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Abstract 

As the world population figures rise and interstate mobility becomes increasingly 

ubiquitous, infectious disease outbreaks become more and more dangerous, having high 

transmission rates and causing more impact on our lives. The ongoing COVID-19 

pandemic which according to Worldometers.info, has reached more than 196 million 

confirmed cases and caused more than 4 million deaths as of 29 July 2021 [1], shows how 

vital it is to understand the spread mechanisms of the viral pathogens and to be able to 

detect probable reasons and sources triggering higher disease transmission rates. 

This thesis work is conducted as part of the project entitled “COVSG22: Monte-Carlo 

analysis of the spreading rate of a virus as a function of human mobility and social 

distancing” run jointly by the Department of Cybernetics and the Department of 

Computer Systems at Tallinn University of Technology. The project aims to simulate a 

country-level infectious disease outbreak scenario based on the example of the Republic 

of Estonia during the COVID-19 pandemic. One of the principal goals of the project is to 

predict the number of infected cases for various spatial scales, the largest one being the 

country itself, based on a complex set of parameters with the help of simulation and 

modelling. The successfully developed model is expected to contribute to determination 

of the optimal prevention methods against the transmission of infectious diseases and the 

strategies in the control of an outbreak. 

The main contribution of this thesis work is the synthetic population generator software 

which besides building the geospatial environment of the Republic of Estonia, also 

generates a synthetic population reflecting the overall characteristics of the Estonian 

society in itself. The biggest advantage of the software is that, it achieves the mentioned 

features utilizing only open-access aggregated data, without requiring the use of any 

personal information. Another benefit of the generator which can be noted is that, even 

though,  the outcome of the synthetic population generator is originally intended to be 

used in the country-level scale-free network-based simulations of different disease spread 

scenarios, the capabilities of the software provide possibility to employ it also for other 
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epidemic models like agent-based and Monte Carlo simulations, or even in a larger 

context, for simulations dealing with other types of spread like information spread in the 

future. 

This thesis is written in English and is 57 pages long, including 6 chapters, 16 figures and 

10 tables.



6 

List of abbreviations and terms 

ABM Agent Based Modelling 

ADS Address Data System 

ARIMA-WBF Model Autoregressive Integrated Moving Average – Wavelet-based 

Forecasting Model 

BMA Bayesian Model Averaging 

CFR Case Fatality Rate 

COVID-19 Coronavirus Disease of 2019 

CSV Comma-separated Values 

EHAK Estonian Administrative and Settlement Division 

GDP Gross Domestic Product 

GIS Geographic Information System 

GPS Global Positioning System 

IPF Iterative Proportional Fitting 

LAMBERT-EST Lambert Conformal Conic Projection – Estonia 

LEST-97 Lambert Estonia Orthogonal Coordinate System of 1997 

LSTM Long Short-term Memory 

MC Monte Carlo 

ML Machine Learning 

OSM OpenStreetMap 

OSMnx OpenStreetMap - NetworkX 

SI Model Susceptible – Infected Model 

SIPHERD Model Susceptible – Infected – Purely asymptomatic – Hospitalized – 

Recovered – Deceased Model 

SIR Model Susceptible – Infected – Removed Model 

SIRSi Susceptible – Infected – Removed – Sick Model 

SIS Model Susceptible – Infected – Susceptible Model 

WGS World Geodetic System 

 



7 

Table of contents 

1 Introduction ................................................................................................................. 11 

2 Literature review.......................................................................................................... 15 

2.1 Key factors and parameters in disease spread modelling ..................................... 15 

2.2 Classification and analysis of disease spread models ........................................... 17 

2.2.1 Temporal models ........................................................................................... 20 

2.2.2 Spatiotemporal models .................................................................................. 26 

2.3 Synthetic population generation ........................................................................... 29 

3 Methodology ................................................................................................................ 31 

3.1 Spatial hierarchy ................................................................................................... 31 

3.2 Population Synthesis............................................................................................. 34 

3.2.1 Generation of the individuals ........................................................................ 34 

3.2.2 Generation of the households ........................................................................ 37 

3.2.3 Distribution of the individuals to the households .......................................... 40 

3.3 Activity and location assignment ......................................................................... 46 

4 Implementation ............................................................................................................ 50 

4.1 Data ....................................................................................................................... 50 

4.2 Software dependencies ......................................................................................... 51 

4.3 Software architecture ............................................................................................ 52 

4.4 Key algorithms ..................................................................................................... 52 

5 Results ......................................................................................................................... 58 

6 Summary ...................................................................................................................... 67 

 

 

 



8 

List of figures 

Figure 1. The SIRSi model scheme. ............................................................................... 22 

Figure 2. Spatial hierarchy in the population generator. ................................................ 32 

Figure 3. Level 2 division of the Republic of Estonia: (a) official cities and rural 

municipalities division, (b) new zone division (Plotted based on data collected from [57] 

and Geography Department of the University of Tartu). ............................................... 33 

Figure 4. The flowchart diagram of the MC sampling algorithm distributing the children 

to the households. ........................................................................................................... 53 

Figure 5. The flowchart diagram of the MC sampling algorithm making the first adult 

assignments for the households. ..................................................................................... 54 

Figure 6. The flowchart diagram of the MC sampling algorithm distributing the 

remaining adults to the households. ............................................................................... 55 

Figure 7. The flowchart diagram of the MC sampling algorithm assigning the working 

individuals to the enterprises. ......................................................................................... 56 

Figure 8. Algorithm selecting n individuals residing closest to the point_of_interest. .. 57 

Figure 9. The Republic of Estonia as the aggregation of the counties (Plotted based on 

data retrieved from [57])................................................................................................. 63 

Figure 10. Harju county as the aggregation of its cities and rural municipalities (Plotted 

based on data retrieved from [57]). ................................................................................ 63 

Figure 11. Tallinn city as the aggregate of its city districts (Plotted based on data 

retrieved from [57]). ....................................................................................................... 64 

Figure 12. Kiili rural municipality as the aggregate of its settlements (Plotted based on 

data retrieved from [57])................................................................................................. 64 

Figure 13. Map of the Mustamäe district with some non-residential buildings being 

grouped by OSM tags (Composed based on data retrieved from [61]). ......................... 65 

Figure 14. Results of the two-layered filtering of the residential buildings with the 

example of Mustamäe district (Composed based on data retrieved from [58], [61]). .... 65 

Figure 15. Results of the location assignment for the residence activity with the example 

of Mustamäe district. ...................................................................................................... 66 



9 

Figure 16. The spatial distribution of the residence addresses of the individuals assigned 

to Tallinna Mustamäe Gümnaasium, when spatial_distribution_range parameter chosen 

as 10. ............................................................................................................................... 66 

 

 



10 

List of tables 

Table 1. Definitions for the parameters used in the SIPHERD model. .......................... 23 

Table 2. The values of the settlement_code, municipality_code and country_code 

parameters based on the type of the initialization node. ................................................. 36 

Table 3. Total number of households by county (Retrieved from [60])......................... 37 

Table 4. Number of households and total population size by household structure type 

(Retrieved from [64] and [65]). ...................................................................................... 41 

Table 5. Number of households by household size type (Retrieved from [66]). ........... 41 

Table 6. Age boundary parameters in the households and their initial values. .............. 43 

Table 7. The number of enterprises in the counties by member count (Retrieved from 

[67]). ............................................................................................................................... 47 

Table 8. Comparison of the county-level population size before and after the 

proportional distribution of the individuals with unspecified residence information. ... 58 

Table 9. Comparison of the total population by household structure type generated by 

the software with aggregated statistical data provided in [65]. ...................................... 60 

Table 10. Comparison of the number of the enterprises in the country by member count 

between the aggregated data and the results of the generator. ....................................... 61 

 

 



11 

1 Introduction 

Even though the interest in disease spread modelling has exponentially increased starting 

from the late 2019, after the novel coronavirus caused a global pandemic by quickly 

spreading to all over the world, it has actually always been a very important research topic 

for the last few centuries of human history. The concept of using modelling to explore 

disease spread mechanisms dates back to 18th century, when famous Swiss mathematician 

and physicist Daniel Bernoulli formulated and solved a mathematical model in order to 

assess the effect of variolation against smallpox disease [2]. Starting from the early 20th 

century, modelling has become an established tool in epidemiology with the emergence 

of several deterministic compartmental models [2]. 

Due to having a complex and chaotic structure, modelling of an infectious disease spread 

is a very challenging task including a composite set of parameters, indicators, and 

variables. Therefore, nowadays a diverse number of methodologies are adapted with this 

purpose, including traditional compartmental models, agent-based models, scale-free 

network-based models, ML-based models etc. Each of the mentioned methodologies has 

its own advantages and disadvantages which are discussed comprehensively in Section 2, 

but, the COVSG22 project, which this thesis work stems from, utilizes scale-free 

networks in order to conduct Monte-Carlo simulations for disease outbreak. Scale-free 

networks are the group of networks whose degree distribution follows a power law. This 

choice can be justified with the fact that, many real-world networks, especially the ones 

which are intended to be modeled in the context of epidemiology are large-scale complex 

networks and studies shows that, in most cases the degrees of the nodes in large-scale 

networks are distributed with power-law [3]. 

The study reviewing the fundamentals of epidemiological theory and network theory [4], 

emphasizes the superiority of networks constructed on real-world data over the artificially 

generated networks when the application of the networks to the epidemic modelling are 

considered. However, the authors disregard the possibility of modelling entire population 

network and the social interactions among them with high accuracy, based on real-world 
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data, stating that producing this kind of data is “impractically time-consuming task” and 

also determining the contacts among the nodes of the network requires gathering personal 

information from all of the network. Instead, three alternative methods, namely, infection 

tracing, contact tracing and diary-based study are proposed to be used for creating “real” 

networks. The proposed methodologies still do require personal information gathering, 

but from a subgroup of the network, instead of the entire population. 

The implementation of the synthetic population generator software, which is the principal 

focus point of this thesis work, aims to prove that it is possible to model the population 

in such a way that, most of the major repetitive spatial and social interaction patterns 

emerging in the society are covered in the model, and more importantly it can be built 

based on aggregated statistical data without using any personal information. The scale-

free network-based model currently used in the COVSG22 project has only one edge type 

in the network defining all kind of connections among the individuals, and lacks the usage 

of the real-world data at the moment. The dataset produced as the outcome of the software 

will be used in converting the current network to a weighted network and diversifying the 

edge types, where the weight for each connection type will be determined as the result of 

Monte Carlo simulations. The reason for the new network to be a weighted network is 

that, even though the interaction patterns reflected in the output of the generator such as 

being member of the same household, attending the same school, working in the same 

enterprise, or being neighbors living in the same building all can be classified as a social 

connection, each of them has different level of influence on the transmission rate of a 

disease. 

Another strong argument justifying the usage of the population generator is provided in 

[5], where the importance of having community structure in the real networks used for 

modelling a disease spread is underlined. Communities are the phenomenon emerging in 

the network when a group of nodes have dense connections among each other, while the 

connections with other communities are sparser. The result dataset of the synthetic 

population generator implemented in this thesis work can help to exhibit community 

structure in the network based on real-world communities existing in the society. For 

example, the individuals living in the same household compose a community, while a 

larger scale community structure can be observed based on which settlement the 

individuals reside. 
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The ultimate goal of this thesis work is to supply the COVSG22 project with a dataset 

reflecting all the aforementioned features in itself and this objective is achieved by 

performing the following tasks: 

1. Forming the set of parameters, affecting the behaviour of the infectious disease 

outbreak and infection transmission rates, and classifying them by the level of 

importance. 

2. Getting acquainted with the epidemic modelling theory, terms, disease spread models 

built with different methodologies, datasets used in those models and how the datasets 

are constructed. 

3. Determining the list of input data needed for implementing the software which will 

produce the dataset. 

4. Exploring the open-access data sources like geospatial databases and electronic 

portals of the administrative registers, acquiring the input data and pre-processing it. 

5. Implementing the synthetic population generator software producing the dataset by 

following the steps given below. 

▪ Constructing the spatial hierarchy of the country. 

▪ Integrating the vector data of some geospatial entities to the system, whose 

importance in terms of disease spread modelling is observed based on the 

literature review. 

▪ Generating the individuals and distributing them to the households based on the 

aggregated statistical data. 

▪ Assigning the activities containing repetitive behaviour like residence, work, and 

education to the generated individuals and allocating location coordinates for 

those activities. 

The thesis is organized as follows. Section 2 starts by determining the key factors 

affecting the behaviour of viral pathogen spreads based on the literature review, then 

presents the existing classification methods for disease spread models, and examines 

models built by different methodologies under two main categories, namely, temporal 

and spatiotemporal models, from the perspective of the characteristics of the dataset used 

in the implementation process. Finally, the synthetic population generation is discussed 

in Section 2 in terms of generic implementation methodologies, common problems, and 

solution methods offered in the literature. Section 3 provides the steps followed for 
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building the generator software and the methodologies utilized in each phase. In 

Section 4, after the reader is introduced to the list of data sources and software 

dependencies, the source code of the software executing the steps discussed in the 

previous section is explained by using pseudo-codes, selected source code parts and 

flowchart diagrams. Section 5 besides presenting the final results of the software, also 

demonstrates the outcomes of the intermediate stages. Finally, in Section 6, the 

conclusion remarks are given and further improvement possibilities and adaptation 

perspectives are discussed.     
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2 Literature review 

In this section the reader is provided with a comprehensive literature review conducted in 

epidemic modelling and synthetic population generation spheres. The literature review is 

organized in the following manner. Section 2.1 provides the list of the foremost factors 

and parameters in epidemic modelling under three main categories: disease transmission 

rate related parameters, spatial factors, and socio-demographic factors. In Section 2.2, 

firstly, the reader is introduced to the common concepts, the terminology, and the 

established classification methods in epidemic modelling, and then, different models 

existing in literature are analysed in two subsections, namely temporal (Section 2.2.1) and 

spatiotemporal (Section 2.2.2) models, depending on whether the spatial aspects of the 

disease spread is taken into consideration or not. Section 2.3 presents the theory about 

conventional implementation steps followed in synthetic population generation field, 

common problems faced, and the solution methods offered in different studies. 

2.1 Key factors and parameters in disease spread modelling 

Infectious disease spread has a very compound group of factors affecting its behaviour, 

and determining the principal factors correctly is arguably the most crucial task to 

consider while modelling the disease dynamics. 

The first group of parameters which has to be examined is disease transmission rate 

related parameters whose values are disease-specific and depend on the type of the 

infectious disease intended to be modelled. Basic reproduction number – R0, which 

represents the average number of secondary infections caused by an infectious individual, 

is determined as the essential disease transmission parameter in several studies [6]–[8]. 

The basic reproduction number is often perceived as a threshold variable deciding 

whether the spread will proceed to a serious state or not. In most deterministic models, an 

infectious disease survives enough to advance to a pandemic state if and only if the value 

of the basic reproduction number exceeds one, and otherwise if the value is smaller than 

one, then the number of infected cases gradually decreases and eventually becomes 
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extinct [6]. Serial interval (time between symptom onsets in an infector-infectee pair), 

generation interval (time between infection events in an infector-infectee pair) and 

incubation period (time between moment of infection and symptom onset) are also often 

listed between key parameters [7], [8]. 

Another aspect to inspect, while modelling viral pathogen dynamics is the spatial 

dimension of the spread. A research exploring the spatial factors of COVID-19 in New 

York City through ordinary least squares regression and geographically weighted 

regression, indicates correlation between population density, medical density, green space 

density, mean distance travelled, gender distribution, commuting (walking, carpooling, 

and public transit) and the rate of COVID-19 positive cases [9]. The protective effect 

(negative correlation with the outcome) of the distance from the capital in municipalities 

is also noted alongside the correlation between the demographic density and COVID-19 

positive cases in a study investigating spatial and demographic factors affecting 

vulnerability to COVID-19 in the State of São Paulo, Brazil [10]. Closed environment 

social interaction hotspots also cannot be disregarded while talking about key spatial 

factors affecting disease spread rates. A study conducted in Japan, shows that, closed 

environment facilities contribute to secondary transmission of COVID-19 and promote 

superspreading events [11]. 

Socio-demographic factors also have a weighty influence on the characteristics of a 

disease outbreak such as the spread and fatality rates. Several researches indicate the 

excessive proportion of the aging population in society as an important factor for high 

CFRs [12]–[14], while some others analyse the gender imbalance in CFRs and reveal 

higher case fatality among men [15], [16]. Underdeveloped healthcare system is also 

among the socio-demographic reasons which can lead to a higher spread and case fatality 

[17], [18]. Another study exploring the socio-economic determinants of the coronavirus 

pandemic, divides them into four disjoint groups based on the results of the BMA 

estimation [19]. As a result, three determinants are found to have a strong evidence 

indicating significant impact on the number of the coronavirus cases, which are the 

overweight prevalence in the country, the population density and the number of 

international tourist arrivals. The fraction of elderly population in the country is classified 

as the determinant with medium evidence, whereas only weak evidence is found for the 

average household size and the fraction of young population in the country. The authors 

conclude that all other potential determinants considered to possibly give meaningful 
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explanation for difference between the number of coronavirus cases in different countries 

are found to have negligible evidence. Higher socio-economic status and per capita GDP 

are observed to be positively correlated with the number of reported incident cases in the 

early phase of the epidemic [20]–[22]. This phenomenon is explained with numerous 

reasons including more social interactions as a result of more economic activity [20], 

widespread testing, greater transparency with reporting and better national surveillance 

systems in the countries with a higher per capita GDP [22]. However, with the adaptation 

of social distancing and public health measures, the correlation is observed to either 

become insignificant [20], or invert over time resulting in lower growth rate in countries 

with better SES values at the end of the observation period [21]. 

2.2 Classification and analysis of disease spread models 

Numerous infectious disease epidemiology models representing spread dynamics have 

been designed since the beginning of the 20th century due to its crucial importance and 

different classification methods have emerged for categorizing them. For example, one 

of the prevalent views is to categorize those models into two groups, namely deterministic 

and probabilistic models. Deterministic models are those which don’t contain any 

randomness in the implementation. In the other words, whenever a deterministic model 

is executed with the same data and initial conditions it will produce the same outcomes. 

A probabilistic model, on the other hand, benefits from the usage of randomness elements 

and dynamic parameters and consequently, can offer different possible results in each run 

[23]. 

Epidemic models can also be categorized under six main groups by the methodology used 

in the implementation, based on the literature review done: 

▪ Conventional compartmental models. 

▪ Models using Monte Carlo methods. 

▪ Scale-free network-based models. 

▪ Agent-based models. 

▪ ML-based models. 

▪ Hybrid models. 
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Compartmental models are general technique used in epidemiology for the mathematical 

modelling of disease transmission, where the population is divided into different 

compartments with the possibility of the transition between the compartments. Generally, 

the model is formulated as a system of differential equations, by expressing the transfer 

rates between the subgroups as derivatives of the sizes of the compartments with respect 

to the independent variable of time 𝑡 [24]. 

Monte Carlo methods-based models maintain the idea of classifying the individuals based 

on the health status in most cases. But, unlike the compartmental models, the population 

is not divided into disjoint groups; instead, addressed as a set of interacting particles, each 

one representing an individual and having a state characterizing its current health status. 

Thus, the system dynamics are modelled with the help of various MC algorithms which 

rely on repeated random sampling instead of the differential equations. In this context, 

the epidemic models based on the MC methods can be evaluated as the stochastic 

approach using randomness to enhance the conventional compartmental models which 

are deterministic in principle. 

In a similar manner, scale-free network-based models also preserve the concept of 

attaching a state associated with the health status to each individual separately. The 

difference with other methods is that, this group of models handles the population 

dynamics in the context of networks. The networks constructed in epidemic models for 

representing the relations between individuals in a population are composed of numerous 

nodes – individuals, and edges – the connections between the individuals. The set of nodes 

an individual is connected to is called its neighbourhood and the size of this 

neighbourhood is the individual’s degree in the network [4]. A study investigating the 

behaviour of complex networks [3], reports that the degree distribution of large-scale 

networks follows a power law. In other words, the probability P(k) that a vertex in the 

network interacts with k other vertices decays in the form of 

P(𝑘) ~ 𝑘−𝛾  (1) 

where γ is the scale parameter whose value is determined by the given network. The 

networks demonstrating this behaviour are called “scale-free” networks. Since, the 

networks used for modelling the disease spread are large-scale complex networks, they 

are also classified as scale-free networks. 
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Another established methodology in epidemic modelling is the use of agent-based 

simulations. In agent-based modelling, the population is modelled with the help of 

autonomous agents representing the individuals, which demonstrate repetitive 

interactions among themselves. ABM is especially useful for modelling real-world 

systems, while the goal is to gain valuable information about the dynamics of the system 

it emulates. It can be explained with the fact that, real-world systems are composed of 

behavioural entities and ABM is the most natural method for this kind of tasks, since it is 

capable of capturing complex phenomena resulting from the interaction of individual 

entities [25]. In [26], the authors state that ABM has been used in modelling of a wide 

variety of diseases including COVID-19, malaria, smallpox, tuberculosis, avian 

influenza, etc., and its effectiveness has been proven. 

Unlike the aforementioned methodologies, ML-based disease spread models are very 

diverse in terms of the purpose of ML adaptation, the used algorithm, and the expected 

outcome, which is why, they cannot be described with one generic implementation 

methodology. Hence, the comparative analysis of these models is not possible and they 

must be investigated separately. 

Lastly, there exist hybrid models utilizing more than one of the mentioned methodologies 

together. By doing so, these models aim to exploit the strong sides of each approach that 

collectively compose the hybrid model. 

Despite having some other more common categorization systems as the ones mentioned 

above, the following subchapters analyse disease spread models under two main 

categories which are temporal models and spatiotemporal models (Section 2.2.1 and 

2.2.2, respectively) from the perspective of the main focus point of the thesis work. 

Temporal models handle spread dynamics in the time domain only by ignoring the spatial 

data correlation, while in the spatiotemporal models, data obtained both on time and space 

domains are utilized for constructing the model, which has at least one temporal and one 

spatial attribute. In this respect, the spatiotemporal models provide additional advantages 

for discovering and observing pattern persistence in the data over all space-time domain. 

On the other hand, the main challenge characteristic to all spatiotemporal models is that 

considering both the temporal and spatial data while designing the model adds additional 

complexity to the data analysis process [27]. 
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Among all the model groups classified by the used methodology, the compartmental 

models are the only class of models, which are homogeneously temporal. In other words, 

none of the conventional compartmental models benefits from the usage of the 

spatiotemporal datasets, and therefore, the example representatives of this group are 

analysed under Section 2.2.1 only. Opposingly, considering the fact that one of the two 

core components of an agent-based model is the environment, which cannot be 

constructed without handling the spatial aspects, all agent-based epidemic models are 

spatiotemporal in principle. Thus, all of the agent-based models selected for analysis are 

discussed under Section 2.2.2, solely. All other model groups classified by the used 

methodology have both temporal and spatiotemporal examples examined under Sections 

2.2.1 and 2.2.2, respectively. 

2.2.1 Temporal models 

The common feature of all models discussed under this subchapter is that, the data used 

for constructing the model or the outcome of the model is time series data, which don’t 

include any spatial characteristic. Compartmental models are the most straightforward 

temporal approach to model a disease spread based just on a very simple dataset 

composed of few disease transmission rate-related parameters. Despite the 

compartmental models not being the most potent methodology for describing the internal 

dynamics of the epidemy, their analysis is especially important due to fact that, most of 

the more established models are built on the compartmental models, adapting the idea of 

health status categorization. Thus, the well understanding of the idea behind this 

classification and being familiar with the recent categorization methodologies associated 

with the current outbreaks is a must in the context of disease spread modelling. Three of 

the well-known examples of the compartmental models, including the SIR model, 

creating the basis for more comprehensive representatives of this class of models are 

described below. 

One of the first and simplest models in disease spread modelling is the Ross Epidemic 

(SI) model, developed in 1911. In this model, the entire population is divided into two 

mutually exclusive subgroups labelled as S and I, where S stands for susceptible and I 

stands for infected, and mixed homogeneously making sure that each individual has an 

equal chance of infection. Transition rate from S subgroup to I subgroup is then calculated 
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as proportional to β – the average subgroup contact constant and to the number of 

individuals in S subgroup at any given instance of time [28]. 

SIS (susceptible – infected – susceptible) epidemic model is another mathematical model 

built on SI model, with only difference being that, in this method, the number of the 

infected population can also decrease as some infected individuals change status to the 

susceptible. Therefore, another average subgroup contact constant – σ is also integrated 

to the model for the transitions from I compartment to S compartment [28]. 

SIR (susceptible – infected – removed) model developed by Kermack & McKendrik in 

1927 plays a role of the premise for nearly all compartmental models developed until 

modern times. The SIR model extends the SI model with the possibility that some 

members of the infected subgroup at any given instance of time are moved to R subgroup 

by recovery or by death and are no longer considered as the source of further infection 

[29]. In the simplest form, the dynamics of the system developed by using the SIR model 

can be described by following system of ordinary differential equations: 

𝑑𝑆

𝑑𝑡
=  − 

𝛽𝐼𝑆

𝑁
,          𝑆(0) =  𝑆0  ≥ 0, (2) 

𝑑𝐼

𝑑𝑡
=  

𝛽𝐼𝑆

𝑁
−  𝛾𝐼,      𝐼(0) =  𝐼0  ≥ 0, (3) 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼,                𝑅(0) =  𝑅0  ≥ 0, (4) 

where 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁 and 𝛽 and 𝛾 stands for the infection and the removal rate 

constants, respectively [30]. 

As the amount of research on this specific topic have increased due to COVID-19 

pandemic, some new compartmental models considering extensions to the simple SIR 

model have emerged in recent times which can be referred to as the state-of-art models 

examining temporal dimension of the infectious disease outbreak. Some of those models 

are analysed below. 

SIRSi (susceptible – infected – removed – sick) model proposed in [31] integrates three 

major additions to the SIR model. First of all, considering the possibility of the unreported 

or asymptomatic cases, the infected subgroup in traditional SIR model is divided into 

infected people who shows the symptoms and those who do not. The subgroup I in this 

model, represents the infected population in the incubation stage before the onset of the 
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symptoms and those individuals who are tested positive are moved to the Si compartment. 

Another aspect taken into account is that the acquired immunity among the individuals 

who have recovered from the infection is not always permanent, and at least a group of 

the individuals in R compartment can be prone to getting infected again after some time 

has passed. In order to address this issue, the model contains a feedback loop from the R 

compartment to the S compartment. Additionally, the birth and non-disease-related deaths 

of the individuals in the population are also represented in the model for better reflection 

of the real-life scenarios. Figure 1 describes the overall scheme of the SIRSi model. 

Figure 1. The SIRSi model scheme.  

 

Another compartmental model implemented recently, is called the SIPHERD model 

which proposes to divide the population into seven mutually exclusive subgroups, 

namely, S – susceptible, E – exposed, I – symptomatic, P – purely asymptomatic, H – 

hospitalized or quarantined, R – recovered, D – deceased. Transitions of the individuals 

between these compartments are formulated with the following system of differential 

equations [32]: 

 
𝑑𝑆

𝑑𝑡
=  −𝑆(𝛼𝐸 +  𝛽𝐼 +  𝛾𝑃 +  𝛿𝐻) (5) 

𝑑𝐸

𝑑𝑡
= 𝑆(𝛼𝐸 +  𝛽𝐼 +  𝛾𝑃 +  𝛿𝐻) − (𝜇 +  𝜉𝐼 +  𝜉𝑃)𝐸 (6) 
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𝑑𝐻

𝑑𝑡
=  𝜇(𝐸 + 𝑃) +  𝜈𝐼 −  𝜎𝐻(𝑡 −  𝑡𝑅) −  𝜏𝐻(𝑡 −  𝑡𝐷) (7) 

𝑑𝐼

𝑑𝑡
=  𝜉𝐼𝐸 − (𝜈 +  𝜔)𝐼 (8) 

𝑑𝑃

𝑑𝑡
=  𝜉𝑃𝐸 − (𝜇 +  𝜂)𝑃 (9) 

𝑑𝑅

𝑑𝑡
=  𝜔𝐼 +  𝜂𝑃 +  𝜎𝐻(𝑡 −  𝑡𝑅) (10) 

𝑑𝐷

𝑑𝑡
=  𝜏𝐻(𝑡 −  𝑡𝐷) (11) 

where the detection of the asymptomatic and symptomatic cases is calculated dependent 

on the number of tests done per day (TPD) with the formulas expressed in Equation (12) 

and Equation (13). 

 𝜈 =  𝜈0 +  𝜈1𝑇𝑃𝐷 (12) 

𝜇 =  𝜇0 +  𝜇1𝑇𝑃𝐷 (13) 

Definitions for the parameters and factors used in the system equations of the SIPHERD 

model are provided in Table 1.  

Table 1. Definitions for the parameters used in the SIPHERD model.  

Parameter Definition Parameter Definition 

α Transfer rate, E to S μ0 Detection prob. of E 

β Transfer rate, I to S μ1 Detection prob. coefficient 

γ Transfer rate, P to S ν0 Detection prob. of I 

δ Transfer rate, H to S ν1 Detection prob. coefficient 

ξI Conversion rate, E to I η Home recovery rate of asym. cases 

ξP Conversion rate, E to P ω Home recovery rate of sym. cases 

σ Recovery rate tR Recovery delay 

τ Death rate tD Mortality delay 

 

The SIPHERD model is especially notable due to fact that, dividing I subgroup in 

traditional compartmental models into E – undetected exposed, I – symptomatic and P – 

purely asymptomatic categories is not only very worthy in terms of maximizing the model 

accuracy, considering the latest research developments emphasizing the proportion of 

asymptomatic and undetected cases in the coronavirus outbreak [33], but also can be 
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interpreted as novelty in the area. The authors also analyse some social distancing and 

lockdown scenarios generated for testing and validating the model in the same paper [32], 

however, since the used method is not a computational simulation, but a mathematical 

model, the effects of the scenarios are not obtained as a result of some learning process 

by an algorithm or derived depending on other parameters, but rather given predefined as 

5% decrease in the transmission rates due to the lockdown. 

A similar approach is followed by [34], where several important characteristics related to 

the spread dynamics of the COVID-19 disease, such as the possibility of the undetected 

infectious individuals and the effect of the control measures are also considered in the 

implementation of the model named θ-SEIHRD. Additionally, the model introduces a 

novel perspective which takes the fraction θ of detected cases over the total infected cases 

into consideration and contributes to further exploration of the importance of this ratio on 

the spread of the disease. 

Although the models mentioned as the state-of-art compartmental models which were 

developed recently, have shown quite significant improvements on the mathematical 

modelling of the infection spread, still there are some limitations common for nearly all 

proposed mathematical methodologies. These constraints are explained in [35] with an 

example of a disease spreading by person-to-person contact in the context of a large 

country with huge number of discrete geographical regions. Assuming that the time 

needed for movements from one geographical region to another one is smaller than the 

serial interval of the disease, it can be claimed that the propagation of the disease takes 

place only at the destination location during these movements. This scenario is equivalent 

to a directed graph, where the nodes represent discrete geographical regions and the edges 

represent the links between these regions. Using differential equations for describing the 

transmission rates in models intended for this kind of scenarios would not be the most 

appropriate method due to having very high dimensionality. In particular, a model for n 

regions and p different compartments of individuals can have up to pn2 equations. Thus, 

the compartmental models which are not effective when the spatial dimension is taken 

into consideration, most of the time completely disregard it and focus on temporal 

parameters only. 

Another major obstacle of the compartmental models is directly associated with one of 

its core concepts. The problem is that, dividing the population into disjoint groups and 
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formulating the transmission of the disease with a differential equation is equivalent to 

assuming that the probability of any individual to be infected by any other individual is 

equal for the entire population, which is obviously not a realistic approach considering 

the complex structure of human societies. Several temporal models [36]–[38] try to 

overcome this problem by representing the society with scale-free networks, in which an 

infected node can only propagate the disease to an uninfected node, if and only if, they 

have a direct connection in the network. The difference between these models is in the 

approach selected for formulating the probability of disease propagation at each time step 

between a neighbour infector – infectee pair. In [36], an infected node can propagate the 

infection along each of its connections independently with the predefined probability p at 

each time step, while the model presented in [37] formulates this probability based on the 

number of days passed after the infector node got infected. The transmission of the disease 

between a connected infector – infectee pair can happen starting from 2 days after the 

node got infected till 14 days after the infection took place. The probability of the 

transmission reaches its maximum value between 4th and 6th days. Unlike the 

aforementioned two models, the propagation probability is handled from the perspective 

of the infectee, rather than the infector in [38]. This model evaluates the probability of a 

node to get infected based on the number of its already infected neighbours and uses the 

variable βS(k) to represent the transmission rate for a susceptible node with degree greater 

than or equal to k, if it is connected to k already infected nodes. 

A Monte Carlo simulation model similar to a stochastic point process model, proposed in 

[39] can also be classified as a temporal model, due to fact that the spread dynamics of 

COVID-19 epidemic are simulated based essentially on just two disease-specific 

parameters: average reproduction rate as a function of time and average serial interval. 

The actual reproduction number is calculated by using Poisson distribution with mean Rt 

and in order to balance the indeterministic characteristics of MCS, the simulation is run 

thousand times and the median output values are accepted as the most realistic values. 

The authors claim that the simulation outcomes obtained by testing the model with the 

real COVID-19 data collected in Australia and United Kingdom, proved to be consistent 

with the real-life results.  

Another temporal model developed in recent times with the aim of forecasting the number 

of coronavirus cases, the mortality rate and the recovery rate over time uses a type of the 

recurrent neural networks, more precisely LSTM networks for this purpose. Even though, 
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the model scores a very high accuracy rate of 93.4% for short term predictions and 

92.67% for long term predictions, the authors mention that spatial movements between 

provinces create problems for modelling the pandemic based on time-series dataset of 

confirmed case numbers [40]. 

Regression techniques are also among the most extensively used class of ML methods in 

epidemic modelling, alongside deep learning algorithms. They are especially useful when 

applied to time-series forecasting problems. For example, hybrid ARIMA-WBF model 

developed in [41] is used for the real-time forecasting of daily COVID-19 cases, 

meanwhile, the regression tree algorithm is also adopted for the risk assessment with CFR 

dataset in the same study. 

2.2.2 Spatiotemporal models 

Reflecting spatiotemporal characteristics of almost any system in the model built for 

simulating its internal dynamics is quite a challenging task. Especially when the system 

intended to be simulated is a large-scale real-world human society, which is the case for 

epidemic models, it requires more time and energy to build a spatiotemporal model than 

a temporal model. The most important reason is that, a human society is a very complex 

and dynamic system. Therefore, a spatiotemporal model must include spatial and socio-

demographic factors discussed in Section 2.1 and at the same time consider spatial 

dynamics of social interactions between the individuals as well as human mobility 

patterns between discrete geographical entities in order to be able to correctly reflect the 

characteristics of a large-scale human society during the epidemic. The reason why spatial 

dynamics of social interactions are emphasized in the previous sentence is that, when the 

disease spread is the matter of discussion, only social interactions having spatial aspects 

are of interest. For example, an online meeting between different individuals is also a 

social interaction, but is irrelevant from the perspective of a disease spread modelling. 

Despite the mentioned difficulties in the implementation process, on the other hand, this 

class of models are more probable to produce better results for the discussed scenario, 

since they have a potential to unveil hidden social and spatiotemporal patterns in the 

population, unlike the temporal models. All in all, the models discussed under Section 

2.2.2 can be seen as more comprehensive alternatives to their temporal counterparts 

analysed under Section 2.2.1, independent of which methodology is used to build the 

model. 
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The simplest way to integrate spatial aspects into an epidemic model is to associate the 

disease transmission with a distance between the individuals. A model using a MC based 

algorithm [42], adapts this technique where the displacement in the population is 

distributed normally between the individuals based on the principles of Brownian motion. 

The model also considers the community structure in the population by adding 

households in order to be able to represent household contacts alongside non-household 

contacts. Another Bayesian MC approach-based probabilistic model builds a 

spatiotemporal kernel by combining various temporal and region-specific demographic, 

political features with the aim of giving county-level predictions for reported cases of an 

epidemic [43]. 

ML techniques can as well be utilized for creating a spatiotemporal infectious disease 

spread model. For example, a spatiotemporal model based on a sampling algorithm and 

Bayesian optimization proposed in [44] aims to detect where the infections occur most 

frequently, in other words which spatial entities can be counted as hotspots for the disease 

spread. The mobility model of Bern, Switzerland which includes site locations of 

probable hotspots like schools, research institutes, workplaces, social places, 

supermarkets and etc. is built and the visits of the individuals generated based on 

demographic data in the simulation are recorded to detect the correlation between the 

hotspots and disease spread. The study also explores how contact tracing, testing and 

containment measures affect the course of the coronavirus outbreak. 

Spatiotemporal city-level simulation for COVID-19 described in [45] uses the agent-

based modelling approach. Actual geospatial data of the simulated city including 

residential areas, business areas, roads, schools, population density etc. are used in order 

to create the environment for the simulation. For integrating the concept of households 

into the simulation and to create static residence addresses for the members of those 

households, the authors have utilized static agents representing houses in the simulation 

alongside mobile agents representing the individuals. Distribution of the human agents to 

households is implemented based on the real statistic data and the selection of workplaces 

and education places for the individuals is done randomly. The role of the public 

transportation in disease spread is also considered in this study. 

A geospatial agent-based simulator presented in [46] makes it possible to create city-level 

disease spread models. The simulation framework offers numerous features like built-in 
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location graph construction tools, realistic disease transmission algorithm and templates 

for modelling infectious disease which allows non-programmers to benefit from using the 

simulator. However, the framework has several drawbacks such as the distribution of the 

households to houses are done based on the assumption that all houses are of identical 

structure and each house accommodates two households by default; the number of 

members for each household is randomly assigned between 1 and 4, using a uniform 

distribution; people only visit the amenities closest to them and the workplaces are 

generated randomly on the map. 

There are different approaches conducted in several studies for constructing a scale-free 

network-based model in viral pathogen spread modelling. A study inspecting the role of 

migration in the spread, builds a scale-free network, where different regions of China 

during early outbreak of COVID-19 form the nodes of the network, and the edges 

connecting nodes represent migration between the regions [47]. Meanwhile in [48], where 

the global spatiotemporal transmission of avian influenza is under investigation, each 

particular outbreak of the disease is a single node in the network. The links between the 

nodes representing potential transmission pathways are formed by spatiotemporal 

proximity based on the assumption that transmission can only take place over a local area. 

Small-scale real-world social network built on GPS data collected from town of 

Haslemere is analysed in [49], with the purpose of measuring the efficiency of control 

strategies like case isolation and contact tracing in reducing the impact of COVID-19 

outbreak. Another interesting aspect about this model, besides being constructed on a 

real-world GPS data is that, the network implemented in this study is a weighted network. 

The contacts between individuals are defined on a daily basis as at least one 5-min period 

in which the distance between the individuals must be within 4 meters. The number of 

days two individuals have made contact satisfying the mentioned criteria defines the 

weight of the contact edge between those two persons in the model. 

Another compulsive study [50] proposes a hybrid model for describing spatiotemporal 

spread characteristics of a vector-borne chikungunya outbreak, where the macro-scale 

dynamics of the spread are described with a scale-free urban network and the micro-scale 

factors are handled using agent-based model. The network nodes are towns and villages 

where the host agents live and the edges connecting the nodes reflect transportation 

channels between those geographical entities. Majority of the host agents don’t have the 
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capability to move between nodes, while a minor group of agents can travel to a 

neighbouring node in one simulation iteration, but must return back to its home node in 

the next iteration. Thus, disease transmission between distinct spatial units is made 

possible through urban network, while the internal spread of the infection inside the node 

is described with an agent-based modelling approach. 

2.3 Synthetic population generation 

This subchapter discusses synthetic population generation in terms of generic 

implementation steps, solution methods offered for common problems faced during the 

implementation and further employment examples. 

There is an established methodology used in generating a synthetic population. Three 

common steps for the implementation are mentioned in multiple studies [51], [52]:  

1. Population synthesis – Generating a synthetic population for a specific geographical 

region starts with creating individuals and households and assigning those individuals 

to the households based on real-world aggregate socio-economic data of the region 

and its child entities. Individual and household level characteristics are also attributed 

at this step. 

2. Activity assignment – Each individual generated at the previous step is assigned a set 

of activities like residence, work, education etc. based on the collected statistical data. 

3. Location assignment – At this step, a group of locations are constructed based on the 

activity needs assigned previously and the activity habits of the individuals are 

associated with these locations. 

Since generating a synthetic population is a complex process which needs disaggregation 

of an aggregate statistical data to individual level, there are several obstacles faced in the 

implementation process. Two of the commonly acknowledged problems are discussed 

and three solution methods are proposed in [53]. First problem is related to the fact that, 

usually administrative registers provide one-dimensional distribution data, meanwhile, 

generating a synthetic population demands multi-dimensional distributions. The proposed 

solution in [53], namely, iterative proportional fitting method, is utilized in the majority 

of the analysed studies [51], [52] for composing multi-dimensional distributions by using 

several one-dimensional distributions in conjunction. For example, [51] uses IPF for 
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sampling joint distribution from three disjoint data distributed by age of householder, 

household income and household size. The authors of the study suggesting IPF for these 

kind of situations [53] propose Monte Carlo sampling as an alternate solution for the 

cases, when generating a more complex set of attributes is intended or the features which 

have to be generated are not available among the collected data. An iterative semi-

stochastic algorithm offered by [54] can also be thought as replacement for IPF for the 

cases when the application of IPF method is not possible due to lack of individual-level 

data to create cross-joint with the aggregate household characteristics data. This algorithm 

is also employed in some other synthetic population generators [55]. Another difficulty 

met in the implementation process is related to localization of the activities assigned to 

the individuals. Sometimes, the exact spatial location data for activities like residence, 

work, education etc. is not available, and the assignment of locations to them must be 

done based on spatially aggregated data. Under given circumstances, the distribution of 

data spatially aggregated by zones is done by first creating raster map of the zone and 

then distributing data to those pixels based on density [53].
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3 Methodology 

The methodology section is organized as follows. Section 3.1 describes the methods used 

in creating the spatial hierarchy of the Republic of Estonia.  The approaches followed for 

population synthesis, which is the essential part of the generator software are discussed 

in Section 3.2. Finally, Section 3.3 reports the techniques utilized for assigning different 

activities to the generated population. 

3.1 Spatial hierarchy 

As the initial step of the population generator, the spatial hierarchy of the Republic of 

Estonia has been constructed based on official Estonian Administrative and Settlement 

Classification (EHAK) [56] maintained by Statistics Estonia. According to EHAK, the 

country is composed of fifteen state administrative units – counties (maakonnad) and 

seventy-nine local governments (omavalitsused) forming those counties. Local 

governments themselves can also be classified as fifteen cities (linnad) and sixty-four 

rural municipalities (vallad). Other than the administrative division, there are settlement 

units like villages (külad), small towns (alevikud), towns (alevid), and cities without 

municipal status (vallasisesed linnad). Two cities, namely, Tallinn and Kohtla-Järve have 

several city districts (linnaosad). 

All the geographical entities mentioned above are represented in the generator with a 

hierarchical tree structure, where the Republic of Estonia is the root node and the 

maximum level for leaf nodes is three. Cities which don’t have city districts are the only 

group of leaf nodes whose level in the tree is equal to two. The size of the tree is equal to 

4801, including the country itself, administrative units and settlement units. The tree 

structure for the spatial hierarchy is presented in Figure 2. 
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Figure 2. Spatial hierarchy in the population generator. 

 

Since from the programming perspective, the nodes placed at the same level in the tree 

have very few minor differences, for the sake of simplicity, the phrases country, counties, 

municipalities and settlements are used in the following sections of this thesis work to 

refer to the total of all nodes of zeroth, first, second and third level, respectively, in the 

cases when differentiating nodes at the same level has no particular importance. 

After the creation of the tree structure spatial hierarchy, geospatial vector data for all 

counties, municipalities and settlements have been retrieved from Estonian Land Board 

Geoportal [57] and integrated to the software (please refer to Figure 9 – Figure 12 for 

examples). 

Some of the data provided for this project by the Geography Department of the University 

of Tartu are distributed by a new zone system where the country is divided into 113 

distinct zones, each having a unique zone code. This new zone system can be thought of 

as a level two spatial segregation of the country, similar to official cities and rural 

municipalities division, where some of those cities and municipalities are further split 

into several zones or some new zones are created with merging territories taken from 

multiple municipalities. Figure 3 juxtaposes the official cities and rural municipalities 

division with this new zone division for visualising the differences between them. 
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(a) 

 

(b) 

Figure 3. Level 2 division of the Republic of Estonia: (a) official cities and rural municipalities division, 

(b) new zone division (Plotted based on data collected from [57] and Geography Department of the 

University of Tartu). 
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In order to be able to distribute data available for the zones to next levels of the spatial 

hierarchy and eventually to micro-scale, it must be determined inside which unique zone, 

each settlement is located. The Estonian Address Data System (ADS) data retrieved from 

the Geoportal of Estonian Land Board [58], which contains addresses of cadastral units, 

buildings and apartments, have been utilized for performing this task. The core usage 

purposes of the ADS data in this project are related to the distribution of households to 

the settlements and the assignment of the residence addresses to them, which are covered 

in Section 3.2.2 and Section 3.3, respectively. The zone code allocation to the settlements 

are done after those steps chronologically, but discussed here due to fact that, the nature 

of the task is more related to building the spatial hierarchy of the country. Therefore, the 

ADS data itself and how the addresses have been linked with the settlements are explained 

more detailly in the aforementioned sections, and at this point the step following the 

association of the addresses with the settlements is provided. In order to assign zone codes 

to the settlements, I have checked if all the addresses associated with each settlement are 

located in a single zone or not. As a result, it has been observed that there is a unique zone 

polygon for each settlement containing all of its address points, in other words, each 

settlement unit is completely contained by a unique zone and consequently, the code of 

that zone has been appointed to the settlement. 

3.2 Population Synthesis 

Population is synthesized in three steps. Section 3.2.1 and Section 3.2.2 describe the 

methodologies utilized in generating the individuals and the households, respectively. 

Distribution process of the individuals to the households is explained in Section 3.2.3  

3.2.1 Generation of the individuals 

Individuals have been generated based on two major individual characteristics: age and 

gender. The highest-level age-gender distribution data available for the Republic of 

Estonia except for the last population and housing census conducted by Statistics Estonia 

in 2011 are the municipality-level distribution published by the same organization in [59]. 

Despite the fact that, the census provides more diverse range of data and those data are 

generally distributed at a higher spatial level compared to statistics published in recent 

years (for example, age-gender distribution data are provided at settlement-level in the 

census), no dataset from the census is used in this project, since the synthetic population 
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generated based on socio-demographic data collected ten years ago cannot be seen as 

reliable for representing the dynamics of a modern day society. Another important point 

to mention about datasets employed in this project is that, although Statistics Estonia has 

already published several socio-demographic datasets for year 2021, in order to preserve 

the consistency in data usage as much as possible (since year 2020 was the latest date 

available for some datasets while the generator was implemented), only data reported for 

year 2020 have been used for building the generator. 

The table in [59] provides information about the number of individuals in all 

municipalities, city districts and cities without municipal status for each age-gender tuple 

possible. For instance, there were 351 newly born baby boys in Mustamäe city district of 

Tallinn, and the number of forty-years old females residing in Järve rural municipality 

was equal to 34 as of 1 January, 2020. Dataset also contains totally 2070 individuals; 

whose residence address is unknown. So, first of all, 2 × 101 population_by_gender_age 

matrices representing number of individuals needed to be generated, have been created 

for the country, all counties, municipalities, city districts and cities without municipal 

status, based on age-distribution data. Adding the identical matrix for towns, small towns 

and villages is not possible, since the same information is not available for those type of 

spatial regions. Then, the individuals with unknown residence addresses have been 

distributed from country-level to county-level and form county-level to municipality-

level with a proportional distribution, where weight coefficient for each child region has 

been calculated as the sum of its population_by_gender_age matrix before the 

distribution.  

Individuals are initialized with a bottom-up approach, based on the 

population_by_gender_age matrices of the nodes having the highest level in the spatial 

tree, for which age-gender distribution data are available, namely, the city districts of 

Tallinn and Kohtla-Järve, other thirteen cities which don’t have district division, the cities 

without municipal status and the rural municipalities. After an individual is generated, the 

values associated with its age-gender pair in the population_by_gender_age matrices of 

the initialization node and all of its ancestor nodes are decremented. For example, if a 

thirty years old female is generated in Kehra city, the value in the thirty first column of 

the second row in the matrices of Kehra city, Anija rural municipality, Harju county and 

Estonia are decremented once. The generation of individuals continue till all the values 

in the matrices of all regions reach zero. Creating the individuals with the methodology 
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described above has several advantages. Firstly, it guarantees avoiding multiple 

generation of the same individual represented in aggregated age-distribution data of 

different spatial levels. Furthermore, the generation process can easily be validated by 

checking the matrices after it has finished.  

Six parameters are assigned to the individuals at the initialization: index, gender, age, 

settlement_code, municipality_code and county_code. Index is an integer in the range of 

[1, 1328890], used as a unique identifier for the individuals. The values of 

settlement_code, municipality_code, and county_code parameters depend on the type of 

the node individuals are initialized at, as explained in Table 2. As it can be seen from the 

table, the only thing remaining after the generation process of the population, is to assign 

a settlement for those who have been initialized based on the matrices of the rural 

municipalities. In other words, the people living in the settlements of a rural municipality, 

except for the cities without municipal status, must be distributed to the towns, the small 

towns and the villages of the corresponding rural municipality. Since, the exact numbers 

for the population living in those settlements are not provided in the statistical data, this 

distribution process is done after the generation of households, based on the number of 

households in the settlements. 

Type of the 

initialization node 

settlement_code municipality_code county_code 

City district EHAK code of the 

city district. 

EHAK code of the 

parent city. 

EHAK code of the 

ancestor county. 

City without 

districts 

EHAK code of the 

city itself, since it 

doesn’t have child 

nodes. 

EHAK code of the 

city. 

EHAK code of the 

parent county. 

City without 

municipal status 

EHAK code of the 

city without 

municipal status. 

EHAK code of the 

parent rural 

municipality. 

EHAK code of the 

ancestor county. 

Rural municipality Not assigned at the 

initialization, since a 

child settlement for 

the individual is not 

selected yet. 

EHAK code of the 

rural municipality. 

EHAK code of the 

parent county. 

Table 2. The values of the settlement_code, municipality_code and country_code parameters based on the 

type of the initialization node. 
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3.2.2 Generation of the households 

The households are initialized in county-level, based on households by county statistics 

of the year 2020, published by Statistics Estonia in [60]. Two parameters, namely, index 

and county_code are assigned to the households at this step, where index is an integer in 

the range of [1, 606000], uniquely identifying the household in the software, and 

county_code represents the EHAK code of the county the household is initialized in. 

Table 3 shows the number of households initialized for each county. 

Table 3. Total number of households by county (Retrieved from [60]). 

List of counties Total number of households 

Harju 285500 

Hiiu 5000 

Ida-Viru 66600 

Jõgeva 13100 

Järva 14200 

Lääne 9800 

Lääne-Viru 27900 

Põlva 11000 

Pärnu 39500 

Rapla 15500 

Saare 15100 

Tartu 70100 

Valga 13100 

Viljandi 20900 

Võru 18700 

TOTAL 626000 

 

Further distribution of the households from county-level to municipality-level and form 

municipality-level to settlement-level is done by using two different methodologies. 

Firstly, it is trivial that there is a positive correlation between the population size of a 

region and the number of households in that region. Considering that the number of 

people residing in each city and rural municipality is already known after the generation 

of the individuals, the households are disaggregated to the municipalities with a 
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proportional distribution based on the population size of the municipalities. An important 

point to take into consideration about this distribution is that using total number of 

individuals in the municipalities as the weight coefficient can lead to a scenario in which, 

regions possessing relatively larger proportion of children than the average of the country 

will have more households than adult individuals. Since assuming that all households 

contain at least one adult individual is a logical common approach in synthetic population 

generation [53], all regions must have at least as many adults as the number of households. 

Therefore, the number of adults in the municipalities is used as the weight coefficient for 

the distribution, instead of total number of individuals.  

Since information about the population size in majority of the settlements (towns, small 

towns and villages) is not present at this step, the same methodology can not be applied 

for disaggregation of the households from municipality-level to settlement-level. Thus, 

another parameter having positive correlation with number of households in a region, 

namely, number of dwellings is used instead of population size to distribute households 

to the settlements. Key point here is that statistics about the number of buildings in the 

settlements, or even the number of residential buildings are not enough alone to make 

correct deductions about the relative proportion of the number of households among the 

settlements. For example, two settlements having the same number of residential 

buildings can accommodate completely different number of households, in the case one 

of them is an urban centre and the other one is a rural settlement. The reason is that, in 

urban centres the majority of the residential buildings are apartments, while houses are 

the dominant residential building type in rural places. Despite, the difference in 

accommodation capacity, both an apartment and a house are reflected as a single 

residential building in aggregated statistical data. Therefore, the only justified 

accommodational indicator, which can be used to determine the proportions in household 

distribution is the data about the number of dwellings in the settlements. 

The number of dwellings for each settlement is determined after applying a series of 

operations on Estonian Address Data System (ADS) data maintained by Estonian Land 

Board [58]. The data provided in CSV format contain address information about more 

than two million spatial objects including residential buildings, non-residential buildings, 

cadastral units, traffic units, as well as, residential and non-residential premises, which 

are parts of the buildings having a separate address. So, firstly, the data have been filtered 

by object type, leaving only rows classified as residential buildings and residential 
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premises. Each residential premise in the data is associated with a residential building, in 

a way that HOONE_OID column of a residential premise shows ADS_OID value of the 

building it is located in. As the next step, residential premise rows also have been cleared 

from the dataset after assigning DWELLINGS column for each residential building row 

based on the number of associated premises. 

Another issue which has to be addressed about ADS data is the fact that, the buildings 

intended for daily working activities are also classified as the residential buildings, 

alongside the buildings used for permanent or temporary accommodation. In other words, 

the filtered data at this step contains all the buildings in the Republic of Estonia where the 

people’s presence is expected on a daily basis.  Therefore, all the non-accommodational 

building types like shops, office buildings, hospitals, schools, university buildings, public 

service buildings etc., as well as the buildings used for temporary accommodation 

purposes like hotels, hostels, motels, guest houses etc. must be cleared from the dataset, 

before it can be used in household distribution process, based on the fact that the vast 

majority of the households live in permanent accommodation type buildings in daily life. 

The only exception for the temporary accommodation facilities which must not be filtered 

from the dataset is the dormitory buildings which although being the temporary 

accommodation facilities, are used for long-term residence purposes by a small group of 

households. 

Openly published data from OpenStreetMap (OSM) project [61] have been used for 

performing the required filtering operations described in the previous paragraph. Since 

the process of building the geospatial environment of the country has been done in parallel 

with filtering of the residential buildings, firstly the footprints of all buildings in the 

country, alongside with the street networks, and other networked infrastructure types have 

been retrieved from OSM and integrated to the software. Next, the geometries of the 

geospatial entities tagged as non-residential building or amenity types in OSM are 

retrieved, grouped and added to the population generator.  

The indication points for the addresses are presented in L-EST97 coordinate system in 

ADS data, which is the main plane coordinate system used in Estonia by the official 

government registries. L-EST97 coordinates are calculated by applying Lambert’s two-

dimensional conical map projection on the geodetic coordinates [62]. Since the coordinate 

system used both in OSM and in the geospatial environment built as part of the population 



40 

generator software is a geodetic coordinate system, the coordinates given for the buildings 

in address system data had to be transformed to the WGS before the OSM data could be 

used in the filtering process. Therefore, I have developed a small Python program which 

takes a file containing L-EST coordinate pairs and converts them to the geodetic 

coordinate pairs, based on the inverse projection formulas for Lambert conformal conic 

projection given in [63] and the initial parameter values for LAMBERT-EST provided in 

[62]. The program is tested on a subset of ten L-EST97 coordinates randomly sampled 

from the ADS data and validated with Google Maps, before the coordinates of all 

buildings remaining in ADS data have been transformed to the geodetic coordinate 

system. After the coordinate system consistency in the used datasets has been assured, 

the buildings whose indication point lay inside the polygon of any geospatial entity tagged 

with non-accommodational values in OSM have been cleared from the data. 

Finally, TAISAADRESS column, containing the full addresses of the buildings has been 

processed and the county, the municipality and the settlement each building belongs to 

have been determined and assigned as STLMNT_1, STLMNT_2, and STLMNT_3 

columns, respectively. As a result, the number of dwellings for each spatial region has 

been calculated as the sum of the number of dwellings in all residential buildings located 

in that region. Afterwards, the households have been distributed from the municipality 

level to the settlement level proportionally based on the number of dwellings each 

settlement possess. 

3.2.3 Distribution of the individuals to the households 

At this step, the households have already been created based on the number of total 

households by county and then have been distributed till the settlement level. The 

generated individuals, as well, have fully been distributed till the municipality level, 

whereas a proportion of the population have also been assigned the settlement code, 

except for the people living in the towns, the small-towns and the villages. Therefore, the 

further development of the population generator continues with associating the 

individuals with the households. In order to distribute the population to the households in 

the right way, the household characteristics revealing their internal structures must be 

known. There are three statistical tables published by Statistics Estonia, providing 

information about the members of the households in Estonia. The tables presented in [64] 

and [65], group the households in all of the country by different household structure types 
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and shows the total population size living in each household structure type, respectively. 

Additionally, the households are grouped by the number of members in [66].  Table 4 

groups data published in [64] and [65] for the year 2020, whereas Table 5 represents the 

households aggregated by the member count for the year 2020, as it is provided in [66]. 

Household structure type Number of 

households 

Total population 

size 

HOUSEHOLD WITHOUT CHILDREN 470500 731600 

Single person aged under 65 154600 154600 

Single person aged 65 and over 111400 111400 

Couple without children, at least one 

partner is aged under 65 

91400 182800 

Couple aged 65 and over without children 42500 85000 

Other household without children 70600 197800 

HOUSEHOLD WITH CHILDREN 155500 584400 

Adult and child(ren) 20100 48100 

Couple with one child 42900 128700 

Couple with two children 40500 162000 

Couple with three or more children 17200 88900 

Couple with minor and adult children 19100 86400 

Other household with children 15700 70300 

TOTAL 626000 1316000 

 

Table 5. Number of households by household size type (Retrieved from [66]). 

Household size type Number of households 

One member 26600 

Two members 175100 

Three members 84700 

Four members 67000 

Five or more members 33200 

TOTAL 626000 

 

Table 4. Number of households and total population size by household structure type (Retrieved from [64] 

and [65]). 
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As it can be seen from Table 4 and Table 5, the data about household structures are 

provided as one-dimensional tables by Statistics Estonia. Additionally, another one-

dimensional data, which is the number of households in each settlement must also be 

considered, while distributing the population to the households. None of the one-

dimensional data mentioned above is enough on its own for the distribution process. For 

example, doing the distribution based only on household structure data can end up with 

violating the preservation of household distribution statistics by household member count 

in the final result. It is a very common problem in population generation as discussed in 

Section 2.3. The most widely used [51], [52] methodology for solving the analogical 

problems, namely, IPF,  is not applicable in our particular case, since some of the rows in 

Table 4 and Table 5 are not actual household types, but rather aggregation of numerous 

distinct household types. For instance, Adult and child(ren) row in Table 4, is actually the 

aggregation of an unknown number of disjoint household structure types like Adult and 

a child, Adult and two children, Adult and three children, etc. for which the information 

about the number of representative households is not available. The same can be said 

about Five or more members row in Table 5.  Furthermore, IPF method is not eligible 

enough when more complex set of data are planned to be generated, which represent the 

correlation of the individual-level characteristics of the members in the households both 

logically and realistically. The reason why both the words logically and realistically are 

emphasized in the previous sentence can be explained with an example of a hypothetic 

household generated as a representative of Couple with one child household structure 

type. If the age difference between one of the individuals assigned to the family as a 

parent and the individual playing the role of the child is, let’s say equal to five, it implies 

that the logical integrity is not preserved in the data produced as the result of the 

population generation process. On the other hand, the scenario when the age difference 

between the parents are more than twenty in half of the generated households, although 

not being evaluated as the violation of the logical integrity in the data, but at the same 

time cannot be accepted as a realistic population generation process, since it contradicts 

the real-life statistical data. 

Taking all the factors mentioned above into the consideration, Monte Carlo sampling 

methodology proposed as an alternative for IPF in [53] is utilized for assigning the 

individuals to the households. As a preliminary step, the statistical data related to the 

classification of the households by structure types and number of members given in Table 
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4 and Table 5 are disaggregated till the settlement-level with the same methodology used 

for distributing the total number of households in Section 3.2.2. After that, the individuals 

are distributed to the households by consecutive execution of three Monte Carlo sampling 

procedures.  

Before describing the MC sampling algorithms used, there are some assumptions and 

parameters which have to be explained.  Firstly, it is assumed that a household can have 

representatives from three different generations maximum. In other words, each 

household produced by the population generator can contain only children, parents and 

grandparents. The status of the individual in the household (child, parent, grandparent) is 

determined with age ranges controlled by several parameters. The parameters 

min_age_difference_gen and max_age_difference_gen regulate the age difference limits 

between the parents and the children and also, between the grandparents and the parents. 

The age difference between the adult individuals of the same generation (the parents 

couple and the grandparents couple) is controlled by the variables 

max_age_difference_male and max_age_difference_female. The parameters mentioned 

in the previous sentence define the maximum possible age difference in the couples for 

the cases when the male individual is older and when the female individual is older, 

respectively. The parameters min_child_age, max_child_age, min_parent_age, 

max_parent_age, min_grandparent_age, max_grandparent_age, are used for setting the 

age boundaries in the assignment process of the individuals. These parameters have the 

initial values provided in X, but their values are updated after every individual 

assignment, based on the age of the selected individual. 

Table 6. Age boundary parameters in the households and their initial values. 

Age boundary parameters Initial values 

min_child_age 0 

max_child_age 17 

min_parent_age min_child_age + min_age_difference_gen 

max_parent_age max_child_age + max_age_difference_gen 

min_grandparent_age min_parent_age + min_age_difference_gen 

max_grandparent_age max_parent_age + max_age_difference_gen 

Another assumption is that, each household has at least one adult individual, regardless 

of its status in the family. This necessity is represented with the adult_set parameter, 
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which initially has zero as the value for all households, and set to one with the assignment 

of the first adult to the household. Additionally, in order to be able to represent the family 

nucleus concept in the households, which holds for the majority of the families in any 

society, the assignment of the adults is regulated such that, the second individual of the 

same generation must have a different gender value than the first one. The parameters 

first_parent_gender and first_grandparent_gender get their values after the assignment 

of the first parent and the first grandparent, respectively and if the second individual of 

the same generation must be assigned to the household, it is selected from the subgroup 

of the population having different gender value with these parameters. 

As it is already mentioned, the overall process of the distribution of the individuals to the 

households is handled with three sequential Monte Carlo sampling algorithms. Since the 

correlative age difference between the members of a household plays an important role 

in the assignment of new members, and also considering that the individuals younger than 

18 years old are the only subgroup of the population whose statuses in the families are 

known from the prior, the first algorithm deals with the distribution of those individuals 

to the families as children. It can be noticed from Table 5 that, for some household 

structure types the exact number of children in the household is given, while for some 

others we only know the minimum number of children a representative household must 

contain. Therefore, the algorithm assigning the children to the households is composed 

of two parts. In the first part, the household structure types are assigned to the households 

and only the mandatory children assignments are done for every household. For example, 

the number of children assigned for the households with Coupe with two children, Adult 

and child(ren) and Couple with three or more children structure types at the end of this 

step are equal to two, one and three respectively. After the mandatory assignment process 

is finished, the remaining individuals under 18 are distributed among the households for 

which further assignment of children is possible. For instance, an individual can be 

allocated to a household with Other household with children family type during this stage, 

meanwhile further assignments for the specimen of Couple with one child structure are 

disallowed. 

One of the most frequently encountered problems in using the Monte Carlo sampling for 

constructing the internal structures of the households is that, as the sampling procedure 

advances to the final stages, the selection set gets more and more narrow, and there is a 

possibility that at some point the number of adults left in the selection set will be less than 



45 

the number of households whose members are not assigned yet. In this case, the 

generation of households which don’t contain any adult member is unavoidable. Running 

an additional subprogram, which takes an adult individual from one of the already 

inhabited households containing more than one adult, each time the program reaches the 

point discussed above, and replaces it with one of the children left in the selection set is 

offered as a solution to this problem in [53]. But, the point to be considered here is that, 

the intention of using the Monte Carlo sampling while disaggregating the population to 

the families in our particular case is not to produce a fully-probabilistic distribution 

mechanism, but rather, to utilize a semi-stochastic methodology which besides being 

more capable that the deterministic approaches, also preserves the consistency with the 

real-world household statistics at the same time. Therefore, the algorithm implemented 

for conducting the distribution process employs numerous validation mechanisms 

working based on the aggregated household statistics, at each step. Since, the solution 

method discussed above proposes to replace the members in the households which 

already have been generated and populated, with some other individuals having 

completely different personal characteristics (age, gender), adopting this solution could 

have created lots of unnecessary complexity in tracking the validity of the generation 

process. Thus, in order to address the issue in a more convenient and direct way, the 

second MC sampling procedure appoints an adult individual to each household before the 

distribution of the remaining adults are handled with a third sampling mechanism. 

Generally, an adult individual can be assigned all three possible statuses in the family 

(child, parent, grandparent), but the individual selected to be appointed to a household at 

this phase, must have an age value corresponding to either [min_parent_age, 

max_parent_age] or [min_grandparent_age, max_grandparent_age] age intervals 

created based on the parameter values of the household.  That is to say, the individual 

must be suitable to play the role of either a parent or a grandparent in the family. Owing 

to the fact that, during the distribution of the remaining adults, some households will not 

have any further adult assignment, by doing so, it is guaranteed that every family has at 

least one parent or one grandparent in the final result.  

Eventually, the final sampling algorithm distributes the unsettled adult population in such 

a way that the maximum possible consistency between the generated households and the 

statistical data is established in terms of the household structure types and the number of 

households by the member count. The algorithm follows an analogical approach used in 
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the process of children assignment to the households. The mandatory assignments based 

on the structure type of the family are conducted for all the households in the first place, 

and then, the adults which are not appointed to any family yet are distributed among the 

households having a structure type for which the exact number of adult members is not 

known. 

3.3 Activity and location assignment  

There are three types of activities assigned to the generated individuals: residence, work, 

and education. The common feature of these activities in real life is that, they all generate 

repetitive spatial patterns. That is to say, these activities are happening periodically, with 

a known time interval, and also the activity locations are permanent, at least in short term. 

The concept of the work activity and the education activity is clear and easy to 

understood, and the residence activity can be explained as the time every individual is 

spending with the other members of its household. If we would think of a single day in 

life of an individual as partitioned into two parts, namely, daytime and nighttime, then 

the work and the education activities would cover the daytime and the residence activity 

would correspond to nighttime activity. 

As have been discussed in Section 3.2.3, the residence activity has already been assigned 

to the individuals by distributing them into the households, and household_index attribute 

for every individual instance, points to the index attribute of the household instance it 

belongs to. Also, the locations of the residential buildings and the number of dwellings 

for each residential building are already known after the steps performed in Section 3.2.2. 

Therefore, the task at this step is to distribute the households to the residential buildings. 

This distribution process is done at settlement-level, where the households residing in 

each settlement are distributed to the residential buildings located in that settlement with 

a weighted random distribution, where the weight coefficient for a building is equal to 

the number of dwellings it has.  

The work activity assignment for the individuals are done based on two datasets. Firstly, 

the workplaces are generated by using the county-level data showing the total number of 

enterprises for the year 2020 by the employee count, published by Statistics Estonia in 

[67]. At this step the member variables min_employees and max_employees are also set 
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for the generated enterprises. The data provided in [67] includes all private enterprises, 

as well as, state and local government organizations and can be found in Table 7. 

Table 7. The number of enterprises in the counties by member count (Retrieved from [67]). 

County Less than 10 

employees 

10-49 

employees 

50-249 

employees 

250 and 

more 

employees 

Total 

Harju 72753 3701 724 122 77300 

Hiiu 966 22 9 0 997 

Ida-Viru 6075 340 57 11 6483 

Jõgeva 2179 107 12 0 2298 

Järva 2172 125 19 3 2319 

Lääne 1906 65 16 0 1987 

Lääne-Viru 4549 265 33 5 4852 

Põlva 2004 83 9 2 2098 

Pärnu 7829 363 54 4 8250 

Rapla 2910 136 16 0 3062 

Saare 3341 127 24 2 3494 

Tartu 13940 794 104 15 14853 

Valga 1959 82 21 3 2065 

Viljandi 3789 177 36 2 4004 

Võru 3038 121 22 3 3184 

TOTAL 129410 6508 1156 172 137246 

 

 

The overall process of assigning working individuals to the enterprises is very similar to 

the allocation of total population to the households in characteristics. Therefore, almost 

the same procedures applied in Section 3.2 are also utilized in the distribution of the 

employees to the enterprises with some differences in the constraint parameters. 

The disaggregation of the enterprises till the settlement-level is done with a methodology 

analogous to the one used for the distribution of the households in Section 3.2.2, with 

only difference being that, this time before distributing the workplaces from municipality-

level to the settlements, the number of active individuals who are eligible to work is 
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calculated for each settlement by filtering its population with min_work_age and 

max_work_age parameters, and used as the weight coefficient instead of the number of 

adults. The reason is that, while the number of households in a settlement depends on the 

number of adults in that settlement, the proportional distribution of the enterprises can 

only be performed based on the size of the active population in each spatial region.  

Next, the county-level statistics about the number of employed persons by gender are 

retrieved from [68] and disaggregated till the settlement-level in a similar manner to the 

distribution of the size of total population. The difference between these two processes is 

that, this time, the number of enterprises in the settlements is used as the weight 

coefficient in the proportional distribution from municipality-level to the settlement-level, 

instead of the number of households. 

Finally, the assignment of working individuals to the enterprises is performed in two steps 

with a Monte Carlo sampling methodology alike the one used for distribution of the 

children to the households.  First, the mandatory assignments for the enterprises based on 

the value of the min_employees member variable are done. Then, the remaining working 

individuals who have not yet been assigned to any enterprise after the initial step, are 

randomly distributed to the enterprises with the selection criteria that the number of 

assigned employees for the selected enterprise must be less than the value of its 

max_employees member variable before a new employee is appointed.  

The localization of the workplaces is not performed, since it has not been possible to 

collect sufficient data about the location coordinates of the enterprises existing in the 

country. 

The educational activities are assigned to the individuals based on the data provided for 

the project by the Geography Department of the University of Tartu. The dataset contains 

information about the location coordinates and the number of students for all educational 

facilities located in the Republic of Estonia, which are classified under six groups, 

namely, kindergartens, basic or secondary schools, colleges, universities, vocational 

schools and hobby schools.  Since, the location of the both residence addresses and the 

educational facilities are known at this step, first, the candidates list is created for each 

educational institution based on the age constraints and the distance between the school 

and the residence addresses, then the students are randomly sampled from the candidates 
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list. Considering that the methodology determining the candidates list is relatively 

complex, further elaboration can best be given over a particular example. Let’s say that 

forty individuals must be assigned to a kindergarten. There is a min_age and max_age 

parameters for each facility type, which is determined as two and six, respectively, in the 

case of kindergartens in the generator software. Also, considering that the proportion of 

the students for each unique age in [min_age, max_age] range cannot be the same for the 

most of the educational institutions, there is a list of weight coefficients for each school 

type defining the proportion of students by unique ages, which is selected as [0.1,0.15,0.2, 

0.25,0.3] for this particular example. In other words, by selecting the weight coefficients 

list as it is given in the previous sentence, it is assumed that 10% of the students at 

kindergartens are two years old, 15% are three years old and so on. Another parameter 

used in selecting the candidate list is the spatial distribution range parameter which 

defines how sparsely the residence addresses of the candidates will be distributed, which 

is let’s say equal to 20 in this example.  Firstly, the selection list is cleared from the 

individuals whose age value is out of [min_age, max_age] range or for whom an 

education activity is already assigned. Then, for an age m in [min_age, max_age] range, 

the number of the representatives which must be added to the candidates list, let’s say 

denoted by P(m) is calculated as: 

𝑃(𝑚) =
𝑐𝑚

∑ 𝑐𝑛
max _𝑎𝑔𝑒
𝑛 = min _𝑎𝑔𝑒

 × 𝑡 × 𝑑 (14) 

where, c is the weight coefficient, t is the total number of students must be assigned to 

the school and d is the spatial distribution range parameter. In our particular example, the 

number of two years old candidates must be 80, the number of three years old candidates 

must be 120 etc. In the next step, the selection list is sorted by the distance between the 

residence location of the individual and the location of the educational facility and first 

P(m) individuals for the age m in [min_age, max_age] are added to the candidates list. In 

this way, the candidates list of size 𝑡 × 𝑑 is created for the school with the capacity of 𝑡 

and, finally, the students for the facility are randomly sampled from the candidates list.
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4 Implementation 

This section is organized in the following manner. Section 4.1 lists the data used in the 

thesis work and the providers. Software dependencies are discussed in Section 4.2, 

meanwhile Section 4.3 explains the software architecture. Finally, Section 4.4 describes 

the Monte Carlo sampling algorithms used in this thesis work in terms of the flowchart 

diagrams and the source code. 

4.1 Data 

One of the biggest advantages of the software is that, all input data used in the 

implementation process is open access. Two types of data have been collected for 

building the synthetic population generator, which are geospatial vector data and 

aggregated socio-demographical statistics. The full list of the dataset utilized in the 

software grouped by the providers is presented below: 

1. The Department of Geography, University of Tartu. 

▪ Geospatial vector data for the zone distribution. 

▪ Geospatial vector and statistical data for the educational facilities located in the 

Republic of Estonia. 

2. Estonian Land Board. 

▪ Address Data System (ADS) [58]. 

▪ Geospatial vector data for administrative and settlement division (EHAK) of the 

Republic of Estonia [57]. 

3. Statistics Estonia. 

▪ Classification of Estonian administrative units and settlements (EHAK) [56]. 

▪ RV0240: Population by sex, age and place of residence after the 2017 

administrative reform [59]. 

▪ LEM02: Households by county [60]. 
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▪ LEM01: Households by structure [64]. 

▪ LEM05: Population in households by household structure [65]. 

▪ LEM04: Households by size [66]. 

▪ ER028: Enterprises in the statistical profile by year, county and number of 

employees [67]. 

▪ TT243: Employed persons by sex, county and type of employer [68]. 

4. OpenStreetMap project [61]. 

▪ Building footprints and street network. 

4.2 Software dependencies 

The software is developed in Python programming language with the version 3.9.1. The 

main reason for selecting Python for the implementation is that it is a dynamic 

programming language containing numerous convenient libraries that can 

straightforwardly serve the needs of the synthetic population generator. Furthermore, 

Python provides an object-oriented approach with a faster development process and rather 

easily understandable syntax.  

One of the most essential frameworks utilized in this thesis work is Pandas (version 1.1.5), 

which has been extensively used in data pre-processing and manipulation operations. 

Specifically, it supplies wieldy tools for bidirectional conversion between the .csv and 

.xlsx files and data frame objects for processing and output generation, which are 

frequently used during the implementation. Considering that the geospatial vector data 

are employed rather often in the program, the GeoPandas (version 0.8.1) extension is 

particularly significant to be able to manipulate the spatial datasets. OSMnx presented in 

[69], allows the automated data download from OpenStreetMap project geodatabases.  

The library (version 1.0.1) is utilized in this thesis work to retrieve the street networks as 

well as building footprints grouped by the tags attached to them in OpenStreetMap, which 

later are used in the filtering of the residential buildings. Moreover, other libraries such 

as NumPy (version 1.19.4), Shapely (version 1.7.1) and Python standard library modules 

like random and copy are also employed to address various implementation requirements 

of the project. 
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Meanwhile, the visualization of the geospatial vector data is performed through a GIS 

software called QGIS (version 2.8.6). As the debugging of the geospatial data is relatively 

difficult, especially when the number of the geometries in the data are of thousands, QGIS 

has been particularly handy in detecting differences between the raw and the processed 

vector data by letting them to add them in a layered structure.  

4.3 Software architecture 

The synthetic population generator is built by adopting an object-oriented programming 

approach. There are five classes used in the program which are: Settlement, Individual, 

Household, Enterprise, and Educational_Facility. The mentioned classes are defined 

together with their member attributes and methods in Settlement.py, Individual.py, 

Household.py, Enterprise.py and Educational_Facility.py program files, respectively. 

PopGen.py is the main program file of the software, meanwhile PopGen_methods.py and 

Debug_methods.py contain the functions used in the development and the validation of 

the synthetic population generator. The interaction of the software with the input data is 

organized through Data.py program file and Extract_results.py produces the outputs 

under the Results directory. Parameters.py and Enums.py files define all the parameters 

and enumerated data types used in the software. Spatial_data_preprocess.py file is not 

actually the integral part of the population generator architecture, but rather includes all 

the functions conducting necessary pre-processing steps for the geospatial input dataset. 

4.4 Key algorithms 

There are five MC sampling algorithms in the program composing the population 

synthesis and activity assignment procedures, which are the core parts of the population 

generator. Three of them are used in the assignment of the population into the households 

as discussed in Section 3.2.3, one is utilized for appointing the working individuals to the 

enterprises (Section 3.3) and the final MC sampling algorithm selects students for the 

educational institutions. Since, the last one has already been explained comprehensively 

over an example in Section 3.3, only the function performing the most crucial task of the 

algorithm, which is selecting n individuals from the selection list residing closest to the 

location coordinate of the educational institution is provided in Figure 8. The flowchart 
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diagrams explaining the overall structure of the remaining MC sampling algorithms are 

presented in Figure 4, Figure 5, Figure 6, and Figure 7. 

 

Figure 4. The flowchart diagram of the MC sampling algorithm distributing the children to the households. 
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Figure 5. The flowchart diagram of the MC sampling algorithm making the first adult assignments for the 

households. 
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Figure 6. The flowchart diagram of the MC sampling algorithm distributing the remaining adults to the 

households. 
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Figure 7. The flowchart diagram of the MC sampling algorithm assigning the working individuals to the 

enterprises. 
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get_nearest_n_people(point_of_interest, selection_list, n): 

for individual in selection_list: 

individual.distance = 
individual.address_point.distance(point_of_interest) 

 

sorted_selection_list = sorted(selection_list, key=lambda x: 
x.distance, reverse = False) 

 

nearest_n = sorted_selection_list[:n] 

return nearest_n 

Figure 8. Algorithm selecting n individuals residing closest to the point_of_interest. 

 

As it can be seen from Figure 8,  the choice of the individuals which must be added to the 

candidates list is done by first setting the distance variable of all individuals in the 

selection list based on the distance between their  residence address coordinates and the 

point of interest, which is the address coordinate of the educational facility in the case of 

the fifth MC sampling algorithm described in Section 3.3. Then, the selection_list which 

contains instances of the Individual class is sorted in the ascending order by the value of 

the distance variable of its elements. Finally, first n members of the list are returned as 

the n individuals  
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5 Results 

This section presents the results of the steps followed in the development of the synthetic 

population generator, validates them with the aggregated statistical data and describes the 

final outcome of the software. 

First of all, by building the spatial hierarchy of the Republic of Estonia and integrating 

the geospatial vector data for all distinct spatial regions, it is ensured that all spatial 

regions at level zero (Figure 9), level one (Figure 10) and level two (Figure 11 and Figure 

12) can be represented as the aggregate of their child regions and therefore, the spatial 

data collected at each level can also be disaggregated till the settlement level, just like the 

socio-demographical data. 

Then, as the initial step of the population generation process, the individuals given in [59] 

with unknown residence addresses have been distributed from country-level till the 

municipality level in order to guarantee the integrity among all instances of the Individual 

class, before proceeding to the disaggregation from the municipality-level to the 

settlement-level. Table 8 presents the total population size in county-level as it is 

published in [59], in comparison with the number of individuals generated for each county 

by the software, after the individuals with unspecified residence information are 

distributed. 

List of counties Total number of 

individuals as it is 

provided in [59] 

Number of generated 

individuals after the 

proportional distribution 

Harju 605029 605973 

Hiiu 9315 9330 

Ida-Viru 134259 134469 

Jõgeva 28442 28486 

Järva 30174 30221 

Lääne 20444 20476 

Table 8. Comparison of the county-level population size before and after the proportional distribution of 

the individuals with unspecified residence information. 
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List of counties Total number of 

individuals as it is 

provided in [59] 

Number of generated 

individuals after the 

proportional distribution 

Lääne-Viru 58862 58954 

Põlva 24647 24685 

Pärnu 86185 86319 

Rapla 33282 33334 

Saare 33083 33135 

Tartu 153317 153556 

Valga 28204 28248 

Viljandi 46161 46233 

Võru 35415 35470 

County unknown 2070 0 

TOTAL 1328889 1328889 

 

As it is mentioned in Section 3.2.2, since it has been needed for the second-layer filtering 

of the residential buildings, the footprints of all buildings in the country, alongside with 

the street networks have been retrieved from OSM [61] and integrated to the software and 

while doing that, the geospatial entities tagged as non-residential building or amenity 

types in OSM have been grouped together. Figure 13 demonstrates the result of the 

process with the map of Mustamäe district where some non-residential building type 

groups are presented in different colors. 

The final results of the two-layered filtering discussed in Section 3.2.2 are demonstrated 

in Figure 14, again on the example of the Mustamäe district, so that what has been done 

at this step can be better understood as the continuation of the Figure 13. 

Since, the distribution of the population to the households is performed by three 

sequentially executed semi-stochastic Monte Carlo sampling algorithms and four 

independent parameters, namely, min_age_difference_gen, max_age_difference_gen, 

max_age_difference_male and max_age_difference_female have been utilized in the 

distribution procedure, the overall process gives different results for different variations 

of the values assigned to the mentioned parameters. Therefore, experiments have been 

conducted with several value set configurations, and as the result of the tests done, the 

optimal set of values for the aforementioned independent parameters have been 
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determined as [19,46,6,2], respectively. The outcome of the distribution process, still 

contain slight differences, even when the values of the independent variables taken as 

constant, due to random sampling behaviour. Table 9 compares the average results of the 

four different generations done with the optimal parameter value sets with the aggregated 

statistical data presented in [65]. 

Household structure type Total population as 

the average result of 

four different 

generations 

Total population 

size as it is in [65] 

HOUSEHOLD WITHOUT CHILDREN 736043 731600 

Single person aged under 65 154600 154600 

Single person aged 65 and over 111400 111400 

Couple without children, at least one 

partner is aged under 65 

182800 182800 

Couple aged 65 and over without children 85000 85000 

Other household without children 202243 197800 

HOUSEHOLD WITH CHILDREN 592846 584400 

Adult and child(ren) 50207 48100 

Couple with one child 128700 128700 

Couple with two children 162000 162000 

Couple with three or more children 90955 88900 

Couple with minor and adult children 88911 86400 

Other household with children 72073 70300 

TOTAL 1328889 1316000 

 

The reason why the total population size generated by the program is not same with the 

statistical data is that, the individuals are generated based on the data published in [59]. 

But, the fact that the remaining population which are not taken into consideration in [65] 

have been distributed to only the household structure types which accept additional 

assignments, besides the mandatory ones in the MC sampling algorithm, validates that 

the distribution of the population is conducted as it has been intended.  

Table 9. Comparison of the total population by household structure type generated by the software with 

aggregated statistical data provided in [65].  
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With the same analogy, the country-level results of the MC sampling process used in the 

distribution of the employees to the enterprises is compared with the aggregated statistical 

data provided in [67] in Table 10. 

 Less than 10 

employees 

10-49 

employees 

50-249 

employees 

250 and 

more 

employees 

Total 

Aggregated 

data 

129410 6508 1156 172 137246 

Generator 129407 6511 1156 172 137246 

 

Table 10 shows that MC methodology adopted for distribution of the working individuals 

to the enterprises produces very similar results to the real-world statistical data it has been 

built on. 

After the population synthesis is conducted, totally 606000 households have been 

generated based on the statistical data and the sum of dwellings in all residential buildings 

after two-layered filtering is equal to 804862, which makes sense, considering the cases 

of uninhabited dwellings and multiple dwellings being owned by the same household. 

Another point which must be noted is that, the number of dwellings located at each 

settlement is greater than or equal to the number of households, which let’s to assign a 

residence location coordinates for all households, and of course some dwellings are left 

inhabited. The chance of a residential building having 50 dwellings (which makes it an 

apartment) left inhabited after the distribution of the households to the dwellings is 

negligible, but a residential building having single dwelling (a house) can be unpopulated 

after the distribution process, which totally conforms to the real-life scenarios. The 

outcome of the location assignment to the residence activity can be observed from Figure 

15 with the example of Mustamäe district. 

The results of the educational activity assignment to the population based on the location 

of the educational facilities can be seen in Figure 16, based on the example of Tallinna 

Mustamäe Gümnaasium. The spatial_distribution_range parameter is chosen as 10 in the 

Table 10. Comparison of the number of the enterprises in the country by member count between the 

aggregated data and the results of the generator. 
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particular example, meaning that 854 students for the school have been sampled from 

8540 nearest-living proper-aged individuals. 

As the final result, the generator featuring all the aspects mentioned during this section, 

produces a dataset covering a synthetic population and the majority of the permanent 

social links among the synthetic individuals. The dataset also allows to construct some 

repetitive spatial patterns based on the location coordinates assigned to the activities. 
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Figure 9. The Republic of Estonia as the aggregation of the counties (Plotted based on data retrieved from 

[57]). 

 

Figure 10. Harju county as the aggregation of its cities and rural municipalities (Plotted based on data 

retrieved from [57]). 
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Figure 11. Tallinn city as the aggregate of its city districts (Plotted based on data retrieved from [57]). 

 

 

 

Figure 12. Kiili rural municipality as the aggregate of its settlements (Plotted based on data retrieved from 

[57]). 
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Figure 13. Map of the Mustamäe district with some non-residential buildings being grouped by OSM tags 

(Composed based on data retrieved from [61]). 

 

Figure 14. Results of the two-layered filtering of the residential buildings with the example of Mustamäe 

district (Composed based on data retrieved from [58], [61]). 
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Figure 15. Results of the location assignment for the residence activity with the example of Mustamäe 

district. 

 

Figure 16. The spatial distribution of the residence addresses of the individuals assigned to Tallinna 

Mustamäe Gümnaasium, when spatial_distribution_range parameter chosen as 10. 
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6 Summary 

This thesis work started with a comprehensive literature study on the epidemic modelling 

and the synthetic population generation fields, analyzing the key factors determining the 

behaviour of a disease spread, the methodologies utilized in modelling a viral pathogen 

transmission, the datasets used in the existing models, and possible approaches for 

producing a dataset convenient for conducting epidemic simulations. As the result, a 

Monte Carlo sampling based semi-stochastic synthetic population generator, which is the 

main contribution of this work, was developed with an object-oriented approach 

employing the open-access aggregated statistics and geospatial vector data. The synthetic 

population produced by the software has proved itself to be capable to represent the 

overall socio-demographic characteristics of the Estonian population, during the 

validation process with the real-world statistical data, which makes it capable to imitate 

the behavioural characteristics of the society in large-scale simulations. The generated 

dataset covers the majority of the long-term social connections and interactions existing 

among the synthetic individuals composing the population. The spatial aspects integrated 

to the software lets it possible to make deductions to some extend about collective 

repetitive spatial patterns emerging in the society, which is of the crucial importance in 

the epidemic modelling. The original usage intention for the software is to supply the 

free-scale network-based disease spread simulations conducted in the scope of COVSG22 

project with a real-world based dataset. Therefore, being able to reflect the social 

connections in the population in a realistic way was prioritized during the development 

process. Meanwhile, the parametrized structure of the population generator makes it also 

useful for other type of Monte Carlo simulations and since, the geospatial environment 

has been built in parallel with the population, another possible adaptation choice for the 

software is to be converted to the large-scale agent-based simulator in the future. 

Since, synthetic population generation is a broad concept, there are limitless further 

improvement possibilities. For example, one of the feasible additions to the software is to 

integrate other type of activities assignment for the generated individuals in order to be 

able to create temporary social interactions besides, the long-term connections existing in 

the current version. 
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