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Abstract 

The goal of this thesis is to analyse and build a toolset for data-based evaluation and 

visualisation of road surface conditions. The idea grew out of Teede Tehnokeskus’s 

need to better utilize the newly acquired laser mapping system. While the potential of 

forming a digital model of Estonian roads is promising, it creates new technical 

problems to be solved, some of them which are addressed in the underlying study. 

This study concentrates on multiple aspects. Firstly, there’s the visualization of data to 

get a sense of road characteristics. For this a median-based robust base line is 

calculated, which allows for relative heights to be formed. Secondly, one of the biggest 

potentials of having accurate data is the ability to calculate approximations of filling and 

milling for road repairs. For this, the same base line is used, in addition with the geo-

coordinates and trapezoidal approximation. 

Going forward, as there are too many data points for later processing, there’s a need to 

compress the laser outputted data. This is a two-sided problem. For one, there’s a need 

to smooth the data to improve compression rate. A combination of different error 

measurements was used to pick out Savitzky-Golay smoothing algorithm. Following, 

for compression, the best result was achieved by first pre-compressing with Radial 

distance algorithm before applying Douglas-Peucker algorithm. To make it more 

flexible, a custom threshold was implemented. 

 

This thesis is written in English and is 64 pages long, including 5 chapters (with 30 sub-

sections), 33 figures, 4 tables and 12 code examples. 

 

 

 

�
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Annotatsioon 

 
TEEKATTE TINGIMUSTE  

ANDMEPÕHINE HINDAMINE NING 
VISUALISEERIMINE 

 

Käesoleva töö eesmärk on analüüsida ja implementeerida tarkvarakomplekt teekatte 

tingimuste hindamiseks ning visualiseerimiseks. Esialgne vajadus kasvas välja Teede 

Tehnokeskuse eelneva aasta (2016) investeeringust soetada endale laseril põhinev 

kaardistussüsteem. Arvestades, et tänapäeval tehakse jätkuvalt nii teede mõõtmised kui 

ka projekteerimine käsitsi, on sellise ekspertiisi kulud üsna kõrged. Potentsiaal, mida 

pakub Eesti teede digitaliseerimine on paljulubav – lisaks kiirele visualiseerimisele ja 

esmapildile on võimalik automaatselt arvutada ka teeremondi orienteeruvat maksumust. 

Selleks on vaja lahendada tehnilisi probleeme, nendest olulisematele keskendub 

käesolev uurimus. 

Struktuurselt koosneb töö järgnevatest osadest: sissejuhatus, teoreetiline analüüs, 

implementatsioon, tulemuste hindamine ning kokkuvõte. Sisult keskendutakse mitmele 

aspektile: visualiseerimine, freesimis -ning täitmismahtude arvutamine, andmete 

silumine ning õgvendamine. 

Esmalt analüüsitakse teelõigu visualiseerimist, milleks on vaja konverteerida 

absoluutkõrgused suhteliseks, et tee omadused silmale nähtavad oleksid. Selleks 

leitakse iga tee profiililõike kohta telg tema otspunktide mediaani vahel. See võimaldab 

taandada välja tee kalde ning tuua esile rööpad ning muhud. Freesimis- ning 

täitmismahtude arvutamiseks kasutatakse sama eelpool mainitud telge, geokoordinaate 

ning trapetsvalemit integraali ligikaudseks kalkuleerimiseks. 

Digitaalne mudel erineb käsitsi mõõdetud mudelist eelkõige detailirohkuse poolest. Kui 

automaatsete kalkulatsiooni puhul on infoküllus pigem hea, siis hilisema 3D töötlemise 

jõudlus võib kannatada miljonite andmepunktide tõttu. Vähendamaks andmete liiasust 

oleks vaja andmeid õgvendada, hoides info kao minimaalsena. Uurimuse käigus ilmnes, 

et andmetes peituv müra vähendab oluliselt õgvendamise tulemust. Sellest tulenevalt 

jagunes probleem kaheks - vaja on andmeid kõigepealt siluda ning siis õgvendada. 
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Andmeid saab siluda kahel viisil: töödeldes 1-dimensioonilist signaali (kasutades tee 

profiililõikeid) või 2-dimensioonilist pilti (kasutades kogu tee maatriksit). Läbi 

teoreetilise analüüsi sai selgeks, et antud probleemi korral on õigem tee 1-

dimensiooniline lähenemine, pakkudes rohkem kontrolli tulemuse üle, ning kaotades 

vähem detaili. Kombineerides erinevaid andmehulga võrdlemistehnikaid (Hausdorff’i 

distants, Pearson’i korrelatsiooni koefitsient ning summeeritud ruutviga), jõudis autor 

Savitzky-Golay filtrini, mis pakkus nii head silumistulemust kui ka vähest viga üle 

kolme kasutatud võrdlemisalgoritmi. Parimaks konfiguratsiooniks osutus 50 perioodi 

aken koos 11. astme polünoomiga. 

Õgvendamise lahendamisel tuli kõigepealt leida viis maksimaalse andmekao 

defineerimiseks. Selleks implementeeriti meetod, mis kasutas jällegi eelpool mainitud 

telgjoont, võrreldes profiililõike pindalade muutusi üleval ning allpool telgjoont. Seades 

limiidi aksepteeritud pindalade muutusele saame kontrollida andmekadu. Algoritmide 

valimisel ning implementeerimisel osutus parimaks kombinatsioon radiaalkauguse ning 

Douglas-Peuckeri algoritmidest, mille tulemusel saavutati 10-15 kordne õgvendus 

maksimaalselt 1.5% andmekaoga. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 64 leheküljel, 5 peatükki 

(sealhulgas 30 alampeatükki), 33 joonist, 4 tabelit ning 12 koodinäidet. 
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1 Introduction 

Teede Tehnokeskus is a company that provides engineering technical consultation 

services. Among many areas, they invest heavily in analysing road conditions. 

Currently, a lot of manual work has to be done by road draftsmen, in order to predict the 

volume of road milling and filling. As the prediction is directly needed to estimate the 

cost of a new road or repair, it is crucial that it is as accurate as possible. To achieve 

this, experience and long manual labour is needed. This approach has several 

disadvantages. Firstly, it requires lengthy manual measurements. Those measurements 

are suitable for creating an understanding of the big picture, but they don’t map the road 

in detail. Even in case of best scenario the resulting prediction is quite vague. Secondly, 

experience is needed, which is expensive and often irreplaceable. Finally, presuming 

manual model can predict the overall cost in some acceptable accuracy, it doesn’t leave 

behind a detailed model of the road that could be used for visualization and later 

analysis. Manual measurements lack the detail that more sophisticated techniques could 

offer.  

1.1  Research goal 

This study focuses on building a toolset that draftsmen could use to reduce time-costly 

manual measurements and concentrate on applying intuition and experience on pre-

processed and accurate data models gathered by automatic systems. In recent decade, 

laser systems have become increasingly popular in modelling our surroundings, by 

offering extremely accurate and detailed mapping of the environment. The people in 

Teede Tehnokeskus have also noticed that and have started to experiment with those 

systems. The resulting digital map gathered from lasers holds everything one needs to 

build automatic and smart decision-making on top of it. That said, while it’s a good 

problem to have, the volume of such data is often grand enough that simple 

visualization and calculation can get inefficiently slow.  

To help boost the efficiency of road draftsmen work and manage the huge volume of 

data gathered by laser system, this study concentrates on two main areas: toolset for 

visualisation, including calculations for milling/filling quantities; and data compression 
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for further manual analysis by 3rd party tools. All of this will be implemented using 

Matlab 2017a. 

Visualising the scanned roads help speed up the analysis and gives a good overview of 

the road characteristics. The problem with the input data is that the heights are in 

absolute values, meaning drawing them out raw would not paint a useful picture. There 

are however many different ways to make sense of the input data. One of the key 

decisions is to pick the most suitable technique that describes the road in an accurate 

and flexible way. 

Final decisions are ultimately done in a software owned by road draftsmen. For this to 

work, a reasonably detailed base model has to be imported into the software. As the 

initial output of the lasers is highly detailed, it would be beneficial if the data were to be 

compressed without losing too much precision. Significant consideration has to be put 

into choosing the best algorithm and using it rationally – compression rate is important 

but so is not losing too much valuable precision. Additionally, for the compression to 

work, input must not be too noisy. It is likely some type of smoothing operation might 

be needed before dealing with compression. 

Giving an automatic estimation of both milling and filling quantities would perhaps 

give the best and fastest overview of the road. This means a good understanding of the 

desired outcome must be achieved in collaboration with Teede Tehnokeskus. From that, 

an algorithm must be designed to estimate the quantities. 

Both visualisation and data compression rely heavily on the quality of validation. 

Without the means of validating the result, we have no way to grade the quality of the 

toolset. For validating the visualisation, it is possible to compare the results with a third-

party tool that co-exists with the laser system. For data compression however, there is a 

need to develop a method to evaluate the loss of precision and only accept the result if 

that loss is smaller than what Teede Tehnokeskus finds acceptable. 

1.2  Overview 

This work is divided into 3 parts: 

• Background research and analysis 

• Building the toolset 
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• Examining and validating the results 

Background research dives first into the world of mobile mapping systems to get a 

better sense of the underlying domain. After that, the analysis of the specific problem 

can begin to unfold. First, visualization of the road is under scope, followed by 

comparison of real-time or batch processing. Then, data structure itself is analysed 

which results in decisions of how to handle the input in different stages of the workflow. 

Relative heights, needed for the visualization, are covered next, followed by a section 

for smoothing. When, if any, should the smoothing take place, how to compare different 

algorithms and what would be the best smoothing algorithm? What follows is an 

analysis for compression – again, how to differentiate between algorithms and how to 

use a threshold for controlling the precision for compression. A section about 

calculating the filling and milling volumes is covered after that. Finally, the last section 

of theoretical analysis summarizes everything together and forms a basis for building 

the toolset. 

Building the toolset describes the decisions and implementations done on top of 

theoretical analysis. Code examples referenced from this section can be seen from 

Appendix 1 - code examples. For all of the problems solved, there are theoretical 

reasoning, code samples, comparisons and visualizations to aid the reader understand 

why some of the decisions were made. 

The last part of this study, examining and validating the results, combines the work 

from theoretical analysis and implemented code and takes a step back to evaluate the 

results. Both the quality and performance are evaluated, leading to the final section 

about dissecting future work. 
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2 Background research and analysis 

The goal of this paragraph is to first give insight to the domain of this topic and then 

follow that with background analysis on processing the output produced by the laser 

system acquired by Teede Tehnokeskus. Mobile mapping and more specifically laser 

scanning are explained in section 2.1 and 2.1.1. Majority of theoretical analysis is 

produced in section 2.2, containing six sub-sections: 2.2.1 describes the visualisation of 

the data, 2.2.2 compares real-time vs batch data processing, 2.2.3 explains the data 

structure and decisions on how to process data on each stage, 2.2.4 section is about 

relative height calculation and why is it needed, 2.2.5 is about answering the question 

whether to smooth the data and if yes, how to pick and validate the algorithms, 2.2.6 

section compares different data reduction algorithms as well as validating the quality of 

the result, 2.2.7 goes over the algorithm derived from communicating with Teede 

Tehnokeskus to give approximate quantities for milling and filling the road. 

Finally, section 12.3 combines all the learned theoretical analysis, describes the 

workflow to be followed and states a goal for each part of the workflow. Exact solutions 

at that point might not be clear yet, but theoretical information should be sufficient to 

continue based on that in paragraph 3, where the most suitable algorithms are chosen 

and implemented. 

2.1 Mobile mapping system 

To get a sense of where the data to be processed actually comes from, it’s good to first 

understand the technology of laser systems. Since the development of the first 

operational land based mobile mapping system in 1991 [1], many systems have been 

implemented with the aim of increasing both reliability and performances [2], [3]. “A 

Mobile Mapping System (MMS) allows to determine the coordinates of different points 

from a georeferenced platform”, with the typical components for road surveying and 

mapping being: a mobile platform, navigation sensors and mapping sensors [4, p. 31].  

One of the most common utilizations of MMS is concerned with road mapping, needed 

for many GIS applications. In some cases a high precision and 3D mapping is required, 

but often, like for road condition management and maintenance, a 2D mapping may be 

sufficient [4, p. 31]. 
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“MMS integrates navigation sensors and algorithms together with sensors that can be 

used to determine the positions of points remotely” [5]. All the sensors are rigidly 

mounted together on a platform; the former sensors determine the position and 

orientation of the platform, and the latter sensors determine the position of points 

external to the platform. The sensors that are used for the remote position determination 

are predominantly photographic sensors and thus they are typically referred to as 

imaging sensors [5]. 

The strength and the reason of growing popularity of MMS lays in their ability to 

directly georeference their mapping sensors. “A mapping sensor is georeferenced when 

its position and orientation relative to a mapping coordinate frame is known. Once 

georeferenced, the mapping sensor can be used to determine the positions of points 

external to the platform in the same mapping coordinate frame” [6]. In the direct 

georeferencing done by MMS the navigation sensors on the platform are used to 

determine its position and orientation [6]. Having a digital model of the surroundings 

with accurate georeferences gives the ability to automate a wide range of functionalities, 

often completely eliminating the need for manual intervention, as the detail is far more 

than a human can process. 

2.1.1 Mobile laser scanning 

Accurate and intelligent up-to-date roadside information is needed not just for road and 

street planning and engineering but also for increasing number of other applications, 

“such as car and pedestrian navigation, noise modelling, road safety, and other planning 

purposes” [7]. Vehicle-based mobile laser scanning (MLS) is an extension of the 

previously described mobile mapping system. “The navigation sensors typically include 

Global Navigation Satellite System (GNSS) receivers and an Inertial Measurement Unit 

(IMU), while the data acquisition sensors include typically terrestrial laser scanners and 

digital cameras” [7].  

Data provided by MLS systems can be characterized with the following technical 

parameters [8]:  

a) point density in the range of 100-1000 pulses per m2 at 10 m distance 

b) distance measurement accuracy of 2-5 cm 

c) operational scanning range from 1 to 100 m. 
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Based on this information we can conclude that the amount of data produced by such 

systems is huge (at the rate of 0.25-1 million pts/s), and manual processing of such 

enormous data is too time-consuming, which prompts a need for automated methods 

that decrease the amount of manual work required to produce accurate 3D models. 

The industry of mobile laser scanners is a growing one and there are already many 

competitors on the market. In 2013 EuroSDR project “Mobile Mapping - Road 

Environment Mapping using Mobile Laser Scanning” [7] focused on benchmarking 

various popular mobile laser scanning systems. The study revealed that high-quality 

point clouds were generated by all observed systems under good GNSS conditions. 

“With all professional systems properly calibrated, the elevation accuracy was better 

than 3.5 cm until 35 m. The best system had 2.5 cm planimetric accuracy even with the 

range of 45 cm” [7]. The study concluded that overall, the accuracy of all the systems 

was high. Not coincidentally, laser systems is a globally growing strong business, with a 

revenue of the laser industry exceeding 10.5 billion dollars last year, despite the slowing 

global economy  [9]. 

2.2 Processing laser-scanned road surface data 

ViaPPS, the system Teede Tehnokeskus uses, is a Pavement Profile System designed to 

examine the condition of any pavement. “It uses LiDAR technology, a 360° laser 

scanner, to create a high-resolution 3D point cloud” [10]. The output this study has 

available for use consists of 4 fields: longitude, latitude, height and light. Of those four, 

the most interesting work can be done with the height measurements.  

The laser system also comes with a separate software called ViaPPS Desktop Analyzer. 

Although the software itself is quite flexible, offering multiple ways to smoothen the 

data and make different reports, it’s more useful for getting a sense of the data, rather 

than doing any serious work. The road is visualised in 3D and in short segments, shown 

on the left side of Figure 1. It also displays profile cuts on the right side, which are good 

for giving the user a sense of the road but not for any complex work as it displays the 

segments and is quite slow in moving from one segment to the next. 
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Figure 1 ViaPPS Desktop Analyzer 

 

The initial raw data coming from ViaPPS is hidden in binary files. There are two ways 

to extract useful data in a better form, that could be used for external processing. One is 

using a functionality to output data from ViaPPS Desktop Analyzer to clipboard. This 

has an unfortunate limit of approximately 350m at one go, as over that crashes the 

application. That’s around where Windows default clipboard also reaches its peak, 

which could be changed by increasing the virtual memory on the system [11]. However, 

as the software itself is not able to copy more than 350m of data (which is 

approximately 3.6-4 million rows) then modifying the virtual memory does not help. 

Other way to extract data is to use a 3rd party tool that combines those binary files 

together and outputs a readable format. This is costly, but has an added benefit of 

calculated geo-references in the data as well, instead of relative X, Y, Z coordinates like 

shown in Table 1. In either case, the output could be used later by custom software to 

apply compression and display the data in a more convenient 2D form. 

X-Value Y-Value Height Light intensity 

-3.862617728 -1823.864149 1041.813668 148 
-3.862617728 -1811.555809 1044.667022 153 
-3.862617728 -1799.752759 1044.727402 154 
-3.862617728 -1791.451996 1044.32111 157 
-3.862617728 -1782.787008 1043.457226 156 

Table 1 Output segment from ViaPPS Desktop 
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2.2.1 Visualising scanned road 

3D reconstruction of road surfaces and surroundings enables to capture all the detail 

digitally for further processing with minimal work. While it’s extremely useful in some 

areas, like street scene mapping and autonomous vehicles, it’s also quite resource 

consuming as suggested by a paper on real-time 3D road modelling [12]. With high 

detail (mm precision) even a relatively short road segment produces a lot of data. For a 

200m road segment the ViaPPS system produces approximately two million rows of 

data. For a user-friendly 3D model, that many data points puts a lot of strain on the GPU 

[13]. Additionally, as the height does not change much, the Z-coordinates in a 3D form 

might not be visually easy to comprehend.  

2D scatter plots for road pavement visualisation capture the same amount of detail with 

fewer dimensions, reducing both the rendering speed and the memory consumed. The 

height difference between points can be visualised with colour. Also, the need for 

rendering the graph multiple times is eliminated, something that is necessary when 

rotating the 3D graph. Taking this into account, the 2-dimensional visualisation is the 

right path to go to get a sense of the data and visually validate processing algorithms. 

2.2.2 Real-time streaming or batch processing 

This study concentrates on how to help make sense of the data produced by lasers, while 

also cleaning and compressing it for further analysis. 2D visualisation is relatively 

cheap compared to 3D, which uses more memory [14]. In fact, “GPUs generally 

approach 2D image processing as a restricted form of 3D” [15]. Taking this into account 

eliminates the necessity of building any real-time processing capability. Meaning, that 

in a sensible realm, algorithmic complexity for us is not a major concern, letting us 

comfortably choose quality over speed. 

2.2.3 Data structure and handling 

One of the initial outputs from the laser was briefly shown in Table 1 Output segment 

from ViaPPS Desktop. To more conveniently process the data, it is better to reshape it 

to a 2D matrix, with the Y-axis representing data for a single profile (containing the 

geo-coordinates, height and light) and the X-axis contains all the profiles. This gives us 

a more logical data structure and also allows us to use optimized matrix operations. 
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Having the data in a matrix form allows us to choose between applying algorithms on 1-

dimensional data, so called profile cuts, or 2-dimensional data. This decision should be 

made in each stage of data processing separately. 

a) For the creation of relative heights there is a clear need to process every profile 

separately, as different base lines are required for every profile cut. Some, if not 

all, operations could be done on the whole dataset using matrix operations for a 

more optimized solution.  

b) For data smoothing it is not clear in regard of the research aim of this thesis 

which way is better. From one end, applying smoothing on 1-dimensional data, 

also called “line smoothing”, allows more fine-grained control over the input 

signal. Then again, handling the data as an image allows us to process it more 

efficiently, which will probably not be the main concern. Both ways will be 

explored, if and when the smoothing seems necessary at all. 

c) For data reduction, the goal is to reduce individual data points. As every profile 

is different there is also a need to handle them differently. Some profiles might 

have deep rails and much detail contained in the data that cannot be removed, 

others might have smooth surface and could be reduced significantly. Also, as 

the verification of the algorithm will highly likely use 1-dimensional algorithms, 

then the whole compression should be treated in a same manner. 

2.2.4 Relative height calculation 

As briefly discussed in 2.2, there are two different types of output coming from the laser 

scanning system. One uses paid 3rd party tool to apply additional calculations and 

produces absolute values: longitude, latitude and height from the sea level. The other is 

simpler and more relative: both x and y coordinates are relative to the road and the 

height is relative from the base, which is approximately 10m below surface. First one 

uses the full potential of the mobile scanning system, the second one has the 

information without the georeferences. In both cases, however, we might as well 

consider the height being an absolute value. This creates a problem regarding further 

processing: road height can easily change a couple of meters even in the span of a short 

road segment, creating more unique values and making the visualisation of the road 

problematic. 
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The main gain of the digital scan is to accurately measure and visualise the size of the 

rails in the road, in order to estimate the quality and the wear down. Those rails are 

measured in cm. This creates a need to convert the heights to a new base which takes 

into account road characteristics and would allow us to visualize the road even when the 

absolute height changes considerably. 

To achieve that there is a need to work on individual profile cuts. There are multiple 

ways of calculating relative heights based on information from Teede Tehnokeskus. 

 

Figure 2 Sample profile cut 

 
Let’s first look at a sample, pictured in Figure 2 (profile after applying a moving 

average for better visual experience), profile cut of highway Jõhvi-Tartu-Valga with 

coordinates 58.0106261, 26.1628515. The road is 3.8 meters wide and the absolute 

height ranges between 73.015 and 73.035 meters. It’s also intersecting with a road 

Võru-Kuigatsi-Tõrva, which is not scanned but does affect the characteristics of the 

road. Following are some of the ways of eliminating the need for absolute height values. 

 

Figure 3 Relative height calculation -  water method 

 
Figure 3 shows the water method, which is the nature’s way of finding all the holes in 

the road. While good at that, it lacks a way to detect bumps on the road. It’s also more 

tedious to implement as it consists of many lines instead of one. Relative heights that 

form from drawing the holes are also inconsistent as the area between holes are unused.  
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Figure 4 Relative height calculation - ruler method 

 
Ruler method, shown in Figure 4, is the standard way of measuring the road manually. 

A long ruler is placed on the road and everything that is between the ruler and the road 

is considered the relative height. Having been in use manually, this serves as a good 

technique to either use, or to compare against. 

 

Figure 5 Relative height calculation – string method 

 
String method takes the peaks from both sides of the road and connects them with a 

line, shown in Figure 5. The advantage of this method over the ruler method is that 

bumps in the middle of the road, while still being considered, don’t have a big impact 

on the line itself. As the connection points are always at the sides of the road instead of 

dynamically changing depending on the bumps, this produces more stable relative 

heights. As the relative heights are calculated per profile there is a need to find a stable 

reference point so that all the profiles would be similarly adjusted. 
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Figure 6 Relative height calculation - angle method 

 
Finally, Figure 6 shows the angle method. The ideal angle of a straight road is 2.5%, 

which is 1.43°. This could be taken as a base for calculating relative heights. This would 

work very well if the angle would be constant, however road conditions do change. 

During corners the angle might increase several degrees, also during intersections the 

angle is generally smaller. This can be seen from the figure above which shows a road 

segment with a low angle due to intersection.  

2.2.5 Data smoothing  

The question whether to smooth a data or not proves to be trickier than initially seems. 

The fact that a laser produces very detailed measurements and the roads are uneven 

means that the resulting heights are noisy, at least viewed by a human. Question arises 

whether we should smooth the data and if yes then what should this procedure 

accomplish and when and how should it be done. 

Should we smooth data? There are generally three reasons to choose smoothing:  

a) “for cosmetic reasons, to prepare a nicer-looking or more dramatic graphic of a 

signal for visual inspection” [16] 

b) “if the signal will be subsequently analysed by a method that would be degraded 

by the presence of too much high-frequency noise in the signal” [16], for 

example when a data holds key points needed for further processing (like 

relative heights calculation or approximating the size of areas). Optimization of 

the amount and type of smoothing is important in these cases as eliminating the 

noise has the ability to leave the essential information behind 
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c) there’s also the fact that by smoothing the data, we need less unique points to 

represent the values, which allows to compress the initial input often multiple 

times. “As ways to capture data increases by the day in today’s digital world the 

problem regarding data storage grows as well. Data compression using 

smoothing filters is a technique to store large amount of data in a limited storage 

device” [17] 

Generally, if a computer is available to make quantitative measurements, it's better to 

perform them on the unsmoothed data, rather than graphical estimates on smoothed data 

[16]. For the visualization of the road, it’s reasonable to assume that by smoothing we 

lose some of detail, thus reducing the quality of the digital model of the road. As Figure 

7 shows, there is a slightly noticeable difference in the visualization of raw versus the 

smoothed road (using the simplest smoothing filter, unweighted moving average).  

 

Figure 7 Road with raw input vs smoothed heights using 10MA 

 
While some minor loss of quality might be acceptable, it does not add any value, thus 

there is no need to smooth any data for visualization purpose. 

Smoothing to aid compression depends on the algorithm and the need remains to be 

seen at the current moment. Intuition dictates that a smoother line would be a better 
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candidate for compression, as noise could be used incorrectly and thus resulting 

decreased quality in the compression. At this point the compression part hasn’t been 

analysed yet, but there is a need to try out a sample compression to get a sense how it is 

affected by the smoothing factor. Figure 8 pictures Gaussian filter (a two-dimensional 

smoothing filter) and Douglas-Peucker (line compression algorithm): as can be seen, 

smoother the graph, better the compression rate. Logic supports that - noisy data has 

rapid changes between neighbouring elements, thus it’s more difficult to spot a trend 

and eliminate useless elements. This comes with a cost, as we smooth the data we lose 

some of the detail that we can’t get back. 

Therefore, it’s reasonable to assume even from this sample alone, that smoothing for 

compression is valuable and there is a need to dive more into this topic. 

 

 

Figure 8 Compression (using Douglas-Peucker line simplification algorithm) for raw data vs smoothed 

 

What should the smoothing procedure accomplish? 

There are three key points to consider: 

a) Eliminating outliers is necessary for any further algorithms, including 

smoothing: outliers hurt both smoothing and data reduction algorithms 
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b) Smoothing is necessary for the compression to work well, otherwise 

neighbouring elements are too far from each other and compression algorithms 

will suffer from it 

c) Smoothing should not lose road characteristics too much 

 

These points indicate that our goal is to remove outliers and to determine a good 

estimate of a smoothing algorithm for the compression to perform well. 

 

When should we smooth the data? 

Leaving the outlier removal aside for a moment, there are two places we could smooth 

the data: before calculating relative heights and before reducing data points. To help 

make the decision let’s plot the relative heights of a sample profile cut using the string 

method. 

 

Figure 9 Smoothing before vs after relative height (string method) calculation 

As can be seen from Figure 9, the overall characteristics of the road remain the same 

judging by the eye. However, as the base line for relative heights differ before and after 

applying the smoothing techniques, the resulting heights are different as well. The 

importance of relative height calculation in both visualization and data reducing is 
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major. In addition, smoothing definitely loses some detail. While it is crucial that 

relative heights calculation is not affected by noise in the system, smoothing is not the 

best way to make it robust as it reduces the richness of the data. Therefore, we shouldn’t 

apply smoothing before calculating relative heights. Resulting educated guess would be 

to postpone the smoothing until compression stage and calculate relative heights on the 

original data. 

If can’t be done with the smoothing itself, we additionally need to remove outliers 

before smoothing process. This leaves with the following work flow: calculate relative 

heights, remove outliers and smooth, compress. 

How to smooth the data – 1D vs 2D? 

As described in 2.2.3, our data structure enables us to apply algorithms in two ways: 

using vector (profile) or matrix. At this point it remains unclear which is better and 

more suitable, so both ways are explored. Smoothing 1-dimensional data is called “line 

smoothing”, while 2-dimensional data allows us to view it as an image and apply image 

smoothing algorithms.  

2.2.5.1 Line smoothing 

“Approximation theory is an established field in mathematics that among many things 

deals with solving a problem of smoothing a line. The idea of smoothing is to create an 

approximation function(s) that attempts to capture important patterns in the data” [18]. 

The immediate results of smoothing process are the produced values, not so much the 

functional form which may or may not be used later. Compared with a similar concept 

of curve fitting, the aim is to approximate the general changes in data, rather than 

achieve as close of a match with the data as possible [19]. Those ideologies however are 

very closely linked in both literature and practice and are often used intertwinely. There 

are a lot of different ways how to achieve smoothing and to analyse them all would fall 

out of the scope of this study. After surveying the literature, intuition is used in the 

selection of some key algorithms from a wide range with the goal being to try 

something from every angle. 

A lot of smoothing algorithms are based on the same "shift and multiply" concept, 

where a group of adjacent points in the original data are multiplied point-by-point by a 
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set of coefficients that defines the smoothed shape. Those products are added up and 

divided by the sum of the coefficients, while becoming one point of the smoothed data. 

Then the coefficients are shifted by one point and the process is repeated [20, Ch. 15]. 

This suits us well, as the group is adjustable by us and gives control in filtering out the 

outliers. 

Moving average filter is one of the most commonly used and easiest filters. “The idea 

behind using moving averages for smoothing is that observations which are nearby in 

time are also likely to be close in value” [21]. The average eliminates some of the 

randomness in the data, leaving a smooth trend component. There are two ways to use a 

moving average: two-sided moving averages are used to smooth a time series in order to 

estimate the underlying trend; one-sided moving averages are used as simple forecasting 

methods for time series [21], often used in aiding financial predictions. Dealing with a 

road conditions domain, I care more about smoothing than estimating. 

In equation form, a moving average is written in the following form: 

f(t) = 	 1
2) + 1 +,-.	,				0 = ) + 1, ) + 2,… , 2 − )
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Equation 1 Moving average filter, where f(t) is the smooth function, y is the input signal and k is the 
number of points used in the moving average 

“In spite of its simplicity, the moving average filter is optimal for a common task: 

reducing random noise while retaining a sharp step response”. This makes it the premier 

filter for time domain encoded signals [20, Ch. 15]. Downside with the moving average 

is the sensitivity to outliers, meaning there is a need to remove outliers when this option 

is chosen. The so called smoothing average “can also be interpreted as a local linear 

regression with a rectangular kernel” [22], which assigns equal weight to each point in 

its window. Local is meant in a sense, that a fixed size of a moving window is decided 

beforehand and the function is applied only to this window not all of the data. We’ll use 

this concept many times throughout this work. We could however presume that adding 

weights to be used inside the kernel would help. The road conditions can change rapidly 

but it’s only natural to think that for every measurement it would be closer to the 

previous one than for a distant previous one. This brings us to the weighted moving 

average. 
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Weighted moving average with k-point window can be written as 

f(t) = 85+,-5
4

5674
 

The advantage and reason to prefer weighted averages is that the resulting trend 

estimate is much smoother. Instead of observations entering and leaving the average 

abruptly, they can be slowly down-weighted. “There are many schemes for selecting 

appropriate weights - those values are not chosen arbitrarily, but because the 

combination of moving averages can be shown to have desirable mathematical 

properties” [21]. While choosing our own weights for the moving average algorithm 

adds flexibility and freedom, it also takes time and careful calibration. Road conditions 

are constantly changing, which creates a danger to overfit the data. If a more dynamic 

algorithm compared to the simple moving average is needed, this should be achieved by 

a more generic way, without specifying tuned constants fit to sample data. 

A better and more dynamic filter for smoothing a signal is called Savitzky-Golay filter, 

which grew out of a need to smooth noisy data obtained from chemical spectrum 

analysers [23]. This method could be thought of as a generalized moving average, with 

the “filter coefficients derived by performing an unweighted linear least squares fit 

using a polynomial of a given degree” [23]. Compared to the sliding-average smooths, 

the Savitzky-Golay smooth is less effective at reducing noise, but more effective at 

retaining the shape of the original signal. The filter uses a span of neighbouring 

elements x and fit a polynomial of order k to these points. Then the point at the centre of 

the x point is replaced by the value of the polynomial of this point. Therefore, the 

smoothing is stronger for higher x and smaller k [24], making it easily configurable. In 

general, higher degree polynomials can more accurately capture the heights of narrow 

peaks, but could do poorly at smoothing wider peaks. “Savitzky and Golay's paper is 

one of the most widely cited papers in the journal Analytical Chemistry”  [25].  

Previously described weighted moving average could also be denoted as a locally 

weighted zero-degree polynomial regression [26]. By using a weighted linear least 

squares regression over the span of the values (window), we get a Lowess regression 

method, derived from the term “locally weighted scatterplot smoothing”. Using a 

locally weighted quadratic least squares regression will produce Loess regression. At 

each point in the range of the data set a low-degree (usually 1 or 2) polynomial is fitted 
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to a subset of the data. “Least squares denotes that the overall solution minimizes the 

sum of the squares of the “error” made in the results of every single equation”  [25]. 

Both lowess and loess are non-parametric flexible regression methods that do not 

require a function to fit a model to all the data  [26].  

If data contains outliers, the smoothed values can become distorted and not reflect the 

behaviour of the bulk of the neighbouring data points. To overcome this problem, it is 

possible to smooth the data using robust procedure that is not influenced by a small 

fraction of outliers. Both loess and lowess have a robust version, which include 

additional calculations to determine robust weights. This robust smoothing procedure 

follows four steps [22]: 

a) Calculate residuals from the smoothing procedure 

b) Compute robust weights 

c) Smooth the data again using robust weights – the final smoothed value is 

calculated using both local regression and robust weights. 

d) Repeat the previous two steps for a total of five iterations 

This is suitable for us, but not having a robust version of the algorithm should not be a 

problem either. There is also a possibility to remove outliers separately from the 

smoothing process described in 2.2.5.3, eliminating the requirement for robustness in 

choosing smoothing algorithm. 

2.2.5.2 Image smoothing 

It is worth mentioning again that the initial data of heights is not only detailed but also, 

depending on the road, can have a wide range of heights during a single measurement. 

For the line smoothing this is not important as the range of data during a profile is 

minimal. For the 2-dimensional algorithms this makes the smoothing on raw data 

complicated, as an outlier in one profile, can be an average height 100m later. The 

holistic view of the range of unique values is too wide. After calculating relative heights 

however, we reduce the range of heights by approximately 2 orders of magnitude, 

making the data more suitable for image smoothing. 

Generally, “image smoothing is synonymous with low pass filters, having the same 

ideology with single dimension processing” [27]. Image processing applications are 
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different from filter processing applications because most of them are tuned to the eye. 

Additionally, smoothing can be applied both horizontally and vertically. 

The world of image smoothing algorithms is wide and complex. Just to name a few 

algorithms out of many: L0 gradient minimization, local Laplacian filters, edge-

preserving decompositions, bilateral filter, nonlinear total variation based noise 

removal, weighted least squares, tree filtering, edge-avoiding wavelets, diffusion maps, 

gradient weighting filtering, image convolution, etc. [28], [29]. 

Before diving into any of them, it is necessary to understand why and when would one 

smooth an image at all. This gives intuition whether to choose 2D smoothing algorithms 

over the ones described in the previous section 2.2.5.1. The need to smooth and image 

can derive from a couple of different reason. It can be used to blur an image, remove 

detail and noise.  

For the problem and the toolset this study concentrates on, we have no interest in 

blurring the produced image. The only reason we need smoothing is to aid compression 

efficiency, blurring is an unfortunate side effect. We also don’t want to remove any 

specific detail from the data. “Noise in images can be anything that does not interest the 

user of the image, like light fluctuations, finite precision, sensor noise, white noise” 

[30]. This differs from noise in our data, which isn’t really noise, it’s the data itself. 

Road conditions are naturally uneven, which the laser captures in a detailed matter.  

The added effect of 2-dimensional processing would serve yet another bad side effect 

for us, as it introduces a second dimension for data points. This means a data point, 

which needn’t be smoothed from a profile perspective, could be smoothed because of 

neighbouring data points in close proximity. As the compression algorithm processes 

every profile separately we will lose detail where it’s not needed. Taking all this into 

account, I have decided not to continue with image smoothing and concentrate on line 

smoothing instead. 

2.2.5.3 Removing outliers 

The term outlier seems to be used rather informally in the literature. Barnett and Lewis 

define an outlier as “an observation (or subset of observations) which appears to be in-

consistent with the remainder of that set of data…” [31], which is quite a subjective 
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statement. What is objective, is the fact that smoothing algorithms in simplest form are 

sensitive to them, therefore it is recommended, if possible, to eliminate them 

beforehand. Applying relative height calculation results in a somewhat fixed range of 

heights, meaning the unique values in the whole dataset is relatively small for the 

calculated heights (at least compared to the original input). Relative heights should 

approximately range from -10 to 10 cm. 

The simplest way to remove an outlier is to use a filter to check whether there are any 

values that are some user defined standard deviations away from the mean. This would 

normally work, but for current case it’s not sophisticated enough as our input signal can 

vary quite significantly in the span of one profile cut. 

 

Figure 10 Profile with artificial outliers with standard deviation levels 

Figure 10 shows that there does not exist a good global level, even for a one-

dimensional profile, that would allow us to remove outliers beyond it. Eliminating 

everything further from median than one standard deviation would eliminate a lot of 

data. Choosing two standard deviations or anything above would leave outliers in, 

anything in between might work for current profile but suffers from overfitting. There is 
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a need to process data more locally. Luckily, there’s an algorithm that exactly follows 

that intuition, called Hampel identifier. 

“Hampel suggested the median and the median absolute deviation as robust estimates of 

the location and the spread” [32]. For each sample of data X, the function computes the 

median of a window composed of the sample itself and its neighbouring elements. It 

also estimates the standard deviation of each sample about its window median using the 

median absolute deviation. If a sample differs from the median by more than some user 

defined standard deviations, it is replaced with the median [32], [33]. This works for us 

as both the window and differing from the median is configurable, which is all we need. 

2.2.5.4 Comparing and validating smoothing algorithms 

There are two characteristics of a line we can measure in order to evaluate a smoothing 

algorithm: one is the smoothness of the line, the other is the difference between raw and 

smoothed line. 

Easiest way to get a sense of how smooth a line is, is to calculate the differences 

between adjacent elements along the profile. By taking an absolute value of those 

differences gives us a change for every element for our profile data. To get a smooth 

factor of a line we could take an average or a median of those differences. It’s better to 

use median, as our data might be characterized by skewed distributions. When 

comparing the result across multiple smoothing algorithms, then a smaller smoothing 

factor indicates a smoother line. Thus, we get the following formula: 

9: = ;<=>82(8?@(=>AA(A(B:)))) 

Equation 2 Smooth factor formula, where Si is the calculated smooth factor for a line, f is the smoothing 
algorithm, diff calculates differences for adjacent elements, Y is the vector of heights and i is the index of 

the profile 

From one end, we would like to smooth the data as much as possible, as it aids the 

compression process. From another, we don’t want our data to lose a lot of detail and 

separate from the raw input. For this, there is a need to compare the smoothed data to 

the original, or to compare the similarity between them. This is a studied topic in 

mathematics called trajectory or curve similarity. Similarity, or dissimilarity is a wide 

notion in itself and depending on the goal, different techniques can be used. The goal 

for evaluating smoothing is to verify that the overall trend of the signal didn’t change 
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too much. Similarity score is not difficult to measure per se, but there are a lot of 

different choices to choose from.  

There are some criteria we can define to make the choice of similarity algorithm easier. 

First of all, we have one dimensional time-series data. Data itself resembles a signal, 

which is a polyline that does not self-cross. We don’t expect our smoothing to result in 

any time or space shifting. In addition, without any algorithms, we can already know 

that our smoothed line is definitely “similar” to the original, as it’s just smoothed, the 

range of values are just slightly smaller. Therefore, the goal is to find a distance 

between our original profile and the smoothed line. This is done via distance functions. 

Sum of absolute difference (SAD) also known as Manhattan-norm is the sum of the 

absolute differences of the data pairs. Using the absolute function makes this metric a 

bit complicated to deal with analytically, as our smoothing algorithm will smooth in 

both ways. As this simple algorithm does not use any quadratic formulas, it is quite 

robust in dealing with the outliers [34]. 

Sum of squared difference (SSD) is equivalent to the squared Euclidean distance. This 

is the fundamental metric in least squares problems and linear algebra. The absence of 

the abs function makes this metric convenient to deal with analytically, but the squares 

cause it to be very sensitive to large outliers [34]. 

There are many algorithms that are built on top of those two, often some sort of 

normalization is applied. For example, mean-absolute error (MAE) is the normalized 

version of SAD, mean-squared error (MSE) is the normalized version of SSD, 

normalized mean square error (NMSE) takes MSE and normalizes it by the original 

data. Euclidean distance is the square root of SSD. As our lines are in the same range, 

we don’t need to normalize our data in any way. Therefore, those modifications will not 

be taken into account. 

The Pearson distance is a correlation distance based on Pearson's product-momentum 

correlation coefficient of the two sample vectors [35]. “A correlation coefficient is a 

number that quantifies a type of correlation and dependence, meaning statistical 

relationships between two or more values in fundamental statistics” [36]. Pearson 

correlation coefficient is a widely-used way of measuring the strength of linear 

association between two variables. It is calculated by dividing the covariance of the 



35 

variables by the product of their standard deviations [35]. The algorithm is not robust, 

so it’s sensitive to outliers, but we expect to remove those outliers before smoothing 

anyway. 

Hausdorff distance works differently as it doesn’t average or summarize anything, 

rather it measures how far two subsets of a metric space are from each other. 

“Informally, two sets are close in the Hausdorff distance if every point of either set is 

close to some point of the other set” [37]. It measures the longest distance forced to 

travel by choosing a point in one of the two sets, from where you then must travel to the 

other set. “In other words, it is the greatest of all the distances from a point in one set to 

the closest point in the other set” [37]. 

There are many more ways to calculate the difference between curves. Some don’t suit 

the current problem well (Fréchet distance), some do too much (Procrustes distance), 

some are unnecessary for our data (dynamic time warping). I think to achieve the 

requirement for comparing smoothing algorithms, the previously described ways to find 

the difference between our profile lines are sufficient. Which one to use will be decided 

on section 3.3, where the eventual smoothing algorithm is chosen. 

2.2.6 Reducing data points 

Data reduction is the process of minimizing the amount of data that needs to be stored in 

a data storage environment. Data reduction can increase storage efficiency and reduce 

costs. “Data compression reduces the size of a file by removing redundant information 

from files so that less disk space is required” [38]. This differs a little for the toolset at 

hand. The goal of compression Teede Tehnokeskus is interested in isn’t necessarily to 

reduce the size of file, by reducing the unique values. Smoothing helps in that regard. 

What is needed is to remove as much data points as possible without losing much detail 

to aid post-processing efficiency. As explained in paragraph 2.2.3, this should be 

accomplished by processing profile cuts, instead of the whole data set, due to the 

conditions of the road. 

2.2.6.1 Compression with curve simplification 

According to an experimental study with GPS trajectory data [39] that compares the 

major compression approaches, “no approach outperforms others under all scenarios as 
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they have their pros and cons”. With the GPS trajectory observed in that study, there is a 

dimension that is absent in road conditions data – time. Our laser produced profile is a 

line, not historically traced points. Word-for-word, the produced points are of course 

historical traces, but as the time is constant between every point, we can eliminate that 

dimension. As a consequence, “the use of perpendicular distance, shortest distance 

between a point and a line, as condition for compression is optimal” [40], allowing to 

reduce the scope of the compression problem.  

Reducing the scope from general compression to a one-dimensional time-series line 

simplification allows us to concentrate on a few algorithms that are most suited for 

reducing excess detail from road condition data.  

Radial distance is a simple brute force linear complexity algorithm for polyline 

simplification. “It reduces successive vertices that are clustered too closely to a single 

vertex, called a key. The resulting keys form the simplified polyline” [41]. The first and 

last vertices are always part of the simplification, and are thus marked as keys. Starting 

at the first key the algorithm walks along the polyline. Succeeding vertices, which fall 

within a user defined distance tolerance from that vertex are removed. The next vertex 

which lies beyond the tolerance is kept and marked as a next key. This is then repeated 

until it reaches the last vertex. 

Douglas-Peucker algorithm is often considered as the most precise line simplification 

algorithm, that uses a recursive divide-and-conquer approach. The algorithm is widely 

used in robotics to perform simplification and de-noising of range data acquired by a 

rotating range scanner [42]. “It was originally proposed for line simplification, and tries 

to preserve directional trends in the approximation line using a pre-defined distance 

threshold”, which may be varied according to the amount of simplification required 

[40]. 

Detailed study of mathematical similarity and discrepancy by McMaster [43] ranks the 

DP algorithm as “mathematically superior”. White [44] performed a study on 

simplification algorithms on critical points of curve similarity and showed that Douglas-

Peucker method was best at choosing splitting points and called the obtained results as 

“overwhelming”. Another study by McMaster [45] calls it as one of the most 

geometrically efficient algorithms in processing strings of x-y coordinate pairs. 
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However, [46] describes the method as highly time consuming, having a worst case 

complexity of O(n2). However, due to simplicity of the algorithm, different methods 

have been proposed to implement it. One of such proposals, which succeeded to reduce 

the complexity of the method from O(n2) to (nlog2n) was Hershberger [47]. 

“Douglas-Peucker method starts by drawing a straight line from the first point to the last 

point and calculates the perpendicular distance for all the points between those points” 

[47]. Then it finds the point with the biggest perpendicular distance - if this distance is 

smaller than a certain threshold, then all the points between the initial two are discarded 

since they have a negligible impact on the overall shape. If the distance is bigger it splits 

the polyline into two halves and the process recursively starts over for both those 

sublines. In the end, all sublines are combined into one. 

Another popular algorithm, called the Visvalingam-Whyatt algorithm, works from the 

inside-out. “It starts by computing the area of the triangle formed by each consecutive 

three points along the polyline. Then the midpoint of the triangle with the least area is 

thrown out since those three points are the closest to collinear and the area of triangles 

on either side are recomputed” [48]. The process continues until all remaining triangles 

are above a certain threshold. While dropping intermediate points if they fall within a 

tolerance like Douglas-Peucker algorithm does is reasonable, the “assumption that the 

furthest point from the anchor-floater line is a critical point is questionable” [48], says 

Visvalingam. Visvalingam-Whyatt algorithm uses elimination via an effective area, 

rather than selection. 

Visvalingam and Whyatt argue, that contrary to popular claims, Douglas-Peucker 

algorithm ceases to be global and holistic after the selection of the first point. Their 

process requires a holistic view of the line whilst eliminating detail. In practice, the 

performance of Visvalingam-Whyatt and Douglas-Peucker is the same, as the worst-

case for Douglas-Peucker requires specific conditions. 

 

A study by New York Institute of Technology compared 6 different line compression 

algorithms. They used both algorithmic and manual visual grading for comparison. The 

results show that Douglas-Peucker algorithm was selected superior over the second 
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place by over 2 times, while Visvalingam-Whyatt was placed 3rd [49]. This mirrors the 

opinion in academic world: while Douglas-Peucker can be slow, it’s quality is superior. 

2.2.6.2 Evaluating compression 

Un-compressed and compressed data sets differ in size, making the comparison between 

them more difficult. Some similarity algorithms could work, for example Hausdorff 

algorithm described in 2.2.5.4 does not require the datasets to be of equal size. One way 

to continue would be to find more similarity algorithms that do not require the size of 

datasets to be the same. However, there is a more intuitive and correct way.  

Base line calculated for relative heights serves as a good reference point. It also marks 

the angle of the road. There are two areas, above and below the base line, which can be 

used to compare the data before and after compression, shown in Figure 11. In both 

datasets, areas above base line should be close in value, same applies to areas below 

baseline. As compression doesn’t smooth the trend, we can be sure, that as long as the 

areas didn’t change too much we didn’t lose valuable information. We can then use a 

maximum allowed difference between those areas as our evaluation – meaning we will 

compress until it exceeds the given maximum allowed difference. 
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Figure 11 Top most figure shows a raw profile; bottom left shows relative heights smoothed by Savitzky-
Golay filter using 11th degree polynomial and window size of 40; bottom right is the compressed version 
of smoothed profile.  

2.2.7 Calculating quantities for milling and filling 

Automatic calculation of milling (removing parts of road) and filling (adding a layer of 

new asphalt) is something that even Teede Tehnokeskus does not have a good idea how 

to do. The problem is the dependencies of various variables: angle of the road (current, 

historic, desired), quality of data (is their extreme noise at the edges of road data), 

conditions below road surface (will have an effect on the thickness of road) – which are 

data not known to our toolset. For the proof of concept however, we could presume that 

the angle of the road is ideal, meaning we don’t have to correct the angle. This is a 

suitable suggestion for Teede Tehnokeskus. Having an ideal thickness of a new road as 

a user input (which could be determined by road draftsmen knowing background 

knowledge), shown in Figure 12, lets us minimise the filling quantity and approximate 

both milling and filling volume.  
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Figure 12 Road repair calculation 

2.3 Evaluating theoretical analysis 

What first seemed like separate problems to be solved grew more intertwined after 

further analysis. The initial intuition to first smooth the data before doing any other 

operations seems to have been wrong as necessary detail would be lost. The reason for 

smoothing itself moved from aiding visualisation to necessity for compression (section 

2.2.5). In addition, a simple moving average filter which at first seemed reasonable 

might not be enough, at least not for the removal of outliers (2.2.5.1, 2.2.5.3).  

This section describes what was learned from theoretical analysis in paragraph 2 and 

what should be the next steps going forward. 

Workflow 

The order of processing the data, shown in Figure 13 should be the following: extract 

and separate the initial data, reshape it to 2D form, calculate relative heights, remove 

outliers and smooth the data, compress the data. After calculating the relative heights 

it’s also possible to find approximate filling and milling quantities, for this there is no 

need for smoothing nor compression. 
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Figure 13 Expected workflow 

 

Relative height calculation:  

Road height changes often, which makes the absolute heights useless for further 

analysis. This results in a need to calculate relative heights, which are consistent enough 

to reveal the road characteristics. Both algorithmic and visual validation depend on 

those relative heights, making it clear that those heights should be calculated on raw 

data. Raw data comes initially in a one-dimensional form, holding 4 columns: latitude, 

longitude, heights, and lights. Before any processing, these values should be extracted 

and each of them reshaped to a two-dimensional matrix. Produced matrix of raw heights 

might contain outliers at the edges of the road, either in the form of rocks or other 

objects, so it is necessary for the relative height calculation to consider applying some 

counter measure for that without smoothing the data itself (section 2.2.4). 

 

Calculating approximate filling quantities 

Achieving an approximation of any quantities considering road conditions is difficult. 

The main theme seems to be that everything depends on something. This makes any 

automatic decision more difficult. In the realm of this scope, having a system that 

considers all different parameters would be too complex. However, communicating with 

Teede Tehnokeskus gave birth to a simple goal: having a function, that takes in a 

desired thickness of new asphalt, measure the needed volumes for milling and filling to 

achieve a smooth road (section 2.2.7). This solution would leave the current angle as the 
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ideal one. Additional improvement would be to add an optional angle parameter, which 

could be used as a new baseline. 

Smoothing of the data 

Some roads are more even than others, newer lasers and calibrators are better than old 

ones. However, for visualisation, the uneven-unsmoothed road is still the most honest 

way to go (Figure 7). Smoothing loses detail, regardless how it is achieved and in most 

cases, more detail is better. Nonetheless, there are at least two reasons why smoothing 

would have a positive effect: 

• by smoothing the data, we reduce unique data points, thus we make rendering 

of the output easier for the processor. This really comes in play in 3D rendering, 

which isn’t directly focused upon in this study. Be that as it may, compression 

itself is primarily meant for draftsmen who would probably like to visualise 

data in 3D 

• compression works far better when the line is smoother, making it the primary 

reason to smooth our data (Figure 8) 

Paragraph 2.2.5.1 described many line simplification filters to smooth one-dimensional 

data. Subsequent paragraph 2.2.5.2 discussed two-dimensional image smoothing 

algorithms, which proved not to serve our purpose well. While the problem of many line 

simplification algorithms is a good one to have, having options still requires a choice at 

the end. For this, there are two characteristics we can compare to evaluate and choose 

the best smoothing algorithm. Paragraph 2.2.5.4 described the smoothness factor and 

different ways to compare the similarity between curves. The most suitable way to find 

the similarity must be chosen through testing and logic. This should conclude with the 

most suitable smoothing algorithm. 

 

Reducing data 

Douglas-Peucker is one of the most used line simplification algorithms to date, used 

heavily in robotics to compress laser measurements (section 2.2.6.1), however there is 

concerning factor about the performance of it. It is often cited of having the worst-case 

complexity O(n2), but this statement hides some of detail. With n being the number of 

vertices and m being the vertices of the simplified line the complexity is O(n*m). In 

practice, this is triggered only for very zig-zaggy lines [50], which our smoothing 

algorithm would remove. The expected time is however O(nlogn). Additionally, 
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knowing that the complexity is output dependent is a valuable insight. When m is small, 

this algorithm will be very fast. Bigger output results in a slower run. This can be a 

problem - even for a 200m road, we have approximately 3600-4000 profiles, each 

profile we might need 2-5 iterations to achieve desired result. Although subsequent runs 

are much faster due to smaller output, the combined result will still be slow. 

Solution to combat that is radial distance simplification, which is a linear way to 

compress data (2.2.6.1). It’s not as sophisticated as Douglas-Peucker or any other 

algorithm, but extremely fast. Using alone, it would not serve our purpose well. But 

using it as a pre-compressor would reduce the output for Douglas-Peucker, making the 

combined result fast and high-quality. 

To measure the quality of compression a different approach compared to smoothing 

algorithm should be taken (2.2.6.2). There are a couple of reasons to counter the initial 

intuition here. Firstly, fewer suitable algorithms are available for robustly comparing 

vectors of different length. Second and more important, it’s difficult to establish a 

threshold of how similar the input and output have to be. Is it ok to have 90% similarity, 

or maybe we need 99%? This could be tested and some % can be derived, but a more 

sophisticated way is needed. Compression is solely meant for road draftsmen, in order 

to simplify 3D rendering and make additional calculations. For this to work, having the 

highest fine-grain detail is not necessarily the desired input. What’s needed is to get the 

information of road characteristics, having the volume of bumps and rails intact. A 

better way for a threshold is to define an allowed percentage of volume change for some 

areas of the profile. Which areas exactly will be determined. Additionally, a good 

compression should ideally give a result that is visually indistinguishable from the 

initial input, meaning a visual test would serve a purpose here as well. 
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3 Building the toolset 

The goal of this paragraph is to walk the reader through the decisions made based on the 

theoretical analyses done on section 2. Each chapter concentrates on implementing a 

different part of the toolset. Section 3.1 combines the knowledge from methods 

described in 2.2.4 and proposes a new robust method to calculate the relative heights. 

This method is then implemented and a code snippet is shown to aid the reader in 

understanding. This is followed by section 3.2, which implements the algorithm to 

calculate approximate quantities of filling, described in 2.2.7, to make the road even 

using minimal amount of fill. Section 3.3 achieves two goals: both a suitable smoothing 

algorithm and the means to compare different outcomes are chosen. Finally, section 3.4 

uses the smoothed data and compresses it for further study. For this, both the Douglas-

Peucker and the Radial distance line simplification algorithms, described in section 

2.2.6.1, are used to achieve a compressed version. For a threshold to use, a custom way 

is proposed and implemented, which compares integrals of before and after of different 

areas (first mentioned and analysed in section 2.2.6.2). 

3.1 Visualising and calculating relative heights 

Before diving into the implementation of a relative height calculation, let’s first go over 

the need to calculate them with an example. One of the first things to do, to make sense 

of any data, is to visualise it. Taking the raw heights as an example, I tried to visualise 

those. First, I reformat the code to a more convenient two-dimensional matrix form, 

using Code 9. Next, as the laser data is in 3D, it came naturally to try to visualise 

everything in 3D. This, as it turns out, is rather slow. By using Code 7 Plotting 

measurement as a 3D surface, I was able to produce a 3D mesh of sample 2*3.8 metre 

road surface, shown in Figure 14. Even this small sample size was rather slow and the 

same code failed for a more respectable size of 200m long road. It was clear at this 

point, that 3D visualisation is not the way to go forward, as we need to visualize un-

compressed and un-smoothed data. 
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Figure 14 3D height mesh of a 2*4m road surface (10 000 data points) 

 

 

Figure 15 Visualizing the road using raw heights 

 

Next was 2D visualisation, using Code 8 Plotting measurement as a 2D scatter plot. 

This is relatively free from performance implications, having no problem in drawing a 

scatter plot of 2 million data points. This is also much better to grasp for human eye, as 

the heights are pictured using colours. This is however, also the place where the need 

for relative heights became clear. As can be seen from Figure 15, absolute heights don’t 



46 

give any insight into the characteristic of the road, as the height can be seen changing as 

much as 1 meter in the span of 200-metre long road. This fact produced the need to 

determine and calculate relative heights. 

As the relative height calculation is done before other operations and the quality of other 

operations depend on the result of relative heights, then it is necessary that the 

determined base line is not affected by noise.  

All the methods described in paragraph 2.2.4 suffer from some downside. Water method 

is difficult to implement and loses information on the peaks. Ruler and string methods 

are flexible but rely heavily on two peaking points on both side of the road which are 

used for the base line calculation. Angle method does not have those downsides, but 

uses a fixed angle to be followed, which is not to be trusted judging by sample data and 

consultancy from Teede Tehnokeskus. The angle of the road, while ideally being 2.5%, 

often changes depending on the road, increasing during corners and decreasing during 

bigger intersections. It should never be too small, otherwise rain wouldn’t fall off, but 

the constant changing does affect the stability of the angle method. 

Combining the information learned from theoretical analysis about different methods 

and the need to also avoid being hurt by noise in the data, there is a need to produce a 

new way of calculating relative data. It has to use a stable base line, without being 

affected by noise and it should not rely on key points of the data. Additionally, it would 

be necessary, that the angle of the road would also be cancelled out, otherwise changing 

of the angle would also change the relative heights. By using a median of the sides of 

the road and using the string method we get the wanted result. 
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Figure 16 Noise safe, angle cancelling, peak and valley preserving relative height calculation method 

 
To calculate the base line, I use median of the heights of 5% of the data on both sides of 

the road. This cancels any possible stones or other noise that might have a huge effect 

on the base line calculation. As can be seen from Figure 16, even a small noise in the 

data can alter the base line a lot, which in turn completely messes up the relative 

heights. By using medians, it is possible to greatly increase the reliability of the string 

method. To calculate the linear line, I used a simple two-variable linear equation: 

+	 = 	8 ∗ D + ? 

Equation 3 Linear two-variable equation 

By knowing two median points from the opposite sides of the profile, I can derive both 

a and b and calculate the baseline. For every data point, the difference between the point 

and the baseline is the new height, called relative height. Full code can be seen in 

paragraph Code 1 Calculating relative heights. 

Visualizing the relative heights can be seen in Figure 21, having a much better detail 

about the road characteristics, showing the rails and even having the road markings 

visible as they are higher than the rest of the road. The range of the heights for this 

sample road segment can be seen to be about 4.5 cm. 
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3.2 Calculating approximate filling and milling quantities 

To calculate the minimum filling volume in order to smooth the road, I used the method 

described in sections 2.2.7 and 2.3. For a proof of concept, it is acceptable for Teede 

Tehnokeskus to input the desired thickness of the new road. This means we can use the 

base line, calculated with the relative heights, as an angle to be followed in order to 

restore the road.  

 

Figure 17 Milling of the road 

 

Figure 18 Volumes between two profile cuts before and after milling 
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Figure 19 Milling and filling volume for a sample road 

 
First we need to mill the road, which is pictured in Figure 17. For current sample, a user 

defined value for the new road layer was 0.005m. Usually, it would be higher, but the 

sample road is already relatively smooth, so no repairs should be needed. Nevertheless, 

as it still has visible rails, the sample could still be used for demoing purpose. Thickness 

of the new asphalt corresponds also to the minimum depth of milling. Adding any 

bumps over the baseline would yield the milling volume. 

Full implementation can be seen in Code 2 Calculating filling and milling volume. This 

method does multiple things. Needed quantities are calculated per adjacent profile pairs. 

We’ll calculate the Z-coordinates for both milling and filling surface, but first there is a 

need to calculate the width and the length of the road.  

a) To calculate the length, we can use the difference of the latitudes of the profiles. 

For a 195m road, with 3600 line measurements, it is approximately 0.05m. For 

the best accuracy, this is calculated for every profile as it depends on the speed 

of the car that the laser is situated.  

b) To calculate the width, there is a need to take into account the movement of the 

car. A simple Pythagoras theorem can help to calculate the width, which is the 
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square root of the sum of two components: the difference of longitudes (width of 

the road) squared and the previously calculated length squared. 

After the width and length have been calculated, we can calculate both the milling and 

filling volumes. 

c) We first mill the road, using the original baseline, which for relative heights is 

the straight line where y = 0. Everything above a new modified line, which is the 

desired thickness of the road below original baseline, will be milled.  

d) To get the volumes, I use double integrals. More precisely, to get the best 

precision we could fit the data with high polynomial functions and calculate the 

actual integrals. But there really isn’t any point of doing that as our data has a 

high number of data points. This means it is perfectly suitable to use trapezoidal 

rule [51], which is a technique for approximating definite integral. 

Figure 18 shows the area between two adjacent profiles on the left side and on the right, 

the same profiles after the milling process. Figure 19 shows both the volume of milling 

and filling needed to smooth out a sample road: approximately 1.65m3 of road should be 

milled and 4.53m3 of fill is needed to achieve a minimum thickness of 0.005 new 

asphalt. Also, to verify visually using the same figure, it can be seen that the more rails 

a road has, the more fill is needed for that area. Milling is more related to bumps on the 

road and of course ultimately both of them are heavily dependent on the desired 

thickness of the new road. 

3.3 Implementing and validating line smoothing algorithm 

As our data might consist outliers which are subject to hurting the non-robust smoothing 

algorithms, it makes sense to first clear the data from outliers. Like described in 2.2.5.3, 

there is suitable intuitive algorithm for that, called Hampel identifier, which uses local 

window size and the distance between the median and a level some standard deviations 

away. Using the same sample pictured in Figure 10 and by using the Hampel identifier 

with the default parameters of 3 for window size and sigma of 3 standard deviations 

(Code 6 Remove outliers from input), results in clean data shown in Figure 20. This 

allows us to move on to choose the most suitable smoothing algorithm. 
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Figure 20 Removing outliers with Hampel identifier 

 
Moving on with the actual smoothing process, section 2.2.5.4 describes 4 different ways 

of measuring the similarity or dissimilarity of two datasets. While the sum of absolute 

differences uses the absolute function, making it uncomfortable to use for analytical 

purposes, the other 3 are all suitable for comparing smoothing algorithms. Hausdorff 

distance measures the maximum shortest distance between the datasets, meaning it’s a 

dissimilarity metric. Pearson distance is a measure of linear correlation between the 

datasets, but by taking the inverse of it, we again get a dissimilarity metric. Sum of 

squared errors is perhaps the easiest of those, but it is wildly used method of measuring 

the variation/error within a cluster. As they all work differently there isn’t really a clear 

indication what would work best. Performance wise, Hausdorff distance is the heaviest, 

but the complexity is still linear O(n+m) [37]. For this reason, I have decided not to 

exclude any of them and compare all smoothing algorithms using all three of them to 

get the best of all worlds. 

 
Table 3 shows the results in comparing the smoothing algorithms with Hausdorff, 

Pearson and SSD. Ultimately, a decision has to be made whether to value more the 

reduction of smoothing factor or the minimal difference between the initial and 

smoothed data. Out of curiosity, I also added a popular 2-dimensional smoothing filter, 

called Gaussian filter to the mix. As can be seen, the reasoning mentioned in 2.2.5.2 
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turned out to be justified, as the smoothed line is a lot more different compared to 1-

dimensional smoothing filters. 

There were 4 different smoothing algorithm settings that stood out as the best in 

smoothing while also not deferring from the original input too much. These 4 were the 

following: 

• Lowess with 10 period window 

• Savitzky-Golay 40 period, 11th degree polynomial 

• Savitzky-Golay 50 period, 11th degree polynomial 

• Savitzky-Golay 60 period, 11th degree polynomial 

Those 4 went on to the second round of comparison, where each of them were run on 

three different road samples and the results were averaged together (shown in Table 4). 

Again, the results were close, and mirrored the first test: better smoothness factor results 

in an output, that is further from the original. From the smoothness factor alone, 

Savitzky-Golay with setting 60/11 was the best one, followed by Lowess 10, Savitzky-

Golay 50/11 and Savitzky-Golay 40/11. And although the difference between the result 

was not a big one, the golden route seems to be the middle man, Savitzky-Golay with a 

window size of 50 and an 11th degree polynomial, which I have decided to pick as the 

best one to use. Result can be seen from Figure 21 and judging by the eye, it’s actually 

clearer, for example the road markings can be identified more easily. 
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Figure 21 Raw vs smoothed road visualization 

3.4 Reducing data and evaluating the result 

Compression process that I have implemented consists of multiple parts: evaluating 

compression, pre-compression and compression. This paragraph describes all three and 

explains the reasoning behind the implementation. 

3.4.1 Calculating surface areas for evaluation 

Following the description in 2.2.6.2 and 2.3 about the evaluation, using pre-existing 

algorithms to calculate the similarity of two datasets is not optimal. A better way would 

be to measure the loss in the road characteristics that the draftsmen would later use – 

areas for bumps and rails. A base lane was calculated in section 3.1, that marks the 

angle of the road. Two areas are created, above and below the line. Due to the logistics 

of the base line drawn, the area below the lane is a lot bigger. To eliminate the 

possibility of a compressed rail, which uses different tolerance for calculation, having 

an unwanted effect on losing too much detail in the case of bumps, it makes sense to 

separate those areas and compress them differently. At the end, we would like to 
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preserve the characteristics of both bumps and rails, meaning we can compress them 

separately and then combine the results together. 

The code to calculate the surface area is shown in Code 3 Calculating upper and lower 

surface areas. This method can be used to calculate surface areas for all of the data or it 

can also be used per surface, which is used in evaluating the compression later on. The 

method also uses trapz to estimate the integral. It does it twice, once for the upper and 

once for the lower area. In both cases, the opposite side is substituted with zeros. 

3.4.2 Pre-compression 

Following the evaluation of theoretical analysis in section 2.3, to reduce the size of data 

points Douglas-Peucker has to handle I decided to use Radial distance to first pre-

compress the data. Code 4 Radial simplify algorithm shows the implementation, which 

compares all elements with their adjacent element and if the distance is under given 

tolerance will exclude the succeeding element from the result. It then continues until an 

element is found which falls out of the tolerance. That element is kept and replaced as 

the anchor which to compare against all the following elements.  

This algorithm is called many times to achieve the best wanted result, or at least close to 

it, as some estimations has to be done to achieve good performance. Segment of the 

code can be seen in Code 5 Pre-compressing upper and lower area of data using radial 

simplify. As radial simplify is linear it can be used quite comfortably. The way I 

achieve the best result is to reduce the tolerance until the acceptable precision is 

reached. I also use a minimum difference between before and after areas, as sometimes 

the differences can be small in quantity, but percentage wise can still be bigger than say 

1%, which also seems like a good acceptable error. By default, the minimum acceptable 

difference is 0.0001 m2 (1 cm2), which seems reasonably small error to accept the 

outcome. 

Figure 22 shows both pre-compression and the actual one, side by side for upper and 

lower areas. For this surface, the achieved compression rate was 20x, all while keeping 

the precision, which are the differences between upper and lower area changes, 

minimal.  
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Figure 22 Compression of upper and lower areas 

3.4.3 Compression 

The idea behind implementing the compression follows the logic described in the 

previous paragraph. Both upper and lower areas are to be compressed separately and 

then the result is merged together. For the compression, the Douglas-Peucker algorithm 

is used, implemented in Code 10 Douglas-Peucker algorithm to simplify a line.  

To achieve a good result for a given surface profile, a somewhat similar approach is 

used compared to pre-compression. The difference is that Douglas-Peucker isn’t a linear 

algorithm, so it’s best to both minimize the amount of times the algorithm is called and 

also minimize the input it is called with. To achieve that, we increase the tolerance until 

the result is no longer acceptable and then take the last acceptable result. This gives an 

ability to use the result of one Douglas-Peucker call as an input for the other call, 

reducing the size of the input of any following method call. Not only does the pre-

compression reduce the input, every Douglas-Peucker compression reduces the input for 

the next call. Code segments of how this is achieved can be seen from Code 11 

Compressing a line using Douglas-Peucker until acceptable precision is achieved. 
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3.4.4 Merging the result 

When both pre-compression with radial distance and regular compression using 

Douglas-Peucker is done, we need to merge the results together. The root method for 

compression can be seen from the appendix, Code 12 Pre-compress (a), compress 

upper, lower parts (b), merge compressions (c). Besides calling the compression 

algorithms for each profile, this function also calculates the total size of the resulting 

data points and reshapes those indexes in one-dimensional form, for later use. 

A sample visualization of a road before and after compression can be seen from the 

following drawing, Figure 23 and an another in appendix, Figure 28 

 

Figure 23 Sample road before and after compression (with a rate of 10.6x) 
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4 Examining and validating results 

This paragraph combines together the theoretical research done in section 2 and 

implementation done in section 3 and analyses the achieved result both from the 

performance and the quality aspect. Future work is also laid out for Teede Tehnokeskus 

to actually start using the laser outputted data in production to achieve better result 

going forward. 

4.1 Quality of results 

Overall the author of this study is happy with the results. Comparing the visualization 

with the official software ViaPPS Desktop shows that no compromises were done. I 

would argue that both relative height calculation and smoothing was executed in a better 

way and there was no compression functionality present in the given software. 

Additionally, road segments up to 1000m can be visualized without any performance 

problem, instead of say 50m 3-dimensional segments, which are not really useful. 

Relative height calculation implemented in 3.1 is a robust way to introduce a new base 

line. The more “honest” way would be to use an ideal angle of the road as a baseline. 

However, the ideal angle is mostly unknown (formally 2.5%, but it’s constantly 

changing depending on the road) and would have to be a user input or somehow 

calculated from external data. Ideally, this is something that might be investigated in the 

future. 

A lot of time and effort was put into smoothing functionality, which was a rather wide 

topic. What made it difficult was the vague understanding of the reason why smoothing 

was necessary at the first place. After realizing that the compression is the biggest 

reason why we need smoothing I went through both 1- and 2-dimensional algorithms, 

eventually staying with 1-dimensional realm, as it offers more flexibility and better 

accuracy. Through testing with various different ways of comparing before and after 

datasets I finally arrived what seemed like a golden route – Savitzky-Golay smoothing 

filter with a window size of 50 and 11th degree polynomials. Visualizing the before and 

after data, pictured in Figure 21, gave an indication that the characteristics of the road 

remained the same regardless of smoothing. Due to some of the noise being removed in 

the process, the output seems clearer judging by the eye. 
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Achieving a good compression rate required to think about multiple aspects. First, how 

to compare a given compression algorithm and how far should the algorithm compress. 

For this I devised my own method of comparing the surface area changes above and 

below the base line calculated in relative height section. This makes intuitive sense, as 

the base line indicates the angle of the road we think is ideal. So, repairing the road 

would follow the baseline, making it logical to keep the areas relatively unchanged 

during compressing. Going forward, a decision for compression algorithm had to be 

done. For this I used a very popular Douglas-Peucker algorithm together with radial 

distance compression to achieve better performance. Coupled that with parallel 

computing resulted in a fast and effective compression algorithm, reaching over 10x 

compression rate for three different datasets (shown in Table 2) and showing minimal 

data loss (less than 1%, pictured in Figure 23) 

4.2 Performance 

Section 2.2.2 compared real-time vs batch processing, which resulted in the decision 

that for pre-processing the data, batch processing can be used. This reduces the 

restrictions from the performance aspect and lets us concentrate more on the quality, 

rather than being fast. That being said, a lot can be done with matrix calculations, which 

has many optimized libraries in most of the popular languages. Everything except 

compression, in our toolset uses either matrix calculations or linear complexity 

algorithms, making them fast to use.  

For compression, there is a need to work on individual profiles and opportunities for 

matrix operations are limited. However, to increase the performance, parallel computing 

can be used in places where matrix calculation cannot be utilized. The major part that 

compresses a line can be processed separately by a single thread. Every language has 

some support for parallel computing, Matlab has parpool, “which creates a special job 

on a pool of workers, and connecting the MATLAB client to the parallel pool” [52]. It 

can also be used in cloud, sending assignments to workers in the cloud, maximizing the 

performance.  

Table 2 compares 4 different ways of compressing data: Douglas-Peucker (DP), parallel 

DP, radial+DP and parallel radial+DP. As can be seen, the performance increases both 

with parallel computing and using radial distance for pre-compression. Every worker 
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added to the parallel pool decreases the duration. Using either more common 

programming languages where thread pool could be easily configured or MatLab itself, 

means performance of the compression can be scaled by adding more threads. 

Additionally, radial distance pre-compression helps with the performance a lot, like 

initially proposed in section 2.2.6.1. 

Douglas-Peucker Parallel	DP Radial	+	DP Parallel	DP+Radial
Time	(seconds) 163.270 98.714 70.994 45.350
Compression	rate
Avg	precision	loss
Time	(seconds) 161.539 106.699 59.008 38.715
Compression	rate
Avg	precision	loss
Time	(seconds) 248.381 126.248 62.688 39.475
Compression	rate
Avg	precision	loss

Data	3

10.580

12.580

15.34014.880
0.607 0.620

0.963

0.976

0.954
11.714

0.972
10.211

Data	2

Data	1

 

Table 2 Compression performance comparison 

 

Going forward, performance does not seem to be a problem for multiple reasons. 

Firstly, the concept of batch processing allows for more time for chosen algorithms to 

run. Secondly, smoothing algorithms together with most other calculations can be 

implemented using optimized matrix calculations, making them very fast within similar 

quantities of data. Compression is really the only part of the toolset that suffers from 

slower algorithms that can’t be resolved with vector mathematics. But using pre-

compression and parallel computing achieves a reasonable result that can be used with 

production data as well. 

4.3 Future work 

This section lays out some of the problems and opportunities for the future work. Full 

code with the images and underlying thesis can be retrieved from git: 

https://bitbucket.org/eerikpotter/masterthesis. To get access to the repo, contact 

eerik@potter.ee 



60 

Having a digital model of the roads in Estonia offers huge opportunities for 

sophisticated analysis to better fix and build new roads. However, there are some 

hurdles still on the way: 

a) One of the most difficult aspects about the current study was its exploratory 

nature where neither Teede Tehnokeskus nor author had precise requirements on 

the output. Because of this there was a lack of information about the tools and 

tasks of road draftsmen. A big part of the benefit of having the digital model is 

the fact that ideally there is no need to even go on the field for manual 

measurements. This requires clear input from draftsmen, who can tell exactly 

what is needed and why. Ideally, some of their tasks can also be automated, but 

even more, with a good enough model, this would really eliminate the mundane 

task of going to the field to make less detailed manual measurements. Having 

clear requirements about the eventual analysis would have the biggest priority 

going forward, in my opinion. This work is a step towards mutual understanding 

of the requirements and forming of specific use cases. 

b) Copying 300m road segments manually to clipboard from ViaPPS Desktop is 

not the best solution. Ideally, this would be done with a separate software, either 

3rd party or self-made. For a proof of concept, it’s acceptable, but for longer 

roads it’s not really optimal. 

c) Without 3rd party tool to process the input, there are no geo-coordinates on the 

file. These would need to be added, as without the coordinates, some of the other 

tasks that could be automatized cannot be resolved. 

d) Improvement on the visualization could be achieved by rendering the calculated 

relative heights to a map. This would require recalculating the width and length 

of the road, but seems doable. If this is achieved it would give a really good 

visualization of the whole road, however, calculations are still done separately 

by draftsmen and the need for this kind of sophisticated visualization is not clear 

at the moment.  

e) Knowing more information about the decision road draftsmen do to determine 

the thickness of the road would help improve the automatic calculation of 

milling/filling quantities. As of now, there are lot of variables that the decision 
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depends on. Having a proof of concept for the filling calculation allows now to 

build on top of it. Reducing the variables might result in a solution that the 

algorithm can itself use some external data or user data to calculate even more 

accurate filling volume. This should be possible and would really be a game 

changer, but it requires the input from draftsmen and knowing the whole 

procedure how some of the decisions are made. 

In my opinion, the most important aspect going forward in order to be maximally 

efficient and really revolutionize the way road projects are done, would be to map out 

the goals of the laser mapping system in a clearer manner. More technical analysis is 

required to determine what is done manually in each step. Pre-processing blindly limits 

the potential this system has. Knowing more information would give valuable insight 

into implementing some, if not all of it automatically. This would increase the quality, 

reduce the cost and make the whole procedure much faster. Although the technology 

itself is new, this work describes the technical scope and base line required for future 

work. I feel optimistic that the laser acquired by Teede Tehnokeskus will be put to good 

use. 
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Summary 

Technology companies not realizing the full potential of intelligent data usage are a 

rarity these days. In a field of road infrastructure, Teede Tehnokeskus is a company 

which provides engineering consultation services. During the year of 2016, they 

acquired a mobile laser system called ViaPPS, enabling to scan Estonian roads digitally 

for further processing. This decision of mapping the roads digitally comes from the need 

of eliminating manual measurements done on the field, requiring expensive and 

inefficient expertise. The solution of using laser mapping for measurements produces a 

new problem – how to handle the enormous amounts of data produced. 

This study concentrated on analysing the possibilities of extracting valuable information 

from laser outputted data. The highest value for Teede Tehnokeskus from gathered data 

is the height measurement for georeferenced data points on the road. Out of this grew 

the goals for the toolset this study aimed to create: visualize the road, calculate filling 

and milling volumes to smooth out the road and compress the data as much as possible 

for later processing. 

It turned out quickly, that initial idea of 3D visualization to get a sense of the road 

characteristics is both unnecessary and slow to render. A better way is to use a 2D 

scatter plot, where the 3rd dimension is shown using colours. Still, a way to calculate 

relative heights was needed to counter the absolute initial heights. For this an algorithm 

using median of both edges of a surface profile was implemented. This forms a base 

line, which indicates the angle of the road and is used for all further processing. 

Calculating the filling and milling volumes relies on the aforementioned base line. 

Unfortunately, not everything is fully documented on how the decisions of calculating 

those volumes are done manually. A recurring theme seems to be that there are many 

dependencies in making any decisions. Therefore, this was a rather difficult task to 

resolve. Consulting with Teede Tehnokeskus provided a clearer goal of using the base 

line as an ideal angle of the road and having the user input a desired thickness of new 
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road. The resulting implementation therefore uses provided coordinates and surface 

profiles and calculates both milling and filling volumes to achieve a smooth road. 

It seemed initially rather intuitive, that there is no need to smooth the data, as it 

undesirably loses information. However, testing with compression performance 

indicated that noisier data results in impractical compression rates. Additionally, for 

uneven roads, the smoothing factor actually made the visualization better, judging by 

the eye. Multiple problems had to be solved when picking a smoothing algorithm. 

Through theoretical analysis it was derived that using 1D processing over 2D gives 

more control and a better result, leaving still a decision of choosing between many 

different algorithms. Using a combination of Hausdorff distance, Pearson correlation 

coefficient and the sum of squared distance to limit the error produced by smoothing, 

what seemed like a golden route was chosen: Savitzky-Golay smoothing filter with a 

window size of 50 and 11th degree polynomial. Tests show that this achieved the best 

smoothing factor, while maintaining as much of the original road characteristics as 

possible. 

Compression was done next, where a popular Douglas-Peucker compression algorithm 

was used. To counter the possible performance problems [worst case O(n2)] a linear 

Radial distance pre-compression was applied. Additionally, as vector calculations were 

limited for compression, to further increase the performance, parallel computing was 

used. Tests showed that performance with those improvements increased 3-6 times, 

while achieving compression rates of around 10-15x. A lot of thought was put into 

measuring the quality of compression. None of the available algorithms out there 

seemed particularly useful for allowing to specify a suitable precision threshold. Again, 

the baseline calculated earlier offered a solution. By comparing the differences of both 

the upper and lower areas in respect to the base line, a logical way of evaluating the 

compression was achieved. This seemed to be successful, resulting 10x compression 

rates with absolutely no loss judging by eye. 

Overall, the author of this thesis is satisfied with the results. Implemented algorithms 

were justified through theoretical research and best of them tested against each other 

until the most suitable was chosen. Looking to the future of this system offers multiple 

areas of potential success. Be it an automatic add-on for Google maps, using external 
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APIs for automatic input into toolset or switching to a general programming language 

for a more flexible development flow. 

The underlying thesis serves multiple purposes going forward. Firstly, the initial 

vagueness of detail and the lack of overall structure was improved throughout writing 

and implementing this work. Some questions about the structure and handling of data 

were answered, but also new ones were created bringing added functionality. The goal 

was never to write a fixed solution in stone, rather it was to understand and explore new 

possibilities of the laser outputted road data, visualizing the results and pre-processing 

the data for later manual work. From here on, technical analysis of both manual work of 

draftsmen and use cases has to be conducted before continuing with implementation of 

more complex solutions. 
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Appendix 1 - code examples 

function [data] = calculateRelativeHeights(data, edgeRangeInPercent) 
    ...... 
    startingGround = median(data.heights(1:int64(data.dataPointsInLine * edgeRange), :)); 
    endingGround = median(data.heights(int64(data.dataPointsInLine * (1 - 
edgeRange)):data.dataPointsInLine, :)); 
 
    for n = 1 : data.totalDataLines 
        xn = data.longitudes(:, n); 
        an = (startingGround(n) - endingGround(n)) / (xn(1) - xn(data.dataPointsInLine)); 
        bn = startingGround(n) - an * xn(1); 
        data.correctionLine(:, n) = an*xn + bn; 
        data.relHeights(:, n) = data.heights(:, n) - data.correctionLine(:, n); 
    end 
end 

Code 1 Calculating relative heights 
 

function [volumes] = calculateMillingAndFilling(data, roadThickness) 
    ...... 
    for i = 2:data.totalDataLines 
        distY = abs(data.latitudes(1,i-1) - data.latitudes(1, i)); %distance to move forward 
        distX = sqrt((abs(data.longitudes(1, i-1) - data.longitudes(dataPointsInLine, i)))^2                      
+ distY^2); % width of the road 
        y = [0, distY]; 
        x = linspace(0, distX, dataPointsInLine); 
 
        %calculate milling volume, everything above {baseline - road thickness} 
        millingSurf = data.smoothedHeights(:, i); 
        millingSurf(millingSurf<-roadThickness) = -roadThickness; 
        millingSurf = millingSurf + roadThickness; 
        volumes(1, i-1) = abs(trapz(x, trapz(y, [previousMillingSurf millingSurf]'))); 
        previousMillingSurf = millingSurf; 
 
        %calculate filling volume, everything below {baseline - road thickness} 
        fillingSurf = data.smoothedHeights(:, i); 
        fillingSurf(fillingSurf>-roadThickness) = -roadThickness; 
        volumes(2, i-1) = abs(trapz(x, trapz(y, [previousFillingSurf fillingSurf]'))); 
        previousFillingSurf = fillingSurf; 
    end 
end 

Code 2 Calculating filling and milling volume 
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function [surfaceAreas] = calculateSurfaceAreas(relHeights, longitudes, indexes) 
    surfaceAreas = zeros(2, size(relHeights, 2)); 
    for n = 1 : size(relHeights, 2) 
        %calculate upper area 
        tmp = relHeights(:, n); 
        tmp(tmp(:, 1) <= 0) = 0; 
        surfaceAreas(1, n) = trapz(longitudes(indexes, n), tmp); 
 
        %calculate lower area 
        tmp = relHeights(:, n); 
        tmp(tmp(:, 1) >= 0) = 0; 
        surfaceAreas(2, n) = -trapz(longitudes(indexes, n), tmp); 
    end 
end 

Code 3 Calculating upper and lower surface areas 

 

function [reducedLine, indexes] = radialSimplify(initialLine, tolerance) 
    ...... 
    count = 1; 
    for i = 2 : size(initialLine, 1) 
        point = initialLine(i); 
        if(point == 0 %workaround to keep all the points from other area 
             || getDistanceBwElements(point, prevPoint) > tolerance  
             || i == size(initialLine, 1))  
            count = count + 1; 
            indexes(count) = i; 
            reducedLine(count) = point; 
            prevPoint = point; 
        end 
    end 
    ...... 
    function dist = getDistanceBwElements(point, prevPoint) 
        dist = abs(point - prevPoint); 
    end 
end 

Code 4 Radial simplify algorithm 

 

function [compressedHeights, indexes] = preCompressLine(relHeights, longitudes, 
surfAreas, approxPrecisionLoss) 
 
    %PRE-PROCESS UPPER AREAS 
    tol = 0.0005; 
    condition = true; 
    tmpUpper = relHeights; 
    tmpUpper(tmpUpper < 0) = 0; 
    while(condition) 
        [tmpCompressed, tmpUpperIdx] = radialSimplify(tmpUpper, tol); 
        tmpSurfAreas = calculateSurfaceAreas(tmpCompressed, longitudes, 
tmpUpperIdx); 
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        tmpPrecisionLoss = 100 * abs((surfAreas(1) - tmpSurfAreas(1)) / 
surfAreas(1)); 
        if(tmpPrecisionLoss < approxPrecisionLoss) 
            condition = false; 
            tmpUpperIdx = tmpUpperIdx(tmpCompressed>0); 
            tmpUpper = tmpUpper(tmpUpperIdx); 
        else 
            tol = tol / 2; 
        end 
    end 
 
    %PRE-PROCESS LOWER AREAS 
    ...... 
 
    %COMBINE UPPER AND LOWER AREAS 
    indexes = zeros(size(relHeights, 1), 1); 
    indexes(tmpLowerIdx) = tmpLowerIdx; 
    indexes(tmpUpperIdx) = tmpUpperIdx; 
    indexes = indexes(indexes > 0); 
    compressedHeights = relHeights(indexes); 
end 

Code 5 Pre-compressing upper and lower area of data using radial simplify 

 
 

function [robustHeights] = removeOutliers(heights) 
    neighboringElements = 3; 
    nsigma = 3; 
    robustHeights = hampel(heights, neighboringElements, nsigma); 
end 

Code 6 Remove outliers from input 

 

function plot3dMesh(lat, lon, measurement, measurementLabel) 
    [lat_idx,~,simplified_lat] = unique(lat); 
    [lon_idx,~,simplified_lon] = unique(lon); 
    Z = accumarray([simplified_lat simplified_lon], measurement, [], @mean); 
    Z(Z == 0) = NaN; 
    mesh(lon_idx, lat_idx, Z); 
    xlabel('Longitude'); 
    ylabel('Latitude'); 
    zlabel(measurementLabel); 
end 

Code 7 Plotting measurement as a 3D surface 
 

 
 
 

relHeightsAdj = reshape(relHeights(:), [dataPointsInLine * totalDataLines, 1]); 
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latsAdj = reshape(latitudes, [dataPointsInLine * totalDataLines, 1]); 
longsAdj = reshape(longitudes, [dataPointsInLine * totalDataLines, 1]); 
lightsAdj = reshape(lights, [dataPointsInLine * totalDataLines, 1]); 
scatter(latsAdj, longsAdj, [], relHeightsAdj); 

Code 8 Plotting measurement as a 2D scatter plot 

 

dataPointsInLine = 540; 
totalDataLines = size(data, 1) / dataPointsInLine; 
heights = reshape(data(:, 3), [dataPointsInLine, totalDataLines]); 
lights = reshape(data(:, 4), [dataPointsInLine, totalDataLines]); 
longitudes = reshape(data(:, 2), [dataPointsInLine, totalDataLines]); 
latitudes = reshape(data(:, 1), [dataPointsInLine, totalDataLines]); 

Code 9 Reformating to two-dimensional matrix 

 
 

function [reducedLine, indexes] = dpSimplify(initialLine, initialIndexes, epsilon) 
    ...... 
    function [reducedPtList] = dpSimplifyRec(ptList, n) 
    ...... 
        %Find the max perpendicular distance from the line between the edges 
        for k = 2:n-1 
            d = perpendicularDistance(ptList(k,:), ptList([1,n],:)); 
            if d > dmax 
                dmax = d; 
                idx = k; 
            end 
        end 
        %If max distance is greater than epsilon, recursively simplify 
        if dmax > epsilon 
            recList1 = dpSimplifyRec(ptList(1:idx,:), idx); 
            recList2 = dpSimplifyRec(ptList(idx:n,:), n-idx+1); 
            reducedPtList = [recList1;recList2(2:end,:)]; 
        else 
            reducedPtList = ptList([1,n],:); 
        end 
    end 
 
    function d = perpendicularDistance(pt, lineNode) 
        ...... 
    end 
end 

Code 10 Douglas-Peucker algorithm to simplify a line 

 
 

function [compressedRelHeights, idx, precisionLoss, dpCount] = compressLine  
      (relHeights, longitudes, indexes, surfArea, approxPrecisionLoss, allowedDiff, isUpper) 
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    ...... 
   % 1) when decreasing tolerance (and thus precision) we continue until precision is 
smaller than acceptable precision loss 
   % 2) when initial compression and the loss is bigger than acceptable 
     % 2.1) and bigger than max allowed, then we decrease tolerance 
     % 2.2) but smaller than max allowed then we end the while loop 
   % We give a small buffer of 1.5x the acceptable precision loss on the initial compression 
   condition = true; 
   while (condition) 
       [tmpCompressedRelHeights, tmpIdx] = dpSimplify(tmpCompressedRelHeights, tmpIdx, tol); 
       dpCount = dpCount + 1; 
       tmpSurfAreas = calculateSurfaceAreas(tmpCompressedRelHeights, longitudes, tmpIdx); 
       if(isUpper); tmpSurfArea = tmpSurfAreas(1); else; tmpSurfArea = tmpSurfAreas(2); end 
       if(abs(tmpSurfArea - surfArea) < ATM_ALLOWED_DIFF) 
           tmpPrecisionLoss = approxPrecisionLoss – 0.01; 
       else 
           if(isUpper); tmpPrecisionLoss = 100 * abs(1-(tmpSurfArea/surfArea)); 
           else; tmpPrecisionLoss = 100 * abs(1-(tmpSurfArea/surfArea)); end 
       end 
       if(precisionLoss == 0 && tmpPrecisionLoss > approxPrecisionLoss) 
           if(tmpPrecisionLoss < MAX_PRECISION_LOSS_ALLOWED) 
               assignOutput(tmpCompressedRelHeights, tmpIdx, tmpPrecisionLoss); 
               return; 
           else %first compression was too much, rewind and start with a smaller tolerance 
               tol = tol/2; 
               tmpIdx = indexes; 
               tmpCompressedRelHeights = relHeights; 
               tmpPrecisionLoss = 0; 
           end 
       else 
           tol = tol*2; 
       end 
       if(tmpPrecisionLoss < approxPrecisionLoss) 
           assignOutput(tmpCompressedRelHeights, tmpIdx, tmpPrecisionLoss); 
           if(dpCount > 5) %will skip further compression to increase performance 
               condition = false; 
           end 
       else 
           condition = false; 
       end 
   end 
 
   function assignOutput(tmpCompressedRelHeights, tmpIdx, tmpPrecisionLoss) 
       ...... 
   end 
end 

Code 11 Compressing a line using Douglas-Peucker until acceptable precision is achieved 

 
 

function [compressedData] = compressData(data, approxPrecisionLoss, allowedErrorInMetresSq) 
  ...... 
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  tic %start timer 
  parfor i = 1 : totalDataLines %use parallel computing to increase performance 
      %pre compress data with radial distance: A 
      [preCompressedHeights, preCompressedIndexes] = preCompressLine( 
          smoothedHeights(:, i), longitudes(:, i), surfAreas(:, i), approxPrecisionLoss); 
 
      %compress upper part: B 
      tmpUpper = preCompressedHeights; 
      tmpUpper(tmpUpper<0) = 0; 
      [tmpCompressedUpper, tmpUpperIdx, diffUpper(1, i), dpCountUpper(1, i)] = compressLine(  
          tmpUpper, longitudes(:, i), preCompressedIndexes, upperSurfAreas(i), 
approxPrecisionLoss, allowedErrorInMetresSq, true); 
 
      idxUpper = tmpUpperIdx(tmpCompressedUpper>0); 
 
      %compress lower part: B 
      ...... 
 
      %combine upper and lower part through the extracted indexes: C 
      tmpHeights = smoothedHeights(:, i); 
      indexes = zeros(dataPointsInLine, 1); 
      indexes(idxLower) = idxLower; 
      indexes(idxUpper) = idxUpper; 
      idx{i} = indexes(indexes > 0); 
      compressedRelHeights{i} = tmpHeights(idx{i}); 
  end 
 
  % calculate the total size of the result (total data points): D 
  totalSize = 0; 
  for i = 1 : data.totalDataLines 
      totalSize = totalSize + size(idx{i}, 1); 
  end 
 
  % calculate the indexes in an adjusted 1-dimensional form: D 
  j = 1; 
  for i = 1 : size(data.relHeights, 2) 
      compressedData.indexesAdj(j:(j-1) + size(idx{i}, 1), 1) = (i-1) * 540 + idx{i}; 
      j = j + size(idx{i}, 1); 
  end 
 
  % combine the output struct 
  ...... 
end 

Code 12 Pre-compress (a), compress upper, lower parts (b), merge compressions (c) 
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Appendix 2 – tables 

Algorithm Smoothing	factor Haussdorff	diffMed Hausdorff	diffAvg Hausdorff	diffMax Pearson	Inv	diffMed Pearson	Inv	diffAvg Pearson	Inv	diffMax SSD	diffMed SSD	diffAvg SSD	diffMAx

5MA 0.00040 0.00260 0.00284 0.01360 0.00248 0.00284 0.00109 0.00160 0.00171 0.00425 3.57529

7MA 0.00029 0.00300 0.00339 0.01643 0.00293 0.00337 0.00129 0.00189 0.00203 0.00517 12.01419

10MA 0.00020 0.00360 0.00397 0.01888 0.00328 0.00378 0.00147 0.00213 0.00228 0.00602 28.59351

14Ma 0.00021 0.00420 0.00469 0.01888 0.00357 0.00407 0.00160 0.00230 0.00246 0.00644 67.43193

Lowess	3 0.00200 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Lowess	5 0.00071 0.00157 0.00185 0.01140 0.00142 0.00157 0.00058 0.00091 0.00095 0.00203 0.05324

Lowess	7 0.00045 0.00212 0.00239 0.01266 0.00197 0.00222 0.00083 0.00127 0.00134 0.00306 0.54020
Lowess	10 0.00027 0.00275 0.00308 0.01600 0.00262 0.00300 0.00118 0.00169 0.00181 0.00451 4.57502

Lowess	13 0.00023 0.00294 0.00329 0.01749 0.00283 0.00325 0.00128 0.00183 0.00196 0.00502 8.05597

Loess	3 0.00200 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Loess	5 0.00200 0.00045 0.00058 0.00455 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Loess	7 0.00092 0.00130 0.00150 0.00980 0.00120 0.00131 0.00047 0.00079 0.00079 0.00168 0.01365

Loess	10 0.00051 0.00194 0.00223 0.01231 0.00192 0.00216 0.00080 0.00124 0.00130 0.00304 0.44372

Loess	13 0.00042 0.00217 0.00249 0.01459 0.00217 0.00246 0.00092 0.00140 0.00148 0.00351 1.19252

Sgolay	(10per,	9deg) 0.00200 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Sgolay	(20per,	11deg) 0.00076 0.00120 0.00146 0.01104 0.00163 0.00182 0.00070 0.00105 0.00110 0.00259 0.09133

Sgolay	(30per,	11deg) 0.00046 0.00160 0.00189 0.01080 0.00230 0.00261 0.00101 0.00149 0.00158 0.00376 0.81015
Sgolay	(40per,	11deg) 0.00033 0.00187 0.00218 0.01411 0.00267 0.00306 0.00121 0.00173 0.00185 0.00478 2.89923
Sgolay	(50per,	11deg) 0.00027 0.00206 0.00238 0.01305 0.00291 0.00333 0.00130 0.00188 0.00201 0.00507 4.09598
Sgolay	(60per,	11deg) 0.00023 0.00223 0.00253 0.01424 0.00305 0.00351 0.00138 0.00197 0.00211 0.00531 5.95300

Gaussian	0.5 0.00101 0.00152 0.00171 0.00947 0.00058 0.00067 0.00028 0.00042 0.00046 0.00333 0.00171

Gaussian	1.0 0.00033 0.00318 0.00354 0.01968 0.00278 0.00321 0.00135 0.00204 0.00237 0.02451 103.40797

Gaussian	1.5 0.00021 0.00375 0.00412 0.02214 0.00342 0.00395 0.00162 0.00258 0.00307 0.03584 441.47657

Gaussian	2.0 0.00017 0.00413 0.00449 0.02318 0.00371 0.00427 0.00174 0.00286 0.00348 0.04244 868.32095

Dissimilarity,	smaller	means	similar Inverse	of	correlation	coefficient,	smaller	means	similar Sum	of	squared	errors,	smaller	means	similar Coefficient	
product

 

Table 3 Smoothing comparison 
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Algorithm Smoothness Haussdorff	diffMed Hausdorff	diffAvg Hausdorff	diffMax Pearson	diffMed Pearson	diffAvg Pearson	diffMax SSD	diffMed SSD	diffAvg SSD	diffMAx Coefficient

Lowess	10	-	1 0.00027 0.00275 0.00308 0.01600 0.00262 0.00300 0.00118 0.00169 0.00181 0.00451

Lowess	10	-	2 0.00013 0.00059 0.00102 0.20704 0.00189 0.00226 0.06157 0.00004 0.00012 0.11838

Lowess	10	-	3 0.00021 0.00361 0.00379 0.01876 0.08712 0.09910 0.33718 0.00129 0.00134 0.00265

Lowess	10	-Avg 0.00020 0.00232 0.00263 0.08060 0.03054 0.03479 0.13331 0.00101 0.00109 0.04185 6.48620

Sgolay	40/11	-1 0.00033 0.00187 0.00218 0.01411 0.00267 0.00306 0.00121 0.00173 0.00185 0.00478

Sgolay	40/11	-2 0.00016 0.00034 0.00043 0.03440 0.00131 0.00163 0.05752 0.00003 0.00005 0.01976

Sgolay	40/11	-3 0.00028 0.00318 0.00335 0.01896 0.08840 0.10070 0.32233 0.00131 0.00136 0.00260

Sgolay	40/11	-	Avg 0.00025 0.00180 0.00199 0.02249 0.03079 0.03513 0.12702 0.00102 0.00108 0.00905 0.28213

Sgolay	50/11	-1 0.00027 0.00206 0.00238 0.01305 0.00291 0.00333 0.00130 0.00188 0.00201 0.00507

Sgolay	50/11	-2 0.00015 0.00037 0.00047 0.04070 0.00158 0.00198 0.07327 0.00003 0.00008 0.02981

Sgolay	50/11	-3 0.00021 0.00349 0.00365 0.01961 0.09635 0.11033 0.40427 0.00142 0.00147 0.00306

Sgolay	50/11	-	Avg 0.00021 0.00197 0.00217 0.02445 0.03361 0.03855 0.15961 0.00111 0.00119 0.01265 0.74705

Sgolay	60/11	-1 0.00023 0.00223 0.00253 0.01424 0.00305 0.00351 0.00138 0.00197 0.00211 0.00531

Sgolay	60/11	-2 0.00013 0.00044 0.00057 0.05479 0.00247 0.00316 0.13913 0.00005 0.00015 0.09330

Sgolay	60/11	-3 0.00017 0.00371 0.00388 0.02014 0.10158 0.11643 0.42690 0.00149 0.00155 0.00316

Sgolay	60/11	-	Avg 0.00018 0.00213 0.00233 0.02972 0.03570 0.04103 0.18914 0.00117 0.00127 0.03392 3.64350

Dissimilarity,	smaller	means	similar Inverse	of	correlation	coefficient,	smaller	means	similar Sum	of	errors,	smaller	means	similar

 
Table 4 Smoothing comparison across 3 different datasets
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Appendix 3 – smoothing comparisons 

 

Figure 24 Savitzky-Golay filter on sample profile 

 

Figure 25  Moving average on sample profile 
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Figure 26 Local regression with 1st degree polynomial on sample profile 

 
Figure 27 Local regression with 2nd degree polynomial on sample profile 
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Appendix 4 – visualizations 

 

Figure 28 Sample road before and after compression (with a rate of 12.7x) 

 

 

Figure 29 2D scatter plot of height and light 
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Figure 30 Using high-edge method to calculate relative heights 

 

 

Figure 31 Using simple-edge method to calculate relative heights 
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Figure 32 Visualisation comparison of simple and high edge method 

 


