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Abstract

Machine learning models are becoming more popular these days, and with this popularity
comes the requirement to interpret the nature of outputs of these models. In this thesis
presented a comparison of LIME(Local Interpretable Model-Agnostic Explanations) and
SHAP(SHapley Additive exPlanations) post-hoc local interpretation algorithms. They are
evaluated based on how well they perform an interpretation of machine learning models
that classify malicious IoT botnet traffic from various devices to create a benchmark.
The research consists of computing several metrics on selected data and analyzing and
comparing the results. A comparison of LIME and SHAP has been made before in forums
and articles, but there is no specific dashboard with metrics and interpretation of results.
Applying this interpretation algorithms in the field of cybersecurity, on IoT botnet dataset,
is also new research which will help identify and classify attacks.

This thesis is written in English and is 78 pages long, including 5 chapters, 42 figures,
and 17 tables
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Annotatsioon

Masinõppe mudelid muutuvad iga päevaga populaarsemaks, sellega kaasneb vajadus in-
terpreteerida mudelite väljundi olemust. Käesolevas magistritöös võrreldakse kaht post-
hoc lokaalset interpreteerimisalgoritmi - LIME (Local Interpretable Model-Agnostic Ex-
planations) ja SHAP (SHapley Additive exPlanations). Nende võrdlemiseks kasutatakse
masinõppe mudeleid, mis klassifitseerivad pahatahtlikku IoT robotvõrgu liiklust. Uurim-
istöös väljapakutud lahendus koosneb mitme mõõdiku arvutamisest ja tulemuste analüü-
sist ja võrldusest. LIME ja SHAP algoritme on võrreldud varem foorumites ja artiklites,
kuid puudub konkreetne mõõdikute ja tulemuste näidikupaneel. Nende võrdlusalgorit-
mide rakendamine IoT robotvõrgu liikluse andmetel on uus uurimistöö, mis aitab tuvas-
tada ja klassifitseerida rünnakuid.

Lõputöö on kirjutatud English keeles ning sisaldab teksti 78 leheküljel, 5 peatükki,
42 joonist, 17 tabelit.
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List of abbreviations and terms
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1 Introduction

Classification algorithms gained popularity in the last two decades[1] because the com-
puter’s computation capabilities have grown, and the cost has significantly fallen. The
variety of classifiers is relatively wide. However, for some of the problems, a good classi-
fier is not enough, and an interpretation of classification is required. One such problem is
detecting and classifying malicious traffic. In cybersecurity, analyst requires explanation
because the influence of features means more than model output. For example, if model
prediction probability is not high enough - without explanation, the analyst might not be
able to distinguish between malicious traffic and benign. Classifying botnet is only half
of the problem, the classification problem has been done, solved and described in several
papers like [2] and [3]. At the start of this year, there has been another publication of
detecting botnet using reinforced learning in [4]. Classification of botnets has already
reached a satisfactory accuracy level - above 97%. Now it is the time to turn to another
half or the problem - interpretability of these classifiers.

1.1 Contribution and Novelty

This thesis targets benchmarking of interpretability algorithms. "Benchmark is the act
of running a computer program, in order to assess the relative performance of an object,
normally by running a number of standard tests and trials against it"1. After reviewing
several papers and articles, there was found a lack of a good comparison of LIME and
SHAP in terms of separate metrics. In the article [5] author explains details of each of
these interpretation methods, talks about advantages and disadvantages, but does not have
a clear side by side comparison. In paper [6] presented a nice overview on sensitivity
metric for LIME and SHAP. This is one of the metrics used in this thesis, so results are
compared. However, one metric is not enough to compare these two algorithms. The
article [7] contains study about LIME, ELI5, SHAP and InterpretML. It lists advantages
and disadvantages of LIME, as well as presents a table with a comparison of LIME and
SHAP. Table 1 is one of the best comparison found in the literature.

1https://en.wikipedia.org/wiki/Benchmark_(computing)
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Table 1. LIME vs SHAP [7].

The goal of this thesis is to create a comparison of LIME and SHAP using pre-defined
metrics. Currently, there is no benchmark for these interpretability algorithms, that will
compare metrics or explanations. This work is targeting the cybersecurity area and will
allow cybersecurity analysts to understand the specific of LIME and SHAP better. The
application of these interpretability methods in the cybersecurity area has been done
before and described in the paper [8], but without a clear comparison. Having such a
benchmark, one can more easily make a decision on which method to choose for their
problem, and which method is better applicable to a specific case. This benchmark is
constructed for cybersecurity area and can be applicable only in it. However, some of the
metrics, that were computed to construct the benchmark does not depend on the specific
dataset, thus can be used and applied in other domains.

All experiments and calculations are performed on IoT botnet dataset [9]. This dataset ad-
dresses the lack of public botnet datasets. It contains traffic data from the IoT(Internet of
Things) devices. The data is gathered from 9 commercial devices authentically infected
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by Mirai and BASHLITE [9]. These devices are two different doorbells, four different
security cameras, a baby monitor, and a thermostat. In the thesis, there is not much focus
on training classifiers, as this task was relatively easy to solve and as soon as a model
with decent prediction accuracy was trained - it was time to move forward to interpreta-
tion. Post-hoc local interpretability methods solve the problem of interpretation. These
explainers provide data about sample features that influence the output of sample predic-
tion.

1.2 Problem statement

Constructing benchmark required gathering statistics about different metrics and compar-
ing metrics with each other. These metrics are consistency, novelty, sensitivity, stability,
feature selection and weights, and Levenshtein distance. Each from the list will be de-
scribed in detail later. All the data for metrics gathered from various experiments, which
involved explanations of different sets of samples. A Decision Tree explanation path
has been used as a third alternative for some experiments. Its results are not separated
as another metric, because it has nothing to do with comparing LIME and SHAP. But
having another intuitive explanation of a sample provides another perspective on certain
problems. It is not an interpretation algorithm, however let us not forget the main idea of
interpretation - to explain the outputs of a "black box" model. "Interpretability is defined
as the ability to explain or to provide the meaning in understandable terms to a human"
[10], and explanation path satisfies this definition. Hence, it is used in experiments where
applicable.

Explanations of LIME and SHAP contain similar information, but it is presented in
different ways and structures. One of the issues was to interpret the results of explainers
in a unified way so that they could be compared with each other. The explanation path
was used where applicable, and its results had to be represented in the same form as
LIME and SHAP. A detailed description of the differences of inputs and outputs of each
algorithm that was used for this research will be described later.

This study is solving the problem, which consists of several sub-problems:
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1.2.1 Classifier selection

The machine learning classifier is an essential part of this thesis, as it is responsible for
correct predictions of the interpretation algorithm. Interpretation is a computationally in-
tense task. To save time and computational resources the model is chosen to have low
complexity. Model accuracy is above 90% which is acceptable level for current experi-
ments, however very far from ideal.

1.2.2 Feature selection

Feature selection is not the part of main research and takes no part in comparing LIME
with SHAP. It is a separate work, which helps to understand the most important features
from the initial 115 features of the dataset. Also, a fewer number of features decrease the
computational time of most calculations, as it decreases dimensions of the dataset.

1.2.3 LIME/SHAP explanation analysis

The goal is to gather and analyze LIME/SHAP interpretation results of various sets of
samples. Which features are mostly picked by LIME/SHAP to explain instances? What
are those feature weights? Is there variance of feature order and feature weights between
different classes of the same dataset chunk? If there is - what is it? Analyzing points
that are closer and further away from the decision boundary: is there any difference is
classification? Is there any difference is the explanation? If there is - how different are
the features, feature order, and feature weights?

1.2.4 Comparing LIME/SHAP explanations with Decision Tree

Analyzing the explanation of LIME, SHAP, and Decision Tree explanation path is impor-
tant because it allows to see how much a simple explanation of Decision Tree differs from
interpretability methods. Can it be useful, what can it provide and how bad it is comparing
to LIME and SHAP. As was mentioned earlier, minimal statistics can be collected from
the Decision Tree classifier, but where applicable is compared with LIME and SHAP.
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1.2.5 Metrics

There are several metrics, defined in the paper [11]. Some of them are selected for bench-
marking and statistics is gathered about each of them. Selected metrics are - consistency,
novelty, sensitivity, and stability. Details about each of these metrics are described in the
Metrics section. Levenshtein distance is used as another metric of comparing the differ-
ence between two explanations.

1.3 Workflow

The workflow consists of several steps: select and train classification model; explain this
model with both LIME and SHAP; analyze explanations and compare them; collect data
about specific metrics and calculate Levenshtein distances between explanations. This
workflow will lead to the comparison of various results, gathered for LIME and SHAP.
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2 Background

2.1 Literature review

The topic of this thesis is comparing two interpretability methods. Metrics and measures
are required, and paper [12] provides a good overview of two major difficulties in the
measure of interpretability. Firstly, distinct terms are used in the literature. They have to
be separated into the ones used as strict synonyms (e.g. understandability and comprehen-
sibility) and the ones that depend on interpretability for specific cases. These are related
to distinct problems (e.g. justifiability and usability). Secondly, papers in the literature
can be divided into comparisons of the interpretability of models and representations.
Where representations are comparisons based on mathematical heuristics or user-based
surveys.[13]

The definition and requirement of interpretability are well explained in the paper [10].
The study is about methods for explaining various types of models. It also touches the
need for interpretation, describing several cases where "black box" models had unreason-
able results or caused business impact. A computer program for screening job applicants
that was found to unfairly discriminate against ethnic minorities and women. By inferring
information from surnames and place of birth, it was lowering their chances of being se-
lected for interview. [14] The journalists of propublica.org have shown that the COMPAS
score, a predictive model for the "risk of crime recidivism" (proprietary secret of North-
pointe), has a strong ethnic bias 1. Another example is related to Amazon.com. In 2016,
the software used to determine the areas of the US to which Amazon would offer free
same-day delivery, unintentionally restricted minority neighborhoods from participating
in the program (often when every surrounding neighborhood was allowed) 2.

With respect to credit bureaus, it is shown in [15] that banks providing credit scoring
for millions of individuals, are often discordant: in a study of 500 000 records, 29% of
consumers received credit scores that differed by at least fifty points among three major
US banks (Experian, TransUnion, and Equifax). Such a difference might mean tens of
thousands of dollars over the life of a mortgage.[16] Interpretation of model results might
help to prevent such problems, or debug the model and help to correct them.

1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
2https://www.businessinsider.com/how-algorithms-can-be-racist-2016-4
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Study also includes terms of interpretability dimensions, like: global and local inter-
pretability, time limitation and nature of user expertise [17]. The first one - global and
local interpretability is touched in this thesis, as the comparison is between the method
that provides global interpretability and the one that provides local. When a model is
completely interpretable, i.e., we are able to understand the whole logic of a model and
follow the entire reasoning leading to all the different possible outcomes. This is the case
of global interpretability. On the other hand, local interpretability is the situation in which
it is possible to understand only the reasons for a specific decision: only the single predic-
tion/decision is interpretable. [17] LIME is considered to be a local interpreter, because it
explains a single instance, and executes all calculations for one sample at a time. SHAP
requires a set of sample, to provide a full explanation of the model, as well as samples
themselves. If a separate explanations are required - they need to be extracted from the
explanation set, produced by SHAP. That is why SHAP is a global interpreter.

The dataset for this thesis contains botnet traffic, and to have a starting point - a research
about similar data is studied. A paper [3] is about the study of classifying botnet at-
tacks on internet relay chat server. Four out of six classification models, described in
the paper was used in this study. Classification accuracy of these models in the paper is
approximately 99% which is considered high, and using the same models for this study
had similar results. These results are presented later in the Table 2. However, this study
addresses only the classification, not interpretation. Nevertheless this thesis involves cre-
ating classification models and the pool of models used in the paper [3] provides a good
overview.

A paper [18] describes an example of the interpretation of malware detection model.
This is very relative to this topic, however no post-hoc methods are used there. Instead,
explanation is being extracted from the neural network during the feed forward procedure,
or inference. This is not the method used by LIME and SHAP, as they are post-hoc model-
agnostic explainers. Deep learning models are much more complex, compare to the ones
used in this thesis. For training a deep learning model for malware detection authors used
Xeon E5-2697 CPUs, 384 GB memory, and four Nvidia TitanXP graphics cards [19].
This a a very powerful hardware.

A paper [20] is an introduction to model-agnostic explanation and LIME algorithm. It is
written by the same authors, who made a paper [21]. This is an introduction to model-
agnostic explanations based on if-then rules, which is called anchors. An anchor expla-
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nation is a rule that sufficiently “anchors” the prediction locally – such that changes to
the rest of the feature values of the instance do not matter [22]. A paper [23] contains
study about SHAP, the second interpretability method used in the thesis. SHAP values
attribute to each feature the change in the expected model prediction when conditioning
on that feature. They explain how to get from the base value, that would be predicted
if we did not know any features to the current output [24]. The computation of SHAP
values is a complicated task, thus they are often approximated. SHAP values can be esti-
mated directly using the Shapley sampling values method[25] or equivalently the Quanti-
tative Input Influence method[26]. This study involves several types of SHAP, like Kernel
SHAP, Linear SHAP, Low-Order SHAP, Max SHAP and Deep SHAP. These are different
version of SHAP for various use-cases. In this thesis a Kernel SHAP was used, which
functionality is similar to LIME. SHAP feature weighting kernel uses linear regression
to estimate SHAP values, while LIME uses linear regression to locally classify samples
around the target instance.

Possible legal issues related to interpretation listed in the paper [27]. According to GDPR,
an explainer that operates with person identifiable information must have the right for
interpretation. However, this study operates with a network traffic, thus has no concerns
of breaching a person’s privacy.

A benchmark, or other types of comparisons between LIME and SHAP interpretability
results was not found in the literature. These algorithms are listed and applied separately
in several studies. Some articles like [5] have theoretical compare, without gathering data
about specific metrics or feature explanations.

2.2 Local Interpretable Model-Agnostic Explanations

LIME stands for Local Interpretable Model-Agnostic Explanations. It is an interpreta-
tion algorithm which uses model-agnostic approach. Model-agnostic means that LIME
extracts post-hoc explanations by treating the original model as a blackbox. This involves
learning an interpretable model on the predictions of the black box model, perturbing in-
puts and seeing how the black box model reacts.[21] LIME executes the following steps
to build the interpretation:

1. Permute data - The first step is to take all the data around the point, which we need
to interpret and permute feature values to generate some new fake data.
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2. Calculate distance between permutations and original observations.

3. Make predictions on new data using the initial model.

4. Pick N features best describing the complex outcome from the permuted data.

5. Fit a simple model to the permuted data with N features and similarity scores as
weights.

6. Feature weights from the simple model make explanations for the complex models’
local behavior.

Before computing interpretation LIME builds an explainer model. LIME takes several
parameters to build the explainer, and those are dataset, feature names set, classification
model, and classes names. Explanation of the single instance of data is produced by
this explainer. The input to the algorithm is instance features values and a limit of
features to explain. The output is an object that contains basic information about Ridge
regression[28] parameters and an instance explanation itself. Explanation consists of
the feature-weight map, picked for this particular instance. The weight in this context is
a value assigned to a feature by explainer, which indicates how much does the feature
pushes the output of the classifier to the positive or negative side. Feature order in
explanation is based on the absolute value of feature weight.

The explanation is not a single set of features and weights. It is an array of explanations
for every possible class. This means that for a single given instance, LIME produces a set
of explanations. Sometimes, the actual label of an instance differs from the one predicted
by the classifier. In such cases, it is useful to have all explanations computed, so one can
compare how much one of the original class differs from the one predicted by a classifier.

2.3 SHapley Additive exPlanations

SHAP stands for SHapley Additive exPlanations[29]. It is also a post-hoc interpretation
method that performs interpretation similar to LIME. The main steps are the same - gen-
erate new data, fit a simple model and use it for building feature weights [23]. SHAP
has a few differences - it uses a genetic algorithm to generate new data, and it uses the
Shapley values method [30] from game theory to compute the weights of the features.
The computation of feature X weight looks like this:
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� Get all subsets of features that do not contain X

� Compute the effect on our prediction of adding X to all those subsets

SHAP has a similar interface, and one needs to provide a dataset and class names to
train the explainer, but the outputs are different. Unlike LIME, the dataset should be
normalized. After SHAP builds an explainer - it takes a set of instances and calculates
the explanation for each of them based on the other instances. This means that SHAP
cannot be used to explain a single instance. Feature weights are computed based on the
input set, and if the input is a single instance - all features will have zero influence.

2.4 Decision Tree. Explanation path interpretation method

Decision Tree is a classifying model. It is not an explainer, thus does not provide
informative explanation. Decision Tree explanation path can be used to explain current
classification. The explanation path of Decision Tree is a set of nodes, which form a path
from the root node to the one with instance class. The number of nodes and leaves is
configured before the classifier is trained. The explanation path shows significant features
that are used during classification. It does not have the essential feature weights, and the
order of features is basically the structure of the tree.

2.5 Unified way to interpret explanation results

The simple structure of LIME interpretation results is easy to understand and contains all
the necessary information for instance explanation. This format of results was chosen to
be the unified way of interpret the explanations of both methods. The initial explanation
results of LIME and SHAP look different, and it is not easy to compare the results. Thus,
one of the method’s results must be transformed to the type of another method. The
goal of unifying explanation results is to understand how LIME library builds explanation
graphs and transform SHAP result into LIME format.

An example in presented in Figure 1. In this thesis, all outputs are programmed to look
like this one, so it is essential to understand them. On the top of the graph is the class’
name, or sometimes class id from one to eight. The x-axis is the feature weight, and the
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y-axis is the feature name. For a better view, positive and negative weights are colored in
green and red. Features along the y-axis are sorted by descending based on their absolute
weight value. The number of features usually ten. This constant was used through all
the experiments in this thesis, and the number of features in a single explanation is up to
ten. SHAP does not have a minimal feature count requirement, and occasionally explains
instances with less than ten features.

Figure 1. A sample output of LIME interpretation .
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3 Methodology

3.1 Dataset

The thesis research process consisted of several experiments conducted on a dataset of
7062606 samples, which have 115 features. The sample is the data of traffic during nor-
mal device activity, during Gafgyt and Mirai attacks. For each of these classes, they are
divided into subclasses which are located in separate files with specific types of traffic
[31]:

� Gafgyt:

1. Scan: Scanning the network for vulnerable devices

2. Junk: Sending spam data

3. UDP: UDP flooding

4. TCP: TCP flooding

5. COMBO: Sending spam data and opening a connection to a specified IP ad-
dress and port

� Mirai:

1. Scan: Scanning the network for vulnerable devices

2. Ack: Ack flooding

3. UDP: UDP flooding

4. Syn: Syn flooding

5. UDPplain: UDP flooding with fewer options, optimized for higher PPS

� Benign: normal traffic during idle work of the device

During most experiments test dataset has been divided into eight classes. Some classes
have Mirai and Gafgyt subclasses merged. Only the same attack types have been merged
into a single class and it was done in order to train a machine learning model to distin-
guish attack types, not the specific malware type. Each of these classes represent random
samples from specific files, and refer to a specific type of traffic.

1. ack: Mirai ack flooding
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2. syn: Mirai syn flooding

3. udp: Gafgyt udp flooding, Mirai UDP and UDPplain files

4. tcp: Gafgyt tcp flooding

5. junk: Gafgyt spam data

6. combo: Gafgyt COMBO files

7. scan: Mirai scanning

8. benign: benign traffic of all devices mixed

3.2 Classifier selection

To select the classifier for following experiments - four basic classification algorithms are
picked. These are Support Vector Classifier(SVC) [32], K-Nearest Neighbors(KNN) [33],
Decision Tree [34] and Logistic Regression [35]. Listed classifiers are selected, because
they we used in paper [3] for botnet classification before. Also, they are a popular solution
for classification, they are easy to understand, easy to implement and easy to train. Based
on the standard metrics like accuracy, precision and recall, the model is selected. For
selecting the best classifier the dataset was divided into two classes, which are benign and
malicious traffic.

3.3 Dataset feature selection

The paper [36] contains various feature selection techniques, but only one has to be cho-
sen. Chi-squared χ2 [37] and Fisher score[38] algorithms were chosen, because they are
relatively accessible and their implementation is easy to use. Fisher score is selected for
feature selection because its results are prevalent among feature selection terms. Since
this is a side research and not the part of benchmark - no extra work was dedicated to
choose the feature selection algorithm. The paper [8] contains Fisher score results for the
same dataset. These results match with the ones described in Feature selection section.

"The key idea of the Fisher score is to find a subset of features, such that in the data space
spanned by the selected features, the distances between data points in different classes are
as large as possible, while the distances between data points in the same class are as small
as possible" [39].

25



Let µ
j

k and σ
j

k the mean and standard deviation of k-th class, corresponding to the j-th
feature. Let c be the number of classes, and nk is the number of samples, which belong to
the k-th class. Let µ j and σ j denote the mean and standard deviation of the whole data
set corresponding to the j-th feature. Then the Fisher score of the j-th feature is computed
below [39],
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3.4 LIME/SHAP explanation analysis

In this section, various experiments with LIME and SHAP are conducted. Terms "all
class" and "one class" results are used to distinguish results.

"All class" is a result of the experiment conducted on the entire dataset. Samples for such
experiments are randomly selected without any criteria or filters from the dataset.

"One class" means that samples for the current experiment have been taken from a
single class data. Usually, such experiments are being compared with "all class" results
during the research of feature weights and feature order. This is done in order to see the
difference in results of the same experiment while using samples of a single class versus
samples from different classes.

For each explainer, several experiments have been conducted to gather the data about the
following:

1. Explainer feature selection. Explainers select a set of features for an interpretation
of an instance. These features form the explanation, so which one of them is be-
ing selected is an important statistic. Which features are being selected the most
for "all class" explanations? Which features are being selected the most for "one
class" explanations? Does LIME and SHAP select the same features for explaining
particular classes?
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2. Feature weights. Weights are another important part of the explanation. This task is
about analyzing feature weights values, how are the distributed. Is there a difference
in feature weights for different classes. What is the difference in feature weights
of LIME and SHAP for the same samples? Do "all class" results differ from "once
class" results?

3. Explaining points close to the decision boundary1. A subset of samples is selected,
closer to the decision boundary. Explanations of these sample are compared with
the samples from the main distribution. Statistics is selected from this comparison,
that can be summarized and plotted.

3.5 LIME and SHAP and Decision Tree comparison

Decision Tree is a classifier for almost all experiments. LIME and SHAP use it as classi-
fication model only, for them it is a "black box" model, like any other. On the other hand,
for this study Decision Tree also used to collect explanation path. Since Decision Tree
is used as a classifier, all the explanation paths for every experiment is being computed
during classification and interpretation by LIME or SHAP. Thus, after a sample had been
explained - not only interpreters’ results are ready, but an explanation path as well, which
is extracted from the Decision Tree classification. The explanation path does not have
feature weights, it only contains the used features and their order. Other Decision Tree
data, like Gini Index or Entropy cannot be used to compare with LIME or SHAP feature
weights. These are measures of disorder and how often a random sample is incorrectly
classified, while interpreter feature weights measure how does a particular feature influ-
ence overall classification result for the sample. Thus, only feature selection and feature
order is compared with LIME and SHAP.

3.6 Metrics

There are a few metrics that are applicable to thesis experiments. These are existing
metrics, their definitions have been taken from the [11] and does not contain any specific
formulas.

1https://courses.cs.ttu.ee/w/images/6/69/Lecture_13_Trace_Explain_Interpret_2020.pdf
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3.6.1 Consistency

Consistency metric is about comparing the explanation of the same sample while using
different classification models. These models should be trained on the same dataset and
have similar accuracy. If the explanations of compared models are similar, then the ex-
plainer is considered highly consistent[40].

3.6.2 Novelty

Novelty metric is about comparing the explanations of an instance from the training data
distribution, and an instance which is far away from the training data distribution. Clas-
sification model might provide incorrect prediction, which will affect the explanation. If
the explainer reflects the difference between the two instances - it is considered to satisfy
novelty metric[40].

3.6.3 Sensitivity

Sensitivity metric is about explaining two instances from different classes, but they should
differ only in a single feature value. If this feature is reflected in the explanation of these
instances - explainer is considered sensitive[41].

3.6.4 Stability

Stability is about explaining similar instances of the same class, using the same classifi-
cation model. If explaining similar instances produces similar explanations - explainer is
considered stable[40].

3.7 Levenshtein distance

There is another metric of comparing explanation - Levenshtein distance. Originally this
method is not used to compare strings, not explanations. However, it is used a measure
of similarity between explanations. For this purpose explanations are transformed into
strings. The Levenshtein distance between two words is the minimum number of single-
character edits (insertions, deletions or substitutions) required to change one word into
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the other.1. "The greater the Levenshtein distance, the more different the strings are" [42].
When applies to explanations - it will measure the difference between two explanations.

1https://en.wikipedia.org/wiki/Levenshtein_distance
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4 Solution

4.1 Classifier selection

After calculating the classification score for each of the selected classifiers, each of them
had accuracy over 98%, displayed in the Table 2. Classifiers used two classes: benign
and malicious. The training set consist of 160 000 samples and the test set is 40 000 sam-
ples. All samples are randomly selected. Original distribution of benign and malicious
data is 50%-50%, this proportion is the same in both train and test datasets. Accuracy
results were high, so precision and recall are calculated to check if model does not overfit
[43]. All values were very high. Another experiment is conducted where the classifier’s
training set has been divided by benign/malicious with different proportions. At the start,
a training set was 50% malicious data, 50% benign, but in order to test classifier perfor-
mance with different distributions, this percentage has been changed several times. The
results of this experiment presented in Table 2.

Table 2. Classifiers stats for different distribution of benign-malicious data.

All models have very good accuracy for this classification task. In order to understand
the nature of this accuracy, new tests were conducted. Training set samples were plotted
on a 3D graph, which showed samples location in space. Different combinations of three
features for plots were tested and plots reviewed by a person. Also, 2D graphs of feature
values for benign and malicious data are plotted in order to see the feature difference
between these classes. Not only the vast difference between features exists, but some
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features of malicious traffic have constant values. To be precise - 26% of features from
Mirai traffic has a constant value. This means that classifiers can easily distinguish data
by these constant features, which explains a high accuracy. Features with non-constant
values also have a high variance of values between benign and malicious classes.

Since all of the selected models have so good scores - accuracy is not a satisfying criteria
for classifier selection. The number of classes is changed to eights, and classification
models became bigger, which increased interpretation time. As was mentioned before -
interpretation is a rather computationally intensive task, which means it is best to pick
the smallest model. The eight classes represent the eight types of traffic, used in the
database. Thus, further classifiers meant to distinguish traffic types. Decision Tree is
selected, because a full version of this model takes only 4.72 seconds to interpret by
SHAP. Other models have much higher time, KNN requires 201.50 seconds to explain a
single instance. Also, limiting Decision Tree to 20 leaves decreased accuracy to 94%, but
also explanation time to 4.01 seconds. Since this study is about explanations - the slight
loss in accuracy is acceptable, as now it is possible to explain more instances at the same
time period. Thus, a Decision Tree model with 20 leaves is used for all the experiments
in this study. LIME explains instances quickly, it takes approximately 0.45 second to
explain a single instance. The hardware used for explanations is Intel i7-7700HQ CPU
and 16Gb of RAM.

Initial Decision Tree model was relatively simple, but there was an option to simplify
classifiers without reducing the number of features - limit the tree itself. After several
experiments, it was found that the best way to limit the tree was to limit leaves count.
Other options, like limiting the number of nodes or limiting the depth of the tree were
producing a slightly worse model in terms of classification. Limiting the number of
leaves made a tree more readable for a person. It is possible and simple to manually track
a random instance explanation path, if such action is required.
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Figure 2. A sample Decision Tree model.

Figure 2 shows a sample Decision Tree model which is relatively small and has 94%
prediction accuracy. Only the structure is displayed.

4.2 Feature selection

The main results of feature selection were taken from Fisher score algorithms. Top 10
features selected by Fisher score are:

Feature name Fisher score

MI_dir_L0.01_weight 1.6701711286616112

H_L0.01_weight 1.6701709777546905

MI_dir_L0.1_weight 1.1319683902655353

H_L0.1_weight 1.1319683445113773

MI_dir_L1_weight 0.9136958345568814

H_L1_weight 0.9136958345216508

MI_dir_L5_weight 0.9041175671598903

H_L5_weight 0.9041175671598903

MI_dir_L3_weight 0.8951098960478836

H_L3_weight 0.8951098960478836

Table 3. Top 10 Fisher score features.

These ten features can be used to distinguish and classify samples between the main eight
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classes effectively. For the most complete interpretation results of samples thought the
dataset - all 115 features had to be used. In specific cases for comparing interpretations
between different machine learning models - these models could be trained on a dataset
limited to selected features. These are experiments which compare interpretations of
different classification models, for the same instances.

4.3 LIME/SHAP explanation analysis

4.3.1 LIME Feature selection

� "All class" results
It was mentioned earlier that LIME has explanation results for every class while
explaining a single instance. For example, a results of LIME explanation for two
classes with five features look like this:

0: [(9, -0.07845702205219122), 1: [(9, 0.12172771209813148),

(24, -0.07729221580720647), (24, 0.1170737221747649),

(12, -0.048070758341648805), (12, 0.07684796957194374),

(21, -0.042675126997335645), (27, 0.0714998775720784),

(6, -0.04151511731223725)], (6, 0.06206422929370492)]

Where 0 and 1 are id of class, and a list of tuples are feature weights. For example,
the first row contains tuple (9, -0.07845702205219122). 9 is the feature id, and
-0.07845702205219122 is the feature weight. Since it is the first in the list - its rank
is 1, the highest.
For all further experiments, the parameters for LIME will remain the same: dataset
with all 115 features and top ten features to explain. As presented above, in the
example of LIME explanation - for a single instance LIME provides explanations
for all classes. In order to use all the computed data for analysis, statistics about
feature selection for LIME is divided into two separate results sets.

1. "Target result" results set - is the results gathered only from the LIME expla-
nation of an original class of the instance.

2. "All results" results set is built from all LIME class explanations. In the exam-
ple above, LIME returned to classes explanations for a single instance. While
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"Target results" will count only explanations of the instance class, "All results"
will take both explanations and extract feature data for current experiment.

Results are presented in the Table 4, where each feature has a percentage which
indicates how many times out of all explanations it has been selected for "all class"
explanation. These are top five features, selected by LIME.

Feature name Target result All results

HH_L3_weight 79.75% 87.18%

H_L0.01_mean 75.88% 75.27%

H_L0.1_weight 64.38% 63.66%

H_L0.01_weight 56.25% 63.19%

MI_dir_L0.01_weight 52.65% 57.78%

Table 4. LIME feature selection comparison.

� "One class" results
In this experiment, results have been grouped by class and each LIME explanation
now belongs to a certain class, same as instance does. Every class has a set of
features that is selected for explaining its instances. In the Table 5 presented top
five features selected by LIME. Every class has at least one feature, that has been
selected for every explanation of that class. These features have 100% selection.
Fisher score is included in the table to compare if features with the highest selection
have high Fisher score. This would mean, that for explanations LIME selects
features that are best for distinguishing dataset classes.

Class name Feature name Selection % Fisher score

ack

H_L0.01_mean 100 0.751917

MI_dir_L0.01_weight 55 1.670171

HH_L0.1_magnitude 46 0.258556

HH_L0.1_mean 35 0.333871

HpHp_L3_mean 33 0.328307

34



Class name Feature name Selection % Fisher score

benign

MI_dir_L0.01_weight 100 1.670171

MI_dir_L0.1_weight 91 1.131968

HH_L3_weight 90 0.176405

H_L0.1_weight 88 1.131968

HpHp_L0.01_weight 83 0.049858

combo

HH_L3_weight 100 0.176405

MI_dir_L0.1_variance 100 0.462327

H_L1_mean 100 0.650357

H_L0.1_weight 96 1.131968

MI_dir_L1_variance 67 0.545364

junk

H_L1_mean 100 0.650357

MI_dir_L0.1_variance 100 0.462327

HH_L3_weight 100 0.176405

H_L0.01_mean 99 0.751917

H_L0.1_weight 96 1.131968

scan

H_L0.1_weight 100 1.131968

HH_L3_weight 100 0.176405

MI_dir_L0.1_weight 99 1.131968

H_L0.01_mean 96 0.751917

MI_dir_L0.01_weight 84 1.670171

syn

H_L1_mean 100 0.650357

H_L0.01_mean 98 0.751917

HpHp_L0.01_weight 95 0.049858

H_L0.1_weight 91 1.131968

H_L0.01_weight 88 1.670171

tcp

H_L0.01_weight 100 1.670171

HpHp_L0.01_weight 100 0.049858

HH_L3_weight 100 0.176405

H_L0.01_mean 94 0.751917

HH_jit_L0.01_mean 38 0.537979

udp

H_L0.01_mean 100 0.751917

H_L0.01_weight 92 1.670171

HH_L3_weight 60 0.176405

HH_jit_L5_mean 58 0.484593

HpHp_L0.01_weight 46 0.049858

Table 5. LIME features for every class.
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Statistics about features that has less than 100% selection frequency shows interest-
ing results. After the first features that are selected every time, following features’
selection percentage decreases very quickly. The best way it can be displayed - in
plots. Figures 3-6 show how feature selection drops with the increase of feature
rank. X-axis is the order of a feature in explanation. Y-axis is the percentage of its
selection through all explanations in the experiment. For example, "ack" class has
a quick drop from 100% to 55% and then 46%. This means, that fewer features
required to interpret "ack" classifications, as the only the first rank feature is used
in all explanations. On the other hand, "combo" class has top three feature ranks
in all explanations. The fourth rank has 96% and the fifth 67%. Which indicates,
that first four features explain "combo" class, while the fifth has a big fall in feature
selection percentage.
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Figure 3. ack feature selection.

Feature rank

Figure 4. benign feature selection.
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Figure 5. combo feature selection.

Feature rank

Figure 6. udp feature selection.

4.3.2 SHAP Feature selection

All parameters for SHAP experiments are the same as for LIME. The same dataset with
the same samples order. Eights classes, 10 000 instances in each class, feature count is
115. SHAP does not have a "number of features to explain" parameter and sets it itself,
which is why in some of the experiments SHAP used less than ten features.

� "All class" results
Only top 5 features are selected from SHAP explanations for "all class" results.
SHAP does not have the explanations for every class, like LIME does. Thus, current
results are just the feature selection through SHAP explanations. Results presented
in the Table 6.

Feature name Feature selection

HH_L3_weight 34.38%

HH_jit_L0.01_weight 25.63%

MI_dir_L0.01_weight 25.25%

MI_dir_L0.1_weight 25.13%

H_L0.01_variance 24.38%

Table 6. Top 5 features picked by SHAP.
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� "One class" results.
SHAP selects less than five features for explaining some classes. Classes
like "benign", "scan" and "tcp" have only three features. Class "syn" has
only two. On the other hand, classes "combo", "junk" and "udp" have more five
features and they all are presented in the Table 7. Fisher scores are included as well.

Class name Feature name selection % Fisher score

ack

HH_L0.1_magnitude 100 0.258556

HH_jit_L5_mean 100 0.484593

HH_L3_weight 69 0.176405

HH_jit_L0.01_weight 1 0.302623

benign

HH_L3_weight 100 0.176405

H_L0.01_weight 46 1.670171

H_L1_mean 8 0.650357

combo

HH_jit_L0.01_weight 100 0.302623

HpHp_L0.01_weight 98 0.049858

MI_dir_L0.01_weight 94 1.670171

HH_L0.1_weight 94 0.208163

H_L0.01_variance 93 0.500298

MI_dir_L1_variance 82 0.545364

H_L1_weight 26 0.913696

junk

MI_dir_L0.01_weight 100 1.670171

H_L0.01_variance 99 0.500298

H_L1_weight 83 0.913696

HH_L0.1_weight 81 0.208163

H_L0.01_mean 81 0.751917

HH_L3_weight 77 0.176405

MI_dir_L0.1_variance 75 0.462327

scan

MI_dir_L0.1_weight 100 1.131968

MI_dir_L0.01_weight 7 1.670171

HpHp_L0.01_weight 6 0.049858

syn
HH_jit_L0.01_weight 100 0.302623

HH_L3_weight 100 0.176405

tcp

MI_dir_L0.01_weight 100 1.670171

HH_L0.1_weight 19 0.208163

HpHp_L0.01_weight 11 0.049858
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Class name Feature name Selection % Fisher score

udp

H_L0.01_mean 100 0.751917

H_L0.01_weight 100 1.670171

MI_dir_L0.1_weight 100 1.131968

H_L1_mean 99 0.650357

H_L0.1_weight 99 1.131968

MI_dir_L0.1_variance 26 0.462327

H_L3_variance 9 0.464862

Table 7. SHAP features for explaining every class.

Same as LIME, SHAP has a quick decrease of the feature selection while going
along the feature order. When the feature has a lower rank - the number of times it
is picked decreases.
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Figure 7. ack feature selection.

Feature rank

Figure 8. junk feature selection.

39



Feature rank

U
sa

ge
pe

rc
en

ta
ge

Figure 9. scan feature selection.

Feature rank

Figure 10. udp feature selection.

Feature selection for some classes is displayed in Figures 7-10. SHAP has a specific
feature selection patterns for each class. For example, "junk" class has all features with
relatively high selection percentage - 75% and higher, while "scan" class is explained by
only three ranks, and the second and third have 7% and 6% feature selection. Which
means, that SHAP explain most of "scan" instances with the first rank feature.

Both explainers did not have a single feature, that has been used 100% times for "all
class" explanations. However, experiments by class revealed that they both select the
same features for explaining specific classes, also known as "one class" explanations.
LIME and SHAP have a least one feature that is present in all explanations for a single
class. LIME selects a set of features, which it uses for every sample, and the rest of
features that are selected have much lower selection frequency. SHAP has similar behav-
ior, but feature selection drops faster for some classes. When LIME has fallen in feature
selection from 100% to approximately 50-60%, SHAP has a drop from 100% to approx-
imately 15-20% or less. This means that SHAP uses lower quantity of different features
for explanations of classes like "ack", "scan" or "syn". No connection between feature
selection and Fisher score is found. Features, selected by LIME and SHAP to explain
100% instances of a particular class does not necessary have the highest Fisher score.
For example, LIME selects the feature H_L0.1_weight 91% times to explain "syn" class,
and it has higher Fisher score than H_L1_mean, which is selected 100% times. SHAP
selects MI_dir_L0.01_weight only 7% for "scan" class, but it has higher Fisher score
than MI_dir_L0.1_weight, which is selected 100% times. This leads to a conclusion,
that LIME and SHAP have different method for distinguishing classes, than Fisher score.
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4.3.3 LIME Feature weights

Experiment with gathering information about LIME feature weights consists of several
parts:

1. Pick top features from LIME explanations

2. Extract feature weights from the explanations

3. Interpret results

4. Repeat for "all class" and "one class"

"All class" experiment with LIME feature weights involved top five features mentioned in
LIME Feature selection. Results are collected in a form of table and histograms. A table
contains mean values, standard deviation and a range of values for specific feature. A
histogram bars represent a number of samples, explained by LIME with specific feature
weight. While table provides an overview of feature weights distribution, the histogram
provides details of which weight was used how often. A histogram contains three types
of bars: "top 1", "top 2" and "top 3". These names mean that each bar represent feature
weights of a certain rank. For example, "top 1" represent feature weights, while this
feature has the first rank. When the feature has the second or the third rank inside
explanation, its weights fall under "top 2" and "top 3" category respectively.

Table 8 contains results of feature weights experiment. Standard deviation for all features
is high compare to mean values. For example, feature MI_dir_L0.01_weight has ap-
proximately 20 times higher standard deviation than mean value. This means that feature
weights are dispersed through the range of value from -0.121343 to 0.089513, and not
concentrated around the mean value.
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Feature name Mean Std Value range

H_L0.01_mean 0.002044 0.031956 [-0.031558, 0.078971]

HH_L3_weight 0.002823 0.064772 [-0.108169, 0.135268]

MI_dir_L0.01_weight -0.003846 0.063329 [-0.121343, 0.089513]

H_L0.01_weight -0.007813 0.035421 [-0.071908, 0.036470]

H_L0.1_weight -0.001354 0.054600 [-0.116605, 0.052935]

Table 8. Top 5 LIME features weights.

Histograms are built for every class, but only one sample is presented due to high number
of images. X-axis is the feature weight, y-axis is the number of explanation, and different
bars show the feature weights distribution through the range. As an example, in Figure
11 presented feature MI_dir_L0.01_weight, which was just mentioned in the Table 8,
as an example. This visualization shows how feature weights are distributed and helps
understand the nature mean and std values for this particular feature.

Figure 11 shows, that there are several groups of explanations using feature
MI_dir_L0.01_weight, and each group has its own range of different weight.
Blue bars of the left represent explanations where this feature had lower weights and was
used at the first rank. Other bars to the right represent explanations with much different
weight, which explains the high value of std, compare to mean.
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Figure 11. MI_dir_L0.01_weight feature weights .

Results about "all class" feature weights for LIME show, that all of the most used features
have high standard deviation. This might be related to the nature of current experiment.
Random sample were taken from all classes, and different classes might have different
weights for the same feature. "One class" experiment will show if the standard deviation
is smaller compare to "all class".

"One class" results have the same structure as "all class". They consist of the table
with feature weights data and histograms that visualize these numbers, showing weights
distribution. Results are being calculated for features, mentioned in LIME Feature
selection for "one class" explanations. Results are presented in the Table 9, and features
within a single class are sorted based on absolute mean value of feature weight. Weights
can be negative, which represent a side to which feature is pushing the classification
output. The most influential features in the explanation have the highest absolute weight
values.
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Class name Feature name Selection Mean Std Value range

ack

H_L0.01_mean 100% 0.011946 0.001893 [0.008429, 0.01711]

MI_dir_L0.01_weight 55% 0.011381 0.001441 [0.008615, 0.014292]

HH_L0.1_magnitude 46% 0.006375 0.001037 [0.004735, 0.008819]

HpHp_L3_mean 33% 0.00561 0.001048 [0.001773, 0.007583]

HH_L0.1_mean 35% 0.005435 0.001377 [-0.001299, 0.006926]

benign

MI_dir_L0.01_weight 99% -0.103093 0.026648 [-0.121344, -0.0]

HpHp_L0.01_weight 83% 0.04902 0.003989 [0.038841, 0.057404]

HH_L3_weight 90% -0.023933 0.003424 [-0.031715, -0.015561]

MI_dir_L0.1_weight 91% -0.02252 0.004285 [-0.033755, -0.012427]

H_L0.1_weight 88% -0.014905 0.004006 [-0.02632, -0.007177]

combo

HH_L3_weight 100% 0.122796 0.005623 [0.107129, 0.135269]

MI_dir_L0.1_variance 100% -0.037672 0.00451 [-0.050889, -0.029252]

H_L0.1_weight 96% 0.035491 0.00401 [0.025537, 0.043736]

H_L1_mean 100% 0.033783 0.003867 [0.025973, 0.044099]

MI_dir_L1_variance 67% -0.016444 0.003453 [-0.02661, -0.009902]

junk

H_L0.1_weight 96% 0.044909 0.003644 [0.032129, 0.052935]

H_L1_mean 100% 0.04419 0.003638 [0.035403, 0.056103]

HH_L3_weight 100% 0.04061 0.005263 [0.02987, 0.051256]

MI_dir_L0.1_variance 100% 0.036487 0.003867 [0.02593, 0.048057]

H_L0.01_mean 99% -0.02321 0.003519 [-0.031558, -0.013882]

scan

H_L0.1_weight 100% -0.103595 0.005065 [-0.116606, -0.085588]

HH_L3_weight 100% -0.095576 0.004908 [-0.10817, -0.081819]

MI_dir_L0.01_weight 84% 0.075591 0.005294 [0.063292, 0.089514]

MI_dir_L0.1_weight 99% 0.020653 0.004445 [0.011158, 0.032983]

H_L0.01_mean 96% -0.019509 0.004098 [-0.02779, -0.009011]

syn

H_L1_mean 100% -0.077897 0.004441 [-0.091125, -0.067054]

HpHp_L0.01_weight 95% -0.051892 0.003758 [-0.060472, -0.044547]

H_L0.1_weight 91% 0.036419 0.003109 [0.028274, 0.043183]

H_L0.01_weight 88% 0.018911 0.002881 [0.011859, 0.02539]

H_L0.01_mean 98% -0.016004 0.003251 [-0.025371, -0.008459]

tcp

H_L0.01_weight 100% -0.0648 0.002931 [-0.071908, -0.057105]

HpHp_L0.01_weight 100% -0.033323 0.002161 [-0.038459, -0.027547]

HH_L3_weight 100% -0.011726 0.001976 [-0.015954, -0.007297]

H_L0.01_mean 94% -0.009103 0.002084 [-0.014676, -0.004069]

HH_jit_L0.01_mean 38% 0.002034 0.003001 [-0.004137, 0.006439]
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Class name Feature name Selection Mean Std Value range

udp

H_L0.01_mean 100% 0.068971 0.004663 [0.054964, 0.078971]

HpHp_L0.01_weight 46% -0.044101 0.002609 [-0.049587, -0.037559]

H_L0.01_weight 92% -0.024332 0.003551 [-0.032546, -0.014157]

HH_L3_weight 60% -0.014559 0.002458 [-0.019259, -0.008337]

HH_jit_L5_mean 58% -0.008404 0.002269 [-0.01439, -0.00336]

Table 9. LIME feature weights for every class.

The Table 9 shows that features weights for a single class explanations are much less
dispersed compare to the "all class" results. Standard deviation in "one class" feature
weights is at least 10 times lower than in "all class" results. For example, let us examine
one of the features from the table: feature H_L0.01_mean for explaining "ack" class has
std = 0.001893, while in "all class" results its std was 0.031956. Another example, feature
H_L0.01_weight with std = 0.054600 in "all class" explanations, has std = 0.002931 for
explaining "tcp" class. Figure 12 visualizes feature weights distribution in "tcp" explana-
tions. This means, that feature weights does not differ very much within explanations of
samples from the same class. And since feature weights is the most important part of the
explanation - this leads to a conclusion, that LIME explanations of the same features are
similar within one class.
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Figure 12. H_L0.01_weight weights sample within tcp class.
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As a conclusion - the features used by LIME to explain random samples through the
dataset can have various weights. On the other hand, features for explaining instances of
specific classes have more similar weights, more equally distributed through the range of
feature weights values. This mean, that LIME consistently explain instances of the same
class with the same feature and the same feature weight.

4.3.4 SHAP Feature weights

The solution to experiments with SHAP results is practically the same as LIME experi-
ments. The only difference is that for SHAP, "all class" experiments are not conducted.
In SHAP Feature selection section, "all class" experiment for SHAP showed that SHAP
has very low feature selection for top five features, of maximum 34.38% and lower. On
the other hand - "one class" SHAP experiment results are similar to the LIME results.
SHAP has a feature, that is always used to explain every class. Since analysis of "all
class" features with such low selection would not bring useful results - only "one class"
feature weights are analyzed.

Results are collected and presented in the same way as for LIME. A table with feature
weights data and histograms to visualize the weights distribution. Table 10 contains
SHAP feature weights data for each feature, mentioned in SHAP Feature selection section
for "one class" explanation.
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Class name Feature name Selection Mean Std Value range

ack

HH_jit_L0.01_weight 1% 0.706184 0.0 [0.706184, 0.706184]

HH_L3_weight 69% 0.010278 0.465264 [-0.05, 3.846807]

HH_jit_L5_mean 100% -0.007405 1.619219 [-2.423188, 1.085]

HH_L0.1_magnitude 100% -0.006748 1.596621 [-1.090043, 2.373188]

benign

MI_dir_L0.01_weight 100% -0.071443 0.440261 [-0.511283, 0.706184]

HH_L0.1_weight 19% 0.008389 0.129835 [-0.43274, 0.129241]

HpHp_L0.01_weight 11% -0.002611 0.992341 [-0.93294, 0.816729]

combo

H_L1_weight 26% 0.006579 0.073155 [-0.084593, 0.295278]

HH_L0.1_weight 94% -0.0038 0.111854 [-0.386689, 0.051642]

MI_dir_L1_variance 82% 0.001451 0.086204 [-0.253193, 0.06105]

HH_jit_L0.01_weight 100% -0.001407 0.418 [-0.4558, 0.511372]

MI_dir_L0.01_weight 94% -0.00108 0.118486 [-0.200467, 0.158275]

junk

HH_L3_weight 77% 0.001913 0.047417 [-0.259534, 0.020946]

MI_dir_L0.1_variance 75% 0.000655 0.083981 [-0.023595, 0.359342]

H_L1_weight 83% -0.000587 0.104621 [-0.236393, 0.253788]

MI_dir_L0.01_weight 100% 0.000185 0.157519 [-0.101505, 0.329496]

H_L0.01_variance 99% -8.2e-05 0.222097 [-0.462254, 0.142532]

scan

MI_dir_L0.1_weight 100% -1.6245249 0.292481 [-2.91, 0.03]

MI_dir_L0.01_weight 7% 0.003912 0.051962 [-0.06, 0.045]

HpHp_L0.01_weight 6% 0.001449 0.042426 [-0.03, 0.06]

syn
HH_jit_L0.01_weight 100% 6.8e-05 0.210462 [-0.461225, 0.65482]

HH_L3_weight 100% -6.8e-05 0.325007 [-1.485957, 0.140942]

tcp

HH_L3_weight 100% 0.0277183 0.410629 [-1.227391, 3.846807]

H_L0.01_weight 46% 0.00298 0.074301 [-0.182363, 0.110492]

H_L1_mean 8% -0.000183 0.083291 [-0.113287, 0.189017]

udp

MI_dir_L0.1_variance 26% -0.006918 0.040148 [-0.077389, 0.060504]

H_L0.01_mean 100% -0.001575 1.201042 [-1.51413, 1.027618]

MI_dir_L0.1_weight 100% 0.001142 0.123386 [-0.217381, 0.166731]

H_L0.01_weight 100% 0.000808 0.882964 [-0.818789, 1.14688]

H_L3_variance 9% -0.000782 0.032182 [-0.044359, 0.031918]

Table 10. SHAP feature weights for every class.

Standard deviation for every class is very high compare to LIME results. For example,
class "ack" has feature HH_L0.1_magnitude with std = 1.596621. In Figure 13 it is
displayed, that explanations with this feature are divided into two parts. In the first
part SHAP assigned this feature with the weight of -1.090043. In the second part,
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HH_L0.1_magnitude has the weight of 2.373188. These are the only two major
selections of this feature in explanations by SHAP, hence the std is high.
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Figure 13. HH_L0.1_magnitude weights sample for "ack" class .

Another example - feature MI_dir_L0.1_weight for "scan" class. Details of feature
weights and their selections in various explanations displayed in the Figure 14. The most
number of explanations involving current feature has the same feature weight. A few
explanations, presented by the little bar on the left is an exception.
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Figure 14. MI_dir_L0.1_weight weights sample for "scan" class .

SHAP feature weights experiment showed, that features can be assigned a very different
weight, even it is used to explain the samples of the same class. SHAP assigns similar
weight to the feature, while the feature rank remains the same through various explana-
tions of the same class. However, if the rank of the feature inside explanation is changes
- its weight may vary significantly.

4.3.5 Comparing LIME and SHAP feature weights

In the previous chapter LIME and SHAP feature weights were analyzed separately. Two
types of experiments for each method were conducted - "all class" explanations feature
weights and "one class" explanations. For "all class" explanations both methods have
very different feature weights, which is explained by the different classes explanations
for every feature. For "one class" explanations LIME had more similar weights for a
single class, while SHAP had less similar weights. However, SHAP weights had less
variance within a rank.
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For comparing LIME and SHAP, the same two types of experiments are conducted. For
"all class" explanations two experiments are conducted to compare LIME and SHAP fea-
ture weights. The first one contains LIME top features, and for them - LIME and SHAP
feature weights data side by side. Table 11 contains results of this experiment, which
provides an overview of difference in feature weights assignment by two interpretability
methods.

Feature name Method Mean Std Value range

HH_L3_weight
LIME 0.002127 0.306949 [-1.485957, 3.846807]

SHAP 0.002044 0.031956 [-0.031558, 0.078971]

H_L0.01_mean
LIME 0.002520 0.864349 [-1.514130, 1.027618]

SHAP 0.002823 0.064772 [-0.108169, 0.135268]

H_L0.1_weight
LIME 0.003727 0.095040 [-0.154182, 0.130368]

SHAP -0.003846 0.063329 [-0.121343, 0.089513]

H_L0.01_weight
LIME 0.000825 0.870011 [-0.818789, 1.146880]

SHAP -0.007813 0.035421 [-0.071908, 0.036470]

MI_dir_L0.01_weight
LIME -0.000122 0.137576 [-0.200467, 0.329496]

SHAP -0.001354 0.054600 [-0.116605, 0.052935]

Table 11. Top 5 LIME "all class" explanations features compare.

The same experiment is conducted for top five features, used by SHAP in "all class"
explanations. Results are presented in the Table 12.
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Feature name Method Mean Std Value range

HH_L3_weight
LIME 0.002823 0.064772 [-0.108169, 0.135269]

SHAP 0.002127 0.306949 [-1.485956, 3.846807]

HH_jit_L0.01_weight
LIME 0.003091 0.012099 [-0.019955, 0.022721]

SHAP 0.002676 0.330568 [-0.461225, 0.706184]

MI_dir_L0.01_weight
LIME -0.003847 0.063329 [-0.121344, 0.089514]

SHAP -0.000122 0.137576 [-0.200467, 0.329496]

MI_dir_L0.1_weight
LIME 0.000301 0.018635 [-0.033755, 0.032983]

SHAP 0.000412 0.223918 [-2.910000, 0.166731]

H_L0.01_variance
LIME 0.002353 0.012426 [-0.021661, 0.022276]

SHAP -0.000598 0.207733 [-0.462254, 0.390308]

Table 12. Top 5 SHAP "all class" explanations features compare.

These two experiment results demonstrate the differences in the weight value ranges.
For the next "one class" experiments this is a problem, as it is difficult to compare
mean and std of values from different value distributions. For example, in the Table 12,
feature HH_L3_weight has very similar mean values for LIME and SHAP: 0.002823
and 0.002127. But the range of all possible weight for each method varied greatly:
[-0.108169, 0.135269] for LIME and [-1.485956, 3.846807] for SHAP.

In order to compare feature weights for "one class" explanation, weights have been
rescaled to a range from -1 to 1. Next experiments compare LIME and SHAP weights
for every class. Some weights are missing, as interpretation methods do not always use
the same feature for a specific class explanation. Thus, in such cases only the method
which has used a particular features is listed, and the other one is skipped. The first
experiment is about top LIME features for explaining every class and SHAP weights for
these features. Results presented in the Table 13, weights are rescaled to [-1, 1].

51



Class name Feature name Method Mean Std

ack

H_L0.01_mean LIME -0.18967403 0.43621635

HpHp_L3_mean LIME 0.32081254 0.36080531

HH_L0.1_magnitude
LIME -0.19697339 0.50785627

SHAP -0.37440232 0.92204101

HH_L0.1_mean LIME 0.63741932 0.33480289

MI_dir_L0.01_weight LIME -0.02541884 0.5075023

benign

MI_dir_L0.01_weight LIME -0.6991807 0.43921612

HpHp_L0.01_weight
LIME 0.0967261 0.42974199

SHAP -0.00261143 0.99234192

HH_L3_weight LIME -0.0365644 0.42386391

MI_dir_L0.1_weight LIME 0.05354771 0.40179158

H_L0.1_weight LIME 0.19258562 0.41850227

combo

HH_L3_weight
LIME 0.11354598 0.39960775

SHAP -0.21985252 0.41731595

MI_dir_L0.1_variance
LIME 0.22172156 0.41684135

SHAP -0.39101956 0.54283285

H_L0.1_weight LIME 0.09387159 0.4406881

H_L1_mean
LIME -0.13823738 0.42674245

SHAP -0.16023687 0.84735965

MI_dir_L1_variance
LIME 0.21698162 0.41330359

SHAP 0.62068203 0.54864536

junk

H_L1_mean
LIME -0.15096954 0.35151938

SHAP -0.29477908 0.78422856

H_L0.1_weight
LIME 0.22848561 0.35030844

SHAP -0.50654283 0.58508111

MI_dir_L0.1_variance
LIME -0.04577232 0.34955856

SHAP -0.87334386 0.4386131

HH_L3_weight
LIME 0.00440196 0.49221714

SHAP 0.86428221 0.33811408

H_L0.01_mean
LIME -0.05546914 0.39812988

SHAP -0.40716122 0.33681302

52



Class name Feature name Method Mean Std

scan

H_L0.1_weight LIME -0.1610608 0.32657657

HH_L3_weight LIME -0.04409836 0.37249468

MI_dir_L0.01_weight
LIME -0.06195428 0.40378657

SHAP 0.14285714 0.98974332

H_L0.01_mean LIME -0.11810917 0.43644021

MI_dir_L0.1_weight
LIME -0.12991022 0.40731981

SHAP 0.97959184 0.19896651

syn

H_L1_mean
LIME -0.06195428 0.40378657

SHAP -0.2349874 0.6921158

H_L0.1_weight LIME 0.0926347 0.41710584

H_L0.01_weight
LIME -0.06195428 0.40378657

SHAP 0.3934752 0.43665672

H_L0.01_mean LIME 0.10768595 0.38448248

HpHp_L0.01_weight LIME 0.07758667 0.47200932

tcp

H_L0.01_weight LIME -0.03965918 0.39598687

HpHp_L0.01_weight LIME -0.05860687 0.39600944

HH_L3_weight LIME -0.02330244 0.45656836

H_L0.01_mean LIME 0.05082059 0.39296857

HH_jit_L0.01_mean LIME 0.16685273 0.56742031

udp

H_L0.01_mean
LIME 0.16690021 0.38849355

SHAP 0.19016936 0.94505238

H_L0.01_weight
LIME -0.10662546 0.38622396

SHAP -0.16608854 0.89838525

HH_L3_weight
LIME -0.13934182 0.45012604

SHAP 0.2575248 0.89403843

HH_jit_L5_mean
LIME 0.0854724 0.4114702

SHAP -0.03266409 0.70238397

HpHp_L0.01_weight LIME -0.08777478 0.43376019

Table 13. Comparing LIME features for "one class" explanations.

When weights are rescaled to the same range, some features like H_L0.01_mean and
H_L1_mean have similar mean values for LIME and SHAP, but not all of them do. The
second experiment will compare SHAP weights for "one class" explanations with LIME
weights. Results in the Table 14.
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Class name Feature name Method Mean Std

ack

HH_L0.1_magnitude
LIME -0.19697339 0.50785627

SHAP -0.37440232 0.92204101

HH_L3_weight
LIME 0.09934655 0.53790342

SHAP -0.96906308 0.23879244

HH_jit_L5_mean
LIME -0.15322304 0.468722

SHAP 0.37722545 0.9231082

HH_jit_L0.01_weight SHAP -0.06184096 0.78364923

benign

HpHp_L0.01_weight
LIME -0.05860687 0.39600944

SHAP -0.3784743 0.9422957

HH_L0.1_weight
LIME -0.08647955 0.71963325

SHAP 0.7843832 0.33902564

MI_dir_L0.01_weight
LIME -0.699181 0.411483

SHAP -0.5806301 -0.218423

combo

MI_dir_L0.01_weight
LIME 0.0978497 0.38964512

SHAP 0.11158699 0.6605627

H_L1_weight
LIME -0.47125637 0.44418859

SHAP -0.51998705 0.38515614

HH_jit_L0.01_weight
LIME -0.34249122 0.40134431

SHAP -0.06036738 0.86437645

MI_dir_L1_variance
LIME 0.21698162 0.41330359

SHAP 0.62068203 0.54864536

HH_L0.1_weight
LIME -0.02308198 0.31691731

SHAP 0.74703427 0.51036487

junk

MI_dir_L0.1_variance
LIME -0.04577232 0.34955856

SHAP -0.87334386 0.4386131

HH_L3_weight
LIME 0.00440196 0.49221714

SHAP 0.86428221 0.33811408

MI_dir_L0.01_weight
LIME -0.01594397 0.32913888

SHAP -0.52812149 0.73094498

H_L0.01_variance
LIME 0.12019034 0.40743675

SHAP 0.52838084 0.73446289

H_L1_weight
LIME 0.50393794 0.38034928

SHAP -0.03788219 0.42686549
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Class name Feature name Method Mean Std

scan

HpHp_L0.01_weight
LIME -0.12844803 0.35861406

SHAP -0.33333333 0.94280904

MI_dir_L0.01_weight
LIME -0.06195428 0.40378657

SHAP 0.14285714 0.98974332

MI_dir_L0.1_weight
LIME -0.12991022 0.40731981

SHAP 0.97959184 0.19896651

syn

HH_jit_L0.01_weight
LIME -0.08265201 0.42068349

SHAP -0.17334233 0.37715647

HH_L3_weight
LIME -0.06524028 0.43163526

SHAP 0.82665148 0.39954216

tcp

HH_L3_weight
LIME -0.023302 0.456568

SHAP -0.7526494 -0.6771862

H_L0.01_weight
LIME 0.31132344 0.47675424

SHAP -0.16932421 0.89831184

H_L1_mean
LIME 0.03533347 0.74316546

SHAP -0.16119942 0.79181363

udp

H_L0.01_mean
LIME 0.16690021 0.38849355

SHAP 0.19016936 0.94505238

H_L0.01_weight
LIME -0.10662546 0.38622396

SHAP -0.16608854 0.89838525

MI_dir_L0.1_weight
LIME -0.14800808 0.66794417

SHAP 0.13780881 0.64244646

H_L3_variance
LIME 0.04135126 0.74185827

SHAP 0.14260438 0.84382661

MI_dir_L0.1_variance
LIME 0.36544234 0.60286534

SHAP 0.0221157 0.58230495

Table 14. Comparing SHAP features for "one class" explanations.

Results of these experiments show no connection between LIME and SHAP feature
weights assignment. These methods use different features to explain the same input in-
stances. In some cases, selected features overlap, however the weights are not similar.
Histograms are built in this experiment, in order to visualize feature weights for LIME
and SHAP side by side. In the histogram, the weights are not rescaled and used origi-
nal values. X-axis represent feature weights, y-axis represent explanations count using a
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particular weight. Each histogram contains two types of bars - LIME and SHAP. As an
example, a few histograms presented in:

� Figure 15: HH_L3_weight used by LIME to explain "junk" class

� Figure 16: H_L0.01_mean used by SHAP to explain "udp" class
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Figure 15. HH_L3_weight for "junk" class .
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Figure 16. H_L0.01_mean for "udp" class .

4.3.6 Explaining points close to decision boundary

The previous experiments were are about explaining random points from the dataset and
points from the specific class. However, points that are close to a decision boundary,
especially when there are eight classes deserve a separate experiment. The next experi-
ment objective is to find classes with a groups of instances far from the main distribution.
In most cases, class samples are grouped and located in a specific area, but classes like
"udp", "syn" and "combo" have wider distribution. "Udp" distribution has the Gafgyt udp
flooding traffic, which is far from the rest "udp" class. These samples within "udp" class
are often incorrectly classified and are displayed in the Figure 17. Red area in the bottom
represent concentration of Gafgyt udp traffic instances. Features, used for the plot are
picked from the set of most used features in "udp" explanations.
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Figure 17. "udp" data points location .

For other classes: "syn" and "combo", there is a solution in the form of a histogram which
shows prediction probability for all sample of a single class. In the Figure 18 - a sample
graph for "combo" class, with the mean value of prediction probability specified under
the graph. Prediction probability is provided after classification, by the machine learning
model.
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Figure 18. "combo" samples prediction probability .
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There is a set of a few different chunks of samples that have the same prediction probabil-
ity. This means that data is divided into a few sets and there is a set further away from the
main distribution. This is the set with a lower prediction probability. A plot of samples
from "combo" class is built to confirm this hypothesis. Feature, that are used the most to
explain "combo" class are used to plot the data. Samples are colored by their prediction
probability. For "combo" class, the set of samples with the lowest prediction probability
is displayed in the Figure 19 and is colored with green color. These points are closer
to a decision boundary. Other points have prediction probability approximately 93%(see
Figure 18), and more than 95%.

Figure 19. Combo samples location.

Since explanation itself is a set of feature weights - a solution to this experiment is built
in a form of average explanation. This is done in order to display an average explanation
weight for selected samples. Samples are selected based on the prediction probability
from previously presented results. Graphs with mean feature weights give a good
overview of LIME and SHAP explanations of points which are closer and further away
from decision boundary. Feature rank is set based on the absolute value of mean weight.

The results for this experiment are presented in two graphs for each explainer. One graph
shows the mean values of points far from the decision boundary. Another shows the
closer one.
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� LIME explanations
On the Figure 20 and 21 "combo" class is presented to demonstrate mean feature
values of points close and far from decision boundary.

Figure 20. Close to decision boundary. Figure 21. Far from decision boundary.

The two explanations are very similar. The feature order and feature weights are
similar. The order of features in explanations differs for the lower ranks, which have
much lower weight in the explanation. Features with the highest weights have the
same rank and similar weights. As another example, in Figures 22 and 23 presented
"udp" explanations.

Figure 22. Close to decision boundary. Figure 23. Far from decision boundary.

� SHAP explanations
SHAP results are presented in the Figures 24 and 25, and the explanations are differ-
ent. Feature weights are opposite for points that are closer and further away from
decision boundary. Nevertheless, the order of features does not vary very much.
Some features are missing, but the most important features are on the same order
in both cases. This shows that SHAP recognizes points of the same class and most
important features for this class, but the weights are different.
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Figure 24. Close to decision boundary. Figure 25. Far from decision boundary.

SHAP "udp" class results presented in Figures 26 and 27. Results conclusion is the
same as for "combo" class, and both explanations are very different.

Figure 26. Close to decision boundary. Figure 27. Far from decision boundary.

� Comparing LIME and SHAP explanations
LIME and SHAP explanations differ from one another, but this does not mean that
one is better than another. After all, these points are further away from the main
distribution and have higher probability to belong to a different class. The fact that
LIME explanation of them is similar to the ones which are far from decision bound-
ary is neither good nor bad. On the one hand, it is good that LIME is consistent with
its explanations, on the other - since points are far away, explanation might vary like
in SHAP. The variance in feature order is minimal for both LIME and SHAP. But
SHAP has a fewer number of features in explanation, that might mean less informa-
tive explanation. LIME always explains with ten features, which is not too many for
human comprehension. While SHAP may use three or four features, which might
prove too little for some cases. In a real-life scenario, it is more likely that there will
be fewer points closer to decision boundary than in main class distribution. In such
case since SHAP explanations will have fewer features in explanation - it may not
be enough to interpret the result, but LIME will always provide as many features as
requested, and thus LIME explanation will be more informative.
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LIME and SHAP behave differently while explaining points that are close to the decision
boundary. LIME explanations remain consistent, feature weights, feature count and fea-
ture order are practically identical. With SHAP, it is a little different. Two explanations
may contain a different number of features, as presented in Figures 24 and 25. Those fea-
tures that are present partially have the same order, but weights values differs in up to 6
times. In all cases, the difference between weights is so high, that feature has an opposite
sign of influence on the classifier.

4.4 LIME and SHAP and Decision Tree comparison

In Decision Tree, there are many different branches that lead to classes. The model used
in experiments contains 18 such branches. The initial parameters for building the model
were to limit it to 20 leaves. Thus many possible outcomes of decision path are possible.
Approximately 116 thousand for current model. After analysis that there are not many
varieties of features count in explanation path, it is decided to have histograms and a
separate bar for each possible number of features in the explanation path. Later separate
bars for LIME and SHAP are added. The main objective of the next experiment is to
compare feature order of LIME and SHAP with the Decision Tree. For this experiment
only the data about features that are present in all three explanations are collected. To be
precise, 16 features have been used in explanations, and graphs are plotted for each of
them, where the x-axis shows feature order in explanations and y-axis is the total number
of times this feature has been used with a specific order. Feature order for Decision Tree
is the index of the feature in explanation path. The data for this experiment gathered from
"all class" explanations. A sample graph is below and it is MI_dir_L0.1_weight feature.
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Figure 28. MI_dir_L0.1_weight feature order-selection .

In Figure 28, the "lime" bars represent LIME explanations with a certain feature rank,
"shap" bars represent SHAP explanations, and "DT: x/y" represent Decision Tree. X is
the current feature rank in explanation path, and y is the maximum number of features
in explanation path. Multiple "DT" types of bars represent multiple options of decision
path.

Results of analyzing feature selection and order are more informative for highly
frequently used features. These features are H_L0.01_mean, HH_L3_weight,
MI_dir_L0.1_weight and H_L0.01_weight. All these features are in the top
three most used features to explain different classes by LIME, SHAP and Decision Tree.

For example, feature HH_L3_weight is most popular among specified and is on the top of
the Decision Tree model. Its order in explanation path is always 0, meaning it is always
the first and most significant for classification. On the graph, one can see that is has been
used in the top 10 explanation features by LIME and SHAP as well. In a few cases, it
was used by SHAP with some higher orders, but these amounts are tiny.
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Figure 29. HH_L3_weight feature order-selection.

Another sample of these results in feature H_L0.01_mean, which is also often used
for explanations. In Figure 30 presented that LIME mostly use H_L0.01_mean as top
1 feature for explaining some classes. It is specified in previous results in "LIME
Feature selection" section. These are "ack" and "udp" classes. SHAP also has a high
selection of this feature on higher ranks. In explanation path it is mostly on the third place.
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Figure 30. H_L0.01_mean feature order-selection .

Current experiment demonstrates the difference in feature ranks and selection frequency
of these ranks. These results is a great overview of LIME, SHAP and a simple expla-
nation path data. There is never a high variance in ranks between explanation methods
for the highest bars. This indicates, that explanation path feature ranks is similar to the
interpreters’ feature ranks. A cyber security analyst can use such data to verify if current
testing interpreter is producing similar feature ranks as some simple method like explana-
tion path. It is much easier to verify the quality of Decision Tree structure, than compare
interpreters rank results with more complex explainers.

4.5 Metrics

4.5.1 Consistency

The experiment with consistency metric used KNN and Decision Tree model. Both mod-
els have high prediction accuracy, above 98%. Thus, they considered to have similar
prediction outputs. There were no specific parameters for Decision Tree, and the model
has no limitations. KNN model was trained with the "number of neighbors" parameter,
that was equal to five. A random set of samples is selected and explained by LIME and
SHAP. Each explainer used two classification models and stored the results. The goal is
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to compare the explanations of different models.

� LIME consistency results
LIME often puts a lot weight on the feature in Decision Tree explanation path,
which is not present in KNN explanation. Features that has relatively same order
has similar weights. Feature weight direction is usually the same, but not in a
100% cases(see Figures 31-32). In the Figures 31 and 32 presented samples of two
explanations with different models.

Figure 31. Decision Tree model. Figure 32. KNN model.

It is difficult to collect any specific data about these explanations because they
are very inconsistent. Explanation are considered inconsistent because feature
rank and feature weights are very different between various explanations. There
is no two explanations from different models, that fully matching feature ranks
and feature weights. For this experiment, some of the metrics were: percentage
of average features matching in both models and percentage of average feature
weight difference. Average values are calculated only for matching features in
explanations.

For LIME this results are:
38.57% features matching in average
130.19% average feature weights difference

� SHAP consistency results
For SHAP, the picture is very similar to LIME. Explanations are very different, and
metrics numbers that are calculated for LIME looks even worse in this case. The
number of features in explanations is often different. Sample results and numbers
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below

Figure 33. Decision Tree model. Figure 34. KNN model.

SHAP feature metrics:
17.15% features matching in average
168.28% average feature weights difference

LIME and SHAP are not consistent.

4.5.2 Novelty

The objective of novelty metric is to compare explanations of points, that are close and
far away from the main distribution. Both LIME and SHAP showed impressive novelty
results.
LIME explanations for "grouped" and "far away" points are different, but the first top
features in the explanation usually match, and they have similar feature weight. They are
the most significant features which define the explanation itself.
SHAP has similar results, where most significant features remain the same for different
points explanation. However, for "far away" points, SHAP explanation usually contains
some extra features which are absent in "grouped" explanation.

Since top features explanations are similar, and these features have the highest influence
in explanation, LIME and SHAP could be considered to satisfy novelty metric.
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4.5.3 Sensitivity

After conducting experiments upon several pairs of instances, which have remarkably
similar features except for one which pushed one of the instances to another class - the
results are all very similar. They show that both LIME and SHAP have high sensitivity.
Script for picking these pairs found only three pairs in a given dataset of 80 000 samples.
Results of one of the samples:

Figure 35. LIME explanation.

Figure 36. SHAP explanation.

This is an example of running a metric experiment on the samples which differ in one
feature HH_L3_weight. One belongs to class benign, another to class "tcp". The other
two pairs or samples involve features HpHp_L0.01_weight and MI_dir_L0.01_mean,
which have similar results and are also included in explanation and have the highest
ranks. Results for the samples, that differed in HpHp_L0.01_weight feature presented in
the Figures 37 and 38.
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Figure 37. LIME explanation.

Figure 38. SHAP explanation.

LIME and SHAP are sensitive. The metric definition said that the feature should be
present in explanation and has nonzero influence but for LIME and SHAP this feature is
on the top of the explanation and has the strongest influence.

4.5.4 Stability

The results for this metric experiment are mostly taken from previous results. There
is much data about points explanations and it was easy to gather some data about very
similar samples. In the Figures 39-42 presented sample results of LIME and SHAP
explanation for stability metric.

Figure 39. LIME benign explanation. Figure 40. LIME benign explanation.
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Figure 41. SHAP benign explanation. Figure 42. SHAP benign explanation.

In the Figures 39 and 40, 9/10 features are matching in both explanations. First top five
features have the same rank and similar weights. The rest of features in explanation have
mixed ranks, but the weights are similar as well.

LIME and SHAP are stable. In this case, SHAP shows better stability results, than LIME,
and their weights are very similar. With LIME, the picture is slightly different, as most
explanations are the same, except for a few. LIME explanations have a little variance in
feature weights as well as some of them are entirely different, but these are rather excep-
tional cases. Nevertheless, there are very few of them, so LIME still can be considered
stable. To evaluate all the cases for LIME and SHAP, a mean values and standard devi-
ation of matching features is computed and presented in the Table 15. Selected are the
top five features used by LIME and SHAP, plus the feature H_L0.01_mean, often used by
SHAP, but not LIME.

Feature name Method Mean Std

MI_dir_L0.01_weight LIME -0.127439 0.000539

HpHp_L0.01_weight
LIME 0.047984 0.000392

SHAP 0.060236 0.000042

HH_L3_weight LIME -0.023932 0.000117

MI_dir_L0.1_weight LIME -0.024093 0.000335

H_L0.1_weight LIME 0.0010993 0.000814

H_L0.01_mean SHAP -0.060052 0.000019

Table 15. Stability metric features data.
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4.6 Levenshtein distance

A solution to calculating Levenshtein distance between explanations is to transform
an explanation into a string. There was no possibility to include feature weights in
this transformation, so the distance between explanations will involve only features
themselves and their order. It is barely possible to fit 115 features into ASCII characters.
Each feature is replaced with an ASCII character, which transformed an explanation for
instances into a string. A sample of the string representation of the explanation for a
random sample 48244:

48244: {’shap’: ’+-#*!"/,AY’, ’lime’: ’($*!#"/3?:’}

Having two strings, it is possible to calculate Levenshtein distance. Since one can only
calculate distance between 2 instances - the only option is to gather average results, which
means that solution to the experiment is a set of mean values of Levenshtein distances for
different sets of points. Also, standard deviation values are included for each mean value.

The results for this experiment are divided into two sections. First one is where Leven-
shtein distances is calculated within one class, and another one is with distances between
different classes.

� Within a class
Results are the mean values of distances between samples of one class for LIME
and SHAP. All the samples and explainer configurations have been taken from the
previous "one class" experiments.
Distances for LIME are very high, considering that the maximum number possible
is 10. For SHAP, they look a little lower, but standard deviation values are quite high
compare to the distance values. Another experiment is required to see distances
between classes, and then one can compare these results.

� Between classes
To calculate Levenshtein distances between samples of different classes, ten
samples from each class have been picked randomly, and the distance between
them is calculated. Results are gathered in a way that for every class collected a
set of mean values and standard deviations, just like from previous "within a class"
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Class name LIME mean LIME std SHAP mean SHAP std

ack 9.0 0.632455 1.3 0.900001

benign 8.0 1.897366 0.0 0.0

combo 6.9 1.0440307 3.3 2.1931712

junk 6.7 1.345362 5.5 2.291288

syn 6.0 1.0 0.2 0.600001

scan 5.6 1.428286 0.4 0.800002

tcp 5.9 1.3 0.0 0.0

udp 8.0 0.4472136 3.7 2.1931712

Table 16. Levenshtein distance within a class.

results for each other class. Since there are eight classes and for each of them,
there’s a set of results for every other class - that makes 56 tables just like the one
above. It is not efficient to present all of these here, just a summary of the results.

Some of the results look like this:

ack
lime mean distance to benign 9.7
lime std: 0.45825756949558394
shap mean distance to benign 2.6
shap std: 0.48989794855663565

scan
lime mean distance to ack 9.9
lime std: 0.3
shap mean distance to ack 2.6
shap std: 0.48989794855663565

Summary and conclusion - there is no connection between these distances; these
are just some specific numbers for every pair of classes. It is important to check if
any distance between the two classes is lower than the distance between samples
of a single class. That would mean that explanations of two different classes vary
less than explanations of a single class. However, no such cases are found. With
these results, it is possible to gather information about which classes have the most
similar explanations, if such data is required.
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5 Conclusion

The main conclusion presented in a table, where all experiments and interpretation results
are summarized.

Table 17. Comparison table.

Interpretation for some of the results: Terms "low" and "high" used relatively. They
represent the general behavior of specific values. "Low" means that values are close to a
minimum possible value and "high" - close to the highest possible.

� "Feature selection(all class) max percentage" - maximum percentage of feature se-
lection frequency in explanation by a specific algorithm. It shows that for "global"
case, LIME and SHAP do not have a feature that is used for all explanations.
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� "Feature selection(one class) max percentage" - show that every algorithm has a
specific feature, used for explaining specific class.

� "Feature weights(all class)" - shows that features used by LIME and SHAP are very
different for "all class" explanations.

� "Feature weights(one class)" - shows that features used by LIME for "one class"
explanations have lower variance than SHAP feature weights.

� "Feature order" - among various explanations, LIME usually has the same features
on the same orders in explanation, that is why it can be considered "consistent".
SHAP assigns different order to features more often.

� Explanation around decision boundary - described in the "Explaining points close
to decision boundary".

� All metrics - described in the "Metrics".

� Levenshtein distances - described in the "Levenshtein distance". When it is speci-
fied "generally high" or "generally low" - it means that results are too different from
being classified as "high" or "low". In one case with SHAP, it is specified "Very dif-
ferent from class to class" because Levenshtein distances had most various values
and can neither be classified as "high" nor "low" nor anything in between.

All the experiments and results provide a solution to the initial problems:

� Classifier selection
For the LIME and SHAP it makes no difference which classification model to ex-
plain. All inputs are considered as a "black box" model. Decision Tree model
is considered an explainable model, and it was selected because of two reasons.
Firstly, it is a simple model from computer, which takes less time to be explained;
and it is a simple model for human, as the Decision Tree structure is intuitive and
every classification can be followed though the tree. Secondly, it produces explana-
tion path, which is considered an explanation for a particular instance. Explanation
path was used to compare feature ranks with LIME and SHAP.

� Feature selection
Fisher score is calculated for every feature, and later used in feature analysis for
LIME and SHAP. Interpretation methods have their own feature selection tech-
niques and this study compared it with an external method, such as Fisher score.
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� LIME/SHAP explanation analysis
The major part of experiments were targeting LIME and SHAP explanations anal-
ysis. Feature selection behavior of both explainers is similar. None of them has a
feature, which is used every time for "all class" explanations. And both of them
have specific features for explaining every class in particular. Features selected to
explain separate classes does not match between LIME and SHAP. Feature weights
for LIME are more similar within "one class" explanations and less similar for
"all class". For SHAP, they are dispersed for both "all class" and "one class" ex-
planations. LIME produces similar explanations for points close and far from the
decision boundary. SHAP explanations have only common feature rank, but feature
weights and the number of selected features are different.

� Comparing LIME/SHAP explanations with Decision Tree
Comparing feature ranks of LIME, SHAP and Decision Tree showed, that ranks are
similar. Ranks represent feature importance, and even though explanation path of
Decision Tree does not have feature weights - it can be used to verify the correct
rank order in a comparable explainers.

� Metrics
Both LIME and SHAP satisfy novelty, sensitivity and stability metrics. And do
not satisfy consistency metric. Levenshtein distance analysis showed the differ-
ences(distances) of each LIME and SHAP explanations within a single class and
between different classes. On average LIME explanations have high distances be-
tween different classes, and within a single class. While SHAP on average has
low distance within a single class explanations and different distances between dif-
ferent classes. This means, that some classes have lower distances between their
explanations and some have higher.

The next step to continue this study could be to experiment with a different dataset. On a
different dataset LIME and SHAP could have different results of some metrics used in this
thesis. Also, it is essential to analyze different types of classifiers. Classification models
in this thesis worked with eight classes, but one needs to analyze if the explanation of a
model with higher number of classes will be different.
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