
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Jaanika Raik 204388IAPM

Applying MCMC Methods in Stellar
Spectroscopy to Derive Physical Parameters of

Hotter (Early-Type) Stars

Master's thesis

Supervisor: Colin Folsom

PhD

Mihkel Kama

PhD

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Jaanika Raik 204388IAPM

MCMC MEETODITE RAKENDAMINE
TÄHESPEKTROSKOOPIAS KÕRGE

TEMPERATUURIGA (VARAJAST TÜÜPI)
TÄHTEDE FÜÜSILISTE PARAMEETRITE

HINDAMISEKS
magistritöö

Juhendaja: Colin Folsom

PhD

Mihkel Kama

PhD

Tallinn 2023

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Jaanika Raik

08.05.2023

3

Abstract

Stellar spectra are useful to determine the physical parameters of stars, for example

effective temperature. In this thesis MCMC methods are used to estimate stellar

parameters.

The goal of the thesis is to assess the quality of MCMC methods in determining the

physical parameters of early-type (hot) stars. The sample for this thesis consists of two

stars: KELT-9 and HD 235349. The quality metrics are: reduced chi2, time

consumption, proximity to literature values obtained in previous works, acceptance

fraction, and autocorrelation time.

The main parts of the project are the Fortran-language Zeeman spectrum synthesis

program code and the Python-language wrap-up program code that has an MCMC

implementation. The main goal of this thesis is to compare the quality of this wrap-up

compared to a Zeeman version that uses a chi2 minimization method instead of MCMC

methods.

The optimal configuration for KELT-9 was achieved with the following set of

hyperparameters: a wavelength range of 5100-5200 Å, a fixed continuum normalization,

50 walkers, 2000 steps, and an epsilon coefficient of 1.0. Similarly, for HD 235349, the

ideal hyperparameters consisted of a wavelength range of 5000-5100 Å, a fixed

continuum normalization, 100 walkers, 2000 steps, and an epsilon coefficient of 1.0.

The use of continuum normalization as a free parameter was found to be unsatisfactory

and yielded inconsistent results for these wavelength ranges. Additionally, Amdahl's

law was employed to assess computation and real-time usage, and the results indicated

that the project was effectively parallelized. This demonstrates the effectiveness of

MCMC for analyzing metal lines and deriving stellar parameters.

This thesis is written in English and is 57 pages long, including 6 chapters, 21 figures

and 18 tables.

4

Annotatsioon

MCMC meetodite rakendamine tähespektroskoopias kõrge

temperatuuriga (varajast tüüpi) tähtede füüsiliste

parameetrite hindamiseks

Tähtede spektrid on kasulikud tähtede füüsiliste parameetrite, näiteks

efektiivtemperatuuri, määramiseks. Selles lõputöös kasutatakse MCMC meetodeid

tähtede parameetrite hindamiseks.

Lõputöö eesmärk on hinnata MCMC meetodite kvaliteeti varajast-tüüpi (kõrge

temperatuuriga) tähtede füüsikaliste parameetrite kindlakstegemisel. Selle lõputöö valim

koosneb kahest tähest: KELT-9 ja HD 235349. Kvaliteedinäitajateks on: vähendatud

hii-ruut, ajakulu, lähedus varasemates töödes saadud kirjanduslikele väärtustele,

aktsepteerimisosakaal ja autokorrelatsiooni aeg.

Projekti kõige tähtsamad osad on Fortrani-keelne Zeemani spektrisünteesiprogrammi

kood ja Pythoni-keelne ümbriskood, milles on implementeeritud MCMC. Selle lõputöö

peamine eesmärk on võrrelda selle ümbriskoodi kvaliteeti võrreldes Zeemani

versiooniga, mis kasutab MCMC meetodite asemel hii-ruut minimeerimismeetodit.

KELT-9 parim konfiguratsioon saavutati järgmise hüperparameetrite kombinatsiooniga:

lainepikkuse vahemik 5100–5200 Å, fikseeritud kontiinumi normaliseerimine, 50

walkerit, 2000 sammu ning epsiloni koefitsient 1,0. Sarnaselt olid parimad

hüperparameetrid HD 235349 puhul lainepikkuse vahemik 5000–5100 Å, fikseeritud

kontiinumi normaliseerimine, 100 walkerit, 2000 sammu ja epsiloni koefitsient 1,0.

Kontiinumi normaliseerimise kasutamine vaba parameetrina osutus nendes

lainepikkuste jaoks probleemseks ja andis ebakõlalisi tulemusi. Lisaks kasutati Amdahli

seadust teadusarvutuste paralleelsuse hindamiseks ning tulemused näitasid, et projekt oli

edukalt paralleeliseeritud. See demonstreerib MCMC efektiivsust metalliliste

spektrijoonte analüüsimisel ja tähtede parameetrite arvutamisel.

5

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 57 leheküljel, 6 peatükki, 21

joonist, 18 tabelit.

6

List of abbreviations and terms

MCMC Markov Chain Monte Carlo

vCPU Virtual Central Processing Unit

Å Ångström, wavelength unit (0.1 nm)

HD Henry Draper star Catalogue

UHJ Ultra-Hot Jupiter

Teff Effective temperature

log g Logarithmic surface gravity

v sin i Projected rotational velocity

Vr Radial velocity

metal Any chemical element except hydrogen and helium

metallicity Chemical abundance of metal relative to the Solar abundance

7

Table of Contents

1 Introduction...14

1.1 Related work...14

1.1.1 Implementations based on chi-square method...14

1.1.2 Implementations based on MCMC..16

1.1.3 Spectral synthesis codes..18

1.2 Contributions..19

1.3 Problem statement...19

1.4 Structure of the thesis...20

2 Stellar physics and Zeeman stellar spectrum synthesis...21

2.1 Stellar physics...21

2.1.1 Stellar characteristics...21

2.1.2 Stellar spectroscopy...22

2.2 Zeeman stellar spectrum synthesis...25

2.2.1 Precomputed datasets..25

2.2.2 Parallelization..26

2.2.3 Involved parameters..27

2.2.4 Structure and main functions...28

2.2.5 Interaction with the wrap-up Python code...29

2.3 Datasets...30

3 Markov Chain Monte Carlo methods..32

3.1 Bayes theorem...32

3.2 MCMC methods in general...33

3.2.1 Markov chains...33

3.2.2 Monte Carlo methods..34

3.2.3 MCMC methods and their benefits...36

3.3 Metropolis-Hastings algorithm...36

3.4 Ensemble of walkers and emcee...37

3.4.1 Affine invariance...37

8

3.4.2 Stretch moves..38

3.4.3 Startingpoints of the walkers...40

3.5 MCMC diagnostics...41

3.5.1 Autocorrelation time..41

3.5.2 Acceptance fraction...42

4 Workflow...43

4.1 Improving and editing the project...43

4.2 Testing combinations of hyperparameters..44

4.3 Determining the correlation between the parameters...51

4.4 Chi2 method based experiment...51

4.5 Profiling..53

5 Discussion..56

5.1 Reduced chi2 and time consumption as quality metrics.......................................56

5.2 Proximity to literature values and uncertainties as quality metrics......................58

5.3 Autocorrelation time and acceptance fraction..59

5.4 Time consumption and parallelization..61

5.5 Comparison with chi-square method..62

5.6 Correlation between the stellar parameters...63

5.7 Visual comparison of convergence...64

5.8 Comparison of the datasets...67

6 Summary..69

 References..71

 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis..73

 Appendix 2 – Directory tree...74

 Appendix 3 – Project code and results...77

 Appendix 4 – Full profiling results...78

9

List of Figures

Figure 1: Hertzsprung–Russell diagram [9]..22

Figure 2: Amdahl’s Law [2]..27

Figure 3: Example of a transition graph and matrix [13]..34

Figure 4: Importance sampling [18]..35

Figure 5: Metropolis-Hastings algorithm [3]...37

Figure 6: Example of a highly anisotropic distribution [8]...38

Figure 7: A single serial stretch move [3]...39

Figure 8: Parallel stretch move update [3]...40

Figure 9: Resulting plot of walkers with 50 walkers and 1000 steps. Values for each

model parameter are shown as a function of the step in the chain, with a line for each

walker..45

Figure 10: Plot of walkers...48

Figure 11: Corner plot...49

Figure 12: Spectrum plot...50

Figure 13: Text file..50

Figure 14: Correlation matrices between physical parameters for KELT-9 (left) and HD

235349 (right) if the continuum normalization is free..51

Figure 15: Spectrum of KELT-9 from 5100-5200 Å..52

Figure 16: Call graph of Zeeman code..55

Figure 17: Correlation matrices between physical parameters for KELT-9 (left) and HD

235349 (right) if the continuum normalization is fixed..63

Figure 18: Corner plot of the experiment for KELT-9 with wavelength range 5000-5100

Å, fixed continuum normalization, 1.0 as epsilon coefficient,100 walkers and 500 steps

...64

Figure 19: Corner plot of experiment with wavelength range 5000-5100 Å, fixed

continuum normalization, 1.0 as epsilon coefficient, 100 walkers and 2000 steps.........65

Figure 20: Walkers of experiment with wavelength range 5000-5100 Å, fixed

continuum normalization, 1.0 as epsilon coefficient, 100 walkers and 2000 steps.........66

10

Figure 21: Corner plot of experiment with wavelength range 5100-5200 Å, fixed

continuum normalization, 1.0 as epsilon coefficient,100 walkers and 2000 steps..........67

11

List of Tables

Table 1. Stellar classification and the corresponding ranges of effective temperature in

Kelvins [11]...21

Table 2. Some examples of the spectroscopic lines..25

Table 3. Stellar parameters in Zeeman code..27

Table 4. Startingpoints and epsilons of the walkers..45

Table 5. Values in the set of experiments..46

Table 6. Time consumption of the sets of experiments. Real time refers to the duration

between the beginning and end of a call, while user time pertains to the quantity of CPU

time utilized by the user-mode code in a given process..48

Table 7. Reduced chi2 values of the four experiments based on the chi2 method..........52

Table 8. Extract of flat profile of Zeeman code (full profile available in Appendix 4). .53

Table 9. Extract of graph profile of Zeeman code (full profile available in Appendix 4)

...54

Table 10. Reduced chi2 values and time in seconds for KELT-9 if continuum

normalization is fixed. Wavelength range (Å) and epsilon coefficient (rows) / number of

walkers and their length (columns). Winning model with the best hyperparameters is

marked with green...56

Table 11. Reduced chi2 values for KELT-9 if continuum normalization is free.

Wavelength range (Å) and epsilon coefficient / number of walkers and their length.

Winning model with the best hyperparameters is marked with green............................56

Table 12. Reduced chi2 values and time in seconds for HD 235349 if continuum

normalization is fixed. Wavelength range (Å) and epsilon coefficient / number of

walkers and their length. Winning model with the best hyperparameters is marked with

green..57

Table 13. Reduced chi2 values for HD 235349 if continuum normalization is free.

Wavelength range (Å) and epsilon coefficient / number of walkers and their length.

Winning model with the best hyperparameters is marked with green............................57

12

Table 14. Comparison of literature values of physical parameters of KELT-9 [5] and the

values produced in this work of the winning model..58

Table 15. Comparison of literature values of physical parameters of HD 235349 [7] and

the values produced in this work...59

Table 16. Speedup computed as the relationship between real and user time (in seconds)

...61

Table 17. Reduced chi2 values of the four experiments. Comparison between average

and best of MCMC experiments with 2000 steps and chi2-based experiments..............62

Table 18. Directory structure of the project..74

13

1 Introduction

Stellar physicists use spectroscopic observations, and fitting models to those

observations, to evaluate stellar parameters, for example effective temperature. The

observed spectrum consists of one-dimensional observations: wavelength on the x-axis

and flux (intensity) on the y-axis. The goal is to match the observed points with a

function that is as close to the empirical values as possible to get the most accurate

estimates according to the model.

Usually, the spectral fitting was done using classical statistical methods [16], such as

chi2 minimization. Markov Chain Monte Carlo (MCMC) methods are potentially useful

because they eliminate the human factor: continuum fit is not done anymore by hand

[7].

This thesis explores this automating alternative, testing and improving the wrap-up

Python code [7] that performs an MCMC analysis using the Fortran-language spectrum

synthesis code Zeeman [4]. This is tested on a sample of two early-type stars (hot stars)

[5, 7].

1.1 Related work

There is a large body of literature on analysis of stellar spectra. Different previous

works can be considered related to this thesis. This subsection provides a selection of

repesentitive older works that are based on either classical statistics, newer MCMC-

based projects or stellar spectrum synthesis program codes other than Zeeman.

1.1.1 Implementations based on chi-square method

Older works in this field have relied on the implementation of classical statistical

methods. This is based on chi-square minimization and non-linear least squares

methods. The goal is to minimize the chi square value with the least-squares method.

14

1.1.1.1 Analysis of ELODIE spectrograph observations

One of the older examples dates back to 1998 [16] and is based on the results of

ELODIE spectrograph. The approach involves matching the spectrum of the star of

interest against a collection of spectra taken with the same spectrograph, typically at a

signal-to-noise ratio of 100. A library was constructed for this purpose, comprising

spectra from 211 stars specifically chosen to cover the range of parameters observed in

stars belonging to the halo, thick disk, and old thin disk of the Milky Way. These

parameters include effective temperature (Teff) within the range of 4000K to 6300K,

surface gravity (log g) ranging from 0.6 to 4.7, and metallicity ([Fe/H]) ranging from -

2.9 to 0.35. Since this work is old, the line data that is used there is also not up to

current knowledge, therefore this work used observed templates rather than synthetic

model spectra. However the precision of the study was limited by the ability to

precisely characterize the template spectra.

1.1.1.2 Fingerprints of giant planets among Herbig stars

An important more recent example is the 2012 analysis [27] that was followed by the

2015 analysis [6], in which anomalies occurring in stars of medium mass called Herbig

stars were studied. These are young stars that are still surrounded by a disk of material.

A correlation between the presence of a cavity in the protoplanetary disk and the

scarcity of refractory chemical elements (such as titanium and chromium) was

presented.

In [27] Zeeman synthetic spectra was fit to the observed spectra. Wide spectral ranges

with many metal lines were used. Effective temperature, surface gravity and distance,

luminosity, mass, radius, age, pre-main sequence age and presence of a magnetic field

were derived.

Zeeman-code based chi2 fitting routine that used Levenberg–Marquardt algorithm as a

minimization method worked fairly well if the right wavelength region was chosen. The

main drawbacks of the work were large uncertainties and not considering covariances

between the different physical parameters of the stars.

15

1.1.2 Implementations based on MCMC

One more computationally advanced way to analyze stellar spectra is using MCMC to

estimate the stellar parameters.

1.1.2.1 Analyzing WASP-33b

One example of MCMC-based analysis is [19] from year 2020. In that work,

atmospheric composition of the giant planet WASP-33b was studied.

Ultra-Hot Jupiters (UHJs) are giant exoplanets that experience extreme heat due to the

intense radiation from their host stars. As a result, they offer an excellent opportunity to

study the chemistry and physics of planetary atmospheres in extreme conditions.

Using the CARMENES and HARPS-N spectrographs, the authors were able to observe

four transits of the UHJ WASP-33b that orbits around the early-type host star WASP-33

(spectral class A5). After adjusting for the Rossiter-McLaughlin effect (refers to the

radial velocity variations of a star caused by the planet's orbit) and centre-to-limb

variation (refers to the change in the observed brightness of a star as the observer's line

of sight moves from the center of the star's disk to its limb, or edge) , they could identify

the Balmer Hα, Hβ, and Hγ transmission spectra of the planet's atmosphere. The

combined Hα transmission spectrum revealed a significant absorption depth of

0.99±0.05%, indicating that the line probes neutral hydrogen atoms in the high-altitude

thermosphere (the outermost layer of a star's atmosphere). While the detection of the

Balmer lines was definitive, the strengths of the lines were impacted by the stellar

pulsation. Modeling and correction of the spectral pulsation feature in the future will

help to better constrain the line strength.

The PAWN model was used, assuming the atmosphere to be hydrodynamic and in local

thermodynamic equilibrium, to fit the observed Balmer lines. The model fit provided a

thermospheric temperature of T=12200−1000
+1300 K and a mass-loss rate

M=1011.8− 0.5
+0.6

g s−1 . The high mass-loss rate is in line with theoretical predictions for

UHJs that orbit early type stars.

The Balmer lines had been detected in five UHJs to date (KELT-9b,

KELT-20b/MASCARA-2b, WASP-12b, WASP-121b, and WASP-33b). Balmer

absorption is likely a typical spectral feature in the transmission spectra of UHJ as their

16

hot atmospheres are intensely irradiated by their host stars, which could produce a large

number of hydrogen atoms in the excited state. However, for certain UHJs, such as

those with low atmospheric scale heights or those with the Rossiter-McLaughlin effect

detecting the Balmer features could be challenging. The authors conclude that extending

observations to a larger sample of UHJs will enable systematic study of the Balmer lines

and thermospheric conditions. This demonstrates the use of MCMC methods for

spectroscopic analysis but this thesis focuses on deriving a wider range of parameters

for stars rather than two parameters for planets.

1.1.2.2 Analyzing HD 235349

In 2021, a particular star called HD 235349 was studied [7]. This time, MCMC methods

were introduced, which was beneficial for two reasons:

 It is convenient to describe the covariance of the studied parameters (effective

temperature and logarithmic gravity) using MCMC.

 MCMC allowed ignoring insignificant nuisance parameters.

The solution was based on Zeeman code and the Python-language wrap-up code also

used in this thesis.

At first an analysis of metal lines was done with a standard chi2 method. The errorbars

were large and the covariance between the stellar parameters was poor. Then an

MCMC-based Balmer line analysis was used, which produced better errorbars for

effective temperature and surface gravity values. An advantage of the MCMC analysis

here was that a polynomial approximation for the continuum was included. Then the

polynomial coefficients could be treated as nuisance parameters and marginalized over,

to get more precise values for effective temperature and surface gravity.

The continuum normalization was limited by Balmer lines that were too broad and

caused uncertainty. In some stars there are not even good Balmer lines, for example

Herbig stars, very hot stars or very cool stars, so this method is incomplete. Also,

Balmer lines do not give information about chemical abundances. Metal lines are

needed to estimate them.

17

The authors concluded that HD 235349 is not suitable for studying exoplanets, but as a

rare binary star experiencing eclipses, it could instead help study high-temperature stars

with chemical composition anomalies. In this thesis, the physical parameters of HD

235349 (including metallicity) will be estimated.

1.1.3 Spectral synthesis codes

There are multiple other stellar spectrum synthesis codes than Zeeman and its Python

wrap-up code studied in this thesis. They uses different methods and have slightly

different purposes. Here two alternative examples are presented.

1.1.3.1 FASMA and MOOG

One example of another stellar spectrum synthesis program is the FASMA code [14].

The main difference from Zeeman code is that FASMA is specialized in lower-

temperature stars. Similarly to the wrap-up code in this thesis, FASMA is a Python

wrap-up code around Fortran-based code MOOG [20].

MOOG has an ability to do on-line graphics meaning that the plotting commands are

given within the FORTRAN code. The running options of MOOG include abfind that

applies a method of adjusting species abundances to produce calculated equivalent

widths that align with the observed values obtained from other software programs and

synth that computes a set of trial synthetic spectra and matches them to an observed

spectrum if the user asks for it. [20]

1.1.3.2 BACCHUS

Another stellar spectrum synthesis program code is BACCHUS (Brussels Automatic

Code for Characterizing High accUracy Spectra) [17]. BACCHUS is a wrap-up around

Fortran radiative transfer code Turbospectrum [29]. It is difficult to measure elements

with weak and blended spectral features and they require specialized analysis methods

to measure their chemical abundances precisely. This code has a unique feature: it uses

four different methods to compare the observed and synthetic spectra within the chosen

range and includes an abundance measurement for the following four methods:

 The “chi2” method: determines an abundance by minimizing the squared

differences between synthetic and observed spectra

18

 The “syn” method: looks for the abundance that makes the difference between

the synthetic and the observed points zero

 The “eqw” method: determines the abundance needed to match the equivalent

widths of the synthetic spectra to the observations

 The “int” method: measures abundances by matching the line core in the

synthetic and observed spectra

1.2 Contributions

In this thesis, the wrap-up Python code is tested for the first time in an automatized way.

MCMC methods have become not that uncommon recent years, however few studies

have used MCMC methods to derive stellar parameters from observed spectra, and

almost all previous works were specialized on later-type stars unlike this thesis that is

specialized on earlier type stars. MCMC was never used together with Zeeman on metal

lines before [7] and, in this thesis, it gets a proper hyperparameter choice assessment for

the first time. For the first time, metal lines are used instead of Balmer lines. Metal lines

are beneficial because they provide diverse information about chemical abundances and

precise rotational velocity values.

Also, the Zeeman code will be profiled for the first time, at least systematically. This is

needed to assess the quality of past efforts to optimize and parallelize Zeeman.

As a side product, the structure of the project will get a proper documentation. Its folder

structure will be described in Appendix 2.

1.3 Problem statement

The goal of this thesis is to run a set of experiments on the MCMC implementation and

compare the results to the ones using the chi-square method. Additionally, the wrap-up

Python code [7] will be improved and Zeeman code will be profiled.

In this thesis, the results of the the following hyperparameter combinations are

compared that differ by the following aspects:

19

 Status of each parameter: free / fixed / unspecified

 Number of MCMC walkers

 Length of each chain

 Wavelength range

 Initial distributions of the parameters

I will compare both accuracy and efficiency of several combinations. Also, the MCMC

results will be compared to results generated by the chi-square method.

The testing will be done using spectral observations of two different stars: KELT-9 and

HD 235349. This initial data was collected before the thesis [5, 7].

1.4 Structure of the thesis

The thesis is structured as follows. Chapter 2 provides a brief overview of stellar

spectroscopy, describes the Zeeman spectrum synthesis code, and presents the observed

datasets used in this thesis. Chapter 3 gives an overview of the Markov Chain Monte

Carlo class of Bayesian methods, and their emcee implementation in Python. Chapter 4

describes the process how the results are obtained. Chapter 5 analyzes the results.

Chapter 6 concludes the thesis and proposes some future prospects.

20

2 Stellar physics and Zeeman stellar spectrum synthesis

Stars differ by many characteristics including age, mass and temperature. Astronomers

have developed different methods to assess those parameters. The quantitative analysis

of stellar spectra is one of the most powerful methods. This chapter introduces stellar

spectroscopy and characteristics of stars and Zeeman code that will be given datasets to

elaborate.

2.1 Stellar physics

2.1.1 Stellar characteristics

Stars are divided into spectral classes based on their temperature. The highest

temperature stars are O-stars and the lowest are marked with an M-letter [10]. The table

below summarizes the temperature ranges for the corresponding letters.

Table 1. Stellar classification and the corresponding ranges of effective temperature in Kelvins [11]

Spectral class Effective temperature

O 28,000K to 50,000K

B 10,000K to 28,000K

A 7,500K to 10,000

F 6,000K to 7,500K

G 4,900K to 6,000K

K 3,500K to 4,900K

M 2,000K to 3,500K

Each spectral class is divided into 10 subclasses from hottest to coolest: from 0 to 9.

Stars with smaller index are referred to as early-type stars and the ones with larger index

as late-type stars. For example, A0-star is an early A-type star and A9-star is a late A-

type star. The spectral class of the Sun is G2. [10]

21

Hertzsprung–Russell (H–R) diagram shows the temperature of the star on x-axis and its

luminosity on y-axis.

Most stars on the diagram are main sequence stars meaning that they are in the main

phase of their lifetime.

The evolution of a star depends on its mass. Lower mass stars have longer lifespans. For

example, on Figure 2, Sun has longer lifespan than more massive Sirius but shorter

lifespan than less massive Barnard’s star.

2.1.2 Stellar spectroscopy

One of the main methods used in stellar physics is spectroscopy. The spectrum can tell a

lot about the star's characteristics, for example its mass, temperature and its

surroundings, for example planets and protoplanetary disk.

Spectral fitting is a process where the synthetic spectrum is matched to the observed

(empirical) spectrum in order to determine model parameters. It helps to estimate

22

Figure 1: Hertzsprung–Russell diagram [9]

multiple parameters, including effective temperature, radial velocity, projected

rotational velocity, surface gravity and microturbulence.

There are different types of temperature measures. Effective temperature is the

temperature the star would have if it were a perfect blackbody, based on the total

luminosity it emits. This temperature is a crucial global characteristic representing the

surface temperature of the star. It is calculated from the Stefan-Boltzmann law that

states that the total radiation emitted by a blackbody is proportional to the fourth power

of its temperature. [10]

the Stefan-Boltzmann law [10] can be stated as follows:

L=4 π R2 σ T 4

where L is the total energy radiated per unit time by a spherical blackbody of radius R

and temperature T, and σ=5.67 x 10−8 W /m2 K4 is the Stefan-Boltzmann constant.

Abundance analysis is an important part of stellar spectroscopy. Every atomic and

molecular species has unique wavelength lines that indicate its presence. In astronomy,

all elements except hydrogen and helium are called metals. In this thesis, metallicity is

defined as the relationship between metal abundance and hydrogen abundance.

There are two types of spectral lines: absorption lines and emission lines. Absorption

lines appear as dark lines in the spectrum, caused by the absorption of specific

wavelengths of light by atoms in the outer layers of the star's atmosphere. The

wavelengths of the absorption lines correspond to the energy levels of the atoms and

molecules present in the star, and can be used to identify the chemical elements present

in the star's atmosphere. The strength of absorption lines can be used to infer the

abundance of that element in the star. Emission lines, on the contrary, appear as bright

lines in the spectrum, caused by the emission of specific wavelengths of light by excited

atoms in the star's atmosphere. These emission lines also correspond to the energy

levels of the species present, and can be used to determine the temperature and chemical

composition of the emitting gas. [10]

Three different phenomena cause line broadening [10]:

23

 Natural broadening: Even if they are stationary and unconnected to other atoms,

spectral lines cannot have an infinitely precise shape. This is due to Heisenberg's

uncertainty principle, which implies that the more limited the time available for

an energy measurement, the greater the inherent imprecision of the outcome.

 Doppler broadening: Doppler broadening occurs due to the thermal motion of

atoms or molecules in a gas. As atoms move towards or away from an observer,

the frequency of the radiation they emit or absorb is shifted, causing the spectral

lines to appear broader. The degree of broadening depends on the temperature

and velocity of the gas and can provide information on these properties. In

addition to thermal Doppler broadening, there are other microscopic processes

that can cause spectral line broadening, such as microturbulent broadening,

which arises due to small-scale velocity fluctuations in the gas. On a larger scale,

global Doppler broadening can occur due to the rotational motion of a star,

causing the spectral lines to appear broader. Rotational broadening is an

important effect in astronomy, as it can be used to determine the rotation rate of

a star and other properties of its atmosphere.

 Pressure and collisional broadening: When an atom collides with a neutral atom

or experiences a close encounter with the electric field of an ion, its orbitals can

be disrupted. The outcome of such collisions is known as collisional broadening.

On the other hand, the cumulative impact of the electric fields of a large number

of closely spaced ions is referred to as pressure broadening.

Opacity is a measure that shows how much light is being absorbed or scattered. It can

result in a decrease in the intensity of light emitted by the star at certain wavelengths,

which produces dark lines in the spectrum. These spectral lines can reveal important

information about the composition, temperature, and other properties of the star's

atmosphere. [10]

2.1.2.1 Important spectral lines

Every atom and even molecule has unique absorption lines. This subsection introduces

examples of fingerprints of specific chemical elements.

24

The best known lines in spectroscopy are Balmer lines: a series of spectral emission

lines in the visible region of the hydrogen atom's spectrum. The Balmer series includes

several lines, such as Hα (6562.81), Hβ (4861.34), Hγ (4340.48), Hδ (4101.75) and so

on, which correspond to transitions between the excited states and the second energy

level of the hydrogen atom. [10]

In this thesis, it is chosen to focus on metal lines, and the wavelength ranges are chosen

in a region of the spectrum where A-type stars have a relatively high density of strong

metal lines: 5000-5100 Å and 5100-5200 Å.

The following table presents the beginning of the wavelength range used in this thesis.

Table 2. Some examples of the spectroscopic lines

Line Wavelength (Å)

Fe 2 5000.7304

Ca 2 5001.4790

Fe 1 5001.8630

Fe 2 5001.9529

2.2 Zeeman stellar spectrum synthesis

Zeeman is a Fortran-based stellar spectrum synthesis program. Current Zeeman

program code (Zeeman2) is an updated version written in Fortran95 of an older

Fortran77 program [4, 28]. The motivation of Zeeman was not to map magnetic field or

abundances in a detailed way, but instead to get approximate models of both [4]. The

code has a built-in fitting mechanism that is based on classical statistical methods: least-

squares method and chi-square method [27].

Zeeman code is specializing mainly on earlier type stars. The stars should also be in the

main sequence.

2.2.1 Precomputed datasets

Zeeman is using the results of another program named Atlas9 [22]. It is an atmosphere

model library. For this thesis, the program is not run separately but is using already

25

precomputed results that are stored in .dat files. Each file is specialized on a different

atmosphere layer starting from the highest. The files are divided into five columns:

 column mass - the mass above the given atmosphere layer (g/cm2)

 effective temperature (K)

 electron number density - number of electrons not attached to atoms (cm-3)

 ion number density - number of ionized atoms (cm-3)

 mass density (g/cm3)

The thesis project also contains MARCS folder. It is similar to Atlas9 but is currently

not used because it is designed for cooler stars. It will probably become important in

the future when the project will be extended to a wider temperature range.

In addition to Atlas9, Zeeman is using data from VALD (The Vienna Atomic Line Data

Base) [21]. The database contains useful data regarding atomic transitions that have a

significant impact on absorption in the spectra of stars. In this thesis, the most important

data about each absorption line includes: the element and its ionization status (for

example “Fe 1” is neutral iron and “Fe 2” is ionized iron), the wavelength of the line in

Å (1 Å = 0.1 nm), oscilator strength (unitless logarithmic quantity) and the excitation

potentials (energies above the ground state) for the lower and upper levels of the

transition (in eV). This data is necessary for calculating absorption in the modeled

spectra and is located inside the file vlines.dat included in this project.

2.2.2 Parallelization

Spectral line synthesis is characterized as an “embarrassingly parallel” problem. The

possibility to parallelize every specific wavelength makes the program very granular.

The step size between two wavelengths is chosen to be 0.01 Å = 0.001 nm by default.

[4]

The speedup of Zeeman code can be described by Amdahl’s law [4, 26]. It expresses a

maximum speedup achievable by utilizing many processors in parallel. Maximum

speedup S with P processors is equal to

26

S= 1

F+ 1− F
P

where F is the sequential fraction of the calculation. The following figure illustrates

how the maximum speedup of the program depends on the parallelizable fraction.

2.2.3 Involved parameters

Zeeman estimates different parameters of the star using the given spectrum. This

subsection gives a brief overview of them.

Table 3. Stellar parameters in Zeeman code

Short name Name / description Unit Included?

Vr Radial velocity cm/s yes

vsini Projected rotational velocity cm/s yes

Vmic Microturbulence cm/s yes

Vmac Macroturbulence cm/s no

Teff Effective temperature K yes

logg Surface gravity log10 cm/s2 yes

metal Metallicity Logarithmic
relative to Solar
[X/H], where X
is the scaling

yes

27

Figure 2: Amdahl’s Law [2]

factor for all
metals

contFlx Additional continuum flux Fraction of the
stellar
continuum flux

no

Bmono Magnetic field strength for a
uniform radial magnetic field

Gauss (1 G =
0.0001 T)

no

FFmono Filling factor for uniform
radial magnetic field

- no

Bdip Dipole magnetic field strength Gauss no

FFdip Filling factor for dipole
magnetic field strength

- no

element Atomic number of elements
with specified (non-solar)
abundances

- no

abun Abundance for that element Logarithmic
number density
relative to H

no

contNorm Continuum normalization - yes

The latter seven parameters are lists not single values and element is always fixed.

All the parameters can be set either as free, fixed or unspecified (using the default value

0.0 or using the Solar value (elements)). This thesis attempts to set as many parameters

free as possible but if this will significantly decrease efficiency or accuracy, concessions

will be made.

2.2.4 Structure and main functions

Zeeman code is located in multiple files and is based on subroutines. A brief overview

of them is given below.

The function zeemanu_, calls readvald_ function that calculates the oscillator strength.

zeemanu_ then calls dskint_ function that calculates opacity.

dskint_, in turn, calls voigt_ function that is used to calculate line opacities and then it

calls linpro_ that calculates actual radiative transfer using those line opacities to

28

produce spectra at one point on the stellar surface. dskint_, repeats this process for a

range of positions on the stellar surface. After these are done, dskint_ calculates Doppler

shifts and adds the local spectra up to produce a ‘disk integrated’ spectrum.

If the code runs into a Balmer line then voigt_ function calls hline-extras_ to calculate

hydrogen line opacity correctly.

2.2.5 Interaction with the wrap-up Python code

The interaction between the Zeeman code and the MCMC method occurs in the Python

wrap-up code that is called zemceeWrap03cont.py.

The interaction with the Zeeman code occurs in lnlike function of the Python wrap-up

code (see appendix for more details). This function takes the free parameters, keywords

for the free parameters, as well as a dictionary for the fixed parameters, as inputs and

passes all of them to Zeeman. Unspecified parameters are read from the standard

Zeeman input files. Zeeman code is called there with lmamp. The inputs are passed by

writing files for Zeeman, then the Zeeman executable is ran, and thereafter the resulting

spectrum file is read back in.

Radial velocity value (Vr) is used to calculate the Doppler shift.

Next, the function getZeemanSpec is used to retrieve the resulting wavelengths of the

Zeeman computation and their corresponding intensities.

After that, continuum normalization values are retrieved. The continuum normalization

values are used to scale (re-normalize) the continuum level of the model. Then the

resulting re-normalized model is interpolated onto the observed pixel wavelengths.

They are used to interpolate over the observed values.

The function also calculates chi2 and reduced chi2 values. chi2 is calculated as

χ2=∑ (O−E)2

E

where O is the observed value and E is the estimated value according to the model.

29

Reduced chi2 [15] calculates chi2 per degrees of freedom. It helps to assess the

accuracy of the results and should be relatively close to 1. If it is much smaller than 1,

errorbars are overestimated or overfitting has taken place. On the other hand, much

larger value than 1 suggests either underestimated errorbars or a low-quality fitting. It is

calculated as follows:

χ ν
2= χ 2

ν

where ν is the number of degrees of freedom. In this project, the degrees of freedom

are the number of pixels in the observed spectrum minus the number of free parameters

in the fit.

Finally, the function returns logarithmic likelihood lnlike −0.5∗χ2 .

2.3 Datasets

The following thesis uses two datasets. I tested the code on the observations of two

different early-type stars: KELT-9 and HD 235349.

The first dataset is taken from observations of the A0-type star KELT-9 [5]. The

observations come from the Gemini Observatory GRACES spectrograph.

The second spectrum used in this thesis belongs to the B6-type star HD 235349. The

data was collected in the Tõravere Observatory and published in [7]. This dataset has

lower spectral resolution than the one of KELT-9: only 0.2 Å compared to the one of

KELT-9 (0.0287 Å).

Both datasets consist of three columns:

 wavelength (Å)

 normalized flux (intensity) (unitless)

 uncertainties of normalized flux (unitless)

These particular datasets were chosen because the stars were already observed and had

reasonable parameter estimates in previous published works. KELT-9 is interesting

30

because it is orbited by the hottest discovered exoplanet KELT-9b. This planet

evaporates sometimes and it can cause peculiarities in the chemical composition of

KELT-9. [5] HD 235349 was a candidate of planet hosting in TESS mission and is also

chemically peculiar. [9]

31

3 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) [23] is a class of numerical methods based on

Bayesian statistics. Classical statistics treat parameters as fixed values and observed

data as random variables but in Bayesian statistics it is the other way around: the

observed data is fixed and the goal is to estimate parameters. This chapter introduces

MCMC methods, focusing on emcee implementation [3] in Python.

3.1 Bayes theorem

Bayes theorem helps calculating conditional probability of the event B if another event

A is observed:

P(B | A)=
P(A | B)P(B)

P(A) .

The prior P(B) is the initial probability assigned to a hypothesis or parameter before

any data is observed. It represents the researcher's prior belief or knowledge about the

hypothesis or parameter.

The likelihood P(A | B) is the probability of observing the data given a specific

hypothesis or parameter. It represents the strength of the evidence provided by the data.

The posterior P(B | A) is the updated probability of the hypothesis or parameter after

taking into account the observed data.

The marginal P(A) is the probability of the data, obtained by integrating or summing

over all possible values of the parameters or hypotheses. It represents the total

probability of observing the data, regardless of the specific values of the parameters or

hypotheses.

Bayes theorem can be extended [1] so that there are m≥2 possible events in a vector

B=(B1 , B2 , ... , Bm) :

32

P(Bk | A)=
P(A | Bk)P(Bk)

P(A)

where the marginal P(A) is computed as follows

P(A)=∑
i=1

m

P(A | Bi)P(B i) .

In case of continuous sets there are probability density functions instead of the

probabilities:

p(Bk | A)=
p(A | Bk) p(Bk)

p(A)
.

The sum is replaced by the integral, so the marginal is computed as follows:

p(A)=∫
i=1

m

p(A | B i) p(B i) .

It is often expensive or intractable to compute the margin in multi-dimensional cases.

This is where MCMC methods come to help.

3.2 MCMC methods in general

This class of methods combines two concepts: Markov chains and Monte Carlo

methods. A brief overview of both is given below.

3.2.1 Markov chains

Markov chains result from stochastic (random) processes where the next step of the

chain is dependent solely on the current step. They can be described by a transition

graph or a transition matrix.

33

Convergence of a Markov chain refers to the tendency of the chain's distribution to

approach a stable distribution over time that is called stationary distribution. Markov

chain converges to a single stationary distribution if it is ergodic. Ergodicity of a

Markov chain is the property that the long-term behavior of the chain is independent of

its starting state. In other words, if the chain is ergodic, the distribution of the chain after

a large number of steps will be the same regardless of the initial state. [23]

Markov chain is ergodic if the following criteria is satisfied [23, 24]:

 Irreducibility: it is possible to reach any state in the chain from any other state,

directly or indirectly.

 Aperiodicity: it is possible to return to any state in the chain at any time. This

means that the chain does not follow a predictable pattern, such as returning to a

given state every other step.

 Positive recurrence: the expected number of steps to return to a state is finite.

The chain will eventually return to a given state with probability 1.

3.2.2 Monte Carlo methods

Monte Carlo methods are a broad class of computational algorithms that use random

sampling to solve problems that involve numerical integration, optimization, or

34

Figure 3: Example of a transition graph and matrix [13]

simulation. The goal is to generate a large number of random samples to estimate the

probability distribution of the given problem.

One common application of Monte Carlo methods is to estimate the value of complex

integrals that cannot be solved analytically. In this case, random samples are drawn

from the probability distribution of the integral, and the average of the function over

these samples is used to approximate the integral value.

Importance sampling [25] is one of the Monte Carlo integration methods. The goal is to

compute the expectation value of f (x)

E [f (x)]=∫ p(x) f (x)dx

where p(x) is a simple distribution (for example uniform or normal). We sample a

large number of values from x i ~ p(x) and calculate the value of the function f (x i)

using them as input. The average of the results is the approximation of the desired

integral:

∫ p(x)f (x)dx ≈ 1
N ∑

i=1

N

f (xi) , xi ~ p(x) .

35

Figure 4: Importance sampling [18]

3.2.3 MCMC methods and their benefits

MCMC methods are useful because they eliminate the need to calculate the marginal in

the Bayesian theorem that can be an intractable multidimensional integral. The goal is to

estimate the parameters by comparing models to the data.

In MCMC, the input is the model parameter values at the initial time. During the

algorithm's design phase, a proposal distribution is created to govern the transition from

one state to another, serving as a guide for generating new candidate parameter values

based on the current state. The output after many iterations is a sample of the posterior

distribution.

Since the first step of the chain is chosen relatively arbitrarily, the beginning of the

chain is usually discarded because otherwise the result would be biased. This beginning

section is called a burn-in phase. [23]

The curse of dimensionality refers to the difficulties that arise when working with high-

dimensional spaces, where the number of possible configurations increases

exponentially with the dimensionality of the space. In such spaces, it becomes

increasingly difficult to explore and sample from the distribution of interest, leading to

inefficiencies and inaccuracies in Monte Carlo methods. [23]

MCMC methods are better at handling the curse of dimensionality than other Monte

Carlo methods because they use Markov chains to explore the distribution of interest.

The Markov chain allows the algorithm to focus on the regions of the distribution that

are most relevant and to move efficiently between them, even in high-dimensional

spaces. MCMC methods can also be designed to exploit the local structure of the

distribution, which can be used to further improve their efficiency in high-dimensional

spaces. [23]

3.3 Metropolis-Hastings algorithm

The most famous and the most commonly used MCMC method is Metropolis-Hastings

algorithm [3]. The goal is to draw sample from the posterior distribution p . This is

done with the help of proposal distribution Q , which is usually selected to be normal

distribution.

36

First, the beginning value of the chain is initialized. Then a new value is accepted with

probability, that is calculated using the following transition kernel:

min(1 , p(Y | D)
p(X (t) | D)

Q (X (t); Y)
Q (Y ; X (t))

) .

There is a need to decide if the new value of the walker will be the same as the previous

one or not. The decision is done with the help of the random value r , that is sampled

from uniform distribution [0,1]. If r ≤q then the process is repeated with the new

value.

The following figure summarizes Metropolis-Hastings algorithm.

for t = 1, . . . , iterations do
 Draw a proposal Y ∼ Q(Y ; X(t))
 q ← [p(Y) Q(X(t); Y)]/[p(X(t)) Q(Y ;
X(t))] // This line is generally expensive
 r ← R ∼ [0, 1]
 if r ≤ q then
 X(t + 1) ← Y
 else
 X(t + 1) ← X(t)
Return X

Figure 5. Metropolis-Hastings algorithm [3]

3.4 Ensemble of walkers and emcee

Standard Metropolis-Hastings algorithm has drawbacks. Since only one chain is being

used, it can get stuck in local maxima and not get to explore other high probability

regions. Also, the algorithm isn’t easy to run in parallel computations.

The solution is to run multiple chains. An ensemble of walkers is a system of multiple

chains that can run in parallel.

3.4.1 Affine invariance

Foreman-Mackey et al. implemented a Python package emcee [3]. The most important

property of the implementation is affine invariance, meaning that the performance does

not depend on the aspect ratio in highly anisotropic distributions [8].

37

Affine transformation [8] is defined as an invertible mapping from Rn to Rn of the

form y=Ax+b . If the probability density of X is π (x) , then probability density

of y=Ax+b is

π A ,b(y)=π A ,b(Ax+b)∝ π (x) .

Affine invariance is a useful property of an object or a mathematical function that

remains unchanged under affine transformations. An object or a function is affine-

invariant if it retains the same shape, size, and orientation after an affine transformation.

An affine-invariant algorithm operates on data without being affected by affine

transformations, so it is more robust and reliable.

3.4.2 Stretch moves

The stretch move is similar to a regular step in Metropolis-Hastings algorithm but now

the transition kernel also involves another walker. Next, two types of stretch moves,

serial and parallel are introduced.

In case of serial stretch move [3], the walker at position X k is updated with the help of

another walker X j that is randomly chosen from the set of all other walkers, also

called complementary ensemble S[k] . The new proposal position is calculated as

follows:

X k(t)→Y=X j+Z [X k (t)− X j]

38

Figure 6: Example of a highly
anisotropic distribution [8]

where Z is a random variable that is sampled from a distribution g(Z=z) . If g

satisfies

g(z−1)=z g(z)

then the previous proposal function is symmetric meaning that the probability of

proposing a new state Y from the current state X k is the same as the probability of

proposing the current state X k from the new state Y . The proposal is accepted with

probability

min(1 , ZN −1 p(Y)
p(X k (t))

)

where N is the number of dimensions in the parameter space. The procedure is

repeated for all the members in the ensemble.

for k = 1, . . . , K do
 Draw a walker X j at random from the
complementary ensemble S[k](t)
 z ← Z ∼ g(z)
 Y ← X j+ z [Xk (t)− X j]

 q← zN−1 p(Y)/ p(X k (t)) //expensive
 r ← R ∼ [0, 1]
 if r ≤ q then
 X k(t+1)← Y
else
 X k(t+1)← X k (t)
 end if
end for

Figure 7. A single serial stretch move [3]

In case of parallel stretch move [3], the complementary ensemble S[k] is split into two

subsets S(0)=X k , ∀ k=1 , . . . , K /2 and S(1)=Xk , ∀k=K /2+1 , . . . , K to satisfy the

detailed balance meaning that the chains will converge to the desired distribution [12].

Now, it is possible to simultaneously update every walker in S(0) using only positions

of walkers in the other set S(1) . Then, we can update S(1) with the new positions in

S(0) .

39

for i ∈ {0, 1} do
 for k = 1, . . . , K/2 do
 //the loop can now in parallel for all k
 Draw a walker X j at random from the
complementary ensemble S[k](t)
 z ← Z ∼ g(z)
 Y ← X j+ z [Xk (t)− X j]

 q← z(n −1) p(Y)/ p(X k (t))
 r ← R ∼ [0, 1]
 if r ≤ q then
 X k(t+1/2)←Y
 else
 X k(t+1/2)← X k (t)
 end if
 end for
 t ← t + 1/2
end for

Figure 8. Parallel stretch move update [3]

The authors note that the affine invariant ensemble with stretch moves outperforms

significantly standard Metropolis-Hastings algorithm. It is faster, especially if the

distribution is highly skewed. [3]

3.4.3 Startingpoints of the walkers

There are three ways to initialize walkers in emcee [3]:

 to initiate the process by either sampling from the prior distribution or

distributing the starting points within a reasonable parameter space range

 to begin in a really narrow N-dimensional sphere in parameter space around one

point which is guessed to be near the maximum probability point

 to start by sampling from the prior distribution and then proceeding with a

"burn-in" phase. During this phase, the prior is gradually transformed into the

posterior by raising the “temperature”, meaning that the step sizes get gradually

faster.

Despite the first method being more objective, in practice, the second one turns out to

be much more effective if there is any risk that walkers will get stuck in low probability

40

modes of a multi-modal probability landscape. If the walkers were initialized in the

small ball, they will expand out and fill the needed parts of parameter space. It takes

only a few autocorrelation times. [3]

In stellar spectroscopy it is possible to make a good guess for the starting point of the

walkers from the spectrum of the studied star. Each spectral class is characterized by

typical absorption lines that can be seen on a spectrum. In this thesis, all the walkers

start in a Gaussian probability distribution that is centered around the chosen value that

is approximate typical value of the given spectral class.

3.5 MCMC diagnostics

There are two main ways to assess the quality of chains in emcee: autocorrelation time

and acceptance fraction. They are described below.

3.5.1 Autocorrelation time

The autocorrelation time measures how many steps it takes to get independent samples

[3].

The time series X (t) can be described by autocovariance function

C f (T)=lim
t →∞

cov [f (X (t+T)) , f (X (t))]

where f (Θ) is the expectation value of a function of the model parameters Θ .

The formula above calculates the covariances between samples at a time lag T . The

value C f (T)→ 0 measures the needed number of samples to secure independence.

The integrated autocorrelation time is the key metric for evaluating the effectiveness of

the sampler:

τ f = ∑
T=−∞

∞ C f (T)
C f (0)

=1+2∑
T=1

∞ C f (T)
C f (0)

.

C f (T) for a Markov chain of M samples is estimated in practice as follows:

41

C f (T)≈ 1
M−T ∑

m=1

M−T

[f (X (T+m))− ⟨f ⟩][f (X (m))−⟨ f ⟩] .

The authors of [3] suggest to give walkers approximately 10 times more steps than the

autocorrelation size is. Too many steps is an inefficient use of computer resources.

The main problem with autocorrelation is that it is difficult to estimate. If the chains are

too short, the outcome can be wrong because emcee cannot “see” the right

autocorrelation time. [3] To prevent this problem, emcee warns the user if the chain size

is shorter than 50 times the integrated autocorrelation time for all free parameters and

asks to use estimate with caution and run a longer chain.

3.5.2 Acceptance fraction

The acceptance fraction is the fraction of proposed values for the chain that are

accepted. It should be optimal, not too low or too high (as a rule of thumb between 0.2

and 0.5). When the acceptance fraction is close to 0, it means that the majority of

proposed moves are rejected, resulting in a chain with very few independent samples.

This leads to poor representation of the target density and inefficient sampling.

Similarly, when the acceptance fraction is close to 1, it indicates that almost all

proposed moves are accepted, causing the chain to behave like a random walk with little

regard for the target density. As a result, this also leads to poor representation of the

target density and inadequate sampling. [3]

According to tests run by the authors of emcee the stretch scale parameter default value

chosen by them a=2 is good in almost all situations, except complicated multimodal

distributions [3].

42

4 Workflow

The practical contribution of this thesis consists of four parts with the main emphasis on

the second one:

 improving and editing the code

 testing the performance of the code with different combinations of parameters

 determining the correlation between the stellar parameters

 running the pure version of Zeeman based on chi2 method

 profiling the code

The process is described below.

4.1 Improving and editing the project

While the main goal of the thesis was to test the code and compare different

combinations of results, the code also got some improvements and additions. This

subsection describes these.

A file called requirements.txt was created to include all Python modules that need to be

installed when downloading the project for the first time.

I wrote a short matplotlib code plotSpectra.py to plot the three different spectra for

comparison:

 the observed (empirical) spectrum

 the synthetic spectrum fitted by MCMC

 the synthetic spectrum fitted by MCMC after interpolation

43

The dataset of KELT-9 happened to have some unreliable values in the spectral region

of blue light because the measuring instrument was not specialized on these

wavelengths. Values smaller than zero were not taken into account.

The Python wrap-up code used to read some data in an inefficient way and had some

duplications. Wavelength ranges that are used for the comparing model and the

observation was modified to be read directly from zmodel.dat file.

The project was also designed to print out the percentage of the work that is completed

to give the user some estimate how much time is left until the end.

4.2 Testing combinations of hyperparameters

It is possible to use different hyperparameter combinations: some hyperparameters have

to be free and others have to be fixed. Also, it is possible to choose different number of

walkers, chain size and burn-in size. There are also different wavelength ranges that can

be used for fitting. Finally, the MCMC walkers can be given different initial values,

described by the central values and standard deviations (epsilons) of the distributions of

the free model parameters. This subsection describes all different experiments and their

results.

In the beginning, first informal experiments were done by hand to get better overview of

the program and convergence of the chains with the dataset of KELT-9. Then, a more

systematic testing was done.

44

The initial values of the walkers were set by randomly sampling a Gaussian distribution

in each free model parameter. The center of the starting points of the walkers were later

chosen to be typical values of the given spectral class. Also, the standard deviation

values were set (also referred as epsilons in emcee and this thesis). The initial values

and epsilons tested are given in Table 4.

Table 4. Startingpoints and epsilons of the walkers

Parameter Value Epsilons

Teff KELT-9: 10000.0
HD 235349: 15000.0

100.0

Vr 30.0e5 0.1e5

logg 3.4 0.1

vsini 65.0e5 1.0e5

Vmic 2e5 0.01e5

metal 0.0 0.1

contNorm [1.0, 0.0, 0.0] [0.01, 0.001, 0.001]

45

Figure 9: Resulting plot of walkers with 50 walkers and
1000 steps. Values for each model parameter are shown

as a function of the step in the chain, with a line for
each walker.

The burn-in phase was set to be half of the chain size, so the first part of the chains got

discarded. This means that 500-step chains discard first 250 steps and 2000-step chains

first 1000 steps.

Later, the testing system was automated using the subprocess and argparse modules in

Python. subprocess allows calling other executable programs as though they were

subroutines of the calling program and argparse allows to create Linux command line

parameters. This implementation (testCombinations.py) was based on nested for-loops

to reflect the multi-dimensional nature of the experiments. testCombinations.py calls the

wrap-up code zemceeWrap03cont.py, the spectra plotting code plotSpectra.py, and

plotChain.py that plots walkers and makes a corner plot, all with subprocess using the

parameter combination generated by the nested for-loops.

The routine of experiments consists of two values for each hyperparameter, given in

Table 5.

Table 5. Values in the set of experiments

Hyperparameter First value Second value

Number of
walkers

50 100

Chain length 500 2000

Epsilons 1 5

Vmic 0 (fixed parameter) 1 (free parameter)

metal 0 (fixed parameter) 1 (free parameter)

contNorm 0 (fixed parameter) 1 (free parameter)

Epsilon values 1 and 5 mean that in the first version original epsilon values from Table

4 are used but in the second one, all of them are multiplied by 5. ContNorm is

represented as a list, so all its elements get multiplied by 5.

To reduce the time consumption, the whole folder was zipped and transferred to a

virtual machine with 48 vCPUs in Google Cloud.

Before the final experiment, a rough estimate was made of the time consumption. Some

ensembles were run on the cloud and all of them were 50 steps long. It took

46

approximately 10 minutes to run each such ensemble. So running two 500-step

experiments and two 2000-step experiments should take approximately

10⋅2⋅(500
10

+ 2000
10

)=500 min .

If contNorm, metal and vmic can all be either fixed or free and there are two possible

epsilons, the whole set should take approximately

2⋅2⋅2⋅2⋅500=8000 min .

To reduce the time consumption by a factor of four, vmic was set always as fixed and

metal always as a free parameter.

Two wavelength ranges were chosen in this work 5000-5100 Å and 5000-5200 Å. This

spectrum region has remarkable advantages: a high density of strong lines that makes

estimating Teff easier, and also a good signal-to-noise ratio. In lower wavelength regions

the density of the lines is even higher but the lines bend too much together. On the other

hand, in higher wavelength region the lines are located more sparsely.

The set of experiments was run in four parts:

 Wavelength range 5000-5100 Å, KELT-9

 Wavelength range 5100-5200 Å , KELT-9

 Wavelength range 5000-5100 Å, HD 235349

 Wavelength range 5100-5200 Å, HD 235349

Since the set takes days to run, Linux screen command was used to keep a session

running in a hidden way. Four files were created after each experiment:

 Walkers

 Corner plot

 Spectra

 Text file

47

The following Table 6 summarizes the time consumption of all four sets:

Table 6. Time consumption of the sets of experiments. Real time refers to the duration between the
beginning and end of a call, while user time pertains to the quantity of CPU time utilized by the user-

mode code in a given process.

Set Real time User time

1 3649m31.153s 23430m0.565s

2 3482m19.318s 22760m26.036s

3 1957m15.235s 21173m10.107s

4 1885m1.152s 21549m52.303s

The set of tests retrieved 64 results, each one of them consisting of the four

aforementioned parts (see appendix for more details). One example is provided below.

It represents the analysis of the spectrum of KELT-9 in the wavelength range 5000-

5100 Å, fixed continuum normalization parameters, larger epsilon vector, 50 walkers

and 2000 steps.

One result image was plot of walkers (illustrated in Fig. 10). On this plot, positions of

all walkers can be seen in all the steps.

48

Figure 10: Plot of walkers

Another retrieved result was a corner plot (illustrated in Fig. 11). It consists of two

parts:

 Histograms on the diagonal where each bar represents number of samples in the

corresponding range of values. The burn-in phase is excluded from the samples.

 Two-dimensional probability distributions of all possible pairs of the

parameters.

The spectrum plot (illustrated in Fig. 12) shows the observation, a model spectra at the

final ‘best’ parameters and that model spectrum interpolated onto the observed

wavelengths. In case of good result, they should be closely matching each other.

49

Figure 11: Corner plot

In addition to the three plots, a text file was produced. It consists of the following parts:

 chi2 and reduced chi2 value for a model with the final parameters

 Values of all the estimated parameters with error bars, based on the median

(50th percentile), 16th and 84th percentiles of the distributions of parameters.

 Acceptance fraction and autocorrelation time estimate

 Real time of running the experiment in seconds

chi2 10306.74010862799
reduced chi2 3.222870578057533
Vr -1.67688e+06 +23999.3 -22528.4
Teff 9860.75 +23.4454 -20.2498
logg 4.51339 +0.0304182 -0.0226443
vsini 1.05543e+07 +23919.0 -28353.1
metal 0.0729812 +0.00632129 -0.0056008
acceptance fraction 0.5005
autocorrelation time estimate [211.72777482
216.13258954 223.4097405 41.9663503
229.38502929]
real: 24171.165317058563

Figure 13. Text file

50

Figure 12: Spectrum plot

4.3 Determining the correlation between the parameters

Four correlation matrices were produced using autocorr.py, both visual and numerical.

For both stars the versions with fixed and free continuum normalization were produced.

They were calculated from chain.dat file after discarding the burn-in. One example is

displayed below.

On this plot of the correlation matrix, red colors indicate strong positive correlation,

blue colors show strong negative correlation and very light colors indicate weak or non-

existent correlation.

4.4 Chi2 method based experiment

The pure Zeeman code without the wrap-up was run with both datasets, for a

comparison with the results of MCMC experiments. Zeeman is fitting a synthetic

spectrum to an observation using a Levenberg–Marquardt chi2 minimization routine, to

determine stellar parameters. This was done using the same free parameters as in the

MCMC experiments.

There were four experiments:

 Wavelength range 5000-5100 Å, KELT-9

 Wavelength range 5100-5200 Å, KELT-9

51

Figure 14: Correlation matrices between physical parameters for KELT-9 (left) and HD 235349
(right) if the continuum normalization is free

 Wavelength range 5000-5100 Å, HD 235349

 Wavelength range 5100-5200 Å, HD 235349

Each experiment retrieved results including the reduced chi2 value (see Table 7) and

parameter estimates with confidence intervals.

Table 7. Reduced chi2 values of the four experiments based on the chi2 method

Star Wavelength range
(Å)

Reduced chi2

KELT-9 5000-5100 3.1025

KELT-9 5100-5200 2.9269

HD 235349 5000-5100 0.9343

HD 235349 5100-5200 0.5209

After each experiment, plotSpectra.py was run to produce the visuals. One example is

provided below in Fig. 15.

52

Figure 15: Spectrum of KELT-9 from 5100-5200 Å

4.5 Profiling

In addition to more general testing, the code also needed profiling. This is a process

where the time consumption of all the subroutines is determined. It was done using

Gprof profiling tool and the call graph was visualized using Gprof2dot.

First the table of the time consumption of the functions was generated using the

following commands:

gfortran -o testProgram -pg -O3 lmau-zuc0.9.5.2-dil.f zuc-0.9.7.10-sub.f hline-extras-

0.9.7.6n.f multi-magff-0.9.7-dil.f rewriterU0.9.7-dil.f

./testProgram

gprof testProgram

In the first command -o denotes file name of the output, -pg enables Gprof profiling and

-O3 turns on level 3 optimization.

The first result of the profiling was a flat profile that shows the total amount of time that

the program spent executing every function. If transformed from text to table, the flat

profile looks as follows in Table 8:

Table 8. Extract of flat profile of Zeeman code (full profile available in Appendix 4)

% time cumulativ
e seconds

self
seconds

calls self ms/call total
ms/call

name

75.86 0.22 0.22 8 27.50 27.50 linpro_

13.79 0.26 0.04 1 40.0 280.0 dskint_

3.45 0.27 0.01 4 2.50 2.50 spprof_

3.45 0.28 0.01 1 10.00 10.00 correctgf_

3.45 0.29 0.01 1 10.00 10.00 voigt_

The profiler also outputs explanations:

 % time - the percentage of the total running time of the program used by this

function.

53

 Cumulative seconds - a running sum of the number of seconds accounted for by

this function and those listed above it.

 Self seconds - the number of seconds accounted for by this function alone. This

is the major sort for this listing.

 Calls - the number of times this function was invoked, if this function is

profiled, else blank.

 Self ms/call - the average number of milliseconds spent in this function per call,

if this function is profiled, else blank.

 Total ms/call - the average number of milliseconds spent in this function and its

descendents per call, if this function is profiled, else blank.

 Name - the name of the function. This is the minor sort for this listing. The

index shows the location of the function in the gprof listing. If the index is in

parenthesis it shows where it would appear in the gprof listing if it were to be

printed.

Another result of profiling was the graph profile that displays procedure subroutines

using a call-tree format (Table 9). The function line, which corresponds to a procedure

in the call-tree, is denoted by an index number enclosed in square brackets on the

leftmost column. The lines above it are the parent lines, while the lines below it

represent the descendant lines. The columns self and children are presented in seconds.

Table 9. Extract of graph profile of Zeeman code (full profile available in Appendix 4)

index % time self children called name

[7] 0.04 0.24 1/1 zeemanu_ [5]

96.6 0.04 0.24 1 dskint_ [7]

 0.22 0.00 8/8 linpro_ [8]

0.01 0.00 4/4 spprof_ [9]

0.01 0.00 1/1 voigt_ [12]

0.00 0.00 8/8 magfld_ [18]

54

0.00 0.00 8/8 abzsp_ [17]

In addition to general profiling, the call graph was also visualized using Gprof2dot with

the following command:

gprof testProgram gmon.out | gprof2dot | dot -Tpng -o output.png

The call graph (Fig. 16) shows how all the functions call each other and how big

percentage of time is spent in each one of them.

55

Figure 16: Call graph of Zeeman code

5 Discussion

In the previous chapter, the process to retrieve results with different parameter

combinations and profiling results was described. This chapter analyzes them using

different quality metrics.

5.1 Reduced chi2 and time consumption as quality metrics

Reduced chi2 should be as close as possible to one to indicate a good fit. It would be

user-friendly to consume as little time as possible. This subsection presents values of

these two quality metrics for each experiment.

Table 10. Reduced chi2 values and time in seconds for KELT-9 if continuum normalization is fixed.
Wavelength range (Å) and epsilon coefficient (rows) / number of walkers and their length (columns).

Winning model with the best hyperparameters is marked with green.

50, 500 100, 500 50, 2000 100, 2000

5000-5100, 1.0 3.2498 / 6022 4.3492 / 6015 3.2229 / 24396 3.2229 / 24292

5000-5100, 5.0 3.2417 / 5844 3.3140 / 5825 3.2229 / 24171 3.2229 / 24284

5100-5200, 1.0 3.7560 / 5734 2.7487 / 5914 2.7448 / 23481 2.7448 / 23494

5100-5200, 5.0 2.7860 / 5525 6.0297 / 5641 2.7449 / 23480 2.7448 / 23527

For KELT-9, a fixed continuum normalization produced a reliable and stable fit for

2000-step chains (Table 10). The table shows that 500-step chains produced more

variation in chi2 values, and typically larger values, which makes them less reliable.

500-step experiments took on average 5815 seconds and 2000-step experiments 23891

seconds. It can be concluded, that it is worth to spend approximately four times more

time to get better and more reliable fit.

Table 11. Reduced chi2 values for KELT-9 if continuum normalization is free. Wavelength range (Å) and
epsilon coefficient / number of walkers and their length. Winning model with the best hyperparameters is
marked with green.

50, 500 100, 500 50, 2000 100, 2000

56

5000-5100, 1.0 18.5836 / 5753 13.6946 / 5624 17.2043 / 20209 14.7471 / 22168

5000-5100, 5.0 18.5882 / 5098 16.4935 / 5529 9.5754 / 21654 12.4732 / 21274

5100-5200, 1.0 28.2609 / 5381 24.5012 / 5737 18.7883 / 20518 17.5598 / 20078

5100-5200, 5.0 23.6422 / 4920 24.7596 / 5144 8.0799 / 21974 24.9132 / 19934

Setting continuum normalization free had negative impact on the results (Table 11). In

none of the cases was the reduced chi2 close to one, the closest being 8.0799.

Surprisingly, the experiments took slightly less time than the ones with fixed continuum

normalization. An average time consumption of 500-step chains was 5398 seconds and

the same metric for 2000-step chains was 20976.

Table 12. Reduced chi2 values and time in seconds for HD 235349 if continuum normalization is fixed.
Wavelength range (Å) and epsilon coefficient / number of walkers and their length. Winning model with

the best hyperparameters is marked with green.

50, 500 100, 500 50, 2000 100, 2000

5000-5100, 1.0 0.8992 / 3182 0.8994 / 3112 0.8992 / 12728 0.8991 / 12623

5000-5100, 5.0 0.8992 / 3173 0.8991 / 3169 0.8991 / 12692 0.8991 / 12770

5100-5200, 1.0 0.5221 / 2933 0.5221 / 2886 0.5225 / 11664 0.5223 / 11938

5100-5200, 5.0 0.5228 / 3056 0.5226 / 2989 0.5223 / 12118 0.5222 / 12061

The dataset of HD 235349 produced very different results from KELT-9 (Table 12). If

continuum normalization was fixed, all reduced chi2 values were less than one. As

expected, low resolution reduced the time consumption: running 500-step chain took on

average 3063 seconds and 2000-step took on average 12324.

Table 13. Reduced chi2 values for HD 235349 if continuum normalization is free. Wavelength range (Å)
and epsilon coefficient / number of walkers and their length. Winning model with the best
hyperparameters is marked with green.

50, 500 100, 500 50, 2000 100, 2000

5000-5100, 1.0 1.6240 / 2968 1.4159 / 3027 0.7198 / 12050 0.7233 / 10149

5000-5100, 5.0 1.4560 / 2747 1.4336 / 2770 1.1672 / 9872 0.7228 / 10377

5100-5200, 1.0 0.7043 / 2894 0.7726 / 2824 0.4894 / 11566 0.4900 / 11354

5100-5200, 5.0 0.7450 / 2587 0.7966 / 2627 0.4905 / 9949 0.4897 / 9575

57

Setting continuum normalization free caused big differences between the two studied

wavelength ranges (Table 13). The reduced chi2 values for 5100-5200 were always less

than one, ranging from 0.4894 to 0.7966, but for 5000-5100 some of them were more

than one, ranging from 0.7198 to 1.6240. The 500-step experiments took on average

2806 seconds to run and their 2000-step peers 10612 seconds.

The longer chains with free continuum sometimes reach a smaller reduced chi2 than

their counterparts with a fixed continuum. But since the reduced chi2 is less than 1, that

suggests these case may be over-fitting, and some of the variance of the reduced chi2

with the epsilon coefficient suggests the results with a free continuum may still be

unstable.

Epsilon coefficient 5.0 made experiment take slightly less time than the default

coefficient 1.0.

5.2 Proximity to literature values and uncertainties as quality metrics

In this subsection, the results of the experiments will be compared to the ones from

previous literature based on [5] and [7]. The following tables compare these literature

values with the results produced by the best models.

Table 14. Comparison of literature values of physical parameters of KELT-9 [5] and the values produced
in this work of the winning model

Parameter Literature
value

Literature
error

Thesis value Thesis error
positive

Thesis error
negative

Teff 9495 104 9440 647 447

logg 4.17� 0.17� 4.60 0.37 0.90

vsini 114.9� 3.4� 112.19 1.93 1.73

Vr -11.71 2.19 -13.21 3.93 1.95

metal 0.07 0.14 -0.09 0.27 0.13

It can be seen (Table 14) that the estimated parameter values are roughly consistent with

the literature values. Only for surface gravity is the difference larger than the joint error

58

bar, and even then the difference is less than two times the joint error. Problematically,

effective temperature has 5.26 times larger errorbar from the MCMC analysis. In other

words, this estimate is much more uncertain.

Table 15. Comparison of literature values of physical parameters of HD 235349 [7] and the values
produced in this work

Parameter Literature
value

Literature
error

Thesis value Thesis error
positive

Thesis error
negative

Teff 14189 492 14233 268 326

logg 3.43 0.21 4.34 0.33 0.39

vsini 64.8 7.1 69.1 2.1 2.0

Vr -0.14 8.58 0.16 0.13 0.13

metal 0.03 0.21 -0.15 0.05 0.06

The estimates for HD 235349 (Table 15) were quite consistent with [7] except for the

surface gravity log g. Most errorbars were smaller than in the literature [7].

5.3 Autocorrelation time and acceptance fraction

The authors of emcee recommend to take into account acceptance fraction and the

autocorrelation time estimate. They are analyzed below.

The lowest acceptance fraction was 0.2132 (KELT-9, 5000-5100, 5.0, 50, 500) and the

highest 0.5410 (HD 235349, 5000-5100, 5.0, 100, 2000). This means that we can be

satisfied with acceptance fraction of all experiments because it should be approximately

from 0.2 to 0.5.

The autocorrelation time estimate is heavily influenced by the length of the chain.

Below, the autocorrelation time estimate lists are presented for the winning models

(marked with green in Tables 10-13). For each winning model autocorrelation times are

also given for the 500-step analogue, and calculated the ratio between the 2000-step

version and 500-step version is also calculated.

The parameters are presented in the following order: Vr, Teff, log g, v sin i, metal. In case

of free continuum normalization, the three parameters before the metal are contnorm.

59

The following list represents autocorrelation time for each of the free parameters of the

winning model of KELT-9 with fixed continuum normalization (5100-5200, 1.0, 100

walkers, 2000 steps):

[173.35082135 33.35579734 121.98309726 134.39310998 50.0858676].

The following list is its 500-step alternative:

[68.5460505 36.81132621 43.1641339 36.09850946 38.49189672].

As it can be seen the in the longer chain version the estimates are the following times

larger, the estimate cannot be trusted if the chain is only a factor of ten longer than the

estimate itself:

[2.5267065, 0.9075969, 2.8274240, 3.7162809, 1.2989589].

Analogously, the following lists represent autocorrelation time for each of the free

parameters of the winning model of KELT-9 with free continuum normalization (5100-

5200, 5.0, 50 walkers, 2000 steps), its 500-step counterpart and the ratio between them:

[264.96362699 108.23807284 151.67406278 246.77036207 120.59512537

70.13791418 38.76992107 174.00586809]

[66.33547072 41.02577161 63.70516036 47.92537701 37.23602326 37.37296144

28.61336508 43.45130393]

[3.99671768 2.63564156 2.38499445 5.14610961 3.23344111 1.87644381 1.35503868

3.99600278]

The following lists represent autocorrelation time for each of the free parameters of the

winning model of HD 235349 with fixed continuum normalization (5000-5100, 1.0, 100

walkers, 2000 steps), its 500-step counterpart and the ratio between them:

[171.68121849 65.53973087 51.87444833 73.82820409 65.07212845]

[65.2832794 30.03621738 41.52675992 56.75039525 27.15718095]

[2.62877391 2.1804173 1.24984705 1.30138732 2.39492474]

60

The following lists represent autocorrelation time for each of the free parameters of the

winning model of HD 235349 with free continuum normalization (5000-5100, 1.0, 100

walkers, 2000 steps), its 500-step counterpart and the ratio between them:

[261.78635986 215.7502878 101.22448616 186.97573076 115.45336771 82.3972775

46.10974467 193.15826037]

[45.69057367 56.4375322 40.94100803 60.74025464 42.35353522 28.78095773

23.45365017 43.32959613]

[5.72782646 3.82491338 2.46829535 3.0789329 2.72760962 2.86402719

1.97221984 4.45371431]

If the length of the chain is increased by a factor of four, the autocorrelation time

estimate increased usually two or three times. It can be implied that the autocorrelation

times of too short chains are unreliable.

5.4 Time consumption and parallelization

As expected, MCMC methods were time consuming. Table 16 presents the speedup of

the program computed as a relationship between the user and real time.

Table 16. Speedup computed as the relationship between real and user time (in seconds)

Set Real time User time Speedup

1 1405801 218971 6.42

2 1365626 208939 6.54

3 1270390 117435 10.82

4 1292992 113101 11.43

Combined 5334809 658447 8.10

As mentioned in 2.2.2, Amdahl’s law connects the speedup S=8.10 , number of

processors (in this work equal to the number of vCPUs) P=48 and sequential fraction

of the program F :

61

S= 1

F+ 1− F
P

.

According to Amdahl’s law the sequential fraction of the program is F=0.105 ,

meaning that the parallel fraction is 0.895.

The efficiency of the project would benefit the most if linpro_ subroutine would be

optimized in Zeeman. According to the profiling call graph, it takes 75.89% of the time.

5.5 Comparison with chi-square method

This subsection compares the quality of the chi2-method based pure Zeeman code and

the chi2-method based Python wrap-up code. The main quality metric is the reduced

chi2 value.

Table 17. Reduced chi2 values of the four experiments. Comparison between average and best of MCMC
experiments with 2000 steps and chi2-based experiments

Star Wavelengt
h range

MCMC
(average)

MCMC
(best)

chi2

KELT-9 5000-5100 8.3614 3.3140 3.1025

KELT-9 5100-5200 10.0401 2.7448 2.9269

HD
235349

5000-5100 0.8662 0.7233 0.9343

HD
235349

5100-5200 0.5061 0.5225 0.5209

The results suggest that chi2 method slightly outperforms the MCMC-based method if

the wavelength range is chosen to be 5000-5100 but if the wavelength range is 5100-

5200 it is the other way around. Paired sample T-test suggests that the difference in

quality between the winning MCMC models and the chi2-based fittings are statistically

insignificant if we use an alpha-value of 0.05 since the p-value computed by

pairedTTest.py is much larger: 0.68.

As expected the reduced chi2 values for MCMC are similar to the ones of the chi2

minimization method. It confirms that MCMC also converges well. Sadly, MCMC

62

methods are far more time consuming compared to chi2-based method that takes less

than a minute to run.

5.6 Correlation between the stellar parameters

Correlation matrices for both studied stars were produced (both fixed (Fig. 17) and free

(Fig. 14) continuum normalization. Some correlations between the parameters were

similar for both stars, and others were different. In case of fixed continuum

normalization, the most strongly correlated physical parameters for KELT-9 were Teff

and v sin i, with correlation of -0.828046, and for HD 235349 Teff and log g had

correlation of 0.806103.

If continuum normalization was fixed, Vr and v sin i were relatively strongly correlated

for both stars but in opposite directions: for KELT-9 the correlation was -0.724703, and

for HD 235349 0.668147. Similarly, Teff had opposite correlations with log g and metal:

-0.451322 and -0.609801 for KELT-9 but for HD 235349 the same values were

respectively 0.806103 and 0.760774.

On the other hand, some correlations were similar for both stars. The correlation

between Vr and log g was -0.433320 for KELT-9 and -0.336929 for HD 235349. The

correlation between log g and metal was even more similar: 0.785568 and 0.776555,

respectively.

If continuum normalization was used as a free parameter, the three parts of continuum

normalization were not strongly correlated with each other, nor with other parameters

63

Figure 17: Correlation matrices between physical parameters for KELT-9 (left)
and HD 235349 (right) if the continuum normalization is fixed

for HD 235349. It was very different for KELT-9, where the parts of continuum

normalization were correlated with Vr and Teff with an absolute value of around 0.85,

and with each other with an absolute value of around 0.99.

5.7 Visual comparison of convergence

As described in the previous chapter, in addition to text files, also visual plots were

produced.

It can be clearly seen (in Fig. 18) that 500-step experiments did not produce reliable

results:

64

Figure 18: Corner plot of the experiment for KELT-9 with wavelength range 5000-5100 Å,
fixed continuum normalization, 1.0 as epsilon coefficient,100 walkers and 500 steps

On the other hand, the 2000-step analogue of the previous example, presented in Fig.

19, converged well:

It can be also seen on the plot of walkers (Fig. 20) that it takes nearly 500 steps to

converge and 500 steps is not long enough length for a chain.

65

Figure 19: Corner plot of experiment with wavelength range 5000-5100 Å, fixed continuum
normalization, 1.0 as epsilon coefficient, 100 walkers and 2000 steps

It can be also seen in Fig. 21 that if the wavelength range is set to 5100-5200 Å, the

quality of the result suffers because it is a multimodal distribution:

66

Figure 20: Walkers of experiment with wavelength range 5000-
5100 Å, fixed continuum normalization, 1.0 as epsilon

coefficient, 100 walkers and 2000 steps

While MCMC methods have some ability to handle multimodal distributions, this may

slow convergence, and will likely lead to larger uncertainties than for the 5000-5100 Å

case.

5.8 Comparison of the datasets

Above, multiple different quality metrics were used to analyze the results based on both

datasets. This subsection summarizes the differences between the datasets based on the

results and quality metrics.

67

Figure 21: Corner plot of experiment with wavelength range 5100-5200 Å, fixed continuum
normalization, 1.0 as epsilon coefficient,100 walkers and 2000 steps

On the one hand, the datasets of the two stars were quite different. The different

instrument and lower signal-to-noise ratio for HD 235349 has probably caused the

surprisingly small reduced chi2 value. If the fit to the observation is limited only by

noise, as in this lower signal-to-noise case, then an overestimate in the errorbars will

cause the reduced chi2 value to be small. In the observation of HD 235349 the scatter in

values between adjacent pixels (in the continuum regions) is often less than the error

bar, which supports the idea that these errors are overestimated.

On the other hand, the datasets had also significant similarities. Both of them produced

results with similar error bars, as described in 5.2. Both of them gave physical

parameter values that are consistent with result from the literature. In both cases, it was

important to run long chains and keep the continuum normalization fixed.

68

6 Summary

In this thesis, integration of MCMC methods with the stellar spectrum synthesis code

Zeeman was tested. The quality of MCMC methods was compared to results from chi2

minimization method. In addition to producing MCMC and chi2 results, the Zeeman

code was profiled.

It can be concluded that the chains should be thousands of steps long to produce a

reliable result. A high resolution and a high signal-to-noise ratio in the observed

spectrum is also crucial to produce a good fit.

The best model for KELT-9 turned out to be the one with the following

hyperparameters: wavelength range 5100-5200 Å, fixed continuum normalization, 50

walkers, 2000 steps and 1.0 epsilon coefficient; and for HD 235349 the following

hyperparameters: wavelength range 5000-5100 Å, fixed continuum normalization, 100

walkers, 2000 steps and 1.0 epsilon coefficient. Continuum normalization did not

perform well as a free parameter in this work and produced unstable results.

The results produced by chi2 minimization method and the ones produced by the

corresponding winning models of MCMC were similar. According to the reduced chi2

values chi2 method slightly outperformed the MCMC-based method if the wavelength

range wass chosen to be 5000-5100 Å but if the wavelength range was 5100-5200 Å it

was the other way around.

The relationship between real and user time, and a computation based on Amdahl’s law,

shows that the project is well parallelized. According to the Gprof call graph the most

time-consuming subroutine in Zeeman program code is linpro_, which evaluates the

radiative transfer equation, and that would be useful to optimize in the future works.

In conclusion, the project fundamentally worked, but it needs sufficiently long chains to

converge completely and reduce the error bars. In future projects, the program code

could benefit from additional automation. For example, the experiment could be run in

69

more stages. After the first stage, some parameters could become fixed based on their

estimates from the first stage. Also, it would be good to experiment with some other

wavelength ranges both with and without free continuum normalization.

This work taught me to connect knowledge from different branches of science. Stellar

spectroscopy was a good example to get started with MCMC methods.

70

References

[1] Hu J, Qu X, 2020. Bayes' Theorem under Conditional Independence. arXiv preprint
arXiv:2003.03970. 2020 Mar 9.

[2] Steinberg U, Kauer B, 2010. Towards a scalable multiprocessor userlevel environment. In
Workshop on Isolation and Integration for Dependable Systems.

[3] Foreman-Mackey, D., Hogg, D.W., Lang, D. and Goodman, J., 2013. emcee: the MCMC
hammer. Publications of the Astronomical Society of the Pacific, 125(925), p.306.

[4] Wade, G.A., Bagnulo, S., Kochukhov, O., Landstreet, J.D., Piskunov, N. and Stift, M.J.,
2001. LTE spectrum synthesis in magnetic stellar atmospheres-The interagreement of
three independent polarised radiative transfer codes. Astronomy & Astrophysics, 374(1),
pp.265-279.

[5] Kama, M., Folsom, C.P., Jermyn, A.S. and Teske, J.K., 2023. KELT-9 and its ultra-hot
Jupiter: Stellar parameters, composition, and planetary pollution. Monthly Notices of the
Royal Astronomical Society, 518(2), pp.3116-3122.

[6] Kama, M., Folsom, C.P. and Pinilla, P., 2015. Fingerprints of giant planets in the
photospheres of Herbig stars. Astronomy & Astrophysics, 582, p.L10.

[7] Folsom, C.P., Kama, M., Eenmäe, T., Kolka, I., Aret, A., Checha, V., Kasikov, A.,
Leedjärv, L. and Ramler, H., 2022. A rare phosphorus-rich star in an eclipsing binary
from TESS. Astronomy & Astrophysics, 658, p.A105.

[8] Jonathan Goodman. Jonathan Weare, 2010. Ensemble samplers with affine
invariance. Commun. Appl. Math. Comput. Sci. 5 (1) 65 - 80.
https://doi.org/10.2140/camcos.2010.5.65

[9] Althaus, L.G., Córsico, A.H., Isern, J. and García-Berro, E., 2010. Evolutionary and
pulsational properties of white dwarf stars. The Astronomy and Astrophysics Review, 18,
pp.471-566.

[10] Carroll, B.W. , Ostlie, D.A., 2007. An Introduction to Modern Astrophysics. Pearson
Addison-Wesley.

[11] Giridhar, S., 2010. Spectral Classification: Old and Contemporary. In Principles and
Perspectives in Cosmochemistry: Lecture Notes of the Kodai School on'Synthesis of
Elements in Stars' held at Kodaikanal Observatory, India, April 29-May 13, 2008 (pp.
165-180). Springer Berlin Heidelberg.

[12] Cosma, I.A. and Asgharian, M., 2008. Principle of detailed balance and convergence
assessment of Markov Chain Monte Carlo methods and simulated annealing. arXiv
preprint arXiv:0807.3151.

[13] Seyr, H. and Muskulus, M., 2019. Decision support models for operations and
maintenance for offshore wind farms: a review. Applied Sciences, 9(2), p.278.

71

[14] Tsantaki, M., Andreasen, D.T., Teixeira, G.D.C., Sousa, S.G., Santos, N.C., Delgado-
Mena, E. and Bruzual, G., 2018. Atmospheric stellar parameters for large surveys using
FASMA, a new spectral synthesis package. Monthly Notices of the Royal Astronomical
Society, 473(4), pp.5066-5097.

[15] Andrae, R., Schulze-Hartung, T. and Melchior, P., 2010. Dos and don'ts of reduced chi-
squared. arXiv preprint arXiv:1012.3754.

[16] Katz, D., Soubiran, C., Cayrel, R., Adda, M. and Cautain, R., 1998. On-line
determination of stellar atmospheric parameters Teff, log g,[Fe/H] from ELODIE echelle
spectra. I-The method. arXiv preprint astro-ph/9806232.

[17] Hayes, C.R., Masseron, T., Sobeck, J., García-Hernández, D.A., Prieto, C.A., Beaton,
R.L., Cunha, K., Hasselquist, S., Holtzman, J.A., Jönsson, H. and Majewski, S.R., 2022.
BACCHUS Analysis of Weak Lines in APOGEE Spectra (BAWLAS). The Astrophysical
Journal Supplement Series, 262(1), p.34.

[18] ter Maten, E.J.W., Doorn, T.S., Croon, J.A., Bargagli, A., Di Bucchianico, A. and
Wittich, O., 2009. Importance sampling for high speed statistical Monte-Carlo
simulations. trials, 10(2), p.100.

[19] Yan, F., Wyttenbach, A., Casasayas-Barris, N., Reiners, A., Pallé, E., Henning, T.,
Mollière, P., Czesla, S., Nortmann, L., Molaverdikhani, K. and Chen, G., 2021. Detection
of the hydrogen Balmer lines in the ultra-hot Jupiter WASP-33b. Astronomy &
Astrophysics, 645, p.A22.

[20] MOOG https://www.as.utexas.edu/~chris/moog.html
[21] VALD http://vald.oreme.org/~vald/php/vald.php
[22] Kurucz, R., 1993. CDROM Model Distribution. Smithsonian Astrophys. Obs.
[23] Andrieu, C., De Freitas, N., Doucet, A. and Jordan, M.I., 2003. An introduction to

MCMC for machine learning. Machine learning, 50, pp.5-43.
[24] Jespersen, N.S., 2010. An introduction to markov chain monte carlo. Available at SSRN

1594971.
[25] Tokdar, S.T. and Kass, R.E., 2010. Importance sampling: a review. Wiley

Interdisciplinary Reviews: Computational Statistics, 2(1), pp.54-60.
[26] Amdahl, G.M., 1967. Validity of the single processor approach to achieving large scale

computing capabilities, AFIPS Conference Proceedings, vol. 30, AFIPS Press, Reston,
Va., 1967, pp. 483–485.

[27] Folsom, C.P., Bagnulo, S., Wade, G.A., Alecian, E., Landstreet, J.D., Marsden, S.C. and
Waite, I.A., 2012. Chemical abundances of magnetic and non-magnetic Herbig Ae/Be
stars. Monthly Notices of the Royal Astronomical Society, 422(3), pp.2072-2101.

[28] Landstreet, J.D., 1988. The magnetic field and abundance distribution geometry of the
peculiar A star 53 Camelopardalis. The Astrophysical Journal, 326, pp.967-987.

[29] Alvarez, R. and Plez, B., 1997. Near-infrared narrow-band photometry of M-giant and
Mira stars: models meet observations. arXiv preprint astro-ph/9710157.

72

http://vald.oreme.org/~vald/php/vald.php

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Jaanika Raik

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis Applying MCMC Methods in Stellar Spectroscopy to Derive Physical

Parameters of Hotter (Early-Type) Stars, supervised by Colin Folsom and Mihkel

Kama.

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

08.05.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

73

Appendix 2 – Directory tree

Table 18. Directory structure of the project

File or directory Description

data Contains multiple files of which the most important
are:
zmodel.dat – input parameters
vlines.dat – spectral lines
Contains also ATLAS9 and MARCS folders with
precomputed results.

out Directory that contains
out-atmosphere.krz - copy that code uses,
interpolated values
out-model.dat - copy of zmodel.dat
outzfit-u.dat - diagnostic log for potential problems

testedResults Directory that contains the results of
testCombinations.py

venv Creates and manages virtual environments that
isolate and manage dependencies for the project.

lmamp Compiled executable file, generated by the compiler

multi-magff-0.9.7-dil.f Should make multiple calls to Zeeman, merge the
resuts, return them and provide a model spectrum,
with different filling factors of different magnetic
fields.

hline-extras-0.9.7.6n.f Additional subroutines for ZEEMAN; includes
features for improved calculation of Hydrogen lines

rewriterU0.9.7-dil.f Generates the out/out-model.dat

zuc-0.9.7.10-sub.f Subroutine version of Zeeman that can be ran by the
fitting routine

zuc-0.9.7.10.f Stand-alone version of Zeeman that does calculations
but not fitting (currently not used)

lmau-zuc0.9.5.2-dil.f Runs a Levenberg-Marquardt fitting routine,

74

File or directory Description

interpolation between model atmospheres

testProgram The Gprof profiling routine created in the terminal.

output.png The Gprof2dot call graph that is the result of
profiling.

requirements.txt A file that contains all the Python modules that have
to be installed

zemceeWrap03cont.py The wrap-up code around Zeeman code. Uses
MCMC to fit the empirical observations in
observed.dat.

plotChain.py Creates two plots: a plot of walkers and the corner
plot. Originally displayed them but was changed to
save them to the directory testedResults.

plotSpectra.py Plots the observed spectrum and the two spectra
generated by the most recent zemceeWrap03cont.py
run

testCombinations.py Runs the set of experiments

plotCorrelation.py Plots the visual correlation matrix and prints it out in
the terminal

PairedTTest.py Runs paired T-test to estimate the statistical
significance (needed in 5.5)

observed.dat Observations of HD 235349

observed_kelt9.dat Observations of KELT-9

zmodel.dat Input parameters

inlmam.dat Contains the fittable parameters, overrides zmodel.dat
if their content happens to be in conflict

plot1 Most recent synthetic spectrum from Zeeman

results.dat Diagnostic output from the chi2 fitting routine, final
parameters after minizing chi2

outSpeci.dat The spectrum calculated with the median values in
the chain

chain.dat All positions of the walkers of the most recent run of
zemceeWrap03cont.py

arraysizes.mod Temporary file by compiler

75

File or directory Description

savespec.mod Temporary file by compiler

Makefile Contains the compilation instructions

plotff1 The spectrum without interpolation

plotff1i The spectrum after double shifting and interpolating
with chi2

subprocess Side product of profiling

gmon.out Side product of profiling

76

Appendix 3 – Project code and results

The project with all the Python files is available at GitHub (some other files are not

included because of copyright issues):

https://github.com/jaanikaraik/jaanika-raik-master-thesis

The results of the experiments are located in the folder testedResults. They are

distributed between four folders:

 KELT9 – all MCMC experiments with the KELT-9 dataset

 HD235349 – all MCMC experiments with the Hd 235349 dataset

 chi2experiments – all four chi2 experiments

 correlationMatrices – all four visual correlation matrices and their numberical

values in a text file

77

https://github.com/jaanikaraik/jaanika-raik-master-thesis

Appendix 4 – Full profiling results

78

Flat profile
Each sample counts as 0.01 seconds.
 % cumulative self self total
time seconds seconds calls ms/call ms/call name
75.86 0.22 0.22 8 27.50 27.50 linpro_
13.79 0.26 0.04 1 40.00 280.00 dskint_
 3.45 0.27 0.01 4 2.50 2.50 spprof_
 3.45 0.28 0.01 1 10.00 10.00 correctgf_
 3.45 0.29 0.01 1 10.00 10.00 voigt_
 0.00 0.29 0.00 9728 0.00 0.00 ltelc_
 0.00 0.29 0.00 192 0.00 0.00 kappac_
 0.00 0.29 0.00 192 0.00 0.00 stancilh2p_
 0.00 0.29 0.00 9 0.00 0.00 parse_quantum3_
 0.00 0.29 0.00 8 0.00 0.00 abzsp_
 0.00 0.29 0.00 8 0.00 0.00 magfld_
 0.00 0.29 0.00 1 0.00 290.00 MAIN__
 0.00 0.29 0.00 1 0.00 0.00 compon_

79

 0.00 0.29 0.00 1 0.00 0.00 correctvald_
 0.00 0.29 0.00 1 0.00 0.00 covsrt_
 0.00 0.29 0.00 1 0.00 290.00 funcs_
 0.00 0.29 0.00 1 0.00 0.00 gaussj_
 0.00 0.29 0.00 1 0.00 0.00
magffinterppassed_
 0.00 0.29 0.00 1 0.00 290.00 magffzeeman_
 0.00 0.29 0.00 1 0.00 0.00 modelatmo_
 0.00 0.29 0.00 1 0.00 290.00 mrqmin_
 0.00 0.29 0.00 1 0.00 10.00 readvald3_
 0.00 0.29 0.00 1 0.00 0.00 rewriteru_
 0.00 0.29 0.00 1 0.00 290.00 zeemanu_

% the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

80

self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
 listing.

calls the number of times this function was invoked, if
 this function is profiled, else blank.

self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
 else blank.

total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
 function is profiled, else blank.

name the name of the function. This is the minor sort
 for this listing. The index shows the location of
 the function in the gprof listing. If the index is

81

 in parenthesis it shows where it would appear in
 the gprof listing if it were to be printed.

Copyright (C) 2012-2022 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.

 Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 3.45% of 0.29
seconds

index % time self children called name
 0.00 0.29 1/1 main [6]

82

[1] 100.0 0.00 0.29 1 MAIN__ [1]
 0.00 0.29 1/1 mrqmin_ [4]

 0.00 0.29 1/1 mrqmin_ [4]
[2] 100.0 0.00 0.29 1 funcs_ [2]
 0.00 0.29 1/1 magffzeeman_ [3]
 0.00 0.00 1/1 modelatmo_ [24]
 0.00 0.00 1/1 rewriteru_ [25]

 0.00 0.29 1/1 funcs_ [2]
[3] 100.0 0.00 0.29 1 magffzeeman_ [3]
 0.00 0.29 1/1 zeemanu_ [5]
 0.00 0.00 1/1 magffinterppassed_
[23]

 0.00 0.29 1/1 MAIN__ [1]
[4] 100.0 0.00 0.29 1 mrqmin_ [4]
 0.00 0.29 1/1 funcs_ [2]
 0.00 0.00 1/1 gaussj_ [22]

83

 0.00 0.00 1/1 covsrt_ [21]

 0.00 0.29 1/1 magffzeeman_ [3]
[5] 100.0 0.00 0.29 1 zeemanu_ [5]
 0.04 0.24 1/1 dskint_ [7]
 0.00 0.01 1/1 readvald3_ [11]
 0.00 0.00 9728/9728 ltelc_ [13]
 0.00 0.00 192/192 kappac_ [14]
 0.00 0.00 1/1 compon_ [19]

 <spontaneous>
[6] 100.0 0.00 0.29 main [6]
 0.00 0.29 1/1 MAIN__ [1]

 0.04 0.24 1/1 zeemanu_ [5]
[7] 96.6 0.04 0.24 1 dskint_ [7]
 0.22 0.00 8/8 linpro_ [8]
 0.01 0.00 4/4 spprof_ [9]

84

 0.01 0.00 1/1 voigt_ [12]
 0.00 0.00 8/8 magfld_ [18]
 0.00 0.00 8/8 abzsp_ [17]

 0.22 0.00 8/8 dskint_ [7]
[8] 75.9 0.22 0.00 8 linpro_ [8]

 0.01 0.00 4/4 dskint_ [7]
[9] 3.4 0.01 0.00 4 spprof_ [9]

 0.01 0.00 1/1 readvald3_ [11]
[10] 3.4 0.01 0.00 1 correctgf_ [10]

 0.00 0.01 1/1 zeemanu_ [5]
[11] 3.4 0.00 0.01 1 readvald3_ [11]
 0.01 0.00 1/1 correctgf_ [10]
 0.00 0.00 9/9 parse_quantum3_ [16]
 0.00 0.00 1/1 correctvald_ [20]

85

 0.01 0.00 1/1 dskint_ [7]
[12] 3.4 0.01 0.00 1 voigt_ [12]

 0.00 0.00 9728/9728 zeemanu_ [5]
[13] 0.0 0.00 0.00 9728 ltelc_ [13]

 0.00 0.00 192/192 zeemanu_ [5]
[14] 0.0 0.00 0.00 192 kappac_ [14]
 0.00 0.00 192/192 stancilh2p_ [15]

 0.00 0.00 192/192 kappac_ [14]
[15] 0.0 0.00 0.00 192 stancilh2p_ [15]

 0.00 0.00 9/9 readvald3_ [11]
[16] 0.0 0.00 0.00 9 parse_quantum3_ [16]

 0.00 0.00 8/8 dskint_ [7]

86

[17] 0.0 0.00 0.00 8 abzsp_ [17]

 0.00 0.00 8/8 dskint_ [7]
[18] 0.0 0.00 0.00 8 magfld_ [18]

 0.00 0.00 1/1 zeemanu_ [5]
[19] 0.0 0.00 0.00 1 compon_ [19]

 0.00 0.00 1/1 readvald3_ [11]
[20] 0.0 0.00 0.00 1 correctvald_ [20]

 0.00 0.00 1/1 mrqmin_ [4]
[21] 0.0 0.00 0.00 1 covsrt_ [21]

 0.00 0.00 1/1 mrqmin_ [4]
[22] 0.0 0.00 0.00 1 gaussj_ [22]

 0.00 0.00 1/1 magffzeeman_ [3]

87

[23] 0.0 0.00 0.00 1 magffinterppassed_ [23]

 0.00 0.00 1/1 funcs_ [2]
[24] 0.0 0.00 0.00 1 modelatmo_ [24]

 0.00 0.00 1/1 funcs_ [2]
[25] 0.0 0.00 0.00 1 rewriteru_ [25]

This table describes the call tree of the program, and was sorted by
the total amount of time spent in each function and its children.

Each entry in this table consists of several lines. The line with the
index number at the left hand margin lists the current function.
The lines above it list the functions that called this function,
and the lines below it list the functions this one called.
This line lists:
 index A unique number given to each element of the table.

88

 Index numbers are sorted numerically.
 The index number is printed next to every function name
so
 it is easier to look up where the function is in the
table.

 % time This is the percentage of the `total' time that was
spent
 in this function and its children. Note that due to
 different viewpoints, functions excluded by options,
etc,
 these numbers will NOT add up to 100%.

 self This is the total amount of time spent in this
function.

 children This is the total amount of time propagated into this
 function by its children.

 called This is the number of times the function was called.
 If the function called itself recursively, the number
 only includes non-recursive calls, and is followed by
 a `+' and the number of recursive calls.

89

 name The name of the current function. The index number is
 printed after it. If the function is a member of a
 cycle, the cycle number is printed between the
 function's name and the index number.

For the function's parents, the fields have the following meanings:

 self This is the amount of time that was propagated directly
 from the function into this parent.

 children This is the amount of time that was propagated from
 the function's children into this parent.

 called This is the number of times this parent called the
 function `/' the total number of times the function
 was called. Recursive calls to the function are not

90

 included in the number after the `/'.

 name This is the name of the parent. The parent's index
 number is printed after it. If the parent is a
 member of a cycle, the cycle number is printed between
 the name and the index number.

If the parents of the function cannot be determined, the word
`<spontaneous>' is printed in the `name' field, and all the other
fields are blank.

For the function's children, the fields have the following meanings:

 self This is the amount of time that was propagated directly
 from the child into the function.

 children This is the amount of time that was propagated from the
 child's children to the function.

91

 called This is the number of times the function called
 this child `/' the total number of times the child
 was called. Recursive calls by the child are not
 listed in the number after the `/'.

 name This is the name of the child. The child's index
 number is printed after it. If the child is a
 member of a cycle, the cycle number is printed
 between the name and the index number.

If there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole. This entry shows who called the
cycle (as parents) and the members of the cycle (as children.)
The `+' recursive calls entry shows the number of function calls that
were internal to the cycle, and the calls entry for each member shows,
for that member, how many times it was called from other members of
the cycle.

Copyright (C) 2012-2022 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.

Index by function name

 [1] MAIN__ [22] gaussj_ [4] mrqmin_
 [17] abzsp_ [14] kappac_ [16]
parse_quantum3_
 [19] compon_ [8] linpro_ [11]
readvald3_
 [10] correctgf_ [13] ltelc_ [25]
rewriteru_
 [20] correctvald_ [23] magffinterppassed_ [9] spprof_
 [21] covsrt_ [3] magffzeeman_ [15]
stancilh2p_
 [7] dskint_ [18] magfld_ [12] voigt_
 [2] funcs_ [24] modelatmo_ [5] zeemanu_

92

	1 Introduction 14
	1.1 Related work 14
	1.2 Contributions 19
	1.3 Problem statement 19
	1.4 Structure of the thesis 20

	2 Stellar physics and Zeeman stellar spectrum synthesis 21
	2.1 Stellar physics 21
	2.2 Zeeman stellar spectrum synthesis 25
	2.3 Datasets 30

	3 Markov Chain Monte Carlo methods 32
	3.1 Bayes theorem 32
	3.2 MCMC methods in general 33
	3.3 Metropolis-Hastings algorithm 36
	3.4 Ensemble of walkers and emcee 37
	3.5 MCMC diagnostics 41

	4 Workflow 43
	4.1 Improving and editing the project 43
	4.2 Testing combinations of hyperparameters 44
	4.3 Determining the correlation between the parameters 51
	4.4 Chi2 method based experiment 51
	4.5 Profiling 53

	5 Discussion 56
	5.1 Reduced chi2 and time consumption as quality metrics 56
	5.2 Proximity to literature values and uncertainties as quality metrics 58
	5.3 Autocorrelation time and acceptance fraction 59
	5.4 Time consumption and parallelization 61
	5.5 Comparison with chi-square method 62
	5.6 Correlation between the stellar parameters 63
	5.7 Visual comparison of convergence 64
	5.8 Comparison of the datasets 67

	6 Summary 69
	References 71
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 73
	Appendix 2 – Directory tree 74
	Appendix 3 – Project code and results 77
	Appendix 4 – Full profiling results 78
	1 Introduction
	1.1 Related work
	1.1.1 Implementations based on chi-square method
	1.1.1.1 Analysis of ELODIE spectrograph observations
	1.1.1.2 Fingerprints of giant planets among Herbig stars

	1.1.2 Implementations based on MCMC
	1.1.2.1 Analyzing WASP-33b
	1.1.2.2 Analyzing HD 235349

	1.1.3 Spectral synthesis codes
	1.1.3.1 FASMA and MOOG
	1.1.3.2 BACCHUS

	1.2 Contributions
	1.3 Problem statement
	1.4 Structure of the thesis

	2 Stellar physics and Zeeman stellar spectrum synthesis
	2.1 Stellar physics
	2.1.1 Stellar characteristics
	2.1.2 Stellar spectroscopy
	2.1.2.1 Important spectral lines

	2.2 Zeeman stellar spectrum synthesis
	2.2.1 Precomputed datasets
	2.2.2 Parallelization
	2.2.3 Involved parameters
	2.2.4 Structure and main functions
	2.2.5 Interaction with the wrap-up Python code

	2.3 Datasets

	3 Markov Chain Monte Carlo methods
	3.1 Bayes theorem
	3.2 MCMC methods in general
	3.2.1 Markov chains
	3.2.2 Monte Carlo methods
	3.2.3 MCMC methods and their benefits

	3.3 Metropolis-Hastings algorithm
	3.4 Ensemble of walkers and emcee
	3.4.1 Affine invariance
	3.4.2 Stretch moves
	3.4.3 Startingpoints of the walkers

	3.5 MCMC diagnostics
	3.5.1 Autocorrelation time
	3.5.2 Acceptance fraction

	4 Workflow
	4.1 Improving and editing the project
	4.2 Testing combinations of hyperparameters
	4.3 Determining the correlation between the parameters
	4.4 Chi2 method based experiment
	4.5 Profiling

	5 Discussion
	5.1 Reduced chi2 and time consumption as quality metrics
	5.2 Proximity to literature values and uncertainties as quality metrics
	5.3 Autocorrelation time and acceptance fraction
	5.4 Time consumption and parallelization
	5.5 Comparison with chi-square method
	5.6 Correlation between the stellar parameters
	5.7 Visual comparison of convergence
	5.8 Comparison of the datasets

	6 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Directory tree
	Appendix 3 – Project code and results
	Appendix 4 – Full profiling results

