TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
51/2018

Software-Based Self-Test for
Microprocessors with High-Level
Decision Diagrams

ARTJOM JASNETSKI

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Computer Systems

This dissertation was accepted for the defence of the degree 10/07/2018

Supervisor: Prof. Raimund-Johannes Ubar
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Dr. Anton Tsertov
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Opponents: Prof. Heinrich-Theodor Vierhaus
Department of Computer Science
Brandenburg University of Technology
Cottbus, Germany

Prof. Anzhela Matrosova
Department of Programming
Tomsk State University
Tomsk, Russia

Defence of the thesis: 04/09/2018, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
previously submitted for doctoral or equivalent academic degree.

ARTJOM JASNETSKI ARTJOM JASNETSKI

signature

** %
* *
* *
* *
* o x
-) —
European Union
European Social Fund Investing in your future

Copyright: Artjom Jasnetski, 2018
ISSN 2585-6898 (publication)

ISBN 978-9949-83-312-2 (publication)
ISSN 2585-6901 (PDF)

ISBN 978-9949-83-313-9 (PDF)

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
51/2018

Mikroprotsessorite tarkvara-pohine
enesetestimine korgtasandi
otsustusdiagrammide pohjal

ARTJOM JASNETSKI

Contents

[T Wo] o101 o [T o= i o] o NP SRR UUPPPN 7
Author’s contribution to the publicationsc.ccoeecvii i 8
FAY o] o] £=AV = d o] ORI 9
L1 INTRODUCTION ..cttiiiteeiee ettt sttt st e st e sbe e st e sbeesabeesabeesabeesabeesabeesabeessseesaseenaneas 10
B0 AV o) AV | o T o PSPPI 10
B 0] o] =Tt 6 A< RP 11
1.3 Problem formulation.........ooceiiiiiiiee e 11
R o] o1 {1 eV 4o o [PPSR 12
1.5 ThESIS SEIUCTUE .eeiieiiiee ettt et s e e st e e s s bte e e sabaeessanbeeesnreeens 12
2 BACKGROUNDoitiiiiieititesie ettt ettt site ettt sit ettt e sate ettt e sat e e baeesaeesbaeesbeesnbaeenaeesnnes 13
2.1 State-of-the-art in MICropProCesSOr tEStuvievcivieeeiee et 13
2.1.1 SOftware-Based SEIf-TEStcevuiiriiirieiriiierie ettt e 14
2.0.2 SEPUCEUIAL SBST ..ttt ettt ettt ettt s rtee e e st e e st e e e sabe e e s s abeeessataeesnreeens 15
2.1.3 FUNCHIONAI SBST ittt ittt ettt ettt ettt e st e e s abe e e s s ba e e s s ateeesnreeean 16
2.2 Formal models used in @aCademia........ceivieiiriiiiieiiiiee ettt 17
2.2.1 Formal definition of high-level decision diagrams..........cccccceeeieeiiiiiieeie e, 18
2.2.2 0perations ON HLDDSuuuuuuuireriururieireeeeereerererererererererererereee———.—.. 19
2.2.3 Behavioural level synthesis of HLDDs from the procedural descriptions 20
D A KoY e Yol [=4V il | I B B 1SS 21
2.3 SUMIMIATY 1etttituiuiuuututueueaeuereeesereaesereseaeeeaereeeeeeesetesesesssesesesssssssssssssssssssssssssssssasesesssnsennns 22
3 SYNTHESIS OF BEHAVIORAL LEVEL MODEL OF MICROPROCESSOR WITH HLDDs........ 23
3.1 HLDD-based modelling for miCroproCessOrs.ccccueeeecveeeeciieeecieeeeetveeeecereeeneeeens 23
3.2 Instruction set as a basis for HLDD model generationccccceeevveeeecieeecceeee s, 25
3.3 Generation of HLDDs for modules of the microprocessor..........ccccceeecveeeecciveeecnneenn. 27
3.4 Generation of HLDD model for microproCessoreieeucccuieeeeeeeeeeiiiieeeeeeeeecvvennns 28
3.5 Simulation of instructions With HLDDS.........cccccteiriiieeiniieeeniieeerieee e eeee e s 30
3.6 SUMIIMIATY oettittitiititittttueutaeaeeeeeseaereaeseaeaeaeseeeeesesssesesssssesesesesesesssesssasesasesesesesasasesesesnsennns 31
4 HIGH-LEVEL FAULT MODELING FOR MICROPROCESSORS WITH HLDDsS..........ccocveenee. 33
4.1 Fault modelling in digital SYSTEMSccccuiiiiiiiiie e 33
4.2 HLDD-based Functional Fault Modelsoccueeiiiiiiiiiiiiii et 35
4.3 Interpretation of HLDD Based Fault Models for microprocessors.........ccccceeeeeeennne 38
4.4 Mapping low-level control faults into HLDD-based functional fault model.............. 40
4.5 SUMMAIY i 43
5 SOFTWARE-BASED SELF-TEST GENERATION FOR MICROPROCESSORSccccvverueennee. 44
5.1 Principles of software-based self-test generation with HLDD model....................... 44
5.2 Generation of Conformity Test for Control Part of Microprocessor............cccuuu..... 44
5.3 Generation of Scanning Test for Data Part of Microprocessorcccccceveeeeeecunnneenn. 48
5.4 Test program generation eXample......ccocueeeeciieiciiee e e e s naee s 50
5.5 Discussion on the Properties of Conformity and Scanning testscccccecevveevnneenn. 52
5.6 EXPErimental FESUILSeeiiuiieeeciie ettt e et e e e e e nree s 54
S AN YU 1210 0 F=1 o PP PP PP PP PP PPPOPPPPPPPPPPPPRE 54
6 SBST AUTOMATED GENERATIONuuiiiiiiiiiiiiiiitiiiiererererererereresererereserererererererere. 56
6.1 Introduction of SBST generation frameworkccccceecveviecciee e 56
6.2 Generalization of instruction set architecturec.cccovvvevieiniiineeeee 56

6.3 HLDD synthesis from ISDL descriptioncccoeeiciiiiiieeieicciiiee et 59

6.4 Test synthesis from HLDDooiiiiiiiiiiieeeee et e e e nraee s 69
6.5 SBST Program SENEratioNuuuuuuuueiiieiiiiiireierererrrererererererer————————————————————————.—. 70
6.6 Environment for experiments and reSultscccoecceeeeeciee e 71
6.7 SUMIMATIY .ettttitiitttitttttetatteaeeeeeseaeeeaeeeaeaseaeeeeesesesaeaaeeeeeesesessseseseseeesaeesesesesesesasanesesennsennn 74
7 CONCLUSIONS AND FUTURE WORK .. i s 75
2% N e g Vol [0 1] oY o K PR UUPPRN 75
7.2 FUTUIE WOTK .. eiitiiiee e e ettt e e e ettt e e e e e e e ettt b e e e e e e eeeaaatbeeeaaseeennraaneeaeeeannses 76
T Ao i 7= YRR 77
[T do] =1 o] [T RPN 78
20T = T Vol TSRS 79
FAN o1 1 - [o RSP URPPPN 86
I 0 11 o) (U1 1 o < SRR 87
APPENAIX A oottt e et e e e e e et — e e e e e e e e e bbaaeaaaeeaarbaaaaaeeeaaataaaaeaaeeananres 89
PN T o= o T [l = PSP 105
PN 01T e | G PUP PP 111
YT 0 T=T o T [SRS 119
(oI g g TN (W10 o IR - [T UPURROt 129
e 01T To] (T g =] Lo LU RS 130

List of publications

The list of author’s publications, on the basis of which the thesis has been prepared:

Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton; Brik, Marina (2014). “Software-
based self-test generation for microprocessors with high-level decision diagrams”.
Proceedings of the Estonian Academy of Sciences, 63 (1), 48-61.

Jasnetski, Artjom; Raik, Jaan; Tsertov, Anton; Ubar, Raimund (2015). "New Fault
Models and Self-Test Generation for Microprocessors using High-Level Decision
Diagrams”. IEEE Symposium on Design and Diagnostics of Electronic Circuits and
Systems - DDECS. Belgrade, Serbia, April 22-24, 2015: IEEE Computer Society Press,
251-254.

Jasnetski, Artjom; Oyeniran, Adeboye Stephen; Tsertov, Anton; Schoélzel, Mario;
Ubar, Raimund (2016). “High-level modeling and testing of multiple control faults
in digital systems”. IEEE 19" International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), Kosice, 20-22 April 2016. IEEE, 1-6.

Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton (2017). "Automated Software-
Based in-field Self-Test”. International Journal of Microelectronics and Computer
Science, 8 (2), 57-64.

Ubar, Raimund; Jasnetski, Artjom; TSertov, Anton; Oyeniran, Adeboye Stephen;
(2018). “Software-Based Self-Test with Decision Diagrams for Microprocessors”.
978-613-7-33947-3, Beau Bassin: LAP LAMBERT Academic Publishing, 171p.

Author’s contribution to the publications

Contribution to the papers in this thesis are:

The author participated in the decision-making process. The author planned the
case study and contributed to the model creation. The author planned and
prepared the evaluation environment. The author executed the necessary
experiments. The author took part in the preparation of the paper for publication
and presented it at a conference.

The author contributed to the concept. The author developed test programs and
ran experiments. The author wrote and prepared the paper for publication and
presented it at a conference.

The author developed the methodology through numerous discussions with the
supervisors. The author carried out experiments. The author prepared the paper
for publication and presented it at a conference.

The author developed the concept. The author implemented the concept in the
software. The author implemented all of the necessary software components of
the evaluation environment. The author planned and executed the necessary
experiments. The author wrote the paper and presented it at a conference.

The author wrote multiple chapters and sections of the book. The author prepared
the book for publication.

Abbreviations

ALU
ATE
ATPG
BDD
BMC
CFFM
CSAF
DD
DFFM
DFT
EDA
FCT
FSM
HLDD
ISA
ISDL
MUT
NDA
PCT
RTL
SAF
SBST
SCB
SSBDD
TPG
TTPG
VLSI

Arithmetic and Logic Unit
Automatic Test Equipment
Automated Test Pattern Generator
Binary Decision Diagrams
Bounded Model Checker

Control Functional Fault Model
Conditional SAF

Decision Diagram

Data Functional Fault Model
Design For Testability

Electronic Design Automation
Full Conformity Test

Finite State Machine

High-Level Decision Diagrams
Instruction Set Architecture
Instruction Set Description Language
Module Under Test
Non-Disclosure Agreement
Partial Conformity Test
Register-Transfer level

Stuck-At Fault

Software-Based Self-Test

SAF, CSAF, Bridging

Structurally Synthesized BDD
Test Pattern Generation
Targeted Test Pattern Generation
Very Large Scale Integration

1 INTRODUCTION

The field of Software-Based Self-Test (SBST) has been a topic of extensive research in
industry and academia for more than three decades. Despite this, an automated SBST
generation is still lacking a suitable formalisation for modelling of microprocessors.

This thesis presents a methodology to formalise and automate SBST synthesis,
leading to a reassessment of the microprocessor modelling process.

1.1 Motivation

Advances in modern technology in manufacturing and design of microprocessors are
continuously increasing the difficulty of digital circuit testing. The manufacturing
technology of integrated circuits is scaling, allowing the increase of transistor count per
chip and increasing operation frequency. Such technology enables microprocessors to
be built from billions of transistors and to operate at GHz frequencies. However, the
manufacturing of chips has led to the emergence of different physical defects, which
affect the parameters of the manufactured device. Therefore, advances in test
methodology enable the production of integrated circuits of high quality without
increasing the final cost. The varieties of different approaches to microprocessor testing
reflect the continuous interest in this topic from academia and industry.

The development of methods for testing such complex digital circuits as
microprocessors has been on-going for decades. Test generation time, consumed by
sequential automated test pattern generator (ATPG) is, typically, beyond the
constraints imposed by industry. The most common solution to testing VLSI designs is
to apply design for testability (DFT) methods, such as insertion of scan-chains [1] [2].
Today, application of such a DFT technique is inevitable. However, scan-chain affects
the design of a product and requires expensive test equipment.

During the last decade, the semiconductor industry has been challenged to launch
new testing methods that can be incorporated into an established microprocessor test
flow [3]. The primary demand is the manufacture of a high-quality product without
increasing the cost of testing. A test method that raised product quality with only a
minor cost increase was first proposed in 1980 [4], and is the SBST.

The main principle of SBST is to use the resources of the processor under test in
order to test itself by executing programs. This approach does not require expensive
external test equipment, and the test time depends on the performance of the
processor and the size of the test program. The generation of test programs that allow
high-quality fault coverage is the main research subject in the field of SBST.

The efficiency of test program generation (quality, time) is highly dependent on the
abstraction level of representing the system and on the adequacy of fault models.
Owing to the increasing complexity of digital systems like microprocessors, the gate-
level approaches to test generation require more time in comparison to high-level
approaches.

Due to the lack of efficient formal methods, self-test programs for microprocessors
are generally written manually. High-level fault modelling approaches and formal test
generation strategies have not been sufficiently investigated to support the automated
synthesis of self-test programs and to provide fast methods of test quality evaluation.

Over the last years, academia has renewed its interest in SBST for in-field application
on embedded devices. ISO 26262 [5] describes the demands for online periodic testing
of processor cores in automotive devices. As a result, demand for SBST has increased

10

following the release of IEC 61508 [6] for industrial safety systems, ISO 26262 for
automotive applications, and DO-0254 [7], not to mention the use of processor-centric
systems in safety-critical applications.

The lack of access to structural information of commercial products due to NDA
makes the functional SBST approach an exclusive solution for in-system or in-field
testing. Concurrently, interest has arisen in the automation of the SBST approach, since
the complexity of manual test program generation can be unacceptably high.
Automated SBST [8] [9] [10] positively influences test development cost, which in turn
affects the final price of a product.

1.2 Objectives

The previous section identified the importance of the development of formal methods
of SBST generation, with the aim of automation, keeping in mind the constraints
imposed by industry. To meet the demand, this research has the following objectives:

e The industry needs efficient (in terms of fault coverage) and scalable methods
of SBST generation for microprocessors

e The industry needs a formal solution for automated SBST generation, or at
least assisted SBST generation

e The industry needs a solution for SBST program generation which will satisfy
demands of in-field testing of microprocessors

1.3 Problem formulation

To achieve the objectives formulated in the previous section, this thesis will solve the
following problems:

e Efficient SBST programs

e Formalisation of SBST generation approach

e Automated generation of SBST programs

e SBST generation based only on information retrieved from documentation
describing instruction set architecture

The goal is to improve the scalability of SBST generation by working with the highest
possible level of abstraction — the instruction set description of a microprocessor. This
also allows the widening of the scope of application of SBST to include the generation
of in-field testing, where structural information of commercial products is kept under
NDA.

A well-formalised approach to SBST synthesis is introduced, extending the high-level
decision-diagrams methodology to include modelling microprocessors at the
behavioural level. Another extension allows the modelling of behavioural level faults in
microprocessors with HLDDs, introducing new high-level fault models. Both extensions
expand the opportunities to automate the generation process of efficient SBST
programs.

The goal of this thesis is to provide a concept of the platform for automated SBST
program generation, which is based on the proposed formal methods for modelling of
microprocessors.

11

1.4 Contribution
The main contributions of this thesis are listed below:

e A methodology for modelling microprocessors on the basis of its instruction
set architecture

e Definition of new high-level classes of fault models for microprocessors, which
are also mapped to corresponding low-level structural faults

e Aformal method for generation of SBST on the basis of the HLDD model

e Framework for automated SBST synthesis

1.5 Thesis structure

The rest of this thesis is organised as follows.

Chapter 2 presents the background and overview of the microprocessor test, in
particular the SBST methods. Different approaches to SBST generation are discussed
and compared. This chapter presents background information on contemporary
hardware modelling techniques, specifically modelling with high-level decision
diagrams (HLDDs). The formal definition and basic principles of modelling with HLDDs
are outlined.

Chapter 3 forms the core part of this thesis, presenting the method of building
models for microprocessors from instruction set architecture description. The main
properties of this modelling approach are discussed, with examples of the abstract
microprocessor and the processor Parwan.

Chapter 4 gives an overview of existing fault modelling techniques for digital systems
and introduces a novel HLDD-based fault model for microprocessors. Multiple high-
level fault classes are proposed, dedicated to the control part and data path of the
processor. Chapter 4 shows the mapping of existing high-level and low-level fault
models for microprocessors in the proposed HLDD-based fault model. Several examples
of HLDD-based fault model interpretations are outlined and compared with existing
fault models.

Chapter 5 presents the methods for constructing SBST programs on the basis of the
HLDD model. Two concepts are discussed: the conformity test, which targets the
control part, and the scanning test for exercising the data path of the processor. The
numerous advantages of the proposed HLDD-based test generation methods over
traditional approaches are discussed. Experiments of quality and compactness
evaluation on the manually synthesized SBST program conclude the chapter.

In Chapter 6, the implementation of the framework for automated SBST program
generation is described, utilising the concepts described in Chapters 3 - 5. A bottom-up
automation approach is presented, starting with the automation of microprocessor
modelling, followed by automated test generation, and concluding with SBST program
composition using the example of MiniMIPS processor.

Chapter 7 draws conclusions for the thesis and outlines the directions of the future
work.

12

2 BACKGROUND

In this chapter, there is a discussion of the state-of-the-art microprocessor testing,
starting with a general classification of test methods and venturing into the field of
SBST approaches. This overview identifies the unsolved problems in the area of
microprocessor testing and determines the boundaries where the method proposed in
this thesis would best fit.

Since the biggest part of this thesis is dedicated to extending the area of application
of HLDDs to microprocessor testing, an introductory description of this modelling
approach is added.

2.1 State-of-the-art in microprocessor test

Different approaches in the field of microprocessor test can be distributed into three
major groups: structural methods, functional methods and software-based self-test
methods. The first approach - structural, is a widely-used solution for testing
microprocessors. It is based on applying most common DFT technique - scan chain
insertion [1] [2] into digital design. Scan chain structure provides sufficient test access
to the resources of a processor core. However, adding scan chains affects the initial
design of a product, and its parameters: performance, power consumption and chip
area. Any change in design can be critical for such highly optimized devices like
microprocessors. Still, applying DFT techniques is an inevitable part of wafer and
package test within high-volume manufacturing flow. Test procedures that involve DFT
structures require special external test equipment, which is limited in speed and affects
the final quality of the test. Additionally, it is known, that stuck-at fault tests are more
effective when applied at speed [11].

e Pag
Y /‘Bge
o oy
= SBST
L
TS 4
S -
)
o
5 Structural %ﬂ
o
=
w
~
% &
<L kol
%, &
> S
R
//77‘/’@ loy e“e\
test fasy ©©

Figure 2-1 Features of microprocessor test methods

The second approach - functional, is capable of conducting tests at operational
speed. Functional test is also employed in the final stage of chip manufacturing - speed
binning. According to [12], the cost of functional automatic test equipment is about
3000 US dollars per pin for testing at speed of 1 MHz (the year 2000). Additional
expenses in the amount of 0.5-1.2 millions of dollars are added by function generators
for mixed-signal circuits. Due to the high cost of functional test equipment, the industry

13

raised the interest in structural scan-based test, which can negatively affect the yield
due to over-testing.

Last but not least comes the method for testing microprocessors [4] that is called
software-based self-test. The general idea of this method is to use the resources of a
microprocessor to test itself by running specific test programs. This method was
accepted by industry [13] and is complementing the other two test methods within the
manufacturing process. Furthermore, interest in this method was raised in frames of in-
field test. Currently, all of the manufactured microprocessors are going through all of
these three test methods. The capabilities of the described methods are outlined in
Figure 2-1. These three methods are complementing each other in order to increase
the quality of the final product.

2.1.1 Software-Based Self-Test

Software-based self-test method was introduced in 1980 by S. M. Thatte and J. A. Abraham
[4]. The approach of SBST was characterized as an attractive and promising functional
test method, utilizing microprocessor organization and instruction set as parameters of
test generation procedures. The main principle of this method is to execute a program
on a microprocessor in order to test its own resources. Such approach does not require
specific test hardware, and test sequences are executed at processor actual speed,
allowing effective coverage of stuck-at faults [11]. The distinctive features of software-
based self-test method are:

e Nonintrusive. SBST does not need additional ATE, which makes this approach
more affordable, and can decrease the final price of a product. In addition, the
characteristics (like power consumption, size or performance) of device are
not affected by additional hardware on chip.

e At-speed. Tests are being run at actual processors speed, making Stuck-at fault
tests more effective, and additionally cover delay defects.

e Avoid overtesting. Since SBST can use only instructions from defined set, there
is no possibility to cover defects that cannot be activated during normal
operation of the processor, thus lowering the over-testing effect.

o In-field test. Test programs can be reused in-field, or during product lifetime.
Also, during return tests and diagnosis.

The general principle of SBST method emphasizes two major aspects of research in
the area of SBST: test program generation and execution. Test execution is moderately
trivial in comparison to test generation. First, in order to apply SBST, test program
should be loaded into memory or cache [14], using external hardware. Then, execution
of the test program should be initiated. The test program is generating responses that
are stored back to memory. Finally, external hardware evaluates obtained responses
and gives the diagnosis for the unit under test. Such test execution flow is used widely
and has only minor differences between SBST approaches.

Currently, the second part - test generation, is the main subject of research in SBST
field. This part is not trivial and must comply with high boundaries of quality
requirements, imposed by industrial standards. The task of test SBST generation can be
divided into four parts:

1. Development of code templates for test pattern delivery

2. Extraction of constraints imposed by instruction set architecture
3. Synthesis of test patterns for microprocessor

4. Conversion of test patterns into a test program

14

All these steps are fundamental for research in the area of SBST. Different research
groups are investigating test generation in general, its automation or the quality of test
programs. Nevertheless, there are plenty of disadvantages, which leave SBST as a
complementary method for testing along with matured structural and functional test.
According to Figure 2-1, SBST is more difficult to develop, in comparison to scan-based
test. In addition, in comparison to SBST, there are industrial EDA tools available, which
can generate structural tests that are capable of achieving high fault coverage.
Functional test has also good fault coverage and covers the defects, which structural
test did not.

SBST approaches can be divided into two major groups, which are structural and
functional. These two groups are defined in this way: the functional group, containing
methods that use instruction set architecture (ISA) information of the processor. The
other group consists of structural approaches [15] [16] [17] [18] [19], based on
generation using structural information (gate- or RTL-level description) of processor
under test. These methods have different benefits and limitations because of their
nature. Structural approaches benefit from information hidden in the depths of low-
level design. Functional approaches are capable of test program generation without
structural information, which is usually not available for commercial processors. The
lack of such information can be the reason (not without exceptions) for less fault
coverage in comparison to methods based on structural approaches.

2.1.2 Structural SBST

Due to its nature, a structural approach can be applied during the production of
microprocessors, since structural information is usually available for a manufacturer.
Structural SBST solutions can be divided into two major groups. These groups are -
hierarchical, and RTL-based Structural SBST methods. Hierarchical approaches use the
methodology of considering processor as modules. Only one module is considered at
the same time, and stimuli are generated for it. After this, it is translated into stimuli for
processor level. Then, these stimuli are being translated into instructions, and the test
program is being composed.

First work using hierarchical structural SBST was proposed by Gurumurthy et. al [15].
In this case, ATPG tool is used to generate stimuli for activation of hard to detect faults
in modules of a processor core. Then, generated stimuli were filtered with help of
bounded model checker in order to match with instruction set of the processor under
test. The next approach by Lingappan and Jha [16] is based on satisfiability-based ATPG.
They proposed a framework, which evaluates the description of micro-architecture of
the processor, by building models for each module of the processor under test. After
that, test stimuli are being generated for each module, which are again filtered by
satisfiability solver. Additional DFT changes are made to the system in order to apply
generated tests.

In [15], Gurumurthy et al. describe the problem of hard to test faults, which cannot be
covered by test programs generated randomly. They applied ATPG on each module of the
processor, which has hard to test faults. Bounded model checker (BMC) was used to
decide which instruction can activate inputs of the module with the precomputed stimuli.

Next hierarchical approach is based on learning [17] algorithms. The work is based
on functional test generation approach (also called Targeted Test Pattern Generation -
TTPG) where simulation results are used to guide the generation of additional tests.
The proposed methodology for TTPG has two phases - simulation and generation.
During simulation phase, the simulation I/O data is recorded for the modules under

15

learning. After data is collected, the specific learning method is used on each module to
derive its learned model. Variety of the learning methods is presented in this paper
[17]. In the TPG phase, the learned models replace actual modules before and after
module under test (MUT). Then, structural ATPG is applied to produce the tests for
detection of faults within the MUT. The inputs are then justified through the learned
models to the processor’s primary input boundaries and outputs propagated to output
boundaries.

The second structural SBST method is RTL-level based. It uses information, obtained
from both RTL and ISA descriptions. This information is used to generate instruction
sequences for activation and propagation of the faults. For the first time, RTL SBST
methodology was proposed in [18]. The development of the SBST is based only on the
Instruction Set Architecture of the processor and its RTL-level description. The
proposed SBST methodology consists of the three phases. During the first phase, the
extraction of information from processors ISA for controlling and observing registers of
the processor is made. During the second phase, the processor components are being
categorized into classes with the same properties (functional, control, hidden
components) and prioritized for test development. The last phase is focused on the
development of deterministic SBST routines using compact loops of instructions.

Another interesting work is [19]. Different levels of processor description, starting
from ISA description and going deeper to a gate-level netlist, are used in this approach.
Each part of the processor is being threaded on the best matching level for pattern
generation. For example, test for register bank is generated using RTL level description.
Tests for ALU are generated using ATPG on a gate-level.

Despite the good results in terms of fault coverage, the efficiency and scalability of
the presented methods is questionable, due to the tendency of increasing complexity
and size of modern microprocessor designs.

2.1.3 Functional SBST

One of the first methods among functional SBST, proved its efficiency, is the method for
SBST program generation using ISA description which was proposed by Shen and
Abraham in [20]. They developed a framework called “Vertis”, which generates test
programs by manipulating with instruction set of the processor under test. For each
instruction being tested, “Vertis” generates different test sequences. Test sequences
can be generated pseudo-randomly, and use random data, or can be selected manually,
which is not a trivial task. The framework can be used during different stages of
production - verification, production test and post-manufacture test. Test program is
verified experimentally on Intel 8085, covering satisfactory 90.2% of stuck-at faults,
which was better fault coverage in comparison to ATPG tools. Significant drawback of
this approach is test program size.

The next approach, by Parvathala, Maneparambil and Lindsay [14], is called “FRITS”
(Functional Random Instruction Testing at Speed). In this approach test programs are
generated from randomly selected instructions and pseudo-random data. Generally,
this approach is based on test program generation with random instruction sequences
using pseudo-random data. Also worth noting, that in this work cache-resident SBST
mechanism is proposed for the first time. This method allows to run test programs
directly from cache memory providing ”isolated test” during wafer test. The main
limitation of cache-resident mechanism is that “cache misses” nor “bus cycles” should
not be produced. Test programs, generated by FRITS are verified on Intel Pentium and

16

Itanium processors, obtaining decent fault coverage results with 70% and 85% of stuck-
at fault coverage respectively.

Bayraktaroglu, Hunt and Watkins propose the alternative cache-resident method for
production testing [13]. These works both contribute to the usefulness of SBST
approach in the production of industrial processors. Their approach is evaluated on Sun
UltraSparc T1 microprocessor core. Test program is randomly generated, and the
approach mostly concentrates on the development of the mechanism for cache-
residency called “Load&Go”, especially for the Sun processor family. Achieved fault
coverage results are comparable to results obtained with commercial high-cost
functional tester.

An alternative approach was proposed by Corno et al. [21]. This approach is based
on so-called evolutionary algorithm. In the sense of microprocessor test, evolutionary
means that each program is being re-evaluated and only the effective code is attached
to it. In the process of test program generation, the feedback from test simulator is
used. The algorithm was tested on Leon2 microprocessor and showed the superiority
on purely random method in case of fault coverage, and test program length. This
method uses the result of gate-level fault coverage as a feedback for evolutionary
algorithm. However, it is impossible to apply this method for in-system test generation
for commercial microprocessors due to lack of structural gate-level information.

Later research has shown the significance of holding in mind the complexity of
processor architecture. The presence of pipeline is adding complexity to test program
generation. Latest papers about SBST methodology are concentrating on the processors
with pipeline, branch prediction [22] or caches [23]. Gizopoulos et al. in [24] are
proposing a method to enhance SBST program quality by considering the properties of
pipelined architecture and features of memory addressing of microprocessor under
test. Their approach is using data about the architecture of the pipeline and the
memory hierarchy to add program code lines in order to activate faults. The
experimental results are promising, adding average improvement of 12% for miniMIPS
and OpenRISC1200 processors.

Another approach was made by Bernardi et al. [25]. It is also concentrating on the
testing of the pipeline, and proposing the strategy for improving test programs for
better test coverage with pipelined processor miniMIPS. The proposed strategy is
capable to cover faults in the pipeline logic, activated when data hazards or register
forwarding problems occur. Their later research is widened with deeper analysis of
decode stage of the pipeline in RISC processor [26].

Nevertheless, none of the reviewed methods is relying on formalized solution for
modelling microprocessor functionality and faults. Such limitation leaves proposed
approaches with problems of hard-to-test faults and fault masking at higher levels.
Without theoretical basis for fault simulation and identification it is impossible to measure
coverage of wide spectre of fault classes. Additionally, we consider well-formalized
modelling of microprocessors as an essential element of automated SBST generation.

2.2 Formal models used in academia

The history [27] of using Binary Decision Diagrams (BDD) for representation and
manipulation of Boolean functions is half-century-long. BDDs were first introduced for
logic simulation in 1959 [28], and for logic level diagnostic modelling in [29] [30]. A new
data structure - reduced ordered BDDs (ROBDDs) [31] was proposed by Bryant in 1986.
BDDs became one of the most popular representations of Boolean functions [32] [33],

17

because of the simplicity of the graph manipulation and the model canonicity. Multiple
types of BDDs have been proposed and investigated during decades, such as shared or
multi-rooted BDDs [34], ternary decision diagrams (TDD) [32], multi-valued decision
diagrams (MDD) [35], edge-valued BDDs (EVBDD) [34], functional decision diagrams
(FDD) [36], zero-suppressed BDDS (ZBDD) [37], algebraic decision diagrams (ADD) [38],
Kronecker FDDs [39], binary moment diagrams (BMD) [40], free BDDs [41], multiterminal
BDDs (MTBDD) and hybrid BDDs [42], Fibonacci decision diagrams [43] etc.

Along with traditional (functional) use of BDDs, application of BDDs for modelling of
the structural aspects of the circuit was proposed in [29] [44]. Pioneering alternative
graphs (AG) were introduced as a special class of BDDs [29] synthesized directly from
the gate-level description. Further, they were renamed to structurally synthesized BDD
(SSBDD) [44] [45].

Although logic and RTL level modelling using BDDs is well developed, multi-level and
hierarchical modelling is not covered with listed types of BDDs. In this thesis, we
consider using high-level decision diagrams (HLDD) [44] [45], which can be used to
model systems on different levels of abstraction, and because of their capability for
uniform graph-based fault analysis and effect-cause or cause-effect diagnostic
reasoning [45]. Additionally, HLDDs are satisfying the constraint of functional SBST,
capable of synthesizing the model of the microprocessor from its instruction set
architecture description.

Alternative solutions for ISA based modelling of microprocessors are available [46]
[47], but their application for fault-modelling, diagnostics and testing are unknown in
comparison to HLDDs [48] [49] [50] [51] [52].

2.2.1 Formal definition of high-level decision diagrams

High-level decision diagrams were proposed by Professor Raimund Ubar in 1983 [53].
Application area of HLDDs includes test generation and simulation due to its ability to
efficiently and uniformly describe the structure, function and faults in digital circuits [51].
HLDD model can be efficiently used for simulation and fault modelling, capable of fast
evaluation by graph traversal and easy identification of cause-effect relationships [54] [55].

A formal definition of high-level decision diagrams was given in [27]. Consider a
digital subsystem U = {Uvout,Uq}, represented as a cycle-based finite state machine
model described by the output vector function Your = A(X,Q), and state transfer (next
state) vector function Q! = 8(X,Q!), where t denotes the number of the current cycle
(e.g. clock, microinstruction or instruction cycle).

Definition 2-1. Consider a digital system represented as a universe of functional
variables U = {Up, Uc} where Up is a set of data variables, and Uc is a set of control
variables.

A decision diagram Gy (example in Figure 2-2)which represents a digital subsystem
described as a vector function Y = F(X), YeU, is defined as a non-cyclic directed graph Gy
= (M, I, X) with a set of nodes M, a set of vector variables X, and a relation 7" in M.
Denote the root node of Gy as mo € M. The set of nodes is partitioned into two subsets
M = MV U MT where MV is a set of non-terminal nodes, and M" is a set of terminal
nodes. The nodes m € M" are labelled by variables x(m) € X, and the nodes m € M"
are labelled either by constants, variables or algebraic expressions (denoted by f(m)) of
the variables x € X. Concatenate the argument variables used in f{m) as a vector x(m).
The mapping / describes the topology of the HLDD, how the nodes are connected by

18

edges where the subset of successor nodes of m is denoted by /im, and the subset of
predecessor nodes of m is denoted by 7 m.

For each value e from a set V(x(m)), there exists a corresponding output edge
(m, m¢) from the node m into the successor node m¢e I{m), e € V(x(m)).

G, = (M,[X); m m, m,

M=MNU M"={m,m,m,m,;m,};

r={e,e,ezezes, e, =(m,m,),e,=(mym,), 3
e;= (mo m4): e, = (mp mz): e; = (mp mg)}

X(my) = X(m,) = x,, X(m) = x5, X(m}) = x,,

X(ms) =x; 4,56,7 @
e, 2

Figure 2-2 function y=f(x1,x2,x3,x4) represented with HLDD

The terminal nodes of the HLDDs, according to Definition 4-1, may be presented at a
high functional (or behavioural) level, treating the related hardware modules as black
boxes. If a more detailed presentation of the system is needed (for lower level fault
simulation or fault diagnosis purposes), the functional expressions in the terminal
nodes of HLDDs can be unfolded into lower level implementation descriptions, such as
gate-level networks. This allows transforming high-level HLDD-based approach to a
hierarchical multi-level approach, where the control functions will be modelled at the
higher level using HLDDs, and the detailed data manipulation functions will be
modelled at lower levels using SSBDDs.

2.2.2 Operations on HLDDs

In this section, we are outlining following operations on HLDDs: logic simulation, path
activation and test generation. The complete list with description of operations on
HLDDs is provided in [27].

Logic simulation. Logic simulation of applied vector X! on graph G, means traversing
the nodes by Xt path /(mo, M") starting from root mo up to one of the terminal nodes
M. The variable x; of reached terminal mode determines the value of y for the given
vector X!. Example of logic simulation of the input pattern -025 (x1,x2,x3,x4) on HLDD is
shown on Figure 2-3.By traversing of the path /(mo,m2) through nodes mo and ms the

output value of the circuit becomes y = x4= 5.
W) W Wi

X1:_
X, =0
X3 =2 3
X4=5
y=5
my

4,5,6,7
e, X3

Figure 2-3 Logic simulation on HLDD

19

Path activation. Activation of the path between nodes m; and m; within HLDD
requires to find a vector Xt which is capable to activate the path /(m;,m;). Such path can
be generated by finding the solution to equation y = f(X).

Test generation. The task of test generation for a fault x(m)=ein a Gy, e € {0,1}, is
solved in Gy by activating the following paths:

Im = I{mo, m), from the root node mo to the node m under test,
h = I(m?, #1), and lo = /(m®, #0) from the node m to the related terminal nodes #1 and
#0, respectively,

whereas the additional fault type constraint x(m) = -e should be additionally satisfied.
As the result of solving these tasks, a test vector X' will be found, which detects the
fault x(m) =e.

2.2.3 Behavioural level synthesis of HLDDs from the procedural descriptions

Consider a procedure representing a behavioural level description of a digital system. It
is possible to represent such procedure by a directed graph, such as data flow graph,
and a path can be represented by a sequence of assignment statements and
conditional expressions (i.e. by a sequence of assertions).

The full procedure of the HLDD synthesis from the behaviour level procedural
description of a system consists of the following phases [51]:

State insertion into the procedural description. This action is performed in similarity
to data-flow graphs, where behaviour of given automata is marked by states. The
states, defined with g, are inserted so that during any state transfer, each data variable
is calculated only once.

Creation of the FSM structural table. A table is constructed by tracing all the
transfers in the data-flow graph from the previous step. Each row in the constructed
table corresponds to a path between neighbouring states of the procedure.

Partitioning of the structural table into functional subtables. At this step, the set of
all functional variables is extracted from the description of the system functionality of
the FSM structural table. An example of the table with extracted behaviour of
functional variable A is shown in Figure 2-4. The table consists of two parts: constraints
(g, Xa, X8, Xc), and assignment statements for variable A (right column). The constraints
describe the needed conditions, which have to be satisfied for execution of the related
assignment statements.

Generation of mixed predicate formulas for functional variables. Each table,
extracted in the previous step can be represented by a mixed predicate formula

X = VCiEi,S!

where x represents a functional variable, C; is a logic condition (logic AND of all
constraints), and E;sis an algebraic expression of an assignment statement. Example of
mixed predicate equation for variable A is shown on Figure 2-4.

Creation of HLDDs for the functional variables. This action is made by using Shannon
factorization [32] [33]. The HLDD created by factorization of the mixed predicate
formula for variable A is depicted in Figure 2-4. Variable A becomes the output of the
graph. Constraint g becomes root node, with successor nodes representing constraints
Xa, X, Xc. Assignment statements are represented with terminal nodes of the graph.

20

Behaviour of variable A extracted:

q | X, | X | X A
0 B+C Decision diagram for variable A:
1|0 —-A+1

3 1 —C+B

410 0| A+—-B+C

Mixed predicate equation for A:
A = (g=0)(B+C) v (9=1)(X,=0)(—-A+1) v
(9=3)(xc=1)(=C+B) v
(0=4) (xa=0)(xc=0)(A+-B+C+1) |

Figure 2-4 Synthesis of HLDD for functional variable A

2.2.4 Topology of HLDDs

Topologically, HLDD consists of a root, terminal and non-terminal nodes. The number of
terminal nodes is not limited and is determined by the number of high-level operations
supported by the digital circuit. Terminal nodes are labelled by high-level constants
(vectors), bus or register variables, or by high-level algebraic operations. The non-
terminal nodes of HLDDs represent the control variables. The number of output edges
in HLDDs is not limited and is equal to the number of possible values of the control
variable of the node. In other words, the non-terminal nodes in HLDDs model the
control functions of the digital system, whereas the terminal nodes refer to the data
manipulation functions. The Figure 2-5 depicts the described topology of HLDD model.

Figure 2-5 Topology comparison of SSBDD and HLDD

Testing of a digital system, represented by HLDDs means testing both types of nodes
- non-terminal and terminal. When testing the non-terminal nodes of an HLDD, we are
verifying the general control behaviour of the circuit, and when testing the terminal
nodes, we are verifying the separate working modes of the circuit.

The procedures of test generation are different. To test a non-terminal node m, one
has to activate a path /m = (mo, m) from the root node mo to the node m, and from the
node m, for each value x(m) = h, a path Is(m, m") to a terminal node h, so that the paths
In were not overlapping. Additionally, the values of the data variables should be
selected such that the values of operations at the terminal nodes h reached by paths /s,
were different. For testing each terminal node m, one has to activate a single path /Im to

21

this node m. Additional constraints need to be satisfied depending on the fault models
adopted for testing the system, and which will be determined in terms of the HLDD
model.

Described above forms the general problem of adopting HLDDs for SBST program
generation for microprocessors. HLDD methodology should be sufficient to model
microprocessor behaviour, described in instruction set architecture. Additionally, on
the basis of such model, test programs with decent accuracy should be generated to
target certain spectre of faults within microprocessor.

2.3 Summary

This chapter provides an overview of state-of-the-art methods of microprocessor
testing, particularly the SBST approach. It describes the solutions for modelling
hardware and discusses their limitations.

Specifically, introductory information on HLDDs is presented to provide a better
understanding of Chapters 3 and 4, where the area of application of HLDD is extended
to model microprocessors at the behavioural level and the faults within them.

Concluding this section, the main challenge of SBST generation for microprocessors
on the basis of HLDD methodology is formulated.

22

3 SYNTHESIS OF BEHAVIORAL LEVEL MODEL OF
MICROPROCESSOR WITH HLDDs

This chapter is based on publication | [56], where novel approach for high-level
processor modelling using HLDDs was presented. This chapter discusses the extension
of HLDDs, which allows the generation of a microprocessor model from instruction set
description. The main contributions of this chapter are as follows:

1) A formal method for modelling microprocessors using instruction set
description is elaborated

2) The applicability of the approach to microprocessor modelling with HLDDs is
evaluated for an abstract processor and processor Parwan [57]

3) The features and capabilities of HLDD models for further use in testing
purposes are evaluated and discussed

The outlined contributions are elaborated in detail in sections 3.1-3.5.

3.1 HLDD-based modelling for microprocessors

A digital design, like a microprocessor, can be represented with HLDDs at different
levels of abstractions — structural, RTL or behavioural. In section 2.2.3, the behavioural
level synthesis with HLDDs is discussed. In this work, we propose to move “one step
higher” in abstraction to instruction set architecture description, which also represents
the behaviour of the microprocessor. In this case, HLDDs are used to calculate the state
of the system after execution of each instruction. Following this, we introduce the
instruction-cycle based HLDDs, as a convolution in behavioural level modelling of
microprocessors.

Table 3-1 Instruction set of a simple hypothetical microprocessor with ten instructions

| Mnemonic ISA level operation
1 MVI A,D A <« IN

2 | MOVRA R«A

3 | MOV M,R OUT «R
4 | MOV M,A OUT « A
5 MOV R,M R« IN

6 MOV A,M A <« IN

7 ADD R A«—A+R
8 | ORAA A«AVR
9 | ANAR A<—AAnR
10 | CMAA,D A-A

Consider a simplified hypothetical microprocessor with ten instructions as an
example target for modelling. Instruction set of this processor is presented distributed
by columns of Table 3-1: in the first column, | — is the high-level control variable whose
integer values represent the operation codes; in the second column, the mnemonic of
the instruction is provided to represent the behaviour hidden behind the instruction; in
the third column the operations launched by instructions are described using the high-
level data variables. Variable R denotes an internal general purpose register, variable A

23

represents accumulator register, variable IN denotes the input bus and variable OUT
denotes the output bus.

For the synthesis of HLDDs, we use the method described in Chapter 2.2.3, omitting
the first step in the model generation process. On the basis of the third column, we
define the set of functional variables of the microprocessor — FV = {A, R, OUT}. These
are the variables, which describe the state of the microprocessor, and which values are
recalculated by execution of instructions. For each variable in FV, we synthesize an

HLDD, depicted in Figure 3-1.
A—(1)—’(1'6 :)
out—(1) 3 ® 2335 ()
® e
R —(1)2(R) ——(avR]
5 ™ % (A R)
1,3,4,6-10 L

®

Figure 3-1 HLDDs for the microprocessor with instruction set in Table 3-1

The microprocessor is represented by three diagrams - Gour, Gs, and Ga. Diagram
Gour represents the behaviour of output bus. The behaviour of internal general purpose
register R is represented by Gg, and the behaviour of the accumulator A by graph Ga.
Since there is only one constraint variable — /, it becomes a root node of the decision
diagram with its values shown at edges. Variable I represents the instruction code, thus
has the values from 1 to 10, corresponding to the instructions /3, /2, ..., l10. The terminal
nodes (successors of /) are labelled by the word variables R and A, representing the
corresponding registers, along with data transfer buses (IN, OUT), or by expressions
related to particular data manipulation operations of the microprocessor.

The HLDD model from this example was built based exclusively on the description of
instruction set architecture, which is usually provided in the documentation for
microprocessor. Despite that, the model can reveal specific, non-documented,
information about functional variables, explaining how each variable will behave when
different instructions are executed. In comparison to plain instruction-based
information, the variable based information is more suitable for microprocessor test
and fault diagnosis.

Additional value of modelling using HLDDs is the possibility to derive a high-level
structure of the microprocessor from instruction set description. All HLDDs,
representing hardware modules and united in the model of the microprocessor, are
functionally interconnected by the functional variables used in the description of the
instruction set. Hence, the network of connected HLDD-modules can be regarded as a
high-level behavioural level structure of the microprocessor. Such a structure, derived
from the instructions in Table 3-1, is presented in Figure 3-2.

24

—>
IN
R <
| L
OouUT ——
—>
L
N A o

Figure 3-2 ISA-based high-level structure of the microprocessor described in Table 3-1

3.2 Instruction set as a basis for HLDD model generation

In order to demonstrate the feasibility of microprocessor modelling using HLDDs we
propose to use more complex system where not only ALU, but also a register block,
memory interface, and a control unit (program counter) are involved. For this purpose,
we have chosen the microprocessor Parwan [57]. Figure 3-4 represents a high-level
structure of chosen microprocessor, Figure 3-6 represents the HLDD model synthesized
for its instructions set listed in Table 3-2.

Parwan is an 8-bit microprocessor described in VHDL, which has an 8-bit data bus
and a 12-bit address bus for memory accesses. The instruction set of Parwan
microprocessor counts 17 instructions in total: memory access, ALU operations, and
branch instructions. It also supports direct and indirect addressing modes. Parwan
processor includes the following datapath components: arithmetic logic unit (ALU),
shifter unit (SHU), accumulator (AC), program counter (PC), status register (SR),
memory address register (MAR), instruction register (IR) along with a control unit
(CONTROL). It should be noted that the only data register, which is accessible, is the
accumulator (AC).

Table 3-2 Instruction set of PARWAN microprocessor

Group |OP | D/I P Instruction mnemonic Operation

AC=M

A 0 |0/1| Page # LDA PC=PC+2
N, Z=fn,z(AC, M)
AC=AC&M

A 1 |0/1| Page# AND PC=PC+2
N, Z=fn,z(AC, M)
AC=AC+M

A 2 | 0/1 | Page # ADD PC=PC+2
N,Z,C,V=fnzc(AC, M)
AC=AC-M

A 3 |0/1 | Page # SUB PC=PC+2
N,Z,C V=fnzcv(AC, M)

A 4 | 0/1| Page# JMP PC=A

25

M=AC
A 5 | 0/1 | Page # STA PC=PCs2
A 6 - - JSR PC=A
AC=0
C 7 0 1 CLA pC=PCi1
AC= —AC
C 7 0 2 CMA PC=PC+1
N = fu(AC)
C=—C
C 7 0 4 CMC PC=pCi]
AC=2AC
C 7 0 8 ASL PC=PC+1
N,Z,C,V=fnzc[AC)
WAC=AC/2
C 7 0 9 ASR PC=PC+1
N, Z=fn,z(AC)
B |7] 1| o BRA_N PC=(N=1)? A : PC+2
B | 7] 1 2 BRA_Z PC=(z=1)? A : PC+2
B |7] 1| 4 BRA_C PC=(C=1)? A : PC+2
B |7] 1| 8 BRA_V PC=(V=1)? A : PC+2

Details concerning the usage of different instructions are shown in Table 3-2.
Instruction set of Parwan microprocessor is divided into three groups, depicted in
Figure 3-3. Instruction word can be 1-byte (group C) or 2-byte (groups A and B) long,
and represented with format OP.I.P or OP.I.P.A respectively. Instructions from group A
are 2-byte long and support direct and indirect addressing by control field /. Field OP is
used to select the desired operation. 12-bit long address consists of memory page
number P and offset A. Group B consists of 2-byte long branch instructions, which can
address memory only within single page using offset A. Instruction fields OP, | and P are
controlling the selection of desired branch operation. Instructions of group C are not
addressing memory, thus are 1-byte long, where fields OP, | and P are playing role of
the operation code.

— 5 4 0
A OP | P
A
~ 5 4
—
B OoP | P
A
N~
— 3 4 0
C OoP | P
~—

Figure 3-3 Instruction format groups of Parwan microprocessor

Let us partition Parwan into the three parts: control part, data part and memory.
Control part consists of finite state machine (FSM) with state register and control logic

26

and register block Rcontr = {PC, MAR}, where PC is the program counter, and MAR is the
address register for addressing the data. Data part consists of register block Rpara and
ALU. The register block in the data part consists of a single general purpose data
register Rpara = {AC}. ALU is a combinational part of the microprocessor which covers all
data manipulation circuits, decoders, multiplexers, demultiplexers etc.

Behavioral level variables of MP

PC AC M(A)

Data
results

Data part

Data

_________ | Control [~ ~[~ I_ ~ " operands
signals Flags Memory

l_ _____________ ™~ =y =" ="
Instructions
RconTR FSM i

i Addresses
[

I
I
Roata ALU !
I
4

Control part

Figure 3-4 Behavioural level structure of Parwan microprocessor

For each variable of the Parwan microprocessor a mixed predicate formula can be
extracted from instruction set description, as it was described in Chapter 2.2.3. A set of
the following functions represent the functionality of Parwan microprocessor:

1) AC=fnll, S(R)) = fn(OP, I, P, S(R)) where R is AC, S(R) = {AC, M} is the set of data
arguments for the function fv;

2) PC = fec(l, S(B), PC) = fec(OP, I, P, S(B), PC) where S(B) ={N, Z, C, V}is a set of flag
variables serving as the condition for branch operations;

3) S(B)={N, Z, C, V}=fs(OP, I, P) where fz is a function on operands to determine
the flag condition.

4) M =fu(OP, P, S(M(A))) where S(M) = {AC, M}.

The functionality of microprocessor can now be represented by a set of behavioural
level variables Z = Rpata U Rcontr W M and by a set of functions F = {fn, fec, f, fu}. The
behaviour of Parwan can be modelled by the functional basis F and monitored through
the variables in Z. For modelling of F we will use the behavioural level HLDD model.

3.3 Generation of HLDDs for modules of the microprocessor

From the instruction set description, shown in Table 3-2, we can extract the following
set of functional variables: 8-bit data vector variables AC — accumulator, PC — program
counter, M — generic memory location, and 1-bit branch flag variables N, Z, C, V.
Example of HLDD generation for functional variable V, which is an overflow flag
variable, is shown on Figure 3-5.

27

oo+ | = | omin
mnemonic

2 0/1 Page# ADD V=f,(AC, M)
3 0/1 Page# suB V=f,(AC, M)
7 0 8 ASL V=f,(AC)

V= f£,(0P=2, I=0...1, P=0..15) = f,(AC,M)

V= f,(0P=3, I=0...1, P=0..15) = f,(AC,M)

V = fg(OP=7, I=0, P=8) = f,(AC)

OTHER INSTRUCTIONS

Figure 3-5 HLDD synthesis for functional variable V

First, the subset of instructions, affecting the behaviour of functional variable V (flag
overflow) is selected, and collected into a smaller table (Figure 3-5). HLDD is being
compiled by following this table row-by-row. Functional variable V becomes an output
of the graph. Then, the graph is populated with green-coloured non-terminal nodes,
representing control variables OP, | and P with corresponding values on edges.
Function, representing the behaviour, becomes the terminal node of the graph. The
expressions in the terminal nodes of HLDDs Gv for calculating the conditions of branch
variable V are not specified in this model. Since table has only three rows, representing
three instructions, the graph will be populated with three paths. One additional path is
added to represent the behaviour of functional variable V during execution of other
instructions — flag overflow holds its previous value.

3.4 Generation of HLDD model for microprocessor

For every functional variable of Parwan microprocessor, outlined in Table 3-2, HLDDs
are generated, using the control variables OP, I, and P in non-terminal nodes for
decision making. The HLDD model for Parwan microprocessor, consisting of a set of 12
HLDDs is depicted in Figure 3-6. Parwan has a 12-bit address bus, which is partitioned
into sixteen pages of 256 bytes each. The four most significant bits of the address are
for the page address and the remaining eight bits of the address are for the offset
within the page. In accordance with this memory organization, the program counter
variable PC is represented as a concatenation of two sub-variables PC = PC_P.PC_A, and
the value of the next PC is composed by concatenation of the values of PC_P and PC A,
which are calculated by respective graphs “Next memory page calculation” and “Next
PC offset calculation”.

28

Instruction addressing mechanism is described with graphs Gor.r and Ga.
Instructions of the Parwan microprocessor are encoded using up to two consecutive
8-bit long words (Figure 3-3). The first word consists of instruction fields OP, | and P,
and is obligatory for every instruction. The second consecutive word holds the address
A of specific location in memory, where data, required for this instruction is stored. This
organization is modelled with two corresponding graphs Gor..pand Ga.OP, | and P fields
will be fetched from memory at the address, stored in program counter LOC(PC_A).
Address field A will be fetched from address LOC(PC_A)+1, pointing to the second part
of current instruction.

Fields of fetched instruction are affecting the result of ALU functionality, modelled
with diagram Gac. Accumulator register AC of Parwan is hardly tightened to ALU,
keeping data for one of its input, and result of ALU operation after execution. The
second operand for ALU functions (for example addition), is loaded from memory using
address kept in A. Two modes of memory addressing are supported, selected by the
value of field /, where O corresponds to direct and 1 to indirect addressing. Field P is
used to address page in memory for functions with two operands (group A), and plays
the role of the control variable in case of operations with AC register only. OP field of
instruction word becomes root node of the Gac, becoming the main control variable for
selecting the operation of ALU. Terminal nodes of Gac represent the functions of ALU,
which behaviour is not modelled here. Functions with two input operands, like AC+M’
are referring to data in memory. M’ is used to address data in memory directly, and M”
is used for indirect addressing mode.

Parwan: HLDD Model
ALU data path

ALU Flags
AC 7=\ 0 ° 0 @ Instruction addressing
OP.I.P 0-15 0-255
@ o 0 e, T e (Y}
1 0 " A 0-15 0-255
° PC_P PC_A LOC(PC_A+1)
W Next lculatl
ext memory page calculation
2 0
O () ENQYENO)
3 0
O
AC-M Next PC offset calculation
7 ° 0 1 PC_A
> _

®

Oy

Loc(m’)
L

Output behaviour
Direct addressing M
M’ 0-15 0-255
OO

Figure 3-6 HLDD model for the microprocessor Parwan

29

I/0 behaviour is represented by graphs Gw, Gu” and Gma). Graphs Gw and Gu~ are
representing the behaviour of loading data from memory to input of ALU, or into AC
register. Direct addressing is represented with Gw, where output M’ holds the data,
fetched from an address in memory selected by variable P (representing page number),
and A (address within a page). Gm~ inherits the Gw pointing to location in memory,
where the direct address to data is stored. Diagram Gmya) represents the behaviour of
storing data in memory. The single path, controlled by OP variable in this graph is
activated, when instruction “STA” (OP=5) is executed. In this case, the value of AC is
being moved to a memory location defined by page P and offset A.

Flags, required for branch operations are modelled with graphs Gn, Gz, Gc and Gv.
The paths in these graphs are activated simultaneously, during execution of
instructions. The decision, if the flag should be raised or not is represented with
functions located in terminal nodes. Mostly, the flags depend on the data kept in AC
register or loaded from memory location. Activation of different flags depends also on
instructions, which are executed. For example, flag N = Gnv (negative number) can be
raised if the sign of binary operand loaded to AC with instruction “LDA” (OP=0, I=I, P=P)
is negative. However, during execution of the same instruction, flag V = Gv (overflow) is
not affected at all.

Last but not least, graph Gec_a for calculation of the next program counter offset is
synthesized. Program counter can keep address within frames of one page only. When
executing instructions of group C (OP=7), which are using only data in AC register, offset
is incremented by 1 byte (PC_A+1), pointing to the next instruction in memory.
Instructions of group A, using two operands, like addition (OP=2) or subtraction (OP=3),
are incrementing program counter offset by two bytes (PC_A+2), jumping over 8-bit
long instruction field A. Branch instructions (group B), depending on flags, which values
are represented with non-terminal nodes N, Z, C and V in Gpc_a increment program
counter by two, if branch is not needed. In the case when branch conditions are
satisfied, program counter value is being overwritten by address data, kept in field A of
a branch instruction (PC_A = A).

3.5 Simulation of instructions with HLDDs

It is possible to simulate instructions of the modeled microprocessor using the graph
network, built in the previous section. Instruction simulation mechanism is similar to
path activation, described in Chapter 2.2.2. Let’s consider an example of simulation of
the instruction AND = (OP=1./=0.P=0.A=8) fetched from address 0 in memory. The
following paths in Figure 3-7 have to be activated: Gor..r: L(PC_P=0, PC_A=0, 0); Ga:
L(PC_P=0, PC_A=0, 0+1); Gm: L(P=0, A=8, LOC(8)); Gac: L(I=0, P=0, OP=1, AC&M’); Gn:
L(OP=1, FN(AC,M)); Gz: L(OP=1, Fz(AC,M)); Gpc a: L(I=0, P=0, OP=1, PC_A+2) in the graphs
Gor..p, Ga, GM, Gac, Gn, and Gpc a respectively. The activated paths are emphasized by
bold edges and grey coloured nodes.

30

ALU Data Path ALU Flags Next PC offset calculation

S@—= > E@E “HO5050"

Instruction addressing
OP.I.P 0-15 0-255,
A 0-15. 0-255,

Direct addressing
M. 0-15 0-25!
OS5

Figure 3-7 AND instruction simulation in PARWAN model

Each node of HLDD model can be considered as a hypothetical structural unit of the
microprocessor exercised by a corresponding instruction. For example, the terminal
nodes of the graph can be labelled by variables or arithmetic/logic expressions. Nodes,
labelled by variables may represent registers or buses. Respectively, nodes, labelled by
arithmetic or logic expressions represent the data manipulation sub-units in ALU. The
nonterminal nodes of HLDDs are representing control-related units (OP, I, P, N, Z etc.)
implemented as decoders, multiplexers or de-multiplexers. For example, the node P in
Grc a represents a multiplexer, the nodes OP, and | in other graphs represent decoders.

The one-to-one mapping between the nodes in HLDDs and the matching high-level
functionality opens the opportunity to use the HLDD nodes as a checklist for high-level
test strategy planning and organization of test programs for microprocessors. For
formalized test program generation, however, we need a suitable high-level
(behavioural) fault model.

3.6 Summary

The key result of this chapter is the novel methodology for mapping the behavioural
level instruction set into the separate control and data parts of the full functionality of
the microprocessor, with the goal of improving the accuracy of its high-level modelling.
The chapter introduced the HLDD model and discussed its extension to the modelling of
microprocessors on the basis of the instruction set description.

First, the methodology for analysing the instruction set of a microprocessor under
test is presented, followed by the extraction of functional and control variables. Every
extracted function variable will become a graph variable, and each control variable will
become a corresponding node in a graph.

Second, the method for building graphs on the basis of data, extracted exclusively
from instruction set architecture description is proposed. Using this method, a
microprocessor can be represented by the model consisting of a set of HLDDs,
representing different functional units. Hence, the network of connected HLDD-
modules can be regarded as a high-level behavioural level structure of the

31

microprocessor. Such a model can reveal specific, non-documented information about
functional variables, explaining how each variable will behave when different
instructions are executed. An HLDD model can be simulated, which is demonstrated
using the example of the Parwan microprocessor model.

Third, the proposed modelling approach allows one-to-one mapping between the
nodes in the HLDDs and the corresponding high-level functionality. The benefit of this is
the opportunity to use the HLDD nodes as a checklist for high-level test planning and
organisation of test programs for microprocessors. However, a suitable high-level fault
model is required for this, and this will be presented in the next chapter.

Instead of the traditional microprocessor test concept, where the instructions as a
whole are regarded as test objectives, a novel and more exact HLDD-driven test
concept is introduced in this chapter, with the instructions split into more detailed
subsets of test objectives.

32

4 HIGH-LEVEL FAULT MODELING FOR MICROPROCESSORS
WITH HLDDs

In this chapter, a new model of high-level behavioural faults in microprocessors is
developed, on the basis of HLDDs, presented in the previous chapter, providing better
possibilities of formalising the test program synthesis procedure than the traditional
high-level fault models. The material, presented in this chapter is based on publications
Il [58] and 11l [59].

The contributions of this chapter are summarised as follows:

1. An overview of the fault models for microprocessors is given, where high-level
behavioural fault models are found to be more attractive than low-level fault models, in
terms of efficiency/complexity ratio.

2. Three novel classes of fault models for microprocessors, represented by HLDDs,
are proposed. These fault classes are considered compact and well-formalised super
classes which cover a larger set of more detailed fault classes used traditionally in the
testing of instructions. The new fault model is demonstrated using the HLDD model of
Parwan microprocessor.

3. It is shown that the proposed new classes of HLDD-based high-level fault models
can be mapped onto and cover the lower level fault model subclasses, particularly RTL-
level and structural gate-level fault models, in order to guarantee the high quality of
testing.

4.1 Fault modelling in digital systems

Fault modelling, being a central target, is an inseparable part of test generation and
fault simulation. Despite the similarities, these tasks differ in the complexity. The
complexity of fault simulation is linear, being insensitive to the size of fault lists to be
simulated, is satisfied with existing low-level fault models. Test generation, in its turn,
needs high-level fault modelling to cope with its high complexity.

Test generation task is always facing a trade-off between efficiency (cost of test
generation) and quality (fault coverage) of outcome. Both criteria are highly depending
on which fault models are used in test generation and in fault simulation for test quality
assessment.

The stuck-at fault (SAF) model has been for a long time the prevalent technique to
handle formally real physical defects in electronic systems. In today’s systems,
however, we have two difficulties when using this model: it is too complex for use in
test generation because of the huge number of faults to be handled in systems, and it is
inaccurate to represent real physical defects taking place in today’s nanoelectronic
circuits [27].

A conditional fault model has been proposed as an extension of the SAF model [60]
[61]. It helps to increase the model accuracy of arbitrary physical defects in the modern
complex digital systems, like microprocessors with nanometre technology. Applying of
this model positively affects the size of the fault set and decreases the complexity of
test generation. This model is also known as fault tuple model [62], pattern fault model
[63], input pattern fault model [64], or functional fault model [65].

Similar models are gate-exhaustive fault model [66], and region-exhaustive fault
model [67]. Many researchers have focused on developing new fault models for
particular types of failure mechanisms like bridges [68] [69] [70] [71], transistor

33

stuck-opens [72] [73], failures due to delays [74] etc. For resistive shorts, opens and
bridges a unified fault model as constrained multiple line SAF was proposed in [75]. All
of them are developing the idea that a single fault can affect different combinations of
fan-out branches.

To increase the speed of test generation and fault coverage evaluation, high-level
fault models have been developed. High-level approaches for fault modelling in digital
systems can be grouped into two different classes: (1) high level fault modelling for
structural RTL descriptions [76] [77] [78], which is characterized with certain
relationship between language constructs and the network structure; (2) behavioural
level fault modelling [79] [80] [81] [82], which is oriented to analysis of only algorithmic
descriptions. We consider as behavioural approaches also the high-level fault modelling
of microprocessors which use only the information about instruction set architecture
(the lists of instructions). Therefore, our solution to fault modelling, relying on
information derived from instruction set description, does belong to the group of
behavioural approaches.

High-level fault models for microprocessors have been usually derived from the high-
level behavioural descriptions of instruction sets. State-of-the-art behavioural
approaches such as [83] [77] [80] [81], distinguish following fault models Fn.

For faulty multiplexers, for a given source address any of the following fault models
can be applicable:

F1: source is not selected;

F2: selected source is wrong;

F3: more than one source is selected and the multiplexer output is either a wired-
AND or a wired-OR function of the sources, depending on the technology.

For faulty demultiplexers, for a given destination address any of the following fault
models can be applicable:

F4: destination is not selected;
F5: instead of, or in addition to the selected correct destination, one or more
other destinations are selected.

An instruction | of a microprocessor can be regarded as a sequence of
microinstructions, where each microinstruction consists of a set of microorders which
are executed in parallel. Microorders represent the elementary data-transfer and data
manipulation operations. Addressing faults affecting the execution of an instruction
may cause one or more of the following fault effects:

F6: one or more microorders not activated by the microinstructions of /;

F7: microorders are erroneously activated by the microinstructions of /;

F8: a different set of microinstructions is activated instead of, or in addition to, the
microinstructions of /.

The data storage facility is usually implemented as a memory. Under a fault any of
the following may happen to the memory cell array:

F9: one or more cells are stuck at 0 or 1;

F10:one or more cells fail to make a 0—1 or 1—0 transitions;

F11:two or more pairs of cells are coupled; this means, a transition from x to y in
one cell of the pair, say cell i, changes the state of the other cell, say j, from x
to y or from y to x, where x {0,1}, and y = —x

34

F12:The data-transfer function implements all the data transfers along the buses
between the registers and functional units of a microprocessor.

For buses under a fault:

F13:one or more lines can be stuck at 0 or 1;

F14:one or more lines may form a wired-OR or wired-AND function due to shorts
or spurious coupling.

F15:data processing functional fault model; in the case of data processing
functional units, no specific model has been proposed for microprocessors;
it is assumed that a complete test set can be derived for the functional units of
data processing by some other techniques.

The main disadvantage of the described classification approach concerns the
formalism. All fault models presented above need dedicated specialized test generation
procedures. Thus, automatization of test program generation, based on this high-level
fault model, is a difficult task.

An ideal case would be to create a small and well-defined fault class with only a few
high-level fault models and to build around it a well-standardized and uniform test
algorithms. In this thesis, we have chosen high-level decision diagrams for modelling,
since their high-level fault model is well suitable to support the development of a
uniform and straightforward high-level test generation and fault simulation algorithm.

4.2 HLDD-based Functional Fault Models

Summarizing the presented overview of different approaches to high-level fault
modelling in digital systems, let us map now the considered fault types and models into
the following generalized HLDD-based fault model, using Definition 2-1 for HLDDs from
Chapter 2.2.1.

Definition 4-1. Consider a digital system represented by an HLDD G" = (M, I,X), where
the set of nodes M = MN U M7 is partitioned into the subsets of non-terminal nodes MV
and terminal nodes M, and the set of variables X = CUD is partitioned into the subsets
of control variables C (e.g. instruction variables) and data variables D (operands).

Denote by T the test for the digital system represented as a set of test patterns
T = {X'}, where t is the number of a pattern, and each test pattern X' € T can be
represented as a concatenation X' = C'.D! of the control pattern C* (instruction) and data
pattern D! (operand or group of operands).

Let us classify the HLDD-based faults into two general classes: control faults, which
are related to the non-terminal nodes M", and data faults, which are related to the
terminal nodes M'".m

Definition 4-2. Introduce the term of control functional fault model (CFFM) of a node
m in HLDD G' = (M,I,X), meM, as a set of faults R(m) partitioned into subsets
R(m,v) c R(m) of fault models where v € V(x(m).

A subset of faults R(m,v) < R(m) is called activated by a test pattern X' if X activates
a path /(mo, m™") from the root node mo € M" to a terminal node m™'e M’, so that x(m)
=v, and m € I(mo, m™). The expected response to the test pattern Xt is Y = flm™). If
Y = flm™), there is a functional fault re R(m,v) present.

The control functional fault model for the HLDD GV, is defined as a set R = {R(m) |
meMy} of all FFM of the nodes in G".m

35

Since activation of a path /(mo, m™*) means launching a working mode Y = flm™") of
the system, then testing a functional fault re R(m,v) of a nonterminal node m € M",
means testing if the control signal x(m) = v will not fail at launching this working mode.
On the other hand, since this test is executed via data path of the system, then testing
the functional fault re R(m,v) means testing simultaneously also the terminal node
m™ e M’, if the data path at this working mode Y = flm™"), and at the given data
specified by X, is working correctly.

The functional faults represented by models R(m), and R(m,v) c R(m), are called
control faults. They are not specified here as lists of particular faults, rather we
interpret them as some groups of faults. All manipulations with these faults are
directed simultaneously to groups of faults, which as the result, reduces the complexity
of solving test problems for complex systems, both test generation and fault
simulation.

To activate the high-level faults R(m), and R(m,v) means activation of some subsets
of low-level faults in particular locations (subcircuits) in the system. For mapping the
high-level fault model R(m) to lower-level structural faults in the fault activated
locations, with the goal to assess the quality of tests, we will introduce later another
functional fault class — constrained functional fault model.

Definition 4-3. Introduce the term of data functional fault model (DFFM) of the HLDD
G is a union of all functional fault models for the HLDD terminal nodes.

Ro = Umemr R(M)

The fault models R(m) < Rp for terminal nodes m eM" can be represented in two
possible ways:

(1) as exhaustive (or pseudoexhaustive) fault model R(m) = V(x(m)) of the
operational block, represented by the node expression f(m), which leads to the
exhaustive test of f(m) (as a general case), or to pseudo-exhaustive test;

(2) as partial model R(m) < V(x(m)) (a special case); in this case, the problem of high-
level fault modelling will be solved by an hierarchical multi-level approach, e.g. using
any fault mapping method between levels.m

Each path of the HLDD designates the behaviour of the system in a specific working
mode. The faults having effect on this behaviour are associated in some way with
nodes along the path. From that, we can conclude that a control fault will always cause
a corruption of the path, which can be modelled as incorrect leaving the path activated
by the test. The data faults will corrupt the functions related to terminal nodes.

From above, the following corollaries about the sizes of the functional fault models
defined for the HLDDs by Definitions 5-5 and 5-6 follow:

Corollary 4-1. The size S(R;) of the control functional fault model for the
nonterminal part of the HLDD under test, covering the set of control faults, can be
calculated as

S(R¢) = Xmemn|V (x(m))] (4-1)

where MV is the subset of nonterminal nodes in the HLDD.

Corollary 4-2. The higher bound of the size S,,,(Rp) of the data functional fault
model for the terminal (data operation) part of the HLDD under test, covering the set of
data faults, can be calculated as

36

Smax (RD) = ZmEMTlv(x(m))I (4-2)

where M" is the subset of terminal nodes in the HLDD. The higher bound is reached
only when the exhaustive test will be applied for the functions in terminal nodes. The
real size of the functional test can be dramatically reduced when using hierarchical
approach to involve also low-level fault modelling of the functional blocks which
correspond to terminal nodes.

To make mapping of the high-level control functional fault model R(m,v) to lower
structural levels easier, we will introduce in the following subclasses of R(m,v), which
are more directly related to the structural aspects of systems under test. Here we will
use also previous knowledge about high-level fault modelling in digital systems,
discussed in Chapter 4.1.

Definition 4-4. A control fault r(m, v) € R(m,v) of the non-terminal node m € M" may
belong to the following three fault classes, r(m, v) € CL-1 U CL-2 U CL-3.

(1) CL-1: Missing edge: r(m, v —) —the output edge of the node m for x(m) = v,
v € V(x(m)), is broken, which means no change in the state Y of the system at
the working mode Y = f(m"") under test (it is similar to the logic level SAF x/0
for the line x);

(2) CL-2: Stuck edge: r(m, x(m) = v) — the output edge of the node m for x(m) =v, v
€ V(x(m)), is always activated (it is similar to the logic level stuck-at fault (SAF)
x/1 for the line x);

(3) CL-3: Wrong activation of the edge: r(m, v — V*) where V* < V(x(m) — the
fault causes wrong simultaneous activation of a subset of edges. m

Note the fault class CL-2 is a subclass of CL-3. We introduced it here for optimization
of test generation and fault diagnosis purposes.

Table 4-1 Comparison of HLDD-based faults with high-level faults proposed in [83]

Microprocessor faults (Chapter 4.1, [83]) HLDD faults
F1: No source is selected
F4: No destinations selected ClL-1

F6: one or more micro-orders not activated;
F2, F3, F5, F7, F8: Additional source is selected, stuck-at L2
fault Non-terminal
F2: A wrong source is selected nodes

F3: More than one source is selected
F5, F7, F8: Instead of, or in addition to the selected | CL-3
destination, one or more other destinations are
selected; micro-orders are erroneously activated

F9-F14: Data storage, communication or manipulation
faults

Terminal nodes

The functional fault model defined above for HLDDs is related directly to the nodes
of the HLDD and is an abstract one. It will have a semantic meaning only when the node
has a particular physical interpretation. As an example, in Table 4-1, the mapping of
different microprocessor fault classes, the 14 types of faults proposed in [83] and
discussed in Chapter 4.1, is shown.

37

The fault classes CL-1, CL-2 and CL-3 (general for all non-terminal HLDD nodes) differ
in the need of using different data constraints for propagating the fault effects to the
observation points.

4.3 Interpretation of HLDD Based Fault Models for microprocessors

Fault classes, defined in previous chapters (Chapter 4.1 and 4.2) considered being used
for microprocessors. In order to demonstrate this, we need to return to the model of
PARWAN microprocessor, generated in Chapter 3.4. Its partial model is shown in Figure
4-1.

Instruction:

AND A

OP=1, I=0, P=0, A
AC=AC& M(A)

Figure 4-1 Demonstration of different faults in HLDD model of PARWAN

Two graphs Gac and Gwm, representing the behaviour of accumulator and direct
addressing, are derived from the model of PARWAN microprocessor (Chapter 3.4).
Variable AC represents an accumulator register, M denotes the input bus, OP, | and P
serve as instruction variables, and variable A represents the address in memory. The
variables OP, I, P and A are labelling the internal decision nodes of the HLDDs with their
values shown at edges. The terminal nodes are labelled by the variables AC and M
representing the expressions related to particular data manipulation operations of the
microprocessor.

Assume, the instruction AND (OP=1, I=0, P=0, A) is executed (high lightened on Figure
4-1) with expected result ACAC&M. Table 4-2 illustrates how different high-level faults,
defined in Chapter 4.1 and interpreted as HLDD faults, defined in Chapter 4.2.

38

Table 4-2 Interpretation of microprocessor faults in HLDD

Fault type Fault . .
Chs.5 | HLDD description Interpretation of the fault in HLDD
No source | The output edge 1 of node OP is broken. The
F1,F6 | CL-1 .
selected value of AC remains unchanged
Instead of the edge 1 of node OP another edge
CL2 Wrong 2 is selected, and the variable AC will have the
F2, F7 ! source wrong value AC=AC+M instead of AC=AC&M.
CL-3
selected Value was read from wrong source address
due to fault of output edge of node A.
Instead of the edge 1 of node OP other edges 2
CL2 More than | and 3 are selected, and the variable AC will
F3, F8 CL—3I one source | have the wrong value AC=(AC+M) v (AC-M)
selected instead of expected AC=AC&M (the wrong
value will be technology dependent)

The addressing fault of the node A in the graph Gwm causes activation of the wrong
edge instead of the planned edge. As the result, data from the wrong location in
memory LOC(A) is addressed for using it in the operation of the terminal node AC&M of
the graph Gac. The operation code fault of the node OP in the ALU graph Gac causes
activation of the wrong edge 2 instead of the planned edge 1. As the result, wrong
operation OP = AC+M is addressed instead of AC&M in the related terminal node of
the graph Gac. The next variation of operation code fault is causing to select two edges
of node OP instead of one. The result of such failure will depend on the technology.
Finally, the addressing fault of the node OP of graph Gac, which leads to broken edge 1,
will leave the value of AC unchanged.

Additionally to classes presented above, we present a novel hard-to-test fault class
called “unintended actions”. This fault model is presented in Figure 4-2 on example of
abstract module of the processor with four instructions lo - /3. The n-bit gate-level
implementation of the related hardware consists of four n-bit registers - A, B, C and D,
ALU, decoder and two multiplexers. Its ALU block can execute two operations - AND
and OR. Figure 4-2 depicts also model of this microprocessor using two HLDDs G and
GP, for representing the input logic of the registers C and D.

Instruction set: 1, C=AB
11 C=—(AB)
l, D=AvB
I3 D=—(AvB)

C

jﬁl ==

— Ligds @
N2

i b e

—

[=1[>]
>]

Figure 4-2 lllustration of the behaviour of a hard-to-test fault

39

Assume, there is a gate level OR-type short between the outputs 1 and 2 of the
decoder, i.e. the instruction /1 implies additional unintended action, related to the
instruction /2, which as the result changes also the content of the register D. According
to the traditional approach, when testing the instruction /1, we would read out and
check only the content of register C, but we will not check the content of register D,
because it is not involved in the execution of /1, according to the manual of the
microprocessor. In this way, the fault “wrong change of D” would escape. Such a fault
can be considered as an “unintended action” added to /1. It would be difficult to catch
all similar erroneous “supplements” when testing only the intended, described in
manuals, functionality of instructions, because the number of such cases may grow
exponentially.

For this type of high-level faults, we can adopt a common term of “hard to test
faults” from the field of gate-level testing, referring to the faults which can be detected
by very rare patterns.

4.4 Mapping low-level control faults into HLDD-based functional fault
model

In the following, we will analyze the capability of the high-level fault models to cover
lower level logic faults in order to demonstrate the usefulness of HLDD modelling.
Under logic faults, we imply the following classes of faults: stuck-at faults (SAF),
conditional SAF (CSAF), and bridging faults. Let us call this joint fault class as SCB class
(SAF, CSAF, bridging).

Consider the block level functional circuit Y = F(X), representing portion of data path
and control part of abstract microprocessor, which is also common for most
microprocessors. It is illustrated in Figure 4-3 together with its HLDD. The control word
C (decoder output vector) is a 3-bit Boolean vector variable C = (c2,c1,c0) with decimal
values in v € V(C) = {0,1,...,7}, which activate the respective working modes Y = f, =
flm™). Denote the k-th bit of f, as fuk, k = {0,1,...,7}. The data part of the unit consists of
8 sub-circuits for calculating f» which will be selected by the multiplexer sub-circuit. The
latter consists of 8 ANDy blocks which are controlled by the output signals C = (c2, c1, co,)
of the control block. Denote the control inputs of each ANDy block as vector variable
Cv = (cv2, €u1, cwo). Note, each ANDy block consists of 8 ANDw gates for each data bit of
the function f,x and appropriate amount of inverter gates.

40

€20
Cll) f
,C&ANDUU -0
foo
if ; Co7 fo
i fo : i
Control Local i : ?7 o =
Global part control i 07 o
control faults 2 for
C 4
faults R I N b]
4= -
i fo
fo 11 fanp
D ’, — v
—= ALU |. / : or K
: _‘, — e
f; NEHEE WYY e
COI:IEI\:0| signals
Data part g

Figure 4-3 Digital system with its HLDD model

Table 4-3 shows the mapping of low-level single structural faults from the class SCB
in the circuit of Figure 4-3 into the high-level functional control faults r(m,v), ve V(C) =
{0,1,...,7}, of HLDD in Figure 4-3. Let us call the faults on the output lines of the control
unit as global faults (GF), and the faults on the fan-out branches of the control lines
connected with the inputs of the AND gates as local faults (LF). In case of GF, the same
fault has impact as a multiple fault on all AND blocks and all AND gates, whereas in case
of LF, the fault may have impact either on a single AND block, but propagating to all 8
gates of this block, or only on the inputs of a single AND-gate only. In this example, we
will consider LF only at the inputs of 8-bit AND-blocks, as it is shown in Figure 4-3.

Table 4-3 Mapping low level structural faults into high-level functional faults

Ifaulf Covered structural faults
activation

Control Global | Global OR AND
fi word Local SAF SAF1 SAFO | bridge | bridge
fo 000 (0,1),(0,2),(0,4) | 1,2,4 %) (%) %)
fi 001 (1,0),(1,3),(1,5) 3,5 0 3,5 0
f2 010 (2,0),(2,3),(2,6) 3,6 0 3,6 0
f3 011 (3,1),(3,2),(3,7) 7 1,2 7 1,2
fa 100 (4,0),(4,5),(4,6) 5,6 0 5,6 0
fs 101 (5,1),(5,4),(5,7) 7 1,4 7 1,4
fe 110 (6,2),(6,4),(6,7) 7 2,4 7 2,4
f7 111 (7,3),(7,5),(7,6) %) 3,5,6 %) %)

The rows of Table 4-3 correspond to the values v of the activated control faults
r(m,v) and to the expression f, = fm™) of the related terminal node. The columns of
the sub-table for “covered structural faults” correspond to the faults of SCB partitioned
into 5 groups: local SAF, global SAF1, global SAFO, OR type of bridge, AND type of
bridge. The entries of Table 4-3 show which high-level functional faults will be evoked

41

by the low-level structural faults for each activated working mode Y= f, = f{m"") of the
sub-system. For example, to activate the high-level functional fault r(m,0), the control
pattern 000 (cz, c1, co) should be applied. By applying correct test data for this control
pattern, all the low level structural faults depicted in the row fo will be covered by the
high-level functional fault r(m,0).

To explain the entries in Table 4-3 in more detail, consider the example of applying a
control vector Cs = (c2, c1, €o,) = 011 as a test for activating the working mode f3. The
respective row in Table 4-3 is high-lighted in yellow. In column Local SAF we consider
only these SAF which coincide with the needed bit values for activating fz i.e. c2= 0,
c1= 1, and co = 1. The entry (3,1) means that in case of the local SAF ci1 = 1, the
activation of f3 by v = 011 will evoke the erroneous execution fi as well (this is the fault
type of several activated edges), which causes erroneous output value Y = f3 v fi,
instead of the expected correct value Y = fs. For the local SAF faults c2o= 0 and cn2= 1,
we get the erroneous behaviour Y = fs v f5, noted as (3,2), and Y = fz v f7, noted as (3,7),
respectively.

The global SAF/1, c22= 1, will cause execution of f7, instead of f3. Similarly, for the
case of global SAF/0, of the lines c1 or co, either fior f, respectively, will be erroneously
executed, instead of expected fs.

The global bridging faults will cause the following errors in executing of f3: in case of
OR bridge, fr will be executed, and in case of AND bridges, either fi or f, will be
executed. The symbol & in Table 4-3 has the meaning that at these low-level faults no
operation is executed. Since the control word is exercised exhaustively, all of the
conditional SAF will be detected as well, which corresponds to the cell-aware testing
concept [84].

Let us compare the reduction in the fault model size for the low and high-level cases.
The total number of 790 low-level faults consists of:

- (6 * 8+ 24) * 8 = 576 local SAF (8 AND blocks, each has 3 AND inputs
(2 possible SAF each), and 12 inverters (2 possible SAF each), all multiplied by 8
because of the 8-bit data word;

- 3 *2=06global SAF (three outputs of the control circuit, 2 possible SAF each) ;

- (9 * 2) * 8 =144 bridging faults (9 bridge faults of each type, multiplied by 8
bits of data word);

- 8 * 8 = 64 CSAF (because of exhaustive testing of each of the gates, all high-
level functional faults cover all CSAF as well).

The number of all high-level functional faults can be calculated using the formula:
S(R(MY) = Zmemt [(i + D] = S(R(M))
Since in this example |M"| = 1, we will have
Ny, +1)=8*(8+1)=72.

Hence, for this example, the compression of the number of faults when mapping
them from low-level to high-level is 790 / 72 = 11 times.

Note, that the number of bit-level functional faults cannot be compared with the
number of low-level structural faults in logic circuits, because in the latter case all faults
must be processed separately, whereas in the high-level simulation the faults related to
bits can be processed in parallel at the word level.

42

The idea of the presented mapping scheme is based on a hypothetical
straightforward implementation where no optimization has been applied.
For each behavioural level operation, a dedicated operational block is related, and for
controlling the operations, a general multiplexer is introduced. For this hypothetical
implementation, we have shown the exact one-to-one mapping between the high-level
control faults and the related low-level faults.

Since the HLDD based high-level fault model is inducing the exhaustive exercising of
the full behaviour (the set of all instructions), then for any optimization action
regarding the implementation, the fault will become to some extent redundant, which
will lead also to respective redundancy of the test. Hence, the low-level fault coverage
cannot be hurt.

On the other hand, any available information about the real low-level
implementation, i.e. about the implemented optimization steps, will give the
opportunity to update also the high-level fault model, which will lead in its turn to
optimization of the final test program.

4.5 Summary

In this chapter, it was shown that the HLDDs provide better possibilities of formalising
the modelling of high-level behavioural faults in microprocessors compared to the state-
of-the-art approaches.

Three novel high-level fault classes for microprocessors were proposed, which can be
considered superclasses over the existing RTL-level fault models for microprocessors.
On the other hand, the proposed transition in modelling to HLDD-based higher levels of
abstraction reduces the size of the fault model by orders of magnitude, compared to
the low-level abstractions.

The proposed high-level fault model separately considers control faults and data
manipulation faults, which are related to internal and terminal nodes of HLDDs,
respectively. The control faults are handled exclusively at the high-level, whereas the
faults in data paths are processed hierarchically.

The proposed fault model guarantees a high accuracy of testing, which is
demonstrated by mapping the new fault classes to lower level faults, and showing that
the HLDD-based high-level fault classes fully cover the structural gate-level fault
models.

In the first instance, a novel formalised fault class called ‘unintended operational
action’ was introduced as a special case of developed fault classes. Using this fault class
allows direct targeting of the so-called ‘hard-to-detect faults’, where traditional
methods are not typically focused.

43

5 SOFTWARE-BASED SELF-TEST GENERATION FOR
MICROPROCESSORS

In this chapter, a formalised method of SBST program synthesis for microprocessors is
proposed, on the basis of HLDDs and the high-level behavioural fault models developed
in the previous chapters. This chapter is based on publications | [56] and Il [58].

The contributions of this chapter are summarised as follows:

First, two formal concepts for SBST generation are proposed: conformity test for the
control part, and scanning test for the data path of the processor.

Second, a general SBST program generation concept is described and its compaction
capabilities investigated. The advantages of the proposed HLDD-based test generation
methods over traditional approaches are established by experimental research.

Experimental results are provided, representing proof of concept. Fault coverage and
test overhead properties of a manually synthesized SBST program for the Parwan
microprocessor are discussed.

5.1 Principles of software-based self-test generation with HLDD model

The test program synthesis using the HLDD model will cover two levels of the
microprocessor: system level, and module level. Each HLDD describes the behaviour of
a module, whereas the network of HLDDs represents the behaviour of the whole
system. At the module level, the targets of test generation are the nodes of HLDDs,
whereas at the system level the targets are the HLDDs themselves. At the system level,
the locally generated HLDD (module) tests T(m) will be embedded into the system level
test program templates. In other words, the test stimuli for modules will be made
controllable and the results of tests will be made observable at the system level.

The test programs are divided into two types: conformity test programs and
scanning test programs.

Definition 5-1. Conformity test is a test for a non-terminal node of the HLDD, which
has the goal to test the control part of the microprocessor. The conformity test will be
generated according to the constraints set up for testing non-terminal nodes (Chapter
5.2).

Definition 5-2. Scanning test is a test for a terminal node of the HLDD, which has the
goal to test the data path of the microprocessor. The scanning test will be generated
according to the constraints set up for testing terminal nodes (Chapter 5.3).

5.2 Generation of Conformity Test for Control Part of Microprocessor

Consider an HLDD GY = (M, I, X) with Y = F(X), as a functional model of the instruction
set of a given microprocessor, defined formally in Definition 2-1. Here Y = F(X), where
X = C U D, represents instruction format of the microprocessor, where Y denotes
destination, C denotes op-code which may be partitioned into sub-fields Cx € C of the
instruction format, and D denotes source which may as well be partitioned several
sources Dk € D. The source and destination data variables may refer directly to the
registers or may refer to the addressable memory locations. Some examples of
mapping between the instruction formats and the HLDD functional variables are
depicted in Figure 5-1.

44

Op-code Source Destination
Cc D Y
Op-code Sources Destination
C D, D, Y
Op-code Sources Destination
G G D, D, Y

Figure 5-1 Mapping between the instruction formats and the vector functions Y=F(X)

The dependence relationships between variables are described by the network of
HLDDs. Examples of HLDDs for different instruction formats are depicted in Figure 3-1
for a single op-code variable, and in Figure 3-6 where the instruction format includes
two sources, and the opcode is split into two fields. Figure 3-6 demonstrates how the
network of HLDDs reveals the dependence of functional variables for the
microprocessor Parwan [57].

According to the concept of HLDD-based testing, the targets of the control tests are
not the instructions as a whole, presented by the instruction format, which involves
both control and data functions, but the parts of the instruction format. This means
that if the opcode C is split into subfields Ck € C, then the control tests will target all
subfields Ck one by one. In relation to the hardware of the microprocessor, testing of Ck
means to check if the control subfunctions decoded by Ck are correctly selected. In the
HLDD to subfield Ck of the instruction format, a nonterminal node meM" c M labelled
by the variable x(m) = Ck, corresponds. Hence, to test if all control subfunctions related
to Ci, are correctly selected, the node m in the HLDD for all values x(m) €V(x(m)) has to
be tested. According to Definition 4-2, this corresponds to testing the constrained
control functional faults of R(m,v) < R(m), which leads to the following two-step test
generation procedure:

Procedure 5-1. Generating a test instruction for testing a fault r € R(m,v)

1) Finding a test pattern X! which activates a path /(mo, m™") from the root node
mo € M" to a terminal node m™’e M’, so that x(m) = v, and m e /(mo, m™"); the
pattern X' corresponds to a full opcode C of instruction, which includes the
needed value of Cx;

2) Completing the pattern X' by generating the test data D, so that the
constraints of Theorem 5-1 were satisfied.

Theorem 5-1. Any erroneous behavior in terms of the fault classes CL-1, CL-2 and
CL-3 (see Chapter 4.3) of the nonterminal node m in HLDD Gy = (M, I, X), me M c M,
and the functional fault model {R(m) | m € M"}, will be detected by the test T = {Xt},
which activates all functional faults r(m,v) € R(m), v € V(x(m)) for all nonterminal nodes
m e M" to the respective terminal nodes m™ € M(m) = M’, under the following bit-
wise constraints:

vm'e M(m): 3 Xt — Vk [film") = Q)], (5-1)
vm",m™ eM’(m): 3 X' — Vk [fllm™) < film™)] (5-2)

45

where {Q = ZERO}, or {Q = ONE} as the dual case, depending on the implementation
technology and k denotes the number of data word bit. In case of i = j, the value of
filmj) in (5-2) refers to the previous state of the variable Y. The proof is given in [27]
and also [59].

Since for satisfying the constraints of Theorem 5-1 more than one data may be
needed, the result of Procedure 5-1 for testing the fault model R(m,v) < R(m), in
general case, will consist of a control pattern (instruction) C(m,v), and a set of data
patterns D(m,v) = {D(m,v,r)}. This means that in the final test, the instruction C(m,v) will
be repeated in the loop r times for all data patterns {D(m,v,r)}. Denote such an
elementary test as a concatenation of the control vector and data vector as T(m,v,r) =
C(m,v).D(m,v,r) which has the meaning of fully specified instruction from the instruction
set of the given microprocessor. Hence, the test which has the goal of testing the
constrained control functional fault R(m,v) can be presented as

T(m,v) ={T(m,v,r)} = {C(m,v),{D(m,v,r)}}

The procedure 5-1 has to be repeated in the loop for all values ve V(x(m)). As the
result a test

T(m) = {T(m,v) | ve V(x(m)}

is constructed, which consists of repeating in the loop v sub tests T(m,v).

If the HLDD model contains a single non-terminal node m, then the test T(m) is the
complete conformity test for the given microprocessor. This is the special case of the
conformity test, where the op-code as a whole is the objective under test. Let us call
this type of test as full conformity test (FCT).

If the HLDD model consists of more than one non-terminal nodes [M"| > 1, then one
higher level loop has to be created to generate the tests for all non-terminal nodes. Let
us call this type of test as partitioned conformity test (PCT):

T(M") ={T(m) | meM"}.

The full and partitioned conformity tests will differ in the test length and in the test
quality. FCT can be interpreted as exhaustive test, whereas PCT can be interpreted as
pseudo-exhaustive test.

The complexity of generating exhaustive FCT will grow exponentially regarding the
number of bits in the full opcode. Let u is the number of nodes in the HLDD, and each
node variable has the same number ¢ of values. Assume that the constraints of
Theorem 5-1 can be satisfied by data for a single instruction. Then the length of FCT will
be (u-p)?, whereas the length of PCT will be u-@?, where u-@? << (u-)>.

The whole test with embedded loops, in general case, can be represented as the
following conformity test Algorithm 5-1.

Algorithm 5-1: Conformity test for testing all non-terminal nodes m € M~ of HLDD

1 forall m € M" do /% test T(MY) for the fault model R */

2 forall v € V(z(m)) do /* test T(m) for the fault model R(m) C R */

3 forall r do /* test T(m,v) for the fault model R(m,v)C R(m) */

4 execute C'(m,v).D(m,v,r); /* test instruction T'(m,v,r) for the fault
r € R(m,v) */

5 end

i end

7 end

46

For implementing the test instructions as a sequence of a self-test program, proper
templates should be created in assembly language of the given microprocessor.
Therefore, two requirements should be followed — first, prior to each particular
execution of the test instruction T(m,v,r) = C(m,v).D(m,v,r) the data operands D(m,v,r)
have to be loaded into pre-specified registers. Secondly, the response of the test - the
value of the graph functional variable ¥, must be stored for further analysis.

In Figure 5-2, the instruction set of Parwan microprocessor and behavioural HLDD
model of its ALU are depicted. Test for ALU module T(M") can be generated using
Algorithm 5-1, and represented with Parwan assembly language.

I,: LDA loc A<)° (M 0 (v)

I,: AND loc @

I,: ADD loc) .

I,: SUB loc o
I;: JMP adr
Is: STA loc 2 LN pyww

I,: JSR tos
I;: BRA_V adr s o
I,: BRA_C adr o
I,,: BRA_Z adr AC-M”

I,,: BRA_N adr 7 0) L

I,,: NOP O , ©
I,;: CLA —AC
I,: CMA CIN
I,.: CMC o

I,.: ASL
I,,: ASR >()

Figure 5-2 Instruction set of Parwan microprocessor and HLDD model of its ALU

An example of test template for testing control nodes of HLDD Gac is presented in
Figure 5-3. The template is used here to execute test T(m) for the non-terminal control
nodes OP, | and P, representing a subset of Parwan ISA. The test template is a simplified
representation of loop, for all instructions Iz, I2, ..., l17 (line 1). Before executing test
instruction I, v € {1, ..., 12}, internal accumulator register is initialized with data vector
D1 from memory (line 2). Additional data vector D2 is fetched from source memory
location if it’s required by instruction (l2, I3, 14) (line 3). Data vectors D1 and D2 are
generated in a way to satisfy the constraints of Theorem 6-1. The result of instruction is
stored to accumulator register and then to destination location in memory loc(Mp)
(line 4).

a7

Conformity test algorithm: OO

O

for all me MNdo)
for all ve V(x(m)) do [acaw]
for all rdo
[pcw]

execute C(m,v).D(m,v,r)

Conformity test program template for Parwan: ENG
1 for v =1,..,17

2 I,: LDA D1 // load data to AC
3 Execute I, (D2)

4 TI.: STA loc(Mp) // store result
5 end for

Response compaction

Figure 5-3 Test template for testing non-terminal nodes in the HLDD Gac

5.3 Generation of Scanning Test for Data Part of Microprocessor

For testing data path of the microprocessor, represented as an HLDD model which
consists of a network of HLDDs, we have to generate a test for all terminal nodes
m” € M" < M in each HLDD G" = {G}, Y € U, where the number of graphs is equal to |U|
(refer to Definition 2-1).

In Definition 4-3 we introduced for HLDDs G" = {G} the data functional fault model as
a union Ro = Uyt R(m) of all functional fault models R(m") of terminal nodes
m’ € M" = M, which represent the working modes of the microprocessor Y = f{m’).
Each functional fault r € R(m’), similarly to the conditional SAF model developed for
gate-level testing [61], has a meaning of a constraint (condition) for testing the function
Y=f(m").

Hence, to test the faults r € R(m") we have to execute in a microprocessor a set of
instructions

T(m') = {C(m").D(m", r)},

where the value of C(m") (instruction code) remains constant, but the data D(m’, r) will
change and have the values from the set of constraints R(m"), i.e each constraint
D(mT, r) € R(m") is interpreted as a data functional fault r € R(m").

According to Definition 4-3, and discussion in Chapter 4.3, test generation for data
functional faults of r € R(m") leads to the following two-step procedure:

Procedure 7-2. Generating a test instruction for testing a fault r € R(m’)

1) Finding a test pattern Xt which activates a path /(mo, m”) from the root node
mo € M" to the related terminal node m’e M’; the pattern X! corresponds to a
full opcode C of the instruction;

2) Completing the pattern X! by generating a set of test data R(m’), according to
Definition 4-3, either using a hierarchical two-level test pattern generation
method to take into account the implementation details of the structure
realizing the function Y = flm’), or using an implementation free exhaustive or
pseudo-exhaustive approach to exercise the function Y = f(m’).

We call testing of data manipulation functions related to the terminal nodes of
HLDDs, as scanning test, because the idea of the test is to repeat the same instruction
with data retrieved by scanning a given data array.

48

The full scanning test for the HLDD G with a set of terminal nodes M" — M, can be
presented as

T(M") ={T(m") | m"e M}

The whole test with two embedded loops, in general case, can be represented as the
following scanning test Algorithm 5-2.

Algorithm 5-2: Scanning test for testing all terminal nodes m € M7 of HLDD

1 forall m € M7 do /* test T(MT) for the fault model RT =/

2 forall r do /* test T(mT) for the fault model R(m) C RT */

3 execute C(mT).D(nT x); /* test instruction T'(m.r) for the fault
re R(mT) =/

4 end

5 end

Since, before each particular execution of the test instruction T(m,r) = C(m").D(m’,r)
the data operands D(m",r) € R(m’) need to be loaded into pre-specified registers and
the response of the test, the value of the graph functional variable Y must be stored for
further analysis, then for implementing the test instructions as a sequence of a self-test
program, proper templates should be created in assembly language of the given
microprocessor.

An example of a test template for testing terminal node f=AC+M’ of HLDD Gac is
presented in Figure 5-4. The template is used here to execute the test T(m") for the
node labelled by the addition operation (AC + M’) for a given set of operands
(AC = D1(j) and M’ = D2(j)). The test template is used in a loop for all test data. Before
executing the test instruction /3: ADD D2(j) = AC + D2 (line 3), the microprocessor state
(the contents of register AC) is initialized by loading the data vectors D1(j) from
memory (line 2).

.) AC oF 0, o 1)
Scanning test algorithm:
for all me M"do . R S,
for all r do —QO
T T -AC&M"
execute C(mT).D(m7,r) 250 o
Scanning test program template for
Parwan: (D) S(acm
1 for j=1,2,..,n
2[I,: LDA D1(j) // load data to AC 00O
3| I,: ADD D2(j) // AC = AC + D2 PN e
4 TI.: STA loc(My) // store result .
5 end for u 24
:
D1() | D2G) | | Signature | o)

Response compaction

S@>@
Test data

Figure 5-4 Test template for testing in the HLDD Gac the node labelled by working mode
(operation) AC+ M

Note, because of the well-defined structure of HLDDs where all instruction level
activities of the microprocessor are well represented, the templates for test program

49

compilation can be synthesized straightforwardly. The information about which
instruction is to be used for loading data into register AC can be found in the same
HLDD Gac (instruction /1: AC = M’), where M’ is source location in memory. In order to
store the response to the test from register AC, we find the proper instruction in the
graph Gwma) (instruction ls: M’(A) = AC, line 4).

5.4 Test program generation example

Consider again the example of Parwan microprocessor discussed in Chapter 3.4, where
its instruction set (Table 3-2) and HLDD model (Figure 3-6) were introduced. Figure 5-5
demonstrates both conformity and scanning test generation for Parwan
microprocessor.

In this example, ALU module of Parwan microprocessors is considered as unit under
test. Its HLDD model Gac is represented partially in Figure 5-5a,c. Additional graphs Gn,
Gz, Gv which are indirectly activated during test generation are shown in Figure 5-5b.

- e e e e m e e e gE R R e, R SR Ry e e e e e e mm e

-

y INITIALIZATION

| LDA A; ;
AC=M’(A)=D,,
: OP=0./=0. P=0. A |

{AND A;
| AC=AC& M(A)=D, ,&D,, |
' OP=1.1=0. P=0. A ‘

289

Direct addressing

5
20
z
(@]
—

wm 0-15 0-255 3 ° 0 AC-M
\ (») o) | 7 /
N 4 AC-M" 4
~ - ees -

Figure 5-5 Test generation for Parwan microprocessor with shared HLDDs

Table 5-1 illustrates the conformity test for the nodes OP and / in the HLDD in Figure
5-5c¢. The test template consists of three instructions. The first instruction initializes the
only data register of Parwan — accumulator AC. This procedure is illustrated by
highlighted nodes and edges in the HLDD in Figure 5-5a. Nodes of graphs, indirectly
activated by this instruction are highlighted in Figure 5-5b. The slot of the second
instruction in the template is empty, and should be filled up and updated cycle by cycle
with the next instruction under test in the loop during execution of the test program.
The instructions to be tested are stored in the respective array in the memory. For this
example, the instructions under test are depicted in Table 5-2. The highlighted column
in Table 5-2 refers to the control variables under test.

Table 5-1 Conformity test template

Instruction Op-code Data movement
No . " " Comments
mnemonic oP 1 P Registers Operation
1 LDAA 0 0 P AC=D; AC <D Initialization
2 Instruction is to be stored from Table 5-2 Instruc:;osr; under
3 STAA 5 | 0 | P | AC AC —> M(A) Storing response

50

Table 5-2 Instructions to be inserted into the conformity test program template

No Mnemonic of Op-code Data movement Result of
the instruction | OP I | P | Registers Flags operation

1 LDAA 0 0| P AC=AC N,Z < f(AC) AC= Dy
2 AND A 1 0| P AC=D; N,Z < f(AC) AC= AC&D;
3 ADD A 2 0| P AC=D; N,Z,C,V < f(AC, M(A)) AC= AC+D;
4 SUB A 3 0| P AC=D; N,Z,C,V < f(AC, M(A)) AC= AC-D;
5 CLA 7 0|1 AC=D; - AC=0
6 CMA 7 0| 2 AC=D1 N <« f(AC) AC=—D:
8 ASL 7 0| 8 AC=D; N,Z,C,V < f(AC) AC=2*D:
9 ASR 7 0|9 AC=D; N,Z < f(AC) AC=Dy//2

Figure 5-5c illustrates the target of the conformity test to exercise the correct
decoding of the control variables OP{0,1,2,3,7} and /{0,1}. The operations to be
executed during the instructions under test are shown in the high-lighted terminal
nodes in Figure 5-5c, and the results of the operations are depicted in the last column
of Table 5-2. For this test, the data operands D1 and D2 are used and stored in the array
of data operands in the memory. The data operands should be generated in such a way
that the constraints (5-1) and (5-2) in Theorem 5-1 were satisfied.

Table 5-3 Scanning test template to be repeated for the data operands in the memory

Mnemonic Op-code Data movement
No of the Comments
. . oP (I | P Registers Operation
instruction
1 LDA A 0 0| P AC=D: AC <« M(A) Initialization
2 ADD A 1 |o|P| AC=D:&D; AC < AC & M(A) '"Structg under
3 STAA 5 0| P AC AC —> M(A) Storing response

Table 5-3 illustrates the scanning test for the terminal node AC & M’ in the HLDD on
Figure 5-5c. The row, representing instruction under test, is highlighted in Table 5-3.
The test template consists of three instructions. First one has the role of initialization of
the microprocessor, and similarly to the conformity test, its actions are illustrated by
highlighted nodes and edges in the HLDD in Figure 5-5a and Figure 5-5b. However, the
scanning test differs from the conformity test. During the initialization procedure,
general purpose registers of the microprocessor are filled with prepared data, stored in
the corresponding array of data operands in the memory.

Organization of the test programs for the microprocessors based on using the
structural-behavioural information given in HLDDs allows compact presentation of the
test program templates, arrays of instructions and arrays of data operands.
A generalization of such a structure is depicted in Figure 5-6.

51

Data Testprogram

operands templites
; for instruction .
or groups Instruction
conformity groups

test |
for

scanning - Instructions
test
for

conformity #|
test - Instructions
for

scanning
test

Figure 5-6 A generalized data structure for self-testing of microprocessors

The presented structure contains test data in a similar structure for both conformity
and scanning tests. In the case of conformity test, the loop is organized over a subset of
instructions whereas the data operands are for this loop the same. In general case,
however, several data arrays may be needed to organize higher level loops. In the case
of scanning test, the template is filled up by a single instruction whereas the loop is
organized over an array of test data operands.

5.5 Discussion on the Properties of Conformity and Scanning tests

The main conception of test generation using HLDDs can be characterized by the
following targets and improvements regarding the traditional microprocessor testing
methods.

1) improved fault coverage regarding hard-to-test-faults with better diagnostic
resolution;

2) reduced probability of fault masking;

3) compactness of the whole test program thanks to its cycle-based organization;

The main idea of the described HLDD-based approach is to test the behaviour of
functional variables instead of testing instructions. With correct test data, test for all
functional variables will stress outperform a simple instruction set test, avoiding fault
escapes.

As an added value, the result of approach scanning and conformity test approaches,
where “smaller portions” of the functionality of instructions are targeted in testing, the
diagnostic resolution will be better.

Another added value of targeting by tests “smaller portions” of the functionality of
microprocessor is the reduced probability of fault masking. Consider an example of
memory-register-memory 1/O operations shown in Figure 5-7, where data is loaded to
internal registers, and stored back to memory, using instructions /i;: LDA Reg Mem
(Load data from memory to register) and I2: STA Reg Mem (Store data from register to
memory). Assume that there is a SAF on control line Ro. The test program with two
consequent instruction pairs - LDA Ro, STA Ro and LDA Ri, STA R: will pass the test,

52

despite addressing the incorrect behaviour of addressing in the register bank. As a
result, SAF on Ro control line will escape.

Multiplexor is faulty, MoM, Ro MoM, Ro
Cau‘Sing only On'e 0 MSmory _(ﬂ\ol\ Registers 0 o Mlgmory _1 0 Registers 0
register (Ry) being o oo, o o[,
selected. D, |+ | 1 b, [4 1
. . 2 | -: : 21Dy | | :
L: DA Ry, MO); | - LoD I 3 - Lo Do |
I: STA Ry, M(2); e
I;: LDA R, M(1); MoM, Ro MM, Ro
I4: STA Ri) M(3), OMI;mory (‘ﬂ\ll\ Registers 1>0 OMSmory 11 Registers 130
0 | 0 |
0
By executing such b, |+ X 2! o, |~ 010 1
i - I
code, fault is 2[D, | | 1 2lp, M | :
successfully masked | I D, I 1 D, I
3 | — ——omtmm 3|, [L— "o

Figure 5-7 Example of fault masking during 10 procedure

In order to reduce the probability of fault masking, we are testing the functional
variables simultaneously, by initializing all of the available registers prior each test.
Example of following technique is shown in Figure 5-8. In this example all registers in
register bank are initialized with data during the test, adding observability to every
incorrect behaviour, solving fault masking problem. In other words - we keep the
initialization and observation sequences constant for the whole test of the variable
under test. When recording the test results, we target always a single variable under
test. In another case when trying to observe more than one variables, each observation
action may cause changes in the state of the processor, which in its turn may activate
other possible faults and cause fault masking. This approach is a good example of the
trade-off between the test length and test accuracy. We use more processor cycles for
constant initialization but, but on the other hand, we reduce the amount of test output

data.

I,: LDA Ry, M(0);

I,: DA Ry, M(1); MoM, Ro MoM, Ry
13: STA Re: M(Z); OMEe)mory 0/0 Registers 0 oMsmory 0|1 Registers 0
I: LDA Ry, M(9); X 0 0| D, X ¢ 0| D,

L: AR, M1); | 121 b e 1 .
I,: STA R, M(3); 3 || :____D_O _____ : 3 :___El_ _____ :
Instead of testing the

instruction, we test MM, Ro MoM, Ry
the functional OMSmory 10 Registers 1900M|;m°rv 11 Registers 1>0
variables Ry and R, L 0| b, 0 0| b,
simultaneously. 1D, 1 11D 1 1
Fault is successfully 21D, [| 3 : 2[p, I 5 :
detected — masking 3 - | I+ P I3 D, | IS+ P I

avoided

Figure 5-8 Example of fault masking avoidance technique

53

5.6 Experimental results

As a case study, we generated manually a self-test program for microprocessor Parwan
modelled in Chapter 3.4, using fault models proposed in Chapter 4, and HLDD test
generation algorithms described in Chapter 5. The obtained fault coverage for every
module of MP is outlined in Figure 5-9. The whole test program was simulated by
ModelSim to obtain local test data sequences for all modules, and these, in turn, were
fault simulated at gate level to get SAF coverage. The comparison of fault coverages
with method #1 [85] and method #2 [86] is depicted in Figure 5-9.

CONTROL

Fault coverage

SHU

ALU

SR

MAR

PC

AC

80,

8

82,00 84,00 86,00 88,00 90,00 92,00 54,00 96,00 98,00 100,00
m Method #1 Method #2 m Proposed

Figure 5-9 Comparison of different test coverages (PARWAN)

To sum up, for seven out of eight modules the proposed method shows advantage
regarding test coverage over the previously published results for that processor. The
positive impact of the novel high-level fault model can be seen in the higher fault
coverage of the control part of MP. The comparison of volumes of test data is
presented in Table 5-4. The proposed approach needs 75% fewer test data than in ATIG
[86], but the generated program consists of 51% more instructions. However, the latter
comparison is not completely fair, since there are single byte and double byte long
instructions and such statistics is missing in [85] [86].

Table 5-4 Comparison of test lengths for testing PARWAN processor

Test overhead | Method #1 [85] | Method #2 [86] | Proposed method
Instruction # 575 189 260
Test data # unknown 517 132

5.7 Summary

In this chapter, it was shown that the HLDD model provides the possibility of
formalising the SBST program generation process, which will be the prerequisite and
basis for automating this process to be discussed in the next chapter.

54

Two novel concepts for test generation were proposed, being conformity test and
scanning test. Conformity test generation targets the control part of the
microprocessor and is driven by non-terminal nodes of the HLDD. Scanning test,
designed for the data path, is generated by activation of terminal nodes with
predefined data sets.

The test data (operands) for scanning test may be generated in two ways: either
applying hierarchical approach using gate-level ATPG-s, if the related implementation
details of the data-path are available, or using heuristic functional data or pseudo-
exhaustive test patterns, if the implementation details are not available.

Using both algorithms of conformity (Algorithm 5-1) and scanning test (Algorithm
5-2) generation together, it is possible to achieve compact presentation of the test
program, which saves memory space, has high fault coverage and better diagnostic
capabilities, and reduces the probability of fault masking.

The proposed method was evaluated using the Parwan microprocessor. A manually
generated test program proved the consistency of the proposed method, by
demonstrating superior fault coverage and test length over alternative methods.

55

6 SBST AUTOMATED GENERATION

This chapter presents a framework developed on the basis of the formal methods
proposed in previous chapters. The purpose of this framework is to automatically
generate SBST programs for microprocessors. The framework consists of three parts.

The first part is responsible for the automatic synthesis of HLDDs from a description
of instruction set architecture. Requirements for generalisation of ISA description are
outlined. Algorithms used for automation of the synthesis are proposed, with examples
for MiniMIPS processor.

The second part automatically generates tests on the basis of the HLDD model of a
microprocessor.

The third part automatically converts tests into SBST programs for microprocessors.
Additionally, the equation for test length estimation is proposed. The fault coverage
capabilities of the test program for MiniMIPS processor are evaluated.

This chapter is based on publications IV [87] and V [27], where the latest changes in
framework were presented.

6.1 Introduction of SBST generation framework

Previously described concepts form the basis of the framework for automated test
program generation for microprocessors. The general concept of the framework is
shown in Figure 6-1. The framework consists of three modules: HLDD synthesizer, test
vector generator, and SBST generator-synthesizer for converting test vectors into test-
programs using beforehand prepared test code templates. The transition flow from
instruction set to software-based self-test program is demonstrated on 32-bit RISC
MiniMIPS microprocessor [88] with instruction set based on MIPS architecture [89].

[r—r) PATTERN S
ISA SBST
SBST =
TEST
PROGRAM | | —
GENERATOR p—
SYNTHESIS GENERATION -

asm template library

Figure 6-1 Software-Based Self-Test generation framework

6.2 Generalization of instruction set architecture

Instruction set architecture is an abstract representation of a processor, and its
description is usually provided in architecture documentation. It usually includes the
general description of the general-purpose registers, flags, list of instructions with their
names, assembly language syntax, and binary representation. In other words - ISA
description holds all the information about the processor necessary to write test
programs. The description example of instruction ADD is taken from MiniMIPS
processor manual [88], and is shown in Figure 6-2. The instruction code (Figure 6-2.A) is
divided into fields of fixed widths (in bits) and labels. The mnemonic description (Figure
6-2.C) represents the function and data transition between general-purpose registers.
Additionally, assembly syntax (Figure 6-2.B) is given for using addition operation in a
program.

56

31 2625 2120 1615 1110 65 0
op rs rt A rd shamt funct

000000 rs rt rd 00000 100000

SYNTAX: ADD rd, rs, 1t . MNEMONIC: rd <-rs + 1t |{C

Figure 6-2 ADD instruction description from Minimips manual

The encoding of instruction ADD contains six fields: op, rs, rt, rd, shamt, funct. This
specific set of instruction fields defines the format of the instruction. In MiniMIPS
architecture, three formats of instructions, shown in Figure 6-3, are used. ADD
instruction belongs to the register type. Its field op holds information about the
instruction type. The fields rs, rt and rd are holding the index numbers of general-
purpose registers (or system coprocessor registers). The next field — shamt, contains
the number of shifts for operations with data shifting. The field funct distinguishes
specific instruction in the register instruction domain. The field imm of instruction of
type immediate holds immediate value. The last but not least, field address of jump
instructions contains the memory address for jump operations.

31 2625 2120 1615 1110 65 0
Registers op rs rt rd | shamt | funct
Immediate op rs rt imm
Jump op address

Figure 6-3 MiniMIPS instruction formats

The behavioural model of the processor can be built on the basis of information
about instruction format and encoding. Additional information, obtained from ISA
description, can help to append details to the model. For example, the information
about changes in program counter can provide the basis for modelling the behaviour of
program counter unit.

In order to process ISA automatically, it should be represented in a machine-
readable way. We suggest bringing the ISA description to common ground manually, as
it was shown in Chapter 3.2. As a replacement for functional tables, we outline the
format — ISDL (Instruction Set Description Language) to generalize the description of
miniMIPS ISA. ISDL is developed on the basis of the format previously proposed in [87].
It implies that each instruction is described using specific syntax, emphasizing its
functionality, and extracting functional variables. For each type of instruction field, the
specific syntax is envisaged in ISDL format. ISDL supports four types of instruction fields
- operation code, register, data and constant. Their syntax is shown in Table 6-1, where
placeholders are surrounded by “< >”.

Table 6-1 ISDL syntax for instruction fields

Field Type ISDL Syntax Description
Operation code | op:<name>=<width>b<value>
Register <direction>:<name>=<width>b | <direction> can be in or out
Data data:<name>=<width>b Field for immediate value
Constant con:<name>=<width>b<value>

57

In addition to instruction word fields, the special syntax to describe instruction
function, assembly and changes in the program counter are defined. Instruction
mnemonic reflects its functionality and is important in test data generation. Assembly
syntax will be used in test program generation process and will be described further.
Function field should be highlighted with { }, assembly code field with [], and program
counter field with (). Function description is kept in a separate library, but a line in ISDL
should have a link to it via function name. Additionally, this field can keep the
information about flags, or data movement between registers.

An example of this description is shown in Figure 6-4, where ADD instruction has the
link to the function in library defined with {ADD(rs, rt)}. Assembly field provided as [add
Srd, Srs, Srt], keeps the assembly code for test program generation stage. rd, rs and rt
are the placeholders for general purpose register indexes. Program counter field is
optional because this information can be hidden, and not included into documentation.
The overall understanding of the architecture of the processor under test can help to
isolate this information from the manual. In case of ADD instruction, branches do not
happen, and program counter should increment in the way that next instruction is
fetched. Thus, value of PC is incremented by four (bytes) i.e (PC + 4), in other words at
the end of execution, PC should contain the address of the next instruction word.

31 26 25 21 20 16 15 11 10 6 5 0
op rs rt rd shamt funct | SYNTAX: ADD rd, rs, rt
000000 rs rt rd 00000 | 100000 | MNEMONIC: rd <-rs + rt

0p:0p=6b000000;in:rs=5b;in:rt=5b;out:rd=5b;op:shamt_c=5b00000;0p:funct=6b100000;
{ADD(rs, rt)}; ; (PC+4)

Figure 6-4 ADD instruction converted to ISDL

By using the proposed guidelines, it is possible to bring the instruction ADD (Figure
6-2) of miniMIPS to the following entry in ISDL format as shown in Figure 6-4.
Instruction ADD belongs to the registers format of instruction according to Figure 6-3,
and belongs to group of ALU-related instructions because of the value 000000 in its op
field. The field funct with the value 100000 defines this instruction as ADD among other
instructions with the same value in op field. Register related fields (rs - source register,
rt - target register and rd - destination register) of the instruction code should hold the
general purpose register numbers. The subset of mimiMIPS instructions brought in ISDL
format is shown in Figure 6-5.

58

0p:0p=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000000; {SL(rt,shamt)}; [sll rd, rt, shamt]; (PC+4)
0p:0p=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000010; {SR(rt,shamt)}; [srl rd, rt, shamt]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000011; {SRA(rt,shamt)}; [sra rd, rt, shamt]; (PC+4)
op:op=6b000000; in: ; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b000100; {SL(rt,rs)}; [sll rd, rt, rs]; (PC+4)
op:op=6b000000; =5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b000110; {SR(rt,rs)}; [srlv rd, rt, rs]; (PC+4)
0p:0p=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b000111; {SRA(rt,rs)}; [srav rd, rt, rs]; (PC+4)
0p:0p=6b000000; con:rs_c=5b00000; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b010000; {rd=regHI}; [mfhi rd]; (PC+4)
0p:0p=6b000000; in:rs=5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000;0p:funct=6b010001; {regHI=rs}; [mthi rs]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b010010; {rd=regLO}; [mflo rd]; (PC+4)
op:0p=6b000000; =5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000;0p:funct=6b010011; {regLO=rs}; [mtlo rs]; (PC+4)
op:op=6b000000; =5b; in:rt=5b; con:rd_c=5b00000; con:shamt_c=5b00000;0p:funct=6b011000; {regLO=[rt*rs]0,31; regHI=(rt*rs)31,63}; [mult rs, rt]; (PC+4)
op:0p=6b000000; =5b; in:rt=5b; con:rd_c=5b00000; con:shamt_c=5b00000;0p:funct=6b011001; {regLO=[rt*rs]0,31; regHI=(rt*rs)31,63}; [multu rs, rt]; (PC+4)
op:0p=6b000000; 5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b100000; {ADD(rs,rt)}; [add rd, rs, rt]; (PC+4)
op:0p=6b000000; =5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b100001; {ADDU(rs,rt)}; [addu rd, rs, rt]; (PC+4)
op:0p=6b000000; =5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b100010; {SUB(rs,rt)}; [sub rd, rs, rt]; (PC+4)
op:0p=6b000000; =5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b100011; {SUBU(rs,rt)}; [subu rd, rs, rt]; (PC+4)
op:op=6b000000; =5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b100100; {AND(rs,rt)}; [and rd, rs, rt]; (PC+4)
op:0p=6b000000; =5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b100101; {OR(rs,rt)}; [or rd, rs, rt]; (PC+4)
op:0p=6b000000; 5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b100110; {XOR(rs,rt)}; [xor rd, rs, rt]; (PC+4)
op:0p=6b000000; 5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b100111; {NOR(rs,rt}; [nor rd, rs, rt]; (PC+4)
op:op=6b000000; =5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b101010; {LESS(rs,rt)}; [slt rd, rs, rt]; (PC+4)
op:0p=6b000000; =5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;0p:funct=6b101011; {LESSU(rs,rt)}; [sltu rd, rs, rt]; (PC+4)
op:op=6b000000; =5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000; op:funct=6b001000; {}; [jr rs]; (rs)
0p:0p=6b000000; in:rs=5b; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000; op:funct=6b001001; {rd = PC+4, PC = rs}; [jalr rd, rs]; (rs)
0p:0p=6b010000; con:rs_c=5b00000; out:rt=5b; con:cs=5b00000; con:rd_c=5b00000; op:funct=6b000000; {rt = COPO}; [mfcO rt, 0]; (PC+4)
op:0p=6b010000; con:rs_c=5b00100; in:rt=5b; con:cs=5b00000; con:rd_c=5b00000; op:funct=6b000000; {regCOPO = rt}; [mtcO rt, 0]; (PC+4)
0p:0p=6b000001; in:rs=5b; con:rt_c=5b00000; data:offset=16b; {FLAG:LTZ(rs)}; [bltz rs, offset];(?(LTZ), PC+(offset<<2), PC+4)
op:0p=6b000001; =5b; con:rt_c=5b00001; data:offset=16b; {FLAG:GEZ(rs)}; [bgez rs, offset];(?(GEZ), PC+(offset<<2), PC+4)
op:0p=6b000100; =5b; in:rt=5b; data:offset=16b; {FLAG:EQ(rs,rt)}; [beq rs, rt, offset];(?(EQ), PC+(offset<<2), PC+4)

op:op=6b000101; =5b; in:rt=5b; data:offset=16b; {FLAG:NE(rs,rt)}; [bne rs, rt, offset];(?(NE), PC+(offset<<2), PC+4)

op:0p=6b000110; 5b; con:rt_c=5b00000; data:offset=16b; {FLAG:LEZ(rs)}; [blez rs, offset];(?(LEZ), PC+(offset<<2), PC+4)
op:op=6b000111; 5b00000; data:offset=16b; {FLAG:GTZ(rs)}; [bgtz rs, offset];(?(GTZ), PC+(offset<<2), PC+4)
0p:0p=6b001000; b; data:iimmediate=16b; {ADD(rs,immediate)}; [addi rt, rs, inmediate]; (PC+4)

op:op=6b001001; =5b; data:immediate=16b; {ADDU(rs,immediate)}; [addiu rt, rs, inmediate]; (PC+4)

op:0p=6b001010; =5b; data:immediate=16b; {LESS(rs,immediate)}; [slti rt, rs, immediate]; (PC+4)

op:op=6b001011; =5b; data:immediate=16b; {LESSU(rs,immediate)}; [sltiu rt, rs, immediate]; (PC+4)

op:op=6b001100; =5b; data:immediate=16b; {AND(rs,immediate)}; [andi rt, rs, immediate]; (PC+4)

op:op=6b001101; =5b; out:rt=5b; data:immediate=16b; {OR(rs,immediate)}; [ori rt, rs, immediate]; (PC+4)

op:0p=6b001110; 5b; out:rt=5b; data:immediate=16b; {XOR(rs,immediate)}; [xori rt, rs, immediate]; (PC+4)

op:op=6b001111; con:rs_c=5b00000; out:rt=5b; data:immediate=16b; {rt = immdiate<<16 | rt}; [lui rt, immediate]; (PC+4)

op:op=6b100011; data:base=5b; out:rt=5b; data:offset=16b; {rt = memory[base+offset]}; [Iw rt, offset(base)]; (PC+4)

op:op=6b101011; data:base=5b; in:rt=5b; data:offset=16b; {memory[base+offset] = rt}; [sw rt, offset(base)]; (PC+4)

op:op=6b110000; data:base=5b; con:cs_c=5b00000; data:offset=16b; {COPO = memory[base+offset]}; [lwcO rt, offset(base)]; (PC+4)
op:op=6b111000; data:base=5b; con:cs_c=5b00000; data:offset=16b; {memory[base+offset] = COPO}; [lwcO rt, offset(base)]; (PC+4)
0op:0p=6b000010; data:instrindex=26b; {}; [j instrindex]; (instrindex)op:0p=6b000011; data:instrindex=26b; {GPR31 = PC+4}; [j instrindex]; (instrindex)

Figure 6-5 Subset of miniMIPS instruction set in 1SDL format

6.3 HLDD synthesis from ISDL description

The Correctly composed ISA description in ISDL format holds needed data to build
HLDD diagram, representing the behaviour of the system (or it's part) under test. The
solution for building HLDD graph model is based on the framework proposed in [50].
This framework provides the functionality to create, edit and import HLDD graphs.
Figure 6-6 is a class diagram demonstrating the structure of behavioural model.
ModelingDomain is the most top element in this metamodel that is used to collect
ModelingObjects.

The domain (ModelingDomain) is typically a microprocessor whereas the objects
(ModelingObject) are the units of a microprocessor.

Any ModelingObject may have a number of inputs that are implemented as
variables.

Variable x is defined with the name and the width in bits. The modeling object is
represented by the set of GraphVariables.

The possible values of the GraphVariable are modelled as terminal nodes
Termination of the graph that are assigned to this GraphVariable.

Termination has a link to Variable that defines its value. The value of the Termination
is defined by the object derived from the Variable class - Input, GraphVariable, Function
and Constant objects.

59

BEModelingDomain
= name : EString

’ InputValue 0..1
ModelingObjects | 1..*
o Jec.s - B Output
=TT Inputs 1..* * B ModelingObject
pu = name : EString
Functions 0..*
Variables 0..* ’
Graph 1 . |EGraphvariable L
B Constant
Constants 0..* Tvalue : ELong
SGraph BVariable
TerminalEdge 0..1 =name : Estring
o e -
= width : Elnt
Nodes | 0..* NodeEvaluation 1
Terminationval B Function
erminajonvaiue “operation : AvailableFunctions

B Node 1 Arguments 1.2

<" name : EString

B Termination
= comment : EString

NodeLink 0..1

Edges 0.*

H Edge
= comment : Estring
o=varType : VariableType [TerminationLink| 0..1
= value : EString >

Constantvalue 0..1

Figure 6-6 Metamodel of HLDD

Graph object has containment link to the nodes that belong to this graph.

Node has a link to the variable that contains the possible values of the node. Same
nodes may be connected by more than one edge.

Edge may lead to the next non-terminal node (NodeLink) or to the terminal node
(TerminationLink). The transition value of the edge may also be specified by the
ConstantValue link to the predefined constant.

A Function is an object that defines the operations with variables. The function has a
field for selecting an operation from a list of supported functions (AvailableFunctions).
This list can be easily extended to support any operations (bitwise operations, logic
operations, etc.). The arguments to the function are specified by the Arguments link
that selects variables from the list of predefined variables.

Based on the described abstraction it is possible to process the instruction set data,
given in ISDL, and to synthesize a graph mirroring the behaviour of the processor or its
part. The meta-model shown in Figure 6-6 is general and can be applied to modelling
microprocessors. In this case, the ModelingDomain represents the model of the
processor, composed of different units (ModelingObjects) i.e ALU, PC, register bank etc.
Each processor unit is represented with separate graph, which output or GraphVariable
represents output register or flag. Instruction fields representing operational codes will
become Nodes of the graph. The links - Edges between nodes are represented by the
instruction field values. Terminations of the graph will be the functions following the
execution of instructions.

60

The implementation of HLDD generation in frames of the proposed framework is
represented with the set of algorithms — Algorithms 6-1, 6-2, 6-3, 6-4, 6-5, with links to
the meta-model shown in Figure 6-6.

Algorithm 6-1: HLDD Synthesis - top level

1 PROCESSOR = new ModelingDomain();

2 FILE = open(isdl);

3 forall LINE in FILE do

4 IDATA = parse(LINE);

5 if IDATA has PC field then

6 if PC exists in PROCESSOR then

7 | execute populateGraph(PC, pesubset(IDATA)); /* Algorithm 6-3 */
8 else

9 | Graph PC = new Graph(PC, pesubset(IDATA)); /* Algorithm 6-2 */
10 end

11 end

12 if IDATA has no OUT field then

13 OUT_ = parseMnemonic(IDATA);

14 if OUT_ is an out register then

15 | OUT =0QUT;

16 end

17 end

18 if OUT.type is general-purpose-register then

19 forall GPR in GPR-LIST do

20 if GPR exists in PROCESSOR then

21 ‘ execute populateGraph(GPR.idx, subset(IDATA)); /* Algorithm 6-3 */
22 else

23 | Graph OUT = new Graph(GPR, subset(IDATA)); /# Algorithm 6-2 */
24 end

25 end

26 else

27 if OUT.name exists in PROCESSOR then

28 | execute populateGraph(OUT name, subset(IDATA)); /+ Algorithm 6-3 */
29 else

30 | Graph OUT = new Graph(OUT, subset(IDATA)); /* Algorithm 6-2 */
31 end

32 end

33 end

Algorithm 6-1 describes the top level of the HLDD synthesis framework. With the
main cycle, the program is walking through the instruction list given in ISDL format, by
reading it line by line. Each line is parsed in order to obtain key information about the
instruction format and fields. First, the detection of information about PC is made. This
information is optional, but in case such information exists, the PC graph is created
(Algorithm 6-2) or populated (Algorithm 6-3) with new nodes. The next step is to find
register information in instruction line, especially output register. In case output
register does not have its separate field in the instruction word, the program continues
to search for it in function field, highlighted by { }. This field can hold the information
about indirect activation of register. For example, instruction MTHI (move data to
internal register regHl) has following description - op:0p=6b000000; in:rs=5b;
con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000; op:funct=6b010001;
{regHI=rs}; [mthi rs]; (PC+4). The register field with direction “out” does not exist within
the list of instruction fields. However, function field {regHI=rs} holds information, that
data from input register rs will move to register regHl during execution of MTHI

61

instruction. In this case, regHI becomes an OUT register. Last conditional operator in
Algorithm 6-1 is checking if there were register fields with direction out within
instruction field list. The new graph is created (Algorithm 6-2) or populated (Algorithm
6-3) if there is such register field. These operations are executed in cycle for each
general purpose register of the processor. In order to use uniform function for creation
or filling different types of graphs, the functions — pcsubset(), subset() and brsubset()
are introduced. They are filtering the instruction data from ISDL line, needed to build a
specific type of graph.

Algorithm 6-2: HLDD Synthesis - Graph constructor

GV = New GraphVariable(NAME);

PREV = GV;

it GV is general-purpose-register then

| execute addNode(OUT); /% Algorithm 6-4 */
end

forall OP in PARAMETERS do

| execute addNode(OP); /* Algorithm 6-4 */
end

forall CON in PARAMETERS do

| execute addNode(CON); /* Algorithm 6-4 */
end

forall IN and OUT in PARAMETERS do

| execute addNode(IN); /* Algorithm 6-4 */
end

forall DATA in PARAMETERS do

| execute addNode(DATA); /* Algorithm 6-4 */
end

if FLAG is listed in PARAMETERS then

| execute addNode(FLAG); /* Algorithm 6-4 */
20 else

21 | execute addTermination(PARAMETERS); /* Algorithm 6-5 */
22 end

=R - O

I R e T
e W g9 e ;e 8w = Q

Algorithm 6-2 describes the functionality of the constructor for Graph object. The
constructor is called if the graph does not exist already in ModelingDomain. Otherwise,
the existing graph is populated (Algorithm 6-3) with given instruction data. The first
thing created by graph constructor is GraphVariable, which is an output of the graph.
Then, instruction fields are attached to the graph as nodes (Algorithm 6-4) with edges
in the following order: op (opcode field) > con (constant) > in (register) > data
(immediate) > flag > termination (function or constant). Terminations are added
(Algorithm 6-5) as leaves, and are holding constants or links to the functions in the
library. PREV variable is a link between edges and nodes.

Algorithm 6-3 describes the graph population procedure. It is similar to graph
construction (Algorithm 6-2) but has many conditional operators in order to check the
existence of nodes prior adding them to the graph. Attachment on new edges, nodes
and terminations is same as in Algorithm 6-2.

62

Algorithm 6-3: HLDD Synthesis - Graph filler

if GV is general-purpose-register then

| PREV = getRootNode(). EDGE(1);

else

| PREV = GV;

end

forall OF in PARAMETERS do

if (PREV.next.name = OF.name) \ (PREV.value = OP.value) then
| PREV = Node(OP).edge;

else

10 | execute addNode(OP); /* Algorithm 6-4 */
11 end

N

L= S = I <

12 end
1a forall CON in PARAMETERS do
14 if (PREV.next.name = CON.name) A (PREV.value = CON.value) then

15 | PREV = Node(CON).edge;

16 else

17 | execute addNode(CON); /* Algorithm 6-4 */
18 end

19 end

20 forall IN in PARAMETERS do
21 if (PREV.next.name = IN.name) n (PREV.value = IN.value) then

22 ‘ PREV = Node(IN).edge;

23 else

24 ‘ execute addNode(IN); /* Algorithm 6-4 =*/
25 end

26 end

27 forall DATA in PARAMETERS do
28 if (PREV.next.name = DATA.name) N (PREV.value = DATA value) then

29 ‘ PREV = Node(DATA).edge;

30 else

31 ‘ execute addNode(DATA); /* Algorithm 6-4 */
32 end

33 end

34 if FLAG is listed in PARAMETERS then
35 forall FLAG in PARAMETERS do

36 if (PREV.next.name = FLAG.name) / (PREV.value = FLAG.value) then

a7 | PREV = Node(FLAG).edge;

38 else

30 | execute addNode(FLAG): /* Algorithm 6-4 */
40 end

a1 end

42 else

43 | execute addTermination(PARAMETERS); /* Algorithm 6-5 */
44 end

Algorithm 6-4 describes the procedure of new node addition to the graph.
Depending on the type of node, two different paths exist for flag nodes and other
nodes. In case of flag node, Boolean edges (1, 0) are being added to it with two
different terminations. The terminations are taken from the PC field in instruction
description in ISDL format — (?(FLAG), A, B), where FLAG is a node, and A is termination
with termination link 1(true), and B is with O(false).

In addition, when flag node is added to the graph, the ModelingDomain is checked
for the presence of flag-related graph. If there is no such graph, it’s created with subset

63

of data, filtered with brsubset(). In case another non-flag node is added, its object is
generated and the edge is linked to it.
Algorithm 6-4: HLDD Synthesis - node addition

1 if OUT then
2 NODE = New Node(OUT?idx);
3 PREV.next = NODE;
4 EDGE = newEdge(NODE, 0);
5 PREV = EDGE;
6 execute addTermination(GPR, idx); /* Algorithm 6-5 */
7 EDGE = newEdge(NODE, 1);
8 PREV = EDGE;
9 else
10 if FLAG then
11 NODE = New Node(name);
12 PREV .next = NODE;
13 EDGE = new Edge(NODE, 1);
14 PREV = EDGE;
15 execute addTermination(condition = 1); /* Algorithm 6-5 */
16 EDGE = new Edge(NODE,0);
17 PREV = EDGE;
18 execute addTermination(condition = 0); /* Algorithm 6-5 */
19 if NODE.name exists in PROCESSOR then
20 | execute populateGraph(NODE.name, brsubset(PARAMETERS)
21 else
22 | Graph NODE = New Graph(NODE.name, brsubset(PARAMETERS)
23 end
24 else
25 NODE = New Node(name);
26 EDGE = New Edge(NODE, value);
27 PREV .next = NODE;
28 PREV = EDGE;
29 end
30 end

Finally, the termination addition flow is described in Algorithm 6-5. It's a short
procedure, which is linking existing edge to the created Termination object.

Algorithm 6-5: HLDD Synthesis - termination addition

1 TERMINATION = New Termination(PARAMETERS);
2 PREV.next = TERMINATION;

Let us have an example of synthesis of HLDD (based on the algorithms listed
previously) for a single instruction ADD of miniMIPS processor, shown previously in
Figure 8.2 and Figure 6-4. First, the information about program counter is checked in
ISDL entry:

op:0p=6b000000;in:rs=5b;in:rt=5b;out:rd=5b;con:shamt_c=5b00000;

op:funct=6b100000;{ADD(rs, rt)}; [add Srd, Srs, Srt]; (PC+4).

The presence of field (PC+4) indicates, that program counter is increased by 4 bytes
after instruction execution. This means that graph for PC (Figure 8.7) can be built. PC
will become a GraphVariable. Then operation code fields — op and funct are attached to
it with corresponding node links — 000000 and 100000, provided in the description.
Next, constant shamt_c with edge 00000 as attached. Constant is followed by register
placeholders — rs, rt and rd. For representative means, multiple edges for different

64

register indexes are grouped into one edge with a range from 0 to 31. Finally,
termination with formula for PC calculation is attached to the graph. The full model of
miniMIPS PC unit is demonstrated in Figure 6-11.

c oooo1000ooooo—@—o...31—@—o...31o...31

Figure 6-7 HLDD graph for PC on basis of ADD instruction description in ISDL format

- oo (e (oo (B

GPR,

GPR;

0

Figure 6-8 HLDD graph for GPR; on basis of ADD instruction description

After actions with PC graph, ADD instruction description is analysed further to find if
there is a register with direction out. In case of ADD instruction, such register is rd. This
field of the instruction is keeping the index of register, in which the result of the
addition will be stored. MiniMIPS has thirty two general purpose registers (GPRo —
GPRz3i1), therefore the same amount of graphs will be synthesized. Using the same
algorithm for graph synthesis, but with different subset of data, graph for each general
purpose register GPRiis built (Figure 6-8). For representative means, set of graphs Gerri
is united into one graph with multiple graph variables (GPRo - GPR31). Field rd becomes
a root node, which is selecting the destination register for result of operation ADD.
Fields op, funct, shamt_c, rs and rt become nodes of the graph with corresponding
edges. The function (signed addition) is added to the terminal node of the graph.
Function ADD(GPR(rs), GPR(rt)), should be also added to the library of functions, in
order to use it further for test data generation. In general, the value of graph variable
GPR; should have a result of function in termination node, if the correct path is
activated. Full representation for ALU unit of miniMIPS is shown in Figure 6-10.

Since register fields rs, rd, and rt are not representing data, but the indexes of
registers in general-purpose register bank, special graphs are built. These graphs,
shown in Figure 6-9, will explain the data movement between registers.

GPR(rd)—?ﬂ- GPR(rt) {?

:3

e D
GPR(rs) — :& }—0- oc GPRIO)

Lﬂ

Figure 6-9 HLDD graphs for GPR registers

65

"
c

=)

@

g
g
g
g

=
w
s

i
:

Gp%'lDOOO SL(GPR(rt), shamt)
0 *00001

GPR,] +—000100 shamt_c }—oooo

SR(GPR(rt), shamt)

=3

.31 SRA(GPR(rt), shamt)

]
3
8
8
g

=)
w
®
=

.31 SL(GPR(rt), GPR(rs))

i

000110 shamt_c }—o0000

=)
w
4
=3

.31 SR(GPR(rt), GPR(rs))

|

GPR3,

o
W
b
°

000111 shamt_c }—o0o0o

GPR;@ 100000 shamt_c)—0000
0

100001 shamt_c }—o0000

‘ 100010 shamt_c }—o0000

—100011 shamt_c }—oo0o

!

.31 SRA(GPR(rt), GPR(rs))

=)
w
®
=

i

.31« ADD(GPR(rs), GPR(rt))

]

=)
w
®
=

.31 ADDU(GPR(rs), GPR(rt))

]

o
W
b=
o

..31—{ SUB(GPR(rs), GPR(rt))

.31 SUBU(GPR(rs), GPR(rt)

=)
w
b

100100 shamt_c }—oooo

IS}

.31 AND(GPR(rs), GPR(rt))

I
POOOOOOOOO00
SlobEloblobe ot

t—100101- shamt_c }—oooo

o
w
b=
o

31— OR(GPR(rs), GPR(rt))

]

=}
w
b
=}

f—100110 shamt_c 0000

]

.31~ XOR(GPR(rs), GPR(rt))

=)
w
4
=

100111 shamt_c }—oo0o

]

.31« NOR(GPR(rs), GPR(rt))

101010 shamt_c }—oooo

]

=)
w
i
=

.31~ LESS(GPR(rs), GPR(rt))

L-101011 shamt_c }—oooo

GPR'l op 001000—@—0‘.,31 immediate }—0..6553
1

!

IS}
W
b
I

.31~ LESSU(GPR(rs), GPR(rt))

g
1

ADD(GPR(rs), immediate))

=3

0 *001001—@—0...31 .,.sssas—CADDU(GPR(rs), immediateD
GPR, 0—@— S—CLESS(GPR(rs), |mmed|ate))
~0010114@—0...31 .,.sssss—G_ESSU(GPR(rs), immediateD
GPR3o

woonoo—@oma -sssa5—(_AND(GPR(rs), immediate))
GPRs{ rt=31

Foo1101: 0..31 .,.sssas—(OR(GPR(rs), immediate))

,..essss—CxOR(GPR(rs), immediate))

,_.
I

“

3 333 3
o ollo| o o
a2
5] IR)
B3| ®| 7@

o

=3

Loo111 .31

3
3
I
o
)
=
@
°

ao.

Figure 6-10 HLDD graphs for miniMIPS ALU

By executing the synthesis software, multiple graphs were built based on miniMIPS
ISA description in isdl format. In Figure 6-10 the graph synthesized for ALU unit is
shown. As it was described previously, this graph can be read from right to left, starting
with termination, representing the function behind instruction code. The value
calculated by function is stored to the general purpose register GPR;, selected by rd or
rt. The result of the function depends on the data, which is stored to input GPRi
selected by instruction fields rs and rt. Moreover, the function itself is selected mainly
by the values of op and funct codes and some constants — rs_c, shamt_c. The HLDD
graphs representing different units of miniMIPS processor are shown in Figure 6-11,
Figure 6-10, Figure 6-9, Figure 6-12 and Figure 6-13.

000010 @ mmo—@—a 310 310 31
4000011‘@*00&0—@—0 310..310...31*
shamt_c @—u,n@—u..no 31—
—uomluowo—@—o 31 @—n 310 31—
{—o000111- - o—@— ...31@—0..310..,21—
|—010000- @ -0000(-00000- -00000- @ 0..31—
wlwul—@— 00000 uowo—@—o 31—

010010

8
8

éééé

g8
g

40100114@— 00! 00000 00000—@—0 31—
shamt_c @70"314@70...317

shamt_c @—0 214@70.31—

ooo—@—c 314®—0 310...31—

mo—@—u 314®—u 310 31—

wo—@—o 314®—o 310. 31—

mo—@—u 314®—u 310 31—
71001 D—@—O 14®—o 310..31—
—100101 o—@—u 14®—u 310 31—
710011 D—@—O 14®—0 310..31—
—100111 o—@—u 14®—u 310 31—
—10101 o—@—u 14®—u 31,31*
—1010114@—00 o—@—u 14®—u 31,31*

GPR(rs)

00

8

of

8
8

00100 00000

© »
N (55
o D
3 3
=R
-.“"

00101

°
°

i

001001-

°
°

4

°

e

(iposoo0o0se

°

°

rs_c
1000114@—0 . 310 .3
1010114®—0...310 .31
nwoouun .31
111ooomn 31

rt_c rd_c shamt_c
rt_c shamt_c @

c

8
8

2

0 .65535———
0 65535———
0 65535———
o .65535———

instr_index

,wm—@_e_ .31@ =
0001014@—0. .31@ .

offset
offset

offset

offset

Do 000 6 |

offset

0...6553:

I

il

...55535—@7

——{ ADD(PC,SLA(offset, 2))

T

0...6553! @

msssas—@—oi

6553

0...6553:

Il

Figure 6-11 HLDD graph for miniMIPS program counter

Special treatment is needed for branching instructions. These instructions rely on
the values in flag registers. In case flag registers are not defined in ISA manual, it is
possible to define dummy flag variables in order to model branching behaviour. The
nodes - LTZ, GEZ, EQ, NE, LEZ, GTZ, representing flags are added to the PC graph as
shown in Figure 6-11. For each node separate graph is synthesized (Figure 6-12) based
on the information given in function {} and PC () fields of instruction description. For
example, function LTZ(GPR(rs)) is returning a Boolean value (1 or 0), if data in register rs
is less than zero. Depending on that program counter value is chosen.

000001—@—00000—@—0.“31 offset 0...6553 LTZ(GPR(rs))
(@@

0..31— offset 0...6553 GEZ(GPR(rs))

0.31— offset o...sssas—(EQ(GPR(rs), GPR(rt))>

@
NE 000101—@—0...31—@—0.4.31 offset O..465535—<NE(GPR([’S), GPR(rt))>

0..31— offset 0...6553 LEZ(GPR(rs))

GTZ 000111—@—00000—@—0_.31 offset 0..6553 GTZ(GPR(rs))

Figure 6-12 HLDD graphs for miniMIPS flags

i
|

Last but not least, the graph describing register-memory data movement is shown in
Figure 6-13. This graph represents how data is being stored from GPR’s and
coprocessor registers to memory and loaded back to registers. Calculation of the
address for loading and storing the data into memory is made using ADD function with
data type fields base and offset.

Memory(ADD(base, offset)) @ 101011 0..31—{ offset }-0..65535+ GPR(rt)

1110000000 base 0...31 0..65535+ COPO
GPR.,—@—l @ 100011 o..,310...31 offset o..,essas—CMemory(ADD(base, offset)D
0
GPR; 1

GPR3,
GPR3; rt=31
0
COPO 1100o,,.31o.,,31o.,.essss—CMemory(ADD(base, offset)D

Figure 6-13 HLDD graphs for miniMIPS memory-register data movement

ol

B
®
9

6.4 Test synthesis from HLDD

Once the HLDD graph model for the given processor is constructed, it can be used as a
basis for test generation. The result of test generation is a set of test patterns for
testing structural entities of the processor. The procedure of test generation mainly
revolves around walking through the graph, activating its nodes and also generating
specific test data patterns. In this thesis, the information regarding test data generation
is omitted but can be found in [27].

An example of test generation is built on basis of miniMIPS ADD instruction,
modelled in ALU HLDD. By walking through the graph, three lists (Figure 6-14) are being
filled at the same time:

PATHLIST — holds the information about the path of nodes from graphVariable to
termination node. The syntax is following — P#=name:’widths,....name,'width,, where #
is a placeholder for index, name is the name of node, and width is the numeric value
corresponding to the node link (edge).

DATALIST — list of test data, which will be loaded into registers during test program
execution. Syntax is following — D#:binary_list, where # is a placeholder for
enumeration, and binary_list is a list of numeric values.

TESTLIST — list of tests, generated by walking through nodes. The syntax is following
— P#:test:D#, where the # is a placeholder for enumeration, P is for addressing
PATHLIST, D is for addressing DATALIST, and test is a binary representation of node link
values.

TESTLIST:
P1:00000010000000000000010001000001
.0000001000000000000001000110000K:D1

P1:)0000010000000000000010010000001}
v %00000010000000000000010010100001:D1
PATHLIST:
P1=0p’6,funct’6,shamt_c'5,rs'5,rt’S,rd’S — |5 | p1:00000010000000000111101110000001:D1
T e e e E————
op funct shamt_c rs rt rd
DATALIST: *
D1:

1011100010000111100000110100100011010111111011110001100100000010
1000000101011111111011000111110111101001001101110110101001110011
0100100011111111111001110101001011111110101100111001110000011001

0111110001111010000111010111000111111110010111010001000111110101

Figure 6-14 Example of test generation

ADD instruction path includes nodes — op, funct, shamt_c, rs, rt, rd. This path is
added to PATHLIST as P1, and it will be valid for all instructions with the same set of
nodes involved. Next, data for testing control part is generated and is aggregated into
DATALIST subset — D1. It is generated by applying techniques explained in [27]. Finally,
the test is generated to activate the path of nodes from graph variable to termination
node. It is generated in pseudo-exhaustive manner and added to the TESTLIST, with
addition of link to path description — P1, and test data set — D1. The test itself is
represented in binary form, equivalent to instruction word, and is holding all
information needed for further test program generation.

69

6.5 SBST program generation

The targets of test generation for a microprocessor using the HLDD model are not the
instructions themselves, each of them taken as a whole as in traditional cases. Instead,
the targets are small functional entities represented by the nodes of HLDDs.
The terminal nodes represent selected data path functional entities (sub-circuits of
ALU), and the nonterminal nodes represent the selected control functional entities
related to the subfields of instruction words. Since the HLDD nodes as test targets
represent smaller functional units than the instructions as a whole, it makes possible to
use pseudo-exhaustive testing of the processor control part and to cope in this way
better with the complexity of the test problem. Instead of full exhaustive testing of all
operation codes, we test (pseudo)exhaustively its independent parts, guided by the
HLDD internal nodes. For testing terminal nodes, we use test data generated for ALU at
the gate level. From above, two approaches of testing, different for terminal and
nonterminal nodes, result: conformity test for the control part (internal HLDD nodes),
and scanning test for data path (terminal HLDD nodes).

The task of SBST generator is to decode patterns Figure 6-14, obtained from test
generator into assembly instructions. This is done by using predefined templates stored
in the assembly code library. As a result, the test program, composed from code
templates is made. It can be edited further, in order to improve the fault coverage.
Specific program code parts, important from the test coverage perspective, but hard to
generate automatically, can be added manually.

The test program length in cycles (considering single instruction per cycle) can be
calculated using following formula:

LT = (I + S) X (TC + Ts) + V, (6-1)

where | and S are representing the number of cycles for initialization and store
procedures, depending on number of internal registers, needed to be loaded with data.
Tcis the number of cycles required by conformity tests, depending on the amount of
paths to be activated in HLDD model. Ts is the number of cycles for scanning test,
heavily dependent on the amount of patterns for testing data path. Overhead V,
needed to support functionality and compactness of the program, described in Chapter
5.4 is added.

The SBST generation process is shown in general in Figure 6-15. Generated SBST
program can be logically divided in memory into two parts: test program and test data.
Test data area is filled with data, given in DATALIST (Figure 6-15.A). The test program
part is generated (Figure 6-15.B) based on test patterns obtained during test generation
step. Generation of test program can be divided into three parts — initialization, test
and store. The initialization part is loading test data into registers, and store part is
saving obtained results back to memory. The test combines the instruction fields from
the library into the full instruction code. In Figure 6-15.C, a subset of generated test
program for testing control part is shown.

70

1w $1, 0($6) TEST PROGRAM
4 1011100010000111100000110100100011010111111011 110001100100000010
lw $2 5 4 ($6) 1000000101011111111011000111110111101001001101 110110101001110011
i n it 0100100011111111111001110101001011111110101100111001110000011001
lw $ 3 5 8 ($6) 1011100010000111100000110100100011010111111011 110001100100000010
1000000101011111111011000111110111101001001101 110110101001110011
0100100011111111111001110101001011111110101100111001110000011001

1011100010000111100000110100100011010111111011 110001100100000010
1w $5, 16($6) 1000000101011111111011000111 110111101001001101 110110101001110011
0100100011111111111001110101001011111110101100111001110000011001
1011100010000111100000110100100011010111111011 110001100100000010
1000000101011111111011000111110111101001001101110110101001110011
‘te St P a dd $1 E} $1 B $2 0100100011111111111001110101001011111110101100 111001110000011001
1011100010000111100000110100100011010111111011 110001100100000010
1000000101011111111011000111110111101001001101110110101001110011
SwW $1 5 6 ($7) 0100100011111111111001110101001011111110101100111001110000011001
1011100010000111100000110100100011010111111011 110001100100000010
Sw $2) 4 ($7) 1000000101011111111011000111110111101001001101110110101001110011
0100100011111111111001110101001011111110101100 111001110
SW $3 , 8 ($7) 1011100010000111100000110100 1000110101
store 100000010101111111101
0100
c sw $5, 16(%$7)
TESTLIST:
1100000010000000000000010001000001|D1 | D
IP1}00000070000000000000070001 100001 Pt oL Ib11001 101100001 601
. D 1 Wlll]]ollmﬁlll 110111101001001101110110101001110011

|P1,00000010000000000000010010000001
[I | 0100100011111111111001110101001011111110101100111001110000011001
|P 1:00000010000000000000010010100001!D1 1011100010000111100000110100 100011010111111011 110001100100000010

I 1000000101011111111011000111 110111101001001101 110110101001110011
| 0100100011111111111001110101001011111110101100111001110000011001

| 1011100010000111100000110100 100011010111111011110001100100000010

P 1[000000100000000001111011100000011D1 1000000101011111111011000111 110111101001001101 110110101001110011

— \) ; \ ;— 0100100011111111111001110101001011111110101100111001110000011001
1 1 1 |

| | 1011100010000111100000110100 100011010111111011110001100100000010
’op funct shamt_c rs rt rd

1000000101011111111011000111110111101001001101 110110101001110011
0100100011111111111001110101001011111110101100111001110000011001
1011100010000111100000110100 100011010111111011110001100100000010
DATALIST: 100000010101111111101100011 110111101001001101 110110101001110011

N 0100100011111111111001110101001011111110101100 111001110000011001
D1: / 1011100010000111100000110100 100011010111111011 110001100100000010
N 1000000101011111111011000111110111101001001101110110101001110011

101110001000011110000011010010 0100100011111111111001110101001011111110101100111001110000011001
100000010101111111101100011111 TEST DATA

011111000111101000011101011100

Figure 6-15 SBST program generation flow

The first part of the code represents initialization process. Every general-purpose
register is loaded with data before testing each instruction so that to avoid fault
masking [87]. Then, the test part is being generated. In section C of Figure 6-15, a test
pattern string, retrieved from the TESTLIST is shown. Since the instruction fields are
known (using the link to the PATHLIST), the test program generator can retrieve
corresponding assembly instruction from the library. Indexes of register operands (S)
are manipulated depending on the test pattern.

Test program generation is strongly affected by the modelling level made in previous
steps. The more details can be extracted from instruction set architecture, the more
detailed test program can be generated. The specific behaviour of the processor can be
hidden or even made invisible from the ISA point of view. Hence, the simple list of
instructions may be not sufficient to cover the realistic structural details.

The exact fault coverage can be calculated by gate-level fault simulation. The
undetected gate-level faults may belong to the class of redundant faults. Otherwise, to
detect these faults, low-level ATPGs can be used for generating additional test
operands.

6.6 Environment for experiments and results

In order to obtain fault coverage metrics of generated SBST program, fault simulation
tools are used. For our experiments, we are using test environment based on
combination of Mentor Graphics ModelSim [90] simulator and Synopsys TetraMAX [91]
fault simulator. The organization of our SBST evaluation framework is shown in Figure
6-16.

71

Gate-level

netlist

RTL-level l
VHDL

———Memory file=p» St Ul e
Fault
COMPILER Simulator .
SBST simulator,
program
ModelSim TetraMAX

Figure 6-16 SBST program evaluation framework

A generated test program is compiled for the processor under test. In case of
miniMIPS, memory file is generated as a result of compilation. This file is added to the
processor RTL description. Using ModelSim software it's possible to simulate the
behaviour of the processor during the execution of the test program. Command -
dumpports, in ModelSim, allows storing the stimuli, obtained from inputs and outputs
of the processor during simulation, in unified vcd format.

Stimuli data, obtained during simulation step is loaded into fault simulator as a list of
test vectors. Gate-level netlist and technology library are loaded to TetraMAX fault
simulator. Then, it is possible to allocate the module of the processor for fault
simulation with patterns obtained during the previous step. Then, SAF are added to the
model under test. Finally, fault simulation is running and fault coverage results are
reported. Fault coverage results obtained from simulation with automatically
generated SBST program for miniMIPS are shown in Table 6-2.

Table 6-2 miniMIPS fault coverage with generated SBST

Instance name #faults Fault coverage %
U1_pf (Fetch stage) 2182 59,01
U2_ei (PC) 1608 80,53
U3_di (Decode stage) 7472 78,10
U4_ex (Execute stage, ALU, MULT) 211136 96,42
U5_mem (Memory access stage) 2870 56,46
U6_renvoi (Bypass unit) 3738 78,18
U7_banc (Register bank) 43584 82,19
U8_syscop (Coprocessor) 6930 79,14
U9 _bus_ctrl (Bus control) 2028 79,58
U10_predict (Branch prediction) 21286 53,06
Total 302986 89,46

The test data generation was targeting mostly the execute stage of MiniMIPS, which
includes the biggest part of the processor core — ALU including two multiplication units.
As a result, decent coverage of 96,42% of faults in U4_ex is achieved (Table 6-3), where
97,58% of faults in ALU were covered.

Table 6-3 Fault coverage of execute stage in details

Instance name #faults | Fault coverage %
U4_ex (Execute stage) | 211136 96,42
ALU 203576 97,58

72

The significant loss in fault coverage is due to the fact, that current model does not
cover pipeline behaviour. This affects fault coverage in every stage of the pipeline,
thereafter the fault coverage result for the pipeline-related control logic of execute
stage (U4_ex) is only 86.32%.

This problem can be solved by populating test program with specific patterns of
code, which will activate the faults in pipeline control and memory addressing unit [25].
Nevertheless, we find the obtained coverage as decent (89.46%), keeping in mind that
it was obtained by automatically generated SBST program, i.e. effort was given only for
composing the list of instructions in isd/ format.

Table 6-4 Fault coverage results of different SBST methods (MiniMIPS ex & ALU)

Method | ATPG [92] | HLDD | #1[9] | #2[24] | #3[92]
U4_ex 99,93 96,42 | 96,37 | 84,12 97,62
ALU 97,58 97,58 - 97,78 98,67

In table Table 6-4 the results of fault coverage for execute stage and ALU of
MiniMIPS processor are shown.

The first method (#1) [9] is capable to automatically generate SBST programs. It is relying
on using ATPG and SAT solver for pattern generation, which are generating test program by
applying constraints during structural and functional analysis of the circuit under test. An
additional hardware module is used for observing the inputs and outputs of processor
during in-field application, in order to discover the incorrect behaviour. However, fault
coverage result for ex stage including ALU is less compared to our HLDD-based approach.
The difference, although is very small, and the result can be considered equal.

Next approach #2 [24] is similar to the method we have proposed in this thesis. SBST
generation is based on instruction set model of the processor, additionally applying
developed mechanisms in order to increase the fault coverage for pipeline control and
memory addressing. Fault coverage result for execute stage of the pipeline is relatively
low. The reason for that can be overall low attention to the control part of the
processor under test. However, ALU coverage is superior to HLDD-based approach,
outperforming it by 0,2%.

In the question of fault coverage percentage for execute stage of the pipeline and
ALU, method named ATIG (#5) [92] has shown the best result. However, the fault
coverage given in this work is computed by considering only structurally testable faults,
i.e., structurally untestable faults are collapsed, making comparison unfair. This method
is based on test generation using structural information (gate-level). Additionally, this
method is relying on modification in RTL design in order to obtain the best observability
of the system aiming to find best test patterns. However, fault coverage is measured on
“clean” system.

We have compared fault coverage of execute stage and ALU only, since at the
current stage we were targeting this part of the processor mostly, generating test data
for it. All other modules of the processor were tested with the same data operands,
delivering decent, but not superior or at least competitive coverage.

73

6.7 Summary

This chapter demonstrated that the previously proposed formal methods can be used
to automate the SBST generation process. The implementation of these methods was
conducted under the heading of the proposed framework. The structure and
algorithms are presented in detail in order to leave the possibility for reproducing.

A formal methodology was automated for the synthesis of HLDD models for
microprocessors on the basis of the instruction set description. A procedure of manual
transformation of the instruction set architecture into machine-readable format was
developed, which formed the basis of the automated synthesis of the graph model of
microprocessors.

The second part of the framework used the formal basis for the test generation
process. The implementation of these methods is described in detail, including the
traversing through graphs to generate scanning and conformity tests.

The generated tests, obtained by traversing the model and applying the constraints
developed in previous chapters, are automatically converted into test programs which
can be loaded and executed on the processor under test.

As a proof-of-concept, an automated generation of test program targeting the ALU
of MiniMIPS was demonstrated. The efficiency of generated test programs, in terms of
test coverage, was evaluated separately for different modules of the microprocessor.
The obtained fault coverage results for the execute stage and ALU module are
competitive or even superior to other state-of-the-art approaches.

The main advantage of the newly developed methods is that the tests, generated for
microprocessors on the basis of only high-level instruction set information, have the
same quality as state-of-the-art methods which use additional information about the
low-level implementation details.

74

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The aim of this thesis is to propose a novel formalised methodology for modelling
microprocessors on the basis of the instruction set description, with the goal of
automated synthesis of SBST programs. The proposed modelling approach extends the
theory of HLDDs to support behavioural modelling of the microprocessor, describing its
high-level structure and components. The automation of the SBST program
development is based on the topological analysis of HLDDs and solving the high-level
data constraints deduced from the model of the microprocessor under test.
The main contributions of the presented work are summarised below.
e The methodology for high-level modelling of microprocessors on the basis of its
instruction set architectures
The methodology is based on the theory of HLDDs to model microprocessors, based
on the descriptions of their instruction set architectures. The use of high-level
behavioural descriptions of microprocessors as input data for model synthesis makes
this approach more scalable than other state-of-the-art approaches, which are based
on lower-level descriptions. The proposed formal method introduces the important
property of one-to-one mapping between the modelled processor and its
corresponding high-level functionality. This allows the HLDD model to be used as a
checklist for high-level test planning and organisation of test programs for
microprocessors. Suggested techniques are applied to synthesise the model for Parwan
and MiniMIPS processors. The model has compact representation, allowing more
precise specification of the behaviour of the microprocessor, in more detail, than the
traditional instruction set descriptions.
e Definition of the new high-level classes of fault models for microprocessors,
which are also mapped to related low-level structural faults
The goal of this work is the development of a formal methodology for test
generation. Well-defined formal test targets are thus required. After careful
investigation of the properties of the chosen formal modelling method, a wide range of
possibilities for fault modelling was discovered. HLDDs support multi-level fault
modelling, allowing mapping of high-level functional faults to lower-level faults,
guaranteeing the high accuracy of testing. Three novel high-level fault classes for
microprocessors were proposed, considered superclasses over existing RTL-level fault
models for microprocessors. The HLDD-based higher level of abstraction allows the
reduction of the size of the fault model by orders of magnitude, compared to the low-
level abstractions.
e A formal method of generation of SBST on the basis of the HLDD model
The proposed microprocessor models in the form of HLDD networks ensure well-
defined structured information, which is more suitable for test generation purposes
than traditional models in the form of instruction lists. In order to utilise these models
in SBST generation, two novel concepts were proposed: conformity test and scanning
test. Conformity test targets the control part of the microprocessor, while scanning test
is designed for the data path. Due to the cyclic nature of both algorithms for test
generation, it is possible to achieve compact test programs, thus saving memory space.
In addition, the exhaustive and pseudo-exhaustive origin of the proposed methods
offers high fault coverage and better diagnostic capabilities. The proposed regular

75

construction (init-test-store) of test templates reduces the probability of fault masking.
On the other hand, exhaustive testing with repeated constant initialisation procedures
has an impact on the number of processor cycles used for test program execution.
However, test programs can be always optimised by consideration of the trade-off
between accuracy and test length. The proposed SBST generation method was
evaluated using Parwan and MiniMIPS microprocessors. Both manually and
automatically generated test programs demonstrated their superiority, resulting in up
to 10% higher fault coverage than alternative state-of-the-art methods, maintaining the
small test program size.
e Framework for automated SBST synthesis

Finally, the automatization of the SBST program generation was introduced. Using
the formal methods proposed in this work, the framework for automated SBST
generation was developed. As the description of instruction sets in the documentation
is not uniform, initial data should be extracted manually. Therefore, a methodology for
data extraction and its composition into uniform machine-readable format is proposed.
The extracted data is used in the developed framework to automatically synthesise the
HLDD model of the given processor. Experiments with SBST generation were conducted
for the MiniMIPS microprocessor, targeting its execute stage (containing the ALU
module) of the pipeline. The obtained fault coverage results are competitive or even
superior to those of other state-of-the-art approaches. Tests generated on the basis of
only high-level instruction set information achieve the same quality as state-of-the-art
methods which use additional information on the implementation details. Nonetheless,
the proposed methodology must be extended to cope with the faults in pipeline logic
and other traits in hardware implementation.

7.2 Future work

The main direction of the future work is test data generation. Test data generation on
the basis of HLDD models is omitted from this work, as it is currently ‘in-progress’. The
test data used in the experiments were preliminary and manually generated using the
ideas of pseudo-exhaustive testing. Properly generated test data may have a strong
positive effect on the overall test quality and diagnostic properties of the proposed
methodology. Thus, developments in this direction are of the highest priority.

Another functionality to be implemented in frames of SBST generation framework is
the signature calculation module. The term signature is used for compressed test
responses. Proper algorithms for signature calculation and decryption can improve the
diagnostic qualities of the framework.

The work on extending the instruction description language and model synthesis
should be continued. This may assist in the adoption of the proposed methodology for
a wider spectrum of microprocessor architectures; for example, assisting in modelling
complex pipeline behaviour, such as data hazards and stalls.

76

List of figures

Figure 2-1 Features of microprocessor test methods...........ccceeeeiieiiciiiieeei e, 13
Figure 2-2 function y=f(x1,x2,x3,x4) represented with HLDDcc.ceceecrireeecrreeennennn. 19
Figure 2-3 Logic simulation on HLDDcooiiiiiiiiiiiiiiec et e e 19
Figure 2-4 Synthesis of HLDD for functional variable Ac.ccooe i, 21
Figure 2-5 Topology comparison of SSBDD and HLDDcccceevveeeeciieeeeciiie e 21
Figure 3-1 HLDDs for the microprocessor with instruction set in Table 3-1.................. 24
Figure 3-2 ISA-based high-level structure of the microprocessor described in Table 3-1... 25
Figure 3-3 Instruction format groups of Parwan microprocessor..........cccceeeeveccvvvveeeeennn. 26
Figure 3-4 Behavioural level structure of Parwan microprocessor.........cccccceeeecvvveenennnn. 27
Figure 3-5 HLDD synthesis for functional variable V.........ccccoiiiiiiieici e, 28
Figure 3-6 HLDD model for the microprocessor Parwanccccceeeecviiieeeeeeesccvveeeeeenn. 29
Figure 3-7 AND instruction simulation in PARWAN model........ccccceecveeiveciieiccieee e, 31
Figure 4-1 Demonstration of different faults in HLDD model of PARWAN...................... 38
Figure 4-2 lllustration of the behaviour of a hard-to-test faultcccccoeecvveiecveeennneen. 39
Figure 4-3 Digital system with its HLDD modelcccoeeiiieiiiiiiieeceecieee e 41
Figure 5-1 Mapping between the instruction formats and the vector functions Y=F(X) ... 45
Figure 5-2 Instruction set of Parwan microprocessor and HLDD model of its ALU 47
Figure 5-3 Test template for testing non-terminal nodes in the HLDD Gacc.ece....... 48
Figure 5-4 Test template for testing in the HLDD Gac the node labelled by working mode
[T o TT = 1 Lo o) X O RS 49
Figure 5-5 Test generation for Parwan microprocessor with shared HLDDs................... 50
Figure 5-6 A generalized data structure for self-testing of microprocessors.................. 52
Figure 5-7 Example of fault masking during 10 procedureccccceeveiiieeeeeeeccciiieeeeenn. 53
Figure 5-8 Example of fault masking avoidance techniqueccccccoeciiieeeieiiicciiieeneene. 53
Figure 5-9 Comparison of different test coverages (PARWAN)cccceeeeciiieeciieeecnnennn. 54
Figure 6-1 Software-Based Self-Test generation framework..........cccceeeevieeieciieeeccnnenn. 56
Figure 6-2 ADD instruction description from Minimips manualccceecvvvieciieeenneenn. 57
Figure 6-3 MiniMIPS instruction formats........cccoccuveeeeiiieecceee e 57
Figure 6-4 ADD instruction converted tO ISDLcceecvieeeiivieeciee e 58
Figure 6-5 Subset of miniMIPS instruction set in ISDL formatccccovveeeieeniciiiieeneennn. 59
Figure 6-6 Metamodel Of HLDDcccoo ittt e e e e e e e 60
Figure 6-7 HLDD graph for PC on basis of ADD instruction description in ISDL format .. 65
Figure 6-8 HLDD graph for GPR; on basis of ADD instruction description...........ccccc....... 65
Figure 6-9 HLDD graphs for GPR reiSTersccovcuieeeeciieeeciiie e cree e e e e e 65
Figure 6-10 HLDD graphs for miniMIPS ALUooveiiiieieeee e 66
Figure 6-11 HLDD graph for miniMIPS program COUNter........cccccceeviveeeeeciveeeeceeee s 67
Figure 6-12 HLDD graphs for miniMIPS flagscccuviiieiieiiiiiieee e 68
Figure 6-13 HLDD graphs for miniMIPS memory-register data movement.................... 68
Figure 6-14 Example of test generation.......cccccooeeciiiiiiiiiecciieee e 69
Figure 6-15 SBST program generation flOWcccoeeiiiiiiiiiiiiiee e 71
Figure 6-16 SBST program evaluation frameworkccccccveeevcieeeecieeeeeiee e 72

77

List of tables

Table 3-1 Instruction set of a simple hypothetical microprocessor with ten instructions.. 23

Table 3-2 Instruction set of PARWAN MiCrOPrOCESSONuvvieeeeeeeiiiiireeeeeeeeevreneeeeeeenennns 25
Table 4-1 Comparison of HLDD-based faults with high-level faults proposed in [83] 37
Table 4-2 Interpretation of microprocessor faults in HLDD........cccccceveeviieecviieeeciieeeas 39
Table 4-3 Mapping low level structural faults into high-level functional faults.............. 41
Table 5-1 Conformity test temMPIate.......ccocciiei i 50
Table 5-2 Instructions to be inserted into the conformity test program template 51

Table 5-3 Scanning test template to be repeated for the data operands in the memory .. 51
Table 5-4 Comparison of test lengths for testing PARWAN processor
Table 6-1 ISDL syntax for instruction fields..........ccccceiieeiiiiiieeiieciee,
Table 6-2 miniMIPS fault coverage with generated SBST
Table 6-3 Fault coverage of execute stage in detailScccceevveeeeeciieeccceee e

Table 6-4 Fault coverage results of different SBST methods (MiniMIPS ex & ALU)........ 73

78

References

[1] E. B. Eichelberger and T. W. Williams, “A Logic Design Structure for LSI Testability,”
in Papers on Twenty-five Years of Electronic Design Automation, New York, NY,
USA, 1988.

[2] S. Funatsu, N. Wakatsuki and A. Yamada, “Designing digital circuits with easily
testable considerations,” in Semiconductor Test COnference, Long Beach, 1978.

[3] M. Psarakis, D. Gizopoulos, E. Sanchez and M. Reorda, “Microprocessor Software-
Based Self-Testing,” IEEE Design & Test of Computers, vol. 27, no. 3, pp. 4-19, 2010.

[4] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,” in IEEE T.
Comput., 1980.

[5] SO Standard, Road vehicles - Functional safety, 26262, 2011.

[6] [EC Standard, Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems, 61508, 2010.

[71 DO-254 Standard, Design Assurance Guidance for Airborne Electronic Hardware,
2000.

[8] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. S. Reorda and B. Becker, “An
effective approach to automatic functional processor test generation for small-
delay faults,” in 2014 Design, Automation Test in Europe Conference Exhibition
(DATE), 2014.

[9] A. Riefert, R. Cantoro, M. Sauer, M. S. Reorda and B. Becker, “A Flexible
Framework for the Automatic Generation of SBST Programs,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, pp. 3055-3066, 10 2016.

[10] M. Scholzel, T. Koal, S. Roder and H. T. Vierhaus, “Towards an automatic
generation of diagnostic in-field SBST for processor components,” in 2013 14th
Latin American Test Workshop - LATW, 2013.

[11] P. Nigh, W. Needham, K. Butler, P. Maxwell and R. Aitken, “An experimental study
comparing the relative effectiveness of functional, scan, IDDq and delay-fault
testing,” in Proceedings. 15th IEEE VLS| Test Symposium (Cat. No.97TB100125),
1997.

[12] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits, Springer Publishing Company, Incorporated, 2013.

[13] I. Bayraktaroglu, J. Hunt and D. Watkins, “Cache Resident Functional
Microprocessor Testing: Avoiding High Speed |0 Issues,” in 2006 IEEE International
Test Conference, 2006.

[14] P. Parvathala, K. Maneparambil and W. Lindsay, “FRITS - a microprocessor
functional BIST method,” in Proceedings. International Test Conference, 2002.

[15] S. Gurumurthy, S. Vasudevan and J. A. Abraham, “Automatic generation of
instruction sequences targeting hard-to-detect structural faults in a processor,” in
2006 IEEE International Test Conference, 2006.

[16] L. Lingappan and N. K. Jha, “Satisfiability-Based Automatic Test Program
Generation and Design for Testability for Microprocessors,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 15, pp. 518-530, 5 2007.

79

[17] C. H. P. Wen, L.-C. Wang and K.-T. Cheng, “Simulation-Based Functional Test
Generation for Embedded Processors,” IEEE Transactions on Computers, vol. 55,
pp. 1335-1343, 11 2006.

[18] N. Kranitis, A. Paschalis, D. Gizopoulos and G. Xenoulis, “Software-based self-
testing of embedded processors,” IEEE Transactions on Computers, vol. 54, pp.
461-475, 4 2005.

[19] C. H. Chen, C. K. Wei, T. H. Lu and H. W. Gao, “Software-Based Self-Testing With
Multiple-Level Abstractions for Soft Processor Cores,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 15, pp. 505-517, 5 2007.

[20] J. Shen and J. A. Abraham, “Native mode functional test generation for processors
with applications to self test and design validation,” in Proceedings International
Test Conference 1998 (IEEE Cat. No.98CH36270), 1998.

[21] F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, “Automatic test program
generation: a case study,” IEEE Design Test of Computers, vol. 21, pp. 102-109, 3
2004.

[22] E. Sanchez and M. S. Reorda, “On the Functional Test of Branch Prediction Units,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, pp. 1675-
1688, 9 2015.

[23] S. D. Carlo, P. Prinetto and A. Savino, “Software-Based Self-Test of Set-Associative
Cache Memories,” IEEE Transactions on Computers, vol. 60, pp. 1030-1044, 7 2011.

[24] D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis, A.
Raghunathan and S. Ravi, “Systematic Software-Based Self-Test for Pipelined
Processors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
16, pp. 1441-1453, 11 2008.

[25] P. Bernardi, R. Cantoro, L. Ciganda, B. Du, E. Sanchez, M. S. Reorda, M. Grosso and
O. Ballan, “On the Functional Test of the Register Forwarding and Pipeline
Interlocking Unit in Pipelined Processors,” in 2013 14th International Workshop on
Microprocessor Test and Verification, 2013.

[26] P. Bernardi, R. Cantoro, L. Ciganda, E. Sanchez, M. S. Reorda, S. D. Luca, R.
Meregalli and A. Sansonetti, “On the in-field functional testing of decode units in
pipelined RISC processors,” in 2014 IEEE International Symposium on Defect and
Fault Tolerance in VLS| and Nanotechnology Systems (DFT), 2014.

[27] R. Ubar, A. Jasnetki, A. Tsertov and A. S. Oyeniran, Software-Based Self-Test with
Decision Diagrams for Microprocessors, LAP LAMBERT Academic Publishing, 2018.

[28] C. Lee, “Representation of Switching Circuits by Binary Decision Programs,” The
Bell System Technical Journal, pp. 985-999, 1959.

[29] R. Ubar, “Test Generation for Digital Circuits with Alternative Graphs,” Tallinn
Technical University, no. 409, pp. 75-81, 1976.

[30] S. Akers, “Functional Testing with Binary Decision Diagrams,” Journal of Design
Automation and Fault-Tolerant Computing , vol. Il, pp. 311-331, 1978.

[31] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Transactions on Computers, Vols. C-35, no. 8, pp. 667-690, 1986.

[32] T. Sasao and M. Fujita, “Representations of Discrete Functions,” Kluwer Academic
Publishers, 1996.

80

[33] R. Drechsler and B. Becker, Binary Decision Diagrams, Kluwer Academic Publishers,
1998.

[34] S. Minato and N. Ishiura, “Shared binary decision diagrams with attributed edges
for efficient Boolean function manipulation,” in 27th IEEE/ACM ICCAD, 1990.

[35] A. Srinivasan, T. Kam, S. Malik and R. Bryant, “Algorithms for discrete function
manipulation,” in Informations Conference on CAD — ICCAD, 1990.

[36] U. Kebschull, E. Schubert and W. Rosenstiel, “Multilevel logic synthesis based on
functional decision diagrams,” in IEEE EDAC, 1992.

[37]1 S. Minato, “Zero-suppressed BDDs for set manipulation in combinational
problems,” in 30th DAC, 1995.

[38] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo and F. Somenzi,
“Algebraic decision diagrams and their applications,” in Internation Conference on
Computer Aided Design, 1993.

[39] R. Drechsler, A. Sarabi, M. Theobald, B. Becker and M. Perkowski, “Efficient
representation and manipulation of switching functions based on Ordered
Kronecker Functional Decision Diagrams,” in DAC, 1994.

[40] R. Bryant and Y.-A. Chen, “Verification of arithmetic functions with binary moment
diagrams,” in 32nd ACM/IEEE DAC, 1995.

[41] J. Bern, C. Meinel and A. Slobodova, “Efficient OBDD-based manipulation in CAD
beyond current limits,” in 32-nd DAC, 1995.

[42] E. Clarke, N. Fujita and X. Zhao, “Multi-terminal binary decision diagrams and
hybrid decision diagrams,” in Representations of Discrete Functions, Kluwer
Academic Publishers, 1996, pp. 93-108.

[43] R. Stankovi¢, J. Astola, M. Stankovi¢ and K. Egiazarjan, “Circuit synthesis from
Fibonacci decision diagrams,” VLSI Design, Special Issue on Spectral Techniques and
Decision Diagrams, no. 14, pp. 23-34, 2002.

[44] R. Ubar, “Test Synthesis with Alternative Graphs,” IEEE Design&Test of Computers,
pp. 48-57, 1996.

[45] R. Ubar, J. Raik, A. Jutman and M. Jenihhin, “Diagnostic Modeling of Digital
Systems with Multi-Level DDs,” in Design and Test Technology for Dependable SoC,
IGI Global, 2011, pp. 92-118.

[46] A. Fauth, M. Freericks and A. Knoll, “Generation of hardware machine models from
instruction set descriptions,” in Workshop on VLSI Signal Processing, Veldhoven,
1993.

[47] V. Zivojnovic, S. Pees and H. Meyr, “LISA-machine description language and generic
machine model for HW/SW co-design,” in VLSI Signal Processing, San Francisco,
1996.

[48] J. Raik, Hierarchical Test Generation for Digital Circuits Represented by Decision
Diagrams, Tallinn: TUT Press, 2001.

[49] R. Ubar, J. Raik, A. Karputkin and M. Tombak, “Synthesis of High-Level Decision
Diagrams for Functional Test Pattern Generation,” in International Conference
MIXDES, Lodz, 2009.

[50] A. Tsertov, System Modeling for Processor-Centric Test Automation, Tallinn: TTU
Press, 2012.

81

[51] A. Tsepurov, Hardware Modeling for Design Verification and Debug, Tallinn: TUT
Press, 2013.

[52] M. lenihhin, Simulation-Based Hardware Verification with High-Level Decision
Diagrams, Tallinn: TUT Press, 2008.

[53] R. Ubar, “Test Generation for Digital Systems on the Vector Alternative Graph
Model,” in 13th Symposium on Fault Tolerant Computing, Milan, 1983.

[54] R. Ubar, J. Raik and A. Morawiec, “Back-tracing and event-driven techniques in
high-level simulation with decision diagrams,” in International Symposium on
Circuits and Systems, Geneva, 2000.

[55] R. Ubar, A. Morawiec and J. Raik, “Cycle-based Simulation with Decision
Diagrams,” in Design, Automation and Test in Europe Conference and Exhibition,
Munich, 1999.

[56] A. Jasnetski, R. Ubar, A. Tsertov and M. Brik, “Software-based self-test generation
for microprocessors with high-level decision diagrams,” Estonian Academy of
Sciences, vol. 1, no. 63, pp. 48-61, 2014.

[57] Z. Navabi, Analysis and Modeling of Digital Systems, McGraw-Hill, 1993.

[58] A. Jasnetski, J. Raik, A. Tsertov and R. Ubar, “New Fault Models and Self-Test
Generation for Microprocessors using High-Level Decision Diagrams,” in IEEE
Symposium on Design and Diagnostics of Electronic Circuits and Systems - DDECS,
Belgrade, 2015.

[59] A. Jasnetski, S. Oyeniran, A. Tsertov, M. Schélzel and R. Ubar, “High-level modeling
and testing of multiple control faults in digital systems,” in IEEE International
Symposium on Design and Diagnostics of Electronic Circuits & Systems - DDECS,
Kosice, 2016.

[60] U. Mahlstedt, J. Alt and I. Hollenbeck, “Deterministic Test Generation for Non-
Classical Faults on Gate Level,” in ATS, 1995.

[61] S. Holst and H.-J. Wunderlich, “Adaptive Debug and Diagnosis Without Fault
Dictionaries,” in 13th ETS, 2008.

[62] K. Dwarakanath and R. Blanton, “Universal Fault Simulation using fault tuples,” in
DAC, 2000.

[63] K. Keller, “Hierarchical Pattern Faults for Describing Logic Circuit Failure
Mechanisms”. USA Patent 5546408, 13 August 1994.

[64] R. Blanton and J. Hayes, “On the Properties of the Input Pattern Fault Model,” ACM
Transactions on Design Automation of Electronic Systems , vol. 8, no. 1, pp. 108-
124, 2003.

[65] R. Ubar, “Detection of Suspected Faults in Combinational Circuits by Solving
Boolean Differential Equations,” Automation and Remote Control, vol. 40, no. 11,
pp. 1693-1703, 1980.

[66] Y. Cho, S. Mitra and E. McCluskey, “Gate Exhaustive Testing,” in International Test
Conference, 2005.

[67] A. Jas, S. Natarajan and S. Patil, “The Region-Exhaustive Fault Model,” in 16th Asian
Test Symposium, 2007.

[68] P. Maxwell and R. Aiken, “Biased Voting: A Method for Simulating CMOS Bridging
Faults in the Presence of Variable Gate Logic Thresholds,” in ITC, 1993.

82

[69] L. Zhuo, X. Lu, W. Qiu, W. Shi and D. Walker, “A Circuit Level Fault Model for
Resistive Opens and Bridges,” in VLS| Test Symposium, Napa, 2003.

[70] P. Engelke, I. Polian, M. Renovell and B. Becker, “Simulating resistive bridging and
stuck-at faults,” IEEE Transactions on CAD of IC and Systems, vol. 25, no. 10, pp.
2181-2192, 2006.

[71] A. Rousset, A. Bosio, P. Girard, C. Landrault, S. Pravossoudovitch and A. Virazel,
“Fast Bridging Fault Diagnosis Using Logic Information,” in 16th ATS, Beijing, 2007.

[72] S. Jain and V. Agrawal, “Modeling and Test Generation Algorithms for MOS
Circuits,” IEEE Transactions on Computers, Vols. C-34, no. 5, pp. 426-433, 1985.

[73] H. Lee and D. Ha, “SOPRANO: An Efficent Automatic Test Pattern Generator for
Stuck-Open Faults in CMOS Combinational Circuits,” in DAC, Orlando, 1990.

[74] A. Kristic and K. Cheng, Delay Fault Testing for VLSI Circuits, Dordrecht: Springer
us, 1998.

[75] G. Chen, S. Reddy, I. Pomeranz, J. Rajski, P. Engelke and B. Becker, “A Unified Fault
Model and Test Generation Procedure for Interconnect Opens and Bridges,” in
10th ETS, Tallinn, 2005.

[76] M. Hansen and J. Hayes, “High-Level test generation Using Physically-Induced
Faults,” in VLSI Test Symposium, 20-28, 1995.

[77] T. Lin and S. Su, “The S-Algorithm: A promising solution for systematic functional
test generation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 4, pp. 250-263, 1985.

[78] G. Buonanno, F. Ferrandi and F. Fummi, “How an Evolving Model Improves the
Behavioral Test Generation,” in 7th Great Lakes Symposium on VLS|, 1997.

[79] A. Fin and F. Fummi, “A VHDL Error Simulator for Functional Test Generation,” in
Proceedings of the Design, Automation and Test Conference, 2000.

[80] S. Ghosh and T. Chakraborty, “On Behavior Fault Modelling for Digital Designs,” in
Electronic testing: Theory and Applications, Kluwer Academic Publishers, 1991, pp.
135-151.

[81] C. Cho and J. Armstrong, “A Behavioral Test Generation Algorithm,” in
International Test Conference, 1994.

[82] R. Ramchandani and D. Thomas, “Behavioral Test Generation using Mixed Integer
Non-linear Programming,” in IEEE International Test Conference, 1994.

[83] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,” IEEE
Transactions on Computers, Vols. C-29, pp. 429-441, 6 1980.

[84] F. Happke and e. al., “Cell-Aware Test,” IEEE Transactions on CAD of IC and
Systems, vol. 33, no. 9, 2014.

[85] L. Chen and S. Dey, “Software-based self-testing methodology for processor
cores,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, no. 3, pp. 369-380, 2001.

[86] Y. Zhang, H. Li and X. Li, “Software-Based Self-Testing of Processors Using
Expanded Instructions,” in 19th IEEE Asian Test Symposium, Shanghai, 2010.

[87] A. Jasnetski, R. Ubar and A. Tsertov, “Automated software-based self-test
generation for microprocessors,” in 2017 MIXDES - 24th International Conference
"Mixed Design of Integrated Circuits and Systems, Bydgoszcz, 2017.

83

[88] OpenCores, “MiniMIPS ISA”.

[89] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, 3rd ed., San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2007.

[90] “ModelSim,” [Online]. Available:
https://www.mentor.com/products/fv/modelsim/. [Accessed 18 12 2017].
[91] “TetraMAX ATPG,” [Online]. Available:

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/test-
automation/tetramax-atpg.html. [Accessed 18 12 2017].

[92] Y. Zhang, H. Li and X.-W. Li, “Automatic Test Program Generation Using Executing-
Trace-Based Constraint Extraction for Embedded Processors,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 7, pp. 1220-1233, 2013.

[93] J. Bertin, Graphics and Craphic Information Processing, Berlin: Walter de Gruiter,
1981.

[94] S. A. a. L. Shih, “Towards and Interactive Learning Approch in Cybersecurity
Education.,” in Proceedings of the 2015 Information Security Curruculum
Development Conference, New York, 2015.

84

Acknowledgements

| would like to thank all those who supported me during my PhD studies, and without
whom this work would never have been completed.

| would like to express particular gratitude to my supervisors, Professor Raimund-
Johannes Ubar and Dr. Anton Tsertov, for helping me to take my first steps in the
engineering domain. They guided me through my PhD studies challenging me along the
way. It has been a big pleasure to work alongside them.

I would also like to thank those in the Department of Computer Systems and my
colleagues from Testonica Lab, all of whom contributed to my work through heated
discussions and ideas.

Special thanks to Dr. Margus Kruus, the head of the Department of Computer
Systems, for his support with many administrative issues.

I would also like to acknowledge several organisations that supported my PhD
studies: the Tallinn University of Technology, the IT Academy of Estonia, the
Information Technology Foundation (HITSA), the Estonian Association of Information
Technology and Telecommunications (ITL) and the Estonian Ministry of Education and
Research.

85

Abstract
Software-Based Self-Test for Microprocessors with High-Level
Decision Diagrams

The field of Software-Based Self-Test (SBST) has been a topic of extensive
research in industry and academia for more than three decades. Nevertheless, self-test
programs for microprocessors are generally written manually, due to a lack of attention
paid to efficient formal methods. High-level fault modelling and formal test generation
strategies have not been studied sufficiently to support the automated synthesis of
self-test programs and to provide methods for fast test quality evaluation. In addition,
restrictions imposed by the NDA on commercial microprocessors, have made test
program generation impossible for most state-of-the-art SBST methods.

This thesis contributes to closing these gaps by introducing a formal methodology for
automated SBST program synthesis, based on instruction set description of
microprocessors. High-level decision diagrams (HLDDs) were chosen to provide a formal
ground for presented methodology.

The research presented in this thesis originated from a method of building HLDD
models using data extracted exclusively from instruction set architecture description.
This novel method models microprocessor as a set of interrelated HLDD graphs. The
proposed modelling approach allows the reflection of high-level functionality of
microprocessor with nodes in HLDDs. This provides an opportunity to use the nodes in
HLDD graphs for the development of test strategies and the design of test programs for
microprocessors.

In this work, it was established that in comparison to the state-of-the-art
approaches, the HLDD-based model covers a wide spectrum of high-level behavioural
faults in microprocessors. In addition, the transition from a lower to a higher level of
abstraction reduces the size of HLDD-based fault models by orders of magnitude.
Despite the compaction of the model, the newly proposed fault classes guarantee a
high accuracy of testing, which was demonstrated by mapping the new fault classes
onto lower level faults and showing that the HLDD-based high-level fault classes fully
cover a broad class of structural gate-level fault models.

Two novel concepts for test generation are proposed in this thesis: conformity
testing and scanning testing. The use of both algorithms of conformity and scanning
test generation results in compact presentation of the test program, high fault
coverage, increase in diagnostic capabilities, and reduction in the probability of fault
masking.

The overall formalism of the presented methodology allows an automated model
synthesis for the microprocessor, and self-test program generation. The
implementation of these methods is conducted under the heading of the proposed
automation oriented framework. Its structure and algorithms are discussed in detail,
and evaluated on the examples of the Parwan and MiniMIPS processors. The obtained
fault coverage results are competitive or even superior to those of other state-of-the-
art approaches. The main advantage of the newly developed methods is in the
capability of the tests generated for microprocessors on the basis of high-level
instruction set information, which achieve the same quality as state-of-the-art methods
do, which rely on additional information regarding low-level implementation details.

86

Liihikokkuvote
Mikroprotsessorite tarkvara-pohine enesetestimine
korgtasandi otsustusdiagrammide pohjal

Mikroprotsessorite tarkvara-phise enesetestimise (SBST) valdkond on olnud ulatuslik
teema tOOstuses ja akadeemiliste ringkondades rohkem kui kolm aastakiimmet.
Tohusate formaalsete meetodite puudumise tottu programmeeritakse
mikroprotsessorite enesekontrolli teste kasitsi. Rikete modelleerimise Idhenemisviise
korgematel abstraktsetel tasanditel ja formaalsete testimistegevuste strateegiaid ei ole
piisavalt pdohjalikult uuritud, et toetada mikroprotsessorite enesetestiprogrammide
automaatset siinteesimist ja testimise kvaliteedi hindamise kiireid meetodeid. NDA
poolt kaubanduslikele mikroprotsessorite kehtestatud lisapiirangute téttu kirjeldatakse
protsessorite funktsionaalsust lksnes kadsustike arhitektuuri esitavate dokumentidega,
avaldamata seejuures implementatsioonide detaile, muutes seetGttu
korgekvaliteediliste testprogrammide automaatse genereerimise ja testide kvaliteedi
hindamise vGimatuks enamuste kaasaegsete SBST meetodite puhul.

Kaesolev vditekiri on suunatud nimetatud linkade likvideerimisele, pakkudes vilja
formaalse = metoodika automatiseeritud enesetestiprogrammide siinteesiks
mikroprotsessoritele, mis pShineb lksnes protsessorite kasustike kirjeldustel. Valitud
metoodika formaalse aluse loomiseks valiti digitaalsisteemide korgtasandi
otsustusdiagrammid (HLDD).

Viaitekirjas on valja tootatud meetod HLDD mudelite ehitamiseks protsessorite
kasustike kirjelduste pdhjal. Selle meetodi abil saab mikroprotsessorit kujutada mudeli
abil, mis koosneb HLDD mudelite vorgust, kus Uksikud HLDD-graafid kujutavad
erinevaid protsessorite funktsionaalseid Uksusi. Vilja toétatud modelleerimisviis
garanteerib Uks-Uhese vastavuse HLDD s8lmede ja mikroprotsessori funktsionaalsete
alamskeemide vahel. See véimaldab kasutada HLDD sGlmede hulka kontrollnimekirjana
protsessori testprogrammide planeerimiseks ja organiseerimiseks abstrahheerimise
korgtasandil.

Kéesolevas t60s Gnnestus kindlaks teha, et HLDD-mudel pakub paremaid vdimalusi
mikroprotsessori kaitumishairete modelleerimiseks korgtasandil, vorreldes
nuidisaegsete lahenemisviisidega. Traditsiooniliste meetodite puhul vaadeldakse
protsessorite kdske kui tervikuid, samal ajal t66s valja arendatud uue ldhenemisviisi
puhul vaadeldakse kdske kui funktsioonide komplekse, mis vdimaldab detailsemat
kasitlust ja seetdttu ka adekvaatsemate ja usaldusvadrsemate tulemuste saamist.

Samal ajal véimaldab HLDD-pGhine kasitlus vahendada rikete mudeli mahtu tervelt
suurusjargu voOrra traditsioonilist loogikatasandit silmas pidades. Mudeli kokku
surumisest hoolimata tagab uus rikete kasitlus samavdarse testimiskvaliteedi
loogikatasandiga vorreldes, mis sai t06s ka dra tdestatud uute rikete klasside
kaardistamise teel loogikatasandile, ndidates et HLDD-pG&hine ihtne rikete mudel katab
tdielikult loogikatasandi laia rikete mudelite klassi.

T60s on vilja pakutud uue mikroprotsessorite mudeliga hasti koosk&las olevad kaks
uut kontseptsiooni testide genereerimiseks koos vastavate slinteesialgoritmidega -
konformsustest ja skaneerimistest. Molema testi kooskasutusega on vdimalik
saavutada kogutesti suur kompaktsus, mis vdoimaldab vahendada testi salvestamiseks
vajaliku malu mahtu. Lisaks tagatakse vdga hea rikete kate, parem diagnoosikvaliteet ja
vaheneb rikete maskeerimise tdendosus ehk siis testimistulemuste usaldusvaarsus.

87

Esitatud metoodika kdorge formaliseeritus vdimaldab automatiseerida testitava
mikroprotsessori korgtasandi mudeli siinteesi ja selle mudeli pdhjal toimuvat
testprogrammide genereerimist. Valja todtatud algoritmid on koondatud Uhtsesse
raamistikku. Selle struktuur ja kdik uued algoritmid on implementeeritud tarkvarana,
mida on edukalt katsetatud kahe mikroprotsessori Parwan ja MiniMIPS
testprogrammide silinteesi naitel.

Eksperimentaalse uurimistod tulemused tdendavad, et uued meetodid, mis
pohinevad ainult korgtasandi info (mikroprotsessorite kasustike) kasutamisel, on
konkurentsivoimelised voi isegi paremad, vorreldes olemasolevate meetoditega, mis
lisaks kasustikule kasutavad ka lisainfot selle kohta, kuidas mikroprotsessorid on
skeemiliselt implementeeritud.

88

Appendix A

Publication |
Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton; Brik, Marina (2014). “Software-

based self-test generation for microprocessors with high-level decision diagrams.”
Proceedings of the Estonian Academy of Sciences, 63 (1), 48-61.

89

Proceedings of the Estonian Academy of Sciences,

2014, 63, 1, 48-61 COMPUTER
doi: 10.3176/proc.2014.1.08 ENGINEERING

Available online at www.eap.ee/proceedings

Software-based self-test generation for microprocessors with high-level
decision diagrams

Artjom Jasnetski, Raimund Ubar, Anton Tsertov*, and Marina Brik
Department of Computer Engineering, Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
Received 3 February 2014, accepted 25 February 2014, available online 14 March 2014

Abstract. This paper presents a novel approach to automated behavioural level test program generation for microprocessors
using the model of high-level decision diagrams (HLDD) for representing instruction sets. The methodology of using HLDDs for
modelling of microprocessors, and a new HLDD-based fault model are developed. The procedures for automated test program
generation are presented using a formal model of HLDDs. The feasibility and efficiency of the new methodology are demonstrated
by carrying out experimental research on test generation for a 8-bit microprocessor. The results are promising, showing the
advantages of the new method and demonstrating better quality of tests compared to previous results.

Key words: microprocessor, software-based self-test, test program generation, high-level decision diagrams.

1. INTRODUCTION

The modern technology advances are imposing new challenges on microprocessor testing. As the transistor
size decreases, the number of transistors per chip and operating frequency are growing. Modern processor
cores are built from billions of transistors and are capable to operate at gigahertz frequencies. Testing of such
complex components has been a challenge for several decades. Sequential automated test pattern generator
(ATPGQG) is, typically, inefficient in terms of test generation time for processor cores [1,2]. Historically, the
most common way of solving testing problems for VLSI designs is to apply the design for testability (DFT),
for example, the insert scan-chain [3]. However, scan-chains involve changes in the initial circuit design that
affect performance, power consumption, and chip area. Despite that, today DFT techniques like scan-chains
are an inevitable part of a processor testing plan that require an expensive external ATE.

During the last decade, the semiconductor industry was challenged to bring out new testing methods
that can be incorporated in an established microprocessor test flow. Those methods are targeted high quality
product development without excessive overhead in the test budget. Such a test method was first proposed
in 1980 [4], called software-based self-test (SBST).

The main principle of SBST is to execute the test program on an embedded processor for the purpose of
testing the processor itself and the surrounding resources. This approach eliminates the need of expensive
external testing hardware. Hence, the test time is limited with the performance of the processor, as soon as
the tests are executed at functional speed of the microprocessor. The interest for SBST was renewed during
the past decade, because of growing cost of functional testers. The main subject in SBST methodology is a

* Corresponding author, anton.tsertov @ttu.ee

A. Jasnetski et al.: Self-test generation for microprocessors 49

test program generation method, which must comply with the high-quality fault coverage standards imposed
by the industry.

In general, the development of the SBST program consists of four steps:

1) creation and optimization of test pattern delivery templates in assembly language,
2) module-level instruction imposed (functional) constraint extraction,

3) test generation process for each module of the processor under test,

4) translation of test patterns to self-test programs.

The last step is basically a process of joining the test pattern with the test pattern delivery template.

Initial focus of the research was on the fault coverage of the tests. The fault coverage of the SBST test is
primarily affected by the test patterns. One of the ways to obtain test patterns is to run ATPG. In [5] it was
shown that the processor can be divided into modules under tests (MUTS) to ease the task of ATPG. The
other way is to use random test patterns for MUTs [6]. Although the gate level fault coverage for MUT is
acceptable in deterministic and random test pattern generation, some of the generated patterns are typically
functionally infeasible when considering the processor as a whole. The latter requires a manual effort to
collect the constraints that guide ATPG at gate level. Obviously, considering todays complexity of the gate
level processor implementation it is not feasible to have manual operations at the gate level.

An automatic constraint extraction, based on the gate level simulation of generated tests to check their
functional feasibility, was proposed in [7]. But the efficiency of the method on the industrial processors was
known to be low. In [8] it is suggested to shift test pattern generation from the gate level to the RT level.
This is achieved by the reuse of the verification test patterns. The drawback of this method is that high fault
coverage for structural faults cannot be guaranteed by verification test patterns.

Considering the drawbacks of the previously mentioned methods we followed the idea to benefit from
the test generation at gate level and to collect functional constraints at RT level description of the processor.
One of the papers [9] shows the possibility to use the bounded model checker (BMC) to map the pre-
generated test patterns into delivery templates program. Regardless of that, it is done at RT level, industrial
processor designs cause time-out problems [10].

Another hybrid SBST method [11] was proposed to utilize the deterministic structural SBST
methodologies (using RT-level test development and gate-level-constrained ATPG test development)
combined with verification based self-test code development and directed random test pattern generator
(RTPG). This method overcomes the drawbacks of [8] and [9].

In addition to hybrid SBST methods [11,12] that work on RT level and gate level, there are methods that
achieve comparable results and improve scalability when generating SBST programs using only RT level
description of the MUTs [10,13].

In this paper, the SBST program generation, using MUTs modelling, is considered at behavioural
level, generally relying on the processor instruction set architecture (ISA). We propose a formal method
to automate the test program generation for microprocessors using high-level decision diagrams (HLDD)
[14,15] as a diagnostic model. The novelties of the approach are: reduced probability of fault masking,
better diagnostic opportunities, and compactness of the whole test thanks to uniform organization of test
routines. Experimental data for the Parwan microprocessor [16,17] show higher fault coverage in com-
parison to the state-of-the-art approaches.

The paper is organized as follows. Section 2 presents the mathematical basis that supports the HLDD
theory. Section 3 is devoted to behavioural modelling of the microprocessors. The test generation details
are outlined in Section 4. Experimental results are presented in the conclusive fifth section.

2. HIGH-LEVEL DECISION DIAGRAM AS A BEHAVIOURAL LEVEL MODEL OF A
MICROPROCESSOR

Consider a digital system S as a network of components (or subsystems), where each component is
represented by a function z = f(z1,22,...,24) = f(Z), where Z is the set of variables (Boolean, Boolean
vectors or integers), and V (z) is the set of possible values for z; € Z, which are finite.

50 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48-61

Definition 1. A decision diagram (DD), which represents a digital function z = F(Z), is a directed acyclic
graph G, = (M,T',Z,F) with a set of nodes M and a mapping T from M to M. T'(m) C M denotes the
set of all successors of the node m € M, and T~'(m) C M denotes the set of all predecessors of m. M is
partitioned into two subsets of nodes: nonterminal My and terminal My nodes. The graph has a root node
mo with T~} (m) = @. The nonterminal nodes m € My are labelled by variables z(m) € Z, and they have
at least two successors, 2 < |I'(m)| < |V (z(m))|, where V (z(m)) is the range of values of the node variable
z(m). The terminal nodes my € My are labelled by sub-functions z(my) = fi(Zx), fi(Zx) € F, which may be
as well variables z; € Z or constants.

Definition 2. For the assigned value of z(m) = e, e € V(z(m)), we say that the edge from m € M to its
successor m¢ € I'(m) is activated. Consider situation where to all variables z € Z is assigned a vector Z'
from the domains V (Z). The activated by Z' edges form an activated path [(mo,my) C M from the root node
my to one of the terminal nodes my., labelled by fy(Zy).

Definition 3. We say that a decision diagram G, represents a function z = F(z1,22,...,2,) = F(Z), iff for
eachvalue V(Z) =V (z1) x V(22) X ... x V(z,), a path in G, is activated from the root node my to a terminal
node my, labelled by [y, so that z = fi(Z;) is valid.

The traditional BDDs [18] represent a special case of DDs where for all z € Z, V(z) = {0, 1} and there
are only two terminal nodes labelled by the Boolean constants 0 and 1. Depending on the class of the
system (or its representation level), we may have various DDs, where nodes have different interpretations
and relationships to the system structure.

In the following we will consider microprocessors (MP) presented on the behaviour level and described
by instruction sets, which usually are described in manuals. Consider, as an example, a hypothetical simple
microprocessor with its instruction set in Table 1 and a general behavioural level structure in Fig. 1.

Denote the instructions of the microprocessor as the values of a complex variable /, represented as
concatenation of 5 instruction sub-variables / = OP.B.A1.A2.A. The variables OP and B denote two
fields of the operation code, Al and A2 are register addresses, and A is the memory address. Let
V(OP) =V (A1) =V(A2)=0,1,2,3and V(B) =0,1.

Let us divide MP into three parts: control part, data part, and memory. There are two register blocks,
Rpara and Rcontr, in the MP: the register block in the data part consists of 4 general data registers
Rpara = R1,R2,R3,R4 and the control part includes 2 control registers Rconrr = PC,AR where PC is
the program counter, and AR is the address register for addressing the data. ALU is a combinational part
of the MP which covers all data manipulation circuits, decoders, multiplexers, demultiplexers, etc. Control
part includes finite state machine (FSM) with state register and control logic.

Table 1. Instruction set of a hypothetical microprocessor with 10 instructions

OP ‘ B ‘ Mnemonic Semantic RT level operations
0 0 LDA AL, A READ memory R(Al)=M(A), PC=PC+2
1 STA A2, A WRITE memory M(A) =R(A2), PC=PC+2
1 0 MOV Al1,A2 Transfer R(A1)=R(A2), PC=PC+1
1 CMA Al,A2 Complement R(Al)=-R(A2), PC=PC+1
2 0 ADD Al1,A2 Addition R(Al)=R(Al) +R(A2), PC=PC+1
1 SUB Al1,A2 Subtraction R(A1)=R(Al)-R(A2), PC=PC+1
3 0 JMP A Jump PC=A
1 BRA A Conditional jump IF C=1, THEN PC = AELSEPC =PC +2

(Branch instruction)

A. Jasnetski et al.: Self-test generation for microprocessors 51

Behavioural level variables of MP

PC A ARyRy,RoR, M(A)
| Data part i Data
: | results
i Roata ALU i
:L- ------------- e __________i Data

operands

------------ = g'gr:tarlosl __|Flags ° Memory
E ! Instructions
i Reontr FSM H
i i Addresses
i Control part |

58686

586

Fig. 2. HLDD model of the microprocessor.

Consider MP functionally as a set of the following behavioural level functions:

— R, = f}([,S(R,')) = ﬁ(OP,B,S(R,')), where R; € Rpata, i = 0, 1,2,3, and S(Ri) == {RDATA,M(A)} is
the set of data arguments for the functions f; (a set of the source registers over all the instructions);

— PC = fpc(I,C,PC) = f;(OP,B,PC), where C is the flag variable serving as the condition for the
branch operation;

— M(A) = fu(L,S(M(A))) = fi(OP,B.S(M(A))), where S(M(A)) = {Rpara, M(A)}.

The functionality of MP can now be represented by a set of behavioural level variables Z = Rpara U
RconTrUM(A) and by a set of functions F = fo, f1, /2, f3, fpc, fu. The behaviour of MP can be modelled
by the functional basis F' and monitored through the variables in Z. For modelling of F' we will use the
behavioural level HLDD model.

The HLDD model of the microprocessor, given by the instruction set in Table 1, is depicted in Fig. 2. It
represents the set of 7 functions in F' in the form of 7 HLDDs, respectively: Gg;, i =0,1,2,3; Gg(a2), Gpc,
and Gy(s). The 4 graphs Gg; are connected and share a similar sub-graph, which represents the logic of
ALU. The graphs Ggs1) and Ggay) are accessed when modelling the nodes R(A1) and R(A2) in the graph
Gr, or Gyy(y), respectively.

In the following we will call the nodes by the names of node variables or by the expressions in the nodes.
To distinguish the nodes, which are labelled by the same variable in the given HLDD, we will use subscripts
of this node variable. For example, in the graphs Gg,, we have three different nodes labelled by the same
variable B, and the subscript of B distinguishes the nodes.

Each instruction in Table 1 can be modelled by corresponding paths in the HLDD model. To simulate
the instruction, its related path in HLDD is to be activated. For example, to simulate the instruction
I = (0P =2.B=0.A1=3.A2 =2), the following paths in Fig. 2 have to be activated: Gg, : L(Al =3,

52 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48-61

OP,B2,R(A1)+R(A2), Gga1) : L(A1,R3), Graz) : L(A2,R2), Gpc : L(OP,PC+1) in the graphs Gg,, Gr(a1),
Gra2), and Gpc, respectively. The activated paths are highlighted by bold edges and gray coloured nodes.

On the other hand, each HLDD node can be regarded as a hypothetical structural unit of the micro-
processor, exercised by a corresponding instruction. For example, the terminal nodes, which are labelled by
variables, may represent registers or buses, whereas other terminal nodes, which are labelled by arithmetic
or logic expressions, represent the data manipulation sub-units in ALU. The nonterminal nodes of HLDDs
are representing the units for interpretation of control information (OP, B, C, etc.) which may be decoders,
multiplexers or de-multiplexers. For example, the node A1 = 0 in Gg, represents a de-multiplexer, the node
A2 in Ggu) represents a multiplexer, the nodes OP and B in the graphs represent decoders.

Because of this one-to-one mapping between the nodes in HLDDs and the corresponding high-level
functional units, we can use the HLDD nodes as a checklist for high-level test planning and organization of
test programs for microprocessors. Since the proposed formalized test program generation is based on the
behavioural model of the microprocessor, the behavioural fault model is required to automate test program
generation and to evaluate the test quality. The challenge is to map the properties of the low-level fault
model onto high-level description of the microprocessor.

3. BEHAVIOURAL LEVEL FAULT MODEL FOR MICROPROCESSORS

In the following we will develop a uniform fault model based on the HLDDs which targets the full functional
testing of each node in the model. Each path in an HLDD describes the behaviour of the system in a specific
mode of operation (working mode). The faults, which may have effect on the behaviour of this working
mode, are associated with nodes along the path. A fault in each node may cause incorrect leaving the path
activated by a test, which would mean a real activation of another path (in a wrong direction) in the HLDD
terminating at a wrong terminal node.

From this point of view, the following abstract fault model for nonterminal nodes m € My with node
variables z(m) in HLDDs was defined [19].

Definition 4. The HLDD based fault model for microprocessors includes three fault classes:

D1: The output edge of a node m for z(m) =v,ve V(z(m)) is always activated; notation: z(m) /v; (it is similar
to the logic level stuck-at fault (SAF) z/1 for the line z);

D2: The output edge for z(m) = v is broken; notation: z(m)/@; (similar to SAF z/0 for the line z);

D3: Instead of the given edge for z(m) = v;, another edge v; or a set of edges V; € & is activated,
notation: z(m)/(v; — V;).

The fault model, defined on HLDDs, is related to the nodes m of HLDDs, and is a very general one.
In [19] it was shown that the fault model described in Definition 4 covers all the 14 different functional level
fault classes for microprocessors, introduced in [4].

Let us extend now the fault model, described in Definition 4, by taking into account the following
implementation related assumptions introduced in [4] that consider the technology depending details.

Definition 5. If no register is accessed by the fault z(m)/@ (D2) then whenever a register R; is to be
retrieved, a ONE or ZERO (depending on the technology), are in fact retrieved. ONE denotes a binary
vector (111), similarly ZERO stands for (000).

Definition 6. If a set R of wrong registers are accessed because of the fault z(m)/(vi — V;) (D3) then
whenever the contents of a register set R is to be retrieved, the contents formed by the bit-wise OR or AND
(depending on the technology) over the registers of the set R will be retrieved. Denote these results as OR(R)
or AND(R), respectively.

Definition 7. Introduce a dummy vector Q € {ONE,ZERO} for general denoting the faulty retrieve
specified by Definition 5, depending on the technology. Similarly, introduce a dummy operation ¥(R) €
{OR(R),AND(R)} for a general denoting of the fault specified by Definition 6, depending on the technology.

A. Jasnetski et al.: Self-test generation for microprocessors 53

Let us generalize now the fault model, introduced in Definition 4, by developing a new uniform HLDD
based fault class which takes into account the dependence on the technology as well.

Definition 8. Introduce a general fault model D(m) for the nodes m of HLDD G, = (M,T',Z,F), as the set

of the following constraints.

(1) Activation constraint. For all values v € V (z(m)), non-overlapping paths must be activated through m,
which terminate at non-coinciding terminal nodes m,€ Mr.

(2) Propagation constraint. The following has to be satisfied by test data:

Vv € V(z(m))[z(my) # Q, M
Vi, €V (elm)lzlm) # 2(m)]. @
Vi, j € V(z(m))[z(my) & z(m;)]. 3

The requirement (1) results from Definition 5, and the requirement (2) results from Definition 6. The
cases when the introduced requirements cannot be satisfied are classified as redundancies which need no
test. Let us call the solution of the constraints in Definition 8 as a test set 7'(z(m)).

Lemma 1. The test set T(z(m)) for a node m in a HLDD Gz = (M,I',Z,F), which satisfies the activation
constraints in Definition 8, has the following properties.

(1) Each test t € T(z(m)) activates a path through the node m.

(2) For each value of v € V(z(m)), there is a test t, € T (z(m)) with assignment z(m) = v.

(3) All 1, € T(z(m)) activate paths which terminate at different terminal nodes m, € My.

Proof. The listed properties result directly from the activation constraints of Definition 8 and can be easily
proved by contradiction. O

Lemma 2. The propagation requirement of Definition 8 is sufficient for testing the fault class D3, described
in Definition 4.

Proof. Let us have a test set T'(z(m)) which has the properties of Lemma 1. Consider a HLDD Gg in Fig. 3
with the root node my, the node m under test, and a subset of terminal nodes M7 (m) = my, my+,my, my, C Mr,
reached from m by the paths activated with T'(z(m)). The paths are shown by dotted edges, which means that
they may pass through other nodes not shown in the picture. Assume that there is a fault z(m)/(v* — V*)
of class D3, where v* € V(z(m)) and V* C V(z(m)). It means that when activating the output edge v* of the
node m, then another set of edges V* will be activated because of the fault. Both cases, according to D3, are

Fig. 3. Illustration of the conditions for testing the node m in the HLDD model Gg.

54 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48-61

allowed: v* € V*, or v* ¢ V*. According to Lemma 1, when applying the test 7, € T(z(m)) we expect the
result R = z(m,+) in the fault free case. O

(1) Let us have the faulty case where v* € V* and V* = @. In this case, no source register will be retrieved,
and according to Definitions 5 and 7, we will get R = Q. But, according to (1) in Definition 8, z(m,+) # Q,
which means that the test 7,» € T(z(m)) detects the fault.

(2) Consider the faulty case when v* & V* and V* = @. Denote by M7~ C Mr(m) the subset of terminal
nodes which will be reached when assigning the values v € V* to z(m). According to Definitions 6 and 7,
the result of the test because of the fault will be ¥ (z(m)|m € My-).

From (2) and (3) in Definition 8, the following relationships follow, respectively,

Vv € V¥ [z(m,) # z(my)], 4)

W e Vialm,) ¢ 2my-))- 5)
On the other hand, based on (4) and (5), it can be easily shown that

W(z(m)|m € Mr+) # z(my). (6)

From (6) it follows that the test #,- € T (z(m)) detects the fault.

(3) Consider now the case when v* € V*. There are two possibilities. First, the faults are coupled so that for
at least two values vi,v, € V*, we may get the similar result: z(m,,) = z(m,,). On the other hand,
according to the condition (2), all the results of the tests in 7'(z(m)) must be different. Hence, from two
similar results we can conclude that we have detected a fault.

Second, assume, that the condition (6) is not fulfilled, and the fault is not detected by the test
1+ € T(z(m)) because of fault masking. However, such a fault can be still detected when we include into
T(z(m)) an addittional test #/. by repeating 1.+, but using different data, so that z(m,)" # z(m,~) would be
satisfied. It is easy to show that W{z(m)'} # ¥{z(m)}, which means that the fault will be detected by the
added new test.

Theorem 1. The test set T (z(m)), generated for a node m in a HLDD Gz = (M,T’,Z,F) according to the
Jault model D(m), covers all the fault classes D1, D2, and D3, described in Definition 4.

Proof. The case D1: Let us prove by contradiction. Assume, there is a fault z(m)/v € D1 in G,, which
is not detected by T(z(m)). According to Lemma 1, T(z(m)) always includes two tests 7,5, € T (z(m))
with two assignments z(m) = v and z(m) = v*, respectively, where v* # v. Hence, the activation constraint
of Definition 8 is satisfied. On the other hand, according to Lemma 1, the tests #,,4, € T(z(m)) activate
two non-overlapping paths reaching different terminals m,,m,« € My , where z(m,) € z(m,~). Hence, the
propagation requirement of Definition 8 is satisfied as well. From that it results that the initial assumption —
that the fault z(m)/v € D1 is not detected by T'(z(m)) — must be false, and therefore the fault model D(m)
covers the fault class D1.

The case D2: For the fault class D2, the proof is similar to the case of D1.

The case D3: The proof results from Lemma 2. O

Corollary 1. From above it follows that the test generation for a node m in HLDD consists of the following
three steps: (1) activating a path from the root node myg to the node m under test, (2) activating the non-
overlapping paths from m for all v € V(z(m)) to the non-coinciding terminal nodes m, € My, and (3)
generating the data operands to solve the constraints (1)—(3) in Definition 8.

Corollary 2. The test set T(z(m)), generated for a node m in a HLDD G, = (M,T',Z,F) according to
Definition 8, tests the node exhaustively, and the lower bound of the test length is |V (z(m))|.

Proof. The exhaustiveness of the test set T'(z(m)) for testing the node m results from Lemma 1. From
Property 2 in Lemma 1, also the lower bound |V (z(im))] for the length of the test set T (z(m)) results. [

A. Jasnetski et al.: Self-test generation for microprocessors 55

The lower bound will be exceeded if several reiterations of some tests ¢ € T'(z(m)) with different data is
needed to satisfy step by step the propagation requirements of Definition 8. This situation was discussed in
the proof of Lemma 2.

Corollary 3. When generating tests for the terminal nodes m, € My of an HLDD, the step 2 of the procedure
highlighted in Corollary 1 will collapse. Only activating a single path from the root node to the node
m, € Mt is needed.

The test, generated for a terminal node m, € Mr, should be executed |V (z(m,))| times for all the values
of V(z(m,)). The tests for terminal nodes m, are tests for sub-functions z(m,) = f,(Z,), which represent the
data path of the system, and therefore, because of exploding size of the test set, cannot be tested exhaustively.
Here, the hierarchical approach would be a better option, where the operands for testing the functions of
terminal nodes are generated at lower hierarchical (e.g. gate) level. The number of test vectors generated at
the lower level will determine the range of values V (z(m,)) for terminal nodes, which will be used for test
program synthesis at the higher behavioural level.

Corollary 4. The test set T (z(m)) covers all the 14 fault classes introduced for microprocessors in [4]. The
proof results from Theorem 1 and from the analysis carried out in [19] where it was shown that all the 14
Jault classes introduced in [4] are covered by the fault classes D1, D2, D3.

4. BEHAVIOURAL LEVEL TEST GENERATION FOR MICROPROCESSORS

The test program generation for a microprocessor using the HLDD model will proceed at two levels: system
level, and module level. Each HLDD presents a module, whereas the whole set of HLDDs presents the
system. So far we discussed the main principles of module level testing from a general point of view. At
the module level, the targets of test generation are the nodes of HLDDs whereas at the system level the
targets are the HLDDs themselves. At the system level, the problem of mapping of the HLDD tests on the
system level will be solved; in other words, the test stimuli for the modules will be made controllable and
the results of tests will be made observable. In this paper, the detailed discussion about how this mapping
can be formalized is omitted.

Definition 9. Ler us call the test for a nonterminal node as conformity test for the microprocessor which
has the goal to test the control part. The conformity test will be generated according to the procedure
summarized in Corollary 1. On the other hand, let us call the test for a terminal node as scanning test for
the microprocessor, which has the goal to test the data path. The scanning test will be generated according
to the procedure summarized in Corollary 3.

4.1. Generation of conformity tests

To generate a conformity test for the control function, represented as a nonterminal node m in the HLDD
model, means to test the variable z(m) exhaustively for all the values in V(z(m)). For that, we have to
activate and exercise all the proper working modes, launched at least once by each value of z(m). Before
testing of each working mode, the needed state of the system should be initialized, so that every possible
faulty change of z(m) should produce a faulty next state, which would be different compared to the expected
next state for the given working mode.

Algorithm 1. Conformity test generation for the control part (test for a nonterminal node m).

1. Generation of control data for the test. Activate a path from the root node myg to the node m under test,
and for each value v € V(z(m)), a path from the node m to a terminal node m, € Mr. The values v
assigned to z(m) will be cyclically varied during the test execution.

2. Generation of register data for the test. Find the proper initial states of MP for testing the node m. The
initial states are determined by a set of contents of the register set, involved in testing of m. These contents

56 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48-61

are generated by satisfying the constraints (1)—(3). Denote the set of initial states needed for testing m as
R(m) = (R(m,1), R(m,2), R(m,p)) where R(m,i) are different initial states. In the best case the
constraints (1)—(3) can be satisfied by a single initial state R(m,1). In general case the test set for the
node m should be repeated for all the p > 1 initial states in R(m).

From Algorithm 1 the following test execution program results.
Test program for the nonterminal node m in HLDD Gz:
FOR all v e V(z(m))
FOR t = 1,2,..., p
Initialize the data registers R(m) with
contents R(m,t)
Execute the working mode under test
READ the value of z.
END FOR
END FOR

Example 1. Consider the process of conformity test program generation according to Algorithm 1 for
testing the node OP in HLDD Gg, in Fig. 2. The goal of this test program is to test the functional behaviour
of the control logic in decoding the field OP of the instruction code I.

For generating the control data for the test, we have to choose first the HLDD from 4 possibilities
Gpg,, i=0,1,2,3. Let us choose the option Gg,, which means that the test result will be sent into the register
R3. Now we have to activate first the path from the root node A1 = 3 to the node OP (shown by bold edges
in Gg3). The path will be activated by assigning the value 3 to the variable Al.

Second, we activate the paths from the node OP for all values 0,1,2,3, to terminal nodes. The path for
OP = 2 through the node B2 (by assigning B = 0) to the terminal node R(A1) + R(A2) is shown in bold.
Since the value of B is fixed to 0, the paths from OP to other terminal nodes M(A) and R(A2), for values
OP =0 and OP = 1, respectively, are as well determined. As the result, we have generated the control data
for the test in a form of instruction code / = (OP = VAR.B =0.A1 =3.A2 =2). The value “VAR” means “the
value under variation”, i.e. the instruction I will be cyclically executed for all the values VAR =0, 1,2,3.

For generating the register data we have to solve the constraints (1)—(3) in Definition 8 for the functions
of selected terminal nodes. For example, to satisfy the constraint (2), we have to solve the following
inequality:

M(A) # R2 # (R2+ R3) # R3. @)

Assume, all the registers have 4-bit length. Then, a possible solution for satisfying the constraints (1)—
(3) is: M(A) = 0110, R2 = 0101, R3 = 0011 whereas R2 + R3 = 1000. Let us store the test data in the
memory at the following addresses: M(0) = 0110, M(1) = 0101, and M(2) = 0011. For the results we
reserve the addresses starting from 10.
The test generation process has resulted now in the following test program (sequence of instructions) for
testing the node OP in HLDD Ggjs in Fig. 2.
FOR VAR=0,1,2,3
(1) LDA 2, 1 (Initialize R2 = M(1))
(2) LDA 3, 2 (Initialize R3 = M(2))
(3) Execute: I = VAR.0.3.2 (Testing of
instructions: LDA, MOV, ADD, JMP)
(4) STA 3, 10+VAR (Write the content of R3
into M(10+VAR))
END FOR

A. Jasnetski et al.: Self-test generation for microprocessors 57

4.2. Generation of scanning tests

The scanning test program is synthesized hierarchically. The test program itself is generated at the high-
level directly from the HLDD model, whereas the data for the test program is generated by a traditional
gate-level ATPG using the low-level descriptions of the date path.

Algorithm 2. Scanning test generation for the data path (test for a terminal node m).

1. High-level test generation. Activate a path from the root node m to the terminal node m.

2. Low-level test generation. Find the proper sets of data R(m) = (R(m,1), R(m,2),...R(m, p)) for testing
the functional expression z(m) of the node m. Here, R(m) is the set of registers (arguments) involved in
z(m), and p is the number of test vectors generated at low level.

From Algorithm 2 the following test execution program results:
Test program for the terminal node m in HLDD G,
FOR t = 1,2,...,p
Initialize the data registers R(m) with
R(m,t)
Execute the working mode under test
READ the value of z.
END FOR

Example 2. Consider the process of scanning test program generation according to Algorithm 2 for testing
the node R(A1) + R(A2) in HLDD Ggs in Fig. 2. The goal of this test program is to test the functional
behaviour of the adder in ALU of the microprocessor.

For generating the control data for test, we activate first the path from the root node A1 = 3 to the terminal
node R(A1)+ R(A2) (shown by bold edges in Gg3) in a similar way as we did in Example 1. As the result, we
have generated the control data for the test in a form of instruction code I = (OP =2.B=0.A1 =3.A2 =2).

The data for the set of registers R = R2, R3 (operands for the addition operation) will be generated at the
lower level to achieve the needed (100%) fault coverage. These data (operands) will be cyclically loaded
into the registers R2 and R3, before the next execution of the addition operation. Assume that the number
of operand pairs generated is 10. Let us store the contents of R2 starting from the memory address A =0,
the contents of R3 starting from A = 10, and the results starting from A = 20. Then the high-level generated
test program for testing the node R(A1) + R(A2) in Gg3 will be as follows:

FOR t =0,1,2,...,9
(1) LDA 2, A(0+t) (Initialize R2=R2(r))
(2) LDA 3, A(10+t) (Initialize R3 =R3(r))
(3) ADD 3, 2 (Execute the instruction
1=2.0.3.2)
(4) STA A(20+t),2 (Write the content of
R3 into M(20+1))
END FOR

5. CASE STUDY AND EXPERIMENTAL DATA

As a case study we have chosen the 8-bit microprocessor Parwan [16,17]. It has instruction format
(OPI.PA), where OP is 3-bit opcode. If OP =7, then 1-bit I and 4-bit P are used as extensions for
opcode, otherwise, / defines addressing mode and P is used for page addressing. A is the 8-bit memory
address (offset). The Parwan instruction set (the operation codes OP with extensions / and P) is explained
in Table 2, and the HLDD model synthesized from the Parwan instruction set is presented in Fig. 4.

58 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48-61

Table 2. Instruction set operation codes for Parwan

| OP | [OP[1]P]
LDA 0 AC=M CLA 7 0 1 AC=0
AND 1 AC=ACAM CMA 7 0 2 AC=-AC
ADD 2 AC=ACAM CMC 7 0 4 C=-C
SUB 3 AC=ACAM ASL 7 0 8 AC=2AC
JMP 4 PC=A ASR 7 0 9 AC=AC2
STA 5 M=AC BRAN 7 1 0 Ifnegative
JSR 6 PC=A BRA Z 7 1 2 [Ifzero
Jump to BRA_C 7 1 4 [Ifcarry
subroutine BRA_V 7 1 8 [Ifoverflow

Next PC address:

ALU Flags C,V:

Indirect addressing: Direct addressing:

M \%8 0-15 0-255

0-15 Output behaviour:

] R 'O O)

Fig. 4. HLDD model for microprocessor Parwan.

Based on the HLDD model we have created in a formal way the test program shown in Fig. 5. The
test in Fig. 5 is based on three embedded cycles for joint testing of ALU and Flag instructions for all data
operands. A test for single byte ALU instructions can be organized in a similar way; however, using only
two cycles because of no need for testing second time the Flag logic. Using this type of joint test makes
it easier to generate data. Generic operands can be generated on the low level with gate-level ATPG for
the full combinational logic used for all instructions. Then, in the test execution phase the full test can be
carried out cyclically over all generic operands. To use the test cycle like in Fig. 5 is a trade-off problem.
Another option would be to flatten these embedded cycles and remove the not-needed repetitions.

A. Jasnetski et al.: Self-test generation for microprocessors 59

FOR VAR1 = 0,1,2,3 (For all double byte ALU instructions LDA, AND, ADD, SUB)
FOR VAR2 = 0,2,4,... N (For all data operands)
FOR VAR3 = 0,2,4,8 (For all 4 branch operations)
k) LDA, VAR2 (Data init.: AC is loaded with VAR2 for the current cycle)
k+2) 1=0,P=0,0P=VAR1(ALU instruction is tested for the current cycle VAR1)
k+3) VAR2+1 (Data init: 2nd operand is loaded for the cycle VAR2)
k+4) I=1,P=VAR3,0P=7(The test response is propagated)
k+5) m (Branch instruction is tested; jump for fixing AC1 = AC)
k+6) ADD CONST (Another test response is created for Branch test: AC2=#)
k+8) ADD, LOC(REF) (Signature is calculated for ALU test: REF=REF+AC1)
k+10) STA, LOC(REF) (Signature is updated)
END VAR3
END VAR2
END VAR1
m) ADD, LOC(REF) (Signature is calculated for Branch test: REF=REF+AC2)

m+2) IMP, k+10

Fig. 5. Test program for Parwan.

Gate-level
description
of the
module

|

Generated
local test
data

Observed
local test
data

Fault
simulator

. Test Module
Selftest y fault
program
Module program simulation coyerage
under test

Fig. 6. Set-up of experiments.

Table 3. Experimental results for testing Parwan processor

Module Gate level stuck-at faults Fault coverage
Total Tested Untestable Proposed, % | ATIG [20], %

AC 156 137 18 993 99.3
IR 228 161 66 99.4 96.4
PC 590 560 26 99.3 99.0
MAR 342 242 98 99.2 96.4
SR 130 99 30 99.0 96.8
ALU 962 939 7 98.3 98.0
SHU 310 310 0 100 99.2

Total 2718 2446 245 98.9 97.4

We carried out the experiments with Parwan microprocessor using test program in Fig. 5. The set-up for
experiments is presented in Fig. 6 and the results are summarized in Table 3. In Fig. 6 it is shown that test
patterns are automatically generated for MUTSs at gate level. These test patterns are used as arguments in the
test program that is generated from behavioural description (HLDD) of the processor. Then the test program
with test patterns is supplied as memory file to ModelSim and simulated to obtain the data sequence for each
MUT input signal. Then the test data for MUT inputs is simulated with Turbo Tester simulator at gate level
to get the stuck-at fault coverage.

The comparison of the obtained fault coverage with the state-of-the-art method [20] is outlined in the
leftmost two columns of Table 3. To sum up, for 6 out of 7 modules the proposed method shows advantage
over the previously best published results for that processor. The test overhead data is presented in Table 4.
The proposed approach needs 75% less test data than in ATIG [20], but the generated program consist of
76% more instructions. However, the latter comparison is not completely fair, since there are single byte
and double byte long instructions and such statistics is missing in [20].

60 Proceedings of the Estonian Academy of Sciences, 2014, 63, 1, 48-61

Table 4. Test overhead for testing Parwan processor

Test overhead RSBST [20] ATIG [20] Proposed
Instructions 569 189 779
Data (Bytes) 1214 517 132

The fault coverage presented in Table 3 is calculated considering only testable faults. Same arithmetics
is used in paper [20] that we use to evaluate the results. In Table 3 in the forth column is presented the
number of faults that are proven to be untestable. According to the achieved fault coverage there are still
few potentially testable faults that remained untested. At this moment authors consider testing of these faults
as future work. The next step in proving the feasibility of the proposed approach is to apply the HLDD-based
SBST solution in more complex microprocessors.

6. CONCLUSION

A formal test program generation method based on using high-level decision diagrams is proposed for
microprocessors. The HLDD model is created from the instruction set, and it represents the high-level
structure of the microprocessor. To take into account the low-level implementation details, the data operands
to be used in the test program can be generated by gate-level ATPG. The novelty of the approach is cyclical
organization of the test, which directly results from the model structure. The embedded test cycles are
directed to exercising of high-level structural components with all instructions and over all data operands
generated at the low (gate) level. Because of the cyclical organization, the test is very compact and uniform.

The advantage of such a test is the reduced probability of fault masking due to repeated use of the same
initialization before each test step. Improved diagnostic resolution is another advantage of the test program,
which directly results from the test structure and from the exact focus of each test step.

The disadvantage of the proposed approach is the test length overhead due to redundant repetition.
On the other hand, the embedded test cycles can be easily unrolled, and the flattened test program can be
optimized by removing the unnecessary repetitions.

ACKNOWLEDGEMENTS

The work has been supported in part by the EU FP7 STREP project BASTION, Estonian ICT project
FUSETEST, by EU through the European Structural and Regional Development Funds, and by Estonian SF
grants 8478 and 9429.

REFERENCES

1. Niermann, T. M. and Patel, J. H. HITEC: A test generation package for sequential circuits. In Proc. European Confer. Design
Automation, 1991, 214-218.
2. Bencivenga, R., Chakraborty, T. J., and Davidson, S. The architecture of the gentest sequential test generator. In Proc. Custom
Integrated Circuits Conference, 1991, 17.1.1-17.1.4.
. Eichelberger, E. B. and Williams, T. W. A logic design structure for LSI testability. In Proc. Design Automation Conference.
New Orleans, 1977, 462-468.
4. Thatte, S. M. and Abraham, J. A. Test Generation for Microprocessors. IEEE T. Comput., 1980, C-29, 429-441.
5. Tupuri, R. S. and Abraham, J. A. A novel functional test generation method for processors using commercial ATPG. In Proc.
Internat. Test Confer., 1997, 743-752.
6. Chen, L. and Dey, S. Software-based self-testing methodology for processor cores. IEEE T. Comput. Aid. D., 2001, 20, 369—
380.

w

A. Jasnetski et al.: Self-test generation for microprocessors 61

13.

14.
15.

16.
17.
18.
19.

20.

. Chen, L., Ravit, S., Raghunathant, A., and Dey, S. A scalable software-based self-test methodology for programmable

processors. In Proc. Design Automation Conference. Anaheim, Ca, 2003, 548-553.

. Kranitis, N., Paschalis, A., Gizopoulos, D., and Xenoulis, G. Software-based self-testing of embedded processors. IEEE T.

Comput., 2005, 54, 461-475.

. Gurumurthy, R. S., Vasudevan, S., and Abraham, J. A. Automated mapping of pre-computed module-level test sequences to

processor instructions. In Proc. Internat. Test Confer., 2005, 303-313.

. Zhang, Y., Li, H., and Li, X. Automatic test program generation using executing-trace-based constraint extraction for embedded

processors. IEEE T. VLSI Syst., 2013, 21, 1220-1233.

. Kranitis, N., Merentitis, A., Theodorous, G., and Paschalis, A. Hybrid-SBST methodology for efficient testing of processor

cores. IEEE Des. Test Comput., 2008, 25, 64-75.

. Lu, T.-H., Chen, C.-H., and Lee, K.-J. Effective hybrid test program development for software-based self-testing of pipeline

processor cores. IEEE T. VLSI Syst., 2011, 19, 516-520.

Wen, C. H.-P,, Wang, Li-C., and Cheng, K.-T. Simulation-based functional test generation for embedded processors. I[EEE T.
Comput., 2006, 55, 1335-1343.

Ubar, R. Test synthesis with alternative graphs. IEEE Des. Test Comput., 1996, 48-59.

Karputkin, A., Ubar, R., Raik, J., and Tombak, M. Canonical representations of high level decision diagrams. Estonian J. Eng.,
2010, 16, 39-55.

Navabi, Z. Analysis and Modeling of Digital Systems. McGraw-Hill, 1993.

Testing the Parwan processor. http://mesdat.ucsd.edu/ lichen/260c/parwan/ (accessed 6.03.2014).

Lee, C. Y. Representation of switching circuits by binary decision programs. AT&T Tech. J., 1959, 985-999.

Ubar, R., Raik, J., Jutman, A., Instenberg, M., and Wuttke, H.-D. Modeling microprocessor faults on high-level decision
diagrams. In Internat. Confer. Dependable Systems and Networks. Anchorage, USA, 2008, c17—c22.

Zhang, Z., Li, H., and Li, X. Software-based self-testing of processors using expanded instructions. In Proc. 19th IEEE Asian
Test Symposium, 2010, 415-420.

Korgtasemega otsustusdiagrammidel pohinev testprogrammide siintees
mikroprotsessoritele

Artjom Jasnetski, Raimund Ubar, Anton Tsertov ja Marina Brik

On esitatud uudne ldhenemisviis mikroprotsessorite testprogrammide formaalsele siinteesile, kasutades
kdrgtaseme otsustusdiagrammide matemaatilist aparaati. On vilja toStatud metodoloogia mikroprotses-
sorite diagnostiliseks modelleerimiseks késusiisteemidega defineeritud kditumuslikul tasandil. On esita-
tud vastavad otsustusdiagrammidel pdhinevad testide genereerimise algoritmid ja protseduurid. Uue meto-
doloogia rakendatavust ja efektiivsust on demonstreeritud eksperimentaaluuringutega konkreetse mikro-
protsessori nditel. Saadud tulemused niitavad uue ldhenemisviisi suuremat efektiivsust analoogsete ekspe-
rimentidega vdrreldes.

Appendix B

Publication Il

Jasnetski, Artjom; Raik, Jaan; Tsertov, Anton; Ubar, Raimund (2015). "New Fault
Models and Self-Test Generation for Microprocessors using High-Level Decision
Diagrams”. IEEE Symposium on Design and Diagnostics of Electronic Circuits and
Systems - DDECS. Belgrade, Serbia, April 22-24, 2015.

105

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

New Fault Models and Self-Test Generation for
Microprocessors using High-Level Decision Diagrams

Artjom Jasnetski
Testonica Lab OU
Tallinn, Estonia

Abstract— The paper presents a novel approach to high-level
fault modeling and test generation for microprocessors using
High-Level Decision Diagrams (HLDD). A general frame-work
and novel techniques for automated software-based self-test
program generation are discussed. On this basis new previously
not published test quality improvement capabilities of the
approach are high-lighted and explained. Based on the high level
fault model defined for HLDDs a novel class of hard-to-test
faults, called “unintended actions”, is proposed. In addition, the
mechanisms for reducing the risk of fault masking is explained.
The experimental results show the superiority of the new method
by achieving a higher quality of tests with shorter length
compared to the previous results.

Keywords— microprocessor, software-based self-test (SBST),
test program generation, high-level decision diagrams

I. INTRODUCTION

Testing of complex systems like microprocessors has been a
challenge for decades. Sequential ATPGs have been found
inefficient in terms of test generation time and fault coverage
[1,2]. Design-for-testability such as scan-path design allows to
improve fault coverage, however, affecting negatively the
performance, power consumption and chip area [3].

As the industry has shifted to sub-micron technologies, at-
speed testing has become essential [4]. The traditional
hardware based Built-In Self-Test (BIST) technology [5] in the
case of microprocessors (MP) has proved to be less feasible
than for Application Specific Integrated Circuits (ASICs) [6].
As an alternative for MPs, Software-Based Self-Test (SBST)
has emerged [6-10]. The idea behind SBST is to execute a test
program on an embedded processor for testing the processor
itself and its surrounding resources. In [7] it was shown that a
processor can be divided into Modules Under Test (MUT) to
ease the task of ATPG. An alternative is to use random test
patterns for modules [6].

An automated constraint extraction based on gate-level
simulation of generated tests to check their functional
feasibility was proposed in [8]. However, the efficiency of the
method on industrial processors was shown to be low. In [9],
shifting of SBST generation from gate-level to Register-
Transfer Level (RTL) is suggested. This is achieved by reuse
of verification test patterns. The drawback of this method is
that high fault coverage for structural faults cannot be
guaranteed. Another method that uses RT-Level description
for program generation is based on Bounded Model Checker
(BMC) [10]. In [11] it is shown that [10] is likely to cause
time-out problems when applied to industrial designs.

The methods described in [12, 13] are based on structural
SBST methodologies (RTL test development with gate-level

978-1-4799-6780-3/15 $31.00 © 2015 IEEE
DOI 10.1109/DDECS.2015.56

251

Jaan Raik, Anton Tsertov, Raimund Ubar
Department of Computer Engineering
Tallinn University of Technology, Tallinn, Estonia

constrained ATPG) and combined with verification based self-
test. These methods overcome the drawbacks of [9] and [10]
and are called as Hybrid SBST. An attempt to improve
scalability of hybrid methods by substituting gate-level ATPG
by simulation-based approach for test pattern generation was
presented in [14].

Nevertheless, none of the state-of-the-art methods have so
far tried to develop well formalized high-level (e.g. behavioral
level) fault models for coping with hard-to-test faults and fault
masking problems at higher levels with ultimate goal to
improve test quality and to achieve compact test programs.

In this paper, we introduce a new concept for generating
tests for microprocessors. While traditional approaches are
based mainly on the idea of testing the instructions as
functional entities, the proposed approach is based on
partitioning the functionality of microprocessors into smaller
entities along two dimensions. The first dimension covers the
control activities and is represented by subfields of the
instruction format, whereas the second dimension covers the
set of all elementary data manipulation activities. Such a two-
dimensional testing approach allows setting up of test targets
which represent smaller slices of hardware. As the result, it
becomes possible to test the target hardware slices nearly
exhaustively, and because of shorter test sequences for each
target, the approach will be less sensitive to fault masking due
to over-writing of erroneous intermediate results during test.

For implementing the proposed conception, the High Level
Decision Diagrams [16] (HLDD) derived from Instruction Set
Architecture (ISA) descriptions proved to be very useful. The
main difference of the HLDD-based test generation algorithms
from the traditional methods of test generation is explained by
the way how the test targets are chosen. The novel HLDD-
based test generation approach is targeting structural entities
of MP. The instruction list of MP is converted into a network
of HLDDs where each HLDD represents a sub-circuit.

The nodes as test targets in the HLDD model represent
smaller functional entities with fine grained (better defined)
fault models compared to the traditional instruction based test
approach. The new fault modeling idea facilitates achieving
higher gate-level fault coverage, reduced risk of fault masking
and compactness of the test program due to its cyclic
organization. The paper is organized as follows: Section II
presents the description of HLDDs. Section III presents the
new high-level fault model for MP, and Section IV gives an
overview of the algorithms for test generation. Experimental
results are discussed in Section VI followed by Conclusions of
the paper.

II. REPRESENTING MICROPROCESSORS WITH HLDDS

Consider a hypothetical MP with the instruction set in Table
1. Denote the instructions of MP as values of a complex
variable I represented as concatenation of 5 instruction sub-
variables / = OP.B.A1.A2.A. OP and B denote two fields of the
operation code, 4/ and A2 are register addresses, and 4 is the
memory address. Let (OP) = V(41)= V(42)= {0,1,2,3} and
V(B)= {0,1}.

Consider the MP with the instruction set in Table 1
functionally as a set of the following functions:

Ri = i (I, S(R)) = f; (OP, B. S(R)) where R; € Ry, i =
0,1,2,3, and S(R)) = {Rpar4, M(A)} is the set of data arguments
for the functions f; (a set of source registers);

PC = fpc (I, C, PC) = f; (OP, B, PC) where C is the flag
variable serving as the condition for the branch operation;

M(A) = fur (I, S(M(4))) = f; (OP, B, S(M(4))) where S(M(A))
= {Rpars, M(A)}.

The functionality of MP can now be represented by a set of
behavioral level variables Z = Rp 74 W Rconrr W M(A) and by a
set of functions F = {fy, fi, /5, f3, fec, fu}. The behavior of MP
can be modeled by the functional basis F and monitored
through the variables in Z. For modeling of F we will use the
behavioral level HLDD model.

The HLDD model of MP given by the instruction set in Table
1 is depicted in Fig.1. It represents the set of 7 functions in F
in the form of 7 HLDDs, respectively: Gg;, i = 0,1,2,3; Ggeo),
Gpe, and Gy The 4 graphs Gy are merged and share a
similar sub-graph which represents the logic of ALU. Gg
and Ggs) are accessed when modeling the nodes R(A1) and
R(A42), respectively, in Gg; or G).

TABLE L. INSTRUCTION SET OF A MICROPROCESSOR
or B M Semantics and RT level operations
0 0 LDA AL A READ: R(A1) = M(A), PC=PC+2
1 STAA2, A WRITE: M(A) = R(A2), PC=PC+2
1 0 | MOV A1A2 TRANSFER: R(A1) = R(A2), PC=PC+ 1
1 CMA A1,A2 COMPLEMENT: R(A1) =— R(A2), PC=PC+1
2 0 ADD A1,A2 ADD: R(A1) = R(A1)+ R(A2), PC=PC+1
1 SUB ALA2 SUBTRACT: R(A1) = R(A1)- R(A2), PC=PC + 1
0 IMP A JUMP: PC=A
3 1 BRAA Conditional jump (Branch instruction):
IF C=1, THEN PC=A, ELSE PC=PC + 2

In the following we will refer to nodes m by the node variables
z(m) € Z or by the node expressions denoted as well by z(m).
To distinguish the nodes which are labeled by the same
variable in the given HLDD, we will use subscripts at the node
variable. For example, in the graphs Gg;, we have three
different nodes labeled by the same variable B, and the
subscript at B distinguishes the nodes. There is one-to-one
mapping between the values of z(m) and the output edges of
the node m. The edges of nodes are labelled by the
corresponding values of node variables. Denote the range of
values of z(m) by V(z(m).

252

Registers and ALU

Register Decoding

Fig. 1. HLDD model for the microprocessor in Table 1

Each instruction in Table 1 can be modeled by activated paths
in the HLDD model. For example, when simulating the
instruction I = (OP=2.B=0.A1=3.A2=2), the following paths
in Fig.1 are activated: Ggs: (41=3, OP, B,, R(A1)+R(A2),
Grun: UNALR3), Gguy: UA2,R2), Gpe: (OP, PC+1),
respectively, in the graphs Ggs, Ggrei), Gruz) and Gpe. The
activated paths are highlighted by bold edges and gray colored
nodes in Fig. 1.

Each HLDD node represents a functional unit of MP. The
terminal nodes labeled by variables represent registers or
buses, whereas other terminal nodes labeled by arithmetic or
logic expressions represent the data manipulation units within
ALU. Nonterminal nodes represent the parts of the control
circuit (OP, B, C) like decoders, multiplexers, de-multiplexers.
For example, the node A1 = 0 in Gg, represents de-
multiplexer, 42 in Gg,) represents multiplexer, the nodes OP
and B represent decoders. Because of one-to-one mapping of
HLDD nodes into high-level functional units, we can use the
HLDD nodes as a checklist for high-level test planning and
organization.

III. UNIFORM FAULT MODEL FOR MICROPROCESSORS

In the following we develop a uniform fault model based
on HLDDs which targets the functional testing of nodes in the
model. Each path in HLDD describes the behavior of the
system in a specific mode of operation (working mode). The
faults which may affect on the behavior of this working mode
can be associated with nodes along the path. A fault in each
node may cause incorrect exit from the path activated by a test
which would mean activation of another (wrong) path.

Definition 1. The HLDD based fault model for MPs
includes three fault classes:
D1: The output edge for z(m) = v is broken, z(m)/J; (similar
to the logic level stuck-at fault (SAF) z/0 for the line z);
D2: The output edge of a node m for z(m) = v, v € V(z(m)) is
always activated, z(m)/v; (similar to SAF z/1);
D3: Instead of edge for z(m) = v; , another edge v; or a set of
edges ¥ is simultaneously activated, z(m)/(vi—= V).

F5: Wrong destination Instruction code:

: ADD A1 A2
OP=2. B=0. A1=3. A2=2
R(A1) = R(A1) + R(A2)
R,=R, +R,

R(A1).- R(A2)

F2: Wroﬁg source

F7, F8: Microinstruction erroneously activated
Fig. 2. Illustration of different faults in HLDDs

Consider in Fig. 2 how different fault models in [17,18] can
be represented as the node faults on the HLDD model.
Addressing fault is illustrated in the graph Gg;) . Instead of
the edge 3 of the node A1, another edge 0 (or both edges
simultaneously) are activated. This fault can propagate to other
HLDDs of the model. For example, this fault can cause in ALU
either “wrong source” or “wrong destination”. A “control
fault” is illustrated by the fault of node OP called ,,instead of
edge 2, the edge 1 is activated™.

The fault model in Definition 1 covers 14 microprocessor
fault classes described in [17,18]. To take into account the
implementation related assumptions considered in [17, 18], we
introduce the following definitions for further specification of
the fault model in Definition 1.

Definition 2. If no register is accessed because of D1 then
whenever a register R; is to be retrieved, a ONE or ZERO
(depending on technology), is in fact retrieved. ONE denotes a
binary vector (11...1), ZERO stands for (00...0).

Definition 3. If a set R of two or more wrong registers are
simultaneously accessed because of D2 or D3 then whenever a
content of a register set R is to be retrieved, the contents
formed by bit-wise OR/AND (depending on technology) over
the registers of R will be retrieved. Denote these results as
¥(R) where ¥ may mean OR or AND, respectively.

Let us generalize now the fault model introduced in
Definitions 1-3 by developing a new uniform HLDD based
conditional node fault model which joins all the 3 fault classes,
and takes into account the dependence of technology as well.

Definition 4. The HLDD based conditional node fault
model consists of two types of constraints: (1) activation of
the fault, and (2) propagation of the fault.

For non-terminal nodes m € My, with V(z(m)):

(1) Propagation constraints. For all values v € V(z(m)) of the
node m, non-overlapping paths must be activated from the
root node through m to non-coinciding terminal nodes
m,e Mr,, , where My, is the subset of all terminal nodes
Mz, € My, reached from m.

(2) Activation constraints:

Vv,je V(z(m)),izf: [z(m,)#(z(m)=¥1(Mr,,)20£1] (1)
where W1(Mr,,) is calculated by bit-wise OR/AND (depending
on technology) over the functions z(m,) in terminal nodes m, .

For terminal nodes m € My, the propagation constraints are
determined by the activated single path from root node to m,

253

and the activation constraints are determined by test patterns
sufficient for testing the function z(m), denoted by ¥V(z(m)).

Let us call the solution for propagation constraints in Def.4
as local test Ts7(m) for testing the node m. The full test 7(m)
consists of dynamic and static parts: 7(m) = Ts{(m).Tyr(m)
where the dynamic part 7y,g(m) means the set of values
V(z(m)).
For testing a node in the HLDD model, three actions are
needed: (1) local fault activation by satisfying the activation
constraints of Def.4, (2) propagation of the fault through
HLDD by satisfying the propagation constraints of Def.4, and
(3) system level fault propagation through the high-level
components of the system, represented by HLDDs.

IV. TEST GENERATION WITH HLDDS

The test program generation for MPs using HLDDs will
proceed at two levels: system and sub-system levels. Each
HLDD presents a sub-system, whereas the whole set of
HLDDs presents the system. At sub-system level, the targets of
test generation are the nodes of HLDDs whereas at the system
level, the locally generated tests 7(m) will be embedded into
the system level test program templates. Two types of test
programs are generated: conformity and scanning tests.

Definition 5. Conformity test is a test for a non-terminal
node with a goal to test a part of the control path of MP.

Definition 6. Scanning test is a test for a terminal node with
the goal to test a part of the data path of MP.

5.1. Conformity tests. Generating a conformity test for
me My in HLDD, produces exhaustive test for z(m). It consists
of the two following steps:

1. Generation of a test 7(m) which satisfies the constraints
of Def. 4 by activating a path from the root node to the node m
under test, and for each value ve V(z(m)), a path from m to a
terminal node m, € M.

2. Justification of T(m) by generating the needed register
data R(m) (initial state of the MP).

5.2. Scanning tests. The scanning test 7(m) consisting of
Tsr(m) and Ty,z(m) is synthesized hierarchically:

1. Generation of the static part of the test Ts;(m) at the high
HLDD level by activating a path from the root node to the
terminal node m, and generation of the dynamic part 7),x(m) at
gate level by any ATPG.

2. Justification of 7(m) by generating the needed register
data R(m) (initial state of the MP).

Two techniques guarantee reduced probability of fault
masking: (1) initialization (for R(m)) and observation (for z(m))
sequences are kept constant for all cycles over V(z(m)); (2)
only a single variable is observed when testing z(m) to keep the
test sequence as short as possible to avoid overwriting of
erroneous signals and hence the fault masking during the test.
The novel idea of the exhausting and independent testing of
very small parts of functionalities of instructions and using the
fault models D2 and D3 allows covering a novel subclass of
hard-to-test faults called “added unintended actions” which are
usually neglected when testing MPs by available methods.

V. EXPERIMENTAL DATA

As a case study, we generated a self-test program using the

proposed fault models and HLDD based technique described
above for the microprocessor Parwan [19][20]. The obtained
fault coverage for every module of MP is outlined in Table 2.
The whole test program was simulated by ModelSim to obtain
local test data sequences for all modules, and these, in turn,
were fault simulated at gate level to get SAF coverage.
The comparison of fault coverages with methods [6, 21] is
depicted in Table 2. To sum up, for 7 out of 8 modules the
proposed method shows advantage regarding test coverage
over the previously published results for that processor. The
positive impact of the novel high-level fault model can be seen
in the higher fault coverage of the control part of MP. The
comparison of volumes of test data is presented in Table 3.
The proposed approach needs 75% less test data than in ATIG
[21], but the generated program consist of 51% more
instructions. However, the latter comparison is not completely
fair, since there are single byte and double byte long
instructions and such statistics is missing in [6, 21].

TABLE IL COMPARISON OF DIFFERENT TEST COVERAGES (PARWAN)
Fault coverage %
Module | #Faults Proposed method [21] [6]
AC 156 99.3 99.3 99.3
IR 228 99.4 96.4 98.60
PC 590 99.3 99.0 89.20
MAR 342 99.2 96.40 97.20
SR 130 99.0 96.80 98.90
ALU 556 98.30 98.00 98.50
SHU 310 100 99.20 94.10
Control 648 89.8 84.40 88.30
Total 2960 98.04 96.19 95.51
TABLE IIL TEST LENGTHS FOR TESTING PARWAN PROCESSOR
Test overhead Li Chen [6] ATIG [22] | Proposed method
Instruction 575 189 260
Test data # Unknown 517 132

We used for experiments the microprocessor PARWAN
because of the possibility to compare the results with available
published data. The complexity of the algorithms of high-level
test generation does not depend on the length of the data word.
The latter affects only on gate level test generation
performance. But this was not the topic of the current paper.
The complexity of the high-level test generation algorithms
presented in the paper depends only on the lengths of the
functionally independent instruction sub-fields.

CONCLUSIONS

A formal high-level test program generation method based
on using HLDDs is proposed for microprocessors. The HLDD
model is created from the instruction set, and it represents the
high-level structure of MP. To take into account the low-level
implementation details, the data operands used in the test
program are generated by gate-level ATPG.

The novelty of the proposed approach is in targeting the
functional variables as test objectives, represented by HLDDs,

254

instead of testing the instructions as in the traditional cases. A
novel HLDD-based fault model was introduced covering a
subclass of hard-to-test faults called “added unintended
actions” which are usually neglected when testing MPs. This
novelty allows to prove easily the correctness of small
“portions” of functionality with a side-effect of reducing the
risk of fault masking and to improve the diagnostic resolution.
Because of cyclical organization of test procedures, the whole
test program will be compact and uniform.

Experimental results demonstrated higher fault coverage
compared to the published results on the same MP. Additional
advancements like testing a new type of hard-to-test faults and
less risk for fault masking are hard to demonstrate by only
measuring SAF coverage, but the more exact evaluation of
this impact will be the future work.

REFERENCES
T. M. Niermann and J. H. Patel, HITEC: A test generation package for
sequential circuits. DAC, 1991, pp. 214 —218.

R. Bencivenga, T. J. Chakraborty, and S.Davidson. The architecture of
the gentest sequential test generator. Custom IC Conf., 1991.

E. B. Eichelberger and T.W.Williams, “A logic design structure for LSI
testability,” DAC, 1977, pp. 462 —468.

International technology roadmap for semiconductors ITRS.

(1]
[2]
B3]

[4]
[5] G.Hetherington, et. al. “Logic BIST for large industrial designs: real
issues and case studies,” ITC, 1999, pp. 358 — 367.

L.Chen, S.Dey. SW-based self-test methodology for processor cores.
IEEE Trans. on CAD of IC and systems, vol. 20, no. 3, March 2001, pp.
R.Tupuri and J.Abraham. A novel functional test generation method for
processors using commercial ATPG, ITC, 1997, pp.743 — 752.

L. Chen, S. Ravit, A. Raghunathant, and S. Dey. A scalable SW-based
self-test methodology for processors. DAC, 2003, pp. 548 — 553.

N. Kranitis et al. SW based self-testing of embedded processors. IEEE
Trans. on Computers, vol. 54, no. 4, April 2005, pp. 461 —475.
R.Gurumurthy, S.Vasudevan, J.Abraham. Automated mapping of pre-
computed module-level tests to processor instructions,” ITC, 2005.

[6]
[7
[8]
[9]
[10]

[11]

Y.Zhang, H.Li,X.Li Automatic test program generation using executing-
trace-based constraint extraction for embedded processors. IEEE Trans.
on VLSI Systems, vol.21, no.7, July 2013, pp. 1220 — 1233.

N. Kranitis et. al. Hybrid-sbst methodology for efficient testing of
processor cores. Design &Test of Comp., vol. 25, no. 1, 2008, pp. 64-75.

[12]
[13] C.-H.C. Lu and K.-J. Lee, “Effective hybrid test program development
for software-based self-testing of pipeline processor cores,” in IEEE
Trans. on VLSI Systems, vol. 19, no. 3, March 2011, pp. 516 — 520.
C.H.Wen, L.Wang, K.Cheng. Simulationbased functional test generation
for embedded processors. IEEE Trans. on Comp., vol. 55, no. 11, Nov.
2006, pp. 1335 —1343.

R.Ubar, A.Tsertov, A.Jasnetski, M.Brik “Software-based Self-Test
Generation for Microprocessors with High-Level Decision Diagrams,”
15th Latin American Test Workshop - LATW, 2014, pp. 1 —6.

A Karputkin, R.Ubar, J.Raik, M.Tombak. Canonical representations of
HLDDs. Estonian J. of Engineering, 2010, pp. 39 — 55.

S.M.Thatte, J.A.Abraham. Test Generation for Microprocessors, IEEE
Trans. On Computers, C-29, No.6, pp.429-441, June 1980.

D.Brahme, J.A.Abraham. Functional Testing of Micro-processors. IEEE
Trans. on Comp, C-33,No.6,pp.475-485, 1984.

Z.Navabi, Analysis and Modeling of Digital Systems.McGraw-Hill,1993
On-line: http://mesdat.ucsd.edu/ lichen/260c/parwan/

Y. Zhang, H. Li, and X. Li, “Software-based self-testing of processors
using expanded instructions,” ATS, 2010, pp. 415 — 420.

AlJasnetski, R.Ubar, A.Tsertov, M.Brik. “Software-based Self-Test
Generation for Microprocessors with High-Level Decision Diagrams
(Ext.),” Proc. of the Estonian Academy of Sciences, 2014, 63-1, 48-61.

[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]

[22]

Appendix C

Publication 11l

Jasnetski, Artjom; Oyeniran, Adeboye Stephen; Tsertov, Anton; Scholzel, Mario;
Ubar, Raimund (2016). “High-level modeling and testing of multiple control faults in
digital systems”. IEEE 19th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), Kosice, 20-22 April 2016.

111

High-Level Modeling and Testing of Multiple
Control Faults in Digital Systems

Artjom Jasnetski, Stephen Adeboye Oyeniran, Anton Tsertov, Mario Schélzel*, Raimund Ubar
Tallinn University of Technology, Estonia, *University of Potsdam, Germany

Abstract — A new method for high level fault modeling to
improve the test generation for the control parts of digital
systems was proposed. We developed a new high-level
functional fault model based on High-Level Decision Diagrams
(HLDD). It allows uniform handling of possible defects in
different control functions related to instruction decoding, data
addressing, and data manipulation. It was shown how the
proposed high-level fault model can be mapped on the low-
level faults of a joint class of stuck-at faults (SAF), conditional
SAF and bridging faults. We proposed uniform procedures for
high-level fault activation as a graph traversing procedure on
HLDDs related to selection of control signals, and for fault
propagation as a task of solving data constraints without using
implementation details. Experimental results demonstrated
that combining both, high-level control fault reasoning and
low-level test generation for data part of a system can help to
achieve higher fault coverage and detection of redundant faults
than using low-level test generation approach alone.

Keywords: digital systems, control faults, multiple faults, high-
level decision diagrams

L. INTRODUCTION

The technology advancements impose new challenges to
testing of systems-on-chip as device geometries shrink and
the complexity of SOCs increases. Modern processor cores
are built from billions of transistors and are capable of
operating at gigahertz frequencies. Testing of such complex
components has been a challenge for several decades.
Application of sequential gate-level ATPG is inefficient in
terms of test generation time and fault coverage. Design for
testability, for example, scan-chains can improve the fault
coverage, however, affecting negatively on performance,
power consumption and the chip area.

For today’s deep sub-micron technologies, at-speed
testing has become essential for achieving high test quality.
The gap between frequencies of external ATE and processor
under test shows that external at-speed testing is practically
infeasible. In addition, the ATE accuracy problems result in
yield loss [1]. Traditional solution to cope with at-speed
testing is Built-In Self-Test (BIST) [2]. In BIST the tasks of
test pattern generation and response evaluation are moved
from external ATE to processor embedded logic. This
facilitates achieving high level test quality (including testing
of dynamic defects and delay faults), it leads as well to test
cost reduction. However, the BIST related testing
approaches for microprocessors are not as feasible as for

memories or in application specific integrated circuits
(ASICs) [3]. Furthermore, BIST results in over-testing as
well as overstressing the circuit due to higher-than-normal
switching activity during the test.

As an alternative to HW-based self-test such as BIST,
software-based self-test (SBST) has emerged [3-7]. SBST is
a non-intrusive test methodology that uses available
processor resources. In SBST, the role of the ATE is to load
the test program into memory and to read the final test
results back after the execution of test program is finished.

For the last decade, there has been an extensive research
on SBST of embedded processors. The quality of SBST is
primarily affected by test patterns. One of the ways to obtain
test patterns is executing an Automated Test Pattern
Generator (ATPG). In [4] it was shown that processor can
be divided into Modules under Test (MUT) to ease the task
of ATPG. An alternative way is to use random test patterns
for MUTs [3]. Although the gate level fault coverage for
MUT is acceptable in deterministic and random test pattern
generation, some of the generated patterns are typically
functionally infeasible when considering the processor as a
whole. Thus, ATPG has to be guided with functional
constraints to produce functionally feasible test patterns.

An automatic constraint extraction based on gate-level
simulation of tests to check their functional feasibility was
proposed in [S]. However, the efficiency of the method on
the industrial processors was shown to be low. In [6],
shifting of SBST generation from gate- to Register-Transfer
Level (RTL) was suggested. The drawback of this method is
that high fault coverage of structural faults cannot be
guaranteed. Hybrid SBST methods were proposed for
combining deterministic structural SBST with verification-
based self-test codes [6-9]. In addition to Hybrid SBST [9,
10], there are methods that achieve comparable results and
improve scalability when generating SBST program using
only RTL [5,8]. However, the tendency of embedding more
components into a single package is making the efficiency
and scalability of the state-of-the-art SBST methods
presented above questionable.

In [11], an approach to high-level fault modeling and
SBST for microprocessors using High-Level Decision
Diagrams (HLDD) was proposed, where a general
framework and main algorithms for test program automated
generation were outlined. On this basis in [12], a method of

generating high-level test groups was developed to avoid
mutual masking of faults possibly appearing in different
components of microprocessors.

In this paper, we advance further the results in [11,12],
and focus mainly on modeling of faults in control units
described by the Instruction Set Architectures (ISA). We
extend the results of [11,12] by proving the consistency of
the proposed high-level fault model and by showing that it
covers a broad class of gate-level faults including SAF,
conditional SAF and bridging faults with any multiplicity in
the control part of a processor. The rest of the paper is
organized as follows. Section 2 presents the method of
modeling systems with HLDDs, and Section 3 presents the
idea of HLDD based control fault modeling. In Section 4 we
propose the data constraints based high-level fault model for
the control part, Section 5 discusses experiments, and
Section 6 concludes the paper.

II. MODELING DIGITAL SYSTEMS WITH HLDDS

We chose a VLIW processor for describing the modelling,
because it’s simple, but sufficient control structure ease the
illustration of mapping between high- and low-level faults.
For modeling the processors, we use HLDDs [13, 14] where
the nodes represent functional blocks of the system and are
considered as test targets. Consider a VLIW processor with
2 execution slots in Fig.3. Each slot has a fetch register that
receives the current instruction from the memory via INI,
IN2. Instruction of slot i contains the control signals: di -
destination register, ctril and ctri2 - source registers, ctrAlui
- operation in ALU.

Inl In2

[[o1 Tetrtn Tetrn2 Jetratun | [[d2 Jetr21 Jetr22 Jctralu |
RO
R1
R2 I
R3
o EI]

[ALUL | [ALU2
Outl Out2

Figure 3. Structural Representation of the VLIW processor.

The components Muxil and Muxi2 represent the read
ports of the register file for slot i. The processor has a
register bank with 4 registers, and 2 write ports. Both write
ports are represented by Mux, whereby each write port 7 is
controlled by the bit field di. Dil, Di2, and OPi represent
the pipeline register between decode- and execute-stage.

Definition 1. Digital system model. Let us have a digital
sub-system, represented by a set of high level functions {y =
ACD)} determined by the Instruction Set Architecture
(ISA) of the system, and characterized by a set of control
variables C, and a set of data variables D. Such functions
can be represented by HLDDs.

Definition 2. HLDD for a sub-system {y = ACD)}.
HLDD is a directed, acyclic and connected graph G(y,M,I")
with a root y , and a set of nodes M where the non-terminal
nodes m € M" < M are labelled by control variables x(m) of
the set C, and the ferminal nodes m" € M" = M - M" are
labeled by arithmetic or logic expressions f{(m’) on the set of
data variables D. For each non-terminal node m e M", the
graph determines a mapping [(m): V(x(m)) — M(m), where
V(x(m)) is the set of possible values of the variable x(m), and
M(m) < M is the set of successors of the node m.

0
Ds2 ctrs2

ALUS ctrAlus

0,1,2,3} - i)

3
Ds1&Ds2

4

Figure 4. HLDDs for the components of the VLIW processor

Definition 3. Activation of a path on the HLDD. Denote
by m" the neighbor of the node m for the value v € V(x(m)),
according to mapping V(x(m))—>M(m). If the test pattern
includes the assignment x(m) = v, we say that the edge from
m to m” is activated by the pattern. Each vector of the
control variables of C, activates a path I(m,m') if all the
edges on this path are activated. A full activated path /(m,,
m") from the root 1, to a terminal m’ € M evokes a working
mode of the system component y = f{im") (e.g. a data transfer
or a data manipulation) represented by the terminal node m”.

Example 1. As an example, the components of the slots
se {1,2} of the VLIW processor in Fig.3 can be
represented by HLDDs in Fig.4. The graphs Ds1 and Ds2
represent the left and right read ports of the processor
respectively (components Mux11, Mux12, Mux21, Mux22).
Depending on the value of the control variables ctrs1 and
ctrs2, a register is selected. The read value from the selected
register is assigned to the variables Dsl and Ds2. The
behavior of ALUs is modeled by the graph ALUs in Fig.4.
Finally, the graph Ri represents the Mux-component for
writing into registers the value of ALUs. The value of Ri
(register 7) is determined as follows. If the destination
register for the result in slot 1 is 7 (i.e., d1 = i), then the
value of variable ALUI is selected. Otherwise, it is checked
if the destination register of slot 2 is i (d2 =). If this is the
case, then the result of variable ALU2 is selected.
Otherwise, the value of register Ri is hold.

III. HIGH-LEVEL FAULT MODELING WITH HLDDS

A. Classification of HLDD-based high-level faults

The HLDD model G(y,M,I) for a given sub-system or
system component y = F(C,D) is well suitable for high-level

fault modeling and fault diagnosis in digital systems, in case
when the diagnostic resolution is needed with accuracy of
locating faulty blocks represented by the nodes of HLDDs.

The terminal nodes m’ € M" of the HLDD represent the
sub-functions carried out in the data part, classified as data
transfer, storing and data manipulation, whereas nonterminal
nodes represent the functions of the control part of a system.
According to such a mapping of the system functions into the
HLDD model, we can classify two types of HLDD-based
high-level fault models: (1) control faults (the faults related
to the non-terminal nodes), and (2) data faults (the faults
related to the terminal nodes of HLDDs).

In accordance to the VLIW processor model in Fig.4, the
fault location targets will be the read port decoding blocks
represented by the HLDD nodes ctrs1 and ctrs2, the write
port decoding blocks modeled by the nodes d1 and d2, and
the ALU control decoding block modeled by ctrALUs. These
diagnostic targets belong to the control part of the processor.
The diagnostic target of the data part will be to locate the
faulty ALU operations modeled by the terminal nodes in the
graph ALUI, and the faulty data registers modeled by the
nodes RO, R1, R2, and R3 in the graphs Dsl and Ds2

As the high-level fault model for non-terminal nodes, we
will base on the exhaustive testing of these nodes. The fault
model will include the set of all values of node variables (as
the control part of test patterns), and the data constraints to
be fulfilled during the exhaustive test of non-terminal nodes.
The data constraints will guarantee that all the possible
control faults (misbehavior of the non-terminal node) will be
activated to produce errors in data part which will be
propagated to the points of observation.

For the terminal nodes we use a mixed level fault model
which combines high-level control fault activation with data
constraints generated at low-level to take into account the
implementation details of the data part.

B. High-level fault activation using the HLDD model

Test generation for a fault consists of two consistent data
assignments where one of them is needed for activation of
the fault, and the other is needed for propagation of the fault
up to the point of test response observation.

Each path / in the HLDD from root up to a terminal node
m" e M describes the behavior of the system in a specific
working mode related to the function f{m"). Assignment of
control values which activate the path /, activate in the same
time a set of faults related to the nodes M(/) on the path /.

Definition 4. Control fault r(m,v) of the non-terminal
node m € M(/) at the value of the node variable x(m) = v may
cause on the activated path / one of the following fault types
in the HLDD model.

(1) Missing edge: (m,v —). The fault brokes the path /,
which will mean no change in the state of the system;

(2) Wrong activated edge: (m,v — v*). The fault causes
incorrect leaving the node m € M(/) through another
output edge of the node, related to the value v* # v,

which evokes erroneous activation of another path /*
from root up to another terminal node m'" e MT, instead
of m" € M", and consequently, activates another
working mode f{m™") of the system;

(3) Several activated edges: (m,v — V*(x(m)) where
V*¥(x(m) < V(x(m). The fault causes simultaneous
activation of several output edges of the node m causing
concurrent activation of several working modes.

Consider a sub-system Y = F(C,D) which is represented
by an HLDD G(Y,M,I). Let us define the following high-

level fault activation conditions resulting from Definition 4.

Definition 5. Control fault activation. We say that the
control faults #(m,v), related to the non-terminal node m and
the value v € V(x(m)), are activated if the following paths in
the HLDD are activated:

(1) A path I(mom"") from the root node m, through m and
its neighbor m™ up to a terminal node m™" € M".

(2) For each neighbor m"" of the node m, where v* # v, a
path I(m"",m™") up to a terminal node m™", so that any
erroneous change of the value v € V(x(m)) would cause
activation of another path I(m"",m"""), non-overlapping
with l(mo,mr"), so that m™" £ m™".

Definition 6. Data fault activation. We say that all the
data faults r(m”v) related to the terminal node m’ are
concurrently activated if a full path I(mo,m") from root to a
terminal node m” € M”, are activated.

IV. HIGH-LEVEL HLDD BASED FAULT PROPAGATION

For generating a test for a given control or data fault #(m,v),
the fault must be activated according to Definitions 5 and 6,
and propagated to the observation point by solving the
suitable constraints for test data values. For data faults
related to the terminal nodes m” € M, these data constraints
will be determined by the data operands generated for testing
the function f{im”) at the low level by using any ATPG. Let
us denote each k-th bit of the value of m") as fi(m").
In the following we will formulate the data constraints to
be satisfied for detecting the activated control faults #(m,v).
Theorem 1. Any erroneous behavior according to the
fault types of Def.4 of the sub-system y=F(C,D), represented
by a non-terminal node m in the related HLDD G(y,M,I"),
will be detected by the test which activates all functional
faults 7(m,v), ve V(x(m)) under the following constraints:
Vm"e M'(m): [fim") = Q)],)
Vmym; €M (m), i# ;2 Yk [film) < (filmy) * fm))] ~ (2)
where Q@ = ZERO (or ONE), and * means v (or A),
depending on technology used in the implementation [13].
Proof. Let us have the technology basis where Q =
ZERO, and * means v. (The basis where 2 = ONE, and *
means A can be considered as a dual case). The constraint
(1) results directly from the technology basis, and it covers
the first type of faults — the missing edge: (m,v —). For
the constraint (2), the fault type of several activated edges

(m,v — {v, v*} will cause a change of the function fm™")
into another function fim™) v Am™"). To detect the fault,
we have to select a set of data words, so that the equation
Flm™) # fum™) v fu(m™") was satisfied at least once for
each bit £ in the selected set of data words. It is easy to see
that this inequality can be substitute by two relations fi(m"")
<fim™") and fi(m™) > fi(m™") which are simpler to satisfy
with bit by bit constraints solving. By generalizing the latter
two relations over the set of all pairs of functions fm™"),
m" e M"(m), we get the same requirement as constraint (2).
The fault type of wrong activated edge can be considered as
a special case of the several activated edges. O

Let us consider the following class of gate-level faults:
stuck-at faults (SAF), conditional SAF (CSAF) and bridging
faults. CSAF have been called in the past also as functional
[15], pattern [16], or fault tuple faults [17], or cell-internal
defects [18]. The latter has been introduced as the fault
model for cell-aware ATPGs. Let us call this joint fault
class as SCB class (SAF, Conditional SAF, Bridging faults).

Theorem 2. Any non-redundant multiple gate-level
fault of SCB class in the sub-system y = F(C,D), represented
by a non-terminal node m in the related HLDD G(y,M.I),
will be detected by the test which activates all functional
faults r(m,v), ve V(x(m)) under the constraints of Theorem 1.

Proof. Consider a block level functional unit y = F(C,D)
of a digital system in Fig.6, and a skeleton of its HLDD in
Fig. 7. Let the control word C (decoder output vector) be a
3-bit Boolean vector variable x(m) = (¢5,¢1,¢0,) With vector
values v € V(x(m)) which activate the respective working
modes y = f,= fim""). Denote the k-th bit of £; as f,, . The
data part of the unit consists of 8 sub-circuits for calculating
/v which will be selected by the multiplexer sub-circuit. The
latter consists of 8 AND, blocks which are controlled by the
output signals C = (¢,,¢1,¢0,) of the control block. Denote the
control inputs of each AND, block as vector variable C, =
(€125 €115 €10)- Note, each AND, block consists of 8 AND,,;
gates for each data bit of the function f, ;.

Table 1 shows the mapping of low-level single structural
faults from the class SCB in the circuit of Fig.6 into high-
level functional control faults 7(m,v) of HLDD in Fig.7.

Let us call the faults on the control part output lines as
global faults (GF), and the faults on the inputs of decoder
AND gates as local faults (LF). In case of GF, the same
fault has impact as a multiple fault on all AND blocks and
AND gates, whereas in case of LF, a fault has impact on a
single AND block only.

The rows of Table 1 correspond to the values v of the
activated control faults 7(m,v) and to the expression f, =
Am™) of the related terminal node, as defined by Definition
5. The columns correspond to the faults of SCB partitioned
into 5 groups: local SAF, global SAFI, global SAF0, OR
type of bridge, AND type of bridge. The entries of Table 1
show which high-level functional faults will be evoked by
the low-level structural faults for each activated working
mode y = f,= fim"") of the sub-system.

To explain the entries in Table 1 in more detail, consider
the example of applying a control vector C; = (c3,¢1,¢0,) =
011 as a test for activating the working mode f;. In column
Local SAF we consider only these SAF which coincide with
the needed bit values for activating f; i.e. ¢=0, ¢;=1, and
c=1. The entry (3, 1) means that in case of local SAF ¢, =1,
the activation of f; by v = 011, will evoke the erroneous
execution f; as well (this is the fault type of several activated
edges), which causes erroneous output value y = f;v f; ,
instead of the expected correct value y = f;. For the local
SAF faults ¢, (=0 and ¢;,=1, we get the erroneous behaviors
y=f3vf, noted as (3,2), and y = f; v f7 , noted as (3,7),
respectively. For the remaining SAF of the considered local
variables, ¢ =0, c,,=1, and ¢;,=0, which are not reflected
in Table 1, the operations fj, f5, and f3, respectively, cannot
be executed. The same is valid for local bridging faults (in
case they don’t have impact on the global control lines). The
global SAF/1 will cause execution of f;, instead of f;.
Similarly, for the case of global SAF/0, either f; or £, will be
erroneously executed, instead of expected f;. The global
bridging faults cause instead of f; execution of f; in case of
OR bridge, and either f; or f; in case of two possible AND
bridges. The symbol & has the meaning that at these low-
level faults no operation is executed. Since the control word
is exercised exhaustively, then all the conditional SAF will
be detected as well which corresponds to cell aware testing
concept as well.

From above, it results that for detecting all the low-level
faults when applying the control vector 011, the following
constraints must be satisfied: f; # ZERO (for detecting the
fault when f; will not be executed), f; # 3V fi, L #/iV o, fi #

f3 Vv f7 (for detecting other local SAF), f; # f7, (for detecting

the global SAF/1 and OR bridge faults), f; # fi, and f; # fo
(for global SAF/0 and AND bridge faults).

Similarly, the constraints for all other 7 test vectors on
the basis of Table 1 can be derived.

So far, only single low-level structural faults were
considered. It is easy to see that the set of multiple faults
from the class SCB cannot mask each other. The reason is
that there is no fan-out re-convergence in the control logic
of the subsystem. Hence, to guarantee the detection of any
combination of multiple low-level faults, all the constraints
derivable from Table 1 must be joined and taken into
account when testing the control faults at the given node m.
This requirement coincides with the constraints (2) of
Theorem 1. The constraint (1) results from the need of
detecting the case of “no operation”. o

Let us compare the reduction in the fault model size for
the low and high level cases. The total number of 736 low-
level faults consists of: (6*8+24)*8=576 local SAF (3 AND
inputs and 2 SAF, 8 AND blocks, 12 inverters and 2 SAF),
all multiplied by 8 because of the 8 bit data word; 2*3 = 6
global SAF; (2*9)*8 =144 bridging faults. All faults cover
all CSAF as well. The number of proposed high-level
functional faults will be stated in the following Corollary.

Control Local
part control
Global o faults

control~. C 4
faults gz /f

e

D Data |
part |

Control signals

Figure 6. Functional unit of the system

m mo mme
0O
m" m’n

to reduce the number of functional faults i.e. the test
generation complexity n times. To guarantee the detection
of control faults separately for each data bit, we need only to
modify the data patterns in Table 2 by shifting these » times,
so that for each bit, the constraints were satisfied. o

Table 2. Test data for testing ALU control

Datbis.k | 4 | 3 2 1 0
5 DI 1 0 1 1 0
o D2 1 0 0 1 1
NI - 0 1 0 1
7 DI 1 0 1 1 0
7 Di+D2 | 0 I 0 [o I
I3 DI-D2 0 [o 0 1 1
7, Dl&D2 | 1 0 0 1 0
I N - 0 i 0 |1

Table 3. Highlighted bits where operations are distinguished

n’O '@ Tested Distinguished operations f;
Figure 7. HLDD for the functional unit of the system in Fig. 6 operations

; : fi DI DI+D2 DI-D2 DI&D2 N
Tabel 1. Mapping low level structural faults into high-level functional faults D‘I 0 0 None 0
Fault activation Covered structural faults D1 +D2 1 1 1 2
fi Control Local SAF Global Global OR AND D1 -D2 2 3 4 2
Ut word SAF1 SAF0 bridge bridge D1 & D2 2 0 0 0
fo 000 (0,1),(0.2),(0.4) 124 o 2] 2] IN 1 3 1 1
L 001 (1,0.0.3.13) 35 0 35 0 The mapping of low level structural faults into high-
b 010 (2.0),(2.3).2.6) 3,6 0 3,6 0 X 5 :
i il G.0.62.07) z ™ z 2 level functional faults can h'elp us in the following ways.
1A 100 (4,0),(4.5),(4.6) 56 0 56 0 1) We can generate directly the test patterns for the
/s 101 (5.1).54).(5.7) 7 14 7 14 control part of the sub-system by using the high-level fault
Jo 110 (6.2).(64).(6.7) 7 24 7 24 model of lower complexity compared to with the low-level
ki 11 73,797, 2 3,56 2 2 space of faults, similarly to Example 3.

Corollary 1. Consider a node m in the HLDD model
with n output edges, i.e. n =| V(x(m)) | . The number of all
possible low-level faults of the class SCB of any
multiplicity in the control circuit represented by the node 1,
can be mapped by the proposed functional fault model into
n*(n-1) + n high-level functional faults.

Proof. Each fault of the proposed high-level functional
fault model can be represented by a constraint formulated in
Theorem 1. The number of constraints (1) in Theorem 1 is
n, whereas the number of constraints (2) is n*(n-1). O

Considering the example in Theorem 1, and Corollary,
the number of 736 of single low-level faults can be covered
by only 64 functional faults. According to Theorem 2 these
64 single faults can be mapped to any of the multiple fault
combination of the 736 single structural faults.

Example 2. Consider the HLDD for ALU of the given
slot s of the VLIW processor in Fig.4. The data D1, D2 and
IN for testing the node ctrAlu and depicted in Table 2 are
sufficient for satisfying the constraints (1) and (2) of
Theorem 1 at least in one bit of the data words. The number
of data bits needed for satisfying the constraints is only 5.
Table 3 shows in which bit k of the data word f; and f; were
distinguished f;; < f; (above the diagonal) and f;; > fix
(below the diagonal). One of the constraints as a request of
Theorem 1 D1y < D2y (depicted as “None” in Table 2) can-
not be satisfied, which refers to a redundant functional fault.

In this example, the control faults separately for all n bits
of the data word where not taken into account. This allowed

2) We can use the ATPG for generating the test patterns
at low level. However, the traditional ATPGs are using the
assumption of a single fault case. Since the proposed fault
model allows detection of multiple faults, we can re-
simulate the test patterns generated by gate-level ATPG
using the functional fault model.

3) In the latter case the following may happen. Some
functional faults may be not covered by the test patterns
generated with ATPG. In this case the missing patterns can
be generated using the proposed functional fault model. On
the other hand, it may happen that some functional faults
may happen to be redundant. If this redundancy has not
been detected by the ATPG, the fault coverage calculated by
the ATPG tool can be updated (improved).

V. EXPERIMENTAL RESULTS

To compare the gate-level fault coverage obtained by the
proposed high-level test generation method with available
data in the literature we chose the processor Parwan [19].
The test data for the test program was generated by a gate-
level ATPG. The whole test program was simulated by
ModelSim to find the local test pattern sequences for all
modules. These sequences were fault simulated at gate level
to get SAF coverages to compare with the same coverages
in [3,20]. From Table 4 we see that the proposed method
outperforms in the achieved fault coverage the previously
published results for that processor for all modules.

Table 4. Comparison of different test coverages for PARWAN MP

Fault coverage %

Module | #Faulis 5 T method 120] B3]
AC 156 993 993 99.3
IR 228 99.4 96.4 98.60
PC 590 993 99.0 89.20
MAR 30 99.2 96.40 97.20
SR 130 99.0 96.80 98.90
ALU 956 993 98.00 98.50
SHU 310 100 99.20 94.10
Control 48 89.8 84.40 8830
Total 2060 98.04 96.19 9551

The proposed functional fault model had the following
contribution in this experiment which explains well the
bridge between theoretical elaborations and the experiments.

After using the gate-level ATPG, we achieved for ALU
the fault coverage 98.3 [11] which was less than in [3].
After that we carried out the check if all the constraints of
Theorem 1 were satisfied to guarantee the full test of ALU
control part. The number of 8-bit data pairs for testing all
the modules of the processor, including the ALU, was 44.
For all these patterns we calculated the coverage of the
constraints between the operations of the subset of
instructions {LOAD_ A, A&B, A+B, A-B, NOT_A} where A
is the data operand stored in the accumulator, and B is the
second operand at the input of the ALU. As the result, we
found that one constraint (one functional fault in all 8 bits) 4
A & B at A =ZERO, i.e the constraint 4, < B, for all bits k
= 0,1,...7 was not covered. It is casy to see that this
functional fault is redundant.

Consider, as an example the formula y = ¢jc,4 v —ci1c,4B
where ¢l and ¢2 are control signals for selecting between 2
operations y = 4, and y = A4 & B. It is easy to see that it is
not possible to generate a test pattern for the fault ¢; = 1.

In general case, such a redundant high-level functional
fault may not have always a related structural redundant
fault. This will happen when such a redundancy has been
removed during the circuit synthesis process. In the current
experiments with Parwan processor, the found functional
redundancy motivated us to look deeper in the real circuit to
find out the reasons why 100% fault coverage for ALU
block was not achieved.

As the result we discovered 6 structural redundant faults
which were not covered in our recent research [11]. We also
detected other 6 SAF which were not functionally activated,
and one undetected structural fault whose redundancy is still
not proven.

In such a way, by detecting the redundancy of 8 high-
level functional faults, it was possible to increase the ALU
fault coverage, compared to the previous work.

VI. CONCLUSIONS

In this paper we developed a new method for high-level
modeling and testing of multiple control faults in digital
systems. The method is based on modeling of digital
systems with HLDDs. We considered in the discussion the
class of microprocessors, however, the model of HLDDs
can well cover a broader class of digital systems.

The experimental results demonstrated that the new
functional fault model defined on HLDDs will cover not
only single faults but also multiple faults of a broad SCB
class of low level faults and defects. We showed that using
the proposed fault model allows detection of gate-level fault
redundancies easier than it can be done by gate-level
ATPGs, giving in such a way the possibility of creating a
synergy from both low- and high-level test generation and
fault simulation approaches.

In the future work we will investigate the efficiency of
the proposed high-level fault modeling approach for the
microprocessors with more complex control mechanisms.
The exciting objectives for the future work will be using the
HLDDs for high-level test generation for locating faulty
blocks in systems as well.

ACKNOWLEDGEMENT

The work has been supported by IT Academy of Estonia,
EU FP7 STREP project BASTION, HORIZON 2020 RIA
project IMMORTAL, and by European Structural Funds.

REFERENCES

[1] International technology roadmap for semiconductors ITRS. 2001 Edition.
Available: http://public.itrs.net/Files/2001TTRS/ Home.htm

[2] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J.
Rajski, "Logic BIST for large industrial designs: real issues and case studies," in
Proc. of the International Test Conference, 1999, pp. 358 - 367.

[3] L. Chen and S. Dey, "Software-based self-testing methodology for processor
cores," in IEEE Trans. on CAD of integrated circuits and systems, vol. 20, no.
3, March 2001, pp. 369 - 380.

[4] R.S. Tupuriand J. A. Abraham, "A novel functional test generation method for
processors using commercial ATPG," in Proc. of ITC, 1997, pp. 743 - 752.

[5] L.Chen, et al. A scalable SW based self-test methodology for programmable
processors," in Proc. of DAC, 2003, pp. 548 - 553.

[6] N.Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, "Software based self-
testing of embedded processors," in IEEE Trans. on Comp., vol.54, no.4, 2005.

[7] R.S. Gurumurthy, S. Vasudevan, J.A. Abraham. "Automated mapping of pre-
computed module-level test sequences to processor instructions," ITC, 2005.

[8] Y.Zhang, H.Li, and X.Li. Automatic test program generation using executing-
trace-based constraint extraction for embedded processors,” in IEEE
TransactionsVery Large Scale Integration (VLSI) Systems, vol.21, no.7, 2013.

[9] N. Kranitis, A. Merentitis, G. Theodorou, and A. Paschalis, “Hybrid-sbst
methodology for efficient testing of processor cores,” in IEEE Design and Test
of Computers, vol. 25, no. 1, February 2008, pp. 64-75.

[10] C.-H.C. Tai-Hua Lu and K.-J. Lee, "Effective hybrid test program development
for software-based self-testing of pipeline processor cores," IEEE Trans. On
VLSI Systems, vol. 19, no. 3, March 2011, pp. 516 - 520.

[11] A.Jasnetski, J.Raik, A.Tsertov, R.Ubar. New Fault Models and Self-Test
Generation for Microprocessors using High-Level Decision Diagrams.
Proceedings of IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems - DDECS. Belgrade, Serbia, April 22-24, 2015.

[12] R.Ubar, M. Schélzel, S.A. Oyeniran, H.T. Vierhaus. Multiple Fault Testing in
Systems-on-Chip with High-Level Decision Diagrams. 10th IEEE International
Design & Test Symposium IDT'15, December 14-16, 2015, Dead Sea, Jordan.

[13] R. Ubar. Test synthesis with alternative graphs. IEEE Design and Test of
Computers, 1996, pp. 48 - 59.

[14] S.M.Thatte, J.A.Abraham. Test Generation for Microprocessors, IEEE Trans.
On Computers, C-29, No.6, pp.429-441, June 1980.

[15] R.Ubar. Fault Diagnosis in Com. Circuits by Solving Bool. Diff. Equations.
Automatics & Telemechanics, No.11, 1979, Moscow, pp.170-183 (in Russian).

[16] K.B.Keller. Hierarchical Pattern Faults for Describing Logic Circuit Failure
Mechanisms. US Patent 5546408, Aug. 13, 1994.

[17] K.N.Dwarakanath, R.D.Blanton. Universal Fault Simulation using fault tuples.
DAC, Los Angeles, June 2000, pp.786-789.

[18] F.Happke et al. Cell-Aware Test. IEEE Trans. on CAD of IC and systems, Vol.
33, No. 9, 2014.

[19] Z.Navabi, Analysis and Modeling of Digital Systems. McGraw-Hill, 1993.

[20] Y.Zhang, H. Li, and X. Li, "Software-based self-testing of processors using
expanded instructions," in Proc. of 19th IEEE ATS, 2010, pp. 415 - 420.

Appendix D

Publication IV
Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton (2017). "Automated Software-Based

in-field Self-Test”. International Journal of Microelectronics and Computer Science,
8 (2), 57-64.

119

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 8, NO. 2, 2017 57

Automated Software-Based In-field
Self-Test Program Synthesis

Artjom Jasnetski, Raimund Ubar, and Anton Tsertov

Abstract—This paper presents a methodology to automate
functional Software-Based Self-Test program development. We
rely on the previously published research on modeling processors
using subclass of acyclic directed graphs called High-Level
Decision Diagrams (HLDD). The HLDD model of the processor
gets generated from its Instruction Set Architecture. The HLDD
model is then used together with beforehand prepared assembly
program templates in the generation of the complete self-test
program. The research presented in this paper includes examples
of test generation for the 32-bit SPARCv8 microprocessor Leon
3. The experimental results demonstrate that automatically
generated SBST program obtains comparable to the state-of the
art fault coverage data.

Index Terms—microprocessor, software-based self-test (SBST),
automatic test program generation, high-level decision diagrams
(HLDD) synthesis.

I. INTRODUCTION

DVANCES of modern technology in manufacturing and

design of microprocessors are continuously increasing
the difficulty of digital circuit test [1]. Therefore, testing
of constantly scaling complex digital systems like micropro-
cessors, has been a challenge for decades. Software-based
self-test method has emerged, and became a very promising
competitor to the widely used, but slow, intruisive structural
test [2] [3], and effective, but very expensive functional test
[1]. The core idea of SBST approach is to use the resources
of microprocessor to test itself, by running test programs. The
nature of this method implies such features as nonintruisive-
ness, low cost and compatibility with at-speed and in-field
testing [4]. This method was accepted by industry [5], and
is complementing functional and structural methods within
manufacturing process.

Furthermore, interest for this method was growing in frames
of in-field test for processor-centric systems in safety-critical
applications. Since, functional and structural test methods are
not suitable for in-field test, SBST becomes very attractive
solution [6] [7]. The academia was motivated to put more
effort into studying SBST for in-field test, after publication
of IEC 61508 for industrial safety systems, ISO 26262 for
automotive applications, and release of DO0254.

Concurrently, big interest is gathered around the automation
of SBST approach, since the complexity of manual test pro-
gram generation can be inexcusably high. Automated SBST

A. Jasnetski, R. Ubar and A. Tsertov are with Department of Computer
Engineering, Tallinn University of Technology, Tallinn, Estonia (e-mails:
ajasn@ati.ttu.ee, raiub@ati.ttu.ee, anton.tsertov@ttu.ee)

This work was jointly supported by IT Academy of Estonia, EU through
European Regional Development Fund, H2020-ICT-2014-1 644905 project
IMMORTAL as well as by the institutional research funding IUT 19-1 of the
Estonian Ministry of Education and Research.

ISSN 2080-8755

[7]-[9] can reduce the test development cost, and thereafter
price of a product.

SBST approaches can be divided into two major groups -
structural and functional. Structural approaches, such as [10]—
[15], are based on test generation using information from lower
level of design (gate- or RTL-level description) of processor
under test. Functional, in its turn, is using instruction set
architecture (ISA) information of the processor under test.
Since in most cases structural information of commercial
products is intellectual property held under NDA, the solution
based on functional SBST is exclusive for in-system or in-filed
test.

One of the first methods among functional SBST proved
to be efficient, was proposed by Shen And Abraham [16].
Framework Vertis, capable of pseudo-random test sequence
generation based on ISA information, has been proposed.
Similar solution - FRITS (Functional Random Instruction
Testing at Speed) [17] is based on test program generation
on random instruction sequences with pseudo-random data.
It suits well for wafer test, due to it’s cache-resident nature.
Alternative cache-resident method for production testing [5]
using random generation mechanism proves, that high cost
functional testers can be replaced by this SBST approach,
without significant loss in fault coverage. Alternative approach,
based on so-called evolutionary algorithm, was proposed by
Corno et al. [18]. Test program is being composed of the
most effective code snippets (in a question of SAF coverage),
which were distinguished by constant reevaluation. Due to it’s
reevaluation-centric nature, this method is not capable of in-
field test generation, due to lack of structural information.
Later research concentrates on test approaches for specific
processor parts like pipeline, branch prediction mechanism
[19] or caches [20]. Gizopoulos et al. in [21] are proposing a
method, which can enhance SBST program in order to bring
more coverage to pipeline logic and also memory addressing (
12% for miniMIPS and OpenRISC1200 processors). Further
approach for testing the pipeline was made by Bernardi et al.
[22]. The proposed strategy involves the activation of faults
related to the data hazards and register forwarding logic in
processor core, and later research concentrates on decode stage
of the pipeline [6].

Nevertheless, none of the state-of-the-art methods have so
far tried to develop well formalized high-level (e.g. behavioral
level) fault models for coping with hard-to-test faults and
fault masking problems at higher levels with ultimate goal
to improve test quality and to achieve compact test programs.
Additionally, coverage of wide specter of fault classes is left
unmeasured, due to lack of methods for simulation and lack
of theoretical basis for identification.

Copyright © 2017 by Department of Microelectronics & Computer Science, Lodz University of Technology

58 JASNETSKI et al.: AUTOMATED SOFTWARE-BASED IN-FIELD SELF-TEST PROGRAM SYNTHESIS

e— D

PATTERN S |

ISA SBST
SBST
TEST
HLDD
PROGRAM
GENERATO
SYNTHESIS GENERATION
asm template library

Fig. 1. General concept of SBST generation tool

Our previous work in SBST field is focused on adapt-
ing methodology of High-Level Decision Diagrams (HLDD)
for modeling of microprocessors and faults [23]. In paper
[23], we introduced a new concept for generating tests for
microprocessors. The proposed approach considers program
generation using MUTs modeling at behavioral level derived
from ISA. HLDD model sets are synthesized from the ISA,
hence, considered as a behavioral level model. The instruction
list of MP is converted into a network of HLDD graphs where
each graph represents a sub-circuit. Hierarchical approach
is used for test generation: the control functions are tested
exhaustively (by conformity test), but the data operands for
testing the data path are generated by traditional gate-level
ATPG (scanning test). Our latest work [24] adds new fault
modeling idea for high-level faults, where experimental results
obtained by formal generation of test program for the Parwan
[25], [26] microprocessor are presented.

In this paper we develop our previous concepts into the
tool, which automatically generates test programs for micro-
processors. For that purpose we have proposed an algorithm
of instruction set analysis. Generalizing the known method
of BDD synthesis based on Shannon expansion of Boolean
functions allows high level expansion of predicate expressions.
The general concept of the tool is shown in Figure 1. The
Tool consists of three modules: HLDD synthesizer, test vector
generator, and SBST generator - synthesizer for converting
test vectors into test-programs using beforehand prepared test
code templates. The capabilities of the tool are demonstrated
on two microprocessors - on the Parwan 8-bit microprocessor,
and on Leon 3 32-bit microprocessor.

The paper is organized as follows: Section II presents the ba-
sis of HLDD synthesis procedure. Section III is demonstrating
the HLDD synthesis functionality of proposed tool on example
of Leon 3 microprocessor. Section IV is dedicated to fault
modeling using HLDD diagrams. Section V gives an overview
of test program generation functionality, and experimental
results. The results, published in this paper are confirming the
applicability of approaches presented in previous works [23]
[24].

II. HIGH-LEVEL DECISION DIAGRAM SYNTHESIS

In [27], High-Level Decision Diagrams (HLDD) were intro-
duced, and a method was proposed for synthesis of HLDDs
from Data Flow Diagrams (DFD). As the first step of syn-
thesis, the DFD was transformed by symbolic execution into
a Structural Table of Automaton (STA) [28]. In case of mi-
croprocessors when their behavior is given by the instruction
set, such STA can be generated directly without symbolic
execution of the model.

Consider an example of a fragment of a digital system is
shown in Table I.

TABLE 1
DESCRIPTION OF AN AUTOMATION

Instruction | Control constraints .
Data assignment statements
1y, T1 | T2 T3
Iy 1 3 0 y1 = F1(X)
Is 1 2 y1 = F2(X), y2 = F3(X)
I3 3 2 y1 = Fu(X)
14 4 1 y2 = F5(X)

Each row in Table I represents a state transfer in the
automaton. In case of the microprocessor represented at high-
level by its set of instructions, we can represent by each row
the functionality of an instruction as follows.

The left-most cell in each row denotes the name (or the
number) of the instruction I}, the cells of the subtable Control
constraints represent the code of the the related instruction
word [}, split into the codes (x1, x2, x3) of different subfields
of the instruction format, and the cells of the subtable Data
assignment statement represent the functional activities y;, =
F)(Xk) of the related instruction where y, denotes the output
functional variable of the related functional block (e.g. the
output register of ALU), and X, represents the data variables
involved as arguments in the data manipulation operation FJ.

For all the left-hand side variables ¥, in Table I we create
HLDDs which will describe the behavior of these variables
during execution of the related instructions. We assume that
the variables y; and yo represent the results of functions F'(X).

Consider the data in Table 1 as a set of tuples N =
{Ny}, Ny = (Ck, Sk) where C; is a set of logical constraints
given for the instruction [, in the subtable control constraints,
and Sy is a set of assignment statements. Each statement
s € Sk (denoted by shortly by yi s = Fj) is an algebraic
expression, which will be fulfilled if the set of constraints C;
is satisfied. By collecting all the statements s from N for a
left-hand variable y we can represent the behavior of y as

y=\/CiF;, o)

where the constraints C; represent conjunctions of predi-
cates weighted by the respective expression [;.

As an example, according to the formula 1 the Table I can
be represented now as the two predicate formulas:

Yy = (1‘1 = 1)(1}2 = 3)(1}3 = U)Fl(X)\/
(21 = 1)(22 = 2)FB(X) V (21 = 3)(z3 = 2)F4(X)
yo = (x1 = 1)(z2 = 2)F5(X) V (z2 = 4) (x5 = 1) F5(X)

From these predicate formulas, the HLDDs for the variables
y1 and ys can be derived in a similar way as BDDs are derived
by using Shannon factorization [29] for Boolean functions.
The only difference is that instead of Boolean factorization we
will use multi-valued factorization, depending on the possible
number of values of the constraint variables x;. The HLDDs
created by factorization for y; and y» are depicted in Fig 2.

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 8, NO. 2, 2017 59

—®

(D

v G-
—@--D

Fig. 2. HLDDs created by factorization of formulas for y1 and y2

Using the model of HLDDs we can simulate the instructions
by tracing the graphs according to the values of the instruction
variables (x1, o, x3). If a terminal node will be reached then
the value of the graph variable y is updated by calculation of
the value of the expression in the related terminal node. If no
terminal node will be reached then the value of graph variable
y will not be updated.

II1. ISA BASED HLDD SYNTHESIZER

The methodology for generation of High-Level decision
diagrams from instruction set architecture presented in pre-
vious section, is used by the proposed tool. The instruction
set information is primary input data for HLDD synthesis. In
order to process ISA automatically, it should be represented in
a machine readable way. Usually the information about ISA
is formatted and composed differently, making the universal
parsing process nearly impossible.

First, we suggest to bring the ISA description to com-
mon ground. Thus, in this paper we outline two formats
(CSV, XML) to generalize the description of Leon 3 ISA.
In case of CSV format, each instruction field name, width
and value must be provided using such syntax: %name% =
Y%width%'b%value%. In case of XML format, each field
must have own tag, where name, width and value are pro-
vided as follows: < %name% = %width% b%value% ><
%mname% >. The proposed HLDD Synthesizer tool is capable
to read both formats: CSV table and XML.

As a case study, microprocessor Leon 3 was used. This
processor was chosen to represent the complexity of modern
processor cores, which is suitable to show the scalability of
proposed approach. Table II shows the complexity difference
between two processors used in case study of this paper. An
integer unit module of Leon 3, as a core component, is used
as an unit under test.

TABLE 11
PARWAN AND LEON 3 IU COMPARISON

PARWAN | LEON 3 Integer Unit
Bit depth 8 32
Instructions 16 46
Architecture Custom SPARCvVS
Gates 1480 15161

Leon 3 is a microprocessor with SPARCvVS8 architecture
[30]. SPARCVS instructions can be divided into four groups:
memory, control, ALU and miscellaneous. Each instruction
is aligned to a specific format. SPARCv8 architecture has 6
different formats for instruction set listed in Table III.

TABLE I1I

SPARCVS8 INSTRUCTION FORMATS
1| op disp30
2 | op rd op imm22
3 [op[a] cond [op2 disp22
4] op rd op3 | rsl [i=0 [asi [rs2
5] op rd op3 | rsl [i=l | immi3
6 | op rd op3 | rsl opf [rs2

The fields from instruction format table can be divided in
two types - operational fields (op, op2, op3, i, a, asi, cond, opf)
and register related fields (rs/, rs2, rd, imm). This information
must be handled differently, in order to build a proper HLDD
diagram. Operational code fields must be marked differently
from register fields.

op op3 e Suggested Assembly Language Syntax SPARCVS
[anD T 000001 Jand and reg (1), reg_or_imm, reg ird Architecture

10 d | op3 rsi i=0 | unusedfzero) | rs2 Manual

5B 3 m FERY) 3 o @
opg 'b10; %rd; 0p3=6'b000001; %rs1; i=1'b0; asi=8'b00000000; %rs2; {rd = rs1and rs2} CSV

Fig. 3. CSV and XML representation of AND instruction

An example of AND instruction of SPARCVS architecture
is provided in Figure 3. This figure represents the process
of modifying the instruction description from architecture
reference manual into machine readable format. In the given
example AND instruction description (Figure 3.a) is cut from
SPARCVS architecture manual. By it’s format AND instruction
belongs to the ALU instruction group. Additional information
about instruction fields is also taken from manual - instruction
word consists of four operational fields - op, op3, i and asi, and
three register fields - rd, rs/ and rs2 (Table III, line 4). Based
on this information, an entry containing instruction field names
and their length, can be added to the CSV file (Figure 3.b). op,
op3, i and asi fields have constant values, but rd, rsI and rs2
fields are dynamic, since holding information about register
index. Dynamic nature of register index is represented with
symbol %. Complementary information should be provided as
parameters separately, in order to sort dynamic fields by their
specification - if it is a source register, destination register or
immediate value.

AlUice | ALLbaA] ALiis | SPAFE jomptea | ALlbn
op=2'b10; %rd; op3=6'b000001;
op=2'b10; %rd; op3=6'000001;
op=2'b10; %rd; op3=6'b000010;
op=2'b10; %rd; op3=6'b000010;
op=2'b10; %rd; op3=6'b000011; b0; asi=8'b00000000; %rs2; {rd = rs1 xor
op=2'b10; %rd; op3=6'b000011; 1 i=1'b1; %imm; {rd = rs1 xor imm}

op=2'b10; %rd; op3=6'0100101; %rs1; i=1'b0; asi=8'b00000000; %rs2; {rd = rs1 sli rs2}
op=2'b10; %rd; op3=6'0100101; %rs1; i=1'b1; %imm; {rd = rs1 sll imm}

op=2'b10; %rd; op3=6'b100110; %rs1; i=1'b0; asi=8'b00000000; %rs2; {rd = rs1 srl rs2}
op=2'b10; %rd; op3=6'b100110; 1 i=1'b1; %imm; {rd = rs1 srl imm}

op=2'010; %rd; op3=6'0100111; b0; asi=8'00000000; %rs2; {rd = rs1 sra rs2}
op=2'b10; %rd; op3=6'b100111; b1; %imm; {rd = rs1 sra imm}

op=2'b10; %rd; op3=6'b000000; b0; asi=8'b00000000; %rs2; {rd = rs1 add rs2}
op=2'b10; %rd; op3=6'0000000; b1; %imm; {rd = rs1 add imm}

op=2'b10; %rd; op3=6'0000100; b0; asi=8'b00000000; %rs2; {rd = rs1 sub rs2}
op=2'b10; %rd; op3=6'b000100; %rs1; i=1'b1; %imm; {rd = rs1 sub imm}

1'b0; asi=&'b00000000; %rs2; {rd = rs1 and rs2}
b1; %imm; {rd = rs1 and imm}

bO; 8'b00000000; %rs2; {rd =rs1 or

b1; %imm; {rd = rs1 or imm}

Fig. 4. Part of SPARCvV8 ALU instructions

In case of AND instruction, rd is a destination register index
and rsl, rs2 are source register indexes. Additionally, CSV
entry should contain the description of operation (Figure 4.a),

60 JASNETSKI et al.: AUTOMATED SOFTWARE-BASED IN-FIELD SELF-TEST PROGRAM SYNTHESIS

for the AND operation in hand is rd = rsl and rs2. Com-
plementary, but important information about microprocessor
architecture should be also added as separate parameters. Such
is the data about register amount and their width, needed at
the stages of HLDD generation and test synthesis.

Correctly composed CSV with complementary files is hold-
ing needed data to build HLDD diagram, representing the
behavior of the system (or it’s part) under test. As an example,
a small subset of SPARCVS instruction set, representing ALU
instructions, is shown in Figure 4. The HLDD graph, synthe-
sized from SPARCv8 ALU-type instruction list is shown in
Figure 5. In case of AND instruction, the destination register,
represented by instruction field rd, becomes the output of the
graph. Then, path of consequent nodes from output to the leaf
of graph is build from operational fields of AND instruction.
Functional description of AND instruction becomes the leaf.
Such way of modeling allows to store the behavior of the
system as follows: the result of operation rs/ and rs2 will be
stored to rd, if operational instructions fields op, op3, i and
asi are holding specific values. As a consequence, each node
represents an element of the control part, and leafs represent
data path of the modeled system.

HLDD
models the
processor on
behavioral

" Contral |50
si— Each HLDD node
represents a

Fig. 5. HLDD graph synthesised from SPARCV8 instructions

IV. ISA BASED HIGH-LEVEL FAULT MODELING

In the ISA based HLDD model, the nodes of the decision
diagram (DD) are classified into two groups: internal nodes,
and terminal nodes. Internal nodes represent the control func-
tions of the system, and terminal nodes represent the data path
functions of the system.

The instruction words of microprocessors are usually split
into several fields. This corresponds to partitioning of the
instruction variable into concatenation of the field variables
e.g. as I = OPAI1.A2, where [is the instruction variable, OP
is the operation code, whereas A/, and A2 denote register
addresses of the first and second operands, respectively. In the
HLDD model, to each of these field variables related internal
nodes correspond. On the other hand, each of these nodes
represent sub-circuits which are responsible for addressing the
operands and controlling the operation related to the value of
OP. The nodes OP, A1, and A2 represent a path in the HLDD,

which will be activated if the instruction [is called. The path
terminates in the terminal node of the HLDD labelled by a
functional expression to be processed in the data path of the
system if the instruction 7 is called.

Each path in a DD describes the behavior of the system in
a specific mode of operation. The faults having effect on this
behavior are associated with nodes along the activated path.
In case of a control fault, the path activated by instruction
I, will be corrupted, and the effect of the fault will cause
incorrect leaving the path in the faulty node. In this case, a
wrong terminal node will be reached instead of the terminal
node which should have been reached at instruction /. In case
of the data fault, the functional expression in the terminal node
of the activated path will be corrupted.

As the fault universe to represent all possible control
malfunctions in a system, we assume any corruption in the
behavior of non-terminal nodes in HLDDs, expressed in the
following ways [31]:

1) output edge of a node is broken;

2) output edge of a node is constantly activated;

3) instead of the activated edge, another edge or a set of

edges are simultaneously erroneously activated.

The practical meaning of this fault universe stands in
application of the idea to test exhaustively the behavior of each
non-terminal node at all possible values of the node variable.

The fault universe of control faults can be expanded with
the universe of data path faults related to terminal nodes of
HLDD:s to get the full fault universe of the system under test.
To do this, in each terminal node, and for each expected value
v of the functional expression of the node, we introduce a
dummy output edge into a new dummy terminal node labelled
with the value v as a constant. In such an extended HLDD,
all the node related faults can be activated in a uniform way.

Several optimizations of the described exhaustive fault
universe can be undertaken, based on either transforming
exhaustive test into pseudo-exhaustive one, or transforming
the functional test into the structural one.

(e (oo (o(F)

Fig. 6. Transformation of HLDDs to reduce the complexity of model

In Figure 6, it is shown how the exhaustive test concept can
be substituted by the pseudo-exhaustive approach to reduce the
control fault universe of the system. Two possible HLDDs are
presented for representing the behavior of the same subsystem
with output register R. The subsystem is controlled by a set of
n instructions. The instruction variable / can be represented
as a concatenation of the field variables in two ways: [
= OPAI.A2, or I = OP1.OP2.0OP3.A1.A2, resulting in two
different HLDD:s.

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 8, NO. 2, 2017 61

Instead of testing exhaustively the node OP in the HLDD
(Figure 6a) for all n values of the instruction subfield variable
OP, we may test separately and exhaustively the component
variables OP1, OP2, and OP3 in the functionally equivalent
HLDD (Figure 6b), which corresponds to traditional pseudo-
exhaustive test [31]. The complexity of the test generation task,
and the length of the resulting test can be using the HLDD
in Figure 6b considerably reduced due to the reduction of
the number of output edges of internal nodes in the graph,
compared to the HLDD in Figure 6a:

Ny +ng +n3 << n=mn; XnNg XnN3.

On the other hand, the exhaustive test of the functions Fk
in terminal nodes, can be replaced either by also pseudo-
exhaustive tests [32], or by structurally generated test pat-
terns using any traditional low-level ATPG (if the related
implementation details of the system are given). In the latter
case, a combined use of hierarchical test generation may be
used, exploiting both, ISA-based HLDDs, and structurally
synthesized BDDs [33].

To organize test generation for each HLDD node, using
HLDD-based fault universe, two steps are to be processed:
activation of the node under test, and sensitizing the faults of
the activated node.

To activate internal node m under test needs assignment of
proper values to the node variables in the HLDD, so that the
following paths were activated: (2) a path from the root node
to m, and (3) a subset of non-overlapping paths from all output
edges of the node m to a subset of terminal nodes M7 (m).
To activate a terminal node m under test needs to activate only
a single path from the root node to m. Sensitizing the faults
of the activated internal node m needs to solve the following
equations as constraints when testing the node m [2]:

vm™ € M"(m) : [f(m") # 9, ©

(3)
where 0 = ZERO (or ONE), and the symbol * stands
for logic OR (or logic AND), depending on the technology
implemented in MP [34], [35]. Here, ZERO denotes a binary
vector (000), and, similarly, ONE stands for (111). The index
k refers to the bit number of the data words. Satisfaction
of the constraints (2) and (3) guarantees that the expected
and erroneous test responses will be distinguished at any
corruption of the activated HLDD node m under test due to a
fault in the sub-system, represented by the node.

The described high-level fault model defined for HLDDs,
together with the node activation concept, can be regarded
as a generalization of the classical gate-level stuck-at fault
(SAF) model for high-level representations of digital systems.
Both represent a node based fault model in decision diagrams
[33]. The only differences are in the number of output edges
of the nodes, and in the number of terminal nodes in the
decision diagrams. In both cases, the node variables are tested
exhaustively: two test patterns are needed for the Boolean
variables labelling the nodes in BDDs whereas the number

of patterns needed for HLDD nodes is equal to the number of
output edges of the node.

The described concept of satisfaction of the constraints (2)
and (3) is similar to the extended conditional SAF model [36]—
[38] developed for Boolean level test generation of physical
defects inside complex gates in digital circuits. In the latter
case, additional conditions map the impact of defects into SAF
at related BDD nodes, whereas in case of the ISA based HLDD
model, the constraints (2) and (3) specify the reasons of the
corruptions in behaviors of nodes under test.

V. SBST GENERATION WITH HLDD MODEL

The targets of test generation for a microprocessor using the
HLDD model are not the instructions each of them taken as
a whole as in traditional cases. Instead of that, the targets are
smaller functional entities represented by the nodes of HLDDs.
The terminal nodes represent selected data path functional
entities (sub-circuits of ALU), and the nonterminal nodes
represent the selected control functional entities related to the
subfields of instruction words. Since the HLDD nodes as test
targets represent smaller functional units than the instructions
as a whole, it makes possible to use pseudo-exhaustive testing
of the processor control part and to cope in this way better with
the complexity of the test problem. Instead of full exhaustive
testing of all operation codes we test (pseudo)exhaustively its
independent parts, guided by the HLDD internal nodes. For
testing terminal nodes we use test data generated for ALU at
the gate level.

From above, two approaches of testing, different for ter-
minal and nonterminal nodes, result: conformity test for the
control part (internal HLDD nodes), and scanning test for data
path (terminal HLDD nodes) [39].

A. Conformity tests

The test program is synthesized on the high-level directly
from the HLDD model, and the data for the test program are
generated to satisfy the constraints (2) and (3).

Algorithm 1. Conformity test for the control part (test for
a nonterminal node m).

1) Control data (instruction code) generation: activate in
the HLDD a path Im from the root node to the node
m under test, and for each output £ of the node m a
path I; to a terminal node m} with operation f(m).
The value of z(m), which represents a sub-field of the
instruction code, will be cyclically varied during the
pseudo-exhaustive test execution.

Data path initialization: find the proper sets of data
values D(m) which satisfy the constraints (2) and (3).
Test implementation: the generated instruction should be
repeated for all the values z(m) of the node m under test,
updated dynamically by these values, and using always
the same data operands in D(m).

2

N7

3

=

B. Scanning tests

The test program is synthesized on the high-level directly
from the HLDD model, and the data for the test program are

62 JASNETSKI et al.: AUTOMATED SOFTWARE-BASED IN-FIELD SELF-TEST PROGRAM SYNTHESIS

generated by a traditional gate-level ATPG using the given
descriptions of the data blocks.
Algorithm 2. Scanning test program generation for testing
the data path (terminal node m) for operation f(m).
1) High-level test generation: activate in the HLDD a path
l,, from the root to the terminal node m.
2) Low-level test generation: find the proper sets of data
values D(m) for the arguments in f(m).
3) Test implementation: the generated instruction should be
repeated for all the values of D(m), i.e. for all of the
arguments of f(m).

C. SBST generation with a tool

The proposed tool, is utilizing these ideas in the test
program generation process. The result of test generation, is a
test pattern, which holds encoded information about instruction
and operands (Figure 7(A)). Since, there is normally no
framework available to handle test program for microprocessor
in machine code, the task of SBST generator (see Figure 1) is
to decode patterns (Figure 7(B)) obtained from test generator
into assembly instructions. This is done by using predefined
templates stored in the assembly code library. As a result, the
test program, compiled from code templates is made. It can
be edited further, in order to improve the fault coverage, or
add code parts, which can not be generated automatically.

™ The result of the test
generation step, is a
binary
code,

instruction
which holds
encoded information
about instructions and
operands.

Initialization:
Load test data to registers

Encoded XOR
instruction

@homoumwnnnmuam 00000080100, |
|5 W N LA =

| ra=—(op -2—(opz -1~ oG)0
Trathi ®hi(10), %g3"

; D aeD)
)

_asm__ (
"sethi Khi(et), Xgd™
. |
nee @ [FECSK =) G
sem_
U eted ¥
[134 processng sone

Fig. 7.

Example of test program generation

The test program generation process is shown in general
in Figure 7. The process can be divided into two parts -
initialization and test. The initialization part is loading test
data into registers, and the test part is combining the instruction
fields from the library into the full instruction code. In Figure
7(C), a subset of generated test program is shown. The first
part of code represents an initialization process. The registers
are filled with data (partially shown). Every register is loaded
with data before testing each instruction, so that to avoid
fault masking [24]. Then, the test part is being generated.
In the section A of Figure 7, a test pattern string, retrieved
from the test generator is shown. Since the instruction fields
are known (Table IIT), the test generator can walk trough
HLDD nodes, and construct the corresponding instruction.

A path, highlighted in green leads to the instruction XOR
(Figure 7(B)). Test generator is looking for XOR assembly
code template in premade SPARCvVS library, and modifies it
to read data from registers, specified by the test generator (rd,
rsl and rs2 fields) (Figure 7(A, C)).

Test program generation is strongly affected by the mod-
eling level made in previous steps. The more details can
be extracted from instruction set architecture, the better test
program can be generated. Specific behavior of the processor
can be hidden or even invisible from the ISA point of view,
and simple list of instructions not enough to cover the realistic
structural results.

The exact fault coverage can be calculated by gate-level
fault simulation. The not detected gate-level faults may belong
to the class of redundant faults. Otherwise, to detect these
faults, low-level ATPGs can be used for generating additional
test operands.

The main contribution of the proposed method of SBST
generation is to substitute existing labour extensive low-level
test generation methods with fast high-level test generation,
accompanied with as well fast low-level fault simulation to
obtain the exact evaluation of the test quality.

VI. EXPERIMENTAL RESULTS

In the experiments, a test program was generated automati-
cally for the Integer Unit (IU) of Leon 3. The Fault simulation
of the generated test program was made using TetraMAX
[40] software. The fault simulation framework is described
in details in our previous work [24]. The results are shown
in Table IV. "HLDD test program” shows a result of fault
simulation with automatically generated test program. "HLDD
test program random” is automatically generated, but test
operands are selected randomly. “Leon3 startup test” is a test
program supplied with processor description files [41], which
tests memory and peripherals on startup. “TetraMAX ATPG”
represent a local fault coverage of patterns generated by a
sequential ATPG tool. However not all generated test vectors
are functionally correct (they cannot be reproduced during
normal CPU operation), hence the coverage is overestimated.
The row "HLDDtp + Leon 3 st” represents the fault coverage
result for both test programs. According to calculated fault
coverage, we can assume, that those programs can complement
each other and cover additional faults in components of Integer
Unit. From the point of view of test engineer, our tool is a
good opportunity to improve fault coverage (about 5%), with
minimal effort.

The low fault coverage is explained by the fact that not all
instructions using the Integer Unit were taken into account for
building the HLDD model. Extension of the model for the full
instruction list needs further research.

However, to demonstrate the feasibility and efficiency of the
approach for the case when the HLDD model covers full set
of microprocessor instructions, the experimental research was
carried out for the PARWAN microprocessor. The results in
comparison with previous research on PARWAN [42], [43] are
depicted in Table V, which demonstrates the superiority of our
results. The PARWAN was used because of the availability of
published results for that microprocessor.

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 8, NO. 2, 2017 63

A field of the future work exists. A backwards analysis
of assembly program, can show, which paths are covered
on the HLDD model of the microprocessor, and make an
approximate fault coverage estimation of the test program.
This will decrease test program development time, since
fault simulation, especially sequential, takes lots of time and

TABLE IV
LEON 3 INTEGER UNIT FAULT SIMULATION RESULTS
Leon 3 . Faults EC. % Fault simulation,
Integer Unit total/testable ’ in minutes
HLDD test program 43,84 34
HLDD test program random 41,40 78
Leon 3 startup test 42780 / 38847 40,93 22
HLDD tp + Leon 3 st 45,26 78
Tetra max ATPG 72,89 2496 *
* time used for ATPG and fault simulation together
TABLE V
PARWAN FAULT SIMULATION RESULTS
Fault coverage %
Module | #Faulls 5 ethod %43] @]
AC 156 99.3 99.30 | 99.30
IR 228 99.4 96.40 | 98.60
PC 590 99.3 99.00 | 89.20
MAR 342 99.2 96.40 | 97.20
SR 130 99.0 96.80 | 98.90
ALU 956 99.3 98.00 | 98.50
SHU 310 100 99.20 | 94.10
Control 648 89.8 84.40 | 88.30
Total 2960 98.04 96.19 | 95.51

In this experiment with Leon processor we concentrated
on test generation for the data path of the IU, which is
related to fetch, decode and memory stages of the pipeline
[30], other stages are tested indirectly. Moreover, since we
concentrated our efforts only for IU-related instruction groups
(ALU and memory), then a lot of control part functionality was
not covered by HLDD test, like state, flags, traps, FPU and
Coprocessor instructions and controling rotation of register
windows (exclusive for SPARC architecture). This explains
the low fault coverage. The further work will be to extend
the not yet covered hardware part responsible for the unused
instruction groups. Still, the composed program was able
to discover a considerable amount of faults, which weren’t
covered by default Leon 3 test program. Test data, which was
selected by test generator gives better fault coverage, than
random data. The fault simulation time is increased in case
of random data, because the amount of data is multiple times
more than in case of deterministic test data generation.

VII. CONCLUSION

In this paper we developed first, a novel algorithm and a
tool for formal synthesis of the HLDD model for a given set of
the instructions of the microprocessor under test, and second, a
tool for automated software-based self-test program generation
for microprocessors based on the HLDD model.

The novelty of described tool is an automation of test pro-
gram generation. The capabilities of the tools are demonstrated
on the 8-bit microprocessor PARWAN, and on the 32-bit Leon
3 SPARCVS microprocessor. In combination with the fault
simulation tools, the described in the paper test generation
tool promises to be a helpful instrument for test engineers.
The positive fault coverage results, obtained during evaluation
of the test program with TetraMAX simulator, are confirming
the feasibility of the proposed approach.

However, because of the unique features of the investigated
Leon microprocessor architecture, a fully-automatic approach
for its full instruction set is not available at the moment. Still,
test engineer can modify generated test program in order to
increase fault coverage.

computational resources.

[11

[21

3

[4

[5

[6

7

[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

M. Bushnell and V. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Springer Publishing
Company, Incorporated, 2013.

E. B. Eichelberger and T. W. Williams, “A logic design
structure for Isi testability,” in Papers on Twenty-five Years of
Electronic Design Automation, ser. 25 years of DAC. New
York, NY, USA: ACM, 1988, pp. 358-364. [Online]. Available:
http://doi.acm.org/10.1145/62882.62924

E. B. Eichelberger and T.W.Williams, “A logic design structure for LSI
testability,” in Proc. of the DAC, 1977, pp. 462 — 468.

M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda, “Micro-
processor software-based self-testing,” IEEE Design Test of Computers,
vol. 27, no. 3, pp. 4-19, May 2010.

1. Bayraktaroglu, J. Hunt, and D. Watkins, “Cache resident functional
microprocessor testing: Avoiding high speed io issues,” in 2006 IEEE
International Test Conference, Oct 2006, pp. 1-7.

P. Bernardi, R. Cantoro, L. Ciganda, E. Sanchez, M. S. Reorda, S. D.
Luca, R. Meregalli, and A. Sansonetti, “On the in-field functional testing
of decode units in pipelined risc processors,” in 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), Oct 2014, pp. 299-304.

A. Riefert, R. Cantoro, M. Sauer, M. S. Reorda, and B. Becker, “A
flexible framework for the automatic generation of sbst programs,” JEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 10, pp. 3055-3066, Oct 2016.

A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. S. Reorda, and
B. Becker, “An effective approach to automatic functional processor
test generation for small-delay faults,” in 2014 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2014, pp. 1-6.

M. Schizel, T. Koal, S. Rder, and H. T. Vierhaus, “Towards an automatic
generation of diagnostic in-field sbst for processor components,” in 2013
14th Latin American Test Workshop - LATW, April 2013, pp. 1-6.

S. Gurumurthy, S. Vasudevan, and J. A. Abraham, “Automatic generation
of instruction sequences targeting hard-to-detect structural faults in a
processor,” in 2006 IEEE International Test Conference, Oct 2006, pp.
1-9.

L. Lingappan and N. K. Jha, “Satisfiability-based automatic test pro-
gram generation and design for testability for microprocessors,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15,
no. 5, pp. 518-530, May 2007.

S. Gurumurthy, S. Vasudevan, and J. A. Abraham, “Automatic generation
of instruction sequences targeting hard-to-detect structural faults in a
processor,” in 2006 IEEE International Test Conference, Oct 2006, pp.
1-9.

C. H. P. Wen, L.-C. Wang, and K.-T. Cheng, “Simulation-based func-
tional test generation for embedded processors,” IEEE Transactions on
Computers, vol. 55, no. 11, pp. 1335-1343, Nov 2006.

N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
based self-testing of embedded processors,” IEEE Transactions on
Computers, vol. 54, no. 4, pp. 461-475, April 2005.

C. H. Chen, C. K. Wei, T. H. Lu, and H. W. Gao, “Software-based self-
testing with multiple-level abstractions for soft processor cores,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15,
no. 5, pp. 505-517, May 2007.

J. Shen and J. A. Abraham, “Native mode functional test genera-
tion for processors with applications to self test and design valida-
tion,” in Proceedings International Test Conference 1998 (IEEE Cat.
No0.98CH36270), Oct 1998, pp. 990-999.

P. Parvathala, K. Maneparambil, and W. Lindsay, “Frits - a micro-
processor functional bist method,” in Proceedings. International Test
Conference, 2002, pp. 590-598.

F. Corno, E. Sanchez, M. S. Reorda, and G. Squillero, “Automatic test
program generation: a case study,” IEEE Design Test of Computers,
vol. 21, no. 2, pp. 102-109, Mar 2004.

64

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[37]

[38

[39

[40]
[41]

[42]

[43

JASNETSKI et al.: AUTOMATED SOFTWARE-BASED IN-FIELD SELF-TEST PROGRAM SYNTHESIS

E. Sanchez and M. S. Reorda, “On the functional test of branch
prediction units,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 9, pp. 1675-1688, Sept 2015.

S. D. Carlo, P. Prinetto, and A. Savino, “Software-based self-test of set-
associative cache memories,” IEEE Transactions on Computers, vol. 60,
no. 7, pp. 1030-1044, July 2011.

D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos,
A. Paschalis, A. Raghunathan, and S. Ravi, “Systematic software-based
self-test for pipelined processors,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 16, no. 11, pp. 1441-1453, Nov
2008.

P. Bernardi, R. Cantoro, L. Ciganda, B. Du, E. Sanchez, M. S. Reorda,
M. Grosso, and O. Ballan, “On the functional test of the register for-
warding and pipeline interlocking unit in pipelined processors.” in 2013
14th International Workshop on Microprocessor Test and Verification,
Dec 2013, pp. 52-57.

R. Ubar, A. Tsertov, A. Jasnetski, and M. Brik, “Software-based self-
test generation for microprocessors with high-level decision diagrams,”
in Proc. of the Latin-American Test Workshop, 2014, pp. 1-6.

A. Jasnetski, J. Raik, A. Tsertov, and R. Ubar, “New fault models
and self-test generation for microprocessors using high-level decision
diagrams,” in Proc. of the International Symposium on Design and
Diagnostics of Electronic Circuits Systems, 2015, pp. 251-254.
Z.Navabi, Analysis and Modeling of Digital Systems. McGraw-Hill,
1993.

[Online]. Available: http://mesdat.ucsd.edu/ lichen/260c/parwan/
R.Ubar, J.Raik, A.Karputkin, and M.Tombak, “Synthesis of high-level
decision diagrams for functional test pattern generation,” in Proc. of
16th Int. Conference MIXDES, Lodz, Poland, Jun. 2009, pp. 519-524.
S. Baranov, Logic and System Design of Digital Systems. Tallinn,
Estonia, year =: TUT Press.

B. R. Drechsler, Binary Decision Diagrams. Boston, MA, USA: Kluwer
Academic Publishers, Boston, 1998.

S. international Inc. The sparc architecture manual, version 8. [Online].
Available: http://www.gaisler.com/doc/sparcv8.pdf

E. J. McCluskey, “Verification testinga pseudoexhaustive test technique,”
vol. Vol. C-33, pp. 541 — 546, 07 1984.

A. S. Oyeniran, A. Jasnetski, A. Tsertov, and R. Ubar, “High-level test
data generation for software-based self-test in microprocessors,” in 2017
6th Mediterranean Conference on Embedded Computing (MECO), June
2017, pp. 1-6.

R. Ubar, “Test synthesis with alternative graphs,” in IEEE Design and
Test of Computers, 1996, pp. 48 — 59.

S. M. Thatte and J. A. Abraham, “Test generation for microprocessors,”
vol. C-29, no. 6, June 1980, pp. 429-441.

D. Brahme and J. A. Abraham, “Functional testing of microprocessors,”
IEEE Transactions on Computers, vol. C-33, no. 6, pp. 475-485, June
1984.

R. D. Blanton and J. P. Hayes, “Properties of the input pattern fault
model,” in Proceedings International Conference on Computer Design
VLSI in Computers and Processors, Oct 1997, pp. 372-380.

S. Holst and H. J. Wunderlich, “Adaptive debug and diagnosis without
fault dictionaries,” in 2008 13th European Test Symposium, May 2008,
pp. 199-204.

F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava,
M. Keim, J. Schloeffel, and A. Fast, “Cell-aware test,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 33, no. 9, pp. 13961409, Sept 2014.

R.Ubar, J.Raik, and H.-T.Vierhaus, Design and Test Technology for
Dependable Systems-on-Chip. 1GI Global, 2011.

[Online]. Available: http://www.synopsys.com/Tools/Implementation/
RTLSynthesis/Test/Pages/TetraMAX ATPG.aspx

[Online]. Available: http://www.gaisler.com/products/grlib/grlib-gpl-
1.4.1-b4156.tar.gz

L. Chen and S. Dey, “Software-based self-testing methodology for
processor cores,” in [EEE Trans. on CAD of IC and Systems, vol. 20,
no. 3, March 2001, pp. 369 — 380.

Y. Zhang, H. Li, and X. Li, “Software-based self-testing of processors
using expanded instructions,” in Proc. of 19th IEEE Asian Test Sympo-
sium, 2010, pp. 415 — 420.

Artjom Jasnetski received his M.Sc.degree in com-
puter engineering from Tallinn University of Tech-
nology, Estonia in 2013 and currently he is Ph.D.
student at Tallinn University of Technology. His
research interests include such topics as micropro-
cessor test, digital system modelling, ISP and HW
driver implementation.

Raimund Ubar is a member of IEEE, professor
at Tallinn University of Technology, and Head of
the Centre for Integrated Electronic Systems and
Biomedical Engineering in Estonia. He received PhD
degree in 1971 from the Bauman Technical Univer-
sity in Moscow, and DSc degree in 1987 from the
Latvian Academy of Sciences. His scientific inter-
ests include computer science, design for testability
and diagnostics of technical systems. Raimund is
a member of European Test Technology Technical
Committee, a member of Estonian Academy of

Sciences, and Golden Core member of IEEE Computer Society. He was
awarded from the Estonian Government by White Cross Orden of III Class,
and by Meritorious Service Award of the IEEE Computer Society.

Anton Tsertov received his M.Sc. and Ph.D. de-
grees in computer engineering from Tallinn Uni-
versity of Technology, Estonia in 2007 and 2012
respectively and currently holds the position of re-
searcher in Tallinn University of Technology. His
research interests include such topics as system
and board level test, high-level system modelling,
microprocessor functional and structural test.

Curriculum vitae

Personal data

Name: Artjom Jasnetski
Date of birth: 20.05.1988
Place of birth: Narva, Estonia
Citizenship: Estonian

Contact data

Address: ICT-511, Akadeemia tee 15A, Tallinn 12618
E-mail: artjom.jasnetski@ttu.ee

Education
2013 —-2018: Tallinn University of Technology — PhD
2010-2013: Tallinn University of Technology — MSC
2007 —2010: Tallinn University of Technology — BSC

Professional employment

2011 -...: Testonica Lab OU, test engineer

129

Elulookirjeldus

Isikuandmed
Nimi: Artjom Jasnetski
Slnniaeg: 20.05.1988
Sinnikoht: Narva, Eesti
Kodakondsus: Eesti

Kontaktandmed
Aadress: ICT-511, Akadeemia tee 15A, Tallinn 12618
E-post: artjom.jasnetski@ttu.ee

Hariduskaik
2013 -2018: Tallinna Tehnikaulikool — doktorikraad
2010-2013: Tallinna Tehnikailikool — tehnikateaduse magister
2007 —2010: Tallinna Tehnikailikool — tehnikateaduse bakalaureus

Teenistuskaik

2011 —...: Testonica Lab OU, arendusinsener

130

	Contents
	List of publications
	Author’s contribution to the publications
	Abbreviations
	1 INTRODUCTION
	1.1 Motivation
	1.2 Objectives
	1.3 Problem formulation
	1.4 Contribution
	1.5 Thesis structure

	2 BACKGROUND
	2.1 State-of-the-art in microprocessor test
	2.1.1 Software-Based Self-Test
	2.1.2 Structural SBST
	2.1.3 Functional SBST

	2.2 Formal models used in academia
	2.2.1 Formal definition of high-level decision diagrams
	2.2.2 Operations on HLDDs
	2.2.3 Behavioural level synthesis of HLDDs from the procedural descriptions
	2.2.4 Topology of HLDDs

	2.3 Summary

	3 SYNTHESIS OF BEHAVIORAL LEVEL MODEL OF MICROPROCESSOR WITH HLDDs
	1.
	2.
	3.
	3.1 HLDD-based modelling for microprocessors
	3.2 Instruction set as a basis for HLDD model generation
	3.3 Generation of HLDDs for modules of the microprocessor
	3.4 Generation of HLDD model for microprocessor
	3.5 Simulation of instructions with HLDDs
	3.6 Summary

	4 HIGH-LEVEL FAULT MODELING FOR MICROPROCESSORS WITH HLDDs
	1.
	2.
	3.
	4.
	4.1 Fault modelling in digital systems
	4.2 HLDD-based Functional Fault Models
	4.3 Interpretation of HLDD Based Fault Models for microprocessors
	4.4 Mapping low-level control faults into HLDD-based functional fault model
	4.5 Summary

	5 SOFTWARE-BASED SELF-TEST GENERATION FOR MICROPROCESSORS
	5.
	5.1 Principles of software-based self-test generation with HLDD model
	5.2 Generation of Conformity Test for Control Part of Microprocessor
	5.3 Generation of Scanning Test for Data Part of Microprocessor
	5.4 Test program generation example
	5.5 Discussion on the Properties of Conformity and Scanning tests
	5.6 Experimental results
	5.7 Summary

	6 SBST AUTOMATED GENERATION
	6.
	6.1 Introduction of SBST generation framework
	6.2 Generalization of instruction set architecture
	6.3 HLDD synthesis from ISDL description
	6.4 Test synthesis from HLDD
	6.5 SBST program generation
	6.6 Environment for experiments and results
	6.7 Summary

	7 CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future work

	List of figures
	List of tables
	References
	Acknowledgements
	Abstract
	Lühikokkuvõte
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Curriculum vitae
	Elulookirjeldus
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

