
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Engineering

ITI70LT

Oliver Kalmend 132680 IASM

ROBOT PLATFORM FOR NATURAL
LANGUAGE DIALOGUE SYSTEMS

Master's thesis

Supervisor: Jüri Vain

Professor

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Arvutitehnika instituut

ITI70LT

Oliver Kalmend 132680 IASM

ROBOTPLATVORM LOOMULIKU KEELE
DIALOOGSÜSTEEMIDELE

magistritöö

Juhendaja: Jüri Vain

professor

Tallinn 2017

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Oliver Kalmend

09.01.2017

3

Acknowledgement

I would like to thank my supervisor Prof. Jüri Vain for his assistance, guidance and the

work he did with the dialogue system used in this Master's thesis. I also want to

acknowledge Dr. Tanel Alumäe for his help and continued work with Estonian speech

recognition. And finally, I would like to thank Dr. Jan Wielemaker, the author of SWI-

Prolog, for helping overcome some of the difficulties encountered with the SWI-Prolog

API.

4

Abstract

The goal of the given Master's thesis is to design and develop a robot platform that is

capable of limited natural language dialogue. The final prototype system must be able to

understand, execute and respond to predetermined commands, which are given in

natural speech.

This thesis deals with the architecture, design and implementation of the described

prototype platform. The final solution is a composition of subsystems working together.

Each subsystem maintains some critical functionality for a natural speech capable robot.

The thesis describes the functionality of the subsystems, their design, implementation

details and communication flows.

This thesis is written in English and is 61 pages long, including 5 chapters, 68 figures

and 11 tables.

5

Annotatsioon

Tänapäeval on loomulikku keelt võimaldavad kasutajaliidesed muutunud väga
populaarseks ja kiiresti arenevaks valdkonnaks. See on modernsetes nutiseadmetes
oodatud funktsionaalsus, mis lihtsustab klientide jaoks keeruliste süsteemide kasutust.
Keelepõhine kasutajaliides on inimese jaoks mugav ja loomulik viis arvutisüsteemidega
suhtlemiseks. Väga levinud on tarkvaralised assistendid nagu Microsofti Cortana,
Applei Siri ja Amazoni Alexa. Ka riistvaraliste teendindusrobotite hulk on kasvamas.
Leidub robootilisi assistente, giide, kullereid ja isegi medõe ülesandeid täitvaid
roboteid. Vabalt on saadaval tarkvara, mis implementeerivad mingi osa sellisest
robotist, kuid puudub vabavaraline ühtne platvorm, mis võimaldab kõnejuhtimist
kasutavat robotit luua.

Käesoleva magistritöö eesmärk on kavandada ja välja töötada robotplatvorm, mis
võimaldab hõlpsasti luua piiratud dialoogiga roboti rakendusi. Prototüüprobot peab
loomulikus keeles esitatud eeldetermineeritud käskutest aru saama ja neid täitma.
Dialoogsüsteemi prototüüp on loodud simulatsioonroboti baasil ning kasutab
eestikeelset dialoogsüsteemi, kõnesünteesi ja -tuvastust, et loomulikus keeles antud
käskudele reageerida. Robot peab vastavalt käskudele täitma simuleeritud maailmas
lihtsaid objektide manipuleerimis- ja navigeerimisülesandeid. Eesti keel on valitud selle
tõttu, et eesti keele baasil ei ole sellises mahus kõnejuhtimisega robotprojekte varem
tehtud.

Magistritöös on kirjeldatud platvormi arhitektuur, disain ja teostus. Esitatud lahendus on
modulaarne platvorm, mis põhineb ROSi (Robot Operating System) arhitektuuril.
Loodud platvorm on alamsüsteemide kogum, mis koostöös täidavad püstitatud
ülesandeid. ROSi modulaarsus võimaldab lahenduse komponentide lihtsat täiendamist
ja asendamist, andes võimaluse uute rakenduste genereerimiseks. Magistritöös on
esitatud informatsioon kõikide välja töötatud alamsüsteemide kohta, mis aitab loodud
platvormi mõista, kasutada, muuta ja laiendada. ROSi kasutamine tagab selle, et disain
on paindlik ja kõik komponendid on kergesti taaskasutatavad. Kõnejuhtimise
tagamiseks on kasutusel sügavatel närvivõrkudel põhinev kõnetuvastus, mille tekstiline
väljund suunatakse dialoogsüsteemi. Dialoogsüsteem kasutab DCG (Definite Clause
Grammar) parsimist, et genereerida tegevused, mida robot peab täitma. Dialoogsüsteem
hindab kontektsipõhiselt kõnetuvastuse väljundis oleva lause sobivust ja aitab mitmeti
tõlgendatavuse korral valida kandidaat-interpretatsioonidest parima. Roboti reaktsioone
käskudele simuleeritakse roboti tegevustena virtuaalses keskkonnas ning genereeritud
vastustega, millest sünteesitakse kõne.

6

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 61 leheküljel, 5 peatükki, 68

joonist, 11 tabelit.

7

List of abbreviations and terms

GUI Graphical User Interface

ROS Robot Operating System

GST GStreamer

API Application Programming Interface

8

Table of Contents

1 Introduction..16

1.1 Background..16

1.2 Objectives..17

1.3 Outline...18

2 Software behaviour and implementation..20

2.1 Robot reactions..20

2.2 Robot commands...25

2.3 The GUI...28

2.4 The simulation...29

2.5 The main launch file..31

3 Software Architecture...33

3.1 ROS..33

3.1.1 Topics...33

3.1.2 Services...34

3.1.3 Actions..34

3.2 GStreamer..34

3.3 The Prolog dialogue system...35

3.4 Kaldi speech recognition toolkit..36

3.5 gst-kaldi-nnet2-online..36

3.6 Festival speech synthesis toolkit..37

3.7 The platform in abstract...37

3.8 Full robot configuration...38

3.8.1 Nodes and topics...38

3.8.2 A variation on the final configuration..41

4 Component implementation details..43

4.1 capture_audio...44

4.1.1 Description..44

4.1.2 Diagrams...44

9

4.1.3 Running..46

4.1.4 Parameters..48

4.2 play_audio..49

4.2.1 Description..49

4.2.2 Diagrams...49

4.2.3 Running..51

4.2.4 Parameters..52

4.3 capture_vad_speex...52

4.3.1 Description..52

4.3.2 Diagrams...53

4.3.3 Running..55

4.3.4 Parameters..56

4.4 play_audio_speex...56

4.4.1 Description..56

4.4.2 Diagrams...57

4.4.3 Running..58

4.4.4 Parameters..59

4.5 speech_recognition_simple..59

4.5.1 Description..59

4.5.2 Diagrams...60

4.5.3 Running..62

4.5.4 Parameters..63

4.6 speech_recognition_speex...64

4.6.1 Diagrams...64

4.6.2 Running..65

4.6.3 Parameters..65

4.7 synth_festival...66

4.8 chatbot_gui...66

4.9 chatbot_simulator...69

4.10 prolog_server...69

4.11 chat_core..69

4.12 robot_prolog_connection...71

4.13 Utility nodes...72

10

4.13.1 capture_vad_sphinx..72

4.13.2 prolog_common, prolog_msgs, prolog_serialization, prolog_swi,

prolog_test, roscpp_nodewrap, roscpp_nodewrap_msgs,

roscpp_nodewrap_tutorials..72

5 Summary...73

 References..74

 Appendix 1 – Source code and building the platform..77

 Appendix 2 – Future development opportunities...80

 Appendix 3 – Additional configurations of the platform...82

 chatbot_speex.launch..82

 test_microphone.launch..82

 test_sr_simple.launch..82

 test_sr_speex.launch...83

 test_vad_speex.launch..84

 test_vad_speex_with_perceptual_enhancement.launch...84

 test_vad_sphinx.launch...84

11

List of Figures

Figure 1. RIBA the bear-shaped nursing robot [19]..16

Figure 2. Pioneer research platform with manipulators [17]...17

Figure 3. Generating reactions from speech transcript..20

Figure 4. Processing reactions returned by the prolog dialogue system.........................23

Figure 5. Processing the next reaction task in queue...24

Figure 6. A synchronous reaction command-resolution example...................................26

Figure 7. An asynchronous reaction command-resolution example...............................27

Figure 8. Graphical user interface...28

Figure 9. Detailed rviz based graphical user interface..29

Figure 10. Tallinn University of Technology fourth floor map......................................30

Figure 11. Stage simulator...31

Figure 12. Starting the platform from the console...32

Figure 13. kaldinnet2onlinedecoder interface...37

Figure 14. An abstract view of the robot's speech control architecture...........................38

Figure 15. A detailed view of the final architecture (1/2)...39

Figure 16. A detailed view of the final architecture (2/2)...39

Figure 17. Contained vs separated functionality...41

Figure 18. Nodes running in multiple machines..42

Figure 19. Sourcing the platform and running roscore..43

Figure 20. Sourcing the platform and running roscore..43

Figure 21. The capture_audio node and published topic...44

Figure 22. GStreamer pipeline for capture_audio...44

Figure 23. Audio processing in the capture_audio node...45

Figure 24. GStreamer pipeline for capture_audio with a file sink..................................45

Figure 25. Audio processing in the capture node with a file sink...................................46

Figure 26. capture_audio node info and run command...47

Figure 27. The play_audio node and subscribed topic..49

Figure 28. GStreamer pipeline for play_audio..49

12

Figure 29. Audio processing in the play_audio node..50

Figure 30. GStreamer pipeline for play_audio with a file sink.......................................51

Figure 31. Audio processing in the play_audio node with file sink................................51

Figure 30. play_audio node info and run command..51

Figure 32. play_audio node info and run command..51

Figure 33. The capture_vad_speex node and published topic...53

Figure 34. GStreamer pipeline for capture_vad_speex...53

Figure 35. Audio processing in the capture_vad_speex node...54

Figure 36. GStreamer pipeline for capture_vad_speex with a file sink..........................55

Figure 37. File sink replacement for the capture_vad_speex pipeline............................55

Figure 38. capture_vad_speex node info and run command...55

Figure 39. The play_audio_speex node and subscribed topic...57

Figure 40. GStreamer pipeline for play_audio_speex...57

Figure 41. Audio processing in the play_audio_speex node...58

Figure 42. play_audio_speex node info and run command...58

Figure 43. The speech_recognition_simple node and published transcript.....................60

Figure 44. GStreamer pipeline for speech_recognition_simple......................................60

Figure 45. Setting Gstreamer plugin path..60

Figure 46. Processing audio into transcript text in the speech_recognition_simple node

...61

Figure 47. Speech transcription results example...62

Figure 48. speech_recognition_simple node info and run command..............................62

Figure 49. The speech_recognition_speex node with published transcript and input au-

dio topics..64

Figure 50. speech_recognition_speex node info and run command...............................65

Figure 51. The synth_festival node and subscribed topic...66

Figure 52. GUI node subscriptions and publications..67

Figure 53. GUI - status box...67

Figure 54. GUI - message log..68

Figure 55. GUI - fake recognition results..68

Figure 56. GUI - fake picking up and placing down objects...68

Figure 57. GUI - map and nav...68

Figure 58. The chat_core node and its connections...70

13

Figure 59. Services are shown in rosnode info..71

Figure 60. The robot_prolog_connection node...71

Figure 61. Git general information..77

Figure 62. Commits by month...77

Figure 63. Launch configuration - test_microphone...82

Figure 64. Launch configuration - test_sr_simple...83

Figure 65. Launch configuration - test_sr_speex..83

Figure 66. speech_recognition_speex node parameters in the test_sr_speex.launch file83

Figure 67. Launch configuration - test_vad_speex...84

Figure 68. Launch configuration - test_vad_sphinx..85

14

List of Tables

Table 1. List of dialogue system reactions..21

Table 2. Reaction prioritization...24

Table 3. Robot executable commands...25

Table 4. Launch parameters for robot platform...32

 Table 5. Node overview..40

Table 6. capture_audio run parameters..48

Table 7. play_audio run parameters..52

Table 8. capture_vad_speex run parameters..56

Table 9. play_audio_speex run parameters...59

Table 10. speech_recognition_simple run parameters..63

Table 11. Platform files breakdown..78

15

1 Introduction

1.1 Background

In today's world, natural language interfaces have become commercially very
successful. It is an expected feature in many modern appliances and smart technologies.
Due to an overall increase in the complexity of systems natural language interfaces are
becoming an essential tool to guarantee usability. The growing need for non-trivial and
semantically rich interaction between humans and the contemporary cyber world has led
to the rise of natural language user interfaces and intelligent personal assistants like
Microsoft's Cortana, Apple's Siri and Amazon's Alexa. In addition to these software
level assistants, we have seen an increase in robotic companions such as robot assistants
for elderly people and kids, robot guides in public buildings and even autonomous
delivery robots.

There is a smattering of disparate freeware pieces of software available that implement
some part of such a robot. However, there is a distinct lack of an easily extendable,
modifiable and reusable freeware platform that is both a complete example and can
serve as a starting point for creating robots that are interfaced via natural language. The
primary aim of this thesis is to provide a prototype of such a platform.

16

Figure 1. RIBA the bear-shaped nursing robot [19]

1.2 Objectives

The main goal of this thesis is to design and implement a prototype robot platform and

dialogue system that allows for natural language communication. We aim to present a

platform that sufficiently demonstrates the use of speech recognition and synthesis to

allow communication with a robot through natural human speech. The robot should be

able to listen to commands within a set of predefined phrases, understand them and

execute some reactive behaviour. As proof of concept functionality, we have chosen

simple indoors navigation tasks and simulated object manipulation tasks for the

prototype's initial capabilities. Our robot prototype will be simulated in a virtual world

model. An example of a physical robot that could perform such tasks is depicted in

Figure 2.

We have chosen Estonian as the initial language for the robot. This is because of the

current lack of robot workers, assistants and guides in the Estonian market. We want to

provide a platform that is a good starting point for any such Estonian speaking smart-

technology. A simulated robot that is capable of completing simple tasks in the

17

Figure 2. Pioneer research platform with manipulators [17]

simulated environment of Tallinn University of Technology IT-building was chosen for

the demonstration goal. However, the system should be flexible enough to enable easy

switching between languages. We also want to provide sufficient explanation of the

final platform to make it easier to build, understand, utilize, modify and expand. These

general goals can be broken down to a list of subtasks:

 Using common architecture to create cohesion between all the system

components.

 Finding and integrating a flexible audio-capture, -playback and -manipulation

system.

 Finding and selecting a speech recognition toolkit.

 Finding and selecting a speech synthesis toolkit.

 Finding or developing a light-weight demo dialogue system.

 Setting up a communication flow and synchronization.

 Integrating, modernizing, modifying and debugging all the components to fit

into our system.

 Implementing missing functionality to get to a fully functional demo.

 Optimizing the whole architecture.

 Creating easy-to-use configuration and launch options.

 Automating the build process.

 Documenting the work.

1.3 Outline

Chapter 2 explains the behaviour of the final system with examples and illustrations.

The key features and design decisions of the platform are elaborated here.

18

Chapter 3 gives a general overview of the architecture of the platform. This includes

details of the components chosen and an overview of the component composition and

communication of the running robot.

Chapter 4 provides details on all the nodes used and created as part of the solution. This

includes a description of the functionality, diagrams, parameters and the ROS

communication paradigms used with the node. Nodes that integrate GStreamer also

have a description of the data pipeline.

Appendix 1 describes the code-base, where to find the source code and how to build the

platform.

Appendix 2 lists future development ideas.

Appendix 3 gives an overview of other alternative launch configurations that were

created for use with this platform and can be used to test various services.

19

2 Software behaviour and implementation

This chapter illustrates the most important workflows and design decisions of the

natural speech controlled robot platform.

2.1 Robot reactions

The process of transforming spoken audio to robot actions can be illustrated with the

following sequence diagram:

The “speech_recognition” component is the only one to work asynchronously from the

rest of the flow. It transforms voice commands to a textual form.

The “robot_prolog_connection” component processes one text transcript at a time,

which means that additional text inputs arriving, while one is being processed, get

stored in an input buffer and processed sequentially.

20

Figure 3. Generating reactions from speech transcript

For each text input to “robot_prolog_connection”, a query against the dialogue system

(see Chapter 3.3) is run, where the command is interpreted and a “reaction” behaviour

of the robot is generated. A reaction is a set of operations that the robot has to perform,

that make sense in response to what was spoken. For instance, if the robot is told to go

to the cafeteria, the reaction task would involve the following steps:

1. responding that the command was understood (respond command)

2. navigating to the cafeteria (goto command)

3. responding that the desired location was reached (respond command)

The described reaction is one of sixteen currently supported by the dialogue system.

Reactions are context sensitive – meaning they take into account various facts about the

world and current situation. The commands recognized by robot's command language

grammar are translated into one of these reactions. A full list of the reactions is a good

descriptor of the platform's current capabilities.

Table 1. List of dialogue system reactions

reaction identifier description commands used synchronicity

respond Triggers default response, which is to
say that the command was not
understood

respond S

stop Triggers stop command, which stops
current reaction handling and discards
all queued up reaction tasks.

stop S

juhata Leads the target to desired location respond, goto AS

ütle_kus1 Responds to queries about the location
of objects.

respond S

ütle_kus2 Responds to queries about the location
of people.

respond S

ütle_kus3 Responds to queries that are in an
alternative form.

respond S

ole Tells the robot where to stay. respond, goto AS

tule1 Robot goes to speaker. respond, goto AS

21

tule2 Robot comes to the place described respond, goto AS

otsi_leia Robot looks for the mentioned object
according to its internal world context.

respond, goto AS

anna_ulata Robot hands over an item. respond, place AS

võta_haara Robot takes an item. respond, pick AS

tõsta_pane Robot places an item at specified place. respond, place AS

too Robot goes and gets an item respond, goto,
pick, place

AS

vii Robot takes an item to a specified
place

respond, goto,
pick, place

AS

liigu_mine Robot goes to location. respond, goto AS

After the query described in Figure 3, the “robot_prolog_connection” component

checks if the reaction task can be completed synchronously (denoted by S in Table 1,

column 4). Synchronous reactions are immediately run and completed - they have no

long run-time associated with them. Asynchronous reactions (denoted by AS), on the

other hand, get inserted into a priority queue and handled at a later time in order of their

priorities.

22

The activity box “process reaction” is elaborated in the next chapter. Note that if there

was another higher priority task in progress, the current reaction is queued up for later

handling. It is only processed once all higher priority tasks have finished.

23

Figure 4. Processing reactions returned by the prolog dialogue system

 Currently the robot prioritizes reactions as shown in Table 2:

Table 2. Reaction prioritization

priority reactions

1 stop, respond, ütle_kus1, ütle_kus2, ütle_kus3

2 anna_ulata, võta_haara, tõsta_pane

3 juhata

4 liigu_mine, ole

5 all others

The priority for synchronous reactions does not matter, because they are always handled

immediately after the dialogue system returns them, i.e. they can be viewed as having

the highest priority.

24

Figure 5. Processing the next reaction task in queue

2.2 Robot commands

We can see in Table 1 that all the reaction tasks are just permutations of 5 basic

commands. Basic commands are operations directly executable by the robot. In order

for the “robot_prolog_connection” component to get these commands, additional

queries against the dialogue system are necessary. These queries result in sequences of

basic commands and completing all of the commands means completing the reaction.

Commands themselves are single operations that the robot is capable of performing.

Table 3. Robot executable commands

command description synchronicity

stop() Immediately stops all commands and reactions.
Empties the reaction queue.

S

respond(text) Immediately sends the text to speech synthesis and
returns. Speech synthesis has its own input queue and
says the message as soon as possible.

S

goto(place,X,Y,Z,Q) Goes to place with coordinates XYZQ. The place
variable is used to display the name of the location in
theGUI and for logging purposes.

AS

pick(object,X,Y,Z,Q) Takes object from coordinates XYZQ. The object
variable is used to display the name of the object in
the GUI and for logging purposes.

AS

place(object,X,Y,Z,Q) Places object to coordinates XYZQ. The object
variable is used to display the name of the object in
the GUI and for logging purposes.

AS

Synchronous reactions can only contain synchronous robot commands, asynchronous

reactions can contain both types of commands. Picking up and placing objects is stub

behaviour that can be completed via the GUI (Chapter 2.3).

The “robot_prolog_connection” node is aware if the reaction is synchronous or

asynchronous.

25

The “chatbot” node on the diagram interfaces the textual response from the dialogue

system with the speech synthesizer. In the chatbot node “respond()” is linked to speech

synthesis, “pick()” and “place()” are linked to the GUI and “goto()” is linked to the

navigation stack. The navigation stack, in turn, is providing inputs to the robot (in this

work to a robot simulation in ROS). Because of ROS’s plug-and-play nature, it would

be simple to swap out the simulated robot with a real one.

As shown in Figure 6, in case of synchronous reaction tasks, the resulting commands

are also synchronous and are handled immediately. If there was more than one

command in the “ütle_kus1” reaction's execution scenario, then these would be handled

sequentially.

For asynchronous reactions a thread is spun and some additional signalling is necessary

because they involve long-running tasks. An example based on navigating to a new

location:

26

Figure 6. A synchronous reaction command-resolution example

As Figure 7 shows, there is need for a “signal_done” signal from asynchronous

commands. This signal is used to acknowledge the dialogue system that the command

finished executing. As a result, the dialogue system stops waiting and produces the next

command for execution. The “signal_done” signal is sent when the asynchronous

command completes successfully. If the asynchronous command is either aborted or

fails, the reaction thread is forcibly killed and the next reaction in queue is processed.

One possible case where this failure can occur is if the robot is unable to navigate to the

desired location.

27

Figure 7. An asynchronous reaction command-resolution example

2.3 The GUI

The graphical user interface was added to provide a clean overview of what the robot is

seeing and doing. It features:

 A log window that can easily be extended with new log lines (Chapter 4.8).

 Buttons to complete stub “pick()” and “place()” commands.

 A text box for entering input to the dialogue system. This is a useful debugging

tool if speech recognition is having problems or the user does not want to run

speech recognition at all.

 A status bar displaying the robot's current activity.

 A map window that displays the robot's position and navigation plan.

For a more detailed view, it is possible to use the “visualize” argument on our

launch file. This shows a more complex GUI implemented in rviz [27].

28

Figure 8. Graphical user interface

The rviz GUI features:

 The ability to directly change the location of the robot on the graphical map.

 The ability to issue navigation goals without having to go through the natural

language dialogue system.

 Additional debug information, e.g. the costmap, navigation goals, pose

estimation particle cloud and others.

2.4 The simulation

In our solution the robot performs in a simulated world using the stage robot simulator

[41]. The simulated world is idealized in the sense that it is directly generated based on

the map provided. In real situations, the robot would also have to deal with a dynamic

environment, which will add noise to the localization system. Changing the map and

robot's dimensions is as easy as modifying a couple of configuration files (Chapter 4.9).

29

Figure 9. Detailed rviz based graphical user interface

The stage simulator is capable of creating a map based on any black and white image.

Figure 10 was used as part of the default simulation environment of our natural

language robot platform.

30

Figure 10. Tallinn University of Technology fourth floor map

Figure 11 shows the stage simulator's world. It offers another view of the robot, which

gives us additional debugging and analysis opportunities. This view can also be enabled

using the “visualize” parameter described in Chapter 2.5.

2.5 The main launch file

This section gives a quick overview of the parameters applicable to the main launch

configuration. These are parameters for the unifying launch configuration that runs all

of the nodes together forming one cohesive robot platform. Note that this is not the

limit of the configurability - per-component parameters also exist and are described in

Chapter 4.

31

Figure 11. Stage simulator

The entire platform can be launched and arguments given in the following way:

Table 4. Launch parameters for robot platform

parameter expected values default value effect

config_file path to prolog
configuration file

“$(find prolog_server)
/config/mt_server.yaml”

Allows creating multiple prolog con-
figurations and selecting one

output “log” or “screen” “log” “log” will output messages coming
from nodes to log files.
“Screen” will output messages to the
standard output stream.

no_recognition “true” or “false” “false” “true” means the voice recognition
will not be started.

no_voice “true” or “false” “false” “true” means the voice synthesis will
not be started.

visualize “true” or “false” “false” “true” means that additional simulator
visualization tools will be displayed.

map_file Path to .yaml
formatted map file
[24]

"$(find chatbot_simulator)
/maps/4korrus.yaml"

Load file specified as the map for the
navigation stack.

world_file Path to .world
formatted world
file [3]

$(find chatbot_simulator)
/maps/stage/4korrus.world

Load file specified as the world file
for the stage simulator.

initial_pose_x floating point co-
ordinate within
the world as a
string

“31.0” Set the robots initial x coordinate to
this position. The default values match
the map used.

initial_pose_y floating point co-
ordinate within
the world as a
string

“16.0” Set the robots initial y coordinate to
this position. The default values match
the map used.

32

~$ roslaunch chatbot chatbot.launch no_recognition:=true visualize:=true
no_voice:=false output:=screen

Figure 12. Starting the platform from the console

3 Software Architecture

3.1 ROS

As the base implementation platform for writing the natural language robot platform,

the well known Robot Operating System (ROS) was chosen [23]. ROS presents a

middleware that holds everything together and to which all of the components we use

must conform. It is an open-source framework that provides a set of commonly used

services and functionality in robotics development. ROS offers functionality ranging

from low level hardware abstraction and device control, to high level features like

communications architecture [21] and package management. It also offers various tools

to develop, debug, inspect, build and write code. ROS was selected because of its role

as de facto middleware standard in robotics, it is widely used, well documented and well

supported – this is as close as we get to an industry standard when it comes to open-

source robotics development platforms.

The basic idea of ROS is to provide a set of ready-made and community made

components (or “nodes” in ROS lingo). Developers can easily use these together, in

various configurations because of standardized interfaces. A big part of this thesis was

creating these nodes using new systems and the systems described throughout Chapter

3. Audio capture, speech recognition, audio synthesis, a prolog engine and client and

various other utilities were integrated into ROS compatible nodes in order to create a

robot that understands and reacts to natural language.

ROS also provides a convenient XML-RPC based communication framework for

signalling and messaging between nodes. The communication framework offers three

common communication patterns: topics [29], services [28] and actions [20].

3.1.1 Topics

This communication pattern is meant for one-way periodic communication. A topic is

essentially a named bus to which publishers push strongly typed data. The publisher

knows nothing about subscribers, it only knows the topic name and the message type.

33

The same goes for the subscriber - thus we have a public interface through which loose

coupling is achieved.

3.1.2 Services

In contrast to the topic pattern’s many-to-many one-way transport, this pattern offers

one-to-one two-way communication. Topics use one message, while the services pattern

uses two for each service - a request and a response. The services pattern mimics remote

procedure calls by returning data to the caller of the service through the response

message. The messages are again strongly typed and must be predefined.

3.1.3 Actions

Actions are another communication pattern built on messages. Actions are meant for

executing long-running tasks like navigating to a new location or picking something up.

It differs from the services pattern in that it is non-blocking and preemptable. A service

call blocks until a value is returned, but an action request immediately returns. While

the action is being executed on the action server, the client may choose to cancel the

action.

In short, each node in our architecture may have have services, topics or actions

associated with them to provide means for communication. This information is

presented with more detail per node in Chapter 4. All the topics, services and actions

can also be directly called from the command line, which makes testing and running the

nodes separately feasible. For example, it is possible to run only the speech synthesis

node and give it an input message from the command line interface for a quick synthesis

test.

3.2 GStreamer

Gstreamer (GST) [11] is a multimedia framework allowing data stream manipulation

through pipelines. A pipeline in GStreamer is a chain of elements that manipulate data

coming into the pipeline to achieve a specific task. For example, one could setup a GST

pipeline that samples audio, applies filters and encodes it to a mp3 file. Very complex

34

pipelines are easy to create and manipulate thanks to the plug-and-play nature of

GStreamer. GStreamer is widely used in audio-video applications.

Many nodes in our architecture use GStreamer to capture, convert, resample, filter and

play-back audio. However, for audio transportation across ROS nodes, the audio stream

is handed off to ROS. The output of a GST pipeline running within a ROS node is

converted to ROS messages and transported using the topics pattern.

GStreamer is also used for communication with the speech recognition toolkit through a

tool called gst-kaldi-nnet2-online (Chapter 3.5).

3.3 The Prolog dialogue system

Prolog is a general-purpose declarative programming language. It is often used in the

field of artificial intelligence and natural language analysis and processing [18] -

making it a great fit for the thesis' goals.

A SWI-Prolog [35] program was used to implement the actual dialogue system. This

program was written by the supervisor of this thesis Prof. Jüri Vain. The dialogue

system program takes speech command transcription text as an input and outputs a

string describing an appropriate reaction. Further querying of the dialogue system with

the reaction string results in a list of commands that the robot has to execute. The

dialogue system also implements additional speech recognition error-correction,

meaning that by using speech context information and context related vocabulary it can

approximate what the speaker was trying to say up to a preset threshold of likelihood.

The dialogue system parses input transcriptions based on Definite Clause Grammar

(DCG) [34]. As a result of the DCG parsing, a prolog fact “goal” is created that

contains all the information required to execute a task (reaction name, target location,

action subject, object etc). The information in the “goal” fact is used to drive execution

of the commands contained in each “reaction”. Reactions determine a list of

commands (an execution scenario) and have the ability to wait for the commands to

finish executing using the prolog “wait” predicate. The reactions use information about

the environment returned from “world” prolog facts. These facts are updated when

executing commands to keep the robot's knowledge base in sync with the physical

35

world. For instance, if the robot transports a cup to another room, it must update the

location of the cup in the “world” facts.

3.4 Kaldi speech recognition toolkit

This component does all of the speech recognition work. It is a powerful toolkit that is

capable of both Gaussian mixture model (GMM) and deep neural network (DNN) based

recognition [14]. The robot platform uses the DNN based model because it has been

shown to outperform GMM based models [1]. The Estonian speech corpus necessary

for recognition was trained and provided by the National Programme for Estonian

Language Technology [37].

The traditional speech recognition pipeline consisting of a feature extractor, an acoustic

model, a pronunciation model, a language model and a decoder has been largely

replaced by DNN based solutions, where the network is trained to directly compute

target hidden Markov model (HMM) states based on the input features. Kaldi uses this

approach due to its increased accuracy, even though DNNs are difficult to train and

computationally resource intensive.

3.5 gst-kaldi-nnet2-online

The gst-kaldi-nnet2-online package wraps Kaldi's speech recognition interface into a

GStreamer plugin [2]. As part of the thesis work, the GStreamer plugin was in turn

wrapped into a ROS node. The gst-kaldi-nnet2-online package allows for quick and

easy communication with the Kaldi components that perform the speech recognition

and transcription.

The GStreamer plugin built by the package is called “kaldinnet2onlinedecoder”. In

order to use this plugin an environment variable “GST_PLUGIN_PATH” must be set to

the directory of the plugin binary (“thesis_platform/deps” in our default configuration).

After that, a list of plugin parameters, their default values and descriptions can be

examined by launching “gst-inspect-1.0 kaldinnet2onlinedecoder”. This also reveals

the following information about the GStreamer plugin's input and output:

36

Figure 13 shows that the GStreamer element accepts single channel signed 16-bit little-

endian audio and outputs utf8 encoded text. This means that no matter what encoding

the audio is in (Speex, MP3), we must first convert it to this format to get speech

transcription.

3.6 Festival speech synthesis toolkit

Festival is a speech synthesis toolkit developed by the University of Edinburgh's Centre

for Speech Technology [36]. The C++ API was used to wrap it into a ROS node

(Chapter 4.7).

3.7 The platform in abstract

All the ROS nodes working together form a network, which simulates a robot capable

of understanding and responding in natural language. The following is an abstract

depiction of the system:

37

Pad Templates:
 SINK template: 'sink'
 Availability: Always
 Capabilities:
 audio/x-raw
 format: S16LE
 channels: 1
 rate: [1, 2147483647]

 SRC template: 'src'
 Availability: Always
 Capabilities:
 text/x-raw
 format: { utf8 }

Figure 13. kaldinnet2onlinedecoder interface

3.8 Full robot configuration

This section presents the main launch configuration created as part of the thesis. The

configuration of the nodes results in a cohesive system that simulates a robot capable of

natural language communication. An overview of how the nodes communicate and

work together is given. Further detail on individual nodes, their development process

and functionality is presented in Chapter 4.

3.8.1 Nodes and topics

Figure 15 and Figure 16 present a full picture of all the nodes running in the main

configuration and their communication. These two images represent the same network

with different components abstracted due to space limitations.

38

Figure 14. An abstract view of the robot's speech control architecture

39

Figure 15. A detailed view of the final architecture (1/2)

Figure 16. A detailed view of the final architecture (2/2)

GUI,
recognition,
synthesis,
prolog dialogue system,
robot controller

namespace

- external package node
/node_name

namespace

namespace

- internal package node
/node_name

/topic - publishing and subscribing to /topic

name/action_topics - action request response messages

- A service call to B/get_name

B/get_name

A B

chatbot/respond

recognition/set_pause

prolog_server/close_query
prolog_server/get_all_solutions
prolog_server/get_next_solution
prolog_server/has_solution
prolog_server/has_worker
prolog_server/list_workers
prolog_server/open_query

map
localization
navigation
simulation

namespace

- external package node
/node_name

namespace

namespace

- internal package node
/node_name

/topic - publishing and subscribing to /topic

name/action_topics - action request response messages

- A service call to B/get_name

B/get_name

A B

“Internal package node” in Figure 15 and Figure 16 means that the node in question

was either created from scratch or heavily modified (prolog_server). The source code of

“internal package” nodes is located within the final project's files. “External package”,

on the other hand, means that these nodes come with ROS or some other package and

have to be installed separately. These nodes only have configuration files and other

input files (e.g. map of the world) as part of the final project's filebase.

Note that Figure 16 omits the various services offered by stock nodes, which was done

for readability. The graph was also simplified by pruning away leaf topics and dead

sinks, which some of the stock ROS components generate, but which are not required as

part of the natural language platform.

The following gives a quick overview of the nodes and their purpose.

 Table 5. Node overview

node name description

amcl 2D probablistic localization system.

chatbot Interface that abstracts the robot implementation.

chatbot_gui GUI node for viewing robot activity.

chatbot_speech_recognition This a speech_recognition_simple type node. It
captures audio and forwards it to the speech
recognition system. It publishes the resulting
transcript under /recognition/raw_result. Is pausable.

cmd_vel_mux Robot velocity command multiplexer.

diagnostic_aggregator Holds and categorizes diagnostic messages .

joint_state_publisher Publishes robot joint state.

kobuki_safety_controller Safety feature tied to bumpers and wheel drop
events.

map_server Keeps the map information and provides the data for
the robot.

mobile_base_nodelet_manager Manages robot movement

move_base This accesses the navigation stack.Lets the robot
move to desired position.

navigation_velocity_smoother Bounds velocity messages according to robots

40

node name description

velocity and acceleration limits

prolog_server Keeps an instance of the Prolog runtime. This is
where the dialogue system is loaded into and
queried.

robot_prolog_connection_node Handles raw text coming from speech recognition.
Queries prolog_server for appropriate reactions,
prioritizes the reactions and executes commands
related to the reactions on chatbot node.

robot_state_publisher Publishes robot state, which is used in localization.

stageros 2d mobile robot simulator.

synth_festival Synthesizes speech based on input text.

These services and the functionality they offer working in unison create the platform

described in the thesis objectives.

3.8.2 A variation on the final configuration

There are variations possible to the configuration presented in Figure 15. For instance,

we could replace “the /recognition/chatbot_recognition” node with a pair of nodes

“capture_vad_speex” and “speech_recognition_speex” that achieve the same result.

The replacement in Figure 17 separates audio capture and speech recognition, but

results in the same behaviour. There is overhead to separating the two nodes in the form

41

Figure 17. Contained vs separated functionality

of transport cost over the ROS messaging protocol. In Figure 15 both capture and

recognition are processed in one node and this overhead does not occur.

The benefit for this replacement is flexibility. Going even further, it would be possible

to use ROS tooling to run nodes in different machines by communicating messages over

the network [30], [32]. This could be used to separate the resource demanding speech

recognition from the rest of the system.

The separation across networks was not part of our final launch configuration as the

system was optimized enough to run everything locally. It is offered here as an

alternative for lower-end machines.

42

Figure 18. Nodes running in multiple machines

4 Component implementation details

This chapter gives a detailed overview of the components developed and used as part of

the natural language controlled robot platform. All of the components follow common

ROS architecture [22], which allows for easy replacement, reconfiguration, reusability

and extension. They are listed here by their ROS node names.

We also offer a description of the nodes, ROS inputs and outputs, a descriptive graph

and a list of parameters. Before any ROS node can be started, the ROS core must be

started and our platform project's environment properly sourced.

For each component listed in this chapter, the parameters available are shown with their

default values and a description. Note that the tilde (“~”) character in front of each of

the parameters means they are in a private namespace for the node and are protected

from collisions in the parameter server. When running a node we switch out the tilde for

an underscore (“_”). An example of how to set the bitrate parameter when launching

the audio capture node from command line is depicted in Figure 20.

The GST pipeline diagrams shown with some of the nodes, were auto-generated by

running the pipeline stand-alone from the command line interface and by generating the

diagrams [12]. The command describing how to start the pipeline in GST without ROS

is also shown. This can be used to get a better understanding of how the audio streams

are manipulated. The ROS component rqt_graph [26] was used to create the ROS

diagrams.

43

~/platform$ source devel/setup.sh
~/platform$ roscore

Figure 19. Sourcing the platform and running roscore

~$ rosrun capture_audio capture_audio _bitrate:=192

Figure 20. Sourcing the platform and running roscore

4.1 capture_audio

4.1.1 Description

Capture_audio is the simplest component. It is a slightly simplified version of Nate

Koenig's audio_common package [15]. It takes audio from the microphone, converts it

into ROS compatible messages and publishes to a ROS topic. The motivation for

integrating this component to our platform is twofold. Combined with play_audio, it

can be used to quickly test if the microphone, ROS audio transport and playback is

working properly. The second use for this could be to capture audio and transport it

over the internet using rosbridge_suite [30] to a more powerful machine for speech

transcription and command generation - this would mean that the robot itself can be

very lightweight.

Capture_audio is used with the launch configuration test_microphone.launch

(Appendix 3).

4.1.2 Diagrams

rqt_graph generated diagram of the node, showing the published audio topic:

To create an equivalent GST pipeline that is running in the ROS node, the following

launch command can be used:

44

Figure 21. The capture_audio node and published topic

~$ gst-launch-1.0 alsasrc ! audioconvert ! lamemp3enc quality=2.0 bitrate=192
! Appsink emit-signals=true max-buffers=100

Figure 22. GStreamer pipeline for capture_audio

The pipeline created shows how the audio is processed within the ROS node.

Within the ROS node, appsink is connected with an event handler that publishes to the

topic “/audio”. The one-to-many nature of ROS topics allows any subscribers to

receive the audio data.

Since capture_audio can also sink captured audio into a file (see ~dst parameter), we

have a second equivalent pipeline:

45

Figure 23. Audio processing in the capture_audio node

~$ gst-launch-1.0 alsasrc ! audioconvert ! lamemp3enc quality=2.0 bitrate=192
! filesink location=/tmp/capture.mp3

Figure 24. GStreamer pipeline for capture_audio with a file sink

This pipeline fully works and creates a playable audio file “/tmp/capture.mp3”.

4.1.3 Running

The “rosnode info” command illustrates what audio_capture publishes. Figure 26

shows that the output of the GStreamer pipeline was converted to a ROS message of the

type “audio_common_msgs/AudioData” and published with the topic name “/audio”.

46

Figure 25. Audio processing in the capture node with a file sink

Any ROS node can subscribe to the “/audio” topic and receive the audio buffers as they

are being published. Note that capture_audio only publishes to the topic if file sink was

not selected as the output type.

“/rosout” is a logging topic that is common to most nodes.

47

~$ rosrun capture_audio capture_audio
~$ rosnode info /capture_audio
Node [/capture_audio]
Publications:
 * /rosout [rosgraph_msgs/Log]
 * /audio [audio_common_msgs/AudioData]

Figure 26. capture_audio node info and run command

4.1.4 Parameters

Table 6. capture_audio run parameters

parameter type default effect

~format string “mp3” Allows selecting the type of encoder used in the
nodes GStreamer pipeline. The node supports
“mp3” and “wave”. MP3 encoding is done using
the premade gstreamer element lamemp3enc
[10]. WAVE is just raw audio [6].

~bitrate unsigned integer 192 Applies for MP3 format, allows selecting the
encoding bitrate.

~channels unsigned integer 1 Applies for WAVE format, Allows selecting
between mono, stereo and multichannel output.

~depth unsigned integer 16 Applies for WAVE format, allows selecting the
amount of bits per sample. Capture from the
card happens via alsasrc [7] GStreamer plugin
and is converted to desired depth via
audioconvert [8] GStreamer plugin.

~sample_rate unsigned integer 16000 Applies for WAVE format, allows specifying
capture sample frequency.

~dst string “appsink” This parameter allows selecting the output of
the GStreamer element. If “appsink” is selected,
GStreamer will link with the ROS node and start
publishing the audio buffers to the “/audio”
topic. Otherwise, if a file path is entered here
the captured audio will be written to that file in
the format desired and specified with the
parameters described above. This is useful if
you want to capture and store audio for later
use. For instance, if we want to test performance
of different speech recognition parameters, we
want the input to be constant and invariable to
the tests.

48

4.2 play_audio

4.2.1 Description

This is the counterpart to capture_audio. The component takes the audio received via

ROS topic and either saves it to a file or plays it from the speakers.

This element is used in the launch configuration test_microphone.launch (Appendix

3).

4.2.2 Diagrams

To create an equivalent GST pipeline that is running in the ROS node, the following

launch command can be used:

The pipeline created shows how the audio is processed within the ROS node.

49

Figure 27. The play_audio node and subscribed topic

~$ gst-launch-1.0 appsrc ! audioconvert ! autoaudiosink

Figure 28. GStreamer pipeline for play_audio

The first appsrc element in the pipeline is hooked up to the “/audio” ROS topic. Each

message published to that topic gets picked up by an event handler in the node and

forwarded to the GStreamer. The audioconvert component then converts the acquired

audio stream into a format acceptable by the autoaudiosink component. The

autoaudiosink component automatically detects available audio sink components

installed on the machine by doing a registry scan. It then connects the pipeline to that

component and pipes the audio data to it [9]. This will most commonly end up being the

audio card and will play the audio from the speakers.

50

Figure 29. Audio processing in the play_audio node

play_audio can also save information received over the ROS topic to a file (see ~dst

parameter). This is useful for validating what was sent versus what was received, doing

experimentation and debugging. GStreamer equivalent pipeline to what is running in the

ROS node:

As Figure 31 shows, data received over the topic is saved directly to a file determined

by the location parameter.

4.2.3 Running

51

~$ gst-launch-1.0 appsrc ! filesink location=/tmp/played.buffers

Figure 30. GStreamer pipeline for play_audio with a file sink

Figure 31. Audio processing in the play_audio node with file sink

~$ rosrun play_audio play_audio
~$ rosnode info /play_audio
Node [/play_audio]
Publications:
 * /rosout [rosgraph_msgs/Log]
Subscriptions:
 * /audio [audio_common_msgs/AudioData]

Figure 32. play_audio node info and run command.

~$ rosrun play_audio play_audio
~$ rosnode info /play_audio
Node [/play_audio]
Publications:
 * /rosout [rosgraph_msgs/Log]
Subscriptions:
 * /audio [audio_common_msgs/AudioData]

Figure 30. play_audio node info and run command

Node inspection reveals that the node subscribes to the “/audio” topic of message type

“audio_common_msgs/AudioData”. This is the message that capture_audio publishes.

4.2.4 Parameters

Table 7. play_audio run parameters

parameter type default effect

~dst string “alsasink” This parameter allows selecting the output of
the GStreamer element. If “alsasink” is selected,
GStreamer will take the buffers received over
the “audio” topic and convert the stream to a
suitable format for a device found by
autoaudiosink [9]. If a file path is entered here,
the received audio will be written directly to a
file without any conversions.

4.3 capture_vad_speex

4.3.1 Description

This node is an enhanced version of capture_audio. There are two main differences:

1. Instead of mp3 or raw wave, audio is encoded in the speex format [33].

The speex audio compression is specifically designed and optimized for speech.

2. The node provides voice activity detection (VAD).

VAD is used to detect silences and only send whole sentences to the voice recognition

node. This is useful in cutting up the audio into segments for transfer over the network.

Kaldi is already capable of endpointing by itself - this is an early optimization that

lightens the load on the speech recognition engine.

This element is used in the launch configurations test_vad_speex.launch and

test_sr_speex.launch (Appendix 3).

52

4.3.2 Diagrams

To create an equivalent GST pipeline that is running in the ROS node, the following

launch command can be used:

Based on the pipeline, a diagram showing GStreamer configuration in the ROS node is

generated.

53

Figure 33. The capture_vad_speex node and published topic

~$ gst-launch-1.0 alsasrc ! audioconvert ! audioresample ! audio/x-raw,
rate=32000 ! speexenc vad=true dtx=true bitrate=0 ! appsink emit-signals=true
max-buffers=100

Figure 34. GStreamer pipeline for capture_vad_speex

Figure 35 shows that an audio resampling element is used within the pipeline. This was

not strictly necessary, but useful because the speex codec is optimized to for sampling

rates of 8 kHz, 16 kHz and 32 kHz. The audio card used had a default sampling rate of

44100 Hz, which was downsampled to 32 kHz to get a better compression rate out of

the speex codec.

The capture_vad_speex node also has the capability of saving capture audio to a file

using using the ~dst parameter.

54

Figure 35. Audio processing in the capture_vad_speex node

The result is a speex encoded audio file, which may be listened to with speex capable

players.

4.3.3 Running

55

~$ gst-launch-1.0 alsasrc ! audioconvert ! audioresample ! audio/x-raw,
rate=32000 ! speexenc vad=true dtx=true bitrate=0 ! filesink
location=/tmp/capture.speex

Figure 36. GStreamer pipeline for capture_vad_speex with a file sink

Figure 37. File sink replacement for the capture_vad_speex pipeline

~$ rosrun capture_vad_speex capture_vad_speex
~$ rosnode info /capture_vad_speex
Node [/capture_vad_speex]
Publications:
 * /rosout [rosgraph_msgs/Log]
 * /audio [audio_common_msgs/AudioData]

Subscriptions: None
Services:
 * /capture_vad_speex/get_sink_capabilities
 * /capture_vad_speex/get_loggers
 * /capture_vad_speex/set_logger_level

Figure 38. capture_vad_speex node info and run command

In addition to publishing “/audio” messages, capture_vad_speex also offers a custom

service “capture_vad_speex/get_sink_capabilities”. This additional service is necessary

because GStreamer's appsink and appsrc elements are not able to appropriately

negotiate the audio format for speex encoded data. The service returns a string

describing the audio format, so the consumer of the audio can setup a matching pipeline.

Each node that wants to use this data, must first specify the audio format. The service

get_sink_capabilities helps with this. A slightly less flexible alternative would hav e

been to just hardcode an audio format. The function

play_audio_speex.cpp::PlayAudioSpeex::getSinkCapabilities() found in the source code

(Appendix 1) details how to setup the receiver.

4.3.4 Parameters

Table 8. capture_vad_speex run parameters

parameter type default effect

~bitrate unsigned integer 0 Speex encoding bitrate. 0 means automatic.

~dst string “appsink” “appsink” means sinking the audio to ROS and
publishing to the “/audio” topic. If ~dst is a file
path, the captured and speex compressed audio
will be saved to that file.

4.4 play_audio_speex

4.4.1 Description

This is the counterpart to capture_vad_speex. The component takes the audio received

via ROS and either saves it to a file or plays it from the speakers.

This element is used in the launch configuration test_vad_speex.launch (Appendix 3).

56

4.4.2 Diagrams

To create an equivalent GST pipeline that is running in the ROS node, the following

launch command can be used:

The pipeline created shows how the audio is processed within the ROS node.

57

Figure 39. The play_audio_speex node and subscribed topic

~$ gst-launch-1.0 appsrc ! speexdec enh=false ! audioconvert ! autoaudiosink

Figure 40. GStreamer pipeline for play_audio_speex

Figure 41 shows that an audio decoder has been added to the pipeline. This decoder

makes it possible to play speex encoded streams. The rest of the pipeline is analogous to

play_audio. Just like play_audio, this node has ~dst parameter, which can be used to

save the received stream directly to a file.

4.4.3 Running

This is the same as play_audio in Chapter 4.2. An important distinction is that

play_audio_speex requires capture_vad_speex to be running before it can do anything.

This is because the nodes need to negotiate the speex audio format. If play_audio_speex

58

Figure 41. Audio processing in the play_audio_speex node

~$ rosrun play_audio_speex play_audio_speex
~$ rosnode info /play_audio_speex
Node [/play_audio_speex]
Publications:
 * /rosout [rosgraph_msgs/Log]
Subscriptions:
 * /audio [unknown type]

Figure 42. play_audio_speex node info and run command

is launched alone, it will wait until capture_vad_speex makes the

“/capture_vad_speex/get_sink_capabilities” service available.

4.4.4 Parameters

Table 9. play_audio_speex run parameters

parameter type default effect

~dst string “alsasink” Allows choosing between alsasink and file sink
(see Chapter 4.2.4).

~enh boolean false Enable or disable speex perceptual enhancement
[40].

4.5 speech_recognition_simple

4.5.1 Description

The speech_recognition_simple node captures audio, does speech recognition using gst-

kaldi-nnet2-online and outputs the transcript of what is spoken under the ROS topic

“/raw_result”. This component cuts away the overhead of transmitting audio over the

XML-RPC communication protocol and does both audio capture and recognition in the

same node. It also removes the overhead of additional encoding and decoding, which

would be necessary for audio transfer. The details on why this overhead occurs are

highlighted in speech_recognition_speex (Chapter 4.6). The downside of this

optimization is that it is less flexible – audio capture and speech recognition are in one

executable. This node is used in the final platform, but low-end computers may need to

use a dedicated speech recognition server and the speech_recognition_speex node, since

this node is resource intensive.

Finally note that speech_recognition_simple is used in the launch configurations

test_sr_simple.launch and chatbot.launch (Appendix 3).

59

4.5.2 Diagrams

If the ~dst parameter is set to “appsink”, the node publishes transcript text to the

“/raw_result” topic. The following GST pipeline is equivalent to what is running in the

ROS node if we set the ~dst parameter to “/home/oliver/test.txt”:

Note that gst-launch-1.0 needs to know where the kaldinnet2onlinedecoder plugin is

located (see Chapter 3.5). This is ensured by setting an environment variable.

60

Figure 43. The speech_recognition_simple node and published transcript

~$ gst-launch-1.0 alsasrc \
! audioconvert ! audioresample ! kaldinnet2onlinedecoder \
use-threaded-decoder=false \
model=$GST_PLUGIN_PATH/final.mdl \
fst=$GST_PLUGIN_PATH/HCLG.fst \
word-syms=$GST_PLUGIN_PATH/words.txt \
feature-type=mfcc \
mfcc-config=$GST_PLUGIN_PATH/conf/mfcc.conf \
ivector-extraction-
config=$GST_PLUGIN_PATH/conf/ivector_extractor.fixed.conf \
max-active=10000 beam=10.0 lattice-beam=8.0 chunk-length-in-secs=2.0 \
traceback-period-in-secs=1.0 do-endpointing=true \
endpoint-silence-phones=1:2:3:4:5:6:7:8:9:10 \
! filesink location=/home/oliver/test.txt buffer-mode=2

Figure 44. GStreamer pipeline for speech_recognition_simple

~$ export GST_PLUGIN_PATH=/home/oliver/thesis/catkin_ws/deps

Figure 45. Setting Gstreamer plugin path

61

Figure 46. Processing audio into transcript text in the speech_recognition_simple node

The resampling and conversion in Figure 46 is necessary to convert the audio data to a

format matching the kaldinnet2onlinedecoder's sink specifications. It only accepts audio

streams of a certain format (see Chapter 3.5). From the diagram we can see that the

output format is an utf8 encoded string.

After speaking a couple of sentences the example file “/home/oliver/test.txt” contains:

4.5.3 Running

Figure 48 node information shows that speech recognition results are published to the

topic “/raw_result” with message type of “std_msgs/String”. Any node can subscribe to

this and get a transcript of what is spoken. A service named “/set_pause” is also

available. This service can be called from other nodes or the command line to pause and

unpause speech recognition. This feature was necessary so that speech recognition could

62

tere üks kaks kolm neli viis
testime kõne süntees see aastal kaks tuhat kuus teist
robot normaalne raamat
robot too mulle raamat
kuidas läheb

Figure 47. Speech transcription results example

~$ rosrun speech_recognition_simple speech_recognition_simple --
_model_dir:=/home/oliver/thesis/catkin_ws/deps
~$ rosnode info /speech_recog_simple
Publications:
 * /raw_result [std_msgs/String]
 * /rosout [rosgraph_msgs/Log]
Subscriptions: None
Services:
 * /set_pause

Figure 48. speech_recognition_simple node info and run command

be paused while the speech synthesizer was speaking. Without doing that, the robot

would hear itself speak and get stuck in a loop.

4.5.4 Parameters

The descriptionless parameters in Table 10 correspond one-to-one with the parameters

of the kaldinnet2onlinedecoder plugin (Chapter 3.5) - the ROS node just wraps them

and assigns a default value.

Table 10. speech_recognition_simple run parameters

parameter type default description

~dst string “appsink” If “appsink” is selected, GStreamer will
link publish speech transcript to the
“/raw_result” topic. Otherwise, if a file
path is entered here, the text will be
written to a file. It is also possible to
specify “/dev/stdout” here to print the
recognition results to the standard output
stream.

~model_dir string “error” This is a parameter that must be passed
to the node when running, if left empty a
fatal error will occur. It tells the node
where the speech recognition corpus
along with configuration files are located.
It uses the string passed as a root path for
looking up the configuration files. It is
also possible specify each config
separately in case the standard directory
layout is not acceptable via ~model, ~fst,
~word_syms, ~mfcc_config and
~ivector_extraction_config parameters.

~threaded_decoder bool false -

~do_endpointing bool true -

~model string “model_dir/
final.mdl”

-

~fst string “model_dir
/HCLG.fst”

-

~word_syms string “model_dir -

63

parameter type default description

/words.txt”

~feature_type string “mfcc” -

~mfcc_config string “model_dir
/conf/mfcc.conf”

-

~ivector_extraction
_config

string “model_dir
/conf/ivector_extracto
r.fixed.conf”

-

~ep_silence_phones string "1:2:3:4:5:6:7:8:9:10" -

~max_active int 7000 -

~beam float 10.0 -

~lattice_beam float 5.0 -

~chunk_length_s float 2.0 -

~acoustic_scale float 0.0833 -

~traceback_period_
in_secs

float 1.0 -

4.6 speech_recognition_speex

The only difference between speech_recognition_speex and

speech_recognition_simple is that speech_recognition_speex takes audio captured by a

different node, while speech_recognition_simple captures the audio in the same

executable.

4.6.1 Diagrams

64

Figure 49. The speech_recognition_speex node with published transcript and input audio topics

Figure 49 shows that, unlike speech_recognition_simple, the audio is captured

separately. This offers additional flexibility – like running the nodes on different

computers. Because of the speex decoding done in speech_recognition_speex the same

limitations are present as were for the node play_audio_speex, i.e. the capture node

must be launched and the audio format negotiated (Chapter 4.4).

Because the kaldinnet2onlinedecoder can not link directly with a speex encoded stream

the audio must be decoded and converted before passing to audio recognition. This is

done in exactly the same way as the stream in Figure 41 – with a speexdec decoder

element. Getting rid of this extraneous decoding is one of the future optimization

opportunities listed in Appendix 2.

4.6.2 Running

The only difference from speech_recognition_simple is the subscription to audio.

4.6.3 Parameters

Parameters are the same speech_recognition_simple, with the addition of the ~enh

parameter for perceptual enhancement, which is a feature of the speex codec.

65

~$ rosrun speech_recognition_speex speech_recognition_speex --
_model_dir:=/home/oliver/thesis/catkin_ws/deps
~$ rosnode info /speech_recog_simple
Node [/speech_recognition_speex]
Publications:
 * /raw_result [std_msgs/String]
 * /rosout [rosgraph_msgs/Log]
Subscriptions:
 * /audio [audio_common_msgs/AudioData]
Services:
 * /speech_recognition_speex/set_logger_level
 * /speech_recognition_speex/get_loggers
 * /set_pause

Figure 50. speech_recognition_speex node info and run command

4.7 synth_festival

This ROS node wraps the festival speech synthesis toolkit (Chapter 3.6). It takes text

input from the “/synth_festival/text_to_speak” topic and converts it to speech in the

voice specified with the ~voice parameter. This node also calls “/set_pause” on

speech_recognition_simple and speech_recognition_speex so the robot ignores itself

speaking.

The only parameter for this node is a string called ~voice which lets the user select

between installed voices. In our platform it defaults to an Estonian voice

“voice_eki_et_riina_clunits” from The Institute of the Estonian Language [5].

4.8 chatbot_gui

The chatbot_gui node gives the platform a simple graphical user interface. Its

appearance and features are demonstrated in Chapter 2.3. This chapter takes a closer

look at this ROS node. The GUI was written in python and is based on ROS's rqt

framework [13].

66

Figure 51. The synth_festival node and subscribed topic

Figure 52 displays all of the messages handled by the GUI. These can be linked to

various GUI elements.

“/chatbot_gui/status” - This subscription aligns with the status bar. Any message

published to this topic will show up in the status box.

“/chatbot_gui/log” and “/recognition/raw_result” as a subscription – Any string

published to these topics is shown in the message log section.

67

Figure 52. GUI node subscriptions and publications

Figure 53. GUI - status box

Note from Figure 52 that “/recognition/raw_result” is also an output of the GUI. This

was done to provide a convenient way to give the dialogue system input, instead of

relying on speech recognition.

The “/placer” and “/picker” topics are there because the GUI offers stub functionality

for picking up items and placing them down.

The rest of the topics provide navigation information, a world map and the robot's

coordinates respectively.

68

Figure 54. GUI - message log

Figure 55. GUI - fake recognition results

Figure 56. GUI - fake picking up and placing down objects

Figure 57. GUI - map and nav

4.9 chatbot_simulator

The created chatbot_simulator node package has no source code on its own. The

package is essentially a collection of configuration files that were created as part of this

thesis. The package launches a simulated environment that suits our needs. The

configuration files launch the stage simulator with the correct map file and robot

parameters. They also start the navigation stack, set the initial pose of the robot and start

the safety_controller and velocity_smoother nodes mentioned in Chapter 2.4. It is easy

to edit the robot's shape and size and world's costmap from these configuration files.

The configuration files were based on ROS turtlbot's stage simulator setup [4].

4.10 prolog_server

The prolog_server node hosts a Prolog runtime, which is used to run the robot's

dialogue system. The dialogue system is a Prolog program that is loaded into this

runtime by the robot_prolog_connection node and then queried.

Prolog_server is a modified version of the ros-prolog package [13]. As part of the

thesis work, a subclass called “SimpleServer” was created, that only implements

features required for the robot platform's operations. Multibyte encoding support was

also added to the package, to ensure proper Estonian character handling in the dialogue

system.

4.11 chat_core

The chat_core node was created by the author, to act as an interface and abstract away

the robot implementation. All operations/calls to the robot are passed to this node. The

chat_core node then takes advantage of ROS's plug-and-play nature and forwards the

calls to an actual implementation or a stub implementation.

69

Figure 58 shows action servers (Chapter 3.1.3) offered by the node with a green

background. These are the calls to the interface. Marked with a red background are the

actual implementations or stub implementations in the case of “/pick” and “/place”.

As described in Chapter 4.8 the published topics under the chatbot_gui namespace are

for logging purposes.

Note that there are four implementations and only 3 interface calls. The respond

command that gets forwarded to a “/synthesizer/text_to_speak” implementation topic is

not on this messaging graph, because it was implemented as a synchronous service call

(Chapter 3.1.2). This is because requesting text to be synthesized is a fast operation of

just copying the string to “/synthesizer/text_to_speak” topic.

70

Figure 58. The chat_core node and its connections

4.12 robot_prolog_connection

The robot_prolog_connection node is a hub that links speech recognition, the prolog

runtime and the robot interface together.

Figure 60 shows that robot_prolog_connection is subscribed to the “recognition/

raw_result” topic. This is the transcript produced by speech recognition nodes. The

node forwards the transcript to the dialogue system living inside prolog_server node.

The prolog_server node is actually just an empty prolog instance on its own.

robot_prolog_connection loads our dialogue system program into prolog_server on

startup. After that robot_prolog_connection can start forwarding speech transcripts and

getting reaction task responses (Chapter 2.1).

71

~$ rosrun chatbot chat_core
~$ rosnode info /chat_core
Node [/chat_core]
...
Services:
 * /respond

Figure 59. Services are shown in rosnode info

Figure 60. The robot_prolog_connection node

prolog_server/close_query
prolog_server/get_all_solutions
prolog_server/get_next_solution
prolog_server/has_solution
prolog_server/has_worker
prolog_server/list_workers
prolog_server/open_query

chat_core/respond

After getting the reactions, robot_prolog_connection prioritizes them, queues and runs

them. Running the reactions involves querying prolog_server for the commands

associated with the reaction task (Chapter 2.2) and executing those commands. The

command execution happens through the implementation interface chat_core and is

implemented via ROS actions and ROS services. robot_prolog_connection is also

responsible for signalling the dialogue system when a command has been completed

and reaction handling should proceed. Thread management and cleanup on the dialogue

system is controlled by robot_prolog_connection. And finally failure and abortion states

are handled here.

4.13 Utility nodes

This section lists additional smaller nodes used in the robot platform.

4.13.1 capture_vad_sphinx

Capture_vad_sphinx is a node that captures audio and performs voice activity detection.

It was developed by the author as part of the thesis work, but was not used in the final

configuration because other components implement the same feature – speex encoder

has VAD and voice recognition does endpointing. It may still be useful as a stand-alone

voice activity detection implementation.

4.13.2 prolog_common, prolog_msgs, prolog_serialization, prolog_swi, prolog_test,

roscpp_nodewrap, roscpp_nodewrap_msgs, roscpp_nodewrap_tutorials.

Developed by Ralf Kaestner [31], these nodes wrap and interface with the prolog C++

API. They were added to the platform source because acquiring them with the package

management is not possible. These nodes were updated for compatibility with our

platform as part of the thesis work.

Please refer to Appendix 3 for additional configurations of the nodes described

throughout Chapter 4.

72

5 Summary

The aim of the thesis has been to create a prototype robot platform that is capable of

understanding and reacting properly to commands spoken to it in a bounded subset of

natural language. Achieving the thesis' goals involved designing the system, choosing

the implementation platform, creating and configuring the robot system and its

subsystems, testing and optimizing the robot platform.

The resulting design is a simulated robot, with the capability of listening, responding

and executing commands based on the command’s semantic interpretation. The quality

of speech recognition in our robot platform is enhanced by DCG parsing and context

sensitive approximation. The demo robot speaks Estonian and navigates through a

simulated world. The platform was designed to be easily reconfigurable for other

languages, dialogue systems, simulated robots and simulated environments.

Multiple subsystems that form a cohesive system were created as part of the thesis.

Some of these subsystems were developed entirely from the beginning, while others

wrap the public API of existing systems. The integrated system is complex and highly

configurable. Due to compatibility and optimization issues, much of the integrated

software required code-level understanding and modifications to fit into our framework.

A thorough explanation of the subsystems that form the platform was provided and each

subsystem's communication model and contributing functionality was described. The

information provided in this thesis also serves as a source of documentation on how to

utilize, run, modify, reconfigure and expand the system in the future. The results will

serve for developing an interactive demonstration robot, where all the software

developed in the thesis project will be ported to a physical robot platform, which is an

extended version of PeopleBot [16].

73

References

[1] Al-Sarawi, S. Hashemi-Sakhtsari, A. McDonnell, M. Performance Evaluation of KALDI
Open Source Speech Recogniser. [WWW]
https://www.eleceng.adelaide.edu.au/students/wiki/projects/index.php/Projects:2015s1-
06_Performance_Evaluation_of_KALDI_Open_Source_Speech_Recogniser
(20.12.2016)

[2] Alumäe, T. GStreamer plugin around Kaldi's online neural network decoder. [WWW]
https://github.com/alumae/gst-kaldi-nnet2-online (18.01.2016)

[3] Creating Custom World in Stage. [WWW] http://wiki.ros.org/stage/Tutorials/Creating
%20Custom%20World%20in%20Stage (14.10.2016)

[4] Customizing the Stage Simulator. [WWW]
http://wiki.ros.org/turtlebot_stage/Tutorials/indigo/Customizing%20the%20Stage
%20Simulator (14.10.2016)

[5] Eesti Keele Instituut - Kõnesüntees. [WWW] https://www.eki.ee/heli/index.php?
option=com_content&view=article&id=6&Itemid=465 (22.10.2016)

[6] GStreamer Media Types and Properties. [WWW]
https://gstreamer.freedesktop.org/documentation/plugin-development/advanced/media-
types.html#list-of-defined-types (14.12.2015)

[7] GStreamer plugin alsasrc. [WWW]
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-
plugins/html/gst-plugins-base-plugins-alsasrc.html (17.12.2015)

[8] GStreamer plugin audioconvert. [WWW]
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-
plugins/html/gst-plugins-base-plugins-audioconvert.html (09.12.2015)

[9] GStreamer plugin autoaudiosink. [WWW]
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-good-
plugins/html/gst-plugins-good-plugins-autoaudiosink.html (17.12.2016)

[10] GStreamer plugin lamemp3enc. [WWW]
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-ugly-
plugins/html/gst-plugins-ugly-plugins-lamemp3enc.html (14.12.2015)

[11] GStreamer. [WWW] https://en.wikipedia.org/wiki/GStreamer (22.07.2016)

[12] How to generate a Gstreamer pipeline diagram (graph). [WWW]
http://developer.ridgerun.com/wiki/index.php/How_to_generate_a_Gstreamer_pipeline_d
iagram_(graph) (20.11.2016)

[13] Kaestner, R. A C++ implementation for using Prolog in ROS. [WWW]
https://github.com/ethz-asl/ros-prolog (22.07.2016)

[14] Kaldi doc. [WWW] http://kaldi-asr.org/doc (18.01.2016)

74

http://kaldi-asr.org/doc
https://en.wikipedia.org/wiki/GStreamer
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-ugly-plugins/html/gst-plugins-ugly-plugins-lamemp3enc.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-ugly-plugins/html/gst-plugins-ugly-plugins-lamemp3enc.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/html/gst-plugins-base-plugins-alsasrc.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-plugins/html/gst-plugins-base-plugins-alsasrc.html
https://gstreamer.freedesktop.org/documentation/plugin-development/advanced/media-types.html#list-of-defined-types
https://gstreamer.freedesktop.org/documentation/plugin-development/advanced/media-types.html#list-of-defined-types

[15] Koenig, N. ROS audio_common. [WWW] http://wiki.ros.org/audio_common
(09.12.2016)

[16] PeopleBot. [WWW] http://www.mobilerobots.com/ResearchRobots/PeopleBot.aspx
(29.12.2016)

[17] Pioneer Manipulator Research Platform. [WWW] http://robosklep.com/en/mobile-
manipulators/148-pioneer-manipulator-research-platform.html (28.12.2016)

[18] Prolog. [WWW] https://en.wikipedia.org/wiki/Prolog (03.02.2016)

[19] Robot Caregivers. [WWW] http://web-japan.org/trends/09_sci-tech/sci100225.html
(28.12.2016)

[20] ROS actionlib. [WWW] http://wiki.ros.org/actionlib (08.12.2015)

[21] ROS Communication. [WWW] http://wiki.ros.org/ROS/Patterns/Communication
(08.12.2015)

[22] ROS Concepts. [WWW] http://wiki.ros.org/ROS/Concepts (23.11.2015)

[23] ROS Introduction. [WWW] http://wiki.ros.org/ROS/Introduction (23.11.2015)

[24] ROS map_server. [WWW] http://wiki.ros.org/map_server (14.10.2016)

[25] ROS nodelet. [WWW] http://wiki.ros.org/nodelet (03.12.2016)

[26] ROS rqt_graph. [WWW] http://wiki.ros.org/rqt_graph (20.11.2016)

[27] ROS rviz. [WWW] http://wiki.ros.org/rviz (14.10.2016)

[28] ROS services. [WWW] http://wiki.ros.org/Services (08.12.2015)

[29] ROS topics. [WWW] http://wiki.ros.org/Topics (08.12.2015)

[30] Rosbridge suite. [WWW] http://wiki.ros.org/rosbridge_suite (26.11.2016)

[31] RQT. [WWW] http://wiki.ros.org/rqt (14.10.2016)

[32] Running ROS across multiple machines. [WWW]
http://wiki.ros.org/ROS/Tutorials/MultipleMachines (26.11.2016)

[33] Speex: A Free Codec For Free Speech. [WWW] https://speex.org/ (05.01.2016)

[34] Sperberg-McQueen, C.M. A brief introduction to definite clause grammars and definite
clause translation grammars. [WWW] http://cmsmcq.com/2004/lgintro.html
(2009-04-21)

[35] SWI-Prolog. [WWW] http://www.swi-prolog.org/ (03.02.2016)

[36] The Festival Speech Synthesis System. [WWW]
http://www.cstr.ed.ac.uk/projects/festival/ (22.10.2016)

[37] The National Programme for Estonian Language Technology. [WWW]
https://www.keeletehnoloogia.ee/en (11.11.2015)

[38] Ubar, R. Indus V. Kalmend, O. At-Speed Functional Built-In Self-Test Methodology for
Processors. IASTED International Conference on Engineering and Applied Science -
EAS 2012. Colombo, December 27-29, 2012. [Online]
http://www.actapress.com/Abstract.aspx?paperId=454842 (17.12.2016)

[39] Ubar, R. Indus, V. Kalmend, O. Evartson, T. Functional Built-In Self-Test for Processor
Cores in SoC. The 30th IEEE NORCHIP Conference, Copenhagen, Denmark, November
12-14, 2012. [Online] http://ieeexplore.ieee.org/document/6403148 (17.12.2016)

[40] Valin, J. (2007). The Speex Codec Manual. [WWW]
https://speex.org/docs/manual/speex-manual/node10.html (17.12.2015)

75

https://www.keeletehnoloogia.ee/en
http://cmsmcq.com/2004/lgintro.html
http://wiki.ros.org/rosbridge_suite
http://wiki.ros.org/map_server
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/actionlib
http://web-japan.org/trends/09_sci-tech/sci100225.html
https://en.wikipedia.org/wiki/Prolog

[41] Vaughan, R. The Stage Robot Simulator. [WWW] http://rtv.github.io/Stage/ (14.10.2016)

76

Appendix 1 – Source code and building the platform

The source code of the natural language robot platform is located at

"https://oliver.kalmend@git.ttu.ee/thesis/msc/oliver.kalmend.git”.

The platform can be built using the two following scripts:

"thesis/make_all.sh" – builds release flavor of the robot platform.

"thesis/make_all_debug.sh" – builds debug flavor of the robot platform and creates an

eclipse project.

The following is a summary of the git repository:

The following image shows a timeline of the git commits:

77

Figure 61. Git general information

Figure 62. Commits by month

The following is a file composition breakdown of the platform's project:

Table 11. Platform files breakdown

Extension Files (%) Lines (%) Lines/file

cpp 127 (22.28%) 13294 (3.43%) 104

h 119 (20.88%) 13404 (3.46%) 112

hpp 91 (15.96%) 14439 (3.72%) 158

xml 29 (5.09%) 654 (0.17%) 22

txt 27 (4.74%) 326029 (84.09%) 12075

tpp 23 (4.04%) 2038 (0.53%) 88

launch 17 (2.98%) 343 (0.09%) 20

yaml 16 (2.81%) 419 (0.11%) 26

conf 13 (2.28%) 71 (0.02%) 5

12 (2.11%) 55 (0.01%) 4

srv 12 (2.11%) 69 (0.02%) 5

prefs 11 (1.93%) 29 (0.01%) 2

sh 6 (1.05%) 86 (0.02%) 14

cmake 4 (0.70%) 311 (0.08%) 77

msg 4 (0.70%) 28 (0.01%) 7

py 4 (0.70%) 580 (0.15%) 145

pl 3 (0.53%) 5056 (1.30%) 1685

properties 3 (0.53%) 89 (0.02%) 29

dubm 2 (0.35%) 1058 (0.27%) 529

fdt 2 (0.35%) 60 (0.02%) 30

fdx 2 (0.35%) 1544 (0.40%) 772

fnm 2 (0.35%) 1 (0.00%) 0

frq 2 (0.35%) 5803 (1.50%) 2901

gen 2 (0.35%) 0 (0.00%) 0

ie 2 (0.35%) 118302 (30.51%) 59151

libhover 2 (0.35%) 19496 (5.03%) 9748

mat 2 (0.35%) 208 (0.05%) 104

nrm 2 (0.35%) 0 (0.00%) 0

stats 2 (0.35%) 6 (0.00%) 3

tii 2 (0.35%) 7 (0.00%) 3

tis 2 (0.35%) 1908 (0.49%) 954

version 2 (0.35%) 0 (0.00%) 0

action 1 (0.18%) 9 (0.00%) 9

bak 1 (0.18%) 2 (0.00%) 2

c 1 (0.18%) 1 (0.00%) 1

inc 1 (0.18%) 27 (0.01%) 27

index 1 (0.18%) 0 (0.00%) 0

ini 1 (0.18%) 3 (0.00%) 3

json 1 (0.18%) 56 (0.01%) 56

log 1 (0.18%) 1426 (0.37%) 1426

mark 1 (0.18%) 0 (0.00%) 0

md 1 (0.18%) 49 (0.01%) 49

png 1 (0.18%) 399 (0.10%) 399

78

file:///C:/Users/olkalmen/Desktop/thesis/documentation/gitstats/files.html#
file:///C:/Users/olkalmen/Desktop/thesis/documentation/gitstats/files.html#
file:///C:/Users/olkalmen/Desktop/thesis/documentation/gitstats/files.html#
file:///C:/Users/olkalmen/Desktop/thesis/documentation/gitstats/files.html#

prx 1 (0.18%) 0 (0.00%) 0

resources 1 (0.18%) 18 (0.00%) 18

rviz 1 (0.18%) 590 (0.15%) 590

setup 1 (0.18%) 6 (0.00%) 6

so 1 (0.18%) 16365 (4.22%) 16365

tree 1 (0.18%) 0 (0.00%) 0

ui 1 (0.18%) 627 (0.16%) 627

world 1 (0.18%) 44 (0.01%) 44

xmi 1 (0.18%) 2055 (0.53%) 2055

zip 1 (0.18%) 0 (0.00%) 0

79

Appendix 2 – Future development opportunities

 Communication optimizations

ROS has a very flexible communications architecture. Communication and services

between nodes are done through XML remote procedure calls over TCP/UDP. XML is

flexible, but this kind of communication model can run into performance issues in real-

time and near real-time systems. If communication becomes a bottleneck, a good

improvement would be to implement shared memory communication or use the ROS

nodelet design paradigm to get rid of copy costs [25].

 Support for other languages

The whole platform is spoken language-agnostic. This means that nothing has to be

recompiled to switch to different languages. If we want to implement English for the

robot, we need to switch out both the Kaldi speech recognition corpus and provide

English Festival voice files - note that English comes preinstalled with some versions of

festival, so we would only need to change the launch configuration file to select the

correct language. The most complex file to switch out for a different language is the

prolog dialogue system itself - it is currently written for Estonian grammar and

dictionary only. Another possible area for improvement is the voice synthesis quality

itself. There have been great leaps in voice synthesis over the past years and synthesis

that is nearly indistinguishable from real speech is possible - e.g. Adobe VoCo.

 Speaker detection, directional audio and noise filtering.

Various audio processing techniques can be used to provide better transcription results.

It would also be a nice add-on to be able to detect multiple speakers and generate

context sensitive responses for each of them.

80

 Addressing the robot directly.

Currently the robot listens to all speech. If someone speaks instructions that are not

directed at the robot, it still reacts. An easy fix here is to use the common method of

prefixing whatever instructions you have for the robot with its name.

 Speex API

Chapter 4.6 shows the downside of using speex to transport audio between ROS nodes.

Namely, the GStreamer plugin that does speech currently does not support the speex

format, even though the Kaldi platform it is wrapping does. This introduces an extra

decoding and conversion step into the pipeline if we wish to use capture_vad_speex

with speech_recognition_speex instead of speech_recognition_simple. This can be

avoided by adding speech support to the plugin generated by gst-kaldi-nnet2-

online(Chapter 3.5).

 Small-talk or non-command based dialogue

The robot platform created in this thesis has a natural language dialogue system capable

of understanding and executing specific tasks. A nice add-on would be to also be able to

have small-talk with the robot. Like chatting about the weather or latest news.

 Automated end-to-end testing

Since the dialogue system we are using reduces all spoken language to pre-defined

sentence types and a known lexicon, then it is possible to automatically generate tests

for the robot. This sort of self-generating automatic end-to-end testing is popular in

microprocessor design [39], [38], but can easily be extended to higher level concepts

like the dialogue system described in this thesis. It is useful because it is future proof –

new reactions, world objects and commands easily get added to the test-set. This

methodology is also akin to fuzz testing.

81

Appendix 3 – Additional configurations of the platform

Here various possible launch configurations are described. All of these use nodes

described throughout Chapter 4. These were a byproduct of developing the final

solution, but they are still useful tools for testing and inspecting the platform. They

showcase the flexibility of ROS and can easily be tweaked by altering the

corresponding launch file.

chatbot_speex.launch

This configuration is functionally equivalent to the main launch configuration. The only

difference is that the replacement described in Chapter 3.8.2 Figure 17 has been made.

test_microphone.launch

This simple configuration runs and connects the capture_audio(Chapter 4.1) and

play_audio(Chapter 4.2) nodes and can be used to test if capture, audio transport and

playback is working.

“roslaunch chatbot test_microphone.launch”

test_sr_simple.launch

This configuration only launches speech_recognition_simple (Chapter 4.5). It is useful

because it automatically sets the “GST_PLUGIN_PATH” environment variable and

82

Figure 63. Launch configuration - test_microphone

~model_dir parameter via relative path - meaning it will work on any computer without

prior sourcing or explicitly providing the ~model_dir parameter.

“roslaunch chatbot test_sr_simple.launch”

test_sr_speex.launch

This launch configuration starts speech recognition with speex encoding. It utilizes the

node capture_vad_speex (Chapter 4.3) and speech_recognition_speex (Chapter 4.6).

“roslaunch chatbot test_sr_speex.launch”

The launch configuration also writes speech transcript to the standard output in order to

quickly test speex encoded recognition. This done with the ~dst parameter of the

speech_recognition_speex node and is applied in the launch file as follows:

83

Figure 64. Launch configuration - test_sr_simple

Figure 65. Launch configuration - test_sr_speex

<node name="speech_recognition_speex" pkg="speech_recognition_speex"
type="speech_recognition_speex" output="screen">

<param name="dst" value="stdout"/>
<param name="model_dir" value="$(find

speech_recognition_speex)/../../deps" />
</node>

Figure 66. speech_recognition_speex node parameters in the test_sr_speex.launch file

test_vad_speex.launch

This is another simple configuration. It runs and hooks up the

capture_vad_speex(Chapter 4.3) and play_audio_speex(Chapter 4.4) nodes and can be

used to test if capture, speex encoding, speex decoding, audio transport, speex

capabilities negotiation and playback is working.

“roslaunch chatbot test_vad_speex.launch”

test_vad_speex_with_perceptual_enhancement.launch

Same as test_vad_speex.launch, but play_audio_speex's(Chapter 4.4) perceptual

enhancement is enabled. This can be used to test perceptual enhancement quality of the

speex codec.

test_vad_sphinx.launch

This is another test configuration that that hooks capture to playback. This one uses

capture_vad_sphinx (Chapter 4.13.1) and can be used to test the standalone voice

activity detection node.

“roslaunch chatbot test_vad_sphinx.launch”

84

Figure 67. Launch configuration - test_vad_speex

85

Figure 68. Launch configuration - test_vad_sphinx

	1 Introduction 16
	1.1 Background 16
	1.2 Objectives 17
	1.3 Outline 18

	2 Software behaviour and implementation 20
	2.1 Robot reactions 20
	2.2 Robot commands 25
	2.3 The GUI 28
	2.4 The simulation 29
	2.5 The main launch file 31

	3 Software Architecture 33
	3.1 ROS 33
	3.2 GStreamer 34
	3.3 The Prolog dialogue system 35
	3.4 Kaldi speech recognition toolkit 36
	3.5 gst-kaldi-nnet2-online 36
	3.6 Festival speech synthesis toolkit 37
	3.7 The platform in abstract 37
	3.8 Full robot configuration 38

	4 Component implementation details 43
	4.1 capture_audio 44
	4.2 play_audio 49
	4.3 capture_vad_speex 52
	4.4 play_audio_speex 56
	4.5 speech_recognition_simple 59
	4.6 speech_recognition_speex 64
	4.7 synth_festival 66
	4.8 chatbot_gui 66
	4.9 chatbot_simulator 69
	4.10 prolog_server 69
	4.11 chat_core 69
	4.12 robot_prolog_connection 71
	4.13 Utility nodes 72

	5 Summary 73
	References 74
	Appendix 1 – Source code and building the platform 77
	Appendix 2 – Future development opportunities 80
	Appendix 3 – Additional configurations of the platform 82
	chatbot_speex.launch 82
	test_microphone.launch 82
	test_sr_simple.launch 82
	test_sr_speex.launch 83
	test_vad_speex.launch 84
	test_vad_speex_with_perceptual_enhancement.launch 84
	test_vad_sphinx.launch 84

	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Outline

	2 Software behaviour and implementation
	2.1 Robot reactions
	2.2 Robot commands
	2.3 The GUI
	2.4 The simulation
	2.5 The main launch file

	3 Software Architecture
	3.1 ROS
	3.1.1 Topics
	3.1.2 Services
	3.1.3 Actions

	3.2 GStreamer
	3.3 The Prolog dialogue system
	3.4 Kaldi speech recognition toolkit
	3.5 gst-kaldi-nnet2-online
	3.6 Festival speech synthesis toolkit
	3.7 The platform in abstract
	3.8 Full robot configuration
	3.8.1 Nodes and topics
	3.8.2 A variation on the final configuration

	4 Component implementation details
	4.1 capture_audio
	4.1.1 Description
	4.1.2 Diagrams
	4.1.3 Running
	4.1.4 Parameters

	4.2 play_audio
	4.2.1 Description
	4.2.2 Diagrams
	4.2.3 Running
	4.2.4 Parameters

	4.3 capture_vad_speex
	4.3.1 Description
	4.3.2 Diagrams
	4.3.3 Running
	4.3.4 Parameters

	4.4 play_audio_speex
	4.4.1 Description
	4.4.2 Diagrams
	4.4.3 Running
	4.4.4 Parameters

	4.5 speech_recognition_simple
	4.5.1 Description
	4.5.2 Diagrams
	4.5.3 Running
	4.5.4 Parameters

	4.6 speech_recognition_speex
	4.6.1 Diagrams
	4.6.2 Running
	4.6.3 Parameters

	4.7 synth_festival
	4.8 chatbot_gui
	4.9 chatbot_simulator
	4.10 prolog_server
	4.11 chat_core
	4.12 robot_prolog_connection
	4.13 Utility nodes
	4.13.1 capture_vad_sphinx
	4.13.2 prolog_common, prolog_msgs, prolog_serialization, prolog_swi, prolog_test, roscpp_nodewrap, roscpp_nodewrap_msgs, roscpp_nodewrap_tutorials.

	5 Summary
	References
	Appendix 1 – Source code and building the platform
	Appendix 2 – Future development opportunities
	Appendix 3 – Additional configurations of the platform
	chatbot_speex.launch
	test_microphone.launch
	test_sr_simple.launch
	test_sr_speex.launch
	test_vad_speex.launch
	test_vad_speex_with_perceptual_enhancement.launch
	test_vad_sphinx.launch

