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1 INTRODUCTION 
The field of Software-Based Self-Test (SBST) has been a topic of extensive research in 
industry and academia for more than three decades. Despite this, an automated SBST 
generation is still lacking a suitable formalisation for modelling of microprocessors.  

This thesis presents a methodology to formalise and automate SBST synthesis, 
leading to a reassessment of the microprocessor modelling process. 

1.1 Motivation 
Advances in modern technology in manufacturing and design of microprocessors are 
continuously increasing the difficulty of digital circuit testing. The manufacturing 
technology of integrated circuits is scaling, allowing the increase of transistor count per 
chip and increasing operation frequency. Such technology enables microprocessors to 
be built from billions of transistors and to operate at GHz frequencies. However, the 
manufacturing of chips has led to the emergence of different physical defects, which 
affect the parameters of the manufactured device. Therefore, advances in test 
methodology enable the production of integrated circuits of high quality without 
increasing the final cost. The varieties of different approaches to microprocessor testing 
reflect the continuous interest in this topic from academia and industry.  

The development of methods for testing such complex digital circuits as 
microprocessors has been on-going for decades. Test generation time, consumed by 
sequential automated test pattern generator (ATPG) is, typically, beyond the 
constraints imposed by industry. The most common solution to testing VLSI designs is 
to apply design for testability (DFT) methods, such as insertion of scan-chains [1] [2]. 
Today, application of such a DFT technique is inevitable. However, scan-chain affects 
the design of a product and requires expensive test equipment. 

During the last decade, the semiconductor industry has been challenged to launch 
new testing methods that can be incorporated into an established microprocessor test 
flow [3]. The primary demand is the manufacture of a high-quality product without 
increasing the cost of testing. A test method that raised product quality with only a 
minor cost increase was first proposed in 1980 [4], and is the SBST. 

The main principle of SBST is to use the resources of the processor under test in 
order to test itself by executing programs. This approach does not require expensive 
external test equipment, and the test time depends on the performance of the 
processor and the size of the test program. The generation of test programs that allow 
high-quality fault coverage is the main research subject in the field of SBST. 

The efficiency of test program generation (quality, time) is highly dependent on the 
abstraction level of representing the system and on the adequacy of fault models. 
Owing to the increasing complexity of digital systems like microprocessors, the gate-
level approaches to test generation require more time in comparison to high-level 
approaches. 

Due to the lack of efficient formal methods, self-test programs for microprocessors 
are generally written manually. High-level fault modelling approaches and formal test 
generation strategies have not been sufficiently investigated to support the automated 
synthesis of self-test programs and to provide fast methods of test quality evaluation. 

Over the last years, academia has renewed its interest in SBST for in-field application 
on embedded devices. ISO 26262 [5] describes the demands for online periodic testing 
of processor cores in automotive devices. As a result, demand for SBST has increased 
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following the release of IEC 61508 [6] for industrial safety systems, ISO 26262 for 
automotive applications, and DO-0254 [7], not to mention the use of processor-centric 
systems in safety-critical applications.  

The lack of access to structural information of commercial products due to NDA 
makes the functional SBST approach an exclusive solution for in-system or in-field 
testing. Concurrently, interest has arisen in the automation of the SBST approach, since 
the complexity of manual test program generation can be unacceptably high. 
Automated SBST [8] [9] [10] positively influences test development cost, which in turn 
affects the final price of a product. 

1.2 Objectives 
The previous section identified the importance of the development of formal methods 
of SBST generation, with the aim of automation, keeping in mind the constraints 
imposed by industry. To meet the demand, this research has the following objectives: 

• The industry needs efficient (in terms of fault coverage) and scalable methods 
of SBST generation for microprocessors 

• The industry needs a formal solution for automated SBST generation, or at 
least assisted SBST generation 

• The industry needs a solution for SBST program generation which will satisfy 
demands of in-field testing of microprocessors 

1.3 Problem formulation 
To achieve the objectives formulated in the previous section, this thesis will solve the 
following problems: 

• Efficient SBST programs 
• Formalisation of SBST generation approach 
• Automated generation of SBST programs 
• SBST generation based only on information retrieved from documentation 

describing instruction set architecture  

The goal is to improve the scalability of SBST generation by working with the highest 
possible level of abstraction – the instruction set description of a microprocessor. This 
also allows the widening of the scope of application of SBST to include the generation 
of in-field testing, where structural information of commercial products is kept under 
NDA. 

A well-formalised approach to SBST synthesis is introduced, extending the high-level 
decision-diagrams methodology to include modelling microprocessors at the 
behavioural level. Another extension allows the modelling of behavioural level faults in 
microprocessors with HLDDs, introducing new high-level fault models. Both extensions 
expand the opportunities to automate the generation process of efficient SBST 
programs. 

The goal of this thesis is to provide a concept of the platform for automated SBST 
program generation, which is based on the proposed formal methods for modelling of 
microprocessors. 
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1.4 Contribution 
The main contributions of this thesis are listed below: 

• A methodology for modelling microprocessors on the basis of its instruction 
set architecture 

• Definition of new high-level classes of fault models for microprocessors, which 
are also mapped to corresponding low-level structural faults 

• A formal method for generation of SBST on the basis of the HLDD model 
• Framework for automated SBST synthesis 

1.5 Thesis structure 
The rest of this thesis is organised as follows. 

Chapter 2 presents the background and overview of the microprocessor test, in 
particular the SBST methods. Different approaches to SBST generation are discussed 
and compared. This chapter presents background information on contemporary 
hardware modelling techniques, specifically modelling with high-level decision 
diagrams (HLDDs). The formal definition and basic principles of modelling with HLDDs 
are outlined. 

Chapter 3 forms the core part of this thesis, presenting the method of building 
models for microprocessors from instruction set architecture description. The main 
properties of this modelling approach are discussed, with examples of the abstract 
microprocessor and the processor Parwan. 

Chapter 4 gives an overview of existing fault modelling techniques for digital systems 
and introduces a novel HLDD-based fault model for microprocessors. Multiple high-
level fault classes are proposed, dedicated to the control part and data path of the 
processor. Chapter 4 shows the mapping of existing high-level and low-level fault 
models for microprocessors in the proposed HLDD-based fault model. Several examples 
of HLDD-based fault model interpretations are outlined and compared with existing 
fault models. 

Chapter 5 presents the methods for constructing SBST programs on the basis of the 
HLDD model. Two concepts are discussed: the conformity test, which targets the 
control part, and the scanning test for exercising the data path of the processor. The 
numerous advantages of the proposed HLDD-based test generation methods over 
traditional approaches are discussed. Experiments of quality and compactness 
evaluation on the manually synthesized SBST program conclude the chapter. 

In Chapter 6, the implementation of the framework for automated SBST program 
generation is described, utilising the concepts described in Chapters 3 - 5. A bottom-up 
automation approach is presented, starting with the automation of microprocessor 
modelling, followed by automated test generation, and concluding with SBST program 
composition using the example of MiniMIPS processor. 

Chapter 7 draws conclusions for the thesis and outlines the directions of the future 
work. 
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2 BACKGROUND 
In this chapter, there is a discussion of the state-of-the-art microprocessor testing, 
starting with a general classification of test methods and venturing into the field of 
SBST approaches. This overview identifies the unsolved problems in the area of 
microprocessor testing and determines the boundaries where the method proposed in 
this thesis would best fit. 

Since the biggest part of this thesis is dedicated to extending the area of application 
of HLDDs to microprocessor testing, an introductory description of this modelling 
approach is added. 

2.1 State-of-the-art in microprocessor test 
Different approaches in the field of microprocessor test can be distributed into three 
major groups: structural methods, functional methods and software-based self-test 
methods. The first approach - structural, is a widely-used solution for testing 
microprocessors. It is based on applying most common DFT technique - scan chain 
insertion [1] [2] into digital design. Scan chain structure provides sufficient test access 
to the resources of a processor core. However, adding scan chains affects the initial 
design of a product, and its parameters: performance, power consumption and chip 
area. Any change in design can be critical for such highly optimized devices like 
microprocessors. Still, applying DFT techniques is an inevitable part of wafer and 
package test within high-volume manufacturing flow. Test procedures that involve DFT 
structures require special external test equipment, which is limited in speed and affects 
the final quality of the test. Additionally, it is known, that stuck-at fault tests are more 
effective when applied at speed [11]. 

Figure 2-1 Features of microprocessor test methods 

The second approach - functional, is capable of conducting tests at operational 
speed. Functional test is also employed in the final stage of chip manufacturing - speed 
binning. According to [12], the cost of functional automatic test equipment is about 
3000 US dollars per pin for testing at speed of 1 MHz (the year 2000). Additional 
expenses in the amount of 0.5-1.2 millions of dollars are added by function generators 
for mixed-signal circuits. Due to the high cost of functional test equipment, the industry 

Structural

Functional

SBST
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raised the interest in structural scan-based test, which can negatively affect the yield 
due to over-testing.  

Last but not least comes the method for testing microprocessors [4] that is called 
software-based self-test. The general idea of this method is to use the resources of a 
microprocessor to test itself by running specific test programs. This method was 
accepted by industry [13] and is complementing the other two test methods within the 
manufacturing process. Furthermore, interest in this method was raised in frames of in-
field test. Currently, all of the manufactured microprocessors are going through all of 
these three test methods. The capabilities of the described methods are outlined in 
Figure 2-1. These three methods are complementing each other in order to increase 
the quality of the final product. 

2.1.1 Software-Based Self-Test 
Software-based self-test method was introduced in 1980 by S. M. Thatte and J. A. Abraham 
[4]. The approach of SBST was characterized as an attractive and promising functional 
test method, utilizing microprocessor organization and instruction set as parameters of 
test generation procedures. The main principle of this method is to execute a program 
on a microprocessor in order to test its own resources. Such approach does not require 
specific test hardware, and test sequences are executed at processor actual speed, 
allowing effective coverage of stuck-at faults [11]. The distinctive features of software-
based self-test method are: 

• Nonintrusive. SBST does not need additional ATE, which makes this approach 
more affordable, and can decrease the final price of a product. In addition, the 
characteristics (like power consumption, size or performance) of device are 
not affected by additional hardware on chip. 

• At-speed. Tests are being run at actual processors speed, making Stuck-at fault 
tests more effective, and additionally cover delay defects.  

• Avoid overtesting. Since SBST can use only instructions from defined set, there 
is no possibility to cover defects that cannot be activated during normal 
operation of the processor, thus lowering the over-testing effect. 

• In-field test. Test programs can be reused in-field, or during product lifetime. 
Also, during return tests and diagnosis.  

The general principle of SBST method emphasizes two major aspects of research in 
the area of SBST: test program generation and execution. Test execution is moderately 
trivial in comparison to test generation. First, in order to apply SBST, test program 
should be loaded into memory or cache [14], using external hardware. Then, execution 
of the test program should be initiated. The test program is generating responses that 
are stored back to memory. Finally, external hardware evaluates obtained responses 
and gives the diagnosis for the unit under test. Such test execution flow is used widely 
and has only minor differences between SBST approaches.  

Currently, the second part - test generation, is the main subject of research in SBST 
field. This part is not trivial and must comply with high boundaries of quality 
requirements, imposed by industrial standards. The task of test SBST generation can be 
divided into four parts:  

1. Development of code templates for test pattern delivery 
2. Extraction of constraints imposed by instruction set architecture  
3. Synthesis of test patterns for microprocessor 
4. Conversion of test patterns into a test program  
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All these steps are fundamental for research in the area of SBST. Different research 
groups are investigating test generation in general, its automation or the quality of test 
programs. Nevertheless, there are plenty of disadvantages, which leave SBST as a 
complementary method for testing along with matured structural and functional test. 
According to Figure 2-1, SBST is more difficult to develop, in comparison to scan-based 
test. In addition, in comparison to SBST, there are industrial EDA tools available, which 
can generate structural tests that are capable of achieving high fault coverage. 
Functional test has also good fault coverage and covers the defects, which structural 
test did not.  

SBST approaches can be divided into two major groups, which are structural and 
functional. These two groups are defined in this way: the functional group, containing 
methods that use instruction set architecture (ISA) information of the processor. The 
other group consists of structural approaches [15] [16] [17] [18] [19], based on 
generation using structural information (gate- or RTL-level description) of processor 
under test. These methods have different benefits and limitations because of their 
nature. Structural approaches benefit from information hidden in the depths of low-
level design. Functional approaches are capable of test program generation without 
structural information, which is usually not available for commercial processors. The 
lack of such information can be the reason (not without exceptions) for less fault 
coverage in comparison to methods based on structural approaches. 

2.1.2 Structural SBST 
Due to its nature, a structural approach can be applied during the production of 
microprocessors, since structural information is usually available for a manufacturer. 
Structural SBST solutions can be divided into two major groups. These groups are - 
hierarchical, and RTL-based Structural SBST methods. Hierarchical approaches use the 
methodology of considering processor as modules. Only one module is considered at 
the same time, and stimuli are generated for it. After this, it is translated into stimuli for 
processor level. Then, these stimuli are being translated into instructions, and the test 
program is being composed.  

First work using hierarchical structural SBST was proposed by Gurumurthy et. al [15]. 
In this case, ATPG tool is used to generate stimuli for activation of hard to detect faults 
in modules of a processor core. Then, generated stimuli were filtered with help of 
bounded model checker in order to match with instruction set of the processor under 
test. The next approach by Lingappan and Jha [16] is based on satisfiability-based ATPG. 
They proposed a framework, which evaluates the description of micro-architecture of 
the processor, by building models for each module of the processor under test. After 
that, test stimuli are being generated for each module, which are again filtered by 
satisfiability solver. Additional DFT changes are made to the system in order to apply 
generated tests.  

In [15], Gurumurthy et al. describe the problem of hard to test faults, which cannot be 
covered by test programs generated randomly. They applied ATPG on each module of the 
processor, which has hard to test faults. Bounded model checker (BMC) was used to 
decide which instruction can activate inputs of the module with the precomputed stimuli.  

Next hierarchical approach is based on learning [17] algorithms. The work is based 
on functional test generation approach (also called Targeted Test Pattern Generation - 
TTPG) where simulation results are used to guide the generation of additional tests. 
The proposed methodology for TTPG has two phases - simulation and generation. 
During simulation phase, the simulation I/O data is recorded for the modules under 
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learning. After data is collected, the specific learning method is used on each module to 
derive its learned model. Variety of the learning methods is presented in this paper 
[17]. In the TPG phase, the learned models replace actual modules before and after 
module under test (MUT). Then, structural ATPG is applied to produce the tests for 
detection of faults within the MUT. The inputs are then justified through the learned 
models to the processor’s primary input boundaries and outputs propagated to output 
boundaries.  

The second structural SBST method is RTL-level based. It uses information, obtained 
from both RTL and ISA descriptions. This information is used to generate instruction 
sequences for activation and propagation of the faults. For the first time, RTL SBST 
methodology was proposed in [18]. The development of the SBST is based only on the 
Instruction Set Architecture of the processor and its RTL-level description. The 
proposed SBST methodology consists of the three phases. During the first phase, the 
extraction of information from processors ISA for controlling and observing registers of 
the processor is made. During the second phase, the processor components are being 
categorized into classes with the same properties (functional, control, hidden 
components) and prioritized for test development. The last phase is focused on the 
development of deterministic SBST routines using compact loops of instructions.  

Another interesting work is [19]. Different levels of processor description, starting 
from ISA description and going deeper to a gate-level netlist, are used in this approach. 
Each part of the processor is being threaded on the best matching level for pattern 
generation. For example, test for register bank is generated using RTL level description. 
Tests for ALU are generated using ATPG on a gate-level. 

Despite the good results in terms of fault coverage, the efficiency and scalability of 
the presented methods is questionable, due to the tendency of increasing complexity 
and size of modern microprocessor designs. 

2.1.3 Functional SBST 
One of the first methods among functional SBST, proved its efficiency, is the method for 
SBST program generation using ISA description which was proposed by Shen and 
Abraham in [20]. They developed a framework called “Vertis”, which generates test 
programs by manipulating with instruction set of the processor under test. For each 
instruction being tested, “Vertis” generates different test sequences. Test sequences 
can be generated pseudo-randomly, and use random data, or can be selected manually, 
which is not a trivial task. The framework can be used during different stages of 
production - verification, production test and post-manufacture test. Test program is 
verified experimentally on Intel 8085, covering satisfactory 90.2% of stuck-at faults, 
which was better fault coverage in comparison to ATPG tools. Significant drawback of 
this approach is test program size.  

The next approach, by Parvathala, Maneparambil and Lindsay [14], is called “FRITS” 
(Functional Random Instruction Testing at Speed). In this approach test programs are 
generated from randomly selected instructions and pseudo-random data. Generally, 
this approach is based on test program generation with random instruction sequences 
using pseudo-random data. Also worth noting, that in this work cache-resident SBST 
mechanism is proposed for the first time. This method allows to run test programs 
directly from cache memory providing ”isolated test” during wafer test. The main 
limitation of cache-resident mechanism is that “cache misses” nor “bus cycles” should 
not be produced. Test programs, generated by FRITS are verified on Intel Pentium and 
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Itanium processors, obtaining decent fault coverage results with 70% and 85% of stuck-
at fault coverage respectively.  

Bayraktaroglu, Hunt and Watkins propose the alternative cache-resident method for 
production testing [13]. These works both contribute to the usefulness of SBST 
approach in the production of industrial processors. Their approach is evaluated on Sun 
UltraSparc T1 microprocessor core. Test program is randomly generated, and the 
approach mostly concentrates on the development of the mechanism for cache-
residency called “Load&Go”, especially for the Sun processor family. Achieved fault 
coverage results are comparable to results obtained with commercial high-cost 
functional tester. 

An alternative approach was proposed by Corno et al. [21]. This approach is based 
on so-called evolutionary algorithm. In the sense of microprocessor test, evolutionary 
means that each program is being re-evaluated and only the effective code is attached 
to it. In the process of test program generation, the feedback from test simulator is 
used. The algorithm was tested on Leon2 microprocessor and showed the superiority 
on purely random method in case of fault coverage, and test program length. This 
method uses the result of gate-level fault coverage as a feedback for evolutionary 
algorithm. However, it is impossible to apply this method for in-system test generation 
for commercial microprocessors due to lack of structural gate-level information.  

Later research has shown the significance of holding in mind the complexity of 
processor architecture. The presence of pipeline is adding complexity to test program 
generation. Latest papers about SBST methodology are concentrating on the processors 
with pipeline, branch prediction [22] or caches [23]. Gizopoulos et al. in [24] are 
proposing a method to enhance SBST program quality by considering the properties of 
pipelined architecture and features of memory addressing of microprocessor under 
test. Their approach is using data about the architecture of the pipeline and the 
memory hierarchy to add program code lines in order to activate faults. The 
experimental results are promising, adding average improvement of 12% for miniMIPS 
and OpenRISC1200 processors.  

Another approach was made by Bernardi et al. [25]. It is also concentrating on the 
testing of the pipeline, and proposing the strategy for improving test programs for 
better test coverage with pipelined processor miniMIPS. The proposed strategy is 
capable to cover faults in the pipeline logic, activated when data hazards or register 
forwarding problems occur. Their later research is widened with deeper analysis of 
decode stage of the pipeline in RISC processor [26]. 

Nevertheless, none of the reviewed methods is relying on formalized solution for 
modelling microprocessor functionality and faults. Such limitation leaves proposed 
approaches with problems of hard-to-test faults and fault masking at higher levels. 
Without theoretical basis for fault simulation and identification it is impossible to measure 
coverage of wide spectre of fault classes.  Additionally, we consider well-formalized 
modelling of microprocessors as an essential element of automated SBST generation. 

2.2 Formal models used in academia 
The history [27] of using Binary Decision Diagrams (BDD) for representation and 
manipulation of Boolean functions is half-century-long. BDDs were first introduced for 
logic simulation in 1959 [28], and for logic level diagnostic modelling in [29] [30]. A new 
data structure - reduced ordered BDDs (ROBDDs) [31] was proposed by Bryant in 1986. 
BDDs became one of the most popular representations of Boolean functions [32] [33], 
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because of the simplicity of the graph manipulation and the model canonicity. Multiple 
types of BDDs have been proposed and investigated during decades, such as shared or 
multi-rooted BDDs [34], ternary decision diagrams (TDD) [32], multi-valued decision 
diagrams (MDD) [35], edge-valued BDDs (EVBDD) [34], functional decision diagrams 
(FDD) [36], zero-suppressed BDDS (ZBDD) [37], algebraic decision diagrams (ADD) [38], 
Kronecker FDDs [39], binary moment diagrams (BMD) [40], free BDDs [41], multiterminal 
BDDs (MTBDD) and hybrid BDDs [42], Fibonacci decision diagrams [43] etc.  

Along with traditional (functional) use of BDDs, application of BDDs for modelling of 
the structural aspects of the circuit was proposed in [29] [44]. Pioneering alternative 
graphs (AG) were introduced as a special class of BDDs [29] synthesized directly from 
the gate-level description. Further, they were renamed to structurally synthesized BDD 
(SSBDD) [44] [45]. 

Although logic and RTL level modelling using BDDs is well developed, multi-level and 
hierarchical modelling is not covered with listed types of BDDs. In this thesis, we 
consider using high-level decision diagrams (HLDD) [44] [45], which can be used to 
model systems on different levels of abstraction, and because of their capability for 
uniform graph-based fault analysis and effect-cause or cause-effect diagnostic 
reasoning [45]. Additionally, HLDDs are satisfying the constraint of functional SBST, 
capable of synthesizing the model of the microprocessor from its instruction set 
architecture description. 

Alternative solutions for ISA based modelling of microprocessors are available [46] 
[47], but their application for fault-modelling, diagnostics and testing are unknown in 
comparison to HLDDs [48] [49] [50] [51] [52]. 

2.2.1 Formal definition of high-level decision diagrams 
High-level decision diagrams were proposed by Professor Raimund Ubar in 1983 [53]. 
Application area of HLDDs includes test generation and simulation due to its ability to 
efficiently and uniformly describe the structure, function and faults in digital circuits [51]. 
HLDD model can be efficiently used for simulation and fault modelling, capable of fast 
evaluation by graph traversal and easy identification of cause-effect relationships [54] [55]. 

A formal definition of high-level decision diagrams was given in [27]. Consider a 
digital subsystem U = {UYout,UQ}, represented as a cycle-based finite state machine 
model described by the output vector function YOUT = λ(X,Q), and state transfer (next 
state) vector function Qt+1 = δ(X,Qt), where t denotes the number of the current cycle 
(e.g. clock, microinstruction or instruction cycle).   

Definition 2-1. Consider a digital system represented as a universe of functional 
variables U = {UD, UC} where UD is a set of data variables, and UC is a set of control 
variables. 

A decision diagram GY (example in Figure 2-2)which represents a digital subsystem 
described as a vector function Y = F(X), Y∈U, is defined as a non-cyclic directed graph GY 
= (M, Γ, X) with a set of nodes M, a set of vector variables X , and a relation Γ in M.  
Denote the root node of GY as m0 ∈ M. The set of nodes is partitioned into two subsets 
M = MN ∪ MT where MN  is a set of non-terminal nodes, and MT  is a set of terminal 
nodes. The nodes m ∈ MN are labelled by variables x(m) ∈ X , and the nodes m ∈ MT 
are labelled either by constants, variables or algebraic expressions (denoted by f(m)) of  
the variables x ∈ X. Concatenate the argument variables used in f(m) as a vector x(m). 
The mapping Γ describes the topology of the HLDD, how the nodes are connected by 
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edges where the subset of successor nodes of m is denoted by Γm, and the subset of 
predecessor nodes of m is denoted by Γ -1m. 

For each value e from a set V(x(m)), there exists a corresponding output edge  
(m, me) from the node m into the successor node me∈ Γ(m), e ∈ V(x(m)).  

Figure 2-2 function y=f(x1,x2,x3,x4) represented with HLDD 

The terminal nodes of the HLDDs, according to Definition 4-1, may be presented at a 
high functional (or behavioural) level, treating the related hardware modules as black 
boxes. If a more detailed presentation of the system is needed (for lower level fault 
simulation or fault diagnosis purposes), the functional expressions in the terminal 
nodes of HLDDs can be unfolded into lower level implementation descriptions, such as 
gate-level networks. This allows transforming high-level HLDD-based approach to a 
hierarchical multi-level approach, where the control functions will be modelled at the 
higher level using HLDDs, and the detailed data manipulation functions will be 
modelled at lower levels using SSBDDs. 

2.2.2 Operations on HLDDs 
In this section, we are outlining following operations on HLDDs: logic simulation, path 
activation and test generation. The complete list with description of operations on 
HLDDs is provided in [27]. 

Logic simulation. Logic simulation of applied vector Xt on graph Gy means traversing 
the nodes by Xt path l(m0, MT) starting from root m0 up to one of the terminal nodes 
MT. The variable xi of reached terminal mode determines the value of y for the given 
vector Xt. Example of logic simulation of the input pattern -025 (x1,x2,x3,x4) on HLDD is 
shown on Figure 2-3.By traversing of the path l(m0,m2) through nodes m0 and m1 the 
output value of the circuit becomes y = x4 = 5. 

Figure 2-3 Logic simulation on HLDD 
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Path activation. Activation of the path between nodes mi and mj within HLDD 
requires to find a vector Xt which is capable to activate the path l(mi,mj). Such path can 
be generated by finding the solution to equation y = f(X). 

Test generation. The task of test generation for a fault x(m) ≡ e in a Gy, e ∈ {0,1}, is 
solved in Gy by activating the following paths: 

lm = l(m0, m), from the root node m0 to the node m under test,  
l1 = l(m1, #1), and l0 = l(m0, #0) from the node m to the related terminal nodes #1 and 

#0, respectively, 

whereas the additional fault type constraint x(m) = ¬e should be additionally satisfied. 
As the result of solving these tasks, a test vector Xt will be found, which detects the 
fault x(m) ≡ e.  

2.2.3 Behavioural level synthesis of HLDDs from the procedural descriptions 
Consider a procedure representing a behavioural level description of a digital system. It 
is possible to represent such procedure by a directed graph, such as data flow graph, 
and a path can be represented by a sequence of assignment statements and 
conditional expressions (i.e. by a sequence of assertions). 

The full procedure of the HLDD synthesis from the behaviour level procedural 
description of a system consists of the following phases [51]:  

State insertion into the procedural description. This action is performed in similarity 
to data-flow graphs, where behaviour of given automata is marked by states. The 
states, defined with q, are inserted so that during any state transfer, each data variable 
is calculated only once. 

Creation of the FSM structural table. A table is constructed by tracing all the 
transfers in the data-flow graph from the previous step. Each row in the constructed 
table corresponds to a path between neighbouring states of the procedure. 

Partitioning of the structural table into functional subtables. At this step, the set of 
all functional variables is extracted from the description of the system functionality of 
the FSM structural table. An example of the table with extracted behaviour of 
functional variable A is shown in Figure 2-4. The table consists of two parts: constraints 
(q, XA, XB, XC), and assignment statements for variable A (right column). The constraints 
describe the needed conditions, which have to be satisfied for execution of the related 
assignment statements. 

Generation of mixed predicate formulas for functional variables. Each table, 
extracted in the previous step can be represented by a mixed predicate formula 

𝑥𝑥 =  ∨ 𝐶𝐶𝑖𝑖𝐸𝐸𝑖𝑖,𝑆𝑆, 

where x represents a functional variable, Ci is a logic condition (logic AND of all 
constraints), and Ei,S is an algebraic expression of an assignment statement. Example of 
mixed predicate equation for variable A is shown on Figure 2-4. 

Creation of HLDDs for the functional variables. This action is made by using Shannon 
factorization [32] [33]. The HLDD created by factorization of the mixed predicate 
formula for variable A is depicted in Figure 2-4. Variable A becomes the output of the 
graph. Constraint q becomes root node, with successor nodes representing constraints 
XA, XB, XC. Assignment statements are represented with terminal nodes of the graph.  



21 

Figure 2-4 Synthesis of HLDD for functional variable A 

2.2.4 Topology of HLDDs 
Topologically, HLDD consists of a root, terminal and non-terminal nodes. The number of 
terminal nodes is not limited and is determined by the number of high-level operations 
supported by the digital circuit. Terminal nodes are labelled by high-level constants 
(vectors), bus or register variables, or by high-level algebraic operations. The non-
terminal nodes of HLDDs represent the control variables. The number of output edges 
in HLDDs is not limited and is equal to the number of possible values of the control 
variable of the node. In other words, the non-terminal nodes in HLDDs model the 
control functions of the digital system, whereas the terminal nodes refer to the data 
manipulation functions. The Figure 2-5 depicts the described topology of HLDD model.  

Figure 2-5 Topology comparison of SSBDD and HLDD 
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lh were not overlapping. Additionally, the values of the data variables should be 
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were different. For testing each terminal node m, one has to activate a single path lm to 
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this node m. Additional constraints need to be satisfied depending on the fault models 
adopted for testing the system, and which will be determined in terms of the HLDD 
model. 

Described above forms the general problem of adopting HLDDs for SBST program 
generation for microprocessors. HLDD methodology should be sufficient to model 
microprocessor behaviour, described in instruction set architecture. Additionally, on 
the basis of such model, test programs with decent accuracy should be generated to 
target certain spectre of faults within microprocessor. 

2.3 Summary 
This chapter provides an overview of state-of-the-art methods of microprocessor 
testing, particularly the SBST approach. It describes the solutions for modelling 
hardware and discusses their limitations.  

Specifically, introductory information on HLDDs is presented to provide a better 
understanding of Chapters 3 and 4, where the area of application of HLDD is extended 
to model microprocessors at the behavioural level and the faults within them. 

Concluding this section, the main challenge of SBST generation for microprocessors 
on the basis of HLDD methodology is formulated. 
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3 SYNTHESIS OF BEHAVIORAL LEVEL MODEL OF 
MICROPROCESSOR WITH HLDDs 
This chapter is based on publication I [56], where novel approach for high-level 
processor modelling using HLDDs was presented. This chapter discusses the extension 
of HLDDs, which allows the generation of a microprocessor model from instruction set 
description. The main contributions of this chapter are as follows: 

1) A formal method for modelling microprocessors using instruction set 
description is elaborated 

2) The applicability of the approach to microprocessor modelling with HLDDs is 
evaluated for an abstract processor and processor Parwan [57] 

3) The features and capabilities of HLDD models for further use in testing 
purposes are evaluated and discussed 

The outlined contributions are elaborated in detail in sections 3.1-3.5.  

3.1 HLDD-based modelling for microprocessors 
A digital design, like a microprocessor, can be represented with HLDDs at different 
levels of abstractions – structural, RTL or behavioural. In section 2.2.3, the behavioural 
level synthesis with HLDDs is discussed. In this work, we propose to move “one step 
higher” in abstraction to instruction set architecture description, which also represents 
the behaviour of the microprocessor. In this case, HLDDs are used to calculate the state 
of the system after execution of each instruction. Following this, we introduce the 
instruction-cycle based HLDDs, as a convolution in behavioural level modelling of 
microprocessors. 

Table 3-1 Instruction set of a simple hypothetical microprocessor with ten instructions 

I Mnemonic ISA level operation 
1 MVI A,D A ← IN 
2 MOV R,A R ← A 
3 MOV M,R OUT ← R 
4 MOV M,A OUT ← A 
5 MOV R,M R← IN 
6 MOV A,M A ← IN 
7 ADD R A ← A + R 
8 ORA A A ← A ∨ R 
9 ANA R A ← A ∧ R 
10 CMA A,D A ← ¬A 

Consider a simplified hypothetical microprocessor with ten instructions as an 
example target for modelling. Instruction set of this processor is presented distributed 
by columns of Table 3-1: in the first column, I – is the high-level control variable whose 
integer values represent the operation codes; in the second column, the mnemonic of 
the instruction is provided to represent the behaviour hidden behind the instruction; in 
the third column the operations launched by instructions are described using the high-
level data variables. Variable R denotes an internal general purpose register, variable A 
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represents accumulator register, variable IN denotes the input bus and variable OUT 

denotes the output bus. 
For the synthesis of HLDDs, we use the method described in Chapter 2.2.3, omitting 

the first step in the model generation process. On the basis of the third column, we 
define the set of functional variables of the microprocessor – FV = {A, R, OUT}. These 
are the variables, which describe the state of the microprocessor, and which values are 
recalculated by execution of instructions. For each variable in FV, we synthesize an 
HLDD, depicted in Figure 3-1. 

Figure 3-1  HLDDs for the microprocessor with instruction set in Table 3-1 

The microprocessor is represented by three diagrams - GOUT, GR, and GA. Diagram 
GOUT represents the behaviour of output bus. The behaviour of internal general purpose 
register R is represented by GR, and the behaviour of the accumulator A by graph GA. 
Since there is only one constraint variable – I, it becomes a root node of the decision 
diagram with its values shown at edges. Variable I represents the instruction code, thus 
has the values from 1 to 10, corresponding to the instructions I1, I2, …, I10. The terminal 
nodes (successors of I) are labelled by the word variables R and A, representing the 
corresponding registers, along with data transfer buses (IN, OUT), or by expressions 
related to particular data manipulation operations of the microprocessor. 

The HLDD model from this example was built based exclusively on the description of 
instruction set architecture, which is usually provided in the documentation for 
microprocessor. Despite that, the model can reveal specific, non-documented, 
information about functional variables, explaining how each variable will behave when 
different instructions are executed. In comparison to plain instruction-based 
information, the variable based information is more suitable for microprocessor test 
and fault diagnosis.  

Additional value of modelling using HLDDs is the possibility to derive a high-level 
structure of the microprocessor from instruction set description. All HLDDs, 
representing hardware modules and united in the model of the microprocessor, are 
functionally interconnected by the functional variables used in the description of the 
instruction set. Hence, the network of connected HLDD-modules can be regarded as a 
high-level behavioural level structure of the microprocessor. Such a structure, derived 
from the instructions in Table 3-1, is presented in Figure 3-2. 
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Figure 3-2 ISA-based high-level structure of the microprocessor described in Table 3-1 

3.2 Instruction set as a basis for HLDD model generation 
In order to demonstrate the feasibility of microprocessor modelling using HLDDs we 
propose to use more complex system where not only ALU, but also a register block, 
memory interface, and a control unit (program counter) are involved. For this purpose, 
we have chosen the microprocessor Parwan [57]. Figure 3-4 represents a high-level 
structure of chosen microprocessor, Figure 3-6 represents the HLDD model synthesized 
for its instructions set listed in Table 3-2. 

Parwan is an 8-bit microprocessor described in VHDL, which has an 8-bit data bus 
and a 12-bit address bus for memory accesses. The instruction set of Parwan 
microprocessor counts 17 instructions in total: memory access, ALU operations, and 
branch instructions. It also supports direct and indirect addressing modes. Parwan 
processor includes the following datapath components: arithmetic logic unit (ALU), 
shifter unit (SHU), accumulator (AC), program counter (PC), status register (SR), 
memory address register (MAR), instruction register (IR) along with a control unit 
(CONTROL). It should be noted that the only data register, which is accessible, is the 
accumulator (AC). 

Table 3-2 Instruction set of PARWAN microprocessor 

Group OP D/I P Instruction mnemonic Operation 

A 0 0/1 Page # LDA 
AC=M 
PC=PC+2 
N,Z=fN,Z(AC, M) 

A 1 0/1 Page # AND 
AC=AC&M 
PC=PC+2 
N,Z=fN,Z(AC, M) 

A 2 0/1 Page # ADD 
AC=AC+M 
PC=PC+2 
N,Z,C,V=fN,Z,C,V(AC, M) 

A 3 0/1 Page # SUB 
AC=AC-M 
PC=PC+2 
N,Z,C,V=fN,Z,C,V(AC, M) 

A 4 0/1 Page # JMP PC=A 
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A 5 0/1 Page # STA M=AC 
PC=PC+2 

A 6 - ---- JSR PC=A 

C 7 0 1 CLA AC=0 
PC=PC+1 

C 7 0 2 CMA 
AC= ¬AC 
PC=PC+1 
N = fN(AC) 

C 7 0 4 CMC C=¬C 
PC=PC+1 

C 7 0 8 ASL 
AC=2AC 
PC=PC+1 
N,Z,C,V=fN,Z,C,V(AC) 

C 7 0 9 ASR 
AC=AC/2 
PC=PC+1 
N,Z=fN,Z(AC) 

B 7 1 0 BRA_N PC=(N=1)? A : PC+2 
B 7 1 2 BRA_Z PC=(Z=1)? A : PC+2 
B 7 1 4 BRA_C PC=(C=1)? A : PC+2 
B 7 1 8 BRA_V PC=(V=1)? A : PC+2 

Details concerning the usage of different instructions are shown in Table 3-2. 
Instruction set of Parwan microprocessor is divided into three groups, depicted in 
Figure 3-3. Instruction word can be 1-byte (group C) or 2-byte (groups A and B) long, 
and represented with format OP.I.P or OP.I.P.A respectively. Instructions from group A 
are 2-byte long and support direct and indirect addressing by control field I. Field OP is 
used to select the desired operation. 12-bit long address consists of memory page 
number P and offset A. Group B consists of 2-byte long branch instructions, which can 
address memory only within single page using offset A. Instruction fields OP, I and P are 
controlling the selection of desired branch operation. Instructions of group C are not 
addressing memory, thus are 1-byte long, where fields OP, I and P are playing role of 
the operation code. 

Figure 3-3 Instruction format groups of Parwan microprocessor 
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and register block RCONTR = {PC, MAR}, where PC is the program counter, and MAR is the 
address register for addressing the data. Data part consists of register block RDATA and 
ALU. The register block in the data part consists of a single general purpose data 
register RDATA = {AC}. ALU is a combinational part of the microprocessor which covers all 
data manipulation circuits, decoders, multiplexers, demultiplexers etc.   

Figure 3-4 Behavioural level structure of Parwan microprocessor 

For each variable of the Parwan microprocessor a mixed predicate formula can be 
extracted from instruction set description, as it was described in Chapter 2.2.3. A set of 
the following functions represent the functionality of Parwan microprocessor:  

1) AC = fN(I, S(R)) = fN(OP, I, P, S(R)) where R is AC, S(R) = {AC, M} is the set of data 
arguments for the function fN; 

2) PC = fPC(I, S(B), PC) = fPC(OP, I, P, S(B), PC) where S(B) = {N, Z, C, V} is a set of flag 
variables serving as the condition for branch operations; 

3) S(B) = {N, Z, C, V} = fB(OP, I, P) where fB is a function on operands to determine 
the flag condition. 

4) M =fM(OP, P, S(M(A))) where S(M) = {AC, M}. 

The functionality of microprocessor can now be represented by a set of behavioural 
level variables Z = RDATA ∪ RCONTR ∪ M and by a set of functions F = {fN, fPC, fB, fM}. The 
behaviour of Parwan can be modelled by the functional basis F and monitored through 
the variables in Z. For modelling of F we will use the behavioural level HLDD model. 

3.3 Generation of HLDDs for modules of the microprocessor  
From the instruction set description, shown in Table 3-2, we can extract the following 
set of functional variables: 8-bit data vector variables AC – accumulator, PC – program 
counter, M – generic memory location, and 1-bit branch flag variables N, Z, C, V. 
Example of HLDD generation for functional variable V, which is an overflow flag 
variable, is shown on Figure 3-5. 
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Figure 3-5 HLDD synthesis for functional variable V 

First, the subset of instructions, affecting the behaviour of functional variable V (flag 
overflow) is selected, and collected into a smaller table (Figure 3-5). HLDD is being 
compiled by following this table row-by-row. Functional variable V becomes an output 
of the graph. Then, the graph is populated with green-coloured non-terminal nodes, 
representing control variables OP, I and P with corresponding values on edges. 
Function, representing the behaviour, becomes the terminal node of the graph. The 
expressions in the terminal nodes of HLDDs GV for calculating the conditions of branch 
variable V are not specified in this model. Since table has only three rows, representing 
three instructions, the graph will be populated with three paths. One additional path is 
added to represent the behaviour of functional variable V during execution of other 
instructions – flag overflow holds its previous value. 

3.4 Generation of HLDD model for microprocessor 
For every functional variable of Parwan microprocessor, outlined in Table 3-2, HLDDs 
are generated, using the control variables OP, I, and P in non-terminal nodes for 
decision making. The HLDD model for Parwan microprocessor, consisting of a set of 12 
HLDDs is depicted in Figure 3-6. Parwan has a 12-bit address bus, which is partitioned 
into sixteen pages of 256 bytes each. The four most significant bits of the address are 
for the page address and the remaining eight bits of the address are for the offset 
within the page. In accordance with this memory organization, the program counter 
variable PC is represented as a concatenation of two sub-variables PC = PC_P.PC_A, and 
the value of the next PC is composed by concatenation of the values of PC_P and PC_A, 
which are calculated by respective graphs “Next memory page calculation” and “Next 
PC offset calculation”. 
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Instruction addressing mechanism is described with graphs GOP.I.P and GA. 
Instructions of the Parwan microprocessor are encoded using up to two consecutive  
8-bit long words (Figure 3-3). The first word consists of instruction fields OP, I and P, 
and is obligatory for every instruction. The second consecutive word holds the address 
A of specific location in memory, where data, required for this instruction is stored. This 
organization is modelled with two corresponding graphs GOP.I.P and GA.OP, I and P fields 
will be fetched from memory at the address, stored in program counter LOC(PC_A). 
Address field A will be fetched from address LOC(PC_A)+1, pointing to the second part 
of current instruction. 

Fields of fetched instruction are affecting the result of ALU functionality, modelled 
with diagram GAC. Accumulator register AC of Parwan is hardly tightened to ALU, 
keeping data for one of its input, and result of ALU operation after execution. The 
second operand for ALU functions (for example addition), is loaded from memory using 
address kept in A. Two modes of memory addressing are supported, selected by the 
value of field I, where 0 corresponds to direct and 1 to indirect addressing. Field P is 
used to address page in memory for functions with two operands (group A), and plays 
the role of the control variable in case of operations with AC register only. OP field of 
instruction word becomes root node of the GAC, becoming the main control variable for 
selecting the operation of ALU. Terminal nodes of GAC represent the functions of ALU, 
which behaviour is not modelled here. Functions with two input operands, like AC+M’ 
are referring to data in memory. M’ is used to address data in memory directly, and M’’ 
is used for indirect addressing mode. 

Figure 3-6 HLDD model for the microprocessor Parwan 
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I/O behaviour is represented by graphs GM’, GM’’ and GM(A). Graphs GM’ and GM’’ are 
representing the behaviour of loading data from memory to input of ALU, or into AC 
register. Direct addressing is represented with GM’, where output M’ holds the data, 
fetched from an address in memory selected by variable P (representing page number), 
and A (address within a page). GM’’ inherits the GM’ pointing to location in memory, 
where the direct address to data is stored. Diagram GM(A) represents the behaviour of 
storing data in memory. The single path, controlled by OP variable in this graph is 
activated, when instruction “STA” (OP=5) is executed. In this case, the value of AC is 
being moved to a memory location defined by page P and offset A. 

Flags, required for branch operations are modelled with graphs GN, GZ, GC and GV. 
The paths in these graphs are activated simultaneously, during execution of 
instructions. The decision, if the flag should be raised or not is represented with 
functions located in terminal nodes. Mostly, the flags depend on the data kept in AC 
register or loaded from memory location. Activation of different flags depends also on 
instructions, which are executed. For example, flag N = GN (negative number) can be 
raised if the sign of binary operand loaded to AC with instruction “LDA” (OP=0, I=I, P=P) 
is negative. However, during execution of the same instruction, flag V = GV (overflow) is 
not affected at all. 

Last but not least, graph GPC_A for calculation of the next program counter offset is 
synthesized. Program counter can keep address within frames of one page only. When 
executing instructions of group C (OP=7), which are using only data in AC register, offset 
is incremented by 1 byte (PC_A+1), pointing to the next instruction in memory. 
Instructions of group A, using two operands, like addition (OP=2) or subtraction (OP=3), 
are incrementing program counter offset by two bytes (PC_A+2), jumping over 8-bit 
long instruction field A. Branch instructions (group B), depending on flags, which values 
are represented with non-terminal nodes N, Z, C and V in GPC_A increment program 
counter by two, if branch is not needed. In the case when branch conditions are 
satisfied, program counter value is being overwritten by address data, kept in field A of 
a branch instruction (PC_A = A). 

3.5 Simulation of instructions with HLDDs 
It is possible to simulate instructions of the modeled microprocessor using the graph 
network, built in the previous section. Instruction simulation mechanism is similar to 
path activation, described in Chapter 2.2.2. Let’s consider an example of simulation of 
the instruction AND = (OP=1.I=0.P=0.A=8) fetched from address 0 in memory. The 
following paths in Figure 3-7 have to be activated: GOP.I.P: L(PC_P=0, PC_A=0, 0); GA: 
L(PC_P=0, PC_A=0, 0+1); GM: L(P=0, A=8, LOC(8)); GAC: L(I=0, P=0, OP=1, AC&M’); GN: 
L(OP=1, FN(AC,M)); GZ: L(OP=1, FZ(AC,M)); GPC_A: L(I=0, P=0, OP=1, PC_A+2) in the graphs 
GOP.I.P, GA, GM, GAC, GN, and GPC_A respectively. The activated paths are emphasized by 
bold edges and grey coloured nodes. 
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Figure 3-7 AND instruction simulation in PARWAN model 
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microprocessor. Such a model can reveal specific, non-documented information about 
functional variables, explaining how each variable will behave when different 
instructions are executed. An HLDD model can be simulated, which is demonstrated 
using the example of the Parwan microprocessor model.  

Third, the proposed modelling approach allows one-to-one mapping between the 
nodes in the HLDDs and the corresponding high-level functionality. The benefit of this is 
the opportunity to use the HLDD nodes as a checklist for high-level test planning and 
organisation of test programs for microprocessors. However, a suitable high-level fault 
model is required for this, and this will be presented in the next chapter.  

Instead of the traditional microprocessor test concept, where the instructions as a 
whole are regarded as test objectives, a novel and more exact HLDD-driven test 
concept is introduced in this chapter, with the instructions split into more detailed 
subsets of test objectives. 
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4 HIGH-LEVEL FAULT MODELING FOR MICROPROCESSORS 
WITH HLDDs 
In this chapter, a new model of high-level behavioural faults in microprocessors is 
developed, on the basis of HLDDs, presented in the previous chapter, providing better 
possibilities of formalising the test program synthesis procedure than the traditional 
high-level fault models. The material, presented in this chapter is based on publications 
II [58] and III [59]. 

The contributions of this chapter are summarised as follows: 
1. An overview of the fault models for microprocessors is given, where high-level 

behavioural fault models are found to be more attractive than low-level fault models, in 
terms of efficiency/complexity ratio. 

2. Three novel classes of fault models for microprocessors, represented by HLDDs, 
are proposed. These fault classes are considered compact and well-formalised super 
classes which cover a larger set of more detailed fault classes used traditionally in the 
testing of instructions. The new fault model is demonstrated using the HLDD model of 
Parwan microprocessor.  

3. It is shown that the proposed new classes of HLDD-based high-level fault models 
can be mapped onto and cover the lower level fault model subclasses, particularly RTL-
level and structural gate-level fault models, in order to guarantee the high quality of 
testing. 

4.1 Fault modelling in digital systems 
Fault modelling, being a central target, is an inseparable part of test generation and 
fault simulation. Despite the similarities, these tasks differ in the complexity. The 
complexity of fault simulation is linear, being insensitive to the size of fault lists to be 
simulated, is satisfied with existing low-level fault models. Test generation, in its turn, 
needs high-level fault modelling to cope with its high complexity. 

Test generation task is always facing a trade-off between efficiency (cost of test 
generation) and quality (fault coverage) of outcome. Both criteria are highly depending 
on which fault models are used in test generation and in fault simulation for test quality 
assessment.  

The stuck-at fault (SAF) model has been for a long time the prevalent technique to 
handle formally real physical defects in electronic systems. In today’s systems, 
however, we have two difficulties when using this model: it is too complex for use in 
test generation because of the huge number of faults to be handled in systems, and it is 
inaccurate to represent real physical defects taking place in today’s nanoelectronic 
circuits [27]. 

A conditional fault model has been proposed as an extension of the SAF model [60] 
[61]. It helps to increase the model accuracy of arbitrary physical defects in the modern 
complex digital systems, like microprocessors with nanometre technology. Applying of 
this model positively affects the size of the fault set and decreases the complexity of 
test generation. This model is also known as fault tuple model [62], pattern fault model 
[63], input pattern fault model [64], or functional fault model [65]. 

Similar models are gate-exhaustive fault model [66], and region-exhaustive fault 
model [67]. Many researchers have focused on developing new fault models for 
particular types of failure mechanisms like bridges [68] [69] [70] [71], transistor  
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stuck-opens [72] [73], failures due to delays [74] etc. For resistive shorts, opens and 
bridges a unified fault model as constrained multiple line SAF was proposed in [75]. All 
of them are developing the idea that a single fault can affect different combinations of 
fan-out branches. 

To increase the speed of test generation and fault coverage evaluation, high-level 
fault models have been developed. High-level approaches for fault modelling in digital 
systems can be grouped into two different classes: (1) high level fault modelling for 
structural RTL descriptions [76] [77] [78], which is characterized with certain 
relationship between language constructs and the network structure; (2) behavioural 
level fault modelling [79] [80] [81] [82], which is oriented to analysis of only algorithmic 
descriptions. We consider as behavioural approaches also the high-level fault modelling 
of microprocessors which use only the information about instruction set architecture 
(the lists of instructions). Therefore, our solution to fault modelling, relying on 
information derived from instruction set description, does belong to the group of 
behavioural approaches. 

High-level fault models for microprocessors have been usually derived from the high-
level behavioural descriptions of instruction sets. State-of-the-art behavioural 
approaches such as [83] [77] [80] [81], distinguish following fault models Fn. 

For faulty multiplexers, for a given source address any of the following fault models 
can be applicable: 

F1: source is not selected; 
F2: selected source is wrong; 
F3: more than one source is selected and the multiplexer output is either a wired-

AND or a wired-OR function of the sources, depending on the technology. 

For faulty demultiplexers, for a given destination address any of the following fault 
models can be applicable: 

F4: destination is not selected; 
F5: instead of, or in addition to the selected correct destination, one or more 

other destinations are selected. 

An instruction I of a microprocessor can be regarded as a sequence of 
microinstructions, where each microinstruction consists of a set of microorders which 
are executed in parallel. Microorders represent the elementary data-transfer and data 
manipulation operations. Addressing faults affecting the execution of an instruction 
may cause one or more of the following fault effects: 

F6: one or more microorders not activated by the microinstructions of I;  
F7: microorders are erroneously activated by the microinstructions of I; 
F8: a different set of microinstructions is activated instead of, or in addition to, the 

microinstructions of I. 

The data storage facility is usually implemented as a memory. Under a fault any of 
the following may happen to the memory cell array: 

F9: one or more cells are stuck at 0 or 1; 
F10: one or more cells fail to make a 0→1 or 1→0 transitions; 
F11: two or more pairs of cells are coupled; this means, a transition from x to y in 

one cell of the pair, say cell i, changes the state of the other cell, say j, from x 
to y or from y to x, where x {0,1}, and y = ¬x  
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F12: The data-transfer function implements all the data transfers along the buses 
between the registers and functional units of a microprocessor.  

For buses under a fault: 

F13: one or more lines can be stuck at 0 or 1; 
F14: one or more lines may form a wired-OR or wired-AND function due to shorts 

or spurious coupling. 
F15: data processing functional fault model; in the case of data processing 

functional units, no specific model has been proposed for microprocessors;  
it is assumed that a complete test set can be derived for the functional units of 
data processing by some other techniques. 

The main disadvantage of the described classification approach concerns the 
formalism. All fault models presented above need dedicated specialized test generation 
procedures. Thus, automatization of test program generation, based on this high-level 
fault model, is a difficult task. 

An ideal case would be to create a small and well-defined fault class with only a few 
high-level fault models and to build around it a well-standardized and uniform test 
algorithms. In this thesis, we have chosen high-level decision diagrams for modelling, 
since their high-level fault model is well suitable to support the development of a 
uniform and straightforward high-level test generation and fault simulation algorithm. 

4.2 HLDD-based Functional Fault Models  
Summarizing the presented overview of different approaches to high-level fault 
modelling in digital systems, let us map now the considered fault types and models into 
the following generalized HLDD-based fault model, using Definition 2-1 for HLDDs from 
Chapter 2.2.1. 

Definition 4-1. Consider a digital system represented by an HLDD GY = (M,Γ,X), where 
the set of nodes M = MN ∪ MT is partitioned into the subsets of non-terminal nodes MN 
and terminal nodes MT, and the set of variables X = C∪D is partitioned into the subsets 
of control variables C (e.g. instruction variables) and data variables D (operands).  

Denote by T the test for the digital system represented as a set of test patterns  
T = {Xt}, where t is the number of a pattern, and each test pattern Xt ∈ T can be 
represented as a concatenation Xt = Ct.Dt of the control pattern Ct (instruction) and data 
pattern Dt (operand or group of operands). 

Let us classify the HLDD-based faults into two general classes:  control faults, which 
are related to the non-terminal nodes MN, and data faults, which are related to the 
terminal nodes MT.■   

Definition 4-2. Introduce the term of control functional fault model (CFFM) of a node 
m in HLDD GY = (M,Γ,X), m∈M, as a set of faults R(m) partitioned into subsets  
R(m,v) ⊂ R(m) of fault models where v ∈ V(x(m).  

A subset of faults R(m,v) ⊂ R(m) is called activated by a test pattern Xt  if  Xt activates 
a path l(m0, mT,v) from the root node m0 ∈ MN to a terminal node mT,v∈ MT, so that x(m) 
= v, and m ∈ l(m0, mT,v). The expected response to the test pattern Xt is Y = f(mT,v). If  
Y ≠ f(mT,v), there is a functional fault r∈ R(m,v) present.   

The control functional fault model for the HLDD GY, is defined as a set R = {R(m) | 
m∈M} of all FFM of the nodes in GY.■ 
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Since activation of a path l(m0, mT,v) means launching a working mode Y = f(mT,v) of 
the system, then testing a functional fault r∈ R(m,v) of a nonterminal node m ∈ MN, 
means testing if the control signal x(m) = v will not fail at launching this working mode. 
On the other hand, since this test is executed via data path of the system, then testing 
the functional fault r∈ R(m,v) means testing simultaneously also the terminal node  
mT,v ∈ MT, if the data path at this working mode Y = f(mT,v), and at the given data 
specified by Xt, is working correctly.  

The functional faults represented by models R(m), and R(m,v) ⊂ R(m), are called 
control faults. They are not specified here as lists of particular faults, rather we 
interpret them as some groups of faults. All manipulations with these faults are 
directed simultaneously to groups of faults, which as the result, reduces the complexity 
of solving test problems for complex systems, both test generation and fault 
simulation.  

To activate the high-level faults R(m), and R(m,v) means activation of some subsets 
of low-level faults in particular locations (subcircuits) in the system. For mapping the 
high-level fault model R(m) to lower-level structural faults in the fault activated 
locations, with the goal to assess the quality of tests, we will introduce later another 
functional fault class – constrained functional fault model. 

Definition 4-3. Introduce the term of data functional fault model (DFFM) of the HLDD 
GY is a union of all functional fault models for the HLDD terminal nodes. 

RD = ⋃ 𝑅𝑅(𝑚𝑚)𝑚𝑚∈𝑀𝑀𝑇𝑇  

The fault models R(m) ⊂ RD for terminal nodes m ∈MT can be represented in two 
possible ways:  

(1) as exhaustive (or pseudoexhaustive) fault model R(m) = V(x(m)) of the 
operational block, represented by the node expression f(m), which leads to the 
exhaustive test of f(m) (as a general case), or to pseudo-exhaustive test; 

(2) as partial model R(m) ⊆ V(x(m)) (a special case); in this case, the problem of high-
level fault modelling will be solved by an hierarchical multi-level approach, e.g. using 
any fault mapping method between levels.■ 

Each path of the HLDD designates the behaviour of the system in a specific working 
mode. The faults having effect on this behaviour are associated in some way with 
nodes along the path. From that, we can conclude that a control fault will always cause 
a corruption of the path, which can be modelled as incorrect leaving the path activated 
by the test. The data faults will corrupt the functions related to terminal nodes. 
From above, the following corollaries about the sizes of the functional fault models 
defined for the HLDDs by Definitions 5-5 and 5-6 follow: 

Corollary 4-1. The size 𝑆𝑆(𝑅𝑅𝐶𝐶) of the control functional fault model for the 
nonterminal part of the HLDD under test, covering the set of control faults, can be 
calculated as 

𝑆𝑆(𝑅𝑅𝐶𝐶) = ∑ |𝑉𝑉(𝑥𝑥(𝑚𝑚))|𝑚𝑚∈𝑀𝑀𝑁𝑁                                   (4-1) 

where MN is the subset of nonterminal nodes in the HLDD. 
Corollary 4-2. The higher bound of the size 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝐷𝐷) of the data functional fault 

model for the terminal (data operation) part of the HLDD under test, covering the set of 
data faults, can be calculated as 
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  𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝐷𝐷) = ∑ |𝑉𝑉(𝑥𝑥(𝑚𝑚))|𝑚𝑚∈𝑀𝑀𝑇𝑇                                    (4-2) 

where MT is the subset of terminal nodes in the HLDD. The higher bound is reached 
only when the exhaustive test will be applied for the functions in terminal nodes. The 
real size of the functional test can be dramatically reduced when using hierarchical 
approach to involve also low-level fault modelling of the functional blocks which 
correspond to terminal nodes.  

To make mapping of the high-level control functional fault model R(m,v) to lower 
structural levels easier, we will introduce in the following subclasses of R(m,v), which 
are more directly related to the structural aspects of systems under test. Here we will 
use also previous knowledge about high-level fault modelling in digital systems, 
discussed in Chapter 4.1. 

Definition 4-4. A control fault r(m, v) ∈ R(m,v) of the non-terminal node m ∈ MN may 
belong to the following three fault classes, r(m, v) ∈ CL-1 ∪ CL-2 ∪ CL-3.  

(1) CL-1: Missing edge: r(m, v → ∅) – the output edge of the node m for x(m) = v, 
v ∈ V(x(m)), is broken, which means no change in the state Y of the system at 
the working mode Y = f(mT,v) under test (it is similar to the logic level SAF x/0 
for the line x); 

(2) CL-2: Stuck edge: r(m, x(m) ≡ v) – the output edge of the node m for x(m) = v, v 
∈ V(x(m)), is always activated (it is similar to the logic level stuck-at fault (SAF) 
x/1 for the line x); 

(3) CL-3: Wrong activation of the edge: r(m, v → V*) where V* ⊆ V(x(m) – the 
fault causes wrong simultaneous activation of a subset of edges. ■  

Note the fault class CL-2 is a subclass of CL-3. We introduced it here for optimization 
of test generation and fault diagnosis purposes. 

Table 4-1 Comparison of HLDD-based faults with high-level faults proposed in [83] 

Microprocessor faults (Chapter 4.1,  [83]) HLDD faults 
F1: No source is selected 
F4: No destinations selected 
F6: one or more micro-orders not activated; 

CL-1 

Non-terminal 
nodes 

F2, F3, F5, F7, F8: Additional source is selected, stuck-at 
fault CL-2 

F2: A wrong source is selected 
F3: More than one source is selected  
F5, F7, F8: Instead of, or in addition to the selected 
destination, one or more other destinations are 
selected; micro-orders are erroneously activated 

CL-3 

F9-F14: Data storage, communication or manipulation 
faults Terminal nodes 

The functional fault model defined above for HLDDs is related directly to the nodes 
of the HLDD and is an abstract one. It will have a semantic meaning only when the node 
has a particular physical interpretation. As an example, in Table 4-1, the mapping of 
different microprocessor fault classes, the 14 types of faults proposed in [83] and 
discussed in Chapter 4.1, is shown.  
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The fault classes CL-1, CL-2 and CL-3 (general for all non-terminal HLDD nodes) differ 
in the need of using different data constraints for propagating the fault effects to the 
observation points. 

4.3 Interpretation of HLDD Based Fault Models for microprocessors 
Fault classes, defined in previous chapters (Chapter 4.1 and 4.2) considered being used 
for microprocessors. In order to demonstrate this, we need to return to the model of 
PARWAN microprocessor, generated in Chapter 3.4. Its partial model is shown in Figure 
4-1. 

Figure 4-1 Demonstration of different faults in HLDD model of PARWAN 

Two graphs GAC and GM’, representing the behaviour of accumulator and direct 
addressing, are derived from the model of PARWAN microprocessor (Chapter 3.4). 
Variable AC represents an accumulator register, M denotes the input bus, OP, I and P 
serve as instruction variables, and variable A represents the address in memory. The 
variables OP, I, P and A are labelling the internal decision nodes of the HLDDs with their 
values shown at edges. The terminal nodes are labelled by the variables AC and M 
representing the expressions related to particular data manipulation operations of the 
microprocessor. 

Assume, the instruction AND (OP=1, I=0, P=0, A) is executed (high lightened on Figure 
4-1) with expected result AC=AC&M. Table 4-2 illustrates how different high-level faults, 
defined in Chapter 4.1 and interpreted as HLDD faults, defined in Chapter 4.2. 

 

M’
P A LOC(A)

0-2550-15

F2

Instruction:
AND A
OP=1, I=0, P=0, A
AC = AC & M(A)

F1, F6 F2
F7

F3, 
F8

AC
OP

0

AC

AC/2

¬AC

2AC

P I
0-15

M’
0

M’’

I
0

AC & M’

AC & M’’

I AC + M’

AC + M’’

0

I AC - M’

AC - M’’

0

#0PI

2

8

9

1

2

3

7 0 1

 



39 

Table 4-2 Interpretation of microprocessor faults in HLDD 

Fault type Fault 
description Interpretation of the fault in HLDD 

Ch.5.5 HLDD 

F1, F6 CL-1 No source 
selected 

The output edge 1 of node OP is broken. The 
value of AC remains unchanged 

F2, F7 CL-2, 
CL-3 

Wrong 
source 
selected 

Instead of the edge 1 of node OP another edge 
2 is selected, and the variable AC will have the 
wrong value AC=AC+M instead of AC=AC&M. 
Value was read from wrong source address 
due to fault of output edge of node A. 

F3, F8 CL-2, 
CL-3 

More than 
one source 
selected 

Instead of the edge 1 of node OP other edges 2 
and 3 are selected, and the variable AC will 
have the wrong value AC=(AC+M) ∨ (AC-M)  
instead of expected AC=AC&M (the wrong 
value will be technology dependent) 

The addressing fault of the node A in the graph GM causes activation of the wrong 
edge instead of the planned edge. As the result, data from the wrong location in 
memory LOC(A) is addressed for using it in the operation of the terminal node AC&M of 
the graph GAC. The operation code fault of the node OP in the ALU graph GAC causes 
activation of the wrong edge 2 instead of the planned edge 1. As the result, wrong 
operation OP = AC+M is addressed instead of  AC&M in the related terminal node of 
the graph GAC. The next variation of operation code fault is causing to select two edges 
of node OP instead of one. The result of such failure will depend on the technology. 
Finally, the addressing fault of the node OP of graph GAC, which leads to broken edge 1, 
will leave the value of AC unchanged. 

Additionally to classes presented above, we present a novel hard-to-test fault class 
called “unintended actions”. This fault model is presented in Figure 4-2 on example of 
abstract module of the processor with four instructions I0 - I3. The n-bit gate-level 
implementation of the related hardware consists of four n-bit registers - A, B, C and D, 
ALU, decoder and two multiplexers. Its ALU block can execute two operations - AND 
and OR. Figure 4-2 depicts also model of this microprocessor using two HLDDs GC and 
GD, for representing the input logic of the registers C and D.  

Figure 4-2 Illustration of the behaviour of a hard-to-test fault 
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Assume, there is a gate level OR-type short between the outputs 1 and 2 of the 
decoder, i.e. the instruction I1 implies additional unintended action, related to the 
instruction I2, which as the result changes also the content of the register D. According 
to the traditional approach, when testing the instruction I1, we would read out and 
check only the content of register C, but we will not check the content of register D, 
because it is not involved in the execution of I1, according to the manual of the 
microprocessor. In this way, the fault “wrong change of D” would escape. Such a fault 
can be considered as an “unintended action” added to I1. It would be difficult to catch 
all similar erroneous “supplements“ when testing only the intended, described in 
manuals, functionality of instructions, because the number of such cases may grow 
exponentially.  

For this type of high-level faults, we can adopt a common term of “hard to test 
faults” from the field of gate-level testing, referring to the faults which can be detected 
by very rare patterns. 

4.4 Mapping low-level control faults into HLDD-based functional fault 
model 
In the following, we will analyze the capability of the high-level fault models to cover 
lower level logic faults in order to demonstrate the usefulness of HLDD modelling. 
Under logic faults, we imply the following classes of faults: stuck-at faults (SAF), 
conditional SAF (CSAF), and bridging faults. Let us call this joint fault class as SCB class 
(SAF, CSAF, bridging).  

Consider the block level functional circuit Y = F(X), representing portion of data path 
and control part of abstract microprocessor, which is also common for most 
microprocessors. It is illustrated in Figure 4-3 together with its HLDD. The control word 
C (decoder output vector) is a 3-bit Boolean vector variable C = (c2,c1,c0) with decimal 
values in v ∈ V(C) = {0,1,…,7}, which activate the respective working modes Y = fv = 
f(mT,v). Denote the k-th bit of fv as fvk, k = {0,1,…,7}. The data part of the unit consists of 
8 sub-circuits for calculating fv which will be selected by the multiplexer sub-circuit. The 
latter consists of 8 ANDv blocks which are controlled by the output signals C = (c2, c1, c0,) 
of the control block. Denote the control inputs of each ANDv block as vector variable  
Cv = (cv2, cv1, cv0). Note, each ANDv block consists of 8 ANDvk gates for each data bit of 
the function fv,k and appropriate amount of inverter gates.  
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Figure 4-3 Digital system with its HLDD model 

Table 4-3 shows the mapping of low-level single structural faults from the class SCB 
in the circuit of Figure 4-3 into the high-level functional control faults r(m,v), v∈ V(C) = 
{0,1,…,7},  of HLDD in Figure 4-3. Let us call the faults on the output lines of the control 
unit as global faults (GF), and the faults on the fan-out branches of the control lines 
connected with the inputs of the AND gates as local faults (LF). In case of GF, the same 
fault has impact as a multiple fault on all AND blocks and all AND gates, whereas in case 
of LF, the fault may have impact either on a single AND block, but propagating to all 8 
gates of this block, or only on the inputs of a single AND-gate only. In this example, we 
will consider LF only at the inputs of 8-bit AND-blocks, as it is shown in Figure 4-3. 

Table 4-3 Mapping low level structural faults into high-level functional faults 

Fault 
activation Covered structural faults 

fi 
Control 

word Local SAF Global 
SAF1 

Global 
SAF0 

OR 
bridge 

AND 
bridge 

f0 000 (0,1),(0,2),(0,4) 1,2,4 ∅ ∅ ∅ 
f1 001 (1,0),(1,3),(1,5) 3,5 0 3,5 0 
f2 010 (2,0),(2,3),(2,6) 3,6 0 3,6 0 
f3 011 (3,1),(3,2),(3,7) 7 1,2 7 1,2 
f4 100 (4,0),(4,5),(4,6) 5,6 0 5,6 0 
f5 101 (5,1),(5,4),(5,7) 7 1,4 7 1,4 
f6 110 (6,2),(6,4),(6,7) 7 2,4 7 2,4 
f7 111 (7,3),(7,5),(7,6) ∅ 3,5,6 ∅ ∅ 

The rows of Table 4-3 correspond to the values v of the activated control faults 
r(m,v) and to the expression  fv = f(mT,v) of the related terminal node. The columns of 
the sub-table for “covered structural faults” correspond to the faults of SCB partitioned 
into 5 groups: local SAF, global SAF1, global SAF0, OR type of bridge, AND type of 
bridge. The entries of Table 4-3 show which high-level functional faults will be evoked 
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by the low-level structural faults for each activated working mode Y= fv = f(mT,v) of the 
sub-system. For example, to activate the high-level functional fault r(m,0), the control 
pattern 000 (c2, c1, c0) should be applied. By applying correct test data for this control 
pattern, all the low level structural faults depicted in the row f0 will be covered by the 
high-level functional fault r(m,0). 

To explain the entries in Table 4-3 in more detail, consider the example of applying a 
control vector C3 = (c2, c1, c0,) = 011 as a test for activating the working mode f3. The 
respective row in Table 4-3 is high-lighted in yellow. In column Local SAF we consider 
only these SAF which coincide with the needed bit values for activating f3 i.e. c2 ≡ 0,  
c1 ≡ 1, and c0 ≡ 1. The entry (3,1) means that in case of the local SAF c11 ≡ 1, the 
activation of f3 by v = 011 will evoke the erroneous execution f1 as well (this is the fault 
type of several activated edges), which causes erroneous output value Y = f3 ∨ f1, 
instead of the expected correct value Y = f3. For the local SAF faults c20 ≡ 0 and c72 ≡ 1, 
we get the erroneous behaviour Y = f3 ∨ f2, noted as (3,2), and Y = f3 ∨ f7, noted as (3,7), 
respectively. 

The global SAF/1, c22≡ 1, will cause execution of f7, instead of f3. Similarly, for the 
case of global SAF/0, of the lines c1 or c0, either f1 or f2, respectively, will be erroneously 
executed, instead of expected f3.  

The global bridging faults will cause the following errors in executing of f3: in case of 
OR bridge, f7 will be executed, and in case of AND bridges, either f1 or f2 will be 
executed. The symbol ∅ in Table 4-3 has the meaning that at these low-level faults no 
operation is executed. Since the control word is exercised exhaustively, all of the 
conditional SAF will be detected as well, which corresponds to the cell-aware testing 
concept [84]. 
Let us compare the reduction in the fault model size for the low and high-level cases. 
The total number of 790 low-level faults consists of:  

- (6 * 8 + 24) * 8 = 576 local SAF (8 AND blocks, each has 3 AND inputs  
(2 possible SAF each), and 12 inverters (2 possible SAF each), all multiplied by 8 
because of the 8-bit data word;  

- 3 * 2 = 6 global SAF (three outputs of the control circuit, 2 possible SAF each) ;  
- (9 * 2) * 8 =144 bridging faults (9 bridge faults of each type, multiplied by 8 

bits of data word); 
- 8 * 8 = 64 CSAF (because of exhaustive testing of each of the gates, all high-

level functional faults cover all CSAF as well). 

The number of all high-level functional faults can be calculated using the formula: 

S(R(MN)) = ∑ [𝑛𝑛𝑚𝑚(𝑛𝑛𝑚𝑚 + 1)] =  𝑆𝑆(𝑅𝑅(𝑚𝑚)) 𝑚𝑚∈𝑀𝑀𝑁𝑁  

Since in this example |MN| = 1, we will have 

𝑛𝑛𝑚𝑚(𝑛𝑛𝑚𝑚 + 1) = 8 * (8 + 1) = 72. 

Hence, for this example, the compression of the number of faults when mapping 
them from low-level to high-level is 790 / 72 = 11 times.  

Note, that the number of bit-level functional faults cannot be compared with the 
number of low-level structural faults in logic circuits, because in the latter case all faults 
must be processed separately, whereas in the high-level simulation the faults related to 
bits can be processed in parallel at the word level. 
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The idea of the presented mapping scheme is based on a hypothetical 
straightforward implementation where no optimization has been applied. 
For each behavioural level operation, a dedicated operational block is related, and for 
controlling the operations, a general multiplexer is introduced. For this hypothetical 
implementation, we have shown the exact one-to-one mapping between the high-level 
control faults and the related low-level faults. 

Since the HLDD based high-level fault model is inducing the exhaustive exercising of 
the full behaviour (the set of all instructions), then for any optimization action 
regarding the implementation, the fault will become to some extent redundant, which 
will lead also to respective redundancy of the test. Hence, the low-level fault coverage 
cannot be hurt. 

On the other hand, any available information about the real low-level 
implementation, i.e. about the implemented optimization steps, will give the 
opportunity to update also the high-level fault model, which will lead in its turn to 
optimization of the final test program. 

4.5 Summary 
In this chapter, it was shown that the HLDDs provide better possibilities of formalising 
the modelling of high-level behavioural faults in microprocessors compared to the state-
of-the-art approaches. 

Three novel high-level fault classes for microprocessors were proposed, which can be 
considered superclasses over the existing RTL-level fault models for microprocessors. 
On the other hand, the proposed transition in modelling to HLDD-based higher levels of 
abstraction reduces the size of the fault model by orders of magnitude, compared to 
the low-level abstractions. 

The proposed high-level fault model separately considers control faults and data 
manipulation faults, which are related to internal and terminal nodes of HLDDs, 
respectively. The control faults are handled exclusively at the high-level, whereas the 
faults in data paths are processed hierarchically. 

The proposed fault model guarantees a high accuracy of testing, which is 
demonstrated by mapping the new fault classes to lower level faults, and showing that 
the HLDD-based high-level fault classes fully cover the structural gate-level fault 
models. 

In the first instance, a novel formalised fault class called ‘unintended operational 
action’ was introduced as a special case of developed fault classes. Using this fault class 
allows direct targeting of the so-called ‘hard-to-detect faults’, where traditional 
methods are not typically focused. 
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5 SOFTWARE-BASED SELF-TEST GENERATION FOR 
MICROPROCESSORS 
In this chapter, a formalised method of SBST program synthesis for microprocessors is 
proposed, on the basis of HLDDs and the high-level behavioural fault models developed 
in the previous chapters. This chapter is based on publications I [56] and II [58]. 

The contributions of this chapter are summarised as follows: 
First, two formal concepts for SBST generation are proposed: conformity test for the 

control part, and scanning test for the data path of the processor.  
Second, a general SBST program generation concept is described and its compaction 

capabilities investigated. The advantages of the proposed HLDD-based test generation 
methods over traditional approaches are established by experimental research. 

Experimental results are provided, representing proof of concept. Fault coverage and 
test overhead properties of a manually synthesized SBST program for the Parwan 
microprocessor are discussed. 

5.1 Principles of software-based self-test generation with HLDD model 
The test program synthesis using the HLDD model will cover two levels of the 
microprocessor: system level, and module level. Each HLDD describes the behaviour of 
a module, whereas the network of HLDDs represents the behaviour of the whole 
system. At the module level, the targets of test generation are the nodes of HLDDs, 
whereas at the system level the targets are the HLDDs themselves. At the system level, 
the locally generated HLDD (module) tests T(m) will be embedded into the system level 
test program templates. In other words, the test stimuli for modules will be made 
controllable and the results of tests will be made observable at the system level.  

The test programs are divided into two types: conformity test programs and 
scanning test programs. 

Definition 5-1. Conformity test is a test for a non-terminal node of the HLDD, which 
has the goal to test the control part of the microprocessor. The conformity test will be 
generated according to the constraints set up for testing non-terminal nodes (Chapter 
5.2). 

Definition 5-2. Scanning test is a test for a terminal node of the HLDD, which has the 
goal to test the data path of the microprocessor. The scanning test will be generated 
according to the constraints set up for testing terminal nodes (Chapter 5.3). 

5.2 Generation of Conformity Test for Control Part of Microprocessor 
Consider an HLDD GY = (M,Γ, X) with Y = F(X), as a functional model of the instruction 
set of a given microprocessor, defined formally in Definition 2-1.  Here Y = F(X), where  
X = C ∪ D, represents instruction format of the microprocessor, where Y denotes 
destination, C denotes op-code which may be partitioned into sub-fields Ck ∈ C of the 
instruction format, and D denotes source which may as well be partitioned several 
sources Dk ∈ D. The source and destination data variables may refer directly to the 
registers or may refer to the addressable memory locations. Some examples of 
mapping between the instruction formats and the HLDD functional variables are 
depicted in Figure 5-1. 
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Figure 5-1 Mapping between the instruction formats and the vector functions Y=F(X) 

The dependence relationships between variables are described by the network of 
HLDDs. Examples of HLDDs for different instruction formats are depicted in Figure 3-1 
for a single op-code variable, and in Figure 3-6 where the instruction format includes 
two sources, and the opcode is split into two fields. Figure 3-6 demonstrates how the 
network of HLDDs reveals the dependence of functional variables for the 
microprocessor Parwan [57]. 

According to the concept of HLDD-based testing, the targets of the control tests are 
not the instructions as a whole, presented by the instruction format, which involves 
both control and data functions, but the parts of the instruction format. This means 
that if the opcode C is split into subfields Ck ∈ C, then the control tests will target all 
subfields Ck one by one. In relation to the hardware of the microprocessor, testing of Ck 
means to check if the control subfunctions decoded by Ck are correctly selected. In the 
HLDD to subfield Ck of the instruction format, a nonterminal node m∈MN ⊂ M labelled 
by the variable x(m) = Ck, corresponds. Hence, to test if all control subfunctions related 
to Ck, are correctly selected, the node m in the HLDD for all values x(m) ∈V(x(m)) has to 
be tested. According to Definition 4-2, this corresponds to testing the constrained 
control functional faults of R(m,v) ⊂ R(m), which leads to the following two-step test 
generation procedure:  

Procedure 5-1. Generating a test instruction for testing a fault r ∈ R(m,v) 
1) Finding a test pattern Xt  which activates a path l(m0, mT,v) from the root node 

m0 ∈ MN to a terminal node mT,v∈ MT, so that x(m) = v, and m ∈ l(m0, mT,v); the 
pattern Xt corresponds to a full opcode C of instruction, which includes the 
needed value of Ck; 

2) Completing the pattern Xt by generating the test data D, so that the 
constraints of Theorem 5-1 were satisfied.  

Theorem 5-1. Any erroneous behavior in terms of the fault classes CL-1, CL-2 and  
CL-3 (see Chapter 4.3) of the nonterminal node m in HLDD GY = (M,Γ, X), m ∈ MN ⊂ M , 
and the functional fault model {R(m) | m ∈ MN},  will be detected by the test T = {Xt}, 
which activates all functional faults r(m,v) ∈ R(m), v ∈ V(x(m)) for all nonterminal nodes 
m ∈ MN to the respective terminal nodes mT,v ∈ MT(m) ⊆ MT, under the following bit-
wise constraints: 

∀mT∈ MT(m): ∃ Xt → ∀k [fk(mT) ≠ Ω)],                       (5-1) 

∀mT,i,mT,j
 ∈MT(m): ∃ Xt → ∀k [fk(mT,i) < fk(mT,j)]                 (5-2) 

Op-code Source Destination

C D Y

Op-code Sources Destination

YC1 C2 D1 D2

Op-code Sources Destination

C YD1 D2

 



46 

where {Ω = ZERO}, or {Ω = ONE} as the dual case, depending on the implementation 
technology and k denotes the number of data word bit. In case of i = j, the value of 
fk(mj)  in (5-2) refers to the previous state of the variable Y. The proof is given in [27] 
and also [59]. 

Since for satisfying the constraints of Theorem 5-1 more than one data may be 
needed, the result of Procedure 5-1 for testing the fault model R(m,v) ⊂ R(m), in 
general case, will consist of a control pattern (instruction) C(m,v), and a set of data 
patterns D(m,v) = {D(m,v,r)}. This means that in the final test, the instruction C(m,v) will 
be repeated in the loop r times for all data patterns {D(m,v,r)}. Denote such an 
elementary test as a concatenation of the control vector and data vector as T(m,v,r) = 
C(m,v).D(m,v,r) which has the meaning of fully specified instruction from the instruction 
set of the given microprocessor. Hence, the test which has the goal of testing the 
constrained control functional fault R(m,v) can be presented as  

T(m,v) = {T(m,v,r)} = {C(m,v),{D(m,v,r)}} 

The procedure 5-1 has to be repeated in the loop for all values v∈ V(x(m)). As the 
result a test 

T(m) = {T(m,v) | v∈ V(x(m)} 

is constructed, which consists of repeating in the loop v sub tests T(m,v).  
If the HLDD model contains a single non-terminal node m, then the test T(m) is the 

complete conformity test for the given microprocessor. This is the special case of the 
conformity test, where the op-code as a whole is the objective under test. Let us call 
this type of test as full conformity test (FCT).  

If the HLDD model consists of more than one non-terminal nodes |MN| > 1, then one 
higher level loop has to be created to generate the tests for all non-terminal nodes. Let 
us call this type of test as partitioned conformity test (PCT): 

T(MN) = {T(m) | m∈MN}. 

The full and partitioned conformity tests will differ in the test length and in the test 
quality. FCT can be interpreted as exhaustive test, whereas PCT can be interpreted as 
pseudo-exhaustive test. 

The complexity of generating exhaustive FCT will grow exponentially regarding the 
number of bits in the full opcode. Let μ is the number of nodes in the HLDD, and each 
node variable has the same number φ of values. Assume that the constraints of 
Theorem 5-1 can be satisfied by data for a single instruction. Then the length of FCT will 
be (μ∙φ)2, whereas the length of  PCT will be μ∙φ2, where μ∙φ2 << (μ∙φ)2. 

The whole test with embedded loops, in general case, can be represented as the 
following conformity test Algorithm 5-1. 
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For implementing the test instructions as a sequence of a self-test program, proper 
templates should be created in assembly language of the given microprocessor. 
Therefore, two requirements should be followed – first, prior to each particular 
execution of the test instruction T(m,v,r) = C(m,v).D(m,v,r) the data operands D(m,v,r) 
have to be loaded into pre-specified registers. Secondly, the response of the test - the 
value of the graph functional variable Y, must be stored for further analysis. 

In Figure 5-2, the instruction set of Parwan microprocessor and behavioural HLDD 
model of its ALU are depicted. Test for ALU module T(MN) can be generated using 
Algorithm 5-1, and represented with Parwan assembly language.  

Figure 5-2 Instruction set of Parwan microprocessor and HLDD model of its ALU 

An example of test template for testing control nodes of HLDD GAC is presented in 
Figure 5-3. The template is used here to execute test T(m) for the non-terminal control 
nodes OP, I and P, representing a subset of Parwan ISA. The test template is a simplified 
representation of loop, for all instructions I1, I2, …, I17 (line 1). Before executing test 
instruction Iv, v ∈ {1, …, 12}, internal accumulator register is initialized with data vector 
D1 from memory (line 2). Additional data vector D2 is fetched from source memory 
location if it’s required by instruction (I2, I3, I4) (line 3). Data vectors D1 and D2 are 
generated in a way to satisfy the constraints of Theorem 6-1. The result of instruction is 
stored to accumulator register and then to destination location in memory loc(MD)  
(line 4). 

I1: LDA loc
I2: AND loc
I3: ADD loc
I4: SUB loc
I5: JMP adr
I6: STA loc
I7: JSR tos
I8: BRA_V adr
I9: BRA_C adr
I10: BRA_Z adr
I11: BRA_N adr
I12: NOP
I13: CLA
I14: CMA
I15: CMC
I16: ASL
I17: ASR
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Figure 5-3 Test template for testing non-terminal nodes in the HLDD GAC 

5.3 Generation of Scanning Test for Data Part of Microprocessor  
For testing data path of the microprocessor, represented as an HLDD model which 
consists of a network of HLDDs, we have to generate a test for all terminal nodes  
mT ∈ MT ⊂ M in each HLDD GY = {G}, Y ∈ U, where the number of graphs is equal to |U| 
(refer to Definition 2-1).   

In Definition 4-3 we introduced for HLDDs GY = {G} the data functional fault model as 
a union RD = ⋃ 𝑅𝑅(𝑚𝑚)𝑚𝑚∈𝑀𝑀𝑇𝑇  of all functional fault models R(mT) of terminal nodes  
mT ∈ MT ⊂ M, which represent the working modes of the microprocessor Y = f(mT). 
Each functional fault r ∈ R(mT), similarly to the conditional SAF model developed for 
gate-level testing [61], has a meaning of a constraint (condition) for testing the function 
Y = f(mT).  

Hence, to test the faults r ∈ R(mT) we have to execute in a microprocessor a set of 
instructions 

T(mT) = {C(mT).D(mT, r)}, 

where the value of C(mT) (instruction code) remains constant, but the data D(mT, r) will 
change and have the values from the set of constraints R(mT), i.e each constraint  
D(mT, r) ∈ R(mT) is interpreted as a data functional fault  r ∈ R(mT).     

According to Definition 4-3, and discussion in Chapter 4.3, test generation for data 
functional faults of r ∈ R(mT) leads to the following two-step procedure:  

Procedure 7-2. Generating a test instruction for testing a fault r ∈ R(mT) 
1) Finding a test pattern Xt  which activates a path l(m0, mT) from the root node 

m0 ∈ MN to the related terminal node mT∈ MT; the pattern Xt corresponds to a 
full opcode C of the instruction; 

2) Completing the pattern Xt by generating a set of test data R(mT), according to 
Definition 4-3, either using a hierarchical two-level test pattern generation 
method to take into account the implementation details of the structure 
realizing the function Y = f(mT), or using an implementation free exhaustive or 
pseudo-exhaustive approach to exercise the function Y = f(mT). 

We call testing of data manipulation functions related to the terminal nodes of 
HLDDs, as scanning test, because the idea of the test is to repeat the same instruction 
with data retrieved by scanning a given data array. 

Conformity test program template for Parwan:
1 for v =1,…,17
2 I1: LDA D1 // load data to AC
3 Execute Iv (D2)
4 I6: STA loc(MD) // store result
5 end for

Signature
Response compaction

Conformity test algorithm: 
for all m∈ MN do

for all v∈ V(x(m)) do
for all r do

execute C(m,v).D(m,v,r) 
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The full scanning test for the HLDD GY with a set of terminal nodes MT ⊂ M, can be 
presented as 

T(MT) = {T(mT) | mT∈ MT}. 

The whole test with two embedded loops, in general case, can be represented as the 
following scanning test Algorithm 5-2. 

 
Since, before each particular execution of the test instruction T(m,r) = C(mT).D(mT,r)  

the data operands D(mT,r)  ∈ R(mT) need to be loaded into pre-specified registers and 
the response of the test, the value of the graph functional variable Y must be stored for 
further analysis, then for implementing the test instructions as a sequence of a self-test 
program, proper templates should be created in assembly language of the given 
microprocessor. 

An example of a test template for testing terminal node f=AC+M’ of HLDD GAC is 
presented in Figure 5-4. The template is used here to execute the test T(mT) for the 
node labelled by the addition operation (AC + M’) for a given set of operands  
(AC = D1(j) and M’ = D2(j)). The test template is used in a loop for all test data. Before 
executing the test instruction I3: ADD D2(j) = AC + D2 (line 3), the microprocessor state 
(the contents of register AC) is initialized by loading the data vectors D1(j) from 
memory (line 2). 

Note, because of the well-defined structure of HLDDs where all instruction level 
activities of the microprocessor are well represented, the templates for test program 

 

Figure 5-4 Test template for testing in the HLDD GAC the node labelled by working mode 
(operation) AC+ M 
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compilation can be synthesized straightforwardly. The information about which 
instruction is to be used for loading data into register AC can be found in the same 
HLDD GAC (instruction I1: AC = M’), where M’ is source location in memory. In order to 
store the response to the test from register AС, we find the proper instruction in the 
graph GM’(A) (instruction I6: M’(A) = AC, line 4). 

5.4 Test program generation example 
Consider again the example of Parwan microprocessor discussed in Chapter 3.4, where 
its instruction set (Table 3-2) and HLDD model (Figure 3-6) were introduced. Figure 5-5 
demonstrates both conformity and scanning test generation for Parwan 
microprocessor.  

In this example, ALU module of Parwan microprocessors is considered as unit under 
test. Its HLDD model GAC is represented partially in Figure 5-5a,c. Additional graphs GN, 
GZ, GM’ which are indirectly activated during test generation are shown in Figure 5-5b.  

Figure 5-5 Test generation for Parwan microprocessor with shared HLDDs 

Table 5-1 illustrates the conformity test for the nodes OP and I in the HLDD in Figure 
5-5c. The test template consists of three instructions. The first instruction initializes the 
only data register of Parwan – accumulator AC. This procedure is illustrated by 
highlighted nodes and edges in the HLDD in Figure 5-5a. Nodes of graphs, indirectly 
activated by this instruction are highlighted in Figure 5-5b. The slot of the second 
instruction in the template is empty, and should be filled up and updated cycle by cycle 
with the next instruction under test in the loop during execution of the test program. 
The instructions to be tested are stored in the respective array in the memory. For this 
example, the instructions under test are depicted in Table 5-2. The highlighted column 
in Table 5-2 refers to the control variables under test. 

Table 5-1 Conformity test template 

No Instruction 
mnemonic 

Op-code Data movement 
Comments 

OP I P Registers Operation 
1 LDA A 0 0 P AC = D1 AC ← D1 Initialization 

2  Instruction is to be stored from Table 5-2 Instruction under 
test 

3 STA A 5 0 P AC AC → M(A) Storing response 
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Table 5-2 Instructions to be inserted into the conformity test program template 

No Mnemonic of 
the instruction 

Op-code Data movement Result of 
operation OP I P Registers Flags 

1 LDA A 0 0 P AC=AC N,Z ← f(AC) AC= Dn 
2 AND A 1 0 P AC=D1 N,Z ← f(AC) AC= AC&D2 
3 ADD A 2 0 P AC=D1 N,Z,C,V ← f(AC, M(A)) AC= AC+D2 
4 SUB A 3 0 P AC=D1 N,Z,C,V ← f(AC, M(A)) AC= AC-D2 
5 CLA 7 0 1 AC=D1 - AC=0 
6 CMA 7 0 2 AC=D1 N ← f(AC) AC= ¬D1 
8 ASL 7 0 8 AC=D1 N,Z,C,V ← f(AC) AC=2*D1 
9 ASR 7 0 9 AC= D1 N,Z ← f(AC) AC= D1//2 

Figure 5-5c illustrates the target of the conformity test to exercise the correct 
decoding of the control variables OP{0,1,2,3,7} and I{0,1}. The operations to be 
executed during the instructions under test are shown in the high-lighted terminal 
nodes in Figure 5-5c, and the results of the operations are depicted in the last column 
of Table 5-2. For this test, the data operands D1 and D2 are used and stored in the array 
of data operands in the memory. The data operands should be generated in such a way 
that the constraints (5-1) and (5-2) in Theorem 5-1 were satisfied. 

Table 5-3 Scanning test template to be repeated for the data operands in the memory 

No 
Mnemonic 

of the 
instruction 

Op-code Data movement 
Comments 

OP I P Registers Operation 

1 LDA A 0 0 P AC = D1 AC ← M(A) Initialization 

2 ADD A 1 0 P AC = D1 & D2 AC ← AC & M(A) 
Instruction under 

test 
3 STA A 5 0 P AC AC → M(A) Storing response 

Table 5-3 illustrates the scanning test for the terminal node AC & M’ in the HLDD on 
Figure 5-5c. The row, representing instruction under test, is highlighted in Table 5-3. 
The test template consists of three instructions. First one has the role of initialization of 
the microprocessor, and similarly to the conformity test, its actions are illustrated by 
highlighted nodes and edges in the HLDD in Figure 5-5a and Figure 5-5b. However, the 
scanning test differs from the conformity test. During the initialization procedure, 
general purpose registers of the microprocessor are filled with prepared data, stored in 
the corresponding array of data operands in the memory. 

 Organization of the test programs for the microprocessors based on using the 
structural-behavioural information given in HLDDs allows compact presentation of the 
test program templates, arrays of instructions and arrays of data operands.  
A generalization of such a structure is depicted in Figure 5-6. 
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Figure 5-6 A generalized data structure for self-testing of microprocessors 

The presented structure contains test data in a similar structure for both conformity 
and scanning tests. In the case of conformity test, the loop is organized over a subset of 
instructions whereas the data operands are for this loop the same. In general case, 
however, several data arrays may be needed to organize higher level loops. In the case 
of scanning test, the template is filled up by a single instruction whereas the loop is 
organized over an array of test data operands. 

5.5 Discussion on the Properties of Conformity and Scanning tests 
The main conception of test generation using HLDDs can be characterized by the 
following targets and improvements regarding the traditional microprocessor testing 
methods. 

1) improved fault coverage regarding hard-to-test-faults with better diagnostic 
resolution; 

2) reduced probability of fault masking; 
3) compactness of the whole test program thanks to its cycle-based organization; 

The main idea of the described HLDD-based approach is to test the behaviour of 
functional variables instead of testing instructions. With correct test data, test for all 
functional variables will stress outperform a simple instruction set test, avoiding fault 
escapes.  

As an added value, the result of approach scanning and conformity test approaches, 
where “smaller portions” of the functionality of instructions are targeted in testing, the 
diagnostic resolution will be better.  

Another added value of targeting by tests “smaller portions” of the functionality of 
microprocessor is the reduced probability of fault masking. Consider an example of 
memory-register-memory I/O operations shown in Figure 5-7, where data is loaded to 
internal registers, and stored back to memory, using instructions I1: LDA Reg Mem 
(Load data from memory to register) and I2: STA Reg Mem (Store data from register to 
memory). Assume that there is a SAF on control line R0. The test program with two 
consequent instruction pairs - LDA R0, STA R0 and LDA R1, STA R1 will pass the test, 
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despite addressing the incorrect behaviour of addressing in the register bank. As a 
result, SAF on R0 control line will escape. 

Figure 5-7 Example of fault masking during IO procedure 

In order to reduce the probability of fault masking, we are testing the functional 
variables simultaneously, by initializing all of the available registers prior each test. 
Example of following technique is shown in Figure 5-8. In this example all registers in 
register bank are initialized with data during the test, adding observability to every 
incorrect behaviour, solving fault masking problem.  In other words - we keep the 
initialization and observation sequences constant for the whole test of the variable 
under test. When recording the test results, we target always a single variable under 
test. In another case when trying to observe more than one variables, each observation 
action may cause changes in the state of the processor, which in its turn may activate 
other possible faults and cause fault masking. This approach is a good example of the 
trade-off between the test length and test accuracy. We use more processor cycles for 
constant initialization but, but on the other hand, we reduce the amount of test output 
data. 

Figure 5-8 Example of fault masking avoidance technique 
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5.6 Experimental results 
As a case study, we generated manually a self-test program for microprocessor Parwan 
modelled in Chapter 3.4, using fault models proposed in Chapter 4, and HLDD test 
generation algorithms described in Chapter 5. The obtained fault coverage for every 
module of MP is outlined in Figure 5-9. The whole test program was simulated by 
ModelSim to obtain local test data sequences for all modules, and these, in turn, were 
fault simulated at gate level to get SAF coverage. The comparison of fault coverages 
with method #1 [85] and method #2 [86] is depicted in Figure 5-9.  

Figure 5-9 Comparison of different test coverages (PARWAN) 

To sum up, for seven out of eight modules the proposed method shows advantage 
regarding test coverage over the previously published results for that processor. The 
positive impact of the novel high-level fault model can be seen in the higher fault 
coverage of the control part of MP. The comparison of volumes of test data is 
presented in Table 5-4. The proposed approach needs 75% fewer test data than in ATIG 
[86], but the generated program consists of 51% more instructions. However, the latter 
comparison is not completely fair, since there are single byte and double byte long 
instructions and such statistics is missing in [85] [86]. 

Table 5-4 Comparison of test lengths for testing PARWAN processor 

Test overhead Method #1 [85] Method #2 [86] Proposed method 
Instruction # 575 189 260 
Test data # unknown 517 132 

5.7 Summary 
In this chapter, it was shown that the HLDD model provides the possibility of 
formalising the SBST program generation process, which will be the prerequisite and 
basis for automating this process to be discussed in the next chapter. 
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Two novel concepts for test generation were proposed, being conformity test and 
scanning test. Conformity test generation targets the control part of the 
microprocessor and is driven by non-terminal nodes of the HLDD. Scanning test, 
designed for the data path, is generated by activation of terminal nodes with 
predefined data sets.  

The test data (operands) for scanning test may be generated in two ways: either 
applying hierarchical approach using gate-level ATPG-s, if the related implementation 
details of the data-path are available, or using heuristic functional data or pseudo-
exhaustive test patterns, if the implementation details are not available.  

Using both algorithms of conformity (Algorithm 5-1) and scanning test (Algorithm  
5-2) generation together, it is possible to achieve compact presentation of the test 
program, which saves memory space, has high fault coverage and better diagnostic 
capabilities, and reduces the probability of fault masking. 

The proposed method was evaluated using the Parwan microprocessor. A manually 
generated test program proved the consistency of the proposed method, by 
demonstrating superior fault coverage and test length over alternative methods. 
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6 SBST AUTOMATED GENERATION 
This chapter presents a framework developed on the basis of the formal methods 
proposed in previous chapters. The purpose of this framework is to automatically 
generate SBST programs for microprocessors. The framework consists of three parts. 

The first part is responsible for the automatic synthesis of HLDDs from a description 
of instruction set architecture. Requirements for generalisation of ISA description are 
outlined. Algorithms used for automation of the synthesis are proposed, with examples 
for MiniMIPS processor. 

The second part automatically generates tests on the basis of the HLDD model of a 
microprocessor.  

The third part automatically converts tests into SBST programs for microprocessors. 
Additionally, the equation for test length estimation is proposed. The fault coverage 
capabilities of the test program for MiniMIPS processor are evaluated.  

This chapter is based on publications IV [87] and V [27], where the latest changes in 
framework were presented. 

6.1 Introduction of SBST generation framework 
Previously described concepts form the basis of the framework for automated test 
program generation for microprocessors. The general concept of the framework is 
shown in Figure 6-1. The framework consists of three modules: HLDD synthesizer, test 
vector generator, and SBST generator-synthesizer for converting test vectors into test-
programs using beforehand prepared test code templates. The transition flow from 
instruction set to software-based self-test program is demonstrated on 32-bit RISC 
MiniMIPS microprocessor [88] with instruction set based on MIPS architecture [89]. 

Figure 6-1 Software-Based Self-Test generation framework 

6.2 Generalization of instruction set architecture  
Instruction set architecture is an abstract representation of a processor, and its 
description is usually provided in architecture documentation. It usually includes the 
general description of the general-purpose registers, flags, list of instructions with their 
names, assembly language syntax, and binary representation. In other words - ISA 
description holds all the information about the processor necessary to write test 
programs. The description example of instruction ADD is taken from MiniMIPS 
processor manual [88], and is shown in Figure 6-2. The instruction code (Figure 6-2.A) is 
divided into fields of fixed widths (in bits) and labels. The mnemonic description (Figure 
6-2.C) represents the function and data transition between general-purpose registers. 
Additionally, assembly syntax (Figure 6-2.B) is given for using addition operation in a 
program. 
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Figure 6-2 ADD instruction description from Minimips manual 

The encoding of instruction ADD contains six fields: op, rs, rt, rd, shamt, funct. This 
specific set of instruction fields defines the format of the instruction. In MiniMIPS 
architecture, three formats of instructions, shown in Figure 6-3, are used. ADD 
instruction belongs to the register type. Its field op holds information about the 
instruction type. The fields rs, rt and rd are holding the index numbers of general-
purpose registers (or system coprocessor registers). The next field – shamt, contains 
the number of shifts for operations with data shifting. The field funct distinguishes 
specific instruction in the register instruction domain. The field imm of instruction of 
type immediate holds immediate value. The last but not least, field address of jump 
instructions contains the memory address for jump operations. 

Figure 6-3 MiniMIPS instruction formats 

The behavioural model of the processor can be built on the basis of information 
about instruction format and encoding. Additional information, obtained from ISA 
description, can help to append details to the model. For example, the information 
about changes in program counter can provide the basis for modelling the behaviour of 
program counter unit. 

In order to process ISA automatically, it should be represented in a machine-
readable way. We suggest bringing the ISA description to common ground manually, as 
it was shown in Chapter 3.2. As a replacement for functional tables, we outline the 
format – ISDL (Instruction Set Description Language) to generalize the description of 
miniMIPS ISA. ISDL is developed on the basis of the format previously proposed in [87]. 
It implies that each instruction is described using specific syntax, emphasizing its 
functionality, and extracting functional variables. For each type of instruction field, the 
specific syntax is envisaged in ISDL format. ISDL supports four types of instruction fields 
- operation code, register, data and constant. Their syntax is shown in Table 6-1, where 
placeholders are surrounded by “< >”. 

Table 6-1 ISDL syntax for instruction fields 

Field Type ISDL Syntax Description 
Operation code op:<name>=<width>b<value>  

Register <direction>:<name>=<width>b <direction> can be in or out 
Data data:<name>=<width>b Field for immediate value 

Constant con:<name>=<width>b<value>  

op rs rd shamt functrt
056101115162021252631

000000 rs rd 00000 100000rt

SYNTAX: ADD rd, rs, rt MNEMONIC: rd <- rs + rt

A
B C

 

op rs rd shamt functrt
056101115162021252631

Registers

Immediate

Jump

op rs rt imm

op address
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In addition to instruction word fields, the special syntax to describe instruction 
function, assembly and changes in the program counter are defined. Instruction 
mnemonic reflects its functionality and is important in test data generation. Assembly 
syntax will be used in test program generation process and will be described further. 
Function field should be highlighted with { }, assembly code field with [ ], and program 
counter field with ( ). Function description is kept in a separate library, but a line in ISDL 
should have a link to it via function name. Additionally, this field can keep the 
information about flags, or data movement between registers.  

An example of this description is shown in Figure 6-4, where ADD instruction has the 
link to the function in library defined with {ADD(rs, rt)}. Assembly field provided as [add 
$rd, $rs, $rt], keeps the assembly code for test program generation stage. rd, rs and rt 
are the placeholders for general purpose register indexes. Program counter field is 
optional because this information can be hidden, and not included into documentation. 
The overall understanding of the architecture of the processor under test can help to 
isolate this information from the manual. In case of ADD instruction, branches do not 
happen, and program counter should increment in the way that next instruction is 
fetched. Thus, value of PC is incremented by four (bytes) i.e (PC + 4), in other words at 
the end of execution, PC should contain the address of the next instruction word. 

Figure 6-4 ADD instruction converted to ISDL 

By using the proposed guidelines, it is possible to bring the instruction ADD (Figure 
6-2) of miniMIPS to the following entry in ISDL format as shown in Figure 6-4. 
Instruction ADD belongs to the registers format of instruction according to Figure 6-3, 
and belongs to group of ALU-related instructions because of the value 000000 in its op 
field. The field funct with the value 100000 defines this instruction as ADD among other 
instructions with the same value in op field. Register related fields (rs - source register, 
rt - target register and rd - destination register) of the instruction code should hold the 
general purpose register numbers. The subset of mimiMIPS instructions brought in ISDL 
format is shown in Figure 6-5. 

op rs rd shamt functrt
056101115162021252631

000000 rs rd 00000 100000rt
SYNTAX: ADD rd, rs, rt
MNEMONIC: rd <- rs + rt

op:op=6b000000;in:rs=5b;in:rt=5b;out:rd=5b;op:shamt_c=5b00000;op:funct=6b100000;
{ADD(rs, rt)}; [add $rd, $rs, $rt]; (PC+4)  
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Figure 6-5 Subset of miniMIPS instruction set in ISDL format 

6.3 HLDD synthesis from ISDL description 
The Correctly composed ISA description in ISDL format holds needed data to build 
HLDD diagram, representing the behaviour of the system (or it's part) under test. The 
solution for building HLDD graph model is based on the framework proposed in [50]. 
This framework provides the functionality to create, edit and import HLDD graphs. 
Figure 6-6 is a class diagram demonstrating the structure of behavioural model. 
ModelingDomain is the most top element in this metamodel that is used to collect 
ModelingObjects.  

The domain (ModelingDomain) is typically a microprocessor whereas the objects 
(ModelingObject) are the units of a microprocessor.  

Any ModelingObject may have a number of inputs that are implemented as 
variables.  

Variable x is defined with the name and the width in bits. The modeling object is 
represented by the set of GraphVariables.  

The possible values of the GraphVariable are modelled as terminal nodes 
Termination of the graph that are assigned to this GraphVariable. 

Termination has a link to Variable that defines its value. The value of the Termination 
is defined by the object derived from the Variable class - Input, GraphVariable, Function 
and Constant objects. 

op:op=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000000; {SL(rt,shamt)}; [sll rd, rt, shamt]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000010; {SR(rt,shamt)}; [srl rd, rt, shamt]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; in:rt=5b; out:rd=5b; data:shamt=5b;op:funct=6b000011; {SRA(rt,shamt)}; [sra rd, rt, shamt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b000100; {SL(rt,rs)}; [sll rd, rt, rs]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b000110; {SR(rt,rs)}; [srlv rd, rt, rs]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b000111; {SRA(rt,rs)}; [srav rd, rt, rs]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000;op:funct=6b010000; {rd=regHI}; [mfhi rd]; (PC+4)
op:op=6b000000; in:rs=5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000;op:funct=6b010001; {regHI=rs}; [mthi rs]; (PC+4)
op:op=6b000000; con:rs_c=5b00000; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000;op:funct=6b010010; {rd=regLO}; [mflo rd]; (PC+4)
op:op=6b000000; in:rs=5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000;op:funct=6b010011; {regLO=rs}; [mtlo rs]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; con:rd_c=5b00000; con:shamt_c=5b00000;op:funct=6b011000; {regLO=[rt*rs]0,31; regHI=(rt*rs)31,63}; [mult rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; con:rd_c=5b00000; con:shamt_c=5b00000;op:funct=6b011001; {regLO=[rt*rs]0,31; regHI=(rt*rs)31,63}; [multu rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100000; {ADD(rs,rt)}; [add rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100001; {ADDU(rs,rt)}; [addu rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100010; {SUB(rs,rt)}; [sub rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100011; {SUBU(rs,rt)}; [subu rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100100; {AND(rs,rt)}; [and rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100101; {OR(rs,rt)}; [or rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100110; {XOR(rs,rt)}; [xor rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b100111; {NOR(rs,rt}; [nor rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b101010; {LESS(rs,rt)}; [slt rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; in:rt=5b; out:rd=5b; con:shamt_c=5b00000;op:funct=6b101011; {LESSU(rs,rt)}; [sltu rd, rs, rt]; (PC+4)
op:op=6b000000; in:rs=5b; con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000; op:funct=6b001000; {}; [jr rs]; (rs)
op:op=6b000000; in:rs=5b; con:rt_c=5b00000; out:rd=5b; con:shamt_c=5b00000; op:funct=6b001001; {rd = PC+4, PC = rs}; [jalr rd, rs]; (rs)
op:op=6b010000; con:rs_c=5b00000; out:rt=5b; con:cs=5b00000; con:rd_c=5b00000; op:funct=6b000000; {rt = COP0}; [mfc0 rt, 0]; (PC+4)
op:op=6b010000; con:rs_c=5b00100; in:rt=5b; con:cs=5b00000; con:rd_c=5b00000; op:funct=6b000000; {regCOP0 = rt}; [mtc0 rt, 0]; (PC+4)
op:op=6b000001; in:rs=5b; con:rt_c=5b00000; data:offset=16b; {FLAG:LTZ(rs)}; [bltz rs, offset];(?(LTZ), PC+(offset<<2), PC+4)
op:op=6b000001; in:rs=5b; con:rt_c=5b00001; data:offset=16b; {FLAG:GEZ(rs)}; [bgez rs, offset];(?(GEZ), PC+(offset<<2), PC+4)
op:op=6b000100; in:rs=5b; in:rt=5b; data:offset=16b; {FLAG:EQ(rs,rt)}; [beq rs, rt, offset];(?(EQ), PC+(offset<<2), PC+4)
op:op=6b000101; in:rs=5b; in:rt=5b; data:offset=16b; {FLAG:NE(rs,rt)}; [bne rs, rt, offset];(?(NE), PC+(offset<<2), PC+4)
op:op=6b000110; in:rs=5b; con:rt_c=5b00000; data:offset=16b; {FLAG:LEZ(rs)}; [blez rs, offset];(?(LEZ), PC+(offset<<2), PC+4)
op:op=6b000111; in:rs=5b; con:rt_c=5b00000; data:offset=16b; {FLAG:GTZ(rs)}; [bgtz rs, offset];(?(GTZ), PC+(offset<<2), PC+4)
op:op=6b001000; in:rs=5b; out:rt=5b; data:immediate=16b; {ADD(rs,immediate)}; [addi rt, rs, immediate]; (PC+4)
op:op=6b001001; in:rs=5b; out:rt=5b; data:immediate=16b; {ADDU(rs,immediate)}; [addiu rt, rs, immediate]; (PC+4)
op:op=6b001010; in:rs=5b; out:rt=5b; data:immediate=16b; {LESS(rs,immediate)}; [slti rt, rs, immediate]; (PC+4)
op:op=6b001011; in:rs=5b; out:rt=5b; data:immediate=16b; {LESSU(rs,immediate)}; [sltiu rt, rs, immediate]; (PC+4)
op:op=6b001100; in:rs=5b; out:rt=5b; data:immediate=16b; {AND(rs,immediate)}; [andi rt, rs, immediate]; (PC+4)
op:op=6b001101; in:rs=5b; out:rt=5b; data:immediate=16b; {OR(rs,immediate)}; [ori rt, rs, immediate]; (PC+4)
op:op=6b001110; in:rs=5b; out:rt=5b; data:immediate=16b; {XOR(rs,immediate)}; [xori rt, rs, immediate]; (PC+4)
op:op=6b001111; con:rs_c=5b00000; out:rt=5b; data:immediate=16b; {rt = immdiate<<16 | rt}; [lui rt, immediate]; (PC+4)
op:op=6b100011; data:base=5b; out:rt=5b; data:offset=16b; {rt = memory[base+offset]}; [lw rt, offset(base)]; (PC+4)
op:op=6b101011; data:base=5b; in:rt=5b; data:offset=16b; {memory[base+offset] = rt}; [sw rt, offset(base)]; (PC+4)
op:op=6b110000; data:base=5b; con:cs_c=5b00000; data:offset=16b; {COP0 = memory[base+offset]}; [lwc0 rt, offset(base)]; (PC+4)
op:op=6b111000; data:base=5b; con:cs_c=5b00000; data:offset=16b; {memory[base+offset] = COP0}; [lwc0 rt, offset(base)]; (PC+4)
op:op=6b000010; data:instrindex=26b; {}; [j instrindex]; (instrindex)op:op=6b000011; data:instrindex=26b; {GPR31 = PC+4}; [j instrindex]; (instrindex)
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Figure 6-6 Metamodel of HLDD 

Graph object has containment link to the nodes that belong to this graph. 
Node has a link to the variable that contains the possible values of the node. Same 

nodes may be connected by more than one edge. 
Edge may lead to the next non-terminal node (NodeLink) or to the terminal node 

(TerminationLink). The transition value of the edge may also be specified by the 
ConstantValue link to the predefined constant. 

A Function is an object that defines the operations with variables. The function has a 
field for selecting an operation from a list of supported functions (AvailableFunctions). 
This list can be easily extended to support any operations (bitwise operations, logic 
operations, etc.). The arguments to the function are specified by the Arguments link 
that selects variables from the list of predefined variables. 

Based on the described abstraction it is possible to process the instruction set data, 
given in ISDL, and to synthesize a graph mirroring the behaviour of the processor or its 
part. The meta-model shown in Figure 6-6 is general and can be applied to modelling 
microprocessors. In this case, the ModelingDomain represents the model of the 
processor, composed of different units (ModelingObjects) i.e ALU, PC, register bank etc. 
Each processor unit is represented with separate graph, which output or GraphVariable 
represents output register or flag. Instruction fields representing operational codes will 
become Nodes of the graph. The links - Edges between nodes are represented by the 
instruction field values. Terminations of the graph will be the functions following the 
execution of instructions. 

ModelingDomain
name : EString

Input
Output

ModelingObject
name : EString

GraphVariable

Constant
value : ELong

Graph

Node
name : EString

Function
operation : AvailableFunctions

Termination
comment : EString

Variable
name : Estring

width : EInt 

Edge
comment : Estring

varType : VariableType
value : EString 

1

1

1

1

1

1

InputValue   0..1

Inputs   1..*
ModelingObjects   1..*

Variables   0..*

Graph   1

TerminalEdge   0..1

Nodes   0..*

NodeLink   0..1

Edges   0..*

TerminationLink   0..1

TerminationValue   
1 Arguments   1..2

Constants   0..*

NodeEvaluation   1

Functions   0..*

ConstantValue   0..1  



61 

The implementation of HLDD generation in frames of the proposed framework is 
represented with the set of algorithms – Algorithms 6-1, 6-2, 6-3, 6-4, 6-5, with links to 
the meta-model shown in Figure 6-6. 

 
Algorithm 6-1 describes the top level of the HLDD synthesis framework. With the 

main cycle, the program is walking through the instruction list given in ISDL format, by 
reading it line by line. Each line is parsed in order to obtain key information about the 
instruction format and fields. First, the detection of information about PC is made. This 
information is optional, but in case such information exists, the PC graph is created 
(Algorithm 6-2) or populated (Algorithm 6-3) with new nodes. The next step is to find 
register information in instruction line, especially output register. In case output 
register does not have its separate field in the instruction word, the program continues 
to search for it in function field, highlighted by { }. This field can hold the information 
about indirect activation of register. For example, instruction MTHI (move data to 
internal register regHI) has following description - op:op=6b000000; in:rs=5b; 
con:rt_c=5b00000; con:rd_c=5b00000; con:shamt_c=5b00000; op:funct=6b010001; 
{regHI=rs}; [mthi rs]; (PC+4). The register field with direction “out” does not exist within 
the list of instruction fields. However, function field {regHI=rs} holds information, that 
data from input register rs will move to register regHI during execution of MTHI 
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instruction. In this case, regHI becomes an OUT register. Last conditional operator in 
Algorithm 6-1 is checking if there were register fields with direction out within 
instruction field list. The new graph is created (Algorithm 6-2) or populated (Algorithm 
6-3) if there is such register field. These operations are executed in cycle for each 
general purpose register of the processor. In order to use uniform function for creation 
or filling different types of graphs, the functions – pcsubset(), subset() and brsubset() 
are introduced. They are filtering the instruction data from ISDL line, needed to build a 
specific type of graph. 

 
Algorithm 6-2 describes the functionality of the constructor for Graph object. The 

constructor is called if the graph does not exist already in ModelingDomain. Otherwise, 
the existing graph is populated (Algorithm 6-3) with given instruction data. The first 
thing created by graph constructor is GraphVariable, which is an output of the graph. 
Then, instruction fields are attached to the graph as nodes (Algorithm 6-4) with edges 
in the following order: op (opcode field) > con (constant) > in (register) > data 
(immediate) > flag > termination (function or constant). Terminations are added 
(Algorithm 6-5) as leaves, and are holding constants or links to the functions in the 
library. PREV variable is a link between edges and nodes. 

Algorithm 6-3 describes the graph population procedure. It is similar to graph 
construction (Algorithm 6-2) but has many conditional operators in order to check the 
existence of nodes prior adding them to the graph. Attachment on new edges, nodes 
and terminations is same as in Algorithm 6-2. 
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Algorithm 6-4 describes the procedure of new node addition to the graph. 

Depending on the type of node, two different paths exist for flag nodes and other 
nodes. In case of flag node, Boolean edges (1, 0) are being added to it with two 
different terminations. The terminations are taken from the PC field in instruction 
description in ISDL format – (?(FLAG), A, B), where FLAG is a node, and A is termination 
with termination link 1(true), and B is with 0(false).  

In addition, when flag node is added to the graph, the ModelingDomain is checked 
for the presence of flag-related graph. If there is no such graph, it’s created with subset 
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of data, filtered with brsubset(). In case another non-flag node is added, its object is 
generated and the edge is linked to it. 

 
Finally, the termination addition flow is described in Algorithm 6-5. It’s a short 

procedure, which is linking existing edge to the created Termination object.  

 
Let us have an example of synthesis of HLDD (based on the algorithms listed 

previously) for a single instruction ADD of miniMIPS processor, shown previously in 
Figure 8.2 and Figure 6-4. First, the information about program counter is checked in 
ISDL entry: 

op:op=6b000000;in:rs=5b;in:rt=5b;out:rd=5b;con:shamt_c=5b00000; 
op:funct=6b100000;{ADD(rs, rt)}; [add $rd, $rs, $rt]; (PC+4). 

The presence of field (PC+4) indicates, that program counter is increased by 4 bytes 
after instruction execution. This means that graph for PC (Figure 8.7) can be built. PC 
will become a GraphVariable. Then operation code fields – op and funct are attached to 
it with corresponding node links – 000000 and 100000, provided in the description. 
Next, constant shamt_c with edge 00000 as attached. Constant is followed by register 
placeholders – rs, rt and rd. For representative means, multiple edges for different 
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register indexes are grouped into one edge with a range from 0 to 31. Finally, 
termination with formula for PC calculation is attached to the graph. The full model of 
miniMIPS PC unit is demonstrated in Figure 6-11. 

Figure 6-7 HLDD graph for PC on basis of ADD instruction description in ISDL format 

op1 funct000000 shamt_c rs00000 rt0...31 ADD(GPR(rs), GPR(rt))0...31100000GPR0 rd = 0

GPR31 rd = 31

GPR0

GPR31

0

0

GPR1

…
GPR30

1

 

Figure 6-8 HLDD graph for GPRi on basis of ADD instruction description 

After actions with PC graph, ADD instruction description is analysed further to find if 
there is a register with direction out. In case of ADD instruction, such register is rd. This 
field of the instruction is keeping the index of register, in which the result of the 
addition will be stored. MiniMIPS has thirty two general purpose registers (GPR0 – 
GPR31), therefore the same amount of graphs will be synthesized. Using the same 
algorithm for graph synthesis, but with different subset of data, graph for each general 
purpose register GPRi is built (Figure 6-8). For representative means, set of graphs GGPRi 
is united into one graph with multiple graph variables (GPR0 - GPR31). Field rd becomes 
a root node, which is selecting the destination register for result of operation ADD. 
Fields op, funct, shamt_c, rs and rt become nodes of the graph with corresponding 
edges. The function (signed addition) is added to the terminal node of the graph. 
Function ADD(GPR(rs), GPR(rt)), should be also added to the library of functions, in 
order to use it further for test data generation. In general, the value of graph variable 
GPRi should have a result of function in termination node, if the correct path is 
activated. Full representation for ALU unit of miniMIPS is shown in Figure 6-10. 

Since register fields rs, rd, and rt are not representing data, but the indexes of 
registers in general-purpose register bank, special graphs are built. These graphs, 
shown in Figure 6-9, will explain the data movement between registers. 

Figure 6-9 HLDD graphs for GPR registers 

PC op funct000000 PC+4shamt_c rs00000 rt0...31 rd0...31100000 0...31
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2...30
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PC GPR(0)
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Figure 6-10 HLDD graphs for miniMIPS ALU 

By executing the synthesis software, multiple graphs were built based on miniMIPS 
ISA description in isdl format. In Figure 6-10 the graph synthesized for ALU unit is 
shown. As it was described previously, this graph can be read from right to left, starting 
with termination, representing the function behind instruction code. The value 
calculated by function is stored to the general purpose register GPRi, selected by rd or 
rt. The result of the function depends on the data, which is stored to input GPRi 
selected by instruction fields rs and rt. Moreover, the function itself is selected mainly 
by the values of op and funct codes and some constants – rs_c, shamt_c. The HLDD 
graphs representing different units of miniMIPS processor are shown in Figure 6-11, 
Figure 6-10, Figure 6-9, Figure 6-12 and Figure 6-13. 
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Figure 6-11 HLDD graph for miniMIPS program counter 
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Special treatment is needed for branching instructions. These instructions rely on 
the values in flag registers. In case flag registers are not defined in ISA manual, it is 
possible to define dummy flag variables in order to model branching behaviour. The 
nodes - LTZ, GEZ, EQ, NE, LEZ, GTZ, representing flags are added to the PC graph as 
shown in Figure 6-11. For each node separate graph is synthesized (Figure 6-12) based 
on the information given in function {} and PC () fields of instruction description. For 
example, function LTZ(GPR(rs)) is returning a Boolean value (1 or 0), if data in register rs 
is less than zero. Depending on that program counter value is chosen. 

Figure 6-12 HLDD graphs for miniMIPS flags 

Last but not least, the graph describing register-memory data movement is shown in 
Figure 6-13. This graph represents how data is being stored from GPR’s and 
coprocessor registers to memory and loaded back to registers. Calculation of the 
address for loading and storing the data into memory is made using ADD function with 
data type fields base and offset. 
 

Figure 6-13 HLDD graphs for miniMIPS memory-register data movement 

 

LTZ op rt_c rs offset000001 00000 0...31 LTZ(GPR(rs))0...65535

GEZ op rt_c rs offset000001 00001 0...31 GEZ(GPR(rs))0...65535

EQ op rs rt offset000100 0...31 0...31 EQ(GPR(rs), GPR(rt))0...65535

NE op rs rt offset000101 0...31 0...31 NE(GPR(rs), GPR(rt))0...65535

LEZ op rt_c rs offset000110 00000 0...31 LEZ(GPR(rs))0...65535

GTZ op rt_c rs offset000111 00000 0...31 GTZ(GPR(rs))0...65535
 

Memory(ADD(base, offset)) op GPR(rt)101011

rt_c COP000000111000

base offset0...31 0...65535

base offset0...31 0...65535

op rt base offset Memory(ADD(base, offset))100011 0...31 0...31 0...65535

COP0 op base offset Memory(ADD(base, offset))110000 0...31 0...31 0...65535rt_c

GPR0

GPR31

rt = 0

rt = 31

GPR0

GPR31

1

0

GPR1

…
GPR30

0

1

 



69 

6.4 Test synthesis from HLDD 
Once the HLDD graph model for the given processor is constructed, it can be used as a 
basis for test generation. The result of test generation is a set of test patterns for 
testing structural entities of the processor. The procedure of test generation mainly 
revolves around walking through the graph, activating its nodes and also generating 
specific test data patterns. In this thesis, the information regarding test data generation 
is omitted but can be found in [27].  

An example of test generation is built on basis of miniMIPS ADD instruction, 
modelled in ALU HLDD. By walking through the graph, three lists (Figure 6-14) are being 
filled at the same time:  

PATHLIST – holds the information about the path of nodes from graphVariable to 
termination node. The syntax is following – P#=name1’width1,…,namen’widthn, where # 
is a placeholder for index, name is the name of node, and width is the numeric value 
corresponding to the node link (edge). 

DATALIST – list of test data, which will be loaded into registers during test program 
execution. Syntax is following – D#:binary_list, where # is a placeholder for 
enumeration, and binary_list is a list of numeric values.  

TESTLIST – list of tests, generated by walking through nodes. The syntax is following 
– P#:test:D#, where the # is a placeholder for enumeration, P is for addressing 
PATHLIST, D is for addressing DATALIST, and test is a binary representation of node link 
values. 

Figure 6-14 Example of test generation 

ADD instruction path includes nodes – op, funct, shamt_c, rs, rt, rd. This path is 
added to PATHLIST as P1, and it will be valid for all instructions with the same set of 
nodes involved. Next, data for testing control part is generated and is aggregated into 
DATALIST subset – D1. It is generated by applying techniques explained in [27]. Finally, 
the test is generated to activate the path of nodes from graph variable to termination 
node. It is generated in pseudo-exhaustive manner and added to the TESTLIST, with 
addition of link to path description – P1, and test data set – D1. The test itself is 
represented in binary form, equivalent to instruction word, and is holding all 
information needed for further test program generation. 

TESTLIST:
P1:00000010000000000000010001000001:D1
P1:00000010000000000000010001100001:D1
P1:00000010000000000000010010000001:D1
P1:00000010000000000000010010100001:D1
…
P1:00000010000000000111101110000001:D1

PATHLIST:
P1=op’6,funct’6,shamt_c’5,rs’5,rt’5,rd’5

DATALIST:
D1:
1011100010000111100000110100100011010111111011110001100100000010 
1000000101011111111011000111110111101001001101110110101001110011 
0100100011111111111001110101001011111110101100111001110000011001 
... 
0111110001111010000111010111000111111110010111010001000111110101

op funct shamt_c rs rt rd
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6.5 SBST program generation 
The targets of test generation for a microprocessor using the HLDD model are not the 
instructions themselves, each of them taken as a whole as in traditional cases. Instead, 
the targets are small functional entities represented by the nodes of HLDDs.  
The terminal nodes represent selected data path functional entities (sub-circuits of 
ALU), and the nonterminal nodes represent the selected control functional entities 
related to the subfields of instruction words. Since the HLDD nodes as test targets 
represent smaller functional units than the instructions as a whole, it makes possible to 
use pseudo-exhaustive testing of the processor control part and to cope in this way 
better with the complexity of the test problem. Instead of full exhaustive testing of all 
operation codes, we test (pseudo)exhaustively its independent parts, guided by the 
HLDD internal nodes. For testing terminal nodes, we use test data generated for ALU at 
the gate level. From above, two approaches of testing, different for terminal and 
nonterminal nodes, result: conformity test for the control part (internal HLDD nodes), 
and scanning test for data path (terminal HLDD nodes). 

The task of SBST generator is to decode patterns Figure 6-14, obtained from test 
generator into assembly instructions. This is done by using predefined templates stored 
in the assembly code library. As a result, the test program, composed from code 
templates is made. It can be edited further, in order to improve the fault coverage. 
Specific program code parts, important from the test coverage perspective, but hard to 
generate automatically, can be added manually. 

The test program length in cycles (considering single instruction per cycle) can be 
calculated using following formula: 

𝐿𝐿𝑇𝑇 = (𝐼𝐼 + 𝑆𝑆) × (𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑆𝑆) + 𝑉𝑉,                               (6-1) 

where I and S are representing the number of cycles for initialization and store 
procedures, depending on number of internal registers, needed to be loaded with data. 
TC is the number of cycles required by conformity tests, depending on the amount of 
paths to be activated in HLDD model. TS is the number of cycles for scanning test, 
heavily dependent on the amount of patterns for testing data path. Overhead V, 
needed to support functionality and compactness of the program, described in Chapter 
5.4 is added. 

The SBST generation process is shown in general in Figure 6-15. Generated SBST 
program can be logically divided in memory into two parts: test program and test data. 
Test data area is filled with data, given in DATALIST (Figure 6-15.A). The test program 
part is generated (Figure 6-15.B) based on test patterns obtained during test generation 
step. Generation of test program can be divided into three parts – initialization, test 
and store. The initialization part is loading test data into registers, and store part is 
saving obtained results back to memory. The test combines the instruction fields from 
the library into the full instruction code. In Figure 6-15.C, a subset of generated test 
program for testing control part is shown. 
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Figure 6-15 SBST program generation flow 

The first part of the code represents initialization process. Every general-purpose 
register is loaded with data before testing each instruction so that to avoid fault 
masking [87]. Then, the test part is being generated. In section C of Figure 6-15, a test 
pattern string, retrieved from the TESTLIST is shown. Since the instruction fields are 
known (using the link to the PATHLIST), the test program generator can retrieve 
corresponding assembly instruction from the library. Indexes of register operands ($) 
are manipulated depending on the test pattern. 

Test program generation is strongly affected by the modelling level made in previous 
steps. The more details can be extracted from instruction set architecture, the more 
detailed test program can be generated. The specific behaviour of the processor can be 
hidden or even made invisible from the ISA point of view. Hence, the simple list of 
instructions may be not sufficient to cover the realistic structural details. 

The exact fault coverage can be calculated by gate-level fault simulation. The 
undetected gate-level faults may belong to the class of redundant faults. Otherwise, to 
detect these faults, low-level ATPGs can be used for generating additional test 
operands. 

6.6 Environment for experiments and results 
In order to obtain fault coverage metrics of generated SBST program, fault simulation 
tools are used. For our experiments, we are using test environment based on 
combination of Mentor Graphics ModelSim [90] simulator and Synopsys TetraMAX [91] 
fault simulator. The organization of our SBST evaluation framework is shown in Figure 
6-16.  

TEST DATA

1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  

TEST PROGRAM
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  
1011100010 000111100000110100 100011010111111011 110001100100000010  
1000000101 011111111011000111 110111101001001101 110110101001110011  
0100100011 111111111001110101 001011111110101100 111001110000011001  

TESTLIST:
P1:00000010000000000000010001000001:D1
P1:00000010000000000000010001100001:D1
P1:00000010000000000000010010000001:D1
P1:00000010000000000000010010100001:D1
…
P1:00000010000000000111101110000001:D1

op funct shamt_c rs rt rd

lw $1, 0($6) 
lw $2, 4($6) 
lw $3, 8($6) 
…
lw $5, 16($6) 

sw $1, 0($7) 
sw $2, 4($7) 
sw $3, 8($7) 
…
sw $5, 16($7) 

add $1, $1, $2

init

store

test

DATALIST:
D1:
101110001000011110000011010010
100000010101111111101100011111 
... 
011111000111101000011101011100

A

B

C
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Figure 6-16 SBST program evaluation framework 

A generated test program is compiled for the processor under test. In case of 
miniMIPS, memory file is generated as a result of compilation. This file is added to the 
processor RTL description. Using ModelSim software it’s possible to simulate the 
behaviour of the processor during the execution of the test program. Command - 
dumpports, in ModelSim, allows storing the stimuli, obtained from inputs and outputs 
of the processor during simulation, in unified vcd format. 

Stimuli data, obtained during simulation step is loaded into fault simulator as a list of 
test vectors. Gate-level netlist and technology library are loaded to TetraMAX fault 
simulator. Then, it is possible to allocate the module of the processor for fault 
simulation with patterns obtained during the previous step. Then, SAF are added to the 
model under test. Finally, fault simulation is running and fault coverage results are 
reported. Fault coverage results obtained from simulation with automatically 
generated SBST program for miniMIPS are shown in Table 6-2.  

Table 6-2 miniMIPS fault coverage with generated SBST 

Instance name #faults Fault coverage % 
U1_pf (Fetch stage) 2182 59,01 

U2_ei (PC) 1608 80,53 
U3_di (Decode stage) 7472 78,10 

U4_ex (Execute stage, ALU, MULT) 211136 96,42 
U5_mem (Memory access stage) 2870 56,46 

U6_renvoi (Bypass unit) 3738 78,18 
U7_banc (Register bank) 43584 82,19 
U8_syscop (Coprocessor) 6930 79,14 
U9_bus_ctrl (Bus control) 2028 79,58 

U10_predict (Branch prediction) 21286 53,06 
Total 302986 89,46 

The test data generation was targeting mostly the execute stage of MiniMIPS, which 
includes the biggest part of the processor core – ALU including two multiplication units. 
As a result, decent coverage of 96,42% of faults in U4_ex is achieved (Table 6-3), where 
97,58% of faults in ALU were covered.  

Table 6-3 Fault coverage of execute stage in details 

Instance name #faults Fault coverage % 
U4_ex (Execute stage) 211136 96,42 

ALU 203576 97,58 

Fault 
simulator

COMPILER SimulatorSBST 
program

RTL-level 
VHDL

Gate-level 
netlist

Memory file stimuli

ModelSim TetraMAX  
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The significant loss in fault coverage is due to the fact, that current model does not 
cover pipeline behaviour. This affects fault coverage in every stage of the pipeline, 
thereafter the fault coverage result for the pipeline-related control logic of execute 
stage (U4_ex) is only 86.32%. 

This problem can be solved by populating test program with specific patterns of 
code, which will activate the faults in pipeline control and memory addressing unit [25]. 
Nevertheless, we find the obtained coverage as decent (89.46%), keeping in mind that 
it was obtained by automatically generated SBST program, i.e. effort was given only for 
composing the list of instructions in isdl format. 

Table 6-4 Fault coverage results of different SBST methods (MiniMIPS ex & ALU) 

Method ATPG [92] HLDD #1 [9] #2 [24] #3 [92] 
U4_ex 99,93 96,42 96,37 84,12 97,62 

ALU 97,58 97,58 - 97,78 98,67 

In table Table 6-4 the results of fault coverage for execute stage and ALU of 
MiniMIPS processor are shown.  

The first method (#1) [9] is capable to automatically generate SBST programs. It is relying 
on using ATPG and SAT solver for pattern generation, which are generating test program by 
applying constraints during structural and functional analysis of the circuit under test. An 
additional hardware module is used for observing the inputs and outputs of processor 
during in-field application, in order to discover the incorrect behaviour. However, fault 
coverage result for ex stage including ALU is less compared to our HLDD-based approach. 
The difference, although is very small, and the result can be considered equal. 

Next approach #2 [24] is similar to the method we have proposed in this thesis. SBST 
generation is based on instruction set model of the processor, additionally applying 
developed mechanisms in order to increase the fault coverage for pipeline control and 
memory addressing. Fault coverage result for execute stage of the pipeline is relatively 
low. The reason for that can be overall low attention to the control part of the 
processor under test. However, ALU coverage is superior to HLDD-based approach, 
outperforming it by 0,2%. 

In the question of fault coverage percentage for execute stage of the pipeline and 
ALU, method named ATIG (#5) [92] has shown the best result. However, the fault 
coverage given in this work is computed by considering only structurally testable faults, 
i.e., structurally untestable faults are collapsed, making comparison unfair. This method 
is based on test generation using structural information (gate-level). Additionally, this 
method is relying on modification in RTL design in order to obtain the best observability 
of the system aiming to find best test patterns. However, fault coverage is measured on 
“clean” system. 

We have compared fault coverage of execute stage and ALU only, since at the 
current stage we were targeting this part of the processor mostly, generating test data 
for it. All other modules of the processor were tested with the same data operands, 
delivering decent, but not superior or at least competitive coverage.  
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6.7 Summary 
This chapter demonstrated that the previously proposed formal methods can be used 
to automate the SBST generation process. The implementation of these methods was 
conducted under the heading of the proposed framework. The structure and 
algorithms are presented in detail in order to leave the possibility for reproducing. 

A formal methodology was automated for the synthesis of HLDD models for 
microprocessors on the basis of the instruction set description. A procedure of manual 
transformation of the instruction set architecture into machine-readable format was 
developed, which formed the basis of the automated synthesis of the graph model of 
microprocessors.   

The second part of the framework used the formal basis for the test generation 
process. The implementation of these methods is described in detail, including the 
traversing through graphs to generate scanning and conformity tests.  

The generated tests, obtained by traversing the model and applying the constraints 
developed in previous chapters, are automatically converted into test programs which 
can be loaded and executed on the processor under test. 

As a proof-of-concept, an automated generation of test program targeting the ALU 
of MiniMIPS was demonstrated. The efficiency of generated test programs, in terms of 
test coverage, was evaluated separately for different modules of the microprocessor. 
The obtained fault coverage results for the execute stage and ALU module are 
competitive or even superior to other state-of-the-art approaches. 

The main advantage of the newly developed methods is that the tests, generated for 
microprocessors on the basis of only high-level instruction set information, have the 
same quality as state-of-the-art methods which use additional information about the 
low-level implementation details. 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 
The aim of this thesis is to propose a novel formalised methodology for modelling 
microprocessors on the basis of the instruction set description, with the goal of 
automated synthesis of SBST programs. The proposed modelling approach extends the 
theory of HLDDs to support behavioural modelling of the microprocessor, describing its 
high-level structure and components. The automation of the SBST program 
development is based on the topological analysis of HLDDs and solving the high-level 
data constraints deduced from the model of the microprocessor under test. 

The main contributions of the presented work are summarised below. 
• The methodology for high-level modelling of microprocessors on the basis of its 

instruction set architectures 
The methodology is based on the theory of HLDDs to model microprocessors, based 

on the descriptions of their instruction set architectures. The use of high-level 
behavioural descriptions of microprocessors as input data for model synthesis makes 
this approach more scalable than other state-of-the-art approaches, which are based 
on lower-level descriptions. The proposed formal method introduces the important 
property of one-to-one mapping between the modelled processor and its 
corresponding high-level functionality. This allows the HLDD model to be used as a 
checklist for high-level test planning and organisation of test programs for 
microprocessors. Suggested techniques are applied to synthesise the model for Parwan 
and MiniMIPS processors. The model has compact representation, allowing more 
precise specification of the behaviour of the microprocessor, in more detail, than the 
traditional instruction set descriptions. 

• Definition of the new high-level classes of fault models for microprocessors, 
which are also mapped to related low-level structural faults 

The goal of this work is the development of a formal methodology for test 
generation. Well-defined formal test targets are thus required. After careful 
investigation of the properties of the chosen formal modelling method, a wide range of 
possibilities for fault modelling was discovered. HLDDs support multi-level fault 
modelling, allowing mapping of high-level functional faults to lower-level faults, 
guaranteeing the high accuracy of testing. Three novel high-level fault classes for 
microprocessors were proposed, considered superclasses over existing RTL-level fault 
models for microprocessors. The HLDD-based higher level of abstraction allows the 
reduction of the size of the fault model by orders of magnitude, compared to the low-
level abstractions. 

• A formal method of generation of SBST on the basis of the HLDD model 
The proposed microprocessor models in the form of HLDD networks ensure well-

defined structured information, which is more suitable for test generation purposes 
than traditional models in the form of instruction lists. In order to utilise these models 
in SBST generation, two novel concepts were proposed: conformity test and scanning 
test. Conformity test targets the control part of the microprocessor, while scanning test 
is designed for the data path. Due to the cyclic nature of both algorithms for test 
generation, it is possible to achieve compact test programs, thus saving memory space. 
In addition, the exhaustive and pseudo-exhaustive origin of the proposed methods 
offers high fault coverage and better diagnostic capabilities. The proposed regular 
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construction (init-test-store) of test templates reduces the probability of fault masking. 
On the other hand, exhaustive testing with repeated constant initialisation procedures 
has an impact on the number of processor cycles used for test program execution. 
However, test programs can be always optimised by consideration of the trade-off 
between accuracy and test length. The proposed SBST generation method was 
evaluated using Parwan and MiniMIPS microprocessors. Both manually and 
automatically generated test programs demonstrated their superiority, resulting in up 
to 10% higher fault coverage than alternative state-of-the-art methods, maintaining the 
small test program size.  

• Framework for automated SBST synthesis 
Finally, the automatization of the SBST program generation was introduced. Using 

the formal methods proposed in this work, the framework for automated SBST 
generation was developed. As the description of instruction sets in the documentation 
is not uniform, initial data should be extracted manually. Therefore, a methodology for 
data extraction and its composition into uniform machine-readable format is proposed. 
The extracted data is used in the developed framework to automatically synthesise the 
HLDD model of the given processor. Experiments with SBST generation were conducted 
for the MiniMIPS microprocessor, targeting its execute stage (containing the ALU 
module) of the pipeline. The obtained fault coverage results are competitive or even 
superior to those of other state-of-the-art approaches. Tests generated on the basis of 
only high-level instruction set information achieve the same quality as state-of-the-art 
methods which use additional information on the implementation details. Nonetheless, 
the proposed methodology must be extended to cope with the faults in pipeline logic 
and other traits in hardware implementation. 

7.2 Future work 
The main direction of the future work is test data generation. Test data generation on 
the basis of HLDD models is omitted from this work, as it is currently ‘in-progress’. The 
test data used in the experiments were preliminary and manually generated using the 
ideas of pseudo-exhaustive testing. Properly generated test data may have a strong 
positive effect on the overall test quality and diagnostic properties of the proposed 
methodology. Thus, developments in this direction are of the highest priority. 

Another functionality to be implemented in frames of SBST generation framework is 
the signature calculation module. The term signature is used for compressed test 
responses. Proper algorithms for signature calculation and decryption can improve the 
diagnostic qualities of the framework. 

The work on extending the instruction description language and model synthesis 
should be continued. This may assist in the adoption of the proposed methodology for 
a wider spectrum of microprocessor architectures; for example, assisting in modelling 
complex pipeline behaviour, such as data hazards and stalls. 
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Abstract 
Software-Based Self-Test for Microprocessors with High-Level 
Decision Diagrams 
The field of Software-Based Self-Test (SBST) has been a topic of extensive 
research in industry and academia for more than three decades. Nevertheless, self-test 
programs for microprocessors are generally written manually, due to a lack of attention 
paid to efficient formal methods. High-level fault modelling and formal test generation 
strategies have not been studied sufficiently to support the automated synthesis of 
self-test programs and to provide methods for fast test quality evaluation. In addition, 
restrictions imposed by the NDA on commercial microprocessors, have made test 
program generation impossible for most state-of-the-art SBST methods. 

This thesis contributes to closing these gaps by introducing a formal methodology for 
automated SBST program synthesis, based on instruction set description of 
microprocessors. High-level decision diagrams (HLDDs) were chosen to provide a formal 
ground for presented methodology. 

The research presented in this thesis originated from a method of building HLDD 
models using data extracted exclusively from instruction set architecture description. 
This novel method models microprocessor as a set of interrelated HLDD graphs. The 
proposed modelling approach allows the reflection of high-level functionality of 
microprocessor with nodes in HLDDs. This provides an opportunity to use the nodes in 
HLDD graphs for the development of test strategies and the design of test programs for 
microprocessors.  

In this work, it was established that in comparison to the state-of-the-art 
approaches, the HLDD-based model covers a wide spectrum of high-level behavioural 
faults in microprocessors. In addition, the transition from a lower to a higher level of 
abstraction reduces the size of HLDD-based fault models by orders of magnitude. 
Despite the compaction of the model, the newly proposed fault classes guarantee a 
high accuracy of testing, which was demonstrated by mapping the new fault classes 
onto lower level faults and showing that the HLDD-based high-level fault classes fully 
cover a broad class of structural gate-level fault models. 

Two novel concepts for test generation are proposed in this thesis: conformity 
testing and scanning testing. The use of both algorithms of conformity and scanning 
test generation results in compact presentation of the test program, high fault 
coverage, increase in diagnostic capabilities, and reduction in the probability of fault 
masking. 

The overall formalism of the presented methodology allows an automated model 
synthesis for the microprocessor, and self-test program generation. The 
implementation of these methods is conducted under the heading of the proposed 
automation oriented framework. Its structure and algorithms are discussed in detail, 
and evaluated on the examples of the Parwan and MiniMIPS processors. The obtained 
fault coverage results are competitive or even superior to those of other state-of-the-
art approaches. The main advantage of the newly developed methods is in the 
capability of the tests generated for microprocessors on the basis of high-level 
instruction set information, which achieve the same quality as state-of-the-art methods 
do, which rely on additional information regarding low-level implementation details. 
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Lühikokkuvõte 
Mikroprotsessorite tarkvara-põhine enesetestimine 
kõrgtasandi otsustusdiagrammide põhjal 
Mikroprotsessorite tarkvara-põhise enesetestimise (SBST) valdkond on olnud ulatuslik 
teema tööstuses ja akadeemiliste ringkondades rohkem kui kolm aastakümmet. 
Tõhusate formaalsete meetodite puudumise tõttu programmeeritakse  
mikroprotsessorite enesekontrolli teste käsitsi. Rikete modelleerimise lähenemisviise 
kõrgematel abstraktsetel tasanditel ja formaalsete testimistegevuste strateegiaid ei ole 
piisavalt põhjalikult uuritud, et toetada mikroprotsessorite enesetestiprogrammide 
automaatset sünteesimist ja testimise kvaliteedi hindamise kiireid meetodeid. NDA 
poolt kaubanduslikele mikroprotsessorite kehtestatud lisapiirangute tõttu kirjeldatakse 
protsessorite funktsionaalsust üksnes käsustike arhitektuuri esitavate dokumentidega, 
avaldamata seejuures implementatsioonide detaile, muutes seetõttu 
kõrgekvaliteediliste testprogrammide automaatse genereerimise ja testide kvaliteedi 
hindamise võimatuks enamuste kaasaegsete SBST meetodite puhul. 

Käesolev väitekiri on suunatud nimetatud lünkade likvideerimisele, pakkudes välja 
formaalse metoodika automatiseeritud enesetestiprogrammide sünteesiks 
mikroprotsessoritele, mis põhineb üksnes protsessorite käsustike kirjeldustel. Valitud 
metoodika formaalse aluse loomiseks valiti digitaalsüsteemide kõrgtasandi 
otsustusdiagrammid (HLDD).  

Väitekirjas on välja töötatud meetod HLDD mudelite ehitamiseks protsessorite 
käsustike kirjelduste põhjal. Selle meetodi abil saab mikroprotsessorit kujutada mudeli 
abil, mis koosneb HLDD mudelite võrgust, kus üksikud HLDD-graafid kujutavad 
erinevaid protsessorite funktsionaalseid üksusi. Välja töötatud modelleerimisviis 
garanteerib üks-ühese vastavuse HLDD sõlmede ja mikroprotsessori funktsionaalsete 
alamskeemide vahel. See võimaldab kasutada HLDD sõlmede hulka kontrollnimekirjana 
protsessori testprogrammide planeerimiseks ja organiseerimiseks abstrahheerimise 
kõrgtasandil. 

Käesolevas töös õnnestus kindlaks teha, et HLDD-mudel pakub paremaid võimalusi 
mikroprotsessori käitumishäirete modelleerimiseks kõrgtasandil, võrreldes 
nüüdisaegsete lähenemisviisidega. Traditsiooniliste meetodite puhul vaadeldakse 
protsessorite käske kui tervikuid, samal ajal töös välja arendatud uue lähenemisviisi 
puhul vaadeldakse käske kui funktsioonide komplekse, mis võimaldab detailsemat 
käsitlust ja seetõttu ka adekvaatsemate ja usaldusväärsemate tulemuste saamist.  

Samal ajal võimaldab HLDD-põhine käsitlus vähendada rikete mudeli mahtu tervelt 
suurusjärgu võrra traditsioonilist loogikatasandit silmas pidades. Mudeli kokku 
surumisest hoolimata tagab uus rikete käsitlus samaväärse testimiskvaliteedi 
loogikatasandiga võrreldes, mis sai töös ka ära tõestatud uute rikete klasside 
kaardistamise teel loogikatasandile, näidates et HLDD-põhine ühtne rikete mudel katab 
täielikult loogikatasandi laia rikete mudelite klassi. 

Töös on välja pakutud uue mikroprotsessorite mudeliga hästi kooskõlas olevad kaks 
uut kontseptsiooni testide genereerimiseks koos vastavate sünteesialgoritmidega - 
konformsustest ja skaneerimistest. Mõlema testi kooskasutusega on võimalik 
saavutada kogutesti suur kompaktsus, mis võimaldab vähendada testi salvestamiseks 
vajaliku mälu mahtu. Lisaks tagatakse väga hea rikete kate, parem diagnoosikvaliteet ja 
väheneb rikete maskeerimise tõenäosus ehk siis testimistulemuste usaldusväärsus. 
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Esitatud metoodika kõrge formaliseeritus võimaldab automatiseerida testitava 
mikroprotsessori kõrgtasandi mudeli sünteesi ja selle mudeli põhjal toimuvat 
testprogrammide genereerimist. Välja töötatud algoritmid on koondatud ühtsesse 
raamistikku. Selle struktuur ja kõik uued algoritmid on implementeeritud tarkvarana, 
mida on edukalt katsetatud kahe mikroprotsessori Parwan ja MiniMIPS 
testprogrammide sünteesi näitel.  

Eksperimentaalse uurimistöö tulemused tõendavad, et uued meetodid, mis 
põhinevad ainult kõrgtasandi info (mikroprotsessorite käsustike) kasutamisel, on 
konkurentsivõimelised või isegi paremad, võrreldes olemasolevate meetoditega, mis 
lisaks käsustikule kasutavad ka lisainfot selle kohta, kuidas mikroprotsessorid on 
skeemiliselt implementeeritud.  
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Appendix A 

Publication I 

Jasnetski, Artjom; Ubar, Raimund; Tsertov, Anton; Brik, Marina (2014). “Software-
based self-test generation for microprocessors with high-level decision diagrams.” 
Proceedings of the Estonian Academy of Sciences, 63 (1), 48−61. 
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Appendix B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Publication II 
 
Jasnetski, Artjom; Raik, Jaan; Tsertov, Anton; Ubar, Raimund (2015). ”New Fault 
Models and Self-Test Generation for Microprocessors using High-Level Decision 
Diagrams”. IEEE Symposium on Design and Diagnostics of Electronic Circuits and 
Systems - DDECS. Belgrade, Serbia, April 22-24, 2015.  
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Appendix C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Publication III 
 
Jasnetski, Artjom; Oyeniran, Adeboye Stephen; Tsertov, Anton;  Schölzel, Mario; 
Ubar, Raimund (2016). ”High-level modeling and testing of multiple control faults in 
digital systems”. IEEE 19th International Symposium on Design and Diagnostics of 
Electronic Circuits & Systems (DDECS), Kosice, 20-22 April 2016. 
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