
TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

27/2020

High-Level
Implementation-Independent

Software-Based Self-Test for RISC
Type Microprocessors

ADEBOYE STEPHEN OYENIRAN

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
The dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and Systems Engineering on 1 July 2020

Supervisor: Professor Raimund-Johannes Ubar,
Department of Computer Systems,
School of Information Technologies,
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Matteo Sonza Reorda,
Politecnico di Torino,
Torino, Italy

Professor H.G Kerkhoff,
University of Twente,
Enschede, Netherlands

Defence of the thesis: 24 August 2020, Tallinn
Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Adeboye Stephen Oyeniran
signature

Copyright: Adeboye Stephen Oyeniran, 2020
ISSN 2585–6898 (publication)
ISBN 978-9949-83-588-1 (publication)
ISSN 2585–6901 (PDF)
ISBN 978-9949-83-589-8 (PDF)
Printed by Auratrükk

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

27/2020

Mikroprotsessorite tarkvarapõhine
implementatsioonist mittesõltuv
funktsionaalne enesekontroll

ADEBOYE STEPHEN OYENIRAN

Contents
List of Publications . 7

Author’s Contributions to the Publications . 9

Abbreviations . 10

1 Introduction . 11
1.1 Motivation . 12
1.2 Problem Formulation . 13
1.3 Contributions . 13
1.4 Thesis Organization . 14

2 Overview . 15
2.1 Overview of high-level fault modeling of digital systems 15
2.2 Behavioral level fault modeling for microprocessors . 17
2.3 Overview of Software-Based Self-Test (SBST) methods for microprocessor 18
2.4 Summary . 22

3 High-level Decision Diagrams(HLDDs) . 23
3.1 HLDDs as a new model for diagnostic modeling of digital circuits 23
3.2 Modeling microprocessors with HLDDs . 23
3.3 Fault modeling in microprocessors using HLDDs . 27
3.4 Minimization of Number of Edges in HLDDs . 30
3.5 Optimization of the HLDD Model . 34
3.6 Summary . 36

4 High-level functional test generation for the control parts of modules 38
4.1 Implementation-independent test concept for testing control faults 38
4.2 High-level functional control fault model . 40
4.3 Mapping of high-level faults to gate level . 41
4.4 Generation of test data for testing the control faults . 43
4.5 High-level fault simulation and fault coverage . 44
4.6 Extension of the Fault Class Beyond SAF . 45
4.7 Identification of redundant faults in microprocessors . 49
4.8 Case Study of the Control Part Test for Forwarding Unit of MIPS-like

RISC processor. 50
4.9 Summary . 52

5 Pseudo-exhaustive testing of data-parts of modules . 53
5.1 Overview of the pseudo-exhaustive test concept. 53
5.2 Testing of multipliers with pseudo-exhaustive test patterns 54
5.3 Combining pseudo-exhaustive test with deterministic test data 56
5.4 Summary . 57

6 Software-based test program generation for microprocessors 58
6.1 Environment for the SBST synthesis (The flow of tasks) 58
6.2 Test templates and the concepts of conformity and scanning tests 61
6.3 Organization of the full test program . 64
6.4 Multiple fault detection in microprocessors . 65

5

6.5 Introducing the result of the thesis into engineering education 70
6.6 Summary . 71

7 Experimental Results . 72

8 Conclusions . 77

List of Figures . 80

List of Tables . 81

References . 82

Acknowledgements. 93

Abstract . 94

Kokkuvõte . 96

Appendix 1 . 99

Appendix 2 . 107

Appendix 3 . 113

Appendix 4 . 121

Appendix 5 . 131

Appendix 6 . 139

Appendix 7 . 147

Appendix 8 . 155

Appendix 9 . 163

Curriculum Vitae . 193

Elulookirjeldus . 195

6

List of Publications
The present Ph.D. thesis is based on the following publications that are referred to in
the text by Roman numbers.

I R. Ubar, S. A. Oyeniran, M. Scholzel, and H. T. Vierhaus, “Multiple fault testing
in systems-on-chip with high-level decision diagrams,” 2015 10th International
Design Test Symposium (IDT), pp. 66–71, Dec 2015

II A. S. Oyeniran, U. E. Odozi, and R. Ubar, “A new measure for calculating multiple
fault coverage of microprocessor self-test,” in 2016 15th Biennial Baltic Electronics
Conference (BEC), pp. 75–78, Oct 2016

III A. S. Oyeniran, A. Jasnetski, A. Tsertov, and R. Ubar, “High-level test data gener-
ation for software-based self-test in microprocessors,” in 2017 6th Mediterranean
Conference on Embedded Computing (MECO), pp. 1–6, June 2017

IV A. S. Oyeniran, R. Ubar, S. P. Azad, and J. Raik, “High-level test generation for
processing elements in many-core systems,” in 2017 12th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–8,
July 2017

V A. S. Oyeniran and R. Ubar, “High-level functional test generation for micropro-
cessor modules,” in 2019 MIXDES - 26th International Conference "Mixed Design
of Integrated Circuits and Systems", pp. 356–361, June 2019

VI A. S. Oyeniran, R. Ubar, M. Jenihhin, C. C. Gürsoy, and J. Raik, “High-level
combined deterministic and pseudo-exhuastive test generation for risc processors,”
in 2019 IEEE European Test Symposium (ETS), pp. 1–6, May 2019

VII A. S. Oyeniran, S. P. Azad, and R. Ubar, “Parallel pseudo-exhaustive testing of
array multipliers with data-controlled segmentation,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2018

VIII A. S. Oyeniran, R. Ubar, M. Jenihhin, C. C. Gürsoy, and J. Raik, “Mixed-level
identification of fault redundancy in microprocessors,” in 2019 IEEE Latin American
Test Symposium (LATS), pp. 1–6, March 2019

IX A. S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik, “High-Level Implementation-
Independent Functional Software-Based Self-Test for RISC Processors,” Journal of
Electronic Testing, vol. 36, no. 1, pp. 87–103, 2020

Other related publications
X A. S. Oyeniran, S. P. Azad, and R. Ubar, “Combined pseudo-exhaustive and

deterministic testing of array multipliers,” in 2018 IEEE International Conference
on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6, 2018

XI A. Jasnetski, S. A. Oyeniran, A. Tsertov, M. Schölzel, and R. Ubar, “High-level
modeling and testing of multiple control faults in digital systems,” in 2016 IEEE
19th International Symposium on Design and Diagnostics of Electronic Circuits
Systems (DDECS), pp. 1–6, 2016

7

XII S. Payandeh Azad, A. S. Oyeniran, and R. Ubar, “Replication-based deterministic
testing of 2-dimensional arrays with highly interrelated cells,” in 2018 IEEE 21st
International Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS), pp. 21–26, 2018

XIII A. S. Oyeniran, R. Ubar, and M. Kruus, “Teaching digital system test,” in 2017
27th EAEEIE Annual Conference (EAEEIE), pp. 1–6, 2017

XIV L. Jürimägi, R. Ubar, M. Jenihhin, J. Raik, S. Devadze, and A. S. Oyeniran,
“Application specific true critical paths identification in sequential circuits,” in 2019
IEEE 25th International Symposium on On-Line Testing and Robust System Design
(IOLTS), pp. 299–304, 2019

XV A. S. Oyeniran and R. Ubar, “High-level functional test generation for micropro-
cessor modules,” in 2019 MIXDES - 26th International Conference "Mixed Design
of Integrated Circuits and Systems", pp. 356–361, 2019

XVI S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze,
A. Kaur, J. Raik, G. Jervan, R. Ubar, and T. Hollstein, “From online fault detection
to fault management in network-on-chips: A ground-up approach,” in 2017 IEEE
20th International Symposium on Design and Diagnostics of Electronic Circuits
Systems (DDECS), pp. 48–53, 2017

XVII R. Ubar, A. S. Oyeniran, and O. Medaiyese, “Minimization of the high-level fault
model for microprocessor control parts,” in 2018 16th Biennial Baltic Electronics
Conference (BEC), pp. 1–4, 2018

XVIII A. S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik, “Implementation-independent
functional test generation for risc microprocessors,” in 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC), pp. 82–87,
2019

XIX R. Ubar, L. Jürimägi, E. Orasson, G. Josifovska, and S. A. Oyeniran, “Double
phase fault collapsing with linear complexity in digital circuits,” in 2015 Euromicro
Conference on Digital System Design, pp. 700–705, 2015

XX R. Ubar and S. A. Oyeniran, “Multiple control fault testing in digital systems
with high-level decision diagrams,” in 2016 IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR), pp. 1–6, 2016

8

Author’s Contributions to the Publications
I In Publication I, the author participated in idea formulation, describing of systems
at high-level and preparing paper for presentation.

II In Publication II, I carried out the extraction of modules of processor under test,
described the modules with HLDD for testing of the control parts and data parts.
The author also carried out experiments, prepared the paper for publication and
presented at the conference.

III In Publication III, I implemented a deterministic algorithm for generation of operands
for conformity test of microprocessors, took part in several discussions with supervisor
and co-authors in paper planning, experimentation and also presentation of the
research result at the conference.

IV In Publication IV, I implemented together with one of the co-author, two algorithms
for high-level simulation-based test generation for the control path of the case-
study processor. I also participated in paper preparation and presentation at the
conference.

V In Publication V, I took part in discussion leading to choosing of another mi-
croprocessor as case-study, created the HLDD model of the processor using ISA
information from processor’s documentation, performed experiments and presented
the paper at the conference.

VI In Publication VI, I took part in the discussion on extending the test approach
to execution unit of the processor. carried out experiments, prepared paper for
publication and presented the paper at the conference.

VII In Publication VII, I extracted the multiplier module from the ALU of the processor
for experiment. I also prepared the pseudo-exhaustive data that was used for fault
detection in the Unit Under Test, carried out the experiment in partnership with
one of the co-authors and presented the paper at the conference.

VIII In Publication VIII, I implemented a method for identification of the high-level
redundant faults by carrying out experiments which shows that a test, which
provides 100% coverage of non-redundant high-level faults, will also guarantee
100% non-redundant SAF coverage. I also contributed to proofs that showed that
all gate-level SAF not covered by the test are identified as redundant and presented
the paper at the conference.

IX In Publication IX, I developed an implementation independent test program that
targets the full modules of the processor, described the test framework and com-
pared experimental result with state-of-the-art methods. I also prepared paper for
publication and managed correspondence with the publishers.

9

Abbreviations
ALU Arithmetic Logic Unit
ASIC Application specific integrated circuits
ATE Automatic Test Equipment
ATPG Automatic Test Pattern Generator
BBD Binary Decision Diagram
BIST Built-In Self-Test
CPU Central Processing Unit
DFT Design For Testability
DMUX De-multiplexer
DNF Disjunctive Normal Form
DOT Defect-oriented test pattern generator
EDA Electronic Design Automation
EDNF Equivalent Disjunctive Normal Form
FRITS Functional Random Instruction Testing at Speed
HLDD High-Level Decision Diagrams
I/O Input or Output
ISA Instruction Set Architecture
MIPS Microprocessor without Interlocked Pipelined Stages
MUT Module Under Test
MUX Multiplexer
PC Program Counter
PET Pseudo-exhaustive Test
RISC Reduced instruction set computer
RTL Register-transfer levels
SAF Stuck-At Fault
SBST Software-Based Self-Test
SPFM Single Point Fault Metric
TDF Transition Delay Faults
TLM Transaction Level Modelling
UUT Unit Under Test
NDA Non-Disclosure Agreement
VCD Value Change Dump
VHDL Very High Speed Integrated Circuit Hardware Descrip-

tion Language
VLIW Very Long Instruction Word
VLSI Very-large-scale integration

10

1 Introduction

Scaling technology in today’s deep-submicron processes produces new failure mechanisms
in electronic devices, causing researchers both to create more sophisticated fault
models compared to the traditional stuck-at-fault (SAF) model [21] and to explore the
possibilities of reasoning the system’s faulty behavior using no specific fault models
[22, 23].

The traditional solution for solving testing problems for VLSI designs has been to
apply Design For Testability (DFT) methods or Built-In Self-Test (BIST) [24]. An
example of DFT is the insertion of scan-chains into the design. DFT techniques like
scan-chains are an inevitable part of processor testing. However, it requires expensive
external test equipment. In BIST, the tasks of test pattern generation and response
evaluation are moved from external ATE to processor embedded logic. This facilitates
achieving high-level test quality (including testing of dynamic defects and delay faults), it
leads to testing cost reduction as well. However, the BIST related testing approaches for
microprocessors are found not as feasible as it is for memories or in application-specific
integrated circuits (ASICs) [25]. Furthermore, BIST results often in over-testing and
over-stressing the circuit because of higher than normal switching activity during the
test.

The semiconductor industry has been challenged over the past decade with developing
alternative test methods that can be integrated into an existing test flow of micropro-
cessors. As a result, SBST was introduced as an alternative method to hardware-based
self-test [25–29]. This approach eliminates the need for expensive external testing
equipment, and the testing time is influenced by the processor’s performance. The
principal subject of the SBST approach is the development of the test program, which
must comply with the industry’s high-quality standards for fault coverage.

The general idea of Software-Based Self-Test (SBST) is to use the resources of
processors to test themselves by running specific test programs. The nature of this
method implies such features as non-intrusiveness, low cost and compatibility with
at-speed and in-field testing [30, 31]. SBST approach is based on software programs
designed to test the functionality of the processor cores and this method is well accepted
in the industry. The efficiency of test program generation (quality and speed) highly
depends on the abstraction level of representing the system and on the adequacy of fault
models. Because of the increasing complexity of digital systems such as microprocessors,
the gate-level approaches are time-consuming and high-level approaches have become
more attractive.

The lack of efficient formal methods has made self-test programs to be written
manually for microprocessors. High-level fault modeling approaches and formal test
generation strategies have not been investigated thoroughly enough to support the
automated synthesis of self-test programs and to offer fast methods for test quality
evaluation.

In this thesis, a novel formal approach for modeling the high-level functionality
and possible faulty behaviors of microprocessors is elaborated. The state-of-the-art
High-Level Decision Diagrams (HLDD) is adopted as the main modeling framework
for microprocessors, which can be considered as a logic level generalization of binary
decision diagrams (BDD).

11

1.1 Motivation

Due the reduction in the dimension of today’s transistors, it is possible to integrate more
transistors on chips. This is the trend in technology and is referred to as technology
shrinking or scaling. This advance in technology makes it possible for microprocessors
to be built from billions of transistors and operate at GHz frequencies. However, the
probability of different physical defects is also increasing, and the growing complexity of
systems makes testing problems extremely difficult to solve. Due to the huge number
of possible low-level defect types and complex physical mechanisms in microprocessor
systems, high-level fault modeling has become a hot topic in the field of test generation
for microprocessors.

Over the years, various designs for testability techniques (such as scan-chain insertion,
BIST) have been developed for testing digital systems despite the complexities, and
this technique is a common solution during manufacturing testing. However, these
techniques come at a cost of hardware overhead and power requirements, which cannot
be overlooked in designs like processors. Besides this, recent standards (e.g. ISO 26262
and ASIL standards) make it a necessity to have strategies for on-line testing [32].
According to these standards, there should be a constant observation of a system
throughout its life-time for possible faults.

As noted by [30],the test technology challenges prompted the semiconductor industry
during the past decade to consider alternative testing methods that can be incorporated
in an established microprocessor test flow. This can be seen by the increasing efforts of
processor manufacturers in providing SBST libraries that can check whether a fault is
affecting the processor cores during normal operation or not.

Despite advances in technology which makes testing an arduous task, new standards
in the industry place even more stringent constraints or requirements for fault coverage
as previously mentioned. For example, very critical environments in the automotive
system such as the airbag require by ISO26262 standard a fault coverage of 99% when
considering Single Point Fault Metric (SPFM).

Over the past few years, academia has renewed its interest in software-based self-
testing of embedded devices for in-field applications. ISO26262 describes the require-
ments for online processor core testing in automotive technology. However, additional
demand in SBST has increased following the release of IEC 61508 for industrial safety
systems, ISO 26262 for automotive applications and DO0254 for safety-critical appli-
cations and processor-centric systems. The practical SBST-based solution is exclusive
to in-system or in-field testing since commercial products’ structural information is
intellectual property kept under NDA. Nonetheless, there is significant interest in the
automation of SBST approach as the complexity of manual test program generation can
be inexcusably high. Automated SBST [33–35] could reduce the cost of test creation
and, ultimately, a product’s price.

There are still several drawbacks that leave SBST as a complementary test method
when compared with established structural and functional testing. One of these
drawbacks is that, relative to the scan-based test, SBST is more difficult to automate.
Furthermore, there are industrial EDA tools available, which can produce structural tests
and achieve high fault coverage compared to SBST. Likewise, the functional test also
has good fault coverage and covers defects that have not been found in the structural
test. Therefore, this thesis aims at proposing a novel implementation-independent
high-level SBST method, which addresses some drawbacks of existing SBST solutions.

12

1.2 Problem Formulation
The major problem with Software-Based Self-Test (SBST) is related to fault coverage.
To improve fault coverage, several methods have been implemented in state-of-the-arts,
however, there are drawbacks to these known methods. One of these drawbacks is the
need to know the implementation details of the processor to be tested. The second
drawback is that fault coverage has often been measured traditionally only concerning
single stuck-at faults (SAF). Broader classes of faults are not considered and there has
been no attempt to evaluate test coverage regarding multiple faults.

High-level fault models are broadly used in the field of Software-Based Self-
Test(SBST) [31, 36–38], however, the main and general problem of high-level faults is
the difficulty of proving that the model covers all low non-redundant (detectable) faults.
If there would be such a high-level proof, it would be possible to identify the redundancy
of gate-level faults exclusively by gate-level fault simulation which is cheaper in terms
of cost compared to low-level fault redundancy proof by conventional gate-level ATPGs.

Lastly, according to [39], SBST programs targeting only functional components of
the processor suffers from sufficiently testing critical units like the forwarding blocks
of a pipelined processor, resulting in low coverage. This implies that despite several
advantages of SBST as highlighted later in the thesis, there is a need for an efficient
SBST program with methods for testing performance-enhancing and non-functional
modules of the processor.

Considering the above problems, the main goal of this thesis is based on addressing
them in the following ways:

• Proposing a novel deterministic high-level test generation method for SBST of
embedded processors which is based on a novel implementation-free high-level
functional fault model. The idea is to represent the information given in the
instruction set in the form of High-Level Decision-Diagrams (HLDD).

• Providing a proof that the test based on high-level data constraint-based functional
control fault model which produces 100% high-level fault coverage will also
guarantee 100% low-level detectable SAF coverage, and that all not detected
SAF identified by low-level fault simulation, are redundant.

• Extending the high-level constraint-based functional model to targeting faults in
the non-functional units of the processor.

• Automation of implementation-independent high-level SBST generation. I divide
this into two parts: Automation of high-level test data generation and automation
of SBST test program generation.

1.3 Contributions
This thesis aims at the development of a novel high-level approach for the implementation-
independent generation of functional software-based self-test programs for processors
with RISC architecture. The approach enables the fast generation of manufacturing
tests with high stuck-at fault coverage. The following are the key contributions of the
work:

• Development of automatic High-level data generation algorithms and tools for
generating quality test data for the control part of functional modules in the
processor.

• Development of a pseudo-exhaustive method for generating test data, for testing
the data part of the microprocessor.

13

• Development of a novel method of mixed-level identification of redundant faults.
• Development of a high-level implementation-independent Software-based self-test

program generation which targets both functional and non-functional modules of
microprocessors.

• Creating a generalization of the logic level test group approach for identifying
fault-free sub-circuits in digital systems represented at higher register-transfer
levels (RTL) or functional levels using High-Level Decision Diagrams (HLDD).

1.4 Thesis Organization
The thesis is organized as follows; Chapter 2 gives an overview of the state-of-the-art.

In Chapter 3, a novel High-Level Decision Diagram was proposed as an extension
of Binary Decision Diagrams(BDDs). The HLDD allows covering of common non-
formalized high-level fault types in a formalized form and can be considered as an
efficient formal model of self-test generation for microprocessors. The HLDD model
allows for straightforward partitioning of faults in the modules of microprocessors into
two groups of high-level faults: control parts and data parts. An optimization method
for minimizing the size of the HLDD model of a microprocessor which helps in the
reduction of the complexity of the test generation process is also presented in this
chapter.

In chapter 4, High-level test generation for the control part of processor modules
was presented. The proposed high-level implementation-independent test generation
concept for microprocessors is based on the partitioning of the modules into control
and data parts. Also, foundations are being developed for the development of a new
paradigm of a high-level functional fault model in the control part of microprocessor
modules. This novel fault model is used for generating implementation-independent
tests, using only high-level information about the functionality of the test module.

Pseudo-exhaustive testing of the data-part was explored in chapter 5. This guarantees
high coverage of a large class of faults which includes stuck-at-faults(SAF), shorts,
conditional SAF and multiple SAF. As a case study, a novel repetition-based pseudo-
exhaustive test generation method was developed for different classes of multipliers. A
novel mixed level method for identification of low-level redundant faults was developed
and is based on only simulating the high-level test for the implementation of the given
circuits.

Chapter 6 describes the software-based test program generation approach for mi-
croprocessors. A commercial/in-house tool-based SBST synthesis environment for
carrying out the experiments with all methods and algorithms developed in this thesis
is presented. The SBST concept developed in this thesis represents a novel method of
test compaction which is to be unrolled during the execution of the test. Furthermore,
the SBST concept is based on the novel architecture of the compacted test represented
as a structure composed of the sets of test templates, instructions and test data.

Experimental results were presented in chapter 7 and chapter 8 concludes the thesis.

14

2 Overview
This chapter summarizes the state-of-the-art which will include an overview of high-level
modeling of digital systems, behavioural level fault modeling of microprocessors and an
overview of software-based self-test for microprocessors.

2.1 Overview of high-level fault modeling of digital systems
Fault modeling is the central problem between test generation and fault simulation.
Although there are similarities, test generation and fault simulation differ in complexity.
Fault simulation has linear complexity, and hence, is not so much sensitive to the
size of fault lists to be simulated while test generation needs high-level fault modeling
approaches because of its high complexity.

There are two important but opposing criteria which should be followed in developing
tools for synthesis of tests: efficiency (the cost of test generation) and the quality of
generated tests (fault coverage). Both criteria depend on which fault models are used
in either test generation or fault simulation for test quality assessment.

For test quality analysis, we need fault models which reflect the physical mechanisms
of real defects as accurately as possible. In test generation, where the faults are the
measurable targets to be achieved, two expectations should be satisfied: first, the
number of faults to be covered should be as low as possible, and second, the generated
tests should at the same time achieve as high quality as possible in terms of physical
defect coverage. The only way to satisfy these opposite requirements of fault modeling
is a multi-level approach. A low-level fault modeling and fault simulation is needed
to cope with the need for accuracy in test quality assessment, while a high-level fault
model should be used to cope with the complexity of test generation.

Digital circuit fault models have been developed for various types of fault mechanisms,
such as signal line bridges [40], transistor stuck-opens [41] or faults due to increased
circuit delays [42]. Another trend to develop general fault modeling frameworks and test
methods that can evaluate specific types of faults effectively emerged, and the oldest
example is the D-calculus [43]. This method has been extended in the input pattern
fault model [44] and in the pattern fault model [45] which can reflect any arbitrary
change in a circuit block’s logic function where a block is specified as any standard gate,
complex gate or combinational sub-circuit represented at any level of the abstraction of
the design.

For the module level fault diagnosis in combinational circuits, a similar pattern-
related modeling method called functional fault model was proposed earlier in [46]. The
functional (or pattern) fault model allows the grouping of an arbitrary set of signal
lines into activation conditions for a single fault location, enabling the simulation of a
variety of physical defect types. Based on the functional fault model, a deterministic
defect-oriented test pattern generator (DOT) was developed in [47] which resulted in
proof of the logic redundancy of not detected physical defects.

In [48] and [49], a template called conditional faults was proposed for test generation
and diagnostic purposes, respectively. A conditional failure enables the combination of
additional signal line objectives with the detection criteria of a particular fault. In [50], a
pattern-oriented gate-exhaustive fault model was proposed for the complete exercise of
blocks in gate-level combination circuits, which was extended by region-exhaustive fault
model in [51] to target broader regions (gate collections). The functional, conditional
and pattern failure models mentioned offer high flexibility in the modeling of defects
beyond the single SAF model. Further developments in low-level fault modeling are

15

made by implementing the fault tuple fault model [52], the realistic sequential cell fault
model [53], or the cell-internal fault model [54], where the last two cases have general
ability to handle sequential misbehaviour of circuits.

The conditional SAF model and the other listed models [44–54] support hierarchical
test approach where the test pattern (or sequence) that causes a low-level fault (e.g.
physical defect) at the lower level can be considered a high-level condition (or constraint)
for a higher-level functional fault.

High-level faults represent the effects of physical defects on the operation of a system
described on a higher functional or behavioral level. A high-level fault model can be
considered a suitable model if the tests generated using this model provide high coverage
of SAF or physical defects.

In the abstraction of design, higher-level descriptions have fewer details of implemen-
tation, but more explicit functional information than descriptions at lower levels. The
various levels of abstraction include behaviour (architecture), register-transfer, logical
(gate), and physical (transistor) levels [21]. High-level fault models depend on the level
the tests are being generated. Typically, the high-level test generation techniques are
divided into structural RTL description-based methods [55, 56] which are distinguished
by a more comprehensive fault model and behavioral test generation [57–60], oriented
to the analysis of algorithmic descriptions.

In [61], the behavioral fault model is defined as perturbing the constructs of the
language, in which the high-level description is presented. For example, the key VHDL
constructs supported for behavioral modeling are: if statements, case statements,
loop statements; constants, variables and signals, and pre-defined VHDL operators.
Behavioral level fault models are related to these VHDL constructs. The problem with
behavioral fault models is in a poor link to the hardware. In [61], the functional fault
model is defined based on the high-level hardware network, where for each module, a
subset of input patterns which provide complete coverage of lower-level faults (gates,
transistors) over a broad range of implementations is defined. In [62], faults are also
classified into functional and behavioral models. The functional model is used in the
top-down design flow, where the system architecture is first described at the functional
level, and the system is partitioned into several functional blocks. The behavioral
fault model, on the contrary, is used where the system is described at lower levels in
more detail, to cover electrical effects (non-linearity, coupling effects, impedance etc.).
The behavior level allows fitting blocks interfaces by describing the system with more
accuracy.

The fundamental concept of high-level modeling(behavioural or functional) is to
extract the high-level description of the system in a formal model and to get various
incorrect versions of the system by adding faults into the model. According to [63], this
approach is called model perturbation. The models can be perturbed in certain ways: by
truth-table modification, micro-operation modification, etc. This idea is implemented
in different high-level fault models for different classes of digital systems. For example,
in the case of microprocessors, it is implemented in a more dedicated way [64, 65]. In
this case, individual functional fault models and corresponding test strategies have been
developed for different function classes, such as register decoding, instruction decoding,
control, data storage, data transfer and data manipulation. For systems represented in
register-transfer languages, it is implemented in a more general way [55, 66, 67], or in a
special way for systems described in hardware descriptive languages like VHDL [68–70].

A high-level fault model can be explicit or implicit [71]. An explicit model identifies
each fault individually, and every fault in this model will be a target for test generation.

16

An implicit model identifies classes of faults with similar properties so that all faults in
the same class can be detected by similar procedures. The advantage of an implicit
fault model is that it does not require explicit enumeration of faults within a class.

Summing up the discussion on high-level fault models, the following classification of
fault models is defined and employed in this thesis:

• Behavioral level fault model, given using a hardware description level language,
such as VHDL, Verilog or Instruction Set Architecture (ISA) languages;

• Functional level fault models, given at the register transfer level (RTL) and applied
for functional components, such as registers, adders, multipliers, and interconnect
structures like multiplexers and buses;

• Structural level fault models, given at the logic level, and applied for gates,
flip-flops, and interconnection between them

• Physical defect level models, given at the transistor level.

The idea of developing high-level fault models is to depict realistic physical faults
in the test circuits efficiently. These faults can be used as targets in high-level test
generators or fault simulators, to access the efficiency of low-level (gate or transistor)
fault detection. High-level fault models can also be used to test the HDL requirements
and validate the design functionality before implementation.

2.2 Behavioral level fault modeling for microprocessors
High-level approaches to fault modeling for test generation and fault simulation in
digital systems can be grouped in two different classes:

• High-level fault modeling for structural RTL descriptions [56, 72, 73], which
is characterized by a certain relationship between language constructs and the
network structure.

• Behavioral level fault modeling [60, 68, 70, 74], which is oriented to the analysis
of only algorithmic descriptions.

High-level fault modeling of microprocessors that only uses the information about
Instruction Set Architectures (the instruction lists) can also be considered as behavioral
approaches.

High-level approaches to fault modeling based on behavioral VHDL descriptions
were discussed in [60, 68, 75], and a VHDL error simulator was developed in [68] for
the analysis of functional VHDL descriptions. For this simulator, there are two types
of errors that can be inserted: bit failures (SAF 0 and 1) at variables, signals or ports,
and condition failures that are stuck-to true or stuck-to false. The errors are closely
related to RT-level stuck-at faults, but errors in RTL components (VHDL operators)
are omitted. High-level tests can be generated using a more detailed high-level fault
class for behavioral sequential models; targeting bit coverage, statement coverage,
branch coverage, condition coverage and partial path coverage [75]. The test generation
itself, however, could be conducted at a low logic level using BDDs, derived from the
description of the high-level VHDL as in the case of [75].

High-level microprocessor fault models were usually derived from instruction sets’
high-level behavioral descriptions. This development has already had a long history.
In [76], an approach was proposed for generating tests using behavioral faults described
by disturbing language constructs in HDL descriptions. They defined stuck-at faults (at

17

inputs, outputs, and state variables), control faults and general function faults in this
approach.

In [64], the most comprehensive and mostly cited behavioral fault model was defined
directly for microprocessors using unique characteristics of microprocessor models.
Faults were defined for decoding functions, control functions, and data functions. This
approach is suitable for microprocessors, but cannot be directly applied to general
behavioral models. In [72], an approach was proposed for generating tests using
Register Transfer Level (RTL) faults defined by perturbing language constructs in RTL
structures. This approach is more general than in [64], but a drawback of this model was
found in generating tests using ill-structured control constructs of RTLs [60]. In [70],
behavioral fault models were proposed based on a subset of the language constructs of
C programming language. Faults are defined for variables and control constructs such
as for, switch, if, while, assignment, and wait for.

A behavioral test generation algorithm (called B-algorithm) is presented in [60].
It generates tests directly from behavioral VHDL descriptions using three types of
behavioral faults (behavioral SAF, behavioral stuck-open and micro-operation faults).
Behavioral faults are defined by perturbing VHDL constructs, and it is a single fault
model (assuming that only one behavioral fault occurs at a time). The perturbation-
based micro-operation fault model is rather restrictive, as only the operations carried
out in the microprocessor’s instruction set are involved in the perturbation procedure.

The behavioral level faults affecting the operation of a microprocessor can be divided
into the following classes [64, 65]:

• addressing faults affecting register decoding.
• addressing faults affecting the instruction decoding and sequencing functions.
• faults in the data-storage function.
• faults in the data-transfer function.
• faults in the data-manipulation function.
The behavioral level fault model developed in [64, 65] for different units of the data

processing and the control structures of microprocessors was discussed in more detail
in [77].

One drawback of the approaches described so far is that only microprocessors are
handled, and the fault classes defined can not be extended to cover the general problem
of digital systems testing. Another major drawback is the formalism of the fault models.
All the fault models described above require specialized and dedicated test generation
procedures, making it difficult to automate the generation of test programs based on
these high-level fault models.

An ideal case would be to identify a small, well-defined class of fault with only a few
high-level fault models and construct well-standardized and consistent test algorithms
around it. This is possible with the concept of a fault model based on the High-level
Decision Diagram (HLDD). This fault model has been adopted in this study, as it is
well suited to support the development of a consistent and straightforward high-level
test generation and simulation of faults.

2.3 Overview of Software-Based Self-Test (SBST) methods for
microprocessor

Software-Based Self-Test is an emerging paradigm in the test field that is based on
software programs designed for testing the functionality of the processor cores. With

18

SBST, test functions are moved from external tester to on-chip resources [78]. A typical
flow of an SBST is as shown in Fig.33 and summarized as: loading the test program
and test data into the chip’s memory or processor’s memory, executing the test program
and storing test response in the data section of the memory, and writing out the test
response for fault analysis or grading.

This approach was first introduced by [64] about four decades ago and has gained
popularity as a complementary approach to conventional test methods (e.g. scan test)
for quality and less costly tests, that can be applied in the processor operational mode
at no extra power and hardware cost. The following characteristics among others have
contributed to the popularity and acceptance of SBST approach over the years [30, 31]:

1. SBST is non-intrusive. Inclusion of extra hardware for testing could be very
expensive for microprocessors. The impact of extra hardware is not limited to cost.
There is also an issue of power consumption, area, and performance overhead.
With SBST, this constraint or limitation doesn’t exist since it does not require
extra hardware.

2. Over-testing is avoided. With SBTS, the circuit is tested under normal operation.
This implies that faults which cannot be activated during the operational mode
of the processor are not detected. This is known to reduce yield loss significantly.

3. SBST allows for at-speed testing. That SBST programs run at the processor’s
operational frequency makes it possible to cover not just the stuck-at faults, but
also delay defects.

4. Applicable in-field. SBST programs loaded into the processor during manufac-
turing can be used in-field throughout the life of the processor. This feature has
placed SBST on a good acceptability position in the industry. For example, [79]
noted that car manufacturers are adopting the ISO 26262 standard, which requires
that the on-line self-test technique is embraced as an essential test process in crit-
ical electronic vehicle parts to ensure high quality and mission safety throughout
the product’s life-cycle.

Interest in the SBST method is growing in the context of in-field test for processor-
centric systems in safety-critical applications. [31, 34]. Recent standards for application,
for example, ISO26262, IEC61508, D 0254, set strict minimum fault coverage require-
ments for embedded microprocessor circuits to ensure the robustness and operational
safety of sensitive electronic systems. Therefore, to meet these requirements, more
work is being placed on automated SBST for in-field testing. It is interesting to
note that one advantage of automated SBST generation is reducing the cost of test
development [34, 35].

In the literature, several SBST test approaches have been proposed within the last
few decades [25, 27–29, 37, 80–88]. These approaches can be divided into two major
categories: structural and functional. Structural approaches [28, 84, 87–89] are based
on the generation of tests using lower-level processor design information (gate-level
or RTL-level description), while functional approaches [37, 80, 81, 90–92] mainly use
instruction set architecture (ISA) information. The structural approaches cannot be
used when the structural information about the processors to be tested is not available.

Structural methods are divided into two main subcategories. Methods that follow
a hierarchical approach are grouped into the first category as hierarchical structural
SBST methods. These methods concentrate on the modules of a processor one at
a time, generating stimuli for each module and then expanding the stimuli to the

19

level of the processor. Conversely, the methods by which the test program generation
process uses structural Register Transfer Level (RTL) information and ISA information
to generate instruction sequence templates for describing and propagating the faults of
the module under review are called RTL structural SBST methods.

In [84], the first interesting work using hierarchical structural SBST was done. Here,
the ATPG method was used to produce stimuli in processor core modules for detecting
hard-to-detect faults. Using a bounded model checker, the generated stimuli were then
filtered to fit the processor’s instruction set under test. Another hierarchical approach
presented in [87] is based on satisfiability-based ATPG. A framework that tests the
description of the processor’s micro-architecture by creating models for each processor
module being evaluated was proposed, and test stimuli for each module were created
and filtered by the satisfiability solver.

Constraint-based test generation is another hierarchical structural SBST method. As
explained by [30], these test methods feed an ATPG tool with a processor core described
at different levels of abstraction. The module under test is described at the structural
level (e.g. gate level), and the rest of the processor is described at a higher level while
enforcing constraints between the module under test and the rest of the processor.

Another hierarchical structural SBST method is based on learning algorithms [89].
This approach can be divided into simulation and generation phase and involves
functional test generation, where simulation results are used to direct additional test
generation. The simulation I/O data for the module under learning is stored during
simulation of the module, after which learned model is derived for each module, and
these models replace the actual modules during test pattern generation phase. The test
pattern generation phase applies structural ATPG for producing the test which detects
the faults in the unit.

For the RTL-based class of structural SBST, the test program generation takes
advantage of RTL information and ISA description to generate instruction sequences for
controlling and observing the faults in the design [30]. In [28], a component-based divide-
and-conquer approach was proposed where only the ISA and RTL description of the
processor was used for test generation. In [93], SAF and delay faults were targeted using
constraints based on ISA information of components of the processor. [88] presented an
approach that explores the development of SBST for various types of circuits based on
processor architecture, register level and gate-level design information. The fundamental
idea of this work is to use structural or architectural information to improve structural
fault coverage.

As mentioned above, functional SBST relies only on the ISA information. They can
be applied even when structural information of the unit under test is unavailable.

One of the first ISA-based methods, using pseudo-random test sequences, was
proposed in [90]. They developed a framework called "Vertis" which generates test
pseudo-randomly using random data. The effectiveness of the tools makes it usable
during different stages of production. However, since the tool generates many instruction
sequences for every instruction tested, the test program can be considerably large.
Another solution, FRITS (Functional Random Instruction Testing at Speed) [80] was
based on test program generation on random instruction sequences with pseudo-random
data. It suits well for wafer testing due to its cache-resident nature. Alternative
cache-resident method for production testing [91] using random generation mechanism
proves that high-cost functional testers can be replaced by the low-cost SBST without
significant loss in fault coverage. This work shows the usefulness of SBST approach
in the production of industrial processors. Another method was introduced in [36]

20

based on the evolutionary algorithm. Evolutionary in the context of microprocessor
testing means re-evaluating the test program and adding to it only the active codes.
The test program comprises the most effective code snippets (in a matter of SAF
coverage), characterized by constant re-assessment. Nonetheless, the approach is based
on structural information.

Later research concentrates on test approaches for specific processor parts like
pipeline, branch prediction mechanism [38, 94] or caches [95, 96]. In [37], a method is
proposed, which can enhance the SBST program to bring more coverage to pipeline logic
and also memory addressing. Another approach for testing the pipeline was made in [97].
The proposed strategy involves the activation of faults related to the data hazards and
register forwarding logic in processor core and the research in [31] concentrates on the
decode stage of the pipeline. The method in [98] uses the executing trace collected
during executing training programs on the processor to generate test programs with
gate-level constraints, while the method in [99] is based on VHDL processor models
and genetic algorithms using various evolutionary strategies, and in [100], a greedy
strategy in which instructions that detect newly identified faults are preserved in the
evolutionary cycle to identify hard-to-test faults in a processor was described. In [101],
SBST method which is usually used to self-test processors was adopted to test avionics
controller circuits, and SBST strategy to test delay faults in computational blocks of an
out-of-order super-scalar processor without area overhead or timing cost was described
in [102]. The recent advances in reinforcement learning (RL) have lead researchers
in [103] to propose an RL-based test program generation technique for transition delay
fault detection of some modules of a MIPS processor.

The drawback of some of these established methods is in reliance on the implemen-
tation details of the processor being tested. If this is not available, test generation
would be impossible using these methods. Secondly, the methods are based on testing
the microprocessor for single-stack-at faults. Other classes of faults are not targeted.

In this thesis, a novel deterministic high-level test generation method for SBST
of embedded processors is proposed, which differs from the state-of-the-art methods
by using a novel implementation-free high-level functional fault model developed di-
rectly from the description of the instruction set and high-level architecture of the
microprocessor. This description is converted into a form of a structure consisting of
high-level functional components called modules under tests (MUT), and the MUTs are
represented as High-Level Decision Diagrams (HLDD). The functions of control and
data parts of the MUT are described as separate parts of the HLDD model. In contrast
to the known approaches, the test data are generated separately for the control and
data parts of MUT using the HLDD model. The independence of the method regarding
the real implementation is achieved by using a novel high-level functional fault model for
the control part, and by applying the pseudo-exhaustive test approach for each function
of the data part.

21

2.4 Summary
In this chapter, the following issues have been outlined:

• State-of-the-art software-based self-test methods have not been sufficiently de-
veloped to achieve well-formalized high-level test data generation procedures
simultaneously, to achieve high fault coverages of created test programs, for
efficient identification of redundant faults and avoidance of multiple faults self-
masking.

• Binary Decision Diagrams(BDDs) have been a state-of-the-art data structure
in VLSI CAD for several decades. Nonetheless, in complex and well-optimized
systems such as microprocessors, they can not be exploited for high-level simulation
and fault reasoning.

• To reduce the diagnostic modeling and test generation complexity for micropro-
cessors, generalization of BDDs for modeling complex systems, and their fault
behavior at a higher functional level is a challenge selected to be attacked as the
target of the thesis.

22

3 High-level Decision Diagrams(HLDDs)
For almost three(3) decades, different kinds of Decision Diagrams have been applied for
design verification and testing. Reduced Ordered Binary Decision Diagrams (BDD) [104]
as canonical forms of Boolean functions have their application in equivalence checking
and symbolic model checking. In this thesis, I consider a decision diagram representation
called High-Level Decision Diagrams(HLDDs), which is considered as a generalization
of BDD.

The HLDDs can be used for representing different abstraction levels from RTL
(Register-Transfer Level) to TLM (Transaction Level Modelling) and the behavioural
level. It has proven to be an efficient model for simulation and diagnosis because they
provide for a fast evaluation by graph traversal and easy identification of cause-effect
relationships [105] [106].

In HLDDs, the terminal nodes are labelled by high-level constants (vectors), bus or
register variables, or by high-level algebraic operations. In essence, the terminal nodes
in HLDDs represent the data processing operations, which take place in the digital
system, while the non-terminal nodes of HLDDs represent the control variables.

3.1 HLDDs as a new model for diagnostic modeling of digital
circuits

Most of the high-level control faults described in the previous chapter can be covered
by the addressing fault model [107]. Typical examples include: addressing a word in
memory, selecting a register according to a field in the instruction word of a processor
and decoding an op-code to determine the instruction to be executed. The common
feature of these schemes is the use of an n-bit address (or op-code) to select one of 2n

possible items. Whenever an item i is to be selected, the presence of an addressing (or
op-code) fault may lead to:

• selecting no item,
• selecting item j instead of i,
• selecting item j in addition to i.

In a more general and summarized case, a set of items {j1, j2, . . . , jk} may be selected
instead of, or in addition to, i.

High-level data processing faults related to data manipulation operations are usually
left open to be solved on an individual basis. The most common high-level approach,
which considers only stuck-at faults at inputs, is not satisfactory for quality reasons. A
general implementation free solution is exhaustive (or pseudo-exhaustive) fault model,
which however, may prove not to be practicable due to complexity. As a trade-off
between quality and complexity, the hierarchical approach could be a solution, where
fault simulation and test generation for the operational modules should proceed at
a lower (closer to implementation) levels using lower-level fault models, whereas the
control faults will be modelled at higher levels.

3.2 Modeling microprocessors with HLDDs
In a general case, the microprocessor as a digital system can be considered as a node
network, where each node represents a module that performs either data manipulation,
data transfer or data storage functions, in which case, the output of a node serves
as input to other nodes. To fully grasp the concept of high-level decision diagram

23

and it’s synthesis for microprocessors, let’s assume an instruction set of a hypothetical
microprocessor as shown in table 1.

Table 1 – Instruction set of a microprocessor

OP B Mnemonic Semantics and RT level operations

0 0 LDA A1, A READ :R(A1) =M(A),PC = PC+ 2
1 STA A2, A WRITE: M(A)=R(A 2), P C=P C+2

1 0 MOV A1,A2 TRANSFER: R(A1) =R(A2),PC = PC+ 1
1 CMA A1,A2 COMPLEMENT: R(A1) = ¬R(A2),PC = PC+ 1

2 0 ADD A1,A2 ADD: R(A 1)=R(A 1)+R(A 2), P C=P C+1
1 SUB A1,A2 SUBTRACT: R(A 1)=R(A 1)-R(A 2), P C=P C+1

3 0 JMP A JUMP: P C=A
1 BRA A Conditional jump (Branch instruction):

IF C = 1, THEN PC =A, ELSE PC = PC+ 2
Each of the instructions is represented by a complex instruction variable I as a

concatenation of 5 sub-variables (I =OP.B.A1.A2.A), where OP and B denote two
fields of the operation code, A1 and A2 are register addresses, and A is the memory
address. In table 1, the fourth column represents a list of all the functions executed in
the system network shown in figure 1.

Figure 1 – Network of computing nodes for the instruction set in Table 1

This implies that it is possible to describe the functionality of the Microprocessor
based on a set of control and data variables. For the control variables, we could identify
OP and B, which represents two fields of the opcode. The addresses A1, A2 and A are
also interpreted as control variables describing access to internal registers or memory
locations represented by data variables of the set RDAT A = {R0,R1,R2,R3,M}. The
nodes or modules which represent a list of all the functions executed in the system
network shown in Figure 1,are presented as follows:

• I – control module
• M – memory
• R – register block
• ALU – execution module
• PC – program counter

These modules are controlled by the control signals (shown in red color), decoded
from the instruction word. The data manipulation functions executed in the modules,
are represented by the 5 HLDDs in Fig. 2

24

Figure 2 – HLDDs for the processor described in Table 1

The HLDDs represent a data structure used for simulation and test generation
purposes. Each module contains the control and data part, which are represented by the
internal (non-terminal) nodes and the terminal nodes of the HLDDs, respectively. The
HLDDs have entry edges, which are labeled by the functional variable (called HLDD
variable) and their values can be calculated using this graph. Simulator traverses the
graph, according to the control values decoded from instruction word, and the HLDD
variable will be assigned to the value calculated by the function in the terminal node
where the traversing procedure is ended.

The red parts of the graphs illustrate the traversed paths for the instruction OP=2,
B=0, A1=3, A2=2. The following values are calculated for this instruction on the
HLDD model: R(A1) = R3, R(A2) = R2, Y = R(A1) + R(A2) and R3 = R(A1) = Y.
The content of the program counter will also be updated as PC = PC + 1, with the
assumption that the program counter is incremented by one for this implementation.

For this research, I consider a MIPS-like processor which is a 32-bits RISC based
processor with 5 pipeline stages. The data-path and pipeline structure of the processor
is shown in Fig. 3 The synthesis of HLDDs for microprocessors is not the focus of this

25

thesis. This topic has been discussed extensively in [108]. However, the knowledge of
synthesis of HLDD is important and it’s application has been directly used to model
the MIPS-like processor for the purpose of simulation, test data generation and test
program generation.

Figure 3 – MIPS-like processor data-path and pipeline

One important point to note about the choice of modeling the processor in HLDDs is
that it serves as a basis for which implementation-free methods of SBST are generated.
In the next section, I will describe how easy it is to model the faults in a microprocessor
at high-level using HLDDs and creating a set of algorithms or methods for detecting
these fault classes without relying on the implementation details of the system. The
complexity of modeling a system with HLDD is only related to the size of the instruction,
which is simple and easily mastered by engineers, rather than size of the system.

In generating the HLDDs for the functional modules of the processor, we rely only
on the instruction set information given in the processor’s manual. However, the
HLDDs may also be used to present specific information that is hidden for manual users.
The manual presents instruction-based information that explains what will happen
when an instruction is executed, while the HLDDs present functional variable-based
information that explains how each variable will behave when different instructions are
executed. The instruction-based information is suitable for the microprocessor user, who
is interested in exploiting the device’s behavior, whereas, the variable-based information
is more suitable for testing when the aim is to diagnose the faults or errors in the
microprocessor’s structure For modules that are not functional, we use the data-path
and pipeline structure or high-level behavioral structure of the processor to create the
HLDD model.

In Fig.4, a part of the pipelined structure of the microprocessor is depicted. The
yellow-colored part highlights the executing unit, while the rest on the figure shows the
main components of the pipeline architecture, i.e. pipeline registers,hazard detection
circuitry and the forwarding unit. We consider the selected modules as consisting of
disjoint control and data parts, presented as hypothetical structures without knowing
their implementation details.

As previously mentioned, the HLDDs are well suited for test program planning and
test data generation. Each HLLD node represents the structural unit of a microprocessor.
For example, the terminal nodes labeled by variables may represent the registers or
buses while the terminal nodes labeled by arithmetic or logic expressions may represent
the data manipulation sub-units in the ALU. On the other hand, the non-terminal nodes
of the HLDDs represent the units for interpretation of control information (decoders,
multiplexers or de-multiplexers). The HLDD shown in Fig 6 represents a generalized

26

Figure 4 – A part of a RISC type microprocessor with executing unit in the pipeline and data
forwarding environment

form of the ALU module of the MIPS-like processor in which case, the non-terminal
decision nodes represent the control part while the terminal nodes represent the data
path. As will be seen, we not only can model the ALU of the processor, the register
decoders, pipeline forwarding unit can also be modelled. The graphs GR0, GR1 and
GR2 in Fig. 5 show the general-purpose register decoders for the source and destination
registers. Note that there are also special-purpose registers in the processor such as
the HI-LO register which stores the results of operations like MULT, MTLO etc. The
decoders for these special-purpose registers can also be similarly modeled by HLDD as
the general-purpose registers shown in Fig. 5.

Figure 5 – HLDD for Register Decoders of a MIPS-like Microprocessor

3.3 Fault modeling in microprocessors using HLDDs
The high-level non-terminal node fault model is based on exhaustive testing of the
nodes. In the case of the terminal node fault model, a pseudo-exhaustive set of data
patterns needed for testing the related function was used. Each path in an HLDD
describes the behavior of the system in a specific mode of operation (working mode).
The faults which may affect the particular working mode can be associated with nodes
along the related path.

Definition 3.1. A non-terminal node related fault in the HLDD may cause the following
corruptions of the model:

27

Figure 6 – HLDD for MIPS-like Microprocessor

1. the output edge of the node is broken;
2. the output edge of a node is always activated;
3. instead of the activated edge, a combination of other edges is erroneously activated.

As a fault model for the terminal node, a set of data patterns needed for testing the
related functions of the data path is used in this thesis.

Fig. 7 describes how different fault models based on Definition 3.1 may be represented
uniformly as node faults on the HLDD model. The graph GR(A1) illustrates an
addressing fault (F1): instead of the edge 3 of the node A1, another edge 0 (or both
edges concurrently) are activated. This fault can propagate to other HLDDs of the
model. For example, in the ALU graph it can cause either the fault of a wrong source
(F2) or a fault of a wrong destination (F3). The fault type F4 (an instruction part
erroneously activated) is illustrated by the fault of the node OP as “instead of the edge
2 the edge 1 is activated”. All these faults belong to the third class of the HLDD fault
model defined by Definition 1.

Representing the internal node under test in the HLDD by m, the set of all terminal
nodes which can be reached from the node m at the current instruction under test
starting from all erroneously activated output edges of the node m by MT (m). Let
f
(
mT
)
represents the expression labeling the terminal node mT ∈MT (m). The

following constraints which is a part of the fault model, are introduced for testing the
control part of a Microprocessor [109]:

∀mT ∈MT (m) :
[
f
(
mT
)
6= Ω

)]
(1)

∀mi,mj ∈MT (m),i 6=j : ∀k [fk (mi)< (fk (mi)∗fk (mj))] (2)

where Ω = ZERO (or ONE), and the symbol ∗ stands for logic OR (or logic AND),
depending on the technology implemented in the microprocessor [64]. In this case,

28

Figure 7 – Illustration of different corruptions of the HLDD by faults in MP

ZERO denotes a binary vector (00. . . 0), and ONE denotes a binary vector (11. . . 1).
The index k refers to the bit number of the data words.

Focusing only on the case where Ω = ZERO and ∗ stands for OR, the constraints
(1) and (2) can simplified into a constraint (3) as shown below for the reason that
fk (mi)< (fk (mi)∗fk (mj)) is valid always if fk (mi)<fk (mj). Also, in the bit-based
analysis the constraint (1) results directly from (2).

∀mimj ∈MT (m),i 6=j : ∀k [fk (mi)< fk (mj)] (3)

The high-level fault model for non-terminal nodes results from Definition 1, leading
to exhaustive testing of control nodes of microprocessors in a natural way.

The number of functional faults for the non-terminal node m can be calculated as
N(m) = nm (nm−1)k where nm is the number of output edges of the node m, and k
is the length of the data word.

Let us generalize the fault model to microprocessors using the ALU as a case
study. It is assumed that the ALU executes n different functions y = fi(d) by a set
F = {fi} instructions, where d represents data operand(s) for fi, length of the data
word (operand) is m, and the ALU is controlled by p control signals.

According to Fig.17, the control part consists of the multiplexer MUX and p control
lines (control inputs to MUX which originate from the opcode field of the instruction
register). Each of the n AND blocks in the execute unit’s control part have p control
and one single m-bit data input, while the OR block has n data word input from the
AND block outputs. Each AND block consists of m AND gates with p control inputs,
and a single bit data input.

For this case study ALU, two types of high-level functional fault models are classified
as control faults (faults related to the control part of the ALU) and data faults (faults
related to the data part of the ALU). These fault classes could also be generalized for
other modules of the microprocessor. For the control faults, a novel high-level functional
control fault model is therefore introduced as follows.

Definition 3.2. Introduce for the function (instruction) fi ∈ F , the following high-level
control fault model M(fi) as a set of data operands M(f) = {Di}, which satisfy the
following constraints at least once for each bit k of yi:

∀k ∈ (1,m) :
{
∃di ∈M (fi)

(
yi/k 6= 0

)}
(4)

29

∀fj ∈ F,j 6= i : ∀k ∈ (1,m)
{
∃di ∈M (fi)

(
yi/k < yj/k

)}
(5)

Note that yi represents the data word considered as the result of execution of the
function fi with data operand(s) di as yi = fi(di).

To test that the function fi can be executed, and the result “yi = 1” can be produced
in each bit of the data word for detecting the faults (Stuck-at Fault)SAF/0 on all
AND-gates inputs, the constraint (4) is needed. Likewise, the constraint(5) is needed to
test that the result “yi = 0” can be generated in each bit of the data word for detecting
two types of faults: SAF/1 on all AND-gates inputs relating to the function fi, and all
functional faults that overwrites the value “yi = 0” in each bit due to the control faults
of other functions fj , j 6= i.

The high-level functional control fault test, which satisfies the constraints (4, 5) will
cover the following fault classes (for each control word bit):

1. For MUX as in (Fig.17): SAF/0 due to constraints (4), and SAF/1 due to
constraints (5) on the inputs and related paths to outputs; conditional SAF,
shorts, and multiple SAF on the inputs of AND-gates (due to applying exhaustive
patterns)

2. Functional faults in the instruction decoder: no function accessed, multiple
functions simultaneously accessed – similar to address decoder faults of memory
test (due to constraints (5)) [110]

3. Functional microprocessor faults: instead of function fi, another function fj

accessed, or multiple functions simultaneously accessed (due to constraints (5))
[64].

3.4 Minimization of Number of Edges in HLDDs
The HLDD model described in the previous section can be optimized by minimizing
its edges, to reduce the complexity of test generation. In this thesis, two methods
have been proposed. These are the greedy algorithm and branch & bound algorithm
(B&B). These methods are used for creating HLDDs from instruction-level truth table
to minimize the edges on graphs.

Let us introduce the following notations: e(xi,k) as an entry in TT , e(k) as a vector
of entries (the values of variables) in the k-th row in TT , and E (xi,v) as a group of
rows where xi = v, which has the size |E (xi,v)|. For example, in Fig.2a, e(x2,5) = 3,
|E (x2,3)|= 5 and |E (x3,4)|= 1.

Definition 3.3. Let us introduce operation of partitioning a given truth table TT into
two sub-tables TT (x= v) and TT (x 6= v), so that TT (x= v) will include the rows
where x= v, and TT (x 6= v) will include the rest of rows.

Definition 3.4. Introduce a term of average size of the values of a variable x in TT :

AV (x) =
∑

v∈V (x)

|E(x,v)|
|V (x)|

where V (x) is the set of possible values of the variable x in TT .
For example, in the TT in Fig.2a, for x1 we have |V (x1)| = 3, and AV (xi) =
(4 + 2 + 2)/3 = 2.6.

In this research, the following method of HLDD synthesis is proposed for a given
TT based on definition 3.4.

30

Algorithm 1: GREEDY Minimization of Edges
1 First, the given TT is taken as the basis TT (BTT). In each step, a variable x

from selected BTT is chosen, which has the biggest AV(x), and a new node is
included into HLDD labelled by the same variable x. Then, the selected TT is
divided into TT(x=v) and TT(x1v). To continue synthesis of HLDD from the
node x to the right direction, TT(x=v) is taken as the new BTT, and to the
direction downwards, TT(x1v) is taken as the new BTT. Both BTTs are
included into a set B of pending BTTs. The described procedure will be
repeated until all BTTs in B contain a single row. To each BTT in B, with
vector e(k), a path in the HLDD will correspond, which is to be terminated by
a terminal node of HLDD labelled with Fk.

An example of applying the first step of Algorithm 1 for TT in Fig.8a, is shown
in Fig.8b and Fig.8c. The variable x1 is selected from TT , because AV (x1) is the
biggest among x1, x2, and x3: AV (x1) = 2.6; AV (x2) = (3 + 5)/4 = 2; AV (x3) =
(5 + 3)/6 = 1.3. The HLDD begins with the root node x1, and the sub-table TT (x= v)
will be used to continue the HLDD construction to the right direction, whereas the
sub-table TT (x 6= v) will be used to continue the HLDD construction to the direction
down. The full HLDD, synthesized for TT in Fig.8a, is depicted in Fig.8c.

Theorem 3.1. Lower bound LB of the edges in the HLDD for the given TT can be
calculated as LB =

∑
x∈X |V (x)|, where X is the set of all variables in TT .

Proof. Lower bound LB cannot be less than the number of different entry values, since
each of these values serves as a possible fault location, and hence, must be represented
in HLDD as an edge. On the other hand, LB can be achieved if an edge in the HLDD
exists for all pairs {x ∈X,v ∈ V (x)}

Figure 8 – Control Path TTs, HLDD for a microprocessor with 8 instructions and 3 op-code
fields

Corollary 3.1.1. The lower bound LB of the edges in the HLDD for the given TT is
always achievable by Algorithm 1, if for the given number n of variables, the number of
rows r in TT is equal to n2. The lower bound LB in this case is equal to

∑n
k=1 2k .

Proof. The proof of the corollary results from the non-redundancy of the TT . From this
it follows that the full TT and all possible sub-tables of it, created during Algorithm 1,
are always divisible into equal parts with preserving all groups E (x,v) from splitting.

There might be cases where r < n2. In such cases, Algorithm 1 should be considered
as a heuristic one and hence cannot guarantee synthesis of minimal HLDDs. In order

31

to find exact minimal HLDD, the Branch & Bound algorithm which is based on using
the lower bound LB defined in Theorem 3.1 is proposed.
Algorithm 2: Branch & Bound Minimization of Edges
1 For each variable x∗ ∈X, the synthesis of a separate HLDD will start with the

related root node x∗, according to Algorithm 1, and the TT is divided into
TT (x∗ = v) and TT (x∗ 6= v), for each x∗ respectively. Based on these tables,
for each HLDD, the lower bound LB (x∗) is calculated. The HLDD synthesis
will continue for the HLDD(x∗), which has produced the lowest value of
LB (x∗). A new node labelled with the new variable x will be introduced into
the HLDD(x∗) and its LB (x∗) is updated. The procedure continues with the
HLDD, which has the lowest value of LB (x∗). Algorithm is completed, when
an HLDD is found, which involves all variables of X, and the number N of its
edges is less or equal to the lowest LB (x∗) of pending HLDDs.

Figure 9 – TT split by selection of x2 as the root variable in the HLDD
As an example, in Figures 8-10, three HLDDs have been created for the variables

x1, x2, and x3 respectively. The red numbers at the edges of the nodes denote the
calculated LB-s. The best solution is depicted in Fig 8 with the number of edges
N(x1) = 15. In Fig 9, an HLDD with N(x2) = 16>N(x1) is found. The HLDD in Fig
10 is not completed, because we found that LB(x3) = 16>N(x1) at the early stage.

Figure 10 – TT split by selection of x3 as the root variable in the HLDD

The feasibility of applying the proposed algorithms to formal generation and minimiza-
tion of the HLDD model for the widely used MIPS-like microprocessor was investigated.
Two versions of HLDDs for representing the control part of the processor are depicted
below.

Fig.11 shows that the optimized model generated by Algorithm 1 has a size of
55 fault locations or edges. while Fig.12 shows a solution with 100 edges where the
optimization criterion defined for Algorithms 1 and 2 was not employed. It is obvious
that the reduction in the complexity of the generated high-level fault model based

32

on the proposed Algorithms is 1.8 times which has great impact on test generation
complexity.

Figure 11 – Minimized HLDD model for the MIPS-like microprocessor

Figure 12 – Not-minimized HLDD model for the MIPS-like microprocessor

33

3.5 Optimization of the HLDD Model
Minimization of edges doesn’t solve all the issues with test generation when considering
the HLDD for modeling of faults. It helps with dealing with the reduction of the
complexity of test generation. However, there is still a problem of scalability when in
relation to the functional fault model proposed in this thesis. As the size of the set of
functions grows, the number of high-level faults also grows very fast. This problem is
not peculiar to only the method proposed here, it is also a known problem with memory
testing. This means that if we desire to cover broader classes of faults, a longer test is
needed.

The question of how to cope with the complexity explosion is finding trade-offs
between some test characteristics like fault coverage, test length, test generation time,
etc. One possibility is to partition the sets of functions F into smaller subsets and
consider high-level test generation for subsets of F separately.

Figure 13 – HLDD with a single decision node for representing 20 MiniMIPS instructions

34

Consider in Fig.13, an HLDD for a subset of 20 instructions of the MiniMIPS
microprocessor [111] which represents a subset of functions of the ALU. The single
non-terminal decision node of the HLDD is labelled by the control variable c (denoted
by the operation code of the instructions) having n control values labelling the output
edges of the node c. The terminal nodes are labelled by data manipulation functions fi

to be used for creating the data constraints (5).
The HLDD in Fig.13 can be regarded as a MUX of the control part of the MUT,

whereas terminal nodes describe the functions of the data part. Denote the HLDD as
G= 1, meaning that the graph has 1 decision node. The size of the fault model for
this subset of functions, n = 20 is |CF |= (n−1)2×m = 11552, assuming the data
word length is m= 32.

Figure 14 – HLDD for a subset of instructions of MiniMIPS

Depending on different partitioning of the set of control functions, HLDDs may have
more than one non-terminal nodes. If the HLDD has more than one internal nodes,
then for each non-terminal node m, the test is generated separately, where the subset
of functions F (m)⊂ F related to the node m under test is set up from the HLDD, so
that to each output edge of the node m, a terminal node mT in HLDD (having a path
from m to mT) with related function fj is mapped and included into F (m).

35

To reduce the complexity of the model of the MUT, we can iteratively partition the
set of functions by adding internal nodes into the HLDD.

Considering another version of the HLDD in Fig.14, which represents the same
subset of 20 instructions of the MiniMIPS, but has 10 decision nodes in this case. Each
decision node represents a partition, and the number of edges of the decision node
corresponds to the size of the related subset of functions F .

We can imagine three versions of HLDDs for this subset of 20 functions (separated
by red dotted lines):

1. G = 1 as a HLDD with a single internal node and 20 terminal nodes with
N = 12160 functional faults (Fig.13) ,

2. G= 4 as 4 sub-graphs with decision nodes OP1, OP21, OP22 and OP23, and with
3, 10, 4 and 6 terminal nodes, respectively, resulting in N = (6 + 100 + 12+ 30)×
32 = 3904 functional faults,

3. G = 10 i.e. the current HLDD in Fig.21 with 13 decision nodes, resulting in
N = (6 + (6 + 12+ 2) + (12 + 12 + 2) +(12 + 2))× 32 = 2112 functional faults
(Fig.14).

We have generated tests for these three versions of HLDD models with the following
results.

Using these results, we see opportunities for optimization of the test, "trading off"
different parameters like test length (number of test patterns), achieved SAF fault
coverage and test pattern generation time. We see that the result of the minimization
of the complexity of the fault model due to the partitioning of the set of functions
under test, the number of functional faults taken into account reduces dramatically
from 12160 to 2112 (7 times), which has of course impact of the quality of testing
the extended class of functional faults. At the same time, the SAF coverage does not
change significantly, it decreases only from 99.03% to 99.61%, despite the reduction of
the test length from 143 to 79 (nearly 2 times). As the complexity of the fault module
decreases, the test generation time decreases as well.

Table 2 – Example of scalabilities for three versions of HLDDs

HLDD No of Patterns
Number of

High-Level faults
N

SAF FC(%) Time(s)

G= 1 143 12160 99.03 0.33
G= 4 100 3904 98.77 0.27
G= 10 79 2112 99.61 0.23

3.6 Summary
The contribution of this chapter includes the following

• A novel High-Level Decision Diagram (HLDD) is proposed as an extension of
Binary Decision Diagrams(BDDs) which can be considered as an efficient formal
means for functional modeling of the instruction sets of microprocessors, and as
a means of self-test generation for microprocessors.

• HLDDs can be used both for high-level structural and functional modeling of
microprocessors. In structural approach, the HLDD model allows for straight-
forward partitioning of faults in the modules of microprocessors into two groups

36

of high-level faults: the terminal nodes of HLDDs represent the functions of
the data-part, and the non-terminal nodes represent the MUXes of instruction
decoders.

• For functional modeling of microprocessors, two methods are proposed for creating
HLDDs from Truth Tables with minimization of the edges of the HLDD graphs.
These results in minimizing the size of the HLDD model of a given microprocessor
and helps in reducing the complexity of the test generation process.

• Possible trade-offs between the complexity of the high-level fault model and the
characteristics of generated tests such as test length, SAF coverage, and test
generation time were investigated through partitioning the set of functions of the
microprocessor into subsets of functions.

37

4 High-level functional test generation for the control
parts of modules

In this chapter, a presentation on the control part test generation at high-level is made.
It includes implementation-independent test concepts for testing the control faults,
high-level functional control fault model, mapping of high-level faults to gate-level
faults, generation of control faults test data and high-level fault simulation. An example
of the control part test for the forwarding unit of a RISC processor is also presented as
a special case.

4.1 Implementation-independent test concept for testing control
faults

One of the objectives of this research is proposing a novel method for high-level testing
of RISC microprocessors in a functional way, without resorting to the knowledge of
low-level implementation details.

The main idea behind the method is based on defining the set of logic functions of
the microprocessor as the target of testing. Such a set of functions is defined based
on the instruction set and the description of the architecture of the processor as given
in the manual. The set of the functions under test is partitioned into a set of groups
where the results of the executed functions can be observed at the same node of the
high-level structure comparably. For example, one group of functions may consist of
logic and arithmetic operations derived from the instruction set, another group may
be the forwarding functionality derived from the architectural description, and for both
cases the observable node will be the output of ALU unit. Another group of functions
is the branching functionality, which differs from the previously mentioned groups by
having the observable node in the ALU 1-bit flag, which determines the branch direction
of the instructions flow.

The same test template will be built for all functions of a particular group. This
includes instructions for initialization, instruction sequence required to sensitize the
function, and instructions necessary to observe the results of the test at the same node
defined for the entire group of functions under test.

Figure 15 – Test Execution setup

38

In this thesis, I have focused on testing the execute unit, forwarding units in pipelined
RISC processors, the general register bank and branch control unit. For these units,
experiments have been carried out and will be presented later in the experimental
section. Fig.15 shows the general set-up of the processor’s high-level structure for
testing the complete logic functionality. Depending on the templates, test data operands
are loaded into the registers from the memory during the initialization phase of the
test. Some instructions require that the source, target and destination registers are
initialized, and some instructions require that only the source and target registers are
initialized while some test data are used are immediate data. After initialization, the
next phase of testing is the functional execution of instruction sequence. This means
that each instruction is executed iteratively for all data operands. For each execution,
the functional test response is stored in the memory by some set of instructions for
memory manipulations.

Figure 16 – Illustration of the proposed test concept

The concept of high-level implementation-independent functional test approach is
illustrated in Fig.16. As a unit under test (UUT), we consider a sub-circuit of the
processor involved in executing of the selected group of functions under test. The UUT
has two high-level inputs: data D, control signals C, and an output Y which represents
the observable node for observing the behavior of function of the group.

The low-level structure of this sub-circuit under test is unknown. In our model
however, we consider that in the UUT the data part and control part can be partitioned.
The UUT inputs are partitioned as well into data and control signals. However, the
coding of the functions is unknown. For example, how exactly the control information
(control signals C) is mapped into the control states S activating the selected functions
(the mapping C → S) is unknown. Note here that there is a one-to-one mapping
between the set of S and the set of functions under test.

Since the internal logic structure of the unit under test is unknown, the traditional
methods of the path activation from the fault site to the observable point cannot be
used. Rather, we can substitute the traditional fault propagation technique by direct
generation of data which are needed to differentiate tested faulty behaviors from the
correct behavior since all the functions of the group under test are well-comparable. To
have such a high-level fault list, we will introduce a set of data constraints, where each
constraint represents a particular high-level control fault. If a particular constraint is
satisfied by the data used for activated function, then the related high-level fault, i.e.
the respective low level fault is propagated to the observable node Y of the UUT.

39

In summary, Fig.16 illustrates how the upper black-box model of MUT is replaced
with lower constraints based functional model for the control part of ALU. Here yi 6= yj

means that if there are data generated in D, which satisfy this constraint for expected
results of functions fi and fj , then these functions are distinguishable, and if this
constraint is not satisfied at least in one bit, some faults can remain not detectable by
the test.

The control fault model and how it is applied to test generation will be discussed in
more detail in the next section.

4.2 High-level functional control fault model
The focus of this research is on testing the executing units, register decoding module,
pipeline forwarding module and system co-processor module in a pipelined RISC proces-
sors. The executing module for instance consists of a control part and data path as
shown in Fig. 15. The method could also be applied to testing other pipeline stages,
flags, branch prediction mechanism, caches etc.

Let us start with the execute unit and present it (in implementation-independent
generic way) as an equivalent circuit where the control part is highlighted as an AND-OR
multiplexer for decoding the instructions and extracting the results of the executed
instructions as shown in Fig.17. In this unit, we consider the set of functions represented
by logic and arithmetic functions.

The circuit in Fig.17 can be represented by an equivalent disjunctive normal form
(EDNF) related to the execution unit, which can be taken as the functional basis of test
generation that will be described later on. It is possible to generate test without the
knowledge of implementation because a test developed for detecting all non-redundant
faults in the EDNF, will also detect all the faults in the original circuit [36].

Figure 17 – Generic DNF based control structure of the executing unit

A generic representation of the control part in the form of multiplexer is implemented
as described above, to develop the high-level functional control fault model. Assuming
a more detailed view of the executing unit in Fig.4 as shown in Fig.17, where specifics
of implementation are conceptual and hypothetical, We may assume that the data part
performs n different functions yi = fi (Di) controlled by a set of instructions F = {fi},
where Di is the set of fi-manipulated data operands. The length of the data word is
m, and the number of control signals is p. The control part consists of the multiplexer
MUX and p control lines controlling the MUX. The n AND blocks in MUX have p
control each and a single m-bit data input, whereas the OR block in MUX has n data
inputs from the outputs of AND blocks. Each AND block consists of m AND gates
with p control inputs, and a single 1-bit data input. Thus, the control module described,

40

represented as a high-level multiplexer, consists of n different 1-bit logic level AND-OR
multiplexers used to decode the instructions and extract the results of the instructions
executed.

By implementing the mentioned theoretical MUX-based execution system, we sep-
arated the data and control parts and transformed the control block’s function from
“active" controlling of the manipulations in the data part to “passive" selection of the
results of manipulations in the data part. What we mean by this is that all possible
optimizations that may have been made during the design of the execution module
have been ignored.

Another abstraction concerns the decoding of the control signal, which is highly
dependent on implementation details in general. To ensure that test generation for
the control part is implementation independent, the decoded control signals sent to
the AND gates for selecting the related data manipulation results are represented by
symbolic signals. This allows the issue of illegal instruction codes to be solved and helps
identify redundancies in the control part.

The cost of having an implementation-independent test is in terms of test length
increase. However, the gain is that we do not need to know how the unit-under-test
is implemented and we can cover a larger fault class including multiple faults when
compared with the traditionally measured single SAF.

The theoretical foundation of the proposed high-level control fault model is presented
in the appendix section of [9].

4.3 Mapping of high-level faults to gate level
To understand how the high-level faults can be mapped to low level fault, let us Introduce
the following notations of the input information for solving the problem.

Definition 4.1. Let D∗i be the set of data operands which satisfy the constraints of the
fault model M (fi), T ∗i is the test for the instruction fi, which uses the data operands
d ∈D∗i , and T ∗ = {T ∗i } is the full test, generated for all high-level control faults for
the set of instructions F = {fi}.

Theorem 4.1. The test T ∗ = {T ∗i }, which covers all non-redundant high-level faults
of the fault model M (fi), also covers all gate-level non-redundant SAF in the control
part of the microprocessor, which controls the set of functions F .

Proof. The proof can be done in 2 steps. First is to consider the equivalent circuit of
ALU control part presented in Fig.17 described as the following DNF.

y = c1,1C1,2 · · ·c1,py1∨ c2,1c2,2 · · ·c2,py2∨ . . .∨ cn,1cn,2 · · ·cn,pyn (6)

For each bit of the data word in the output of OR block. It can easily be shown that
from generation of data which satisfy the constraints (4) and (5) for all functions
fi ∈ F , it follows that in the DNF, all SAF faults will be detected. In this DNF, the
variables ci,jfor selecting the data results cj , j = 1, . . .p, present the global control
signals cj , j = 1, . . .p being either inverted or not, and covering all the 2p combinations
exhaustively in general case. Secondly, assume that the control circuit is optimized and
is represented as a multi-level combinational circuit instead of the two-level DNF. In
this case, we can represent the circuit as an equivalent disjunctive normal form in a
similar way as DNF (6). As already mentioned, if there is a test set which detects all
non-redundant faults in the EDNF, this test will also detect all faults in the original
multi-level circuit [112].

41

The corollaries below result from the Theorem 4.1

Corollary 4.1.1. If a high-level test is generated, so that the the constraints (4) and
(5) are fully satisfied, but if there are some SAF in the related EDNF, which remain not
detected by the high-level test, the not detected SAF are redundant.

Corollary 4.1.2. If there are some cases in the constraints (5), which cannot be satisfied
by selecting data operands, these cases refer to the high-level redundancies in the model
M (fi).

Corollary 4.1.3. If the high-level redundancies are removed from M (fi), and a high-
level test is generated, so that the non-redundant constraints (4) and (5) are satisfied,
but if there are still some SAF in the related EDNF, which remain not detected by the
high-level test, the not detected SAF are redundant.

Example 4.1.1. Consider a simplified ALU unit which implements the set of three
functions f1,f2,f3, activated by a set of control signals c2c1, c2c1, c2c1 respectively.
The ALU can be represented by the DNF:

y = c2c1y1∨ c2c1y2∨ c2c1y3 (7)

The test T ∗ = {T ∗1 ,T ∗2 ,T ∗3 } generated for the control part of ALU that satisfies the
constraints (5) is depicted in Table 3.

Table 3 – Example of a high-level control test

T ∗i
Test Fault Table Constraint Satisfiedc2c1 y1y2y3 c2c1y1 c2c1y2 c2c1y3

1 2 3 4 5 6
T ∗1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 y1 < y2,y1 < y3
T ∗2 1 0 1 0 1 0 0 1 1 1 0 1 0 1 y2 < y1,y2 < y3
T ∗3 1 1 1 1 0 0 1 1 1 0 1 1 1 0 y3 < y1,y3 < y2

The table contains the test patterns in column 2, the fault table in columns 3-5, and
the constraints satisfied by generating data in column 6 for the control test patterns.
The detected gate-level faults in the fault table are highlighted in red: 0 is the value
of a signal triggering the fault SAF/1. For example, the value of the output signal
y = y1 = 0 will change from 0 to y = y1∨y3 = 1 for the fault c2 ≡ 1 in column 5. For
the SAF/0, 3 more test patterns are needed to detect the faults (this is not shown in
the table).

In the fault table we see that there is no detection of faults c1 ≡ 1 in column 3
and c2 ≡ 1 in column 4. These faults are redundant on the basis of Corollary 4.1.1.
Minimizing the function (7) we get a new formula: y = c2y1∨ c2 (c1y2∨ c1y3) where
redundancies are removed and the test detects all SAF/1

It is worth noting that theorem 4.1 and Corollaries 4.1.1-4.1.3 have been formulated
in consideration of the single SAF model. However, the strength of the proposed
high-level fault control model extends beyond the single SAF fault class, as shown in
the following corollaries.

Corollary 4.1.4. The test T ∗ = {T ∗i }, covers all gate-level multiple SAF and bridging
faults between control lines in the control part of the microprocessor, which controls
the set of functions F = {Fi}.

42

Proof. From (5) it follows that for each function f ∈ F , ∀k :
(
yi/k < yj/k

)
for all j 6= i

must hold. This means that not only SAF/1 in a single control signal of a single
function f ∈ F , j 6= i, can be detected (by overwriting yi/k = 0 with yj/k = 1), where
the control words for fi and fj differ in a single bit, rather such overwriting of signals
yi/k = 0 with 1 can happen, and hence, can be detected due to multiple changes 0→ 1
for f ∈ F , j 6= i, leading to detecting multiple faults. On the other hand, from the
constraints (4-5), and from the exhaustiveness of testing all the control functions f ∈ F ,
j 6= i, it follows that non-redundant bridging faults between the control lines can be
also detected by T ∗.

Algorithm 3: RANDOM test data generation for ALU
Input: Instruction set of the processor
Output: Sets of test operands OPi for each instruction, and fault table D
Notations: n – number of instructions (functions Fj), op – test operand, OP

– current set of selected random test operands, fj(op) – the result
of the instruction Ij for the operand(s) op, D – fault table, Dij –
w-bit entry in D (w – length of the data Word).

1 initialize OP = ∅;
2 Generate a set of R random operands;
3 for i= 1, . . . ,n do

// generation of operands for instruction Ii

4 initialize OPi = ∅;
5 for j = 1, . . . ,n(j 6= i) do

// operands for solving constraints fi,k < fj,k

6 Initialize Dij = 0;
7 for all op ∈R do
8 while (Dij 6= 0) do

// adding new operands for covering Dij

9 Dij(op) = fj(op)∧ (fi(op)⊕fj(op));
// calculating fault coverage for op

10 if (Dij(op)∨Dij)⊕Dij 6= 0 then
// check for the coverage increment

11 begin;
12 Dij =Dij ∨Dij(op);

// update of the coverage vector Include op into
OPi

// new operand is selected

4.4 Generation of test data for testing the control faults
From the discussions above, we can deduce that the fault model defined by the set of
constraints in (3) can be interpreted as the definition of the universe of high-level faults.
The possibility of evaluating the high-level functional fault coverage as the percentage
of constraints in (3) for a given test is a direct impact of this interpretation. Note also
that we can overlook the fact that the faults fi,k ≡ 0 and ci,k ≡ 0 in the control path
will not be taken in the fault universe of the control faults because these faults will be
covered as a byproduct by the data part test T (f). In the next session of this thesis, I
will discuss the approach or method implored for testing the data part of the unit under

43

test. An algorithm to generate the test data set T (c) for testing the control path in
conformity with the constraint fi,k < fj,k is presented.

The result of Algorithm 3 will be a set of operands OPi for each instruction Ij , and
the fault table D =

∥∥∥Dk
ij

∥∥∥ where Dk
ij = 1 means that the functional fault described

by the constraint fi,k < fj,k is covered at least by one operand op ∈ OPi, otherwise
Dk

ij = 0. The percentage of 1s in D is the high-level functional fault coverage of the
test for the control path. We called the Algorithm 3 RANDOM since in each step of 7,
the first random operand op ∈R that produces an increase in the fault coverage will be
chosen, no matter how big it is. In order reduce the test length for testing the control
path, another algorithm called GREEDY is implemented.

The GREEDY algorithm differs from the RANDOM at step 7, where the whole
search space of random data is ran through to find the best operand that produces
the maximum fault coverage for all op ∈R. The next operand is selected in a similar
way and this continues until the goal Dk

ij = 1 is reached, or no more operands can be
selected to satisfy all constraints fi,k < fj,k.

It is possible that the constraint fi,k < fj,k may not be solved in some cases. This
could be that either the related functional fault is redundant or the search space R is
not big enough. This research also makes attempt to provide proofs for high-level fault
redundancies.

4.5 High-level fault simulation and fault coverage

In order to measure the fault coverage for the fault model M(fi), f ∈ F , proposed in
Definition 3.2, by a given test T ∗i and a set of operands D∗i , we introduce the high-level
fault table as a matrix E = ‖eij‖ with n columns and n rows, where n is the number of
functions in F . Each entry ei,j in E is a m-bit vector ei,j =

(
ei,j/1,ei,j/2, . . . ,ei,j/m

)
,

where m is the number of bits in the data-words yi = fi(di), di ∈D∗i . We say that
ei,j/k = 1, if the constraint yi/k < yj/k for the bit k in the set of constraints (5) is
satisfied by the set of data operands in D∗i = {di}, but if not, ei,j/k = 0.

Let’s take an example with an hypothetical ALU composed of 5 instructions: OUI,
ADD, SUB, SLT and AND. In Table 4, we present a matrix E = ‖eij‖ based on a test
T ∗i for a set of functions F = {fi} which is executed by the set of instructions I={OUI,
ADD, SUB, SLT, AND}. Each i-th row in the table represents the high-level control
fault coverage of testing the function fi ∈ F and the respective instruction Ii ∈ F .

Table 4 – Example of a High-Level Fault Table

f1(OUI) f1(ADD) f1(SUB) f1(SLT) f1(AND)
f1(OUI) 111111 111111 111111 000000
f1(ADD) 111111 111110 111111 111111
f1(SUB) 111111 111110 111111 111111
f1(SLT) 111111 111111 111111 000000
f1(AND) 111111 111111 111111 111111

The fault table is the product of a high-level fault simulation for the given set of
operands that will be used by the high-level test. For this study, the following high-level
control-fault-simulation algorithm has been implemented.

44

Algorithm 4: Fault Simulation Algorithm
1 for all row instructions fi, i= 1, . . . ,n do
2 for all data operands di,j,1, di,j,2, j = 1, . . . ,ni do
3 for all column instructions fh, h= 1, . . . ,n do
4 calculate the value yh;
5 check the relation yi < yh, h 6= i;
6 update the vector ei,h ∈ E

As a result of algorithm 4, a simulation based high-level test generation method was
implemented on the basis of random search for test data to satisfy the constraints(5).

In Table 4, 0s refer either the high-level control faults that are not detected or
the possible high-level redundancies of the faults that are related to the constraints
yi/k < yj/k. Here, i and j correspond to the rows and columns respectively while k
corresponds to the bit number. All 0s in eij refer to the high probability of redundancy
of the full set of high-level faults for all bits. This means that the constraints yi/k <yj/k

for all k cannot be satisfied for the respective instructions Ii and Ij .

4.6 Extension of the Fault Class Beyond SAF
The ideas of the proposed fault model are adopted from the known methods of memory
testing, particularly from March test [110]. The goal of the motivation was to expand
the fault class to be covered by the study, to the one used in the case of memories.

Figure 18 – Unrolled test execution evolving in time

considering an example of the March test depicted in Fig.19, and comparing it with
the test flow developed for a logic MUT shown in Fig.18. The comparison between
the memory test and the logic test is equivalent in addressing cells in memory and
controlling the functions of fi ∈ F in logic MUTs. In case of memories, testing of cells

45

(data part) and the addressing logic (control part) can be easily joined in the same
test, whereas in the proposed approach, testing of data part and control part proceeds
separately.

In case of memory, the initialization of constraints (writing 1s(W1 ↑) into cells) can
be done once for all cells in a single cycle. Then, having these constraints stored, the
following test cycle (r/w0 ↓) and observation cycle (r1) can be carried out.

In the proposed method, the constraints cannot be stored, rather they have to be
produced “on-line” at each test pattern. In Fig.18, a test pattern Ti,t ∈ Ti including
test data d ∈Di, is illustrated, showing the values it produces on-line for the k− th bit
of all functions fi ∈ F , simultaneously. All functions for the bit k are partitioned by the
data d ∈Di into two groups F 0

k and F 1
k . We see, that this particular test pattern with

data d covers only a subset of constraints for fi,k (d)< fj,k (d), where fi,k ∈ F 0
k and

fj,k ∈ F 1
k .

Figure 19 – Illustration of the March test for memories

In case of memory, in each step of the test cycle (r/w0 ↓), when reading the Cell i,
all constraints [Cell i] < [Cell j] are covered by a single run through all the cells. Here,
[Cell i] means the value stored in the Cell i. In case of the proposed method of testing
a logic MUT, the test for fi ∈ F , has to be repeated with other data d until all the
constraints (5) have been satisfied for all pairs of functions

{
fi,k,fj,k

}
.

The comparison of the proposed data constraints based test method with March
test for memories reveals the possibility of applying the proposed approach, not only for
the combinational MUTs like ALU but also for sequential MUTs. If in sequential MUTs,
a part of data d ∈D belongs to the registers or memory, the test must include a proper
initialization sequence.

Consider a MUT, represented by a set of mappings:

(ci ∈ C)→ (fi ∈ F),

where C is a set of mutually exclusive control signals (instructions) produced by the
control part of MUT, and F is the set of operations (data manipulations) taking place
in the data part of MUT.

By test data generation, used in the March test for memories and in the proposed
test method for logic MUTs, the coverage of the following functional fault classes by
the proposed method results [110]:

46

CL-1: With a certain instruction (ci ∈ C), no activity fi in F will happen.
CL-2: There is no instruction (ci), which can activate a function fi ∈ F . A certain

function is never accessed.
CL-3: With a certain instruction (ci), multiple functions {fi,fj , . . .}∈F are activated

simultaneously.
CL-4: A certain function fi ∈ F can be activated with multiple instructions

{fi,fj , . . .} ∈ F .
The fault classes CL-1 – CL-4 are illustrated in Fig.7 [110]:

Figure 20 – Functional control fault classes CL 1 – CL 4

It is easy to realize that these high-level functional fault classes also cover SAF
(CL-5) and bridging (CL-6) fault classes, i.e. these faults can be collapsed, and do not
need to be taken into account any more, except when the fault coverage of these faults
for a given implementation is under interest.

Address decoders built out of CMOS gates can exhibit CMOS stuck-open faults
[CL-7] as shown in [113]. The effect of such faults is that the combinational instruction
decoder will behave as a sequential circuit for certain control signals. The consequence
of such a fault is that another instruction will be decoded and executed. However, this
fault can also be collapsed, because it will be covered by the faults of CL-4.

Any multiple low-level structural fault CL-8 (SAF or shorts), in a particular implemen-
tation, will cause a change of an instruction ci→ cj , which in turn can be considered
as the fault from class CL-4, and hence, be collapsed.

Other general fault classes, such as cell-internal defects (CL-10) [114] or conditional
SAF (CL-9) [49], also known as functional faults [115], pattern faults [45], input pattern
faults [44] and fault tuples [52], will manifest themselves as a change of instruction
code ci→ cj , and are covered by the fault class CL 4.

We have shown, that the structural fault classes CL-5 – CL-10 are collapsed by the
implementation-independent high-level functional fault classes CL-1 – CL-4, which are
used in memory testing and are covered by the March test [110]. On the other hand,
in Section V, we have shown, that the test for microprocessor MUT, which satisfies
the constraints (5) will cover the same fault classes CL-1 – CL-4 used in memory
testing. Finally, from Definition 3.2, it follows, that the fault classes CL-1 – CL-4 can
be represented by a single fault class CF =

{
fi,k→

(
fi,k,fj,k

)}
.

The relationships between iterative fault collapsing are shown in Fig.21: first,
collapsing of structural faults (CL-5 – CL-9) by functional faults used in memory testing
(CL1 – CL-4) [110], and consequently, collapsing of the faults (CL1 – CL4) by the
general high-level control fault CF, developed in this thesis.

The proposed method is also extendable to generating a test that detects all transition
delay faults (TDF). The TDF model assumes that only one gate in the circuit is affected
by the delay fault. Each gate has two TDFs: a slow-to-rise fault and a slow-to-fall
fault. To detect TDF in a combinational circuit, two input patterns V = (v1,v2) must
be applied. The first pattern v1, initializes the circuit, while the second pattern v2,
activates the fault and propagates its effect to some primary output. The second pattern

47

Figure 21 – Fault collapsing relationships

can be found by a SAF test generation tool.
Traditionally, for a given combinational circuit, both patterns are generated by ATPG.

For example, for testing a slow-to-rise TDF, the first pattern f1 initializes the fault site
to v1 = 0, and the second pattern f2 is a test for SAF/0(v2 = 1) at the fault site. A
TDF is considered detected if a transition occurs at the fault site, and a sensitized path
extends from the fault site to some primary output.

In the proposed functional approach, the target TDFs cannot be directly defined,
and the pair of signals (v1,v2) cannot also be found by sensitizing the respective paths,
because the gate-level structure of the circuit is not given. However, according to
the proposed fault model, for every testable SAF r of the unknown implementation,
there is always an existence of a test pattern f2 with signal v2 in the functional test
sequence, generated by solving the constraints (5), which detects the fault r. Since we
do not know, which SAF is detected by the patterns of the test sequence, we could not
generate the first sensitizing patterns f1 to produce v1 by conventional TDF testing
methods.

Figure 22 – Transition delay fault testing in modules under test

However, since the functional faults of the proposed model are sensitized by ma-
nipulations in the output domains of functions rather than structural sensitization of
faults, the same concept can also be extended for finding test pairs (v1,v2) for detecting
transition delay faults by substituting the task of finding the test pattern f1 with the

48

task of finding the output response R(f1) through simply inverting R(f2), where the
role of the input pattern f1 is to produce the signal v1.

Fig.22 illustrates the main difference between the proposed functional approach to
testing of transition delay faults and the traditional approach. Instead of targeting
the pairs of input test patterns (f1,f2) to produce signals (v1,v2), the target is to
find the observable output values (R(f1),R(f2)). This eliminates the need to have
knowledge of the structure of the circuit for paths sensitizing, thereby making the
method implementation-independent.

To explain how this works, let us consider the circuit in Fig.22 as an example. If
we have a test pattern (C.D) representing a control word C (instruction) and a data
operands D, which executes the function f2 , y = f2(C,D) to produce the value
R(f2) = y, y ∈ {0,1}, and store it in the register R. Assume that this pattern detects
a SAF r ≡ x, x ∈ {0,1}, either in the control part or in the data part of the module
under test. To detect the TDF on the fault site r, the value on r must be pre-initialized
to x̄. If the TDF is present on this fault site, then the fault will propagate through the
circuit and produce the faulty value ȳ in the register R. To detect this TDF in R, it is
sufficient to pre-store this expected faulty value ȳ in R. If TDF is missing or exists, the
observable value ȳ will either change to y, or remain the same as ȳ respectively.

The proposed method of test generation for TDF is fundamentally a new approach,
easy implementable at the functional level in connection with the new method of test
generation for microprocessors. The novelty lies in the substitution of input test data
generation by generation of output expected responses.

4.7 Identification of redundant faults in microprocessors
In chapter 4, a high-level fault table was presented based on algorithm 4. According to
this, we identified that there could be instances where the constraint yi < yj cannot
be satisfied for a given test. For these faults, either the test has to be improved, or
it should be proven that the not detected faults are functionally redundant. In this
section, I would provide redundancy proofs based on a 1-bit truth partial table for any
related faults where the constraints mentioned above cannot be solved.

Example 4.1.2. For example, in most cases of ALU operations, it is very easy to
identify this type of redundancy. For example, if a 1-bit function yi = fi (d1,d2) refers
to AND operation and yj = fj (d1,d2) refers to OR, it is straightforward that the
constraint yi < yj , i.e. (d1∨d2)< (d1∧d2) cannot be satisfied.

Apart from these easy cases, there are cases where there is no solution for constraint
yi < yj only in a single bit k, or in a few bits. In these cases, we use the partial truth
table method for providing the redundancy proof.

The idea of the approach is to demonstrate the equivalence of partial truth tables or
to prove the impossibility of solving the constraints for the functions involved in the
constraint relation, to pick a few bits as possible that would be needed for proof.

In Fig. 23, an example of a 1-bit partial truth table for the functions SUB, ADD, OR,
AND, and XOR is shown for selected bits k. The pairs 00,01,10,11 in Fig.23a, represent
the values of the data variables (as arguments) under analysis and the 1-bit values
in the columns show the results of the bit related operations, proving the functional
redundancy of both functions in this bit.

By comparing the values in column 3-6, we can populate the fault table in fig.23b
with the values of 0 or 1, where 0 means that the constraint(5) is not satisfied and 1
means that the constraint was satisfied. For example, if we take the functions SUB

49

Figure 23 – Example of redundancy proofs with 1-bit truth table

and ADD, a comparison of these two functions for all possible data d1,d2 would never
satisfy the constraint (5). By this, we mean that this implies that their equivalence
contradicts the constraint. The same analysis goes for the functions OR and AND.

In more detail, if d1,d2 = 00, the function yi = fi (d1,d2) for ADD will be 0, And
the function yi = fi (d1,d2) for SUB will also be 0. Therefore yi < yj is not satisfied for
this data. If d1,d2 = 01, the function yi = fi (d1,d2) = 1 for ADD, while the function
yi = fi (d1,d2) = 1 also for SUB. The constraint yi < yj is also not satisfied for this
data. Likewise, the data d1,d2 = 10 and d1,d2 = 11 cannot produce any value of yi

and yj for ADD and SUB respectively, such that yi < yj . This sort of analysis can be
carried out for other functions, thereby proving functional redundancies. This can also
be regarded as functional untestable faults.

In some cases, the partial truth table method will not work, because the results
of operations may substantially depend on all bits of the word like for increment or
decrement operations. When this happens, specific corner cases should be found for the
proof of redundancy. For example, to prove the equivalence of increment and decrement
operations in the least significant bit, the operand 1 . . .110 should be used, where both
instructions INC and DEC produce the same result "all 1s".

4.8 Case Study of the Control Part Test for Forwarding Unit of
MIPS-like RISC processor

Considering a case where the set of functions F to be tested does not represent the
processor’s main functional properties described in the instruction set, but other non-
functional properties such as performance, for which the forwarding unit is responsible.

Imagine the forwarding system as the high-level circuit in Fig.24, consisting of the
pipeline registers; ID/EX, EX/MEM and MEM/WB [111], the forwarding control unit,
the pipeline register data-selection multiplexer and ALU with observable output node.
The role of the control unit is to compare the addresses rs used in the current instruction
with addresses rd(EX), rd(MEM) stored in the respective pipeline registers, and
to produce the control signals c1, c2 and c∗ for selecting the data D1, D2, and D3,
respectively, from different pipeline registers. The data Di represents the values of the
functions fi ∈ F , where F represents the functionality of the forwarding unit.

The test patterns generated for testing the forwarding function in Fig. are depicted
in Table 5. The test consists of 3 groups of patterns (in each 2 patterns, framed in
bold): forward from EX/MEM (c1,D1), MEM/WB (c2,D2), and no forward (c∗,D3).
Each of the 6 test patterns in Table 4 are applied in a cycle for as many test data
needed to solve the constraints (5).

For solving the constraints (5) like rd(EX)< rd(MEM), the data that is needed
for the register numbers to either produce or not to produce hazards, is generated using
pseudo-exhaustive test data for comparators. The patterns "all 1s" and "all 0s" are used

50

Figure 24 – Example of testing the pipeline forwarding unit

Table 5 – Test generation for pipeline forwarding unit

Var The values of var(hazard detection condition) Test Pattern
1 2 3 4 5 6

c1 rd(EX) = rs 1 1 0 0 0 0
f1 =D1 Rd(EX) 0 1 1 0 1 0
c2 rd(MEM) = rs 0 0 1 1 0 0

f2 =D2 Rd(MEM) 1 0 0 1 1 0
c∗ c1∨ c2 = 1 0 0 0 0 1 1

f3 =D3 Rs 1 0 1 0 0 1

to organize parallel testing (solving the constraints (5)) of all bits of the data words.
In contrast to testing the execute unit (where for all instructions, the constraints were
solved by data of the same time frame), the constraints are solved by data from different
time frames and located in different pipeline registers in the case of the forwarding unit.
For this purpose, relevant test templates are produced.

For example, Fig.25 demonstrates two test programs generated for testing the hazard
detection and data forwarding functions. In case of hazards in addresses of registers
(ra = cb), the data from the register rb is forwarded from EX/MEM stage (for Fig.25a),
and from MEM/WB (for Fig.25b). The cases correspond to test patterns 1-2, and 3-4
in Table 5 respectively. For the 1st patterns the values “all 0s” are forwarded, and for
the 2nd patterns “all 1s” are forwarded. Two tests are needed for mutually satisfying
the constraints (5): rd(EX)< rd(MEM) and rd(MEM)< rd(EX).

Figure 25 – Examples of testing the pipeline forwarding unit

The red entries in Table 5 correspond to the signals where the SAF faults are
sensitized and can be detected. The test patterns 1,3 and 5 are created for testing the

51

control faults where the constraint (5) is satisfied. These patterns also test the SAF/1
faults in the data part. The test patterns 2,4,6, satisfying the constraint (4), are testing
the SAF/0 faults in both the control and data parts.

4.9 Summary
In this chapter,the following contributions are highlighted

1. The proposed high-level implementation-independent test generation concept for
microprocessors based on the partitioning of the modules into control and data
parts was presented.

2. Development of foundations for the creation of a new paradigm of a high-level
functional fault model in the control part of microprocessor modules.

3. The new fault model allows implementation-independent test generation to be
carried out using only high-level information on the functionality of the module
under test.

4. Methods for generating high-level test data used to test the control part of the
microprocessor modules were developed. Also, a high-level measure and a related
high-level fault simulation method were developed for evaluating the high-level
quality of the test.

5. The new method of test generation avoids time-consuming conventional fault
propagation along the true paths in digital circuits, allowing drastic speed-up in
calculating the requisite test operands.

6. The new test generation method is the first method which in addition to traditional
SAF, allows covering of a large class of low-level faults such as shorts, conditional
SAF, Transition Delay Faults(TDF) and multiple SAF using a new dedicated
high-level fault model, without knowing the low-level structure.

7. A novel mixed-level method for identification of low-level redundant faults was
developed based only on simulating the high-level test for the given circuits
implementation.

8. Presentation of control part testing of the non-functional unit such as the for-
warding module.

52

5 Pseudo-exhaustive testing of data-parts of modules
There might be several possibilities for generating test patterns or testing the working
mode of the microprocessor. These methods can be classified into hierarchical, exhaustive
or pseudo-exhaustive, and functional or heuristic methods.

In the hierarchical approach, the test data is generated at the gate level and mapped
to a higher level as a set of constraints for the high-level functional fault model. Several
methods using this approach have been proposed in [21, 71, 107]. By using pseudo-
exhaustive data to test the data path of the microprocessor, the test procedure is
independent of the details of the processor core under test.

In this chapter, the concept of pseudo-exhaustive test strategy, and how it is used
for testing the data part of modules of the MIPS-like processor is discussed. I highlight
that this concept allows us to detect not only the non-redundant SAF but also other
classes of faults.

5.1 Overview of the pseudo-exhaustive test concept
Rather than using the conventional gate-level ATPG [71], we can use the pseudo-
exhaustive testing method to test the data path. The benefit of pseudo-exhaustive data
is that it does not make the test generation process reliant on the implementation details
of the processor cores being tested. The pseudo-exhaustive test generation method is
based on the idea of testing the operations in all bits independently of other bits.

To apply a true exhaustive approach for testing logic operations, we can use only
four exhaustive patterns { (0,0), (0,1), (1,0), (1,1) } per bit since they are substantially
independent in all bits, but for unary operations like shifts or move, only two patterns
are sufficient.

Table 6 – Pseudo-exhaustive test data for addition operation

No . . .
4−bit 3−bit 2−bit 1−bit 0−bit
a4b4c4 a3b3c3 a2b2c2 a1b1c1 a0b0c0

1 . . . 000 000 000 000 000
2 . . . 010 010 010 010 001
3 . . . 100 100 100 100 010
4 . . . 110 001 110 001 011
5 . . . 001 110 001 110 100
6 . . . 011 011 011 011 101
7 . . . 101 101 101 101 110
8 . . . 111 111 111 111 111

In Tables 6 and 7, examples of pseudo-exhaustive data are shown for additions and
subtractions. In this example, ripple carry is used for addition, and ripple borrow is
used for subtraction. In the case of carry-lookahead addition, the pseudo-exhaustive
approach will be more complex and more test data will be required. The idea of the
pseudo-exhaustive approach shown in Tables 6 and 7 reveals that all bits of all ALU
operations fi, i= 0,1,2, . . ., are exhaustively tested. For ADD and SUB operations, 8
data pairs are required to cover each bit of all 3 inputs (two operands and carry/borrow
bit) combinations of the adder or subtractor.

To generate patterns as shown in Tables 6 and 7, we begin from the least significant
bits, calculate the carry ci for the next bit, and match ai and bi with the calculated carry
ci for the next bit, so that all exhaustive combinations for this bit segment have been
achieved. In this way, the created patterns for the 2nd and 1st bits can be copy-pasted

53

Table 7 – Pseudo-exhaustive test data for subtraction operation

No . . .
4−bit 3−bit 2−bit 1−bit 0−bit
a4b4c4 a3b3c3 a2b2c2 a1b1c1 a0b0c0

1 . . . 000 000 000 000 000
2 . . . 110 011 110 011 001
3 . . . 001 100 001 100 010
4 . . . 100 110 100 110 011
5 . . . 011 001 011 001 100
6 . . . 101 101 101 101 101
7 . . . 010 010 010 010 110
8 . . . 111 111 111 111 111

for the next two-bit sections to the right.

5.2 Testing of multipliers with pseudo-exhaustive test patterns
Another contribution of this work is the design of a new method for bit-parallel testing
of array multipliers using a new approach of data-controlled circuit segmentation to
transform the task of testing 2-dimensional arrays into testing a set of 1-dimensional array.
We combined pseudo-exhaustive and deterministic testing to achieve high coverage of a
large class of gate-level faults for this method.

Multiplication in microprocessors’ data-path architectures usually occurs by optimized
array multipliers of different architectures. An overview and comparison of various types
of multipliers are given In [116]. In which case, the unsigned array, Baugh Wooley,
modified Booth, and modified Booth Wallace tree multipliers are considered. Most of
the test approach for multipliers in the state-of-the-art, need to change the design, which
as a rule introduces performance issues. For SBST in general-purpose microprocessors,
the added extra control inputs make these approaches not applicable. Moreover, these
methods are not developed for detecting delay and Stuck-open(SOP) faults.

Here, we propose a novel testing approach suitable for both BIST and SBST related
applications. The innovation is in a regular test data structure, consisting of two pattern
sets: multiplier operands and multiplicands. Both can easily be generated algorithmically
and can be used for BIST. This pseudo-exhaustive test (PET) method allows multiple
combination cell faults and sequential faults to be detected while avoiding fault-masking.

Let us consider a ripple-carry adder which belongs to a class of full dependence (FD)
circuits as a 1-dimensional Iterative Logic Arrays(ILA). This can be easily segmented
into cells with three inputs (partial dependence circuit) and can be exhaustively tested
with eight patterns in parallel. The process of producing test patterns for a ripple-carry
adder is demonstrated in Table 6.

The system of multiplying two 8-bit patterns can be shown in Fig.26 as the traditional
"pen and paper" method. Here, A-pattern (a7;a6;a5;a4;a3;a2;a1;a0) represents the
multiplicand multiplied by the B-pattern (11111111). By multiplying the multiplicand
with each bit of the multiplier B, 7 partial products are generated and added. Such
a multiplier, represented as a matrix of (n−1)2 full adders and n half adders can be
regarded as a 2-dimensional ILA which is very difficult to test by organizing PET for all
1-bit cells in parallel.

We propose a method for transforming this 2-dimensional n-bit array multiplier ILA
into a set of (n−1) 1-dimensional n-cell ILAs (n1 1-bit full-adder and 1-bit half-adder),
which can be pseudo-exhaustively tested almost as easily as ripple-carry adders. We

54

Figure 26 – Process of multiplying

introduce a method of data-controlled circuit segmentation for such a transformation,
where multiplier segments are selected by multiplier operands (B-patterns) so that
each B-pattern selects a related single 1-dimensional ILA of 1-bit adders. In total
(n−1)B-patterns with a pair of 1-s and all other bits 0 are needed for n-bit multipliers,
as shown in Fig. 26.

Figure 27 – Segmentation of multiplier

In Fig.27, we illustrated how the data-controlled circuit segmentation is performed
to select the desired 1-dimensional array of 1-bit adders for testing by selecting the
B-operands. The B pattern 0110 in this instance selects the 3rd column of adders to
be evaluated (b2 = 1), the value of b1 = 1 selects the first operand, and the value of
b2 = 1 selects the second operand in this 1-bit adder row. The bold red lines illustrate
the links involved in transmitting stimuli from primary inputs to the inputs of the adder
being evaluated and propagating response signals to primary outputs.

The PET generation of A-patterns is illustrated in Table 8 as a process of assigning
consistent values to the tuples of signals (ci,ai+1,ai), where i= 0,1, . . . ,n−1, and n

55

Table 8 – Pseudo-exhaustive test data generation for ripple-carry multiplier array

N 7 6 5 4 3 2 1 0
c7 a8 a7 c6 a7 a6 c5 a6 a5 c4 a5 a4 c3 a4 a3 c2 a3 a2 c1 a2 a1 a1 a0

1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1
2 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1
3 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1
4 0
5 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
6 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0
7 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0
8 1
9 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1
10 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0
11 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0
12 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
13 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1
14 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
15 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1

is the data word length. Each row in Table 8 represents a test pattern (two operands)
for testing the 1-bit adder row selected by a B-pattern. The values of (ai,ai+1) are
chosen so that in each column all the 8 combinations of bits were present.

5.3 Combining pseudo-exhaustive test with deterministic test data
In Table 9, we compared various changes to the proposed pseudo-exhaustive test (PET)
for the regular array multiplier and the multiplier of a MIPS-like microprocessor. The
column labelled (n) indicates the different word length we are considering. We measure
the SAF coverage (FC%) and test length (# pat) using only 11 PET patterns for the
A-operand. PET* is an extended version of PET where additional 3∗ (n−2) patterns
were added, which is generated by shifting ”111” and ”101” in B-patterns for the selected
3 A-patterns. A good quality of PET* is that it preserves the regularity property of test
data, making it suitable for built-in self-test (BIST). (PET+DET) in Table 9 shows
a hybrid test using PET with additional ATPG generated deterministic test patterns.
This guarantees 100% SAF coverage without any change to the multiplier and therefore
is well usable for SBST.

Table 9 – Comparison of different PET versions
Standard array multiplier

n
Regular solution:For BIST and SBST Only for SBST

(with additional stored patterns)
PET PET* PET + DFT PET + DET

FC%
pat:

11× (n−
1)

FC%
pat:

11× (n−
1) + 3×
(n−2)

FC% # pat FC% # pat

8 98.03 77 100 95 100 77 100 77+7
16 98.89 165 99.92 207 100 165 99.98 165+13
32 99.49 341 99.95 431 100 341 99.98 341+17

Multiplier of MiniMIPS microprocessor and Booth Multiplier

n
Regular solution: For BIST and SBST Only for SBST(with additional stored patterns)
miniMIPS Booth PET + DET(miniMIPS) PET + DET(Booth)

FC%(PET) FC%(PET*) FC%(PET) FC%(PET*) FC% # pat FC% # pat
8 98.03 99.82 98.02 99.13 100 77+15 100 77+13
16 95.83 99.56 98.05 98.15 100 165+44 100 165+8
32 93.71 98.06 96.0 97.35 99.98 341+77 99.98 341+75

56

5.4 Summary
In this chapter:

1. A general pseudo-exhaustive method for generating test data for the data parts
of microprocessor modules was presented. This guarantees high coverage of a
large class of faults including stuck-at-faults(SAF), shorts, conditional SAF and
multiple SAF.

2. A novel repetition-based pseudo-exhaustive test generation method was developed
for different classes of multipliers as a case study.

3. Experimental results demonstrate that for standard array multipliers, the proposed
data controlled segmentation method achieves 100% fault coverage for a broad
class of faults. For other classes of multipliers (MiniMIPS, Booth multiplier), SAF
coverage is less. This can be seen as a limitation of the method.

4. Also, from the experimental results, it was shown that combining the proposed
pseudo-exhaustive method with deterministic patterns for the MiniMIPS and
Booth multipliers, it was possible to achieve 100% SAF coverage.

57

6 Software-based test program generation for micropro-
cessors

In this chapter, the process of generating software-based self-test is discussed. For
such programs, no implementation details are needed. We relied on the HLDD for
modelling the microprocessors using the instruction set description given in the manual
of the processor. The task of test program generation is divided into several parts. The
first part includes the generation of data for testing the control parts of the processor
modules, while the pseudo-exhaustive data generation method mentioned in previous
chapters has been adopted for the data part. The second part involves the automatic
synthesis of the test program from the manual parameter file constructed from the
HLDD.

6.1 Environment for the SBST synthesis (The flow of tasks)
The SBST framework designed in this thesis is divided into three parts, as shown
in Fig.28. The first part is fully automated and involves quality high-level test data
generation. The second part uses the data generated by the first step, and a test
template to generate test programs. This step has been semi-automated in python
scripts. The last step involves fault grading based on dumps collected during execution
of the test program generated at the second phase of the workflow. The fault grading
is performed using Tetramax developed by Synopsys. The inputs for the designed
framework are the MUTs of processors and the sets of test templates created using the
information of instruction set architectures (ISA) and other architectural information
about microprocessors like pipeline, forwarding, prediction units, etc. The high-level
(HL) test data generator for the control part of MUT, uses a novel constraint-based
functional HL control fault model and generates tests to verify that all functions of
MUT are selected correctly. This has been described as the conformity test.

Figure 28 – High-level Test Generation Big Picture

Since the efficiency of a SBST is largely dependent on the quality of the test data

58

used. We prove by experiments that these data generated covers 100% high-level faults
and also 100% low-level faults if all redundant faults have been removed.

Figure 29 – High-level Test Data Generation

Fig.29 describes the HL ATPG tool within the SBST framework. The tool aims at
generating quality test data for testing the control part of the processor from a random
set of data by simulating the functions of MUT. The Questasim simulator generates for
each data, a set of functional outputs yi = fi (di) for every instruction Ii: fi ∈ F . The
functional output of the logic simulator is passed as input to the HL ATPG tool that
we have developed.

Let’s take an example of the ALU module of the MIPS-like processor for explaining
the test data generation process. Table 10 shows a typical subset of instructions of
the ALU of the processor. The operations are represented by operation codes and
the related formulas fi for calculation of the output values of the ALU, which can
be obtained from the logic simulation of the module. The high-level structure of an
ALU is depicted in Fig.30. The control variable c can have values from the domain
{0,1,2, . . . ,n}. We denote by Ii the instruction (with opcode ci) which performs the
function fi in the ALU.

The Questasim simulator generates for each data, a set of functional outputs
yi = fi (di) for every instruction Ii: fi ∈ F . The functional output of the logic simulator
is passed as input to the HL ATPG tool that we have developed.

Table 10 – Instruction subset for MIPS-like ALU

Mnemonic fi Mnemonic fi

ADD f0 SLT f8
ADDU f1 SLTU f9
SUB f2 BEQ f10
SUBU f3 BNE f11
AND f4 BLTZ f12
OR f5 BGTZ f13
XOR f6 BLEZ f14
NOR f7 BGEZ f15

Two High-level test data generation methods were used. The first method is purely
random, where a huge search space of random data is used, and each data is iterated
through while checking its contribution to the fault coverage of the test for the control
path. Data which contributes to the coverage of the test is added to the list of needed
patterns until 100% fault coverage is reached or until redundant faults present are
detected. The second method is called a greedy-random method. Here, the entire

59

Figure 30 – HLDD for ALU in Table.10

search space is searched through, and only patterns with the best contribution to the
fault coverage until 100% coverage is achieved are selected.

Fig.31 presents the full HL SBST program generation tool within the SBST framework.
Here, the high-level test data, which includes data generated from the high-level ATPG
for testing the control part, pseudo-exhaustive data for testing the data part and
manually generated test templates, serve as inputs. Based on these inputs, the HL
SBST program generation autogenerates the test program for testing the processor.

Figure 31 – High-level Test Generation

Fig. 32, shows a flow of the test infrastructure, where all the tools used are
highlighted as a cooperative system. The flow begins with simulating the modules with
random data. It helps to easily generate control test data using the high-level ATPG
with fewer efforts. From the flow, one can proceed to use the test program generating
tool to produce software-based self-test applications for the given processor.

The flow of test generation in the context of the SBST framework developed through
this research can be divided into the following as represented by the numbering in
Fig.32:

1. Data generation
2. Manual preparation
3. Program generation
4. Program compilation
5. Test execution

60

6. Fault grading/simulation

Figure 32 – Test Framework

The test program and test data are loaded into the processor’s memory, as depicted
in Fig.33. The test response is stored as a VCD file and used for fault grading analysis
in the third part of the synthesis.

6.2 Test templates and the concepts of conformity and scanning
tests

Following the methods described to generate test data for processor testing, the test
patterns can be divided into two parts: conformity test patterns targeting control
faults and scanning test patterns targeting data faults of the unit. The test generated
for the control part using the conformity test patterns is called conformity test, while
scanning test is the test generated for the data part using the scanning test patterns.
In general, the conformity test by definition is a test for a non-terminal node to test a
part of the control part of the microprocessor while the scanning test is is a test for a
terminal node to test a part of the data path of the microprocessor.

Conformity tests. Generating a conformity test for m ∈MN in HLDD produces
exhaustive test for the variable x(m) which labels the node m. It consists of the two
following steps:

1. Generation of a test T (m), which satisfies the constraints of Definition 3.2, by
activating a path from the root node to the node m under test, and for each
value v ∈ V(x(m)), a path from m to a terminal node mv ∈MT . Here V(x(m))
denotes the full set of values of the node variable x(m).

2. Justification of T (m) by initialization of registers involved in the test with data
satisfying the constraints (4,5).

61

Figure 33 – SBST Test program flow [30]

Algorithm 5: Conformity Test Algorithm
1 for all v ∈ V (x(m)) do
2 for t= 1,2, . . . ,p do
3 Initialize the data registers R (m) with contents R (m,t);
4 Execute the working mode under test;
5 READ the value of x.

Scanning tests. The scanning test T(m) consisting of the static part TST (m) and
dynamic part TV AR (m) is synthesized hierarchically:

1. Generation of the static part of the test TST (m) on the HLDDs by activating a
path from the root node to the terminal node m, and generation of the dynamic
part TV AR (m) at gate level by any ATPG.

2. Justification of T (m) by initialization of registers involved in the test with data
in TV AR (m).

Algorithm 6: Scanning Test Algorithm
1 for t= 1,2, . . . ,p do
2 Initialize the data registers R (m) with contents R (m,t);
3 Execute the working mode under test;
4 READ the value of x.

62

Figure 34 – MIPS-like processor instruction format

The concept of creating test-templates for microprocessors based on HLDD was
introduced. The idea of templates is known as instruction-grouping. This happens
during the process of transversing through the nodes of the HLDD. For the templates,
gaining some understanding of the instruction formats of the processor would be useful.
Instructions are first grouped based on information from the manual, according to the
instruction types. For the MIPS-like processor used as one of the case studies for this
research, instructions are divided into 3 formats: R-type, I-type and J-type instruction
format. Fig.34 shows a pictorial representation of the instruction types of the processor.

For the R-type instruction format, The OP and the funct can be represented as
OP1 and OP2, respectively. These are the decoders for selecting the instructions to be
executed by this group of instructions. The rs, rt and the rd can also be expressed as
decoders A1, A2 and R respectively, for selecting the source and destination registers.
The HLDDs for these register decoders is illustrated in Fig. 5, while Figure 6 illustrates
OP1 and OP2. The instruction and register decoders represent the control parts which
can be tested by the conformity test approach as described in algorithm 5.

Figure 35 – Generalization of instruction format of MIPS-like processors

The R-type instruction format can be used as a baseline for creating a generalized
representation of all the instructions in the microprocessor, as shown in Fig. 35. This
generalization translates into the different conformity test variations forming five different
templates based on Algorithm 7.
Algorithm 7: Test program template Algorithm
1 for all instructions Ii, i= 1,2, . . . ,n do
2 for all data operands (di,j,1,di,j,2), j = 1,2, . . .ni do
3 Read di,j,1;
4 Read di,j,2;
5 Execute the instruction Ii,= (opcodei,di,j,1,di,j,2);
6 Write the test result in signature analyzer

Some examples of template structures as described by Algorithm 7 is depicted in Fig.
36. In this example, four different templates were shown starting with the generalised
case of R-type instructions.

Figure 37 shows a mapping between the HLDD constructed from ISA and the
instruction type of the processor. As previously mentioned, the R-type instructions
represent a generalized case. Other instruction formats can also be represented with
similar mappings. From this mapping, it is easy to understand that the instructions
terminating from OP2 belong to the same group, while instructions terminating from
OP1 (usually the immediate instruction types) also belong to the same group.

63

Figure 36 – Test program templates

Figure 37 – Mapping between HLDD and Instruction Type

In Fig.38, a general concept of template variation for testing the different control
nodes is shown. Based on the targeted control node also know as the non-terminal
nodes from the HLDD of the microprocessor, test templates are constructed.

6.3 Organization of the full test program

The test is organized according to the structure shown in Fig.39, which essentially
consists of test templates, loop execution instruction and test data. The complete test
is divided into sections where each section’s purpose is to test a sub-set of Functions.

The complete test has three embedded loops structure. The first and outer loop
consists of using the same template to execute the test sections. The number of loops
is equal to the number of different test templates describing a subroutine with a uniform
structure. These templates have three parts which are: initialization of the processor,
execution of the instruction under test which targets a function fi ∈ F , and propagating
the response to the node of observation as shown in Fig 15.

64

Figure 38 – Conformity Template Variations

Figure 39 – Architecture of the test program

The second and middle loop consists of repeating the selected test template for all
functions fi ∈ F over a list of related instructions Ii.

Two consecutive inner loops will be performed for each Ii ∈ F instruction under
test: for testing the control part and testing the data part. The number of test data
d = (d1;d2) ∈D∗i for testing the control part is calculated by the method described
earlier for test data generation, while the number of test patterns for testing the data
part is determined by the length of the pseudo-exhaustive test sequence derived by the
methods discussed in [117], [118].

6.4 Multiple fault detection in microprocessors
Most of the fault simulation tools and tests targets only stuck-at faults [119]. In this
research, we investigated the possibility of targeting multiple faults using the concept
of test groups for HLDD. The idea of test groups is to prove the correctness of a part

65

of the system’s functionality rather than keeping track of fault coverage during test
generation as in the traditional case. The method can be regarded as a generalization
of the logic level test-pair approach for identifying fault-free wires in gate-level networks
to a high-level identification of fault-free functional blocks.

We consider a VLIW processor with two execution slots [120] as shown as a high-level
structural layout in Fig.40. Each slot has a fetch register that receives the current
instruction from the program memory via IN buses. Instruction of the slot i contains the
following control signals: di (destination register), ctri1 and ctri2 (source registers),
ctrAlui (operation to be performed by ALU).

Figure 40 – Structural Representation of the VLIW processor

The components Muxi1 and Muxi2 represent the read ports of the register file
for slot i. The processor has a simple register bank with four registers, and two write
ports. Both write ports are represented by the component Mux, whereby each write
port i is controlled by the bit field di. Di1 and OPi represent the pipeline register
between decode and execute-stage. The write-back stage of the processor neglected for
simplicity.

As shown in Fig.41, we can describe the components of a slot of the VLIW processor
by HLDDs. The graph D1 describes the behaviour of the processor’s left read port, and
a register is selected depending on the value of the ctrs1 control variable. The read
value from the selected register is assigned to the variable D1 as one of the arguments
for functions of the ALU. For the second argument D2, a similar graph as D1 is needed.
The behavior of the ALU is modeled by the graph Alu. The graph R0 represents one
of the registers and the DMUX-component for writing into registers the output value
of ALU. The value will be written into R0 if d1 = 0, otherwise, for any other value of
d1, the content of R0 will be held.

The graphs in Fig.41 represent the behavior of the VLIW processor components
during the cycle of the instruction, and in this sense can be named as single-cycle HLDDs.
However, we can represent the behavior of the processor with a single multi-cycle HLDD,
as in Fig.42 by joining the graphs in Fig.41, and including the full block of registers
and the control circuitry in the model.

Such a joint HLDD allows better modeling of the multi-cycle test sequences consisting
of test stimuli and test response observation cycles controlled by respective instructions.

66

Figure 41 – HLDDs for the components of the VLIW processor

In the joint HLDD, the register variables Ri represent both the current state (as part of
the stimuli, for cycle τ −1) and the next state (as a response to the stimuli, for cycle τ)
of the processor. Formally, the register nodes Ri embody in the joint HLDD model two
roles: they are interpreted as roots of HLDDs (to model the destinations of Write (WR)
operations for cycle τ −1), and as terminal nodes of HLDDs (to model the sources for
Read (RD) operations for cycle τ).

Figure 42 – Joint cycle-based HLDD model for slot 1 of the VLIW processor

For testing multiple faults in logic-level circuits, the concept of test pair was intro-
duced. The goal of the low-level test pair as exhaustive test of a node m in the Boolean
case of SSBDDs, where |V (x(m))|= 2, V (x(m)) = {0,1}, was to prove that the wire
in the circuit represented by the node m is fault-free.

In [121, 122], the idea of test pairs was extended to the concept of test groups to
improve the robustness of test with regards to multiple faults. Similarly, the high-level
test of the node m in the HLDD can be regarded as an exhaustive test of the sub-circuit
(instead of a wire) represented by the node m. The number of test patterns in the
exhaustive test in the high-level case will be |V (x(m))| ≥ 2.

To examine the high-level multiple fault-masking phenomenon in digital systems
using HLDD-based topological view on the mutual interaction of faults, we denote an
intra-node fault related solely to the node m by r (m) and an inter-node fault related
to nodes mi and mj by r (mi→mj).

In Fig.43 we present a sub-graph of the HLDD presented in Fig.42. Assume the

67

register variables R0 and R1 are initialized, we can construct a test sequence of two
instructions; T1: WR (R0) , RD (R0) (write R0 and read R0, respectively), which
assigns the values ctr1 = 0, d = 0, ctrAlu1 = 4, and activates in the HLDD the
(red) paths l1,0(R0, IN1) and l2,0(ctr1,R0) in the 1st and 2nd instruction cycles
respectively, resulting in the data transfer D1← IN1. The test T1 is able to detect
directly the intra-node control faults r (ctr1), r (d0) , r (ctrAlu1), assuming the data
satisfy the constraints (5).

Figure 43 – Sub-graph of Joint cycle-based HLDD model for slot 1 of the VLIW processor

On the other hand, the same test T1 may activate other inter-node faults which
will not propagate to the output D1, but may affect the register R1 and remain latent.
For example, the instruction WR (R0) may activate an inter-node fault r (d0→ d1)
and the instruction RD (R0) may cause another inter-node fault r (ctr1→ d1), both
resulting in the unintended overwriting of the content of register R1. For detecting
these faults we need the second test T2 :RD (R1) which assigns ctr1 = 1 and activates
the path l2,1(ctr1,R1).

The target of the test pair (T1,T2) described above was to prove the correct behavior
of the node ctr1 at values ctr1 = 0 and ctr1 = 1, to allow any multiple fault activated
by (T1,T2). In a similar way, we have to construct the test pairs for testing ctr1 at
other values v ∈ V (ctr1) to fully prove the correct behavior of ctr1.
Definition 6.1. Let us call the instruction sequence T (m,v), which consists of initial-
ization, execution of the operation evoked by x(m) = v,v ∈ V (x(m)) and observation
steps, as a partial test for the node m at the value x(m) = v.

Example 6.1.1. The test sequence T1 =WR (R0), RD (R0) for the HLDD in Fig.43
is equivalent to both cases: T (ctr1,0) and T (d1,0). For T (ctr1,0), WR (R0) has the
role of initialization, and RD (R0) has the role of both execution and observation. For
T (d1,0), WR (R0) has the role of initialization and execution while RD (R0) has the
role of observation.
A test sequence T =WR (R1) ,WR (R2) ,OP (R0 =R1 +R2) ,RD (R0) represents a
test T (ctrAlu1,1).

Definition 6.2. Let us call the instruction sequence T (m,vi,vj) = (T (m,vi) ,T (m,vj)),
i 6= j, where (T (m,vi) and T (m,vj)) differ only in the value of x(m) = v, v ∈V (x(m)),
as a partial test pair for the node m at the values x(m) = vi and x(m) = vj .

Example 6.2.1. A test T =WR (R0), RD (R0), RD (R1) for HLDD in Fig.43 can be
regarded as the partial test pair T (ctr1,0,1), whereas the test T =WR (R0),WR (R1),
RD (R0) can be regarded as a partial test pair T (d1,1,0).

Lemma 6.1. A passed test pair T (m,vi,vj) is a proof that the control signal x(m) = vi

or (vj) is acting fault free, and that it does not produce any change of the system state
influencing on the operation controlled by x(m) = vj (or vi).

68

Proof. The first statement of Lemma results from Definition 6.1 and the second
statement from Definition 6.2.

Definition 6.3. Let us call the collection of all test pairs T (m,vi,vj) for all pairs of
vi,vj ∈ V (x(m)), vi 6= vj as a test group T (m) for the node m.

Theorem 6.1. The test group T(m) is sufficient to prove that the sub-circuit represented
by the node m is fault free.

Proof. The proof follows from Definition 6, and from applying the 1st statement of
Lemma 6.1 for each value of v ∈ V (x(m)), and the 2nd statement for each pair of
values vi,vj ∈ V (x(m)), vi 6= vj . If there will be a fault related to any other node
involved in this test group, the fault will always be detected in accordance with the test
pair concept, stating that the second test pattern of a test pair will detect the fault
which has eventually masked the fault during the first test pattern [121, 122].

Example 6.1.1. Let us generate the full test for all of the control nodes in the HLDD
in Fig.42. First, the test group T(ctr1) (and similarly for ctr2) will be as follows:

1. WR ↑ (initialization of all registers Ri)

2. For all Ri:WR (Ri), RD (Ri), {For all Rj , (j ∈ i): RD (Rj)}

The length of the test is L(ctr1) = n+ 3n(n−1) = 3n2−2n.
The test groups for all di can be joined in a single T (d). Since ctr1 is proved already

as fault free by T (ctr1), the test group can be shortened as follows:

1. WR ↑

2. For all Ri :WR (Ri), RD ↑.

Here RD ↑ denotes reading of the contents of all registers. The length of the test is
L(d) = n+n(n+ 1) = n2 +2n, less than 3n2−2n. The full test length for testing the
nodes related to the access of the registers is L(ctr1,d) = 4n2.

When generating the test group for ALU control, represented by the node ctrAlu1
in Fig.42. we can take into account that the nodes ctr1, ctr2 and d are tested and
hence, proved as fault free. This knowledge allows us to simplify the test group of
Theorem 6.1, as follows:

1. WR ↑

2. For all v ∈ V (ctrAlu1) :WR ↑v,ALUv,RD (Rv).

Here ALUv means execution of the ALU operation under control ctrAlu1 = v, and
the result is stored in any of the available registers Rv. WR ↑v, means initialization of
the subset of registers to store the arguments of the operation ALUv. The length of
the test depends on the number of arguments of each operation controlled by ctrAlu1.

The described concept of multiple fault testing can be applied to the test generation
methods described in this thesis.

69

6.5 Introducing the result of the thesis into engineering education
As part of this study, we propose an extension of the current TEAM [123] teaching
environment and new research scenarios as an extension to the previous laboratory
works based on manual test program generation. In the proposed research scenarios,
the focus is on high-level generated test data reasoning such as fault coverage (as
compared to low-level fault coverage), identification of fault redundancy (as opposed
to low-level redundancy), and investigation of pseudo-exhaustive test capabilities for
complex operations.

Figure 44 – Research environment for teaching high-level test

Fig.44 depicts the proposed research environment as a task flow diagram and consists
of the following:

1. ATPG for conformity test high-level test data generation, which satisfy constraints
(4 and 5),

2. Fault simulator for evaluating the conformity test high-level fault coverage, and
revealing the redundant fault candidates (for creative analysis and proof of the
redundancy of faults)

3. Low-level fault simulator (for low-level fault coverage evaluation, and for analysis
of mapping between high- and low-level faults).

In this environment, we use the following tools: Mentor Graphic Modelsim, Python
compiler, logic and fault simulator of Turbo Tester [124]. This implementation currently
runs on Linux and Windows operating system.

The laboratory workflow diagram is illustrated in Fig.45 with the list of experiments
to be performed by students in a holistic view. The purpose of the laboratory work
is not only to teach students about high-level test generation and diagnosis, but also
to provide them with practical training and experience. Students will have experience
in synthesizing test programs for processor sub-circuit control parts to evaluate test
quality. Students will also learn how to prove the redundancy of faults at high level.
As shown in Fig.45, the laboratory work is divided into sub-tasks to train students on
high-level test generation. Students do not have to struggle with huge amounts of
details in manual or language-based information.

The main purpose of this task is to give the students a basic understanding of the
distinctions and peculiarities of high-level and low-level test synthesis and analysis, and

70

Figure 45 – High-Level Test Pattern Generation Lab Scenario

to help them realize that high-level and hierarchical modelling methods are the only way
to cope with the complexities of today’s and tomorrow’s digital systems in synthesizing
test programs and tools.

6.6 Summary
In this chapter, the following contributions have been highlighted:

• A commercial/in-house tool-based SBST synthesis environment for carrying out
the experiments with all methods and algorithms developed in this thesis was
presented.

• The SBST concept developed in this thesis represents a novel method of test
compaction which is to be unrolled during execution of the test.

• The SBST concept is based on the novel architecture of the compacted test which
is represented as a structure composed of the sets of test templates, instructions
and test data.

• A method of constructing the test program for microprocessors for detecting
multiple faults and avoiding fault masking, based on using the HLDD model was
proposed for the first time.

• A novel educational tool environment was developed based on the results of this
thesis. The efficiency of such environment was investigated at Tallinn University
of Technology in teaching of masters students by involving them in the laboratory
research as part of the Design and Test course.

71

7 Experimental Results
To show the efficiency of our method, we experimented with two processors; VLIW and
a MIPS-like processor. The objectives of the experiments were ALU unit of VLIW [125]
and different units of MIPS-like [111], like execute, forwarding and branch control
sub-circuits. We carried out experiments on an Intel Core i7 processor at 3.4GHz and
8GB of RAM.

For the VLIW processor, we investigated the speed and quality of random test data
search to test the execute unit’s control part. We investigated two search algorithms
which are pure-random and optimized greedy-random. In Table 11, we show the result
of the experiment. Here it is shown that both approaches achieve 100% fault coverage
at high-level and 99.34% fault coverage at low-level faults. However, we have proven
that any low-level faults not detected by a set of data that achieved 100% fault coverage
at high-level must be redundant. From the table, we also showed that the greedy
method guarantees fewer test data at a trade-off of generation time. The choice of
which method to choose is left to the users.

Table 11 – Comparison of control test algorithms

Method Test-length,
#instructions

Fault Coverage Time (s)High-level faults SAF
RANDOM 204 100% 99.34% 2.00
GREEDY 139 100% 99.34% 7.85

The relationships between the fault coverage and test length is illustrated by the
curves in Fig.46, and the dependence of test generation time on the size of search space
(number of random test candidates) is illustrated in Fig.47.

Figure 46 – Dependence of the high-level control fault coverage on test length

For the MIPS-like processor, we carried out more tests which include the forwarding
unit, register decoders and execute unit. Fig.48 shows a distribution of all the faults in
the processor.

The execute unit takes 70% of the total number of faults in the processor. It consists
of the adder, two multiplication modules(MULT0 and MULT1) and interconnections.
Our designed test program based on the method described in this thesis was applied to
target the faults in the execute unit. The high-level test was simulated by a commercial

72

Figure 47 – MIPS-like processor Fault Distribution

Figure 48 – MIPS-like processor Fault Distribution

tool to grade the gate-level SAF coverage. To evaluate the efficiency of the high-level
ATPG, we used commercial gate-level ATPG tool for comparison.

Table 12 – Execute Unit Test

Method Experiments #Faults FC(%) Stored
Patterns

Executed
Patterns

ATPG
Time

Proposed
high-
level
method

High-level ATPG 756 100

166 4818 47sGate-level
Simulation

Adder 2516 99.92
MULT0 95188 99.52
MULT1 91810 99.16

Commercial
gate-level
ATPG

Adder 2516 99.96
957 957 1h34minMULT0 95188 97.40

MULT1 91810 97.71

Table 12 shows the result of this evaluation, where it could be easily seen that the
gate-level SAF coverage, achieved by the proposed ATPG for the whole module under
test, is better than that achieved by the commercial tool. Also, the time cost of the
proposed method is less than that of the commercial tool.

In Table .13, we show the fault coverage and simulation time of test for the forwarding
unit (FU). The second column shows the result of fault simulation for test generated

73

only for the ALU. It became obvious that there is a need for specific tests for the
forwarding unit. We further generated a dedicated test only for the FU, the result of
this is presented in the third column, which shows to cover 8% more faults, compared to
the ALU test. We combined both the MUX-based ALU control test, with the dedicated
FU test. The coverage was recorded in the fourth column, giving an improvement of
8.32% compared to only the ALU test.

Table 13 – Fault coverage of forwarding unit by different tests

Module/Unit ALU
Test(%)

Forwarding
Test

Combined
(%)

Improvement
(%)

Forwarding Unit 89.71 97.84 98.03 8.32
Time(s) 808 48 460

The tests for the FU were generated, without knowing gate-level implementation
detail, we only relied on the general information of the MIPS-like pipeline architecture,
which includes the number of stages and forwarding paths.

Table 14 – Targeted modules comparison with other methods

Module/
unit #faults

Gate-level
implementation

details are exploited

Gate-level
implementation
independent

ATIG [98] SBST [126] SBST [37] Proposed
ALU 203576 98.67% n.a 97.85% 99.06%

PPS_EX 21136 97.62% 96.20% 84.12% 98.37%
Forward 3738 99.00% 99.68% 93.64% 98.03%

Register Banc 43584 99.90% 100% 99.98% 99.99%
Syscop 6930 93.60% 98.04% 87.90% 87.65%

In Table 14, the results of this research are compared with three state-of-the-art
approaches or methods for three different MIPS-like processor modules: ALU, PPS
EX(Execute Unit), and Forwarding Unit. In the sense that gate-level implementation
specifics are not needed, the approach presented in this thesis is similar to [37], but it
shows nearly 5% improvement in fault coverage compared to [37] While the method
in [98] shows an improvement of 1% over the proposed method, details of implementation
are needed. The method in [126] requires that constraints be applied during the
generation of ATPG tests, requiring gate-level information as well. Here, the result of
our method shown for the forwarding unit and the system co-processor doesn’t consider
the untestable faults in the modules. In Table 15, we show the results of these units
when the proven untestable faults have been removed from the fault list.

Table 15 shows the result of the proposed method for the full processor. We have
partitioned the test into several categories. The first test in column 2 targets the register
decoder. We measured the impact of this test in relations to other modules in the
microprocessor. As you could see, the fault coverage of the execute unit is ridiculously
low as expected. In column 3, we experimented with the MUX-based approach for
the ALU and measured the impact on other modules in a similar way as the register
decoder test. In column 4, we combined the ALU MUX-based test with the register
decoder test. The impact on the fault coverage is readily seen in execute module and
the register decoder modules. The MUX-based approach, as mentioned earlier, was
not enough to cover the faults in the forwarding unit. To take care of this limitation,
we therefore produced a dedicated test of the forwarding unit combined with the ALU

74

Table 15 – Fault coverage of whole processor by different tests

Module/
Unit

Register
Test %

ALU
Test %

ALU+Register
Test %

ALU+Register+
FU Test %

ALU+Register+
FW+Syscop %

U1_pf 65.38 69.19 69.33 69.42 69.6
U2_ei 78.67 85.072 85.07 85.01 85.07
U3_di 73.27 85.70 85.93 86.04 86.52
U4_ex 5.29 98.32 98.35 98.34 98.35

U5_mem 58.46 75.05 76.26 76.84 76.84
U6_renvoi 65.56 86.03 89.20 97.89 98.03
U7_banc 98.16 37.51 99.34 99.85 99.85
U8_syscop 47.56 62.71 64.35 64.34 87.65
U9_bus_ctrl 84.21 80.61 86.19 86.58 86.58
U10_predict 37.55 58.54 58.87 58.99 58.93

Total 26.09 84.96 94.06 94.26 94.70

and the register test as shown in column 5. This shows almost 10% improvement in
fault coverage for this unit. In column 6, an attempt was made to generate test for
the system co-processor in addition to the test in column 5 which further improves the
coverage for the forwarding unit.

Table 16 – Fault coverage of whole processor in comparison with other methods

Without
Prediction

Module/Unit ATIG(%)
[98]

SBST(%)
[126]

SBST(%)
[37]

Proposed
Method(%)

U1_pf 98.32 91.97 86.32 70.00
U2_ei 99.71 96.82 90.86 85.50
U3_di 95.28 92.45 90.24 89.70
U4_ex 97.62 96.20 97.85 98.68

U5_mem 83.41 71.29 81.87 90.63
U6_renvoi 99.00 99.68 93.64 98.50
U7_banc 99.90 100 99.98 99.99
U8_syscop 93.60 98.04 87.90 93.53
U9_bus_ctrl 92.62 92.20 93.95 89.78

Total 97.52 97.46 95.08 98.03
With

Prediction
U10_predict 96.01 99.34 − 59.19

Total 97.31 97.46 95.08 95.30

In Table 16, we compared our approach with state-of-the-arts methods in terms
of test for the full processor. Using the information about untestable faults in [126],
we removed the identified and proven untestable faults from the fault list. The result
shows that the approach presented in this thesis covers more faults in the processor
with no knowledge of the implementation details. However, there are still some faults
undetected in the modules. For example, the fault coverage for the forwarding unit with
respect to the testable faults in the module stood at about 98.50%. The reason for the
undetected 1.50% faults is due to signals such as the interrupt signal and exceptions
that can not be activated using a functional method. [97] identified 39 of the total fault
list for the forwarding unit to belong to this category of undetectable faults.

The approach presented in this research work doesn’t target the branch prediction
unit since faults in the unit do not lead to any functional incorrectness, but performance

75

cost, which is usually two or more clock cycles, depending on the architecture [127].
Therefore, branch prediction units are hard to test by functional methods without having
dedicated observation points and the same applies to our approach. The approach
used for testing the branch prediction unit in [126] is based on using the algorithm
mostly used in memory testing. We can easily adapt this to our test. To have a fair
comparison, we have decided to exclude the faults related to the branch prediction unit
since also the result in [37] is based on implementation of miniMIPS without this unit.

76

8 Conclusions
In this thesis, a new high-level and implementation-independent test program generation
method for modules of RISC processors is proposed with improved quality compared to
the known methods. The higher quality is achieved through expansion of the fault class
covered.

The proposed approach is based on the introduction of a new high-level functional
control fault model for testing the control parts of the processor functional modules in
combination with the implementation-independent and fault model-free testing of the
data parts of the Module Under Test (MUT) with the pseudo-exhaustive test patterns.
The high quality of the test programs was theoretically proven, and the proof was
confirmed by experimental results, where the quality of the experiments was measured
in relation to the SAF class and the TDF class. It has been shown that the proposed
high-level control fault model covers a broader class of structural faults, including
conditional SAF, shorts, multiple SAFs and TDFs without the need to specifically list
these faults.

A correlation has been shown between the sequential March test used for memory
testing and the combinational test for decoding circuits in processor logic modules. This
allowed proving that the developed test generation method can detect a larger high-level
functional fault class similar to faults detected with the March test in addressing logic.
The data constraint-based fault model and the introduced analogy of testing with March
test flow for memories revealed the possibility of applying the proposed approach, not
only for the combinational MUTs but also for sequential ones.

A high-level fault coverage metric and a high-level fault simulation tool have been
developed to support the proposed test generation methodology. This has made it
possible to develop a novel mixed-level method for the identification of high-level
functional fault redundancy and low-level structural fault redundancy.

A further added benefit of the proposed method was discovered during experimental
work in the generation of test data for RISC processors. Test programs created specifically
for testing only control parts of the modules achieve very high fault coverage for the
data part as well. This is due to the influence of the novel data constraints introduced
for the selection of data operands.

SAF coverage metric was used to compare the findings of this research with state-
of-the-art methods. Experimental results indicate higher SAF coverage compared to
other current implementation-independent test generation methods for microprocessors.
This shows that the proposed method is an important step forward compared to the
state-of-the-art methods for providing accurate and safe information on the quality of
the test programs produced.

The miniMIPS and VLIW microprocessors were used as a case study for demonstrating
the effectiveness of the proposed High-Level Implementation-Free Functional SBST
method. Pure-random and greedy algorithms were implemented for generating high-level
test data. In the VLIW microprocessor, we were able to cover all the high-level faults
(100% fault coverage) of the ALU module, while at low-level, 99.34% of SAF fault was
detected. However, any low-level faults not detected by a set of data that achieved
100% fault coverage at high-level must be redundant. The two algorithms present a
trade-off choice to users in the sense that the greedy method guarantees fewer test
data at a trade-off of generation time.

The test data generation algorithms were tested against the miniMIPS microprocessor
in comparison with commercial ATPG. Test data which detects 100% of high-level faults
of the ALU, detects 99.92%, 99.52% and 99.16% SAF of Adder, MULT0 and MULT1

77

sub-modules of the miniMIPS ALU respectively. The advantage of this in comparison
with commercial ATPG is not only in higher SAF coverages but also in the time cost of
test data generation. Due to redundancy proofs, the low-level faults not detected are
also redundant for this microprocessor.

Figure 49 – The big picture

The results of this research, in comparison with state-of-the-art approaches for
miniMIPS microprocessor, shows that while implementation-details are not known, high
fault coverage of SAF faults can be achieved. When compared with [37] where gate-level
implementation specifics are not needed, the result of this research shows about 4%
coverage improvement when the prediction unit is not considered. While the results
of [98] and [126] show about 2% improvement over the method proposed in the thesis
for the full processor, gate-level information is needed.

Fig. 49 gives an overview and summary of the contributions of this thesis beyond
the state-of-the-art. Each of the aspects of the contributions is explained in detail in
each of the chapters of the thesis. This highlights the main issues addressed in this
thesis, ranging from high-level fault modelling to high-level test data generation, fault
redundancy identification and high-level fault simulation.

78

List of Figures
1 Network of computing nodes for the instruction set in Table 1 24
2 HLDDs for the processor described in Table 1 . 25
3 MIPS-like processor data-path and pipeline. 26
4 A part of a RISC type microprocessor with executing unit in the pipeline

and data forwarding environment . 27
5 HLDD for Register Decoders of a MIPS-like Microprocessor 27
6 HLDD for MIPS-like Microprocessor . 28
7 Illustration of different corruptions of the HLDD by faults in MP 29
8 Control Path TTs, HLDD for a microprocessor with 8 instructions and 3

op-code fields . 31
9 TT split by selection of x2 as the root variable in the HLDD.. 32
10 TT split by selection of x3 as the root variable in the HLDD.. 32
11 Minimized HLDD model for the MIPS-like microprocessor. 33
12 Not-minimized HLDD model for the MIPS-like microprocessor 33
13 HLDD with a single decision node for representing 20 MiniMIPS instruc-

tions . 34
14 HLDD for a subset of instructions of MiniMIPS. 35
15 Test Execution setup . 38
16 Illustration of the proposed test concept . 39
17 Generic DNF based control structure of the executing unit 40
18 Unrolled test execution evolving in time . 45
19 Illustration of the March test for memories . 46
20 Functional control fault classes CL 1 – CL 4 . 47
21 Fault collapsing relationships . 48
22 Transition delay fault testing in modules under test . 48
23 Example of redundancy proofs with 1-bit truth table. 50
24 Example of testing the pipeline forwarding unit . 51
25 Examples of testing the pipeline forwarding unit . 51
26 Process of multiplying . 55
27 Segmentation of multiplier . 55
28 High-level Test Generation Big Picture . 58
29 High-level Test Data Generation . 59
30 HLDD for ALU in Table.10. 60
31 High-level Test Generation . 60
32 Test Framework. 61
33 SBST Test program flow [30] . 62
34 MIPS-like processor instruction format . 63
35 Generalization of instruction format of MIPS-like processors. 63
36 Test program templates . 64
37 Mapping between HLDD and Instruction Type . 64
38 Conformity Template Variations. 65
39 Architecture of the test program . 65
40 Structural Representation of the VLIW processor . 66
41 HLDDs for the components of the VLIW processor . 67
42 Joint cycle-based HLDD model for slot 1 of the VLIW processor 67
43 Sub-graph of Joint cycle-based HLDD model for slot 1 of the VLIW

processor . 68
44 Research environment for teaching high-level test . 70

79

45 High-Level Test Pattern Generation Lab Scenario . 71
46 Dependence of the high-level control fault coverage on test length. 72
47 MIPS-like processor Fault Distribution . 73
48 MIPS-like processor Fault Distribution . 73
49 The big picture . 78

80

List of Tables
1 Instruction set of a microprocessor . 24
2 Example of scalabilities for three versions of HLDDs . 36
3 Example of a high-level control test . 42
4 Example of a High-Level Fault Table . 44
5 Test generation for pipeline forwarding unit . 51
6 Pseudo-exhaustive test data for addition operation . 53
7 Pseudo-exhaustive test data for subtraction operation . 54
8 Pseudo-exhaustive test data generation for ripple-carry multiplier array . . 56
9 Comparison of different PET versions . 56
10 Instruction subset for MIPS-like ALU . 59
11 Comparison of control test algorithms . 72
12 Execute Unit Test . 73
13 Fault coverage of forwarding unit by different tests . 74
14 Targeted modules comparison with other methods . 74
15 Fault coverage of whole processor by different tests. 75
16 Fault coverage of whole processor in comparison with other methods 75

81

References
[1] R. Ubar, S. A. Oyeniran, M. Scholzel, and H. T. Vierhaus, “Multiple fault testing

in systems-on-chip with high-level decision diagrams,” 2015 10th International
Design Test Symposium (IDT), pp. 66–71, Dec 2015.

[2] A. S. Oyeniran, U. E. Odozi, and R. Ubar, “A new measure for calculating
multiple fault coverage of microprocessor self-test,” in 2016 15th Biennial Baltic
Electronics Conference (BEC), pp. 75–78, Oct 2016.

[3] A. S. Oyeniran, A. Jasnetski, A. Tsertov, and R. Ubar, “High-level test data gener-
ation for software-based self-test in microprocessors,” in 2017 6th Mediterranean
Conference on Embedded Computing (MECO), pp. 1–6, June 2017.

[4] A. S. Oyeniran, R. Ubar, S. P. Azad, and J. Raik, “High-level test generation for
processing elements in many-core systems,” in 2017 12th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–8,
July 2017.

[5] A. S. Oyeniran and R. Ubar, “High-level functional test generation for micro-
processor modules,” in 2019 MIXDES - 26th International Conference "Mixed
Design of Integrated Circuits and Systems", pp. 356–361, June 2019.

[6] A. S. Oyeniran, R. Ubar, M. Jenihhin, C. C. Gürsoy, and J. Raik, “High-level
combined deterministic and pseudo-exhuastive test generation for risc processors,”
in 2019 IEEE European Test Symposium (ETS), pp. 1–6, May 2019.

[7] A. S. Oyeniran, S. P. Azad, and R. Ubar, “Parallel pseudo-exhaustive testing of
array multipliers with data-controlled segmentation,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2018.

[8] A. S. Oyeniran, R. Ubar, M. Jenihhin, C. C. Gürsoy, and J. Raik, “Mixed-
level identification of fault redundancy in microprocessors,” in 2019 IEEE Latin
American Test Symposium (LATS), pp. 1–6, March 2019.

[9] A. S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik, “High-Level Implementation-
Independent Functional Software-Based Self-Test for RISC Processors,” Journal
of Electronic Testing, vol. 36, no. 1, pp. 87–103, 2020.

[10] A. S. Oyeniran, S. P. Azad, and R. Ubar, “Combined pseudo-exhaustive and
deterministic testing of array multipliers,” in 2018 IEEE International Conference
on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6, 2018.

[11] A. Jasnetski, S. A. Oyeniran, A. Tsertov, M. Schölzel, and R. Ubar, “High-level
modeling and testing of multiple control faults in digital systems,” in 2016 IEEE
19th International Symposium on Design and Diagnostics of Electronic Circuits
Systems (DDECS), pp. 1–6, 2016.

[12] S. Payandeh Azad, A. S. Oyeniran, and R. Ubar, “Replication-based deterministic
testing of 2-dimensional arrays with highly interrelated cells,” in 2018 IEEE 21st
International Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS), pp. 21–26, 2018.

[13] A. S. Oyeniran, R. Ubar, and M. Kruus, “Teaching digital system test,” in 2017
27th EAEEIE Annual Conference (EAEEIE), pp. 1–6, 2017.

82

[14] L. Jürimägi, R. Ubar, M. Jenihhin, J. Raik, S. Devadze, and A. S. Oyeniran,
“Application specific true critical paths identification in sequential circuits,” in
2019 IEEE 25th International Symposium on On-Line Testing and Robust System
Design (IOLTS), pp. 299–304, 2019.

[15] A. S. Oyeniran and R. Ubar, “High-level functional test generation for micro-
processor modules,” in 2019 MIXDES - 26th International Conference "Mixed
Design of Integrated Circuits and Systems", pp. 356–361, 2019.

[16] S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze,
A. Kaur, J. Raik, G. Jervan, R. Ubar, and T. Hollstein, “From online fault
detection to fault management in network-on-chips: A ground-up approach,” in
2017 IEEE 20th International Symposium on Design and Diagnostics of Electronic
Circuits Systems (DDECS), pp. 48–53, 2017.

[17] R. Ubar, A. S. Oyeniran, and O. Medaiyese, “Minimization of the high-level fault
model for microprocessor control parts,” in 2018 16th Biennial Baltic Electronics
Conference (BEC), pp. 1–4, 2018.

[18] A. S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik, “Implementation-independent
functional test generation for risc microprocessors,” in 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC), pp. 82–87,
2019.

[19] R. Ubar, L. Jürimägi, E. Orasson, G. Josifovska, and S. A. Oyeniran, “Double
phase fault collapsing with linear complexity in digital circuits,” in 2015 Euromicro
Conference on Digital System Design, pp. 700–705, 2015.

[20] R. Ubar and S. A. Oyeniran, “Multiple control fault testing in digital systems
with high-level decision diagrams,” in 2016 IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR), pp. 1–6, 2016.

[21] L.-T. Wang, C.-W. Wu, and X. Wen, “Vlsi test principles and architectures.
design for testability,” Elsevier, 2006.

[22] P. Georgiou, X. Kavousianos, R. Cantoro, and M. S. Reorda, “Fault-independent
test-generation for software-based self-testing,” in 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS), pp. 79–84,
July 2018.

[23] R. Ubar, S. Kostin, and J. Raik, “How to prove that a circuit is fault-free?,” in
2012 15th Euromicro Conference on Digital System Design, pp. 427–430, Sep.
2012.

[24] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J. Rajski,
“Logic bist for large industrial designs: real issues and case studies,” in International
Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034), pp. 358–367,
Sep. 1999.

[25] Li Chen and S. Dey, “Software-based self-testing methodology for processor cores,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 20, pp. 369–380, March 2001.

83

[26] R. S. Tupuri and J. A. Abraham, “A novel functional test generation method for
processors using commercial atpg,” in Proceedings International Test Conference
1997, pp. 743–752, Nov 1997.

[27] Li Chen, S. Ravi, A. Raghunathan, and S. Dey, “A scalable software-based
self-test methodology for programmable processors,” in Proceedings 2003. Design
Automation Conference (IEEE Cat. No.03CH37451), pp. 548–553, June 2003.

[28] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-based
self-testing of embedded processors,” IEEE Transactions on Computers, vol. 54,
pp. 461–475, April 2005.

[29] S. Guramurthy, S. Vasudevan, and J. A. Abraham, “Automated mapping of
pre-computed module-level test sequences to processor instructions,” in IEEE
International Conference on Test, 2005., pp. 10 pp.–303, Nov 2005.

[30] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, “Microprocessor
software-based self-testing,” IEEE Design Test of Computers, vol. 27, pp. 4–19,
May 2010.

[31] P. Bernardi, R. Cantoro, L. Ciganda, E. Sanchez, M. S. Reorda, S. De Luca,
R. Meregalli, and A. Sansonetti, “On the in-field functional testing of decode units
in pipelined risc processors,” in 2014 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 299–304,
Oct 2014.

[32] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan, “On-
line functionally untestable fault identification in embedded processor cores,”
in 2013 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 1462–1467, March 2013.

[33] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. S. Reorda, and B. Becker, “An
effective approach to automatic functional processor test generation for small-
delay faults,” in 2014 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 1–6, March 2014.

[34] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda, and B. Becker, “A flexible
framework for the automatic generation of sbst programs,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, pp. 3055–3066, Oct 2016.

[35] M. Schölzel, T. Koal, S. Röder, and H. T. Vierhaus, “Towards an automatic
generation of diagnostic in-field sbst for processor components,” in 2013 14th
Latin American Test Workshop - LATW, pp. 1–6, April 2013.

[36] F. Corno, E. Sanchez, M. S. Reorda, and G. Squillero, “Automatic test program
generation: a case study,” IEEE Design Test of Computers, vol. 21, pp. 102–109,
March 2004.

[37] D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis,
A. Raghunathan, and S. Ravi, “Systematic software-based self-test for pipelined
processors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, pp. 1441–1453, Nov 2008.

84

[38] E. Sanchez and M. S. Reorda, “On the functional test of branch prediction units,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
pp. 1675–1688, Sep. 2015.

[39] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghunathan, and
S. Ravi, “Systematic software-based self-test for pipelined processors,” in 2006
43rd ACM/IEEE Design Automation Conference, pp. 393–398, July 2006.

[40] Zhuo Li, Xiang Lu, Wangqi Qiu, Weiping Shi, and D. M. H. Walker, “A circuit
level fault model for resistive opens and bridges,” in Proceedings. 21st VLSI Test
Symposium, 2003., pp. 379–384, May 2003.

[41] H. K. Lee and D. S. Ha, “Soprano: an efficient automatic test pattern generator
for stuck-open faults in cmos combinational circuits,” in 27th ACM/IEEE Design
Automation Conference, pp. 660–666, June 1990.

[42] A. Kristic and K. Cheng, Delay Fault Testing for VLSI Circuits. Dordrecht, The
Netherlands, Kluwer Academic Publishers, 1998.

[43] J. Roth, “Diagnosis of automata failures: A calculus and a method,” IBM J. Res.
Develop, vol. 10, pp. 278–291, July 1966.

[44] R. D. S. Blanton and J. P. Hayes, “On the properties of the input pattern fault
model,” ACM Trans. Des. Autom. Electron. Syst., vol. 8, pp. 108–124, Jan. 2003.

[45] K. Keller, “Hierarchical pattern faults for describing logic circuit failure mecha-
nisms,” in US Patent 5546408, August 1994.

[46] R. Ubar, Fault Diagnosis in Combinational Circuits by Solving Boolean Differential
Equations, vol. 40. Plenum Publishing Corporation, USA, Nov. 1980.

[47] J. Raik, R. Ubar, J. Sudbrock, W. Kuzmicz, and W. Pleskacz, “Dot: new
deterministic defect-oriented atpg tool,” in European Test Symposium (ETS’05),
pp. 96–101, May 2005.

[48] U. Mahlstedt, J. Alt, and I. Hollenbeck, “Deterministic test generation for non-
classical faults on the gate level,” in Proceedings of the Fourth Asian Test
Symposium, pp. 244–251, Nov 1995.

[49] S. Holst and H. Wunderlich, “Adaptive debug and diagnosis without fault dic-
tionaries,” in 12th IEEE European Test Symposium (ETS’07), pp. 7–12, May
2007.

[50] Kyoung Youn Cho, S. Mitra, and E. J. McCluskey, “Gate exhaustive testing,” in
IEEE International Conference on Test, 2005., pp. 7 pp.–777, Nov 2005.

[51] A. Jas, S. Natarajan, and S. Patil, “The region-exhaustive fault model,” in 16th
Asian Test Symposium (ATS 2007), pp. 13–18, Oct 2007.

[52] K. N. Dwarakanath and R. D. Blanton, “Universal fault simulation using fault
tuples,” in Proceedings 37th Design Automation Conference, pp. 786–789, June
2000.

[53] M. Psarakis, D. Gizopoulos, A. Paschalis, and Y. Zorian, “Sequential fault
modeling and test pattern generation for cmos iterative logic arrays,” IEEE
Transactions on Computers, vol. 49, pp. 1083–1099, Oct 2000.

85

[54] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava, M. Keim,
J. Schloeffel, and A. Fast, “Cell-aware test,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, pp. 1396–1409, Sep.
2014.

[55] L. Shen and S. Su, “A functional testing method for microprocessors,” IEEE
Transactions on Computers, vol. 37, no. 10, pp. 1288–1293, 1988.

[56] M. Hansen and J. Hayes, “High-level test generation using physically-induced
faults,” VLSI Test Symposium, pp. 20–28, 1995.

[57] L. Vandeventer and J. Santucci, “Algorithms for behavioral test pattern generation
from vhdl circuit descriptions containing loop language constructs,” Conference
on European Design Automation, 1994.

[58] J. Santucci, A. Courbis, and N. Giambiasi, “Behavioral testing of digital circuits,”
Journal of Microelectronics Systems Integration, vol. 1, no. 1, pp. 55–77, 1993.

[59] M. O’Neil, D. Jani, C. Cho, and J. Armstrong, “Btg: A behavioral test generator,”
9th International Symposium On CHDLs, 1989.

[60] C. Cho and J. Armstrong, “A behavioral test generation algorithm,” International
Test Conference, 1994.

[61] V. Kumar, M. Jeelani, A. Mulai, and A. Shandilia, “Employing functional analysis
to study fault models in vhdl,” International Journal of Scientific Engineering and
Technology, vol. 1, no. 5, pp. 207–208, 2012.

[62] Y. Joannon, V. Beroulle, C. Robach, S. Tedjini, and J.-L. Carbonero, “Choice
of a high-level fault model for the optimization of validation test set reused for
manufactoring test,” Hindawi VLSI Design, 2008.

[63] A. K. Gupta and J. R. Armstrong, “Functional fault modeling and simulation for
vlsi devices,” in 22nd ACM/IEEE Design Automation Conference, pp. 720–726,
June 1985.

[64] S. Thatte and J. Abraham, “Test generation for microprocessors,” IEEE Transac-
tionson Computers, pp. 429–441, 1980.

[65] D. Brahme and J. Abraham, “Functional testing of microprocessors,” IEEE
Transactions on Computers, vol. C-33, no. 6, pp. 475–485, 1984.

[66] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero, “An rt-level fault model
with high gate level correlation,” in Proceedings IEEE International High-Level
Design Validation and Test Workshop (Cat. No.PR00786), pp. 3–8, Nov 2000.

[67] V. A. P. Thaker and M. Zaghloul, “Rt level modeling and test evaluation techniques
for vlsi circuits,” in ITC, 2000.

[68] A. Fin and F. Fummi, “A vhdl error simulator for functional test generation,” in
Proceedings Design, Automation and Test in Europe Conference and Exhibition
2000 (Cat. No. PR00537), pp. 390–395, March 2000.

[69] P. C. Ward and J. R. Armstrong, “Behavioral fault simulation in vhdl,” in 27th
ACM/IEEE Design Automation Conference, pp. 587–593, June 1990.

86

[70] S. Ghosh and T. J. Chakraborty, “On behavior fault modeling for digital designs,”
Journal of Electronic Testing, vol. 2, pp. 135–151, Jun 1991.

[71] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Springer Publishing Company, Incorporated,
2013.

[72] Tonysheng Lin and S. Y. H. Su, “The s-algorithm: A promising solution for
systematic functional test generation,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 4, pp. 250–263, July 1985.

[73] G. Buonanno, F. Ferrandi, L. Ferrandi, F. Fummi, and D. Sciuto, “How an
"evolving" fault model improves the behavioral test generation,” in Proceedings
Great Lakes Symposium on VLSI, pp. 124–129, March 1997.

[74] R. Ramchandani and D. Thomas, “Behavioral test generation using mixed integer
non-linear programming,” IEEE International Test Conference, 1994.

[75] F. Ferrandi, G. Ferrara, D. Sciuto, A. Fin, and F. Fummi, “Functional test
generation for behaviorally sequential models,” in Proceedings Design, Automation
and Test in Europe. Conference and Exhibition 2001, pp. 403–410, March 2001.

[76] Levendel and Menon, “Test generation algorithms for computer hardware descrip-
tion languages,” IEEE Transactions on Computers, vol. C-31, pp. 577–588, July
1982.

[77] A. Jasnetski, Software-Based Self-Test for Microprocessors with High-Level Deci-
sion Diagrams. PhD thesis, Tallinn University of Technology, 2018.

[78] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghunathan, and
S. Ravi, “Systematic software-based self-test for pipelined processors,” in 2006
43rd ACM/IEEE Design Automation Conference, pp. 393–398, July 2006.

[79] P. Bernardi, L. Ciganda, M. de Carvalho, M. Grosso, J. Lagos-Benites, E. Sanchez,
M. S. Reorda, and O. Ballan, “On-line software-based self-test of the address
calculation unit in risc processors,” in 2012 17th IEEE European Test Symposium
(ETS), pp. 1–6, May 2012.

[80] P. Parvathala, K. Maneparambil, and W. Lindsay, “Frits - a microprocessor
functional bist method,” in Proceedings. International Test Conference, pp. 590–
598, Oct 2002.

[81] K. Batcher and C. Papachristou, “Instruction randomization self test for processor
cores,” in Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146),
pp. 34–40, April 1999.

[82] F. Corno, M. Sonza Reorda, G. Squillero, and M. Violante, “On the test of
microprocessor ip cores,” in Proceedings Design, Automation and Test in Europe.
Conference and Exhibition 2001, pp. 209–213, March 2001.

[83] C. H. . Wen, L. . Wang, Kwang-Ting Cheng, Kai Yang, Wei-Ting Liu, and Ji-Jan
Chen, “On a software-based self-test methodology and its application,” in 23rd
IEEE VLSI Test Symposium (VTS’05), pp. 107–113, May 2005.

87

[84] S. Gurumurthy, S. Vasudevan, and J. A. Abraham, “Automatic generation of
instruction sequences targeting hard-to-detect structural faults in a processor,” in
2006 IEEE International Test Conference, pp. 1–9, Oct 2006.

[85] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-based self-testing
of delay faults in pipelined processors,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, pp. 1203–1215, Nov 2006.

[86] M. Hatzimihail, G. Xenoulis, M. Psarakis, D. Gizopoulos, and A. Paschalis,
“Software-based self-test for pipelined processors: a case study,” in 20th IEEE In-
ternational Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05),
pp. 535–543, Oct 2005.

[87] L. Lingappan and N. K. Jha, “Satisfiability-based automatic test program genera-
tion and design for testability for microprocessors,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 15, pp. 518–530, May 2007.

[88] C. Chen, C. Wei, T. Lu, and H. Gao, “Software-based self-testing with multiple-
level abstractions for soft processor cores,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, pp. 505–517, May 2007.

[89] C. H. . Wen, L. C. Wang, and Kwang-Ting Cheng, “Simulation-based functional
test generation for embedded processors,” in Tenth IEEE International High-Level
Design Validation and Test Workshop, 2005., pp. 3–10, Nov 2005.

[90] Jian Shen and J. A. Abraham, “Native mode functional test generation for
processors with applications to self test and design validation,” in Proceedings
International Test Conference 1998 (IEEE Cat. No.98CH36270), pp. 990–999,
Oct 1998.

[91] I. Bayraktaroglu, J. Hunt, and D. Watkins, “Cache resident functional micropro-
cessor testing: Avoiding high speed io issues,” in 2006 IEEE International Test
Conference, pp. 1–7, Oct 2006.

[92] S. Gurumurthy, M. Pratapgarhwala, C. Gilgan, and J. Rearick, “Comparing the
effectiveness of cache-resident tests against cycleaccurate deterministic functional
patterns,” in 2014 International Test Conference, pp. 1–8, Oct 2014.

[93] A. Krstic, Wei-Cheng Lai, Kwang-Ting Cheng, L. Chen, and S. Dey, “Embedded
software-based self-test for programmable core-based designs,” IEEE Design Test
of Computers, vol. 19, pp. 18–27, July 2002.

[94] D. Changdao, M. Graziano, E. Sanchez, M. Sonza Reorda, M. Zamboni, and
N. Zhifan, “On the functional test of the btb logic in pipelined and superscalar
processors,” in 2013 14th Latin American Test Workshop - LATW, pp. 1–6, April
2013.

[95] S. Di Carlo, P. Prinetto, and A. Savino, “Software-based self-test of set-associative
cache memories,” IEEE Transactions on Computers, vol. 60, pp. 1030–1044, July
2011.

[96] J. P. Acle, R. Cantoro, E. Sanchez, and M. S. Reorda, “On the functional test
of the cache coherency logic in multi-core systems,” in 2015 IEEE 6th Latin
American Symposium on Circuits Systems (LASCAS), pp. 1–4, Feb 2015.

88

[97] P. Bernardi, R. Cantoro, L. Ciganda, B. Du, E. Sanchez, M. S. Reorda, M. Grosso,
and O. Ballan, “On the functional test of the register forwarding and pipeline
interlocking unit in pipelined processors,” in 2013 14th International Workshop
on Microprocessor Test and Verification, pp. 52–57, Dec 2013.

[98] Y. Zhang, H. Li, and X. Li, “Automatic test program generation using executing-
trace-based constraint extraction for embedded processors,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 21, pp. 1220–1233, July
2013.

[99] J. Hudec, “An efficient adaptive method of software-based self test generation
for risc processors,” in 2015 4th Eastern European Regional Conference on the
Engineering of Computer Based Systems, pp. 119–121, 2015.

[100] V. M. Suryasarman, S. Biswas, and A. Sahu, “Automation of Test Program
Synthesis for Processor Post-silicon Validation,” Journal of Electronic Testing:
Theory and Applications (JETTA), vol. 34, no. 1, pp. 83–103, 2018.

[101] J. Zhengfei, Z. Ying, and C. Xin, “A novel on-line test scheme for avionics
controller based on sbst,” in 2014 International Test Conference, London, U.K,
pp. 241–246, July 2018.

[102] N. Hage, R. Gulve, M. Fujita, and V. Singh, “On testing of superscalar processors
in functional mode for delay faults,” in 2017 30th International Conference on
VLSI Design and 2017 16th International Conference on Embedded Systems
(VLSID), pp. 397–402, 2017.

[103] C. Chen and J. Huang, “Reinforcement-learning-based test program generation
for software-based self-test,” in 2019 IEEE 28th Asian Test Symposium (ATS),
pp. 73–735, 2019.

[104] Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Trans-
actions on Computers, vol. C-35, pp. 677–691, Aug 1986.

[105] R. Ubar, J. Raik, and A. Morawiec, “Back-tracing and event-driven techniques
in high-level simulation with decision diagrams,” in 2000 IEEE International
Symposium on Circuits and Systems (ISCAS), vol. 1, pp. 208–211 vol.1, May
2000.

[106] R. Ubar, J. Raik, A. Jutman, M. Jenihhin, M. Brik, M. Instenberg, and H. Wuttke,
“Diagnostic modeling of microprocessors with high-level decision diagrams,” in
2008 11th International Biennial Baltic Electronics Conference, pp. 147–150, Oct
2008.

[107] M. Abramovici, M. Breuer, and A. Friedman, “Digital systems testing & testable
designs,” Computer Science Press, 1995.

[108] A. Jasnetski, Software-Based Self-Test for Microprocessors with High-Level Deci-
sion Diagrams. PhD thesis, Tallinn University of Technology, 2018.

[109] A. Jasnetski, S. A. Oyeniran, A. Tsertov, M. Schölzel, and R. Ubar, “High-level
modeling and testing of multiple control faults in digital systems,” in 2016 IEEE
19th International Symposium on Design and Diagnostics of Electronic Circuits
Systems (DDECS), pp. 1–6, April 2016.

89

[110] A. van de Goor, Semiconductor Memories: Theory and Practice. Wiley, 1991.

[111] MiniMIPS, “https://opencores.org/projects/minimips,” tech. rep.

[112] D. B. Armstrong, “On finding a nearly minimal set of fault detection tests for
combinational logic nets,” IEEE Transactions on Electronic Computers, vol. EC-15,
pp. 66–73, Feb 1966.

[113] A. Miczo, Digital Logic Testing and Simulation. Wiley, 2003.

[114] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava, M. Keim,
J. Schloeffel, and A. Fast, “Cell-aware test,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 9, pp. 1396–1409,
2014.

[115] R. Ubar, “Fault diagnosis in combinational circuits by solving boolean differential
equations,” in Automatics & Telemechanics, pp. 170–183, 1979.

[116] M. D. Pulukuri and C. E. Stroud, “Built-in self-test of digital signal processors
in virtex-4 fpgas,” in 2009 41st Southeastern Symposium on System Theory,
pp. 34–38, March 2009.

[117] A. S. Oyeniran, R. Ubar, S. P. Azad, and J. Raik, “High-level test generation for
processing elements in many-core systems,” in 2017 12th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–8,
July 2017.

[118] A. S. Oyeniran, S. P. Azad, and R. Ubar, “Parallel pseudo-exhaustive testing of
array multipliers with data-controlled segmentation,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2018.

[119] Yong Chang Kim, V. D. Agrawal, and K. K. Saluja, “Multiple faults: modeling,
simulation and test,” in Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and
South Pacific Design Automation Conference and 15h International Conference
on VLSI Design, pp. 592–597, Jan 2002.

[120] R. Ubar, S. A. Oyeniran, M. Scholzel, and H. T. Vierhaus, “Multiple fault testing
in systems-on-chip with high-level decision diagrams,” in 2015 10th International
Design Test Symposium (IDT), pp. 66–71, Dec 2015.

[121] R. Ubar, S. Kostin, and J. Raik, “About robustness of test patterns regarding
multiple faults,” in 2012 13th Latin American Test Workshop (LATW), pp. 1–6,
April 2012.

[122] R. Ubar, S. Kostin, and J. Raik, “Multiple stuck-at-fault detection theorem,” in
2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic
Circuits Systems (DDECS), pp. 236–241, April 2012.

[123] A. Jasnetski, R. Ubar, A. Tsertov, and H. Kruus, “Laboratory framework team
for investigating the dependability issues of microprocessor systems,” in 10th
European Workshop on Microelectronics Education (EWME), pp. 80–83, May
2014.

[124] T. Tester, “http://www.pld.ttu.ee/testing/labs/ttfiles/turbotech. rep., Tallinn
University of Technology.

90

[125] M. Scholzel, Self-Testing and Self-Repairing Embedded Processors: Techniques
for Statically Scheduled Superscalar Architectures. Habilitation Thesis. PhD
thesis, Brandenburg University of Technology Cottbus-Seftenberg, 2015.

[126] A. Riefert, R. Cantoro, M. Sauer, M. S. Reorda, and B. Becker, “On the automatic
generation of sbst test programs for in-field test,” in 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 1186–1191, March 2015.

[127] P. Bernardi, L. Ciganda, M. Grosso, E. Sanchez, and M. Sonza Reorda, “A
sbst strategy to test microprocessors’ branch target buffer,” in 2012 IEEE 15th
International Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS), pp. 306–311, April 2012.

91

Acknowledgements
I would like to express my heartfelt appreciation to my supervisor, Professor Raimund
Ubar for his support, mentoring, and several meetings and discussions throughout my
PhD studies. It has been a real honor working with you. I would also like to thank
Professor Jaan Raik and Professor Maksim Jenihhin for their collaboration and support.

Special thanks to the Head of the Department of Computer Systems, Dr. Margus
Kruus for the support throughout my studies. I would also like to thank my colleagues
at the Department of Computer Systems and my friends both at Grace Chapel Tallinn
and around the world.

Likewise, I would like to acknowledge the organizations that have supported my
PhD studies: Tallinn University of Technology, Estonian IT Academy program, EU’s
H2020 RIA IMMORTAL, Estonian Center of Excellence in IT (EXCITE) and Estonian
Research Council.

I would like to finally thank my family, my parents, my siblings and my wife, Onoitem.
Thank you for your endless support.

93

Abstract
High-Level Implementation-Independent Software-Based
Self-Test for RISC Type Microprocessors
Advances in technology make it possible for microprocessors to be built from billions
of transistors and operate at ever-increasing operational frequencies. However, the
probability of different physical defects is also increasing, and the growing complexity
of systems makes testing problems difficult to solve. Processor at-speed testing is
a problem for external tester technologies, as they cannot reduce the growing gap
between processor frequencies and test frequencies. Built-in Self-Test, on the other
hand, imposes area overhead, performance degradation and excess power dissipation
on systems such as microprocessors. To address these issues, Software-Based Self-Test
(SBST) was proposed.

Software-Based Self-Test (SBST) is an emerging paradigm in the test domain
which relies on the exploitation of existing available resources resident in the system.
The essence of this approach implies features such as non-intrusiveness, low cost and
reliability with speed, and in-field testing. The quality of SBST is mainly evaluated
by single stuck-at fault (SAF) coverage, and no measures exist for evaluating the test
coverage regarding other fault classes. Another problem which has not been sufficiently
investigated is test program generation, where no information about the details of
implementation is given.

To address these drawbacks, a novel high-level approach was adopted in this thesis
for implementation-independent SBST generation for a broader class of faults other than
only the single SAF model. This approach targets processors with RISC architecture.

A novel high-level model of the microprocessor is derived from the instruction set and
from the architectural information of features introduced for increasing performance,
like pipelining, forwarding, hazard handling and prediction.

The main concept of the approach is in partitioning the processor into functionally
well-defined modules under test (MUT), and each MUT into two formal disjoint parts
which are the control and data parts. As a theoretical basis for developing a new
approach, the model of High-Level Decision Diagrams (HLDD) was chosen and adapted
for modeling of microprocessors at the architectural level. Firstly, HLDDs allow for a
straightforward partitioning of the modules under test (MUT) of the microprocessor into
two disjoint parts (control and data parts). Secondly, it allows for a flexible partitioning
of the set of functions that are mapped to the MUT, into disjointed groups. Based
on such partitioning, two separate and independent methods for test generation were
developed for testing the control and data parts.

To test the control part of a MUT, a novel high-level control fault model was
developed and defined as a set of data constraints derived from the HLDD model.
The control part of MUT is presented as a set of functions, which can be partitioned
into subsets to keep the test generation complexity scalable. For partitioning, HLDDs
are used. The data constraints are to be satisfied by test data generation, for which
two algorithms were developed. For testing the data part of a MUT, structured
pseudo-exhaustive test data is generated.

A method was developed for simulating the high-level control faults and for evaluating
the high-level control fault coverage. It was proven that a test which guarantees 100%
coverage of non-redundant high-level faults, will also guarantee 100% non-redundant
SAF coverage, while all gate-level SAF not covered by the test are identified as redundant.
Hence, the proposed high-level fault model allows the reduction of time for redundancy

94

proof by replacing the time-consuming proof of SAF redundancy with very fast gate-level
SAF simulation.

It was shown theoretically that the developed high-level test program generation
approach covers a very large class of high-level functional faults in a similar way to
those used in memory testing. Consequently, a large class of structural faults such as
conditional SAF, multiple SAF and bridging SAF are also covered.

The feasibility of the approach and high efficiency of the generated test programs
was demonstrated for the modules of the miniMIPS RISC processor, such as execute
module, forwarding module and register decoders. It was also shown by experiments
that the novel implementation-independent test generation approach enables the fast
generation of manufacturing tests with very high single SAF coverage in the case where
the implementation details are given for test evaluation purposes. In the experimental
part of the thesis, the quality of test with regards to SAF coverage was compared with
state-of-the-art methods for the modules of the processor used as a case study.

95

Kokkuvõte
Mikroprotsessorite tarkvarapõhine implementatsioonist
mittesõltuv funktsionaalne enesekontroll
Tehnoloogia areng on teinud võimalikuks valmistada mikroprotsessoreid, mis koosnevad
miljarditest transistoridest ja mis töötavad üha kõrgematel sagedustel. Koos sellega
kasvab ka erinevate füüsikaliste defektide tõenäosus ja süsteemide suurenev keerukus
muudab testimisprobleemide lahendamise üha raskemaks. Protsessorite dünaamika testi-
misest on saanud tõsine väljakutse protsessorite ja väliste testseadmete vahelise kasvava
erinevuse tõttu töösagedustes. Teiselt poolt, spetsiaalsete sisse-ehitatud testriistvara
kasutamine põhjustab aga suuremat riistvara kulu, töökiiruse langust ja võimsustarbe
kasvu. Loetletud probleemidest üle saamiseks on tarkvarapõhine isetestimine (TPI) üha
suuremat populaarsust võitmas.

TPI kujutab endast arenevat paradigmat testimise valdkonnas, mille iseärasuseks
on süsteemi enda sisemiste ressursside ära kasutamine. TPI põhineb spetsiaalsetel
tarkavaprogrammidel, mis on väljatöötatud protsessorite isetestimiseks. Nende olemuseks
on madal hind ja kõrge töökindlus. TPI kvaliteet sõltub aga oluliselt testandmete valikust.

TPI süntees protsessoritele digitaalsüsteemides on teadusvaldkond, milles on toimunud
intensiivne uurimistöö juba aastaid. Ometi on selles valdkonnas vähem uuritud alasid,
nagu näiteks probleem, kuidas sünteesida testimistarkvara tingimustes, kus puudub
detailne informatsioon testitava objekti ehk siis protsessori elektroonilise struktuuri
kohta, kus aga samal ajal on vaja tagada kõrget testimise kvaliteeti – kõrget rikete
katet, vähendades samal ajal kulutusi testimistarkvara väljatöötamisel.

Nimetatud probleemi lahendamiseks on välja töötatud uudne süsteemi kõrgtasandil
läbiviidav ja süsteemi detailsest realisatsioonist mittesõltuv funktsionaalne TPI meetod
RISC-arhitektuuriga protsessoritele.

Uus meetod võimaldab genereerida tööstuslikke teste, mis tagavad kõrget konstantri-
kete katet. Võtmekontseptsiooniks uue meetodi puhul on uudse kõrgtasandi rikkemudeli
väljatöötamine ja testandmete genereerimine testitavate moodulite juht- ja andmeosa-
dele eraldi. Protsessori mudeli loomisel on lähteandmeteks üksnes kõrgtasandi info –
käsusüsteem ja arhitektuuri kirjeldus.

Uue meetodi teoreetiliseks baasiks on kõrgtasandi otsustusdiagrammide mudel, mis
võimaldab eraldi käsitleda nii konkreetse mooduli juht- ja andmeosa, kui ka optimeerida
juhtosa tükeldamist. Juhtosa testimiseks genereeritakse deterministlikud testandmed,
mis rahuldaksid uuest rikkemudelist tulenevaid konformsuse tingimusi, andmeosa testid
aga genereeritakse struktureeritud pseudo-ammendavaid operande kasutades iga käsu
jaoks eraldi.

Testide kvaliteedi mõõtmiseks on välja töötatud kõrgtasandi funktsionaalsete rikete
simulaator. Töö üheks oluliseks tulemuseks on tõestus, et mitteliiaste kõrgtasandi rikete
100%-line kate tagab ka 100%-lise madala taseme struktuursete rikete katte, kusjuures
lisatulemuseks on võimalus identifitseerida madala taseme simulatsioonil katmata jäävaid
rikkeid kui liiaseid ehk siis mitteolulisi.

Käesolevas töös väljatöötatud meetodid on kasutatavad ka nn. mittefunktsionaalsete
moodulite testimiseks, nagu näiteks ennetusskeemid. Niisuguste moodulite kohta on
töös samuti läbiviidud vastav eksperimentaalne uurimistöö.

Uus meetod võimaldab genereerida testprogramme, mis katavad ühelt poolt väga
laia funktsionaalsete rikete klassi, mida kasutatakse ka mäluseadmete testimisel, aga
samuti ka väga laia struktuursete rikete klassi, nagu üksikud ja kordsed konstantrikked,
tingimuslikud konstantrikked ja lühisrikked.

96

Eksperimentaalsete katsete abil uuriti uute meetodite tõhusust ja kvaliteeti. Ekspe-
rimentide abil demonstreeriti meetodite suuremat efektiivsust konkreetse RISC-tüüpi
mikroprotsessori moodulite puhul, võrreldes seniste meetoditega. Uute meetodite abil
genereeritud testide poolt saavutatud konstantrikete katteid võrreldi seniste meetodite
abil saadud rikete katteid ning demonstreeriti märgatavat paremust. Veel olulisemaks
tulemuseks on aga see, et uued meetodid katavad palju laiemat rikete klassi, kui seni
kasutatavad meetodid. Sellesse laiendatud rikete klassi kuuluvad tingimuslikud konstant-
rikked, lühisrikked aga eelkõige funktsionaalsed skeemide realisatsioonist sõltumatud
kõrgtaseme rikked.

97

Appendix 1

I
R. Ubar, S. A. Oyeniran, M. Scholzel, and H. T. Vierhaus, “Multiple fault
testing in systems-on-chip with high-level decision diagrams,” 2015 10th
International Design Test Symposium (IDT), pp. 66–71, Dec 2015

99

Multiple Fault Testing in Systems-on-Chip
with High-Level Decision Diagrams

Raimund Ubar, Stephen Adeboye Oyeniran
Tallinn University of Technology

Computer Engineering Department
Estonia

Mario Schölzel1, Heinrich T. Vierhaus2
1University of Potsdam,

2Technical University of Brandenburg,
Germany

Abstract—A new method of high level test generation based
on the concept of test groups to prove the correctness of a part of
system functionality is proposed. High-level faults of any
multiplicity are assumed to be present in the system, however,
there will be no need to enumerate them. Unlike the known
approaches, we do not target the faults as test objectives. The
goal of using the test groups is to extend step by step the fault-
free core of the system by exploiting the knowledge about already
successfully tested parts of the system. In case when the proof
fails, fault diagnosis will follow. To cope with the complexity of
multiple fault masking mechanisms, high-level decision diagrams
(HLDD) are used. The proposed method can be regarded as a
generalization of the logic level test pair approach for identifying
fault-free wires in gate-level networks. Preliminary experimental
results, and a discussion of the complexity of the method is
presented.

Keywords—digital systems, multiple faults, fault masking, high-
level decision diagrams

I. INTRODUCTION
The technology advancements impose new challenges to

testing systems-on-chip as device geometries shrink and the
complexity of SOCs increase. Traditional test approaches are
based on a single fault assumption, but assuming only single
fault cases cannot be any more valid for today’s nanoscale
circuits, because the effect of fault masking due to multiple
faults remains in this case neglected. A complete test for
single faults, in general, may be either incomplete for
detecting multiple faults due to possible fault masking, or may
result in wrong fault diagnosis.

Some results have been achieved in test generation for
multiple stuck-at-faults (SAF) at gate-level [1-6]. The main
idea of these methods has been to use test pairs to identify
fault-free lines in circuits, instead of finding separate test
patterns for detecting each SAF separately. The advantage of
these methods is that there is no need for creating of single or
multiple fault lists, but the complexity of test generation is still
close to that of single SAF test generation. The method [2] is
based on 16-valued simulation, whereas in [5] an ATPG
algorithm based on 7-valued calculus was developed. In [6], a
method was proposed based on test pair analysis of the given
test, and constructing additional pairs for undetected faults.
The paper [4] presents a two phase method where first, the test

pairs are found to detect the target SAF independently of other
faults, and thereafter, a sophisticated branch and bound
procedure is used to complete the test set generation for the
faults undetected during the first phase.

In [7, 8] it was shown that test pairs not always can avoid
fault masking. In [9, 10], a generalization of the test pair
conception was proposed by introducing a new test structure
as a test group. The necessary and sufficient conditions were
formulated for test groups capable to detect any non-redundant
multiple fault in a combinational circuit. The meaning of a test
group is to identify a fault-free sub-circuit instead of proving
the correctness of a single wire only as in case of test pairs.
The conception of test groups was developed using
topological analysis of paths in Structurally Synthesized
BDDs (SSBDD) [11-13].

In this paper we generalize the logic level test group
approach for identifying fault-free sub-circuits in digital
systems (systems-on-chip) represented at higher register-
transfer levels (RTL) or functional levels using High-Level
Decision Diagrams (HLDD). The faults of any multiplicity are
assumed to be present in the system, and there will be no need
to enumerate the faults. The goal of using test groups is to
extend step by step the fault-free core of the system by
exploiting the knowledge about already successfully tested
parts of the system. In case when the test group will fail, fault
diagnosis will follow in the part of the system targeted by
failing test group.

The rest of the paper is organized as follows. Section 2
introduces the concept of topological view on testing of logic
level circuits with SSBDDs and explains the meaning of test
groups. Section 3 presents the method of modeling digital
systems with HLDDs on the example of a VLIW processor,
and introduces two classes of high-level faults. In Section 4 we
develop a new method of test generation using high-level test
groups for testing multiple faults. In Section 5 we give
estimations for test length produced by the new method, and
compare it with a straightforward method. Section 5 concludes
the paper.

II. TOPOLOGICAL VIEW ON THE PROBLEM OF FAULT
MASKING IN LOGIC LEVEL CIRCUITS

In the following we give a short explanation on the method
[10] of proving the correctness of a gate-level sub-circuit (core)

978-1-4673-9994-4/15$31.00 2015 IEEE

2015 10th International Design & Test Symposium (IDT)

66

by applying test pairs, or in general case, by test groups (a
compressed collection of test pairs)

Ti x1 x2 x3 x4 x5 x6 x7 x8 x9 Y/YF

T1 1 0 0 1 1 1 0 0 1 1/1

T2 1 0 0 1 1 0 0 0 1 0/0

T3 1 0 0 1 0 1 0 0 1 0/1

x11 x21y

x41 x5

x12

x9

x61

x42x22

x3

x7

x62

x8

x7

#1

#0

y

1

1

1

1

&

1

x11≡1
x1
x2
x3

x4x5
x6

&

&

&

&

&

&

x7

x8

x9

x61≡0

x22≡1

x42≡0

1
0

1
1
1/0
0

0

1

Figure 1. Illustration of test generation for multiple faults

TABLE I. Test Patterns for Selected Faults in Fig.1

t
 Test patterns Tt Test

faults
Mask
faults x1 x2 x3 x4 x5 x6 x7 x8 x9

1 0 0 - 1 1 1 0 1 0 x11 ≡ 1 x61 ≡ 0
2 1 0 0 1 1 1 0 0 1 x61 ≡ 0 x22 ≡ 1
3 0 0 1 1 0 1 1 - 1 x22 ≡ 1 x42 ≡ 0
4 0 1 0 1 1 1 1 - 1 x42 ≡ 0 x11 ≡ 1

Example 1. Consider a circuit in Fig.1 which contains 4
SAF: x11≡1, x22≡1, x42≡0, and x61≡0. The second subscript at
variables denotes the fan-out branch (1 – upper branch, 2 –
lower branch). Table I contains 4 patterns for testing these
faults (column 11) as single cases, which all will pass if all they
are present because of circular masking (by respective faults in
column 12). In Fig.1 the pattern T1 is for detecting x61≡0, but it
will pass because of masking fault x22≡1. The test pair (T1, T2)
is for proving the correctness of signal path (x61, y) in the
circuit. But, this example is exactly the case where the test pair
“does not work”. Only the group of all 3 patterns is able to
detect the fault x61≡0 (or, if all 3 patterns will pass, then to
prove the correctness of both signal paths (x61, y), and (x5, y),
shown with bold red lines in the circuit).

The fault masking mechanism in Example 1 and in Fig.1 is
illustrated topologically in the SSBDD which models the
circuit. Each node in SSBDD represents a signal path in the
circuit. The paths in SSBDD activated by T1 are shown by red
and blue edges (we exit the node x to the right if x = 1, and
downwards if x = 0). The red path terminating in #1 determines
the expected value y = 1. The fault x61 ≡ 0 will change the
direction of the activated path, however, the masking fault x22 ≡
1 will switch to the blue path which terminates again in #1,
determining again the value y = 1. Hence, x61 ≡ 0 remains
undetected.

Fig.2 illustrates how to cope with fault masking in
combinational circuits in presence of multiple faults. In Fig.2, a
skeleton of SSBDD is presented with a root node m0. To test a
≡ 0 in SSBDD (similarly as SAF-0 of the node x61 in SSBDD
in Fig.1), using test pairs, two patterns T1 and T2 are generated.
T1 activates a red path L1 from root to terminal #1 by assigning

a = 1 (For x6 = 1 in Fig.1) with expected response Y=1, and a
path L0 from a (x61) to #0. In case of the fault, the path L0 will
be active, and the result Y=0 for T1 would indicate the presence
of fault.

a b Y/YF

1 1 1/1

0 1 0/0

1 0 0/1

The 3rd test pattern for b
restores the masking path

Node a desactivates
the masking path

#1

#0

c ≡1

a ≡0

a

L1

LM

L0

L’M

m0

b

Test Group
Targets

Ti
T1
T2
T3

Y

c
0

0

0

Figure 2. Detection of the masking fault by test pairs

In case of a second fault c ≡ 1 (similarly as SAF ≡1 of the
node x22 in SSBDD in Fig.1), the fault a≡0 (x61≡0) will not be
detected by T1, because c ≡ 1 (x22≡1) will evoke a masking
blue path LM, which produces the expected result 1 of the
fault-free case. To detect the combination of two faults, a
second pattern T2 will be applied by changing in T1 the value
of a (x6) to 0, and keeping the values of all other variables
unchanged. The expected response of the fault-free circuit to
T2 should be 0. But, thanks to unchanged values of all other
variables in T2, the masking path LM will remain activated,
and the response 1 to T2 will indicate the detection of the
masking fault c ≡ 1 (x22≡1).

The goal of using the test pair (T1, T2) is to prove the
correctness of the node a under test, if both of the patterns will
pass. If there will be the fault a ≡ 0, but T1 will still pass
because of the masking fault c ≡ 1, then the role of T2 will be
to detect the masking fault.

Test pairs are not always sufficient for proving the
correctness of the target variable. For example, if the masking
path LM in Fig.2 involves the same variable a under test (the
node x62 in Fig.1), the change of the value of a (x6) in T2 may
discontinue the masking path LM, which would mean that the
masking fault c ≡ 1 (x22≡1) will remain undetected by T2. To
cope with this disadvantage of test pairs, in [10] the
conception of test groups was developed.

The main idea of test groups is to merge several test pairs
for jointly targeting several nodes on the initial path L1 under
test (in Fig2 the node b, and in Fig1 the node x5), so that at
least one of these test pairs would keep the masking path
constantly activated, to detect the masking fault. The second
test pair (T1, T3) targets the node b, and in Fig.1 the node x5.

III. MODELING DIGITAL SYSTEMS WITH HIGH-LEVEL
DECISION DIAGRAMS

A. The HLDD-Model for the VLIW Processor
Consider a structural view on the VLIW processor as shown in
Fig. 3. It has two execution slots. Each slot has a fetch register
that receives the current instruction from the program memory
via IN1 (resp. IN2). Instruction of slot i contains the following

2015 10th International Design & Test Symposium (IDT)

67

control signals: di - destination register, ctri1 and ctri2 - source
registers, ctrAlui - operation to be performed by ALU.

In1 In2

ctr11

D11

Mux11

R0
R1
R2
R3

Mux12

D12 OP1 D21

Mux21 Mux22

D22 OP2

ALU1 ALU2

Mux

ctr12 ctrAlu1 ctr21 ctr22 ctrAlu2d1 d2

Out1 Out2

Figure 3. Strucural Representation of the VLIW processor.

The components Muxi1 and Muxi2 represent the read ports of
the register file for slot i. The processor has a simple register
bank with four registers, and two write ports. Both write ports
are represented by the component Mux, whereby each write
port i is controlled by the bit field di. Di1, Di2, and OPi
represent the pipeline register between decode- and execute-
stage. The write-back stage of the processor has been
neglected.

R0

R1

R2

R3

ctrs1
0

1

2

3

Ds1 R0

R1

R2

R3

ctrs2
0

1

2

3

Ds2

Ds1

Ds1+Ds2

Ds1-Ds2

Ds1 & Ds2

ctrAlus
0

1

2

3

ALUs

INs
4

ALU1

d2

Ri

d1
iRi

{0,1,2,3} – {i} i
ALU2

{0,1,2,3} – {i}

Figure 4. HLDDs for the components of the VLIW processor

 Let us have a digital system, particularly a VLIW,
represented by a set of high level functions Y = F(C,D)
determined by the Instruction Set Architecture (ISA) of the
system, and characterized by a set of control variables C, and
a set of data variables D. Such functions can be represented by
High Level Decision Diagrams (HLDD). Each HLDD is a
directed, acyclic and connected graph G with a root Y and a set
of nodes M with non-terminal nodes m ∈ MN ⊂ M labelled by
control variables x(m) of a set C, and terminal nodes mT ∈ MT
= M - MN labeled by operations f(mT) on a set of data variables
D. For each non-terminal node m ∈ MN, the graph determines
a mapping V(x(m)) → M(m) where V(x(m)) is the set of
possible values of the variable x(m), and M(m) ⊆ M is the set
of successors of the node m.

 Denote by mv the neighbor of the node m for the value v
∈V(x(m)), according to the mapping V(x(m)) → M(m). If a test
pattern includes the assignment x(m) = v, we say that the edge
from m to mv is activated by the pattern. We say that each
vector of the control variables of C, according to this mapping,
activates a path in G from the root Y to a terminal node
mT∈MT and evokes a working mode of a system component
f(mT), e.g. a data transfer or a data manipulation.

Example 2. As an example, the components of the slots
s {1,2} of the VLIW processor in Fig.3 can be represented
by HLDDs in Fig.4. The graphs Ds1 and Ds2 represent the left
(respectively right) read port of the processor (components
Mux11, Mux12, Mux21, Mux22). Depending on the value of
the control variables ctrs1 and ctrs2, a register is selected. The
read value from the selected register is assigned to the
variables Ds1 and Ds2. The behavior of ALUs is modeled by
the graph ALUs in Fig.4. Finally, the graph Ri represents the
Mux-component for writing into registers the value of ALUs.
The value of Ri (register i) is determined as follows. If the
destination register for the result in slot 1 is i (i.e., d1 = i), then
the value of variable ALU1 is selected. Otherwise, it is
checked if the destination register of slot 2 is i (d2 = i). If this
is the case, then the result of variable ALU2 is selected.
Otherwise, the value of register Ri is hold.
 The set of single-cycle HLDDs in Fig.4, can be joined
(e.g. for the case of slot s=1) into a single multi-cycle graph in
Fig.5. Such a joint HLDD allows better modeling of the multi-
cycle test sequences consisting of test stimuli and test response
observation cycles controlled by respective instructions. In the
joint HLDD, the register nodes Ri represent simultaneously the
current state (as part of the stimuli, for cycle τ-1) and the next
state (as response to the stimuli, for cycle τ) of the processor.
Formally, the register nodes Ri embody in the joint HLDD
model two roles: they are interpreted as roots of HLDDs (to
model the destinations of Write (WR) operations for cycle τ-
1), and as terminal nodes of HLDDs (to model the sources for
Read (RD) operations for cycle τ).

R0

R1

R2

R3

ctr11
0

1

2

3

D11 d1 D11

D11+D12

D11-D12

D11 & D12

ctrAlu1
0

1

2

3

IN1
4

Out1

R0

d1

R3

0

3

τ - 1τ

Figure 5. Joint cycle-based HLDD model for slot 1 of the VLIW processor

The HLDD model in Fig.5 shows formally how the control

signals described by the instruction fields can be used to
control the data flow during the instruction cycle from inputs
to outputs. The inputs are: IN1, R0, R1, R2, R3, and the
outputs are: R0, R1, R2, R3, OUT1. Thereby only IN1 and
OUT1 are regarded as test data source and sink, respectively.
By giving control signals particular values (derived from

2015 10th International Design & Test Symposium (IDT)

68

instructions), the data flow, associated with instructions, can
be formally specified for test generation purposes on the
HLDD.

B. High-Level Fault Modeling with HLDDs
The HLDD model is well suitable for high-level fault
diagnosis, in case when the diagnostic resolution is needed
with accuracy of locating faulty components represented by the
nodes of HLDDs.

In accordance to the VLIW processor’s model in Fig.5, the
fault location targets will be the read port decoding block
modeled by ctr11, write port decoding block modeled by d1,
and ALU control decoding block modeled by ctrALU1. These
diagnostic targets belong to the control part of the processor.
The diagnostic target of the data part will be to locate the faulty
ALU operations modeled by the terminal nodes in the sub-
graph with the root ctrALU1, and the faulty data registers
modeled by the nodes {R0, R1, R2, R3}.

In the following we introduce two types of faults: (1) node
related faults, and (2) inter-node faults.

As the node related fault type, we refer to the fault model
developed for the HLDDs in [14], which targets exhausting
testing of each node in the model. Each path in an HLDD
describes the behavior of the system in a specific mode of
operation (working mode). The faults which may have effect
on the behavior of this working mode can be associated with
nodes along the path. A fault in each node may cause a break
or incorrect leaving the path activated by a test which would
lead to an erroneous activation of another path or several paths
simultaneously, terminating in wrong terminal nodes.
Exhaustive testing of a node m means the full check if the
mapping V(x(m)) → M(m) is correctly implemented.

The class of inter-node faults emerges from the case when
several nodes are labeled by the same high-level variable. In
Fig.5, the nodes labelled by di represent a de-multiplexer used
in write port decoding. The faults in de-multiplexer may cause
wrong register accesses and writing data into wrong registers.

IV. TEST GENERATION WITH HLDDS
A. Fault Activation Constraints

To test the correctness of mapping V(x(m)) → M(m) in a graph
G, we need to synthesize a test pattern which satisfy two types
of constraints: (1) control constraints to activate the desired
working modes of the system, and (2) data constraints, for
testing that the selected working modes were correctly
selected.

Constraints for control variables. To test in the graph G a
non-terminal node m, the control variables must be assigned to
values which activate the following paths: (1) from root to
node m, and (2) from all neighbors of m non-overlapping paths
to a subset of nodes of MT. Denote this subset as M*(m) ⊆ MT.
To test a terminal node m, a single path from root to m has
only to be activated.

Example 3. In HLDD Ds1 in Fig.4, all these constraints,
for testing the node ctrs1, are “automatically” satisfied. On the
other hand, for testing the node d1 in the HLDD Ri in Fig.4,
there are two possibilities: (1) if we will select M*(d1) =

{ALU1, ALU2} then we need to assign d1 = d2 = i, and (2) if
we will select M*(d1) = {ALU1, Rj} then we need to assign
for d2 an arbitrary value from {0,1,2,3} - {i}.

To test the node ctrs1 in HLDD Ds1 in Fig.4, we need to
read in turn the contents of all 4 registers shown in the
terminal nodes by applying the values ctrs1 ∈ {0,1,2,3}. To
detect the erroneous behavior of the node ctrs1, the contents of
registers must be selected in such a way that each possible
fault should evoke an erroneous reading.

Consider the following consequences of the fault model
described above to the behavior of a node m.

If no register is accessed by the fault then whenever a
register Rj is to be retrieved, a ZERO (or ONE, depending on
the technology), will be retrieved. Here, ZERO denotes a
binary vector (00…0), similarly ONE stands for (11…1). If a
subset R’ of wrong registers is accessed because of the fault,
then the contents formed by bit-wise OR (or AND, depending
on the technology) over the registers of R’ will be retrieved.
The described consideration has been used as well in the fault
model developed for microprocessors in [14]. From above, the
following formal constraints for data variables can be derived.

Constraints for data variables. From the considerations
above, analogically to [3], to test a non-terminal node m, the
following constraints must be satisfied for test data:

 ∀mT∈ M*(m): [f(mT) ≠ Ω)], (1)
 ∀mj,mj∈M*(m): [(f(mi) ∨ f(mj)) f(mi)], (2)

where Ω = ZERO (or ONE, depending on the technology used
in the implementation). As constraints for test data for testing
a terminal node m with label function f(m), a set of test
patterns can be used generated by any ATPG for the logic-
level circuit which implements the function f(m). In this way,
the terminal nodes in HLDD are tested hierarchically by
combining high-level control constraints with low-level data
constraints.

Example 4. For testing the node ctrs1 in the HLDD Ds1 in
Fig.4, we may initialize the registers by data: R0 = 0001, R1 =
0010, R2 = 0100, R3 = 1000. Such a solution satisfies the data
constraints (1) – (2), and when using these data, any possible
multiple fault in the decoding block ctrs1 can be detected. To
test the control variable ctrAlus in Fig.4, the values of data
variables Ds1 and Ds2 should be selected in a similar way, so
that the constraints (1) – (2) were satisfied.

B. Testing by Component Level Test Groups

From the example above, it follows that the test of the node
ctrs1 needs 8 instructions, first, loading all 4 registers with
patterns T = {0001,0010,0100,1000}, respectively, and then
reading out the contents of the registers. If the test passes,
assuming that the write operations are fault-free, the Mux s1
of the read port Ds1 can be stated as fault-free. In case of any
possible multiple fault in this sub-circuit, at least once during
the 4 read operations, a data word will be read out which does
not belong to T, and the sub-circuit should be considered as
faulty.

Let us call such an exhaustive test of a node in HLDD as a
component level test group. The correct result of the test

2015 10th International Design & Test Symposium (IDT)

69

guarantees that in the component or sub-circuit, represented by
the node under test, any multiple fault in the control part is
missing, under the presumption that the other nodes involved
in the activated HLDD path are fault-free. This statement
results from the fault model for multiplexers as a bit-wise OR
of data operations (see: data constraints) to be propagated
through the multiplexer. The faults of this type can produce
only increasing 1-s (if not the case = ZERO) in the
propagated data word of the tested operation and hence, the
multiple faults in this sub-circuit can never mutually mask
each other. The component level test group (exhaustive test
for a node in HLDD) can be regarded as a generalization of
the logic level test-pair (exhaustive test for an SSBDD node)
for proving the correctness of the respective wire or signal
path through the gate-level circuit.

As we saw in Section 2, there may still exist multiple faults
which cannot be detected by test pairs because of fault
masking. Similarly, the described component level test group
may not detect a class of high-level multiple faults which
present a combination of node related and inter-node faults.

C. Testing by System Level Test Groups

Let us generalize the SSBDD based multiple fault test group
idea [10] for being used as well in HLDDs. Consider test
generation for data transfer nodes ctr1 and d1j on the HLDD
in Fig.6, extracted as a subgraph from HLDD in Fig.5 by
fixing ctrAlu1=4 for Write and ctrAlu1=0 for Read cycle. The
extracted HLDD in Fig.6 joins two consecutive test write and
read cycles, and allows better following the cause-effect
relationships of the test along the HLDD paths. When testing
ctr1, or d1j, any possible masking fault related to the nodes
ctrAlu1 in Fig.6 will be detected, because the masking paths
evoked by these faults will be kept stable for the whole test,
and hence, according to the test pair conception, will be
detected. So, the problem of inter-node fault masking will
arise here only in relation to the two nodes ctr1 and d1j,

The control variable d1 is split into 4 node variables d1j
which represent a de-multiplexer, and illustrate well the case
of inter-node faults. Because of multiple faults in this de-
multiplexer, all 4 nodes d1j may cause erroneous WR. For
example, when testing d10 by assigning d1=0 to access R0 for
writing, any other d1j, j 0, may be as well activated because
of an inter-node fault, which will cause wrong writing to Rj
and data overwrite. This fault may be later masked due to
overwrite of the same register in turn by other data used for
test stimuli. In Fig.6, possible masking paths are highlighted
with blue color. As in logic level case [10], each possible
masking path (shown in blue) must be kept stable (here, the
erroneously accessed register must not be overwritten before
the read operation to detect the masking fault).

To avoid masking of possible WR faults, after activating
each d1j node, any possible wrong activation of another d1k, k

 j, must be immediately checked. In other words, for each
register, after WR, the contents of other registers must be
checked before any new WR. Let us call this method, as
straightforward high-level test pair approach where write and

read cycles have to be intermittent. Such an approach,
however, will produce explosion of the test length.

R0

R1

ctr1
0

1

OUT1

d ctrAlu1

4

d

R0

R1

R2
2 d

R2

R3
3 d

R3

IN1

0

1

2

3

1,2,3

0,2,3

0,1,3

0,1,2

τ τ - 1

WRITE
Destination

READ
Source

ctrAlu1

0

D1

D1 + D2

D1 - D2

D1 & D2

0

1

2

3

D1

ctr2D2
0

2

3

1

Figure 6. Joint cycle-based HLDD model for slot 1 of the

VLIW processor

To cope with the masking effect of inter-node multiple faults,
we generalize now the SSBDD based test group approach [10]
to a new HLDD based high-level integrated test group
conception which allows generating test programs immune to
mutual multiple fault masking.

Denote by Wr↑ and Rd↑ the write and read sequences,
respectively, where the arrow shows the order of addresses.
Let us load the 4 registers with set of patterns
T={0001,0010,0100,1000}, derived earlier. Any multiple fault
at ctr1 can be detected by any of 4 component level test
groups: T00=(Wr↑,Rd↑), T01=(Wr↑,Rd↓), T10=(Wr↓,Rd↑),
T11=(Wr↓,Rd↓), according to discussion in sections 4-A,B,
however, under presumption that Wr↓ is correct.

To cope with the mutual masking of inter-node multiple
faults related to the nodes d1j (WR), the test group T00,10 =
{(Wr↑,Rd↑),(Wr↓,Rd↑)} may be used. It can be easily shown
that the inter-node faults which will be masked in Wr↑ due to
overwriting, and not detected by T00, will be still detected by
T10, because the order of accessing the registers in Wr↓ will be
opposite to Wr↑. To cope with possible mutual masking of
inter-node faults related to ctr1, the test group T01,00 =
{(Wr↑,Rd↓),(Wr↑,Rd↑)} will be sufficient, because now the
order in Rd↑ will be opposite to Rd↓. To summarize, the
system level test group T00,10,01 merges 2 component level test
groups and will detect all multiple (node related and inter-
node related) faults with respect to the nodes d1j and ctr1.

The method proposed is valid for testing of any non-
terminal node in HLDD which represent a control variable.
The complexity of the method depends on the number of
values of control variable under test. The main burden of test
generation for terminal nodes falls on gate-level ATPG to
solve the data constraints as discussed in Section IV-A.

V. COMPLEXITY OF THE METHOD AND EXPERIMENTAL RESULTS
Let us compare the test lengths of two approaches: (1) the
straightforward high-level test pair approach derived from the

2015 10th International Design & Test Symposium (IDT)

70

logic level test pair method [10], and (2) the proposed high-
level test group approach. Consider for comparison the
discussed problem of testing the nodes ctr1 and d1jin Fig.6.

Let n be the number of registers Rj. The straightforward
approach to testing the nodes ctr1 and d1j will involve the
following three parts: (1) initialization of registers (n write
cycles), (2) high-level test group for testing the node ctr1 (n
read instructions), and (3) n test pairs for each node d1j: WR
for Rj with immediate RD for another Rk, k j). Hence, the
length of the straightforward multiple fault test will be 2n +
2n2. When applying the new proposed system level test group
approach, we have to construct a test sequence: T00,10,01 =
{(WR↑,Rd↑), (WR↓,Rd↑), (WR↑,Rd↓)}, which has the
length 6n. Hence, the length of the test, developed by the
proposed method will be (2n+2n2)/6n = n/3 times shorter than
the test length of the straightforward approach.

Table 2. Comparison of different test generation methods

Module #Faults
Fault coverage %

Proposed
method

[17] [16]

AC 156 99.3 99.3 99.3
IR 228 99.4 96.4 98.60
PC 590 99.3 99.0 89.20
MAR 342 99.2 96.40 97.20
SR 130 99.0 96.80 98.90
ALU 556 98.30 98.00 98.50
SHU 310 100 99.20 94.10
Control 648 89.8 84.40 88.30
Total 2960 98.04 96.19 95.51

In Table 2, the experimental results, compared with [16, 17],
and carried out for microprocessor PARWAN [14],
demonstrate the gate-level SAF coverage achieved by HLDD
node exhaustive testing. The new proposed method, which
targets additionally inter-node multiple faults, will improve in
turn the quality of test, as it was shown by reasoning in
Section 4-C. To evaluate this additional impact experimentally
will be the objective of further research. Note, the complexity
of the proposed high-level test generation method does not
depend on the length of the processor’s data word. The latter
will influence only on the performance of the gate-level ATPG
when solving the data constraints for testing HLDD terminal
nodes.

VI. CONCLUSIONS
In this paper we generalized the logic level test group
approach for identifying fault-free sub-circuits for using it for
digital systems (systems-on-chip) represented at higher
register-transfer or instruction set based functional levels by
exploiting High-Level Decision Diagrams. The faults of any
multiplicity are assumed to be present in the core under test,
and there will be no need to enumerate the multiple faults.
Differently from known methods, we do not target the faults
themselves as test objectives. Instead, the goal is to verify the
correctness of a selected core in the system. It was shown that

the test length produced by the proposed method can be
estimated as n/3 times shorter than a straightforward approach
which was proposed as the first step in this attempt to cope
with multiple fault mutual masking.

The method opens a new scheme to fault diagnosis in the
presence of multiple faults. The knowledge about identified
correct parts of the circuit allows extending step by step the
core of the circuit proved as correct. In case when the proof
fails, fault diagnosis will follow, but the knowledge about
already proved correct functions of the system may
considerably simplify the fault location process.

Acknowledgement: The work has been supported by EU FP7
STREP project BASTION, HORIZON 2020 RIA project
IMMORTAL, and by European Structural Funds. We thank
Artjom Jasnetski and Anton Tsertov for carrying out
experiments with PARWAN microprocessor.

VII. REFERENCES
[1] A.G. Birger, E. T.Gurvitch, S.Kuznetsov, “Testing of Multiple

Faults in Comb Circuits”, Avtomatika i Telemehanika, No8,
1975, 113-120.

[2] H.Cox,J.Rajski. A Method of Fault Analysis for Test Generation
and Diagnosis, IEEE Trans. on CAD,v.7,No.7,1988,pp.813-833.

[3] S.Kajihara, T.Sumioka, K.Kinoshita, “Test Generation for
Multiple Faults Based on Parallel Vector Pair Analysis”,
ICCAD’93, 436-439.

[4] A.Agrawal, A.Saldanha, L.Lavagno, “Compact and Complete
Test Set Generation for Multiple Stuck-at Faults”, ICCAD,
1996, 212-219.

[5] H.Takahashi et al. Test generation for Combinational Circuits
with Multiple Faults. Int.Symp.on Fault-Tolerant Systems. 1991.

[6] S.Kajihara, R.Nishigaya, T.Sumioka, K.Kinoshita. Efficient
Techniques for Multiple Fault Test Generation. 3rd ATS, 1994.

[7] I.V.Kogan, ”Testing of Missing of Faults on the Node of Comb.
Circuit”, Avtomatika i Vychislitelnaja Tehnika, Automation and
Computer Engineering, No 2, 1976, pp. 31-37 (in Russian).

[8] R.Ubar, “Complete Test Pattern Generation for Combinational
Networks”, Proc. Estonian Academy of Sciences, Physics and
Mathematics, No 4, 1982, pp. 418-427 (in Russian).

[9] R.Ubar, S.Kostin, J.Raik, “About Robustness of Test Patterns
Regarding Multiple Faults”, 13th IEEE LATW, 2012, pp. 86-91

[10] R.Ubar, S. Kostin, J. Raik: “Multiple Stuck-at-Fault Detection
Theorem”, 15th IEEE DDECS, 2012, pp. 236-241.

[11] R.Ubar, “Test Synthesis with Alternative Graphs”. IEEE
Design&Test of Comp., 1996, Spring, pp. 48-57.

[12] R.Ubar. Overview of Low & HLDDs for Diagnostic Modeling.
Facta Univers,Nis,Ser.Elec.En.vol.24,no.3,2011,pp.303-324.

[13] RUbar, J.Raik, H.Vierhaus (Eds). Design and Test Technology
for Dependable Systems-on-chip,.), 2011, pp.92-118.

[14] A.Jasnetski, J.Raik, A.Tsertov, R.Ubar. New Fault Models and
Self-Test Generation for Microprocessors using HLDDs. IEEE
DDECS. Belgrade, Serbia, April 22-24, 2015.

[15] S.M.Thatte, J.A.Abraham. Test Generation for Microprocessors,
IEEE Trans. on Computers, Vol. C-29, No. 6, pp.429-441, 1980.

[16] L.Chen, S.Dey. SW-based self-test methodology for processor
cores. IEEE Trans. on CAD of IC & systems, vol.20,no.3, 2001.

[17] Y. Zhang, H. Li, and X. Li, "Software-based self-testing of
processors using expanded instructions. ATS,2010,pp.415-420.

2015 10th International Design & Test Symposium (IDT)

71

Appendix 2

II
A. S. Oyeniran, U. E. Odozi, and R. Ubar, “A new measure for calculating
multiple fault coverage of microprocessor self-test,” in 2016 15th Biennial
Baltic Electronics Conference (BEC), pp. 75–78, Oct 2016

107

 A New Measure for Calculating Multiple Fault
Coverage of Microprocessor Self-Test

Adeboye Stephen Oyeniran, Uzochukwu Eddie Odozi, Raimund Ubar
Tallinn University of Technology, Estonia

Abstract—A new measure is proposed for evaluating multiple
fault coverage of test sequences for microprocessor circuits.
The class of faults under consideration includes gate-level
Stuck-at-Faults (SAF), conditional SAF, and bridging faults of
any multiplicity in control paths of microprocessors (MP). A
new high-level functional control fault model for MP is
introduced, and it is shown that 100% coverage of the high-
level functional faults will be equivalent to 100% coverage of
the low-level structural faults from the mentioned class of
faults of any multiplicity. A simple method was developed for
test data generation for high-level control faults, and a fault
simulation method was developed for calculating the high-level
fault coverage. Several high-level methods of test generation
for MP were investigated, and the quality of the related tests
were compared using the proposed fault measure.

Keywords: Microprocessors, control fault models, test program
generation, high-level fault simulation, software-based self-test

I. INTRODUCTION
For the last decade, there has been an extensive research on
software-based self-test (SBST) of embedded processors [1-
5]. The quality of SBST is mainly affected by test data used
in test programs. One of the ways to obtain test data is
executing an Automated Test Pattern Generator (ATPG). In
[1, 2] it was shown that processor can be divided into
Modules under Test (MUT) to ease the task of ATPG. On
the other hand, the difficulties of the method arise from the
need of guiding ATPGs by functional constraints to produce
functionally feasible test patterns. An alternative way is to
use random test patterns for MUTs [3]. In [4], shifting of
SBST generation from gate- to Register-Transfer Level
(RTL) was suggested. The drawback of this method is that
high fault coverage of structural faults cannot be guaranteed.
Hybrid SBST methods were proposed for combining
deterministic structural SBST with verification-based self-
test codes [4-7]. In addition to Hybrid SBST [7, 8], there are
methods that achieve comparable results and improve
scalability when generating SBST program using only RTL
[6, 9].

The drawbacks of the known methods are: the fault
coverage is traditionally measured only regarding SAF, no
broader fault classes have been considered, and no attempts
have been made to evaluate the test quality regarding
covering of multiple faults.

To cope with the complexity of the gate or RT level
representations of microprocessors (MP), we consider the

problem of SBST program generation with focus on
modeling functional faults at the behavioral-level using
Instruction Set Architecture (ISA). At the same time, for the
purpose of evaluating the quality of tests generated at high-
level, we target a broader class of faults than SAF. We
consider the conditional SAF and bridging faults as well.

Our previous work has been targeting SBST field with
methodology of using High-Level Decision Diagrams
(HLDD) for modeling of MP and faults at the behavior
kevel [10-12]. For test program generation hierarchical
approach was used where the control functions of MP were
tested exhaustively (by conformity test), but the data
operands for testing the data path were generated by gate-
level ATPG (scanning test). The paper [12] was devoted to
generation of test groups for detecting of multiple faults,
and avoiding fault masking. However, in [12] only the
multiple faults in the READ/WRITE logic were considered.

In [11] it was shown that the high-level functional fault
model for the control part of MP, based on HLDDs, can be
mapped well on the related low-level faults of a joint class
of stuck-at faults (SAF), conditional SAF and bridging
faults. However, no high-level algorithms have been
proposed so far for generating data operands in a formal
way for testing the control part of MP. No methods have
been proposed for high-level fault simulation as well.

In this paper, we extend the results of [11,12],
concentrating on the operational subsystem of MP on the
example of ALU. For testing the control part of ALU, we
propose a method for high-level synthesis of data operands.
We also propose a high-level fault simulation method to
evaluate high-level control fault coverage. We show that
this fault coverage can be used as a measure of test quality
regarding a broad class of multiple faults in MP.

In Section 2, the method of modeling MP with HLDDs
is presented. A new method for high-level fault modeling is
proposed in Section 2. Section 4 presents a method for high-
level test data generation and an algorithm for calculating
high-level functional fault coverage. Section 5 presents
experimental data, and Section 6 concludes the paper.

II. MODELING MICROPROCESSORS WITH HLDDS

In the following we consider microprocessors (MP) presented
on the behavior level and described by instructions given in
manuals. An example of a subset of MP instructions is
depicted in Table 1.

Table 1. Instruction set of a microprocessor
OP B Mnemonic Semantics and RT level operations

0
0 LDA A1, A READ: R(A1) = M(A), PC = PC + 2
1 STA A2, A WRITE: M(A) = R(A2), PC = PC + 2

1
0 MOV A1,A2 TRANSFER: R(A1) = R(A2), PC = PC + 1
1 CMA A1,A2 COMPLEMENT: R(A1) = ¬ R(A2), PC = PC + 1

2
0 ADD A1,A2 ADD: R(A1) = R(A1)+ R(A2), PC = PC + 1
1 SUB A1,A2 SUBTRACT: R(A1) = R(A1)- R(A2), PC = PC + 1

3
0 JMP A JUMP: PC = A

1 BRA A Conditional jump (Branch instruction):
IF C=1, THEN PC = A, ELSE PC = PC + 2

For behavioral modeling of the set of instructions in MP
we use the behavioral level HLDD model in Fig.1 derived
directly from the instruction set as explained in [10]. Since
the HLDD model is synthesized from the instruction set, it
becomes a behavioral level model for MP.

A1 R0
0R(A1)

R1
1

R2
2

R3
3

A2 R0
0R(A2)

R1
1

R2
2

R3
3

R0

R0

1,2,3

0

R3

R3

0,1,2

3

R1, R2

OP B0
0 M(A)

1

0

B1
1 R(A2)

1

0

B2
2

1

0

R(A1) - R(A2)
3

R(A1)

R(A1)

R(A1) + R(A2)

R(A1)

A1

A1

Fig. 1. HLDDs for the processor given by instructions in Table 1.

The instruction list of MP is converted into a network of
HLDDs where each HLDD represents a functional unit or a
subsystem of MP. Each graph has an entry variable (called
as graph variable) which represents the output of the unit.
The value of this variable can be calculated by tracing the
graph according to the values of the node variables. In each
node, a decision is made about the direction of tracing
according to the value of the node variable. The node
variables represent the functional variables used in the
descriptions of instructions in Table 1 (OP, B – opcode
variables, A – address variables, R – register variables etc.).
The value of the graph variable will be equal to the value of
the expression (or variable) in the terminal node reached by
tracing the graph. As an example, the red arrows in Fig. 1
show the track (activated path) of tracing the HLDDs for the
instruction ADD A1 A2 (OP=2, B=0, A1=3, A2=2).

Each HLDD node on the activated path represents a
functional unit of MP activated by the given instruction. The
terminal nodes labeled by variables may represent either
registers or buses, whereas the nodes labeled by arithmetic
or logic expressions represent data manipulation units
within ALU. The nonterminal nodes of HLDDs represent
the units processing the control information (OP, Bi, A1,
A2), which may be decoders, multiplexers or de-
multiplexers (the subscript at B in the nodes of HLDD are
introduced to distinguish the nodes which are labeled by the
same variable). For example, the node A1 in the HLDD GR0
represents de-multiplexer, the node A2 in GR(A2) represents

multiplexer, and the nodes OP and B in the graphs represent
decoders.

Because of the one-to-one mapping between the nodes in
HLDDs and the corresponding high-level functional units,
we can use the HLDD nodes as a checklist for high-level
test planning and organization of test programs for MP.

In this paper we concentrate only on testing of the control
part of ALU using the same HLDD based approach for
behavioral modeling of ALU at the given instruction list of
MP. Consider a typical set of instructions in Table 2. The
operations are represented by operation codes and the related
formulas fi for calculation of the output values of ALU. The
behavior level structure of the ALU and its High-Level
Decision Diagram (HLDD) model are depicted in Fig2. The
HLDD has a single internal node labelled by the control
variable c. The terminal nodes are labeled by the operation
formulas fi of ALU. The control variable c can have values
from the domain {0,1, …, 15}. Let us introduce the edge
variables ci, so that ci = 1 if c = i.

Table 2. Instruction subset for an ALU of a microprocessor
Mnemonic fi opcode Mnemonic fi opcode

MOV f0 0000 SHL f8 1000
ADD f1 0001 SHR f9 1001
SUB f2 0010 ASR f10 1010
CMP f3 0011 INC f11 1011
AND f4 0100 DEC f12 1100
OR f5 0101 RLC f13 1101

XOR f6 0110 RRC f14 1110
NOT f7 0111 NOP f15 1111

Control
part

Data
part

OR

AND0

YD

C
Global
control
faults

Local
control
faults

f0

f15

Control signals

f0

f15 AND15

C f0

f15

0

15

Y

f1
1

Fig.2. Behavior level structure of ALU and its HLDD

III. HIGH-LEVEL FAULT MODELING IN MP
The HLDD model is well suitable for high-level fault

modeling in digital systems in case when the fault location
accuracy is determined with granularity of the given high-
level description. Then, the faults are located in terms of
faulty blocks (as black boxes) shown by the HLDD nodes.

The terminal nodes of HLDDs represent the sub-
functions carried out in data paths, whereas nonterminal
nodes represent the functions of the control part of MP.
According to such a mapping of the system functions into the
HLDD model, we can classify two types of HLDD-based
high-level fault models: control faults (the faults related to
non-terminal nodes), and data faults (the faults related to
terminal nodes).

Definition 1. As the fault universe related to non-
terminal nodes we allow any corruption in the behavioral of
the nodes defined as follows [10]: (1) the output edge of the

node is broken; (2) the output edge of a node is always
activated; (3) instead of the activated edge, another edge or a
set of edges are simultaneously erroneously activated. The
faults of terminal nodes may be interpreted as a special case
of the fault model of non-terminal nodes.

From Definition 1, the high-level fault model for non-
terminal nodes results as the need for exhaustive testing of
the nodes. That means the fault model of the non-terminal
node must include the set of all values of a node variable to
be exercised, accompanied with constraints for data operands
to be fulfilled during the exhaustive test of the node. As the
fault model for terminal nodes we use a set of data patterns
needed for testing the related function of the data path.

Denote by m the internal node under test in the HLDD,
and by MT(m) the set of terminal nodes which can be reached
from the node m. Let f(mT) denote the expression labeling the
terminal node mT∈MT(m). In [11] the following constraints
(as part of the fault model) were introduced for testing the
control part of MP :
 ∀mT∈ MT(m): [f(mT) ≠ Ω)], (1)
 ∀mi,mj ∈MT(m), i j : ∀k [fk(mi) < (fk(mi) * fk(mj))] (2)
where Ω = ZERO (or ONE), and the symbol * stands for
logic OR (or logic AND), depending on the technology
implemented in MP [13]. Here, ZERO denotes a binary
vector (00…0), and, similarly, ONE stands for (11…1). The
index k refers to the bit number of the data words.

Let us focus here only on the case: Ω = ZERO, * stands
for OR. Since fk(mi) < (fk(mi) * fk(mj)) is valid always if
fk(mi) < fk(mj) is valid, and since in the bit-based analysis
the constraint (1) results directly from (2), we can simplify
the constraints (1) and (2) as follows:
 ∀mi,mj ∈MT(m), i j : ∀k [fk(mi) < fk(mj)]. (3)

Let us focus now on testing of the single non-terminal
node c of the HLDD in Fig.2. As mentioned, it represents the
control path of ALU and has to be tested by exercising of all
the 16 values of c at the constraints defined by (3).

Let us investigate in more details the meaning of the
constraint (3). Denote fk(mi) for brevity as fki. Consider the
ALU in Fig.3 divided into control and data paths. Let us
concentrate on testing the ALU control at ci = 1. This means
that we assign the control value c = i, and activate the
operation fi: y = fi. This is the test of existence of the
operation – testing that the edge ci is not broken. Assume
now that there is a control fault ci ≡ 0 present (the edge is
broken). The fault ci ≡ 0 can be masked if there is another
control fault cj ≡ 1, and the data operands are selected so that
fjk = 1. If the constraint (3) for the bit k is satisfied, i.e. if fjk <
fik, such a masking is not possible, and the fault ci ≡ 0 will be
detected. Another meaning of the costraint (3) is to detect the
faults described in Definition 1 by cases (2) and (3). For
example, the fault cj ≡ 1 can be tested by applying the control
value c = i under constraints fik = 0, and fjk = 1.

In [11] it was shown that the test sequences which
satisfy the constraints (1) and (2) will cover a broad class of

single faults including Stuck-at Faults (SAF), conditional
SAF and bridging faults. It is easy to see that the same is
valid also for the constraints of (3) which are easier to use.

1

&

&

&

&

y

fi

ALU

0

i

j

n

DATA fj

c
f0

fn

Control pathData path

ci ≡ 0

cj ≡ 1
(fjk = 0)

(fik = 1)

Fig.3. Behavior level structure of ALU and its HLDD

The discussion showed that the faults ci ≡ 0 in Fig.3
cannot be masked by any single or multiple faults of type cj
≡ 1, if the constraints (3) are satisfied. Hence the proposed
fault model is valid also for testing multiple control faults of
any multiplicity whereas only single high-level functional
faults need to be counted and targeted.

From above, it follows that the set of all constraints in
(3) can be represented as the universe of high-level faults,
and the coverage of this universe by generated test can be
used as the measure of the quality of the test.

IV. TEST DATA GENERATION AND FAULT SIMULATION
Currently there are no tools available for generating data

operands for control test which satisfy the constraint (3). In
[11], a method and algorithm were proposed for simplified
deterministic generation of data operands, where it was
sufficient to satisfy the constraint (3) at least for a single bit.
In this paper, we propose a pseudoexhaustive control part
test method which targets the constraints (3) for all bits.

The idea of the method is to exercise each ALU bit for
each operation pseudoexhaustively. The number of test
patterns depends on the number of data operands involved
in the operation. For testing 1-bit unary operations (MOV,
NOT, SHIFT) only 2 data operands {0, 1} are needed, for
testing 1-bit binary operations (AND, OR , XOR) 4 data
operands {00, 01, 10, 11} are needed, for testing 1-bit
trenary operations (ADD, SUB with carry bits) already 8
data operands or more are needed etc. For n-bit operations
(INC, DEC, CMP). The number of actual data operands is n
times bigger where n is the length of data words. The reason
is that all the needed data combinations must be applied in
each bit. As an example, for testing 1-bit binary operations
including 1-bit unary operations, the following data
operands with word length 8 bit in Table 3 are needed.

Table 3. Data operands for testing 1-bit binary operations

To be used by
all instructions

t D1(t) D2(t)
0 11001100 10101010
1 10011001 01010101
2 00110011 10101010
3 01100110 01010101

The calculation of the coverage of the proposed high-
level functional fault model for the given test sequence leads
to the following fault simulation algorithm. Denote by D =

{Dt} the set of all data used for testing where Dt is the subset
of data operands to be initialized for each test step
(instruction to be tested). For example, in Table 3, Dt =
(D1(t), D2(t)), 4 subsets (pairs of data operands) are depicted.
Introduce for each t a simulation matrix St = sk

ij where sk
ij

= 1 if fik < fjk, and sk
ij = 0, otherwise. Let n be the number of

operations, m – the number of data subsets, and w – the
length of the data word. F = n2

*w is the number of all high-
level functional faults represented by the bits in St where 1
means that the fault is covered, and 0 means – not covered.
Let F(St) be the number of 1-s in St, and F(S) = t(St), t =
1,2, ... m, – the logic sum of all St. Then the high-level
control fault coverage for the test program T can be
calculated as FC(T) = F(S)*100%/F.

The calculated fault coverage FC(T) can be served as the
proposed measure for gate-level fault coverage of the test
program T for a broad class of faults of any multiplicity,
including SAF, conditional SAF and bridging faults.

V. EXPERIMENTAL RESULTS
We carried out experiments with ALU (16 operations) of

a single slot of VLIW processor [14]. We extracted from the
full VHDL design the ALU part, and synthesized from it the
ALU gate-level network for evaluating gate-level (GL) SAF
coverage of the tests generated at high level (HL). The
simulation of tests was performed using ModelSim to obtain
the functional data Dt used for HL fault simulation.

Table 4. Experimental data

No Simulation experiment

Test
data

Test
length
instr

Fault coverage for
High
level

Gate
level

M1 Gate-level deterministic test 68 68 57.2% 100%
M2 Simplified determ. contr. test [11] 3 48 56.0% 85.8%
M3 Pseudo-exhaustive data part test [11] 77 95 90.3% 99.1%
M4 Pseudo-exhaustive control part test 4 64 85.0% 99.9%
M5 Combined test (M3, M4) 81 159 97.7% 100%

In Table 4, 5 methods for test generation are compared
to show the differences between HL and GL fault coverages.
The tests were fault simulated at both levels. M1 forms the
GL basis for comparison. We generated with a GL ATPG a
test with 100% single SAF coverage. Note, because of very
low HL fault coverage this test gives no information
about the quality of multiple fault detection. Then, we
implemented two HL test generation methods (M2, M3)
proposed in [11], and generated a simplified deterministic
test for the control part of MP, and a pseudo-exhaustive test
for the data part of MP. For both tests, HL fault coverage
was calculated by the method described in Section IV. For
M2, the length of test [11] was 48 instructions: all 16
operations were carried out with all 3 pairs of data operands.
The HL control fault coverage was low, because of the
control function was tested not in all bits. For M3, the data
path test achieved a good HL fault coverage because it
targeted each ALU operation separately, using dedicated
pseudo-exhaustive tests for all bits. For M4, the proposed
method targeted the control of all bits of data words, which
resulted in considerable increase of fault coverage,

compared with M2. For M5, the combination of two
methods (M3, M4) allows considering the specifics of each
operation separately. As the result, the best fault coverages
were achieved. We have got the same 100% GL fault
coverage as for M1, but in addition very high HL fault
coverage. As a side effect, it was possible to prove the
redundancy of 287 HL faults among all 1920 faults. For the
2.3% faults not covered, additional dedicated patterns can be
manually generated to cover 100% of HL faults that will
guarantee detecting of all multiple low-level faults.

VI. CONCLUSIONS
In this paper, the first time a measure of testing quality

regarding a broad class of multiple gate-level faults in
control circuits of MP is proposed. The proposed measure is
based on the novel high-level functional fault model. It was
shown that the 100% high-level fault coverage is equivalent
to 100% fault coverage of multiple gate-level faults of a
broad class including SAF, conditional SAF and bridging
faults. The measure is qualitative and is not based on
counting of single or multiple faults of the broad low-level
fault class specified in the paper.

For investigating the feasibility and efficiency of the
measure, we proposed a pseudo-exhaustive method of test
data generation, and developed a high-level fault simulation
algorithm. Both high- and gate-level structural fault
simulation methods demonstrated excellent match in
reaching 100% fault coverage at both levels.
Acknowledgement: The work has been supported by EU FP7 STREP project
BASTION, HORIZON 2020 RIA project IMMORTAL, and by European
Structural Funds. We thank Mario Schölzel from U Potsdam for providing us
with VHDL description of the VLIW processor for carrying out the experiments.

REFERENCES
[1] R. S. Tupuri and J. A. Abraham, "A novel functional test generation method for

processors using commercial ATPG," in Proc. of ITC, 1997, pp. 743 - 752.
[2] L.Chen, et al. A scalable software based self-test methodology for

programmable processors," in Proc. of DAC, 2003, pp. 548 - 553.
[3] L. Chen and S. Dey. SW-based self-test methodology for processor cores, IEEE

Trans. on CAD of IC and systems, vol. 20, no. 3, March 2001, pp. 369 - 380.
[4] N.Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, "Software based self-

testing of embedded processors," in IEEE Trans. on Comp., vol.54, no.4, 2005.
[5] R. S. Gurumurthy, S. Vasudevan, J.A. Abraham. "Automated mapping of pre-

computed module-level test sequences to processor instructions," ITC, 2005.
[6] Y.Zhang, H.Li, and X.Li. Automatic test program generation using executing-

trace-based constraint extraction for embedded processors,” in IEEE
TransactionsVery Large Scale Integration (VLSI) Systems, vol.21, no.7, 2013.

[7] N. Kranitis, et al “Hybrid-sbst methodology for efficient testing of processor
cores,” in IEEE Design and Test of Computers, vol. 25, no. 1, 2008, pp. 64-75.

[8] C.-H. C. Tai-Hua Lu and K.-J. Lee, "Effective hybrid test program development
for software-based self-testing of pipeline processor cores," IEEE Trans. On
VLSI Systems, vol. 19, no. 3, March 2011, pp. 516 - 520.

[9] C. H.-P. Wen, et al. Simulation-based functional test generation for embedded
processors. IEEE Trans. on Comp., Vol.55, No. 11, 2006.

[10] A.Jasnetski et al. SW-based Self-Test Generation for Microprocessors with
HLDDs. Proc. of the Estonian Academy of Sciences, 2014, 63, 1, 48-61.

[11] A.Jasnetski, S. Adeboye Oyeniran, A.Tsertov, M.Schölzel, R.Ubar. High-Level
Modeling and Testing of Multiple Control Faults in Digital Systems. Proc. of
DDECS. Košice, Slovakia, April 20-22, 2016, 6p.

[12] R.Ubar, M. Schölzel, S.A. Oyeniran, H.T. Vierhaus. Multiple Fault Testing in
Systems-on-Chip with High-Level Decision Diagrams. 10th IEEE International
Design & Test Symposium IDT'15, Dead Sea, Jordan,.December 14-16, 2015.

[13] S.M.Thatte, J.A.Abraham. Test Generation for Microprocessors, IEEE Trans.
On Computers, C-29, No.6, pp.429-441, June 1980.

[14] M.Schölzel. Self-Testing and Self-Repairing Embedded Processors: Techniques
for Statically Scheduled Superscalar Architectures. Habilitation Thesis.
Brandenburg University of Technology Cottbus-Seftenberg, 2015.

Appendix 3

III
A. S. Oyeniran, A. Jasnetski, A. Tsertov, and R. Ubar, “High-level test
data generation for software-based self-test in microprocessors,” in 2017
6th Mediterranean Conference on Embedded Computing (MECO), pp. 1–6,
June 2017

113

Adeboye Stephen Oyeniran, Artjom Jasnetski, Anton Tsertov, Raimund Ubar
Tallinn University of Technology

Tallinn, Estonia

Abstract— A new high-level fault model and test generation
method for software-based self-test in microprocessors (MP) is
proposed and investigated. The model is derived directly from the
instruction set of the given MP. A deterministic high-level method
and algorithm for test data generation based on this fault model
are proposed for the control part of MP. For the data path of MP,
pseudo-exhaustive test generation method is proposed, which
provides high gate-level SAF coverage. The methods proposed are
fully high-level approaches, and no gate-level ATPG is needed.
The capability of the new approach to achieving high gate-level
fault coverage is demonstrated by low-level SAF simulation.

Keywords- Microprocessors, fault models, test generation, fault
simulation, software-based self-test

I. INTRODUCTION

For today’s deep sub-micron technologies, at-speed testing
has become essential for achieving high test quality. The
traditional solution to cope with at-speed testing is Built-In
Self-Test (BIST) [1]. In BIST the tasks of test pattern
generation and response evaluation are moved from external
ATE to processor embedded logic. This facilitates achieving
high-level test quality (including testing of dynamic defects and
delay faults), it leads as well to test cost reduction. However,
the BIST related testing approaches for microprocessors are
found not as feasible as for memories or in application specific
integrated circuits (ASICs) [2]. Furthermore, BIST results often
in over-testing as well as over-stressing the circuit due to higher
than normal switching activity during the test.

As an alternative to hardware-based self-test such as BIST,
software-based self-test (SBST) has emerged [2-6]. SBST is a
non-intrusive test methodology that is based on using the
available processor resources.

For the last decade, there has been an extensive research on
SBST of embedded processors. The quality of SBST is
primarily affected by test patterns. One of the ways to obtain
test patterns is executing an Automated Test Pattern Generator
(ATPG). In [3] it was shown that processor can be divided into
Modules under Test (MUT) to ease the task of ATPG. An
alternative way is to use random test patterns for MUTs [2].
Although the gate-level fault coverage for MUT is acceptable
in deterministic and random test pattern generation, some of the
generated patterns are typically functionally infeasible when
considering the processor as a whole. Thus, ATPG has to be

guided by functional constraints to produce functionally
feasible test patterns.

An automatic constraint extraction based on gate-level
simulation of tests to check their functional feasibility was
proposed in [4]. However, the efficiency of the method on the
industrial processors was shown to be low. In [5], shifting of
SBST generation from gate-level to Register-Transfer Level
(RTL) was suggested. The drawback of this method is that high
fault coverage of structural faults cannot be guaranteed. Hybrid
SBST methods were proposed for combining deterministic
structural SBST with verification-based self-test codes [5-8]. In
addition to Hybrid SBST [8, 9], there are methods that achieve
comparable results and improve scalability when generating
SBST program using only RTL [7, 10]. However, the tendency
of embedding more components into a single package is making
the efficiency and scalability of the state-of-the-art SBST
methods presented above questionable.

In this paper, to cope with the complexity of the gate- or RT
level representations of microprocessors, we consider the
problem of SBST program generation with focus on modeling
functional faults at the behavioral-level using Instruction Set
Architecture (ISA). Our previous work was targeting SBST
field with a methodology of using High-Level Decision
Diagrams (HLDD) for modeling of microprocessors and faults
[11,12]. In [13], a new HLDD-based concept for formal test
generation for microprocessors was introduced.

In [14], a novel class of hard-to-test faults was introduced,
called “unintended actions”. It was shown how the self-test
programs developed using HLDDs allow detecting the faults
from this class. The papers [15, 16] were devoted to the
generation of test groups for detecting multiple faults, and for
avoiding the mutual fault masking of multiple faults. In [16] it
was shown that the test programs generated for the control part
of MP using HLDDs can be mapped well on the related low-
level faults of a joint class of stuck-at faults (SAF), conditional
SAF and bridging faults. However, no algorithms have been
proposed so far for generating the test data at high-level in a
formal way for testing the control and data parts of MP.
Traditionally the test data are generated at the low level with
gate-level ATPGs.

In this paper, a method is proposed for fully high-level test
program generation for both control and data parts of MP. The
test operands for control part are generated using high-level

2017 6th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 11-15 JUNE 2017, BAR, MONTENEGRO

978-1-5090-6742-8/17/$31.00 ©2017 IEEE

control fault model, and the data path is tested by pseudo-
exhaustive operands. The experimental results demonstrate
high low-level fault coverage for test programs generated at
high-level.

The rest of the paper is organized as follows. In Section 2
the method of modeling MP with HLDDs is presented, and in
Section 3, the idea of high-level fault modeling and test
program generation using HLDDs is discussed. Section 4
presents the algorithm for high-level deterministic data
generation based on the HLDD-based fault model for testing of
the control part, and Section 5 presents the ideas for pseudo-
exhaustive test pattern generation for testing of the data path.
Section 6 presents experimental data, and Section 7 concludes
the paper.

II. MODELING MICROPROCESSORS WITH HLDDS

In the following, we consider microprocessors (MP) presented
on the behavior level and described by instructions given in
manuals. Let us have an example of a subset of instructions in
Table 1.

Table 1. Instruction set of a microprocessor

¬

Denote the instructions as the values of a complex variable I
which may be represented as a concatenation of sub-variables I
= OP.B.A1.A2 or (I = OP.B.A1.A). The functionality of MP can
be described based on the set of control and data variables. The
control variables OP and B represent two fields of the opcode.
The addresses A1, A2 and A are interpreted as well as control
variables describing access to internal registers or memory
locations represented by data variables of the set RDATA = {R0,
R1, R2, R3, M}.

Consider in the following only the ALU part of MP, which
includes data manipulation circuits represented by behavioral
level functions: Ri = fRi (OP, B, A1, R(A1), R(A2), M(A)) where
Ri ∈ RDATA, i = 0,1,2,3.

For modeling of the set of described functions in MP, we use
the HLDD model depicted in Fig.1. Each graph has an entry
variable (called as graph variable), the value of which can be
calculated by tracing the graph according to the values of the
node variables. The value of the graph variable will be equal to
the value of the expression in the terminal node reached by
tracing the graph.
The HLDD model in Fig.1 represents 6 functions of the MP in
the form of 6 HLDDs: GRi for fRi, respectively, where i =

0,1,2,3, and GR(A1), GR(A2) – for addressing the registers. The
4 graphs GRi are merged and share a similar sub-graph with the
root node OP, which represents the logic of ALU. The graphs
GR(A1) and GR(A2) are accessed when processing the nodes
R(A1) and R(A2), respectively, in graphs GRi.

Figure 1. HLDDs for the processor given by instructions in Table 1.

We will call in the further text the nodes in graphs by the
names of node variables, or by the expressions labeling the
terminal nodes. To distinguish the nodes which are labeled by
the same variable in the given HLDD, we use subscripts at the
node variable. For example, in GRi, we have three different
nodes labeled by the same variable B, and the subscript at B will
distinguish the nodes.

Each instruction in Table 1 can be modeled by the related
path in the HLDD model. When simulating an instruction, its
related path in the HLDD is activated. For example, when
simulating the instruction I = OP=2.B=0.A1=3.A2=2, the
following paths l in Fig.1 are activated: l(A1, OP, B2,
R(A1)+R(A2)) in GR3, l(A1,R3) in GR(A1), and l(A2,R2) in GR(A2).
The paths are highlighted by bold edges and grey colored nodes
in Fig.1.

Each HLDD node can be regarded as a functional unit of
MP activated by corresponding instruction. For example, the
terminal nodes labeled by variables may represent either
registers or buses, whereas the nodes labeled by arithmetic or
logic expressions represent data manipulation units within the
ALU. The nonterminal nodes of HLDDs represent the units
processing the control information (OP, Bi, A1, A2), which may
be decoders, multiplexers or demultiplexers. For example, the
node A1 in GR0 represents de-multiplexer, the node A2 in GR(A2)
represents multiplexer, and the nodes OP and B in the graphs
represent decoders.

Because of the one-to-one mapping between the nodes in
HLDDs and the high-level functional units, we can use the
HLDD nodes as a checklist for high-level test planning and
organization of test programs for microprocessors. For
formalized test program generation, however, we need a
suitable high-level (behavioral) fault model.

III. FAULT MODELING AND TEST PROGRAM GENERATION
FOR MP WITH HLDD
The HLDD model is well suitable for high-level fault modeling
and fault diagnosis in digital systems in a case where the

2017 6th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 11-15 JUNE 2017, BAR, MONTENEGRO

diagnostic resolution is needed with high-level accuracy of
locating only faulty blocks (as black boxes) represented by the
nodes of HLDDs.

The terminal nodes of HLDDs represent the sub-functions
carried out in data paths, whereas nonterminal nodes represent
the functions of the control part of MP. According to such a
mapping of the system functions into the HLDD model, we can
classify two types of HLDD-based high-level fault models:
control faults (related to non-terminal nodes), and data faults
(related to terminal nodes).

The high-level fault model for non-terminal nodes is based
on the exhaustive testing of the nodes. As the fault model for
terminal nodes, we use a pseudo-exhaustive set of data patterns
needed for testing the related function.

Each path in an HLDD describes the behavior of the system
in a specific mode of operation (working mode of MP). The
faults which may affect the particular working mode can be
associated with nodes along the related path.

Definition. A non-terminal node related fault in the HLDD
may cause the following corruptions of the model:

1) the output edge of the node is broken;
2) the output edge of a node is always activated;
3) instead of the activated edge, a combination of other

edges is erroneously activated.
The faults related to terminal nodes are covered by pseudo-
exhaustive test patterns.

Figure 2. Illustration of different corruptions of the HLDD by faults in MP

Example 1. Consider in Fig. 2 how different fault models
described in Definition may be represented in a uniform way as
the node faults on the HLDD model. An addressing fault F1 is
illustrated in the graph GR(A1): instead of the edge 3 of the node
A1, another edge 0 (or concurrently both edges) are activated.
This fault can propagate to other HLDDs of the model. For
example, it can cause in the ALU graph either the fault of a
wrong source (F2) or a fault of a wrong destination (F3). The
fault type F4 – an instruction part erroneously activated – is
illustrated by the fault of the node OP as “instead of the edge 2
the edge 1 is activated”. All these faults belong to the third class
of the HLDD fault model defined by Definition.

Denote by m the internal node under test in the HLDD and
by MT(m) the set of all terminal nodes which can be reached from

the node m at the current instruction under test starting from all
erroneously activated output edges of the node m. Let f(mT)
denote the expression labeling the terminal node mT∈MT(m). In
[16] the following constraints (as part of the fault model) were
introduced for testing the control part of MP:

∀mT∈ MT(m): [f(mT) ≠ Ω)], (1)
 ∀mi,mj ∈MT(m), i ≠ j : ∀k [fk(mi) < (fk(mi) * fk(mj))] (2)
where Ω = ZERO (or ONE), and the symbol * stands for logic
OR (or logic AND), depending on the technology implemented
in MP [17,18]. Here, ZERO denotes a binary vector (00…0),
and, similarly, ONE stands for (11…1). The index k refers to
the bit number of the data words.

For the test program generation with a HLDD GY using the
constraints (1) and (2) for testing the control part (non-terminal
nodes in HLDD), and using the local test patterns generated for
testing the data path (terminal nodes in HLDD), we use the
following procedures.

Conformity tests. Generating a conformity test T(m) for a
non-terminal node m, labeled by variable z(m), produces an
exhaustive test of z(m). T(m) is a cycle of testing the behavior
of the control function related to the node m. Each step of the
cycle consists in:

1. Initialization of all registers involved in operations at
all terminal nodes mT ∈ MT(m) with values satisfying
the constraints (1) and (2);

2. Applying the instruction that: assigns to z(m) the next
(in turn) value, activates in HLDD a path to the node m,
and the paths from m to mT ∈ MT(m);

3. Observation of the value of the HLDD GY.
Scanning tests. Generating a scanning test T(mT) for a

terminal node mT∈MT(m), labeled by the expression f(mT),
produces a local test for f(mT). T(mT) is a cycle which consists
in:

1. Initialization of all registers involved in f(mT) at the
node mT ∈ MT(m);

2. Applying the instruction that activates in HLDD a path
to the node mT;

3. Observation of the value of the HLDD GY.
In the next sections, we present the methods and algorithms

for generating test data to be used in the described conformity
and scanning test programs.

IV. GENERATION OF OPERANDS FOR CONFORMITY TEST

As it was stated, the test data (operands) used in the conformity
test program for testing the control part in MP should satisfy the
constraints (1) and (2).

For solving this task, we have developed the following
deterministic algorithm presented in Fig.3. The idea of the
algorithm is to generate the bits of the data words (operands) D1
and D2 , starting from the least significant bit, and proceeding
then bit by bit towards the most significant bit, so that the
constraints (2) were solved for all pairs of the functions (fk(mi)

2017 6th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 11-15 JUNE 2017, BAR, MONTENEGRO

and fk(mj). We consider here only binary operations with one or
two data operands.
--
ALGORITHM 1: Test data generation for the control part
--
Input: HLDD model for MP; node m under test
Output: Set of test data pairs to be used in the conformity test of MP
Notations:
D1, D2 – the pair of test data;
w – the length of the data words D1 and D2;
n – the number of terminal nodes mT ∈ MT(m),
(the number of operations controlled by z(m));
k – the current bit number under determination;
I, J – the global number of bit assigned to the 1st bit of the next (in turn) data
words to be generated.
--
k = 0, I = 0, J = 0;
D1 = (d1,w , d1,w-1 , …, d1,1 , d1,0) = (00…0);
D2 = (d2,w , d2,w-1 , …, d2,1 , d2,0) = (00…0);
FOR j ← I to n
 FOR i ← J, i ≠ j to n
 IF fi (D1,D2) < fi (D1,D2) ∨ fj (D1,D2)
 at least in one bit
 THEN cij = k;
 ELSE k = k + 1;

IF k = w + 1
THEN I = i, J = j;

GO TO END
END IF

 Find the proper values
 (d1,k , d2,k) ∈{(0,0), (0,1), (1,0), (1,1)},
 for the data words
 D1 = (d1,w, d1,w-1, …, d1,k,…,d1,1, d1,0),
 D2 = (d2,w, d2,w-1 , …, d2,k,…,d2,1 , d2,0),
 so that
 fi (D1,D2) < fi (D1,D2) ∨ fj (D1,D2),
 at least in one bit;
 IF no solution found
 THEN cij = ∅ ELSE cij = k;
 END IF
 END FOR i
END FOR j
END
--

Figure 3. Algorithm for test data generation

Example 2. As an example, let us have the following set of
16 operations of ALU depicted in the left most column of Table
2. The operations correspond to part of the instruction set used
in the VLIW processor developed at TU Brandenburg,
Germany [19]. The HLDD of the ALU for this subset of
instructions, as shown in Fig.4, will contain a single
nonterminal node m with 16 output edges entering directly into
16 terminal nodes labeled by functions fi, i = 1,2,…16 (related
to the 16 instructions in Table 2).

The first pair of data words D1, D2 with length of 8 bits (the
arguments of fi) for testing the node m (labelled by the control
variable C) is depicted in the rows 2 and 3 of Table 2. This pair
of data was generated by the first run of Algorithm 1. The
remaining rows in Table 2 numbered from 1 to 16 present the
values of 16 functions fi, respectively, calculated at D1 and D2.
Table 4 shows in which bit k of the data words the constraint fi,k

< fj,k is satisfied the first time. The symbol ∅ in highlighted
cells means that the constraint (2) for this pair of functions can
never be satisfied, and the related control fault should be
considered as redundant. Other highlighted cells with global bit
numbers bigger than 7 refer to the fact that the 1st pair of data
operands was not able to satisfy the related constraints.

Figure 4. HLDD for the ALU with control logic of VLIW MP
To finish the procedure and to satisfy the remaining

constraints, two more runs of Algorithm 1 were needed to
generate two more pairs of test data. The additional data pairs
are presented in Table 3. The remaining constraints are now
satisfied in the bits with global numbers 8, 10, and 17. It was
not possible to solve the remaining constraint for INC and DEC
operations in the 2nd data pair by any of 4 combinations of the
bits 11 for D1 and D2 because of the influence of already fixed
values in previous bits. Hence, the 3rd pair of data words was
needed.

Table 2. The 1st pair of test data

Table 3. The 2nd and 3rd pairs of test data

2017 6th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 11-15 JUNE 2017, BAR, MONTENEGRO

To test the control part, according to Section 3, all the ALU
operations have to be carried out for all 3 pairs of data words
depicted in Tables 2 and 3. The “unoccupied” free bits in the
2nd and 3rd pairs of data can be filled up randomly.

Table 4 shows the high-level fault coverage where the non-
empty cells show that the constraint fi,k < fj,k has been satisfied
at least once.

Table 4. The bits where two operations are distinguished

V. GENERATION OF OPERANDS FOR SCANNING TEST

For generating test data for the scanning test program to test the
data path of MP represented by terminal nodes of the MP (see
Fig.4), we use the pseudo-exhaustive test patterns instead of
exploiting traditional gate-level ATPG.

Table 5. Generation of pseudo-exhaustive data for adder

No … 4-bit 3-bit 2-bit 1-bit 0-bit
a4 b4 c4 a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0

1 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 … 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1
3 … 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0
4 … 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1
5 … 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0
6 … 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1
7 … 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0
8 … 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6 Generation of pseudo-exhaustive data for subtractor

No … 4-bit 3-bit 2-bit 1-bit 0-bit
a4 b4 c4 a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0

1 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 … 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1
3 … 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0
4 … 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1
5 … 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0
6 … 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
7 … 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0
8 … 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

All bits of all ALU operations fi, i = 1,2,…,16, were tested
exhaustively. For ADD and SUB operations, 8 data pairs are
needed to cover all combinations of 3 inputs (two operands and
carry bit) of each bit of the adder (subtractor). As an example,
the procedure of test generation for ADD and SUB, bit by bit, is
illustrated in Tables 5 and 6. We start to generate patterns from
the least significant bits, calculate the carry ci for the next bit and
fit in the next bit the values of operand bits ai and bi to the given
value of ci so that all pseudo-exhaustive combinations for this
bit section were achieved. The columns "2-bit" and "1-bit" can
be copy-pasted for the next two-bit-pairs to right.

The patterns in Tables 5 and 6 are valid as pseudo-exhaustive
tests for ADD and SUB operations, however, only in case of

ripple carry. Since in our case we had a carry-ahead circuit, an
additional pair of patterns was needed.

For logic operations, we need 4 exhaustive patterns {(0,0),
(0,1), (1,0), (1,1)} per bit, for other unary operations two patterns
are sufficient.

VI. EXPERIMENTAL RESULTS
The motivations of the high-level test generation are

threefold: possibility to generate test without knowing the details
of implementation, speed-up the procedure thanks to the lower
complexity of the high-level model, and the possibility to cover
multiple gate-level faults with higher confidence [16]. We
carried out experiments with two MP: ALU sub-circuit of the
VLIW processor [19], and Integer Unit of Leon 3 [20]

In the case of VLIW processor, we concentrated on testing of
the ALU together with its control sub-circuit, which provided an
easy comparison between high- and low-level fault coverages.
We extracted from the VHDL design of the VLIW processor
[19] the ALU and synthesized its gate-level network to evaluate
the gate-level stuck-at-fault (SAF) coverage of the tests
generated at the behavior level by the methods developed in the
paper. The functional simulation of the ALU was done using
ModelSim to obtain the functional data used for generating test
data by Algorithm 1.

Table 7. Experimental data of the VLIW processor

No Simulation experiment

test
data

Test
length

instr

Fault coverage
for

High
level

Gate
level

M1 Gate-level deterministic test 68 68 57.2% 100%
M2 Det. conform. test (1 bit) 3 48 56.0% 85.8%
M3 Det. conform. test (all bits) 24 384 94.4% 100%
M4 Ps.-exhaustive scanning test 34 54 74.4% 99.1%
M5 Combined test (M2, M4) 57 103 81.0% 100%
M6 Combined test (M3, M4) 101 479 96,9% 100%

In Table 7, six methods for test generation are compared to
show the differences between High-Level (HL) and Gate-Level
(GL) fault coverages. The test experiment M1 with 100% single
SAF coverage forms the GL basis for comparison. Note,
because of very low HL fault coverage this test gives no
information about the quality of multiple fault detection. We
implemented two HL conformity test generation methods (M2,
M3): M2 corresponds to Algorithm 1 which targets HL fault
coverage at least in a single bit of data word, whereas M3 tries
to target the fault coverage in all bits by extending the test M2
by shifting test data 8 times by one bit. M3 provides high HL
and GL fault coverages, however, at the high cost of test length.
M4 targets the faults only in the data path and covers only
partially the faults in the control part. Combining now the HL
tests for both, control and data path, it was possible to increase
the HL fault coverage by tests M5 and M6 keeping 100% GL
fault coverage.

∅ ∅ ∅
∅
∅

∅ ∅ ∅ ∅
∅

∅ ∅ ∅ ∅ ∅ ∅ ∅
∅
∅
∅

∅ ∅
∅ ∅

∅
∅

∅ ∅ ∅
∅ ∅ ∅

2017 6th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 11-15 JUNE 2017, BAR, MONTENEGRO

Table 8. Leon Integer Unit Fault Simulation Results

Leon 3 Integer Unit Faults total
/testable FC % Simul

time min.
1 Proposed HLDD method

42780/
38847

44.9 37
2 Leon 3 startup test 40.9 22
3 HLDD + Leon 3 45.3 78
4 Load/Store cycle 35.5 27
5 Tetra max ATPG 72.9 2496*
*Time used for ATPG and fault simulation together

In the experiments with Leon 3, the fault simulation of the
test program generated with HLDDs was performed with
TetraMAX [21] software. The fault simulation framework is
described in details in [14, 22]. In the test experiment, only the
part of Integer Unit was involved.

The results are shown in Table 8. The 1st row shows the fault
coverage achieved by the proposed method. “Leon3 startup
test” is a test program supplied with processor description files
[23], which tests memory and peripherals on startup.
“LOAD/STORE cycle” is a program which is loading and
storing random data to memory million times. ”TetraMAX
ATPG” represents a local fault coverage of patterns generated
by a sequential ATPG tool.

The last case shows that, despite the better GL fault
coverage, the attempt of using gate level ATPG is not scalable
regarding testing time. Moreover, in this case, not all generated
test patterns are functionally correct (i.e. they cannot be
reproduced during normal CPU operation). Hence, the real fault
coverage in this case is overestimated.

The row “HLDD + Leon 3” represents fault coverage for the
joint test program combining the tests in rows 1 and 2,
producing the best test quality. The low fault coverage, in fact,
is misleading, because not all instructions using the Integer Unit
were taken into account for building the HLDD model. In other
words, the faults in a major part of the simulated Integer Unit
were not targeted at all by the proposed method. Extension of
the model for the full instruction list needs further experimental
setup.

VII. CONCLUSIONS

In this paper, the first time to our knowledge, a method is
proposed for fully high-level test program generation for both,
control and data parts of MP, with high low-level fault coverage
and without the need to know implementation details of MP.
The known methods of test program generation for data
manipulation units of MP use gate-level ATPGs.

We proposed a novel high-level deterministic test
generation algorithm which showed the capability of achieving
100% gate-level and close to 100% high-level fault coverage in
the main core of MP. For testing the data path, we proposed,
instead of using traditional gate-level ATPG, the pseudo-
exhaustive test generation approach which, in combination with
the high-level deterministic control path test, achieved 100%
SAF fault coverage. The important effect of the proposed
Algorithm 1 is high multiple gate-level fault coverage for a
broad class of SAF, conditional SAF and bridging faults, which

results from the satisfaction of the constraints (2) [16] by
Algorithm 1. This is a significant contribution to the test
community since common test methods are targeting only
single faults and this is the reason why the short 100% GL test
M1 may not be preferred to the longer tests M5 or M6.

The future work will be on improving the methods M3 and
M6 in order to reduce the number of test data and to still achieve
high HL fault coverage together with high multiple GL fault
coverage.
Acknowledgement: The work has been supported by EU FP7 STREP project
BASTION, HORIZON 2020 RIA project IMMORTAL, and by European
Structural Funds. We thank also prof. Mario Schölzel from the University of
Potsdam for providing us with the VHDL description of the VLIW processor
for carrying out the experiments.

REFERENCES
[1] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J. Rajski,

"Logic BIST for large industrial designs: real issues and case studies," in Proc. of
the International Test Conference, 1999, pp. 358 - 367.

[2] L. Chen and S. Dey, "Software-based self-testing methodology for processor cores,"
in IEEE Trans. on CAD of IC and systems, vol. 20, no. 3, March 2001.

[3] R. S. Tupuri and J. A. Abraham, "A novel functional test generation method for
processors using commercial ATPG," in Proc. of ITC, 1997, pp. 743 - 752.

[4] L.Chen, et al. A scalable software based self-test methodology for programmable
processors," in Proc. of DAC, 2003, pp. 548 - 553.

[5] N.Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, "Software-based self-
testing of embedded processors," in IEEE Trans. on Comp., vol.54, no.4, 2005.

[6] R. S. Gurumurthy, S. Vasudevan, J.A. Abraham. "Automated mapping of pre-
computed module-level test sequences to processor instructions," ITC, 2005.

[7] Y.Zhang, H.Li, and X.Li. Automatic test program generation using executing-trace-
based constraint extraction for embedded processors,” in IEEE TransactionsVery
Large Scale Integration (VLSI) Systems, vol.21, no.7, 2013.

[8] N. Kranitis, A. Merentitis, G. Theodorou, and A. Paschalis, “Hybrid-sbst
methodology for efficient testing of processor cores,” in IEEE Design and Test of
Computers, vol. 25, no. 1, Feb 2008, pp. 64-75.

[9] C.-H. C. Tai-Hua Lu and K.-J. Lee, "Effective hybrid test program development for
software-based self-testing of pipeline processor cores," IEEE Trans. On VLSI
Systems, vol. 19, no. 3, March 2011, pp. 516 - 520.

[10] C. H.-P. Wen, et al. Simulation-based functional test generation for embedded
processors. IEEE Trans. on Comp., Vol.55, No. 11, 2006.

[11] R. Ubar, "Test synthesis with alternative graphs," in IEEE Design and Test of
Computers, 1996, pp. 48 - 59.

[12] A. Karputkin, R. Ubar, J. Raik, and M. Tombak, \Canonical representations of high-
level decision diagram

[13] R.Ubar, A.Tsertov, A.Jasnetski, M. Brik. Software-based selftest generation for
microprocessors with high-level decision diagrams. Proc. of LATW 2014.

[14] A.Jasnetski, J.Raik, A.Tsertov, R.Ubar. New Fault Models and Self-Test Generation
for Microprocessors using HLDDs. Proc. of DDECS, 2015.

[15] R.Ubar, M. Schölzel, S.A. Oyeniran, H.T. Vierhaus. Multiple Fault Testing in
Systems-on-Chip with High-Level Decision Diagrams. 10th IEEE International
Design & Test Symposium IDT'15, Dead Sea, Jordan,.December 14-16, 2015.

[16] A.Jasnetski, S. Adeboye Oyeniran, A.Tsertov, M.Schölzel, R.Ubar. High-Level
Modeling and Testing of Multiple Control Faults in Digital Systems. Proc. of
DDECS, April 20-22, 2016.

[17] S.M.Thatte, J.A.Abraham. Test Generation for Microprocessors, IEEE Trans. On
Computers, C-29, No.6, pp.429-441, June 1980.

[18] D.Brahme, J.A.Abraham. Functional Testing of Micro-processors. IEEE Trans. on
Comp, C-33,No.6,pp.475-485, 1984.

[19] M.Schölzel. Self-Testing and Self-Repairing Embedded Processors: Techniques for
Statically Scheduled Superscalar Architectures. Habilitation Thesis. Brandenburg
University of Technology Cottbus-Seftenberg, 2015.

[20] The sparc architecture manual: http://www.gaisler.com/doc/sparcv8.pdf
[21] [Online]. Available:http://www.synopsys.com/Tools/Implementation/

RTLSynthesis/Test/Pages/TetraMAXATPG.aspx
[22] A. Jasnetski, R. Ubar, A. Tsertov, and H. Kruus. Laboratory framework team for

investigating the dependability issues of microprocessor systems. Microelectronics
Education 10th European Workshop, May 2014, pp. 80–83.

[23] [Online]. Available: http://www.gaisler.com/products/grlib/grlib-gpl- 1.4.1-
b4156.tar.gz

2017 6th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 11-15 JUNE 2017, BAR, MONTENEGRO

Appendix 4

IV
A. S. Oyeniran, R. Ubar, S. P. Azad, and J. Raik, “High-level test generation
for processing elements in many-core systems,” in 2017 12th International
Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), pp. 1–8, July 2017

121

978-1-5386-3344-1/17/$31.00 ©2017 IEEE

 High-Level Test Generation for Processing
Elements in Many-Core Systems

Adeboye Stephen Oyeniran, Raimund Ubar, Siavoosh Payandeh Azad, Jaan Raik

Tallinn University of Technology, Estonia

Abstract—The advent of many-core system-on-chips (SoC) will
involve new scalable hardware/software mechanisms that can
efficiently utilize the abundance of interconnected processing
elements found in these SoCs. These trends will have a great
impact on the strategies for testing the systems and improving
their reliability by exploiting system's re-configurability to
achieve graceful degradation of system's performance. We
propose a strategy of Software-Based Self-Test (SBST) to be
used for testing of processing elements in many-core systems
with the goal to increase fault coverage and structuring the test
routines in a way which makes test-data delivery in many-core
systems more efficient. A new high-level fault model is
introduced, which covers a broad class of gate-level Stuck-at-
Faults (SAF), conditional SAF, and bridging faults of any
multiplicity in processor control paths. Two algorithms for high-
level simulation-based test generation for the control path and a
bit-wise pseudo-exhaustive test approach for data path are
proposed. No implementation details are needed for test data
generation. A novel method for proving the redundancy of high-
level functional faults is presented, which allows for precise
evaluation of fault coverage.

Keywords: processor core testing, high-level control faults, test
generation, high-level fault coverage, fault redundancy

I. INTRODUCTION
Technology scaling trends and the advent of many-core chips
suggest that communication, not computation, will dominate
delay, area and power budgets in future computing systems.
The shift to communication-centric focus on many-core
architectures will involve new scalable hardware/software
mechanisms that can efficiently utilize the abundance of
interconnected processing elements found in these new
architectures. These trends will have a great impact on the
strategies for testing the systems and improving their
reliability by exploiting system's re-configurability as a
mechanism for providing graceful degradation of system's
performance. In modern many-core system-on-chips,
obtaining an overall overview of the system's health is
becoming a more pressing issue for resource management
and application re-mapping.

Maintaining a global view of the system health requires a
testing and monitoring strategy that covers system's
processing elements, memory and interconnection
infrastructure along with a mechanism for diagnostic
information propagation to system's kernel. Using the

diagnostic information obtained from different sources,
system's kernel can perform more optimal reconfiguration
and application mapping decisions. This in turn, will
positively contribute to maintaining a graceful degradation of
system performance during its lifetime.

There are many challenges for the architecture design of
many-core processors, one of which has the most serious
concern is manufacturing yield because an IC’s profitability
depends heavily on it [1]. With the ever-increasing circuit
density, obtaining high fabrication yield solely through
improving the manufacturing process is increasingly difficult
and will become unaffordable in the near future. A more
practical solution is to provide defect tolerance capabilities
on-chip by incorporating redundant circuits. Previous
attempts in this domain mainly focused on introducing
microarchitecture-level redundancy [2, 3]. This is appropriate
for multicore processors with a restricted number of cores in
order to keep the hardware overhead small. The situation is
different in the case of many-core processors when the
number of cores increases to a point when a single core
becomes inexpensive compared to the entire processor. In
this case, it is not necessary to tolerate defective cores at the
microarchitecture-level, and it will be more appropriate to
employ core-level redundancy to reduce the complexity
associated with microarchitecture-level redundancy.

More pronounced aging effects (wear-out), process
variability, more frequent early-life failures, and incomplete
testing or verification due to time-to-market pressure in new
fabrication technologies impose also reliability challenges on
forthcoming systems [4].

A promising solution to these reliability challenges is
concurrent on-line self-test of computing cores and self-
reconfiguration of system on chips [5-7]. Core self-test can
be performed concurrently with applications executing
normally. Concurrent on-line test (COLT) exploits the
massive structural redundancy of multi- and many-core
architectures by shutting down some subset of cores within
the SoC for testing while the remaining cores run user
applications as normal. This allows the system to achieve its
reliability requirements and maintain an extremely high level
of availability with minimum application intrusion. A
prerequisite of that is the availability of core self-test routines
which should provide high fault coverage at minimum testing
time cost.

Software-Based Self-Testing (SBST) [8-10] is an
emerging new paradigm in the testing domain, which relies
on the exploitation of existing available resources resident in
the system. The SBST approach is based on software
programs that are designed to test the functionality of the
processor cores. The major cost of SBST is the time overhead
incurred by the execution of the test routines. The hardware
overhead is either non-existent, or negligible, and no
Instruction Set Architecture (ISA) extensions are required.
An important aspect of on-line core testing in SoCs is the
scheduling strategy of the test process. One approach is to
periodically initiate testing on all system cores
simultaneously [11, 12] causing the entire system to be
offline, thereby interrupting the execution of application
programs. Another approach is to initiate testing on
individual cores that have been observed to be idle for some
time [13]. In this case, the testing process is minimally
intrusive, but the time required to complete the test for all
cores is longer. Testing may also be selective, targeting cores
that have experienced prolonged stressing due to high
utilization.

Recent research results in periodic organization of online
testing of many-core processors are presented in [4] to
facilitate autonomous detection and omission of faulty cores
which makes graceful degradation of the many-core
architecture possible. In [14], test-data delivery optimization
algorithms are developed for SoC designs with hundreds of
cores, where a network-on-chip (NoC) is used as the
interconnection fabric.

In this paper, we focus on the quality of the core self-test
in terms of increasing the fault coverage, minimizing test
length and producing well-structured test routines to ease the
diagnosis and test-data delivery around the SoC. The
memory and interconnect testing remain beyond the scope of
the paper. Also, we will not target the problem of
organization and scheduling of test sessions in SoC as a
whole.
The rest of the paper is organized as follows. In section 2, we
present the state-of-the-art of core testing. In section 3, a
method of high-level fault modeling is proposed, and in
section 4, the problem of mapping high-level faults into the
gate-level faults is investigated. Section 5 presents two new
methods for test generation of the control parts of MP cores,
and in section 6, a method for proving the redundancy of
high-level functional faults is proposed. Section 7 discusses
a method for high-level testing of the data path. In section 8,
we present the structure of the test routines delivered to the
cores of SoC, section 9 presents experimental data, and
section 10 concludes the paper

II. STATE OF THE ART
For the last decade, there has been an extensive research on
SBST of processors [8,15-18]. The quality of SBST is mainly
affected by test data used in test programs. One of the ways
to obtain test data is executing an Automated Test Pattern
Generator (ATPG). In [16] it was shown that the processor

can be divided into Modules under Test (MUT) to ease the
task of ATPG. On the other hand, the difficulties of the
method arise from the need of guiding ATPGs by functional
constraints to produce functionally feasible test patterns. An
alternative way is to use random test patterns for MUTs [17].
In [18], shifting of SBST generation from gate-level to
Register-Transfer Level (RTL) was suggested. The drawback
of this method is that it has not been shown how to achieve
high fault coverage of low-level structural faults. Hybrid
SBST methods were proposed for combining deterministic
structural SBST with verification-based self-test codes [8,
18-20]. In addition to Hybrid SBST [20, 21], there are
methods that achieve comparable results and improve
scalability when generating SBST program using only RTL
[19, 22].

The drawbacks of the known methods are: the fault
coverage is traditionally measured only with respect to SAF,
no broader fault classes have been considered, and no
attempts have been made to evaluate the test quality
regarding covering of multiple faults with avoidance of fault
masking.

To cope with the complexity of gate or RT level
representations of microprocessors (MP), we consider the
problem of SBST program generation with focus on
modeling functional faults at the behavioral-level using
Instruction Set Architecture (ISA). At the same time, for the
purpose of evaluating the quality of tests generated at high-
level, we target a broader class of faults than SAF. We
consider the conditional SAF and bridging faults as well.

Our previous work has been targeting SBST field with the
methodology of using High-Level Decision Diagrams
(HLDD) for diagnostic modeling of MP at the behavior level
[23-25]. For test program generation, a hierarchical approach
was used where the control functions of MP were tested
exhaustively (by conformity test), but the data operands for
testing the data path were generated by gate-level ATPG
(scanning test). The paper [25] was devoted to the generation
of test groups for detecting multiple faults and avoiding fault
masking. However, in [25] only the multiple faults in the
READ/WRITE logic were considered.

In [24] it was shown that the high-level functional fault
model for the control part of MP, based on HLDDs, can be
mapped well on the related low-level faults of a joint class of
the stuck-at faults (SAF), conditional SAF and bridging
faults. Moreover, it was proven that the conformity test with
100% high-level fault coverage would be able to detect also
any multiple gate-level fault from the mentioned joint single
fault class.

In [26], a method for high-level functional fault
simulation for microprocessors was proposed. Based on this
method it became possible to measure the quality of test
programs also with respect to high-level fault coverage. It
was shown that the simplified deterministic high-level test
generation method developed in [24] for testing the control
faults was not able to achieve 100% high-level fault coverage.
We have established two reasons for that: (1) the redundant

high-level faults were not identified, and (2) the proposed
deterministic method was not able to handle so-called "hard-
to-test high-level faults".

In this paper, we extend the previous results [24, 26] by
proposing a new test generation method for testing control
faults in processor cores of digital systems, which is able to
better handle “hard-to-test high-level faults”. We also
propose a method for proving possible redundancy of not
detected high-level faults.

III. HIGH-LEVEL FAULT MODEL FOR PROCESSOR CORES
In this paper, we focus on testing of the ALU module of
processor cores. Consider a typical set of instructions in Table
1. The operations are represented by operation codes and the
related formulas fi for calculation of the output values of the
ALU. The high-level structure of an ALU is depicted in Fig 1.
The control variable c can have values from the domain {0,1,
…, 15}. Denote by Ii the instruction (with opcode ci) which
performs the function fi in ALU.

Table 1. Instruction subset for an ALU of a microprocessor
Mnemonic fi Opcode c Mnemonic fi opcode

MOV f0 0000 SHL f8 1000
ADD f1 0001 SHR f9 1001
SUB f2 0010 ASR f10 1010
CMP f3 0011 INC f11 1011
AND f4 0100 DEC f12 1100
OR f5 0101 RLC f13 1101

XOR f6 0110 RRC f14 1110
NOT f7 0111 NOP f15 1111

Represent the instruction set in Table 1 by the high-level
structural circuit and High-Level Decision Diagram (HLDD)
[23-25] in fig 1. The HLDD has a single decision node labeled
by the control variable c and 16 terminal nodes labeled by the
functions fi implemented in the ALU data path and selected
by instruction fi respectively. The node c represents the whole
control part of the ALU. In general case, if the system is
described by more control variables (representing control
fields of the instruction word, register addresses, flags,
conditions etc.), the internal structure of the HLDD will be
more complex as well [25].

Fig.1. Behavior level structure of ALU and its HLDD

The value of the graph variable Y is calculated by
traversing the HLDD from the root node to the terminal nodes.
In the current example, the value of c decides the direction of
traversing. If c = i, we will have Y = fi

According to such a mapping of the system functions into
the HLDD model, we can classify two types of HLDD-based

high-level functional fault models: control faults (the faults
related to the non-terminal nodes), and data faults (the faults
related to the terminal nodes).

Definition 1. As the fault universe related to non-terminal
nodes we allow any corruption in the behavior of the nodes be
defined as follows [23]:

(1) the output edge of the node is broken (the control signal
SAF ci ≡ 0, or at the bit level SAF ci,k ≡ 0 for controlling
function in the bit k);

(2) the output edge of a node is always activated (SAF ci
≡ 1, or SAF ci,k ≡ 1);

(3) instead of the activated edge, another edge or a set of
edges are at the same time erroneously activated

The last most general fault can be notated as a conditional
SAF (cj ≡ 1/ci), or as (cj,k ≡ 1/ci), This fault type may be caused
by bridging fault, other line coupling faults, or it may be
explained by more complex physical defects of the control line
cj (or cj,k).

Denote by m the internal node under test in the HLDD, and
by MT(m) the set of terminal nodes which can be reached from
the node m. Let f(mT) denote the expression labeling the
terminal node mT∈MT(m). In [24] the following constraints (as
part of the fault model) were introduced for testing the control
part of MP:
 ∀mT∈ MT(m): [f(mT) ≠ Ω)], (1)
 ∀mi,mj ∈MT(m), i j : ∀k [fk(mi) < (fk(mi) * fk(mj))] (2)
where Ω = ZERO (or ONE), and the symbol * stands for logic
OR (or logic AND), depending on the technology
implemented in MP [27]. Here, ZERO denotes a binary
vector (00…0), and, similarly, ONE stands for (11…1). The
index k refers to the bit number of the data words.

Let us focus here only on the case: Ω = ZERO, * stands
for OR. Since fk(mi) < (fk(mi) * fk(mj)) is valid always if fk(mi)
< fk(mj) is valid, and since in the bit-based analysis the
constraint (1) can be satisfied indirectly from (2), we can
simplify the constraints (1) and (2) as follows:
 ∀mi,mj ∈MT(m), i j : ∀k [fk(mi) < fk(mj)] (3)

From Definition 1, the high-level fault model for non-
terminal nodes results, which leads in a natural way to
exhaustive testing of control modes of MP. In other words,
the fault model of a non-terminal node leads to exercising of
the set of all possible values of the node variable,
accompanied with the constraints (3) for data operands to be
satisfied during the exhaustive test of the node.

The number of functional faults for the non-terminal node
m can be calculated as N(m) = nm(nm -1)k where nm – is the
number of output edges of the node m, and k – is the length
of the data word. In our example, we have N(c) = 16*15*k =
240*k.

Definition 2. As the high-level fault universe for terminal
nodes fj., we use the functional fault model defined as the sets
of test data D(fj) needed for testing the functions fj

The size of the data path high-level fault model is
measured as the number of faults N(f) = Σj |D(fj)| where |D(fj)|

Control
part

Data
part

OR

AND0

YD

C
Global
control
faults

Local
control
faults

f0

f15

Control signals

f0

f15 AND15

C f0

f15

0

15

Y

f1
1

is the number of test data for testing the sub-circuit of ALU,
responsible for the ALU operation fj.

From the one-to-one correspondence between the
functional faults in the Data Path and the tests targeting these
faults, the following results.

Corollary 1. The length of the full ALU data path test T(f),
in terms of the number of instructions involved as test
objectives, is equal to the number of functional faults in the
ALU data path T(f) = N(f)

Proof. The proof results from the principle of how we test
the data path.

Note, the number of high-level functional faults in the data
path is not predefined before test generation, rather it is the
byproduct of the test generation procedure. The quality of the
ALU data path test is measured by low-level simulation to
calculate the low-level fault coverage.

The situation will be different for the ALU control part
where the high-level functional fault coverage may have even
broader meaning and importance than the traditional SAF
coverage. As we will see in the next Section, by high-level
fault coverage it becomes possible to evaluate the low-level
test quality for a broader class of faults than SAF, including
multiple faults.

IV. RELATIONSHIPS BETWEEN HIGH- AND LOW-LEVEL
FAULT MODELS

Consider now the following statements about the quality
of test programs synthesized according to the fault models
described in the previous Section for control and data parts of
the ALU. For simplicity, consider in the following discussion
the simplified case of HLDD in Fig.1. Denote fk(mi) in (3) for
brevity as fi,k.

Introduce the following notations. Let F – be the set of
functions at the terminal nodes reachable from the node c
under test, d(fi) – a group of data operands as arguments for
the function fj, and D(fi) – a set of data groups d(fi). Denote by
T(ci) a test which consists in repeating the instruction Ii for all
groups of data operands in D(fi).

Theorem 1. The control test T(ci) will detect all gate level
conditional SAF faults cj,k ≡ 1/ci for all j i , and SAF fi,k ≡ 1,
iff for each pair (i,j) and each bit k, there is at least one d(fi) ∈
D(fi) which satisfies the set of constraints.

 ∀fj ∈F, i j : ∀k (fi,k < fj,k) (4)
Proof. Consider the ALU in Fig.2 divided into control and

data paths. Let us focus on testing of the ALU control part,
using the instruction Ii which produces the opcode c = i, and
assigns the values ci = 1 (ci,k = 1 for all k) for all related control
signals, and activates the operation fi: Y = fi. This is the test for
checking if the output edge c = i of the node c is not broken in
the HLDD in Fig. 1 (no fault of type ci,k ≡ 0), according to the
fault model in Definition 1. The edge is working correctly if
the non-zero correct value of fi propagates from the output of
data path to the output Y of the control path (see Fig.2).
However, according to the fault model in Definition 1, there

may be present another conditional SAF fault cj,k ≡ 1/ci on
other edges of the HLDD which may mask the faults ci,k ≡ 0.

Assume now that there is a fault cj,k ≡ 1/ci, and the data
operands are selected so that fj,k = 1. If the constraint (4) for
the bit k is satisfied, i.e. if fi,k < fj,k, the fault cj,k ≡ 1/ci, will be
detected. Moreover, from the constraints fk, i < fk,j, it results that
the only way to satisfy this constraint is to assign fi,k = 0, and
fj,k = 1, which means that the faults fi,k ≡ 1 will be as well
detected.

To satisfy the constraint (4), a set D(ci) of several data
operands may be needed. Hence, the test T(ci) for the
instruction fi will consist of repeating the instruction |D(ci)|
times with all data operands in D(ci).

Fig.2. Behavior level structure of ALU and its HLDD

Definition 3. Denote the full ALU control test as T(c)
which consists of all tests T(ci) for all functions fi ∈F. The
length of the test T(c) in terms of the number of instructions
to be tested is N(c) = Σi |D(ci)|

Corollary 2. From Theorem 1, it results that by
synthesizing the test T(c) all conditional SAF faults ci,k ≡ 1/cj
for all j i, and all SAF fi,k ≡ 1, in the control part, will be
detected.

From Theorem 1, it results that the condition (4) is not
sufficient for testing the SAF faults fi,k ≡ 0, and ci,k ≡ 0 that is
needed for testing the correctness of the output edge c = i of
the node c in the HLDD in Fig. 1, which was the basis of
synthesizing the test data for T(ci). The same is valid in
accordance to Corollary 2 for all other j i.

However, this deficiency of the test T(ci) is not critical, as
it can be concluded from the following statement.

Corollary 3. SAF faults fi,k ≡ 0, and ci,k ≡ 0 in the control
part of ALU will be detected by the ALU data path test T(fi)
for the instruction Ii as a byproduct.

Proof. The proof is straightforward. The test T(fi) consists
in repeating the same instruction fi with different data from
D(fi). But any data in D(fi) which produces the values ci,k = 1
creates the situation where both values, fi,k = 1 and ci,k = 1 are
supporting mutually the propagation of faults fi,k ≡ 0, and ci,k
≡ 0, to the output Y.

Definition 4. Define the full ALU data path test T(f) as the
set {T(fi)} of all tests T(fi) for the ALU functions fi ∈F,
respectively, and define the full ALU test as a sum TALU = T(c)
+ T(f).

From Corollary 1 and Definition 3 the following results:

1

&

&

&

&

y

fi
ALU

opera-
tions

0

i

j

n

DATA fj

c
f0

fn

Control pathData path

Ci,k ≡ 0

Cj,k ≡ 1
(fj,k = 1)

(fi,k = 0)

Corollary 4. The length of the full ALU test TALU is NALU
= N(c) + N(f).

In [24] it was shown that the test sequences which satisfy
the constraints (1) and (2) will cover a broad class of single
faults including Stuck-at Faults (SAF), conditional SAF and
bridging faults. It is easy to see that the same is valid also for
the constraints (4) used in Theorem 1, which are easier to
simulate.

Note that to create final test program, each instruction Ii
∈ T(c) ∪ T(f) with related data operands op ∈ D(fi) ∪ D(fi)
implies a sequence of instructions which consists of the
initialization phase of loading the data operands into the
proper registers, testing phase of applying the instruction Ii,
and final phase of storing the test result.

V. GENERATING DATA FOR CONTROL PATH TEST
From above, it follows that the fault model defined by the

set of constraints in (4) can be interpreted as the definition of
the universe of high-level faults. A direct impact of this
interpretation is the possibility of evaluating the high-level
functional fault coverage as the percentage of constraints in
(4) for the given test. The fact that the faults fi,k ≡ 0 and ci,k ≡
0 in the control path will not be taken in the fault universe of
the control faults can be overseen because, according to
Corollary 3, these faults will be covered anyway as the
byproduct by the data path test T(f).

In the following, we present an algorithm for generating
the set T(c) of test data for testing the control path.
--
Algorithm 1: RANDOM test data generation for ALU
--
Input: Instruction set of the processor
Output: Sets of test operands OPi for each instruction, and fault table D
Notations: n – number of instructions (functions Fj), op – test operand, OP
– current set of selected random test operands, fj(op) – the result of the
instruction Ij for the operand(s) op, D – fault table, Dij – w-bit entry in D (w
– length of the data Word).
1 Initialize OP = ∅
2 Generate a set of R random operands
3 for i = 1, …, n
 ***generation of operands for instruction Ii
4 Initialize OPi = ∅,
5 for j = 1, …, n (j i)
 ***operands for solving constraints fi,k < fj,k
6 Initialize Dij = 0
7 for all op∈R while Dij 0
 ***adding new operands for covering Dij
8 Dij(op) = fj(op) ∧ (fi(op) ⊕ fj(op))

*** calculating fault coverage for op
9 if (Dij(op) ∨ Dij) ⊕ Dij 0 then

 *** check for the coverage increment
10 begin
11 Dij = Dij ∨ Dij(op)

 *** update of the coverage vector
12 Include op into OPi

 *** new operand is selected
13 end
14 endfor op
15 endfor j
16 endfor i

The result of Algorithm 1 will be a set of operands OPi for
each instruction Ij, and the fault table D = || Dk

ij || where Dk
ij

= 1 means that the functional fault described by the constraint
fi,k < fj,k is covered at least by one operand op ∈ OPi,
otherwise Dk

ij = 0. The percentage of 1s in D is the high-level
functional fault coverage of the test for control path.

The Algorithm 1 is called RANDOM since in each step of
7, the first random operand op∈R will be chosen which
produces an increase in the fault coverage, no matter how big
it is. To reduce the test length for testing the control path we
implemented another algorithm called GREEDY.
--
Algorithm 2: GREEDY test data generation for ALU
--
GREEDY algorithm differs from RANDOM in running the
step 7 before selecting the operand the whole search space R
of random operands to calculate the fault coverage increase
for all op∈R, and only then selects the best one which
produces the maximum increase in fault coverage. Then the
next operand is selected in a similar way. The step 7 ends
when the goal of Dk

ij = 1 is reached, or no more operands can
be selected to satisfy all constraints fi,k < fj,k
--
The constraints fi,k < fj,k may not be solved for two reasons:
either the related functional fault is redundant, or the search
space R is not big enough.

The proof of redundancies of high-level faults introduced
in this paper is easy compared to the proof of fault
redundancies at gate-level.

VI. REDUNDANCY PROOF OF HIGH-LEVEL FAULTS
Consider Table 2, which illustrates the high-level fault
coverage D, which was generated by the algorithms in the
previous Section for a subset of instructions in Table 1.

In Table 2, the 0s may refer to possible redundancies for
the functional faults related to the constraints fi,k < fj,k where
i and j correspond to the rows and columns, respectively. All
0s for a Dij refer to the high probability of redundancy of the
related fault, i.e. that the constraint fi < fj is not possible to
satisfy. In most cases of ALU operations, it is very easy to
demonstrate this type of redundancy. For example, if i refers
to AND operation and j refers to OR, it is straightforward that
(a ∨ b) < (a ∧b) can never happen. In Table 2, all 0-s refer to
the redundant high-level faults.

Table 2. Example of a High-Level Fault table
 f1 (MOV) f2 (ADD) f3 (SUB) f4 (CMP) f5 (AND)
f1 (MOV) 111111 111111 111111 000000
f2 (ADD) 11111 111110 111111 111111
f3 (SUB) 11111 111110 111111 111111
f4 (CMP) 11111 111111 111111 000000
f5 (AND) 11111 111111 111111 111111

In cases when there is 0 in Dij which refers to the case of
no solution for fi,k < fj,k, only in a single bit k, or few bits, we
can suggest for the proof a method which can be called as
"partial truth table method”. The idea of the method stands

in showing the equivalence of partial truth tables (or
impossibility to solve the constraint) for the functions
involved, where as few as possible responsible bits should be
selected for the need of proof. Let us consider few examples
for the redundancy proof possibilities for the set of ALU
functions in Fig. 1.

In Table 3, examples are shown for 4 partial truth tables
for the functions SUB, ADD, OR, AND and for the bit k,
where the columns 00, 01, 10, 11 represent the values of the
data variables in the bit k. For SUB and ADD, the equivalence
of the behavior in the given bit is demonstrated, and in the
case of OR and AND, the missing of solution for (4) is
highlighted.

Table 3. Examples of redundancy proofs with 1-bit truth tables
No fi,k < fj,k Dij fi,k /fj,k 00 01 10 11
1 SUB < ADD 1…110 SUB 0 1 1 0

ADD 0 1 1 0

2 OR < ADD 1…110 OR 0 1 1 1
ADD 0 0 0 0

It is easy to show the equivalence of operations ASR and
SHR for all bits, except the most significant bit (MSB).
Hence, for all the bits k except for MSB, we can prove that
the value Dk

ij = 0 refers to the redundant faults.
In some cases of proof the partial truth method will not

work, because the results of operations may depend
substantially on all bits of the word like for increment and
decrement. When this happens, specific corner cases should
be found for the proof. For example, to proof the equivalence
of increment and decrement operations in the least significant
bit, the operand 1…110 should be used, where both
instructions INC and DEC produce the same result “all 1s”.

VII. GENERATING OPERANDS FOR DATA PATH TEST
For testing the data path, we can use the pseudo-exhaustive
testing approach instead of exploiting traditional gate-level
ATPG [28]. Using pseudo-exhaustive data makes the test
generation procedure not depending on the implementation
details of the processor cores under test.

The method of pseudo-exhaustive test generation lays on
the idea of testing the operations in all bits independently of
other bits.

Since the logic operations are substantially independent in
all bits, we can apply true exhaustive approach for testing,
using only 4 exhaustive patterns {(0,0), (0,1), (1,0), (1,1)} per
bit. For unary operations like shifts or moves, only two
patterns are sufficient. Examples of the pseudo-exhaustive test
data for addition and subtraction operations are shown in
Tables 4 and 5. Here the cases of ripple carry for addition and
ripple borrow for subtraction are used. In general case, e.g. at
carry-ahead-addition, the method of pseudo-exhaustive
approach will be more complex, and more test data will be
needed.

In Tables 4 and 5, all bits of all ALU operations fi, i =
0,1,2,…., are tested exhaustively. For ADD and SUB
operations, 8 data pairs are needed to cover all combinations
of 3 inputs (two operands and carry/borrow bit) of each bit of

the adder (sub-tractor). We start to generate patterns from the
least significant bits, calculate the carry ci for the next bit and
fit for the next bit the values of operand bits ai and bi with the
calculated carry ci, so that all exhaustive combinations for this
bit section were achieved. In such a way created patterns for
the 2nd bit and 1st bit can be “copy-pasted” for the next two-bit
sections to right.

Table 4. Pseudo-exhaustive test data for addition operation

No …
4-bit 3-bit 2-bit 1-bit 0-bit
a4 b4

c4
a3 b3

c3
a2 b2

c2
a1 b1

c1
a0 b0

c0
1 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 … 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1
3 … 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0
4 … 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1
5 … 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0
6 … 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1
7 … 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0
8 … 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5 Pseudo-exhaustive test data for subtraction operation

No …
4-bit 3-bit 2-bit 1-bit 0-bit
a4 b4

c4
a3 b3

c3
a2 b2

c2
a1 b1

c1
a0 b0

c0
1 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 … 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1
3 … 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0
4 … 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1
5 … 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0
6 … 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
7 … 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0
8 … 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

VIII. COMPOSITION OF TEST ROUTINES FOR CORES

In accordance to the described method of generating test data
for the testing the processor, we can divide the test patterns
into two parts: (1) conformity test patterns which target the
control faults, and (2) scanning test patterns which target the
data faults of the core. Each test pattern Ti,j = (Ii, di,j,1, di,j,2)
consists of an instruction pattern Ii, = (opcodei, Ai,j,1, Ai,j,2) and
two data operands dj1, dj2 with addresses Ai,j,1, Ai,j,2,
respectively. Denote for each instruction Ii the numbers of data
operand pairs by ci and si, for the conformity and scanning test
parts, respectively. Since each instruction under test should be
executed for all related conformity and scanning test patterns,
we can represent the all test information as a set of n + 1 arrays
(n is the number of instructions under test): the array I of n
instruction patterns, and n data arrays with ni = ci + si, data
patterns (operand pairs) each (see Fig.3).

From above, a test program structure results, which will
consist of n loops where n is the number of tested instructions.
The body of the i-th loop will consist of (1) the initialization
sequence of instructions for loading the data dj1, dj2 into the
registers involved in the instruction Ii, (2) executing the
instruction Ii, under test, and (3) observation sequence.

The whole test can be compressed by representing it as a
program template consisting of two embedded loops, and n +
1 data arrays as program parameters: an array of n instructions,
and n data arrays with ni = ci + si, data patterns (operand pairs)
each (see Fig.4).

The first loop consists of test program cyclic accesses
using indirect addressing mode to the array of instructions
under test. In the body of the second internal loop of the test
program, the data operands will be cyclically prepared for use
by the current instruction under test. Observation and
analyzing of test results can be implemented by software
signature analyzer.

Fig.3. Structure of the test information for self-test of cores

For all instructions Ii, i = 1,2, … n
 For all data operands (di,j,1, di,j,2), j = 1,2, … ni
 Read di,j,1
 Read di,j,2
 Execute the instruction Ii, = (opcodei, di,j,1, di,j,2)
 Write the test result in signature analyzer
 End for data
End for instructions

Fig.4. Test program template for self-test of cores

The originality of the test strategy stands in on-line test
generation method based on modifying on the fly the stored
test program template which uses hierarchically organized test
data.

The presented test program with embedded two loops and
the hierarchical structure of the test information in form of
instruction and data operand arrays allow splitting the test
information to be used in the template in Fig. 4 in arbitrary
ways into different segments (by specifying different values
of n). This provides high flexibility for delivering test data for
cores under test in the system and gives in such a way better
possibilities for optimization of scheduling strategies of the
test process at given constraints of currently running
applications.

IX. EXPERIMENTAL RESULTS

The motivations of high-level test generation are threefold:
generating test programs without knowing the details of
circuits’ implementations, speeding up the generation
procedure, and increasing the quality of tests due to the
possibility of covering multiple low-level faults without their
counting. We carried out experiments with ALU sub-circuit
of the VLIW processor [29].

The experimental results for the two proposed algorithms
RANDOM and GREEDY for generating control part test, are

depicted in Table 6, and Table 7. The results are compared
with the reference method in [26]. The results in Table 6
correspond to the search space of 1500 random patterns. The
not-100% SAF coverage is explained by the not tested faults
fi,k ≡ 0, and ci,k ≡ 0, which were not the target of the control
test (Corollary 3), and which will be covered by the data path
test.

Table 6. Comparison of the control test algorithms

Method
Test length,

instructions

Fault coverage
Time, s HL-FF SAF

RANDOM 204 100 % 99.34 % 2.00
GREEDY 139 100 % 99.34% 7.85

Method [26] 48 56.0 % 85.8 % Manually
generated

Gate-Level
Deterministic 68 57.2% 100%

Table 7. Numbers of test operands for testing of the control path

Op-
code

patterns Op-
code

patterns
RANDOM GREEDY PS.

D RANDOM GREEDY PS.
D

MOV 5 5 2 SHL 11 10 2
ADD 9 7 9 SHR 12 9 2
SUB 10 6 9 ASR 14 9 2
CMP 20 13 2 INC 16 6 3
AND 8 6 4 DEC 15 13 3
OR 20 15 4 RLC 20 13 2

XOR 9 6 4 RRC 20 13 2
NOT 9 4 2 NOP 6 4 2

 Total 204 139 54

The relationships between the fault coverage and test length
are illustrated by the curves in Fig.5, and the dependence of
test generation time on the size of search space (number of
random test candidates) is illustrated in Fig.6.

Fig.5. Dependence of the high-level control fault coverage on test length

Fig. 6. Test generation time and the size of search space

1

i

n

Opcode1 A1 A2

A1

A1

A2

A2

Instruction patterns Ii

Data operands
A1 A2

1

n1

d1,j,1j d1,j,2

1

ni

di,j,1j di,j,2

1

nn

dn,j,1j dn,j,2

Opcodei

Opcoden

The data path test with pseudo-exhaustive patterns had a
length of 95 patterns and produced 99.1% gate-level fault
coverage. Both control and data path tests together had a total
length of 234 instructions and achieved 100% fault coverage
for both high-level and gate-level faults. As a comparison, the
referenced method [26] was able to achieve only 56.0 % high-
level fault coverage. We also compared with gate-level
deterministic approach which gives 100% single SAF
coverage. However, because of very low high-level fault
coverage this test gives no information about the quality of
multiple fault detection.

X. CONCLUSIONS

In this paper, we propose a novel test program generation
method which produces high fault coverage. The originality
of the proposed method stands in on-line test generation based
on modifying on the fly the stored test program template
which uses hierarchically organized test data.

The well-structured test program provides high freedom
of splitting it into segments, and therefore also high flexibility
for delivering test data for cores under test in them system.
This is a good basis for optimization of scheduling strategies
of organizing test processes at given constraints of currently
running applications.

High test quality is achieved by using a new functional
model for high-level control faults in processor cores. The
method does not need information about implementation
details of the cores and uses only the instruction set as input
data. We proposed a novel method to detect and prove the
redundancy of high-level functional faults, which allows
evaluation of the high-level fault coverage more precisely
thanks to the possibility of removing redundant faults from
the fault list. As the result, it was possible to prove the 100%
high-level fault coverage for the control path test.

In [24] and [26], it was shown for the case of testing the
ALU instructions that the bigger is the high-level fault
coverage of the ALU control test, the bigger will be the
confidence of covering multiple low-level faults in the
control part of the processor. In accordance with that
statement, we can now claim that the 100% high-level control
fault coverage, achieved by the proposed test generation
method, is equivalent to 100% coverage of low-level multiple
faults from the broad class of SAF, conditional SAF, and
bridging faults, with avoidance of mutual fault masking in
ALU control.

The future work will be in extending the proposed method
for the broader instruction sets, and for covering the faults in
pipeline stages and addressing logic of processors.
Acknowledgment: The work has been supported by EU FP7 STREP project
BASTION, HORIZON 2020 RIA project IMMORTAL, and by European
Structural Funds. We thank Mario Schölzel from U Potsdam for providing us with
VHDL description of the VLIW processor for carrying out the experiments.

REFERENCES
1. L. Zhang, Y. Han, Q. Xu, X. Li. Defect Tolerance in Homogeneous Manycore

Processors Using Core-Level Redundancy with Unified Topology. Design,
Automation and Test in Europe, 2008. DATE '08.

2. S. Premkishore, S. W. Keckler, C. R. Moore, D. Burger. Exploiting
microarchitectural redundancy for defect tolerance. Proc. ICCD, pp. 481–488,
2003.

3. E. Schuchman, T. N. Vijaykumar. Rescue: a microarchitecture for testability
and defect tolerance. Proc. ISCA, pp. 160–171, 2005.

4. A. Kamran, Z. Navabi. Self-Healing Many-Core Architecture: Analysis and
Evaluation. VLSI Design Volume 2016, Article ID 9767139,
http://dx.doi.org/10.1155/2016/9767139

5. M. A. Skitsas, C. A. Nicopoulos, M. K. Michael. Exploration of System
Availability During Software-Based Self-Testing in Many-core Systems under
Test Latency Constraints. 2014 IEEE Int. Symp. on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), 2014.

6. J. D. Lee, R. N. Mahapatra, P. S. Bhojwani. A Distributed Concurrent On-Line
Test Scheduling Protocol for Many-Core NoC-Based Systems. IEEE Int. Conf.
on Computer Design – ICCD, 2009.

7. Y. Li, S. Mitra. VAST: Virtualization-Assisted Concurrent Autonomous Self-
Test. Proc. International Test Conference (ITC), 2008, pp. 1-10.

8. S. Gurumurthy, S. Vasudevan, and J. Abraham. Automatic generation of
instruction sequences targeting hard-to-detect structural faults in a processor. ITC
'06. Oct 2006, pp. 1–9.

9. D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis,
A. Raghunathan, and S. Ravi. IEEE Trans. on Systematic software-based self-
test for pipelined processors. Vol. 16, no. 11, pp. 1441 –1453, Nov. 2008.

10. M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Reorda. Microprocessor
software-based self-testing. IEEE Design Test of Computers. Vol. 27, no. 3, pp.
4–19, May 2010.

11. A. Apostolakis, D. Gizopoulos, M. Psarakis, A. Paschalis. Software-based self-
testing of symmetric shared-memory multiprocessors. IEEE Trans. on
Computers, vol. 58, no. 12, pp. 1682 –1694, Dec. 2009.

12. N. Foutris, M. Psarakis, D. Gizopoulos, A. Apostolakis, X. Vera, A. Gonzalez.
Self-test optimization in multithreaded multicore architectures. ITC 2010, Nov.
2010, pp. 1 –10.

13. Y. Li, O. Mutlu, S. Mitra. Operating system scheduling for efficient online
self-test in robust system. Proc. 2009 Int. Conf. on Computer-Aided Design, ser.
ICCAD '09. New York, NY, USA: ACM, 2009, pp. 201–208.

14. M. Agrawal, M. Richter, K. Chakrabarty. Test-Delivery Optimization in
Manycore SOCs. IEEE Trans. on computer-aided design of integrated circuits
and systems, vol. 33, no. 7, 2014.

15. D.Gizopulos, A.Paschalis, Y.Zorian. Embedded Processor-Based Self-Test.
Kluwer Acad. Publishers, 2004, 216 p.

16. L.Chen, et al. A scalable software based self-test methodology for programmable
processors," in Proc. of DAC, 2003, pp. 548 - 553.

17. L. Chen and S. Dey. SW-based self-test methodology for processor cores, IEEE
Trans. on CAD of IC and systems, vol. 20, no. 3, March 2001, pp. 369 - 380.

18. N.Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, "Software based self-
testing of embedded processors," in IEEE Trans. on Comp., vol.54, no.4, 2005.

19. Y.Zhang, H.Li, and X.Li. Automatic test program generation using executing-
trace-based constraint extraction for embedded processors,” in IEEE Trans. on
VLSI Systems, vol.21, no.7, 2013.

20. N. Kranitis, et al “Hybrid-sbst methodology for efficient testing of processor
cores,” in IEEE Design and Test of Computers, vol. 25, no. 1, 2008, pp. 64-75.

21. C.-H. C. Tai-Hua Lu and K.-J. Lee, "Effective hybrid test program development
for software-based self-testing of pipeline processor cores," IEEE Trans. on VLSI
Systems, vol. 19, no. 3, March 2011, pp. 516 - 520.

22. C. H.-P. Wen, et al. Simulation-based functional test generation for embedded
processors. IEEE Trans. on Comp., Vol.55, No. 11, 2006.

23. A.Jasnetski et al. SW-based Self-Test Generation for Microprocessors with
HLDDs. Proc. of the Estonian Academy of Sciences, 2014, 63, 1, 48-61.

24. A.Jasnetski et. al. High-Level Modeling and Testing of Multiple Control Faults
in Digital Systems. Proc. of DDECS. Košice, Slovakia, April 20-22, 2016, 6p.

25. R.Ubar, M. Schölzel, S.A. Oyeniran, H.T. Vierhaus. Multiple Fault Testing in
Systems-on-Chip with High-Level Decision Diagrams. 10th IEEE International
Design & Test Symposium IDT'15, Dead Sea, Jordan,.December 14-16, 2015.

26. A.S.Oyeniran et al. A New Measure for Calculating Multiple Fault Coverage of
Microprocessor Self-Test. BEC, Tallinn, Oct 3-5, 2016.

27. S.M.Thatte, J.A.Abraham. Test Generation for Microprocessors, IEEE Trans. On
Computers, C-29, No.6, pp.429-441, June 1980.

28. M.L.Bushnell, V.D.Agrawal. Essentials of Electronic testing. Kluwer Acad.
Publishers, 2013.

29. M.Schölzel. Self-Testing and Self-Repairing Embedded Processors: Techniques
for Statically Scheduled Superscalar Architectures. Habilitation Thesis.
Brandenburg University of Technology Cottbus-Seftenberg, 2015.

Appendix 5

V
A. S. Oyeniran and R. Ubar, “High-level functional test generation for
microprocessor modules,” in 2019 MIXDES - 26th International Conference
"Mixed Design of Integrated Circuits and Systems", pp. 356–361, June
2019

131

Abstract

Keywords

Proceedings of the 26th International Conference "Mixed Design of Integrated Circuits and Systems"
June 27-29, 2019, Rzeszów, Poland

I
I OP.B.A1.A2.A OP

B A1 A2
A

 R A M A PC PC
 M A R A PC PC

 R A R A PC PC
R A R A PC PC

 R A R A R A PC PC
 R A R A R A PC PC

 PC A

C PC A PC PC

OP B A1 A2

R A1 R R A2 R Y R A1 R A2
R R A1 Y

PC PC

R R R R
Y

k m
m

n fi
c n

F

p
-b

n

op op

control faults
data faults

yi
 fi di yi fi di

fi F
high-level control fault model M fi

M fi Di
k yi

fi F k m di M fi yi k

fj F j i k m di M fi yi/k yj/k

m
F m m

m mT

m mT fj
fj F m

yj k
fj k cj k

yi/k yj/k
fi k cj k

fj
D fj fj

D fj

fi F
fi k fi k ci k

fi,k ci,k

T f

OPi D
n op OP

fj op
Ij op, D Dij w D w

OP
R

 i n
Ii

OPi
j n j i

fi k fj k
Dij

op R Dij
Dij

Dij op fj op fi op fj op
op

Dij op Dij Dij

Dij Dij Dij op

op OPi

op
j

i

OPi
Ij D Dk

ij Dk
ij
fi k

fj k op OPi Dk
ij

D

op R

fi k fj k

R

i,j Ri,k Rj,k

fj
R b b

fj

fj
B B

a b

fi fj

conformity test
scanning test

Ti,j Ii
di,j, di,j, Ii opcodei
Ai,j, Ai,j, dj dj Ai,j,
Ai,j, Ii

ci si

n n
I n n ni

ci si

Ii I

F fi

Appendix 6

VI
A. S. Oyeniran, R. Ubar, M. Jenihhin, C. C. Gürsoy, and J. Raik, “High-
level combined deterministic and pseudo-exhuastive test generation for risc
processors,” in 2019 IEEE European Test Symposium (ETS), pp. 1–6, May
2019

139

High-Level Combined Deterministic and Pseudo-
exhuastive Test Generation for RISC Processors

Adeboye Stephen Oyeniran
Department of Computer Systems
Tallinn University of Technology

Estonia
adeboye.oyeniran@taltech.ee

Cemil Cem Gürsoy
Department of Computer Systems
Tallinn University of Technology

Estonia
cemil@ati.ttu.ee

Raimund Ubar
Department of Computer Systems
Tallinn University of Technology

Estonia
raiub@pld.ttu.ee

Jaan Raik
Department of Computer Systems
Tallinn University of Technology

Estonia
jaan@pld.ttu.ee

Maksim Jenihhin
Department of Computer Systems
Tallinn University of Technology

Estonia
maksim@pld.ttu.ee

Abstract—Recent safety standards set stringent
requirements for the target fault coverage in embedded
microprocessors, with the objective to guarantee robustness and
functional safety of the critical electronic systems. This
motivates the need for improving the quality of test generation
for microprocessors. A new high-level implementation-
independent test generation method for RISC processors is
proposed. The set of instructions of the processor is partitioned
into groups. For each group, a dedicated test template is created,
to be used for generating two test programs, for testing the
control and the data paths respectively. For testing the control
part, a novel high-level control fault model is proposed. Using
this model, a set of deterministic test data operands are
generated for each instruction of the given group. The
advantage of the high-level fault model is that it covers larger
than SAF fault class including multiple fault coverage in the
control part. For generating the data path test, pseudo-
exhaustive data operands are used. We investigated the
feasibility of the approach and demonstrated high efficiency of
the generated test programs for testing the execute module of
the miniMIPS RISC processor.

Keywords— RISC processors, high-level fault model, high-
level test generation, deterministic and pseudo-exhaustive tests,
control and data path tests

I. INTRODUCTION

Despite the fact that test generation for embedded processor
cores of digital systems is a problem intensively investigated
during decades in the test community, there is still a need for
improvements in fault coverage and speed of test program
generation in cases where no information about the details of
implementation is given.

For the last decade, there has been an extensive research
on Software-Based Self-Test (SBST) of processors [1-12].
The general idea of SBST is to use the resources of processors
to test themselves, by running specific test programs. The
nature of this method implies such features as non-
intrusiveness, low cost and compatibility with at-speed and
in-field testing [4-5]. SBST method is well accepted in
industry. The interest in this method is growing in frames of
in-field test for processor-centric systems in safety-critical
applications [5-6]. Recent application domain standards, e.g.
ISO26262, IEC61508, DO0254 set very stringent
requirements for the target fault coverage in embedded
microprocessor circuits, with the objective of guaranteeing

robustness and functional safety of the critical electronic
systems. Hence, more effort is being put into SBST for in-
field test to satisfy these requirements. It is interesting to note
at this point that one of the benefits of automated SBST is in
reduction in test development cost [6-7].

SBST approaches can be structural and functional.
Structural approaches [8-12], are based on test generation
using information from lower level of design (gate-level or
RTL-level description) of processors, whereas, functional
approaches use mainly instruction set architecture (ISA)
information. The structural approaches cannot be used when
the structural information about the processors to be tested is
not available. One of the first ISA based methods, using
pseudo-random test sequences was proposed in [13]. Another
solution, FRITS (Functional Random Instruction Testing at
Speed) [14], was based on test program generation on random
instruction sequences with pseudo-random data. It suits well
for wafer test due to its cache-resident nature. Alternative
cache-resident method for production testing [15] using
random generation mechanism proves that high cost
functional testers can be replaced by the low-cost SBST
without significant loss in fault coverage. Another approach,
based on evolutionary technique was proposed in [16]. Test
program is being composed of the most effective code
snippets (in a question of SAF coverage), which were
distinguished by constant re-evaluation. The method,
however, is based on structural information.

Later research concentrates on test approaches for
specific processor parts like pipeline, branch prediction
mechanism [17-18] or caches [19-20]. In [21], a method is
proposed, which can enhance SBST program in order to bring
more coverage to pipeline logic and also memory addressing.
Another approach for testing the pipeline was made in [22].
The proposed strategy involves the activation of faults related
to the data hazards and register forwarding logic in processor
core, and later research concentrates on decode stage of the
pipeline [5]. A variation of on-line SBST with the objective
of enhancing lifetime reliability was proposed in [31].

In this paper, we propose a novel deterministic high-level
test generation method for SBST of embedded processors
which is based on a novel implementation-free high-level
functional fault model. The advantage of the model is higher
fault class than the well measurable standard single SAF,
covering as well bridging and multiple SAF faults in the

2019 24th IEEE European Test Symposium (ETS)

978-1-7281-1173-5/19/$31.00 ©2019 IEEE

!

control part. The determinism of the fault model stands in a
novel proposed set of data constraints to be satisfied by
generating data operands to be used with instructions under
test. For testing the data-path, pseudo-exhaustive data
operands are used. Experimental result shows that the data
constraints proposed for the control test contributes also
noticeably to reaching high SAF coverage for the data-path
test.

The rest of the paper is organized as follows. In section 2,
we present a novel high-level control fault model for
microprocessors, and in section 3, we investigate the problem
of mapping the high-level fault model to low gate-level faults.
In section 4, we present a fault simulation algorithm, and
discuss the problems of high-level fault coverage
measurement. Section 5 is devoted to the overall composition
of test programs. In section 6, we present experimental data,
and section 7 concludes paper.

II. HIGH-LEVEL CONTROL FAULT MODEL FOR PROCESSORS

The purpose of this research is to propose a novel method
for testing RISC microprocessors in a functional way and
without resorting to the knowledge of implementation details.

The main concept of the proposed method is based on
partitioning the set of instructions of the processor under test
into groups which can be tested by test templates which
includes initialization, instruction under test, and observation
of the results, in a similar way as in [5]. In this paper, we focus
on testing of the executing units in pipelined RISC processors
consisting of a control part and data path as shown in Fig.1.
The method can be generalized also for testing other specific
parts of microprocessors, such as other pipeline stages,
register decoding, flag testing, branch prediction mechanism
etc.

Fig.1. Test execution set up

The gray part of Fig.1 presents the test target which is the
goal of this research. In Fig.2, we represent the execute unit in
an implementation-free generic way as an equivalent circuit
where the control part is highlighted as AND-OR multiplexer
for decoding the instructions and extracting the results of the
executed instructions. The circuit in Fig.2 represents
equivalent disjunctive normal form (EDNF) related to the
execute unit. The independence from implementation details
results from the fact that a test developed for detecting all non-
redundant faults in the EDNF, will also detect all faults in the
original circuit [27]. Moreover, the exhaustiveness of the
control signals together with the functional data constraints as

the basis of the proposed method will target larger fault class
than traditionally measured single SAF coverage contributes.

Assume, the ALU executes n different functions y = fi (d)
by a set F = {fi} of instructions, where d represents data
operand(s) for fi , where the length of the data word (operand)
is m, and ALU is controlled by p control signals. In Fig.1, the
control part consists of the multiplexer MUX and p control
lines (originating in the opcode field of the instruction register)
as control inputs to MUX. The n AND blocks (consisting of m
AND gates) in the control part of the execute unit have each p
control and a single m-bit data input, whereas the OR block has
n data word inputs from the outputs of AND blocks. Each AND
block consists of m AND gates with p control inputs, and a
single bit data input.

Let us classify two types of high-level functional fault
models for the ALU: control faults (the faults related to the
control part of the ALU), and data faults (the faults related to
the data part of the ALU). For the control faults, we will
introduce a novel high-level functional control fault model as
follows.

Denote by yi the data word considered as the result of
execution of the function fi with data operand(s) di as yi = fi(di).

Definition 1. Introduce for the function (instruction) fi ∈
F, the following high-level control fault model M(fi) as a set
of data operands M(fi) ={Di}, which satisfy the following
constraints at least once for each bit k of yi:
 ∀k∈(1,m): {∃di∈M(fi) (yi/k ≠ 0)}, (1)

 ∀fj∈F, j ≠i : ∀k∈(1,m){∃di∈M(fi) (yi/k < yj/k)} (2)

Depending on the technology, implemented in the
microprocessor, the constant 0 in formula (1) can be changed
into 1, and instead of the relation “ < ” in formula (2), there
can be “ > “.

Fig.2. Generic DNF based control structure of ALU

The constraint (1) is needed for testing that the function fi
can be executed and the result “yi = 1” can be produced in
each bit of the data word to detect the faults SAF/0 on all
inputs of AND-gates. The constraint (2) is needed for testing
that the result “yi = 0” can be produced in each bit of the data
word to decect two types of faults: SAF/1 on all inputs of the
AND-gates related to the function fi, and all functional faults
of overwriting the value “yi = 0” in each bit due to the control
faults of other functions fj, j ≠ i.

!

!

The proposed fault model can be regarded as a
generalization of the conditional SAF model or input pattern
fault model (similar to ones considered in [23-26]). In case
of conditional SAF, we are testing SAF on the gate-level lines
at some constrained signals on other lines, whereas in case of
the proposed high-level fault model of Definition 1, we are
testing the instructions of microprocessors at a set of
constraints for data (operands).

There are two novelties of this approach. First, due to
using the EDNF based (not optimized) control unit model, the
generated test may be over dimensioned. Second, the
functional constraints (1) and (2) tend to produce more test
patterns than it is needed for only single SAF detection.
However, both aspects work in favour of larger fault class
coverage, including multiple faults also, as already
mentioned.

The size (complexity) of the proposed high-level control
fault model can be represented by the number of data
constraints to be satisfied, that is C = n(n-1)mp

III. MAPPING OF HIGH-LEVEL FAULTS TO GATE-LEVEL FAULTS

Introduce the following notations of the input information
for solving the problem.

Definition 2. Let D*i be the set of data operands which
satisfy the constraints of the fault model M(fi}, T*i is the test
for the instruction fi, which uses the data operands d ∈ D*i,
and T* = {T*i} is the full test, generated for all high-level
control faults for the set of instructions F = {fi}.

Theorem 1. The test T* ={T*i}, which covers all non-
redundant high-level faults of the fault model M(fi), covers
also all gate-level non-redundant SAF in the control part of
the microprocessor, which controls the set of functions F.

Proof. The proof can be done in 2 steps. Firstly, consider
the equivalent circuit of ALU control part presented in Fig.2,
and described as the following DNF ݕ = ܿଵ,ଵܿଵ,ଶ…ܿଵ,ݕଵܿଶ,ଵܿଶ,ଶ…ܿଶ,ݕଶ…ܿ,ଵܿ,ଶ…ܿ,ݕ (3)

for each bit of the data word in the output of OR block. We
can easily show that from generation of data which satisfy the
constraints (1) and (2) for all functions fi∈F, it follows that in
the DNF all SAF faults will be detected. In this DNF the
variables ܿ,	 for selecting the data results ݕ, ݅ = 1,…݊ ,
represent the global control signals ܿ, j = 1,...p, being either
inverted or not, and covering in general case exhaustively all
the 2p combinations. Secondly, assume that the control circuit
is optimized and is represented as a multi-level combinational
circuit instead of the two-level DNF. In this case, we can
represent the circuit as an equivalent disjunctive normal form
in a similar way as DNF (3). As already mentioned, if there
is a test set which detects all non-redundant faults in the
EDNF, this test will detect also all faults in the original
possibly optimized multi-level circuit [27]. ■

Corollary 1. If a high-level test is generated, so that the
the constraints (1) and (2) are fully satisfied, but if there are
some SAF in the related EDNF, which remain not detected
by the high-level test, the not detected SAF are redundant.

Corollary 2. If there are some cases in the constraints (2),
which cannot be satisfied by selecting data operands, these
cases refer to the high-level redundancies in the model M(fi).

Corollary 3. If the high-level redundancies can be
removed from M(fi), and the high-level test is generated, the
not detected SAF are redundant.

Example 1. Consider a simplified ALU unit which
implemets the set of three functions f1, f2, f3, activated by a set
of control signals ܿଶഥ ܿଵ, ܿଶܿଵഥ , ܿଶܿଵ respectively. The ALU can
be represented by the DNF:
ݕ = 	 ܿଶഥ ܿଵݕଵܿଶܿଵഥݕଶܿଶܿଵݕଷ. (4)

The test T* = {T*1, T*2, T*3}generated for the control part
of ALU that satisfies the constraints (2) is depicted in Table 1.

Table 1. Example of a high-level control test

T*i
Test Fault table Constraints

satisfied c2 c1 y1 y2 y3 ܿଶഥ ܿଵ ܿଵഥ	ଵ ܿଶݕ ଷݕ	ܿଵ	ଶ ܿଶݕ	

T*1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 y1 < y2, y1 < y3

T*2 1 0 1 0 1 0 0 1 1 1 0 1 0 1 y2 < y1, y2 < y3

T*3 1 1 1 1 0 0 1 1 1 0 1 1 1 0 y3 < y1, y3 < y2

The table contains the test patterns in column 2, the fault table
in columns 3-5, and the constraints satisfied by generating
data for the control test patterns in column 6. The detected
gate-level faults in the fault table are highlighted by red
colour: 0 means the value of a signal which activates the fault
SAF/1. For example, in case of the fault c2 ≡ 1 in column 5,
the value of the output signal y = y1 = 0 will change from 0 to
y = y1 ∨ y3 = 1. For detecting the faults SAF/0, 3 more test
patterns are needed (not shown in the table).

We see in the fault table that the faults c1 ≡ 1 in column 3
and c2 ≡ 1 in column 4 are not detected. Based on Corollary
1, these faults are redundant. By minimizing the function (4),
we get a new formula

ݕ = 	 ܿଶഥݕଵܿଶ(ܿଵഥݕଶܿଵݕଷ).
where the redundancies are removed, and all SAF/1 are
detectable by the test T*.

The case of high-level redundancies is discussed in the
following Sections.

Note, Theorem 1 and Corollaries 1-3 were formulated,
considering the single SAF model. In fact, the power of the
proposed high-level control fault model stretches far beyond
the fault class of single SAF, as it will be shown in the
following corollaries.

Corollary 4. The test T* ={T*i}, covers all gate-level
multiple SAF and bridging faults between control lines in the
control part of the microprocessor, which controls the set of
functions F = {fi}.

Proof. From (2) it follows that for each function fi ∈ F,
∀k: (yi/k < yj/k) for all j ≠ i must hold. This means that not only
SAF/1 in a single control signal of a single function fj ∈F, j≠
i, can be detected (by overwriting yi/k = 0 with yj/k = 1), where
the control words for fi and fj differ in a single bit, rather such
overwriting of signals yi/k = 0 with 1 can happen, and hence,
can be detected, due to multiple changes 0→1 for fj∈F, j≠i,
leading to detecting multiple faults. On the other hand, from
the constraints (1-2), and from the exhaustiveness of testing
all the control functions function fj ∈F, j≠i, it follows that
non-redundant bridging faults between the control lines can
be also detected by T*. ■

In case, when the target would be to detect only single
SAF, then the fault model defined by the constraints (1) and
(2) is over-dimensioned. For the case of full single SAF
coverage, it would be sufficient to loosen the constraint (2) to

!

!

∀fj∈F,(HD(fj,fi) =1), j ≠i :
∀k∈(1,m){∃di∈M(fi) (yi/k < yj/k)},

where HD(fj,fi) =1 is the constraint that the Hamming distance
between the control codes for fj and fi must be 1. This
simplication is similar to the approach used in [5]

The size of the reduced high-level control fault model
applied only to the code-neighboring functions fj, fi with
HD(fj,fi) =1, is equal to Cred = nmp < C = n(n-1)p.

IV. HIGH-LEVEL FAULT COVERAGE

To measure the fault coverage for the fault model M(fi), fi∈F,
proposed in Definition 1, by the given test T*i and the set of
operands D*i , we introduce the high-level fault table as a
matrix E = | | ei,j | | with n columns and n rows, where n – is
the number of functions in F. Each entry ei,j in E is a m-bit
vector ei,j = (ei,j/1, ei,j/2, … , ei,j/m,), where m is the number of
bits in the data-words yi = fi (di), di ∈ D*i . We denote by ei,j/k

= 1, if the constraint yi/k < yj/k for the bit k in the set of
constraints (2) is satisfied by the set of data operands in D*i
={di}, and ei,j/k = 0 if not.

Table 2. Example of a High-Level Fault Table

 f1 - MOV f2 - ADD f3 - SUB f4 - CMP f5 - AND

f1 - MOV 111111 111111 111111 000000

f2 - ADD 11111 111110 111111 111111

f3 - SUB 11111 111110 111111 111111

f4 - CMP 11111 111111 111111 000000

f5 - AND 11111 111111 111111 111111

An example of the matrix E = | | ei,j | | for a test T* for a
set of functions F = { fi } executed by the set of instructions
I = {MOV, ADD, SUB, CMP, AND}, is presented in Table
2. Each i-th row in the table represents the high-level control
fault coverage of testing the function fi ∈ F, (and the
respective instruction Ii ∈ I.

The fault table E = | | ei,j | | is the result of high-level fault
simulation for the given set of operands D*i , to be used by
the high-level test T*i . In this paper we have implemented
the following high-level control fault simulation algorithm.

Algorithm 1.
(1) for all row instructions fi, i = 1,…,n
(2) for all data operands di,j,1, di,j,2, j = 1,…,ni

(3) for all column instructions fh, h = 1,…,n
(4) calculate the value yh
(5) check the relation yi < yh, h ≠ i
(5) update the vector ei,h ∈E
(6) end for column instructions
(7) end for data operands
(8) end for row instructions

Based on Algorithm 1, we implemented a simulation
based high-level test generation method on the basis of
random search for test data to satisfy the constraints (2).

In Table 2, 0s refer either to not detected high-level
control faults or to the possible high-level redundancies of the
faults related to the constraints yi/k < yj/k, where i and j
correspond to the rows and columns, respectively, and k
refers to the bit number. All 0s in eij refer to high probability
of the redundancy of the high-level fault model.

In most cases of ALU operations (like for e15 and e45 in
Table 2), it is very easy to identify this type of redundancy.
For example, if yi = fi (a, b) refers to the AND operation and
yj = fj (a, b) refers to OR, it is straightforward that the

constraint yi < yj, i.e. (a ∨ b) < (a ∧ b) cannot be satisfied by
any values for a and b.

In cases when there is an entry ei,j/k = 1 in a single bit k of
the vector eij (like for e23 and e32 in Table 2), or in only few
bits of the vector eij, we can suggest for the redundancy proof
a method called "partial truth table method”. The idea of the
method stands in showing the equivalence of partial truth
tables (or to prove the impossibility of solving the related
constraints) for the functions involved in the constraint
relation, so that as few as possible responsible bits should be
selected for the need of the proof.

Table 3. Examples of high-level fault redundancy proofs

yi/k < yj/k eij yi/k < yj/k 00 01 10 11

1 SUB < ADD 1…110
SUB 0 1 1 0
ADD 0 1 1 0

2 OR < ADD 1…110
OR 0 1 1 1

ADD 0 1 1 0

3 OR < AND 0…000
OR 0 1 1 1

AND 0 0 0 1

4 OR < XOR 0…000
OR 0 1 1 1

XOR 0 1 1 0

In Table 3, examples for 1-bit partial truth tables for the
functions SUB, ADD, OR, AND, and XOR, for selected bits
k (shown with red color) are shown. The pairs 00, 01, 10, 11
in the title row represent the values of the data variables di/k

(as arguments for yi/k) in bit k. The 1-bit values in the columns
show the results of the related operations for the k-th bit. For
the constraints SUB<ADD, and OR<ADD, the equivalence
of the behavior in the least significant bit is demonstrated,
which contradicts to the constraint (2). For the cases
OR<AND, and OR<XOR, the missing of a solution for (2) is
also shown for all possible input data combinations, and for
all bits k. In some specific corner cases, the proof of
redundancy may be more difficult.

The proof of high-level fault redundancy was not the
target of the paper, and it needs special investigations. The
quality of tests derived by the proposed method, SAF
coverage was measured. The knowledge about redundancy of
high-level faults is important when using of Corollary 3 for
identification of redundant SAF by only applying fault
simulation.

V. HIGH-LEVEL TEST PROGRAM COMPOSITION

The full test T for testing the set of functions F = {fi} can be
represented as a set of subtests Ti (fi):

T = {Ti (fi)} = {(Ii, Di) | i: fi ∈ F}

where Ii denotes the instruction which executes the function
fi ∈ F, and Di denotes the set of data patterns (operands), each
of them has to be used by the instruction Ii. The data patterns
di,j ∈ Di may represent either single operands or
concatenation of two operands (di,j,1.di,j,2) stored in the
memory. For each group of similar instructions, there is a
template – a subroutine, repeated in a loop for all instructions
Ii , where i : fi ∈ F, and each instruction Ii is executed in a
nested loop for all data operands in Di, which are loaded by
the initialization part of the template.

The architecture of test program is shown in Fig.3. The
test tempates are created on the basis of Algorithm 2.

!

!

Fig.3. Architecture of the test program

Algorithm 2.
(1) for all instructions Ii ∈ I, i : fi ∈ F
(2) for all data operands di ∈ Di
(3) read di
(5) execute the instruction Ii
(6) store the test result yi = fi (di)
(7) end for data
(8) end for instructions

Each subtest Ti (fi) ∈ T for testing fi ∈ F is partioned into
two parts: test for the control part, and test for the data path.
These two parts differ in how the data sets Di are generated.

For testing the control part, we use the data operands Di =
D*i, which are generated to satisfy the constraints of the fault
model M(fi} according to Definition 1. For testing the data-
path, for each instruction, dedicated data operands are to be
generated. Denote these sets of operands as Di = D**i.

Generation of the data operands to build the sets D**i was
not the objective of this paper. In the experimental research,
to achieve the complete test results, we exploited for creating
the data sets D**i the parallel pseudoexhaustive test (PET)
data operands, generated for selected data bits separately,
and replicated then for other bits, using the methods presented
in [28] for ALU, and in [29] for multiplication.

In this paper, we propose a new alternative approach for
data-path testing, which directly results from the data
operands generated for testing the control part – to execute
each instruction using all data operands generated according
to Definition 1 for all functions of the group D*, so that

Di = D* = ∪i D*i | i: fi ∈ F.
In this data set, the data operands for testing the control and
data paths are joined. This approach happened to be
unexpectedly very efficient regarding the achieved SAF
coverage, and at the same time, without adding cost for
storing the test data in the memory.
Comparison of different approaches is presented in the
Section for experiments.

VI. EXPERIMENTAL RESULTS

We carried out experiments, consisting in high-level test data
generation for the control and data parts of the execute stage
of MiniMIPS processor [30], consisting of ALU and two
multiplication modules MULT0 and MULT1.

The test program generation included automatic synthesis
of test templates from manual parameter file, automated high-
level test data (operands) generation to satisfy the constraints
(1-2) and based on the fault simulation according to
Procedure 1, and manual removal of the high-level fault
redundancies to prove the 100% high-level test coverage.

To compare the quality of our high-level generated test
program with commercial gate-level ATPG, we synthesized
with Synopsys synthesis tool a gate-level implementation of

the execute stage of MiniMIPS processor, and calculated
with commercial fault simulation tool the gate-level SAF
coverages for our high-level generated test program using
two options of data sets described in Section V. The
experimental research targeted 25 instructions Ii ∈ I out of
MiniMIPS 51 instructions, as the basis of the set of functions
F = {fi} investigated in the paper.

 Experimental results are shown in Table 4.

Table 4. Experimental data

Quality
measures

Parts of the
execute module

Faults

Comparison of methods

Proposed ATPG
Gate
level

ATPG

Only
control

data

Control +
PET data

Fault
coverage

%

Execute Stage 203576 98.70 99.02 97.73

ALU 2516 99.92 99.92 99.96

MULT0 95188 99.09 99.52 97.40

MULT1 91810 99.05 99.16 97.71

Stored test patterns 166 166 957

Executed test patterns 4150 4818 957

Test generation time 47s
Manually

added
PET data

8h 27m

We investigated two versions of test data generation. In
the first version “only control data” we used the full data set
D* generated automatically using the constraints (1-2). In the
second version “control + PET data”, we added to the data set
D* additional manually generated pseudo-exhaustive test
patterns, using the results in [29]. Both high-level tests were
simulated by commercial tool to grade the gate-level SAF
coverage. In both cases, the proposed method of high-level
test generation, where the knowledge of implementation
details was not needed, produced high gate-level SAF
coverage for both, control and data parts of the execute
module in MiniMIPS.

To evaluate the efficiency of the high-level ATPG, we
used commercial gate-level ATPG for comparison. The time
cost for high-level automated test generation is about two
orders of magnitude less than the time cost of the commercial
ATPG. The gate-level SAF coverages, achieved by the
proposed method for the whole module under test, and also
for the separate submodules ALU, MULT0 and MULT1 are
significantly better than that of achieved by the commercial
ATPG tool.

The proposed method has also advantage compared to the
commercial gate-level ATPG in the number of test patterns
to be stored in the memory. The test is stored in the compact
form, unrolling only during the test execution.

VII. CONCLUSIONS

In this paper, we proposed a new high-level test program
generation method for execute modules of RISC
microprocessors, which achieves gate-level SAF coverage
significantly higher than a commercial gate-level ATPG.
Furthermore, the speed of test generation exceeds the speed of
the commercial ATPG more than two orders of magnitude.

The proposed method is based on a new high-level control
fault model for microprocessors, which consists of a set of
data constraints to be satisfied in test generation. The new test
generation method uses as input information only the
description of the instruction set, which is available in the

!

!

manuals, and no knowledge of implementation details is
needed.

The test is able to achieve very high coverage of non-
redundant single SAF, as demonstrated by experiments.

Additional contribution of the paper, which shows
advantage over state-of-the-art methods, is the coverage of a
larger class of faults than only single SAF, including bridging
faults and multiple SAF in the control parts under test. Hence,
the proposed method for testing the control circuit faults is
more powerful than the traditional gate-level ATPGs, which
target only the single SAF fault class. However, this claim is
based only on theoretical considerations. The related
experimental research should be the future work.

The method was extended also to testing the faults in the
data path of the execute modules of microprocessors. A metric
of high-level fault coverage and a method for high-level fault
simulation were developed. Additionally, a manual method
for proof of high-level fault redundancies was also developed.

The future work will target optimization of test data
operands, and the extensions of the proposed method for
other modules of microprocessors not targeted in this paper.

ACKNOWLEDGMENT
The work has been supported in part by project H2020 MSCA ITN

RESCUE (EU Horizon 2020, Grant 722325), Estonian research grant IUT 19-
1 and Excellence Centre EXCITE in Estonia.

REFERENCES

[1] L.Chen, S.Dey. Software-based self-testing methodology for
processor cores. IEEE Trans. on CAD of IC and systems, vol.20,
no.3, 2001, pp. 369 - 380.

[2] N.Kranitis, A.Paschalis, D.Gizopoulos, G.Xenoulis. Software
based self-testing of embedded processors. IEEE Trans. on Comp.,
vol.54, no.4, 2005.

[3] P.Bernardi, R.Cantoro, S.De Luca, E.Sanchez, A.Sansonetti.
Development Flow for On-Line Core Self-Test of Automotive
Microcontrollers. IEEE Trans. on Comp., v.65, no.3, 2016, pp-
744-754.

[4] M.Psarakis, D.Gizopoulos, E.Sanchez, M.S.Reorda
Microprocessor software-based self-testing. IEEE Design Test of
Computers, v.27, no.3, 2010.

[5] P.Bernardi, R.Cantoro, L.Ciganda, E.Sanchez, M.S.Reorda,
S.D.Luca, R.Meregalli, A.Sansonetti. On the in-field functional
testing of decode units in pipelined risc processors. IEEE Int Symp.
on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems. 2014, pp. 299–304.

[6] A.Riefert, R.Cantoro, M.Sauer, M.S.Reorda, B.Becker. A flexible
framework for the automatic generation of SBST programs. IEEE
Trans on VLSI Systems, vol.24, no.10, 2016, pp. 3055–3066.

[7] M.Schölzel, T.Koal, S.Rieder, H.T.Vierhaus. Towards an
automatic generation of diagnostic in-field sbst for processor
components. LATW, 2013.

[8] S.Gurumurthy, S.Vasudevan, J.A. Abraham. Automatic generation
of instruction sequences targeting hard-to-detect structural faults in
a processor. IEEE International Test Conference, 2006.

[9] L.Lingappan, N. K. Jha. Satisfiability-based automatic test
program generation and design for testability for microprocessors.
IEEE Trans. on VLSI Systems, vol.15, no.5, pp. 518–530, 2007.

[10] C.H.Wen, L.-C.Wang, K.-T.Cheng. Simulation-based functional
test generation for embedded processors. IEEE Trans. on Comp.,
vol.55, no.11, 2006.

[11] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis.
Software based self-testing of embedded processors. IEEE Trans.
on Comp., vol.54, no.4, 2005.

[12] C.H.Chen, C.K.Wei, T.H.Lu, H.W.Gao. Software-based self
testing with multiple-level abstractions for soft processor cores.
IEEE Trans on VLSI Systems, vol.15, no.5, pp. 505–517, 2007.

[13] J.Shen, J.A.Abraham. Native mode functional test generation for
processors with applications to self test and design validation. Int.
Test Conference, 1998..

[14] P.Parvathala, K.Maneparambil, W.Lindsay. Frits - a
microprocessor functional bist method. International Test
Conference, 2002, pp. 590–598.

[15] I.Bayraktaroglu, J.Hunt, D. Watkins. Cache resident functional
microprocessor testing: Avoiding high speed io issues. IEEE Int.
Test Conference, 2006.

[16] F.Corno, E.Sanchez, M.S.Reorda, G.Squillero. Automatic test
program generation: a case study. IEEE Design Test of Computers,
vol.21, no.2, 2004.

[17] D.Changdao, M.Graziano,E.Sanchez, M.Sonza Reorda, M.
Zamboni, N. Zhifan. On the functional test of the BTB logic in
pipelined and superscalar processors. LATW, 2013.

[18] E. Sanchez and M. S. Reorda. On the functional test of branch
prediction units. IEEE Trans. on VLSI Systems, vol.23, no.9, 2015,
pp. 1675–1688.

[19] S. D. Carlo, P. Prinetto, and A. Savino. Software-based self-test of
setassociative cache memories. IEEE Trans. on Computers, vol.60,
no.7, 2011, pp. 1030–1044.

[20] J.Perez Acle, R.Cantoro, E.Sanchez, M.Sonza Reorda. On the
functional test of the cache coherency logic in multi-core systems.
LATS, 2015.

[21] D.Gizopoulos, M.Psarakis, M.Hatzimihail, M.Maniatakos,
A.Paschalis, S. Ravi, A.Raghunathan. Systematic software-based
self-test for pipelined processors. IEEE Trans. on VLSI Systems,
vol.16, no.11, 2008, pp.1441–1453.

[22] P.Bernardi, R.Cantoro, L.Ciganda, B.Du, E.Sanchez, M.S.Reorda,
M.Grosso, O.Ballan On the functional test of the register
forwarding and pipeline interlocking unit in pipelined processors.
14th Int. Workshop on Microprocessor Test and Verification, Dec
2013, pp. 52–57.

[23] K.B.Keller. Hierarchical Pattern Faults for Describing Logic
Circuit Failure Mechanisms. US Patent 5546408, Aug. 13, 1994.

[24] R.Ubar. Fault Diagnosis in Combinational Circuits by Solving
Boolean Differential Equations. Automation and Remote Control,
Vol.40, No 11, part 2, Nov. 1980, Plenum Publishing Corporation,
USA, pp. 1693-1703.

[25] R.D.Blanton, J.P.Hayes. On the Properties of the Input Pattern
Fault Model. ACM Trans. Des. Automat. Electron. Syst., Vol. 8,
No. 1, pp. 108-124, Jan. 2003.

[26] S.Holst, H.-J.Wunderlich. Adaptive Debug and Diagnosis Without
Fault Dictionaries. Proc. of 13th ETS, Verbania, Italy, May 2008,
pp.199-204.

[27] D.B.Armstrong. On Finding a Nearly Minimal Set of Fault
Detection Tests for Combinational Logic Nets. IEEE Trans. on
Electronic Computers, v.EC-15, no.1,1966 pp.66-73.

[28] A.S.Oyeniran, A.Jasnetski, A.Tsertov, R.Ubar. High-Level Test
Data Generation for Software Based Self-Test in Microprocessors.
6th Mediterranean Conference on Embedded Computing (MECO
2017), 2017.

[29] A.S.Oyeniran, S.P.Azad, R.Ubar. Parallel Pseudo-Exhaustive
Testing of Array Multipliers with Data-Controlled Segmentation.
Int. Symp. on Circuits and Systems (ISCAS), 2018.

[30] OpenCores, “MiniMIPS ISA”.
[31] F. Pellerey et al., "Rejuvenation of NBTI-Impacted Processors

Using Evolutionary Generation of Assembler Programs," 2016
IEEE 25th Asian Test Symposium (ATS), Hiroshima, 2016, pp.
304-309

!

!

Appendix 7

VII
A. S. Oyeniran, S. P. Azad, and R. Ubar, “Parallel pseudo-exhaustive
testing of array multipliers with data-controlled segmentation,” in 2018
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5,
May 2018

147

Parallel Pseudo-Exhaustive Testing of Array
Multipliers with Data-Controlled Segmentation

Adeboye Stephen Oyeniran, Siavoosh Payandeh Azad, Raimund Ubar
School of Computer Systems

Tallinn University of Technology, Estonia

Abstract—This paper presents a new method for pseudo-
exhaustive testing of standard array multipliers using a novel
approach of data-controlled segmentation of the circuit. The
method covers both combinational and sequential fault classes.
Differently from previous papers, the proposed separate cell-
testing approach targets multiple faults in different cells and
avoids fault masking. The method is also applicable to other
multiplier architectures like Booth and MiniMIPS with high
stuck-at fault (SAF) coverage. The regular structure of the test
allows efficient implementation of the method as both software
based self-test (SBST) and hardware-based BIST.

I. INTRODUCTION

Multiplication is one of the most traditional operations
used in scientific calculations. Multipliers are embedded in
data-path architectures of traditional microprocessors, DSPs
or SOCs. Many current FPGAs incorporate embedded cores
such as DSPs and microprocessors in addition to logic blocks
[1]. In microprocessors, Software-Based Self-Test (SBST)
approaches are widely used [2]. However, the test programs
need to be equipped with efficient data operands. In cases
where the multipliers have limited I/O access, effective Built-
In Self-Test (BIST) solutions are needed [3].

In BIST, Linear Feedback Shift Registers (LFSR) based
pseudo-random testing is the most popular strategy. However,
in the case of large circuits like multipliers, the testing time
tends to increase rapidly. Another prospective BIST solution is
Pseudo-Exhaustive Test(PET) technique [4] which has shown
to be more effective than pseudo-random test.

In this paper, we develop a new method for applying the
pseudo-exhaustive test concept to test generation of multipli-
ers. In Section II we give an overview of pseudo-exhaustive
test followed by the description of the state-of-the-art of
multiplier testing in Section III. In Section IV we present our
new method of PET for multipliers. In Section V experimental
results are presented. Section VI concludes the paper.

II. PSEUDO-EXHAUSTIVE TEST CONCEPT

The pseudo-exhaustive testing [4] is applicable if each
primary output of the circuit depends only on a small subset
of primary inputs. If any circuit output depends on all of the
circuit inputs, the circuit is called Full Dependence Circuit
(FD circuit) [4]. PET for testing such circuits was described
in [5] using segments partitioning technique. Segmentation can
be performed by inserting additional hardware (multiplexers)
[6] or algorithmically by generating proper control patterns [5].
Using exhaustive test for segments, all combinational faults
can be detected with the exception of some bridging faults
between different segments.

Extensions of PET for sequential circuits are presented in
[7, 8]. In [9], a method is proposed to generate PET patterns
at a more general implementation-free functional level.

In [10], a BIST methodology is presented for PET of uni-
lateral, 1-dimensional Iterative Logic Arrays (ILA)s. In [11],
a CAD tool which derives specifications for PET hardware for
semi-regular combinational circuits is described.

Several Design for Testability (DFT) techniques for con-
structing testable bit-sliced ALUs easily were developed, and
the notations of C-testability, I-testability, and CI-testability
of the arrays were introduced in [12].

III. OVERVIEW OF MULTIPLIER TESTING METHODS

Multiplication in data-path architectures of microprocessors
is usually performed by optimized array multipliers of various
architectures. An overview and comparison of different types
of multipliers is provided in [13].

For standard array multipliers to alleviate the test problem,
several approaches of DFT (by adding extra hardware) were
proposed [14–17]. In [14] an n×n carry-save array multiplier
needs 7 additional inputs. Only single cell combinational
(SCC) fault model is assumed. In [15], a design for an n× n
carry-propagate array multiplier is given which needs (n−1)
extra EX-OR gates, and 5 extra inputs. In [16], a parallel n×n
multiplier design is presented which is linearly testable with
3n + 60 patterns, uses n extra OR gates and n2 additional
transmission gates, but only 1 extra controllable input. In [17],
other DFT solutions for n×n carry-save array multiplier with
1 extra input were presented.

All these approaches need to change the design, which as
a rule introduces performance issues. For SBST in general
purpose microprocessors, the added extra control inputs make
these approaches not applicable. Moreover, these methods are
not developed for detecting delay and stuck-open(SOP) faults.

DFT approaches for modified Booth multipliers and Booth
Wallace tree architectures have been reported in [18–21]. The
4× 4 test algorithm in [19] and 5× 3 algorithm in [20] both
use an 8-bit counter to generate 256 test patterns and achieve
99% single SAF and SCC coverage. An algebraic method is
presented in [26] for detecting only single SAF. The described
above methods are not targeting multiple faults, and are not
usable for detecting sequential faults.

The BIST design for testing sequential types of faults
in multipliers was investigated in [22–25]. We adopt from
these methods the idea of testing the cells with single input
change (SIC) pairs, but propose a novel approach of direct

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Fig. 1: Process of multiplying Fig. 2: Segmentation of multi-
plier

and independent access to cells to cover CMOS stuck-open
and delay faults by considerably shorter test sequences.

An instruction level SBST approach for testing multipliers
is described in [27]. This approach is not applicable for BIST
due to the need of storing long test sequence.

In this paper, we propose a novel test generation approach
which is suitable for both BIST and SBST related applications.
The novelty is in a regular structure of the test data which
consists of two sets of patterns: multiplier operands and
multiplicands, both easily generated on-line algorithmically
using BIST. The proposed novel PET method allows detection
of multiple combinational cell faults (avoiding fault masking)
and also detection of sequential faults.

IV. PSEUDO-EXHAUSTIVE MULTIPLIER TEST WITH
DATA-CONTROLLED CIRCUIT PARTITIONING

Consider a ripple-carry adder as a 1-dimensional ILA. It
belongs to the class of FD circuits. However, it can be easily
segmented into cells with 3 inputs to be exhaustively tested.

The process of multiplying of two 8-bit patterns is repre-
sented as a ”paper and pencil” method in Fig.1. Here A-
pattern (a7, a6, a5, a4, a3, a2, a1, a0) represents the multipli-
cand multiplied by the B-pattern (11111111). By multiplying
the multiplicand with each bit of the multiplier B, 7 partial
products are generated and added. Such a multiplier, repre-
sented as a matrix of (n− 1)2 full adders and n half adders,
can be regarded as a 2-dimensional ILA which is very difficult
to test by organizing PET in parallel for all 1-bit cells.

In the following, we propose a method to transform this 2-
dimensional ILA of n-bit array multiplier into a set of (n−1)
1-dimensional ILAs of n cells (n1 one-bit full- and 1 one-bit
half-adders), which can be tested pseudo-exhaustively nearly
as easily as ripple-carry adders. For such a transformation
we introduce a concept of data-controlled segmentation of the
circuit, where the segments of the multiplier will be selected by
multiplier operands (B-patterns), so that each B-pattern selects
a related single 1-dimensional ILA of 1-bit adders. For n-bit
multiplier we need in total (n − 1) B-patterns with a pair of
1-s and all other bits 0, as shown in Fig.1.

In Fig.2, it is illustrated how by choosing the B-operands,
the data controlled segmentation of the circuit is performed
to select the desired 1-dimensional array of 1-bit adders for
testing. In this example, the B pattern 0110 selects the 3rd

row of adders (b2 = 1) to be tested. The value of b1 = 1
selects the first operand, and the value of b2 = 1 selects the
second operand to be added in this row of 1-bit adders. The
connections, involved in sending stimuli signals from primary
inputs to the inputs of the adders under test, and propagating

TABLE I: Pseudo-exhaustive test data generation

N 7 6 5 4 3 2 1 0
c7 a8 a7 c6 a7 a6 c5 a6 a5 c4 a5 a4 c3 a4 a3 c2 a3 a2 c1 a2 a1 a1 a0

1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1
2 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1
3 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1
4 0
5 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
6 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0
7 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0
8 1
9 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1
10 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0
11 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0
12 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
13 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1
14 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
15 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1

response signals to primary outputs are highlighted by bold
red lines.

The PET generation of A-patterns is illustrated in Table
I as a process of assigning consistent values to the triples
of signals (ci, ai+1, ai), where i = 0, 1, ..., n − 1, and n
is the data word length. Each row in Table I represents a
test pattern (two operands) for testing the 1-bit adder row
selected by a B-pattern. The values of (ai, ai+1) are chosen
so that in each column all the 8 combinations of bits were
present. To solve the inconsistencies caused by using similar
variables ai in the neighbor columns, and by the dependencies
of carries ci+1, on the values of variables (ci, ai+1, ai) in the
previous columns, 11 A-patterns were needed. To minimize
the BIST hardware, the goal was set to create A-patterns with
as less unique columns as possible in Table I. As a result of
this, a PET was created where the unique columns (2,3,4,5)
can be replicated for all higher significant 4-bit groups of
the operands, independent of their lengths. This replication
possibility makes the created PET very regular, and allows to
generate a very simple BIST.

However, it was not possible to create the patterns 100 and
110 for the triple (c1, a2, a1) in column 1, due to unsolvable
inconsistencies in columns 0 and 1 (shown by green bits in
the rows 2 and 10). To guarantee the highest quality of PET,
and enabling still all the needed 8-patterns for testing the 1-
bit adder related to column 1, additional input with n− 1 OR
gates can be inserted into multiplier to be controlled by BIST.

The first 11 A-patterns in Table I multiplied by B-patterns
with cyclically shifted 11s (see Fig.1) forms a PET which
guarantees coverage of combinational cell faults like SAF,
conditional SAF and bridging faults in cells.

Differently from the previous methods, the described ap-
proach of testing each cell separately allows avoiding mutual
masking of multiple faults in different cells. The exception
may be two faults in neighbor cells in the same adder row.
Assume, there are two faults fi and fi+1 in the cells Ci,k and
Ci+1,k, respectively, where k is the number of the row of 1-bit
adders in the multiplier array selected by the B-operand. The
fault in fi will be detected on the output si of the cell Ci,k,
and propagate up to the primary output outi of the circuit. The
possible faults in the cells Ci,m, m > k, on the propagation
path cannot mask the fault fi, since all the 1-bit adders on this
path between the cell Ci,k and the primary output outi will
not be activated by the B-operand, and play only the role of
passing the faulty signals at the constant working mode. Any
possible multiple fault on this path will stuck the path output
into constant, and hence, will be detected. If the the fault fi
will propagate via carry ci to the neighbor cell Ci+1,k, the

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

two faults fi and fi+1 may mutually mask each other in the
cell Ci+1,k . In case if fi will be not detected on the output
si, both faults may remain undetected. Two faults fi and fi+2

in not neighboring cells Ci,k and Ci+2,k, respectively, cannot
mask each other, because the fault fi will cause an error either
at si or si+1 or both, due to the property of PET, and hence,
detected at the primary outputs. A multiple not redundant fault
in the same cell cannot be mutually masked due to the property
of PET.

Detection of sequential faults like Transition Delay
Faults(TDF) and SOP requires application of test vector
pairs to the circuit under test. Thanks to the proposed data-
controlled method which enables separate and independent
testing of all 1-bit adders of the multiplier. It became possible
too apply the same idea proposed in [22]... here which is
applying single input change(SIC) pairs to every adder cell.

The proposed approach of separate testing of 1-bit adders
allows extension the PET to cover the sequential faults. The
property of covering sequential faults is achieved by proper
reordering the rows in Table I, so that for all 1-bit adders at
all inputs, both transitions 0→ 1 and 1→ 0 were present with
keeping Hamming distance 1 between the paired patterns. To
achieve this property for the PET, 4 more patterns were needed
to add into Table I. The single input transitions in all columns
of Table I are highlighted by red numbers. The green cell in
13th row refers to the added input to be controlled by BIST.

Fig. 3 shows the implementation of the proposed method
as BIST. The circuit consists of a Finite State Machine(FSM)
with 11 states (according to 11 A-patterns) which controls
the test process. The extended version of FSM for testing
sequential faults consists of 15 states. The A-patterns are
loaded directly from the FSM, replicating the 4-bit groups
(a2,a3, a4,..., a5)for all of the next higher 4-bit groups, while
a barrel shifter which is shifting predefined values loads the B-
patterns. An ”operation mode” signal can switch the multiplier
from normal mode to test mode by utilizing two multiplexers.

TABLE II: Comparison of different PET versions
Standard array multiplier

n
Regular solution:For BIST and SBST Only for SBST

(with additional stored patterns)
PET PET* PET + DFT PET + DET

FC% # pat:
11× (n−1)

FC%
pat:

11×(n−1)+
3× (n− 2)

FC% # pat FC% # pat

8 98.03 77 100 95 100 77 100 77+7
16 98.89 165 99.92 207 100 165 99.98 165+13
32 99.49 341 99.95 431 100 341 99.98 341+17

Multiplier of MiniMIPS microprocessor and Booth Multiplier

n
Regular solution: For BIST and SBST Only for SBST(with additional stored patterns)

miniMIPS Booth PET + DET(miniMIPS) PET + DET(Booth)
FC%(PET) FC%(PET*) FC%(PET) FC%(PET*) FC% # pat FC% # pat

8 98.03 99.82 98.02 99.13 100 77+15 100 77+13
16 95.83 99.56 98.05 98.15 100 165+44 100 165+8
32 93.71 98.06 96.0 97.35 99.98 341+77 99.98 341+75

V. EXPERIMENTAL RESULTS

In Table II we compare different modifications of the
proposed PET for the standard array multiplier and for the
multiplier of the MiniMIPS microprocessor, with different
word lengths n, for SAF coverage (FC%) and test lengths
(# pat), using only 11 PET patterns for the A-operand. PET*
is an extended version of PET where additional 3 × (n − 2)
patterns were added: shifted ”111” in B-patterns with 2 A-
patterns, and shifted ”101” in B-patterns with 1 A-pattern.
PET* preserves the regularity property of test data, and hence,

TABLE III: Comparison of PET for 2 different multipliers

n 4 x 4 [20] Variations of the proposed PET method
PET 11 (A), R24 (B) PET 11 (A), R23 (B)

FC% # pat FC% # pat FC% # patA-M M-M A-M M-M A-M M-M
8 99.94 99.83 99.89 99.82 99.89 99.82

16 99.98 99.97 99.97 99.95 99.61 99.10
32 99.99 99.97

16× 16
= 256 99.99 99.88

11× 16
= 176 99.25 96.98

11× 8
= 88

TABLE IV: Comparison for sequential fault coverage
No Method Test Length SIC coverage
1 BIST [23] Robust implementation 512(3nx + ny2)) 98%
2 BIST [23] Low-Cost implementation 4096 for any length Not available

3 Proposed PET
extended for

sequential fault test

Without any DFT
15× (ny − 1)

nx = 8 97.8%
nx = 16 98.9%

With DFT(1 extra
input, (n-1) OR gates)

nx = 32 99.4%
4 15× (ny − 1) 100%

is well suitable for BIST. Added 1 extra input and (n−1) OR
gates into the multiplier (PET + DFT) allows to achieve 100%
SAF coverage. A hybrid test using PET with additional ATPG-
generated deterministic test patterns (PET + DET) guarantees
as well 100% SAF coverage, but without any change in the
multiplier, and therefore is well usable for SBST. In Table
III, we compare the 4 × 4 method from [20], a modified
PET method, where for generation of the B-operands we
exploit the idea from [20] to replicate in 4-bit groups of
B all 16 combinations (referred as ”R24(B))”, and finally,
the same with replication of 3-bit groups ”R23(B))”. These
tests provide a good single SAF coverage, however, the PET
properties of A-operands may suffer, because instead of single
adders, two or more adders are now involved in operations.
To compare the proposed PET with other state-of-the-art, the
methods in [13-21] are targeting only combinational faults, and
in most of them, DFT modifications of the circuit are needed,
which makes them difficult to use for SBST in standard mi-
croprocessors. Differently from state-of-the-art, the proposed
approach is targeting the multiple faults in different cells by
avoiding mutual fault masking. In Table IV a comparison is
provided between the BIST [23] and the proposed method,
where both are targeting sequential fault (SOP and delay)
coverage based on applying test pattern pairs. The lengths of
the test sequences and the coverages of single input changes
(SIC) in test pairs (as the quality of sequential fault testing)
are provided.

The resulting BIST hardware was synthesized using AMS
0.18 µm CMOS technology library [28] for different bit-
widths. Fig.4 depicts the normalized area overhead of the
proposed BIST for different data widths. Fig.5 compares the
area overhead of the proposed BIST with the traditional LFSR-
based BIST. The experiments show that for larger bit-widths,
the area overhead of the test circuitry becomes negligible
(Fig.4), however, the proposed BIST is growing much slower
in area compared to the LFSR-based BIST (Fig.5). Fig.6
depicts the consumption of total power (internal, switching
and leakage) of the test program for LFSR-based and proposed
BIST. The proposed BIST consumes much less power than the
LFSR based solution, which makes it a desirable solution.

Algorithms 1 and 2 describe the unfolded SBST (where all
test patterns are stored in the memory and are loaded them
one by one) and proposed SBST (which stores the patterns
for operand A but calculates operand Bs values on the fly
by shifting it to the right). Fig. 7 compares the memory

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Fig. 3: BIST architecture
for the multiplier

Fig. 4: Overhead of proposed BIST for
different data widths

Fig. 5: Area overhead for proposed BIST
and LFSR-based BIST

Fig. 6: Power consumption of proposed
BIST and LFSR-based BIST

Fig. 7: Comparison of memory requirements
for two SBST methods

Fig. 8: Performance comparison of SBST
and BIST methods

initialize the pointer to
beginning of test data;

while (i < 11 × n × 2) do
load reg1 from

memory;
i++;
load reg2 from

memory;
i++;
multiply reg1, reg2;

end
Algorithm 1: unfolded
SBST

initialize the pointer to beginning of test data
for operand A;

while i < 11 do
load reg1 from memory;
j = 0;
while j < n do

reg2 <= calculate operator B
for cycle n;

multiply reg1, reg2;
j ++;

end
i ++;

end
Algorithm 2: proposed SBST

TABLE V: Experimental Data for BIST and SBST

comparison of different approaches for 16 bit multiplier

Parameters BIST SBST
proposed LFSR SBST proposed

memory 0 0 5632 176
time (clk) 177 203 1060 764

area overhead 14.87% 21.08% 0 0
Power (mW) 0.3426 0.4749 Depends on the processor

requirement for the above mentioned approaches, and Fig. 8
compares the clock cycles for performing the test program
using above mentioned SBST algorithms against the proposed
BIST for a 4-stage pipelined processor for different bit-width
for the multiplier which show the effectiveness of the proposed
approach in contrast to unfolded SBIST. Table V provides an
overview of parameters of the above mentioned methods for
testing a 16-bit multiplier.

VI. CONCLUSIONS

We presented a novel approach for pseudo-exhaustive test-
ing of standard array multipliers, which is able to cover a
broader class of faults, compared to state-of-the art array multi-
pliers, including both combinational and sequential faults. The
proposed method provides a high stuck-at fault coverage also

for other types of multipliers. The main idea of the approach is
in the novel data-controlled partitioning method which enables
separate access to all 1-bit adder cells, and as the result high
quality of testing with well structured test data and less test
lengths compared to state-of-the-art methods. The proposed
method targets both combinational faults (multiple SAF in
cells, conditional SAF, shorts), and sequential faults (CMOS
stuck-opens and delay faults). Differently from the previous
methods, the proposed PET approach targets also multiple
faults in different cells and avoids mutual fault masking
due to separate application of PET patterns to cells. Several
modifications of PET approaches are proposed to improve its
quality. The proposed test set has a regular structure, which
makes it applicable for both, HW-based logic BIST and SW-
based self-test to be used in standard processors and DSPs.
Experimental research results showed that the proposed novel
PET based BIST solution outperforms the parameters like area
overhead and power consumption in traditional LFSR based
BIST. The regular structure of PET data allows more efficient
solutions also for SBST.

Experimental results demonstrate that for standard array
multipliers the proposed data controlled segmentation method
achieves 100% fault coverage for a broad class of faults.
For other classes of multipliers (MiniMIPS, Booth multiplier),
SAF coverage is less (see Table II), which can be seen as a
limitation of the method. However, combining the proposed
PET with deterministic patterns for the mentioned multipliers,
it was possible to achieve 100% SAF coverage.

Acknowledgments The work has been supported by EU’s
H2020 RIA IMMORTAL, EU’s Twinning Action TUTORIAL,
Estonian institutional research grant IUT 19-1, Estonian IT
Academy program and funded by Excellence Centre in IT in
Estonia (EXCITE) project.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

REFERENCES

[1] Pulukuri, M., Stroud, C. BIST of Digital Signal Processors
in Virtex-4 FPGAs. IEEE Southeastern Symp. on System
Theory, 2009.

[2] Chen, L., and Dey, S. SW-based self-testing methodology
for processor cores. IEEE Trans. on CAD of IC and
systems, vol. 20, no. 3, 2001, pp.369-380

[3] D. Gizopoulos, A. Paschalis, Y. Zorian, An Effective BIST
Scheme for Parallel Multipliers, IEEE Trans. on Comp.,
vol. 48, no. 9, 1999, pp.936-950.

[4] McCluskey, E.J. Verification Testing - A Pseudo-
Exhaustive Test Technique. IEEE Trans. on Comp., Vol.
33, No. 6, 1984, pp.541-546.

[5] Udell,J.G., McCluskey, E.J. Pseudo-exhaustive test and
segmentation: formal definitions and extended fault cov-
erage results. FTCS, 1989, pp. 292-298.

[6] Udell, J.G. Reconfigurable Hardware for Pseudo-
Exhaustive Test. International Test Conference, 1988,
pp.522-530.

[7] Wunderlich, H-J., Hellebrand, S. Generating pattern se-
quences for the pseudo-exhaustive test of MOS-circuits.
FTCS, 1988, pp.36-41.

[8] Wunderlich, H-J., Hellebrand, S. The Pseudoexhaustive
Test of Sequential Circuits. IEEE Trans. on CAD of IC
and Systems, vol.11, no.1, 1992, pp.26-33.

[9] Tang, R., Si, P.F., Huang, W.K., Lombardi, F. Testing IP
Cores with Pseudo-Exhaustive Test Sets. 4th Int. Conf. on
ASIC, 2001, pp.740-743.

[10] Su, C.C., Lemke, J.K., Chen, M., Kime. C.R. A BIST
Methodology for Iterative Logic Arrays. IEEE Int. Symp.
Circuits and Systems, 1992, Vol.1, pp.411-414.

[11] Su, C.C., Kime. C.R. Computer-Aided Design of Pseudo-
exhaustive BIST for Semiregular Circuits. Proc. Int. Test
Conf. 1990, pp. 680-689.

[12] Sridhar, T., Hayes, J.P. Design of Easily Testable Bit-
Slice Systems. IEEE Trans. on Computers, vol. C-30, no.
11, 1981, pp. 842-854.

[13] Pulukuri, M.D., Starr, G.J., Stroud, C.E. On Built-In Self-
Test for Multipliers. Proc. IEEE SoutheastCon 2010, pp.
25-28.

[14] Shen, J.P., Ferguson, F.J. The Design of Easily Testable
VLSI Array Multipliers. IEEE Trans. on Comp., vol.33,
No.6, 1984, pp.554-560.

[15] Chatterjee, A., Abraham, J.A. Test Generation for Arith-
metic Units by Graph Labeling. Proc. Int. Symp. FTC,
1987, pp.284-289.

[16] Hong, S.J. An Easily Testable Parallel Multiplier. FTCS,
1988, pp. 214-219.

[17] Takach, A.R., Jha, N.K. Easiliy Testable Gate-Level and
DCVS Multipliers. IEEE Trans. on CAD, vol.10, NO.7,
1991, PP.932-942.

[18] Stans, R. The Testability of a Modified Booth Multiplier.
Proc. 1st European Test Conference, 1989, pp.286-293.

[19] Gizopoulos, D., Paschalis, A., Zorian, Y. An Effective
BIST Scheme for Booth Multipliers. Int. Test Conference,
1995, pp.824-832.

[20] Gizopoulos, D., Paschalis, A., Zorian, Y. An Effective

BIST Scheme for Parallel Multipliers. IEEE Trans. on
Comp., vol.48, no.9, 1999.

[21] Booth, A.D. A Signed Binary Multiplication Technique.
A. J. Mech. Appl. Math. 4, 1951, pp. 260-264.

[22] Psarakis, M., Gizopoulos, D., Paschalis, A., Zorian, Y.
Sequential Fault Modeling and Test Pattern Generation for
CMOS Iterative Logic Arrays. IEEE Trans. on Comp.,
vol.49, no.10, 2000.

[23] Psarakis, M., Gizopoulos, D., Paschalis. Built-In Sequen-
tial Fault Self-Testing of Array Multipliers. IEEE Trans.
CAD of IC and Syst., vol.24, no.3, 2005.

[24] Smith, G.L. Model for Delay faults Based upon Paths.
IEEE Int. Test Conference, 1985, pp.342-349.

[25] Liang, H.-C., Huang, P.-H. Testing TDF in Modified
Booth Multipliers by Using C-Testable and SIC patterns.
IEEE Reg. 10 TENCON Conf., 2007.

[26] Rahaman, H., Mathew, J., Pradhan, D.K., Jabir, A.M.
Derivation of Reduced Test Vectors for Bit-Parallel Mul-
tipliers Over GF(2m). IEEE Trans. on Computers, vol. 57,
no. 9, 2008, 1289-1294.

[27] Lin, M., Yan, G. Instruction level test for parallel multi-
pliers. 15th IEEE International Conference on Electronics,
Circuits and Systems ICECS, 2008.

[28] http://ams.com/eng/Products/Full-Service-Foundry/
Process-Technology/ CMOS/0.18-m-CMOS-process/

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Appendix 8

VIII
A. S. Oyeniran, R. Ubar, M. Jenihhin, C. C. Gürsoy, and J. Raik, “Mixed-
level identification of fault redundancy in microprocessors,” in 2019 IEEE
Latin American Test Symposium (LATS), pp. 1–6, March 2019

155

978-1-7281-1756-0/19/$31.00 ©2019 IEEE

 Mixed-level identification of fault redundancy
in microprocessors

Adeboye Stephen Oyeniran, Raimund Ubar, Maksim Jenihhin, Cemil Cem Gürsoy, Jaan Raik

Tallinn University of Technology, Estonia
adeboye.oyeniran@ttu.ee, raiub@pld.ttu.ee, maksim@pld.ttu.ee, cem@ati.ttu.ee, jaan@pld.ttu.ee

Abstract— A new high-level implementation independent
functional fault model for control faults in microprocessors is
introduced. The fault model is based on the instruction set, and
is specified as a set of data constraints to be satisfied by test data
generation. We show that the high-level test, which satisfies
these data constraints, will be sufficient to guarantee the
detection of all non-redundant low level faults. The paper
proposes a simple and fast simulation based method of
generating test data, which satisfy the constraints prescribed by
the proposed fault model, and a method of evaluating the high-
level control fault coverage for the proposed fault model and for
the given test. A method is presented for identification of the
high-level redundant faults, and it is shown that a test, which
provides 100% coverage of non-redundant high-level faults, will
also guarantee 100% non-redundant SAF coverage, whereas all
gate-level SAF not covered by the test are identified as
redundant. Experimental results of test generation for the
execution part of a microprocessor support the results presented
in the paper.

Keywords: processor core testing, high-level control fault model,
high-level fault simulation, fault coverage, fault redundancy

I. INTRODUCTION

Technology scaling in today’s deep-submicron processes
produce new failure mechanisms in electronic devices, which
has forced researchers to develop more advanced fault
models compared to the traditional stuck-at fault (SAF)
model [1], and to investigate the possibilities of reasoning the
faulty behavior of systems without using any particular fault
models [2, 3].

Fault models for digital circuits have been developed for
different types of failure mechanisms like signal line bridges
[4], transistor stuck-opens [5] or failures due to increasing
circuit delays [6]. Another trend has emerged to develop
general fault modeling mechanisms and corresponding test
tools that can effectively analyze arbitrary fault types. The
oldest example is the D-calculus [7]. A generalization of this
approach has been found in the input pattern fault model [8],
and in the pattern fault model [9], which can represent any
arbitrary change in the logic function of a circuit block, where
a block is defined to be any combinational sub-circuit
described at any level of the design hierarchy.

A similar pattern related fault modeling approach called
functional fault model was proposed earlier in [10] for the
module level fault diagnosis in combinational circuits. The
functional (or pattern) fault model allows an arbitrary set of
signal lines to be grouped into activation conditions for a
single fault site, allowing a variety of physical defect types to
be modeled. Based on the functional fault model a
deterministic defect-oriented test pattern generator DOT was
developed in [11] which allowed proof of the logic
redundancy of not detected physical defects.

In [12], a similar model called conditional faults was
proposed for test generation purposes, and in [13] for
diagnosis purposes. A conditional fault allows additional
signal line objectives to be combined with the detection
requirements of a particular fault. For complete exercising
blocks in combinational circuits on the gate level, a similar
pattern oriented gate-exhaustive fault model was proposed in
[14], which was extended to target bigger regions (collections
of gates) by region-exhaustive fault model in [15].

The described functional, conditional and pattern fault
models offer high flexibility in defect modeling beyond
single SAF model. Further advancements of the low-level
fault modeling have been achieved by introducing the fault
tuple fault model [16], realistic sequential cell fault model
[17], or cell-internal defect model [18], where the last two
cases provide general capability to handle sequential
misbehavior of circuits.

The conditional SAF model (and other listed models) [8-
18] support hierarchical test approach, where the test pattern
(or sequence), which activates a low-level fault (e.g. physical
defect) at the lower level can be considered as the high-level
condition (or constraint) for the functional fault defined at the
higher level.

To increase the speed of test generation and fault
coverage evaluation, high-level (functional or behavioral)
fault models have been developed. Such a model can be
considered as “good”, if the tests generated using this model
provide a high coverage of SAF or physical defects.

In the design hierarchy, higher-level descriptions have
fewer implementation details, but more explicit functional
information than lower level descriptions. High-level fault
models depend on which level the tests are generated.

Usually, the methods of high-level test generation are divided
into structural RTL based methods [19-20], or behavioral test
generation methods [21-22]. A high-level fault model can be
explicit or implicit [23-24]. An explicit model identifies each
fault individually, and every fault in this model will be a
target for test generation. Implicit models are based on the
assumption that all gate-level faults may not be represented
at the RT level, and this motivated to develop dedicated RTL
fault models with dependence on implementation details.

High-level fault models are used widely in the field of
Software-Based Self-Test [25-30]. These approaches can be
divided into two major groups - structural and functional.
Structural approaches, such as [25-26], are based on test
generation using information from lower level of design
(gate- or RTL-level description) of processor under test.
Functional, in its turn, is using instruction set architecture
(ISA) information of the processor under test [27-30].

The main and general problem of high-level faults is the
difficulty of proving that the model covers all low-level
detectable (non-redundant) faults. In existence of such a high-
level proof, it would be possible to identify the redundancy
of gate-level faults exclusively by only gate-level fault
simulation, which has cheaper cost than low-level fault
redundancy proof by conventional gate-level ATPG-s.

In this paper, we make such attempt for a restricted class
of circuits with well-defined functionality. Particularly, we
target ALU control circuits. We propose a high-level data
constraint based functional control fault model, and we prove
that the test producing 100% high-level fault coverage will
also guarantee 100% low-level detectable SAF coverage, and
that all not detected SAF, identified by low-level fault
simulation, are redundant.

The rest of the paper is organized as follows. In section 2,
we present a novel control fault model for microprocessors,
and in Section 3 we investigate the problem of mapping these
high-level faults to low-level. Section 4 discusses high-level
fault coverage measurement. In Section 5, we investigate the
problem of high-level fault redundancies, and in Section 6
low-level fault redundancies. Section 7 presents experimental
data, and Section 8 concludes the paper.

II. HIGH-LEVEL CONTROL FAULT MODEL FOR PROCESSORS

In this paper, we focus on testing of the ALU control, as a part
of all control circuits in microprocessor cores.

Assume, the ALU executes n different functions y = fi (Di)
by a set F = {fi } of instructions, where Di is the set of data
operands for fi , the length of the data word is m, and ALU is
controlled by p control signals. Consider a general ALU model
partitioned into the control and data parts as shown in Fig.1.
The control part consists of the multiplexer MUX and p control
lines as control inputs to MUX. The n AND blocks in MUX
have each p control and a single m-bit data input, whereas the
OR block in MUX has n data word inputs from the outputs of
AND blocks. Each AND block consists of m AND gates with
p control inputs, and a single bit data input.

Let us classify two types of high-level functional fault
models for ALU: control faults (the faults related to the
control part of ALU), and data faults (the faults related to the
data part of ALU). In the following, we will consider the
control fault testing.

Definition 2. Introduce for the function (instruction) fi ∈
F, the following high-level control fault model CFM(fi) =
{Ex(fi), C(yi, F)}, where C(yi, F) is a set of the constraints to
be satisfied for each bit k of yi:
 ∀k: (yi/k ≠ 0), (1)

 ∀fj∈F, j ≠i : {∀k: (yi/k < yj/k)} (2)

Depending on the technology, implemented in the
microprocessor, the constant 0 in formula (1) can be changed
into 1, and instead of the relation “ < ” in formula (2), there
can be “ > “.

Definition 1. Let us introduce control fault universe as a
set of any multiple SAF and bridging faults on the control lines
of the control part (shown as control fault locations in Fig.1).

Introduce the following notations: Ex(fi) – execution of the
instruction fi, yi – the data word considered as the result of the
introduction fi at the data operands Di.

Fig.1. Generic DNF based control structure of ALU

The proposed fault model can be regarded as a
generalization of the conditional SAF model (or similar ones
considered in [8-18]). In case of conditional SAF, we are
testing SAF on the gate-level lines at some constrained
signals on other lines, whereas in case of the high-level fault
model of Definition 2, we are testing the instructions of
microprocessors at a set of constraints for data (operands).

Let us compare the complexities of the proposed high-
level control fault model and the traditional SAF model of the
control part architecture in Fig.1. The complexity of SAF
model can be represented by the size of the model, i.e. by the
number of control lines in the circuit multiplied by two for
both SAF types: C(SAF) = 2nmp. On the other hand, the
complexity of the proposed high-level control fault model
(CFM) can be represented by the number of data constraints
to be satisfied, that is C(CFM) = n(n-1)mp.

The time costs TC of test generation for both cases of the
fault model can be estimated roughly by multiplying the size
of the model with average test generation time t per fault as
 TC(SAF) = 2nmp * tSAF (3)
 TC(CFM) = n(n-1)mp * tFFM (4)
Despite that the size C(SAF) is linear with the circuit size, the
gate-level test generation time with ATPGs is not scalable.
On the other hand, despite the quadratric size of the high-
level control fault model C(CFM), the test generation time for
solving the data constraints (2) is linear, and very efficiently
executable by random search (see experimental data).

Note, to simplify the model proposed in Definition 2 with
the goal to reduce its size, the set of instructions F can be
partitioned into subsets of F, similarly as proposed in [29],
and for each subset, dedicated high-level fault model
according to Definition 2 can be derived.

The practical reason for such partitioning of F may result
from the instruction coding scheme. For example, if different
fields of the instruction format have separate decoding
circuit, then for each field, a separate set of instructions F for
the proposed in Definition 2 fault model can be assigned.

III. HIGH-LEVEL CONTROL FAULT MAPPING TO

GATE-LEVEL FAULTS

Let us consider in the following, how the gate-level fault
redundancies in the control part of ALU can be identified by
mixed level fault reasoning. To reduce the complexity of the
problem, we propose, instead of exploiting slow conventional
gate-level ATPGs for SAF redundancy proof, to use the
combination of faster high-level test generation, and faster
than ATPG low level fault simulation to achieve the same
result – identification of the redundant low-level faults.

Introduce the following notations of the input information
for solving the problem.

Definition 3. The set CFM = {CFM(fi)} for all fi ∈ F
represents the full high-level control fault model for the given
set of functions F = {fi} of the microprocessor.

Definition 4. Let D*i – be the set of data operands which
satisfy the constraints of the fault model CFM(fi}, T*i – the
test, which uses the data operands D*i, and T* = {T*i} – the
full test, generated for the control fault model CFM.

Theorem 1. The test T* ={T*i}, which covers all non-
redundant high-level faults of the model CFM = {CFM(fi)},
covers also all gate-level testable SAF in the control part of
the microprocessor, which controls the set of functions F.

Proof. Consider the generic ALU control part presented
in Fig.1 and described as the following DNF: ݕ = ܿଵ,ଵܿଵ,ଶ…ܿଵ,ݕଵܿଶ,ଵܿଶ,ଶ…ܿଶ,ݕଶ…ܿ,ଵܿ,ଶ…ܿ,ݕ (5)

In this DNF the variables ܿ,	for selecting the data results ݕ,݅ = 1, …݊, represent the global control signals ܿ, j = 1,...p,
being either inverted or not, and covering in general case
exhaustively all the 2p combinations. In DNF, according to
Definition 4, and due to satisfied constraints (2) of the fault
model in Definition 2, at least once the value of ݕ	for each ݅ = 1, …݊ , will be ݕ = 1. On the other hand, due to the

exhaustiveness of all 2p combinations of control signals, for
each term of DNF with ݕ = 1, there will be a combination
of control signals ܿ,ଵܿ,ଶ…ܿ, consisting of a single 0, e.g. ܿ, = 0 , with all others control signals ܿ, = 1, r ≠ p. This
is the case, where in the term ܿ,ଵܿ,ଶ…ܿ,ݕ , the SAF ܿ,	1
is activated. For propagating the fault ܿ,	1 to the output y,
all other terms in DNF must have at least one 0 assigned to
the variables of the term. This is guaranteed, because due to
the constraints (2), which demands that in the term where all ܿ, = 1, the value of ݕ must be 0, and in other terms there
must be at least one variable assigned by 0. Hence, all SAF
faults of type ܿ,	1 in all variables ܿ, can be tested by T*.

The faults ܿ,	0 will be tested by patterns in T* where
the constraint (1) is satisfied. ■

Corollary 1. Any gate-level SAF in the control part
related to F = {fi}, not detectable by the test T* = {T*i} which
covers all not redundant high-level control faults of the model
CFM = {CFM(fi)}, is redundant.

Proof. In Theorem 1, exhaustiveness of using all the
combinations of the local control signals ܿ,ଵܿ,ଶ…ܿ, was
assumed. If not all combinations are used in the instruction
set of the microprocessor, which is the typical practical case,
then, not all patterns can be generated for activating all SAF
of type ܿ,	1. Usually these cases are used for optimization
of the gate-level structure of the control part of ALU. If
however the optimization process has not removed all
hardware redundancy, then as the result, the control part may
consequently contain also redundant faults. These redundant
faults can be identified by simple and fast gate-level fault
simulation of the high-level generated test T*. ■

Example 1. Consider a simplified ALU unit with the set
of three functions f1, f2, f3, activated by a set of control signals ܿଶഥ ܿଵ, ܿଶܿଵഥ , ܿଶܿଵ respectively. The ALU can be represented by
the DNF: ݕ = 	ܿଶഥ ܿଵݕଵܿଶܿଵഥݕଶܿଶܿଵݕଷ.
The test T* = {T*1, T*2, T*3}generated for the control part of
ALU that satisfies the constraints (2) is depicted in Table 1.

Table 1. Example of a high-level control test

T*i
Test Fault table

Constraints satisfied
c2 c1 y1 y2 y3 ܿଶഥ ܿଵ ଵݕ ܿଶ	ܿଵഥ ଷݕ	ܿଵ	ଶ ܿଶݕ	

1 2 3 4 5 6
T*1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 y1 < y2, y1 < y3

T*2 1 0 1 0 1 0 0 1 1 1 0 1 0 1 y2 < y1, y2 < y3

T*3 1 1 1 1 0 0 1 1 1 0 1 1 1 0 y3 < y1, y3 < y2

The table contains the test patterns in column 2, the fault table
in columns 3-5, and the constraints satisfied by generating
data for the control test patterns in column 6. The detected
gate-level faults in the fault table are highlighted by red
colour: 0 means the value of a signal which activates the fault
SAF/1. For example, in case of the fault c2 ≡ 1 in column 5,
the value of the output signal y = y1 = 0 will change from 0 to
y = y1 ∨ y3 = 1. For detecting the faults SAF/0, more 3 test
patterns are needed (not shown in the table). We see in the
fault table that the faults c1 ≡ 1 in column 3 and c2 ≡ 1 in
column 4 are not detected, because of the control code c2c1
= 00 is illegal (not usable in this ALU). According to

Corollary 1, these gate-level faults are redundant (in case if
the control circuit is implemented as DNF). As the example
shows, the redundancy of the gate-level faults can be derived
by simple low-level SAF simulation. ■

 Note, Theorem 1 and Corollary 1 were formulated and
the proofs were given, considering so far only the single SAF
model. In fact, the power of the proposed high-level control
fault model stretches far beyond the fault class of single SAF,
as it will be shown in the following corollaries.

Corollary 2. The test T* ={T*i}, covers all gate-level
multiple SAF and bridging faults between control lines in the
control part of the microprocessor, which controls the set of
functions F = {fi}.

Proof. From (2) it follows that for each function F = {fi},
∀k: (yi/k < yj/k) for all j ≠ i must hold. This means that not only
SAF/1 in a single control signal of a single function fj ∈F, j≠
i, can be detected (by overwriting yi/k = 0 with yj/k = 1), where
the control words for fi and fj differ in a single bit, rather such
overwriting of signals yi/k = 0 with 1 can happen, and hence,
can be detected, due to multiple changes 0→1 for fj∈F, j≠i,
leading to detecting multiple faults. This explanation can be
derived also from reasoning of DNF (5).

On the other hand, from the constraints (1-2), and from
the exhaustiveness of testing all the control functions
function fj ∈F, j≠i, it follows that non-redundant bridging
faults between the control lines can also be detected by T*. ■

In case, when the target would be to detect only single
SAF, then the fault model defined by the constraints (1) and
(2) is over-dimensioned. For the case of full single SAF
coverage, it would be sufficient to loosen the constraint (2) to

 ∀fj∈F, j ≠i, (HD(fj,fi) =1) : {∀k: (yi/k < yj/k)} (6)

where HD(fj,fi) =1 is the constraint that the Hamming distance
between the control codes for fj and fi is 1. This simplication
is similar to the approach used in [29]

Corollary 3. The size of the proposed high-level control
fault model applied only to the code-neighboring functions
fj,fi with HD(fj,fi) =1, is equal to C(CFM, HD=1) = nmp.

Proof. The proof is straightforward, since for each fj∈F,
instead of m(n-1), only mp comparisons are needed. ■

The size of the updated with (6) high-level control model
is 2 times smaller than for the SAF model C(SAF). Regarding
the test cost, since tCFM << tSAF , we get

 TC(CFM) = nmp tCFM << TC(SAF) = 2nmp tSAF. (7)

IV. HIGH-LEVEL FAULT COVERAGE MEASUREMENT

From above, it follows that the high-level control fault model
CFM defined by the set of constraints (2) can be interpreted
as the definition of the universe of high-level control faults.
A direct impact of this interpretation is the possibility of
evaluating the high-level fault coverage as the percentage of
satisfied constraints (2) by the given test. The measuring of
the coverage of constraints (1) is not needed, because they
will be satisfied anyway as the byproduct of the data path test.

The size of the proposed high-level functional fault model
results from the fault table for representing the coverage of
satisfied constraints (2).

Let us introduce the high-level fault table as a matrix D =
| | Di,j | | with n columns and n rows, where n – is the number
of functions in F. Each entry Di,j in D is a m-bit vector Di,j =
(Di,j/1, Di,j/2, … , Di,j/m,), where m is the number of bits in the
data-word. Di,j/k = 1, if the constraint yi/k < yj/k for the bit k is
satisfied, and Di,j/k = 0 if not.

Fig.2. Architecture of the test program

Consider a simplified architecture of a test program for
testing the control part of ALU as shown in Fig.2. The test
T*={T*1,…,T*n} for ALU with n functions of the set F = {f1,
…, fn} consists of a core of the test program, array of test
patterns (instructions) and array of test data operands. The
core consists of a small set of test templates for initializing
registers, executing test patterns and processing test results.
The test patterns are instructions, and to each instruction, a
set of data operands is assigned, to be exercised cyclically.
Each test pattern with related operands forms a test T*i ∈ T*.
The task of the core is execution of the full test T*.

For high-level fault simulation, there is no need to
simulate the full test program illustrated in Fig.2. Instead of
that, only the array of data operands should be processed
according to the following procedure.

Procedure 1.
1) for i = 1,…,n
2) for all data operands di,j,1, di,j,2, j = 1,…,ni

3) for all instructions fh, h = 1,…,n
4) calculate the value yh
5) check the relation yi < yh, h ≠ i
5) update the vector Di,h ∈D
6) end for

For high-level test generation we developed a simulation
based random search for test data to satisfy the constraints
(2), where for constraint checking we used Procedure 1.

V. IDENTIFICATION OF HIGH-LEVEL CONTROL FAULT

REDUNDANCIES

Consider Table 2, which illustrates a fragment of the high-
level fault coverage matrix D, for a test T* generated for the
MiniMIPS processor [24]. In this fragment 8-bit data-words,
and 5 functions OUI, ADD, SUB, SLT, AND of the
MiniMIPS microprocessor are considered.

In Table 2, the 0s refer to the possible high-level
redundancies of the control faults related to the constraints
yi/k < yj/k, where i and j correspond to the rows and columns,
respectively. All 0s in Dij refer to the high probability of

redundancy of the full set of high-level faults for all bits,
which means that the constraints yi/k < yj/k, for all k cannot be
satisfied. In most cases of ALU operations, it is very easy to
identify this type of redundancy. For example, if yi = fi (a, b)
refers to AND operation and yj = fj (a, b) refers to OR, it is
straightforward that the constraint yi < yj, i.e. (a ∨ b) < (a ∧ b)
cannot be satisfied.

Table 2. Example of a High-Level Fault Table

 f1 (OUI) f2 (ADD) f3 (SUB) f4 (SLT) f5 (AND)
f1 (OUI) 111111 111111 111111 000000
f2 (ADD) 11111 111110 111111 111111
f3 (SUB) 11111 111110 111111 111111
f4 (SLT) 11111 111111 111111 000000
f5 (AND) 11111 111111 111111 111111

In Table 2, the 0s refer to the possible high-level
redundancies of the control faults related to the constraints
yi/k < yj/k, where i and j correspond to the rows and columns,
respectively. All 0s in Dij refer to the high probability of
redundancy of the full set of high-level faults for all bits,
which means that the constraints yi/k < yj/k, for all k cannot be
satisfied. In most cases of ALU operations, it is very easy to
identify this type of redundancy. For example, if yi = fi (a, b)
refers to AND operation and yj = fj (a, b) refers to OR, it is
straightforward that the constraint yi < yj, i.e. (a ∨ b) < (a ∧ b)
cannot be satisfied.

In cases when there is an entry Di,j/k = 1 in a single bit k of
the vector Dij, or in only few bits of it, we can suggest for the
proof a method called "partial truth table method”. The idea
of the method stands in showing the equivalence of partial
truth tables (or to prove the impossibility of solving the
related constraints) for the functions involved in the
constraint relation, so that as few as possible responsible bits
should be selected for the need of the proof.

In Table 3, examples are shown for 1-bit partial truth
tables for the functions SUB, ADD, OR, AND, for bit k. The
pairs 00, 01, 10, 11 represent the values of the data variables
(as arguments) in bit k, and the 1-bit values in the columns
show the results of the related operations for this k-th bit. For
SUB and ADD, the equivalence of the behavior in the given
bit is demonstrated, which contradicts to the constraint (2),
and in the case of OR and AND, the missing of a solution for
(2) is also shown for all possible input data combinations.

It is easy also to show for example, the equivalence of
operations ASR and SHR for MiniMIPS for all bits, except
the most significant bit MSB. Hence, for all bits except for
MSB, the entry di,j/k = 0 refers to the redundant control fault.

In some cases, the partial truth table method will not
work, because the results of operations may substantially
depend on all bits of the word like for increment or decrement
operations. When this happens, specific corner cases should
be found for the proof of redundancy. For example, to prove
the equivalence of increment and decrement operations in the
least significant bit, the operand 1…110 should be used,
where both instructions INC and DEC produce the same
result “all 1s”.

Table 3. Examples of redundancy proofs with 1-bit truth tables

yi/k < yj/k Dij yi/k < yj/k 00 01 10 11

1 SUB < ADD 1…110
SUB 0 1 1 0
ADD 0 1 1 0

2 OR < ADD 1…110
OR 0 1 1 1

ADD 0 0 0 0

VI. MIXED-LEVEL IDENTIFICATION OF FAULT

REDUNDANCIES
Let us now draft the general procedure of the mixed-level

identification of gate-level single SAF, where the test is
generated at the high-level using the proposed high-level
control fault model, and the redundancy of the low-level SAF
is identified by low-level fault simulation of the test,
generated at the high-level.

Procedure 2.
1) Generation of the high-level test T* for the given set of

functions (instructions), with finding the data which satisfy
the constraints (2) (see Section II).

2) Generation of the high-level fault coverage table D by
high-level fault simulation of the test T* (see Section IV). The
steps 1 and 2 can be carried out jointly (see Section IV).

3) High-level fault redundancy identification. For all not
covered high-level faults (all 0s in the fault table D), the
redundancy of the high-level control faults is identified (see
Section V).

4) If the high-level redundancy cannot be proven for some
of high-level fault

s, the test T* must be extended to satisfy the constraints
(2), and to achieve 100% high-level fault coverage. This is
the prerequisite (Theorem 1) for the next step of redundant
SAF identification.

5) Gate-level fault simulation of the test T*. The not
detected SAF are identified as redundant low level faults in
the control circuit of ALU (Corollary 1).

VII. EXPERIMENTAL RESULTS
We carried out experiments which consists of high-level test
data generation for the control part of Execute stage of
MiniMIPS processor [31], Fig.3. The test program generation
included manual synthesis of test templates, high-level
generation of test data (operands) to satisfy constraints (1-2),
test program synthesis and high-level fault simulation. For
high-level test generation and fault simulation we used home-
made tools, whereas for gate-level operations we used
commercial tool. Experimental results are shown in Table 4.

Fig.3. Simplified structure of the Execute stage of MiniMIPS

Table 4. Experimental data

Approach Experiments Faults FC% # Pat ATPG time

Proposed
high-level
approach

High-level ATPG 756 100

196 47 s Gate-level
simulation

ALU 2516 99.92

MULT 91810 99.09

Commercial
gate-level ATPG

ALU 2516 99.96
169 1h 34 min

MULT 91810 98.63

The experiments targeted ALU and MULT modules in the
Execute stage of MiniMIPS. We generated a test with 100%
coverage of high-level control faults. The operands generated
according to (1-2), produced high gate-level SAF coverage
for both, control and data parts of the Execute module.

The high-level test was simulated by commercial tool to
grade the gate-level SAF coverage. To evaluate the efficiency
of the high-level ATPG, we used for comparison also
commercial gate-level ATPG. The time cost for high-level
ATPG is about two orders of magnitude less than that of the
commercial ATPG. The gate-level SAF coverage, achieved
by the proposed ATPG for the whole module under test, is
better than that achieved by the commercial tool.

The main goal of the experiments was to demonstrate the
possibility of identification by high-level test generation the
gate-level SAF redundancies. We demonstrated it on the
basis of ALU test. The SAF coverage 99.92, achieved by
100% high-level fault coverage test, means that 2 faults
remained in ALU not detected, and are qualified, according
to Corollary 1, as redundant. Since by fault simulation of the
test for ALU (without its local control part) we found 100%
SAF coverage, we can conclude that the 2 faults belong to the
ALU control part. On the other hand, since low-level ATPG
found 1 undetected fault in the ALU joint data/control circuit,
we can conclude that this redundant fault belongs to the ALU
local control part, and the second redundant fault belongs to
the ALU global control part (see Fig.3).

In the MULT block, fault coverage 99.09 refers to 835 not
covered faults, which should be qualified according to
Corollary 1 as redundant. By gate-level ATPG we found that
from the 1256 not covered by ATPG faults, 865 were ATPG
untestable, 105 were classified as redundant, and 286
remained not detected. From the latter it follows, that the 444
faults (the difference 1256 – 835), not covered by gate-level
ATPG, however, were covered by the high-level ATPG.
These faults should belong to the class of gate-level ATPG
untestable faults.

VIII. CONCLUSIONS
In this paper, we propose a novel high-level fault model which
was experimented for test generation for ALU control parts in
processors. The model consists of a set of data constraints to
be satisfied by data operands that is to be used in the test. The
constraints are derived from instruction set, in which case, no
implementation details are needed. The test is able to detect
all non-redundant single and multiple SAF, and bridging
faults in the control circuit under test. Hence, the proposed
method is more powerful than the traditional ATPGs, which
target only single SAF. A metric and a method for high-level
fault simulation with a method for identification of high-level

fault redundancies were developed. We demonstrated the
feasibility of the proposed method to identifying low level
redundant SAF by combining high-level ATPG and low level
SAF simulation. The test program generated explicitly for
testing only the control part achieves as well a very high fault
coverage for data part. This is due to the power of constraints
(1-2) to be used for selecting data operands.

The future work will be to extend the proposed method
for broader instruction sets of processors. Several
optimization techniques are also possible.
Acknowledgment: The work has been supported by EU's H2020 project
RESCUE, Estonian research grant IUT 19-1, and funded by Excellence
Centre EXCITE in Estonia.

REFERENCES
[1] L.-T.Wang, Ch.-W.Wu, X.Wen. VLSI Test Principles and Architectures. Design

for Testability. Elsewier, 2006.
[2] P. Georgiou1, X. Kavousianos1, R.Cantoro, M. Sonza Reorda. Fault-Independent

Test-Generation for Software-Based Self-Test. IOLTS, Costa Brava, Spain 2018.
[3] R.Ubar, S.Kostin, J.Raik. How to Prove that a Circuit is Fault-Free? Proc.

EUROMICRO, Cesme, Turkey, Sept. 5-8, 2012´.
[4] L.Zhuo et.al. A Circuit Level Fault Model for Resistive Opens and Bridges. Proc.

VLSI Test Symp., Napa, CA, Apr./May 2003, pp. 379-384
[5] H.K.Lee, D.S.Ha. SOPRANO: An Efficent Automatic Test Pattern Generator for

Stuck-Open Faults in CMOS Combinational Circuits. DAC, 1990.
[6] A.Kristic, K.T.Cheng. Delay Fault Testing for VLSI Circuits. Dordrecht, The

Netherlands, Kluwer Academic Publishers, Oct. 1998.
[7] J.P.Roth. Diagnosis of Automata Failures: A Calculus and a method. IBM J. Res.

Develop., Vol. 10, No. 4, pp. 278-291, July 1966.
[8] R.D.Blanton, J.P.Hayes. On the Properties of the Input Pattern Fault Model.

ACM Trans. Des. Automat. Electron. Syst., Vol. 8, No. 1, pp. 108-124, Jan. 2003.
[9] K.B.Keller. Hierarchical Pattern Faults for Describing Logic Circuit Failure

Mechanisms. US Patent 5546408, Aug. 13, 1994.
[10] R.Ubar. Fault Diagnosis in Combinational Circuits by Solving Boolean

Differential Equations. Automation and Remote Control, Vol.40, No 11, part 2,
Nov. 1980, Plenum Publishing Corporation, USA, pp. 1693-1703.

[11] J.Raik, R.Ubar, J.Sudbrock, W.Kuzmicz, W.Pleskacz. DOT: New Deterministic
Defect-Oriented ATPG Tool. IEEE ETC, 2005.

[12] U.Mahlstedt, J.Alt, I.Hollenbeck. Deterministic Test Generation for Non-
Classical Faults on the Gate Level. 4th ATS., Bangalore, Nov. 1995.

[13] S.Holst, H.-J.Wunderlich. Adaptive Debug and Diagnosis Without Fault
Dictionaries. Proc. of 13th ETS, Verbania, Italy, May 2008, pp.199-204.

[14] Y.Cho, S.Mitra, E.J.McCluskey. Gate Exhaustive Testing. ITC 2005.
[15] A.Jas, S.Natarajan, S.Patil. The Region-Exhaustive Fault Model. 16th Asian Test

Symposium. Beijing, China, Oct. 2007, pp. 13-18.
[16] K.N.Dwarakanath, R.D.Blanton. Universal Fault Simulation using fault tuples.

DAC, Los Angeles, June 2000, pp.786-789.
[17] Psarakis, M., Gizopoulos, D., Paschalis, A., Zorian, Y. Sequential Fault Modeling

and TPG for CMOS It. Logic Arrays. IEEE Trans. on Comp, vol.49, no.10, 2000.
[18] F.Happke et al. Cell-Aware Test. IEEE Trans. on CAD of IC, vol.33, no. 9, 2014.
[19] L. Shen and S. Su, “A Functional Testing Method for Microprocessors,” IEEE

Transactions on Computers, vol. 37, no. 10, pp. 1288-1293, 1988.
[20] F. Corno, G. Cumani, M. Sonsa Reorda, G. Squillero. An RT-Level Fault Model

with Gate Level Correlation. Int. High Level Design Validation Workshop, 2000.
[21] C.Cho, J.Armstrong. A Behavioral Test Generation Algorithm. ITC, 1994.
[22] V. Kumar et al. Employing Functional Analysis to Study Fault Models in

VHDL.Int. J. of Scientific Engineering and Technology, vol.1, no.5, 2012.
[23] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,

Memory and Mixed-Signal VLSI Circuits, Springer, 2013.
[24] P. Thaker, V. Agrawal and M. Zaghloul, "RT Level Modeling and Test

Evaluation Techniques for VLSI Circuits," in ITC, 2000
[25] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis. SBST of embedded

processors. IEEE Transactions on Computers, vol. 54, no. 4, 2005.
[26] C.H.P.Wen, L.C.Wang, K.-T. Cheng Simulation-based functional test generation

for embedded processors. IEEE Trans. on Computers, vol. 55, no. 11, 2006.
[27] F. Corno, E. Sanchez, M. S. Reorda, and G. Squillero. Automatic test program

generation: a case study. IEEE Design Test of Computers, vol. 21, no. 2, 2004.
[28] D. Gizopoulos, et al. Systematic software-based self-test for pipelined processors

IEEE Transactions on VLSI Systems, vol. 16, no. 11, 2008.
[29] P. Bernardi, et al. On the in-field functional testing of decode units in pipelined

RISC processors. Int. Symp. on DFT in VLSI and Nanotechnol. Systems, 2014.
[30] E. Sanchez and M. S. Reorda, “On the functional test of branch prediction units,”

IEEE Trans. on VLSI Systems, vol. 23, no. 9, 2015.
[31] OpenCores, “MiniMIPS ISA”.

Appendix 9

IX
A. S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik, “High-Level Implementation-
Independent Functional Software-Based Self-Test for RISC Processors,”
Journal of Electronic Testing, vol. 36, no. 1, pp. 87–103, 2020

163

Noname manuscript No.
(will be inserted by the editor)

High-Level Implementation-Independent Functional
Software-Based Self-Test for RISC Processors

Adeboye Stephen Oyeniran · Raimund
Ubar · Maksim Jenihhin · Jaan Raik

Received: date / Accepted: date

Abstract The paper proposes a novel high-level approach for implementation-
independent generation of functional software-based self test programs for pro-
cessors with RISC architectures. The approach enables fast generation of man-
ufacturing tests with high stuck-at fault coverage. The main concept of the
method is based on separate test generation for the control and data parts of
the high-level functional units. For the control part, a novel high-level control
fault model is introduced whereas for the data part, pseudo-exhaustive test
approaches can be applied to keep the independence from the implementation
details. For the control parts, a novel high-level fault simulation method is
proposed for evaluating the high-level fault coverage. The approach can be
used for easy identification of redundant gate-level faults in the control part.
The redundant faults can be identified by simple gate-level fault simulation of
the generated high-level test when implementation is available. Experimental
results of test generation for different units of a RISC processor support the
solutions presented in the paper.

Keywords Processor testing · high-level control fault model · functional
test generation · fault simulation · high-level fault coverage · low-level fault
redundancy

1 Introduction

Technology scaling in today’s deep-submicron processes produces new failure
mechanisms in electronic devices. This has forced researchers both, to develop

A. Stephen Oyeniran
Akadeemia tee 15A, 12618 Tallinn
E-mail: adeboye.oyeniran@taltech.ee

Raimund Ubar
Akadeemia tee 15A, 12618 Tallinn
E-mail: raiub@pld.ttu.ee

2 Adeboye Stephen Oyeniran et al.

more advanced fault models compared to the traditional stuck-at fault (SAF)
model [1], and to investigate the possibilities of reasoning the faulty behavior
of systems without using any particular fault models [2, 3]. The importance
of the latter approach is ever increasing, due to the growing number of low-
level redundant faults in today’s complex systems. On the other hand, the
implementation details of the processor circuits are not always available, when
testing is needed.

Fault models for digital circuits have been developed for different types of
failure mechanisms such as signal line bridges [4], transistor stuck-opens [5]
or failures due to increasing circuit delays [6]. Another trend has emerged
to develop general fault modeling mechanisms and corresponding test tools
that can effectively analyze arbitrary fault types. The oldest example is the
D-calculus [7]. A generalization of this approach has been found in the input
pattern fault model [8], and in the pattern fault model [9]. These can represent
any arbitrary change in the logic function of a circuit block, where a block is
defined to be any combinational sub-circuit described at any level of the design
abstraction.

A similar pattern related fault modeling approach called functional fault
model was proposed earlier in [10] for the module level fault diagnosis in com-
binational circuits. The functional (or pattern) fault model allows an arbitrary
set of signal lines to be grouped into activation conditions for a single fault
site, allowing a variety of physical defect types to be modeled. Based on the
functional fault model a deterministic defect-oriented test pattern generator
DOT was developed in [11] which allowed proof of the logic redundancy of not
detected physical defects.

In [12], a similar model called conditional faults was proposed for test
generation purposes, and in [13] for diagnosis purposes. A conditional fault
allows additional signal line objectives to be combined with the detection
requirements of a particular fault. To completely exercise gate-level blocks in
combinational circuits, a similar pattern oriented gate-exhaustive fault model
was proposed in [14], which was extended to target bigger regions (collections
of gates) by region-exhaustive fault model in [15].

The described functional, conditional and pattern fault models offer high
flexibility in defect modeling beyond single SAF model. Further advancements
of the low-level fault modeling have been achieved by introducing the fault
tuple fault model [16], realistic sequential cell fault model [17], or cell-internal
defect model [18], where the last two cases provide general capability of han-
dling sequential misbehavior of circuits.

The conditional SAF model (and also other listed models) [8–18] support
hierarchical test approach, where the test pattern (or sequence), which acti-
vates a low level fault (e.g. physical defect) at the lower level, can be considered
as the high-level condition (or constraint) for the functional fault defined at
the higher level.

To increase the speed of test generation and fault coverage evaluation,
high-level (functional or behavioral) fault models have been developed. Such
a model can be considered efficient, if the tests generated using this model

High-Level Implementation-Independent Functional SBST for RISC Processors 3

provide a high coverage of SAF or physical defects. However, a formal and
uniform high-level fault model for testing of processors is still missing.

In the design abstraction, higher-level descriptions have fewer implementa-
tion details, but more explicit functional information than lower level descrip-
tions. High-level fault models are categorized by the level at which the tests are
generated. Usually, the methods for high-level test generation are divided into
structural Register-Transfer Level(RTL) based methods [19, 20], or behavioral
test generation methods [21, 22]. A high-level fault model can be explicit or
implicit [23, 24]. An explicit model identifies each fault individually, and every
fault in this model will be a target for test generation. Implicit models are
based on the assumption that all gate-level faults may not be represented at
the RT level, and this motivated to develop dedicated RTL fault models with
dependence on implementation details.

High-level fault models are used widely in the field of Software-Based Self-
Test [25–30]. These approaches can be divided into two major groups - struc-
tural and functional. Structural approaches, such as [25, 26], are based on test
generation using information from lower level of design (gate-level or RTL-
level description) of processor under test. Functional approaches on the other
hand use instruction set architecture (ISA) information of the processor under
test [27–30].

The main and general problem of high-level faults is the difficulty of prov-
ing that the model covers all low-level detectable (non-redundant) faults. In
existence of such a high-level proof, it would be possible to identify the re-
dundancy of gate-level faults exclusively by only gate-level fault simulation,
which has a cheaper cost than low-level fault redundancy proof by conventional
gate-level ATPG-s.

We have made such an attempt for the class of circuits with well-defined
high-level functionality in [31], and the results are extended in the present
paper. We propose a novel method for implementation-independent test gen-
eration for modules of RISC type microprocessors. The method differs from
known methods by giving the tests capability of detecting larger class of faults
than the traditional single stuck-at faults (SAF). The new method provides
tests which are capable of detecting single and multiple SAFs, conditional
SAFs, shorts, unknown cell defects, and functional decoder faults (similar to
that of address decoder faults considered in memory test). Delay faults and
the faults which convert combinational circuits into sequential ones are not
considered in this paper.

The implementation independence of tests and the capability of detecting a
larger class of faults are achieved by separate testing of control and data parts
of the module, by applying pseudo-exhaustive test patterns to the data part,
and by using the novel data constraints based functional control fault model,
which allows to prove the correctness of the control part. The test generation
details for the data part are not discussed, but in the experimental research
we relied on our previous research results [32, 33].

We demonstrate the universality of the method by generating tests for
different processor modules, such as ALU, Execute module, Register bank,

4 Adeboye Stephen Oyeniran et al.

Forwarding unit in pipelines, and Coprocessor unit. Based on the proposed
high-level control fault model, we propose also a method of mixed-level iden-
tification of redundant low-level structural faults, which is faster than the
traditional ATPG-based methods for redundancy proof.

The rest of the paper is organized as follows. In section 2, we describe the
main concept of the implementation-independent high-level functional testing,
and in Section 3, we present a method of high-level modeling of modules under
test. Section 4 is devoted to development of a novel high-level control fault
model as the basis of the proposed approach, while Section 5 deals with High-
level Implementation-independent Control Test. In sections 6 and 7 we describe
a novel mixed level method of identification of redundant faults for the high
and low level control fault classes, respectively. Section 8 presents a case study
for demonstrating how the method can be used in other types of modules, in
particular, for Pipeline Forwarding Unit, and Section 9 presents the overall
automated test program generation scheme and shows the test organization
architecture. Section 10 discusses experimental results. Section 11 concludes
the paper. Appendix A gives a theoretical foundation of the proposed high-
level control fault model and Appendix B gives a theoretical foundations for
identification of not-detectable low-level faults in the control circuits.

2 The proposed Implementation-independent Concept of
High-level Testing of RISC processors

The objective of this research is to propose a novel method for high-level test-
ing of the modules of RISC microprocessors in a functional way and without
resorting to the knowledge of low-level implementation details. The main con-
cept of the proposed method is based on the abstract presentation of the mod-
ule under test (MUT) as a model which consists of two parts: the control part
and the data part. For both, we generate separate high-level implementation-
independent test programs.

The main novelty of the approach is to give the generated tests the property
of detecting larger class of structural faults in the implementation, compared
with the known approaches, such as not redundant single and multiple stuck-at
faults, shorts, unknown cell defects and functional decoder faults. The faults,
which convert combinational circuits into sequential ones, and delay faults are
not considered. The detection of that larger fault class is achieved by the fol-
lowing strategies. The data part is tested by pseudo-exhaustive test pattern
sequences, which according to definition, are capable of detecting all not re-
dundant structural faults in sub-circuits tested exhaustively, independently of
implementation, assuming the fault is not converting the circuit into a sequen-
tial one.

For the control part, which is the main objective of the paper, we have
developed a novel data constraints based functional control fault model, which
will serve as a proof that all functions will be selected correctly in case of the
a successful result of the control test.

High-Level Implementation-Independent Functional SBST for RISC Processors 5

Fig. 1: Overview of the proposed high-level test concept of a processor module

For each high-level module under test we define the set of logic functions of
the processor as the target of testing. Such a set of functions is defined on the
basis of the instruction set, or by examining the architecture of the processor.
For testing the parts of the processor, not directly described by instruction
set, such as pipeline architecture or forwarding circuitry, we have to define the
set of functions on the basis of the description of the processor architecture
given usually in manuals.

The full set of functions under test is partitioned into subsets or groups
of functions, for which the results of executed functions can be observed in
comparable way at the same node of the high-level structure. For example,
one group of functions may consist of logic and arithmetic operations derived
from the instruction set and another group of functions may be defined for the
forwarding functionality of pipeline, derived from the architectural description
of the processor. In both cases, the observable node will be the output of ALU
unit. Another group of functions may be the branch functionality, which differs
from the previously mentioned groups in having the observable node in the
ALU 1-bit flag, which determines the branch direction of the instructions flow.

For all the functions of a particular group, the same test template (sequence
of instructions) will be constructed, which consists of the data initialization
sequence applying the pattern which executes the particular function under
test, and the observation sequence. The latter is needed for observation of the
results of the test at the same node in the circuit, determined for the whole
group of functions under test.

A big picture of the processor’s high-level test organization for a particular
module is depicted in Fig.1. The module will have a single or several test
templates for compiling assembler test routines, to be executed in embedded
loops using the subset of instructions and related data sets.

6 Adeboye Stephen Oyeniran et al.

Fig. 2: Illustration of the proposed test concept

The proposed new concept of high-level implementation-independent func-
tional control test approach is illustrated in Fig.2. Consider MUT as a func-
tional unit as a set F of functions y = fi (s, d), fi ∈ F , represented at high-level
in a vector form Y = F (S,D).S = {si} is the set of control states, si → fi ,
activating the related functions fi, D = {d} is the set of data operands gen-
erated for testing the functions fi, and Y is the set of output responses yi
of MUT at given values of si ∈ S and d ∈ D. Since the low-level structure
of the MUT is unknown, the decoding details of the operation code C into
the control signals is also unknown. For that reason, we ignore these mapping
details and introduce direct one-to-one mapping between the control states
si ∈ S and the functions fi ∈ S. This mapping is sufficient for distinguishing
the behaviors of all functions, independently of how the control signals are
coded by the operation code in the instruction format. The possible faults in
the mapping C → S, will be indirectly taken into account when generating
tests for the set of functions Y = F (S,D). It will be shown in Section 7.

Since the internal logic structure of the MUT is unknown, traditional meth-
ods of path activation from the fault site up to an observable node cannot be
used. For example, a fault at some location inside the circuit of MUT can-
not be propagated to the observable point to produce there a faulty value y∗

instead of the expected value y 6= y∗, y ∈ Y .

We introduce a novel concept of detecting the faults by replacing the idea
of traditional fault propagation through the structure of the circuit with com-
paring the expected values y with possible erroneous values y∗ produced by
faults inside the MUT directly at the observable point Y , without the need
of fault propagation along the structure of the circuit. In such a way, we map
the structural problem of fault propagation into the functional problem of
comparing the expected responses of the test with faulty responses.

We reformulate the target of testing the correctness of the control part of
MUT as the target to distinguish each function from all others. This target can
be achieved by generating a proper set of data D = {d}, which will produce

High-Level Implementation-Independent Functional SBST for RISC Processors 7

Fig. 3: Implementation independent ALU model

for all functions fi ∈ F the corresponding output values Y = {yi}, so that
they would differ from each other at least once in each bit.

Fig.2 illustrates how the upper black-box model of MUT is replaced with
lower constraints based functional model for the control part of ALU. Here
yi 6= yj means that if there are data generated in D, which satisfy this con-
straint for expected results of functions fi and fj , then these functions are
distinguishable, and opposite, if this constraint at least in one bit is not satis-
fied, some faults can remain not detectable by the test.

In the next Sections, we first, present the high level model of MUT, and
thereafter, we introduce a novel high-level functional control fault model, which
is purely data related and has no relations to the internal structure of MUT.

3 High-level modeling of modules under test

Consider ALU of a processor as a module under test (MUT) of a digital sys-
tem, composed of data and control parts as shown in Fig.3. We present it in
implementation-independent generic way as an equivalent circuit, where the
control part is highlighted as AND-OR multiplexer, which extracts the results
yi ∈ Y of the functions fi ∈ F . The functions fi are executed by instructions,
which produce the respective control state signals si ∈ S.

Let us ignore possible optimizations of the MUT circuit, and expand it in
the presented way to separate the data and control parts. This is similar to
the procedure of expanding a given optimized Boolean expression by opening
the parentheses and producing DNF with different appearances of the same
variable. Hence, the circuit in Fig.3 can be presented as DNF:

y = (s1&y1) ∨ (s2&y2) ∨ . . . ∨ (sn&yn) (1)

where for Boolean control variables we have constraints ∀si, sj ∈ S: si&sj =
0, and yi = fi (d) are the Boolean functions executed in the data part, which
are represented as well as separate DNFs.

8 Adeboye Stephen Oyeniran et al.

We call the formula (1), after having substituted the variables yi with re-
spective Boolean expressions and opened all parentheses, as equivalent disjunc-
tive normal form (EDNF), similarly to [37], to stress that to each appearance
of the literal in EDNF, a different path in the original circuit corresponds. As
shown in [37], a test for a literal appearance sensitizes the path in the original
circuit associated with that literal appearance. It was also shown that if the
generated test will detect all irredundant faults in the expanded EDNF, it
will detect also all irredundant faults in the original optimized version of the
original circuit.

From that it follows that the test generated for all irredundant faults in the
EDNF representing the expanded model of MUT will test also all irredundant
faults in the original optimized version of the implemented circuit of MUT.

Consider the following example. Let the formula (2) represent an EDNF
for a MUT represented as the model in Fig.3, which executes 4 functions
y1 = d1d2, y2 = d1, y3 = d2, y4 = d1d2, where d1, d2 ∈ D represent data
operands, under the control of variables s1, s2, s3, s4, respectively, and let the
formula(3) represent the optimized implementation of the same MUT:

y = s1d11d21 ∨ s2d12 ∨ s3d22 ∨ s4d13d23 (2)

y = d1 (s1d2 ∨ s2) ∨ d2
(
s3 ∨ s4d̄1

)
(3)

The test for all SAF of the literal appearances in EDNF (2) will have the
length of 10 patterns, and it will detect all SAF of the variables in the op-
timized formula (3). The disadvantage of the approach is that the optimized
implementation(3) can be tested by a shorter test consisting of 8 patterns.
However, the test for (2) is more general, because it is implementation inde-
pendent, and as it will be seen, it will cover using proposed method of test
generation, larger fault class than SAF. On the other hand, if application will
be given, the general test for the expanded model can be always minimized
for the given class of faults.

We introduced the example to explain the idea of making test generation
implementation independent. In fact, the proposed method does not need to
descend to the EDNF level. We will stay at the higher level described by the
generic formula (1), generate a separate test for the control variables si ∈ S
of the control part (to test the instruction decoder and the multiplexer in
Fig.3), and then apply the pseudo-exhaustive test sequences one-by-one for
the functions yi = fi (d) of the data part. The values (test responses) of yi will
propagate to the output Y correctly, in condition if the test for the control
part has passed.

4 High-level Implementation-independent Control Fault Model

To test the control part we propose a new high-level functional control fault
model. We will show also, that if the tests, generated for the high-level function
Y = F (S,D) of the MUT, using the proposed control fault model, will produce

High-Level Implementation-Independent Functional SBST for RISC Processors 9

correct expected responses for the given implementation Y ∗ = F ∗ (C,D), then
the faults in the control part of the implementation are missing.

Denote by yi the data word considered as the result of execution of the
function fi of data operand(s) d ∈ Di as yi = fi (d). Let the number of bits
in the data words be p, and let yi/k (d) denote the value of the kth bit of the
data word calculated as yi = fi (d). Let Di ⊆ D be the subset of test data
operands generated for executing the function fi.

Definition 1 Introduce for the function fi ∈ F , the following high-level con-
trol fault model M (fi) as a set of data constraints:

∀k ∈ (1,m)∃d ∈ Di

(
yi/k(d) 6= 0

)
(4)

∀fij 6=1 ∈ F∀k ∈ (1,m)∃d ∈ Di

(
yi/k(d) < yj/k(d)

)
(5)

to be satisfied by a set of data operands Di, at least by one pattern {Di} for
each bit k of the data word yi. The full high-level control fault model M(F)
for a set of functions F , can be considered as a joint set of constraints (4) and
(5) in a form

M(F) =
⋃

i

M (fi) , i : fi ∈ F

to be satisfied by a set of data operands D, at least by one data pattern d ∈ D
for each bit k of the data word yi, whereas

D =
⋃

i

Di i : fi ∈ F

Note; depending on the technology implemented in the microprocessor, the
constant 0 in formula (4) can be changed into 1, and instead of the relation ”<”
in formula (5), there can be ”>” in case of the true value “1” is represented
by low voltage, and “0” by high voltage.

Definition 2 Let us introduce the list of high-level functional control faults
as the list of all constraints (5):

L =
{
ri,j/k :

(
yi/k < yj/k

)}

We say that ri,j/k = 1, if the constraint (yi/k < yj/k) is satisfied at least
once, by one of the test data d ∈ D. This is equivalent of saying, that the fault
ri,j/k is covered by the test generated for the set of functions F .

Definition 3 Let us introduce the matrix R =‖ ri,j/k ‖ to be called high-
level functional control fault table. The rows and columns of this matrix will
represent the functions fi and fj , respectively, whereas the entries represent
p-bit Boolean vectors. The procedure, which calculates the values of ri,j/k for
the given test set is called high-level functional control fault simulation.

We have developed an automated test data generation tool as implemen-
tation of the method [31] for solving the constraints in Definition 1. The high-
level fault simulator for producing the fault table R =‖ ri,j/k ‖, and for cal-
culating the high-level functional fault coverage of generated test, implements
the procedure that was presented in [43] and a theoretical foundation of the
proposed high-level control fault model was presented in Appendix A.

10 Adeboye Stephen Oyeniran et al.

5 High-level Implementation-independent Control Test

Definition 4 Let us introduce a control test T (fi) as a sequence of the re-
peatedly executed subroutine for testing the function fi ∈ F in a loop for
all test data di ∈ Di generated using the fault model M (fi). The subroutine
is constructed using a template, dedicated for the set of functions F , which
includes initialization of test data di ∈ Di, execution of the instruction under
test, and observation sequence. Denote the full control test for F as T (F),
which represents the sequence of T (fi).

The high-level functional control fault test, which satisfies the constraints
(4, 5) will cover the following fault classes (for each control word bit):

1. For MUX (Fig.3): SAF/0 due to constraints (4), and SAF/1 (due
to constraints (5) on the inputs and related paths to outputs; con-
ditional SAF, shorts, and multiple SAF on the inputs of AND-gates
(due to applying exhaustive patterns)

2. Functional faults in the instruction decoder: no function accessed,
multiple functions simultaneously accessed – similar to address de-
coder faults of memory test (due to constraints (5)) [35]

3. Functional microprocessor faults: instead of function fi, another
function fj accessed, or multiple functions simultaneously accessed
(due to constraints (5)) [36].

Note, the proposed idea of data constraints based functional testing of de-
coders (4, 5) is close to that used in memory testing. In Fig.4, the proposed
method is compared with the fragment of memory test. In case of memory
the initialization of constraints (writing 1s (w1 ↑) into cells) can be done once
for all cells in a single cycle. Then, having these constraints stored, the fol-
lowing test cycle (r/w0 ↓) and observation cycle (r1) can be carried out. In
the proposed method, the constraints cannot be stored, rather they have to be
produced “on-line” at each test pattern. In Fig.4, a test pattern is illustrated
by showing the values it produces for functions. All functions are partitioned
into two groups Y 1, with values yj = 1, and Y 0, with values yj = 0. The
selected function fi under test produces value yi = 0. We see that the con-
straint (5) are satisfied only for the functions related to the group Y 1. For
other functions, the test for fi has to be repeated with other data until the
constraint (5) will be satisfied for all bits of the data word. In the examples
on Fig.4, only 1-bit cells of all memory locations and 1-bit data words for all
functions fi , fj ∈ F are considered.

This comparison of the data constraints based test T (F) with March test
reveals the possibility of applying the proposed approach to other modules,
for which the data path state initialization task for executing the functions
fi ∈ F and sensitization of faults needs to load with data d ∈ D more than
two registers, as in case of ALU. An example is the pipeline forwarding unit
to be discussed in Section 8. Another example is the register bank, where our
method can be directly compared with March test, however, with the difference

High-Level Implementation-Independent Functional SBST for RISC Processors 11

Fig. 4: Comparison of March test and the proposed data constraints

in the number of destinations to be observed (in case of the register bank test,
a single register was used).

6 Identification of Redundant High-level Control Faults

Consider as an example Table 1, which illustrates a high-level control fault ta-
ble R =

∥∥ri,j/k
∥∥ for a test T (F), generated for 5 functions f1 (OR), f2 (ADD),

f3 (SUB), f4 (XOR), and f5 (AND). Assume the length of the data words is
k = 6 bit. The entries 0 (highlighted in red) in Table 1 refer to faults ri,j/k ∈ R,
not detectable by the test T (F), as the constraints yik < yjk (5) have not been
satisfied by generating test data for T. For these faults, either the test T (F)
has to be improved, or it should be proven that the not detected faults are
functionally redundant.

In the following, we propose a method of identification of the high-level
control fault redundancy, which in most cases is not difficult to perform due
to the quite understandable high-level functional fault universe.

Example 1 For example, in most cases of ALU operations, it is very easy to
identify this type of redundancy. For example, if a 1-bit function yi = fi (d1, d2)
refers to AND operation and yj = fj (d1, d2) refers to OR, it is straightforward
that the constraint yi < yj , i.e. (d1 ∨ d2) < (d1 ∧ d2) cannot be satisfied as it
was shown in Fig.13.

Table 1: Example of a High-Level Fault Table

f1(OUI) f1(ADD) f1(SUB) f1(SLT) f1(AND)
f1(OUI) 111111 111111 111111 000000
f1(ADD) 111111 111110 111111 111111
f1(SUB) 111111 111110 111111 111111
f1(SLT) 111111 111111 111111 000000
f1(AND) 111111 111111 111111 111111

In cases where there is an entry rijk = 0 in a single bit k of the vector
rij , or only in few bits of it, we can suggest for the proof a method which can

12 Adeboye Stephen Oyeniran et al.

be called as ”partial truth table method”. The idea of the method stands in
showing the equivalence of partial truth tables (or to prove the impossibility
of solving the related constraints) for the functions involved in the constraint
relation, so that as few as possible responsible bits should be selected for the
need of the proof.

In Fig.5, examples are shown for 1-bit partial truth tables for the functions
SUB, ADD, OR, AND, for the least significant bit. The pairs 00, 01, 10,
11 in Fig.5a represent the values of the data variables (as arguments) for
the bit under analysis, and the 1-bit values in the columns show the results
of the related. From comparison of the columns 3-6 in the table of Fig.5a,
straightforwardly the entries into the fault table in Fig.5b result.

Fig. 5: Example of redundancy proofs with 1-bit truth table

In some cases the partial truth table method will not work, because the
results of operations may substantially depend on all bits of the word like for
increment (INC) or decrement (DEC) operations. When this happens, specific
corner cases should be analyzed to prove the redundancy. For example, to prove
the equivalence of increment and decrement operations in the least significant
bit, the operand 1 . . . 110 has to be used, where both instructions INC and DEC
produce the same result “all 1s”, which proves the functional redundancy of
both functions in this bit.

7 Identification of Redundant Low-level Faults in the Control Part
of UUT

Let us consider in the following, how the gate-level fault redundancies in the
control part of ALU can be identified by mixed level fault reasoning. To reduce
the complexity of the problem, we propose, instead of exploiting slow conven-
tional gate-level ATPGs for SAF redundancy proof, to use the combination
of faster high-level test generation, and faster than ATPG low level fault sim-
ulation to achieve the same result – identification of the redundant low-level
faults.

In Appendix B, we gave a theoretical foundations for identification of not-
detectable low-level faults in the control circuits. A test that covers all non-
redundant high-level faults was shown to also cover all gate-level testable SAF
in the microprocessor’s control part.

High-Level Implementation-Independent Functional SBST for RISC Processors 13

We will illustrate with example 2, the identification of redundant low-level
faults in the control part of a simplified ALU.

Example 2 Consider a simplified ALU unit with the set of three functions
f1,f2, f3, activated by a set of control signals c2c1, c2c1, c2c1 respectively. The
ALU can be represented by the EDNF:

y = c2c1y1 ∨ c2c1y2 ∨ c2c1y3

The test data D = {d1, d2, d3} generated for the control part of ALU
that satisfies the constraints (2) is depicted in Table 2. In the column 6, it
is also shown, taking into account the values of yi in column 2, that all 1-bit
constraints (5) needed for high-level test of the MUT, are satisfied.

Table 2: Example of a high-level control test

D∗
i

Test Fault Table
Constraints Satisfied

c2c1 y1y2y3 c2c1y1 c2c1y2 c2c1y3
1 2 3 4 5 6
d1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 y1 < y2, y1 < y3

d2 1 0 1 0 1 0 0 1 1 1 0 1 0 1 y2 < y1, y2 < y3

d3 1 1 1 1 0 0 1 1 1 0 1 1 1 0 y3 < y1, y3 < y2

The table contains the test patterns in column 2, the fault table in columns
3-5, and the high-level constraints (5) satisfied by generating test data in
column 6. The detected gate-level faults in the fault table are highlighted by
red colour: 0 means the value of a signal which activates the fault SAF/1. For
example, in case of the fault c2 ≡ 1 in column 5, the value of the output signal
y = y1 = 0 (selected by the control signals c2c1 = 11) will change from 0 to
y = y1 ∨ y3 = 1 (both functions f1 and f3, are simultaneously selected). For
detecting the faults SAF/0, more 3 test patterns are needed (not shown in
the table). We see in the fault table that the faults c1 ≡ 1 in column 3 and
c2 ≡ 1 in column 4 are not detected, because of the control code c2c1 = 00
is illegal (not usable in this MUT). According to Corollary 1, these gate-level
faults are redundant (in case if the control circuit is implemented as DNF).
As the example shows, the redundancy of the gate-level faults can be derived
by simple low-level SAF simulation.

Note, Theorem 2 and Corollary 4 in appendix 2 were formulated and the
proofs were given, considering only the single SAF model. In fact, the power
of the proposed high-level control fault model stretches far beyond the fault
class of single SAF, as it was shown in Section 4.

In the following, the general procedure of the mixed level identification of
redundant gate-level SAF is shown, where the test is generated at the high-level
using the proposed high-level control fault model, and the low-level redundancy

Procedure 1

1. Generation of the high-level test T (F) for the given set F of functions
(instructions), with finding the data which satisfy the constraints
(4,5).

14 Adeboye Stephen Oyeniran et al.

2. Generation of the high-level fault coverage table R = ‖rijk‖ by high-
level fault simulation of the test T (F) [32].

3. High-level fault redundancy identification. For all not covered high-
level faults, the redundancy of the high-level control faults is identi-
fied.

4. If the high-level redundancy cannot be proven for some of high-level
faults, the test T (F) must be extended to satisfy the constraints
(4,5), and to achieve 100% high-level fault coverage. This is the pre-
requisite for the next step of redundant SAF identification.

5. Gate-level fault simulation of the test T (F). The not detected SAF
are identified as redundant low level faults in the control circuit of
the MUT.

8 Case Study of the Control Part Test for Forwarding Unit in
MiniMIPS RISC Processor

The proposed high-level functional control part testing approach was discussed
on the example of the group of functions related to the execute unit and ALU
example. In this case, the set of function F was derived directly from the subset
of instructions of the processor. Consider now a case, where the set of functions
/(F/) to be tested is representing not the main functional properties of the
processor described by the instruction set, but other non-functional properties
like performance, for which for example the forwarding unit is responsible.

Consider the forwarding unit as the high-level circuit in Fig.6, which con-
sists of the pipeline registers ID/EX, EX/MEM and MEM/WB [38], forward-
ing control unit, multiplexer for selecting the data from pipeline registers, and
ALU with observable output node. The role of the control unit is to com-
pare the addresses rs used in the current instruction with addresses rd(EX),
rd(MEM) stored in the respective pipeline registers, and to produce the con-
trol signals c1, c2 and c∗ for selecting the data D1, D2, and D3, respectively,
from different pipeline registers. The data Di represent the values of the func-
tions fi ∈ F , where F represents the functionality of the forwarding unit.

The test patterns, generated for testing the forwarding function in Fig.6
are depicted in Table 3. The test consists of 3 groups of patterns (in each 2 pat-
terns, framed in bold): forward from EX/MEM (c1, D1), MEM/WB (c2, D2),
and no forward (c∗, D3). Each of the 6 test patterns in Table 4 are applied in
a cycle for as many test data needed to solve the constraints (5).

For solving the constraints (5) like rd(EX) < rd(MEM), the data for
the register numbers to produce or not to produce hazards, is generated us-
ing pseudo-exhaustive test data for comparators. To organize parallel testing
(solving the constraints (5)) for all the bits of the data words, the patterns
“all 1s” and “all 0s” are used. Differently, from testing the execute unit (in
the previous sections), where the constraints were solved by data of the same
time-frame (for all of instructions), in case of forwarding unit the constraints

High-Level Implementation-Independent Functional SBST for RISC Processors 15

Fig. 6: Example of testing the pipeline forwarding unit

Table 3: Test generation for pipeline forwarding unit

Var The values of var(hazard detection condition)
Test Pattern

1 2 3 4 5 6

c1 rd(EX) = rs 1 1 0 0 0 0
f1 = D1 Rd(EX) 0 1 1 0 1 0

c2 rd(MEM) = rs 0 0 1 1 0 0
f2 = D2 Rd(MEM) 1 0 0 1 1 0

c∗ c1 ∨ c2 = 1 0 0 0 0 1 1
f3 = D3 Rs 1 0 1 0 0 1

are solved by data from different time frames, and locating in different pipeline
registers. For this purposes, relevant test templates were produced.

As an example, Fig.7 demonstrates two test programs generated for testing
the hazard detection and data forwarding functions. In case of hazards in
addresses of registers (ra = cb), the data from the register rb is forwarded
from EX/MEM stage (for Fig.7a), and from MEM/WB (for Fig.7b). The cases
correspond to test patterns 1-2, and 3-4, respectively, in Table 3. For the 1st
patterns the values “all 0s” are forwarded, and for the 2nd patterns “all 1s”
are forwarded. Two tests are needed for satisfying mutually the constraints
(5): rd(EX) < rd(MEM) and rd(MEM) < rd(EX).

Fig. 7: Examples of testing the pipeline forwarding unit

16 Adeboye Stephen Oyeniran et al.

The red entries in Table 3 correspond to the signals where the SAF faults
are sensitized and can be detected. The test patterns 1,3 and 5 are created for
testing the control faults where the constraint (5) is satisfied. These patterns
also test the SAF/1 faults in the data part. The test patterns 2,4,6, satisfying
the constraint (4), are testing the SAF/0 faults in both of the control and data
parts.

9 Generation and Organization of the Complete Test Program

Our test program generation is divided into two parts. The first part involves
automated high-level test data generation. While the second part uses the data
generated by the first step together with manually created test template to
automatically generate the test programs. The flow of both parts is described
in Fig.8 and 9. The high-level ATPG works according to the two algorithms
(random and greedy) developed in [31]

Fig. 8: High-level Test Data Generation

Fig. 9: High-level Test Generation

In accordance with the described method of generating test data for testing
processor modules, we organize the test according to the architecture shown in

High-Level Implementation-Independent Functional SBST for RISC Processors 17

Fig.10. The full test is divided into sections, where the target of each section
is to test a subset of functions F , and for testing each function fi ∈ F , the
same test template is used.

The full test has a structure of three embedded loops. The first outer loop
consists of execution of the test sections using the same template. The number
of loops is equal to the number of different test templates, which represent a
subroutine with a uniform structure consisting of three parts: initialization of
the processor, execution of the instruction under test which targets a function
fi ∈ F , and propagating the response to the node of observation. The second
middle loop consists of repeating the selected test template for all functions
fi ∈ F over a list of related instructions Ii to be inserted into the current
template. Each instruction pattern Ii = (opcodei, A1, A2) refers to the data
operands d1, d2 according to addresses A1, A2, respectively (the number of
data operands is optional and is determined by the test template).

For each instruction Ii ∈ F under test, two consecutive inner loops will
be carried out: for testing the control part and for testing the data part. The
number of test data d = (d1, d2) ∈ D∗i for testing the control part is found by
the method described in this paper, whereas the number of test patterns for
testing the data part is determined by the length of the pseudo-random test
sequence, derived, for example by the methods considered in [31, 32].

Fig. 10: Architecture of the test program

The originality of the proposed test strategy stands in on-line test genera-
tion based on unrolling on the fly the stored in compact way of all needed test
information in the form of the sets of test program templates, test instructions
and related test data lists.

18 Adeboye Stephen Oyeniran et al.

10 Experimental Results

We carried out experiments on Intel Core i7 processor at 3.4GHz and 8GB
of RAM. The target was to investigate the efficiency of the new high-level
implementation-independent SBST generation method for microprocessors by
measuring gate-level SAF coverage (FC) for comparison purposes with other
methods. The objectives of experiments were ALU unit of VLIW [37] and
different units of MiniMIPS [38], like execute, forwarding and branch control
sub-circuits.

Using the subset of 16 VLIW instructions [37], we investigated the speed of
random search of test data for testing the control part of the execute unit. We
investigated two search algorithms pure random and optimized greedy random
approach. The results are depicted in Table 4.

Table 4: Comparison of control test algorithms

Method
Test-length,
#instructions

Fault Coverage
Time (s)

High-level faults SAF
RANDOM 204 100% 99.34% 2.00
GREEDY 139 100% 99.34% 7.85

The execute unit of MiniMIPS [38] consists of Adder and 2 multiplication
modules MULT0 and MULT1 (Table 5). We targeted 25 instructions out of
MiniMIPS 51 instructions, as the basis of the set of functions F = {fi} to
be tested. The high-level test was simulated by commercial tool to grade the
gate-level SAF coverage. To evaluate the efficiency of the high-level ATPG, we
also used commercial gate-level ATPG for comparison. The time cost for high-
level ATPG is about two orders of magnitude less than that of the commercial
ATPG. The gate-level SAF coverage achieved by the proposed ATPG for the
whole module under test, is better than that achieved by the commercial tool.

Fig. 11: miniMIPS processor Fault Distribution

High-Level Implementation-Independent Functional SBST for RISC Processors 19

Fig. 11 shows the distribution of faults in the microprocessor according to
modules. For example, the execute unit takes 70% of the total number of faults
in the processor. It consists of the adder, two multiplication modules(MULT0
and MULT1) and interconnections. Note that the modules correspond here to
column 2 in Table 8

Table 5: Execute Unit Test

Method Experiments #Faults FC(%) Stored
Patterns

Executed
Patterns

ATPG
Time

Proposed
high-level
method

High-level ATPG 756 100

166 4818 47sGate-level
Simulation

Adder 2516 99.92
MULT0 95188 99.52
MULT1 91810 99.16

Commercial
gate-level

ATPG

Adder 2516 99.96
957 957 8h 27minMULT0 95188 97.40

MULT1 91810 97.71

In Table 6, FC and simulation times are given for the forwarding unit (FU).
First, when applying only the ALU test, then the dedicated test for only
FU, and thereafter, combining both tests. The tests for FU were generated
without knowing gate-level implementation detail. We relied only on general
information of the MiniMIPS pipeline architecture, which includes the number
of stages and forwarding paths.

Table 6: Fault coverage of forwarding unit by different tests

Module/Unit ALU Test(%) Forwarding Test(%) Combined(%) Improvement(%)
Forwarding Unit 89.71 97.84 98.03 8.32

Time(s) 808 48 460

In Table 7, we compare our results for 3 different MiniMIPS modules (ALU,
PPS EX(Execute Unit), and Forwarding Unit) with 3 other test generators.
Our approach is similar to [28] in sense that gate-level implementation details
are not required, but it shows almost 5% improvement in FC compared to [28].

Table 7: Targeted modules comparison with other methods

Module/
unit

#faults
Gate-level implementation

details are exploited
Gate-level implementation

independent
ATIG [39] SBST [40] SBST [28] Proposed

ALU 203576 98.67% n.a 97.85% 99.06%
PPS EX 211136 97.62% 96.20% 84.12% 98.37%

Forwarding Module 3738 99.00% 99.68% 93.64% 98.03%
Register Banc 43584 99.90% 100% 99.98% 99.99%

Syscop 6930 93.60% 98.04% 87.90% 87.65%

Although the method in [39] shows 1% improvement over the proposed
method, it requires implementation details. Method in [40] requires enforcing
set of constraints during ATPG test generation, requiring also gate-level infor-
mation. Here, the result of our method shown for the forwarding unit and the
system co-processor doesn’t consider the untestable faults in the modules. In

20 Adeboye Stephen Oyeniran et al.

Table 8, we show the results of these units when the proven untestable faults
have been removed from the fault list.

Fig. 12: Simplified structure of the Execute Unit of MiniMIPS RISC Processor

One of the goals of the experiment in Table 5 was to demonstrate the fea-
sibility of identification of the gate-level SAF redundancies by high-level test
generation. We demonstrated it on the basis of ALU test for MiniMIPS pro-
cessor. The SAF coverage 99.92%, achieved by 100% high-level fault coverage
test means that 2 faults in ALU remained not detected, and are qualified ac-
cording to Corollary 4 as redundant. Thus, establishing 100% fault efficiency.
Since by fault simulation of the test for ALU (without its local control part)
we found 100% SAF coverage, we can conclude that the 2 faults belong to
the ALU control part. On the other hand, since low-level ATPG found 1 un-
detected fault in the ALU joint data/control circuit, we can conclude that
this redundant fault belongs to the ALU local control part, and the second
redundant fault belongs to the ALU global control part (see Fig.12).

In the MULT block, fault coverage of 99.09% refers to 835 not covered
faults, which should be qualified according to Corollary 4 as redundant. By
gate-level ATPG we found that from the 1256 not covered by ATPG faults, 865
were ATPG untestable, 105 were classified as redundant, and 286 remained
not detected. From the latter it follows, that the 444 faults (the difference
1256 – 835), not covered by gate-level ATPG, however, were covered by the
high-level ATPG. These faults should belong to the class of gate-level ATPG
untestable faults.

It is important to mention that as opposed to the compared state-of-the-
art methods, where only single SAF coverage has been the measurable target,
the proposed method covers extended classes of low-level faults, including con-
ditional and multiple SAF. This was proved theoretically with regards to the
control faults in this paper. For the faults in the data parts, the same broader
fault coverage results from the nature of exhaustiveness of test patterns.

In Table 8, we compared our approach with state-of-the-arts methods in
terms of test for the full processor. Using the information about untestable
faults in [40], we removed the identified and proven untestable faults from
the fault list. The result shows that our approach covers more faults in the

High-Level Implementation-Independent Functional SBST for RISC Processors 21

Table 8: Fault coverage of whole processor by different tests

Without
Prediction

Module/Unit
ATIG(%)

[39]
SBST(%)

[40]
SBST(%)

[28]
Proposed
Method(%)

U1 pf 98.32 91.97 86.32 70.00
U2 ei 99.71 96.82 90.86 85.50
U3 di 95.28 92.45 90.24 89.70
U4 ex 97.62 96.20 97.85 98.68

U5 mem 83.41 71.29 81.87 90.63
U6 renvoi 99.00 99.68 93.64 98.50
U7 banc 99.90 100 99.98 99.99

U8 syscop 93.60 98.04 87.90 93.53
U9 bus ctrl 92.62 92.20 93.95 89.78

Total 97.52 97.46 95.08 98.03

With
Prediction

U10 predict − − − 59.19
Total 97.31 97.46 95.08 95.30

processor with no knowledge of the implementation details. However, we still
have some faults undetected in the modules. For example, the fault coverage
for the forwarding unit(U6 renvoi) with respect to the testable faults in the
module stood at about 98.50%. The reason for the undetected 1.50% faults
is due to signals such as the interrupt signal and exceptions that can not
be activated using the particular functional method, where only forwarding
functions were taken into account. [42] identified 39 of the total fault list for
the forwarding unit to belong to this category of undetectable faults.

Our approach doesn’t target the branch prediction unit, since faults in the
unit do not lead to any functional incorrectness but performance cost which
is usually two or more clock cycles depending on the architecture [41]. There-
fore, branch prediction units are hard to test by functional methods without
having dedicated observation points and the same applies to our approach.
The approach used for testing the branch prediction unit in [40] is based on
using the algorithm mostly used in memory testing. We can easily adopt this
to our test as it was explained in Section 4. To have a fair comparison, we have
decided to exclude in Table 8, the faults related to the branch prediction unit
since the result in [28] is also based on implementation of miniMIPS without
this unit.

11 Conclusions

A new high-level and implementation-independent test program generation
method for modules of RISC processors is proposed with improved quality
compared to the known methods. The higher quality is achieved through
widening the fault class covered.

The proposed method is based on introducing a novel high-level functional
control fault model for testing the control parts of the functional modules
of processors, and combining it with implementation-independent and fault
model free testing of data parts of the modules under test (MUT) with pseudo-
exhaustive test patterns. The high quality of test programs was proven the-
oretically, and the proof was supported by experimental results where the

22 Adeboye Stephen Oyeniran et al.

quality of tests was measured regarding the SAF class. It was proven that the
proposed high-level control fault model covers as added value on one hand a
larger class of structural faults, including conditional SAF, shorts, multiple
SAF without the need of listing these faults explicitly, and on the other hand
also functional faults of decoding circuits. A similarity was shown between
the sequential March test used for memory testing, and combinational test for
decoding circuits in logic modules of processors.

A high-level fault coverage metric and a method for high-level fault simula-
tion were developed to support the proposed test generation approach, which
made it possible to develop a novel mixed-level method for identification of
high-level functional redundancy of faults, and low-level structural redundancy
of gate-level faults.

The novelties of the proposed approach are based on two new ideas. We
introduced a method for modeling of MUT by symbolic EDNF, to be able
to partition the circuit into the control and data parts without knowing its
implementation details. We also translated the classical low-level fault propa-
gation task into the functional problem of solving high-level data constraints,
to achieve independence of implementation details for high-level test genera-
tion.

There are two side-effects of the discussed novelties of the paper as follows.
First, due to EDNF based control model, the generated test may be over
dimensioned. Second, the novel idea of data constraints based test generation
may tend to produce more test patterns than it would be needed for only
single SAF detection. However, both aspects, which can be considered as a
negative factors regarding the class of SAF, on the other hand, will help to
cover larger fault classes, including multiple faults. Therefore, the proposed
method is more powerful than traditional ATPGs, which target single SAF.

Another added value of the proposed approach was discovered during ex-
perimental research in test data generation for RISC processors. The test pro-
grams generated explicitly for testing only the control parts of modules achieve
as well very high fault coverage for data part. This is due to the power of novel
data constraints proposed for selecting data operands.

To sum up, the proposed method is an important step ahead compared
to state-of-the-art for providing trustworthy and safe information about the
quality of test programs generated. The future work will be in extending the
proposed method for using it for other types of more complex processors,
including investigations on different test optimization ideas.

Acknowledgements The work has been supported by EU’s H2020 project RESCUE, Es-
tonian research grant IUT 19-1, and funded by Excellence Centre EXCITE in Estonia.

References

1. L.-T.Wang, Ch.-W.Wu, X.Wen. VLSI Test Principles and Architectures. Design for
Testability. Elsewier, 2006, 777 p.

High-Level Implementation-Independent Functional SBST for RISC Processors 23

2. P. Georgiou, X. Kavousianos, R. Cantoro and M. S. Reorda, ”Fault-Independent Test-
Generation for Software-Based Self-Testing,” Proc. 2018 IEEE 24th International Sym-
posium on On-Line Testing And Robust System Design (IOLTS), Platja d’Aro, 2018, pp.
79-84.

3. R. Ubar, S. Kostin and J. Raik, ”How to Prove that a Circuit is Fault-Free?,” Proc. 2012
15th Euromicro Conference on Digital System Design, Izmir, 2012, pp. 427-430.

4. Zhuo Li, Xiang Lu, Wangqi Qiu, Weiping Shi and D. M. H. Walker, ”A circuit level fault
model for resistive opens and bridges,” Proc. 21st VLSI Test Symposium, 2003., Napa,
CA, USA, 2003, pp. 379-384.

5. H. K. Lee and D. S. Ha, ”SOPRANO: an efficient automatic test pattern generator
for stuck-open faults in CMOS combinational circuits,” Proc. 27th ACM/IEEE Design
Automation Conference, Orlando, FL, USA, 1990, pp. 660-666.

6. A.Kristic, K.T.Cheng. Delay Fault Testing for VLSI Circuits. Dordrecht, The Nether-
lands, Kluwer Academic Publishers, Oct. 1998.

7. J.P.Roth. Diagnosis of Automata Failures: A Calculus and a method. IBM J. Res. De-
velop., Vol. 10, No. 4, pp. 278-291, July 1966.

8. R.D.Blanton, J.P.Hayes. On the Properties of the Input Pattern Fault Model. ACM
Trans. Des. Automat. Electron. Syst., Vol. 8, No. 1, pp. 108-124, Jan. 2003.

9. K.B.Keller. Hierarchical Pattern Faults for Describing Logic Circuit Failure Mechanisms.
US Patent 5546408, Aug. 13, 1994.

10. R.Ubar. Fault Diagnosis in Combinational Circuits by Solving Boolean Differential
Equations. Automation and Remote Control, Vol.40, No 11, part 2, Nov. 1980, Plenum
Publishing Corporation, USA, pp. 1693-1703.

11. J. Raik, R. Ubar, J. Sudbrock, W. Kuzmicz and W. Pleskacz, ”DOT: new deterministic
defect-oriented ATPG tool,” Proc. European Test Symposium (ETS’05), Tallinn, Estonia,
2005, pp. 96-101.

12. U. Mahlstedt, J. Alt and I. Hollenbeck, ”Deterministic test generation for non-classical
faults on the gate level,” Proc. Fourth Asian Test Symposium, Bangalore, India, 1995, pp.
244-251.

13. S. Holst and H. Wunderlich, ”Adaptive Debug and Diagnosis without Fault Dictionar-
ies,” Proc. 12th IEEE European Test Symposium (ETS’07), Freiburg, 2007, pp. 7-12.

14. Kyoung Youn Cho, S. Mitra and E. J. McCluskey, ”Gate exhaustive testing,” Proc.
IEEE International Conference on Test, 2005., Austin, TX, 2005, pp. 7 pp.-777.

15. A. Jas, S. Natarajan and S. Patil, ”The Region-Exhaustive Fault Model,” Proc. 16th
Asian Test Symposium (ATS 2007), Beijing, 2007, pp. 13-18.

16. K. N. Dwarakanath and R. D. Blanton, ”Universal fault simulation using fault tuples,”
Proc. 37th Design Automation Conference, Los Angeles, CA, USA, 2000, pp. 786-789.

17. M. Psarakis, D. Gizopoulos, A. Paschalis and Y. Zorian, ”Sequential fault modeling
and test pattern generation for CMOS iterative logic arrays,” in IEEE Transactions on
Computers, vol. 49, no. 10, pp. 1083-1099, Oct. 2000.

18. F. Hapke et al., ”Cell-Aware Test,” in IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 33, no. 9, pp. 1396-1409, Sept. 2014.

19. L. Shen and S. Su, “A Functional Testing Method for Microprocessors,” in IEEE Trans-
actions on Computers, vol. 37, no. 10, pp. 1288-1293, 1988.

20. F. Corno, G. Cumani, M. Sonza Reorda and G. Squillero, ”An RT-level fault model
with high gate level correlation,” Proc. IEEE International High-Level Design Validation
and Test Workshop (Cat. No.PR00786), Berkeley, CA, USA, 2000, pp. 3-8.

21. Chang Hyun Cho and J. R. Armstrong, ”B-algorithm: a behavioral test generation
algorithm,” Proc., International Test Conference, Washington, DC, USA, 1994, pp. 968-
979.

22. V. Kumar et al. Employing Functional Analysis to Study Fault Models in VHDL. Int.
J. of Scientific Engineering and Technology, vol.1, no.5, 2012, pp.2017-208.

23. M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits, Springer, 2013, 690 p.

24. P. A. Thaker, V. D. Agrawal and M. E. Zaghloul, ”Register-transfer level fault modeling
and test evaluation techniques for VLSI circuits,” Proc. International Test Conference 2000
(IEEE Cat. No.00CH37159), Atlantic City, NJ, USA, 2000, pp. 940-949.

24 Adeboye Stephen Oyeniran et al.

25. N. Kranitis, A. Paschalis, D. Gizopoulos and G. Xenoulis, ”Software-based self-testing
of embedded processors,” in IEEE Transactions on Computers, vol. 54, no. 4, pp. 461-475,
April 2005.

26. C. H. -. Wen, L. C. Wang and Kwang-Ting Cheng, ”Simulation-based functional test
generation for embedded processors,” Proc. Tenth IEEE International High-Level Design
Validation and Test Workshop, 2005., Napa Valley, CA, 2005, pp. 3-10.

27. F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, ”Automatic test program gen-
eration: a case study,” in IEEE Design & Test of Computers, vol. 21, no. 2, pp. 102-109,
March-April 2004.

28. D. Gizopoulos et al., ”Systematic Software-Based Self-Test for Pipelined Processors,”
in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 11,
pp. 1441-1453, Nov. 2008.

29. P. Bernardi et al., ”On the in-field functional testing of decode units in pipelined RISC
processors,” Proc. 2014 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), Amsterdam, 2014, pp. 299-304.

30. E. Sanchez and M. S. Reorda, ”On the Functional Test of Branch Prediction Units,” in
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 9, pp.
1675-1688, Sept. 2015.

31. A. S. Oyeniran, R. Ubar, S. P. Azad and J. Raik, ”High-level test generation for pro-
cessing elements in many-core systems,” Proc. 2017 12th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Madrid, 2017, pp.
1-8.

32. A. S. Oyeniran, S. P. Azad and R. Ubar, ”Parallel Pseudo-Exhaustive Testing of Array
Multipliers with Data-Controlled Segmentation,” Proc. 2018 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5.

33. A. S. Oyeniran, R. Ubar, M. Jenihhin, C. C. Gürsoy and J. Raik, ”Mixed-level identi-
fication of fault redundancy in microprocessors,” Proc. 2019 IEEE Latin American Test
Symposium (LATS), Santiago, Chile, 2019, pp. 1-6

34. D. B. Armstrong, ”On Finding a Nearly Minimal Set of Fault Detection Tests for Com-
binational Logic Nets,” in IEEE Transactions on Electronic Computers, vol. EC-15, no.
1, pp. 66-73, Feb. 1966.

35. A. J. van de Goor, ”Testing Semiconductor memories. Theory and practice,” Wiley,
1991, 512p

36. S. M. Thatte, J. A. Abraham, ”Test Generation for Microprocessors,” in IEEE Trans-
actions on Computers, vol. C-29, no. 6, pp. 429-441, June 1980.

37. M.Schölzel. Self-Testing and Self-Repairing Embedded Processors: Techniques for Stat-
ically Scheduled Superscalar Architectures. Habilitation Thesis. Brandenburg University
of Technology Cottbus-Seftenberg, 2015.

38. OpenCores, “MiniMIPS ISA”.
39. Y. Zhang, H. Li and X. Li, ”Automatic Test Program Generation Using Executing-

Trace-Based Constraint Extraction for Embedded Processors,” in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 7, pp. 1220-1233, July 2013.

40. A. Riefert, R. Cantoro, M. Sauer, M. S. Reorda and B. Becker, ”On the automatic
generation of SBST test programs for in-field test,” Proc. 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Grenoble, 2015, pp. 1186-1191.

41. P. Bernardi, L. Ciganda, M. Grosso, E. Sanchez, M. Sonza Reorda, ”A SBST strategy to
test microprocessors’ Branch Target Buffer,” Proc. 2012 IEEE 15th International Sympo-
sium on Design and Diagnostics of Electronic Circuits Systems (DDECS),2012,pp.306-311

42. P. Bernardi, R. Cantoro, L. Ciganda, B. Du, E. Sanchez, M. S. Reorda, M. Grosso,
O. Ballan, ”On the Functional Test of the Register Forwarding and Pipeline Interlocking
Unit in Pipelined Processors,” Proc. 14th International Workshop on Microprocessor Test
and Verification,2013,pp.52-57

43. A. S. Oyeniran, R. Ubar, M. Jenihhin, C. C. Gürsoy and J. Raik, ”High-Level Combined
Deterministic and Pseudo-exhuastive Test Generation for RISC Processors,” 2019 IEEE
European Test Symposium (ETS), Baden-Baden, Germany, 2019, pp. 1-6.

High-Level Implementation-Independent Functional SBST for RISC Processors 25

Appendix A
Theoretical Foundation of The Proposed High-level Control Fault
Model

Consider a set F = {fi} of functions, selected as a group of functions to be
tested using the fault model of constraints (4,5).

Let us define for each function a set of patterns

D0
{
fi/k

}
=
{
d|fi/k(d) = 0

}

for which the function fi produces the value yi/k = 0 in the bit k. Let us call

the set of patterns D0
(
fi/k

)
as the 0-domain of the function fi for the bit k.

Theorem 1 If for two functions fi/k and fj/k the following D0
{
fi/k

}
−

D0
{
fj/k

}
= ∅ is valid, then the fault ri,j/k is functionally redundant.

Proof From D0
{
fi/k

}
−D0

{
fj/k

}
= ∅ it follows that D0

{
fi/k

}
⊂ D0

{
fj/k

}
.

This means that for each data pattern d ∈ D0
(
fi/k

)
, we have yi/k (d) = 0, but

also yj/k (d) = 0. Hence, there exists no data which can satisfy the constraint
(5), and the functional fault ri,j/k according to Definition 2 is not testable,
and is functionally redundant.

From Theorem 1, the following corollaries straightforwardly result.

Corollary 1 If D0
{
fi/k

}
− D0

{
fj/k

}
= ∅then the difference D0

{
fi/k

}
=

D0
{
fj/k

}
is the set of data patterns which can be used for testing the fault

ri,j/k.

Corollary 2 If for all bits k, D0
(
fi/k

)
−⋃j,j 6=i D

0
(
fj/k

)
6= ∅ is valid, then

the function fi/k has unique patterns, which produce yi/k = 0 for only the
function fi/k and for no one else fj/k, fj ∈ F . Each of these patterns serves
as test data for detecting the faults ri,j/k for all fj ∈ F , j 6= i.

Corollary 3 If for all bits k D0
{
fi/k

}
− D0

{
fj/k

}
= ∅ is valid, then the

function fi is fully distinguishable from the function fj in accordance with the
constraints (5), and the functional faults ri,j/k are testable for all bits of k.
If all functions fj ∈ F are mutually distinguishable then the set all high-level
control faults in M (F) are testable.

In example 3, we will demonstrate the testability of selected ALU functions
in a microprocessor using the proposed high-level control fault model.

Example 3 Consider, as an example, a set of three 1-bit functions f1(OR),
f2(AND), and f3(XOR). The truth table of these functions fi and the Venn
diagrams of the sets D0 {fi} are illustrated in Fig.13. According to Venn dia-
grams, we can notice that there exist the following domains D0 (fi): D

0 (OR) =
{00}, D0 (AND) = {00, 01, 10}, D0 (XOR) = {00, 11}.

26 Adeboye Stephen Oyeniran et al.

Fig. 13: Three functions selected for testing as MUT

Few examples which illustrate the testability of functions OR, AND, XOR
according to Corollaries 1-3, are depicted in Table 1.

Table 9: Examples of relations between 0-domains

No Relations for D0 (fi) Patterns Comments
1 D0 (AND)−D0 (XOR) {01, 10} AND is distinguishable from XOR
2 D0 (XOR)−D0 (AND) {11} XOR is distinguishable from AND
3 D0 (OR)−D0 (AND) ∅

OR is not distinguishable
4 D0 (OR)−D0 (XOR) ∅
5 D0 (AND)−

(
D0 (OR) ∪D0 (XOR)

)
{01, 10} Unique patterns for AND

6 D0 (OR)−
(
D0 (AND) ∪D0 (XOR)

)
∅ No unique patterns for OR

High-Level Implementation-Independent Functional SBST for RISC Processors 27

Appendix B
Theoretical Foundations for Identification of Not-detectable
Low-level Faults in the Control Circuits

In the following we provide the main statements and proofs, which justify the
identification of the not-detectable (functionally redundant) low-level faults
in the real implementation of the given control circuit by its low-level fault
simulation using the test T(F) constructed in Section 5.

Theorem 2 The test T (F), which covers all non-redundant high-level faults
of the fault model M{F}, covers also all gate-level testable SAF in the control
part of the microprocessor, which controls the set of functions F.

Proof Consider the control part of a MUT presented at high-level in Fig.3, and
described in the real implemented version expanded as the following EDNF as
explained in [34], and also in Section 3::

y = c1,1c1,2 . . . c1,py1 ∨ c2,1c2,2 . . . c2,py2 ∨ . . . ∨ cn,1cn,2 . . . cn,pyn (6)

Here, the high-level control states si ∈ S used in the formula (1) are
mapped into the control signals ci,1ci,2 . . . ci,p of the decoder of the opera-
tion code embedded in the instruction of the processor. In [34] and Section
3, it was shown that if all non-redundant appearances of the literals in the
EDNF will be tested, then all the non-redundant faults in the original cir-
cuit implementation will also be tested. Let us show now, that the high-level
test generated for the high-level expression (1) will also test all non-redundant
faults in the expression (6).

In the EDNF (6), the variables ci,j for selecting the data results yi, i =
1, . . . n, represent the global control signals ci,j = 1, . . . p, which may be either
inverted or not, and which cover, in general case, exhaustively all 2p combi-
nations. In the EDNF, due to satisfied constraints (5) of the fault model in
Definition 1, when testing the function yi , at least once the value of yj for
each i 6= j will be yj = 1. On the other hand, due to the exhaustiveness of all
2p combinations of control signals, for each term of EDNF with yi = 1, there
will be a combination of control signals ci,1ci,2 . . . ci,p consisting of a single 0,
e.g. ci,p = 0, with all others ci,r = 1,r 6= p. This is the case, where in the term
ci,1ci,2...ci,pyi, the SAF ci,p ≡ 1 is tested. For propagating the fault ci,p ≡ 1 to
the output y, all other terms in DNF must have at least one 0 assigned to the
variables of the term. This is guaranteed, because due to the constraints (5),
which demand that in the term where all cj,k = 1, the value of yj must be 0,
and in other terms there must be at least one variable assigned by 0. Hence,
all SAF faults of type ci,p ≡ 1 in all variables ci,p can be tested by T (F). The
faults ci,p ≡ 0 are tested by test data used in T (F) where the constraint (1)
is satisfied. �

Corollary 4 Any gate-level SAF in the control part related to F = {fi}, not
detectable by the test T (F) which covers all not redundant high-level control
faults of the model M{F}, is redundant.

28 Adeboye Stephen Oyeniran et al.

Proof In Theorem 2, exhaustiveness of using all the combinations of the local
control signals ci,1ci,2 . . . ci,p was assumed. If not all combinations are used in
the instruction set of the microprocessor, which is the typical practical case,
then, not all patterns can be generated for activating all SAF of type ci,p ≡ 1.
Usually these cases are used for optimization of the gate-level structure of the
control part of ALU. If however the optimization process has not removed all
hardware redundancy, then as the result, the control part may consequently
contain also redundant faults. These redundant faults can be identified by
simple and fast gate-level fault simulation of the high-level generated test T .

Curriculum Vitae
1. Personal data

Name Adeboye Stephen Oyeniran
Date and place of birth 30 April 1983 Lagos, Nigeria
Nationality Nigerian

2. Contact information

Address Tallinn University of Technology, School of Information Technologies,
Department of Computer Systems,
Ehitajate tee 5, 19086 Tallinn, Estonia

Phone +372 58337792
E-mail adeboye.oyeniran@taltech.ee, aysteph3@yahoo.com

3. Education

2015–2020 Tallinn University of Technology, School of Information Technologies,
Computer and Systems Engineering, PhD studies

2013–2015 Tallinn University of Technology, Faculty of Information Technologies,
Computer and Systems Engineering, MSc cum laude

2003–2008 University of Agriculture, Abeokuta, Faculty of Natural Science,
Computer Science, BSc

4. Language competence

Yoruba native
English fluent

5. Professional employment

2018– . . . Tallinn University of Technology, Early Stage Researcher
2014–2016 Arvato Systems, Technical Specialist
2009–2013 Firstlogic IT Solutions, IT Facilitator/Software Developer

6. Computer skills

• Operating systems: Unix, Windows

• Document preparation: Ms-Word, LATEX

• Programming languages: VHDL, Java, Python, R, SQL, C

193

7. Honours and awards

• 2015, Merit Award, Graduating Cum Laude from Faculty of Information Tech-
nology.

• 2016, Best Paper Award, IEEE International Conference on Automation, Quality
and Testing, Robotics (AQTR), Cluj-Napoca, Romania.

8. Defended theses

• 2015, Double phase fault collapsing with linear complexity in digital systems,
MSc, supervisor Prof. Raimund Ubar, Tallinn University of Technology, Institute
of Information Technologies

194

Elulookirjeldus
1. Isikuandmed

Nimi Adeboye Stephen Oyeniran
Sünniaeg ja -koht 30.04.1983, Lagos, Nigeeria
Kodakondsus Nigeeria

2. Kontaktandmed

Aadress Tallinna Tehnikaülikool, arvutisüsteemide Instituut,
Ehitajate tee 5, 19086 Tallinn, Estonia

Telefon +372 58337792
E-post adeboye.oyeniran@taltech.ee, aysteph3@yahoo.com

3. Haridus

2015–2020 Tallinna Tehnikaülikool, infotechnoloogia teaduskond,
arvutisüsteemid, doktoriõpe

2013–2015 Tallinna Tehnikaülikool, infotechnoloogia teaduskond,
arvutisüsteemid, MSc cum laude

4. Keelteoskus

yoruba keel emakeel
inglise keel kõrgtase

5. Teenistuskäik

2018– . . . Tallinna Tehnikaülikool, Varajaste teadur
2014– 2016 Arvato Systems, Tehniline spetsialist
2009–2013 Firstlogic IT Solutions, IT Juhendaja/Tarkvara arendaja

6. Arvutioskus

• Operatsioonisüsteemid: Unix, Windows

• Kontoritarkvara: Ms-Word LATEX

• Programmeerimiskeeled: VHDL, Java, Python, R, SQL, C

7. Kaitstud lõputööd

• 2015, Kahefaasiline lineaarse keerukusega lagoritm rikete kollapseerimiseks digi-
taalskeemides, MSc, juhendaja Prof. Raimund Ubar, Tallinna Tehnikaülikool,
arvutisüsteemide Instituut

195

