
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

ITV40LT

Olga Orlova 120976IAPB

WEB ANALYTICS BASED APPROACH FOR
FEATURE INTRODUCTION IN WEB

APPLICATIONS

Bachelor's thesis

Supervisor: Jaagup Irve

Master of Science

Software Engineer

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

ITV40LT

Olga Orlova 120976IAPB

ANALÜÜTIKALE TUGINEV
FUNKTSIONAALSUSE RAKENDUSSE

JUURUTAMINE

Bakalaureusetöö

Juhendaja: Jaagup Irve

Magister

Tarkvarainsener

Tallinn 2016

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Olga Orlova

22.05.2016

3

Abstract

When some major changes, e.g. new features, an updated version or redesign, are

introduced to a software product in general, and a web application in particular, it is

crucial for product owners to monitor the usage of the new parts of application, and to

be able to compare it against the way it used to be before. Data collection, research and

analysis help to reveal whether or not the issues that new features were expected to

solve are actually gone, how satisfied the customers are with the new features, which

new issues were possibly caused.

This thesis is based on a project I implemented at my workplace. It describes the

process of designing and developing a web analytics tracking for measuring the web

application usage during a new feature introduction, and gives a brief insight into the

consequent data visualization and analysis.

This thesis is written in English and is 48 pages long, including 5 chapters, 11 figures

and 6 tables.

4

Abstract

Analüütikale Tuginev Funktsionaalsuse Rakendusse Juurutamine

Kui tarkvaratootesse, iseäranis veebirakendusse juurutatakse olulisi muudatusi, näiteks

uut funktsionaalsust, kujundust või versiooniuuendusi, on tarnijal kriitiliselt tähtis

jälgida, kuidas lõpptarbija rakenduse muutunud osi kasutab ning võrrelda seda varasema

seisuga. Andmete kogumise, jälgimise ning analüüsi abil selgub kas muudatused

avaldavad soovitud mõju, kui rahul klient uue funktsionaalsusega on ning ka seda

milliseid uusi probleeme muudatus põhjustas. Bakalaureusetöö vaatleb tööl läbiviidud

projekti. See kirjeldab kuidas kavandati ja arendati veebirakenduse seiremoodul, mis

jälgis uue funktsionaalsuse juurutamist ning annab põgusa ülevaate järgnenud andmete

visualiseeringu ja analüüsi etappi.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 48 leheküljel, 5 peatükki, 11

joonist, 6 tabelit.

5

List of abbreviations and terms

ISO The International Standards Organization

CRM Customer relationship management

UI User interface

UX User experience

SPA Single-page application

ms Millisecond

NRQL New Relic Query Language

6

Table of Contents

1 Introduction...11

2 Theoretical Background... 12

2.1 Definition of Usability... 12

2.2 Definition of Usability Metrics.. 12

2.3 The Importance of Usability Metrics... 13

2.4 Definition of A/B Testing...13

3 Overview of Pipedrive’s Web Application... 14

3.1 The Reasons Pipedrive Is Switching to Single-page Application......................15

3.2 The Process of Converting to Single-page Application (Using Pipedrive’s Activity

List View As an Example)... 16

3.3 Web Analytics Tools Used in Pipedrive...16

3.3.1 Action Mapper..17

3.3.2 New Relic Insights..17

3.3.3 Segment.. 17

4 Web Analytics Tools Usage in Feature Introduction.. 18

4.1 Planning Stage..18

4.2 Implementation Stage.. 21

4.2.1 Overview of the New Relic Insights Data Tracking Structure.......................21

4.2.2 Implementing Custom New Relic Actions for the Task.................................21

4.2.3 Measuring Page Load Time and Time Filters Usage......................................22

4.2.4 Measuring Bulk Edit Usage..30

4.2.5 Measuring Marking Activities As “Undone” Usage.......................................32

4.3 Data visualization and analysis.. 40

4.3.1 Querying Collected Data using NRQL...40

4.3.2 Conclusions on the Data Collected for the Project Based on New Relic

Insights Visualizations... 40

5 Summary...46

 References.. 48

7

 Appendix 1 – NRQL Basic Queries Examples...49

8

List of Figures

 Figure 1. Main objects and their relations in Pipedrive's web application.....................15

 Figure 2. Selecting custom date/date range in the old and new activity list views........19

 Figure 3. Confusing UI elements in the old activity list view and selecting items for

bulk editing in the new activity list view... 20

 Figure 4. Using cookie to measure page load time in the old activity list view.............26

 Figure 5. Marking activity as "undone" through activity modal in the new activity list

view..33

 Figure 6. Marking activity as "undone" through single edit in the new activity list view.

... 33

 Figure 7. Marking activity as "undone" through bulk edit in the new activity list view.

... 34

 Figure 8. Viewing all activities assigned to the user (both "done" and "undone") in the

old activity list view...38

 Figure 9. Marking activity as "undone" in the old activity list view..............................38

 Figure 10. New Relic Insights dashboard devoted to the project................................... 41

 Figure 11. New Relic Insights chart depicting average page loading times in April

2016... 42

9

List of Tables

Table 1. Viewing modes in Pipedrive's web application...15

Table 2. Data types to track in A/B testing.. 18

Table 3. New Relic actions for activity list view usage tracking.....................................21

Table 4. Defining events to track for "activityListMetrics:pageViews" NR action in the

new activity list view... 22

Table 5. URI patterns in the old activity list view, events leading to them and whether or

not they should be counted as a page view in metrics...25

Table 6. Page view events representation in main.js... 28

10

1 Introduction

The project described in this thesis is a typical task for an IT business in the life stage of

rapid growth. Old parts of the application are being gradually but relatively quickly

replaced by their updated versions that are implemented using new approaches and

contain new or improved features.

Our task was to test and measure the new feature’s usability employing a web analytics

based approach. To complete this task we employed a web analytics tool, namely New

Relic Insights, and the A/B testing methodology.

This thesis follows the development process emphasizing the importance of data

consistency retention, as well as the collected data visualization and analysis. The latter

stages allow us to estimate how successful the feature introduction was.

11

2 Theoretical Background

Since in this project we use web analytics tools to try to determine the level of customer

satisfaction with a newly introduced web application feature and discover potential

issues, it is necessary to introduce some theoretical background first, such as

terminology and the existing approach to usability metrics.

2.1 Definition of Usability

The essence of the examined new feature is improved usability. Let us define this term.

Probably one of the most precise definition of usability is given by The International

Standards Organization (ISO 9241-11). It identifies three aspects of usability, defining it

as “the extent to which a product can be used by specified users to achieve specified

goals with effectiveness, efficiency, and satisfaction in a specified context of use” [6] .

This definition suits our context, since the three aspects: effectiveness, efficiency and

user satisfaction, are what we will try to measure with the help of web analytics.

2.2 Definition of Usability Metrics

Metrics is a collection of data related to the object of investigation, that can be a whole

product or a particular feature or part of it. It is important that the researcher sets the

questions that can help to evaluate usability before referring to the obtained data. “Some

studies, in the words of one critic, ‘use statistics as a drunk uses a street lamp, for

support rather than illumination’” [5] . Based on these questions the usability metrics

should be designed.

All usability metrics must be quantifiable – they have to be turned into a number or

counted in some way. All usability metrics also require that the thing being measured

represent some aspect of the user experience, presented in a numeric format [6] .

12

2.3 The Importance of Usability Metrics

Some usability issues can be identified at the pre-launching stage, but they are so minor

or specific that it is not clear whether or not they will influence a statistically significant

number of users. Without usability metrics, the magnitude of the problem is just a guess

[6] .

Usability metrics show whether the user experience improves between different product

versions. Usability metrics are the only way to really know if the desired improvements

have been realized. By measuring and comparing the current with new, “improved”

product and evaluating the potential improvement, you create a win-win situation. There

are three possible outcomes:

• The new version tests better than the current product.

• The new version tests worse than the current version: Steps can be taken to

address the problem or put remediation plans into place.

• No difference between the current product and the new product is apparent: The

impact on the user experience does not affect the success or failure of the new

product. However, improvements in other aspects of the product could make up

for the lack of improvement in the user experience [6] .

Another way usability metrics can be employed when measuring customer satisfaction

is to test intuitive assumptions. In fact there is inevitably some guesswork involved in

creating a new product or feature, however sometimes the right design solutions are

counterintuitive [6] .

2.4 Definition of A/B Testing

We used A/B testing to evaluate the usability of the examined new feature. It means that

we enabled the feature for approximately 50% of customers, and were measuring the

user experience of both groups, comparing the new version of the product with the

previous one. The concept of A/B testing is simple: show different variation of your

website to different people and measure which variation is the most effective [4] .

13

3 Overview of Pipedrive’s Web Application

Pipedrive Inc develops a web-based sales CRM (Customer relationship management)

software. It is a tool for salespeople, primarily coming from small and medium

enterprises, that enables them to better organize their work process. Pipedrive’s web

application is based on one of the sales methodology’s principles, which is called Sales

Pipeline.

The company was founded in 2010, and originally the project was implemented as a

traditional web application using PHP and Javascript. Later the conversion into a single-

page application has begun, and currently it is completed by approximately 85%. For

simplicity’s sake, further on we will refer to the original application and the single-page

version using the company’s insider terms – old and new respectively.

Figure 1 and Table 1 show Pipedrive’s web application structure. Since its front-end part

is currently built mostly with OOP principles using Backbone.js, it is easy to imagine

the architecture of the application being familiar with its main objects and viewing

modes.

As seen from Figure 1, the main objects of the application are: Deals, Persons and

Organizations (grouped together under “Contacts” in the application’s toolbar),

Products, Activities and Pipelines – the latter being either default or custom set of stages

that a particular Deal can pass.

Table 1 summarizes various viewing modes available in Pipedrive’s web application.

The former two, Pipeline and Timeline, are specific for Deal-type objects, whereas any

object collection can be viewed as a List. The difference between the old and the new

list views lies in its architecture, UI/UX design and, to a little extent, the variety of

features provided.

14

Table 1. Viewing modes in Pipedrive's web application.

Pipeline Timeline List

Old New

Deal + + +

Person +

Organization +

Activity + +

Product +

3.1 The Reasons Pipedrive Is Switching to Single-page Application

Whereas traditionally, web applications left the heavy lifting of data to servers that

pushed HTML to the browser in complete page loads, now this relationship has been

inverted – client applications pull raw data from the server and render it into the

browser when and where it is needed. Developers commonly use libraries like

Backbone.js to create single-page applications (SPAs). SPAs are web applications that

load into the browser and then react to data changes on the client side without requiring

complete page refreshes from the server [3] .

The main reason to switch from server-side application pattern to the client-side one is

improving the user experience. The first thing users will immediately benefit from is

15

Figure 1. Main objects and their relations in Pipedrive's web application.

page load speed increase. The traditional approach to web app development is very

server-centric, requiring a complete page reload to move from one page to the next [3] .

Client-side architecture provides a faster and more fluent experience for users: not all

the page elements need to be reloaded simultaneously.

SPAs can also take advantage of browser features like the History API to update the

address shown in the location bar when moving from one view to another. These URLs

also make it possible for users to bookmark and share a particular application state,

without the need to navigate to completely new pages [3] .

Finally, client-side architecture potentially enables implementation of offline mode,

when the application, once loaded in user’s browser, runs independently and sends the

data to the server side as soon as the network connection is restored.

3.2 The Process of Converting to Single-page Application (Using

Pipedrive’s Activity List View As an Example)

Creating and launching the new activity list view was a major project started on October

13, 2015 and completed in February 2016. The beta version first went live and became

available for new sign-ups on January 7. By the beginning of February, when only

approximately 3% of customers (i.e. newly signed up users) were using the new activity

list view, we had developed performance and usage analytics trackers and started

collecting data on user experience and behavior on both the old and new list view pages.

On February 12 the new activity list view was enabled for another 40% of customers,

and eventually, by the end of February, the transition was complete.

3.3 Web Analytics Tools Used in Pipedrive

Various web analytics tools are used in Pipedrive to monitor application performance,

track user activity, process and visualize the collected data.

16

3.3.1 Action Mapper

Action Mapper is an in-house developed tracking tool that logs all the actions made on

the back end side of the application. For instance, if there are several ways to mark an

activity as “done” in the application, and a user completes this action using one of those

ways, Action Mapper will log that the event “activity marked as done” has happened,

but it does not provide the context, i.e. which of the UI paths the action was completed

with.

3.3.2 New Relic Insights

New Relic Insights, on the contrary, keeps track of the events happening on the front

end side of the application. It is possible to create custom events bound to various

actions coming directly from user. As New Relic Insights was the tool used in

implementation of the project which is the focus of this thesis, a more detailed

description will be provided further on.

3.3.3 Segment

Segment is an analytics data warehouse in cloud, that is used in Pipedrive for marketing

needs. It has a range of integrations available to be enabled or disabled depending on the

company’s needs. For instance, Pipedrive is using MailChimp, Google Tag Manager,

Kissmetrics, Amazon S3 and some others. Those services receive the data tracked by

Segment and provide its analysis, visualizations, etc. The data tracked by the Segment

script is more suited for marketing needs and contains user’s location, settings, time

spent in the application, etc, as well as all the actions made by user on the page. This

helps to create statistics on percentage of anonymous page visitors who chose to sign up

for Pipedrive, new paid customers, busiest times, most active customers, geographical

distribution of customers, etc.

17

4 Web Analytics Tools Usage in Feature Introduction

4.1 Planning Stage

As a tool to measure the old and new activity list view usage we chose to use New Relic

Insights. Its choice over the other tracking tools used in Pipedrive is evident, as we

needed to track custom-defined events happening on the front end side of the

application.

The data was to be collected during an A/B testing, since one of our main goals was to

compare the usage of the new activity list view against that of the old. Another reason

why A/B testing is well-suited to our needs, is the planned gradual introduction of the

new feature to the users.

The next step now was to decide on the data we would like to collect based on our

needs and assumptions. Table 2 summarizes the performance aspects and user actions

that were decided to be tracked and measured.

Table 2. Data types to track in A/B testing.

Event Measured property Assumption (compared to
the old page)

Page load Time (ms) Is as fast or faster

Time range filters usage Filter name (e.g. “overdue”,
“today”, “next week”, “cus-
tom date range”)

“Custom date range” filter
is used more frequently

Bulk edit usage Count Increases or remains the
same

Marking activity as “un-
done”

Count Is done more frequently

As can be seen from Table 2, we decided on measuring page loading time and were

expecting it to be faster in the new activity list view. Page load speed increase is one of

18

the major benefits of single-page architecture for the end user, and it is therefore

important to control that the new version of our application indeed provides it.

Both of the activity list view versions have a range of quick filters that allow the user to

filter all the activities by type (e.g. “meeting”, “call”, “lunch”) and time range. Since the

time range filters, unlike the type ones, are the same for every customer and reflect the

needs of users, we decided to focus only on them. Time range filters are the following:

• “Planned” - all activities with the status “undone”, both due and overdue

• “Overdue” - all overdue activities with the status “undone”

• “Today”, “tomorrow”, “this week” and “next week” - all activities planned for

the respective time period, both due and overdue

• “Custom date range” - all activities planned for the date/date range selected by

user, both due and overdue

As can be seen from Figure 2, the new activity list view page has an improved date

picker for the custom time range filter: unlike the old one it allows the user to select a

date range, not merely one day, while it is still possible to filter activities of one

particular day – by leaving either of the date fields empty, or filling them out with the

same date. It adds value for users, and that is the reason why we were assuming this

time range filter usage to significantly increase on the new activity list view page.

19

Figure 2. Selecting custom date/date range in the old and new activity list views.

The bulk edit feature was also improved, previously known issues with its usage were

taken into account. The design elements prone to confuse the users in the old activity

list view are shown and explained in Figure 3. As the bulk edit feature was

fundamentally re-designed in the new page, we made an assumption that it might be

used more frequently.

As it has been already mentioned, one design flaw with the old activity list view was a

confusing way to mark activities as “done”. From customers feedback we were aware of

the usability flaw, that was resulting in an increase of changing accidentally marked as

“done” activities back to the “undone” status. As the new activity list view has this issue

fixed, it could be assumed that the total number of those events would decrease.

However, the new page has a considerably more convenient and simple way of marking

activities as “undone”, which leads to an assumption that the count might stay the same,

or even decrease in the new page.

Such are the events we decided to track and measure with the help of New Relic

Insights, and the assumptions we planned to prove or disprove based on the collected

data.

20

Figure 3. Confusing UI elements in the old activity list view and selecting items for bulk editing in the
new activity list view.

4.2 Implementation Stage

4.2.1 Overview of the New Relic Insights Data Tracking Structure

In order to start using New Relic Insights for data tracking, first of all, its library should

be added to the web application code, and afterwards a special class, that initializes the

tracker as a global object and defines its methods, can be created. The New Relic class

used in Pipedrive is contained in newrelic.js file. It defines a simple way to create

custom New Relic Insights events (page actions) and adds a number of default attributes

that will be sent with each custom event, such as user_id, company_id,

default_currency, timezone_server_offset, etc.

4.2.2 Implementing Custom New Relic Actions for the Task

The New Relic class component for both the old and new parts of the application was

already created and set up, thus the following steps were left to be taken:

• Grouping the data to track into New Relic events

• Examining the application code and determining the best place for each kind of

data retrieval

• Implementing the tracking

• Manual testing in development environment, controlling that the data is tracked

correctly

Table 3 shows the New Relic events (actions) that were to be created for tracking the

data.

Table 3. New Relic actions for activity list view usage tracking.

Event NR action name NR action’s attributes

Page load activityListMetrics:pageViews activityListType: “new”/”old”
loadingTime
timeFilterNameTime range filters usage

Bulk edit usage activityListMetrics:bulkEdit activityListType: “new”/”old”

Mariking activity as “un-
done”

activityListMetrics:markUndone activityListType: “new”/”old”
newListOldHabit: true/false

21

4.2.3 Measuring Page Load Time and Time Filters Usage

As the old and the new parts of the application are independent, the development was

happening in two code branches. The server-side style old application reloads the page

every time a filter is applied, changing the page’s URL. That is why, in order to keep

data consistent and to facilitate the implementation, we chose to consider a time filter

switch as a page view – the data (a list of activities) matching a filter is loaded, so it is

a suitable event for analysing the application’s performance.

Table 4 shows the events that were defined as a page load, as well as the Backbone

views where the beginning and the end of loading should be tracked in each of those

cases.

Table 4. Defining events to track for "activityListMetrics:pageViews" NR action in the new activity list
view.

Event User action to start
event

Loading
start point

place in
code

Criteria for
event finish

Loading fin-
ish place in

code

Direct page view (e.g.
initial page load, coming
from an external link,
page refresh while view-
ing activities list)

Calling an URL router.js:activit-
ies_beta()

T h e l i s t o f
matching activ-
ities is fully
loaded

Activities-ana-
lytics.js:track-
PageViews()

“Stack-based navigation” Going back to activities
l i s t a f t e r h a v i n g
switched to another
page in the new applica-
tion

router.js:switch-
CurrentView()

Time range filter switch Clicking on a time range
filter (in case of the
“custom date range” fil-
ter – clicking on the
“Apply” button)

quick-
filters.js:handle-
FilterChange()

Let us examine the former possibility as an example. This is the case of a direct page

view.

22

Router is a Backbone element that provides methods for routing client-side pages, and

connecting them to actions and events [1] . The Router class is extending

Backbone.Router and contains all route configurations for Pipedrive’s web application.

The path to the new activity list view page is /activities_beta. When the router receives

this key, it goes into a corresponding function – activities_beta(). This is the point that

can be considered as page loading start, and that is why a new option, loadingStart, was

added to store the timestamp. Inside the function the method switchCurrentView gets

called, where the requested view either starts loading from scratch, or gets returned as

the version saved in stack if it is available.

In case of a direct page view, the page has not been visited yet, and therefore is not

available from stack. A new instance of the ActivitiesList view, a Backbone

representation of a logical element of the interface, is created. Its collection attribute

contains an array of requested activities, and we bind its sync event, which means that

the collection is received from server, to a call to our trackPageViews function, located

in activities-analytics.js. It takes only one parameter – loadingStart, logs the moment

when the collection was received, calculates the difference between loadingStart and

loadingFinish, determines other necessary attributes (activityListType a n d

timeFilterName), and finally sends it to New Relic Insights cloud as a custom action

named “activityListMetrics:pageViews”. The code to illustrate the described process is

below:

23

// from router.js

activities_beta: function(filterType, filter, action) {

 var opts = {

 action: null,

 loadingStart: $.now()

 };

 <...>

 require(['views/lists/activities'],
_.bind(function(ActivitiesListView) {

 this.switchCurrentView(ActivitiesListView, ‘activitiesList’,
opts);

 }, this));

 <...>

}

// from lists/main.js

initialize: function(options) {

 <...>

 if (this.filterType === ‘activity’) {

 this.collection.once(‘sync’, function() {

 activitiesAnalytics.trackPageViews(this.options.loadingStart);

 }, this);

 }

 <...>

}

// from activities-analytics.js

trackPageViews: function(loadingStart) {

 <...>

 app.nr.addPageAction(‘activityListMetrics:pageViews’, {

 ‘activityListType’: ‘new’,

 ‘loadingTime’: loadingFinish - loadingStart,

 ‘timeFilterName’: timeFilterName || null

 });

}

24

Everything mentioned above applies to the new application. The old application is

structured differently, which created some obstacles.

The old application’s architecture relies on the main.js file which loads the requested

PHP templates and adds Javascript elements to the page. Main.js introduces the global

variable app that has a range of attributes and methods to initialize and display various

features.

As it is characteristic of a server-side application, the whole page is reloaded every time

a new request is sent, e.g. each time a filter is applied to activities list. That is why the

first step was to identify all possible URI patterns on this page, and decide for each of

them on whether or not it should be considered to be a page view in terms of the metrics

task. Table 5 shows the outcome of this investigation.

Table 5. URI patterns in the old activity list view, events leading to them and whether or not they should
be counted as a page view in metrics.

URI Event Counted as a
page view?

/activities A click on “Activities” in the
toolbar

Yes

/activity/my_activities/by_type/* A type filter applied/a link of
this kind followed

No/yes

/activity/my_activities/by_time/* A time filter applied/a link of
this kind followed

Yes/yes

/activity/my_activities/by_user/* A user filter applied/a link of
this kind followed

No/yes

/activity/my_activities/by_time/date “Custom date range” filter
clicked

No

/activity/my_activities/by_time/date/* “Custom date range” filter ap-
plied/a link of this kind fol-
lowed

Yes/yes

As in some cases it proved impossible to determine whether the user applied a filter or

followed a link of the format (e.g. by refreshing the page after having applied a filter, or

by copying the link and opening it in another browser tab), we decided not to track

either of those URI patterns (“by_type” and “by_user”). Thus the data loss would only

be negligible, while in the opposite case of always tracking both patterns, the data

25

would be inconsistent compared to the new list view metrics. The task deliberately

omitted type and user filter usage, since these are mostly custom, and different users can

have different number of both activity types and users.

Another issue we encountered was page load time tracking in the old activity list view.

In the new application page load time is calculated from the moment the user started a

particular action. In the old page however, as it is a server-side application, the current

client side stops existing and gets rebuilt anew as soon as the user requests another

page.

With the goal to keep both new and old page metrics consistent, we decided to track

page load time with the help of cookies storing the loading start timestamp. The process

is represented in Figure 4. The main drawback of this approach is the fact that setting a

cookie requires to be triggered by some user’s action on the page. Thus, it does not

enable us to track direct page views, which leads to a slight data loss.

In the old activity list view the events causing what is considered to be a page view in

terms of our task, are the same as in the new page, with the exception of the “stack-

based navigation”, which is a feature of the new application. This means that those

events are a click on a time filter and a direct page view (except for the cases related to

time and user filter usage).

26

Figure 4. Using cookie to measure page load time in the old activity list view.

As explained before, a time filter change differs from a direct page view in enabling to

measure page loading time by setting a cookie with the current timestamp as soon as the

user input occurred. Let us start with examining the implementation for this case.

The loadingStart cookie is when a time filter is clicked. The “custom date range” filter

is a special case, since this filter implementation in the old list view is slightly faulty

and resulted in loading the page twice. To avoid counting each “custom date range”

filter usage as two page views, we added the cookie setting line to the onSelect function

of the date picker, which means that the cookie is set only when the user has selected a

date.

After a time filter is applied, the page is reloaded, and the global variable app is

reinitialized in the main.js file. We added a variable isPageView that determines whether

or not a particular page load should be tracked in the metrics. The first compulsory

condition for a page load to qualify as an activity list page view is the presence of the

activities-list class on the page, which means that the user has landed on the activity list

view page, not on some other page of the old application. If this condition is met, a

number of additional checks are performed to decide whether the page view represents

one of the cases that were decided on for tracking.

Table 6 extends Table 5 and maps conditions used in the variable isPageView with the

corresponding URIs that are to be tracked as activity list page views. The global

variable app has an attribute uri with several methods that enable access to the full URI

path, as well as to various parts of that path. Therefore, direct page views with the URI

of “/activities” are detected by the check app.uri.full_uri() === ‘/activities’. When a

time filter is applied, a cookie is placed on user’s machine, as mentioned before, so to

detect those cases, it is enough to check if this cookie exists: $.cookie(‘loadingStart’)

returns either true or false. The cases when user refreshes the page after a time filter was

applied or makes a direct page view from an external link of this type can be determined

by the check app.uri.segment(2) === ‘by_time’ for all time filters except for the

“ c u s t o m d a t e ” f i l t e r , s i n c e a l l o f t h e m h a v e t h e U R I p a t t e r n

“/activity/my_activities/by_time/*”, where the third segment is “by_time”. The “custom

date range” filter is a more difficult case, since, as it was mentioned before, in the old

list view it first loads the current day activities and then opens the date picker element

27

which allows the user to select a particular date. The first load, as it was not actually

requested by user, should not be tracked. It is possible to distinguish between those two

loads by their URI paths: the first , automatic load uses URI path

“/activity/my_activities/by_time/date”, while the actual “custom date” filter is available

by “/activity/my_activities/by_time/date/*”, where the segment after “/date” is filled out

with a particular date selected by user. To check whether or not the “custom date range”

filter usage should be counted as a page view, we first check if the third segment is

“by_time” and the fourth segment is “date”: app.uri.segment(2) === ‘by_time’ &&

app.uri.segment(3) === ‘date’. As meeting both of these conditions may still be the

case of the first automatic load, another check is performed to detect if a fifth segment

exists in the URI.

Table 6. Page view events representation in main.js.

URI Event Condition

/activities Click on “Activities” in the
toolbar

app.uri.full_uri() ===
‘/activities’

/
activity/my_activities/by_ti
me/*

A time filter applied $.cookie(‘loadingStart
’)

A link of this kind followed app.uri.segment(2) ===
‘by_time’

/
activity/my_activities/by_ti
me/date/*

A “custom date range” filter
applied

$.cookie(‘loadingStart
’)

A link of this kind followed app.uri.segment(2) ===
‘by_time’ &&
app.uri.segment(3) ===
‘date’ &&
app.uri.segment(4)

After the variable isPageView is evaluated and if its value equals true, the data to send

to New Relic Insights is prepared. This includes calculating page loading time (if the

page loading start had been stored with a cookie), time filter name, determined by

currently active link’s ID, and user’s company ID, which can be extracted from the

global variable user.

The code to illustrate the described process is below:

28

/**

* from main.js

*

* 1. setting the cookie

* 1.1. for time filters (except for the “custom date range” filter)

*/

$(‘.sorting-filter-link’).on(‘click’, function() {

 $(this).addClass(‘active’);

 if ($(this).hasClass(‘time-filter’)) {

 $.cookie(‘loadingStart’, $.now(), {path: ‘/’ });

 }

});

/**

* 1.2. for the “custom date range” filter

*/

app.date_time_pickers = {

 init: function() {

 $(‘input.datepicker:not(.datepickerEnabled),
input.datepicker:not(.datepickerEnabled)’)

 <...>

 .datepicker({

 <...>

 onSelect: function(dateText, inst) {

 <...>

 $.cookie(‘loadingStart’, $.now(), {path: ‘/’ });

 },

 <...>

 });

 <...>

 },

 <...>

};

/**

* 2. sending data to New Relic Insights

*/

var isPageView = $(‘body’).hasClass(‘activities-list’) && (

 $.cookie(‘loadingStart’) ||

 app.uri.full_uri() === ‘/activities’ || (

 app.uri.segment(2) === ‘by_time’ && (

 app.uri.segment(3) === ‘date’ ? app.uri.segment(4) :
true)));

29

if (isPageView && _.isObject(window.newrelic)) {

 <...>

 newrelic.addPageAction(‘activityListMetrics:pageViews’, {

 ‘activityListType’: ‘old’,

 ‘company_id’: user.company_id,

 ‘loadingTime’: loadingFinish - loadingStart || null,

 ‘timeFilterName’: statusFilterName || null

 });

 $.removeCookie(‘loadingStart’, {path: ‘/’ });

}

4.2.4 Measuring Bulk Edit Usage

In the new application bulk edit is implemented as a Backbone view used by all list

view pages (deals, persons, organizations, activities). The bulk edit action should be

sent to New Relic Insights when user had bulk edited some activities and saved the

changes.

In the BulkEdit view the updateModelsData function is called on successful save event.

The model of this view is a BulkEdit model that contains a collection of items. One of

its attributes is type with the possible values of “deal”, “org”, “person” and “activity”.

On model update we added a check for the model type. In case it equals “activity”, the

bulk edit action will be tracked. The only attribute to the New Relic Insights action that

is needed here is activity list view type: “old” or “new”.

Below are the changes added to the code:

30

// from bulk-edit/main.js

updateModelsData:

 function(data) {

 <...>

 if (this.model.type === ‘activity’) {

 app.nr.addPageAction(‘activityListMetrics:bulkEdit’, {

 ‘activityListType’: ‘new’

 }

);

 <...>

 }

}

In the old application the bulk edit feature is designed differently. To begin bulk editing

user is required to press the Bulk edit button. Then any number of list items can be

selected, and each field type (column) is edited and saved separately. Consequently

several save events can happen during one bulk edit action. When the user has finished

editing, the Bulk edit button needs to be disabled. That is why we decided on the Bulk

edit button disabling event to indicate the end of action in the old application.

The Bulk edit button is disabled with the disableBulkEditMode function in main.js.

Since this function is used for other old list views, such as the product list view, we

added a check for URI that determines that the action should only be sent to New Relic

Insights if it happened in the activity list view. The other condition required is

app.bulkedit.changesMade, which is a global variable attribute that indicates whether or

not any changes were actually made during the bulk edit event. If both of the conditions

are met, the bulk edit action is filled out with additional attributes and sent to New Relic

Insights.

The code to illustrate the described process is below:

31

// from main.js

disableBulkEditMode: function(editScope, disableButton, leaveClass) {

 <...>

 if (_.contains([‘activity’, ‘activities’], app.uri.segment(0)) &&
app.bulkedit.changesMade && _.isObject(window.newrelic)) {

 newrelic.addPageAction(‘activityListMetrics:bulkEdit’, {

 ‘activityListType’: ‘old’,

 ‘company_id’: user.company_id

 }

);

 app.bulkedit.changesMade = false;

 }

}

4.2.5 Measuring Marking Activities As “Undone” Usage

One of the UX improvements introduced with the new activity list view is the changed

way for marking activities as “done”/”undone”. In the old list view the UI for this action

was confusing, users often mistakenly used the Mark as done checkboxes when they

meant to bulk edit their activities. It led to the necessity to reverse those accidentally

closed activities back to the “undone” status, which was impossible by the means of the

old list view. Customers had to use a subpage of the Statistics section to do that.

Besides the case when marking activity as “undone” is used to correct marking it as

“done” by mistake, there is little user stories for this action. While marking activity as

“done” means that the activity was completed, e.g. a call was made or a task was

accomplished, marking activity as “undone” may only mean that the activity completion

conditions have changed, which is evidently not a very popular scenario in real life.

The new activity list view provides users with the possibility to mark activities as

“undone”. It can be done in 3 ways: by opening a particular activity in a modal

(accessible by clicking on its subject), in the bulk edit panel, and in a single edit field if

the Done column is visible. Figures 5-7 represent these options.

32

33

Figure 5. Marking activity as "undone" through activity modal in the new activity list view.

Figure 6. Marking activity as "undone" through single edit in the new activity list view.

34

Figure 7. Marking activity as "undone" through bulk edit in the new activity list
view.

Table 7 maps each of the ways to mark activity as “undone” with user actions that

should trigger the New Relic Insights action, and its place in the code.

Event User action Place in code

Marking activity as “un-
done” through the modal

Open activity modal by
clicking on its subject, click
o n a checked checkbox
“Mark as done” in activity
modal and save the changes

Activity-form.js: saveActiv-
ity() → activity-analytics.js:
trackMarkedUndone()

Marking activity as “un-
done” through bulk edit

Select one or more activit-
ies for bulk editing, select
“Replace existing value
with...” in the bulk edit
panel and change the value
to “Undone”, save the
changes

Bulk-edit/main.js: update-
ModelsData() → activity-
analytics.js: trackMarke-
dUndone()

Marking activity as “un-
done” through single edit

Open single select for the
“Done” field, change the
value to “Undone”, save the
changes

Fields/field.js : onSaved()
→ activity-analytics.js :
trackMarkedUndone()

To mark activity as undone through activity modal user should select a done activity (in

the list it is distinguished by strikethrough font and grey text color) and click on its

subject which makes the modal with all activity details appear. This modal is a

Backbone view defined in the file activity-form.js. It uses a model of the class Activity

which contains all the activity details as its attributes. A click on the Save button

triggers the saveActivity function of this view. It results in the model receiving the

changes and the corresponding function in activities-analytics.js being triggered to send

the event to New Relic Insights. The call to it happens disregarding whether the save

was successful or not due to some reasons, e.g. loss of internet connection. The reason

for that is that our goal is to measure the usage of the application, not its performance or

stability, in other words, how it is used, not how well it works.

The data variable that is passed to the trackMarkUndone function, contains an object,

whose attributes are the attributes to be changed in the activity model. For instance, if

subject and activity type were changed, the data object may look as follows: {‘subject’:

‘FE Architecture review’, ‘type’: ‘presentation’}. The name of the attribute that

represents activity completion status is “done”, so in the case when user changes it from

35

“done” to “undone” the data object will contain the following key-value pair: ‘done’:

false. The trackMarkUndone function checks if these particular attribute name and

value are present, and if so, sends the page action activityListMetrics:markUndone to

New Relic Insights. This action contains two attributes, one of which, activityListType,

is similar to the previously described page actions and stores the type of the list view

from where the action was performed, in this case it is “new”. The second attribute is

called newListOldHabit, and it is used for distinguishing the cases when a user whose

account had already been switched to the new list view, did not realize that marking

activities as “undone” can be done without leaving the list view, and used the Statistics

page for this purpose. In case of marking activity as “undone” through the modal,

newListOldHabit naturally equals false, likewise as for both of the remaining ways to

do it with the means of the new list.

// from activity.js

saveActivity: function(ev) {

 <...>

 activitiesAnalytics.trackMarkUndone(data);

}

// from activities-analytics.js

trackMarkUndone: function(data) {

 if (data.done === false) {

 app.nr.addPageAction(‘activityListMetrics:markUndone’, {

 ‘activityListType’: ‘new’,

 ‘newListOldHabit’: false

 });

 }

}

The logic behind the implementation of tracking bulk editing activities to the “undone”

status is similar to the one described above. User selects one or more activities from the

list for bulk edit, changes the value of selected activities’ completion status to “undone”

and clicks the Update button on the Bulk edit panel. It will fire the save method, which

creates the data object that contains the changed values. At this point the New Relic

Insights tracking function can be called and the data object passed to it.

36

Finally, let us examine the case when user marks activity as “undone” through single

edit form. The Backbone view representing the edited field is defined in the file

fields/field.js. The model used by this view is the activity being edited. By clicking on

the Save button user triggers the save function, which runs a check for input validity and

calls saveModel() if the input is valid. In the end of the saving process we sent the field

value to the trackMarkUndone method of activities-analytics.js where the New Relic

Insights action occurrence will be created if the value object contains attribute done set

to false.

// from fields/field.js

save: function() {

 if (this.isSaveValid() {

 this.saveModel();

 }

},

<...>

saveModel: function() {

 <...>

 this.model.save(null, {

 query: query,

 success: _.bind(this.onSaved, this),

 <...>

 }, this)

 });

},

<...>

onSaved: function() {

 <...>

 activitiesAnalytics.trackMarkUndone(this.value);

}

Measuring marking activity as “undone” in the old application is very different. Since
there is not way to perform it in the old activity list view itself, users have to go to the
Personal Statistics page and choose the Activities tab, where they can view all the activ-
ities assigned to them and edit their status by selecting the checkbox in the first column.
Figures 8 and 9 illustrate this.

37

As it was assumed before that marking activities as “undone” mostly occurs due to

user’s mistake, it was decided that it is sufficient to track the number of times this

particular tab of the Personal Statistics section was visited.

Our solution for this tracking case is to send the data to New Relic Insights when the

Activities tab is clicked on the Personal Statistics page. But before this happens, the

hasNewList variable is created. Its purpose was described above, and in case of user

marking activities as “undone” in the old way, the value of this attribute can be either

true or false, depending on whether or not the user already has the new list view feature

switched on.

38

Figure 8. Viewing all activities assigned to the user (both "done" and "undone") in the old activity list
view.

Figure 9. Marking activity as "undone" in the
old activity list view.

// from main.js

app.partial_refresh = {

 init: function() {

 $(document).off(‘click’, ‘.partial_refresh’).on(‘click’,
‘.partial_refresh’, function(event) {

 app.partial_refresh.load_partial($(this), event);

 });

 <...>

 },

 load_partial: function($obj, event) {

 var data = $obj.metadata();

 <...>

 if ($obj.text() === ‘Activities’ && _.isObject(window.newrelic)) {

 var hasNewList =
company_features.activity_list_beta.enabled_flag;

 newrelic.addPageAction(‘activityListMetrics:markUndone’, {

 ‘activityListType’: hasNewList ? ‘new’ : ‘old’,

 ‘newListOldHabit’: hasNewList,

 ‘company_id’: user.company_id

 });

 }

 },

 <...>

}

39

4.3 Data visualization and analysis

The data tracked by New Relic Insights page actions can be viewed, queried and

visualized at New Relic Insights Website (http://insights.newrelic.com).

4.3.1 Querying Collected Data using NRQL

The queries are made with the special New Relic Query Language (NRQL), which is

“an SQL-flavored query language for making calls against the Insights Events database”

[2] . Basic NRQL queries examples can be found in the Appendix 1.

4.3.2 Conclusions on the Data Collected for the Project Based on New Relic

Insights Visualizations

For visualizing, monitoring and analyzing the data, New Relic Insights provides users

with the ability to create dashboards that group together several charts devoted to a

particular topic. Having implemented the tracking for the project, we created a

dashboard called “Old vs New activity list” in order to follow the process of the feature

switch and see the results of A/B testing. Figure 10 shows a screenshot of the

dashboard, taken in February 2016 when t h e n e w activity list view feature was

introduced for approximately 50% of users.

40

First of all, we wanted to see how often the two list types were viewed in total. This

proportion reflects the percentage of customers that use either of the list views, and as

can be seen from Figure 10, at that moment it was approximately 50% for each type.

Therefore it was a favourable moment to compare the usage of each of the list views

and test our assumptions.

The query for this chart is:

41

Figure 10. New Relic Insights dashboard devoted to the project.

SELECT count(*) FROM PageAction SINCE 2 months AGO WHERE actionName =
‘activityListMetrics:pageViews’ FACET activityListType;

We had assumed that the average loading time should go down, since the new activity

list view introduces significant improvements in speed. With the help of New Relic

Insights web analytics we can see that in February 2016, immediately after the initial

introduction of the new activity list view feature, the average page loading time on the

new list view pages was, contrary to expectations, higher than that on the old list view

pages. This information prompted an investigation of possible reasons, and eventually

the implementation of the new activity list view was debugged and improved. As a

result, the new page loading time has decreased to 952 ms on average in April, as

opposed to 1085 ms in February (Figure 11).

The query for this chart is:

42

Figure 11. New Relic Insights chart depicting average page loading times in April 2016.

SELECT average(loadingTime) FROM PageAction SINCE 2 months AGO WHERE
actionName = ‘activityListMetrics:pageViews’ AND loadingTime < 150000
AND loadingTime IS NOT NULL FACET activityListType;

As it was described in chapter 3, it was decided to count initial page loads as well as

time range filter applications as a “page view” in this web analytics implementation.

The chart of average views per session, thus, most probably shows a slight increase in

time range filter usage, which was expected since time range filters became more

convenient in the new activity list view version. The query was possible to execute

because a unique hash code for every single session is stored as a default New Relic

Insights action’s attribute.

The query:

SELECT count(*)/uniqueCount(session) AS ‘avgViewsPerSession’ FROM
PageAction WHERE actionName=’activityListMetrics:pageViews’ SINCE 2
months AGO FACET activityListType;

Apart from the average page loading time, we were also interested to see a histogram

depicting a distribution of page loading times in the old and new activity list views.

Despite the fact that in February the average loading time on the new page was higher

than on the old page, the histogram proved that there definitely was an improvement,

since the loading times in the new list are more focused in the left edge of the graph (0

to 800 ms).

The query:

SELECT histogram(loadingTime, 20000, 100) FROM PageAction SINCE 2
months AGO WHERE actionName=’activityListMetrics:pageViews’ AND
loadingTime < 150000 FACET activityListType;

The two time range filter ranking charts report which time range filters were selected by

users of the old and the new activity list views. “All” is the default time range filter, and

the charts indicate that it’s usage decreased in the new activity list view, therefore the

conclusion that can be drawn here, is that the usage of the time filters has overall

increased in the new list view.

The queries:

43

SELECT count(timeFilterName) FROM PageAction SINCE 2 months AGO WHERE
actionName = ‘activityListMetrics:pageViews’ AND
activityListType=’old’ FACET timeFilterName;

SELECT count(timeFilterName) FROM PageAction SINCE 2 months AGO WHERE
actionName = ‘activityListMetrics:pageViews’ AND
activityListType=’new’ FACET timeFilterName;

As for the bulk edit usage, we were unable to make a definite prediction on what the

statistics should show. Since the page action was logged on submit, web analytics would

not contain, for instance, the cases of turning the bulk edit mode on by mistake in the

old list view. Therefore we could only assume that the bulk edit usage might remain at

the same figure, or increase due to improved UX design.

The corresponding New Relic Insights dashboard chart shows a significant increase of

87% for the bulk edit usage in the new activity list view.

The query:

SELECT count(*) FROM PageAction SINCE 2 months AGO WHERE actionName =
‘activityListMetrics:bulkEdit’ FACET activityListType;

The way to mark activities as undone has been drastically changed in the new list view,

so we decided to check if users have discovered the new way. The collected data

showed that a negligibly small percentage of customers already switched to the new

activity list view kept using the old way for marking activities as undone.

The query:

SELECT percentage(count(*), WHERE newListOldHabit IS true) FROM
PageAction WHERE actionName = ‘activityListMetrics:markUndone’ AND
activityListType=’new’ SINCE 2 months AGO;

Overall the markUndone event shows a major increase on the new page, even taking

into account the fact that in the new activity list view each occurrence of the action was

tracked separately, unlike the old activity list view. We can conclude that this solution

might not have been justified, since it has evidently made the data inconsistent, as the

difference between the number of events for each of the list view versions is too big to

be plausible.

The query:

44

SELECT count(*) FROM PageAction WHERE actionName =
‘activityListMetrics:markUndone’ SINCE 2 months AGO FACET
activityListType;

To sum up, the collected data analysis allowed us to prove some of our assumptions: the

introduction of the new list view increased the usage of this page and its improved

features, such as time filters. New Relic Insights metrics indicated the overall more

stable performance of the new page, however it also revealed a slowdown in the average

page loading time, which made us become aware of the issue and start an investigation.

Other assumptions, such as the predicted increase in the “custom date range” filter

usage, were disproved, which is also a positive outcome, since it implies that this

feature is not as valuable for users as we expected.

Another advantage of having a New Relic Insights dashboard with the metrics related to

a new feature, is the opportunity to monitor the usage over time. Even after the A/B

testing is completed, and the new activity list view is switched on for almost 100% of

our customers, we are still able to see the usage trends.

However we also determined that using web analytics tools requires a very detailed

planning and testing of the implementation. Even though we carefully analyzed the task

requirements for the event of marking an activity as “undone”, the metrics proved to be

unreliable due to data inconsistency. Sometimes it might not be reasonable to invest a

lot of time in the metrics development process, therefore web analytics tools might not

be the universally best solution for measuring usability.

In Pipedrive we combined the conclusions retrieved with the help of New Relic Insights

with the customers feedback in order to see the whole picture. The users reports are a

valuable source of information that is impossible to obtain using web analytics tools.

For instance, our customers complained about the removal of some minor features in

the new page. As a result, out of approximately 15000 accounts switched to the new

activity list view, 50 had to be switched back to the old version. The development

process continued for several weeks more, with the focus on the issues revealed by both

web metrics and customers feedback analysis.

45

5 Summary

In this thesis we gave a detailed description of web analytics based approach for feature

introduction in web application. Although the examined case is a specific project of a

particular company, it illustrates the principle of the methodology and the main stages of

work: planning, implementation, data visualization and analysis.

A special emphasis was laid on the development process since implementing the metrics

was my biggest personal contribution to this project. I took an initiative to create the

New Relic Insights dashboard with the data visualizing graphs and charts as well, and

although it was not my role to proceed with the data analysis, I was closely following

the product managers’ work on it.

The description of each stage reveals its potential obstacles. During the planning stage a

particular attention should be paid to retain data consistency. The comprehensive

description of the implementation process exposes the problems of injecting web

analytics code into applications based on server-side and single-page architectures.

Finally, the conclusive part briefly introduces NRQL queries, New Relic Insights

dashboards and, most importantly, the basics of such kind of data analysis.

The amount and variety of work done to design and implement the metrics was

beneficial for me, as it was my first task related to web analytics in general, and New

Relic Insights in particular. It has been used widely in Pipedrive’s application since this

project, and based on my previous experience I was able to improve and accelerate the

development. For instance, in later projects I chose to keep web analytics related code in

separate files in order to prevent the business logic from being polluted, and call them

by firing global events.

It can be said that we achieved our goal to test the web application usability when

introducing a new feature. New Relic Insights has proved to be a suitable and efficient

web analytics tools for the task. It cannot and was not meant to be a universal solution:

as it was mentioned in the previous chapter, not all the potentially crucial usability

46

aspects can be tracked by web analytics, therefore it is important to combine it with

other sources of information, such as customers feedback. Furthermore, as New Relic

Insights is designed for running and collecting data in the front-end side of an

application, certain limitations may apply. We could notice that in this particular project

it was not always possible to obtain all the required data from the old, server-side

architecture based page. It was partially (except for the event of marking activities as

“undone”) possible to overcome this obstacle in our project, however, it can be assumed

that this tool is better suited for client-side architecture based applications.

47

References

[1] Backbone.js Reference (http://backbonejs.org) (2.05.2016).

[2] NRQL Reference (https://docs.newrelic.com/docs/insights/new-relic-
insights/using-new-relic-query-language/nrql-reference) (2.05.2016).

[3] Osmani, A., Developing Backbone.js Applications, O’Reilly Media, 2013, e-book.

[4] Siroker, D., Koomen, P., A/B Testing: The Most Powerful Way to Turn Clicks
into Customers, John Willey & Sons, Hoboken, New Jersey, 2013.

[5] Tufte, E., Data Analysis for Politics and Policy, Prentice Hall College Dev, 1974.

[6] Tullis, T., Albert, B., Measuring the User Experience: Collecting, Analyzing and
Presenting Usability Metrics, Morgan Kaufmann Publishers, 2008.

48

https://docs.newrelic.com/docs/insights/new-relic-insights/using-new-relic-query-language/nrql-reference
https://docs.newrelic.com/docs/insights/new-relic-insights/using-new-relic-query-language/nrql-reference

Appendix 1 – NRQL Basic Queries Examples

The most basic NRQL query is simply returning all the events received from a specified

page action. For instance:

SELECT * FROM PageAction WHERE actionName =
‘activityListMetrics:pageViews’;

This query returns a table containing all the attributes defined in this page action

(activityListType, loadingTime, timeFilterName), as well as the attributes added to each

New Relic Insights event by default (timestamp, browserHeight, city, companyID, etc).

To make the results into a pie chart or a graph, first of all it is necessary to specify what

the query is reporting in the SELECT clause. There is a range of predefined functions

that can be used here, such as average(), uniqueCount(), max(), percentage(), etc. The

set of data on which to perform the function should be passed as an argument, moreover

there may be other obligatory or optional parameters to include.

T h e FACET clause breaks the data by a defined attribute, thus allowing it to be

visualized. For instance:

SELECT count(*) FROM PageAction WHERE actionName =
‘activityListMetrics:pageViews’ FACET activityListType;

This query creates a chart that shows the comparison between all recorded events by

activity list type. As we have two activity list types, old and new, the result will be a

chart with two columns: “old” and “new”, each of which will have a length

corresponding to the total number of events where the activityListType attribute equals

to new or old respectively.

49

