data base or a general
view handler must be provided.

Logical decomposition means splitting a data base

111

schema into subschemas. Each separate data base has a
considerably simpler logical structure than the general
one. It will be a model of a logical piece of the ob-

ject-system (e,g,, "inventory", "personnel", "manufactur-
ing"), Naturally, also the schemas of logically decom-
posed data bases will overlap and it involves some re-
dundancy and updating problems. Still it is necessary
for general applications. Logical decomposition is quite
complicated and needs effective methods to be accom-
plished properly.

Logical and physical decompositon can also be used
in various combinations,

i 1logical decompositon if possibleJ j

The infological approach reduces integration
problems

The new MIS is supposed to become a monitoring systan
or a part of it. The aim is to integrate different moni-
toring systems for more effective data processing and
for provision of additional monitoring facilities.

The existing monitoring systems are connected to
one another, but they are functioning separately, they
have their own internal data items, structures and
processing technologies, which are often incompatible
with one another. Attempts to match them mechanically
yield a "hodge-podge". There is also no sense in
seeking general concepts for specifying different monitors
to achieve the integrity by generalization. It means
building up a supersystem above the existing monitors.
The following arguments oppose that approach;

- The monitoring systems are complicated and ab-
stract enough; more general specification needs further
abstraction, involves new terminology and considerably
enhances the complexity of the entirety,

- Being carried by trends of management and econ-
omical policy, the monitoring systems are in continuous
development. It is impossible to predict potential
changes. One cannot be sure that some of such changes

112

will not destroy the whole MIS architecture some day,
- The major aim of integration is not monitoring

monitors but replacement of old monitors or assistance
of monitoring.

The use of the infological approach helps avoid
logical difficulties in data processing integration, A
good infological model meets the needs of different
monitoring systems, remaining comparatively independent
of changes in user’s information needs and external
data structures. Top-down general design and reasonable
data base decomposition provide compatibility between
separate data bases. Bottom-up detail design and MIS
realisation assure urgent management data processing
goals to be achieved first of all.

113

No 614

TALLINNA POLffTEHNILISE INSTITUUDI TOIMBTISED

ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

A. Renzer
ШЖ 681.3

INFORMATIONAL ASPECTS OF BUSINESS ANALYSIS

SYSTEMS DESIGN

Abstract

The paper reviews the universal principles of business in-

formation systems design, considering the intrinsic features of

business information and the ways of its automatic processing.

1, Introduction

Improvement of the existing management system, in-
cluding the business analysis function, is to be achieved
by introducing automatic information systems either as
certain subsystems of an automatic management system (AMS
of an enterprise, or as relatively self-dependent systems.

The ultimate result of introducing an automatic
business analysis system (ABAS) greatly depends on how
systematic and complex the analysis method is, and how
veracioualy the actual processes are reflected by the
system of indexes used. So far no adequate methods for
automatic analysis of business enterprise functioning or
design of interactive business information systems have
been offered.

The development of computer technology is likely
to have great impact on the structure of systems above:
e,g, system design is affected by the emergence of home-
made micros. Till the end of the 1980s, such systems are
to be designed consisting of two levels - the first one
including a dozen micros for data acquisition and pre-
liminary processing, with the second level supported by

114

a medium level computer for advanced processing. With
the help of the latter all data is compressed into one
logical unit under the supervision of a data base
management system to assure the accessibility of all
data to every user. Below an example of a system with
such architecture will be shown.

The first section of the paper is dedicated to
the intrinsic character of business information and the
ways of its automatic processing. In the second section
the role and specification of business analysis in the
management system will be reviewed. In the third sec-

tion we will demonstrate an example of the ABAS archi-
tecture and bring out some issues of its information
funds.

2, Business information and the ways of ita
automatic processing

Business information is a set of data that reflects
the economic and social activities of a business
enterprise via a system of natural, financial and other
indexes. Hence, the bulk of business information is
digital in essence, and ita automatic processing with
various mathematical and other methods is feasible.
Through a closer examination of data processing prob-
lems tremendous difficulties are likely to arise due
to the nature of business information.

First, business information emerges, is transmitted,
processed and used at different levels, in different
hierarchical substructures of management, and even at
one level - by various management subsystems. Frequently
this causes double acquisition of information, genesis
of indexes having the same economic origin and essence,
but different numeric values.

Second, business information is not homogeneous in
view of time characteristics. Parts of it are relatively
permanent (norms, long-range prognoses, etc,) but a lot
of data is acquired which is changing during the techno-
logical process. The cycles of formation and periods of
processing evaluation of different business informa—-

115

tion flows do not coincide. All this influences the
modelling of informational processes, and without the
use of mathematical models automatic processing of
business information would be unthinkable.

Third, A bulk of diverse analytical information,
the contents and economic interpretation of which are
not always trivial is obtained from the initial busi-
ness data by various economic and mathematical methods.
Thus, authenticity and representativeness of analyti-
cal information are the issues still under discussion.

We are faced with certain extra difficulties in
the area of so-called information needs, e,g, when seek-
ing the answer to the questions of whom, when and how
much of the acquired information is to be conveyed. It
is common knowledge that an outsize flood of informa-
tion can do as much damage to management as the absence
of some vital figure in the moment it is needed. Anyone
can see the value of managing information received only
after decision making time has elapsed. Therefore it is

imperative that the information flow be organized so
that every managing action is justified on sound grounds
and well timed by supportive business data [2, p, 20],
Under other equal conditions better management is
achieved by those who have obtained more thorough quali-
tative information about the social and economic pro-
cesses in their business enterprise.

The quality of information is determined by its:

(1) fullness, truthfulness and accuracy
(2) timing of data acquisition and strict peri-

odicity of its passing
(3) ability to unveil negative phenomena in the

social and economic processes in the enterprise.
In terms of its contents business information can

be classified as consisting ofs
(1) data of the final products, their composition

anda quality
(2) data of production methods
(3) final product quantity actual and calculated

116

(4) scheduled and actual production expenditures

(5) information of non-accounting nature.
There are several classifications of business information
baaed on its stability, ways of obtaining, nature of

contents, applications, etc. But in any of those classifi-
cations certain specific features of business information,
impeding its processing, and automatic processing, in
particular, are to be perceived. These are the various
levels of information formation, transmission and use,
the incomparability, interwovenness and independence of
indexes; as well as the doubling and diversity of data,
non—corresponding cycles of formation and processing,
etc.

Therefore it is indispensable to create accurate
methods for business information systems design [I, p,lB],
including methods of organizing information support for
an ABAS.

The importance of methods and methodology issues
is accounted for by the character of business in-
formation. It is common knowledge that every business
enterprise functions in a specific and unique environment
Hence there exists the singularity of managing every
enterprise as a whole and on every hierarchical level
separately taken. No uniform or pattern-created data
processing system can meet the needs of managing speci-
fic enterprise, including accounting, planning and ana-
lysis automation. The creation of individual systems must
proceed from large instrumental means which minimize
additional software writing and assure tunability of the
system to a particular enterprise by means of adaptation.

Some attempts in the line of creating ABASs have
been made by a research team at Tallinn Technical Uni-
versity, The future systems must feature the following
attributes and capabilities:

(1) flexibility - the systems must be tunable to a
multitude of different enterprises

(2) orientation to end user (even on the cost of
additional implementation expenditures), including!

- no programming on end user level

117

- the dialogue with the computer in a language close
to the end user's professional one

- highly developed non-numerical information output
(colour graphic resources, sound and speech outputs, etc.)

- run-time instructions and menus of possible operator
actions offering capability

(3) the system must be supported by modern computer
hardware (micros and minis linked to medium computers, te-
leprocessing systems, automatic data collection devices,
etc.)

(4) maximum use of the existing means, involving
instrumental systems and modern data base systems.

Only if these demands are satisfied, the systems
can be designed and implemented within acceptable time
limits and the transition to automatic management will
be painless.

3. The role of automatic business analysis
in enterprise management

In management automation an undesirable approach is
often met: a multitude of AMS subsystems are designed
corresponding to various attributes of grouping the in-
volved tasks - management functions, time characteristics,
administrative structures, and the like. These would be
relatively independent subsystems (and frequently with
incompatible software) which are not supported by an
integral information fund. Apart from that, the designers
are carried away by planning subsystems on administrative
basis (systems of units or subjects of management) or by
production types (main, subsidiary, production prepara-

tion etc,), forgetting all about the functional charac-
teristics. In the outcome, some of the business analysis
issues are dealt with in good many different management
subsystems, but some are left quite untouched. Most
often the operative management is automatic, but pro-
gnosticating, business development evaluation, etc,
stand out of the reach of the automatic information sys-
tem.

Many authors, including those of Гl3, Ц23 and C 53
emphasize the necessity for separation of a relatively

118

detached self-dependent business analysis system. This
view derives from weighty arguments that we will now
proceed with,

1, Business analysis includes the whole system of
production and economic activities in all types of
management (operative, current and perspective), it
carries out all kinds of analytical tasks related to
all management subjects on all the existing levels,

2, Business analysis is an inseparable part of
such economic procedures as planning, control and ac-
counting, To handle the issues of analysis under other
management subsystems appears to be insufficient, be- .

cause the analysis will not be systematic and complex.
The approach would be one-sided due to the specific
features of the other subsystems, because they are
designed for altogether different purposes, and so
many influential factors would not be taken into con-
sideration when studying the economic processes,

3, The mission of business analysis is highly
specific and its tasks are of somewhat independent na-
ture, They include:

(a) evalution of the enterprise condition and de-
termination of the development trends in it

(b) evalution of the seriousness of deviations from
certain normative or scheduled figures

(c) investigation of the causes for deviations and
influences of different factors

fd) establishing material and productive resources,
4, The introduction of automatic business analysis

systems is to be considered inevitable for management
decisions support in prognosticating, planning, audit-
ing and regulating of all of management subjects.

Like other functions of management, business ana-
lysis cannot have identical contents on all the hier-
archical levels; different enterprise functions (orga-
nization of production and labour, techniques and techno-
logy» economics and social development) must be analysed
in different ways. Specific pieces of information about
the enterprise functioning have to be woven into an

119

integral cloth of data for one reason only - to obtain
a complete, thorough and comprehensive picture of the
economic processes in that particular business enter-
prise, Under the supervision of prof. A, Sheremet (С6Ц
et al.) sufficient methods for the complex business
analysis have been developed, but no implementations of
real automated systems have followed yet.

Thus, we have discussed the necessity for introduc-
ing an automated business analysis system. What should
such a system look like? In technical terms it has to
be a computing set, usually comprising the following
components:

1, Hardware (main and auxiliary computers, means
of data acquisition and transmission, terminal stations,
etc,). As it was suggested in papers ГЗЛ and [4] , it
is useful to organize the data collection and preliminary
processing on microcomputers (lower level) with ad-
vanced processing supported by a medium computer (higher
level).

The higher level is usually a part of a larger
system (integrated MIS or other) and thus has a more
complex structure,

2, Software (one possible solution is given in
C4]).

3, Infoware which means the technology of collect-
ing, storing and passing information as added to the
body of information itself,

4, Maintenance personnel - its amount and hier-
archy depend on the scale of economic activities,

5, Technical documentation for maintenance personnel.
6, Technical documentation for users,including

mainly manuals and instructions for different strata of
users. Commonly the lower level systems are exploited on
two levels - first, the end users (management personnel,
technical staff, and, second, the so-called system ad-
ministrator, who has deeper knowledge of the system and
who directs its usage,

7, Administrative and legal documents that master
the relationship between users and the computing set.

120

Special attention should be paid to the informa-
tional interface between different administrative units
(an issue of infoware) and to the questions of hard-
ware as far as the automatic systems design is con-
cerned.

4, Arab!fracture aad infoware of automatic
business analysis systems

One of the keystones of any information ayatem
ia the organization of information auppliea and storing.
The following goala are to be achieved:

(1) determine the structure, sources and methods
of acquisition of the initial data

(2) determine data set contents, amount, logical

organization and terms of data preservation
(3) determine the output Information amount,

periodicity and ways of transmission
(4) grant the accessibility of all information to

any qualified user.
The information system must guarantee the pro-

vision of various normative, scheduled, prognostic, ac-
counting and other figures for calculating permanent
reports as well as for meeting every unexpected need
in that information. For every business enterprise an
individual ayatem of economic and social indexes must
be developed to cover all its unique features, but a
possibility for comparison with other enterprises must
be assured.

The question of recording the whole initial in-
formation must be taken care of in accordance with the
valid legal regulations and requirements of the par-
ticular enterprise. Storing the intermediate computing
results cannot be justified unless they are included
in certain time-rows or other useful figures that are
often referred to. The value of other intermediate re-
sults, if need be,can be easily established by any
reasonable system of occasional data base retrievals.

The issues of information recording are closely

121

linked to the methods of its acquisition. As it was
suggested in СSИ» we should consider organizing the ABAS
consisting of two subsystems, where data collection and
preliminary processing are carried out by the lower level
system supported by microcomputers located in various
administrative units. The acquired data (but net all of
it) is sent to the main analysis system of the enterprise,
where advanced statistical and other analyses are made
with methods demanding more computer resources. Of coarse,
the appearance of sufficiently powerful micros that can
be physically and logically Joined into networks, would
allow the implementation of ABASs without the present day
medium and large computers use. All data seta on in-
dividual external storage units (e,g, different files
of one logical data set) would be obtainable by all users,
more precisely, by the whole management personnel, who
has access to the computers.

Still even the mixed usage of micro- and medium com-
puters would solve good many problems of the informa-
tion support: the micros in every hierarchical substruc-
ture hold a complete set of initial information (it is
mainly the primary documentation) about that particular
production unit. The local management has complete access
to that information via micros and can use it freely.
When a need should arise for information about other
production units, it may easily be retrieved from the
main data base through the same information channels by
which their own data is sent to the IDB, So the fre-

quency of the main base calls is reduced and the IDB
can be organized on a much less powerful (and cheaper)
computer,

A business information data base should comprise
the following main blocks:

(1) operative, book-keeping and statistical account-
ing information

(2) operative, current, perspective and long-range
scheduled and normative figures

(5) primary documentation (at least to some extent)
(4) information of non-accounting nature (board

meetings’ documentation, instructions, memos, etc,).

122

The exact composition of information ia varying from

one enterprise to another and so no ready-made lists can
be offered. The rising interest towards the development

of logical data base design methods should be applauded.

Fig, 1, Possible architecture of an ABAS

In conclusion, we should note that much obscurity is
still present in the design of automatic business analysis
systems which are relatively independent and self-support-
ing, use the primary documents of the enterprise as
source information, and support all management levels and
administrative substructures with appropriate analytical
data. A sharp need is felt for exact design methods of
the automatic analysis procedure and the corresponding in-
formation systems alongside the necessity for a method-
ology development of information support for business ana-
lysis - the state of infoware strongly influences the

eventual result of the system introduction.
Here we have outlined some issues of automatic busi-

ness information processing and automatic business analy-
sis systems to determine the shortest ways to feasible
creation of such systems.

123

References

1. Аксененко А.Ф. , Пантелеев В. А. Информационное обес-
печение комплексного экономического анализа в АСУП // Бух-
галтерский учет. 1984. № 2. С. 17-20,

2. Либерман В.Б. Автоматизация расчетов себестоимости
продукции на машиностроительных предприятиях. М., 1982.

3. Рензер А.В. Система автоматизированного анализа эко-
номической деятельности предприятия // Тр. Таллинск. полит,

ия-та. 1983. Л 554. С. 121-127.
4. Рензер А.В. Система автоматизированного экономичес-

кого анализа на базе ПОК "АРМ-Экономика" // Тр, Таллинск.
полит, ин-та. 1984.

5. Самборский В.И., Луцак И.И. Экономический анализ на
машиностроительном заводе. Киев, 1981.

6. Экономико-математические методы в анализе хозяйст-
венной деятельности предприятий и объединений. M. f 1982,

ТАЛЛИНСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Труды ТПИ № 614
Обработка данных, построение трансляторов,
вопросы программирования

Труды экономического факультета LIX

На английском языке

Vastutav toimetaja I. Amitan
Keeleline toimetaja M. -A. Laane

Kinnitanud TPI Toimetiste kolleegium 27.11.85
Triikkida antud 12.08. 1986
MB-06154
Formaat 60x90/16
Triikipg, 7, 75+0, 25 (lisa). Arvestuspg. 6, 1
Triikiarv 400
Tellimuse nr. 377 •

Hind 90 kop.
Tallinna Poliitehniline Instituut, 200108 Tallinn, Ehitajate tee 5
TPI rotaprint, 200006 Tallinn, Koskla 2/9

(5) Tallinna Poliitehniline Instituut, 1986

	b12753361�㌀攀尀甀　㐀㌀戀尀甀　㐀㌀攀尀甀　㐀㐀㜀尀甀　㐀㌀搀尀甀　㐀㌀攀尀甀　㐀㌀㌀尀甀　㐀㌀攀
	Picture section���
	Untitled�††⁳整⁮數瑷潲搠孛⑸浬‭汩湥潢樠⑮數瑬楮敝‭睯牤‰崍ਠ††††⁁湡汹穥彷潲摳
	Untitled�††⁳整⁮數瑷潲搠孛⑸浬‭汩湥潢樠⑮數瑬楮敝‭睯牤‰崍ਠ††††⁁湡汹穥彷潲摳

	Untitled�ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠瑲
	KNOWLEDGE APPLICATION IN CAD AND CONTROL��ʮ�ʡ�ʡ���ƙ�ƙ�Ɓ�Ɓ���ʡ�����ϧNƙ�Ʋ��ԝ��ȹá��ԞwҺwκ=ӈNӹ�Ʋ�ˎPӻ�ӝ}ƙwеNѦuӌLӻ�ӷbƲ�̆hӛ}ҲJҙuҋ�ё�Ҹhә�ѠLص{վHӌsƛjƛfƛhƛZЀÙЀÙЀÙ˵¬˵²җ5җ5Ԩėҗ5ΝHΝuҗｭԨｭԨｭВÛВÛմßҮÍ̻ŪԄｭ־ｭ־ｭϟｭմﻙӌÇՇｭմÛэÛ־ｭ־Ŗ־ｭҗｭҗｭԚĄҮｭВÛմｭմË��������������������
	Figure 1�†獥琠乯瑟䙯畮搠」ਠ⁳整⁆潵湤彷楴桟䍯牲散瑩潮‰ഊ†獥琠潣牃潲散瑩潮‰ഊ†ഊ†
	Figure 2��††⁳整⁮數瑷潲搠孛⑸浬‭汩湥潢樠⑮數瑬楮敝‭睯牤‰崍ਠ††††⁁湡汹穥彷潲
	FAST METHODS FOR DATA ANALYSIS AND PROCESSING�㈹⁛′㜸′㜸‵㠴‵㠴‵㠴‵㔶‱〱㔠㘶㜠㘶㜠㜲㈠㜲㈠㘶㜠㘱ㄠ㜷㠠㜲㈠㈷㠠㔰〠㘶㜠㔵㘠㠳㌠㜲㈠㜷㠠㘶㜠㜷㠠㜲㈠㘶㜠㘱ㄠ㜲㈠㘶㜠㤴㐠㘶㜠㘶㜠㘱ㄠ㈷㠠㈷㠠㈷㠠㐶㤠㔵㘠㌳㌠㔵㘠㔵㘠㔰〠㔵㘠㔵㘠㈷㠠㔵㘠㔵㘠㈲㈠㈲㈠㔰〠㈲㈠㠳㌠崠㠱‸㐠㔵㘠㠵⁛″㌳‵〰′㜸‵㔶‵〰‷㈲‵〰‵〰‵〰″㌴′㘰″㌴‵㠴′㜸″㌳⁝‱〰‱〳‵㔶‱〴⁛′㘰‵㔶″㌳‷㌷″㜰‵㔶‵㠴″㌳‷㌷″㌳‶〶‵㠴″㔱″㔱″㌳‵㔶‵㌷′㜸″㌳″㔱″㘵‵㔶‸㘹‸㘹‸㘹‶ㄱ⁝‱㌰‱㌵‶㘷‱㌶⁛�������
	Figure 1�崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰慧‭来琠偡来
	Untitled���††⁳整⁮數瑷潲搠孛⑸浬‭汩湥潢樠⑮數瑬楮敝‭睯牤‰崍ਠ††††⁁湡汹穥彷

	SOFTWARE SYSTEMS INSTALLATION�㰗���ࣵ橴H���������̀���ნ㰗룺셷䲝妬벋泲嵷ｾ葐᧫����嵷ｾ葐᧫쇅�僛㰗僛㰗㣛㰗��ᳵ繴I���������̀���㰗惺셷�笵嵷ｾ葐᧫����嵷ｾ葐᧫쇅�냛㰗냛㰗飛㰗��ჵ牴J���������̀���烓㰗룺셷兴ﻳ輫嵷ｾ葐᧫����嵷ｾ葐᧫쇅�ნ㰗
	Untitled�湄楣瑔桲敳桯汤崍ਠ‣瑯⁤漠敮慢汥⁩琠瑯⁤漠佃刍ਠ⁳整⁣潭灵瑥रഊ†獥琠摯挠孤潣

	DATA-DRIVEN MATRIX FORMS��
	Figure 4,�㌀攀尀甀　㐀㌀㜀尀甀　㐀㐀昀尀甀　㐀㌀㤀尀甀　㐀㐀㄀尀甀　㐀㐀㈀尀甀　㐀㌀㈀�㠵⹴楦�㐀
	Untitled�ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠瑲

	STATOS – A COMPUTER SYSTEM FOR SOCIO-ECONOMIC DATA ANALYSIS�　　㘀攀　　
	Figure 1. An organisational schema of STATOS�㔹〰㔳〰㔴〰㐵〰㑤〰㈰〰㐶〰㑦〰㔲〰㈰〰㔳〰㑦〰㐳〰㐹〰㑦〰㉤〰㐵〰㐳〰㑦〰㑥〰㑦〰㑤〰㐹〰㐳〰㈰〰㐴〰㐱〰㔴〰㐱〰㈰〰㐱〰㑥〰㐱〰㑣〰㔹〰㔳〰㐹〰㔳〰〰㌰〰㌰〰㌶〰㘵〰㌰〰
	Untitled�攠素笠楮捲⁣牸⁽⁻ഊ††獥琠敬敭⁛⑴浰䅲爠ⵧ整慴․捲硝ഊ††楦⁻․捯浰畴攠㴽•
	Untitled��崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰慧‭来琠偡
	Untitled���崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰慧‭来琠
	A PRECEDENCE GRAMMAR FOR ADA��㰗���ࣵ橴H���������̀���ნ㰗룺셷䲝妬벋泲嵷ｾ葐᧫����嵷ｾ葐᧫쇅�僛㰗僛㰗㣛㰗��ᳵ繴I���������̀���㰗惺셷�笵嵷ｾ葐᧫����嵷ｾ葐᧫쇅�냛㰗냛㰗飛㰗��ჵ牴J���������̀���烓㰗룺셷兴ﻳ輫嵷ｾ葐᧫����嵷ｾ葐᧫
	Untitled�††⁳整⁳歩灦楲獴․湥硴汩湥‍ਠ††††⁣潮瑩湵攍ਠ†††⁽ഊ†††素ഊ†††

	SOME REMARKS ON ADA REFERENCE MANUAL GRAMMAR AND SYNTAX���潮猬⁭敭潳Ⱐ
	Untitled���崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰慧‭来琠

	A TECHNOLOGY FOR BUILDING A COMPILER-WRITING SYSTEM�㐵⸲㠠㔱〮㈸⁔洍ਲ਼⁔爍਼〰ㄸ〰ㄱ㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㄰⸱㌠〮〰‰⸰〠㜮㌷‵㠮㜲‵ㄱ⸷〠呭ഊ㌠呲ഊ㰰〲㠰〵㄰〴愰〴挰〵㄰〴㠰〴㠰〵㔰〴挰〵㄰〴愾⁔樍੅名ੑഊ焍ੂ名਱〮㔵‰⸰〠〮〰‷⸳㜠ㄱ㤮〰‵ㄱ⸷〠呭ഊ㌠呲ഊ㰰〵㈰〴㔰〴搰〴㠰〴㘰〵㜰〵㘾⁔樍੅名ੑഊ焍ੂ名਱〮㘱‰⸰〠〮〰‸⸷㤠ㄵ㜮㜲‵㄰⸴㈠呭ഊ㌠呲ഊ㰰〴㐰〵㔰〴㠰〰显⁔樍੅名ੑഊ焍ੂ名ਸ⸰㘠〮〰‰⸰〠㤮〷‱㠳⸰〠㔱〮㈸⁔洍ਲ਼⁔爍਼〰㐴〰㐴㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㜮〹‰⸰〠〮〰‷⸰㤠ㄹ㜮〰‵ㄱ⸲㠠呭ഊ㌠呲ഊ㰰〴㐾⁔樍੅名ੑഊm攠㴠❟偒佄㉟䑗卲瘳当牶彐剏䐲⹴硴✀
	Untitled����崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰慧‭来
	ELMA AS AN INSTRUMENTAL SYSTEM FOR BUILDING PRACTICAL PROGRAMMING SYSTEMS������愁��䀆�ﰓﰓ̀�̀��椁��쌂����������愁��尅�くﰓくﰓ̀�Ѐ��樁��쐂����������戁��䠄�桏ﰓ桏ﰓ̀�Ԁ��樁��씂����������戁��理�ꁏﰓꁏﰓ̀�؀��欁��옂����������持��ﰅ���̀�܀��欁��윂����������持��렅�ၐﰓၐﰓ̀�ࠀ��氁��젂����������搁��蠅�䡐ﰓ䡐ﰓ̀�ऀ��氁��줂����������搁��Ї�聐ﰓ聐ﰓ̀�਀��洁��쨂����������攁��Ⰷ�롐ﰓ롐ﰓ̀�଀��洁��쬂����������攁���ﰓﰓ̀�ఀ��渁��찂����������昁��頇�⡑ﰓ⡑ﰓ̀�ഀ��渁��촂����������昁��쀅�恑ﰓ恑ﰓ̀�฀��漁��츂����������朁��쐅�顑ﰓ顑ﰓ̀�ༀ��漁��켂�����
	Figure 1�⁳整⁯捲䍯牥捴楯渠ㄮ」ਠ⁩映笠孥硰爠⑏欠⬠⑎潴彆潵湤‫․䙯畮摟睩瑨彃潲牥捴楯湝
	Figure 2�����崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰慧‭
	Untitled��⁳整⁯捲䍯牥捴楯渠ㄮ」ਠ⁩映笠孥硰爠⑏欠⬠⑎潴彆潵湤‫․䙯畮摟睩瑨彃潲牥捴楯

	NEW IDEAS IN DATA BASE SEGMENTATION�况﩮舘恵逸賓社漢卑勤僧侮鶴館飼﨨逸諸﨡精픎靵宅�見數泌便磻北異拏朗ꨎ�����ᐋᎏᎋ፳ཐ༺༹༸༷༶༵ઈ�������������������������
	Untitled��ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠
	Untitled�����崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰慧‭
	Figure 1��ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠
	Untitled�ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠瑲

	DATA BASE INFOLOGICAL DESIGN IN PRACTICE��ʮ�ʡ�ʡ���ƙ�ƙ�Ɓ�Ɓ���ʡ�����ϧNƙ�Ʋ��ԝ��ȹá��ԞwҺwκ=ӈNӹ�Ʋ�ˎPӻ�ӝ}ƙwеNѦuӌLӻ�ӷbƲ�̆hӛ}ҲJҙuҋ�ё�Ҹhә�ѠLص{վHӌsƛjƛf」瑶ē�ЀÙЀÙЀÙ˵¬˵²җ5җ5Ԩėҗ5ΝHΝuҗｭԨｭԨｭВÛВÛմßҮÍ̻ŪԄｭ־ｭ־ｭϟｭմﻙӌÇՇｭմÛэÛ־ｭ־Ŗ־ｭҗｭҗｭԚĄҮｭВÛմｭմË��������������������
	INFORMATIONAL ASPECTS OF BUSINESS ANALYSIS SYSTEMS DESIGN��졃�졃ȀĀ������������������刌�刌�����Ā�����ȀȀĀ���䥉⨀졼頀����ࠀ�����������������������������Ā�倌ᱫ‎ᱫ怌ᱫ‎ᱫĀ�怌ᱫ‎ᱫ瀌ᱫ逌ᱫ퀌ᱫᱫဍᱫ」ᱫ『ᱫ뀌ᱫ『ᱫ僗ᩫ惦ᩫ��쬖�������������������郷๫ꃷ๫儗샶๫๫÷๫ヷ๫䃷๫큠᭫䡒┑휀�챂ᘕ삿ᩫ傷ᩫ����
	Fig, 1, Possible architecture of an ABAS�Rʩ^ץ￥ʩ9әĵҬfˎ'ˎ!ʩ¼Ѳ�ыbȹ²ʩPˎ}˫RѲÉ۳}۳}۳!ӣÃՖ#Ֆ#Ֆ#Ֆ#Ֆ#Ֆ#ࠀ�׆bՖ¸Ֆ¸Ֆ¸Ֆ¸뙴ȅ�ȹ�ȹ�׆)׆�عNعNعNعNعNҬÃع=׆®׆®׆®׆®Ֆ�Փºӣ�ѲVѲVѲVѲVѲVѲVܜFЀ?ѲRѲRѲRѲRȹ￸ȹ�ȹ￲ȹ�ѲJѲ�ѲJѲJѲJѲJѲJҬfӣ%Ѳ�Ѳ�Ѳ�Ѳ�Ѐ)ѰoЀ)Ֆ#ѲVՖ#ѲVՖ#ѲX׆bЀ?׆bЀ?׆bЀ?׆bЀ?׆¶׆5

	Chapter�Possible architecture of an ABAS��
	Picture section�琠⑤捐牯瀠ㄍਉ素ഊഊॲ整畲渠③䙯畮搠ഊ納਍ੰ牯挠䍨散歆潲啳敲䵥瑡摡瑡⁻⁥湴⁰牯灎慭攠素笍ਉ楦⁻․灲潰乡浥‽㴠≤损瑩瑬攢⁽⁻ഊउ獥琠灲潰乡浥⁴楴汥ഊॽ
	Untitled�⁳整⁯捲䍯牥捴楯渠ㄮ」ਠ⁩映笠孥硰爠⑏欠⬠⑎潴彆潵湤‫․䙯畮摟睩瑨彃潲牥捴楯湝

	Illustrations�〰㘵〰㈰〰㜳〰㘵〰㘳〰㜴〰㘹〰㙦〰㙥〰〰㜴㈰㈴㘴㘳㔰㜲㙦㜰㈰㌱つち〹㝤㈰つちつち〹㜲㘵㜴㜵㜲㙥㈰㈴㘲㐶㙦㜵㙥㘴㈰つち㝤つちつち㜰
	Untitled�⁳整⁯捲䍯牥捴楯渠ㄮ」ਠ⁩映笠孥硰爠⑏欠⬠⑎潴彆潵湤‫․䙯畮摟睩瑨彃潲牥捴楯湝
	Untitled������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰慧
	Untitled�������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛⑰
	Figure 1��ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠
	Figure 2��⁳整⁯捲䍯牥捴楯渠ㄮ」ਠ⁩映笠孥硰爠⑏欠⬠⑎潴彆潵湤‫․䙯畮摟睩瑨彃潲牥捴楯
	Figure 1��ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠
	Untitled��⁳整⁯捲䍯牥捴楯渠ㄮ」ਠ⁩映笠孥硰爠⑏欠⬠⑎潴彆潵湤‫․䙯畮摟睩瑨彃潲牥捴楯
	Untitled��������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛
	Figure 4,�〰㜳〰㜴〰㜲〰㘱〰㜴〰㘹〰㙦〰㙥〰㜳〰〰㌰㌰㌶㌵㌰㌰㌲㌰㌰㌰㌷㌳㌰㌰㌶㌵㌰㌰㌶㌳㌰㌰�㐀
	Untitled��ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠
	Figure 1. An organisational schema of STATOS��㔹〰㔳〰㔴〰㐵〰㑤〰㈰〰㐶〰㑦〰㔲〰㈰〰㔳〰㑦〰㐳〰㐹〰㑦〰㉤〰㐵〰㐳〰㑦〰㑥〰㑦〰㑤〰㐹〰㐳〰㈰〰㐴〰㐱〰㔴〰㐱〰㈰〰㐱〰㑥〰㐱〰㑣〰㔹〰㔳〰㐹〰㔳〰〰㌰〰㌰〰㌶〰㘵〰㌰
	Untitled���ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥
	Untitled����ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†
	Untitled��������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛
	Figure 1��������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛
	Figure 2��������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛
	Untitled���������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數
	Untitled�ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠瑲
	Untitled���������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數
	Figure 1��������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛
	Untitled����������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤
	Fig, 1, Possible architecture of an ABAS�ﾰψ￙Շﾰψ￙ϔ￥ҏﾸҋﾸҏﾸՏﾨՏﾨՏﾨԂ￑ϟ�؞!Ѱ
Ѱ
τXτXԜXͬￍйﾨҲ￥ޛ￣ޛￓّ￶τￍ׵￙׵￣׵￥ҩￏՁￕًￍًￍًￍ߳￝̓￉فￋفￋӗ￑՞ﾘԀ�ќ)ҏ/ثDΛﾾϭ￧хﾋ۔ￃܘ￑ծﾰӌ�ӌ�И�͸￬ՓZ͸￬՚dӝ
Ι�ӹ�ѰﾸѰﾸЂ�јﾼќ￑դﾼјﾼؠﾠ׌ﾠϫﾤϫﾤчￗз￑з￑͘￑Оﾓϱﾓѓ￉ϡ￑Ͷ\Ӑ\ҼﾤҼﾤδￍқￍқￍƁﾤы￡ы￟Я￁я￟Я￁ӹﾤӷﾤԀ￟ЫￕЫￕң￧Ώﾮӭﾮ
	Untitled����������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤

	Tables�㴗���������萜6喹��������ꡅ츒㣱㴗ဍꡜ㸗
	Untitled���ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥
	Untitled��������崍ਠ⁳整⁢慤彰慧敳‰‍ਠ‍ਠ‍ਠ⁳整⁰慧․敮琍ਠ⁳整⁰慧敉湤數⁛
	Untitled�ഊ††納ਠ⁽ഊ納਍ੰ牯挠䍨散歆潲佃剔數瑶獄楣琠笠敮琠灡牡浳⁤敳捲⁽⁻ഊ†獥琠瑲

