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Abstract 

This paper acquaints an improved idea with a prediction of the availability of bike-sharing 

terminals accusing terminals of high precision by using prior machine and deep learning 

techniques and by building a new approach based on them. The sample datasets that are 

utilized to prepare the deep learning model and to be trained to test accuracy contains 

genuine bike terminal information for the city of Paris, France and Oslo, Norway. All 

things considered, the framework can make it as convenient as conceivable subsequently 

it permits alterations later and can be applied to any city or spot without any problem. 

Processing the real-time location information of driver or user and historical data about 

bike terminal availabilities, the prediction engine predicts the availability of the bike-

sharing terminals around and declares the terminal with the best availability at that time. 

To accomplish this result, a deep learning model which is based on Long Short-Term 

Memory (LSTM) was created and prepared with genuine datasets in the extent of this 

examination. Other than those, according to the product point of view, the framework in 

general uses appropriated frameworks to push forecast results to customer applications or 

administrations, which was determined by devouring datasets, in a solid way and with 

high accessibility. The developed framework offers some benefit to the clients who use a 

website or mobile application, where an interactive dashboard could take place and into 

which the developed prediction model is embedded, by assisting them to find the most 

accessible and the best available bike terminal on or around their planned path. 

Nowadays, bike sharing is increasingly used, therefore a prediction system with satisfying 

accuracy would be considered useful. 

 

This thesis is written in English and is 64 pages long, including 7 chapters, 24 figures and 

9 tables. 
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1 Introduction 

Bikes have kept their exceptional status within transportation systems for decades. 

Moreover, bikes have attracted more attention particularly in relatively large cities and 

metropolitan areas. Several factors are leading the growth in the vogue of bike usage 

around the world. Bikes have been propounded within the context of discussions about 

environmental issues such as arising air pollution, overconsumption of fuel oil, or noise 

pollution because they are considered environmentally friendly. In addition, they have 

the potential to mitigate traffic congestion risk, especially in metropolitan areas. Looking 

at the factors from a different standpoint, Bernhard states that bikes were in use and new 

bikes were sold as a rising trend during the COVID-19 breakout in 2020. As noted by 

Girardi, the general manager of Full Speed Ahead Europe, in the article, the demand for 

bicycles might have reared as swimming pools and gyms were closed for two weeks 

during the pandemic. It is also stated in the same article that people were motivated for 

bicycle usage by some governments through reward programs oriented to new bicycle 

buyers during the COVID-19 breakout. For example, in Italy, residents who bought an 

engineless vehicle were able to receive a €500 honorarium. For this program, €210m were 

allocated [1]. Like public vehicles and taxis, the growing demand for a bicycle as a vehicle 

has also given birth to bike hiring systems that allow people to utilize allocated bicycles 

around the city when needed for the payment. This is called bike-sharing, bicycle sharing, 

or bike-sharing system (BSS). A BSS in a city is built over a network of self-service bike 

stations, in other words, terminals that are composed of a series of docks. In this system, 

a bike is checked out by a customer for payment. A loyalty membership card or mobile 

application or credit/debit card can be used to complete the check-out process. After 

riding to the destination, the hired bicycle can be parked in a dock of another 

terminal/station in the network of the same BSS.  
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Figure 1. A terminal of Hubway (now called as Bluebikes) BSS in Boston [2] [3] 

 

As a result of the growing importance of bikes, in parallel, bike-sharing has also gained 

attention in recent years around the world. Being easy-to-use and the availability of 

flexible transportation opportunities that can save the time of pedestrians, professional 

drivers, and tourists can be counted as two major reasons for the aforementioned demand 

rise. McDonnell states that there is a BSS in San Francisco that commenced in 2013, and 

as of 2015, around the city, there were 70 terminals [4]. It is also stated by Glusac that 

the size of the BSS of Indigo, a mass transportation company, in Philadelphia is estimated 

to be doubled within the upcoming 5 years, and it will occupy half of the electric fleet in 

the city. On the other hand, the Divvy BSS in Chicago, which supplied 3,500 more e-

bikes in 2020, is supposed to operate 10,000 e-bikes by 2022. The main goal here is to 

scale the accessibility of the system up to 100 percent of the city [5]. Because bike-sharing 

systems have been drawing an augmenting interest all around the world and accordingly 

have been actively used by customers, being informed about the availability of a bike 

terminal station has been a crucial issue as well. Because it affects both customer 

decisions and bike allocation plans of bike-sharing companies.  
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1.1 Problem 

The main problem which was on the target within the context of this work is how to find 

the most available and accordingly the most preferable bike-sharing station around the 

current location or particularly on the planned path of an end-user who can be a driver or 

a pedestrian. The key criteria to be considered here is the bike availability ratio of a bike 

terminal which is basically the percentage of available bikes to the number of free docks 

within the capacity of a station. The developed prediction engine shall make predictions 

for the availability of all active bike terminals falling into the range around the end-user, 

processing geolocation information and historical data as long as historical data, which is 

the main input of the engine, can be provided to the system.  

 

Figure 2. A simple mock-up about the problem and the proposed solution 

1.2 Motivation 

There are several motivations to study the aforementioned problem. To begin with, the 

developed system shall be dynamic, portable, and integrable to some extent, which means 

the prediction engine is proposed to make predictions for the bike stations in any region 

if historical data about bike terminal usage in that region can be fetched and to be used 
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within the back-end side of any integrable platform such as a desktop application, a 

webpage, or a mobile application. Such an easy-to-reach and easy-to-use platform can 

boost the awareness of end-users on the utilization of bike-sharing. The more a bike-

sharing system in a city is used, the less traffic congestion and even air pollution are 

expected to exist around the affected region. 

1.3 Contributions 

Within the context of the thesis, there are two major contributions.  

• A deep learning model that outperforms state of the art and some common 

machine learning and deep learning models in terms of accuracy was developed. 

It forms the basis of the prediction engine; hence it will help the system outcome 

relatively good predictions regarding bike station availabilities. 

• The prediction engine proposed to be developed has a dynamic structure so that it 

can be used in any region for which historical data about bike terminal usage can 

be fetched and processed. Pieces of training were done over a limited number of 

datasets from different cities, but ultimately, they fed the development process of 

the model. 

1.4 Paper Structure 

The paper was written in English. The paper begins with two cover pages, one is in 

English and the other one is in Estonian. Then an abstract in English, page index and lists 

of abbreviations, tables, and figures take place. The main content of the paper begins with 

the introduction chapter, the first chapter, where the problem, motivation, and paper 

structure are mentioned. The second chapter is the background part where some 

preliminary information about machine learning and deep learning are given and a 

literature review to see the state of the art regarding the main problem is provided. The 

third chapter is the data part where datasets used to train the developed model, how they 

were scrapped and built, and how they were processed are explained. The fourth chapter 

is about the developed prediction model. In this chapter, details about the developed 

model, differences with the baseline model, and an evaluation of the prediction accuracy 

benchmark take place. The fifth chapter covers software development environments and 
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tools used within the scope of this study and the architecture of the proposed application. 

The sixth and final chapter is dedicated to conclusions regarding the study and some 

information about work that shall be done in the future. The paper ends with a list of 

references and appendixes. 
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2 Background 

As mentioned before, to solve the said prediction problem, a deep learning model which 

is an LSTM-based solution was developed. Before explaining the development process 

in detail within the scope of the study, the background must be clarified. Therefore, some 

brief information about what machine learning and deep learning are and state of art 

covering the status of the results from the recent studies on the problem must be provided. 

2.1 Machine Learning and Deep Learning 

Artificial intelligence (AI), the ability of a computing machine to simulate human 

attitudes to solve complex problems, has several subfields. Machine learning (ML) is one 

of the ways to use AI in a computer system. This subfield concerns how to teach a 

computer to solve complex problems without being particularly programmed for them. 

Within this context, essentially, computers are trained to accomplish complex tasks in 

their effort by experience with historical data. Today, there are manifold applications of 

ML. For example, a computer can be trained to recognize the pictures of several dissimilar 

people. It would be quite time-wasting to develop an application that teaches the computer 

the face pictures one by one. It could be done at a high pace by human beings, but when 

it comes to expecting a satisfying performance from a computer, it can be considered 

tough to let the machine memorize each picture. Hereat, an ML approach can let the 

computer learn to program itself based on processed experience data, to complete the 

objective faster on behalf of the human effort it imitates. On the other hand, ML can be 

used to make predictions in brief. There are several ML models and algorithms to be used 

today to make predictions, each one being effective on different data types, taking 

different times, and resulting in different performances. Concerning data and what to be 

estimated, a programmer decides on an ML model to be used, then provides data as a set 

of input to it and runs it to train the computer itself. As a result, the system outcomes a 

prediction that has been generated by extracted patterns based on the training data. 

Accuracy is calculated by some metrics to observe how far actual data and predicted data 

are from each other. The less error means the better accuracy. The amount of data to be 

supplied to the ML model is also significant; the more data the computer is trained with, 

the better accuracy the model results in. Additionally, existing ML models and algorithms 
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can be tuned up by modifying structure or parameters by programmers too, to yield better 

accuracy benchmarks. [6] 

As another real-life example for ML models, decision trees can be taken into account. To 

solve the problem of predicting house prices, the data set below can be supplied to the 

decided ML model to be processed to train the computer that is expected to estimate the 

price of an upcoming house. 

ID Room number Price 

1 4 €250,000 

2 2 €150,000 

3 3 €200,000 

Table 1. Example simple data set for house price prediction 

 

Here, the question “Is the room number less than, greater than, or equal to 3” can be put 

into the centre of the training to be used for making a decision. If the upcoming house has 

3 rooms, its price is predicted to be €200,000. If it has 5 rooms, since 5 is greater than 3, 

its price is predicted to be €250,000 by the ML model. 

Deep learning (DL) is an important subset of machine learning. It is fed by artificial neural 

network layers that are modelled and configured to operate like human brain cells and to 

process huge amounts of data. One of the important features of DL is that multiple data 

sources can feed inputs of models that analyse in real-time. As a DL model should be able 

to fetch data from multiple sources simultaneously, there are graphical processing units 

(GPUs) particularly optimized for DL training models. Compared to ML, more complex 

tasks can be accomplished by DL and new features can be produced by DL models by 

themselves. Today, DL is used for several fields such as social media where user profiles 

are extracted and advertisements are shaped based on user data like a large number of 

images, finance where stock values are estimated and trading strategies are developed, 

healthcare where patient sicknesses are guessed, cybersecurity where new threatening and 

suspicious activities can be recognized, or digital assistants like Siri, Cortana, Alexa 

where natural language processing is utilized [7]. 
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2.2 State of the Art 

There have been several studies over the main problem of the paper, bike terminal 

availability, over several years. It means that research about the problem has not been 

over yet, and new solutions have been provided to have ascended performances gradually. 

Essentially these studies differ from each other by several aspects such as used methods, 

accuracy performance, or dataset structure. Within the context of a literature review about 

state of the art, the most significant factor to take into account is accuracy performance 

that is measured by some common metrics such as mean absolute error (MAE), since its 

enhancement is one of the main objectives to fulfil in the ongoing studies. 

Xu, Ji, and Liu conducted a study about bike demand prediction for station-free bike-

sharing systems [8]. The covered region in this study was the downtown area of Nanjing 

City, the capital city of Jiangsu province on the east coast of China.  

One of the main contributions of this study was to work on a bike-sharing network that is 

not station-based. Essentially data processed within the scope of the study are time-series 

data which are constituted by measurements over time. On this wise, another main 

contribution of this study is the tuned-up deep learning approach that is based on Long 

Short-Term Memory (LSTM) Recurrent Neural Network (RNN) and outperformed 

conventional time-series prediction models and machine learning algorithms. According 

to the authors of the paper, conventional artificial neural network (ANN) does not account 

for temporal dependencies in the model structure, that is why it cannot completely handle 

time-series data characteristics. A recurrent neural network is preferred as it is a feed-

forward neural network structure. Feed-forward neural networks perform at satisfying 

benchmarks on time-series data. On the other hand, very long-time lags cannot be handled 

by conventional RNNs, therefore LSTM RNN was claimed to fit the time-series data by 

the authors of the paper. It can also be counted among the main contributions of the study 

that the developed dynamic forecasting model has the potential to improve the operational 

effectiveness of the aforementioned station-free bike-sharing system in the city and to 

rebalance the system by forecasting demand gaps.  

Time-series data covering station-free bike sharing usage in the city were collected for 

one month through a crawler. The lowest missing rates were detected to exist in the 

consecutive 14 days between June 19th, 2017 and July 2nd, 2017. Eventually, the built 
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dataset consisted of 0.178 billion geolocation data. An example fetched data JSON that 

corresponds to a row in the dataset is as below:  

{ 

“2017/06/23 21:37:34”,  

“object”: { 

“bikeIds”: “0250045914#”,  

“distX”: 118.73578455079466,  

“distY”: 32.04531884191313 

} 

} 
 

Figure 3. Example JSON object referring to a record for Nanjing City 

Field Description Example 

Timestamp Timestamp of the record creation 2017/06/23 21:37:34 

bikeIds Bike ID 

The first field in the sub-object “object” 

0250045914# 

distX Longitude of a bicycle 

The second field in the sub-object “object” 

118.73578455079466 

distY Latitude of a bicycle 

The third field in the sub-object “object” 

32.04531884191313 

Table 2: Dataset Model for the Station-Free Bike Sharing Network in Nanjing City 

 

The authors also claim that exogenous data which are weather data, air quality data, and 

land-use patterns were also collected to boost the accuracy benchmark. Hourly historical 

weather data were fetched from Nanjing Meteorological Bureau and the hourly air quality 

data were fetched from the National Environmental Monitoring Centre of China. Finally, 

point of interest data was fetched from the Baidu map API to generate land-use patterns. 
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Before going on processing the dataset built up by records like above, the authors of the 

paper first divided the city into traffic analysis zones (TAZs), each one being 1 km2. 

Eventually, there were 118 TAZs. For each TAZ, trip production and attraction models 

for bicycles were generated for four different time intervals: 10 minutes, 15 minutes, 20 

minutes, and 30 minutes. A GIS tool was used to match each TAZ with trip data for trip 

production and attraction models as well as to calculate the centroid distance between 

each adjacent TAZs.  

 

Figure 4. Nanjing downtown area divided by TAZs 

 

Data covering the first 10 days were chosen to be the training dataset and those covering 

the last 4 days were chosen to be the validation dataset, in this study. The built dataset 

with trip demand data along with external data which are weather, air quality, and the 

land of use were then normalized, encoded, and undergone a fusion process to get ready 

to be processed and used for prediction by the developed deep learning architecture. Here, 

the developed deep learning architecture is basically based on LSTM RNN as mentioned. 

But to ascend accuracy performance, a basic LSTM RNN implementation was tuned up 

by altering some critical parameters. The model optimization, called sensitivity analysis, 

was carried out to tune up four parameters of LSTM RNN: training epoch number, batch 

size, node number, and dropout rate. The Adam optimization algorithm was used, and the 

aforementioned parameters were set to 80, 600, 60, and 0.07 respectively. 

Within the context of evaluating predictive performance of the tuned-up LSTM-based 

model in this study, there are several findings. First of all, the more various type of data 
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the processed dataset had, the lower MSE scores were. For example, for the 30-minutes 

interval in a TAZ, if there was only trip data, the MSE for the production model was 

measured to be 28.374 and that for the attraction model were measured to be 25.875. But 

if full data (trip data + weather data + air quality data + land use data) was used, the MSE 

for the production model was measured to be 12.542 and that for the attraction model 

were measured to be 16.979. On the other hand, it was concluded that the number of 

selected nearest TAZs around a TAZ affected the performance of the TAZ. The more 

TAZs were taken into consideration, the better the accuracy benchmark could be 

accomplished. But the thing is the performance enhancement stopped once the number of 

TAZs were reached 5. In the light of this information, it can be said that it was impossible 

to boost the accuracy when the number of selected nearest TAZs was greater than 5. 

Finally, for the sake of comparison, the same dataset was trained by some other 

approaches, comprising one-step forecast, historical average (HA), artificial neural 

network (ANN), support vector machine (SVM), extreme gradient boosting (XGBoost), 

and autoregressive integrated moving average (ARIMA), as well, for the same time 

intervals and once for production model and once for attraction model. It was observed 

that the developed LSTM-based model outperformed all other approaches training the 

same dataset for the same time intervals and data models. 

Another study conducted by Ashqar et al. used the approaches least-square boosting 

(LSB), partial less-square regression (PLSR), and random forest (RF) over a dataset 

covering the San Francisco Bay Area Bike Sharing System at network and station levels 

[9]. The main problem of the study was to estimate the availability of each station. In this 

study, RF and LSB were considered univariate regression algorithms to forecast the 

number of available bicycles at a station whereas PLSR was considered a multivariate 

regression algorithm to regenerate the spatiotemporal interactions between stations in the 

system to cover the entire network in the target area. It was eventually found that 

prediction errors of univariate models were lower than that of the multivariate model. But 

it should also be considered that the univariate models, RF and LSB, can be used for 

station-level whereas the multivariate model, PLSR, can be used for network-level where 

plenty of stations are interconnected and spatially correlated. It was also concluded that 

environmental variables such as demographics, neighbours, prediction horizon times 

notably impacted the accuracy performance at the station-level prediction. 
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Database trained within the context of this study was formed by combining multiple 

datasets, one being about trips as anonymized, the other one being about stations, the 

other one being about historical weather records, and the final but the most important one 

being about station status history. Datasets consist of data having been fetched from the 

time frame between August 2013 and August 2015 in the San Francisco Bay Area. The 

said ultimate database can be found at https://www.kaggle.com/benhamner/sf-bay-area-

bike-share as well. Briefly, the station status history dataset has the following columns. 

Field Description Example 

station_id Unique ID of the station 2 

bikes_available The number of available bikes at the station at the 

recorded time 

2 

docks_available The number of available docks at the station at the 

recorded time 

25 

time Record timestamp 2015/07/29 

12:05:03 

Table 3. Dataset structure for station status history records in the San Francisco Bay Area 

 

The “time” column of the dataset was then extracted into subfields as year, month, day-

of-month, day-of-week, time-of-day, and minute. Each station status history data was 

combined with daily weather information as well. The weather dataset has the following 

information: day (e.g. 9/1/2015); ZIP code of the address of a station; wind direction 

degree; maximum, mean, and minimum temperatures, dew points, humidity, sea level 

pressures, visibilities, wind speeds; maximum gust speed; precipitation level; cloud 

cover; events (whether it was foggy, rainy, or sunny). 

When it comes to accuracy performance evaluation, it was clarified that RF slightly 

outperformed LSB, because the mean absolute error (MAE) for RF was 0.37 bikes/station 

whereas that for LSB was 0.58 bikes/station. On the other hand, these univariate models 

outperformed the multivariate model, PLSR, since the mean absolute error score for 

PLSR was 0.6 bikes/station. (The lower MAE training scores, the better accuracy it has.) 

https://www.kaggle.com/benhamner/sf-bay-area-bike-share
https://www.kaggle.com/benhamner/sf-bay-area-bike-share
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As another research over the same problem, Liu et al. worked on LSTM covering a bike-

sharing docker in Suzhou, China [10]. The main problem, how to predict the bike 

availability at the docker at a given time step, is basically a time series analysis problem. 

Data coming from former time steps can help the system predict the bike availability at 

the upcoming time step. The authors of the paper claimed that they had chosen LSTM 

considering it the best model to solve a time series problem. In this study, apart from a 

basic or standard LSTM implementation (baseline), they presented an improved LSTM-

based model as well. 

The dataset used to train models were relatively simple, compared to other datasets 

observed within literature review over state of the art. Because it covers the history of 

only one bike station for 1 month. The dataset that can be reached at 

http://resuly.me/data/bike_rnn.csv has the following columns: 

• Number of available bikes per minute 

• Day of the week (i.e. 1-7) 

• Hour of the day (i.e. 1-24) 

The dataset has 45959 rows, each one corresponding to a minute. The dataset was first 

converted into sequences, each sequence length is 20. Afterwards, there were 45930 

sequences. 95% of them were used for training whereas the remaining 5% of them were 

used for testing. 

The first approach, standard LSTM implementation, is relatively simple. It has two layers, 

each one having 19 time steps. The simplest architecture, benchmark design, each time 

step has only one input, the number of available bikes at the current step, and only one 

output, the number of available bikes at the 20th step. The authors of the paper proposed 

two new architectures for the sake of better accuracy performance for this approach: 

multi-features design where two input features, the day of the week and the hour of the 

day, were added and multi-output design where outputs were extracted from not only the 

last step but also the penultimate two steps. Above all, it was also claimed that the more 

features a model has, the higher accuracy the model results in.  

http://resuly.me/data/bike_rnn.csv
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The second approach is an LSTM-based implementation again, but it was developed by 

the authors and can be considered relatively complex. To make better estimations, it was 

claimed to be a decent way to know what would happen multiple time steps later. Within 

the context of this approach, data generation and prediction were considered two main 

phases. In the data generation phase, time steps from 0 to the last one (except this) in a 

row were used to predict the last time step value, then the first step was dropped. 

In the end, for the baseline (one-time step prediction), it was found that the MAE score 

for the standard (benchmark) architecture had the highest one whereas that for the multi-

output architecture had the lowest one. On the other hand, the developed multiple time 

steps prediction approach outperformed the baseline in terms of the MAE scores. 

Zi et al. also proposed another approach that is based on a novel deep graph convolutional 

network (CGN) model with temporal attention (TAGCN) in their studies where four 

seasons data of Divvy Bike Sharing System in Chicago was used [11]. The main 

contribution of this study was to rebalance the number of available bikes at different 

stations regularly. Station-level demand estimation played an important role in the said 

rebalancing work too. On this wise, the bike check-out/bike check-in ratio of each station 

was estimated by GCN. The impact of different time granularity was reflected by the 

model as well. 



 

25 

 

Figure 5. Mock-up about bike check-out/in of a target station where an arrow indicates the move between 

two stations, for TAGCN 

 

Four different datasets were built up, each one corresponding to a different season. The 

structure of each bike-sharing station was basically a graph. Flow data of bike stations of 

the aforementioned bike-sharing system were counted every 30 minutes. In addition, real-

time data from the bike-sharing system were combined with the historical weather data. 

The head of 60% out of data was used for training and the last 20% out of data were used 

for testing. 

The developed TAGCN model was compared to some baseline models as least absolute 

shrinkage and selection operator (LASSO), LSTM, ConvLSTM, AttConvLSTM, 

historical average (HA), SVM, GCNN, ASTGCN, and STG2Vec, in terms of accuracy 

performance. Eventually, it came to the conclusion that the proposed TAGCN model 

outperformed all other techniques for all four seasons by MAE.   

2.3 Summary 

State of the art about the main problem, estimating bike terminal availability, shows that 

a variety of techniques have been used so far, but some of them are relatively popular. 
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For example, LSTM has been detected to success if the dataset covers time-series data. 

Moreover, the type of data makes sense on the selection of the baseline approach that is 

to be tuned up or developed. By altering the hyperparameters or the structure of a model, 

it can be tuned up so that it can yield better accuracy. A successful tune-up has the 

potential to lead the way to outperform other techniques being run over the same dataset. 

On the other hand, reaching a satisfying accuracy should not be considered enough. A 

comparative study between different approaches must be carried out, and the developed 

model must result in a higher accuracy benchmark than the state of the art. 
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3 Data 

One of the important parts of the implementation within the context of the study in this 

paper is input data. As mentioned before, the prediction engine whose core is operated by 

the prediction model that was developed in this study must receive historical data to 

process them and to make predictions. As stated in the “2 Background” part of the paper, 

an ML/DL prediction model evaluates patterns formed by processed historical data and 

makes a guess for an upcoming entry. At this point, it can be inferred that estimations are 

the outcome of an algorithm that is fed by historical data submitted to the system as input. 

In this paper it was also stated that the proposed engine within the proposed architecture 

is considered to be dynamic. Therefore, as long as historical data about the usage of a 

bike terminal or bike terminals in a specific zone are provided to the system, regardless 

of the data source, the system shall predict bike terminal occupancies in the area. 

The data input of the proposed architecture is basically receiving a dataset that is 

composed of historical record rows. The received dataset is then sent to the prediction 

engine to be processed and normalized to get ready to be used for prediction first. Then 

the converted dataset containing historical data is used by the model lying in the core of 

the prediction engine to create historical patterns and to predict bike terminal occupancy 

ratio, in another word, availability. Hereby, from the perspective of prediction technique 

development within this study, the model must be trained with at least two different 

datasets for the sake of the verification of accuracy benchmark having reached a satisfying 

level. 

The input of the architecture was designed to receive datasets that are stored in comma-

separated value (CSV) files. In other words, the prediction engine reads historical data 

from a CSV file. Johnson states that a CSV file is a basic text file where information is 

concatenated by a delimiter and stored in this way. A CSV file is composed of rows and 

each row comprises sequential separated information in the same pattern. To open a CSV 

file to see the content, any text editor or spreadsheet processing application such as 

Notepad or Microsoft Excel can be used. Even though the name of the file type implies 

it, the delimited used in a CSV file can be a character different than comma (,), such as 

space or semicolon, too. However, comma is the most common delimiter used to separate 

stored information in a CSV file [12]. 
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Figure 6. An example CSV file opened with Microsoft Visual Studio Code 

 

In the sample CSV file in Fig. 4, where historical data about bike terminal availability are 

held, the first row holds column titles whereas the rest of the rows hold bike terminal 

availability data themselves. For example, the second row means that there were 2 bikes 

available and 25 docks available at station 2 at 12:06:01 on August 29th, 2013. 

It is also possible to view a CSV file in a decent table by opening it with a spreadsheet 

editor such as Microsoft Excel. 

3.1 Data Sources 

Ultimately, while the prediction technique was being developed in this study, to evaluate 

its accuracy benchmark, a couple of datasets that are stored in separate CSV files were 

built and used to train the model and to compare the performances of models over them 

to each other. 

• A dataset for Vélib' BSS in Paris, France 

• A dataset for a bike terminal in Suzhou, China 

• A dataset for City Bike BSS in Oslo, Norway 

3.1.1 Vélib' BSS in Paris, France 

The first dataset holds historical data referring to occupancies of bike terminals of the 

Vélib' BSS in Paris, the capital city of France. 
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Vélib' BSS commenced their operations in Paris in 2007. It is considered the avant-garde 

of bike-sharing systems around the world. Today, Vélib' is one of the primary public 

transportation facilities in the city. In the Greater Paris area, there are 1400 Vélib' bike 

terminals (dockers) where 20,000 bikes, 40% out of them being electrical, are hired and 

operated. On the other hand, in 2020, there were 400,000 subscribers of the system. The 

daily record of the system was broken on September 11th, 2020, with 215,000 trips. In 

addition, the monthly record of the system was broken in September 2020 with 5.5 million 

trips [13]. On the other hand, 8 years ago Jacobsen stated that the traffic density in the 

Greater Paris area was expected to decrease by 40% by the year 2020 as a result of the 

growing integrating of Vélib' while a 20% reduction had already been achieved since the 

commencement of the service. The expenses of the BSS are met by JCDecaux through 

contract-based advertisements [14]. 

 

Figure 7. A Vélib' bike terminal in Paris [15] 

 

3.1.2 Suzhou, China 

The second dataset holds historical data referring to not multiple bike terminals of a bike-

sharing system, but a certain bike terminal, in Suzhou city of China. This dataset has 

actually been already addressed in the section “2.2 State of the Art” in this paper because 

it was used in the study [10]. The same dataset was used for the experimental training 

process as well. 

3.1.3 City Bike BSS in Oslo, Norway 

The third dataset holds historical data referring to occupancies of bike terminals of the 

City Bike BSS in Oslo, the capital of Norway. 
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Similar to the Vélib' BSS in Paris, Oslo City Bike (“Oslo Bysykkel” in Norwegian) is 

supposed to be a significant element of the public transport in Oslo. The BSS was used 

approximately by 100,000 people in Oslo who made more than 2.7 million bike travels 

in 2018. The BSS is a product of a collaboration between Oslo city management and Clear 

Channel Norway AS. The expenses of the system are met by agreement-based 

advertisements and sponsorships. The development of the system is handled by Urban 

Infrastructure Partner Oslo Bysykkel AS. The thing is the system is available for use 

within a limited timeframe. Within the declared scheme, bicycles of the BSS can be 

unlocked within the time frame from 5 AM in the morning to 1 AM next night. Apart 

from bike-sharing functionality, they also offer bike repair and cleaning services. End-

users can use the system via a mobile app [16]. 

 

Figure 8. A bike terminal of Oslo City Bike BSS [17] 

3.2 Dataset Building 

Dataset building is one of the most significant processes of implementation in this study. 

Among the addressed data sources in the previous section of the paper, the 

aforementioned process was carried out to build a dataset for the Vélib’ BSS in Paris and 

to build a dataset for City Bike BSS in Oslo. (The dataset for a certain bike terminal in 

Suzhou was already provided as built.) 

The main purpose of building a dataset is essentially to hold real-time statistics of bike 

terminal usage (available bike number, available dock number, the status of the terminal 

etc) per a unit time such as a certain number of seconds. Apart from these statistics, a 

dataset can also contain additional information about bike terminals such as their 

geocoordinates (longitude, latitude) or addresses. 
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The data sources mentioned in this study already store historical data in their databases. 

There are also provided open data APIs to retrieve data from those databases. The thing 

that was done within the implementation is to fetch data and reflect them into a CSV file 

in a neat way. In general, the dataset building process consists of the following steps. 

• Step 1: A function that sends an HTTP GET request to the relevant API to be 

called to fetch the last n records from their database, where n can be sent as a 

parameter in the request URL, is created. Here, the “requests” library of the 

Python programming language can be used to send an HTTP GET request.  

• Step 2: A job that executes the function defined in the previous step every n minute 

is created, then is started. Here, either a cron job can be defined for a Linux 

distribution or macOS or as a cross-platform solution that can work on Windows 

or any other operating system as well, the “BlockingScheduler” library of Python 

can be used. The interval definition of the job is set to n. 

• Step 3: HTTP GET requests to return a response as an array of JSON per each 

call. Here, to achieve this, the “JSON” library of Python programming language 

can be used. 

• Step 4: Each element of the JSON array response having been retrieved is then 

parsed. Basically, if a blank CSV file for a dataset has just been created, the first 

row to be written down consists of column titles statically. Otherwise, if data is 

attached to a non-empty CSV file, writing column titles down is skipped. Each 

element of the JSON array basically corresponds to each row to be written down 

in the CSV file. Iterating through the elements of the array in a loop, each JSON 

is parsed, then all meaningful elements of the JSON are written down in the CSV 

file one by one. Eventually, the CSV file is filled with a “dataset” by the system. 

For this purpose, the “CSV” library of Python programming language can be used. 

• Step 5: All steps above are repeated by the defined and commenced job scheduler. 

Accordingly, the size of and the number of the records in the dataset CSV file rise. 

In order to halt the system assuming enough data have been accumulated, simply, 

the scheduler can be stopped. 
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Going over the generic steps above, to build a dataset for Véib’ BSS in Paris, France, an 

API provided by a website named after Paris Data was used [18]. The website basically 

follows the Open Data approach of France that refers to the accessibility of legal 

information from an online source. On this website, it is possible to find several datasets 

covering statistical and historical data published by the city government of Paris and their 

partners. Datasets are licenced under the Open Database License (ODbL) license as well 

[19]. The dataset shared on the website to get real-time historical data about bike terminals 

of the aforementioned BSS is “Vélib - Bikes and terminals - Real-time availability”, 

originally called “Vélib - Vélos et bornes - Disponibilité temps réel” in French. It can be 

reached at the URL below. 

https://opendata.paris.fr/explore/dataset/velib-disponibilite-en-temps-

reel/information/?disjunctive.name&disjunctive.is_installed&disjunctive.is_renting&dis

junctive.is_returning&disjunctive.nom_arrondissement_communes 

Paris Data provides a table of the latest real-time data of the dataset that are presented 

neatly on the webpage, as can be seen from Fig 8. There are also some functionalities 

such as marking bike terminals on the map, data analysis, visual demonstration of 

statistical data, exporting facility to export the dataset into various file types such as a 

CSV file, a Microsoft Excel file, or a JSON file. 

 

Figure 9. The table of the latest real-time data for the Vélib’ BSS in Paris on the webpage of Paris Data 
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Figure 10. Locations of some of the Vélib' bike terminals on the map, provided by Paris Data 

 

For this research, the most important thing is the provided API which can be found from 

the “API” tab on the same page. The API is actually named after “Search API” and it was 

established by an outsourcing company, Opendatasoft. There is also detailed 

documentation regarding the API [20]. 

After comprehensively embracing the API, to start retrieving data and building the 

dataset, the provided API was called by HTTP GET requests sent through the following 

URL: 

https://opendata.paris.fr/api/records/1.0/search/?dataset=v

elib-disponibilite-en-temps-reel&q=&rows=2000 

There parameter sets of the URL could be richer, e.g. a column in the dataset could be 

filtered or the beginning timestamp could be stated, but within the context of the research 

on this paper, two important parameters were used, as can be seen from the URL: 

• velib-disponibilite-en-temps, that is the ID of the dataset 

https://opendata.paris.fr/api/records/1.0/search/?dataset=velib-disponibilite-en-temps-reel&q=&rows=2000
https://opendata.paris.fr/api/records/1.0/search/?dataset=velib-disponibilite-en-temps-reel&q=&rows=2000
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• 2000, the number of rows or the number of latest records to be fetched at once 

The response of this call is, as mentioned, an array of JSON objects. The array is basically 

stored in the parent element “records”, and each element of the array is a JSON object 

like the one below. 

"datasetid":"velib-disponibilite-en-temps-reel", 

"recordid":"ce4cec0eb74c89934fa4a5df793b1f4d06b1eb1e", 

"fields":{ 

"name":"Benjamin Godard - Victor Hugo", 

"stationcode":"16107", 

"ebike":2, 

"mechanical":1, 

"coordonnees_geo":[ 

48.865983, 

2.275725 

], 

"duedate":"2022-01-02T16:28:36+00:00", 

"numbikesavailable":3, 

"numdocksavailable":30, 

"capacity":35, 

"is_renting":"OUI", 

"is_installed":"OUI", 

"nom_arrondissement_communes":"Paris", 

"is_returning":"OUI" 

}, 

"geometry":{ 

"type":"Point", 

"coordinates":[ 

2.275725, 

48.865983 

] 

}, 

"record_timestamp":"2022-01-02T17:25:00.355000+00:00" 

 

Figure 11. An example JSON object standing for a historical record for the Vélib' BSS in Paris 



 

35 

 

It can be understood that a JSON object in the array is a JSON-serialization reflection of 

a row in the dataset plus some additional information. Each field of a JSON object 

corresponds to a column in the table. The response of the call was then parsed and 

deserialized, and each field of an object in the array was then written down into the 

dedicated CSV file. 

The dataset builder for the Vélib’ BSS in Paris was executed by a job scheduler with an 

interval of 30 minutes for a limited amount of time. Eventually, more than 100,000 rows 

were accumulated in the CSV file. This is called a raw dataset. It was then preprocessed 

and normalized to get ready to be used by the prediction model. 

A similar approach was carried out for the City Bike BSS in Oslo, Norway. The BSS 

provides an API to retrieve real-time data from their database. It is stated that every 10 

seconds, a new record is added, and the dataset is accordingly updated [21]. An open data 

licensing approach is present here as well. With respect to this standard, the system 

broadcasts data under the Norwegian License for Open Government Data (NLOD) 2.0 

[22]. The documentation of the API is also available in their GitHub repository [23].  

Similar to the API for the Vélib’ BSS in Paris, the API of the BSS must be called. There 

are three endpoints that can fetch data from the database of City Bike: system, stations, 

availability. The end-point URLs of the API of the City Bike BSS do not take any 

parameter. These datasets can be fetched via the following HTTP GET request URLs 

respectively. 

https://gbfs.urbansharing.com/oslobysykkel.no/system_inform

ation.json 

https://gbfs.urbansharing.com/oslobysykkel.no/station_infor

mation.json 

https://gbfs.urbansharing.com/oslobysykkel.no/station_statu

s.json 

The responses are JSON object arrays consisting of JSON elements that can be parsed, in 

a similar way to the Vélib’ BSS in Paris. 

https://gbfs.urbansharing.com/oslobysykkel.no/system_information.json
https://gbfs.urbansharing.com/oslobysykkel.no/system_information.json
https://gbfs.urbansharing.com/oslobysykkel.no/station_information.json
https://gbfs.urbansharing.com/oslobysykkel.no/station_information.json
https://gbfs.urbansharing.com/oslobysykkel.no/station_status.json
https://gbfs.urbansharing.com/oslobysykkel.no/station_status.json
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A JSON element within the system information response is like the one below. But this 

information did not make any sense to the study in this paper. Therefore, it was not used 

to attach to the main dataset. However, it can be used to get information about the system 

and the status of the system. 

{ 

  "last_updated": 1553592653,  

  "ttl": 10,  

  "data": { 

     "system_id": "oslobysykkel",  

     "language": "nb",  

     "name": "Oslo Bysykkel",  

     "operator": "UIP Oslo Bysykkel AS",  

     "timezone": "Europe/Oslo",  

     "phone_number": "+4791589700",  

     "email": "post@oslobysykkel.no" 

  } 

} 

 
 

Figure 12. An example JSON object in the response of system information endpoint of the API of the 

City Bike BSS in Oslo 

 

The response from the call to get information about stations contains an array of JSON 

objects, each one standing for a bike terminal of the BSS. A JSON element in the 

“stations” array is like the one below.  
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{   

        "station_id":"627", 

        "name":"Skøyen Stasjon", 

        "address":"Skøyen Stasjon", 

        "lat":59.9226729, 

        "lon":10.6788129, 

        "capacity":20 

} 

 

Figure 13. An example JSON object standing for the response of the station information endpoint of the 

API of the City Bike BSS in Oslo 

 

Last but not least, the response from the call to get information about bike terminal 

availabilities contains an array of JSON objects again, each one standing for a bike 

terminal of the BSS. A JSON element in the same array within this response is like the 

one below. 

{ 

        "is_installed": 1, 

        "is_renting": 1, 

        "num_bikes_available": 7, 

        "num_docks_available": 5, 

        "last_reported": 1540219230, 

        "is_returning": 1, 

        "station_id": "175" 

}  

Figure 14. An example JSON object standing for the response of the station availability endpoint of the 

API of the City Bike BSS in Oslo 
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The most important data take place in the response from the call to bike terminal 

availability history. But regarding the bike terminal, in a JSON object within the response, 

the only information is station_id which stands for bike terminal ID. This is actually 

a reference key. From the response from the call to the bike terminal information dataset, 

selecting by station_id value, referred bike terminal information (name, address, 

coordinates, capacity) can be reached. Embracing this approach, in this study, the 

eventual dataset for the City Bike BSS in Oslo was constructed by merging two responses.  

In a way similar to the Vélib’ BSS in Paris, the raw dataset builder for the City Bike in 

Oslo was executed by a job scheduler with an interval of 30 minutes for a limited amount 

of time. Eventually, in the CSV file, there were more than 100,000 records accumulated. 

This constructed raw dataset was then preprocessed and normalized to get ready to be 

processed by the prediction model. 

3.3 Data Description 

Parsing and deserializing API responses, eventually, there are two datasets having been 

written down into dedicated CSVs, one being for the Vélib’ BSS in Paris and the other 

one being for the City Bike BSS in Oslo. There is another dataset too, as mentioned, 

which covers the availability history of a bike terminal in Suzhou. But it was already 

provided by the authors of the relevant paper. It includes more than 45,000 records. On 

the other hand, it should be noted that these datasets contain raw data which should be 

preprocessed and normalized to get ready to be processed by the prediction model, if 

necessary. 

The raw dataset for the Vélib’ BSS is composed of the fields described in the table below. 

Field Description Example Value 

dataset_id Dataset ID velib-disponibilite-en-temps-

reel 
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record_id Record UUID 1570b7d512f1fd3d40eafb636

31c6ddd8d523b43 

ebike The number of electrical bikes at 

a terminal 

8 

capacity The capacity of a terminal 60 

name The name of a terminal Charonne – Robert et Sonia 

Delauney 

nom_arrondissem

ent_communes 

The name of the region a 

terminal fall into 

Paris 

num_bikes_availa

ble 

The number of available bikes at 

a terminal 

15 

is_installed Whether bike terminal is 

installed or not 

OUI 

It means “Yes” in French. 

NON 

It means “No” in French. 

is_renting Whether bike terminal is 

available for rent or not 

OUI 

It means “Yes” in French. 

NON 

It means “No” in French. 

mechanical The number of mechanical bikes 

at a terminal 

20 

station_code The bike terminal ID 10013 
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num_docks_avail

able 

The number of available docking 

units at a terminal 

43 

due_date The timestamp of the due date of 

a bike terminal 

2022-01-02T21:30:06+00:00 

is_returning Whether rented bikes shall be 

returned to the bike terminal or 

not 

OUI 

It means “Yes” in French. 

NON 

It means “No” in French. 

geometry_type The type of the coordinates of a 

bike terminal 

Point 

longitude The longitude of a bike terminal 2.3061046109 

latitude The latitude of a bike terminal 48.871044052 

record_timestamp The timestamp when the 

historical record was added to 

the database 

2022-01-

02T21:45:00.69400+00:00 

Table 4. The description of the raw dataset for the Vélib' BSS in Paris 

 

The raw dataset for a single bike terminal in Suzhou is relatively simple. Moreover, it 

includes fewer data since it only covers the history of a single bike terminal. 

Field Description Example Value 

num Number of available bikes 5 

weekday The ordinal number of the 

weekday 

4 

(Thursday) 
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hour The ordinal number of the 

hour when the record is 

added to the dataset 

18 

Table 5. The description of the raw dataset for a bike terminal in Suzhou 

 

 

The built raw dataset for the City Bike BSS in Oslo is composed of the fields described 

in the table below. 

 

Field Description Example Value 

station_id The unique ID of a bike 

terminal 

175 

station_name The name of a bike 

terminal 

Skøyen Stasjon 

station_address The address of a bike 

terminal 

7 Juni Plassen 

station_lat The latitude of a bike 

terminal 

59.9150596 

station_lon The longitude of a bike 

terminal 

10.7312715 

station_capacity The capacity of a bike 

terminal 

15 

is_installed Whether a bike terminal is 

installed or not 

1 

It corresponds to true. 

 

0 

It corresponds to false. 

is_renting Whether a bike terminal is 

available for renting or not 

1 

It corresponds to true. 

 

0 

It corresponds to false. 
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num_bikes_available The number of available 

bikes at a bike terminal 

7 

num_docks_available The number of available 

docking units at a bike 

terminal 

5 

is_returning Whether rented bikes shall 

be returned to the bike 

terminal or not 

1 

It corresponds to true. 

 

0 

It corresponds to false. 

last_reported The timestamp when the 

historical record was 

added to the database 

1540219230 

 

In seconds 

Table 6. The description of the raw dataset for the City Bike BSS in Oslo 

3.4 Feature Engineering on Raw Datasets 

It is required to preprocess and normalize the raw datasets having been constructed if 

needed to extract data suitable to be processed well by an ML/DL prediction model as 

much as possible. This operation is called feature engineering. According to Patel, 

ML/DL involves feature engineering approaches as an essential issue. Basically, the 

sequence of the processes of choosing, managing, and converting raw data into features 

suitable for supervised learning is called feature engineering. The primary purpose of 

doing it is to extract better measurable inputs, i.e. features, to be trained by a prediction 

model [24].  

The relatively simple raw dataset for Suzhou did not require any feature engineering 

process in this study. Therefore, it was used as-is. But feature engineering was carried out 

for the raw datasets for the Vélib’ BSS in Paris and the City Bike BSS in Oslo. 

First of all, it must be taken into consideration that the target feature in the datasets that 

are supposed to be predicted by the developed prediction model should be bike 

availability ratio rather than the number of available bikes or docks. Therefore, within the 

context of feature engineering, for the Vélib’ BSS in Paris and the City Bike BSS in Oslo, 

a new column called “bike_availability_ratio” was added, and the “capacity” column 
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from the dataset for the Vélib’ BSS in Paris and “station_capacity” column from the 

dataset for the City Bike BSS in Oslo were removed. The newly added column was filled 

with the percentages of available bikes, and they were calculated by Equation 3.1 below. 

𝑏𝑖𝑘𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 = 100 ∗  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑏𝑖𝑘𝑒𝑠

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

(3-1) 

The second step was the normalization of geolocation. Known that the longitude and the 

latitude of a point cannot be greater than 100 or less than 0, simply by dividing them to 

100, they can be scaled down to the range [-1,1]. Geolocation information in both datasets 

was normalized in that way. For example, a geolocation coordinate (2.3522, 48.8566) 

could be transformed into (0.023522, 0.488566) through the aforementioned 

normalization. 

The third step was date and time conversions. First and foremost, for the dataset of the 

City Bike BSS in Oslo, the last_updated column was converted into the regular timestamp 

format from seconds, and the conversion was saved into the new column named after 

record_timestamp as in the dataset for the Vélib’ BSS in Paris. (The last_updated column 

was then removed as it became considered redundant for time being.) Within the context 

of this step, all timestamp values were divided into the smallest units and the extracted 

values were put into new columns as below. 

• record_timestamp_year 

• record_timestamp_month 

• record_timestamp_day 

• record_timestamp_hour 

• record_timestamp_minute 

• record_timestamp_second 

Each column holds the ordinal number of the date/time unit it represents. For example, if 

the record timestamp covers the date 24-12-2021 and the time 15:11:07, upon the process 
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mentioned above, the values corresponding to the transformed timestamp will be as 

below. 

• record_timestamp_year: 2021 

• record_timestamp_month: 12 

• record_timestamp_day: 24 

• record_timestamp_hour: 15 

• record_timestamp_minute: 11 

• record_timestamp_second: 7 

In the Python programming language, this extraction can be achieved by the 

DateTimeIndex method of the pandas library. 

The next step was to remove redundant columns. Within the context of this step, all 

columns that were considered relatively unhandy in the perspective of the trainer 

prediction model were removed from the latest forms of both datasets that have been 

modified through the previous steps. As a result, from the dataset for the Vélib’ BSS in 

Paris, the following columns were supposed to be essentially processed to make an 

estimation by the used models left. 

• is_installed 

• is_renting 

• is_returning 

• longitude (normalized) 

• latitude (normalized) 

• bike_availability_ratio (target) 

• record_timestamp_year 

• record_timestamp_day 
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• record_timestamp_hour 

• record_timestamp_minute 

• record_timestamp_second 

The final step of feature engineering was label encoding. As mentioned before, the 

columns whose names start with “is_” take either OUI or NON which means “Yes” and 

“No” respectively in French. Instead of letting them be processed with these values, they 

were encoded in the following way. 

• OUI = 1 

• NON = 0 

In the Python programming language, it can be achieved by calling the fit_transform 

function of the sklearn library. 

Within the scope of the same step, record timestamp index columns were also transformed 

into dummies. For each unique index (ordinal) date/time unit value in these columns, a 

new column was created. For a record, columns that hit the timestamp of the record were 

filled with 1 whereas the rest of them were with 0. For example, for the timestamp 26-09-

2021 11:04:15, the following columns will be created if they have not been created 

because of another timestamp in the dataset yet. 

• record_timestamp_year_2021 

• record_timestamp_month_9 

• record_timestamp_day_26 

• record_timestamp_hour_11 

• record_timestamp_minute_4 

• record_timestamp_second_15 

For the relevant row, these columns will be filled with 1. Other columns for the same row 

will be filled with 0. For example, for the same row, a column named after 
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record_timestamp_day_18, which might have been created because of another timestamp 

with the day value of 18 in the dataset, would be filled with 0 as it does not hit the day of 

the timestamp of the record belonging to the row. 

In the Python programming language, this normalization can be achieved by calling the 

get_dummies function from the pandas library. It also removes the formerly processed 

“record_timestamp_” columns as they are redundant from then on.  

Ultimately, the preprocessed and normalized form of the dataset for the Vélib’ BSS in 

Paris consists of the fields described below. 

Field Description Example Value 

is_installed Whether the bike terminal 

is installed or not 

1 or 0 

is_renting Whether the bikes are 

available to be rented or 

not 

1 or 0 

is_returning Whether the bikes shall be 

returned to the belonging 

bike terminal or not 

1 or 0 

longitude The longitude of a bike 

terminal falling into the 

range [-1,1] 

0.02367 

latitude The latitude of a bike 

terminal falling into the 

range [-1,1] 

0.48753 

bike_availability_ratio The percentage of 

available bikes in the 

capacity of the bike 

terminal 

22.580645 (%) 
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record_timestamp_year_n Whether the timestamp of 

the record has the year 

value n or not 

1 or 0 

record_timestamp_month_n Whether the timestamp of 

the record has the month 

value n or not 

1 or 0 

record_timestamp_day_n Whether the timestamp of 

the record has the day 

value n or not 

1 or 0 

record_timestamp_hour_n Whether the timestamp of 

the record has the hour 

value n or not 

1 or 0 

record_timestamp_minute_n Whether the timestamp of 

the record has the minute 

value n or not 

1 or 0 

record_timestamp_second_n Whether the timestamp of 

the record has the second 

value n or not 

1 or 0 

Table 7. The columns of the preprocessed dataset for the Vélib' BSS in Paris 

 

The final form of the dataset on which feature engineering was done was written down 

into another CSV file, as can be seen from Fig 10. 

 

Figure 15. The CSV file of the preprocessed dataset for the Vélib' BSS in Paris opened with Visual Studio 

Code 
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When it comes to the dataset for the City Bike BSS in Oslo, similar processes were treated 

using the same techniques and libraries. The conclusive form of the preprocessed and 

normalized dataset for the City Bike BSS in Oslo as a result of feature engineering 

consists of the fields described below. 

Field Description Example Value 

is_installed Whether the bike terminal 

is installed or not 

1 or 0 

is_renting Whether the bikes are 

available to be rented or 

not 

1 or 0 

is_returning Whether the bikes shall be 

returned to the belonging 

bike terminal or not 

1 or 0 

station_longitude The longitude of a bike 

terminal falling into the 

range [-1,1] 

0.02367 

station_latitude The latitude of a bike 

terminal falling into the 

range [-1,1] 

0.48753 

bike_availability_ratio The percentage of 

available bikes in the 

capacity of the bike 

terminal 

22.580645 (%) 

record_timestamp_year_n Whether the timestamp of 

the record has the year 

value n or not 

1 or 0 



 

49 

record_timestamp_month_n Whether the timestamp of 

the record has the month 

value n or not 

1 or 0 

record_timestamp_day_n Whether the timestamp of 

the record has the day 

value n or not 

1 or 0 

record_timestamp_hour_n Whether the timestamp of 

the record has the hour 

value n or not 

1 or 0 

record_timestamp_minute_n Whether the timestamp of 

the record has the minute 

value n or not 

1 or 0 

record_timestamp_second_n Whether the timestamp of 

the record has the second 

value n or not 

1 or 0 

Table 8. The columns of the preprocessed dataset for the City Bike BSS in Oslo 

 

The final form of this dataset was written down into a separate CSV as well.  
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4 Prediction Model 

Constructed preprocessed and normalized datasets are ready to be trained by ML/DL 

models to estimate bike terminal availabilities. The prediction engine component of the 

proposed architecture was supposed to put the prediction model developed here to the 

centre of it. Therefore, working on a prediction model was one of the essential phases of 

the research here. 

An approach that both outperforms state of art and some other commonly used techniques 

used in this research by the aspect of accuracy and results in satisfactory results was 

expected to exist. It was thought that an existing approach could be considered baseline 

and it could be tuned up to boost the accuracy benchmark.  

Preparation for training involves dataset separation as a crucial step. A dataset is generally 

divided into a training set and a testing set. A third partition called validation set may also 

be preferred. Shah implies that a model is fitted by the training partition, which means 

that the model observes and analyses the training data and learns the pattern from it, 

whereas the testing partition provides an objective evaluation for the model. In addition, 

the training partition is usually far bigger than the testing partition, such as 70% of a 

dataset can be considered training data and the remaining 30% can be used as testing data 

[25]. Hereby, overfitting is also another issue that noteworthily impacts the accuracy of a 

model and is related to the training-testing data separation. According to Ying, overfitting 

is a situation the pattern learning performance of a model is notably poor since it does not 

fit on testing data at a satisfactory level whereas it fits on the training data very well [26]. 

During training, it should either not occur at all or occur late and at a tolerable level. 

Therefore, another substantial point that was taken into consideration was to mitigate the 

risk of overfitting as much as possible. 

Within the context of this research, taking literature review and state of the art into 

account as well, a Recurrent Neural Network (RNN) model Long Short-Term Memory 

(LSTM) was chosen to work on. For the sake of comparison, apart from techniques where 

LSTM is abstracted, generated processed datasets were trained by Random Forest 

Regressor and Decision Tree Regressor models as well. Then the results of these training 

were compared to each other by their mean absolute error (MAE) and mean squared error 
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(MSE) scores. Briefly, the lower MAE and MSE a training yields the better performance 

it has. 

For an ML/DL model, mean squared error is the ratio of the sum of the square of each 

difference between prediction and truth to the entire dataset size [27]. It can be calculated 

by the following equation, where N is the number of data, y is truth, and x is prediction. 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖)

𝑁

𝑖=1

^2 

( 4-1 ) 

 

For an ML/DL model, mean absolute error differs from MSE in terms of the things being 

summed up. Here, the sum of the absolute value of each difference between prediction 

and truth is divided by the entire dataset size [27]. It can be calculated by the following 

equation where variables have the same meaning. 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛

𝑗=1

 

( 4-2 ) 

4.1 Long Short-Term Memory 

Before addressing the details of the researched tune-up, the details of LSTM and why it 

was chosen to be abstracted for this research should be clarified. 

It is indicated by Mushailov that LSTM (Long Short-Term Memory) is a model based on 

Recurrent Neural Network (RNN), and time series prediction and natural language 

processing are two of the commonly used fields. The thing is short-memory cannot be 

handled well by recurrent neural networks. LSTM solves this remarkable issue through 

gates in memory cells. Within the context of this architecture, data can be kept, forgotten, 

or ignored. It works based on a feedback mechanism. Once estimation is output, the 

prediction is fed back into the system for the estimation of the upcoming value in the 

sequence. Another important issue that can be solved by LSTM is that in each epoch, 

which is a unit time for each feedback, the architecture receives some error information 
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as well. In order to prohibit the explosion and vanishing of repetitive weight adjustments, 

which can occur in other neural network models, sigmoid and tanh activation functions 

are carried out before entering into the next gate and leaving the current gate. These 

functions help the architecture squeeze gradients that could explode [28].  

 

Figure 16. An LSTM cell with gates that helps data be processed sequentially 

 

Figure 16 demonstrates the architecture of an LSTM memory cell with gates [29]. It 

demonstrates the flow between gates. Here, xt-1 is the new input, ht-1 is the input from the 

previous cell corresponding to the previous time value, ct-1 is the previous cell state. f, i, 

and g are respectively forgetting, input, and output gates. “x” and “+” denote operations 

(addition or multiplication) carried out. 

Since datasets being processed in this research are composed of time series data, which 

means rows are ordered by timestamp in a sequence and each row has information about 

bike availability at its timestamp, LSTM was considered a suitable architecture. It can be 

inferred that each row in a dataset is handled by a memory cell of the implemented LSTM 

model. On the other hand, considering the fact that datasets are huge, and they can rapidly 

grow gradually as long as the input to the system is provided, the prediction model must 

observe data over a long time period. LSTM outcomes satisfactory results with a huge 

amount of time series data [29]. That is why LSTM was chosen to be abstracted in this 

research. 

4.2 Developed Approach  

A basic LSTM implementation like the one in the research [10] was tuned up to outcome 

better accuracy with less error and late and minimum outfitting. To achieve this, the 
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parameters and layers of the basic LSTM implementation were modified, and each 

modification was tested with training to check if the results are better than those of the 

previous training. 

First of all, Keras and Tensorflow libraries of Python programming language were used 

for building the architecture since these libraries already provide the necessary functions 

for RNN.  

From a trained dataset, 30% of data was used for testing, and the remaining 70% was used 

for training. 

The basic LSTM implementation did not include the bidirectionality layer of Keras. This 

layer was added to the development. This layer makes the system eligible to observe data 

both forward and backwards in the same sequence. Otherwise, by default, the mechanism 

is run only forward. The architecture can be trained better in this way because of learning 

more patterns. 

The “units” parameter of the LSTM architecture was ascended to 128 from 50 which was 

used in the basic implementation as in the study [10]. This parameter adjusts the 

dimension number of the output space [30]. It is used to define how many dimensions the 

output will be represented with. Even though increasing it affects the training runtime 

duration, the more units an LSTM model has the better accuracy is possible to approach. 

Both LSTM abstracted solutions were trained several times to output information about 

each epoch. For each epoch, the metrics mean absolute error and mean squared error were 

calculated and the loss was expected and observed to be less than that in the previous 

epoch. In the developed approach, a mechanism called “Early Stopping” was added to 

mitigate the overfitting problem. It is a function of the Keras library [31]. Basically, if a 

metric passed as a parameter to the early stopping function, e.g. mean absolute error, 

starts to fluctuate between two values and accordingly the training stops developing 

apparently, the aforementioned function stops the training process to prevent a possible 

overfitting appearance. For example, when the developed model was trained with the 

dataset for the Vélib’ BSS in Paris, the training stopped after 4 epochs, because MSE 

values were about to fluctuate. Possible overfitting was also prohibited in this way. 

However, it was supposed to run over 20 epochs. The former model with the basic LSTM 

implementation completed all 20 epochs as it was not instructed to stop when needed. 
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Figure 17. All passed 4 epochs with the early stopping mechanism 

 

For both models, epoch numbers were set to be 20, batch sizes were set to be 32, and the 

dropout rates were set to be 0.5. 

4.3 Evaluation of the Predictive Performance 

To evaluate the predictive performances of all models and compare them to each other, 

the first metric to be considered was mean absolute error in uniform average. 

Dataset Basic LSTM Random Forest 

Regressor 

Decision Tree 

Regressor 

Developed 

approach 

Vélib’ BSS 

in Paris 

0.532991 2.200753 5.334560 0.511285 

Suzhou 0.649578 4.315326 4.295474 0.118561 

Table 9. Mean absolute error (MAE) comparison 

 

From the comparison result, it was inferred that the tuned-up LSTM-based model 

outperformed the basic LSTM implementation, which was also in the research [10], as 

well as Random Forest Regressor and Decision Tree Regressor in terms of mean absolute 

error, since the developed approach output relatively low MAE. On the other hand, the 

acquired MAE values could be considered as low as satisfying to rely on the predictions 

it would make.  

 

The second evaluation was done by comparing mean squared error differences between 

evaluation for training data and evaluation for testing data both for the basic LSTM 

implementation and the tuned-up LSTM-based approach. This is also related to how well 

the overfitting problem was solved. The dataset for the Vélib’ BSS in Paris was used for 

all training. 
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Figure 18. Evaluation for training data and evaluation for testing data results for the basic LSTM 

implementation 

 

 

Figure 19. Evaluation for training data and evaluation for testing data results for the developed LSTM-

based model 

 

As can be seen from the Jupyter Notebook particles in Figure 18 and Figure 19, MSE 

differences written down at the bottom are different. The value for the developed LSTM-

based approach was 0.022100 whereas the one for the basic LSTM implementation was 

0.028165. In the light of this information, it can be inferred that the developed LSTM-

based model outperformed the basic LSTM model and gave an affirmative potential to 

mitigate the existence of overfitting between training data and testing data.  
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5 Development Environment 

Dataset building, dataset processing, model development and training phases constitute 

the development process within the scope of the study in this paper. The development 

was done on two computers with the specifications as below. The software and hardware 

configurations of a computer affect the accuracy and runtime performance of an ML/DL 

model as well. 

• Windows-based PC 

o  Windows 11 Home (x64) 

o 9th Generation Intel Core i7 CPU 

o 16 GB of installed RAM 

o NVIDIA GeForce RTX 2080 GPU 

o 512 GB of SSD 

• MacBook Air (Retina, 13.3”, 2019) 

o macOS Monterey 12.2 

o 8th Generation Intel Core i5 CPU 

o 8 GB of installed RAM 

o Intel UHD Graphics 617 GPU 

o 256 GB of SSD 

For the development and reporting processes, the following software development and 

documentation technologies on both computers were used. 

• Python 3.8 programming language with necessary libraries including Keras, 

TensorFlow, scikit-learn that are ML/DL oriented 

• PyCharm IDE 
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• Jupyter Notebook 

• Microsoft Visual Studio Code 

• Microsoft Word 

• Microsoft Excel 
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6 Proposed Software Architecture 

The study includes a proposal for the architecture of an extensional application into which 

the prediction engine based on the developed approach can be integrated too. A dashboard 

where a map that points out bike terminals around the current location of end-user takes 

place, these bike terminals can be filtered, and the most available bike terminals are 

declared to the user was proposed to be designed and put into a mobile application or a 

website. The most important concept here is the architecture on the backend side of the 

dashboard. This architecture is presented in Figure 20. 

 

 

Figure 20. The proposed architecture for the application backend 

 

The architecture was proposed to be composed of four major parts: input, prediction 

engine, Kafka, and dashboard. Each one can be considered a sort of microservice or 

module. The Kafka part of the architecture was proposed to run Apache Kafka framework 

to handle message transfer between modules [32]. Here, a message can be a simple 

request or data such as prediction result, user location, or historical data. The input module 

of the architecture was proposed to provide any kind of input data (user location, historical 

data, external data such as weather or traffic density) to the system if there is a user request 

coming from the dashboard module of the architecture. The provided input is supposed 

to be sent to the prediction engine module that trains data using the developed estimation 

algorithm. This module was proposed to make estimations about bike terminal 
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availabilities. The predictions were proposed to be sent to the dashboard module 

eventually.    
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7 Conclusion and Future Work 

In this paper, the main purpose is to seek a new outperforming solution for the problem 

of predicting bike terminal availability. The paper starts with addressing the main 

motivation to conduct research over the problem and the problem definition itself. Then 

background information that covers a literature review to see the state of the art regarding 

the same problem takes place. According to the literature review, it can be inferred that 

there are several studies regarding the estimation about the occupancy of a bike terminal 

or multiple bike terminals of a bike-sharing system. Depending on data type and quality 

too, manifold machine learning and deep learning techniques result in dissimilar 

accuracies that can be measured by several metrics such as mean absolute error or mean 

squared error. The data and prediction model chapters cover the actual implementation 

phase within the context of the study here. To train the developed solution, datasets from 

the Vélib BSS in Paris, France, the City Bike BSS in Oslo, Norway, and a single bike 

terminal in Suzhou, China were built. Since they contain time-series data, a new approach 

that could be formed around Long Short-Term Solution (LSTM) Recurrent Neural 

Network (RNN) was considered the most suitable solution. Basically, by tuning up the 

architecture of a basic LSTM implementation, a new model that outperforms the basic 

LSTM implementation and some other machine learning techniques with lower mean 

squared error and mean absolute error scores was developed. Ultimately, this paper 

proves that it is possible to obtain enhanced accuracy, accordingly better predictions about 

bike terminal availabilities, by tuning up the parameters and the architecture of an existing 

technique. 

There are several possible works that can be considered in the future. Since the prediction 

engine module is proposed to be dynamic, several datasets from different cities around 

the world can be used for training as long as they are accessible. Data scraping for Tallinn, 

Estonia can be proposed if there are available data sources. The application whose 

architecture proposal is explained in the chapter “6 Proposed Software Architecture” can 

be developed and put into practice. It is possible to conduct further researches about 

possible solutions to improve accuracy, including tuning up an existing basic ML/DL 

model. Moreover, in this paper, external data such as historical weather conditions or 

traffic density was not integrated. The impact of their integration into the datasets shall 

be examined. 
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Appendix 2 – GitHub Repository for Source Code 

The work was committed-and-pushed to the following GitHub repository where the 
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