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INTRODUCTION 

Since the first experimental attempts of haemodialysis (HD) at the beginning 
of the 20th century [1–3], the advancement of the technology has been 
remarkable, making it an effective renal replacement therapy (RRT). Over 2.5 
million patients worldwide undergo maintenance dialysis as of 2013 [4], and 
further growth in the number of patients is predicted [5–7]. Yet despite this, 
trends in the morbidity and mortality of HD patients have not improved 
accordingly [8,9]. Therefore, in order to enhance treatment quality, patient 
quality of life, and survival further development is needed. 

One of the factors that are associated with morbidity and mortality in dialysis 
patients is protein-energy malnutrition (PEM). Amongst the causes of PEM are 
reduced protein and energy intake, metabolic acidosis, hypercatabolism and the 
dialysis treatment itself [10]. Therefore, regular assessment of the nutritional 
status of dialysis patients is recommended [11]. As creatinine (MW=113 Da) is 
produced at a nearly constant rate in the process of creatine metabolism in the 
muscles [12,13], this serves to reflect total body skeletal muscle mass. Therefore 
lean body mass (LBM), which is a creatinine-based parameter, is suggested as 
being one of those measures which is suitable for nutritional status evaluation 
[14,15]. The established method for LBM assessment is creatinine kinetic 
modelling (CKM). However, this approach is cumbersome because urine and 
dialysate collection is needed in addition to blood samples. Alternative methods 
for LBM assessment include dual-energy x-ray absorptiometry (DXA) and 
bioelectrical impedance measurement. However, the drawback in both of these 
approaches is the fact that the altered tissue hydration in dialysis patients has an 
effect on the measurement results [16–18]. Therefore a method is needed that 
enables the non-invasive assessment of LBM and that is not influenced by 
excess body water. 

The most used index of dialysis adequacy is Kt/V [19], which is based on the 
most abundant uremic retention solute urea (MW=60 Da) [20]. The reference 
method for the calculation of Kt/V, formal single-pool variable volume urea 
kinetic modelling (spUKM), does not take into account urea 
compartmentalisation during dialysis and the resulting post-dialysis urea 
rebound (PDUR) [21] when immediate post-dialysis blood samples are used. 
Consequently, the dialysis dose is overestimated in this case. A more accurate 
result is achieved when equilibrated urea concentration is used in the 
calculations. However, it is inconvenient both for the patients and dialysis 
facilities to wait for up to an hour in order to take the post-dialysis sample. 
Therefore, algorithms have been developed that enable the estimation of the 
equilibrated urea concentration by using the conventional pre- and post-dialysis 
blood samples [22,23]. However, it would be beneficial if equilibrated urea 
concentration and PDUR could be assessed consistently and without the need for 
repeated blood samples to provide more adequate information for each dialysis 
session. 
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The optical dialysis monitoring method [24,25] has the potential to offer a 
solution to the problems which have been outlined above. The general aim of the 
thesis was to examine the possibility of using the optical dialysis monitoring 
method to assess urea-based and creatinine-based parameters via the example of 
lean body mass and urea rebound calculation. The purpose of the study in 
Publication I was to develop a model for the estimation of creatinine 
concentration by using UV absorbance in spent dialysate. In Publication II, the 
lean body mass estimation in dialysis patients was presented as a possible 
application of the optical measurement of creatinine concentration. In the future 
this would provide a systematic and efficient way of reviewing the nutritional 
status of dialysis patients. The objective of Publication III was to explore the 
possibility of assessing the post-dialysis urea rebound employing UV 
absorbance in spent dialysate. In the future, this estimate could be used to 
correct the single-pool Kt/V (spKt/V) values in order to obtain equilibrated Kt/V 
(eKt/V) values. 
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1 THE KIDNEYS, RENAL FAILURE AND RENAL 
REPLACEMENT THERAPY 

1.1 The kidneys 

The kidneys are part of the urinary system and their functions include [26]: 
 the excretion of wastes and excessive liquid; 
 the regulation of blood volume, pressure, and electrolyte and acid-base 

balances;  
 contributing to the metabolism by hormone secretion and participation in 

vitamin D synthesis. 
The functional units of the kidneys are the nephrons that produce urine and 

maintain the homeostasis of blood through three processes: 1) glomerular 
filtration; 2) tubular reabsorption; 3) tubular secretion. The average volume of 
glomerular filtrate can reach 180 litres per day [26]. However, following tubular 
reabsorption the end product is between one and two litres of urine excreted 
daily. 

1.2 Renal failure 

Renal failure is a loss of kidney function resulting in the accumulation of 
water and toxic solutes and can be distinguished as acute [27–29] or chronic 
[30–33]. Acute renal failure (ARF) is an abrupt and sustained decrease in kidney 
function that can be caused by intoxication or serious trauma, for example, and 
may be reversible [27,28]. Chronic kidney disease (CKD) is defined as 
abnormalities in kidney function or structure that are present for over three 
months and that cause health implications [33]. CKD is usually irreversible and 
develops over different time periods. The development of CKD has been 
classified into five stages based on the progressive decrease of the glomerular 
filtration rate (GFR) [33]. End stage renal disease (ESRD) is stage 5 of CKD, 
when GFR is below 15 ml/min/1.73 m2 and renal replacement therapy is needed 
[33–35]. The main causes of ESRD are polycystic kidney disease, 
glomerulonephritis, hypertensive renal disease and diabetic nephropathy [30,31]. 

1.3 Renal replacement therapy 

Three renal replacement therapy options are available for patients with 
ESRD: peritoneal dialysis (PD), haemodialysis (HD), and transplantation. The 
best solution is renal transplantation as it reduces dialysis-related comorbidities 
and offers improved quality of life [36,37]. However, this approach may not be 
applicable, either due to the patient’s condition or because a suitable donor organ 
is not immediately available.  

PD is a home-based RRT option in which the patient’s peritoneal membrane 
is used [38,39]. The peritoneal cavity is filled with dialysate via a catheter for a 
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certain period of time and then is drained. The process is repeated several times 
a day. Two PD techniques are available [38]: continuous ambulatory PD 
(CAPD) and automated PD (APD). The advantages of PD include patient 
autonomy and independence, as well as the fact that no vascular access is 
required. However, the technique may fail due to peritonitis, mechanical 
problems with the catheter, ultrafiltration failure, or the patient becoming tired of 
having to carry out the changes [38,40]. 

HD is a RRT option in which accumulated metabolic waste and excess water 
are removed from the patient’s blood using an artificial kidney [41]. During 
treatment, the retained solutes move from the blood across a semi-permeable 
membrane to the dialysis fluid by diffusion and/or convection. Purified blood is 
returned to the patient's vein and spent dialysate is disposed of by sending it into 
the drain. Four haemodialysis techniques are available [41]: conventional HD, 
haemofiltration (HF), high-flux haemodialysis (hf-HD) and haemodiafiltration 
(HDF). The techniques are differentiated by the characteristics of the membrane 
that is used, and by whether it is mainly diffusion, convection, or both being 
applied. The standard HD schedule is three times a week and the duration of one 
treatment is four hours [19,42]. Usually patients go to a dialysis centre or 
hospital to have the treatment. Common complications of HD include 
intradialytic hypotension and cardiac arrhythmias, cardiovascular disease (CVD) 
and amyloidosis [41]. 
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2 UREMIC SOLUTES, UREA AND CREATININE 

Over 270 uremic retention solutes, which accumulate in the case of kidney 
failure, have so far been identified [43]. According to the European Uremic 
Toxin (EUTox) work group these solutes can be divided into three major 
categories [44–46]: 

 free, low molecular weight water-soluble molecules (molecular weight 
(MW) <500 Da, e.g. urea (MW=60 Da), creatinine (MW=113 Da); 

 protein-bound solutes (e.g. indoxyl sulphate (MW=251 Da), indole-3-
acetic acid (MW=175 Da)); 

 middle molecules (MW>500 Da, e.g. β2-microglobulin 
(MW=11818 Da), cystatin C (MW=13300 Da)). 

The present thesis focuses on the kinetics and monitoring possibilities of urea 
and creatinine, both of which belong to the category of low molecular weight 
water-soluble molecules. 

2.1 Urea 

Urea (MW=60 Da) is the principal end product of the catabolism of proteins. 
It is the most abundant uremic retention solute to appear in the blood of patients 
who are suffering kidney failure [20]. The acceptance of urea as a uremic toxin 
is still under debate. It appears that urea at levels of concentrations which are 
observed in clinical uremia are not directly toxic to the organism, as reports of 
its adverse effects are scarce [47–49]. However, it has been suggested that 
carbamylation, an irreversible modification of proteins and amino acids that 
alters their structure and function, may be a mediator for at least part of the toxic 
effects of urea [50–53]. Carbamylation results from exposure to isocyanic acid, 
the active form of cyanate which is a decomposition product of urea. 
Equilibrium exists between urea and cyanate [54]. Therefore, in the case of CKD 
and ESRD, as urea accumulates and its concentration in the blood of patients 
increases, the rate of carbamylation also increases [50,53]. Carbamylation has 
been linked to increased mortality risk in HD patients [55] and cardiovascular 
disease (CVD) [52]. Therefore it is thought that carbamylation could possibly be 
the connection between CVD, inflammation, and protein energy wasting in CKD 
and ESRD patients [51]. 

Urea has several favourable properties which are important for a marker 
solute [19,20]:  

 it is water soluble, which means it is distributed in body water;  
 it diffuses easily between body compartments and across the dialysis 

membrane due to its small molecular size and lack of electrical charge; 
therefore patient urea clearance is closely approximated by dialyser urea 
clearances; 

 it is easily measured due to its abundance in body fluids of uremic 
patients; 
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 it provides an index of nutrition, as urea generation is exclusively from
protein catabolism;

 it provides a sensitive index of dialyser function due to high clearance
by the dialyser.

However, the absolute values of urea concentration in blood are not 
considered to be a good diagnostic parameter because of their ambiguity. In 
CKD the use of plasma urea concentration as a diagnostic marker is disputable 
as it is influenced by several factors (such as changes in urinary excretion, and 
the nutritional and metabolic state of the patient) [49]. Also, in ESRD patients 
interpreting urea concentration in blood requires information of the patient’s 
nutritional status, as the relative contributions of urea removal and generation 
both play a role in determining the outcome [20]. Moreover, it has been shown 
that urea kinetics during dialysis do not characterise the removal of other low 
molecular weight water-soluble uremic solutes [56,57]. This calls into question 
the role of urea as a marker molecule which also represents the behaviour of 
other uremic solutes. 

Nevertheless, due to the previously discussed advantages of urea, the 
fractional urea clearance, Kt/V, is the most frequently used index of dialysis 
adequacy [19].  

Urea and dialysis adequacy 

Urea Kt/V is considered to be the best predictor of dialysis outcome currently 
available, based on the accumulated evidence of its positive correlation with 
morbidity and mortality in chronic HD patients [19,58]. It is recommended that 
Kt/V should be assessed at least on a monthly basis [19]. 

Kt/V is a dimensionless parameter, where K is the dialyser urea clearance, t 
is the duration of the HD session, and V represents distribution volume for urea. 
Calculating Kt/V is traditionally based on urea concentration in pre-dialysis and 
post-dialysis blood samples. Formal single-pool variable volume urea kinetic 
modelling, which is recommended by the guidelines as the reference method 
[19,58], utilises iterative, computer-based mathematical modelling to estimate V 
and urea generation (G) [59]. In addition to UKM, there also exist simplified 
equations for the calculation of spKt/V that are applicable to the standard three-
times-a-week HD schedule, e.g. the Daugirdas second generation equation [60]: 

ݐܭݏ ܸ ൌ െln ൬
்ܥ
ܥ

െ 0.008ܶ൰ൗ  ൬4 െ 3.5
்ܥ
ܥ
൰
ܹܤ߂
ܤ ܹ௦௧

(1) 

where C0 is urea concentration before dialysis (in mmol/l), CT is urea 
concentration at the end of dialysis (in mmol/l), T is the duration of dialysis (in 
hours), ΔBW is intradialytic weight loss (in kg) and BWpost is body weight at the 
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end of the session (in kg). For HD therapies with a different frequency and 
duration the standard Kt/V (stdKt/V) has been proposed [61]. 

The advantage of the spUKM method is that, in addition to spKt/V, it also 
provides information about the nutritional status of the patient and an individual 
treatment time prescription [58]. However, the weak point in this method is the 
fact that it does not take into account urea compartmentalisation, which causes 
the development of a disequilibrium in concentrations between the blood and 
peripheral compartment during dialysis [21]. The single-pool variable volume 
model that is implemented assumes that urea is equilibrated across a single 
compartment. Consequently, as the urea concentration in blood during HD is 
lower than the overall concentration in the total body water, spKt/V 
overestimates the delivered dialysis dose. 

One possibility to overcome the shortcomings of spUKM would be the use of 
the equilibrated urea concentration (Ceq) instead of the customary immediate 
post-dialysis urea concentration. In this way the eKt/V value is calculated, which 
represents the effective urea clearance and is a more accurate measure of the 
dialysis dose [21]. As it takes between 30 to 60 minutes for urea concentration to 
equilibrate between the compartments, taking the post-dialysis sample requires 
waiting up to an hour after the completion of HD [62]. Therefore this approach 
is not applicable in every day clinical practice due to its inconvenience for 
patients and the added work load for staff. An alternative method has been 
proposed by Daugirdas and Schneditz [63] that allows the calculation of eKt/V 
based on conventional blood samples: 

ݐܭ݁ ܸ ൌ ݐܭݏ ܸ െ ቆ0.6
ݐܭݏ ܸ⁄

ܶ
ቇൗൗ  0.03 (2)

The current NKF KDOQI Clinical Practice Guidelines for Haemodialysis 
Adequacy recommend that for standard thrice weekly dialysis the target spKt/V 
should be 1.4 per session, with a minimum of 1.2 [19]. The European Best 
Practice Guidelines by ERA-EDTA recommend that eKt/V should be used to 
express the dialysis dose and a minimum target eKt/V of 1.2 per session for a 
thrice weekly dialysis schedule [58]. 

Urea and nutrition 

ESRD patients are at risk of protein-energy malnutrition and uremic wasting 
due to spontaneous dietary protein intake restriction, chronic inflammation and 
insulin resistance, which are observed in case of uremia [64–66]. Moreover, 
beside uremic toxins the HD procedure also removes important nutrients via the 
filter such as vitamins, amino acids, and glucose [67]. The guidelines 
recommend several assessment tools for diagnosing malnutrition [11]. One of 
the measures included in the panel is the normalised protein nitrogen appearance 
(nPNA). 
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Protein nitrogen appearance (PNA) is a indirect measure of dietary protein 
intake, which is based on the premise that in HD patients who are in a steady 
state the nitrogen balance is zero or is slightly positive [11,68]. PNA is generally 
normalised (nPNA) for the patient’s body weight as dietary protein requirements 
and net protein breakdown in fasting conditions are greatly influenced by body 
mass [11]. The calculation of PNA is based on spKt/V and pre-dialysis urea 
concentration in blood (C0) [11]. It has been shown that a low PNA level is 
associated with mortality in HD patients [68]. 

The European Best Practice Guidelines recommend that in a clinically stable 
chronic HD patient the nPNA should be above 1.0 g/kg ideal body weight/day, 
and that nPNA should be measured every three months [11]. 

Standard biochemical methods for urea measurement 

The most commonly used assays for the determination of urea are based on 
enzymatic methods that employ urease and measure the released ammonia [69]: 

Urea+2H2O                 NH3+CO2 

The advantages of these methods are high specificity and sensitivity, simplicity 
and adaptability. However, enzymatic methods are prone to interference from 
endogenous ammonia and compensation for this needs to be factored in [69]. 

Colorimetric methods for the determination of urea include the reaction with 
diacetyl monoxime [70] and o-phthalaldehyde [71]. There is no interference 
from ammonia with the diacetyl monxime methods. However, heating is 
required and noxious chemicals are used [69]. The o-phthalaldehyde methods do 
not require heating, but can have interference problems [69]. 

2.2 Creatinine 

Creatinine (MW=113 Da) is the product of creatine and creatine phosphate 
catabolism in muscles [12,13]. As the conversion process has an approximately 
steady rate, creatinine constantly diffuses into blood from the tissues and is 
excreted into urine by the kidneys [12]. Creatinine shows limited biological 
toxicity [57]. However, it has been suggested that creatinine may have a role in 
the development of uremic encephalopathy [72]. Also, it is the precursor of the 
uremic toxin methylguanidine [12]. 

Creatinine, muscle mass assessment methods and nutrition 

Approximately 95% of the precursor of creatinine, creatine, is located in the 
skeletal muscles [13]. Therefore, urinary creatinine excretion [73,74], serum 
[13], and plasma [75] creatinine concentration have been proposed as measures 
of total body skeletal muscle mass. The gold standard for the assessment of 
urinary creatinine excretion is considered to be the 24-hour urine collection [74]. 

urease 
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However, in practice this method proves inconvenient as multiple days of urine 
collection are required [73] and it is prone to error due to the risk that collection 
may be carried out incorrectly. Furthermore, creatinine excretion is influenced 
by dietary protein intake, physical activity, and the health condition of the 
individual [76], so these factors need to be taken into account in all proposed 
methods for the assessment of muscle mass. Yet, in the case of age-related 
muscle loss, it has been suggested that creatinine excretion provides a better 
estimate than conventional dual-energy x-ray absorptiometry (DXA) [73]. 

DXA is used primarily to measure bone mineral density with the purpose of 
diagnosing osteoporosis [77–79]. Additionally, it can be employed in body 
composition assessment [78–81]. DXA technology is based on the principle that 
photon attenuation is dependent upon tissue composition [82]. The DXA 
scanners measure the ratio of photon attenuation in the supine body at two 
energy levels, e.g. 40 keV and 70 keV, which allows for the determination of 
two components within each pixel [82]. It is assumed that the body consists of 
bone mineral, lean soft tissue, and fat. Therefore lean and fat fractions can be 
determined from areas that do not contain bone [79–82]. Subsequently, the 
composition of the soft tissue which overlies bone can be extrapolated from 
these results. This enables the quantification of total lean soft tissue, fat, and 
bone mineral. The effective doses in DXA measurements are small, e.g. 5-7 µSv 
in the case of whole-body bone mineral density measurements [81]. This, 
together with the fact that the procedure is non-invasive and easily applied, 
makes DXA a favourable method for body composition assessment [78].  

It has been suggested that lean body mass (LBM), which reflects muscle 
mass, and creatinine index (CI), which is the sum of the creatinine extrarenal 
degradation rate and the appearance rate in dialysate, ultrafiltrate and urine, are 
reliable and stable measures of long term nutritional status in dialysis patients, as 
they represent the somatic protein stores [14–16,83,84]. The established 
approach to the assessment of CI and LBM is the creatinine kinetic modelling 
[15,83], which requires the measurement of creatinine excretion in urine and 
dialysate. The advantage of CKM in LBM estimation is that it is not affected by 
the tissue hydration status of dialysis patients, which can pose a problem in the 
case of alternatively suggested methods for LBM assessment, e.g. DXA 
measurements [16–18] and bioelectrical impedance analysis [16]. As CKM may 
not be available in all dialysis facilities, formulas have been developed for the 
assessment CI and LBM based on biochemical and anthropometric 
measurements [14]: 

ܯܤܮ ൌ 0.029 ൈ ܫܥ ൈ ܤ ܹ௦௧  7.38 (3) 

ܫܥ ൌ 162.7 ൈ
ܩ

ܤ ܹ௦௧
 0.00429 ൈ  ݈݉ܥܣܶ

 
(4) 

݈݉ܽ݁ܩ ൌ 0.8 
൫ܤ ܹ ൈ ܥ െ ܤ ܹ௦௧ ൈ ௦௧൯ܥ ൈ ሺ1 െ ܴሻ

െln	ሺܴሻ ൈ ܫܯܤ ൈ 152
 (5a) 
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݂݈݁݉ܽ݁ܩ ൌ 0.8 
൫ܤ ܹ ൈ ܥ െ ܤ ܹ௦௧ ൈ ௦௧൯ܥ ൈ ሺ1 െ ܴሻ

െ݈݊ሺܴሻ ൈ ܫܯܤ ൈ 172.7
 (5b) 

   

݈݉ܥܣܶ ൌ
ሺ1ܥ െ ܴሻ

െ݈݊ሺܴሻ
 (6) 

   

ܴ ൌ
ܥ
௦௧ܥ

 (7) 

where BWpre and BWpost are body weight (in kg) before and at the end of the 
dialysis session, respectively; GCr is creatinine generation rate (in mg/day); 
TACCrlm is logarithmic mean-based, time-averaged creatinine concentration (in 
µmol/l); Cpre and Cpost are the concentrations of creatinine in blood (in µmol/l) 
before and at the end of the treatment, respectively. Body mass index (BMI) (in 
kg/m2) is calculated based on BWpost and the patient’s height. 

Creatinine and renal function 

For the diagnosis and assessment of the progression of renal disease it is 
necessary to estimate the GFR, which is most precisely done by utilising 
exogenous filtration markers, e.g. inulin [85]. However, in everyday practice this 
approach is too complex and expensive, as it requires intravenous infusion under 
standardised conditions and complex chemical assays for inulin measurement 
[76]. 

Because creatinine is non-toxic, and is freely filtered at the glomerulus, is not 
protein bound, is physiologically inert, and is not metabolized by the kidneys, it 
complies with the majority of requirements for a ideal filtration marker [76]. 
Also, as the progression of renal disease has been associated with decreasing 
renal clearance and an increasing serum concentration of creatinine, serum 
creatinine concentration and creatinine clearance (CrCl) are frequently used as 
markers for renal function [12]. However, the European Best Practice guidelines 
do not recommend the estimation of renal function from blood creatinine 
measurements alone [86], as the production and elimination of creatinine varies 
amongst individuals, and over time, even if there is no change in renal function 
[76]. The major drawback of CrCl estimation is the requirement of 24-hour 
urinary creatinine excretion measurement [85]. Consequently, methods based on 
serum creatinine have been proposed to facilitate the estimation of CrCl and 
GFR [85,86], where body weight, age, gender, and race are used to account for 
differences in muscle mass. European Best Practice guidelines recommend the 
estimation of GFR based on the mean of urea and creatinine clearance, which 
are calculated from a 24-hour urine collection, and by normalising it to body 
surface area (1.73 m2) [86]. 

However, the shortcomings in terms of creatinine as a filtration marker are 
that CrCl overestimates GFR both in healthy individuals and patients with renal 
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disease due to the tubular secretion of creatinine into urine [76]. Also, tubular 
reabsorption of creatinine is possible in the case of low rates of urine flow [76]. 
Therefore, CrCl and GFR which is estimated based on creatinine concentrations 
provide only an approximate guide to the renal function [76,85]. 

Standard biochemical methods for creatinine measurement 

The most commonly used assays for the determination of creatinine are based 
on the Jaffe reaction [76,87,88]. It is a colorimetric method, where picric acid 
reacts with creatinine under alkaline conditions and as a result the bright red 
Janovsky complex is formed [89]: 

Creatinine+picric acid                       Janovsky complex 

The absorbance of the produced colour, which is proportional to creatinine 
concentration, is measured at the wavelengths 490-520 nm [90,91]. The 
drawback in the use of this method is the fact that the colour-forming reaction is 
non-specific and interference from several other substances is experienced (e.g. 
carbonyl compounds, bilirubin, dopamine) [87,92]. Therefore modifications in 
the method have been developed in order to increase specificity (e.g. 
deproteinisation, kinetic measurements, and varying the pH) [76,87,88,92,93].  

In addition, enzymatic methods have been developed for the determination of 
creatinine that are based mostly on the following reaction sequences [87,88,92]: 

Creatinine+H2O                        creatine 
 
Creatine+H2O                        sarcosine+urea 
 
Sarcosine+O2+H2O                              formaldehyde+glycine+H2O2

Although, theoretically, the enzymatic assays are more specific, interference 
problems can also be experienced (e.g. from creatine, sarcosine, or bilirubin) 
[88,92]. 

2.3 Rebound of solutes 

Post-dialysis rebound (PDR) is a rapid increase in plasma concentration of 
solutes removed by HD immediately after the completion of a dialysis session.  

Two factors contribute to the genesis of the early phase of PDR (≤ 3 min 
after dialysis) – access recirculation (AR) and cardiopulmonary recirculation 
(CPR) [94]. In the process of recirculation the dialysed blood is returned to the 
dialyser without prior equilibration in the systemic arterial circulation [95]. 
Therefore due to AR and CPR, the concentration of solutes in blood samples 
which are drawn immediately after the end of a dialysis session is lower than it 
is in systemic venous blood [94]. This leads, for example, to an artificially 

alkaline pH 

creatininase 

creatinase 

sarcosine oxidase 
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elevated estimate of spKt/V when the solute under consideration is urea. In order 
to avoid this and to allow the rebound caused by AR and CPR resolve the slow 
flow/stop pump sampling technique is recommended by the guidelines [96,97].  

The late phase of PDR (>3 min) is caused by the compartmentalisation of 
solutes [62]. Due to this, solutes are effectively removed from the easily 
accessible compartment but not from the sequestered compartment. For various 
solutes, the degree of compartmentalisation, and the size and number of 
compartments, may be different [62]. For example, as urea equilibrates rapidly 
between red blood cells and plasma [98] it is cleared from both during dialysis. 
Creatinine diffusion from red blood cells, on the other hand, is slow [98] with an 
equilibration half-life of 13.8±2.8 minutes at 37º [99] and it is therefore cleared 
only from plasma. Consequently, once the dialysis session is ended, the entry of 
solutes from the relatively undialysed tissues into blood starts and concentrations 
across body water spaces equilibrate [62,94]. The duration of this period is 
between 30 to 60 minutes for urea [62] and approximately 60 minutes for 
creatinine [100]. Therefore, in order to obtain the most accurate solute 
concentrations (e.g. for Kt/V calculation) the post-dialysis blood samples would 
have to be drawn 60 minutes after the completion of the dialysis session. 
However, as this approach is not practical for dialysis facilities, mathematical 
modelling is applied in order to overcome the problem. 

Mathematical models of solute kinetics during dialysis 

 In order to describe solute kinetics during dialysis, two two-compartment 
models – the serial two-compartment model and the regional blood flow model – 
have been proposed. 

The serial two-compartment model assumes diffusive transport of solutes 
between the intracellular and the extracellular fluid compartment. For example, 
in the case of urea interstitial water, blood plasma and red blood cell water 
constitute the extracellular compartment and intracellular water forms the 
intracellular compartment [101]. Dialysis occurs from the extracellular 
compartment, with intercompartmental clearance governing the transport of 
solutes between the two compartments [62]. Accordingly, the disequilibrium of 
solutes during dialysis is explained by the lag in the decrease of solute 
concentrations in the intracellular fluid compartment [101]. As a result, solutes 
continue to diffuse into the extracellular compartment after dialysis until the 
concentrations of the compartments are equal [22].  

The regional blood flow model, where organs are divided into a low-blood-
flow group and a high-blood-flow group based on perfusion, assumes a parallel 
arrangement of compartments and mainly convective transport of solutes 
between them [62]. According to this model the disequilibrium in solute 
concentrations during dialysis is explained by a delay in transporting solutes 
from organs with low perfusion (i.e. skin, muscle, bone, and adipose tissue) to 
the dialyser [100]. The advantage of the regional blood flow model is that it 
provides an explanation how the rebound of solutes can be reduced by 
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increasing the perfusion of muscles, e.g. with intradialytic exercise [102,103]. 
While both models explain urea kinetics equally well [104], in the case of 
creatinine the regional blood flow model needs to be modified so that it also 
incorporates diffusion (the diffusion-adjusted regional blood flow model [100]) 
to account for the limited diffusion of creatinine from red blood cells. 

Algorithms for estimating the equilibrated urea concentration 

Based on the previously discussed models algorithms for anticipating the 
equilibrated urea concentration have been developed so that Kt/V could be 
accurately estimated while avoiding the need to wait for an equilibrated post-
dialysis blood sample. 

The Smye algorithm [22] is based on the serial two-compartment model, and 
the post-dialysis equilibrated concentration of urea in blood is estimated based 
on conventional pre-dialysis and post-dialysis blood samples plus an additional 
intradialytic blood sample. The base of this algorithm is the premise that after an 
intercompartmental concentration gradient has been established during the initial 
period of dialysis, the decrease of the equilibrated urea concentration in body 
water and the decrease of the extracellular urea concentration have equal log 
linear slopes [101]. Therefore, the slope (λ) can be estimated based on urea 
concentration in the intradialytic blood sample (Cint) and post-dialysis sample 
(CT). Consequently, the equilibrium concentration (Ceq) of urea can be calculated 
as [22]: 

ܥ ൌ  ݁ିఒ் (8)ܥ

ߣ ൌ
1

ܶ െ ௧ݐ
݈݊ ൬

௧ܥ
்ܥ

൰ (9) 

where tint is the time from the beginning of dialysis to the point at which the 
intradialytic blood sample is taken (in minutes), and T is the duration of dialysis 
(in minutes). It is suggested that urea concentration begins to follow a 
monoexponential decay towards the end of the first hour of dialysis [62]. 
Therefore, the intradialytic blood sample to determine Cint should be obtained 
between 60 to 80 minutes after the start of the session [105]. 

The Tattersall method [23] also originates from the serial two-compartment 
model and Smye’s observation that the log linear slopes of urea concentrations 
decline in body water and blood are equal. This approach employs a patient and 
solute-specific constant called patient clearance time (tp), which is independent 
of the duration and rate of dialysis [23]. tp is the time separating the two log 
linear slopes that were demonstrated by Smye (in minutes) [101]. It is suggested 
that in routine practice the mean value of tp for urea (35 min) should be used 
together with an occasional assessment of tp in all patients [23]. Therefore 
according to Tattersall [23] Ceq can be calculated as: 



23 

ܥ ൌ ܥ ൬
்ܥ
ܥ
൰

்
்ା௧

 (10) 

ݐ ൌ ܶ
݈݊ ൬

ܥ
்ܥ

൰

݈݊ ൬
ܥ
ܥ

൰
 (11) 

The Daugirdas method [63] applies an empiric regression model that is in 
compliance with the regional blood flow model. In this approach urea rebound is 
expressed as the difference ΔKt/V between eKt/V (calculated based on Ceq) and 
spKt/V [63]: 

ݐܭ߂ ܸ ൌ െ0.6 ቆ
ݐܭݏ ܸ⁄

ܶ
ቇ  0.03ൗ  (12) 

It has been shown that the Smye, Tattersall and Daugirdas methods are 
equivalent on the basis that the decrease of urea concentration during the later 
stages of dialysis is a single exponential [106]. The advantage of the Smye 
algorithm is that conceptually it is the most rigorous approximation of Ceq based 
on the serial two-compartment model [101]. Also, this method could be used in 
the future to estimate the rebound of solutes other than urea without the need for 
adaptation [106], unlike the alternative Tattersall [23] and Daugirdas equations 
[63].The shortcoming of the Smye method is that in practice it suffers from 
inaccuracies which originate from small urea concentration measurement errors 
in the laboratory [101]. However, this source of error is common for all blood-
based methods. In addition, the problems which are associated with the two-
sample blood-based Smye method can be overcome by using on-line 
measurements to determine the slope [105]. 
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3 THE OPTICAL METHOD FOR THE ASSESSMENT 
OF UREMIC SOLUTES 

3.1 Light and matter 

Light that interacts with a translucent medium can be reflected at the surface 
or transmitted through it; inside the medium the light can be scattered, absorbed, 
or internally reflected [107]. In tenuous media, scattering can be ignored and it 
can be assumed that the incident light is transmitted, absorbed, or reflected 
[108]. As spent dialysate is considered to be a weakly scattering medium, 
absorbance spectroscopy methods can be used for monitoring it [109]. 

3.2 Absorbance and the Bouguer-Beer-Lambert Law 

Absorption is the transfer of photonic energy to electrons, atoms, or 
molecules, and its conversion into the internal energy of the absorber (e.g. heat) 
[110]. The absorbance of a medium is a measure of its capacity to absorb 
incident light, which is expressed by the Bouguer-Beer-Lambert Law (also 
abridged to Beer-Lambert Law) [111]. According to the law’s derivative form, 
absorbance (A) (in arbitrary units) is given as: 

ܣ ൌ ଵ݈݃
ܫ
ܫ

(13) 

where I0 is the incident intensity and I is the intensity of light transmitted 
through the medium. 

Absorbance can also be expressed through the molar extinction coefficient ε 
(in m-1(mol/l)-1), the concentration of the absorbing compound C (in mol/l), and 
optical path length d (in m) [109]: 

ܣ ൌ  (14) ݀ܥߝ

Therefore, if ε and d are known and A is obtained by spectroscopic 
measurement, the concentration of a solute can be calculated as: 

ܥ ൌ
ܣ
݀ߝ

(15) 

When the medium contains several different absorbing compounds, the 
overall extinction coefficient is the sum of each compound’s contribution [112]: 

ܣ ൌ ଵ݈݃ 
ܫ
ܫ
൨ ൌ ሺߝଵܥଵ  ଶܥଶߝ  ⋯  ሻ݀ (16)ܥߝ

The Beer-Lambert Law applies only when specific assumptions are fulfilled 
[111,112]: 

 incident light is collimated and monochromatic;
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 scattering and reflections are excluded, so that light attenuation occurs
only due to absorption;

 absorbing molecules are distributed homogeneously in the solvent;
 the concentration of the absorbing compound is not very high.

3.3 Optical monitoring of uremic solutes in spent dialysate 

The first time optical monitoring was proposed for estimating dialysis 
efficiency was in 1980, by Gal and Grof [113], who suggested the continuous 
transmittance measurement of spent dialysate at 254 nm. A patent covering the 
spectrophotometric determination of waste products in spent dialysate was filed 
in 1999 by a Swedish research group [114]. The first results from the method 
and related equipment development were presented two years later, describing 
the possibility of being able to assess urea and creatinine removal during dialysis 
via UV absorbance monitoring in spent dialysate [115]. The technique was later 
described in depth [24], and the selection of a suitable wavelength range was 
discussed more specifically [116]. It was also demonstrated that the on-line 
measurement of UV absorbance can be used to reliably estimate Kt/V [117]. 
Since then several aspects of the optical monitoring technique and possibilities 
related to being able to apply it in everyday clinical practice have been explored 
and published, e.g.:  

 urea [118,119], creatinine [120,121], and uric acid [122,123]
quantification;

 the contribution of different uremic solutes to UV absorbance [124];
 the estimation of dialysis quality [109,125] and urea rebound [126,127];
 the monitoring of clinical events [128];
 the assessment of the nutritional status of dialysis patients [129–132].

Other research groups have also explored the possibilities raised by optical 
dialysis monitoring [25,133–135].  

Currently the technology has been integrated into routine clinical practice for 
the estimation of Kt/V [136,137]. Moreover, the current NKF KDOQI Clinical 
Practice Guidelines for Haemodialysis Adequacy point out the optical method as 
being a possible technique to be used when it comes to monitoring the delivered 
dialysis dose [19]. 
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4 EXPERIMENTAL STUDIES: METHODS, RESULTS 
AND DISCUSSION 

4.1 Methods 

Clinical studies 

Haemodialysis patients from Linköping, Sweden and Tallinn, Estonia 
participated in the studies. A summary of the patients, their treatment 
parameters, and dialysate sampling times are presented in Table 1. The study 
protocols were approved by the Regional Ethical Review Board, Linköping, 
Sweden and by the Tallinn Medical Research Ethics Committee at the National 
Institute for Health Development, Estonia. Informed consent in written form was 
obtained from all of the participating patients. 

The concentrations of creatinine, urea, and uric acid in the collected samples 
were determined in the Clinical Chemistry Laboratories at the Linköping 
University Hospital and North Estonia Medical Centre. Standardised methods 
were used. The accuracy of the methods for creatinine and urea estimation in 
blood and dialysate was ±5%. 

UV absorbance of the collected spent dialysate samples was determined 
using a double-beam spectrophotometer (UVIKON 943, Kontron, Italy, in 
Linköping, and Shimadzu UV-2401 PC, Shimadzu, Japan, in Tallinn). 
Spectrophotometric analysis was carried out over the wavelength range of 190-
380 nm; an optical cuvette with a path length of 10 mm (Publications I & III) or 
5 mm (Publication II) was used. 

On-line UV-absorbance monitoring (Publication III) was carried out by 
connecting a spectrophotometer (UVIKON 934, Kontron, Italy in Linköping, 
and HR2000, Ocean Optics Inc., USA in Tallinn) to the fluid outlet of the 
dialysis machine. Spent dialysate passed through an optical flow cuvette with a 
path length of 10 mm. UV absorbance was registered at the wavelength 297 nm 
with a sampling frequency of two samples per minute. 

DXA measurements (Publication II) were carried out as whole body scans on 
an interdialytic day using the Lunar iDXA system (GE Healthcare, UK) with the 
purpose of examining the body composition of the patients. 
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Table 1. Patients, treatment parameters and sampling times 
Publication I II III 
Total number of 
patients 29 9 25 

- from Linköping 
(male/female), 
mean age ± SD 

5 (2/3), 68.8±11.4 
6 (2/4), 56.8±23.0 

10 (5/5), 62.8±20.9 
7 (4/3), 58.1±22.5 

10 (6/4), 60.1±19.1 

- 10 (6/4), 
60.1±19.1 

- from Tallinn 
(male/female), 
mean age ± SD 

10 (7/3), 62.4±11.7 9 (5/4), 58.8±8.6 15 (9/6), 
59.7±11.2 

168 (HD) 28 (9 HD/19 
HDF) 

52 (46 HD/ 6 
HDF) 

Number of sessions 
(type) 

Gambro AK200 
Fresenius 4008H Fresenius 5008 

Fresenius 
4008H 

Fresenius 5008 
Blood flow, ml/min 146...350 250...300 200...350 
Dialysate flow, 
ml/min 500 500 500 

Session’s length, 
min 240...300 180...240 210...270 

Sampling time, min 
– dialysate

2, 4, 10, 20, 30, 45, 60, 90, 
120, 150, 180, 210, 240, 

270, 300 
5, 15, 30, 60, 90, 120, 150, 
180, 210, 240, 255, 270, 

300, TDC 
5, 60, 90, 120, 150, 180, 
210, 240, 255, 270, TDC 
10, 60, 90, 120, 150, 180, 

210, 240, TDC 

10, end of 
dialysis 

5, 60, 120, 180, 
240, 255, 270 

Sampling time, min 
- blood 

0, 4, 10, 20, 30, 45, 60, 90, 
120, 150, 180, 210, 240 
0, 4, 10, 20, 30, 60, 120, 

180, 240, 270, 300 
0, 15 60, 180, 240, 270, 

300 
0, 15 60, 180, 240, 255, 

270, 300 
0, 60, 120, 180, 240, 255, 

270 
0, 240 

Pre-and post-
dialysis 

0, 60, 120, 180, 
240, 255, 270, 

30 post-dialysis 
Pre- and post-

dialysis, 30 
post-dialysis 

TDC – total dialysate collection 

Dialysis machine 
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In vitro experiments (Publication II) 

The purpose of the experiment was to investigate the influence of tissue 
hydration on DXA measurement results. Four mixtures of minced pork (Rakvere 
Meat Processing Plant, Estonia) and NaCl 0.9% solution (B.Braun, Germany) 
were prepared (Table 2) in a 2 l PMP beaker (LP Italiana, Italy). A digital 
kitchen scale (Soehnle Siena, Leifheit, Germany) was used to weigh the 
components. The DXA scans for each mixture were run in triplicate on the 
Lunar iDXA system (GE Healthcare, UK). 
Table 2. Composition of the mixtures [131] 
Mixture M I M II M III M IV 
Minced pork, g 1200 1200 1200 1200 
NaCl 0.9%, ml - 65 135 305 
Ratio tissue:fluid 100:0 95:5 90:10 80:20 

Data analysis 

Creatinine reduction ratio (RR) (Publication I) was calculated as 

ܴܴ ൌ
ܥ െ ௦௧ܥ

ܥ
100% (17) 

based on creatinine concentration in blood (RR_b), creatinine concentration 
estimated by the single wavelength (SW) model (RR_SW) and the multi-
wavelength model (RR_MW). In the case of RR_SW and RR_MW, the UV 
absorbance values of the 4, 5, and 10 min dialysate samples were used for the 
calculation of Cpre.  

The urea reduction ratio (URR) (Publication I) was calculated as 

ܷܴܴ ൌ
ܥ െ ்ܥ
ܥ

100% (18) 

based on urea concentration in the blood. 
In Publication I the spKt/V was calculated according to the Daugirdas second 

generation equation [60] (Equation 1). 
Total removed creatinine (TRCr) (Publication I) was calculated as 

ݎܥܴܶ ൌ  ௧௧ܹ (19)ܥ

where Ctotal is creatinine concentration in the TDC sample (in µmol/l) and W is 
the weight of the collected spent dialysate (in kg). It was assumed that for 
dialysate 1 kg=1 l. For the calculation of TRCr creatinine concentration in the 
TDC sample (TRCr_lab), creatinine concentration estimated by the single 
wavelength (SW) model (TRCr_SW), and the multi-wavelength model 
(TRCr_MW) were used. 

In Publication II LBM was calculated using the method that was developed 
by Desmeules et al [14] (Equations 3-7), based on creatinine concentration in 
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blood (LBMblood) and the SW model estimate (LBMa). In the case of LBMa the 
UV absorbance values of the 10 min dialysate samples were used for the 
calculation of Cpre.  

In Publication III Ceq was calculated using the Smye algorithm [22] 
(Equations 8-9) based on urea concentration in blood and dialysate (Figure 1). 
One intradialytic sample (60 min) as well as all available samples from 60 min 
were used in the estimation of λ. UV absorbance in spent dialysate samples and 
on-line UV absorbance measurements were also used to calculate a substitute 
value for Ceq for the urea rebound calculation (Figure 1). 

Figure 1. Schematic depiction of the blood, dialysate and UV absorbance values used 
for the calculation of Ceq [127] (with permission). 

PDUR in Publication III was expressed both relative to CT 

ܴଵ ൌ
ܥ െ ்ܥ

்ܥ
100% (20) 

as well as relative to the decrease in urea concentration during dialysis 

ܴଶ ൌ
ܥ െ ்ܥ
ܥ െ ்ܥ

100% (21)

Calculations for R1 and R2 were based on based on urea concentration in blood 
and dialysate, and also UV absorbance in spent dialysate. 

Forward stepwise regression was used to develop models for the assessment 
of creatinine concentration in dialysate (Publication I) and in blood (Publication 
II), and to determine the best wavelength for urea monitoring (Publication III). 
UV absorbance values in the collected spent dialysate samples at 210-330 nm 
were included in the analysis as independent variables. Regression analysis was 
also used to investigate the relationship between UV absorbance and the 
concentrations of uric acid and creatinine in spent dialysate (Publication I). 

The systematic error (Publications I & III) was calculated as [138] 
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where N is the number of observations and ei is the i-th residual. 
The standard error of performance (Publications I & III) was calculated as 

[138] 
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The Student’s t-test was used to compare the means of the calculated 
parameters and p≤0.05 was considered to be significant. Bland and Altman 
analysis [139] was used to examine individual differences in the values of the 
calculated parameters. Statistica 6.0 (Statsoft, Inc. for Windows) and Excel 
(versions 2000 and 2003 for Windows) were used for data analysis. 

4.2 Optical measurement of creatinine in spent dialysate (Publication I) 

Creatinine is regarded as a reference molecule for those low molecular 
weight water-soluble solutes that have a kinetic behaviour which is different 
from that of urea [44,56]. It also provides valuable information about the 
nutritional status of dialysis patients through the parameters CI and LBM. 
However, the standard biochemical methods for creatinine measurement may be 
affected by interference from other compounds; the necessary equipment is 
expensive and must be operated by professionals. Therefore, an application of 
the optical dialysis monitoring method would be essential in order to enable 
direct and easy assessment of creatinine concentration in spent dialysate. 
Therefore, the research for Publication I focused on developing a model for the 
estimation of creatinine concentration by using UV absorbance in spent 
dialysate.  

The data of six studies (Table 1) was included in the analysis, which was split 
into a calibration set (covering 25% of the data), and a validation set (involving 
the remaining 75% of the data). The patients were adequately dialysed 
(spKt/V>1.2). A single wavelength (SW) model, based on UV absorbance at 299 nm, 
and a multi-wavelength (MW) model, based on UV absorbance at 263 nm, 
299 nm and 317 nm, were developed using linear regression analysis. For the 
calibration set, better results were presented by the MW model than they were 
by the SW model. However, for the validation set the results were comparable 
for both models. Therefore, the SW model appears to be more stable, even 
though it did not provide as good a set of results as the MW model in case of the 
calibration set. 

The most likely reason for the MW model not improving creatinine 
estimation accuracy is the fact that UV absorbance originating mainly from uric 
acid is employed in the assessment of creatinine concentration. An indication for 
this is the fact that UV absorbance at 299 nm is included in both of the models.  
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At wavelengths above 280 nm the strongest contribution arises from uric acid, as 
was revealed by the examination of creatinine and uric acid contributions to the 
measured UV absorbance. This was also indicated by an earlier HPLC study 
[140]. In addition, the correlation between uric acid concentration and creatinine 
concentration estimates by both models are higher than correlation between the 
estimates and creatinine concentration as determined in the laboratory. 
Furthermore, the correlation coefficients for the SW and MW models are in the 
same approximate range as the correlation coefficients for creatinine and uric 
acid concentrations in spent dialysate. Consequently, the correlation between 
creatinine and uric acid determines the accuracy of the creatinine concentration 
estimation through UV absorbance. 

In order to assess the possibilities when it come to applying the models in 
dialysis monitoring, the creatinine removal ratio and the total amount of 
creatinine removed were calculated using creatinine concentration estimates 
from both models. RR_SW showed a better agreement with RRb than RR_MW. 
Apparently, the estimates of creatinine concentration in spent dialysate at the 
beginning and end of dialysis based on the MW model were not sufficiently 
accurate. For TRCr_SW and TRCr_MW calculation the creatinine concentration 
in TDC samples was estimated using both models. Both TRCr_SW and 
TRCr_MW were in good agreement with TRCr_lab. 

The research for Publication I demonstrated that a good estimate of creatinine’s 
removal pattern during dialysis is given by UV absorbance at 299 nm. Therefore it is 
possible to monitor creatinine optically even though measurements are taken for 
several chromophores, which are present in spent dialysate, and not solely for 
creatinine.  

4.3 Possible application for the optical measurement of creatinine: 
lean body mass assessment (Publication II) 

Dialysis patients have the risk of malnutrition due to several factors [64,65]. 
Lean body mass is one of the parameters that is recommended for the assessment 
of nutritional status [15]. However, the established creatinine kinetic approach is 
affected by shortcomings in standard biochemical methods for creatinine 
determination. One method that has been suggested as a quick, precise, and 
simple alternative is dual-energy x-ray absorptiometry [81]. However, in dialysis 
patients the measurements are influenced by the altered tissue hydration [16–
18].Therefore the research presented in Publication II focused on examining the 
possibility of applying the optical monitoring method to assess LBM of dialysis 
patients. 

An SW model was developed for the estimation of creatinine concentration 
in blood, which was based on UV absorbance in spent dialysate according to the 
results of Publication I. The estimate was used to calculate LBM by applying the 
method developed by Desmeules et al [14] (Equations 3-7). LBM was also 
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calculated based on blood creatinine concentration which was determined in the 
laboratory and determined by DXA measurement on an interdialytic day.  

Average LBMa was lower when compared to LBMblood; however, the 
difference was not statistically significant (p=0.06). Possible reasons for the 
difference between the estimates include the fact that for the most part the UV 
absorbance of uric acid is used for the assessment of creatinine concentration 
and also the fact that dialysate samples were collected 10 minutes after the start 
of a dialysis session in contrast to the pre-dialysis blood samples, which were 
used to calculate LBMblood. 

Average LBMDXA was significantly higher when compared to LBMblood 
(p≤0.05). As the DXA scans were taken on an interdialytic day, the possible 
explanation for the difference between LBMDXA and LBMblood could be the 
altered fluid balance in dialysis patients. Previous studies have shown that in 
CAPD patients the peritoneal fluid is registered as lean mass [16] and DXA 
measurements overestimate LBM when compared to creatinine kinetics even 
when peritoneal fluid is drained from the abdomen before the measurement is 
carried out [17]. Moreover, in haemodialysis patients a significant decrease in 
LBM by DXA measurement was noted following dialysis therapy [18]. The 
hypothesis was additionally supported by the in vitro experiments that were 
carried out, and which showed that the amount of additional fluid in the mixture 
was closely followed by the shift in lean fraction mass. 

The research for Publication II demonstrated the fact that the optical 
monitoring method may be applicable for the assessment of LBM in dialysis 
patients. In comparison with the reference method greater accuracy and 
precision were presented by LBMa than were by LBMDXA. Therefore the optical 
method could be preferable to DXA as it is not influenced by the patient’s 
hydration status. The method described also offers the possibility of monitoring 
LBM trends in individual patients without the need for additional measurement 
procedures (e.g. DXA). 

4.4 Urea rebound assessment (Publication III) 

Urea Kt/V is considered to be a sensitive measure for the assessment of 
dialysis adequacy [19]. However, when immediate post-dialysis concentrations 
are employed in the calculation, Kt/V can be significantly overestimated due to 
urea rebound. Yet, waiting between 30 to 60 minutes after the completion of 
dialysis, which would supply a more accurate blood sample, would be 
inconvenient for both patients and dialysis facilities. Therefore the research for 
Publication III focused on examining the possibility of applying the optical 
monitoring method when it comes to assessing post-dialysis urea rebound in 
blood. 

The data from two studies was divided into a calibration set (covering 30 
dialysis sessions) and a validation set (covering 22 dialysis sessions). Firstly, Ceq 
was calculated according to the Smye algorithm [22] (Equations 8-9). Urea 
concentration in blood (Ceq_b) as well as in dialysate (Ceq_d) was employed. In 
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addition, a substitute value for Ceq was calculated by replacing urea 
concentrations in Equations 8 and 9 with UV absorbance values in spent 
dialysate samples at the wavelength 296 nm (Ceq_a). The slope of the urea 
concentration profile and UV absorbance profile was estimated using Equation 9 
(i.e. for Ceq_b_60, Ceq_d_60, Ceq_a_60) and also obtained by line fitting (i.e. for 
Ceq_b_exp, Ceq_d_exp, Ceq_a_exp, Ceq_a_online). The calculated Ceq values were compared 
to urea concentration in the blood sample taken 30 minutes post-dialysis 
(Ceq_30post). Secondly, PDUR was calculated based on Equations 22 and 23, 
employing blood and dialysate urea concentrations as well as UV absorbance 
values in spent dialysate. The reason for using two PDUR estimates was the 
suggestion that while R1 is a better approximation of the difference between 
spKt/V and eKt/V, R2 is a better expression of the meaning of PDUR [94]. The 
PDUR estimates were compared to PDUR which was calculated based on 
Ceq_30post. For the validation set, in addition to reference values only Ceq_a_online 
a n d  corresponding PDUR estimates were calculated. 

Both Ceq_b_60 and Ceq_b_exp significantly overestimated Ceq (p≤0.05). 
Accordingly, the estimates of PDUR which were calculated based on these 
values also significantly overestimated PDUR when compared to the respective 
reference values. It has been shown previously that the actual equilibrated 
concentration is being slightly overestimated by the Smye algorithm [105]. 
Moreover, the results from Publication III indicated the algorithm’s sensitivity to 
small errors in urea concentration measurement [101]. However, an 
improvement in results when more than one sample is used was demonstrated by 
the fact that the smallest systematic and standard error when compared to the 
reference was obtained for Ceq_b_exp. This is in compliance with the previous 
study showing that on-line monitoring allows those problems which are 
connected to the implementation of the Smye algorithm to be overcome [105]. 

Both Ceq_d_60 and Ceq_d_exp significantly underestimated Ceq (p≤0.05). This can 
be explained by the fact that dialysate urea concentration is only a fraction when 
compared to the corresponding arterial urea concentration. Yet the result which 
shows that PDUR estimates which were calculated based on these values do not 
differ statistically from the reference values shows that blood urea concentration 
is proportionally followed by the respective dialysate concentration. 

In addition to UV absorbance measurements in the collected spent dialysate 
samples, PDUR was also estimated based on on-line UV absorbance 
measurements in order to make full use of the possibilities offered by the optical 
monitoring method. There were no statistically significant differences between 
the PDUR estimates which were obtained and the corresponding reference 
values for the calibration set. The same applied to the validation set. Moreover, 
from all of the calculated PDUR estimates the smallest systematic and standard 
errors were presented by estimates which had been calculated based on UV 
absorbance. Therefore the assessment of PDUR by using UV absorbance in 
spent dialysate appears to be plausible. 
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The research for Publication III demonstrated that a good estimate of PDUR 
is given by UV absorbance at 296 nm. In comparison with the reference method, 
greater consistency and accuracy was presented by those estimates which were 
based on UV absorbance than was the case with estimates which were based on 
intradialytic blood samples. Additionally, the optical method offers the 
possibility of on-line monitoring which, due to its high sampling frequency, 
decreases the effect of possible measurement errors. 
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CONCLUSIONS 

The studies presented in this thesis explored the possibilities of applying the 
optical dialysis monitoring method to the estimation of creatinine concentration 
in spent dialysate, the lean body mass of dialysis patients, and post-dialysis urea 
rebound. LBM monitoring would provide valuable information about the 
nutritional status of patients and the assessment of PDUR would offer more 
adequate information about treatment quality. 

The results from Publications I-III can be summarised as follows: 
o The removal pattern of creatinine during dialysis can be estimated using 

UV absorbance in spent dialysate at 299 nm. 
o At wavelengths above 280 nm it is mainly uric acid which contributes to 

UV absorbance. Therefore the accuracy of creatinine concentration 
estimations depends upon the correlation between the two solutes. 

o The optical dialysis monitoring method could be applicable to the 
assessment of LBM in dialysis patients. The advantages in the use of 
this technique include the fact that it is not influenced by the patient’s 
hydration status and that it enables consistent monitoring of LBM 
trends. 

o PDUR could be estimated by using UV absorbance in spent dialysate at 
296 nm. The merits of this method include the fact that it eliminates the 
need to wait for the equilibrated blood sample and also that on-line 
monitoring would also decrease the effect of potential measurement 
errors. 

o The optical dialysis monitoring method has the potential to allow a 
systematic review of LBM and PDUR efficiently and without adding 
any additional work load to that of medical personnel.  
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KOKKUVÕTE 

Hoolimata neeruasendusravi märkimisväärsest arengust ei ole patsientide 
haigestumus ja suremus sellega võrdeliselt vähenenud. Seega on edasine 
uurimis- ja arendustöö vajalik, et tõsta ravikvaliteeti, patsientide elukvaliteeti ja 
elumust. 

Kuna alatoitumus on üks teguritest, mida seostatakse dialüüsipatsientide 
haigestumuse ja suremusega, soovitatakse regulaarselt läbi viia toitumisseisundi 
hindamist. Ühe sobiva parameetrina on välja toodud kreatiniinil põhjal määratav 
lihasmass. Kahjuks on hetkel kasutusel olevad meetodid koormavad, kuna 
eeldavad uriini ja heitdialüsaadi kogumist, või on mõjutatud vedelikuhulgast 
patsientide kudedes. 

Uureal põhinev Kt/V on enimkasutatud neeruasendusravi 
kvaliteediparameeter. Täpse Kt/V väärtuse saamiseks on vaja arvesse võtta ka 
dialüüsijärgset uurea tagasilöögi efekti, kasutades arvutustes tasakaalustatud 
uurea kontsentratsiooni vahetult dialüüsijärgse uurea kontsentratsiooni asemel. 
Ent see lähenemine on koormav nii patsientidele kui ka neeruasendusravi 
keskustele, sest dialüüsijärgse vereproovi võtmiseks on vaja oodata kuni tund 
aega. 

Neeruasendusravi optiline monitooringu meetod omab potentsiaali pakkuda 
lahendus mõlemale välja toodud probleemile. 

Käesoleva töö eesmärk oli uurida neeruasendusravi optilise monitooringu 
meetodi rakendamise võimalusi uureal ja kreatiniinil põhinevate parameetrite 
hindamiseks patsiendi lihasmassi ja uurea tagasilöögi efekti näitel. 

Töö esimene osa annab ülevaate neerude funktsioonidest, 
neerupuudulikkusest ja neeruasendusravi võimalustest. 

Teine osa keskendub kahele väikese molekulmassiga ainele, uureale ja 
kreatiniinile, ning dialüüsijärgsele tagasilöögi efektile. 

Kolmandas osas käsitletakse neeruasendusravi optilise monitooringu 
põhimõtteid. 

Neljas osa keskendub autori eksperimentaalsele uurimistööle. Antakse 
ülevaade Tallinnas ja Linköpingis läbi viidud kliinilistest uuringutest. Kogutud 
optiliste ja biokeemiliste andmete põhjal töötati välja mudel kreatiini 
kontsentratsiooni hindamiseks dialüsaadis. Uuriti võimalust rakendada 
neeruasendusravi optilist monitooringu meetodit patsientide lihasmassi muutuste 
ja dialüüsijärgse uurea tagasilöögi efekti hindamiseks. 

Töö peamised tulemused on: 
 Kreatiniini eemaldamist protseduuri ajal on võimalik hinnata kasutades 

UV-kiirguse sumbuvust heitdialüsaadis lainepikkusel 299 nm. 
 Neeruasendusravi optilist monitooringu meetodit on võimalik rakendada 

patsientide lihasmassi hindamiseks. Meetodi eelistena võib välja tuua, et 
mõõtetulemus ei ole mõjutatud vedelikuhulgast patsiendi kudedes, ja et 
see võimaldab järjepidevat lihasmassi muutuste jälgimist. 
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 Dialüüsijärgset tagasilöögi efekti on võimalik hinnata kasutades UV-
kiirguse neelduvust heitdialüsaadis lainepikkusel 296 nm. Meetodi 
eelistena võib välja tuua, et sel juhul ei ole vaja oodata kuni tund aega 
dialüüsijärgse vereproovi võtmiseks, ja et reaalajas toimuv monitooring 
vähendab võimalikke mõõtevigade mõjusid. 

 Neeruasendusravi optiline monitooringu meetod omab potentsiaali 
võimaldada efektiivset ja järjepidevat lihasmassi ning uurea tagasilöögi 
efekti jälgimist, meditsiinipersonalile töökoormust lisamata. 
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ABSTRACT 

Despite the advances in the haemodialysis treatment, the trends in patient 
morbidity and mortality have not improved accordingly. Therefore further 
development is required in order to enhance treatment quality, the quality of life 
of patients, and their survival rates.  

As protein-energy malnutrition is one the factors which is associated with 
morbidity and mortality in dialysis patients, regular assessment of the nutritional 
status is recommended. Lean body mass, a creatinine-based parameter, is 
suggested as being one of the suitable measures for this purpose. However, the 
current methods are cumbersome due to the necessity for urine and dialysate 
collection or they are affected by the altered tissue hydration in dialysis patients.  

Urea-based Kt/V is the most used index for dialysis adequacy. In order to 
obtain an accurate estimate of Kt/V it is necessary to take into account the post-
dialysis urea rebound and to use the equilibrated urea concentration in the 
calculations instead of the more convenient immediate post-dialysis urea 
concentration. However, this approach is cumbersome both for patients and 
dialysis facilities as it involves waiting up to an hour so that the post-dialysis 
blood sample can be taken. 

The optical dialysis monitoring method has the potential to offer a solution to 
both of the aforementioned problems. 

The aim of the thesis was to examine the possibility of using the optical 
dialysis monitoring method to assess urea- and creatinine-based parameters via 
the example of lean body mass and urea rebound calculation. 

Section I summarises the functions of the kidneys, renal failure, and renal 
replacement therapy options. 

Section II focuses on two low molecular weight water-soluble molecules, 
urea and creatinine, and the post-dialysis rebound of solutes. 

Section III reviews the principles of optical dialysis monitoring. 
Section IV is dedicated to the results of the author’s experimental studies. 

Clinical studies are described that were carried out in Tallinn, Estonia and 
Linköping, Sweden. A model was developed for the estimation of creatinine 
concentration in dialysate based on the optical and biochemical data that was 
collected during the course of the studies. The possibility of monitoring lean 
body mass trends in individual dialysis patients by applying the optical dialysis 
monitoring technique was examined. Also, the feasibility of post-dialysis urea 
rebound assessment using the optical dialysis monitoring method was 
investigated. 

The main results of the thesis are: 
 The removal pattern of creatinine during dialysis can be estimated using 

UV absorbance in spent dialysate at 299 nm. 
 The optical dialysis monitoring method could be applicable for the 

assessment of lean body mass (LBM) in dialysis patients. The 
advantages of this technique are that it is not influenced by the patient’s 
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hydration status and that it permits consistent monitoring of LBM 
trends. 

 Post-dialysis urea rebound (PDUR) could be estimated by using UV 
absorbance in spent dialysate at 296 nm. The merits of this method are 
that it eliminates the need to wait for the equilibrated blood sample and 
that on-line monitoring will also decrease the effect of potential 
measurement errors. 

 The optical monitoring method has the potential to enable the systematic 
monitoring of LBM and PDUR efficiently and without adding any 
additional work load to that of medical personnel. 
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Tomson R, Fridolin I, Luman M (2015)“Lean body mass assessment based on 
UV absorbance in spent dialysate and dual-energy x-ray absorptiometry”, The 
International Journal of Artificial Organs, 38(6): 311-315 (DOI: 
10.5301/ijao.5000415). 
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Tomson R, Uhlin F, Fridolin I (2014)“Urea rebound assessment based on UV 
absorbance in spent dialysate”, ASAIO Journal, 60 (4): 459-465 (DOI: 
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