

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

51/2018

Software-Based Self-Test for
Microprocessors with High-Level

Decision Diagrams

ARTJOM JASNETSKI

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
This dissertation was accepted for the defence of the degree 10/07/2018

Supervisor: Prof. Raimund-Johannes Ubar
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Dr. Anton Tsertov
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Opponents: Prof. Heinrich-Theodor Vierhaus
Department of Computer Science
Brandenburg University of Technology
Cottbus, Germany

Prof. Anzhela Matrosova
Department of Programming
Tomsk State University
Tomsk, Russia

Defence of the thesis: 04/09/2018, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
previously submitted for doctoral or equivalent academic degree.

ARTJOM JASNETSKI ARTJOM JASNETSKI

 signature

Copyright: Artjom Jasnetski, 2018
ISSN 2585-6898 (publication)
ISBN 978-9949-83-312-2 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9949-83-313-9 (PDF)

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

51/2018

Mikroprotsessorite tarkvara-põhine
enesetestimine kõrgtasandi
otsustusdiagrammide põhjal

ARTJOM JASNETSKI

5

Contents
List of publications .. 7
Author’s contribution to the publications .. 8
Abbreviations .. 9
1 INTRODUCTION .. 10
1.1 Motivation ... 10
1.2 Objectives .. 11
1.3 Problem formulation ... 11
1.4 Contribution .. 12
1.5 Thesis structure ... 12
2 BACKGROUND .. 13
2.1 State-of-the-art in microprocessor test .. 13
2.1.1 Software-Based Self-Test ... 14
2.1.2 Structural SBST ... 15
2.1.3 Functional SBST .. 16
2.2 Formal models used in academia .. 17
2.2.1 Formal definition of high-level decision diagrams ... 18
2.2.2 Operations on HLDDs ... 19
2.2.3 Behavioural level synthesis of HLDDs from the procedural descriptions 20
2.2.4 Topology of HLDDs ... 21
2.3 Summary ... 22
3 SYNTHESIS OF BEHAVIORAL LEVEL MODEL OF MICROPROCESSOR WITH HLDDs........ 23
3.1 HLDD-based modelling for microprocessors ... 23
3.2 Instruction set as a basis for HLDD model generation .. 25
3.3 Generation of HLDDs for modules of the microprocessor .. 27
3.4 Generation of HLDD model for microprocessor ... 28
3.5 Simulation of instructions with HLDDs .. 30
3.6 Summary ... 31
4 HIGH-LEVEL FAULT MODELING FOR MICROPROCESSORS WITH HLDDs 33
4.1 Fault modelling in digital systems ... 33
4.2 HLDD-based Functional Fault Models ... 35
4.3 Interpretation of HLDD Based Fault Models for microprocessors 38
4.4 Mapping low-level control faults into HLDD-based functional fault model.............. 40
4.5 Summary ... 43
5 SOFTWARE-BASED SELF-TEST GENERATION FOR MICROPROCESSORS 44
5.1 Principles of software-based self-test generation with HLDD model 44
5.2 Generation of Conformity Test for Control Part of Microprocessor 44
5.3 Generation of Scanning Test for Data Part of Microprocessor 48
5.4 Test program generation example .. 50
5.5 Discussion on the Properties of Conformity and Scanning tests 52
5.6 Experimental results ... 54
5.7 Summary ... 54
6 SBST AUTOMATED GENERATION ... 56
6.1 Introduction of SBST generation framework .. 56
6.2 Generalization of instruction set architecture .. 56

6

6.3 HLDD synthesis from ISDL description .. 59
6.4 Test synthesis from HLDD ... 69
6.5 SBST program generation ... 70
6.6 Environment for experiments and results .. 71
6.7 Summary ... 74
7 CONCLUSIONS AND FUTURE WORK ... 75
7.1 Conclusions ... 75
7.2 Future work ... 76
List of figures ... 77
List of tables .. 78
References .. 79
Abstract ... 86
Lühikokkuvõte ... 87
Appendix A .. 89
Appendix B .. 105
Appendix C .. 111
Appendix D .. 119
Curriculum vitae .. 129
Elulookirjeldus ... 130

7

List of publications
The list of author’s publications, on the basis of which the thesis has been prepared:

I Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton; Brik, Marina (2014). ”Software-
based self-test generation for microprocessors with high-level decision diagrams”.
Proceedings of the Estonian Academy of Sciences, 63 (1), 48-61.

II Jasnetski, Artjom; Raik, Jaan; Tsertov, Anton; Ubar, Raimund (2015). ”New Fault
Models and Self-Test Generation for Microprocessors using High-Level Decision
Diagrams”. IEEE Symposium on Design and Diagnostics of Electronic Circuits and
Systems - DDECS. Belgrade, Serbia, April 22-24, 2015: IEEE Computer Society Press,
251-254.

III Jasnetski, Artjom; Oyeniran, Adeboye Stephen; Tsertov, Anton; Schölzel, Mario;
Ubar, Raimund (2016). ”High-level modeling and testing of multiple control faults
in digital systems”. IEEE 19th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), Kosice, 20-22 April 2016. IEEE, 1-6.

IV Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton (2017). ”Automated Software-
Based in-field Self-Test”. International Journal of Microelectronics and Computer
Science, 8 (2), 57-64.

V Ubar, Raimund; Jasnetski, Artjom; Tšertov, Anton; Oyeniran, Adeboye Stephen;
(2018). “Software-Based Self-Test with Decision Diagrams for Microprocessors”.
978-613-7-33947-3, Beau Bassin: LAP LAMBERT Academic Publishing, 171p.

8

Author’s contribution to the publications
Contribution to the papers in this thesis are:

I The author participated in the decision-making process. The author planned the
case study and contributed to the model creation. The author planned and
prepared the evaluation environment. The author executed the necessary
experiments. The author took part in the preparation of the paper for publication
and presented it at a conference.

II The author contributed to the concept. The author developed test programs and
ran experiments. The author wrote and prepared the paper for publication and
presented it at a conference.

III The author developed the methodology through numerous discussions with the
supervisors. The author carried out experiments. The author prepared the paper
for publication and presented it at a conference.

IV The author developed the concept. The author implemented the concept in the
software. The author implemented all of the necessary software components of
the evaluation environment. The author planned and executed the necessary
experiments. The author wrote the paper and presented it at a conference.

V The author wrote multiple chapters and sections of the book. The author prepared
the book for publication.

9

Abbreviations
ALU Arithmetic and Logic Unit
ATE Automatic Test Equipment
ATPG Automated Test Pattern Generator
BDD Binary Decision Diagrams
BMC Bounded Model Checker
CFFM Control Functional Fault Model
CSAF Conditional SAF
DD Decision Diagram
DFFM Data Functional Fault Model
DFT Design For Testability
EDA Electronic Design Automation
FCT Full Conformity Test
FSM Finite State Machine
HLDD High-Level Decision Diagrams
ISA Instruction Set Architecture
ISDL Instruction Set Description Language
MUT Module Under Test
NDA Non-Disclosure Agreement
PCT Partial Conformity Test
RTL Register-Transfer level
SAF Stuck-At Fault
SBST Software-Based Self-Test
SCB SAF, CSAF, Bridging
SSBDD Structurally Synthesized BDD
TPG Test Pattern Generation
TTPG Targeted Test Pattern Generation
VLSI Very Large Scale Integration

10

1 INTRODUCTION
The field of Software-Based Self-Test (SBST) has been a topic of extensive research in
industry and academia for more than three decades. Despite this, an automated SBST
generation is still lacking a suitable formalisation for modelling of microprocessors.

This thesis presents a methodology to formalise and automate SBST synthesis,
leading to a reassessment of the microprocessor modelling process.

1.1 Motivation
Advances in modern technology in manufacturing and design of microprocessors are
continuously increasing the difficulty of digital circuit testing. The manufacturing
technology of integrated circuits is scaling, allowing the increase of transistor count per
chip and increasing operation frequency. Such technology enables microprocessors to
be built from billions of transistors and to operate at GHz frequencies. However, the
manufacturing of chips has led to the emergence of different physical defects, which
affect the parameters of the manufactured device. Therefore, advances in test
methodology enable the production of integrated circuits of high quality without
increasing the final cost. The varieties of different approaches to microprocessor testing
reflect the continuous interest in this topic from academia and industry.

The development of methods for testing such complex digital circuits as
microprocessors has been on-going for decades. Test generation time, consumed by
sequential automated test pattern generator (ATPG) is, typically, beyond the
constraints imposed by industry. The most common solution to testing VLSI designs is
to apply design for testability (DFT) methods, such as insertion of scan-chains [1] [2].
Today, application of such a DFT technique is inevitable. However, scan-chain affects
the design of a product and requires expensive test equipment.

During the last decade, the semiconductor industry has been challenged to launch
new testing methods that can be incorporated into an established microprocessor test
flow [3]. The primary demand is the manufacture of a high-quality product without
increasing the cost of testing. A test method that raised product quality with only a
minor cost increase was first proposed in 1980 [4], and is the SBST.

The main principle of SBST is to use the resources of the processor under test in
order to test itself by executing programs. This approach does not require expensive
external test equipment, and the test time depends on the performance of the
processor and the size of the test program. The generation of test programs that allow
high-quality fault coverage is the main research subject in the field of SBST.

The efficiency of test program generation (quality, time) is highly dependent on the
abstraction level of representing the system and on the adequacy of fault models.
Owing to the increasing complexity of digital systems like microprocessors, the gate-
level approaches to test generation require more time in comparison to high-level
approaches.

Due to the lack of efficient formal methods, self-test programs for microprocessors
are generally written manually. High-level fault modelling approaches and formal test
generation strategies have not been sufficiently investigated to support the automated
synthesis of self-test programs and to provide fast methods of test quality evaluation.

Over the last years, academia has renewed its interest in SBST for in-field application
on embedded devices. ISO 26262 [5] describes the demands for online periodic testing
of processor cores in automotive devices. As a result, demand for SBST has increased

11

following the release of IEC 61508 [6] for industrial safety systems, ISO 26262 for
automotive applications, and DO-0254 [7], not to mention the use of processor-centric
systems in safety-critical applications.

The lack of access to structural information of commercial products due to NDA
makes the functional SBST approach an exclusive solution for in-system or in-field
testing. Concurrently, interest has arisen in the automation of the SBST approach, since
the complexity of manual test program generation can be unacceptably high.
Automated SBST [8] [9] [10] positively influences test development cost, which in turn
affects the final price of a product.

1.2 Objectives
The previous section identified the importance of the development of formal methods
of SBST generation, with the aim of automation, keeping in mind the constraints
imposed by industry. To meet the demand, this research has the following objectives:

• The industry needs efficient (in terms of fault coverage) and scalable methods
of SBST generation for microprocessors

• The industry needs a formal solution for automated SBST generation, or at
least assisted SBST generation

• The industry needs a solution for SBST program generation which will satisfy
demands of in-field testing of microprocessors

1.3 Problem formulation
To achieve the objectives formulated in the previous section, this thesis will solve the
following problems:

• Efficient SBST programs
• Formalisation of SBST generation approach
• Automated generation of SBST programs
• SBST generation based only on information retrieved from documentation

describing instruction set architecture

The goal is to improve the scalability of SBST generation by working with the highest
possible level of abstraction – the instruction set description of a microprocessor. This
also allows the widening of the scope of application of SBST to include the generation
of in-field testing, where structural information of commercial products is kept under
NDA.

A well-formalised approach to SBST synthesis is introduced, extending the high-level
decision-diagrams methodology to include modelling microprocessors at the
behavioural level. Another extension allows the modelling of behavioural level faults in
microprocessors with HLDDs, introducing new high-level fault models. Both extensions
expand the opportunities to automate the generation process of efficient SBST
programs.

The goal of this thesis is to provide a concept of the platform for automated SBST
program generation, which is based on the proposed formal methods for modelling of
microprocessors.

12

1.4 Contribution
The main contributions of this thesis are listed below:

• A methodology for modelling microprocessors on the basis of its instruction
set architecture

• Definition of new high-level classes of fault models for microprocessors, which
are also mapped to corresponding low-level structural faults

• A formal method for generation of SBST on the basis of the HLDD model
• Framework for automated SBST synthesis

1.5 Thesis structure
The rest of this thesis is organised as follows.

Chapter 2 presents the background and overview of the microprocessor test, in
particular the SBST methods. Different approaches to SBST generation are discussed
and compared. This chapter presents background information on contemporary
hardware modelling techniques, specifically modelling with high-level decision
diagrams (HLDDs). The formal definition and basic principles of modelling with HLDDs
are outlined.

Chapter 3 forms the core part of this thesis, presenting the method of building
models for microprocessors from instruction set architecture description. The main
properties of this modelling approach are discussed, with examples of the abstract
microprocessor and the processor Parwan.

Chapter 4 gives an overview of existing fault modelling techniques for digital systems
and introduces a novel HLDD-based fault model for microprocessors. Multiple high-
level fault classes are proposed, dedicated to the control part and data path of the
processor. Chapter 4 shows the mapping of existing high-level and low-level fault
models for microprocessors in the proposed HLDD-based fault model. Several examples
of HLDD-based fault model interpretations are outlined and compared with existing
fault models.

Chapter 5 presents the methods for constructing SBST programs on the basis of the
HLDD model. Two concepts are discussed: the conformity test, which targets the
control part, and the scanning test for exercising the data path of the processor. The
numerous advantages of the proposed HLDD-based test generation methods over
traditional approaches are discussed. Experiments of quality and compactness
evaluation on the manually synthesized SBST program conclude the chapter.

In Chapter 6, the implementation of the framework for automated SBST program
generation is described, utilising the concepts described in Chapters 3 - 5. A bottom-up
automation approach is presented, starting with the automation of microprocessor
modelling, followed by automated test generation, and concluding with SBST program
composition using the example of MiniMIPS processor.

Chapter 7 draws conclusions for the thesis and outlines the directions of the future
work.

13

2 BACKGROUND
In this chapter, there is a discussion of the state-of-the-art microprocessor testing,
starting with a general classification of test methods and venturing into the field of
SBST approaches. This overview identifies the unsolved problems in the area of
microprocessor testing and determines the boundaries where the method proposed in
this thesis would best fit.

Since the biggest part of this thesis is dedicated to extending the area of application
of HLDDs to microprocessor testing, an introductory description of this modelling
approach is added.

2.1 State-of-the-art in microprocessor test
Different approaches in the field of microprocessor test can be distributed into three
major groups: structural methods, functional methods and software-based self-test
methods. The first approach - structural, is a widely-used solution for testing
microprocessors. It is based on applying most common DFT technique - scan chain
insertion [1] [2] into digital design. Scan chain structure provides sufficient test access
to the resources of a processor core. However, adding scan chains affects the initial
design of a product, and its parameters: performance, power consumption and chip
area. Any change in design can be critical for such highly optimized devices like
microprocessors. Still, applying DFT techniques is an inevitable part of wafer and
package test within high-volume manufacturing flow. Test procedures that involve DFT
structures require special external test equipment, which is limited in speed and affects
the final quality of the test. Additionally, it is known, that stuck-at fault tests are more
effective when applied at speed [11].

Figure 2-1 Features of microprocessor test methods

The second approach - functional, is capable of conducting tests at operational
speed. Functional test is also employed in the final stage of chip manufacturing - speed
binning. According to [12], the cost of functional automatic test equipment is about
3000 US dollars per pin for testing at speed of 1 MHz (the year 2000). Additional
expenses in the amount of 0.5-1.2 millions of dollars are added by function generators
for mixed-signal circuits. Due to the high cost of functional test equipment, the industry

Structural

Functional

SBST

14

raised the interest in structural scan-based test, which can negatively affect the yield
due to over-testing.

Last but not least comes the method for testing microprocessors [4] that is called
software-based self-test. The general idea of this method is to use the resources of a
microprocessor to test itself by running specific test programs. This method was
accepted by industry [13] and is complementing the other two test methods within the
manufacturing process. Furthermore, interest in this method was raised in frames of in-
field test. Currently, all of the manufactured microprocessors are going through all of
these three test methods. The capabilities of the described methods are outlined in
Figure 2-1. These three methods are complementing each other in order to increase
the quality of the final product.

2.1.1 Software-Based Self-Test
Software-based self-test method was introduced in 1980 by S. M. Thatte and J. A. Abraham
[4]. The approach of SBST was characterized as an attractive and promising functional
test method, utilizing microprocessor organization and instruction set as parameters of
test generation procedures. The main principle of this method is to execute a program
on a microprocessor in order to test its own resources. Such approach does not require
specific test hardware, and test sequences are executed at processor actual speed,
allowing effective coverage of stuck-at faults [11]. The distinctive features of software-
based self-test method are:

• Nonintrusive. SBST does not need additional ATE, which makes this approach
more affordable, and can decrease the final price of a product. In addition, the
characteristics (like power consumption, size or performance) of device are
not affected by additional hardware on chip.

• At-speed. Tests are being run at actual processors speed, making Stuck-at fault
tests more effective, and additionally cover delay defects.

• Avoid overtesting. Since SBST can use only instructions from defined set, there
is no possibility to cover defects that cannot be activated during normal
operation of the processor, thus lowering the over-testing effect.

• In-field test. Test programs can be reused in-field, or during product lifetime.
Also, during return tests and diagnosis.

The general principle of SBST method emphasizes two major aspects of research in
the area of SBST: test program generation and execution. Test execution is moderately
trivial in comparison to test generation. First, in order to apply SBST, test program
should be loaded into memory or cache [14], using external hardware. Then, execution
of the test program should be initiated. The test program is generating responses that
are stored back to memory. Finally, external hardware evaluates obtained responses
and gives the diagnosis for the unit under test. Such test execution flow is used widely
and has only minor differences between SBST approaches.

Currently, the second part - test generation, is the main subject of research in SBST
field. This part is not trivial and must comply with high boundaries of quality
requirements, imposed by industrial standards. The task of test SBST generation can be
divided into four parts:

1. Development of code templates for test pattern delivery
2. Extraction of constraints imposed by instruction set architecture
3. Synthesis of test patterns for microprocessor
4. Conversion of test patterns into a test program

15

All these steps are fundamental for research in the area of SBST. Different research
groups are investigating test generation in general, its automation or the quality of test
programs. Nevertheless, there are plenty of disadvantages, which leave SBST as a
complementary method for testing along with matured structural and functional test.
According to Figure 2-1, SBST is more difficult to develop, in comparison to scan-based
test. In addition, in comparison to SBST, there are industrial EDA tools available, which
can generate structural tests that are capable of achieving high fault coverage.
Functional test has also good fault coverage and covers the defects, which structural
test did not.

SBST approaches can be divided into two major groups, which are structural and
functional. These two groups are defined in this way: the functional group, containing
methods that use instruction set architecture (ISA) information of the processor. The
other group consists of structural approaches [15] [16] [17] [18] [19], based on
generation using structural information (gate- or RTL-level description) of processor
under test. These methods have different benefits and limitations because of their
nature. Structural approaches benefit from information hidden in the depths of low-
level design. Functional approaches are capable of test program generation without
structural information, which is usually not available for commercial processors. The
lack of such information can be the reason (not without exceptions) for less fault
coverage in comparison to methods based on structural approaches.

2.1.2 Structural SBST
Due to its nature, a structural approach can be applied during the production of
microprocessors, since structural information is usually available for a manufacturer.
Structural SBST solutions can be divided into two major groups. These groups are -
hierarchical, and RTL-based Structural SBST methods. Hierarchical approaches use the
methodology of considering processor as modules. Only one module is considered at
the same time, and stimuli are generated for it. After this, it is translated into stimuli for
processor level. Then, these stimuli are being translated into instructions, and the test
program is being composed.

First work using hierarchical structural SBST was proposed by Gurumurthy et. al [15].
In this case, ATPG tool is used to generate stimuli for activation of hard to detect faults
in modules of a processor core. Then, generated stimuli were filtered with help of
bounded model checker in order to match with instruction set of the processor under
test. The next approach by Lingappan and Jha [16] is based on satisfiability-based ATPG.
They proposed a framework, which evaluates the description of micro-architecture of
the processor, by building models for each module of the processor under test. After
that, test stimuli are being generated for each module, which are again filtered by
satisfiability solver. Additional DFT changes are made to the system in order to apply
generated tests.

In [15], Gurumurthy et al. describe the problem of hard to test faults, which cannot be
covered by test programs generated randomly. They applied ATPG on each module of the
processor, which has hard to test faults. Bounded model checker (BMC) was used to
decide which instruction can activate inputs of the module with the precomputed stimuli.

Next hierarchical approach is based on learning [17] algorithms. The work is based
on functional test generation approach (also called Targeted Test Pattern Generation -
TTPG) where simulation results are used to guide the generation of additional tests.
The proposed methodology for TTPG has two phases - simulation and generation.
During simulation phase, the simulation I/O data is recorded for the modules under

16

learning. After data is collected, the specific learning method is used on each module to
derive its learned model. Variety of the learning methods is presented in this paper
[17]. In the TPG phase, the learned models replace actual modules before and after
module under test (MUT). Then, structural ATPG is applied to produce the tests for
detection of faults within the MUT. The inputs are then justified through the learned
models to the processor’s primary input boundaries and outputs propagated to output
boundaries.

The second structural SBST method is RTL-level based. It uses information, obtained
from both RTL and ISA descriptions. This information is used to generate instruction
sequences for activation and propagation of the faults. For the first time, RTL SBST
methodology was proposed in [18]. The development of the SBST is based only on the
Instruction Set Architecture of the processor and its RTL-level description. The
proposed SBST methodology consists of the three phases. During the first phase, the
extraction of information from processors ISA for controlling and observing registers of
the processor is made. During the second phase, the processor components are being
categorized into classes with the same properties (functional, control, hidden
components) and prioritized for test development. The last phase is focused on the
development of deterministic SBST routines using compact loops of instructions.

Another interesting work is [19]. Different levels of processor description, starting
from ISA description and going deeper to a gate-level netlist, are used in this approach.
Each part of the processor is being threaded on the best matching level for pattern
generation. For example, test for register bank is generated using RTL level description.
Tests for ALU are generated using ATPG on a gate-level.

Despite the good results in terms of fault coverage, the efficiency and scalability of
the presented methods is questionable, due to the tendency of increasing complexity
and size of modern microprocessor designs.

2.1.3 Functional SBST
One of the first methods among functional SBST, proved its efficiency, is the method for
SBST program generation using ISA description which was proposed by Shen and
Abraham in [20]. They developed a framework called “Vertis”, which generates test
programs by manipulating with instruction set of the processor under test. For each
instruction being tested, “Vertis” generates different test sequences. Test sequences
can be generated pseudo-randomly, and use random data, or can be selected manually,
which is not a trivial task. The framework can be used during different stages of
production - verification, production test and post-manufacture test. Test program is
verified experimentally on Intel 8085, covering satisfactory 90.2% of stuck-at faults,
which was better fault coverage in comparison to ATPG tools. Significant drawback of
this approach is test program size.

The next approach, by Parvathala, Maneparambil and Lindsay [14], is called “FRITS”
(Functional Random Instruction Testing at Speed). In this approach test programs are
generated from randomly selected instructions and pseudo-random data. Generally,
this approach is based on test program generation with random instruction sequences
using pseudo-random data. Also worth noting, that in this work cache-resident SBST
mechanism is proposed for the first time. This method allows to run test programs
directly from cache memory providing ”isolated test” during wafer test. The main
limitation of cache-resident mechanism is that “cache misses” nor “bus cycles” should
not be produced. Test programs, generated by FRITS are verified on Intel Pentium and

17

Itanium processors, obtaining decent fault coverage results with 70% and 85% of stuck-
at fault coverage respectively.

Bayraktaroglu, Hunt and Watkins propose the alternative cache-resident method for
production testing [13]. These works both contribute to the usefulness of SBST
approach in the production of industrial processors. Their approach is evaluated on Sun
UltraSparc T1 microprocessor core. Test program is randomly generated, and the
approach mostly concentrates on the development of the mechanism for cache-
residency called “Load&Go”, especially for the Sun processor family. Achieved fault
coverage results are comparable to results obtained with commercial high-cost
functional tester.

An alternative approach was proposed by Corno et al. [21]. This approach is based
on so-called evolutionary algorithm. In the sense of microprocessor test, evolutionary
means that each program is being re-evaluated and only the effective code is attached
to it. In the process of test program generation, the feedback from test simulator is
used. The algorithm was tested on Leon2 microprocessor and showed the superiority
on purely random method in case of fault coverage, and test program length. This
method uses the result of gate-level fault coverage as a feedback for evolutionary
algorithm. However, it is impossible to apply this method for in-system test generation
for commercial microprocessors due to lack of structural gate-level information.

Later research has shown the significance of holding in mind the complexity of
processor architecture. The presence of pipeline is adding complexity to test program
generation. Latest papers about SBST methodology are concentrating on the processors
with pipeline, branch prediction [22] or caches [23]. Gizopoulos et al. in [24] are
proposing a method to enhance SBST program quality by considering the properties of
pipelined architecture and features of memory addressing of microprocessor under
test. Their approach is using data about the architecture of the pipeline and the
memory hierarchy to add program code lines in order to activate faults. The
experimental results are promising, adding average improvement of 12% for miniMIPS
and OpenRISC1200 processors.

Another approach was made by Bernardi et al. [25]. It is also concentrating on the
testing of the pipeline, and proposing the strategy for improving test programs for
better test coverage with pipelined processor miniMIPS. The proposed strategy is
capable to cover faults in the pipeline logic, activated when data hazards or register
forwarding problems occur. Their later research is widened with deeper analysis of
decode stage of the pipeline in RISC processor [26].

Nevertheless, none of the reviewed methods is relying on formalized solution for
modelling microprocessor functionality and faults. Such limitation leaves proposed
approaches with problems of hard-to-test faults and fault masking at higher levels.
Without theoretical basis for fault simulation and identification it is impossible to measure
coverage of wide spectre of fault classes. Additionally, we consider well-formalized
modelling of microprocessors as an essential element of automated SBST generation.

2.2 Formal models used in academia
The history [27] of using Binary Decision Diagrams (BDD) for representation and
manipulation of Boolean functions is half-century-long. BDDs were first introduced for
logic simulation in 1959 [28], and for logic level diagnostic modelling in [29] [30]. A new
data structure - reduced ordered BDDs (ROBDDs) [31] was proposed by Bryant in 1986.
BDDs became one of the most popular representations of Boolean functions [32] [33],

18

because of the simplicity of the graph manipulation and the model canonicity. Multiple
types of BDDs have been proposed and investigated during decades, such as shared or
multi-rooted BDDs [34], ternary decision diagrams (TDD) [32], multi-valued decision
diagrams (MDD) [35], edge-valued BDDs (EVBDD) [34], functional decision diagrams
(FDD) [36], zero-suppressed BDDS (ZBDD) [37], algebraic decision diagrams (ADD) [38],
Kronecker FDDs [39], binary moment diagrams (BMD) [40], free BDDs [41], multiterminal
BDDs (MTBDD) and hybrid BDDs [42], Fibonacci decision diagrams [43] etc.

Along with traditional (functional) use of BDDs, application of BDDs for modelling of
the structural aspects of the circuit was proposed in [29] [44]. Pioneering alternative
graphs (AG) were introduced as a special class of BDDs [29] synthesized directly from
the gate-level description. Further, they were renamed to structurally synthesized BDD
(SSBDD) [44] [45].

Although logic and RTL level modelling using BDDs is well developed, multi-level and
hierarchical modelling is not covered with listed types of BDDs. In this thesis, we
consider using high-level decision diagrams (HLDD) [44] [45], which can be used to
model systems on different levels of abstraction, and because of their capability for
uniform graph-based fault analysis and effect-cause or cause-effect diagnostic
reasoning [45]. Additionally, HLDDs are satisfying the constraint of functional SBST,
capable of synthesizing the model of the microprocessor from its instruction set
architecture description.

Alternative solutions for ISA based modelling of microprocessors are available [46]
[47], but their application for fault-modelling, diagnostics and testing are unknown in
comparison to HLDDs [48] [49] [50] [51] [52].

2.2.1 Formal definition of high-level decision diagrams
High-level decision diagrams were proposed by Professor Raimund Ubar in 1983 [53].
Application area of HLDDs includes test generation and simulation due to its ability to
efficiently and uniformly describe the structure, function and faults in digital circuits [51].
HLDD model can be efficiently used for simulation and fault modelling, capable of fast
evaluation by graph traversal and easy identification of cause-effect relationships [54] [55].

A formal definition of high-level decision diagrams was given in [27]. Consider a
digital subsystem U = {UYout,UQ}, represented as a cycle-based finite state machine
model described by the output vector function YOUT = λ(X,Q), and state transfer (next
state) vector function Qt+1 = δ(X,Qt), where t denotes the number of the current cycle
(e.g. clock, microinstruction or instruction cycle).

Definition 2-1. Consider a digital system represented as a universe of functional
variables U = {UD, UC} where UD is a set of data variables, and UC is a set of control
variables.

A decision diagram GY (example in Figure 2-2)which represents a digital subsystem
described as a vector function Y = F(X), Y∈U, is defined as a non-cyclic directed graph GY
= (M, Γ, X) with a set of nodes M, a set of vector variables X , and a relation Γ in M.
Denote the root node of GY as m0 ∈ M. The set of nodes is partitioned into two subsets
M = MN ∪ MT where MN is a set of non-terminal nodes, and MT is a set of terminal
nodes. The nodes m ∈ MN are labelled by variables x(m) ∈ X , and the nodes m ∈ MT
are labelled either by constants, variables or algebraic expressions (denoted by f(m)) of
the variables x ∈ X. Concatenate the argument variables used in f(m) as a vector x(m).
The mapping Γ describes the topology of the HLDD, how the nodes are connected by

19

edges where the subset of successor nodes of m is denoted by Γm, and the subset of
predecessor nodes of m is denoted by Γ -1m.

For each value e from a set V(x(m)), there exists a corresponding output edge
(m, me) from the node m into the successor node me∈ Γ(m), e ∈ V(x(m)).

Figure 2-2 function y=f(x1,x2,x3,x4) represented with HLDD

The terminal nodes of the HLDDs, according to Definition 4-1, may be presented at a
high functional (or behavioural) level, treating the related hardware modules as black
boxes. If a more detailed presentation of the system is needed (for lower level fault
simulation or fault diagnosis purposes), the functional expressions in the terminal
nodes of HLDDs can be unfolded into lower level implementation descriptions, such as
gate-level networks. This allows transforming high-level HLDD-based approach to a
hierarchical multi-level approach, where the control functions will be modelled at the
higher level using HLDDs, and the detailed data manipulation functions will be
modelled at lower levels using SSBDDs.

2.2.2 Operations on HLDDs
In this section, we are outlining following operations on HLDDs: logic simulation, path
activation and test generation. The complete list with description of operations on
HLDDs is provided in [27].

Logic simulation. Logic simulation of applied vector Xt on graph Gy means traversing
the nodes by Xt path l(m0, MT) starting from root m0 up to one of the terminal nodes
MT. The variable xi of reached terminal mode determines the value of y for the given
vector Xt. Example of logic simulation of the input pattern -025 (x1,x2,x3,x4) on HLDD is
shown on Figure 2-3.By traversing of the path l(m0,m2) through nodes m0 and m1 the
output value of the circuit becomes y = x4 = 5.

Figure 2-3 Logic simulation on HLDD

x2 x3 x4

x1

x2

y 2

0,1,3
1,2,3

4,5,6,7

m0 m1 m2

m3

m4

e1 e4

e2

e5

e3

Gy = (M,Г,X);

M = MN ∪ MT = {m0,m1,m2,m3,m4};

Г = {e1,e2,e3,e4,e5}, e1 = (m0,m1), e2 = (m0,m3),
e3 = (m0, m4), e4 = (m1, m2), e5 = (m1, m3);

X(m0) = X(m4) = x2, X(m1) = x3, X(m2) = x4,
X(m3) = x1;

0

x2 x3 x4

x1

x2

y 2

0,1,3
1,2,3

4,5,6,7

m0 m1 m2

m3

m4

e1 e4

e2

e5

e3

x1 = -
x2 = 0
x3 = 2
x4 = 5

y = 5

0

20

Path activation. Activation of the path between nodes mi and mj within HLDD
requires to find a vector Xt which is capable to activate the path l(mi,mj). Such path can
be generated by finding the solution to equation y = f(X).

Test generation. The task of test generation for a fault x(m) ≡ e in a Gy, e ∈ {0,1}, is
solved in Gy by activating the following paths:

lm = l(m0, m), from the root node m0 to the node m under test,
l1 = l(m1, #1), and l0 = l(m0, #0) from the node m to the related terminal nodes #1 and

#0, respectively,

whereas the additional fault type constraint x(m) = ¬e should be additionally satisfied.
As the result of solving these tasks, a test vector Xt will be found, which detects the
fault x(m) ≡ e.

2.2.3 Behavioural level synthesis of HLDDs from the procedural descriptions
Consider a procedure representing a behavioural level description of a digital system. It
is possible to represent such procedure by a directed graph, such as data flow graph,
and a path can be represented by a sequence of assignment statements and
conditional expressions (i.e. by a sequence of assertions).

The full procedure of the HLDD synthesis from the behaviour level procedural
description of a system consists of the following phases [51]:

State insertion into the procedural description. This action is performed in similarity
to data-flow graphs, where behaviour of given automata is marked by states. The
states, defined with q, are inserted so that during any state transfer, each data variable
is calculated only once.

Creation of the FSM structural table. A table is constructed by tracing all the
transfers in the data-flow graph from the previous step. Each row in the constructed
table corresponds to a path between neighbouring states of the procedure.

Partitioning of the structural table into functional subtables. At this step, the set of
all functional variables is extracted from the description of the system functionality of
the FSM structural table. An example of the table with extracted behaviour of
functional variable A is shown in Figure 2-4. The table consists of two parts: constraints
(q, XA, XB, XC), and assignment statements for variable A (right column). The constraints
describe the needed conditions, which have to be satisfied for execution of the related
assignment statements.

Generation of mixed predicate formulas for functional variables. Each table,
extracted in the previous step can be represented by a mixed predicate formula

𝑥𝑥 = ∨ 𝐶𝐶𝑖𝑖𝐸𝐸𝑖𝑖,𝑆𝑆,

where x represents a functional variable, Ci is a logic condition (logic AND of all
constraints), and Ei,S is an algebraic expression of an assignment statement. Example of
mixed predicate equation for variable A is shown on Figure 2-4.

Creation of HLDDs for the functional variables. This action is made by using Shannon
factorization [32] [33]. The HLDD created by factorization of the mixed predicate
formula for variable A is depicted in Figure 2-4. Variable A becomes the output of the
graph. Constraint q becomes root node, with successor nodes representing constraints
XA, XB, XC. Assignment statements are represented with terminal nodes of the graph.

21

Figure 2-4 Synthesis of HLDD for functional variable A

2.2.4 Topology of HLDDs
Topologically, HLDD consists of a root, terminal and non-terminal nodes. The number of
terminal nodes is not limited and is determined by the number of high-level operations
supported by the digital circuit. Terminal nodes are labelled by high-level constants
(vectors), bus or register variables, or by high-level algebraic operations. The non-
terminal nodes of HLDDs represent the control variables. The number of output edges
in HLDDs is not limited and is equal to the number of possible values of the control
variable of the node. In other words, the non-terminal nodes in HLDDs model the
control functions of the digital system, whereas the terminal nodes refer to the data
manipulation functions. The Figure 2-5 depicts the described topology of HLDD model.

Figure 2-5 Topology comparison of SSBDD and HLDD

Testing of a digital system, represented by HLDDs means testing both types of nodes
- non-terminal and terminal. When testing the non-terminal nodes of an HLDD, we are
verifying the general control behaviour of the circuit, and when testing the terminal
nodes, we are verifying the separate working modes of the circuit.

The procedures of test generation are different. To test a non-terminal node m, one
has to activate a path lm = (m0, m) from the root node m0 to the node m, and from the
node m, for each value x(m) = h, a path lh(m, mh) to a terminal node h, so that the paths
lh were not overlapping. Additionally, the values of the data variables should be
selected such that the values of operations at the terminal nodes h reached by paths lh,
were different. For testing each terminal node m, one has to activate a single path lm to

q XA XB XC A
0 B + C
1 0 ¬A + 1
3 1 ¬C + B
4 0 0 A + ¬B + C

Behaviour of variable A extracted:

Decision diagram for variable A:

Mixed predicate equation for A:

A = (q=0)(B+C) ∨ (q=1)(xA=0)(¬A+1) ∨

(q=3)(xC=1)(¬C+B) ∨

(q=4)(xA=0)(xC=0)(A+¬B+C+1)

A B’ + C’q’

¬A’ + 1XA

¬C’ + B’ XC

A’ + B’ + C’

0

1 0

0 0

13

4 XA XC

m

Y 1

0

2

h

FkFn

l0
l1

l2
lh

lk
lk+1

Fk+1

ln

lm

GY

m

y #1

#0

lm
l1

l0

Gy

m0

m1

m0

22

this node m. Additional constraints need to be satisfied depending on the fault models
adopted for testing the system, and which will be determined in terms of the HLDD
model.

Described above forms the general problem of adopting HLDDs for SBST program
generation for microprocessors. HLDD methodology should be sufficient to model
microprocessor behaviour, described in instruction set architecture. Additionally, on
the basis of such model, test programs with decent accuracy should be generated to
target certain spectre of faults within microprocessor.

2.3 Summary
This chapter provides an overview of state-of-the-art methods of microprocessor
testing, particularly the SBST approach. It describes the solutions for modelling
hardware and discusses their limitations.

Specifically, introductory information on HLDDs is presented to provide a better
understanding of Chapters 3 and 4, where the area of application of HLDD is extended
to model microprocessors at the behavioural level and the faults within them.

Concluding this section, the main challenge of SBST generation for microprocessors
on the basis of HLDD methodology is formulated.

23

3 SYNTHESIS OF BEHAVIORAL LEVEL MODEL OF
MICROPROCESSOR WITH HLDDs
This chapter is based on publication I [56], where novel approach for high-level
processor modelling using HLDDs was presented. This chapter discusses the extension
of HLDDs, which allows the generation of a microprocessor model from instruction set
description. The main contributions of this chapter are as follows:

1) A formal method for modelling microprocessors using instruction set
description is elaborated

2) The applicability of the approach to microprocessor modelling with HLDDs is
evaluated for an abstract processor and processor Parwan [57]

3) The features and capabilities of HLDD models for further use in testing
purposes are evaluated and discussed

The outlined contributions are elaborated in detail in sections 3.1-3.5.

3.1 HLDD-based modelling for microprocessors
A digital design, like a microprocessor, can be represented with HLDDs at different
levels of abstractions – structural, RTL or behavioural. In section 2.2.3, the behavioural
level synthesis with HLDDs is discussed. In this work, we propose to move “one step
higher” in abstraction to instruction set architecture description, which also represents
the behaviour of the microprocessor. In this case, HLDDs are used to calculate the state
of the system after execution of each instruction. Following this, we introduce the
instruction-cycle based HLDDs, as a convolution in behavioural level modelling of
microprocessors.

Table 3-1 Instruction set of a simple hypothetical microprocessor with ten instructions

I Mnemonic ISA level operation
1 MVI A,D A ← IN
2 MOV R,A R ← A
3 MOV M,R OUT ← R
4 MOV M,A OUT ← A
5 MOV R,M R← IN
6 MOV A,M A ← IN
7 ADD R A ← A + R
8 ORA A A ← A ∨ R
9 ANA R A ← A ∧ R
10 CMA A,D A ← ¬A

Consider a simplified hypothetical microprocessor with ten instructions as an
example target for modelling. Instruction set of this processor is presented distributed
by columns of Table 3-1: in the first column, I – is the high-level control variable whose
integer values represent the operation codes; in the second column, the mnemonic of
the instruction is provided to represent the behaviour hidden behind the instruction; in
the third column the operations launched by instructions are described using the high-
level data variables. Variable R denotes an internal general purpose register, variable A

24

represents accumulator register, variable IN denotes the input bus and variable OUT

denotes the output bus.
For the synthesis of HLDDs, we use the method described in Chapter 2.2.3, omitting

the first step in the model generation process. On the basis of the third column, we
define the set of functional variables of the microprocessor – FV = {A, R, OUT}. These
are the variables, which describe the state of the microprocessor, and which values are
recalculated by execution of instructions. For each variable in FV, we synthesize an
HLDD, depicted in Figure 3-1.

Figure 3-1 HLDDs for the microprocessor with instruction set in Table 3-1

The microprocessor is represented by three diagrams - GOUT, GR, and GA. Diagram
GOUT represents the behaviour of output bus. The behaviour of internal general purpose
register R is represented by GR, and the behaviour of the accumulator A by graph GA.
Since there is only one constraint variable – I, it becomes a root node of the decision
diagram with its values shown at edges. Variable I represents the instruction code, thus
has the values from 1 to 10, corresponding to the instructions I1, I2, …, I10. The terminal
nodes (successors of I) are labelled by the word variables R and A, representing the
corresponding registers, along with data transfer buses (IN, OUT), or by expressions
related to particular data manipulation operations of the microprocessor.

The HLDD model from this example was built based exclusively on the description of
instruction set architecture, which is usually provided in the documentation for
microprocessor. Despite that, the model can reveal specific, non-documented,
information about functional variables, explaining how each variable will behave when
different instructions are executed. In comparison to plain instruction-based
information, the variable based information is more suitable for microprocessor test
and fault diagnosis.

Additional value of modelling using HLDDs is the possibility to derive a high-level
structure of the microprocessor from instruction set description. All HLDDs,
representing hardware modules and united in the model of the microprocessor, are
functionally interconnected by the functional variables used in the description of the
instruction set. Hence, the network of connected HLDD-modules can be regarded as a
high-level behavioural level structure of the microprocessor. Such a structure, derived
from the instructions in Table 3-1, is presented in Figure 3-2.

I A2
R

IN5

R
1,3,4,6-10

A I IN
1,6

A2,3,4,5

A + R7

A ∨ R8

A ∧ R9

¬ A10

I R
3

A

OUT
4

25

Figure 3-2 ISA-based high-level structure of the microprocessor described in Table 3-1

3.2 Instruction set as a basis for HLDD model generation
In order to demonstrate the feasibility of microprocessor modelling using HLDDs we
propose to use more complex system where not only ALU, but also a register block,
memory interface, and a control unit (program counter) are involved. For this purpose,
we have chosen the microprocessor Parwan [57]. Figure 3-4 represents a high-level
structure of chosen microprocessor, Figure 3-6 represents the HLDD model synthesized
for its instructions set listed in Table 3-2.

Parwan is an 8-bit microprocessor described in VHDL, which has an 8-bit data bus
and a 12-bit address bus for memory accesses. The instruction set of Parwan
microprocessor counts 17 instructions in total: memory access, ALU operations, and
branch instructions. It also supports direct and indirect addressing modes. Parwan
processor includes the following datapath components: arithmetic logic unit (ALU),
shifter unit (SHU), accumulator (AC), program counter (PC), status register (SR),
memory address register (MAR), instruction register (IR) along with a control unit
(CONTROL). It should be noted that the only data register, which is accessible, is the
accumulator (AC).

Table 3-2 Instruction set of PARWAN microprocessor

Group OP D/I P Instruction mnemonic Operation

A 0 0/1 Page # LDA
AC=M
PC=PC+2
N,Z=fN,Z(AC, M)

A 1 0/1 Page # AND
AC=AC&M
PC=PC+2
N,Z=fN,Z(AC, M)

A 2 0/1 Page # ADD
AC=AC+M
PC=PC+2
N,Z,C,V=fN,Z,C,V(AC, M)

A 3 0/1 Page # SUB
AC=AC-M
PC=PC+2
N,Z,C,V=fN,Z,C,V(AC, M)

A 4 0/1 Page # JMP PC=A

OUT

R

A

IN

I

26

A 5 0/1 Page # STA M=AC
PC=PC+2

A 6 - ---- JSR PC=A

C 7 0 1 CLA AC=0
PC=PC+1

C 7 0 2 CMA
AC= ¬AC
PC=PC+1
N = fN(AC)

C 7 0 4 CMC C=¬C
PC=PC+1

C 7 0 8 ASL
AC=2AC
PC=PC+1
N,Z,C,V=fN,Z,C,V(AC)

C 7 0 9 ASR
AC=AC/2
PC=PC+1
N,Z=fN,Z(AC)

B 7 1 0 BRA_N PC=(N=1)? A : PC+2
B 7 1 2 BRA_Z PC=(Z=1)? A : PC+2
B 7 1 4 BRA_C PC=(C=1)? A : PC+2
B 7 1 8 BRA_V PC=(V=1)? A : PC+2

Details concerning the usage of different instructions are shown in Table 3-2.
Instruction set of Parwan microprocessor is divided into three groups, depicted in
Figure 3-3. Instruction word can be 1-byte (group C) or 2-byte (groups A and B) long,
and represented with format OP.I.P or OP.I.P.A respectively. Instructions from group A
are 2-byte long and support direct and indirect addressing by control field I. Field OP is
used to select the desired operation. 12-bit long address consists of memory page
number P and offset A. Group B consists of 2-byte long branch instructions, which can
address memory only within single page using offset A. Instruction fields OP, I and P are
controlling the selection of desired branch operation. Instructions of group C are not
addressing memory, thus are 1-byte long, where fields OP, I and P are playing role of
the operation code.

Figure 3-3 Instruction format groups of Parwan microprocessor

Let us partition Parwan into the three parts: control part, data part and memory.
Control part consists of finite state machine (FSM) with state register and control logic

OP I P

A

045

A
OP I P

A

045

B
OP I P

045

C

27

and register block RCONTR = {PC, MAR}, where PC is the program counter, and MAR is the
address register for addressing the data. Data part consists of register block RDATA and
ALU. The register block in the data part consists of a single general purpose data
register RDATA = {AC}. ALU is a combinational part of the microprocessor which covers all
data manipulation circuits, decoders, multiplexers, demultiplexers etc.

Figure 3-4 Behavioural level structure of Parwan microprocessor

For each variable of the Parwan microprocessor a mixed predicate formula can be
extracted from instruction set description, as it was described in Chapter 2.2.3. A set of
the following functions represent the functionality of Parwan microprocessor:

1) AC = fN(I, S(R)) = fN(OP, I, P, S(R)) where R is AC, S(R) = {AC, M} is the set of data
arguments for the function fN;

2) PC = fPC(I, S(B), PC) = fPC(OP, I, P, S(B), PC) where S(B) = {N, Z, C, V} is a set of flag
variables serving as the condition for branch operations;

3) S(B) = {N, Z, C, V} = fB(OP, I, P) where fB is a function on operands to determine
the flag condition.

4) M =fM(OP, P, S(M(A))) where S(M) = {AC, M}.

The functionality of microprocessor can now be represented by a set of behavioural
level variables Z = RDATA ∪ RCONTR ∪ M and by a set of functions F = {fN, fPC, fB, fM}. The
behaviour of Parwan can be modelled by the functional basis F and monitored through
the variables in Z. For modelling of F we will use the behavioural level HLDD model.

3.3 Generation of HLDDs for modules of the microprocessor
From the instruction set description, shown in Table 3-2, we can extract the following
set of functional variables: 8-bit data vector variables AC – accumulator, PC – program
counter, M – generic memory location, and 1-bit branch flag variables N, Z, C, V.
Example of HLDD generation for functional variable V, which is an overflow flag
variable, is shown on Figure 3-5.

RDATA

RCONTR

ALU

FSM

Data part

Control
signals Flags

Control part

PC AC

Memory

Addresses

Instructions

Data
operands

Data
results

M(A)

Behavioral level variables of MP

28

Figure 3-5 HLDD synthesis for functional variable V

First, the subset of instructions, affecting the behaviour of functional variable V (flag
overflow) is selected, and collected into a smaller table (Figure 3-5). HLDD is being
compiled by following this table row-by-row. Functional variable V becomes an output
of the graph. Then, the graph is populated with green-coloured non-terminal nodes,
representing control variables OP, I and P with corresponding values on edges.
Function, representing the behaviour, becomes the terminal node of the graph. The
expressions in the terminal nodes of HLDDs GV for calculating the conditions of branch
variable V are not specified in this model. Since table has only three rows, representing
three instructions, the graph will be populated with three paths. One additional path is
added to represent the behaviour of functional variable V during execution of other
instructions – flag overflow holds its previous value.

3.4 Generation of HLDD model for microprocessor
For every functional variable of Parwan microprocessor, outlined in Table 3-2, HLDDs
are generated, using the control variables OP, I, and P in non-terminal nodes for
decision making. The HLDD model for Parwan microprocessor, consisting of a set of 12
HLDDs is depicted in Figure 3-6. Parwan has a 12-bit address bus, which is partitioned
into sixteen pages of 256 bytes each. The four most significant bits of the address are
for the page address and the remaining eight bits of the address are for the offset
within the page. In accordance with this memory organization, the program counter
variable PC is represented as a concatenation of two sub-variables PC = PC_P.PC_A, and
the value of the next PC is composed by concatenation of the values of PC_P and PC_A,
which are calculated by respective graphs “Next memory page calculation” and “Next
PC offset calculation”.

V
OP

V

I

2,3

07

Fv1(AC,M’)

P
8

Fv2(AC)

OP D/I P Instruction
mnemonic Operation

2 0/1 Page # ADD V=fV(AC, M)
3 0/1 Page # SUB V=fV(AC, M)
7 0 8 ASL V=fV(AC)

V
OP

2
Fv(AC,M’)I P

0-1 0-15

V
OP

2
Fv(AC,M’)I P

0-1 0-15

3
Fv(AC,M’)I P

0-1 0-15

V
OP

2
Fv(AC,M’)I P

0-1 0-15

3
Fv(AC,M’)I P

0-1 0-15

I P Fv2(AC)
7 0 8

V

V
OP

2
Fv(AC,M’)I P

0-1 0-15

3
Fv(AC,M’)I P

0-1 0-15

I P Fv(AC)
7 0 8

V = fB(OP=2, I=0…1, P=0..15) = fV(AC,M)

V = fB(OP=3, I=0…1, P=0..15) = fV(AC,M)

V = fB(OP=7, I=0, P=8) = fV(AC)

OTHER INSTRUCTIONS

29

Instruction addressing mechanism is described with graphs GOP.I.P and GA.
Instructions of the Parwan microprocessor are encoded using up to two consecutive
8-bit long words (Figure 3-3). The first word consists of instruction fields OP, I and P,
and is obligatory for every instruction. The second consecutive word holds the address
A of specific location in memory, where data, required for this instruction is stored. This
organization is modelled with two corresponding graphs GOP.I.P and GA.OP, I and P fields
will be fetched from memory at the address, stored in program counter LOC(PC_A).
Address field A will be fetched from address LOC(PC_A)+1, pointing to the second part
of current instruction.

Fields of fetched instruction are affecting the result of ALU functionality, modelled
with diagram GAC. Accumulator register AC of Parwan is hardly tightened to ALU,
keeping data for one of its input, and result of ALU operation after execution. The
second operand for ALU functions (for example addition), is loaded from memory using
address kept in A. Two modes of memory addressing are supported, selected by the
value of field I, where 0 corresponds to direct and 1 to indirect addressing. Field P is
used to address page in memory for functions with two operands (group A), and plays
the role of the control variable in case of operations with AC register only. OP field of
instruction word becomes root node of the GAC, becoming the main control variable for
selecting the operation of ALU. Terminal nodes of GAC represent the functions of ALU,
which behaviour is not modelled here. Functions with two input operands, like AC+M’
are referring to data in memory. M’ is used to address data in memory directly, and M’’
is used for indirect addressing mode.

Figure 3-6 HLDD model for the microprocessor Parwan

PC_A
P OP A

PC_A + 2

P N A

I 0

1

0 4,6

0-3, 5

7

7OP 10

PC_A + 1OP 7

PC_A

6
Z

C

V

PC_A + 2

2

4

8

0

0

0

0

1

1

1

Next PC offset calculation

Instruction addressing
OP. I. P

LOC(PC_A)
0-2550-15

PC_P PC_A

A
LOC(PC_A+1)

0-2550-15
PC_P PC_A

PC_P
OP1 P1

4

PC_P

Next memory page calculation

ALU Flags

OP

N

I

0 - 3

07

N
FN(AC,M’)

P
2,8,9

Fc2(AC)

C

V

OP

C

I

2,3

07

Fc1(AC,M’)

P
8

Fc2(AC)

¬C
4

OP

V

I

2,3

07

Fv1(AC,M’)

P
8

Fv2(AC)

OP

Z

I

0 - 3

07

Z
Fz(AC,M’)

P
2,8,9

Fc2(AC)

Output behaviour
M’ (A)

OP
5

AC

M’
P A LOC(A)

0-2550-15

Direct addressing

LOC(M’)

P
M’’

M’

0-15

Indirect addressing

Parwan: HLDD Model
ALU data path

AC
OP

0

AC

AC/2

¬AC

2AC

I M’
0

M’’

I
0

AC & M’

AC & M’’

I AC + M’

AC + M’’

0

I AC - M’

AC - M’’

0

#0PI

2

8

9

1

2

3

7 0 1

30

I/O behaviour is represented by graphs GM’, GM’’ and GM(A). Graphs GM’ and GM’’ are
representing the behaviour of loading data from memory to input of ALU, or into AC
register. Direct addressing is represented with GM’, where output M’ holds the data,
fetched from an address in memory selected by variable P (representing page number),
and A (address within a page). GM’’ inherits the GM’ pointing to location in memory,
where the direct address to data is stored. Diagram GM(A) represents the behaviour of
storing data in memory. The single path, controlled by OP variable in this graph is
activated, when instruction “STA” (OP=5) is executed. In this case, the value of AC is
being moved to a memory location defined by page P and offset A.

Flags, required for branch operations are modelled with graphs GN, GZ, GC and GV.
The paths in these graphs are activated simultaneously, during execution of
instructions. The decision, if the flag should be raised or not is represented with
functions located in terminal nodes. Mostly, the flags depend on the data kept in AC
register or loaded from memory location. Activation of different flags depends also on
instructions, which are executed. For example, flag N = GN (negative number) can be
raised if the sign of binary operand loaded to AC with instruction “LDA” (OP=0, I=I, P=P)
is negative. However, during execution of the same instruction, flag V = GV (overflow) is
not affected at all.

Last but not least, graph GPC_A for calculation of the next program counter offset is
synthesized. Program counter can keep address within frames of one page only. When
executing instructions of group C (OP=7), which are using only data in AC register, offset
is incremented by 1 byte (PC_A+1), pointing to the next instruction in memory.
Instructions of group A, using two operands, like addition (OP=2) or subtraction (OP=3),
are incrementing program counter offset by two bytes (PC_A+2), jumping over 8-bit
long instruction field A. Branch instructions (group B), depending on flags, which values
are represented with non-terminal nodes N, Z, C and V in GPC_A increment program
counter by two, if branch is not needed. In the case when branch conditions are
satisfied, program counter value is being overwritten by address data, kept in field A of
a branch instruction (PC_A = A).

3.5 Simulation of instructions with HLDDs
It is possible to simulate instructions of the modeled microprocessor using the graph
network, built in the previous section. Instruction simulation mechanism is similar to
path activation, described in Chapter 2.2.2. Let’s consider an example of simulation of
the instruction AND = (OP=1.I=0.P=0.A=8) fetched from address 0 in memory. The
following paths in Figure 3-7 have to be activated: GOP.I.P: L(PC_P=0, PC_A=0, 0); GA:
L(PC_P=0, PC_A=0, 0+1); GM: L(P=0, A=8, LOC(8)); GAC: L(I=0, P=0, OP=1, AC&M’); GN:
L(OP=1, FN(AC,M)); GZ: L(OP=1, FZ(AC,M)); GPC_A: L(I=0, P=0, OP=1, PC_A+2) in the graphs
GOP.I.P, GA, GM, GAC, GN, and GPC_A respectively. The activated paths are emphasized by
bold edges and grey coloured nodes.

31

Figure 3-7 AND instruction simulation in PARWAN model

Each node of HLDD model can be considered as a hypothetical structural unit of the
microprocessor exercised by a corresponding instruction. For example, the terminal
nodes of the graph can be labelled by variables or arithmetic/logic expressions. Nodes,
labelled by variables may represent registers or buses. Respectively, nodes, labelled by
arithmetic or logic expressions represent the data manipulation sub-units in ALU. The
nonterminal nodes of HLDDs are representing control-related units (OP, I, P, N, Z etc.)
implemented as decoders, multiplexers or de-multiplexers. For example, the node P in
GPC_A represents a multiplexer, the nodes OP, and I in other graphs represent decoders.

The one-to-one mapping between the nodes in HLDDs and the matching high-level
functionality opens the opportunity to use the HLDD nodes as a checklist for high-level
test strategy planning and organization of test programs for microprocessors. For
formalized test program generation, however, we need a suitable high-level
(behavioural) fault model.

3.6 Summary
The key result of this chapter is the novel methodology for mapping the behavioural
level instruction set into the separate control and data parts of the full functionality of
the microprocessor, with the goal of improving the accuracy of its high-level modelling.
The chapter introduced the HLDD model and discussed its extension to the modelling of
microprocessors on the basis of the instruction set description.

First, the methodology for analysing the instruction set of a microprocessor under
test is presented, followed by the extraction of functional and control variables. Every
extracted function variable will become a graph variable, and each control variable will
become a corresponding node in a graph.

Second, the method for building graphs on the basis of data, extracted exclusively
from instruction set architecture description is proposed. Using this method, a
microprocessor can be represented by the model consisting of a set of HLDDs,
representing different functional units. Hence, the network of connected HLDD-
modules can be regarded as a high-level behavioural level structure of the

AC
OP

0

AC

AC/2

¬AC

2AC

I M’
0

M’’

I
0

AC & M’

AC & M’’

I AC + M’

AC + M’’

0

I AC - M’

AC - M’’

0

#0PI

2

8

9

1

2

3

7 0 1

PC_A
P OP A1

PC_A + 2

P N A

I 0

1

0 4,6

0-3, 5

7

7OP 10

PC_A + 1OP 7

PC_A

6
Z

C

V

PC_A + 2

2

4

8

0

0

0

0

1

1

1

Next PC offset calculation

Instruction addressing
OP. I. P

LOC(PC_A)
0-2550-15

PC_P PC_A

A
LOC(PC_A+1)

0-2550-15
PC_P PC_A

ALU Flags

OP

N

I

0 - 3

07

N
FN(AC,M’)

P
2,8,9

Fc2(AC)

OP

Z

I

0 - 3

07

Z
Fz(AC,M’)

P
2,8,9

Fc2(AC)

M’
P A LOC(A)

0-2550-15

Direct addressing

ALU Data Path

32

microprocessor. Such a model can reveal specific, non-documented information about
functional variables, explaining how each variable will behave when different
instructions are executed. An HLDD model can be simulated, which is demonstrated
using the example of the Parwan microprocessor model.

Third, the proposed modelling approach allows one-to-one mapping between the
nodes in the HLDDs and the corresponding high-level functionality. The benefit of this is
the opportunity to use the HLDD nodes as a checklist for high-level test planning and
organisation of test programs for microprocessors. However, a suitable high-level fault
model is required for this, and this will be presented in the next chapter.

Instead of the traditional microprocessor test concept, where the instructions as a
whole are regarded as test objectives, a novel and more exact HLDD-driven test
concept is introduced in this chapter, with the instructions split into more detailed
subsets of test objectives.

33

4 HIGH-LEVEL FAULT MODELING FOR MICROPROCESSORS
WITH HLDDs
In this chapter, a new model of high-level behavioural faults in microprocessors is
developed, on the basis of HLDDs, presented in the previous chapter, providing better
possibilities of formalising the test program synthesis procedure than the traditional
high-level fault models. The material, presented in this chapter is based on publications
II [58] and III [59].

The contributions of this chapter are summarised as follows:
1. An overview of the fault models for microprocessors is given, where high-level

behavioural fault models are found to be more attractive than low-level fault models, in
terms of efficiency/complexity ratio.

2. Three novel classes of fault models for microprocessors, represented by HLDDs,
are proposed. These fault classes are considered compact and well-formalised super
classes which cover a larger set of more detailed fault classes used traditionally in the
testing of instructions. The new fault model is demonstrated using the HLDD model of
Parwan microprocessor.

3. It is shown that the proposed new classes of HLDD-based high-level fault models
can be mapped onto and cover the lower level fault model subclasses, particularly RTL-
level and structural gate-level fault models, in order to guarantee the high quality of
testing.

4.1 Fault modelling in digital systems
Fault modelling, being a central target, is an inseparable part of test generation and
fault simulation. Despite the similarities, these tasks differ in the complexity. The
complexity of fault simulation is linear, being insensitive to the size of fault lists to be
simulated, is satisfied with existing low-level fault models. Test generation, in its turn,
needs high-level fault modelling to cope with its high complexity.

Test generation task is always facing a trade-off between efficiency (cost of test
generation) and quality (fault coverage) of outcome. Both criteria are highly depending
on which fault models are used in test generation and in fault simulation for test quality
assessment.

The stuck-at fault (SAF) model has been for a long time the prevalent technique to
handle formally real physical defects in electronic systems. In today’s systems,
however, we have two difficulties when using this model: it is too complex for use in
test generation because of the huge number of faults to be handled in systems, and it is
inaccurate to represent real physical defects taking place in today’s nanoelectronic
circuits [27].

A conditional fault model has been proposed as an extension of the SAF model [60]
[61]. It helps to increase the model accuracy of arbitrary physical defects in the modern
complex digital systems, like microprocessors with nanometre technology. Applying of
this model positively affects the size of the fault set and decreases the complexity of
test generation. This model is also known as fault tuple model [62], pattern fault model
[63], input pattern fault model [64], or functional fault model [65].

Similar models are gate-exhaustive fault model [66], and region-exhaustive fault
model [67]. Many researchers have focused on developing new fault models for
particular types of failure mechanisms like bridges [68] [69] [70] [71], transistor

34

stuck-opens [72] [73], failures due to delays [74] etc. For resistive shorts, opens and
bridges a unified fault model as constrained multiple line SAF was proposed in [75]. All
of them are developing the idea that a single fault can affect different combinations of
fan-out branches.

To increase the speed of test generation and fault coverage evaluation, high-level
fault models have been developed. High-level approaches for fault modelling in digital
systems can be grouped into two different classes: (1) high level fault modelling for
structural RTL descriptions [76] [77] [78], which is characterized with certain
relationship between language constructs and the network structure; (2) behavioural
level fault modelling [79] [80] [81] [82], which is oriented to analysis of only algorithmic
descriptions. We consider as behavioural approaches also the high-level fault modelling
of microprocessors which use only the information about instruction set architecture
(the lists of instructions). Therefore, our solution to fault modelling, relying on
information derived from instruction set description, does belong to the group of
behavioural approaches.

High-level fault models for microprocessors have been usually derived from the high-
level behavioural descriptions of instruction sets. State-of-the-art behavioural
approaches such as [83] [77] [80] [81], distinguish following fault models Fn.

For faulty multiplexers, for a given source address any of the following fault models
can be applicable:

F1: source is not selected;
F2: selected source is wrong;
F3: more than one source is selected and the multiplexer output is either a wired-

AND or a wired-OR function of the sources, depending on the technology.

For faulty demultiplexers, for a given destination address any of the following fault
models can be applicable:

F4: destination is not selected;
F5: instead of, or in addition to the selected correct destination, one or more

other destinations are selected.

An instruction I of a microprocessor can be regarded as a sequence of
microinstructions, where each microinstruction consists of a set of microorders which
are executed in parallel. Microorders represent the elementary data-transfer and data
manipulation operations. Addressing faults affecting the execution of an instruction
may cause one or more of the following fault effects:

F6: one or more microorders not activated by the microinstructions of I;
F7: microorders are erroneously activated by the microinstructions of I;
F8: a different set of microinstructions is activated instead of, or in addition to, the

microinstructions of I.

The data storage facility is usually implemented as a memory. Under a fault any of
the following may happen to the memory cell array:

F9: one or more cells are stuck at 0 or 1;
F10: one or more cells fail to make a 0→1 or 1→0 transitions;
F11: two or more pairs of cells are coupled; this means, a transition from x to y in

one cell of the pair, say cell i, changes the state of the other cell, say j, from x
to y or from y to x, where x {0,1}, and y = ¬x

35

F12: The data-transfer function implements all the data transfers along the buses
between the registers and functional units of a microprocessor.

For buses under a fault:

F13: one or more lines can be stuck at 0 or 1;
F14: one or more lines may form a wired-OR or wired-AND function due to shorts

or spurious coupling.
F15: data processing functional fault model; in the case of data processing

functional units, no specific model has been proposed for microprocessors;
it is assumed that a complete test set can be derived for the functional units of
data processing by some other techniques.

The main disadvantage of the described classification approach concerns the
formalism. All fault models presented above need dedicated specialized test generation
procedures. Thus, automatization of test program generation, based on this high-level
fault model, is a difficult task.

An ideal case would be to create a small and well-defined fault class with only a few
high-level fault models and to build around it a well-standardized and uniform test
algorithms. In this thesis, we have chosen high-level decision diagrams for modelling,
since their high-level fault model is well suitable to support the development of a
uniform and straightforward high-level test generation and fault simulation algorithm.

4.2 HLDD-based Functional Fault Models
Summarizing the presented overview of different approaches to high-level fault
modelling in digital systems, let us map now the considered fault types and models into
the following generalized HLDD-based fault model, using Definition 2-1 for HLDDs from
Chapter 2.2.1.

Definition 4-1. Consider a digital system represented by an HLDD GY = (M,Γ,X), where
the set of nodes M = MN ∪ MT is partitioned into the subsets of non-terminal nodes MN
and terminal nodes MT, and the set of variables X = C∪D is partitioned into the subsets
of control variables C (e.g. instruction variables) and data variables D (operands).

Denote by T the test for the digital system represented as a set of test patterns
T = {Xt}, where t is the number of a pattern, and each test pattern Xt ∈ T can be
represented as a concatenation Xt = Ct.Dt of the control pattern Ct (instruction) and data
pattern Dt (operand or group of operands).

Let us classify the HLDD-based faults into two general classes: control faults, which
are related to the non-terminal nodes MN, and data faults, which are related to the
terminal nodes MT.■

Definition 4-2. Introduce the term of control functional fault model (CFFM) of a node
m in HLDD GY = (M,Γ,X), m∈M, as a set of faults R(m) partitioned into subsets
R(m,v) ⊂ R(m) of fault models where v ∈ V(x(m).

A subset of faults R(m,v) ⊂ R(m) is called activated by a test pattern Xt if Xt activates
a path l(m0, mT,v) from the root node m0 ∈ MN to a terminal node mT,v∈ MT, so that x(m)
= v, and m ∈ l(m0, mT,v). The expected response to the test pattern Xt is Y = f(mT,v). If
Y ≠ f(mT,v), there is a functional fault r∈ R(m,v) present.

The control functional fault model for the HLDD GY, is defined as a set R = {R(m) |
m∈M} of all FFM of the nodes in GY.■

36

Since activation of a path l(m0, mT,v) means launching a working mode Y = f(mT,v) of
the system, then testing a functional fault r∈ R(m,v) of a nonterminal node m ∈ MN,
means testing if the control signal x(m) = v will not fail at launching this working mode.
On the other hand, since this test is executed via data path of the system, then testing
the functional fault r∈ R(m,v) means testing simultaneously also the terminal node
mT,v ∈ MT, if the data path at this working mode Y = f(mT,v), and at the given data
specified by Xt, is working correctly.

The functional faults represented by models R(m), and R(m,v) ⊂ R(m), are called
control faults. They are not specified here as lists of particular faults, rather we
interpret them as some groups of faults. All manipulations with these faults are
directed simultaneously to groups of faults, which as the result, reduces the complexity
of solving test problems for complex systems, both test generation and fault
simulation.

To activate the high-level faults R(m), and R(m,v) means activation of some subsets
of low-level faults in particular locations (subcircuits) in the system. For mapping the
high-level fault model R(m) to lower-level structural faults in the fault activated
locations, with the goal to assess the quality of tests, we will introduce later another
functional fault class – constrained functional fault model.

Definition 4-3. Introduce the term of data functional fault model (DFFM) of the HLDD
GY is a union of all functional fault models for the HLDD terminal nodes.

RD = ⋃ 𝑅𝑅(𝑚𝑚)𝑚𝑚∈𝑀𝑀𝑇𝑇

The fault models R(m) ⊂ RD for terminal nodes m ∈MT can be represented in two
possible ways:

(1) as exhaustive (or pseudoexhaustive) fault model R(m) = V(x(m)) of the
operational block, represented by the node expression f(m), which leads to the
exhaustive test of f(m) (as a general case), or to pseudo-exhaustive test;

(2) as partial model R(m) ⊆ V(x(m)) (a special case); in this case, the problem of high-
level fault modelling will be solved by an hierarchical multi-level approach, e.g. using
any fault mapping method between levels.■

Each path of the HLDD designates the behaviour of the system in a specific working
mode. The faults having effect on this behaviour are associated in some way with
nodes along the path. From that, we can conclude that a control fault will always cause
a corruption of the path, which can be modelled as incorrect leaving the path activated
by the test. The data faults will corrupt the functions related to terminal nodes.
From above, the following corollaries about the sizes of the functional fault models
defined for the HLDDs by Definitions 5-5 and 5-6 follow:

Corollary 4-1. The size 𝑆𝑆(𝑅𝑅𝐶𝐶) of the control functional fault model for the
nonterminal part of the HLDD under test, covering the set of control faults, can be
calculated as

𝑆𝑆(𝑅𝑅𝐶𝐶) = ∑ |𝑉𝑉(𝑥𝑥(𝑚𝑚))|𝑚𝑚∈𝑀𝑀𝑁𝑁 (4-1)

where MN is the subset of nonterminal nodes in the HLDD.
Corollary 4-2. The higher bound of the size 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝐷𝐷) of the data functional fault

model for the terminal (data operation) part of the HLDD under test, covering the set of
data faults, can be calculated as

37

 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝐷𝐷) = ∑ |𝑉𝑉(𝑥𝑥(𝑚𝑚))|𝑚𝑚∈𝑀𝑀𝑇𝑇 (4-2)

where MT is the subset of terminal nodes in the HLDD. The higher bound is reached
only when the exhaustive test will be applied for the functions in terminal nodes. The
real size of the functional test can be dramatically reduced when using hierarchical
approach to involve also low-level fault modelling of the functional blocks which
correspond to terminal nodes.

To make mapping of the high-level control functional fault model R(m,v) to lower
structural levels easier, we will introduce in the following subclasses of R(m,v), which
are more directly related to the structural aspects of systems under test. Here we will
use also previous knowledge about high-level fault modelling in digital systems,
discussed in Chapter 4.1.

Definition 4-4. A control fault r(m, v) ∈ R(m,v) of the non-terminal node m ∈ MN may
belong to the following three fault classes, r(m, v) ∈ CL-1 ∪ CL-2 ∪ CL-3.

(1) CL-1: Missing edge: r(m, v → ∅) – the output edge of the node m for x(m) = v,
v ∈ V(x(m)), is broken, which means no change in the state Y of the system at
the working mode Y = f(mT,v) under test (it is similar to the logic level SAF x/0
for the line x);

(2) CL-2: Stuck edge: r(m, x(m) ≡ v) – the output edge of the node m for x(m) = v, v
∈ V(x(m)), is always activated (it is similar to the logic level stuck-at fault (SAF)
x/1 for the line x);

(3) CL-3: Wrong activation of the edge: r(m, v → V*) where V* ⊆ V(x(m) – the
fault causes wrong simultaneous activation of a subset of edges. ■

Note the fault class CL-2 is a subclass of CL-3. We introduced it here for optimization
of test generation and fault diagnosis purposes.

Table 4-1 Comparison of HLDD-based faults with high-level faults proposed in [83]

Microprocessor faults (Chapter 4.1, [83]) HLDD faults
F1: No source is selected
F4: No destinations selected
F6: one or more micro-orders not activated;

CL-1

Non-terminal
nodes

F2, F3, F5, F7, F8: Additional source is selected, stuck-at
fault CL-2

F2: A wrong source is selected
F3: More than one source is selected
F5, F7, F8: Instead of, or in addition to the selected
destination, one or more other destinations are
selected; micro-orders are erroneously activated

CL-3

F9-F14: Data storage, communication or manipulation
faults Terminal nodes

The functional fault model defined above for HLDDs is related directly to the nodes
of the HLDD and is an abstract one. It will have a semantic meaning only when the node
has a particular physical interpretation. As an example, in Table 4-1, the mapping of
different microprocessor fault classes, the 14 types of faults proposed in [83] and
discussed in Chapter 4.1, is shown.

38

The fault classes CL-1, CL-2 and CL-3 (general for all non-terminal HLDD nodes) differ
in the need of using different data constraints for propagating the fault effects to the
observation points.

4.3 Interpretation of HLDD Based Fault Models for microprocessors
Fault classes, defined in previous chapters (Chapter 4.1 and 4.2) considered being used
for microprocessors. In order to demonstrate this, we need to return to the model of
PARWAN microprocessor, generated in Chapter 3.4. Its partial model is shown in Figure
4-1.

Figure 4-1 Demonstration of different faults in HLDD model of PARWAN

Two graphs GAC and GM’, representing the behaviour of accumulator and direct
addressing, are derived from the model of PARWAN microprocessor (Chapter 3.4).
Variable AC represents an accumulator register, M denotes the input bus, OP, I and P
serve as instruction variables, and variable A represents the address in memory. The
variables OP, I, P and A are labelling the internal decision nodes of the HLDDs with their
values shown at edges. The terminal nodes are labelled by the variables AC and M
representing the expressions related to particular data manipulation operations of the
microprocessor.

Assume, the instruction AND (OP=1, I=0, P=0, A) is executed (high lightened on Figure
4-1) with expected result AC=AC&M. Table 4-2 illustrates how different high-level faults,
defined in Chapter 4.1 and interpreted as HLDD faults, defined in Chapter 4.2.

M’
P A LOC(A)

0-2550-15

F2

Instruction:
AND A
OP=1, I=0, P=0, A
AC = AC & M(A)

F1, F6 F2
F7

F3,
F8

AC
OP

0

AC

AC/2

¬AC

2AC

P I
0-15

M’
0

M’’

I
0

AC & M’

AC & M’’

I AC + M’

AC + M’’

0

I AC - M’

AC - M’’

0

#0PI

2

8

9

1

2

3

7 0 1

39

Table 4-2 Interpretation of microprocessor faults in HLDD

Fault type Fault
description Interpretation of the fault in HLDD

Ch.5.5 HLDD

F1, F6 CL-1 No source
selected

The output edge 1 of node OP is broken. The
value of AC remains unchanged

F2, F7 CL-2,
CL-3

Wrong
source
selected

Instead of the edge 1 of node OP another edge
2 is selected, and the variable AC will have the
wrong value AC=AC+M instead of AC=AC&M.
Value was read from wrong source address
due to fault of output edge of node A.

F3, F8 CL-2,
CL-3

More than
one source
selected

Instead of the edge 1 of node OP other edges 2
and 3 are selected, and the variable AC will
have the wrong value AC=(AC+M) ∨ (AC-M)
instead of expected AC=AC&M (the wrong
value will be technology dependent)

The addressing fault of the node A in the graph GM causes activation of the wrong
edge instead of the planned edge. As the result, data from the wrong location in
memory LOC(A) is addressed for using it in the operation of the terminal node AC&M of
the graph GAC. The operation code fault of the node OP in the ALU graph GAC causes
activation of the wrong edge 2 instead of the planned edge 1. As the result, wrong
operation OP = AC+M is addressed instead of AC&M in the related terminal node of
the graph GAC. The next variation of operation code fault is causing to select two edges
of node OP instead of one. The result of such failure will depend on the technology.
Finally, the addressing fault of the node OP of graph GAC, which leads to broken edge 1,
will leave the value of AC unchanged.

Additionally to classes presented above, we present a novel hard-to-test fault class
called “unintended actions”. This fault model is presented in Figure 4-2 on example of
abstract module of the processor with four instructions I0 - I3. The n-bit gate-level
implementation of the related hardware consists of four n-bit registers - A, B, C and D,
ALU, decoder and two multiplexers. Its ALU block can execute two operations - AND
and OR. Figure 4-2 depicts also model of this microprocessor using two HLDDs GC and
GD, for representing the input logic of the registers C and D.

Figure 4-2 Illustration of the behaviour of a hard-to-test fault

I0: C = AB
I1: C = ¬(AB)
I2: D = A v B
I3: D = ¬(A v B)

I AB
0C

¬AB1

C
2, 3

I A∨B
2D

¬A∨B
3

D
0,1

Instruction set:

DC

&

&
1

&

1 &

&
1

I

0

1

2

3

A

B
C

D

40

Assume, there is a gate level OR-type short between the outputs 1 and 2 of the
decoder, i.e. the instruction I1 implies additional unintended action, related to the
instruction I2, which as the result changes also the content of the register D. According
to the traditional approach, when testing the instruction I1, we would read out and
check only the content of register C, but we will not check the content of register D,
because it is not involved in the execution of I1, according to the manual of the
microprocessor. In this way, the fault “wrong change of D” would escape. Such a fault
can be considered as an “unintended action” added to I1. It would be difficult to catch
all similar erroneous “supplements“ when testing only the intended, described in
manuals, functionality of instructions, because the number of such cases may grow
exponentially.

For this type of high-level faults, we can adopt a common term of “hard to test
faults” from the field of gate-level testing, referring to the faults which can be detected
by very rare patterns.

4.4 Mapping low-level control faults into HLDD-based functional fault
model
In the following, we will analyze the capability of the high-level fault models to cover
lower level logic faults in order to demonstrate the usefulness of HLDD modelling.
Under logic faults, we imply the following classes of faults: stuck-at faults (SAF),
conditional SAF (CSAF), and bridging faults. Let us call this joint fault class as SCB class
(SAF, CSAF, bridging).

Consider the block level functional circuit Y = F(X), representing portion of data path
and control part of abstract microprocessor, which is also common for most
microprocessors. It is illustrated in Figure 4-3 together with its HLDD. The control word
C (decoder output vector) is a 3-bit Boolean vector variable C = (c2,c1,c0) with decimal
values in v ∈ V(C) = {0,1,…,7}, which activate the respective working modes Y = fv =
f(mT,v). Denote the k-th bit of fv as fvk, k = {0,1,…,7}. The data part of the unit consists of
8 sub-circuits for calculating fv which will be selected by the multiplexer sub-circuit. The
latter consists of 8 ANDv blocks which are controlled by the output signals C = (c2, c1, c0,)
of the control block. Denote the control inputs of each ANDv block as vector variable
Cv = (cv2, cv1, cv0). Note, each ANDv block consists of 8 ANDvk gates for each data bit of
the function fv,k and appropriate amount of inverter gates.

41

Figure 4-3 Digital system with its HLDD model

Table 4-3 shows the mapping of low-level single structural faults from the class SCB
in the circuit of Figure 4-3 into the high-level functional control faults r(m,v), v∈ V(C) =
{0,1,…,7}, of HLDD in Figure 4-3. Let us call the faults on the output lines of the control
unit as global faults (GF), and the faults on the fan-out branches of the control lines
connected with the inputs of the AND gates as local faults (LF). In case of GF, the same
fault has impact as a multiple fault on all AND blocks and all AND gates, whereas in case
of LF, the fault may have impact either on a single AND block, but propagating to all 8
gates of this block, or only on the inputs of a single AND-gate only. In this example, we
will consider LF only at the inputs of 8-bit AND-blocks, as it is shown in Figure 4-3.

Table 4-3 Mapping low level structural faults into high-level functional faults

Fault
activation Covered structural faults

fi
Control

word Local SAF Global
SAF1

Global
SAF0

OR
bridge

AND
bridge

f0 000 (0,1),(0,2),(0,4) 1,2,4 ∅ ∅ ∅
f1 001 (1,0),(1,3),(1,5) 3,5 0 3,5 0
f2 010 (2,0),(2,3),(2,6) 3,6 0 3,6 0
f3 011 (3,1),(3,2),(3,7) 7 1,2 7 1,2
f4 100 (4,0),(4,5),(4,6) 5,6 0 5,6 0
f5 101 (5,1),(5,4),(5,7) 7 1,4 7 1,4
f6 110 (6,2),(6,4),(6,7) 7 2,4 7 2,4
f7 111 (7,3),(7,5),(7,6) ∅ 3,5,6 ∅ ∅

The rows of Table 4-3 correspond to the values v of the activated control faults
r(m,v) and to the expression fv = f(mT,v) of the related terminal node. The columns of
the sub-table for “covered structural faults” correspond to the faults of SCB partitioned
into 5 groups: local SAF, global SAF1, global SAF0, OR type of bridge, AND type of
bridge. The entries of Table 4-3 show which high-level functional faults will be evoked

Control
part

ALU OR

AND0

YD

C
Global
control
faults

Local
control
faults

f0

f7

Control signals

f0

f7 ANDn

f(mT,o)=f0

0

7

Y m mT,o

mT,7

f(mT,7)=f7

x(m)=c

Data part

f0

AND00

f0

AND07

f00

f00

f07

f07

c20

c27

c10

c17

c00

c07

c2 c1c0

c

f0

42

by the low-level structural faults for each activated working mode Y= fv = f(mT,v) of the
sub-system. For example, to activate the high-level functional fault r(m,0), the control
pattern 000 (c2, c1, c0) should be applied. By applying correct test data for this control
pattern, all the low level structural faults depicted in the row f0 will be covered by the
high-level functional fault r(m,0).

To explain the entries in Table 4-3 in more detail, consider the example of applying a
control vector C3 = (c2, c1, c0,) = 011 as a test for activating the working mode f3. The
respective row in Table 4-3 is high-lighted in yellow. In column Local SAF we consider
only these SAF which coincide with the needed bit values for activating f3 i.e. c2 ≡ 0,
c1 ≡ 1, and c0 ≡ 1. The entry (3,1) means that in case of the local SAF c11 ≡ 1, the
activation of f3 by v = 011 will evoke the erroneous execution f1 as well (this is the fault
type of several activated edges), which causes erroneous output value Y = f3 ∨ f1,
instead of the expected correct value Y = f3. For the local SAF faults c20 ≡ 0 and c72 ≡ 1,
we get the erroneous behaviour Y = f3 ∨ f2, noted as (3,2), and Y = f3 ∨ f7, noted as (3,7),
respectively.

The global SAF/1, c22≡ 1, will cause execution of f7, instead of f3. Similarly, for the
case of global SAF/0, of the lines c1 or c0, either f1 or f2, respectively, will be erroneously
executed, instead of expected f3.

The global bridging faults will cause the following errors in executing of f3: in case of
OR bridge, f7 will be executed, and in case of AND bridges, either f1 or f2 will be
executed. The symbol ∅ in Table 4-3 has the meaning that at these low-level faults no
operation is executed. Since the control word is exercised exhaustively, all of the
conditional SAF will be detected as well, which corresponds to the cell-aware testing
concept [84].
Let us compare the reduction in the fault model size for the low and high-level cases.
The total number of 790 low-level faults consists of:

- (6 * 8 + 24) * 8 = 576 local SAF (8 AND blocks, each has 3 AND inputs
(2 possible SAF each), and 12 inverters (2 possible SAF each), all multiplied by 8
because of the 8-bit data word;

- 3 * 2 = 6 global SAF (three outputs of the control circuit, 2 possible SAF each) ;
- (9 * 2) * 8 =144 bridging faults (9 bridge faults of each type, multiplied by 8

bits of data word);
- 8 * 8 = 64 CSAF (because of exhaustive testing of each of the gates, all high-

level functional faults cover all CSAF as well).

The number of all high-level functional faults can be calculated using the formula:

S(R(MN)) = ∑ [𝑛𝑛𝑚𝑚(𝑛𝑛𝑚𝑚 + 1)] = 𝑆𝑆(𝑅𝑅(𝑚𝑚)) 𝑚𝑚∈𝑀𝑀𝑁𝑁

Since in this example |MN| = 1, we will have

𝑛𝑛𝑚𝑚(𝑛𝑛𝑚𝑚 + 1) = 8 * (8 + 1) = 72.

Hence, for this example, the compression of the number of faults when mapping
them from low-level to high-level is 790 / 72 = 11 times.

Note, that the number of bit-level functional faults cannot be compared with the
number of low-level structural faults in logic circuits, because in the latter case all faults
must be processed separately, whereas in the high-level simulation the faults related to
bits can be processed in parallel at the word level.

43

The idea of the presented mapping scheme is based on a hypothetical
straightforward implementation where no optimization has been applied.
For each behavioural level operation, a dedicated operational block is related, and for
controlling the operations, a general multiplexer is introduced. For this hypothetical
implementation, we have shown the exact one-to-one mapping between the high-level
control faults and the related low-level faults.

Since the HLDD based high-level fault model is inducing the exhaustive exercising of
the full behaviour (the set of all instructions), then for any optimization action
regarding the implementation, the fault will become to some extent redundant, which
will lead also to respective redundancy of the test. Hence, the low-level fault coverage
cannot be hurt.

On the other hand, any available information about the real low-level
implementation, i.e. about the implemented optimization steps, will give the
opportunity to update also the high-level fault model, which will lead in its turn to
optimization of the final test program.

4.5 Summary
In this chapter, it was shown that the HLDDs provide better possibilities of formalising
the modelling of high-level behavioural faults in microprocessors compared to the state-
of-the-art approaches.

Three novel high-level fault classes for microprocessors were proposed, which can be
considered superclasses over the existing RTL-level fault models for microprocessors.
On the other hand, the proposed transition in modelling to HLDD-based higher levels of
abstraction reduces the size of the fault model by orders of magnitude, compared to
the low-level abstractions.

The proposed high-level fault model separately considers control faults and data
manipulation faults, which are related to internal and terminal nodes of HLDDs,
respectively. The control faults are handled exclusively at the high-level, whereas the
faults in data paths are processed hierarchically.

The proposed fault model guarantees a high accuracy of testing, which is
demonstrated by mapping the new fault classes to lower level faults, and showing that
the HLDD-based high-level fault classes fully cover the structural gate-level fault
models.

In the first instance, a novel formalised fault class called ‘unintended operational
action’ was introduced as a special case of developed fault classes. Using this fault class
allows direct targeting of the so-called ‘hard-to-detect faults’, where traditional
methods are not typically focused.

44

5 SOFTWARE-BASED SELF-TEST GENERATION FOR
MICROPROCESSORS
In this chapter, a formalised method of SBST program synthesis for microprocessors is
proposed, on the basis of HLDDs and the high-level behavioural fault models developed
in the previous chapters. This chapter is based on publications I [56] and II [58].

The contributions of this chapter are summarised as follows:
First, two formal concepts for SBST generation are proposed: conformity test for the

control part, and scanning test for the data path of the processor.
Second, a general SBST program generation concept is described and its compaction

capabilities investigated. The advantages of the proposed HLDD-based test generation
methods over traditional approaches are established by experimental research.

Experimental results are provided, representing proof of concept. Fault coverage and
test overhead properties of a manually synthesized SBST program for the Parwan
microprocessor are discussed.

5.1 Principles of software-based self-test generation with HLDD model
The test program synthesis using the HLDD model will cover two levels of the
microprocessor: system level, and module level. Each HLDD describes the behaviour of
a module, whereas the network of HLDDs represents the behaviour of the whole
system. At the module level, the targets of test generation are the nodes of HLDDs,
whereas at the system level the targets are the HLDDs themselves. At the system level,
the locally generated HLDD (module) tests T(m) will be embedded into the system level
test program templates. In other words, the test stimuli for modules will be made
controllable and the results of tests will be made observable at the system level.

The test programs are divided into two types: conformity test programs and
scanning test programs.

Definition 5-1. Conformity test is a test for a non-terminal node of the HLDD, which
has the goal to test the control part of the microprocessor. The conformity test will be
generated according to the constraints set up for testing non-terminal nodes (Chapter
5.2).

Definition 5-2. Scanning test is a test for a terminal node of the HLDD, which has the
goal to test the data path of the microprocessor. The scanning test will be generated
according to the constraints set up for testing terminal nodes (Chapter 5.3).

5.2 Generation of Conformity Test for Control Part of Microprocessor
Consider an HLDD GY = (M,Γ, X) with Y = F(X), as a functional model of the instruction
set of a given microprocessor, defined formally in Definition 2-1. Here Y = F(X), where
X = C ∪ D, represents instruction format of the microprocessor, where Y denotes
destination, C denotes op-code which may be partitioned into sub-fields Ck ∈ C of the
instruction format, and D denotes source which may as well be partitioned several
sources Dk ∈ D. The source and destination data variables may refer directly to the
registers or may refer to the addressable memory locations. Some examples of
mapping between the instruction formats and the HLDD functional variables are
depicted in Figure 5-1.

45

Figure 5-1 Mapping between the instruction formats and the vector functions Y=F(X)

The dependence relationships between variables are described by the network of
HLDDs. Examples of HLDDs for different instruction formats are depicted in Figure 3-1
for a single op-code variable, and in Figure 3-6 where the instruction format includes
two sources, and the opcode is split into two fields. Figure 3-6 demonstrates how the
network of HLDDs reveals the dependence of functional variables for the
microprocessor Parwan [57].

According to the concept of HLDD-based testing, the targets of the control tests are
not the instructions as a whole, presented by the instruction format, which involves
both control and data functions, but the parts of the instruction format. This means
that if the opcode C is split into subfields Ck ∈ C, then the control tests will target all
subfields Ck one by one. In relation to the hardware of the microprocessor, testing of Ck
means to check if the control subfunctions decoded by Ck are correctly selected. In the
HLDD to subfield Ck of the instruction format, a nonterminal node m∈MN ⊂ M labelled
by the variable x(m) = Ck, corresponds. Hence, to test if all control subfunctions related
to Ck, are correctly selected, the node m in the HLDD for all values x(m) ∈V(x(m)) has to
be tested. According to Definition 4-2, this corresponds to testing the constrained
control functional faults of R(m,v) ⊂ R(m), which leads to the following two-step test
generation procedure:

Procedure 5-1. Generating a test instruction for testing a fault r ∈ R(m,v)
1) Finding a test pattern Xt which activates a path l(m0, mT,v) from the root node

m0 ∈ MN to a terminal node mT,v∈ MT, so that x(m) = v, and m ∈ l(m0, mT,v); the
pattern Xt corresponds to a full opcode C of instruction, which includes the
needed value of Ck;

2) Completing the pattern Xt by generating the test data D, so that the
constraints of Theorem 5-1 were satisfied.

Theorem 5-1. Any erroneous behavior in terms of the fault classes CL-1, CL-2 and
CL-3 (see Chapter 4.3) of the nonterminal node m in HLDD GY = (M,Γ, X), m ∈ MN ⊂ M ,
and the functional fault model {R(m) | m ∈ MN}, will be detected by the test T = {Xt},
which activates all functional faults r(m,v) ∈ R(m), v ∈ V(x(m)) for all nonterminal nodes
m ∈ MN to the respective terminal nodes mT,v ∈ MT(m) ⊆ MT, under the following bit-
wise constraints:

∀mT∈ MT(m): ∃ Xt → ∀k [fk(mT) ≠ Ω)], (5-1)

∀mT,i,mT,j
 ∈MT(m): ∃ Xt → ∀k [fk(mT,i) < fk(mT,j)] (5-2)

Op-code Source Destination

C D Y

Op-code Sources Destination

YC1 C2 D1 D2

Op-code Sources Destination

C YD1 D2

46

where {Ω = ZERO}, or {Ω = ONE} as the dual case, depending on the implementation
technology and k denotes the number of data word bit. In case of i = j, the value of
fk(mj) in (5-2) refers to the previous state of the variable Y. The proof is given in [27]
and also [59].

Since for satisfying the constraints of Theorem 5-1 more than one data may be
needed, the result of Procedure 5-1 for testing the fault model R(m,v) ⊂ R(m), in
general case, will consist of a control pattern (instruction) C(m,v), and a set of data
patterns D(m,v) = {D(m,v,r)}. This means that in the final test, the instruction C(m,v) will
be repeated in the loop r times for all data patterns {D(m,v,r)}. Denote such an
elementary test as a concatenation of the control vector and data vector as T(m,v,r) =
C(m,v).D(m,v,r) which has the meaning of fully specified instruction from the instruction
set of the given microprocessor. Hence, the test which has the goal of testing the
constrained control functional fault R(m,v) can be presented as

T(m,v) = {T(m,v,r)} = {C(m,v),{D(m,v,r)}}

The procedure 5-1 has to be repeated in the loop for all values v∈ V(x(m)). As the
result a test

T(m) = {T(m,v) | v∈ V(x(m)}

is constructed, which consists of repeating in the loop v sub tests T(m,v).
If the HLDD model contains a single non-terminal node m, then the test T(m) is the

complete conformity test for the given microprocessor. This is the special case of the
conformity test, where the op-code as a whole is the objective under test. Let us call
this type of test as full conformity test (FCT).

If the HLDD model consists of more than one non-terminal nodes |MN| > 1, then one
higher level loop has to be created to generate the tests for all non-terminal nodes. Let
us call this type of test as partitioned conformity test (PCT):

T(MN) = {T(m) | m∈MN}.

The full and partitioned conformity tests will differ in the test length and in the test
quality. FCT can be interpreted as exhaustive test, whereas PCT can be interpreted as
pseudo-exhaustive test.

The complexity of generating exhaustive FCT will grow exponentially regarding the
number of bits in the full opcode. Let μ is the number of nodes in the HLDD, and each
node variable has the same number φ of values. Assume that the constraints of
Theorem 5-1 can be satisfied by data for a single instruction. Then the length of FCT will
be (μ∙φ)2, whereas the length of PCT will be μ∙φ2, where μ∙φ2 << (μ∙φ)2.

The whole test with embedded loops, in general case, can be represented as the
following conformity test Algorithm 5-1.

47

For implementing the test instructions as a sequence of a self-test program, proper
templates should be created in assembly language of the given microprocessor.
Therefore, two requirements should be followed – first, prior to each particular
execution of the test instruction T(m,v,r) = C(m,v).D(m,v,r) the data operands D(m,v,r)
have to be loaded into pre-specified registers. Secondly, the response of the test - the
value of the graph functional variable Y, must be stored for further analysis.

In Figure 5-2, the instruction set of Parwan microprocessor and behavioural HLDD
model of its ALU are depicted. Test for ALU module T(MN) can be generated using
Algorithm 5-1, and represented with Parwan assembly language.

Figure 5-2 Instruction set of Parwan microprocessor and HLDD model of its ALU

An example of test template for testing control nodes of HLDD GAC is presented in
Figure 5-3. The template is used here to execute test T(m) for the non-terminal control
nodes OP, I and P, representing a subset of Parwan ISA. The test template is a simplified
representation of loop, for all instructions I1, I2, …, I17 (line 1). Before executing test
instruction Iv, v ∈ {1, …, 12}, internal accumulator register is initialized with data vector
D1 from memory (line 2). Additional data vector D2 is fetched from source memory
location if it’s required by instruction (I2, I3, I4) (line 3). Data vectors D1 and D2 are
generated in a way to satisfy the constraints of Theorem 6-1. The result of instruction is
stored to accumulator register and then to destination location in memory loc(MD)
(line 4).

I1: LDA loc
I2: AND loc
I3: ADD loc
I4: SUB loc
I5: JMP adr
I6: STA loc
I7: JSR tos
I8: BRA_V adr
I9: BRA_C adr
I10: BRA_Z adr
I11: BRA_N adr
I12: NOP
I13: CLA
I14: CMA
I15: CMC
I16: ASL
I17: ASR

AC
OP

0

AC

AC/2

¬AC

2AC

I M’
0

M’’

I
0

AC & M’

AC & M’’

I AC + M’

AC + M’’

0

I AC - M’

AC - M’’

0

#0PI

2

8

9

1

2

3

7 0 1

48

Figure 5-3 Test template for testing non-terminal nodes in the HLDD GAC

5.3 Generation of Scanning Test for Data Part of Microprocessor
For testing data path of the microprocessor, represented as an HLDD model which
consists of a network of HLDDs, we have to generate a test for all terminal nodes
mT ∈ MT ⊂ M in each HLDD GY = {G}, Y ∈ U, where the number of graphs is equal to |U|
(refer to Definition 2-1).

In Definition 4-3 we introduced for HLDDs GY = {G} the data functional fault model as
a union RD = ⋃ 𝑅𝑅(𝑚𝑚)𝑚𝑚∈𝑀𝑀𝑇𝑇 of all functional fault models R(mT) of terminal nodes
mT ∈ MT ⊂ M, which represent the working modes of the microprocessor Y = f(mT).
Each functional fault r ∈ R(mT), similarly to the conditional SAF model developed for
gate-level testing [61], has a meaning of a constraint (condition) for testing the function
Y = f(mT).

Hence, to test the faults r ∈ R(mT) we have to execute in a microprocessor a set of
instructions

T(mT) = {C(mT).D(mT, r)},

where the value of C(mT) (instruction code) remains constant, but the data D(mT, r) will
change and have the values from the set of constraints R(mT), i.e each constraint
D(mT, r) ∈ R(mT) is interpreted as a data functional fault r ∈ R(mT).

According to Definition 4-3, and discussion in Chapter 4.3, test generation for data
functional faults of r ∈ R(mT) leads to the following two-step procedure:

Procedure 7-2. Generating a test instruction for testing a fault r ∈ R(mT)
1) Finding a test pattern Xt which activates a path l(m0, mT) from the root node

m0 ∈ MN to the related terminal node mT∈ MT; the pattern Xt corresponds to a
full opcode C of the instruction;

2) Completing the pattern Xt by generating a set of test data R(mT), according to
Definition 4-3, either using a hierarchical two-level test pattern generation
method to take into account the implementation details of the structure
realizing the function Y = f(mT), or using an implementation free exhaustive or
pseudo-exhaustive approach to exercise the function Y = f(mT).

We call testing of data manipulation functions related to the terminal nodes of
HLDDs, as scanning test, because the idea of the test is to repeat the same instruction
with data retrieved by scanning a given data array.

Conformity test program template for Parwan:
1 for v =1,…,17
2 I1: LDA D1 // load data to AC
3 Execute Iv (D2)
4 I6: STA loc(MD) // store result
5 end for

Signature
Response compaction

Conformity test algorithm:
for all m∈ MN do

for all v∈ V(x(m)) do
for all r do

execute C(m,v).D(m,v,r)

AC
OP

0

AC

AC/2

¬AC

2AC

I M’
0

M’’

I
0

AC & M’

AC & M’’

I AC + M’

AC + M’’

0

I AC - M’

AC - M’’

0

#0PI

2

8

9

1

2

3

7 0 1

49

The full scanning test for the HLDD GY with a set of terminal nodes MT ⊂ M, can be
presented as

T(MT) = {T(mT) | mT∈ MT}.

The whole test with two embedded loops, in general case, can be represented as the
following scanning test Algorithm 5-2.

Since, before each particular execution of the test instruction T(m,r) = C(mT).D(mT,r)

the data operands D(mT,r) ∈ R(mT) need to be loaded into pre-specified registers and
the response of the test, the value of the graph functional variable Y must be stored for
further analysis, then for implementing the test instructions as a sequence of a self-test
program, proper templates should be created in assembly language of the given
microprocessor.

An example of a test template for testing terminal node f=AC+M’ of HLDD GAC is
presented in Figure 5-4. The template is used here to execute the test T(mT) for the
node labelled by the addition operation (AC + M’) for a given set of operands
(AC = D1(j) and M’ = D2(j)). The test template is used in a loop for all test data. Before
executing the test instruction I3: ADD D2(j) = AC + D2 (line 3), the microprocessor state
(the contents of register AC) is initialized by loading the data vectors D1(j) from
memory (line 2).

Note, because of the well-defined structure of HLDDs where all instruction level
activities of the microprocessor are well represented, the templates for test program

Figure 5-4 Test template for testing in the HLDD GAC the node labelled by working mode
(operation) AC+ M

50

compilation can be synthesized straightforwardly. The information about which
instruction is to be used for loading data into register AC can be found in the same
HLDD GAC (instruction I1: AC = M’), where M’ is source location in memory. In order to
store the response to the test from register AС, we find the proper instruction in the
graph GM’(A) (instruction I6: M’(A) = AC, line 4).

5.4 Test program generation example
Consider again the example of Parwan microprocessor discussed in Chapter 3.4, where
its instruction set (Table 3-2) and HLDD model (Figure 3-6) were introduced. Figure 5-5
demonstrates both conformity and scanning test generation for Parwan
microprocessor.

In this example, ALU module of Parwan microprocessors is considered as unit under
test. Its HLDD model GAC is represented partially in Figure 5-5a,c. Additional graphs GN,
GZ, GM’ which are indirectly activated during test generation are shown in Figure 5-5b.

Figure 5-5 Test generation for Parwan microprocessor with shared HLDDs

Table 5-1 illustrates the conformity test for the nodes OP and I in the HLDD in Figure
5-5c. The test template consists of three instructions. The first instruction initializes the
only data register of Parwan – accumulator AC. This procedure is illustrated by
highlighted nodes and edges in the HLDD in Figure 5-5a. Nodes of graphs, indirectly
activated by this instruction are highlighted in Figure 5-5b. The slot of the second
instruction in the template is empty, and should be filled up and updated cycle by cycle
with the next instruction under test in the loop during execution of the test program.
The instructions to be tested are stored in the respective array in the memory. For this
example, the instructions under test are depicted in Table 5-2. The highlighted column
in Table 5-2 refers to the control variables under test.

Table 5-1 Conformity test template

No Instruction
mnemonic

Op-code Data movement
Comments

OP I P Registers Operation
1 LDA A 0 0 P AC = D1 AC ← D1 Initialization

2 Instruction is to be stored from Table 5-2 Instruction under
test

3 STA A 5 0 P AC AC → M(A) Storing response

OP

N

I

0 - 3

07

N
FN(AC,M’)

P
2,8,9

Fc2(AC)

OP

Z

I

0 - 3

07

Z
Fz(AC,M’)

P
2,8,9

Fc2(AC)

M’
P A LOC(A)

0-2550-15

Direct addressing

Negative flag

Zero flag

LDA A;
AC = M’(A) = D1,k
OP=0. I=0. P=0. A

AC = D1,k
OP

0
I M’

0

M’’

I
0 AC & M’

AC & M’’

1

ALU

…

AC
OP

0
I M’

0

M’’

I
0

AC & M’

AC & M’’

I AC + M’

AC + M’’

0

I AC - M’

AC - M’’

0

1

2

3

…

AND A;
AC = AC & M’(A) = D1,k & D2,k
OP=1. I=0. P=0. A

INITIALIZATION TESTSHARED HLDDs

ALU

51

Table 5-2 Instructions to be inserted into the conformity test program template

No Mnemonic of
the instruction

Op-code Data movement Result of
operation OP I P Registers Flags

1 LDA A 0 0 P AC=AC N,Z ← f(AC) AC= Dn
2 AND A 1 0 P AC=D1 N,Z ← f(AC) AC= AC&D2
3 ADD A 2 0 P AC=D1 N,Z,C,V ← f(AC, M(A)) AC= AC+D2
4 SUB A 3 0 P AC=D1 N,Z,C,V ← f(AC, M(A)) AC= AC-D2
5 CLA 7 0 1 AC=D1 - AC=0
6 CMA 7 0 2 AC=D1 N ← f(AC) AC= ¬D1
8 ASL 7 0 8 AC=D1 N,Z,C,V ← f(AC) AC=2*D1
9 ASR 7 0 9 AC= D1 N,Z ← f(AC) AC= D1//2

Figure 5-5c illustrates the target of the conformity test to exercise the correct
decoding of the control variables OP{0,1,2,3,7} and I{0,1}. The operations to be
executed during the instructions under test are shown in the high-lighted terminal
nodes in Figure 5-5c, and the results of the operations are depicted in the last column
of Table 5-2. For this test, the data operands D1 and D2 are used and stored in the array
of data operands in the memory. The data operands should be generated in such a way
that the constraints (5-1) and (5-2) in Theorem 5-1 were satisfied.

Table 5-3 Scanning test template to be repeated for the data operands in the memory

No
Mnemonic

of the
instruction

Op-code Data movement
Comments

OP I P Registers Operation

1 LDA A 0 0 P AC = D1 AC ← M(A) Initialization

2 ADD A 1 0 P AC = D1 & D2 AC ← AC & M(A)
Instruction under

test
3 STA A 5 0 P AC AC → M(A) Storing response

Table 5-3 illustrates the scanning test for the terminal node AC & M’ in the HLDD on
Figure 5-5c. The row, representing instruction under test, is highlighted in Table 5-3.
The test template consists of three instructions. First one has the role of initialization of
the microprocessor, and similarly to the conformity test, its actions are illustrated by
highlighted nodes and edges in the HLDD in Figure 5-5a and Figure 5-5b. However, the
scanning test differs from the conformity test. During the initialization procedure,
general purpose registers of the microprocessor are filled with prepared data, stored in
the corresponding array of data operands in the memory.

 Organization of the test programs for the microprocessors based on using the
structural-behavioural information given in HLDDs allows compact presentation of the
test program templates, arrays of instructions and arrays of data operands.
A generalization of such a structure is depicted in Figure 5-6.

52

Figure 5-6 A generalized data structure for self-testing of microprocessors

The presented structure contains test data in a similar structure for both conformity
and scanning tests. In the case of conformity test, the loop is organized over a subset of
instructions whereas the data operands are for this loop the same. In general case,
however, several data arrays may be needed to organize higher level loops. In the case
of scanning test, the template is filled up by a single instruction whereas the loop is
organized over an array of test data operands.

5.5 Discussion on the Properties of Conformity and Scanning tests
The main conception of test generation using HLDDs can be characterized by the
following targets and improvements regarding the traditional microprocessor testing
methods.

1) improved fault coverage regarding hard-to-test-faults with better diagnostic
resolution;

2) reduced probability of fault masking;
3) compactness of the whole test program thanks to its cycle-based organization;

The main idea of the described HLDD-based approach is to test the behaviour of
functional variables instead of testing instructions. With correct test data, test for all
functional variables will stress outperform a simple instruction set test, avoiding fault
escapes.

As an added value, the result of approach scanning and conformity test approaches,
where “smaller portions” of the functionality of instructions are targeted in testing, the
diagnostic resolution will be better.

Another added value of targeting by tests “smaller portions” of the functionality of
microprocessor is the reduced probability of fault masking. Consider an example of
memory-register-memory I/O operations shown in Figure 5-7, where data is loaded to
internal registers, and stored back to memory, using instructions I1: LDA Reg Mem
(Load data from memory to register) and I2: STA Reg Mem (Store data from register to
memory). Assume that there is a SAF on control line R0. The test program with two
consequent instruction pairs - LDA R0, STA R0 and LDA R1, STA R1 will pass the test,

Testprogram
templites

for instruction
groups

Data
operands

for
scanning

test

for
conformity

test

for
scanning

test

for
conformity

test

Instruction
groups

Instructions

Instructions

53

despite addressing the incorrect behaviour of addressing in the register bank. As a
result, SAF on R0 control line will escape.

Figure 5-7 Example of fault masking during IO procedure

In order to reduce the probability of fault masking, we are testing the functional
variables simultaneously, by initializing all of the available registers prior each test.
Example of following technique is shown in Figure 5-8. In this example all registers in
register bank are initialized with data during the test, adding observability to every
incorrect behaviour, solving fault masking problem. In other words - we keep the
initialization and observation sequences constant for the whole test of the variable
under test. When recording the test results, we target always a single variable under
test. In another case when trying to observe more than one variables, each observation
action may cause changes in the state of the processor, which in its turn may activate
other possible faults and cause fault masking. This approach is a good example of the
trade-off between the test length and test accuracy. We use more processor cycles for
constant initialization but, but on the other hand, we reduce the amount of test output
data.

Figure 5-8 Example of fault masking avoidance technique

0
1

Registers

R0
0

0
1
2
3

Memory
M0M1
0 0

D0D0

D1

D0

D0

D0

0
1

Registers

R0
0

0
1
2
3

Memory
M0M1
1 0

D0D0

D1

D0

D0

I1: LDA R0, M(0);
I2: STA R0, M(2);
I3: LDA R1, M(1);
I4: STA R1, M(3);

0
1

Registers

R0
10

0
1
2
3

Memory
M0M1
0 1

D0D0

D1

D1

D1

D0

0
1

Registers

R0
10

0
1
2
3

Memory
M0M1
1 1

D0D0

D1

D1

D1

D0

D1

Multiplexor is faulty,
causing only one
register (R0) being
selected.

By executing such
code, fault is
successfully masked

0
1

Registers

R0
0

0
1
2
3

Memory
M0M1
0 0

D0D0

D1

D0

D0

D1

0
1

Registers

R0
0

0
1
2
3

Memory
M0M1
0 1

D0D0

D1
D1

0
1

Registers

R0
10

0
1
2
3

Memory
M0M1
1 0

D0D0

D1

D1

D1

D1

0
1

Registers

R0
10

0
1
2
3

Memory
M0M1
1 1

D0D0

D1

D1

D1

D1

D1

I1: LDA R0, M(0);
I2: LDA R1, M(1);
I3: STA R0, M(2);
I1: LDA R0, M(0);
I2: LDA R1, M(1);
I4: STA R1, M(3);

Instead of testing the
instruction, we test
the functional
variables R0 and R1
simultaneously.
Fault is successfully
detected – masking
avoided

54

5.6 Experimental results
As a case study, we generated manually a self-test program for microprocessor Parwan
modelled in Chapter 3.4, using fault models proposed in Chapter 4, and HLDD test
generation algorithms described in Chapter 5. The obtained fault coverage for every
module of MP is outlined in Figure 5-9. The whole test program was simulated by
ModelSim to obtain local test data sequences for all modules, and these, in turn, were
fault simulated at gate level to get SAF coverage. The comparison of fault coverages
with method #1 [85] and method #2 [86] is depicted in Figure 5-9.

Figure 5-9 Comparison of different test coverages (PARWAN)

To sum up, for seven out of eight modules the proposed method shows advantage
regarding test coverage over the previously published results for that processor. The
positive impact of the novel high-level fault model can be seen in the higher fault
coverage of the control part of MP. The comparison of volumes of test data is
presented in Table 5-4. The proposed approach needs 75% fewer test data than in ATIG
[86], but the generated program consists of 51% more instructions. However, the latter
comparison is not completely fair, since there are single byte and double byte long
instructions and such statistics is missing in [85] [86].

Table 5-4 Comparison of test lengths for testing PARWAN processor

Test overhead Method #1 [85] Method #2 [86] Proposed method
Instruction # 575 189 260
Test data # unknown 517 132

5.7 Summary
In this chapter, it was shown that the HLDD model provides the possibility of
formalising the SBST program generation process, which will be the prerequisite and
basis for automating this process to be discussed in the next chapter.

55

Two novel concepts for test generation were proposed, being conformity test and
scanning test. Conformity test generation targets the control part of the
microprocessor and is driven by non-terminal nodes of the HLDD. Scanning test,
designed for the data path, is generated by activation of terminal nodes with
predefined data sets.

The test data (operands) for scanning test may be generated in two ways: either
applying hierarchical approach using gate-level ATPG-s, if the related implementation
details of the data-path are available, or using heuristic functional data or pseudo-
exhaustive test patterns, if the implementation details are not available.

Using both algorithms of conformity (Algorithm 5-1) and scanning test (Algorithm
5-2) generation together, it is possible to achieve compact presentation of the test
program, which saves memory space, has high fault coverage and better diagnostic
capabilities, and reduces the probability of fault masking.

The proposed method was evaluated using the Parwan microprocessor. A manually
generated test program proved the consistency of the proposed method, by
demonstrating superior fault coverage and test length over alternative methods.

56

6 SBST AUTOMATED GENERATION
This chapter presents a framework developed on the basis of the formal methods
proposed in previous chapters. The purpose of this framework is to automatically
generate SBST programs for microprocessors. The framework consists of three parts.

The first part is responsible for the automatic synthesis of HLDDs from a description
of instruction set architecture. Requirements for generalisation of ISA description are
outlined. Algorithms used for automation of the synthesis are proposed, with examples
for MiniMIPS processor.

The second part automatically generates tests on the basis of the HLDD model of a
microprocessor.

The third part automatically converts tests into SBST programs for microprocessors.
Additionally, the equation for test length estimation is proposed. The fault coverage
capabilities of the test program for MiniMIPS processor are evaluated.

This chapter is based on publications IV [87] and V [27], where the latest changes in
framework were presented.

6.1 Introduction of SBST generation framework
Previously described concepts form the basis of the framework for automated test
program generation for microprocessors. The general concept of the framework is
shown in Figure 6-1. The framework consists of three modules: HLDD synthesizer, test
vector generator, and SBST generator-synthesizer for converting test vectors into test-
programs using beforehand prepared test code templates. The transition flow from
instruction set to software-based self-test program is demonstrated on 32-bit RISC
MiniMIPS microprocessor [88] with instruction set based on MIPS architecture [89].

Figure 6-1 Software-Based Self-Test generation framework

6.2 Generalization of instruction set architecture
Instruction set architecture is an abstract representation of a processor, and its
description is usually provided in architecture documentation. It usually includes the
general description of the general-purpose registers, flags, list of instructions with their
names, assembly language syntax, and binary representation. In other words - ISA
description holds all the information about the processor necessary to write test
programs. The description example of instruction ADD is taken from MiniMIPS
processor manual [88], and is shown in Figure 6-2. The instruction code (Figure 6-2.A) is
divided into fields of fixed widths (in bits) and labels. The mnemonic description (Figure
6-2.C) represents the function and data transition between general-purpose registers.
Additionally, assembly syntax (Figure 6-2.B) is given for using addition operation in a
program.

ISA
HLDD

SYNTHESIS

SBST
PROGRAM

GENERATION

SBST

asm template library

HLDD PATTERNS

TEST
GENERATOR

57

Figure 6-2 ADD instruction description from Minimips manual

The encoding of instruction ADD contains six fields: op, rs, rt, rd, shamt, funct. This
specific set of instruction fields defines the format of the instruction. In MiniMIPS
architecture, three formats of instructions, shown in Figure 6-3, are used. ADD
instruction belongs to the register type. Its field op holds information about the
instruction type. The fields rs, rt and rd are holding the index numbers of general-
purpose registers (or system coprocessor registers). The next field – shamt, contains
the number of shifts for operations with data shifting. The field funct distinguishes
specific instruction in the register instruction domain. The field imm of instruction of
type immediate holds immediate value. The last but not least, field address of jump
instructions contains the memory address for jump operations.

Figure 6-3 MiniMIPS instruction formats

The behavioural model of the processor can be built on the basis of information
about instruction format and encoding. Additional information, obtained from ISA
description, can help to append details to the model. For example, the information
about changes in program counter can provide the basis for modelling the behaviour of
program counter unit.

In order to process ISA automatically, it should be represented in a machine-
readable way. We suggest bringing the ISA description to common ground manually, as
it was shown in Chapter 3.2. As a replacement for functional tables, we outline the
format – ISDL (Instruction Set Description Language) to generalize the description of
miniMIPS ISA. ISDL is developed on the basis of the format previously proposed in [87].
It implies that each instruction is described using specific syntax, emphasizing its
functionality, and extracting functional variables. For each type of instruction field, the
specific syntax is envisaged in ISDL format. ISDL supports four types of instruction fields
- operation code, register, data and constant. Their syntax is shown in Table 6-1, where
placeholders are surrounded by “< >”.

Table 6-1 ISDL syntax for instruction fields

Field Type ISDL Syntax Description
Operation code op:<name>=<width>b<value>

Register <direction>:<name>=<width>b <direction> can be in or out
Data data:<name>=<width>b Field for immediate value

Constant con:<name>=<width>b<value>

op rs rd shamt functrt
056101115162021252631

000000 rs rd 00000 100000rt

SYNTAX: ADD rd, rs, rt MNEMONIC: rd <- rs + rt

A
B C

op rs rd shamt functrt
056101115162021252631

Registers

Immediate

Jump

op rs rt imm

op address

58

In addition to instruction word fields, the special syntax to describe instruction
function, assembly and changes in the program counter are defined. Instruction
mnemonic reflects its functionality and is important in test data generation. Assembly
syntax will be used in test program generation process and will be described further.
Function field should be highlighted with { }, assembly code field with [], and program
counter field with (). Function description is kept in a separate library, but a line in ISDL
should have a link to it via function name. Additionally, this field can keep the
information about flags, or data movement between registers.

An example of this description is shown in Figure 6-4, where ADD instruction has the
link to the function in library defined with {ADD(rs, rt)}. Assembly field provided as [add
$rd, $rs, $rt], keeps the assembly code for test program generation stage. rd, rs and rt
are the placeholders for general purpose register indexes. Program counter field is
optional because this information can be hidden, and not included into documentation.
The overall understanding of the architecture of the processor under test can help to
isolate this information from the manual. In case of ADD instruction, branches do not
happen, and program counter should increment in the way that next instruction is
fetched. Thus, value of PC is incremented by four (bytes) i.e (PC + 4), in other words at
the end of execution, PC should contain the address of the next instruction word.

Figure 6-4 ADD instruction converted to ISDL

By using the proposed guidelines, it is possible to bring the instruction ADD (Figure
6-2) of miniMIPS to the following entry in ISDL format as shown in Figure 6-4.
Instruction ADD belongs to the registers format of instruction according to Figure 6-3,
and belongs to group of ALU-related instructions because of the value 000000 in its op
field. The field funct with the value 100000 defines this instruction as ADD among other
instructions with the same value in op field. Register related fields (rs - source register,
rt - target register and rd - destination register) of the instruction code should hold the
general purpose register numbers. The subset of mimiMIPS instructions brought in ISDL
format is shown in Figure 6-5.

op rs rd shamt functrt
056101115162021252631

000000 rs rd 00000 100000rt
SYNTAX: ADD rd, rs, rt
MNEMONIC: rd <- rs + rt

op:op=6b000000;in:rs=5b;in:rt=5b;out:rd=5b;op:shamt_c=5b00000;op:funct=6b100000;
{ADD(rs, rt)}; [add $rd, $rs, $rt]; (PC+4)

59

Figure 6-5 Subset of miniMIPS instruction set in ISDL format

6.3 HLDD synthesis from ISDL description
The Correctly composed ISA description in ISDL format holds needed data to build
HLDD diagram, representing the behaviour of the system (or it's part) under test. The
solution for building HLDD graph model is based on the framework proposed in [50].
This framework provides the functionality to create, edit and import HLDD graphs.
Figure 6-6 is a class diagram demonstrating the structure of behavioural model.
ModelingDomain is the most top element in this metamodel that is used to collect
ModelingObjects.

The domain (ModelingDomain) is typically a microprocessor whereas the objects
(ModelingObject) are the units of a microprocessor.

Any ModelingObject may have a number of inputs that are implemented as
variables.

Variable x is defined with the name and the width in bits. The modeling object is
represented by the set of GraphVariables.

The possible values of the GraphVariable are modelled as terminal nodes
Termination of the graph that are assigned to this GraphVariable.

Termination has a link to Variable that defines its value. The value of the Termination
is defined by the object derived from the Variable class - Input, GraphVariable, Function
and Constant objects.

op:op=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000000; {SL(rt,shamt)}; [sll rd, rt, shamt]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000010; {SR(rt,shamt)}; [srl rd, rt, shamt]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000011; {SRA(rt,shamt)}; [sra rd, rt, shamt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b000100; {SL(rt,rs)}; [sll rd, rt, rs]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b000110; {SR(rt,rs)}; [srlv rd, rt, rs]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b000111; {SRA(rt,rs)}; [srav rd, rt, rs]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000;op:funct=6b010000; {rd=regHI}; [mfhi rd]; (PC+4)
op:op=6b000000; in:rs=5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000;op:funct=6b010001; {regHI=rs}; [mthi rs]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000;op:funct=6b010010; {rd=regLO}; [mflo rd]; (PC+4)
op:op=6b000000; in:rs=5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000;op:funct=6b010011; {regLO=rs}; [mtlo rs]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; con:rd_c=5b00000; con:shamt_c=5b00000;op:funct=6b011000; {regLO=[rt*rs]0,31; regHI=(rt*rs)31,63}; [mult rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; con:rd_c=5b00000; con:shamt_c=5b00000;op:funct=6b011001; {regLO=[rt*rs]0,31; regHI=(rt*rs)31,63}; [multu rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100000; {ADD(rs,rt)}; [add rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100001; {ADDU(rs,rt)}; [addu rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100010; {SUB(rs,rt)}; [sub rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100011; {SUBU(rs,rt)}; [subu rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100100; {AND(rs,rt)}; [and rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100101; {OR(rs,rt)}; [or rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100110; {XOR(rs,rt)}; [xor rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100111; {NOR(rs,rt}; [nor rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b101010; {LESS(rs,rt)}; [slt rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b101011; {LESSU(rs,rt)}; [sltu rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000; op:funct=6b001000; {}; [jr rs]; (rs)
op:op=6b000000; in:rs=5b; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000; op:funct=6b001001; {rd = PC+4, PC = rs}; [jalr rd, rs]; (rs)
op:op=6b010000; con:rs_c=5b00000; out:rt=5b; con:cs=5b00000; con:rd_c=5b00000; op:funct=6b000000; {rt = COP0}; [mfc0 rt, 0]; (PC+4)
op:op=6b010000; con:rs_c=5b00100; in:rt=5b; con:cs=5b00000; con:rd_c=5b00000; op:funct=6b000000; {regCOP0 = rt}; [mtc0 rt, 0]; (PC+4)
op:op=6b000001; in:rs=5b; con:rt_c=5b00000; data:offset=16b; {FLAG:LTZ(rs)}; [bltz rs, offset];(?(LTZ), PC+(offset<<2), PC+4)
op:op=6b000001; in:rs=5b; con:rt_c=5b00001; data:offset=16b; {FLAG:GEZ(rs)}; [bgez rs, offset];(?(GEZ), PC+(offset<<2), PC+4)
op:op=6b000100; in:rs=5b; in:rt=5b; data:offset=16b; {FLAG:EQ(rs,rt)}; [beq rs, rt, offset];(?(EQ), PC+(offset<<2), PC+4)
op:op=6b000101; in:rs=5b; in:rt=5b; data:offset=16b; {FLAG:NE(rs,rt)}; [bne rs, rt, offset];(?(NE), PC+(offset<<2), PC+4)
op:op=6b000110; in:rs=5b; con:rt_c=5b00000; data:offset=16b; {FLAG:LEZ(rs)}; [blez rs, offset];(?(LEZ), PC+(offset<<2), PC+4)
op:op=6b000111; in:rs=5b; con:rt_c=5b00000; data:offset=16b; {FLAG:GTZ(rs)}; [bgtz rs, offset];(?(GTZ), PC+(offset<<2), PC+4)
op:op=6b001000; in:rs=5b; out:rt=5b; data:immediate=16b; {ADD(rs,immediate)}; [addi rt, rs, immediate]; (PC+4)
op:op=6b001001; in:rs=5b; out:rt=5b; data:immediate=16b; {ADDU(rs,immediate)}; [addiu rt, rs, immediate]; (PC+4)
op:op=6b001010; in:rs=5b; out:rt=5b; data:immediate=16b; {LESS(rs,immediate)}; [slti rt, rs, immediate]; (PC+4)
op:op=6b001011; in:rs=5b; out:rt=5b; data:immediate=16b; {LESSU(rs,immediate)}; [sltiu rt, rs, immediate]; (PC+4)
op:op=6b001100; in:rs=5b; out:rt=5b; data:immediate=16b; {AND(rs,immediate)}; [andi rt, rs, immediate]; (PC+4)
op:op=6b001101; in:rs=5b; out:rt=5b; data:immediate=16b; {OR(rs,immediate)}; [ori rt, rs, immediate]; (PC+4)
op:op=6b001110; in:rs=5b; out:rt=5b; data:immediate=16b; {XOR(rs,immediate)}; [xori rt, rs, immediate]; (PC+4)
op:op=6b001111; con:rs_c=5b00000; out:rt=5b; data:immediate=16b; {rt = immdiate<<16 | rt}; [lui rt, immediate]; (PC+4)
op:op=6b100011; data:base=5b; out:rt=5b; data:offset=16b; {rt = memory[base+offset]}; [lw rt, offset(base)]; (PC+4)
op:op=6b101011; data:base=5b; in:rt=5b; data:offset=16b; {memory[base+offset] = rt}; [sw rt, offset(base)]; (PC+4)
op:op=6b110000; data:base=5b; con:cs_c=5b00000; data:offset=16b; {COP0 = memory[base+offset]}; [lwc0 rt, offset(base)]; (PC+4)
op:op=6b111000; data:base=5b; con:cs_c=5b00000; data:offset=16b; {memory[base+offset] = COP0}; [lwc0 rt, offset(base)]; (PC+4)
op:op=6b000010; data:instrindex=26b; {}; [j instrindex]; (instrindex)op:op=6b000011; data:instrindex=26b; {GPR31 = PC+4}; [j instrindex]; (instrindex)

60

Figure 6-6 Metamodel of HLDD

Graph object has containment link to the nodes that belong to this graph.
Node has a link to the variable that contains the possible values of the node. Same

nodes may be connected by more than one edge.
Edge may lead to the next non-terminal node (NodeLink) or to the terminal node

(TerminationLink). The transition value of the edge may also be specified by the
ConstantValue link to the predefined constant.

A Function is an object that defines the operations with variables. The function has a
field for selecting an operation from a list of supported functions (AvailableFunctions).
This list can be easily extended to support any operations (bitwise operations, logic
operations, etc.). The arguments to the function are specified by the Arguments link
that selects variables from the list of predefined variables.

Based on the described abstraction it is possible to process the instruction set data,
given in ISDL, and to synthesize a graph mirroring the behaviour of the processor or its
part. The meta-model shown in Figure 6-6 is general and can be applied to modelling
microprocessors. In this case, the ModelingDomain represents the model of the
processor, composed of different units (ModelingObjects) i.e ALU, PC, register bank etc.
Each processor unit is represented with separate graph, which output or GraphVariable
represents output register or flag. Instruction fields representing operational codes will
become Nodes of the graph. The links - Edges between nodes are represented by the
instruction field values. Terminations of the graph will be the functions following the
execution of instructions.

ModelingDomain
name : EString

Input
Output

ModelingObject
name : EString

GraphVariable

Constant
value : ELong

Graph

Node
name : EString

Function
operation : AvailableFunctions

Termination
comment : EString

Variable
name : Estring

width : EInt

Edge
comment : Estring

varType : VariableType
value : EString

1

1

1

1

1

1

InputValue 0..1

Inputs 1..*
ModelingObjects 1..*

Variables 0..*

Graph 1

TerminalEdge 0..1

Nodes 0..*

NodeLink 0..1

Edges 0..*

TerminationLink 0..1

TerminationValue
1 Arguments 1..2

Constants 0..*

NodeEvaluation 1

Functions 0..*

ConstantValue 0..1

61

The implementation of HLDD generation in frames of the proposed framework is
represented with the set of algorithms – Algorithms 6-1, 6-2, 6-3, 6-4, 6-5, with links to
the meta-model shown in Figure 6-6.

Algorithm 6-1 describes the top level of the HLDD synthesis framework. With the

main cycle, the program is walking through the instruction list given in ISDL format, by
reading it line by line. Each line is parsed in order to obtain key information about the
instruction format and fields. First, the detection of information about PC is made. This
information is optional, but in case such information exists, the PC graph is created
(Algorithm 6-2) or populated (Algorithm 6-3) with new nodes. The next step is to find
register information in instruction line, especially output register. In case output
register does not have its separate field in the instruction word, the program continues
to search for it in function field, highlighted by { }. This field can hold the information
about indirect activation of register. For example, instruction MTHI (move data to
internal register regHI) has following description - op:op=6b000000; in:rs=5b;
con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000; op:funct=6b010001;
{regHI=rs}; [mthi rs]; (PC+4). The register field with direction “out” does not exist within
the list of instruction fields. However, function field {regHI=rs} holds information, that
data from input register rs will move to register regHI during execution of MTHI

62

instruction. In this case, regHI becomes an OUT register. Last conditional operator in
Algorithm 6-1 is checking if there were register fields with direction out within
instruction field list. The new graph is created (Algorithm 6-2) or populated (Algorithm
6-3) if there is such register field. These operations are executed in cycle for each
general purpose register of the processor. In order to use uniform function for creation
or filling different types of graphs, the functions – pcsubset(), subset() and brsubset()
are introduced. They are filtering the instruction data from ISDL line, needed to build a
specific type of graph.

Algorithm 6-2 describes the functionality of the constructor for Graph object. The

constructor is called if the graph does not exist already in ModelingDomain. Otherwise,
the existing graph is populated (Algorithm 6-3) with given instruction data. The first
thing created by graph constructor is GraphVariable, which is an output of the graph.
Then, instruction fields are attached to the graph as nodes (Algorithm 6-4) with edges
in the following order: op (opcode field) > con (constant) > in (register) > data
(immediate) > flag > termination (function or constant). Terminations are added
(Algorithm 6-5) as leaves, and are holding constants or links to the functions in the
library. PREV variable is a link between edges and nodes.

Algorithm 6-3 describes the graph population procedure. It is similar to graph
construction (Algorithm 6-2) but has many conditional operators in order to check the
existence of nodes prior adding them to the graph. Attachment on new edges, nodes
and terminations is same as in Algorithm 6-2.

63

Algorithm 6-4 describes the procedure of new node addition to the graph.

Depending on the type of node, two different paths exist for flag nodes and other
nodes. In case of flag node, Boolean edges (1, 0) are being added to it with two
different terminations. The terminations are taken from the PC field in instruction
description in ISDL format – (?(FLAG), A, B), where FLAG is a node, and A is termination
with termination link 1(true), and B is with 0(false).

In addition, when flag node is added to the graph, the ModelingDomain is checked
for the presence of flag-related graph. If there is no such graph, it’s created with subset

64

of data, filtered with brsubset(). In case another non-flag node is added, its object is
generated and the edge is linked to it.

Finally, the termination addition flow is described in Algorithm 6-5. It’s a short

procedure, which is linking existing edge to the created Termination object.

Let us have an example of synthesis of HLDD (based on the algorithms listed

previously) for a single instruction ADD of miniMIPS processor, shown previously in
Figure 8.2 and Figure 6-4. First, the information about program counter is checked in
ISDL entry:

op:op=6b000000;in:rs=5b;in:rt=5b;out:rd=5b;con:shamt_c=5b00000;
op:funct=6b100000;{ADD(rs, rt)}; [add $rd, $rs, $rt]; (PC+4).

The presence of field (PC+4) indicates, that program counter is increased by 4 bytes
after instruction execution. This means that graph for PC (Figure 8.7) can be built. PC
will become a GraphVariable. Then operation code fields – op and funct are attached to
it with corresponding node links – 000000 and 100000, provided in the description.
Next, constant shamt_c with edge 00000 as attached. Constant is followed by register
placeholders – rs, rt and rd. For representative means, multiple edges for different

65

register indexes are grouped into one edge with a range from 0 to 31. Finally,
termination with formula for PC calculation is attached to the graph. The full model of
miniMIPS PC unit is demonstrated in Figure 6-11.

Figure 6-7 HLDD graph for PC on basis of ADD instruction description in ISDL format

op1 funct000000 shamt_c rs00000 rt0...31 ADD(GPR(rs), GPR(rt))0...31100000GPR0 rd = 0

GPR31 rd = 31

GPR0

GPR31

0

0

GPR1

…
GPR30

1

Figure 6-8 HLDD graph for GPRi on basis of ADD instruction description

After actions with PC graph, ADD instruction description is analysed further to find if
there is a register with direction out. In case of ADD instruction, such register is rd. This
field of the instruction is keeping the index of register, in which the result of the
addition will be stored. MiniMIPS has thirty two general purpose registers (GPR0 –
GPR31), therefore the same amount of graphs will be synthesized. Using the same
algorithm for graph synthesis, but with different subset of data, graph for each general
purpose register GPRi is built (Figure 6-8). For representative means, set of graphs GGPRi
is united into one graph with multiple graph variables (GPR0 - GPR31). Field rd becomes
a root node, which is selecting the destination register for result of operation ADD.
Fields op, funct, shamt_c, rs and rt become nodes of the graph with corresponding
edges. The function (signed addition) is added to the terminal node of the graph.
Function ADD(GPR(rs), GPR(rt)), should be also added to the library of functions, in
order to use it further for test data generation. In general, the value of graph variable
GPRi should have a result of function in termination node, if the correct path is
activated. Full representation for ALU unit of miniMIPS is shown in Figure 6-10.

Since register fields rs, rd, and rt are not representing data, but the indexes of
registers in general-purpose register bank, special graphs are built. These graphs,
shown in Figure 6-9, will explain the data movement between registers.

Figure 6-9 HLDD graphs for GPR registers

PC op funct000000 PC+4shamt_c rs00000 rt0...31 rd0...31100000 0...31

GPR(rd) rd GPR00

GPR11

GPR31

2...30

31

GPR(rt) rt GPR00

GPR11

GPR31

2...30

31

GPR(rs) rs GPR00

GPR11

GPR31

2...30

31

PC GPR(0)

66

Figure 6-10 HLDD graphs for miniMIPS ALU

By executing the synthesis software, multiple graphs were built based on miniMIPS
ISA description in isdl format. In Figure 6-10 the graph synthesized for ALU unit is
shown. As it was described previously, this graph can be read from right to left, starting
with termination, representing the function behind instruction code. The value
calculated by function is stored to the general purpose register GPRi, selected by rd or
rt. The result of the function depends on the data, which is stored to input GPRi
selected by instruction fields rs and rt. Moreover, the function itself is selected mainly
by the values of op and funct codes and some constants – rs_c, shamt_c. The HLDD
graphs representing different units of miniMIPS processor are shown in Figure 6-11,
Figure 6-10, Figure 6-9, Figure 6-12 and Figure 6-13.

GPR0 op1 funct000000 rs_c000000 rt00000 SL(GPR(rt), shamt)0...31

rs_c rt00000 SR(GPR(rt), shamt)0...31000010

rs_c rt00000 SRA(GPR(rt), shamt)0...31000011

shamt_c rs00000 rt0...31000100 SL(GPR(rt), GPR(rs))0...31

shamt_c rs00000 rt0...31 SR(GPR(rt), GPR(rs))0...31000110

shamt_c rs00000 rt0...31 SRA(GPR(rt), GPR(rs))0...31000111

shamt_c rs00000 rt0...31 ADD(GPR(rs), GPR(rt))0...31100000

shamt_c rs00000 rt0...31 ADDU(GPR(rs), GPR(rt))0...31100001

shamt_c rs00000 rt0...31 SUB(GPR(rs), GPR(rt))0...31100010

shamt_c rs00000 rt0...31 SUBU(GPR(rs), GPR(rt))0...31100011

shamt_c rs00000 rt0...31 AND(GPR(rs), GPR(rt))0...31100100

shamt_c rs00000 rt0...31 OR(GPR(rs), GPR(rt))0...31100101

shamt_c rs00000 rt0...31 XOR(GPR(rs), GPR(rt))0...31100110

shamt_c rs00000 rt0...31 NOR(GPR(rs), GPR(rt))0...31100111

shamt_c rs00000 rt0...31 LESS(GPR(rs), GPR(rt))0...31101010

shamt_c rs00000 rt0...31 LESSU(GPR(rs), GPR(rt))0...31101011

op1 rs001000 immediate0...31

rs immediate0...31

rs immediate0...31

rs immediate0...31

001001

001010

001011

rs immediate0...31

rs immediate0...31

rs immediate0...31

001100

001101

001110

rd = 0

GPR0

0

GPR31 rd = 31

GPR31

0

1GPR1
…
GPR30

GPR0 rt = 0

GPR0

0

GPR31 rt = 31

GPR31

0

1GPR1
…
GPR30

ADD(GPR(rs), immediate)

ADDU(GPR(rs), immediate)

LESS(GPR(rs), immediate)

LESSU(GPR(rs), immediate)

AND(GPR(rs), immediate)

OR(GPR(rs), immediate)

XOR(GPR(rs), immediate)

0...65535

0...65535

0...65535

0...65535

0...65535

0...65535

0...65535

67

PC op funct000000 rs_c000000 rt00000 rd0...31

rs_c rt00000 rd0...31

PC+40...31

000010

rs_c rt00000 rd0...31000011

shamt_c rs00000 rt0...31000100 rd0...31

shamt_c rs00000 rt0...31 rd0...31000110

shamt 0...31

shamt0...31 0...31

shamt0...31 0...31

0...31

0...31

shamt_c rs00000 rt0...31 rd0...31000111 0...31

rs_c rt_c shamt_crt_c rd00000 00000 00000 0...31010000

rt_c rd_c shamt_c rs00000 00000 00000 0...31010001

rs_c rt_c shamt_c rd00000 00000 00000 0...31010010

rt_c rd_c shamt_c rs00000 00000 00000 0...31010011

rd_c shamt_c rs rt00000 00000 0...31 0...31011000

rd_c shamt_c rs rt00000 00000 0...31011001 0...31

shamt_c rs00000 rt0...31 rd0...31100000 0...31

shamt_c rs00000 rt0...31 rd0...31100001 0...31

shamt_c rs00000 rt0...31 rd0...31

shamt_c rs00000 rt0...31 rd0...31

shamt_c rs00000 rt0...31 rd0...31

shamt_c rs00000 rt0...31 rd0...31

shamt_c rs00000 rt0...31 rd0...31

100010

100011

100100

100101

100110

shamt_c rs00000 rt0...31 rd0...31100111

0...31

0...31

0...31

0...31

0...31

0...31

shamt_c rs00000 rt0...31 rd0...31

shamt_c rs00000 rt0...31 rd0...31

101010

101011

0...31

0...31

funct rs_c rd_c shamt_c00000 0000000000 rt00000
0...31

rd_c shamt_c00000 rt0000000100 0...31

rs rt immediate0...31 0...31 0...65535001000

rs rt immediate0...31 0...31

rs rt immediate0...31 0...31

rs rt immediate0...31 0...31

rs rt immediate0...31 0...31

rs rt immediate0...31 0...31

rs rt immediate0...31 0...31

001001

001010

001011

001100

001101

001110

0...65535

0...65535

0...65535

0...65535

0...65535

0...65535

rs_c rt immediate00000 0...31

rt base offset0...31 0...31

0...65535

0...65535

001111

100011

rt base offset0...31 0...31

cs_c base offset00000 0...31

cs_c base offset00000 0...31

101011

110000

111000

0...65535

0...65535

0...65535

rt_c rd_c shamt_c00000 00000001000 GPR(rs)00000

rt_c shamt_c00000 rd00000001001 0...31

instr_index000010

000011

rt_c rs offset LTZ00000 0...31 0...65535000001 0

010000

ADD(PC,SLA(offset,2))1

rs offset GEZ0...31 0...6553500001

1

rs rt offset EQ0...31 0...31 0...65535000100 0

1

rs rt offset NE0...31 0...31 0...65535000101 0

1

rt_c rs offset LEZ00000 0...31 0...65535000110 0

1

rt_c rs offset GTZ00000 0...31 0...65535000111 0

1
Figure 6-11 HLDD graph for miniMIPS program counter

68

Special treatment is needed for branching instructions. These instructions rely on
the values in flag registers. In case flag registers are not defined in ISA manual, it is
possible to define dummy flag variables in order to model branching behaviour. The
nodes - LTZ, GEZ, EQ, NE, LEZ, GTZ, representing flags are added to the PC graph as
shown in Figure 6-11. For each node separate graph is synthesized (Figure 6-12) based
on the information given in function {} and PC () fields of instruction description. For
example, function LTZ(GPR(rs)) is returning a Boolean value (1 or 0), if data in register rs
is less than zero. Depending on that program counter value is chosen.

Figure 6-12 HLDD graphs for miniMIPS flags

Last but not least, the graph describing register-memory data movement is shown in
Figure 6-13. This graph represents how data is being stored from GPR’s and
coprocessor registers to memory and loaded back to registers. Calculation of the
address for loading and storing the data into memory is made using ADD function with
data type fields base and offset.

Figure 6-13 HLDD graphs for miniMIPS memory-register data movement

LTZ op rt_c rs offset000001 00000 0...31 LTZ(GPR(rs))0...65535

GEZ op rt_c rs offset000001 00001 0...31 GEZ(GPR(rs))0...65535

EQ op rs rt offset000100 0...31 0...31 EQ(GPR(rs), GPR(rt))0...65535

NE op rs rt offset000101 0...31 0...31 NE(GPR(rs), GPR(rt))0...65535

LEZ op rt_c rs offset000110 00000 0...31 LEZ(GPR(rs))0...65535

GTZ op rt_c rs offset000111 00000 0...31 GTZ(GPR(rs))0...65535

Memory(ADD(base, offset)) op GPR(rt)101011

rt_c COP000000111000

base offset0...31 0...65535

base offset0...31 0...65535

op rt base offset Memory(ADD(base, offset))100011 0...31 0...31 0...65535

COP0 op base offset Memory(ADD(base, offset))110000 0...31 0...31 0...65535rt_c

GPR0

GPR31

rt = 0

rt = 31

GPR0

GPR31

1

0

GPR1

…
GPR30

0

1

69

6.4 Test synthesis from HLDD
Once the HLDD graph model for the given processor is constructed, it can be used as a
basis for test generation. The result of test generation is a set of test patterns for
testing structural entities of the processor. The procedure of test generation mainly
revolves around walking through the graph, activating its nodes and also generating
specific test data patterns. In this thesis, the information regarding test data generation
is omitted but can be found in [27].

An example of test generation is built on basis of miniMIPS ADD instruction,
modelled in ALU HLDD. By walking through the graph, three lists (Figure 6-14) are being
filled at the same time:

PATHLIST – holds the information about the path of nodes from graphVariable to
termination node. The syntax is following – P#=name1’width1,…,namen’widthn, where #
is a placeholder for index, name is the name of node, and width is the numeric value
corresponding to the node link (edge).

DATALIST – list of test data, which will be loaded into registers during test program
execution. Syntax is following – D#:binary_list, where # is a placeholder for
enumeration, and binary_list is a list of numeric values.

TESTLIST – list of tests, generated by walking through nodes. The syntax is following
– P#:test:D#, where the # is a placeholder for enumeration, P is for addressing
PATHLIST, D is for addressing DATALIST, and test is a binary representation of node link
values.

Figure 6-14 Example of test generation

ADD instruction path includes nodes – op, funct, shamt_c, rs, rt, rd. This path is
added to PATHLIST as P1, and it will be valid for all instructions with the same set of
nodes involved. Next, data for testing control part is generated and is aggregated into
DATALIST subset – D1. It is generated by applying techniques explained in [27]. Finally,
the test is generated to activate the path of nodes from graph variable to termination
node. It is generated in pseudo-exhaustive manner and added to the TESTLIST, with
addition of link to path description – P1, and test data set – D1. The test itself is
represented in binary form, equivalent to instruction word, and is holding all
information needed for further test program generation.

TESTLIST:
P1:00000010000000000000010001000001:D1
P1:00000010000000000000010001100001:D1
P1:00000010000000000000010010000001:D1
P1:00000010000000000000010010100001:D1
…
P1:00000010000000000111101110000001:D1

PATHLIST:
P1=op’6,funct’6,shamt_c’5,rs’5,rt’5,rd’5

DATALIST:
D1:
1011100010000111100000110100100011010111111011110001100100000010
1000000101011111111011000111110111101001001101110110101001110011
0100100011111111111001110101001011111110101100111001110000011001
...
0111110001111010000111010111000111111110010111010001000111110101

op funct shamt_c rs rt rd

70

6.5 SBST program generation
The targets of test generation for a microprocessor using the HLDD model are not the
instructions themselves, each of them taken as a whole as in traditional cases. Instead,
the targets are small functional entities represented by the nodes of HLDDs.
The terminal nodes represent selected data path functional entities (sub-circuits of
ALU), and the nonterminal nodes represent the selected control functional entities
related to the subfields of instruction words. Since the HLDD nodes as test targets
represent smaller functional units than the instructions as a whole, it makes possible to
use pseudo-exhaustive testing of the processor control part and to cope in this way
better with the complexity of the test problem. Instead of full exhaustive testing of all
operation codes, we test (pseudo)exhaustively its independent parts, guided by the
HLDD internal nodes. For testing terminal nodes, we use test data generated for ALU at
the gate level. From above, two approaches of testing, different for terminal and
nonterminal nodes, result: conformity test for the control part (internal HLDD nodes),
and scanning test for data path (terminal HLDD nodes).

The task of SBST generator is to decode patterns Figure 6-14, obtained from test
generator into assembly instructions. This is done by using predefined templates stored
in the assembly code library. As a result, the test program, composed from code
templates is made. It can be edited further, in order to improve the fault coverage.
Specific program code parts, important from the test coverage perspective, but hard to
generate automatically, can be added manually.

The test program length in cycles (considering single instruction per cycle) can be
calculated using following formula:

𝐿𝐿𝑇𝑇 = (𝐼𝐼 + 𝑆𝑆) × (𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑆𝑆) + 𝑉𝑉, (6-1)

where I and S are representing the number of cycles for initialization and store
procedures, depending on number of internal registers, needed to be loaded with data.
TC is the number of cycles required by conformity tests, depending on the amount of
paths to be activated in HLDD model. TS is the number of cycles for scanning test,
heavily dependent on the amount of patterns for testing data path. Overhead V,
needed to support functionality and compactness of the program, described in Chapter
5.4 is added.

The SBST generation process is shown in general in Figure 6-15. Generated SBST
program can be logically divided in memory into two parts: test program and test data.
Test data area is filled with data, given in DATALIST (Figure 6-15.A). The test program
part is generated (Figure 6-15.B) based on test patterns obtained during test generation
step. Generation of test program can be divided into three parts – initialization, test
and store. The initialization part is loading test data into registers, and store part is
saving obtained results back to memory. The test combines the instruction fields from
the library into the full instruction code. In Figure 6-15.C, a subset of generated test
program for testing control part is shown.

71

Figure 6-15 SBST program generation flow

The first part of the code represents initialization process. Every general-purpose
register is loaded with data before testing each instruction so that to avoid fault
masking [87]. Then, the test part is being generated. In section C of Figure 6-15, a test
pattern string, retrieved from the TESTLIST is shown. Since the instruction fields are
known (using the link to the PATHLIST), the test program generator can retrieve
corresponding assembly instruction from the library. Indexes of register operands ($)
are manipulated depending on the test pattern.

Test program generation is strongly affected by the modelling level made in previous
steps. The more details can be extracted from instruction set architecture, the more
detailed test program can be generated. The specific behaviour of the processor can be
hidden or even made invisible from the ISA point of view. Hence, the simple list of
instructions may be not sufficient to cover the realistic structural details.

The exact fault coverage can be calculated by gate-level fault simulation. The
undetected gate-level faults may belong to the class of redundant faults. Otherwise, to
detect these faults, low-level ATPGs can be used for generating additional test
operands.

6.6 Environment for experiments and results
In order to obtain fault coverage metrics of generated SBST program, fault simulation
tools are used. For our experiments, we are using test environment based on
combination of Mentor Graphics ModelSim [90] simulator and Synopsys TetraMAX [91]
fault simulator. The organization of our SBST evaluation framework is shown in Figure
6-16.

TEST DATA

1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001

TEST PROGRAM
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010
1000000101 011111111011000111 110111101001001101 110110101001110011
0100100011 111111111001110101 001011111110101100 111001110000011001

TESTLIST:
P1:00000010000000000000010001000001:D1
P1:00000010000000000000010001100001:D1
P1:00000010000000000000010010000001:D1
P1:00000010000000000000010010100001:D1
…
P1:00000010000000000111101110000001:D1

op funct shamt_c rs rt rd

lw $1, 0($6)
lw $2, 4($6)
lw $3, 8($6)
…
lw $5, 16($6)

sw $1, 0($7)
sw $2, 4($7)
sw $3, 8($7)
…
sw $5, 16($7)

add $1, $1, $2

init

store

test

DATALIST:
D1:
101110001000011110000011010010
100000010101111111101100011111
...
011111000111101000011101011100

A

B

C

72

Figure 6-16 SBST program evaluation framework

A generated test program is compiled for the processor under test. In case of
miniMIPS, memory file is generated as a result of compilation. This file is added to the
processor RTL description. Using ModelSim software it’s possible to simulate the
behaviour of the processor during the execution of the test program. Command -
dumpports, in ModelSim, allows storing the stimuli, obtained from inputs and outputs
of the processor during simulation, in unified vcd format.

Stimuli data, obtained during simulation step is loaded into fault simulator as a list of
test vectors. Gate-level netlist and technology library are loaded to TetraMAX fault
simulator. Then, it is possible to allocate the module of the processor for fault
simulation with patterns obtained during the previous step. Then, SAF are added to the
model under test. Finally, fault simulation is running and fault coverage results are
reported. Fault coverage results obtained from simulation with automatically
generated SBST program for miniMIPS are shown in Table 6-2.

Table 6-2 miniMIPS fault coverage with generated SBST

Instance name #faults Fault coverage %
U1_pf (Fetch stage) 2182 59,01

U2_ei (PC) 1608 80,53
U3_di (Decode stage) 7472 78,10

U4_ex (Execute stage, ALU, MULT) 211136 96,42
U5_mem (Memory access stage) 2870 56,46

U6_renvoi (Bypass unit) 3738 78,18
U7_banc (Register bank) 43584 82,19
U8_syscop (Coprocessor) 6930 79,14
U9_bus_ctrl (Bus control) 2028 79,58

U10_predict (Branch prediction) 21286 53,06
Total 302986 89,46

The test data generation was targeting mostly the execute stage of MiniMIPS, which
includes the biggest part of the processor core – ALU including two multiplication units.
As a result, decent coverage of 96,42% of faults in U4_ex is achieved (Table 6-3), where
97,58% of faults in ALU were covered.

Table 6-3 Fault coverage of execute stage in details

Instance name #faults Fault coverage %
U4_ex (Execute stage) 211136 96,42

ALU 203576 97,58

Fault
simulator

COMPILER SimulatorSBST
program

RTL-level
VHDL

Gate-level
netlist

Memory file stimuli

ModelSim TetraMAX

73

The significant loss in fault coverage is due to the fact, that current model does not
cover pipeline behaviour. This affects fault coverage in every stage of the pipeline,
thereafter the fault coverage result for the pipeline-related control logic of execute
stage (U4_ex) is only 86.32%.

This problem can be solved by populating test program with specific patterns of
code, which will activate the faults in pipeline control and memory addressing unit [25].
Nevertheless, we find the obtained coverage as decent (89.46%), keeping in mind that
it was obtained by automatically generated SBST program, i.e. effort was given only for
composing the list of instructions in isdl format.

Table 6-4 Fault coverage results of different SBST methods (MiniMIPS ex & ALU)

Method ATPG [92] HLDD #1 [9] #2 [24] #3 [92]
U4_ex 99,93 96,42 96,37 84,12 97,62

ALU 97,58 97,58 - 97,78 98,67

In table Table 6-4 the results of fault coverage for execute stage and ALU of
MiniMIPS processor are shown.

The first method (#1) [9] is capable to automatically generate SBST programs. It is relying
on using ATPG and SAT solver for pattern generation, which are generating test program by
applying constraints during structural and functional analysis of the circuit under test. An
additional hardware module is used for observing the inputs and outputs of processor
during in-field application, in order to discover the incorrect behaviour. However, fault
coverage result for ex stage including ALU is less compared to our HLDD-based approach.
The difference, although is very small, and the result can be considered equal.

Next approach #2 [24] is similar to the method we have proposed in this thesis. SBST
generation is based on instruction set model of the processor, additionally applying
developed mechanisms in order to increase the fault coverage for pipeline control and
memory addressing. Fault coverage result for execute stage of the pipeline is relatively
low. The reason for that can be overall low attention to the control part of the
processor under test. However, ALU coverage is superior to HLDD-based approach,
outperforming it by 0,2%.

In the question of fault coverage percentage for execute stage of the pipeline and
ALU, method named ATIG (#5) [92] has shown the best result. However, the fault
coverage given in this work is computed by considering only structurally testable faults,
i.e., structurally untestable faults are collapsed, making comparison unfair. This method
is based on test generation using structural information (gate-level). Additionally, this
method is relying on modification in RTL design in order to obtain the best observability
of the system aiming to find best test patterns. However, fault coverage is measured on
“clean” system.

We have compared fault coverage of execute stage and ALU only, since at the
current stage we were targeting this part of the processor mostly, generating test data
for it. All other modules of the processor were tested with the same data operands,
delivering decent, but not superior or at least competitive coverage.

74

6.7 Summary
This chapter demonstrated that the previously proposed formal methods can be used
to automate the SBST generation process. The implementation of these methods was
conducted under the heading of the proposed framework. The structure and
algorithms are presented in detail in order to leave the possibility for reproducing.

A formal methodology was automated for the synthesis of HLDD models for
microprocessors on the basis of the instruction set description. A procedure of manual
transformation of the instruction set architecture into machine-readable format was
developed, which formed the basis of the automated synthesis of the graph model of
microprocessors.

The second part of the framework used the formal basis for the test generation
process. The implementation of these methods is described in detail, including the
traversing through graphs to generate scanning and conformity tests.

The generated tests, obtained by traversing the model and applying the constraints
developed in previous chapters, are automatically converted into test programs which
can be loaded and executed on the processor under test.

As a proof-of-concept, an automated generation of test program targeting the ALU
of MiniMIPS was demonstrated. The efficiency of generated test programs, in terms of
test coverage, was evaluated separately for different modules of the microprocessor.
The obtained fault coverage results for the execute stage and ALU module are
competitive or even superior to other state-of-the-art approaches.

The main advantage of the newly developed methods is that the tests, generated for
microprocessors on the basis of only high-level instruction set information, have the
same quality as state-of-the-art methods which use additional information about the
low-level implementation details.

75

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions
The aim of this thesis is to propose a novel formalised methodology for modelling
microprocessors on the basis of the instruction set description, with the goal of
automated synthesis of SBST programs. The proposed modelling approach extends the
theory of HLDDs to support behavioural modelling of the microprocessor, describing its
high-level structure and components. The automation of the SBST program
development is based on the topological analysis of HLDDs and solving the high-level
data constraints deduced from the model of the microprocessor under test.

The main contributions of the presented work are summarised below.
• The methodology for high-level modelling of microprocessors on the basis of its

instruction set architectures
The methodology is based on the theory of HLDDs to model microprocessors, based

on the descriptions of their instruction set architectures. The use of high-level
behavioural descriptions of microprocessors as input data for model synthesis makes
this approach more scalable than other state-of-the-art approaches, which are based
on lower-level descriptions. The proposed formal method introduces the important
property of one-to-one mapping between the modelled processor and its
corresponding high-level functionality. This allows the HLDD model to be used as a
checklist for high-level test planning and organisation of test programs for
microprocessors. Suggested techniques are applied to synthesise the model for Parwan
and MiniMIPS processors. The model has compact representation, allowing more
precise specification of the behaviour of the microprocessor, in more detail, than the
traditional instruction set descriptions.

• Definition of the new high-level classes of fault models for microprocessors,
which are also mapped to related low-level structural faults

The goal of this work is the development of a formal methodology for test
generation. Well-defined formal test targets are thus required. After careful
investigation of the properties of the chosen formal modelling method, a wide range of
possibilities for fault modelling was discovered. HLDDs support multi-level fault
modelling, allowing mapping of high-level functional faults to lower-level faults,
guaranteeing the high accuracy of testing. Three novel high-level fault classes for
microprocessors were proposed, considered superclasses over existing RTL-level fault
models for microprocessors. The HLDD-based higher level of abstraction allows the
reduction of the size of the fault model by orders of magnitude, compared to the low-
level abstractions.

• A formal method of generation of SBST on the basis of the HLDD model
The proposed microprocessor models in the form of HLDD networks ensure well-

defined structured information, which is more suitable for test generation purposes
than traditional models in the form of instruction lists. In order to utilise these models
in SBST generation, two novel concepts were proposed: conformity test and scanning
test. Conformity test targets the control part of the microprocessor, while scanning test
is designed for the data path. Due to the cyclic nature of both algorithms for test
generation, it is possible to achieve compact test programs, thus saving memory space.
In addition, the exhaustive and pseudo-exhaustive origin of the proposed methods
offers high fault coverage and better diagnostic capabilities. The proposed regular

76

construction (init-test-store) of test templates reduces the probability of fault masking.
On the other hand, exhaustive testing with repeated constant initialisation procedures
has an impact on the number of processor cycles used for test program execution.
However, test programs can be always optimised by consideration of the trade-off
between accuracy and test length. The proposed SBST generation method was
evaluated using Parwan and MiniMIPS microprocessors. Both manually and
automatically generated test programs demonstrated their superiority, resulting in up
to 10% higher fault coverage than alternative state-of-the-art methods, maintaining the
small test program size.

• Framework for automated SBST synthesis
Finally, the automatization of the SBST program generation was introduced. Using

the formal methods proposed in this work, the framework for automated SBST
generation was developed. As the description of instruction sets in the documentation
is not uniform, initial data should be extracted manually. Therefore, a methodology for
data extraction and its composition into uniform machine-readable format is proposed.
The extracted data is used in the developed framework to automatically synthesise the
HLDD model of the given processor. Experiments with SBST generation were conducted
for the MiniMIPS microprocessor, targeting its execute stage (containing the ALU
module) of the pipeline. The obtained fault coverage results are competitive or even
superior to those of other state-of-the-art approaches. Tests generated on the basis of
only high-level instruction set information achieve the same quality as state-of-the-art
methods which use additional information on the implementation details. Nonetheless,
the proposed methodology must be extended to cope with the faults in pipeline logic
and other traits in hardware implementation.

7.2 Future work
The main direction of the future work is test data generation. Test data generation on
the basis of HLDD models is omitted from this work, as it is currently ‘in-progress’. The
test data used in the experiments were preliminary and manually generated using the
ideas of pseudo-exhaustive testing. Properly generated test data may have a strong
positive effect on the overall test quality and diagnostic properties of the proposed
methodology. Thus, developments in this direction are of the highest priority.

Another functionality to be implemented in frames of SBST generation framework is
the signature calculation module. The term signature is used for compressed test
responses. Proper algorithms for signature calculation and decryption can improve the
diagnostic qualities of the framework.

The work on extending the instruction description language and model synthesis
should be continued. This may assist in the adoption of the proposed methodology for
a wider spectrum of microprocessor architectures; for example, assisting in modelling
complex pipeline behaviour, such as data hazards and stalls.

77

List of figures
Figure 2-1 Features of microprocessor test methods ... 13
Figure 2-2 function y=f(x1,x2,x3,x4) represented with HLDD ... 19
Figure 2-3 Logic simulation on HLDD .. 19
Figure 2-4 Synthesis of HLDD for functional variable A .. 21
Figure 2-5 Topology comparison of SSBDD and HLDD .. 21
Figure 3-1 HLDDs for the microprocessor with instruction set in Table 3-1 24
Figure 3-2 ISA-based high-level structure of the microprocessor described in Table 3-1 ... 25
Figure 3-3 Instruction format groups of Parwan microprocessor 26
Figure 3-4 Behavioural level structure of Parwan microprocessor 27
Figure 3-5 HLDD synthesis for functional variable V ... 28
Figure 3-6 HLDD model for the microprocessor Parwan .. 29
Figure 3-7 AND instruction simulation in PARWAN model ... 31
Figure 4-1 Demonstration of different faults in HLDD model of PARWAN 38
Figure 4-2 Illustration of the behaviour of a hard-to-test fault 39
Figure 4-3 Digital system with its HLDD model ... 41
Figure 5-1 Mapping between the instruction formats and the vector functions Y=F(X) ... 45
Figure 5-2 Instruction set of Parwan microprocessor and HLDD model of its ALU 47
Figure 5-3 Test template for testing non-terminal nodes in the HLDD GAC 48
Figure 5-4 Test template for testing in the HLDD GAC the node labelled by working mode
(operation) AC+ M... 49
Figure 5-5 Test generation for Parwan microprocessor with shared HLDDs 50
Figure 5-6 A generalized data structure for self-testing of microprocessors 52
Figure 5-7 Example of fault masking during IO procedure ... 53
Figure 5-8 Example of fault masking avoidance technique .. 53
Figure 5-9 Comparison of different test coverages (PARWAN) 54
Figure 6-1 Software-Based Self-Test generation framework .. 56
Figure 6-2 ADD instruction description from Minimips manual 57
Figure 6-3 MiniMIPS instruction formats .. 57
Figure 6-4 ADD instruction converted to ISDL .. 58
Figure 6-5 Subset of miniMIPS instruction set in ISDL format .. 59
Figure 6-6 Metamodel of HLDD .. 60
Figure 6-7 HLDD graph for PC on basis of ADD instruction description in ISDL format .. 65
Figure 6-8 HLDD graph for GPRi on basis of ADD instruction description 65
Figure 6-9 HLDD graphs for GPR registers .. 65
Figure 6-10 HLDD graphs for miniMIPS ALU ... 66
Figure 6-11 HLDD graph for miniMIPS program counter .. 67
Figure 6-12 HLDD graphs for miniMIPS flags .. 68
Figure 6-13 HLDD graphs for miniMIPS memory-register data movement 68
Figure 6-14 Example of test generation .. 69
Figure 6-15 SBST program generation flow .. 71
Figure 6-16 SBST program evaluation framework .. 72

78

List of tables
Table 3-1 Instruction set of a simple hypothetical microprocessor with ten instructions .. 23
Table 3-2 Instruction set of PARWAN microprocessor ... 25
Table 4-1 Comparison of HLDD-based faults with high-level faults proposed in [83] 37
Table 4-2 Interpretation of microprocessor faults in HLDD .. 39
Table 4-3 Mapping low level structural faults into high-level functional faults 41
Table 5-1 Conformity test template .. 50
Table 5-2 Instructions to be inserted into the conformity test program template 51
Table 5-3 Scanning test template to be repeated for the data operands in the memory .. 51
Table 5-4 Comparison of test lengths for testing PARWAN processor 54
Table 6-1 ISDL syntax for instruction fields ... 57
Table 6-2 miniMIPS fault coverage with generated SBST ... 72
Table 6-3 Fault coverage of execute stage in details .. 72
Table 6-4 Fault coverage results of different SBST methods (MiniMIPS ex & ALU) 73

79

References

[1] E. B. Eichelberger and T. W. Williams, “A Logic Design Structure for LSI Testability,”

in Papers on Twenty-five Years of Electronic Design Automation, New York, NY,
USA, 1988.

[2] S. Funatsu, N. Wakatsuki and A. Yamada, “Designing digital circuits with easily
testable considerations,” in Semiconductor Test COnference, Long Beach, 1978.

[3] M. Psarakis, D. Gizopoulos, E. Sanchez and M. Reorda, “Microprocessor Software-
Based Self-Testing,” IEEE Design & Test of Computers, vol. 27, no. 3, pp. 4-19, 2010.

[4] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,” in IEEE T.
Comput., 1980.

[5] ISO Standard, Road vehicles - Functional safety, 26262, 2011.
[6] IEC Standard, Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-related Systems, 61508, 2010.
[7] DO-254 Standard, Design Assurance Guidance for Airborne Electronic Hardware,

2000.
[8] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. S. Reorda and B. Becker, “An

effective approach to automatic functional processor test generation for small-
delay faults,” in 2014 Design, Automation Test in Europe Conference Exhibition
(DATE), 2014.

[9] A. Riefert, R. Cantoro, M. Sauer, M. S. Reorda and B. Becker, “A Flexible
Framework for the Automatic Generation of SBST Programs,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, pp. 3055-3066, 10 2016.

[10] M. Schölzel, T. Koal, S. Röder and H. T. Vierhaus, “Towards an automatic
generation of diagnostic in-field SBST for processor components,” in 2013 14th
Latin American Test Workshop - LATW, 2013.

[11] P. Nigh, W. Needham, K. Butler, P. Maxwell and R. Aitken, “An experimental study
comparing the relative effectiveness of functional, scan, IDDq and delay-fault
testing,” in Proceedings. 15th IEEE VLSI Test Symposium (Cat. No.97TB100125),
1997.

[12] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits, Springer Publishing Company, Incorporated, 2013.

[13] I. Bayraktaroglu, J. Hunt and D. Watkins, “Cache Resident Functional
Microprocessor Testing: Avoiding High Speed IO Issues,” in 2006 IEEE International
Test Conference, 2006.

[14] P. Parvathala, K. Maneparambil and W. Lindsay, “FRITS - a microprocessor
functional BIST method,” in Proceedings. International Test Conference, 2002.

[15] S. Gurumurthy, S. Vasudevan and J. A. Abraham, “Automatic generation of
instruction sequences targeting hard-to-detect structural faults in a processor,” in
2006 IEEE International Test Conference, 2006.

[16] L. Lingappan and N. K. Jha, “Satisfiability-Based Automatic Test Program
Generation and Design for Testability for Microprocessors,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 15, pp. 518-530, 5 2007.

80

[17] C. H. P. Wen, L.-C. Wang and K.-T. Cheng, “Simulation-Based Functional Test
Generation for Embedded Processors,” IEEE Transactions on Computers, vol. 55,
pp. 1335-1343, 11 2006.

[18] N. Kranitis, A. Paschalis, D. Gizopoulos and G. Xenoulis, “Software-based self-
testing of embedded processors,” IEEE Transactions on Computers, vol. 54, pp.
461-475, 4 2005.

[19] C. H. Chen, C. K. Wei, T. H. Lu and H. W. Gao, “Software-Based Self-Testing With
Multiple-Level Abstractions for Soft Processor Cores,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 15, pp. 505-517, 5 2007.

[20] J. Shen and J. A. Abraham, “Native mode functional test generation for processors
with applications to self test and design validation,” in Proceedings International
Test Conference 1998 (IEEE Cat. No.98CH36270), 1998.

[21] F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, “Automatic test program
generation: a case study,” IEEE Design Test of Computers, vol. 21, pp. 102-109, 3
2004.

[22] E. Sanchez and M. S. Reorda, “On the Functional Test of Branch Prediction Units,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, pp. 1675-
1688, 9 2015.

[23] S. D. Carlo, P. Prinetto and A. Savino, “Software-Based Self-Test of Set-Associative
Cache Memories,” IEEE Transactions on Computers, vol. 60, pp. 1030-1044, 7 2011.

[24] D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis, A.
Raghunathan and S. Ravi, “Systematic Software-Based Self-Test for Pipelined
Processors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
16, pp. 1441-1453, 11 2008.

[25] P. Bernardi, R. Cantoro, L. Ciganda, B. Du, E. Sanchez, M. S. Reorda, M. Grosso and
O. Ballan, “On the Functional Test of the Register Forwarding and Pipeline
Interlocking Unit in Pipelined Processors,” in 2013 14th International Workshop on
Microprocessor Test and Verification, 2013.

[26] P. Bernardi, R. Cantoro, L. Ciganda, E. Sanchez, M. S. Reorda, S. D. Luca, R.
Meregalli and A. Sansonetti, “On the in-field functional testing of decode units in
pipelined RISC processors,” in 2014 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2014.

[27] R. Ubar, A. Jasnetki, A. Tsertov and A. S. Oyeniran, Software-Based Self-Test with
Decision Diagrams for Microprocessors, LAP LAMBERT Academic Publishing, 2018.

[28] C. Lee, “Representation of Switching Circuits by Binary Decision Programs,” The
Bell System Technical Journal, pp. 985-999, 1959.

[29] R. Ubar, “Test Generation for Digital Circuits with Alternative Graphs,” Tallinn
Technical University, no. 409, pp. 75-81, 1976.

[30] S. Akers, “Functional Testing with Binary Decision Diagrams,” Journal of Design
Automation and Fault-Tolerant Computing , vol. II, pp. 311-331, 1978.

[31] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Transactions on Computers, Vols. C-35, no. 8, pp. 667-690, 1986.

[32] T. Sasao and M. Fujita, “Representations of Discrete Functions,” Kluwer Academic
Publishers, 1996.

81

[33] R. Drechsler and B. Becker, Binary Decision Diagrams, Kluwer Academic Publishers,
1998.

[34] S. Minato and N. Ishiura, “Shared binary decision diagrams with attributed edges
for efficient Boolean function manipulation,” in 27th IEEE/ACM ICCAD, 1990.

[35] A. Srinivasan, T. Kam, S. Malik and R. Bryant, “Algorithms for discrete function
manipulation,” in Informations Conference on CAD – ICCAD, 1990.

[36] U. Kebschull, E. Schubert and W. Rosenstiel, “Multilevel logic synthesis based on
functional decision diagrams,” in IEEE EDAC, 1992.

[37] S. Minato, “Zero-suppressed BDDs for set manipulation in combinational
problems,” in 30th DAC, 1995.

[38] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo and F. Somenzi,
“Algebraic decision diagrams and their applications,” in Internation Conference on
Computer Aided Design, 1993.

[39] R. Drechsler, A. Sarabi, M. Theobald, B. Becker and M. Perkowski, “Efficient
representation and manipulation of switching functions based on Ordered
Kronecker Functional Decision Diagrams,” in DAC, 1994.

[40] R. Bryant and Y.-A. Chen, “Verification of arithmetic functions with binary moment
diagrams,” in 32nd ACM/IEEE DAC, 1995.

[41] J. Bern, C. Meinel and A. Slobodova, “Efficient OBDD-based manipulation in CAD
beyond current limits,” in 32-nd DAC, 1995.

[42] E. Clarke, N. Fujita and X. Zhao, “Multi-terminal binary decision diagrams and
hybrid decision diagrams,” in Representations of Discrete Functions, Kluwer
Academic Publishers, 1996, pp. 93-108.

[43] R. Stanković, J. Astola, M. Stanković and K. Egiazarjan, “Circuit synthesis from
Fibonacci decision diagrams,” VLSI Design, Special Issue on Spectral Techniques and
Decision Diagrams, no. 14, pp. 23-34, 2002.

[44] R. Ubar, “Test Synthesis with Alternative Graphs,” IEEE Design&Test of Computers,
pp. 48-57, 1996.

[45] R. Ubar, J. Raik, A. Jutman and M. Jenihhin, “Diagnostic Modeling of Digital
Systems with Multi-Level DDs,” in Design and Test Technology for Dependable SoC,
IGI Global, 2011, pp. 92-118.

[46] A. Fauth, M. Freericks and A. Knoll, “Generation of hardware machine models from
instruction set descriptions,” in Workshop on VLSI Signal Processing, Veldhoven,
1993.

[47] V. Zivojnovic, S. Pees and H. Meyr, “LISA-machine description language and generic
machine model for HW/SW co-design,” in VLSI Signal Processing, San Francisco,
1996.

[48] J. Raik, Hierarchical Test Generation for Digital Circuits Represented by Decision
Diagrams, Tallinn: TUT Press, 2001.

[49] R. Ubar, J. Raik, A. Karputkin and M. Tombak, “Synthesis of High-Level Decision
Diagrams for Functional Test Pattern Generation,” in International Conference
MIXDES, Lodz, 2009.

[50] A. Tsertov, System Modeling for Processor-Centric Test Automation, Tallinn: TTU
Press, 2012.

82

[51] A. Tsepurov, Hardware Modeling for Design Verification and Debug, Tallinn: TUT
Press, 2013.

[52] M. Jenihhin, Simulation-Based Hardware Verification with High-Level Decision
Diagrams, Tallinn: TUT Press, 2008.

[53] R. Ubar, “Test Generation for Digital Systems on the Vector Alternative Graph
Model,” in 13th Symposium on Fault Tolerant Computing, Milan, 1983.

[54] R. Ubar, J. Raik and A. Morawiec, “Back-tracing and event-driven techniques in
high-level simulation with decision diagrams,” in International Symposium on
Circuits and Systems, Geneva, 2000.

[55] R. Ubar, A. Morawiec and J. Raik, “Cycle-based Simulation with Decision
Diagrams,” in Design, Automation and Test in Europe Conference and Exhibition,
Munich, 1999.

[56] A. Jasnetski, R. Ubar, A. Tsertov and M. Brik, “Software-based self-test generation
for microprocessors with high-level decision diagrams,” Estonian Academy of
Sciences, vol. 1, no. 63, pp. 48-61, 2014.

[57] Z. Navabi, Analysis and Modeling of Digital Systems, McGraw-Hill, 1993.
[58] A. Jasnetski, J. Raik, A. Tsertov and R. Ubar, “New Fault Models and Self-Test

Generation for Microprocessors using High-Level Decision Diagrams,” in IEEE
Symposium on Design and Diagnostics of Electronic Circuits and Systems - DDECS,
Belgrade, 2015.

[59] A. Jasnetski, S. Oyeniran, A. Tsertov, M. Schölzel and R. Ubar, “High-level modeling
and testing of multiple control faults in digital systems,” in IEEE International
Symposium on Design and Diagnostics of Electronic Circuits & Systems - DDECS,
Kosice, 2016.

[60] U. Mahlstedt, J. Alt and I. Hollenbeck, “Deterministic Test Generation for Non-
Classical Faults on Gate Level,” in ATS, 1995.

[61] S. Holst and H.-J. Wunderlich, “Adaptive Debug and Diagnosis Without Fault
Dictionaries,” in 13th ETS, 2008.

[62] K. Dwarakanath and R. Blanton, “Universal Fault Simulation using fault tuples,” in
DAC, 2000.

[63] K. Keller, “Hierarchical Pattern Faults for Describing Logic Circuit Failure
Mechanisms”. USA Patent 5546408, 13 August 1994.

[64] R. Blanton and J. Hayes, “On the Properties of the Input Pattern Fault Model,” ACM
Transactions on Design Automation of Electronic Systems , vol. 8, no. 1, pp. 108-
124, 2003.

[65] R. Ubar, “Detection of Suspected Faults in Combinational Circuits by Solving
Boolean Differential Equations,” Automation and Remote Control, vol. 40, no. 11,
pp. 1693-1703, 1980.

[66] Y. Cho, S. Mitra and E. McCluskey, “Gate Exhaustive Testing,” in International Test
Conference, 2005.

[67] A. Jas, S. Natarajan and S. Patil, “The Region-Exhaustive Fault Model,” in 16th Asian
Test Symposium, 2007.

[68] P. Maxwell and R. Aiken, “Biased Voting: A Method for Simulating CMOS Bridging
Faults in the Presence of Variable Gate Logic Thresholds,” in ITC, 1993.

83

[69] L. Zhuo, X. Lu, W. Qiu, W. Shi and D. Walker, “A Circuit Level Fault Model for
Resistive Opens and Bridges,” in VLSI Test Symposium, Napa, 2003.

[70] P. Engelke, I. Polian, M. Renovell and B. Becker, “Simulating resistive bridging and
stuck-at faults,” IEEE Transactions on CAD of IC and Systems, vol. 25, no. 10, pp.
2181-2192, 2006.

[71] A. Rousset, A. Bosio, P. Girard, C. Landrault, S. Pravossoudovitch and A. Virazel,
“Fast Bridging Fault Diagnosis Using Logic Information,” in 16th ATS, Beijing, 2007.

[72] S. Jain and V. Agrawal, “Modeling and Test Generation Algorithms for MOS
Circuits,” IEEE Transactions on Computers, Vols. C-34, no. 5, pp. 426-433, 1985.

[73] H. Lee and D. Ha, “SOPRANO: An Efficent Automatic Test Pattern Generator for
Stuck-Open Faults in CMOS Combinational Circuits,” in DAC, Orlando, 1990.

[74] A. Kristic and K. Cheng, Delay Fault Testing for VLSI Circuits, Dordrecht: Springer
US, 1998.

[75] G. Chen, S. Reddy, I. Pomeranz, J. Rajski, P. Engelke and B. Becker, “A Unified Fault
Model and Test Generation Procedure for Interconnect Opens and Bridges,” in
10th ETS, Tallinn, 2005.

[76] M. Hansen and J. Hayes, “High-Level test generation Using Physically-Induced
Faults,” in VLSI Test Symposium, 20-28, 1995.

[77] T. Lin and S. Su, “The S-Algorithm: A promising solution for systematic functional
test generation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 4, pp. 250-263, 1985.

[78] G. Buonanno, F. Ferrandi and F. Fummi, “How an Evolving Model Improves the
Behavioral Test Generation,” in 7th Great Lakes Symposium on VLSI, 1997.

[79] A. Fin and F. Fummi, “A VHDL Error Simulator for Functional Test Generation,” in
Proceedings of the Design, Automation and Test Conference, 2000.

[80] S. Ghosh and T. Chakraborty, “On Behavior Fault Modelling for Digital Designs,” in
Electronic testing: Theory and Applications, Kluwer Academic Publishers, 1991, pp.
135-151.

[81] C. Cho and J. Armstrong, “A Behavioral Test Generation Algorithm,” in
International Test Conference, 1994.

[82] R. Ramchandani and D. Thomas, “Behavioral Test Generation using Mixed Integer
Non-linear Programming,” in IEEE International Test Conference, 1994.

[83] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,” IEEE
Transactions on Computers, Vols. C-29, pp. 429-441, 6 1980.

[84] F. Happke and e. al., “Cell-Aware Test,” IEEE Transactions on CAD of IC and
Systems, vol. 33, no. 9, 2014.

[85] L. Chen and S. Dey, “Software-based self-testing methodology for processor
cores,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems , vol. 20, no. 3, pp. 369-380, 2001.

[86] Y. Zhang, H. Li and X. Li, “Software-Based Self-Testing of Processors Using
Expanded Instructions,” in 19th IEEE Asian Test Symposium, Shanghai, 2010.

[87] A. Jasnetski, R. Ubar and A. Tsertov, “Automated software-based self-test
generation for microprocessors,” in 2017 MIXDES - 24th International Conference
"Mixed Design of Integrated Circuits and Systems, Bydgoszcz, 2017.

84

[88] OpenCores, “MiniMIPS ISA”.
[89] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, 3rd ed., San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2007.

[90] “ModelSim,” [Online]. Available:
https://www.mentor.com/products/fv/modelsim/. [Accessed 18 12 2017].

[91] “TetraMAX ATPG,” [Online]. Available:
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/test-
automation/tetramax-atpg.html. [Accessed 18 12 2017].

[92] Y. Zhang, H. Li and X.-W. Li, “Automatic Test Program Generation Using Executing-
Trace-Based Constraint Extraction for Embedded Processors,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 7, pp. 1220-1233, 2013.

[93] J. Bertin, Graphics and Craphic Information Processing, Berlin: Walter de Gruiter,
1981.

[94] S. A. a. L. Shih, “Towards and Interactive Learning Approch in Cybersecurity
Education.,” in Proceedings of the 2015 Information Security Curruculum
Development Conference, New York, 2015.

85

Acknowledgements
I would like to thank all those who supported me during my PhD studies, and without
whom this work would never have been completed.

I would like to express particular gratitude to my supervisors, Professor Raimund-
Johannes Ubar and Dr. Anton Tšertov, for helping me to take my first steps in the
engineering domain. They guided me through my PhD studies challenging me along the
way. It has been a big pleasure to work alongside them.

I would also like to thank those in the Department of Computer Systems and my
colleagues from Testonica Lab, all of whom contributed to my work through heated
discussions and ideas.

Special thanks to Dr. Margus Kruus, the head of the Department of Computer
Systems, for his support with many administrative issues.

I would also like to acknowledge several organisations that supported my PhD
studies: the Tallinn University of Technology, the IT Academy of Estonia, the
Information Technology Foundation (HITSA), the Estonian Association of Information
Technology and Telecommunications (ITL) and the Estonian Ministry of Education and
Research.

86

Abstract
Software-Based Self-Test for Microprocessors with High-Level
Decision Diagrams
The field of Software-Based Self-Test (SBST) has been a topic of extensive
research in industry and academia for more than three decades. Nevertheless, self-test
programs for microprocessors are generally written manually, due to a lack of attention
paid to efficient formal methods. High-level fault modelling and formal test generation
strategies have not been studied sufficiently to support the automated synthesis of
self-test programs and to provide methods for fast test quality evaluation. In addition,
restrictions imposed by the NDA on commercial microprocessors, have made test
program generation impossible for most state-of-the-art SBST methods.

This thesis contributes to closing these gaps by introducing a formal methodology for
automated SBST program synthesis, based on instruction set description of
microprocessors. High-level decision diagrams (HLDDs) were chosen to provide a formal
ground for presented methodology.

The research presented in this thesis originated from a method of building HLDD
models using data extracted exclusively from instruction set architecture description.
This novel method models microprocessor as a set of interrelated HLDD graphs. The
proposed modelling approach allows the reflection of high-level functionality of
microprocessor with nodes in HLDDs. This provides an opportunity to use the nodes in
HLDD graphs for the development of test strategies and the design of test programs for
microprocessors.

In this work, it was established that in comparison to the state-of-the-art
approaches, the HLDD-based model covers a wide spectrum of high-level behavioural
faults in microprocessors. In addition, the transition from a lower to a higher level of
abstraction reduces the size of HLDD-based fault models by orders of magnitude.
Despite the compaction of the model, the newly proposed fault classes guarantee a
high accuracy of testing, which was demonstrated by mapping the new fault classes
onto lower level faults and showing that the HLDD-based high-level fault classes fully
cover a broad class of structural gate-level fault models.

Two novel concepts for test generation are proposed in this thesis: conformity
testing and scanning testing. The use of both algorithms of conformity and scanning
test generation results in compact presentation of the test program, high fault
coverage, increase in diagnostic capabilities, and reduction in the probability of fault
masking.

The overall formalism of the presented methodology allows an automated model
synthesis for the microprocessor, and self-test program generation. The
implementation of these methods is conducted under the heading of the proposed
automation oriented framework. Its structure and algorithms are discussed in detail,
and evaluated on the examples of the Parwan and MiniMIPS processors. The obtained
fault coverage results are competitive or even superior to those of other state-of-the-
art approaches. The main advantage of the newly developed methods is in the
capability of the tests generated for microprocessors on the basis of high-level
instruction set information, which achieve the same quality as state-of-the-art methods
do, which rely on additional information regarding low-level implementation details.

87

Lühikokkuvõte
Mikroprotsessorite tarkvara-põhine enesetestimine
kõrgtasandi otsustusdiagrammide põhjal
Mikroprotsessorite tarkvara-põhise enesetestimise (SBST) valdkond on olnud ulatuslik
teema tööstuses ja akadeemiliste ringkondades rohkem kui kolm aastakümmet.
Tõhusate formaalsete meetodite puudumise tõttu programmeeritakse
mikroprotsessorite enesekontrolli teste käsitsi. Rikete modelleerimise lähenemisviise
kõrgematel abstraktsetel tasanditel ja formaalsete testimistegevuste strateegiaid ei ole
piisavalt põhjalikult uuritud, et toetada mikroprotsessorite enesetestiprogrammide
automaatset sünteesimist ja testimise kvaliteedi hindamise kiireid meetodeid. NDA
poolt kaubanduslikele mikroprotsessorite kehtestatud lisapiirangute tõttu kirjeldatakse
protsessorite funktsionaalsust üksnes käsustike arhitektuuri esitavate dokumentidega,
avaldamata seejuures implementatsioonide detaile, muutes seetõttu
kõrgekvaliteediliste testprogrammide automaatse genereerimise ja testide kvaliteedi
hindamise võimatuks enamuste kaasaegsete SBST meetodite puhul.

Käesolev väitekiri on suunatud nimetatud lünkade likvideerimisele, pakkudes välja
formaalse metoodika automatiseeritud enesetestiprogrammide sünteesiks
mikroprotsessoritele, mis põhineb üksnes protsessorite käsustike kirjeldustel. Valitud
metoodika formaalse aluse loomiseks valiti digitaalsüsteemide kõrgtasandi
otsustusdiagrammid (HLDD).

Väitekirjas on välja töötatud meetod HLDD mudelite ehitamiseks protsessorite
käsustike kirjelduste põhjal. Selle meetodi abil saab mikroprotsessorit kujutada mudeli
abil, mis koosneb HLDD mudelite võrgust, kus üksikud HLDD-graafid kujutavad
erinevaid protsessorite funktsionaalseid üksusi. Välja töötatud modelleerimisviis
garanteerib üks-ühese vastavuse HLDD sõlmede ja mikroprotsessori funktsionaalsete
alamskeemide vahel. See võimaldab kasutada HLDD sõlmede hulka kontrollnimekirjana
protsessori testprogrammide planeerimiseks ja organiseerimiseks abstrahheerimise
kõrgtasandil.

Käesolevas töös õnnestus kindlaks teha, et HLDD-mudel pakub paremaid võimalusi
mikroprotsessori käitumishäirete modelleerimiseks kõrgtasandil, võrreldes
nüüdisaegsete lähenemisviisidega. Traditsiooniliste meetodite puhul vaadeldakse
protsessorite käske kui tervikuid, samal ajal töös välja arendatud uue lähenemisviisi
puhul vaadeldakse käske kui funktsioonide komplekse, mis võimaldab detailsemat
käsitlust ja seetõttu ka adekvaatsemate ja usaldusväärsemate tulemuste saamist.

Samal ajal võimaldab HLDD-põhine käsitlus vähendada rikete mudeli mahtu tervelt
suurusjärgu võrra traditsioonilist loogikatasandit silmas pidades. Mudeli kokku
surumisest hoolimata tagab uus rikete käsitlus samaväärse testimiskvaliteedi
loogikatasandiga võrreldes, mis sai töös ka ära tõestatud uute rikete klasside
kaardistamise teel loogikatasandile, näidates et HLDD-põhine ühtne rikete mudel katab
täielikult loogikatasandi laia rikete mudelite klassi.

Töös on välja pakutud uue mikroprotsessorite mudeliga hästi kooskõlas olevad kaks
uut kontseptsiooni testide genereerimiseks koos vastavate sünteesialgoritmidega -
konformsustest ja skaneerimistest. Mõlema testi kooskasutusega on võimalik
saavutada kogutesti suur kompaktsus, mis võimaldab vähendada testi salvestamiseks
vajaliku mälu mahtu. Lisaks tagatakse väga hea rikete kate, parem diagnoosikvaliteet ja
väheneb rikete maskeerimise tõenäosus ehk siis testimistulemuste usaldusväärsus.

88

Esitatud metoodika kõrge formaliseeritus võimaldab automatiseerida testitava
mikroprotsessori kõrgtasandi mudeli sünteesi ja selle mudeli põhjal toimuvat
testprogrammide genereerimist. Välja töötatud algoritmid on koondatud ühtsesse
raamistikku. Selle struktuur ja kõik uued algoritmid on implementeeritud tarkvarana,
mida on edukalt katsetatud kahe mikroprotsessori Parwan ja MiniMIPS
testprogrammide sünteesi näitel.

Eksperimentaalse uurimistöö tulemused tõendavad, et uued meetodid, mis
põhinevad ainult kõrgtasandi info (mikroprotsessorite käsustike) kasutamisel, on
konkurentsivõimelised või isegi paremad, võrreldes olemasolevate meetoditega, mis
lisaks käsustikule kasutavad ka lisainfot selle kohta, kuidas mikroprotsessorid on
skeemiliselt implementeeritud.

89

Appendix A

Publication I

Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton; Brik, Marina (2014). “Software-
based self-test generation for microprocessors with high-level decision diagrams.”
Proceedings of the Estonian Academy of Sciences, 63 (1), 48−61.

���������	
���
��
����������������������
����������������������� �!�"#��������������$��%�&%���%�����'''���#���"#��������	
()*+,-./01-2/32/4*0+/2+5/6/.-+7)6*).879.):.)9/22).2,7+;;75;04/</43/9727)637-5.-82���=��>�
���
?��@���A��B&��������C
����$D����E�����F��?G�#���������H��#A�����	�������	�C�%%���B��$��
�����C��
��%�	���?�����������I�������C�%%�����
�����@����$�� J�&�A������������#����IJ�&�A���������$��%�&%���%�����E���
����K12+.-9+LC
�
#�#��#��
���
���$�%�##����
���A�������&�
�$��A��%%�$�%��
�#��	���	�����������������#����

��
A
��	�
�����%��
�	
M%�$�%����
������	���
NOPGGQ�����#��
�����	��
��A�����
��
�C
����
���%�	���A
��	OPGG
�������%%��	�������#����

��
�������'OPGGM&�
����A%�����%�����$�%�#���C
�#�����A��
����A���������
�#��	���	������������#��
�����A
��	������%����%��OPGG
�C
����
�&�%��������R���������
���'���
���%�	���������
������&��������	�A��S#��������%��
����
����
�	��������������M&�������#����

���C
���
A%�
���#����
��	�

�'��	�
���$����	�
���
���'���
����������
������	&�����TA�%�������
�
���#������#��$��A
��
A%�
�U/V,).32W�����#����

���
���'���M&�
��
�%�M��
����
�#��	���	����������
�	
M%�$�%����
������	���
�XLYZ[\]̂ _̀ [Y]ZC
����������
��%�	���$����
�����#�
��	��'�
�%%��	�
�������#����

����
���	��
�
�����
�
���
�a�������
�
��
��A�&��������
�
���
#���
�#����#������	���TA�������	��'��	�E�����#����

������
���&A�%�����&�%%���
������
�
���
��������#�&%����#�������	�	�
���a���TA�����
�C�
���	��
A�
���#%�S���#�����

�
&�����
�%%��	����
�$���%������
���TA�����%�A���������
�#������	��������N�C�bQ�
���#���%%������R�����������
����
�	����������������#����

������
c���d�O�
������%%���
���
�������'����
�%$��	��
���	#��&%��
���eP�f��
�	�
�
���##%��
���
�	������
��&�%���NGJCQ�����S��#%���
���
���
���M�
���c d�O�'�$���
���M�
���
��$�%$��
��	�
���
�������%����A����
�	��
��������#�����������#�'�����
A�#���������
�#�����G�
#����
��������GJC���
��TA�
%�?�
���M�
���
��������$���&%�#������#����

����
���	#%���
����TA������S#��
�$��S�����%�C��GA���	�
�%�
���������
�
�������A�������A
���'�
�
�%%��	����&���	�A���'��
���	���
��
�
�����&������#�����������
��&%�

�������#����

����
�g�'�C
�
����
��
������	����
�	
TA�%���#���A����$�%�#����'��
�A��S��

�$��$��
������
���
�&A�	����A�
���
����
��'�
R�
�#��#�
�����h��c�d���%%��
���'���M&�
��
�%�M��
�N�F�CQ�C
�����#�����#%����F�C�
���S��A���
���
�#��	���������&�����#����

������
�#A�#�
�����
���	�
�#����

����
�%�����
�
A���A����	��
�A���
�C
�
�##����
�%�������
�
��������S#��
�$��S�����%��
���	
���'����O������
���
������
%������'��
�
�#�������������
�#����

����

����
�
���
�
����S��A������A�������%
#������
������#����

���C
�������
�����F�C'�
����'���A���	�
�#�
��������&���A
���	��'��	��
����A�������%��
���
�C
�����
A&=������F�C���
���%�	��
�D H����
#�����	�A�
����������
����$i��A���

105

Appendix B

Publication II

Jasnetski, Artjom; Raik, Jaan; Tsertov, Anton; Ubar, Raimund (2015). ”New Fault
Models and Self-Test Generation for Microprocessors using High-Level Decision
Diagrams”. IEEE Symposium on Design and Diagnostics of Electronic Circuits and
Systems - DDECS. Belgrade, Serbia, April 22-24, 2015.

��������	�
����
������������
	�������	��������
���������

��
��
�������������������
�����������
��	 ���!�
��	
"����
	��������#�$%��������&�'
	����� !����(��"&���	����
��	��&�(�������)#���������	���	����*����	���'�������������������)�����
�	+�������������+&��������&�'
	����� �,-./012/3�456�78769�796:6;<:�8�;=>6?�8779=8@5�<=�5AB5C?6>6?�D8E?<�F=G6?A;B�8;G�<6:<�B6;698<A=;�D=9�FA@9=79=@6::=9:�E:A;B�HAB5CI6>6?�J6@A:A=;�JA8B98F:�KHIJJLM�N�B6;698?�D98F6CO=9P�8;G�;=>6?�<6@5;AQE6:�D=9�8E<=F8<6G�:=D<O896CR8:6G�:6?DC<6:<�79=B98F�B6;698<A=;�896�GA:@E::6GM�S;�<5A:�R8:A:�;6O�796>A=E:?T�;=<�7ER?A:56G�<6:<�QE8?A<T�AF79=>6F6;<�@878RA?A<A6:�=D�<56�8779=8@5�896�5AB5C?AB5<6G�8;G�6U7?8A;6GM�V8:6G�=;�<56�5AB5�?6>6?�D8E?<�F=G6?�G6DA;6G�D=9�HIJJ:�8�;=>6?�@?8::�=D�589GC<=C<6:<�D8E?<:W�@8??6G�XYZ[Z/\Z]\]�12/[̂Z._W�A:�79=7=:6GM�̀;�8GGA<A=;W�<56�F6@58;A:F:�D=9�96GE@A;B�<56�9A:P�=D�D8E?<�F8:PA;B�A:�6U7?8A;6GM�456�6U769AF6;<8?�96:E?<:�:5=O�<56�:E769A=9A<T�=D�<56�;6O�F6<5=G�RT�8@5A6>A;B�8�5AB569�QE8?A<T�=D�<6:<:�OA<5�:5=9<69�?6;B<5�@=F7896G�<=�<56�796>A=E:�96:E?<:M�a\bĉ0].d�FA@9=79=@6::=9W�:=D<O896CR8:6G�:6?DC<6:<�KeVe4LW�<6:<�79=B98F�B6;698<A=;W�5AB5C?6>6?�G6@A:A=;�GA8B98F:�fg��f��($�)*�f$�����
	�������������h�
+
	��
���"������������

��
���
�#��������������������������
g���i���	������j�
������#��������������������	����	���
����	�
	�������	����	������������	����������kl&mng���
��������	�
	�#���	+�
�����
�
������	����
���������
�	��������������	���������&��������&������	��������	����+�	��������������&����������
���	������������������kong��
�	�������
	�+���
�
���	���	��
�#��������	����������
&��	�
�����	�
	������
�#�������

��	����kpng�����	����	���������������#�
���q���	�f���������
	�rqf��s�	��������+�ktn����	�����
���������������

��
�r
js���
��������	��#����

����
�#���	���������������	�������������f�	����	���*�����	
�r��f*
s�kung��
������	����	��������
j
&����	�����q�
����������
	�r�q��s���
���������ku�lvng����������#�������q����
�	���h���	����	�
	�����������������#�����������

�������	�
	����	��������

����	
���������	
�
�������������
�����
g�f��kwn��	���
�
�����	��	��������

�������#������������	��
�����
�)�������
	�r
)�s�	����
��	���	�
"������j�g������	����	�����
�	���
���������	�
	���		���
�����������
�kung�������	���	������
	����	��h	���	����#�
��������	��������
�����	�������������	���	�
	
�	������"�	���������	���������
�#���	+���
������
������kxng��������&�	������������+����	�����	�����������
	����������

��
���
�
�����	��#�����g�f��kyn&�
���	��������q���������	�����������	��������	��(���
	�������
����������r(��s��
�
����
	��g����
��
����������#+����
�������������	����	�
	���		���
g���������#��"����	��
���	�����
�	��	����������	��������������
	���	���������	
������	�#��������	���g����	������	����	��	��
�
�(����������
����	����������������������	�����
�#�
������q�������
�����*���"���rq
*s�klvng�f��klln��	��
�
�����	��	�klvn��
���"��+�	�����
��	������	����#���
��������������	������
	�������
���
g�������	���
���
���#������klm&�lon�����#�
������
	���	������q�����	���������
�r(���	�
	�����������	���	����	��������

���
	���������j�s��������#�������	����������	����#�
���
����	�
	g����
����	���
����������	�������#��"
����kyn�����klvn�����������������
��+#�����q��g�����		���	�	����������
����#���	+�����+#������	���
�#+�
�#
	�	�	������	����������j��#+�
�����	����#�
����������������	�
	���		����������	������
����
��	������klpng�������	����

&���������	���
	�	�����	�����	���	���
������
������	�����	����������������������z��������������r�g�g�#���������������s�����	������
��������������	�������	��	�
	�����	
���������	���
"�������#���
��	�������������
���	����	���	�������	����������	�
	�i����	+�����	����������������	�	�
	��������
g��f��	��
������&������	�������������������	�����������	����	�
	
���������������

��
g�{�����	����	���������������
�����#�
��������+����	�����������	�
	����	�����
	���	���
��
�����	��������	�	��
&�	��������
�������������
�#�
���������	�	�������	�������	������	+��������������

��
���	��
���������	�	��
�������	��������
���
g��������
	������
���������
�	������	������	���	��
������
������
��	���#+�
�#�����
����	�����
	���	���������	&�������
�	���
�����������
���������
�	���
�	��������������	��+���	����������	������	���	��
g��������	��������
������	�
	������������������
�
�		����������	�
	�	����	
������������
��	�
�������
����
������������g��
�	�����
��	&��	�#�����
���

�#���	��	�
	�	���	����	����������
����
������+��h���
	����+&�����#����
�����
���	���	�
	�
�i�����
����������	����	&�	�����������������#����

�
��
�	����	������	���
"��������	����������	���������������
���	�������	����
��	
��������	�
	g�������������	����	��������
���������	���&�	������������������
�����������
�klun�r����s��������������f�
	���	������	������	��	����rf��s���
����	���
��������	��#�����+��
����g������������������������	��������#�
���	�
	�������	����������	��
������	���	����	��������	���
����	�
	�������	�����
��h��������#+�	�����+�����	���	�
	�	����	
��������
��g����������������#�
���	�
	�������	��������������
�	����	����
	���	�������	�	��
����
jg�������
	���	������
	����
j��
�������	�����	������	���"��������
����������������������
��	
���
�#�������	g����������
��
�	�
	�	����	
����	�������������������
��	�
�����������	��������	�	��
���	���������������r#�		����������s�����	������
����������	��	���	����	��������
	���	����#�
���	�
	���������g�������������	���������������������	�	�
��������������������	������������	���������&�����������
"��������	���
"��������������	��

����	���	�
	�������������	���	
��+�����������z�	���g������������
�������z����
�������
|����	����ff����
��	
�	�����
����	�����������
g����	����fff����
��	
�	����������������������	�����������
j&��������	����f}�����
����������������	���������	��
�����	�
	�������	���g�'h�������	�����
��	
�������
��

���������	����}f����������#+�*�����
���
����	��������g�

~��

������ ����¡��¢�£¤�¥�¦£�§¢¢�̈�©¢�¥�ª«««¬­ª��¢§��¢�¤¬¬«®̄§©¢�¥§¥¡ ©¥¥

°±²³�́µµµ�²¶·̧�́¹·º»¹¼·½¾¹¼¿�ÀÁÂÃ¾Ä½ÅÂ�¾¹�ÆºÄ½Ç¹�¼¹È�Æ½¼Ç¹¾Ä·½ÉÄ�¾Ê�µ¿ºÉ·»¾¹½É�Ë½»ÉÅ½·Ä�Ì�ÀÁÄ·ºÂÄ

ÍÎÏÐÑÐÒÎÍÍÐÓÎÏÔÐÕÖÑ×�ØÕÑÙÔÔ�Ú�ÛÔÑ×�ÜÝÝÝÞßÜ�ÑÔÙÑÑÔÍÖÞÞÝàáÙÛÔÑ×Ù×Ó Û×Õ

âãäå�æççç�äèéê�æëéìíëîéïðëîñ�òóôõðöï÷ô�ðë�øìöï�ë�îë��øïî�ëðöéï�ö�ð��çñì�éíðëï���ïí�÷ïéö���òóöéìôö

��	
�
����

�	�
���
 ���

��� �!"""��#$%�!&$'(&)$*+&),�-./0+1*2/�+&�3'1*4&�)&5�3*)4&+1$*61�+7�",'6$(+&*6�8*(62*$1�9�-.1$'/1

:;<=>=?;::=@;<A=BC>D�EB>FAA�G�HA>D�IJJJKLI�>AF>>A:CKKJMNFHA>DFD@ HDB

OPQR�STTT�QUVW�SXVYZX[V\]X[̂�_̀ab]c\da�]X�eYc\fX�[Xg�e\[fX]cV\hc�]i�T̂YhVZ]X\h�j\Zhd\Vc�k�_̀cVYac

lmnopoqmllormnsotupv�wtpxss�y�zspv�{|||}~{�psxppslu}}|��xzspvxvr zvp

111

Appendix C

Publication III

Jasnetski, Artjom; Oyeniran, Adeboye Stephen; Tsertov, Anton; Schölzel, Mario;
Ubar, Raimund (2016). ”High-level modeling and testing of multiple control faults in
digital systems”. IEEE 19th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), Kosice, 20-22 April 2016.

���������	
��
�	���
��

�������
��
��	���	�
������	
���	��
��
������	
�������
��� !"
#$%&'�%()*
+�',-'&
�.'/!0'
10'&)�$&*
�&�!&
2%'��!3*
4$�)!
+5-678'79*
:$)";&.
</$�
2$77)&&
<&)3'�%)�0
!=
2'5-&!7!>0*
?%�!&)$*
9<&)3'�%)�0
!=
@!�%.$"*
A'�"$&0

BC����D�
E
F
GHI
JHKLMN
OMP
LQRL
SHTHS
OUVSK
JMNHSQGR
KM
QJWPMTH
KLH
KHXK
RHGHPUKQMG
OMP
KLH
YMGKPMS
WUPKX
MO
NQRQKUS
XZXKHJX
IUX
WPMWMXHN[
\H
NHTHSMWHN
U
GHI
LQRL]SHTHS
OVGYKQMGUS
OUVSK
JMNHS
̂UXHN
MG
_QRL]̀HTHS
aHYQXQMG
aQURPUJX
b_̀ aac[
dK
USSMIX
VGQOMPJ
LUGNSQGR
MO
WMXXQ̂SH
NHOHYKX
QG
NQOOHPHGK
YMGKPMS
OVGYKQMGX
PHSUKHN
KM
QGXKPVYKQMG
NHYMNQGRe
NUKU
UNNPHXXQGRe
UGN
NUKU
JUGQWVSUKQMG[
dK
IUX
XLMIG
LMI
KLH
WPMWMXHN
LQRL]SHTHS
OUVSK
JMNHS
YUG
̂H
JUWWHN
MG
KLH
SMI]SHTHS
OUVSKX
MO
U
fMQGK
YSUXX
MO
XKVYg]UK
OUVSKX
bhFice
YMGNQKQMGUS
hFi
UGN
̂PQNRQGR
OUVSKX[
\H
WPMWMXHN
VGQOMPJ
WPMYHNVPHX
OMP
LQRL]SHTHS
OUVSK
UYKQTUKQMG
UX
U
RPUWL
KPUTHPXQGR
WPMYHNVPH
MG
_̀ aaX
PHSUKHN
KM
XHSHYKQMG
MO
YMGKPMS
XQRGUSXe
UGN
OMP
OUVSK
WPMWURUKQMG
UX
U
KUXg
MO
XMSTQGR
NUKU
YMGXKPUQGKX
IQKLMVK
VXQGR
QJWSHJHGKUKQMG
NHKUQSX[
jkWHPQJHGKUS
PHXVSKX
NHJMGXKPUKHN
KLUK
YMĴ QGQGR
̂MKLe
LQRL]SHTHS
YMGKPMS
OUVSK
PHUXMGQGR
UGN
SMI]SHTHS
KHXK
RHGHPUKQMG
OMP
NUKU
WUPK
MO
U
XZXKHJ
YUG
LHSW
KM
UYLQHTH
LQRLHP
OUVSK
YMTHPURH
UGN
NHKHYKQMG
MO
PHNVGNUGK
OUVSKX
KLUG
VXQGR
SMI]SHTHS
KHXK
RHGHPUKQMG
UWWPMUYL
USMGH[
lHZIMPNXm
nopoqrs
tutqvwtx
yz{q|zs
}r~sqtx
w~sqo�sv
}r~sqtx
�op��sv�vs
nvyotoz{
norp|rwt
��
 ��2:1�<�2�1�
2-'
�'5-&!7!>0
$.3$&5'"'&�%
)",!%'
&'�
5-$77'&>'%
�!
�'%�)&>
!=
%0%�'"%�!&�5-),
$%
.'3)5'
>'!"'��)'%
%-�)&(
$&.
�-'
5!",7'�)�0
!=
+1�%
)&5�'$%'%�
4!.'�&
,�!5'%%!�
5!�'%
$�'
/;)7�
=�!"
/)77)!&%
!=
��$&%)%�!�%
$&.
$�'
5$,$/7'
!=
!,'�$�)&>
$�
>)>$-'��8
=�'�;'&5)'%�
2'%�)&>
!=
%;5-
5!",7'�
5!",!&'&�%
-$%
/''&
$
5-$77'&>'
=!�
%'3'�$7
.'5$.'%�
�,,7)5$�)!&
!=
%'�;'&�)$7
>$�'�7'3'7
�2@A
)%
)&'==)5)'&�
)&
�'�"%
!=
�'%�
>'&'�$�)!&
�)"'
$&.
=$;7�
5!3'�$>'�
�'%)>&
=!�
�'%�$/)7)�0*
=!�
'�$",7'*
%5$&�5-$)&%
5$&
)",�!3'
�-'
=$;7�
5!3'�$>'*
-!�'3'�*
$=='5�)&>
&'>$�)3'70
!&
,'�=!�"$&5'*
,!�'�
5!&%;",�)!&
$&.
�-'
5-),
$�'$�

�!�
�!.$0�%
.'',
%;/�")5�!&
�'5-&!7!>)'%*
$��%,''.
�'%�)&>
-$%
/'5!"'
'%%'&�)$7
=!�
$5-)'3)&>
-)>-
�'%�
�;$7)�0�
2-'
>$,
/'��''&
=�'�;'&5)'%
!=
'��'�&$7
�2?
$&.
,�!5'%%!�
;&.'�
�'%�
%-!�%
�-$�
'��'�&$7
$��%,''.
�'%�)&>
)%
,�$5�)5$770
)&='$%)/7'�
�&
$..)�)!&*
�-'
�2?
$55;�$50
,�!/7'"%
�'%;7�
)&
0)'7.
7!%%
����
2�$.)�)!&$7
%!7;�)!&
�!
5!,'
�)�-
$��%,''.
�'%�)&>
)%
�;)7���&
+'7=�2'%�
���+2�
����
�&
��+2
�-'
�$%(%
!=
�'%�
,$��'�&
>'&'�$�)!&
$&.
�'%,!&%'
'3$7;$�)!&
$�'
"!3'.
=�!"
'��'�&$7
�2?
�!
,�!5'%%!�
'"/'..'.
7!>)5�
2-)%
=$5)7)�$�'%
$5-)'3)&>
-)>-
7'3'7
�'%�
�;$7)�0
�)&57;.)&>
�'%�)&>
!=
.0&$")5
.'='5�%
$&.
.'7$0
=$;7�%�*
)�
7'$.%
$%
�'77
�!
�'%�
5!%�
�'.;5�)!&�
�!�'3'�*
�-'
��+2
�'7$�'.
�'%�)&>
$,,�!$5-'%
=!�
")5�!,�!5'%%!�%
$�'
&!�
$%
='$%)/7'
$%
=!�

"'"!�)'%
!�
)&
$,,7)5$�)!&
%,'5)=)5
)&�'>�$�'.
5)�5;)�%
��+��%�
����
�;��-'�"!�'*
��+2
�'%;7�%
)&
!3'���'%�)&>
$%
�'77
$%
!3'�%��'%%)&>
�-'
5)�5;)�
.;'
�!
-)>-'���-$&�&!�"$7
%�)�5-)&>
$5�)3)�0
.;�)&>
�-'
�'%��
�%
$&
$7�'�&$�)3'
�!
���/$%'.
%'7=��'%�
%;5-
$%
��+2*
%!=��$�'�/$%'.
%'7=��'%�
�+�+2�
-$%
'"'�>'.
������
+�+2
)%
$
&!&�)&��;%)3'
�'%�
"'�-!.!7!>0
�-$�
;%'%
3)7$/7'
,�!5'%%!�
�'%!;�5'%�
�&
+�+2*
�-'
�!7'
!=
�-'
�2?
)%
�!
7!$.
�-'
�'%�
,�!>�$"
)&�!
"'"!�0
$&.
�!
�'$.
�-'
=)&$7
�'%�
�'%;7�%
/$5(
$=�'�
�-'
'�'5;�)!&
!=
�'%�
,�!>�$"
)%
=)&)%-'.�

�!�
�-'
7$%�
.'5$.'*
�-'�'
-$%
/''&
$&
'��'&%)3'
�'%'$�5-
!&
+�+2
!=
'"/'..'.
,�!5'%%!�%�
2-'
�;$7)�0
!=
+�+2
)%
,�)"$�)70
$=='5�'.
/0
�'%�
,$��'�&%�
1&'
!=
�-'
�$0%
�!
!/�$)&
�'%�
,$��'�&%
)%
'�'5;�)&>
$&
�;�!"$�'.
2'%�
@$��'�&
A'&'�$�!�
��2@A��
�&
���
)�
�$%
%-!�&
�-$�
,�!5'%%!�
5$&
/'
.)3).'.
)&�!
4!.;7'%
;&.'�
2'%�
�4<2�
�!
'$%'
�-'
�$%(
!=
�2@A�
�&
$7�'�&$�)3'
�$0
)%
�!
;%'
�$&.!"
�'%�
,$��'�&%
=!�
4<2%
����
�7�-!;>-
�-'
>$�'
7'3'7
=$;7�
5!3'�$>'
=!�
4<2
)%
$55',�$/7'
)&
.'�'�")&)%�)5
$&.
�$&.!"
�'%�
,$��'�&
>'&'�$�)!&*
%!"'
!=
�-'
>'&'�$�'.
,$��'�&%
$�'
�0,)5$770
=;&5�)!&$770
)&='$%)/7'
�-'&
5!&%).'�)&>
�-'
,�!5'%%!�
$%
$
�-!7'�
2-;%*
�2@A
-$%
�!
/'
>;).'.
�)�-
=;&5�)!&$7
5!&%��$)&�%
�!
,�!.;5'
=;&5�)!&$770
='$%)/7'
�'%�
,$��'�&%�

�&
$;�!"$�)5
5!&%��$)&�
'���$5�)!&
/$%'.
!&
>$�'�7'3'7
%)";7$�)!&
!=
�'%�%
�!
5-'5(
�-')�
=;&5�)!&$7
='$%)/)7)�0
�$%
,�!,!%'.
)&
����
�!�'3'�*
�-'
'==)5)'&50
!=
�-'
"'�-!.
!&
�-'
)&.;%��)$7
,�!5'%%!�%
�$%
%-!�&
�!
/'
7!��
�&
���*
%-)=�)&>
!=
+�+2
>'&'�$�)!&
=�!"
>$�'�
�!
:'>)%�'��2�$&%='�
�'3'7
�:2��
�$%
%;>>'%�'.�
2-'
.�$�/$5(
!=
�-)%
"'�-!.
)%
�-$�
-)>-
=$;7�
5!3'�$>'
!=
%��;5�;�$7
=$;7�%
5$&&!�
/'
>;$�$&�''.�
�0/�).
+�+2
"'�-!.%
�'�'
,�!,!%'.
=!�
5!"/)&)&>
.'�'�")&)%�)5
%��;5�;�$7
+�+2
�)�-
3'�)=)5$�)!&�/$%'.
%'7=��'%�
5!.'%
������
�&
$..)�)!&
�!
�0/�).
+�+2
��*
���*
�-'�'
$�'
"'�-!.%
�-$�
$5-)'3'
5!",$�$/7'
�'%;7�%
$&.
)",�!3'
%5$7$/)7)�0
�-'&
>'&'�$�)&>
+�+2
,�!>�$"
;%)&>
!&70
:2�
��*���
�!�'3'�*
�-'
�'&.'&50
!=
'"/'..)&>
"!�'
5!",!&'&�%
)&�!
$
%)&>7'
,$5($>'
)%
"$()&>
�-'
'==)5)'&50
$&.
%5$7$/)7)�0
!=
�-'
%�$�'�!=��-'�$��
+�+2
"'�-!.%
,�'%'&�'.
$/!3'
�;'%�)!&$/7'�

�&
����*
$&
$,,�!$5-
�!
-)>-�7'3'7
=$;7�
"!.'7)&>
$&.
+�+2
=!�
")5�!,�!5'%%!�%
;%)&>
�)>-��'3'7
�'5)%)!&
�)$>�$"%
������
�$%
,�!,!%'.*
�-'�'
$
>'&'�$7
=�$"'�!�(
$&.
"$)&
$7>!�)�-"%
=!�
�'%�
,�!>�$"
$;�!"$�'.
>'&'�$�)!&
�'�'
!;�7)&'.�
1&
�-)%
/$%)%
)&
����*
$
"'�-!.
!=

119

Appendix D

Publication IV

Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton (2017). ”Automated Software-Based
in-field Self-Test”. International Journal of Microelectronics and Computer Science,
8 (2), 57−64.

���������	�
�����
�������
����	��

�����������	�������������������������������� �����������������!"#$%&'(%)*+,-./.01.10-023-/403+565758935/:354/30;:2<3,52/7=5;3>/10?@/-06=07;?*0-3.1581/4 60A075.4023BC01079523+0.10A,5:-79.:D7,-+0610-0/1<+5245607,28.15<0--51-:-,28-:D<7/--5;/<9<7,<6,10<30681/.+-</7706E,8+?F0A07G0<,-,52G,/81/4-HEFGGIB*+0EFGG456075;3+0.15<0--51803-80201/306;154,3-J2-31:<3,52=03K1<+,30<3:10B*+0EFGG45607,-3+02:-0635803+01>,3+D0;510+/26.10./106/--04D79.1581/4 304.7/30-,23+080201/3,525;3+0<54.7030-07;?30-3.1581/4B*+010-0/1<+.10-02306,23+,-./.01,2<7:60-0L/4.70-5;30-380201/3,52;513+0MN?D,3=OKPQAR4,<15.15<0--51F052MB*+00L.01,4023/710-:73-60452-31/303+/3/:354/3,</77980201/306=@=*.1581/45D3/,2-<54./1/D70353+0-3/30?5;3+0/13;/:73<5A01/806/3/BSTUVWXV&Y$)4,<15.15<0--51Z-5;3>/10?D/-06-07;?30-3H=@=*IZ/:354/3,<30-3.1581/480201/3,52Z+,8+?70A0760<,-,526,/81/4-HEFGGI-923+0-,-B �[�\��]̂ �_��]\K̂ �̀_a	�
��������b�������������
�b����������������
��b��c��b���������b�������������b������������
�b�����
�������b��b�������def[�����
������������
b����������b�����b��c��g��������������������b��c��
b���������� ����b��������
����b����[�
�����
 �������

������������������������ �b����!���c��������b��c���������������������� ���������������!�����b���������dhfdif�����

�b��!�� ��!����gc����!�
��b����������def[���b��������
	�	��cc���b�����������������b���
��b��c��b����������������
� ������������c�������[����������
������������c������b�
��������������������!�
��������b������b��c��� �����������
�c��������
�����������djf[��������������bb�c��� ���������dkf������b��c���������
��b�������������b����������������������
�b������c��b���[l�������������������
������������������������
������
��
��������
��c��b�����
b�����b�����������
���
b����b���cc��b������[��b��
��b�������������b��������������������������� ��
����
���������	�	� �b����!��������b��!���������dmfdnf[����b�������������!������c�������

���������������	�	�
����
����������
���c� ��b������
�a_mekop
��������������
������������]hmhmh
����������!��cc��b������������������
̂]ohkj[_��b��������� ��
	�	��cc���b�����b����b��c��g����
����������c��
��������������b�� ����gb��� ������[���������	�	��[�����������[� ������[������!������� �̂c��������
_��c����a���������������������!�������
��b����������������a������q�
�����r�����s���[���[������� s���[���[��������[������!s���[��t��������������������cc����� ����b������
a�������a��������a���c�����������̂ �!���c����l����uhoho
�_�
hoej
emjjvokc����b��ww]���x�������� �����������������������b�
���������ev
e�
���a�������w��������
a��b��������������b�[

dnfydvfb������b����������!���c����b�������������
���c��b��
�c����b�[�	��cc���b���b�� ���!��������������������c�
����b��������
��b������[���b������cc���b������b���deofydekf���� ���������������������������
��������
����������!���
������q����
����x
��!�����b��c����t�
c��b��������������[l��b������������������������������b���������b����b����q�	�t��
���������
���c��b��������������[��b�������b��������b�������
���������
b�����b���c����b�����������b����c��c�������������\̂ ������������� ������
��b������	�	����gb����!�
����
����������
��������[]���
�������������������
��b������	�	�c��!���� ��
�b��������c��c���� �	������� �����demf[l�������� �̀�����b�c� ���
c�����
������������z���b����������� �������	���
������������ ���c��c����[��������������
l���	ql��b������������ ������b�������������	c���tdenf�� ����������c������������������������������b������z���b������c�����
����������[�����������
����
��������������{�b�b��
��������������[���������!�b�b��
��������������
��c����b�����������dkf�����������������������b������c��!�����������b���
��b�������������b�� ���c��b�� �����	�	��cc���b���������������b���������
����b�!�����[���������!��cc���b�� ��������
b������!�����������������������c��c���� �_��������[depf[����c�������� ����b��c�����
��������

�b��!�b������cc���q���z��������
	�lb�!�����t����b������������������ �b����������!��������[̂ ������{����!��������
b�����b����������������������b�c� ���
��
��������������������������b��
����b�������
��������[x����������b�b��b���������������cc���b���
���c�b��bc��b�����c��������c�c������ ���b�c����b������b������devf��b�b���dhof[|�}�c���������[��dhef���c��c����������������b�b�������b�	�	�c��������������� ��������b�!�������c�c���������b�����������������������qeh~
������w��	���]c����	_ehooc��b������t[l�������cc���b�
������������c�c������������ �������������[dhhf[���c��c��������������!��!������b��!������

�����������������������}���������������
�������������b��c��b�����b������������������b�b��b������������b���������
���c�c�����dmf[\�!���������������
��������
�

���
������������!���
�����������!���c����
������}������
��!��q�[�[���!�������!��t
����������
��b�c�����������
��
����
��������
�����������c�� ��������������!�����������������������c��!�����z������������b���!�b��c�b�����c�������[�������������b�!������
�����c�b����

����b����������
�������������������b��
�������
�����������������b��
��������b�� ����
���������b�����[

�� ��

����������� ¡¢£¤¥¦§̈©ª��«�¬¤­®£̄¥©°®±©¢²³¦́¥¢®µ®́©¥¢±¦́¶·¡¢°£̧©®¥�́¦®±́®¹º¢»¼½±¦¾®¥¶¦©¤¢²¿®́ ±̈¢µ¢§¤

129

Curriculum vitae
Personal data

Name: Artjom Jasnetski
Date of birth: 20.05.1988
Place of birth: Narva, Estonia
Citizenship: Estonian

Contact data

Address: ICT-511, Akadeemia tee 15A, Tallinn 12618
E-mail: artjom.jasnetski@ttu.ee

Education

2013 – 2018: Tallinn University of Technology – PhD
2010 – 2013: Tallinn University of Technology – MSC
2007 – 2010: Tallinn University of Technology – BSC

Professional employment

2011 – …: Testonica Lab OÜ, test engineer

130

Elulookirjeldus
Isikuandmed

Nimi: Artjom Jasnetski
Sünniaeg: 20.05.1988
Sünnikoht: Narva, Eesti
Kodakondsus: Eesti

Kontaktandmed

Aadress: ICT-511, Akadeemia tee 15A, Tallinn 12618
E-post: artjom.jasnetski@ttu.ee

Hariduskäik

2013 – 2018: Tallinna Tehnikaülikool – doktorikraad
2010 – 2013: Tallinna Tehnikaülikool – tehnikateaduse magister
2007 – 2010: Tallinna Tehnikaülikool – tehnikateaduse bakalaureus

Teenistuskäik

2011 – ...: Testonica Lab OÜ, arendusinsener

	Contents
	List of publications
	Author’s contribution to the publications
	Abbreviations
	1 INTRODUCTION
	1.1 Motivation
	1.2 Objectives
	1.3 Problem formulation
	1.4 Contribution
	1.5 Thesis structure

	2 BACKGROUND
	2.1 State-of-the-art in microprocessor test
	2.1.1 Software-Based Self-Test
	2.1.2 Structural SBST
	2.1.3 Functional SBST

	2.2 Formal models used in academia
	2.2.1 Formal definition of high-level decision diagrams
	2.2.2 Operations on HLDDs
	2.2.3 Behavioural level synthesis of HLDDs from the procedural descriptions
	2.2.4 Topology of HLDDs

	2.3 Summary

	3 SYNTHESIS OF BEHAVIORAL LEVEL MODEL OF MICROPROCESSOR WITH HLDDs
	1.
	2.
	3.
	3.1 HLDD-based modelling for microprocessors
	3.2 Instruction set as a basis for HLDD model generation
	3.3 Generation of HLDDs for modules of the microprocessor
	3.4 Generation of HLDD model for microprocessor
	3.5 Simulation of instructions with HLDDs
	3.6 Summary

	4 HIGH-LEVEL FAULT MODELING FOR MICROPROCESSORS WITH HLDDs
	1.
	2.
	3.
	4.
	4.1 Fault modelling in digital systems
	4.2 HLDD-based Functional Fault Models
	4.3 Interpretation of HLDD Based Fault Models for microprocessors
	4.4 Mapping low-level control faults into HLDD-based functional fault model
	4.5 Summary

	5 SOFTWARE-BASED SELF-TEST GENERATION FOR MICROPROCESSORS
	5.
	5.1 Principles of software-based self-test generation with HLDD model
	5.2 Generation of Conformity Test for Control Part of Microprocessor
	5.3 Generation of Scanning Test for Data Part of Microprocessor
	5.4 Test program generation example
	5.5 Discussion on the Properties of Conformity and Scanning tests
	5.6 Experimental results
	5.7 Summary

	6 SBST AUTOMATED GENERATION
	6.
	6.1 Introduction of SBST generation framework
	6.2 Generalization of instruction set architecture
	6.3 HLDD synthesis from ISDL description
	6.4 Test synthesis from HLDD
	6.5 SBST program generation
	6.6 Environment for experiments and results
	6.7 Summary

	7 CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future work

	List of figures
	List of tables
	References
	Acknowledgements
	Abstract
	Lühikokkuvõte
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Curriculum vitae
	Elulookirjeldus
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

