
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

Department of Software Sciences

Peeter Kokk 163123IAPM

PEER-TO-PEER ENERGY MARKET

EVOLUTION BY COMBINING SOFTWARE

AGENTS WITH THE BLOCKCHAIN

Master’s thesis

Supervisor: Kuldar Taveter

 PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Tarkvarateaduse instituut

Peeter Kokk 163123IAPM

ARVUTITEVAHELISE ENERGIATURU

EVOLUTSIOON TARKVARAAGENTIDE JA

PLOKIAHELA ÜHENDAMISE TEEL

Magistritöö

Juhendaja: Kuldar Taveter

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Peeter Kokk

21.05.2019

4

Abstract

The electricity grid is going through changes related to the introduction of renewable

energy sources, while energy production is becoming more decentralized. This

decentralization needs new kind of approach to the energy grid that allows for local self-

management of energy and measures energy usage in more detailed way, which

traditional, centralized systems cannot offer. This type of smart grid also needs an

efficient market, meaning it must match buyers and sellers effectively, be set up to ensure

that prices will be set competitively and, finally, ensure that transactions are secure and

reliable for buyers and sellers. This thesis focuses on figuring out how software agents

and blockchain can help build a market of this kind. A proof of concept is also built to

test the adherence to the previously mentioned attributes of an efficient market.

This thesis is written in English and is 58 pages long, including 6 chapters, 10 figures and

5 tables.

5

Annotatsioon

Arvutitevahelise energiaturu evolutsioon tarkvaraagentide ja plokiahela

ühendamise teel

Elektrivõrk on läbimas muudatusi seoses taastuvate energiaallikate kasutuselevõtuga,

samal ajal on energiatootmine muutunud detsentraliseeritumaks. See detsentraliseeritus

vajab uut tüüpi lähenemist elektrivõrgule, mis võimaldab elektrienergia kohalikku

isejuhtimist ja selle kasutamise üksikasjalikumat mõõtmist, mida traditsioonilised

tsentraliseeritud süsteemid ei suuda pakkuda. Selline tark võrgustik vajab ka tõhusat

turgu, mis tähendab, et see peab ostjaid ja müüjaid efektiivselt sobitama, tagama, et

hinnad seatakse konkurentsivõimeliseks, ja lisaks tagama, et tehingud on ostjate ja

müüjate jaoks turvalised ja usaldusväärsed. Antud magistritöö uurib, kuidas

tarkvaraagendid ja plokiahelad aitavad sellist turgu ehitada. Ehitatakse valmis ka

simulatsioon, et testida tõhusa turu eelnevalt mainitud omaduste järgimist.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 58. leheküljel, 6. peatükki, 10.

joonist, 5. tabelit.

6

List of abbreviations and terms

P2P Peer-to-peer

DER Distributed energy resource

MAS Multiagent systems

JADE Java Agent Development Framework

ECDSA Elliptic Curve Digital Signature Algorithm

FIPA Foundation for Intelligent Physical Agents

JADE Java Agent Development Framework

ACID Atomicity, Consistency, Isolation, Durability

7

Table of contents

1.1 Background ... 11

1.1.1 Smart grids ... 11

1.1.2 Peer-to-peer markets .. 12

1.1.3 Agents and Multiagent Systems .. 12

1.1.4 Blockchain ... 13

1.1.5 Smart Contracts ... 13

1.2 Problem Statement .. 14

1.3 Research Goal ... 16

1.3.1 Research Question ... 16

1.3.2 Guideline 1: Design as an Artifact .. 17

1.3.3 Guideline 2: Problem Relevance ... 17

1.3.4 Guideline 3: Design Evaluation ... 17

1.3.5 Guideline 4: Research Contributions ... 18

1.3.6 Guideline 5: Research Rigor .. 18

1.4 Overview .. 18

3.1 Goal Models ... 23

3.2 Role Model ... 26

3.3 Organization Model .. 27

3.4 Domain Model .. 27

3.5 Agent/Acquaintance Model .. 28

3.6 Scenarios ... 29

4.1 Ethereum blockchain .. 32

4.2 Java Agent Development Framework .. 33

5.1 Asymmetric Markets .. 36

5.1.1 The Three Types of Asymmetric Markets ... 36

5.2 Learning Strategy for Software Agents .. 37

5.3 Demand-Side Management .. 41

6.1 Modifiable Variables .. 43

6.2 Test Cases ... 44

8

6.2.1 First test case simulation ... 45

6.2.2 Second test case simulation ... 46

6.3 Conclusion .. 47

9

List of figures

Figure 1 Goal model for selling produced electricity to the consumer 25

Figure 2 Domain model for our system .. 28

Figure 3 Merged agent and acquaintance model .. 29

Figure 4 FIPA Contract Net Interaction Protocol [43] ... 35

Figure 5 The price determination algorithm for energy producers in an asymmetric

market, offered by Rosen and Madlener [44, p. 174] ... 40

Figure 6 The bidding function algorithm for energy producers in an asymmetric market,

offered by Rosen and Madlener [44, p. 174] .. 41

Figure 7 Sum of price in the first test case simulation ... 45

Figure 8 Sum of quantity in the first test case simulation .. 46

Figure 9 Successful bids in the first simulation test case ... 46

Figure 10 Successful bids in the second simulation test case .. 47

10

List of tables

Table 1 Role model for producer .. 26

Table 2 Role model for consumer .. 27

Table 3 Organization model for our system ... 27

Table 4 Scenario for our system ... 31

Table 5 Second test case simulation results for first and second half 47

11

1 Introduction

1.1 Background

1.1.1 Smart grids

 The electricity grid is going through changes related to the introduction of

renewable energy sources and electric vehicles, while energy production is becoming

more decentralized. “Distributed energy resources (DER) are smaller power sources that

can be aggregated to provide power necessary to meet regular demand. As the electricity

grid continues to modernize, DERs such as storage and advanced renewable technologies

can help facilitate the transition to a smarter grid.” [1]

Unlike centralized big energy sources, DERs energy supply is not constant and

thus benefit greatly from models that could predict the production and consumption of

energy. In order to get the consumption data, two-way communication is needed.

“Advanced metering infrastructure” (AMI) or “smart meters” are “electricity meters that

use two-way communication to collect electricity usage and related information from

customers and to deliver information to customers” [2].

 DERs also need to be integrated into a network with other DERs, due to the

volatility and small scale of their energy production. For this, “smart grids” can be used.

“A Smart Grid is an electricity network that can intelligently integrate the actions of all

users connected to it – generators, consumers and those that do both – in order to

efficiently deliver sustainable, economic and secure electricity supplies” [3].

 Smart grids have a huge potential of cost savings as well and are projected to be

generate more benefits than the cost of upgrading the current grids to “smart” grids.

In 2011 (EPRI Report 2011), the EPRI made a forecast that the cost

to upgrade the US grid to “smart” status would be between $338

billion and $476 billion and would generate benefits of between

$1,294 billion and $2,028 billion, for a projected benefit-to-cost ratio

12

of between 2.8 and 6.0 to 1. However, US utility smart grid business

cases typically forecast benefit-to cost ratios of between 1.1 and 3.0 to

1. [4, p. 1496]

1.1.2 Peer-to-peer markets

However, with the usage of smart grids, the issue of selling this energy needs to

be solved, because decentralized sources are difficult to operate centrally. Due to the

decentralized nature, “peer-to-peer markets” are often seen as a viable strategy for selling

energy. “Peer-to-peer markets such as eBay, Uber, and Airbnb allow small suppliers to

compete with traditional providers of goods or services.” L. Einav et al. state that the

“goal of peer-to-peer markets is to create trade between large numbers of fragmented

buyers and sellers.” [5, pp. 615,617]

1.1.3 Agents and Multiagent Systems

 Peer-to-peer markets can be thought of as multiagent systems, a system consisting

of agents interacting with each other. The term “agent” has been used to denote a variety

of different meanings in computer science. We use it to mean, per the definition provided

by Sterling and Taveter, “an entity that can act in the environment, perceive events, and

reason” [6, p. 35]. According to Sterling and Taveter, this definition includes people,

robots and software applications [6, pp. 8-9]. However, more importantly and more

accurately, Sterling and Taveter suggest that agents have three qualities associated with

them. These qualities are:

1) Have a purpose to “take an active role or produce a specified effect” and/or “act

behalf on another, for example, managing business, financial, or contractual

matters, or [provide] a service.”

2) Have “controlled autonomy, or the ability to pursue its own goals seemingly

independently.”

3) Be situated – that is, be aware of the environment around it

[6, pp. 6-7,10].

Agents can be used to build “multiagent systems”. A multiagent system is “a kind of a

system where several, perhaps all, of the connected entities are agents” [6, p. 342].

13

1.1.4 Blockchain

 Before we explain how blockchains can relate to smart grids, we first need to

explain what they are about. A “blockchain” can be viewed as a distributed immutable

database. The blockchain usually consists of large number of untrusted computers that

“hold a timestamped list of blocks which record, share, and aggregate data about [all of

the] transactions that have ever occurred within the blockchain network” [7, p. 330].

Cryptographic proofs make this data storage immutable and data can only be inserted,

assuming most of the network is not compromised – and no one controls the majority of

nodes [7, p. 330].

 As noted by Weber et al., “[a] key feature of a blockchain-based system is that it

does not rely on any central trusted authority, like traditional banking or payment systems.

Instead, trust is achieved as an emergent property from the interactions between nodes

within the network” [7, p. 332]. The way this works is that the nodes must achieve

consensus on what data is inserted into the network. This, coupled with the property of

allowing only data insertion, allows the participating parties to share data in a transparent

way on the blockchain.

 Hull et al. explain that the transactions performed on the blockchain network obey

the “ACID (Atomicity, [eventual] Consistency, Isolation, Durability) transactional

properties of classical database systems” [8, p. 19], although it is questioned by Tai et al.

if the ACID model is even a good fit [9, p. 759]. However, blockchain platforms such as

Ethereum [10] also come “with a built-in Turing-complete programming language,

allowing anyone to write smart contracts…” [11, p. 13]. Smart contracts have been

compared to stored procedures, which are used by relational database systems [12], but

the key advantage over them is that blockchain systems force smart contracts to be

immutable, as long as the blockchain security is not penetrated, the implications of which

we will discuss later. Guaranteeing immutability to a much larger degree is the most

important feature that makes blockchain different from traditional databases.

1.1.5 Smart Contracts

 Some blockchains come with the smart contract feature, which holds some

similarities to agents. In trying to explain the different interpretations of smart contracts,

Stark remarks that people with technical understanding of the blockchain technology, use

14

the term “smart contracts” to refer to code that is executed on blockchain, which he

considers misleading, as “smart contracts” can act autonomously, when their functions

are called, making them more like agents rather than contracts [13]. This is because smart

contracts have two of the three qualities of agents we listed in section 1.1.3 – they act on

behalf of someone and operate on certain information on the blockchain. They lack,

however, the quality of controlled autonomy, because “smart contracts” do not reason,

and thus, unlike agents, have no self-governing qualities.

1.2 Problem Statement

According to Bremer and Lehnhoff [14], in Europe, especially in Germany –

where renewable energy producers are offered long term guarantees about contracts and

prices –, the share of distributed energy resources (DER) is rapidly growing.” This can

mainly be seen as an attempt to reduce the emission of greenhouse gasses. International

Energy Agency states that “two sectors produced nearly two-thirds of global CO2

emissions from fuel combustion in 2014: electricity and heat generation, by far the largest,

which accounted for 42%, while transport accounted for 23%” [15, p. 12]. However, it is

noted by James et al. [16] that “decentralized generation” needs new kind of approach

that allows for “local self-management” and measures usage in more detailed way, which

traditional, centralized systems cannot offer. Using multiagent technology for

“distributed control has proven in field studies to be an efficient way to balance supply

and demand in local clusters of distributed loads and generators” [16, p. 9]. Ogston et al

[17] find that using “central components, and more significantly their communications

infrastructures, is undesirable in systems that contain hundreds of thousands or millions

of devices” [17, p. 1]. Therefore, peer-to-peer multiagent systems seem to be a good fit

for use in decentralized management of energy markets.

 Multiagent systems alone are not enough for the decentralized management of

energy markets. Einav et al [5] list three problems that are necessary to solve for any

market, which includes P2P energy markets, to efficiently achieve its goal – to “create

trade between large numbers of fragmented buyers and sellers" [5, p. 617].

1) “Search” – “match buyers and sellers effectively while keeping search

frictions low.”

15

2) “Pricing” – “establish prices, or to organize the market so that prices will be

set competitively.”

3) “Trust” – “ensure that transactions are safe and reliable for buyers and sellers.”

 [5, pp. 617-618]

While software agents are capable of matching buyers and sellers (efficiency of this

depending mainly on the algorithm used) and setting the price (the fairness of which

depending, again, mainly on the algorithm used), they are acting on behalf of the interest

of someone, so should not be expected to ensure the reliability or security of transactions.

This is where blockchains with smart contracts can be of use.

 Blockchains ensure the safety of transactions. Since, according to Buterin,

Ethereum “transactions are all signed using the ECDSA algorithm” [18], which as of May

2016 was stated to have “no known mathematical vulnerabilities” by an ECDSA security

research survey [19], the transactions can be considered secure to a very high degree.

 The reason why smart contracts could be useful for P2P markets is that they enable

parties to specify the rules and not to dishonour them. This is because “a smart contract

is a set of promises, specified in digital form, including protocols within which the

[agents] perform on the [promises of other agents]” [20]. Although blockchain data

insertions, as was mentioned in section 1.1.4, obey the ACID transactional properties,

transactions performed on the blockchain can be considered reliable only when most of

the network is not compromised (i.e., no one controls the majority of the nodes) and the

rules agreed upon do not change without the consent of the stakeholders. The key

advantage of smart contracts is that they are immutable because they, too, are a part of

the data that is uploaded onto the blockchain network. This means that once the parties

agree upon rules and write it down within a smart contract, a different smart contract

cannot be used instead without the knowledge by the nodes of the network. If smart

contracts are not used for enforcing the rules, there would have to be some type of a

human or man-made agent, who enforces the rules. Either way, however, this would

require solving the issue of how to make sure the agent enforcing the rules is trustworthy.

Smart contracts can be useful in P2P markets, because they help to make sure that the

transactions are reliable.

16

 However, smart contracts alone are not enough for a P2P market system.

Omohundro [21] points out that “simple and easy to write contracts appear to be sufficient

for many entirely digital transactions. But as these systems start to interact with the

physical world, there is likely to be a need for greater intelligence and real world

knowledge in making decisions” [21, p. 20]. He goes on to suggest that AI systems are

needed to translate information from sensors for smart contracts, while smart contracts

that result in actions in the physical world also need to forward information to both human

and non-human agents. Therefore, software agents are still necessary, when designing a

P2P market system on top of a blockchain, because they can mediate blockchain with

other elements of the environment.

 The problem we are trying to solve is to figure out how to use software agents and

blockchains to enable decentralized trading system that adhere to the “search”, “pricing”

and “trust” principles.

1.3 Research Goal

 The research goal of this M.Sc. thesis is to find out how to build a P2P energy

market that is automated by means of using software agents and blockchain technology.

To design and implement such a system, we will use the design science method – by

leaning on most of the seven guidelines offered by Hevner et al [22]

 In subsections 1.3.1-1.3.6 we will define the research question and explain how

we are going to follow the guidelines for answering the research question.

1.3.1 Research Question

 The research question to be answered by this MSc thesis is as follows:

• How to build a P2P energy market system that is automated by means of

software agents and blockchain technology?

For answering the research question, we will follow the guidelines presented in Sections

1.3.2-1.3.6.

17

1.3.2 Guideline 1: Design as an Artifact

 Specifically, we are interested in how to create the architecture of a P2P energy

market consisting of an agent application and a blockchain application that together

manage distributed energy resources. The artifact in this case consists of both the models

we will be creating by using the Agent-Oriented Modelling methodology by Sterling and

Taveter [6] and the application. The application is a simulation of the proposed system,

which will validate the system. The application would ideally be run on every smart meter

– owned by consumers, producers or prosumers – on the smart grid.

 The energy market itself will be implemented using research knowledge from the

field of energy markets.

1.3.3 Guideline 2: Problem Relevance

 The benefits of the proposed system are derived from the creation of a simulation

of a P2P energy market, which proves that it is possible to solve the trust problem

mentioned in Section 1.2 with blockchain technology, therefore making the market

efficient at “creating trade between large numbers of fragmented buyers and sellers” [5,

pp. 617-618]. If agent technology can solve the search and price problem discussed

earlier, then this simulation would prove to be a proof of concept for the kind of energy

market future smart grid could use to manage DERs.

1.3.4 Guideline 3: Design Evaluation

 The algorithm used for the energy market, while relevant in practice, is considered

less in this thesis, because our main objective is to demonstrate the feasibility of

combining software agents and blockchain technology for building P2P energy market

systems. Therefore, we will find and validate the algorithm by looking at the relevant

research that has been performed in this field rather than creating our own algorithm.

 We will validate the proposed system with a combination of two simulation

applications: an application built on the JADE agent programming environment

according to the models created with the help of the Agent-Oriented Modelling

methodology [6], and a blockchain application. To validate the design of such a system,

we will assess the results of running the simulations by modifying different variables to

see how this affects the price dynamics and matching of the buyers and sellers.

18

1.3.5 Guideline 4: Research Contributions

 The contribution of this research is that so far, to the best of our knowledge, there

have been no attempts to create systems for P2P energy markets using both software

agents and smart contracts – combining automaticity with transparency. It is important to

note that we do not mean agents and blockchain, which, as can be seen in related research,

has already been used together.

1.3.6 Guideline 5: Research Rigor

 The design of the system will rely on research that has been conducted before in

energy markets and the interactions between market participants. We will also use the

research work conducted on designing and developing software agents and multiagent

systems.

1.4 Overview

In chapter 2, we provide an overview of similar multiagent systems using different

types of blockchains to create an energy market for software agents.

In chapter 3, we provide agent-oriented models for the proof of concept system

that will run the simulation we will be building, to show how the system works from the

view of software agents.

In chapter 4, we discuss the building blocks used for the system that will run the

simulation – the Ethereum blockchain and Java Agent Development Framework – and

give insights into the implementation.

In chapter 5, we will explain how the system relates to asymmetric markets and

explain a learning strategy that the software agents can use in this type of market, which

we will use in the creation of the system that will run the simulation.

In chapter 6, we will discuss what kind of parameters we made customizable for

this simulation and provide the results for two test cases for the simulation and analyze

the results.

19

2 Related Research

 Aitzhan and Svetinovic [23] “implemented a proof-of-concept for decentralized

energy trading system” [23, p. 9] for the smart grid using Bitcoin and its multi-signatures

feature for smart contracts, which only allows a transaction to be performed on the

blockchain, when a certain number of participants of the transaction have signed the

transaction. The system allows anonymous messages to be sent by nodes of the network

which can be either encrypted, so that they can only be read by a node with a unique

private key, or not, in which case everyone can read them, in exchange for “proof-of-

work” [23, p. 12] (“proof-of-work” in this context is essentially a computation). The value

is transferred, when agents send anonymous messages to “Distribute System Operators”

(DSOs). DSO is “a natural or legal person[s] responsible for operating, ensuring the

maintenance of and, if necessary, developing the distribution system in a given area…”

[24]. DSO are used here in order to assure the “trust” aspect, described in the Problem

Statement, which we intend to solve using smart contracts. With the help of “Schneier

attack tree” they also analyzed “vulnerable assets” from which they extracted 23 “system

security attacks” that serve as a basis for eliciting 20 security and privacy requirements

[23, pp. 9-12].

 Mihaylov et al. [25] “propose … a novel mechanism for trading of locally

produced renewable energy [on the smart grid] that does not rely on an energy market or

matching of orders ahead of time” [25, p. 1]. Unlike in the paper by Aitzhan and

Svetinovic [23], where value is transferred through DSOs by storing information on the

blockchain [23, p. 4], Mihaylov et al. use a decentralized digital currency called

“NRGcoin” instead. The NRGcoins are “generated by injecting locally produced

renewable energy to the grid,” and “are traded between consumers and prosumers

directly” [25, pp. 1-4] (prosumers are agents, who, according to Amato et al. [26], both

consume and produce). Mihaylov et al. point out that since the role of a DSO is to collect

and distribute payments, they do not create NRGcoins [25, p. 4]. DSOs measure

consumption of electricity and perform real time billing, where the price they set depends

on both demand and supply, that is, it cannot be set by prosumers. Both Aitzhan and

20

Svetinovic [23] and Mihaylov et al. [25] rely on smart meters being tamper proof, which

is not necessarily true in the real world.

 Hosokawa and Nishino [27] propose two trading techniques for decentralized

energy trading – “aggregated demand–supply” technique and “residual electricity-based”

technique. The technique of “aggregated demand–supply” creates a demand curve from

demand curves of all the consumers and a supply curve from supply curves of all the

producers [27, p. 125]. The “residual electricity-based” technique also considers the

electricity the consumer has produced and wants to keep for their own use. This system

is one way of implementing the notice board system offered in the paper by Aitzhan and

Svetinovic [23, p. 5]. The fairness of the trading price depends a lot on whether prosumers

produce electricity at the right time, which leaves a lot of room for speculation, as

prosumers can set the price, while in the system described by Mihaylov et al. [25], a third

party (a DSO) determines the price.

 Amato et al. [26] introduce the “CoSSMic” (Collaborating Smart Solar-powered

Micro-grids) project, which aims at “fostering a higher rate for self-consumption (<50%)

of decentralized renewable energy production” [26, pp. 155-156] through using

multiagent systems for energy trading and offers a framework named after the project –

CoSSMic framework – to achieve this goal. The framework differs from previously talked

about systems in that it separates the market from the MAS. “If an agent [in the CoSSMic

framework] cannot find enough energy to satisfy its needs in the neighborhood market,”

it will receive the energy from the main grid (produced by non-renewable energy

resources) [26, pp. 159-160] This was most likely implicitly assumed by the systems

previously discussed in this section [23] [25] [27], since renewable energy resources

depend on the environment and thus cannot be expected to produce the same amount of

energy each day. An implementation of the CoSSMic framework created with the JAVA

Agent Development Framework (JADE) [28] is described, although the description does

not describe any validation of this system.

 Tasquier et al. [29] “[focus] on coordinating local energy production and

consumption of individual houses in a neighbourhood” within the CoSSMic framework.

They claim that “The connection between devices and agents is implemented by a

distributed or centralized RESTFul Gateway (RFG) that is in charge of notifying events

using the Agent Communication Language (ACL) and message passing mechanisms”

21

[29, p. 61]. The building sends information through this gateway (using API calls). This

information is then forwarded to the Event Bus, which is implemented by “a specialized

agent” that forwards information to Control Agents through “a publish/subscribe

paradigm.” In other words, Control Agents act based on events they receive from the

Event Bus. For example, if more energy is produced than consumed, it will try to sell the

energy to other buildings via another agent termed the “Protocol Handler.” The Protocol

Handler allows Control Agents to buy or sell energy according to a “defined negotiation

protocol,” for which they use the “FIPA Contract Net”. In the implementation, which is

created on the JADE agent platform, the events are exchanged via JSON, while for

negotiations, a service level agreement (SLA) is established for JSON messages. The

negotiation is implemented on both JADE and Smart Python Multi-Agent Development

Environment (SPADE) [30]. The implementation of the solution by Tasquier et al. [29]

is tested on theoretical data, which is loosely derived from real world data.

 Amato et al [31] also offer a negotiation algorithm for the CoSSMic framework.

Additionally, a “P2P overlay [network]” is implemented using Retroshare [32], “a

communication platform that allows file sharing and instant messaging trough [OpenSSL

library] encrypted connections” [31, p. 166]. In Retroshare, “there are no central servers”

[32] and it is implemented using Distributed Hash Tables (DHT). According to Fey et al,

“P2P networks set up an overlay network … [for] addressing, routing and network

management are handled by the application” (for which the authors mention Gnutella and

BitTorrent as examples) [33, p. 4]. The P2P overlay architecture is explained in more

detail by Amato et al [34], where an overview of the Retroshare architecture is also given.

 Alkhawaja et al. [35] suggest using “Message Oriented Middleware” (MOM) for

the communication between distributed applications, which need to interact with each

other over a network. They list RabbitMQ, Data Distribution Service (DDS) and the

Extensible Messaging and Presence Protocol (XMPP) as examples of MOMs and

compare them in terms of “latency, bandwidth, delivery guarantees and, message priority

and [message] ordering.” [35, pp. 2-3] It should not come as a surprise that XMPP is a

protocol also considered suitable for the Internet of Things (IOT) by Karagiannis et al

[36], since IoT and smart grids are closely related to each other (due to, besides other

reasons, smart meters being used for the latter).

22

 Capodieci et al. [37] sketch an architecture and develop a simulation for an agent-

based architecture for smart grid energy markets consisting of buyers, prosumers,

“Gencos” (“big energy generating companies” [37, p. 302]) and a “balancer”

(“responsible for the synchronization of negotiation procedures and for the balancing

aspects” [37, p. 302]). A balancer agent keeps track of how much energy is produced by

the prosumers and how much buyer agents predict they will use within an interval. Based

on this, it communicates to Gencos how much energy they should offer for the interval.

“Each market day is divided into several time intervals and for each one every buyer has

to decide in advance who is going to be its energy supplier for the next time interval” [37,

pp. 301-302]. This is done by using a prediction algorithm. In reality, a hybrid of a system

like this – which uses “time-of-use pricing” [38, p. 12] – and the one described in the

work by Mihaylov et al. [25] – which uses “real-time pricing” [38, p. 12] – would be

needed for a smart grid, since predicting energy consumption can help with keeping

fluctuations to a minimum, while a real-time bargaining functionality can make

surpassing a prediction less of a problem because such systems use “critical peak pricing”

[38, p. 12]. In the negotiation phase, “[b]uyers do not know any bid values of the other

consumers” [37, p. 301]. This is a security concern, since it introduces the possibility of

rigging the market through cooperation amongst sellers or between a seller and a buyer.

To create a prediction algorithm that would be fair toward all participants in such

conditions where buyers do not know the bid values when placing their bids, they adopt

the El Farol Bar minority game for the energy market and mix this with a stochastic game.

They also provide the bidding agents with risk awareness and use fuzzy logic to adopt to

the changing market conditions that result from the behaviours of other agents. Finally,

they run the simulation developed on JADE, comparing agents, who use the described

strategy except for the adoption algorithm and the ones who use it also with the adoption

algorithm.

23

3 Agent-Oriented Models

3.1 Goal Models

Taveter and Sterling [6] define goal model as containers that hold system’s goals,

quality goals and its roles. A goal is a functional requirement, a quality goal a non-

functional requirement and a role is a position that is necessary for the system to achieve

its goals.

In Figure 1 we depict a goal model, where there are five main goals.

1) Finding producers

2) Notifying the producers of the consumers interest and counteroffer

3) The producer accepting the offer from consumer

4) Finalizing the contract

Finding producers is divided into sub goals. The main goal has the quality goal of

happening fast to save energy costs (that is, computational resources are not wasted). The

sub goals of the main goal are finding electricity producers that have electricity to sell

and selecting the producers – the quality goal is to find offers that bid the best price for a

given quantity, disregarding offers that are too high for the consumer or too high

compared to the rest of the offers.

When notifying the producers of the consumers interest the producers are told

how much and at what price the consumer wants to buy electricity (the consumers already

know at what price the producers offer to sell electricity, but here the consumer gets to

haggle the price down). This should be done in a way in the system that would not let

either party be treated unfairly.

Accepting the offer from consumer is divided into two sub goals. Firstly, the

producer checks that they have enough energy to sell and the counteroffer’s price is not

too low. Secondly, if they deem these conditions true, they accept the offer by notifying

the consumer.

24

Once the offer is accepted, the contract is finalized by the consumer calling the

smart contract functions, which pays the producer and records the information on the

blockchain. This action makes the contract immutable and binding (one of the quality

goals), which means it gives grounds for the consumer to prove that the contract was

indeed accepted by both parties and that money was transferred. The use of smart contract

also fulfills the quality goal of making the transaction secure and reliable.

25

Figure 1

Goal model

for selling

produced

electricity to

the

consumer

26

3.2 Role Model

Since Goal models do not give insights into the details of the roles, Taveter and

Sterling [6] offer role model concept, to show in detail what the responsibilities and

constraints of the roles are on an individual level. In our case we only need to define role

models for Producer and Consumer, which can be seen in Table 1 and Table 2 .

Role name Producer

Description The energy producer can either be a local homeowner – producing

energy via renewable energy sources – or a company – producing it

via renewable or unrenewable energy source –, who sells it to

consumers

Responsibilities Inform the customer about the amount of energy offered

Inform the customer about the price of energy

Accept or reject an offer made by the consumer

Sell the energy

Receive virtual currency using smart contracts

Constraints A transaction cannot be completed without buyer calling the

appropriate smart contract function

Once signed, the contract is immutable and binding

The transaction is safe and reliable

Should receive the virtual currency that is specified in the smart

contract

Table 1 Role model for producer

Role name Consumer

Description The energy consumer can be anyone, who buys energy from the

producer

Responsibilities Find energy producers that have energy to sell

Ask energy producers about the amount and price of energy

Select the producer(s) to buy energy from

Ask producers if they are willing to sell a certain amount of energy

for the price the producer offered

Call a smart contract function for selling a certain amount of energy

for a certain price

Check their virtual currency balance on the blockchain

Constraints A transaction cannot be completed without buyer calling the

appropriate smart contract function

Interact with the nearest and cheapest producers first

27

Once signed, the contract is immutable and binding

The transaction is safe and reliable

Table 2 Role model for consumer

3.3 Organization Model

The organization model helps us understand the relationships of the agents when

defining the interactions of between them, as Taveter and Sterling [6] point out. For our

case, it is a very simple relationship, where the agents are equal – that is, neither

commands the other. The organization model can be seen Table 3.

Table 3 Organization model for our system

3.4 Domain Model

Taveter and Sterling [6] use domain models to map out the knowledge about the

environment the system is situated, to clarify the context of goal and role models. The

domain model for our system can be seen on Figure 2. Besides the roles, the domain

model contains services and resources. In the domain model, the services are denoted

with a rectangular box (e.g. JADE Main Container) and underlined text and connected to

resources. The resources are denoted with a rectangular box and are connected to the roles

with a verb or verbs (e.g. accesses).

In our domain model, the consumer interacts with the Blockchain service and

Directory Facilitator, while the producer interacts exclusively with the Directory

Facilitator. This is because smart contracts are not like real contracts and do not

necessarily require both parties to have access to them in order to be valid, since they can

be used to send money from the producer to the consumer, which can serve as a proof of

transaction on its own.

28

Figure 2 Domain model for our system

3.5 Agent/Acquaintance Model

The agent models represent the relationships between roles and agents. “The

purpose pose of agent models is to transform the abstract constructs from the analysis

stage, roles, to design constructs, agent types, which will be realized in the

implementation process” [6, p. 231]. As Figure 3 shows, the Consumer and Producer are

implemented as the Smart meter agent, or to put it into object-oriented language terms,

they are instances of the same class. The asterisk below the Smart meter box denotes that

there can be multiple instances of Smart meter that exist in our system.

Acquaintance models are introduced by Taveter and Sterling “in order to visualize

the degree of coupling between agents.” [6, p. 233] The “arc represent the existence of

an interaction link,” [6, p. 233] showing that two agents can communicate (in our case,

this means sending messages). The asterisk implies that multiple Smart meter agents can

interact with multiple other Smart meter agents

29

Figure 3 Merged agent and acquaintance model for our system

3.6 Scenarios

Scenarios go into specifics about the interactions of the agents, or in other words,

“a scenario is a behavior model that describes how the goals set for the system can be

achieved by agents of the system” [6, p. 251]. In Table 4 we define the scenario for the

main goal described in chapter 3.1.

SCENARIO 1

Scenario description Buying energy from producer(s)

Initiator Consumer

Trigger A consumer wants to find energy producers that have energy to

sell

Failure The consumer is left without energy

DESCRIPTION

30

Condition

Step Activity Agent

types/roles

Resources Quality goals

 1 Find Smart Meters that

have energy to sell

Smart Meter/

Consumer

Directory

Facilitator’s

list of agents

1) The search

happens fast

so that it is

energy

efficient.

2) Find

energy

producers

that offer the

best price

 2 Ask Producer about the

amount and price of

energy

Smart Meter/

Consumer,

Smart Meter/

Producer

 3 Send information about

the amount of energy the

Producer is willing to

offer and the price of

energy per a certain unit

(e.g. watt)

Smart Meter/

Consumer,

Smart Meter/

Producer

 The price is

fair for both

the seller and

the buyer

Repeat if

necessary

3-4

3 Select the Producers to

buy energy from

Smart Meter/

Consumer

 4 Ask Producer if they are

willing to sell the amount

of energy for the price

they previously offered

Smart Meter/

Consumer,

Smart Meter/

Producer

Options

5-6

5 Reject an offer

Smart Meter/

Consumer,

Smart Meter/

Producer

 6 Accept an offer

Smart Meter/

Consumer,

Smart Meter/

Producer

 7 Buy energy by calling the

smart contract with the

appropriate arguments

Smart Meter/

Consumer

Smart

contract

The contract

is immutable

and binding

31

(bidder, quantity, price

etc.)

 8 Sell an amount of energy

for a certain price by

signing a smart contract

Smart Meter/

Producer

Smart

contract

1) The

contract is

immutable

and binding

2) The

transaction is

safe and

reliable

3) Happens

automatically

once the

consumer

has called the

function of

the smart

contract

Table 4 Scenario for our system

32

4 System Architecture

4.1 Ethereum blockchain

In designing the system, we need to store only that data on the blockchain, which

is important from the “trust” aspect – ensuring that the transactions are not altered once

they are agreed upon – as is described in the Problem Statement in chapter 1.2. This is for

both speed and scalability reasons – as was stated earlier in chapter 1.1.4, data on the

blockchain needs to be cryptographically verified and, by nature of decentralization,

stored in multiple locations.

For data storage, Ethereum has two ways of storing data on the blockchain – either

in storage variables inside smart contracts or by using logs, which smart contracts cannot

access, even though logs are created when a smart contract emits a higher-level

abstraction called “event” [39]. Although logs are not a part of the data stored on the

blockchain, they are still verified by the blockchain, since “[l]ogs are part of the

transaction receipts” and “transaction receipt hashes are stored inside the blocks” [39]. In

conclusion, data can be stored via smart contracts or logs, with the latter having the

disadvantage that they cannot be accessed by smart contracts afterwards.

Our goal is to store as little data as possible with storage variables inside smart

contracts and inside logs, due to previously mentioned reasons. This is especially relevant

because we will be using a blockchain with each node holding all the data and these “full

node blockchains” would have to sacrifice either decentralization or security in return for

scalability – either you store all the data on all the nodes or you store some of the data

and lose on the decentralization and/or security aspect –, which would not be desired.

This coupled with the fact that on Ethereum, “[l]ogs … cost 8 gas per byte, whereas

contract storage costs 20,000 gas per 32 bytes” [39] (32 bytes is maximum of 32

characters in UTF-8, while 20,000 gas was on average about 0.01624 dollars at the end

33

of October 2018 and 0.05359 dollars in the beginning of May 2019 [40]), means that

storing data on logs is preferable, when thinking of data costs.1

According to the Solidity documentation, Events can be called within a smart

contract function, upon which the arguments used to call a smart contract function are

stored on the blockchain and these arguments are then in turn associated with the address

of the contract [41]. This information can then be accessed if the block is accessible.

4.2 Java Agent Development Framework

For the software agent creation and management, we will use Java Agent

Development Framework. The software agents will be running on JADE’s Main

Container and we will be using its Directory Facilitator for the agents to find and interact

with other agents on the Main Container. According to JADE documentation, “[e]ach

running instance of the JADE runtime environment is called a Container as it can contain

several agents.” A platform consists of containers, with just one Main container, with

which “all other containers register … as soon as they start.” The Directory Facilitator

“provides a Yellow Pages service by means of which an agent can find other agents

providing the services he requires in order to achieve his goals.” [42]

The buying and bidding of energy will be done through the FIPA Contract Net

Interaction Protocol as is shown in Figure 4. The producer will play the initiator role,

while the consumer will be in the participant role. Every interaction is started by the

Initiator asking for the Directory Facilitator for Consumers who are interested in buying

and making a “call for proposal” (CFP) request to them. The Participant must reply in a

given deadline with either a “refuse” or a “propose” response message. The “proposed”

messages, in turn, must be accepted or rejected by the Initiator. Finally, the Participant

must confirm with a “failure”, “inform-done” or “inform-result” message (the latter two

of which can be considered equal, with “inform-result” also containing some

1 It is important to note here that if a new solution is implemented (such as sharding proposed by Vitalik

Buterin [47]), which would enable a blockchain to increase the scalability without significantly

sacrificing decentralization and security, the data storage will be less of an issue.

34

information), upon receiving which, the Initiator can consider the interaction to be done.

[43]

The legend for Figure 4 is the following:

1) 𝑚 – the number of CFP requests sent by the Initiator

2) 𝑛 – the number of responses from the Participant in total

3) 𝑖 – the number of responses that are “refused”

4) 𝑗 – the number of responses that are “proposed”

5) 𝑘 – the number of answers with “propose” messages rejected, sent by the

Initiator

6) 𝑙 – the number of answers with “propose” messages accepted, sent by the

Initiator

35

Figure 4 FIPA Contract Net Interaction Protocol [43]

36

5 Market Setup

5.1 Asymmetric Markets

We expect the energy market to be asymmetric, where “each bidder tries to

maximize his expected profit,” and not symmetric, where “the bid functions of all bidders

are identical” [44, pp. 171-172]. This is because it is unlikely all bidders have the same

type of technology, which means that they cannot produce the same amount of energy or

derive the bid function the same way in the real world. Because of these two reasons, the

bid functions of all bidders cannot be identical.

 For an asymmetric P2P energy market, neither simulation or theory can give final

answers, but simulation can give some insight how the market could operate using

blockchains and software agents. Asymmetric markets – i.e., a market, where each energy

producers offer different amounts and/or ask a different price for it – are difficult to

analyse, since the probability of a bidder being chosen by a customer is not something

that can be predicted with enough accuracy for this prediction to be of practical use. This

is, besides other reasons, because both bidders and buyers can adopt various types of

strategies and these cannot be known about in advance. Therefore, simulation only proves

that the setup works for the market, not that the strategy itself is useful.

5.1.1 The Three Types of Asymmetric Markets

 To simulate the P2P energy market, we need an algorithm that would enable the

producers to bid to their customers and react to changes in the market conditions. Rosen

and Madlener [44] look at three types of asymmetric markets. The markets are discerned

by the amount of information the bidders have access to.

In the first market, only the “total supply and aggregated price curve of accepted

bids” [44, p. 173] is available. In the second, all the bids that the consumers have accepted,

are known. In the third, the bidders only know whether their bids were successful or not.

The first type of market is not implementable in a peer-to-peer way for Ethereum.

It requires that either there exists a central authority, who holds all the information about

the winning bids – which would not be desirable for a P2P energy market solution –, or

all the data is stored inside a smart contract’s storage variable so that only a smart contract

37

knows about the bids in detail and can be programmed to give out summary information

about the bids. The latter option is not very cost effective for an Ethereum full node

blockchain (which is what we use to run our P2P energy market), as described in chapter

4.1. It is also possible to see all the data stored inside a smart contract in Ethereum [45],

which would defeat the purpose of storing data inside the smart contract. Therefore, we

will not consider trying to implement the first type of market.

The second type of market is implementable without any foreseeable issues. As

stated before in chapter 4.1, it is more cost effective, if blockchain logs are used to store

information related to the winning bids, not smart contracts storage variable.

The third type of market, as Rosen and Madlener note [44], can be used to

encourage competition and avoid collusion. However, since all of data is publicly

available, this would mean that more detailed information would not be stored on the

blockchain which in turn would make it hard to verify the transaction later. Therefore, we

will not consider this type of market for implementation.

5.2 Learning Strategy for Software Agents

For the learning strategy, we will need an algorithm. Rosen and Madlener [44]

provide a learning strategy for bidders (energy producers) to try to maximize their profits

in the asymmetric markets, which we described above. The algorithms for the learning

strategy, which contains both a bidding and a price determination algorithm, can be seen

on Figure 5 and on Figure 6 below. µ𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡, σ𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 and b (discount factor) are

determined based on the preference of the seller.

For determining the theoretical profit, we use a simplification of Rosen and

Madlener’s equation [44]. Equation 1 gives the Expected profit of an individual bidder

for a round. From this, we derive Equation 2, where we have removed the probability

function, since it is not possible to calculate the probability of winning the bid for a

quantity q with enough accuracy for it to have practical use since the probability of a

bidder being chosen by a customer is not predictable in the real world. Equation 2 tells us

how to calculate the theoretical profit of an individual bidder (π𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑖) for the i-th

successful bid in the last round (the use of this theoretical profit is depicted in Figure 5).

We will simplify this algorithm even more and arrive at Equation 3, removing the cost,

38

since our experiments do not rely on real word data and there would be no benefit in

figuring in cost.

The legend for the variables in Equation 1, Equation 2 and Equation 3 is the

following:

1) 𝐸(π𝑖) – expected profit of an individual bidder for a round

2) 𝑞𝑖,𝑙 – the quantity offered by the i-th bidder for the highest price

𝑙 = ∑ 𝑙𝑖
𝑦
𝑖=1 – the total number of bids submitted by bidders, where y is the

number of bidders

𝑙𝑖 – the number of total bids that the i-th bidder makes (this also includes a

“mandatory” nil offer – that is, both price and quantity are zero)

𝑞𝑖 = ∑ 𝑞𝑖,𝑑
𝑙𝑖

𝑑=1
, where 𝑞𝑖,𝑑 is the quantity that the i-th bidder offers for their

d-th lowest price

3) 𝑝𝑖(𝑞) – prices offered by the i-th bidder for each of the 𝑙𝑖 bids

4) 𝑐𝑖(𝑞) – (a very broadly defined) cost of offering the buyers energy for quantity

q that includes technology-related costs, energy generation costs, as well as

opportunity costs that rise with quantity

5) 𝑓(𝑞) – probability of winning the bid for a quantity q

6) π𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑚 – the theoretical profit of an individual bidder for the i-th

successful bid in the last round

7) 𝑞𝑚 – the quantity offered in the m-th bid in the last round

𝐸(π𝑖) = ∫ 𝑓(𝑞)(𝑝𝑖(𝑞) − 𝑐𝑖(𝑞))
𝑞𝑖,𝑙

0

𝑞𝑑𝑞

Equation 1 Expected profit of an individual bidder for a round offered by Rosen and Madlener [44, p.

171]

39

π𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑚 = 𝑝𝑖(𝑞𝑚) − 𝑐𝑖(𝑞𝑚)

Equation 2 Theoretical profit of an individual bidder for m-th bid, derived from Equation 1

π𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑚 = 𝑝𝑖(𝑞𝑚)

Equation 3 Theoretical profit of an individual bidder for m-th bid, derived from Equation 2

40

Figure 5 The price determination algorithm for energy producers in an asymmetric market, offered by

Rosen and Madlener [44, p. 174]

41

Figure 6 The bidding function algorithm for energy producers in an asymmetric market, offered by Rosen

and Madlener [44, p. 174]

5.3 Demand-Side Management

Demand-side management will not be added to this algorithm. This is because it

is difficult to predict to what extent people would use such a feature – it is unlikely that a

person would be comfortable with, for example, switching from watching TV from 7 PM

to 8 PM to watching it from 2 AM to 3 AM, just to save money. The other issue is that it

42

would require granular data about the usage of energy by the consumer, which might be

obtained if we were better funded.

43

6 Simulation

6.1 Modifiable Variables

For the simulation test cases, we made it possible to modify the following

variables:

1) The discount factor (b) for both consumer/buyer and

producer/seller/bidder agents.

2) The number of agents that would participate in a round (agents per round).

3) The total number of agents per test case (agents in total).

4) Rounds per test case

In addition,

1) For each consumer we set the highest ratio at which they were willing to buy

(consumer’s highest ratio).

2) For each producer, we set the lowest ratio at which they were willing to sell

(producer’s lowest ratio).

Price to quantity function is defined in Equation 4, where 𝑟 is price to quantity

function, 𝑞 is the amount of energy the producer is willing to sell and 𝑝 the price they are

willing to pay. While theoretically the ratio should be a nonlinear equation, it will not

affect our results to have a linear equation, if we set the limits in highest and lowest ration,

as described above. This is because having limits serves the same purpose as a non-linear

equation exponentially increasing or decreasing the output value to indicate resource

limits of a producer or a consumer.

𝑝 = 𝑟(𝑞), where r =
p

q

Equation 4 Price to quantity function

44

6.2 Test Cases

For the simulation, we will be testing two different cases. In both cases we set the

following constraints for variables:

1) Discount factor for all consumer at 90%.

2) Both the consumer’s highest and producer’s lowest ratio were pseudo

randomly generated 1 between integers of 10 and 20.

3) Both the quantity offered by the producer and bought by the consumer were

pseudo randomly generated between integers of 1 and 100

We used a pseudo random integer generator, because the distribution of numbers is

difficult to predict, without having real world data.

 In the first case the simulation ran for 10 rounds and for each round 50 new

producer agents and 50 new consumer agents were introduced with the same wallet

address. The agents that were unsuccessful continued bidding until they succeeded or the

simulation test case ended – this means that there were cases where two agents or more

agents with the same wallet address were bidding.

In the second case we introduced 10 producer and 10 consumer agents and the

simulation ran for 100 rounds.

We ran these two test case simulations, because simulation was not able to run

100 agents for 100 rounds and produce results in a reasonable amount of time. We wanted

to see what happened with a lot of agents participating in the bidding process and how

reliable the algorithm is in the long run. However, when we tried to run 100 agents for

100 rounds but were faced with a speed bottleneck that grew exponentially and would

mean that the rounds would not be completed in a reasonable amount of time (2 minutes).

The bottleneck was introduced from accessing the Ethereum logs – every unique wallet

needed to create a unique connection to the Ethereum blockchain. This access needed to

1 In all cases, for pseudo randomness we used Java’s ThreadLocalRandom’s nextInt method [46].

45

be managed by only a few semaphores, in order to avoid out of memory issues. Since we

did not see a way around the issue, we settled for two test cases instead of just one.

6.2.1 First test case simulation

Figure 7 and Figure 8 show how quantity and price were distributed in each of the

rounds. The fluctuation of both the price and quantity stems from the number of

successful bids as can be seen on Figure 9 – the sum of price in Figure 7, the sum of

quantity in Figure 8 and the successful bids in Figure 9 form nearly the same shape. The

first round is the only round in which the algorithm does not rely on best bid data to

determine the price and quantity to offer.

The simulation with 50 producer agents and 50 consumer agents seems to have

suffered from the same bottleneck issues we mentioned earlier in the beginning of chapter

6.2. The sum of price dropped by 75% in the third round, by which time there were at

least 95 active agents. Concurrently handling more than about 50 agents seems to have

created issues for the simulation, where results cannot be reliably assessed. The

simulation would need to be tested using more than one computers, in order to guarantee

that the speed bottleneck is not creating the issue and that these graphs are the results of

a bad learning algorithm, for which we lack the resources.

Figure 7 Sum of price in the first test case simulation

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 2 4 6 8 10 12

Su
m

 o
f

p
ri

ce

Round

46

Figure 8 Sum of quantity in the first test case simulation

Figure 9 Successful bids in the first simulation test case

6.2.2 Second test case simulation

In the second case simulation, where we had only 10 agents per round, the bidding

algorithm seems ineffective at winning bids. Figure 10 shows that the number of

successful bids fluctuates from round to round, not achieving better results compared to

previous rounds for more than one round. Although the quantity and price per successful

bid is higher in the second half, the overall results compared between first and second

half prove the first half to be more successful, as can be seen in Table 5.

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12

Su
m

 o
f

q
u

an
ti

ty

Round

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

Su
cc

es
sf

u
l b

id
s

Round

47

Figure 10 Successful bids in the second simulation test case

Sum of
quantity

Sum of
price

Successful
bids

First half 8710 140202 212

Sum of
quantity

Sum of
price

Successful
bids

Second
half 7737 120527 172

Ratio 0.89 0.86 0.81

Table 5 Second test case simulation results for first and second half

6.3 Conclusion

The first test case simulation showed us that with more than 100 agents

concurrently bidding, the system is no longer able to match buyers and sellers effectively,

failing to adhere the search principle, which means that the connection to the blockchain

bottleneck needs to be addressed to simulate such a system for larger number of agents.

The second case simulation showed that the algorithm proposed by Rosen and

Madlener [44] is not very efficient at winning bids, at least, with a small number of agents

-5

0

5

10

15

20

25

0 20 40 60 80 100 120

Su
cc

es
sf

u
l b

id
s

Round

48

bidding, and should also be considered to be replaced with a smarter algorithm or a

reinforcement learning approach.

49

7 Summary

The electricity grid is going through changes related to the introduction of

renewable energy sources and electric vehicles, while energy production is becoming

more decentralized. This decentralization needs new kind of approach to the grid that

allows for local self-management of energy and measures energy usage in more detailed

way, which traditional, centralized systems cannot offer. This type of smart grid also

needs an efficient market, meaning it must match buyers and sellers effectively (the

search principle), be set up to ensure that prices will be set competitively (the pricing

principle) and, finally, ensure that transactions are secure and reliable for buyers and

sellers (the trust principle). In this thesis, we tried to figure out how to build such a market

using software agents and blockchains.

Contrary to the research we gave an overview in the Related Research in chapter

2, we used smart contracts to ensure the security and reliability of transactions, by storing

data on Ethereum’s logs, which are verified just like data on storage variables inside smart

contracts, but is cheaper to store.

To match buyers and sellers effectively and ensure that prices will be set

competitively, we used software agents. The software agents ran on Java Agent

Development Framework (JADE), communicating using the FIPA Contract Net

Interaction Protocol.

In order to test whether such a system indeed could provide a market that adheres

to the search, pricing and trust principles, we ran two test case simulations. The first test

case simulation showed us that with more than 100 agents concurrently bidding, the

system is no longer able to match buyers and sellers effectively, failing to adhere the

search principle, which means that the connection to the blockchain bottleneck needs to

be addressed to simulate such a system for larger number of agents. The second case

simulation showed that the algorithm proposed by Rosen and Madlener [44] is not very

efficient at winning bids, at least, with a small number of agents bidding, and should also

50

be considered to be replaced with a smarter algorithm or a reinforcement learning

approach.

51

References

[1]+

+++

+++

Electric Power Research Institute, "Distributed Energy Resources," [Online].

Available: http://www.epri.com/Our-Work/Pages/Distributed-Electricity-

Resources.aspx. [Accessed 22 March 2017].

[2] U.S. Department of Energy, "Smart Grid Asset Descriptions," [Online].

Available: https://www.smartgrid.gov/files/description_of_assets.pdf. [Accessed

14 March 2017].

[3] Global Smart Grid Federation, "Smart Grids," [Online]. Available:

http://www.globalsmartgridfederation.org/smart-grids/. [Accessed 2 March

2017].

[4] W.-Y. Chen, T. Suzuki and M. Lackner, Handbook of Climate Change

Mitigation and Adaptation, Springer International Publishing Switzerland, 2016.

[5] L. Einav, C. Farronato and J. Levin, "Peer-to-Peer Markets," Annual Review of

Economics, vol. 8, p. 615–635, 2016.

[6] L. S. Sterling and K. Taveter, The Art of Agent-Oriented Modeling, London: The

MIT Press, 2009.

[7] I. Weber, X. Xu, R. Riveret and G. Governatori, "Untrusted Business Process

Monitoring and Execution Using Blockchain," in International Conference on

Business Process Management, 2016.

[8] R. Hull, V. S. Batra, Y.-M. Chen and A. Deutsch, "Towards a Shared Ledger

Business Collaboration Language Based on Data-Aware Processes,"

International Conference on Service-Oriented Computing, pp. 18-36, 2016.

[9] T. S, E. J and K. M, "Not ACID, not BASE, but SALT-a transaction processing

perspective on blockchains," in Proceedings of the 7th International Conference

on Cloud Computing and Services Science, Porto, 2017.

52

[10] Ethereum Foundation, "Ethereum Project," [Online]. Available:

https://www.ethereum.org/. [Accessed 21 February 2017].

[11] Ethereum Foundation, "Ethereum White Paper," 25 December 2016. [Online].

Available: https://github.com/ethereum/wiki/wiki/White-Paper. [Accessed 21

February 2017].

[12] V. Morabito, "Smart Contracts and Licensing," in Business Innovation Through

Blockchain, Springer International Publishing, 2017, pp. 101-124.

[13] J. Stark, "Making Sense of Blockchain Smart Contracts," 4 June 2016. [Online].

Available: http://www.coindesk.com/making-sense-smart-contracts/. [Accessed

15 January 2017].

[14] J. Bremer and S. Lehnhoff, "Decentralized Coalition Formation," in International

Conference on Practical Applications of Agents and Multi-Agent Systems,

Sevilla, 2016.

[15] International Energy Agency, "CO2 emissions from fuel combustion

HIGHLIGHTS 2016," [Online]. Available:

https://www.iea.org/publications/freepublications/publication/CO2Emissionsfro

mFuelCombustion_Highlights_2016.pdf. [Accessed 22 March 2017].

[16] G. James, W. Peng and K. Deng, "Managing Household Wind-energy

Generation".

[17] E. Ogston, A. Zeman, M. Prokopenko and G. James, "Clustering Distributed

Energy Resources for Large-Scale Demand Management," in Self-Adaptive and

Self-Organizing Systems, 2007.

[18] V. Buterin, "On Abstraction," 5 July 2015. [Online]. Available:

https://blog.ethereum.org/2015/07/05/on-abstraction/. [Accessed 22 March

2017].

[19] H. Mayer, "ECDSA Security in Bitcoin and Ethereum: a Research Survey," 17

May 2016. [Online]. Available: http://blog.coinfabrik.com/ecdsa-security-in-

bitcoin-and-ethereum-a-research-survey/. [Accessed 22 March 2017].

[20] N. Szabo, "Smart Contracts: Building Blocks for Digital Markets," 1996.

[Online]. Available:

http://www.alamut.com/subj/economics/nick_szabo/smartContracts.html.

[Accessed 21 February 2017].

53

[21] S. Omohundro, "Cryptocurrencies, Smart Contracts, and Artificial Intelligence,"

AI Matters, vol. I, no. 2, pp. 19-21, 2014.

[22] A. R. Hevner, S. T. March, J. Park and S. Ram, "Design Science in Information

Systems Research," MIS Quarterly, vol. 28, no. 1, pp. 5-105, 2016.

[23] N. Z. Aitzhan and D. Svetinovic, "Security and Privacy in Decentralized Energy

Trading through Multi-Signatures, Blockchain and Anonymous Messaging

Streams," IEEE Transactions on Dependable and Secure Computing, vol. PP, no.

99, 2016.

[24] European Parliament, Council of the European Union, Directive 2009/72/EC,

2009.

[25] M. Mihaylov, S. Jurado, K. Van Moffaert, N. Avellana and A. Nowe, "NRG-X-

Change: a Novel Mechanism for Trading of Renewable Energy in Smart Grids,"

[Online]. Available:

https://cdn.hackaday.io/files/10879465447136/mihaylov_etal_smartgreens14.pdf

. [Accessed 22 March 2017].

[26] A. Amato, B. Di Martino, M. Scialdone and S. Venticinque, "Multi-agent

Negotiation of Decentralized Energy," Intelligent Distributed Computing, vol.

VIII, pp. 155-160, 2015.

[27] S. Hosokawa and N. Nishino, "New mechanisms in decentralized electricity

trading to stabilize".

[28] Tilab, "Jade Site," [Online]. Available: http://jade.tilab.com/. [Accessed 21

February 2017].

[29] L. Tasquier, M. Scialdon, R. Aversa and S. Venticinque, "Agent Based

Negotiation of Decentralized Energy Production," Intelligent Distributed

Computing, vol. VIII, pp. 59-67, 2015.

[30] "SPADE 2.2.1," [Online]. Available: https://pypi.python.org/pypi/SPADE.

[Accessed 13 March 2017].

[31] A. Amato, B. Di Martino, M. Scialdone and S. Venticinque, "A Virtual Market

for Energy Negotiation and Brokering," in P2P, Parallel, Grid, Cloud and

Internet Computing, 2015.

[32] "Retroshare," [Online]. Available: http://retroshare.net/. [Accessed 14 March

2017].

54

[33] S. Fey, P. Benoit, G. Rohbogner, A. H. Christ and C. Wittwer, "Device-to-

Device Communication for Smart Grid".

[34] A. Amato, B. Di Martino, M. Scialdone and S. Venticinque, "A Negotiation

Solution for Smart Grid using a fully decentralized, P2P approach," in Complex,

Intelligent, and Software Intensive Systems, 2015.

[35] A. R. Alkhawaja, L. L. Ferreira, M. Albano and R. Garibay, "QoS-enabled

Middleware for Smart Grids," IPP Hurray! Research Group, 2012.

[36] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego and J. Alonso-Zarate, "A

Survey on Application Layer Protocols for the Internet of Things," [Online].

Available:

https://www.researchgate.net/profile/Periklis_Chatzimisios/publication/3031921

88_A_survey_on_application_layer_protocols_for_the_Internet_of_Things/links/

577b656608ae213761c9d91d.pdf. [Accessed 12 December 2018].

[37] N. Capodieci, G. Cabri, G. A. Pagani and M. Aiello, "Adaptive Game-based

Agent Negotiation in Deregulated Energy Markets," in Collaboration

Technologies and Systems, 2012.

[38] U.S. Department of Energy, "Benefits of Demand Response in Electricity

Markets and Recommendations for Achieving Them," February 2006. [Online].

Available: https://emp.lbl.gov/sites/all/files/report-lbnl-1252d.pdf. [Accessed 11

March 2017].

[39] ConsenSys, "Technical Introduction to Events and Logs in Ethereum," [Online].

Available: https://media.consensys.net/technical-introduction-to-events-and-logs-

in-ethereum-a074d65dd61e. [Accessed 20 Januar 2019].

[40] "ETH Gas Station," [Online]. Available:

https://ethgasstation.info/calculatorTxV.php. [Accessed 16 May 2019].

[41] Ethereum Foundation, "Contracts," [Online]. Available:

https://solidity.readthedocs.io/en/develop/contracts.html. [Accessed 2 December

2017].

[42] Tilab, [Online]. Available:

http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf.

[Accessed 20 January 2019].

55

[43] The Foundation for Intelligent Physical Agents, "FIPA Contract Net Interaction

Protocol Specification," [Online]. Available:

http://www.fipa.org/specs/fipa00029/SC00029H.html. [Accessed 16 May 2019].

[44] C. Rosen and R. Madlener, "An auction design for local reserve energy markets,"

Decision Support Systems, vol. 56, p. 168–179, 2013.

[45] Ethereum, "Solidity Contracts," [Online]. Available:

https://solidity.readthedocs.io/en/v0.4.21/contracts.html#visibility-and-getters.

[Accessed 20 January 2019].

[46] Oracle, "ThreadLocalRandom," [Online]. Available:

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/

ThreadLocalRandom.html#nextInt(int,int). [Accessed 16 May 2019].

[47] V. Buterin. [Online]. Available: https://github.com/ethereum/wiki/wiki/Sharding-

FAQ. [Accessed 20 January 2019].

56

