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Abstract

Stellar  spectra are useful to determine the physical  parameters  of stars,  for example

effective  temperature.  In  this  thesis  MCMC  methods  are  used  to  estimate  stellar

parameters. 

The goal of the thesis is to assess the quality of MCMC methods in determining the

physical parameters of early-type (hot) stars. The sample for this thesis consists of two

stars:  KELT-9  and  HD  235349.  The  quality  metrics  are:  reduced  chi2,  time

consumption,  proximity  to  literature  values  obtained  in  previous  works,  acceptance

fraction, and autocorrelation time.

The  main  parts  of  the  project  are  the  Fortran-language  Zeeman  spectrum synthesis

program code  and  the  Python-language  wrap-up program code  that  has  an  MCMC

implementation. The main goal of this thesis is to compare the quality of this wrap-up

compared to a Zeeman version that uses a chi2 minimization method instead of MCMC

methods.

The  optimal  configuration  for  KELT-9  was  achieved  with  the  following  set  of

hyperparameters: a wavelength range of 5100-5200 Å, a fixed continuum normalization,

50 walkers, 2000 steps, and an epsilon coefficient of 1.0. Similarly, for HD 235349, the

ideal  hyperparameters  consisted  of  a  wavelength  range  of  5000-5100  Å,  a  fixed

continuum normalization, 100 walkers, 2000 steps, and an epsilon coefficient of 1.0.

The use of continuum normalization as a free parameter was found to be unsatisfactory

and yielded inconsistent  results  for these wavelength ranges. Additionally,  Amdahl's

law was employed to assess computation and real-time usage, and the results indicated

that  the  project  was  effectively  parallelized.  This  demonstrates  the  effectiveness  of

MCMC for analyzing metal lines and deriving stellar parameters.

This thesis is written in English and is 57 pages long, including 6 chapters, 21 figures

and 18 tables. 
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Annotatsioon

MCMC meetodite rakendamine tähespektroskoopias kõrge

temperatuuriga (varajast tüüpi) tähtede füüsiliste

parameetrite hindamiseks

Tähtede  spektrid  on  kasulikud  tähtede  füüsiliste  parameetrite,  näiteks

efektiivtemperatuuri,  määramiseks.  Selles  lõputöös  kasutatakse  MCMC  meetodeid

tähtede parameetrite hindamiseks.

Lõputöö  eesmärk  on  hinnata  MCMC  meetodite  kvaliteeti  varajast-tüüpi  (kõrge

temperatuuriga) tähtede füüsikaliste parameetrite kindlakstegemisel. Selle lõputöö valim

koosneb kahest tähest:  KELT-9 ja HD 235349. Kvaliteedinäitajateks on: vähendatud

hii-ruut,  ajakulu,  lähedus  varasemates  töödes  saadud  kirjanduslikele  väärtustele,

aktsepteerimisosakaal ja autokorrelatsiooni aeg.

Projekti  kõige tähtsamad osad on Fortrani-keelne  Zeemani  spektrisünteesiprogrammi

kood ja Pythoni-keelne ümbriskood, milles on implementeeritud MCMC. Selle lõputöö

peamine  eesmärk  on  võrrelda  selle  ümbriskoodi  kvaliteeti  võrreldes  Zeemani

versiooniga, mis kasutab MCMC meetodite asemel hii-ruut minimeerimismeetodit.

KELT-9 parim konfiguratsioon saavutati järgmise hüperparameetrite kombinatsiooniga:

lainepikkuse  vahemik  5100–5200  Å,  fikseeritud  kontiinumi  normaliseerimine,  50

walkerit,  2000  sammu  ning  epsiloni  koefitsient  1,0.  Sarnaselt  olid  parimad

hüperparameetrid  HD 235349 puhul lainepikkuse vahemik 5000–5100 Å, fikseeritud

kontiinumi  normaliseerimine,  100  walkerit,  2000  sammu ja  epsiloni  koefitsient  1,0.

Kontiinumi  normaliseerimise  kasutamine  vaba  parameetrina  osutus  nendes

lainepikkuste jaoks probleemseks ja andis ebakõlalisi tulemusi. Lisaks kasutati Amdahli

seadust teadusarvutuste paralleelsuse hindamiseks ning tulemused näitasid, et projekt oli

edukalt  paralleeliseeritud.  See  demonstreerib  MCMC  efektiivsust  metalliliste

spektrijoonte analüüsimisel ja tähtede parameetrite arvutamisel.
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Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 57 leheküljel, 6 peatükki, 21

joonist, 18 tabelit. 
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List of abbreviations and terms

MCMC Markov Chain Monte Carlo

vCPU Virtual Central Processing Unit

Å Ångström, wavelength unit (0.1 nm)

HD Henry Draper star Catalogue

UHJ Ultra-Hot Jupiter

Teff Effective temperature

log g Logarithmic surface gravity

v sin i Projected rotational velocity

Vr Radial velocity

metal Any chemical element except hydrogen and helium

metallicity Chemical abundance of metal relative to the Solar abundance
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1 Introduction

Stellar  physicists  use  spectroscopic  observations,  and  fitting  models  to  those

observations,  to  evaluate  stellar  parameters,  for  example  effective  temperature.  The

observed spectrum consists of one-dimensional observations: wavelength on the x-axis

and flux (intensity)  on the y-axis.  The goal  is  to  match  the observed points  with a

function that is as close to the empirical values as possible to get the most accurate

estimates according to the model.

Usually, the spectral fitting was done using classical statistical methods [16], such as

chi2 minimization. Markov Chain Monte Carlo (MCMC) methods are potentially useful

because they eliminate the human factor: continuum fit is not done anymore by hand

[7]. 

This  thesis  explores  this  automating  alternative,  testing  and  improving  the  wrap-up

Python code [7] that performs an MCMC analysis using the Fortran-language spectrum

synthesis code Zeeman [4]. This is tested on a sample of two early-type stars (hot stars)

[5, 7].

1.1 Related work

There  is  a  large  body of  literature  on analysis  of  stellar  spectra.  Different  previous

works can be considered related to this thesis. This subsection provides a selection of

repesentitive older works that are based on either classical  statistics,  newer MCMC-

based projects or stellar spectrum synthesis program codes other than Zeeman.

1.1.1 Implementations based on chi-square method

Older  works  in  this  field  have  relied  on  the  implementation  of  classical  statistical

methods.  This  is  based  on  chi-square  minimization  and  non-linear  least  squares

methods. The goal is to minimize the chi square value with the least-squares method.
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1.1.1.1 Analysis of ELODIE spectrograph observations

One of  the  older  examples  dates  back to  1998 [16]  and is  based  on the  results  of

ELODIE spectrograph.  The approach involves  matching the spectrum of the star  of

interest against a collection of spectra taken with the same spectrograph, typically at a

signal-to-noise ratio  of  100.  A library  was constructed  for  this  purpose,  comprising

spectra from 211 stars specifically chosen to cover the range of parameters observed in

stars belonging to the  halo,  thick disk,  and old thin  disk of  the Milky Way.  These

parameters include effective temperature (Teff) within the range of 4000K to 6300K,

surface gravity (log g) ranging from 0.6 to 4.7, and metallicity ([Fe/H]) ranging from -

2.9 to 0.35. Since this work is old, the line data that is used there is also not up to

current knowledge, therefore this work used observed templates rather than synthetic

model  spectra.   However  the  precision  of  the  study  was  limited  by  the  ability  to

precisely characterize the template spectra.

1.1.1.2 Fingerprints of giant planets among Herbig stars

An important more recent example is the 2012 analysis [27] that was followed by the

2015 analysis [6], in which anomalies occurring in stars of medium mass called Herbig

stars were studied. These are young stars that are still surrounded by a disk of material.

A  correlation  between  the  presence  of  a  cavity  in  the  protoplanetary  disk  and  the

scarcity  of  refractory  chemical  elements  (such  as  titanium  and  chromium)  was

presented.

In [27] Zeeman synthetic spectra was fit to the observed spectra. Wide spectral ranges

with many metal lines were used. Effective temperature, surface gravity and distance,

luminosity, mass, radius, age,  pre-main sequence age and presence of a magnetic field

were derived.

Zeeman-code based chi2 fitting routine that used Levenberg–Marquardt algorithm as a

minimization method worked fairly well if the right wavelength region was chosen. The

main drawbacks of the work were large uncertainties and not considering covariances

between the different physical parameters of the stars.
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1.1.2 Implementations based on MCMC

One more computationally advanced way to analyze stellar spectra is using MCMC to

estimate the stellar parameters.

1.1.2.1 Analyzing WASP-33b

One  example  of  MCMC-based  analysis  is  [19]  from  year  2020.  In  that  work,

atmospheric composition of the giant planet WASP-33b was studied.

Ultra-Hot Jupiters (UHJs) are giant exoplanets that experience extreme heat due to the

intense radiation from their host stars. As a result, they offer an excellent opportunity to

study the chemistry and physics of planetary atmospheres in extreme conditions.

Using the CARMENES and HARPS-N spectrographs, the authors were able to observe

four transits of the UHJ WASP-33b that orbits around the early-type host star WASP-33

(spectral  class A5). After adjusting for the Rossiter-McLaughlin effect (refers to the

radial  velocity  variations  of  a  star  caused  by  the  planet's  orbit)  and  centre-to-limb

variation (refers to the change in the observed brightness of a star as the observer's line

of sight moves from the center of the star's disk to its limb, or edge) , they could identify

the  Balmer  Hα,  Hβ,  and  Hγ  transmission  spectra  of  the  planet's  atmosphere.  The

combined  Hα  transmission  spectrum  revealed  a  significant  absorption  depth  of

0.99±0.05%, indicating that the line probes neutral hydrogen atoms in the high-altitude

thermosphere (the outermost layer of a star's atmosphere). While the detection of the

Balmer  lines  was definitive,  the  strengths  of  the  lines  were  impacted  by the stellar

pulsation. Modeling and correction of the spectral pulsation feature in the future will

help to better constrain the line strength.

The PAWN model was used, assuming the atmosphere to be hydrodynamic and in local

thermodynamic equilibrium, to fit the observed Balmer lines. The model fit provided a

thermospheric  temperature  of T=12200−1000
+1300 K and  a  mass-loss  rate

M=1011.8− 0.5
+0.6

g s−1 . The high mass-loss rate is in line with theoretical predictions for

UHJs that orbit early type stars.

The  Balmer  lines  had  been  detected  in  five  UHJs  to  date  (KELT-9b,

KELT-20b/MASCARA-2b,  WASP-12b,  WASP-121b,  and  WASP-33b).  Balmer

absorption is likely a typical spectral feature in the transmission spectra of UHJ as their
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hot atmospheres are intensely irradiated by their host stars, which could produce a large

number of hydrogen atoms in the excited state.  However, for certain UHJs, such as

those with low atmospheric scale heights or those with the Rossiter-McLaughlin effect

detecting the Balmer features could be challenging. The authors conclude that extending

observations to a larger sample of UHJs will enable systematic study of the Balmer lines

and  thermospheric  conditions.  This  demonstrates  the  use  of  MCMC  methods  for

spectroscopic analysis but this thesis focuses on deriving a wider range of parameters

for stars rather than two parameters for planets.

1.1.2.2 Analyzing HD 235349

In 2021, a particular star called HD 235349 was studied [7]. This time, MCMC methods

were introduced, which was beneficial for two reasons:

 It is convenient to describe the covariance of the studied parameters (effective

temperature and logarithmic gravity) using MCMC.

 MCMC allowed ignoring insignificant nuisance parameters.

The solution was based on Zeeman code and the Python-language wrap-up code also

used in this thesis.

At first an analysis of metal lines was done with a standard chi2 method. The errorbars

were  large  and  the   covariance  between  the  stellar  parameters  was  poor.  Then  an

MCMC-based  Balmer  line  analysis  was  used,  which  produced  better  errorbars  for

effective temperature and surface gravity values. An advantage of the MCMC analysis

here was that a polynomial approximation for the continuum was included. Then the

polynomial coefficients could be treated as nuisance parameters and marginalized over,

to get more precise values for effective temperature and surface gravity.

The continuum normalization  was limited  by Balmer lines  that  were too broad and

caused uncertainty. In some stars there are not even good Balmer lines, for example

Herbig  stars,  very  hot  stars  or  very  cool  stars,  so this  method  is  incomplete.  Also,

Balmer  lines  do  not  give  information  about  chemical  abundances.  Metal  lines  are

needed to estimate them.
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The authors concluded that HD 235349 is not suitable for studying exoplanets, but as a

rare binary star experiencing eclipses, it could instead help study high-temperature stars

with chemical  composition anomalies.  In this  thesis,  the physical  parameters  of  HD

235349 (including metallicity) will be estimated.

1.1.3 Spectral synthesis codes

There are multiple other stellar spectrum synthesis codes than Zeeman and its Python

wrap-up code studied  in  this  thesis.  They uses  different  methods  and have  slightly

different purposes. Here two alternative examples are presented.

1.1.3.1 FASMA and MOOG

One example of another stellar spectrum synthesis program is the FASMA code [14].

The  main  difference  from  Zeeman  code  is  that  FASMA  is  specialized  in  lower-

temperature stars. Similarly to the wrap-up code in this thesis, FASMA is a Python

wrap-up code around Fortran-based code MOOG [20]. 

MOOG has an ability to do on-line graphics meaning that the plotting commands are

given within the FORTRAN code. The running options of MOOG include abfind that

applies  a  method  of  adjusting  species  abundances  to  produce  calculated  equivalent

widths that align with the observed values obtained from other software programs and

synth that computes a set of trial synthetic spectra and matches them to an observed

spectrum if the user asks for it. [20]

1.1.3.2 BACCHUS

Another stellar  spectrum synthesis program code is BACCHUS (Brussels Automatic

Code for Characterizing High accUracy Spectra) [17]. BACCHUS is a wrap-up around

Fortran radiative transfer code Turbospectrum [29]. It is difficult to measure elements

with weak and blended spectral features and they require specialized analysis methods

to measure their chemical abundances precisely. This code has a unique feature: it uses

four different methods to compare the observed and synthetic spectra within the chosen

range and includes an abundance measurement for the following four methods:

 The  “chi2”  method:  determines  an  abundance  by  minimizing  the  squared

differences between synthetic and observed spectra
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 The “syn” method: looks for the abundance that makes the difference between

the synthetic and the observed points zero

 The “eqw” method: determines the abundance needed to match the equivalent

widths of the synthetic spectra to the observations

 The  “int”  method:  measures  abundances  by  matching  the  line  core  in  the

synthetic and observed spectra 

1.2 Contributions

In this thesis, the wrap-up Python code is tested for the first time in an automatized way.

MCMC methods have become not that uncommon recent years, however few studies

have used  MCMC methods  to  derive  stellar  parameters  from observed spectra,  and

almost all previous works were specialized on later-type stars unlike this thesis that is

specialized on earlier type stars. MCMC was never used together with Zeeman on metal

lines before [7] and, in this thesis, it gets a proper hyperparameter choice assessment for

the first time. For the first time, metal lines are used instead of Balmer lines. Metal lines

are beneficial because they provide diverse information about chemical abundances and

precise rotational velocity values.

Also, the Zeeman code will be profiled for the first time, at least systematically. This is

needed to assess the quality of past efforts to optimize and parallelize Zeeman.

As a side product, the structure of the project will get a proper documentation. Its folder

structure will be described in Appendix 2.

1.3 Problem statement

The goal of this thesis is to run a set of experiments on the MCMC implementation and

compare the results to the ones using the chi-square method. Additionally, the wrap-up

Python code [7] will be improved and Zeeman code will be profiled.

In  this  thesis,  the  results  of  the  the  following  hyperparameter  combinations  are

compared that differ by the following aspects:
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 Status of each parameter: free / fixed / unspecified

 Number of MCMC walkers

 Length of each chain

 Wavelength range

 Initial distributions of the parameters

I will compare both accuracy and efficiency of several combinations. Also, the MCMC

results will be compared to results generated by the chi-square method.

The testing will be done using spectral observations of two different stars: KELT-9 and

HD 235349. This initial data was collected before the thesis [5, 7].

1.4 Structure of the thesis

The  thesis  is  structured  as  follows.  Chapter  2  provides  a  brief  overview  of  stellar

spectroscopy, describes the Zeeman spectrum synthesis code, and presents the observed

datasets used in this thesis. Chapter 3 gives an overview of the Markov Chain Monte

Carlo class of Bayesian methods, and their emcee implementation in Python. Chapter 4

describes  the  process  how the  results  are  obtained.  Chapter  5  analyzes  the  results.

Chapter 6 concludes the thesis and proposes some future prospects.
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2 Stellar physics and Zeeman stellar spectrum synthesis

Stars differ by many characteristics including age, mass and temperature. Astronomers

have developed different methods to assess those parameters. The quantitative analysis

of stellar spectra is one of the most powerful methods. This chapter introduces stellar

spectroscopy and characteristics of stars and Zeeman code that will be given datasets to

elaborate.

2.1 Stellar physics

2.1.1 Stellar characteristics

Stars  are  divided  into  spectral  classes  based  on  their  temperature.  The  highest

temperature stars are O-stars and the lowest are marked with an M-letter [10]. The table

below summarizes the temperature ranges for the corresponding letters.

Table 1. Stellar classification and the corresponding ranges of effective temperature in Kelvins [11]

Spectral class Effective temperature

O 28,000K to 50,000K

B 10,000K to 28,000K

A 7,500K to 10,000

F 6,000K to 7,500K

G 4,900K to 6,000K

K 3,500K to 4,900K

M 2,000K to 3,500K

Each spectral class is divided into 10 subclasses from hottest to coolest: from 0 to 9.

Stars with smaller index are referred to as early-type stars and the ones with larger index

as late-type stars. For example, A0-star is an early A-type star and A9-star is a late A-

type star. The spectral class of the Sun is G2. [10]
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Hertzsprung–Russell (H–R) diagram shows the temperature of the star on x-axis and its

luminosity on y-axis.

Most stars on the diagram are main sequence stars meaning that they are in the main

phase of their lifetime.

The evolution of a star depends on its mass. Lower mass stars have longer lifespans. For

example,  on Figure 2, Sun has longer lifespan than more massive Sirius but shorter

lifespan than less massive Barnard’s star.

2.1.2 Stellar spectroscopy

One of the main methods used in stellar physics is spectroscopy. The spectrum can tell a

lot  about  the  star's  characteristics,  for  example  its  mass,  temperature  and  its

surroundings, for example planets and protoplanetary disk.

Spectral fitting is a process where the synthetic spectrum is matched to the observed

(empirical)  spectrum  in  order  to  determine  model  parameters.  It  helps  to  estimate
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multiple  parameters,  including  effective  temperature,  radial  velocity,  projected

rotational velocity, surface gravity and microturbulence.

There  are  different  types  of  temperature  measures.  Effective  temperature  is  the

temperature  the  star  would  have  if  it  were  a  perfect  blackbody,  based  on the  total

luminosity it emits. This temperature is a crucial global characteristic representing the

surface  temperature  of  the star.  It  is  calculated  from the Stefan-Boltzmann law that

states that the total radiation emitted by a blackbody is proportional to the fourth power

of its temperature. [10]

the Stefan-Boltzmann law [10] can be stated as follows:

L=4 π R2 σ T 4

where L is the total energy radiated per unit time by a spherical blackbody of radius R

and temperature T, and σ=5.67 x 10−8 W /m2 K4 is the Stefan-Boltzmann constant.

Abundance  analysis  is  an  important  part  of  stellar  spectroscopy.  Every  atomic  and

molecular species has unique wavelength lines that indicate its presence. In astronomy,

all elements except hydrogen and helium are called metals. In this thesis, metallicity is

defined as the relationship between metal abundance and hydrogen abundance. 

There are two types of spectral lines: absorption lines and emission lines. Absorption

lines  appear  as  dark  lines  in  the  spectrum,  caused  by  the  absorption  of  specific

wavelengths  of  light  by  atoms  in  the  outer  layers  of  the  star's  atmosphere.  The

wavelengths of the absorption lines correspond to the energy levels of the atoms and

molecules present in the star, and can be used to identify the chemical elements present

in  the  star's  atmosphere.  The  strength  of  absorption  lines  can  be  used  to  infer the

abundance of that element in the star. Emission lines, on the contrary, appear as bright

lines in the spectrum, caused by the emission of specific wavelengths of light by excited

atoms in  the  star's  atmosphere.  These  emission  lines  also correspond to  the  energy

levels of the species present, and can be used to determine the temperature and chemical

composition of the emitting gas. [10]

Three different phenomena cause line broadening [10]:
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 Natural broadening: Even if they are stationary and unconnected to other atoms,

spectral lines cannot have an infinitely precise shape. This is due to Heisenberg's

uncertainty principle, which implies that the more limited the time available for

an energy measurement, the greater the inherent imprecision of the outcome.

 Doppler broadening: Doppler broadening occurs due to the thermal motion of

atoms or molecules in a gas. As atoms move towards or away from an observer,

the frequency of the radiation they emit or absorb is shifted, causing the spectral

lines to appear broader. The degree of broadening depends on the temperature

and velocity  of  the  gas  and can  provide  information  on these  properties.  In

addition to thermal Doppler broadening, there are other microscopic processes

that  can  cause  spectral  line  broadening,  such  as  microturbulent  broadening,

which arises due to small-scale velocity fluctuations in the gas. On a larger scale,

global  Doppler  broadening can  occur  due  to  the  rotational  motion  of  a  star,

causing  the  spectral  lines  to  appear  broader.  Rotational  broadening  is  an

important effect in astronomy, as it can be used to determine the rotation rate of

a star and other properties of its atmosphere.

 Pressure and collisional broadening: When an atom collides with a neutral atom

or experiences a close encounter with the electric field of an ion, its orbitals can

be disrupted. The outcome of such collisions is known as collisional broadening.

On the other hand, the cumulative impact of the electric fields of a large number

of closely spaced ions is referred to as pressure broadening.

Opacity is a measure that shows how much light is being absorbed or scattered. It can

result in a decrease in the intensity of light emitted by the star at certain wavelengths,

which produces dark lines in the spectrum. These spectral lines can reveal important

information  about  the  composition,  temperature,  and  other  properties  of  the  star's

atmosphere. [10]

2.1.2.1 Important spectral lines

Every atom and even molecule has unique absorption lines. This subsection introduces

examples of fingerprints of specific chemical elements.
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The best known lines in spectroscopy are Balmer lines: a series of spectral emission

lines in the visible region of the hydrogen atom's spectrum. The Balmer series includes

several lines, such as Hα (6562.81), Hβ (4861.34), Hγ (4340.48), Hδ (4101.75 ) and so

on, which correspond to transitions between the excited states and the second energy

level of the hydrogen atom. [10]

In this thesis, it is chosen to focus on metal lines, and the wavelength ranges are  chosen

in a region of the spectrum where A-type stars have a relatively high density of strong

metal lines: 5000-5100 Å and 5100-5200 Å.

The following table presents the beginning of the wavelength range used in this thesis.

Table 2. Some examples of the spectroscopic lines

Line Wavelength (Å)

Fe 2 5000.7304

Ca 2 5001.4790

Fe 1 5001.8630

Fe 2 5001.9529

2.2 Zeeman stellar spectrum synthesis

Zeeman  is  a  Fortran-based  stellar  spectrum  synthesis  program.  Current  Zeeman

program  code  (Zeeman2)  is  an  updated  version  written  in  Fortran95  of  an  older

Fortran77 program [4, 28]. The motivation of Zeeman was not to map magnetic field or

abundances in a detailed way, but instead to get approximate models of both [4]. The

code has a built-in fitting mechanism that is based on classical statistical methods: least-

squares method and chi-square method [27].

Zeeman code is specializing mainly on earlier type stars. The stars should also be in the

main sequence.

2.2.1 Precomputed datasets

Zeeman is using the results of another program named Atlas9 [22]. It is an atmosphere

model library. For this thesis, the program is not run separately but is using already
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precomputed results that are stored in .dat files. Each file is specialized on a different

atmosphere layer starting from the highest. The files are divided into five columns: 

 column mass - the mass above the given atmosphere layer (g/cm2)

 effective temperature (K)

 electron number density - number of electrons not attached to atoms (cm-3)

 ion number density - number of ionized atoms (cm-3)

 mass density (g/cm3)

The thesis project also contains MARCS folder. It is similar to Atlas9 but is currently

not used  because it is designed for cooler stars. It will probably become important in

the future when the project will be extended to a wider temperature range.

In addition to Atlas9, Zeeman is using data from VALD (The Vienna Atomic Line Data

Base) [21]. The database contains useful data regarding atomic transitions that have a

significant impact on absorption in the spectra of stars. In this thesis, the most important

data  about  each  absorption  line  includes:  the  element  and  its  ionization  status  (for

example “Fe 1” is neutral iron and “Fe 2” is ionized iron), the wavelength of the line in

Å (1 Å = 0.1 nm), oscilator strength (unitless logarithmic quantity) and the excitation

potentials  (energies  above  the  ground  state)  for  the  lower  and  upper  levels  of  the

transition  (in  eV).  This  data  is  necessary  for  calculating  absorption  in  the  modeled

spectra and is located inside the file vlines.dat included in this project.

2.2.2 Parallelization

Spectral line synthesis is characterized as an “embarrassingly parallel” problem. The

possibility to parallelize every specific wavelength makes the program very granular.

The step size between two wavelengths is chosen to be 0.01 Å = 0.001 nm by default.

[4]

The speedup of Zeeman code can be described by Amdahl’s law [4, 26]. It expresses a

maximum  speedup  achievable  by  utilizing  many  processors  in  parallel.  Maximum

speedup S with P processors is equal to  
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S= 1

F+ 1− F
P

where F is the sequential fraction of the calculation. The following figure illustrates

how the maximum speedup of the program depends on the parallelizable fraction.

2.2.3 Involved parameters

Zeeman  estimates  different  parameters  of  the  star  using  the  given  spectrum.  This

subsection gives a brief overview of them.

Table 3. Stellar parameters in Zeeman code

Short name Name / description Unit Included?

Vr Radial velocity cm/s yes

vsini Projected rotational velocity cm/s yes

Vmic Microturbulence cm/s yes

Vmac Macroturbulence cm/s no

Teff Effective temperature K yes

logg Surface gravity log10 cm/s2 yes

metal Metallicity Logarithmic 
relative to Solar 
[X/H], where X 
is the scaling 

yes
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factor for all 
metals

contFlx Additional continuum flux Fraction of the 
stellar 
continuum flux

no

Bmono Magnetic field strength for a 
uniform radial magnetic field

Gauss (1 G = 
0.0001 T)

no

FFmono Filling factor for uniform 
radial magnetic field

- no

Bdip Dipole magnetic field strength Gauss no

FFdip Filling factor for dipole 
magnetic field strength

- no

element Atomic number of elements 
with specified (non-solar) 
abundances

- no

abun Abundance for that element Logarithmic 
number density 
relative to H

no

contNorm Continuum normalization - yes

The latter seven parameters are lists not single values and element is always fixed.

All the parameters can be set either as free, fixed or unspecified (using the default value

0.0 or using the Solar value (elements)). This thesis attempts to set as many parameters

free as possible but if this will significantly decrease efficiency or accuracy, concessions

will be made.

2.2.4 Structure and main functions

Zeeman code is located in multiple files and is based on subroutines. A brief overview

of them is given below.

The function zeemanu_, calls readvald_ function that calculates the oscillator strength.

zeemanu_ then calls dskint_ function that calculates opacity.

dskint_, in turn, calls voigt_ function that is used to calculate line opacities and then it

calls  linpro_  that  calculates  actual  radiative  transfer  using  those  line  opacities  to
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produce spectra at one point on the stellar surface.  dskint_, repeats this process for a

range of positions on the stellar surface. After these are done, dskint_ calculates Doppler

shifts and adds the local spectra up to produce a ‘disk integrated’ spectrum.

If the code runs into a Balmer line then voigt_ function calls hline-extras_ to calculate

hydrogen line opacity correctly.

2.2.5 Interaction with the wrap-up Python code

The interaction between the Zeeman code and the MCMC method occurs in the Python

wrap-up code that is called zemceeWrap03cont.py. 

The interaction with the Zeeman code occurs in lnlike function of the Python wrap-up

code (see appendix for more details). This function takes the free parameters, keywords

for the free parameters, as well as a dictionary for the fixed parameters, as inputs and

passes  all  of  them  to  Zeeman.  Unspecified  parameters  are  read  from the  standard

Zeeman input files. Zeeman code is called there with lmamp. The inputs are passed by

writing files for Zeeman, then the Zeeman executable is ran, and thereafter the resulting

spectrum file is read back in.

Radial velocity value (Vr) is used to calculate the Doppler shift.

Next, the function  getZeemanSpec is used to retrieve the resulting wavelengths of the

Zeeman computation and their corresponding intensities.

After that, continuum normalization values are retrieved. The continuum normalization

values  are  used to  scale  (re-normalize)  the continuum level  of the model.  Then the

resulting  re-normalized  model  is  interpolated  onto  the  observed  pixel  wavelengths.

They are used to interpolate over the observed values.

The function also calculates chi2 and reduced chi2 values. chi2 is calculated as

χ2=∑ (O−E)2

E

where O is the observed value and E is the estimated value according to the model.
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Reduced  chi2  [15]  calculates  chi2  per  degrees  of  freedom.  It  helps  to  assess  the

accuracy of the results and should be relatively close to 1. If it is much smaller than 1,

errorbars are overestimated or overfitting has taken place. On the other hand,  much

larger value than 1 suggests either underestimated errorbars or a low-quality fitting. It is

calculated as follows:

χ ν
2= χ 2

ν

where ν  is the number of degrees of freedom. In this project, the degrees of freedom

are the number of pixels in the observed spectrum minus the number of free parameters

in the fit.

Finally, the function returns logarithmic likelihood lnlike −0.5∗χ2 .

2.3 Datasets

The following thesis uses two datasets. I tested the code on the observations of two

different early-type stars: KELT-9 and HD 235349.

The  first  dataset  is  taken  from observations  of  the  A0-type  star  KELT-9  [5].  The

observations come from the Gemini Observatory GRACES spectrograph.

The second spectrum used in this thesis belongs to the B6-type star HD 235349. The

data was collected in the Tõravere Observatory and published in [7]. This dataset has

lower spectral resolution than the one of KELT-9: only 0.2 Å compared to the one of

KELT-9 (0.0287 Å).

Both datasets consist of three columns: 

 wavelength (Å)

 normalized flux (intensity) (unitless)

 uncertainties of normalized flux (unitless)

These particular datasets were chosen because the stars were already observed and had

reasonable  parameter  estimates  in  previous  published  works.  KELT-9  is  interesting
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because  it  is  orbited  by  the  hottest  discovered  exoplanet  KELT-9b.  This  planet

evaporates  sometimes  and it  can cause peculiarities  in  the  chemical  composition  of

KELT-9. [5] HD 235349 was a candidate of planet hosting in TESS mission and is also

chemically peculiar. [9]
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3 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) [23] is a class of numerical methods based on

Bayesian statistics.  Classical  statistics  treat  parameters  as fixed values and observed

data  as  random variables but  in  Bayesian  statistics  it  is  the  other  way  around:  the

observed data is fixed and the goal is to estimate parameters. This chapter introduces

MCMC methods, focusing on emcee implementation [3] in Python.

3.1 Bayes theorem

Bayes theorem helps calculating conditional probability of the event B if another event

A is observed:

P(B | A)=
P( A | B)P(B)

P( A) .

The prior P(B) is the initial probability assigned to a hypothesis or parameter before

any data is observed. It represents the researcher's prior belief or knowledge about the

hypothesis or parameter.

The  likelihood P(A | B) is  the  probability  of  observing  the  data  given  a  specific

hypothesis or parameter. It represents the strength of the evidence provided by the data.

The posterior P(B | A) is the updated probability of the hypothesis or parameter after

taking into account the observed data. 

The marginal P(A) is the probability of the data, obtained by integrating or summing

over  all  possible  values  of  the  parameters  or  hypotheses.  It  represents  the  total

probability of observing the data, regardless of the specific values of the parameters or

hypotheses. 

Bayes theorem can be extended [1] so that there are m≥2 possible events in a vector

B=(B1 , B2 , ... , Bm) :
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P(Bk | A)=
P(A | Bk )P(Bk )

P( A)

where the marginal P(A) is computed as follows

P(A)=∑
i=1

m

P(A | Bi)P(B i) .

In  case  of  continuous  sets  there  are  probability  density  functions  instead  of  the

probabilities:

p(Bk | A)=
p(A | Bk ) p(Bk)

p(A)
.

The sum is replaced by the integral, so the marginal is computed as follows:

p( A)=∫
i=1

m

p( A | B i) p(B i) .

It is often expensive or intractable to compute the margin in multi-dimensional cases.

This is where MCMC methods come to help.

3.2 MCMC methods in general

This  class  of  methods  combines  two  concepts:  Markov  chains  and  Monte  Carlo

methods. A brief overview of both is given below.

3.2.1 Markov chains

Markov chains result  from stochastic (random) processes where the next step of the

chain is dependent solely on the current step. They can be described by a transition

graph or a transition matrix.
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Convergence of a Markov chain refers to the tendency of the chain's distribution to

approach a stable distribution over time that is called stationary distribution. Markov

chain  converges  to  a  single  stationary  distribution  if  it  is  ergodic.  Ergodicity  of  a

Markov chain is the property that the long-term behavior of the chain is independent of

its starting state. In other words, if the chain is ergodic, the distribution of the chain after

a large number of steps will be the same regardless of the initial state. [23]

Markov chain is ergodic if the following criteria is satisfied [23, 24]:

 Irreducibility: it is possible to reach any state in the chain from any other state,

directly or indirectly.

 Aperiodicity: it is possible to return to any state in the chain at any time. This

means that the chain does not follow a predictable pattern, such as returning to a

given state every other step.

 Positive recurrence: the expected number of steps to return to a state is finite.

The chain will eventually return to a given state with probability 1.

3.2.2 Monte Carlo methods

Monte Carlo methods are a broad class of computational algorithms that use random

sampling  to  solve  problems  that  involve  numerical  integration,  optimization,  or
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simulation. The goal is to generate a large number of random samples to estimate the

probability distribution of the given problem.

One common application of Monte Carlo methods is to estimate the value of complex

integrals  that cannot be solved analytically.  In this  case,  random samples are drawn

from the probability distribution of the integral, and the average of the function over

these samples is used to approximate the integral value.

Importance sampling [25] is one of the Monte Carlo integration methods. The goal is to

compute the expectation value of f (x)

E [ f (x)]=∫ p(x) f (x)dx

where p(x) is a simple distribution (for example uniform or normal). We sample a

large number of values from x i ~ p(x ) and calculate the value of the function f (x i)

using them as input.  The average of the results  is  the approximation  of the desired

integral:

∫ p(x)f (x)dx ≈ 1
N ∑

i=1

N

f (xi) , xi ~ p(x) .

35 

Figure 4: Importance sampling [18]



3.2.3 MCMC methods and their benefits

MCMC methods are useful because they eliminate the need to calculate the marginal in

the Bayesian theorem that can be an intractable multidimensional integral. The goal is to

estimate the parameters by comparing models to the data.

In  MCMC,  the  input  is  the  model  parameter  values  at  the  initial  time.  During  the

algorithm's design phase, a proposal distribution is created to govern the transition from

one state to another, serving as a guide for generating new candidate parameter values

based on the current state. The output after many iterations is a sample of the posterior

distribution.

Since the first step of the chain is chosen relatively arbitrarily,  the beginning of the

chain is usually discarded because otherwise the result would be biased. This beginning

section is called a burn-in phase. [23]

The curse of dimensionality refers to the difficulties that arise when working with high-

dimensional  spaces,  where  the  number  of  possible  configurations  increases

exponentially  with  the  dimensionality  of  the  space.  In  such  spaces,  it  becomes

increasingly difficult to explore and sample from the distribution of interest, leading to

inefficiencies and inaccuracies in Monte Carlo methods. [23]

MCMC methods are better at handling the curse of dimensionality than other Monte

Carlo methods because they use Markov chains to explore the distribution of interest.

The Markov chain allows the algorithm to focus on the regions of the distribution that

are  most  relevant  and  to  move  efficiently  between  them,  even  in  high-dimensional

spaces.  MCMC methods  can  also  be  designed  to  exploit  the  local  structure  of  the

distribution, which can be used to further improve their efficiency in high-dimensional

spaces. [23]

3.3 Metropolis-Hastings algorithm

The most famous and the most commonly used MCMC method is Metropolis-Hastings

algorithm [3]. The goal is to draw sample from the posterior distribution p . This is

done with the help of proposal distribution Q , which is usually selected to be normal

distribution.
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First, the beginning value of the chain is initialized. Then a new value is accepted with

probability, that is calculated using the following transition kernel:

min(1 , p(Y | D)
p(X (t) | D)

Q (X (t); Y )
Q (Y ; X (t))

) .

There is a need to decide if the new value of the walker will be the same as the previous

one or not. The decision is done with the help of the random value r , that is sampled

from uniform distribution [0,1]. If  r ≤q  then the process is repeated with the new

value.

The following figure summarizes Metropolis-Hastings algorithm. 

for t = 1, . . . , iterations do
   Draw a proposal Y ∼ Q(Y ; X(t))
   q ← [p(Y ) Q(X(t); Y )]/[p(X(t)) Q(Y ; 
X(t))] // This line is generally expensive
   r ← R ∼ [0, 1]
   if r ≤ q then
     X(t + 1) ← Y
   else
     X(t + 1) ← X(t)
Return X

Figure 5. Metropolis-Hastings algorithm [3]

3.4 Ensemble of walkers and emcee

Standard Metropolis-Hastings algorithm has drawbacks. Since only one chain is being

used, it can get stuck in local maxima and not get to explore other high probability

regions. Also, the algorithm isn’t easy to run in parallel computations.

The solution is to run multiple chains. An ensemble of walkers is a system of multiple

chains that can run in parallel.

3.4.1 Affine invariance

Foreman-Mackey et al. implemented a Python package emcee [3]. The most important

property of the implementation is affine invariance, meaning that the performance does

not depend on the aspect ratio in highly anisotropic distributions [8]. 
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Affine transformation [8] is defined as an invertible mapping from Rn to Rn of the

form y=Ax+b . If the probability density of X is π (x) , then probability density

of y=Ax+b is

π A ,b( y)=π A ,b(Ax+b)∝ π (x) .

Affine  invariance  is  a  useful  property  of  an  object  or  a  mathematical  function  that

remains  unchanged  under  affine  transformations.  An object  or  a  function  is  affine-

invariant if it retains the same shape, size, and orientation after an affine transformation.

An  affine-invariant  algorithm  operates  on  data  without  being  affected  by  affine

transformations, so it is more robust and reliable.

3.4.2 Stretch moves

The stretch move is similar to a regular step in Metropolis-Hastings algorithm but now

the transition kernel also involves another walker. Next, two types of stretch moves,

serial and parallel are introduced.

In case of serial stretch move [3], the walker at position X k is updated with the help of

another  walker X j that  is  randomly chosen from the set  of all  other  walkers,  also

called  complementary  ensemble S[k ] .  The  new  proposal  position  is  calculated  as

follows:

X k(t)→Y=X j+Z [X k (t )− X j]
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where Z is a random variable that is sampled from a distribution g(Z=z ) . If g

satisfies

g( z−1)=z g( z)

then  the  previous  proposal  function  is  symmetric  meaning  that  the  probability  of

proposing a new state Y from the current state X k is the same as the probability of

proposing the current state X k from the new state Y . The proposal is accepted with

probability

min(1 , ZN −1 p(Y )
p(X k (t ))

)

where N is  the  number  of  dimensions  in  the  parameter  space.  The  procedure  is

repeated for all the members in the ensemble.

for k = 1, . . . , K do
  Draw a walker X j at random from the 
complementary ensemble S[k ](t)
  z ← Z ∼ g(z)
   Y ← X j+ z [ Xk (t)− X j]

   q← zN−1 p(Y )/ p(X k (t )) //expensive
  r ← R ∼ [0, 1]
  if r ≤ q then
     X k(t+1)← Y
else
     X k(t+1)← X k (t)
  end if
end for

Figure 7. A single serial stretch move [3]

In case of parallel stretch move [3], the complementary ensemble S[k ] is split into two

subsets S(0)=X k , ∀ k=1 , . . . , K /2 and S(1)=Xk , ∀k=K /2+1 , . . . , K to  satisfy  the

detailed balance meaning that the chains will converge to the desired distribution [12].

Now, it is possible to simultaneously update every walker in S(0) using only positions

of walkers in the other set S(1) . Then, we can update S(1) with the new positions in

S(0) .
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for i ∈ {0, 1} do
  for k = 1, . . . , K/2 do
    //the loop can now in parallel for all k
    Draw a walker X j  at random from the
complementary ensemble S[k ](t)
    z ← Z ∼ g(z)
     Y ← X j+ z [ Xk (t)− X j ]

     q← z(n −1) p(Y )/ p(X k (t))
    r ← R ∼ [0, 1]
    if r ≤ q then
       X k(t+1/2)←Y
    else
       X k(t+1/2)← X k (t)
    end if
  end for
  t ← t + 1/2
end for

Figure 8. Parallel stretch move update [3]

The authors  note that  the affine invariant  ensemble  with stretch  moves outperforms

significantly  standard  Metropolis-Hastings  algorithm.  It  is  faster,  especially  if  the

distribution is highly skewed. [3]

3.4.3 Startingpoints of the walkers

There are three ways to initialize walkers in emcee [3]:

 to  initiate  the  process  by  either  sampling  from  the  prior  distribution  or

distributing the starting points within a reasonable parameter space range

 to begin in a really narrow N-dimensional sphere in parameter space around one

point which is guessed to be near the maximum probability point

 to  start  by  sampling  from the  prior  distribution  and  then  proceeding  with  a

"burn-in" phase. During this phase, the prior is gradually transformed into the

posterior by raising the “temperature”, meaning that the step sizes get gradually

faster.

Despite the first method being more objective, in practice, the second one turns out to

be much more effective if there is any risk that walkers will get stuck in low probability
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modes of a multi-modal probability landscape.  If the walkers were initialized in the

small ball, they will expand out and fill the needed parts of parameter space. It takes

only a few autocorrelation times. [3]

In stellar spectroscopy it is possible to make a good guess for the starting point of the

walkers from the spectrum of the studied star. Each spectral class is characterized by

typical absorption lines that can be seen on a spectrum. In this  thesis, all the walkers

start in a Gaussian probability distribution that is centered around the chosen value that

is approximate typical value of the given spectral class. 

3.5 MCMC diagnostics

There are two main ways to assess the quality of chains in emcee: autocorrelation time

and acceptance fraction. They are described below.

3.5.1 Autocorrelation time

The autocorrelation time measures how many steps it takes to get independent samples

[3]. 

The time series X (t) can be described by autocovariance function

C f (T )=lim
t →∞

cov [ f (X (t+T )) , f (X (t ))]

where f (Θ) is the expectation value of a function of the model parameters Θ .

The formula above calculates the covariances between samples at a time lag T . The

value C f (T )→ 0 measures  the  needed number  of  samples  to  secure  independence.

The integrated autocorrelation time is the key metric for evaluating the effectiveness of

the sampler:

τ f = ∑
T=−∞

∞ C f (T )
C f (0)

=1+2∑
T=1

∞ C f (T )
C f (0)

.

C f (T ) for a Markov chain of M samples is estimated in practice as follows:
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C f (T )≈ 1
M−T ∑

m=1

M−T

[ f (X (T+m))− ⟨f ⟩][ f (X (m))−⟨ f ⟩] .

The authors of [3] suggest to give walkers approximately 10 times more steps than the

autocorrelation size is. Too many steps is an inefficient use of computer resources.

The main problem with autocorrelation is that it is difficult to estimate. If the chains are

too  short,  the  outcome  can  be  wrong  because  emcee cannot  “see”  the  right

autocorrelation time. [3] To prevent this problem, emcee warns the user if the chain size

is shorter than 50 times the integrated autocorrelation time for all free parameters and

asks to use estimate with caution and run a longer chain. 

3.5.2 Acceptance fraction

The  acceptance  fraction  is  the  fraction  of  proposed  values  for  the  chain  that  are

accepted. It should be optimal, not too low or too high (as a rule of thumb between 0.2

and 0.5).  When the acceptance  fraction  is  close  to  0,  it  means that  the  majority  of

proposed moves are rejected, resulting in a chain with very few independent samples.

This  leads  to  poor  representation  of  the  target  density  and  inefficient  sampling.

Similarly,  when  the  acceptance  fraction  is  close  to  1,  it  indicates  that  almost  all

proposed moves are accepted, causing the chain to behave like a random walk with little

regard for the target density. As a result, this also leads to poor representation of the

target density and inadequate sampling. [3]

According to tests run by the authors of emcee the stretch scale parameter default value

chosen by them a=2 is good in almost all situations, except complicated multimodal

distributions [3]. 
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4 Workflow

The practical contribution of this thesis consists of four parts with the main emphasis on

the second one:

 improving and editing the code

 testing the performance of the code with different combinations of parameters

 determining the correlation between the stellar parameters

 running the pure version of Zeeman based on chi2 method 

 profiling the code

The process is described below.

4.1 Improving and editing the project

While  the  main  goal  of  the  thesis  was  to  test  the  code  and  compare  different

combinations  of  results,  the  code  also  got  some  improvements  and  additions.  This

subsection describes these.

A file called requirements.txt was created to include all Python modules that need to be

installed when downloading the project for the first time.

I wrote a short  matplotlib code  plotSpectra.py to plot the three different spectra  for

comparison:

 the observed (empirical) spectrum

 the synthetic spectrum fitted by MCMC

 the synthetic spectrum fitted by MCMC after interpolation
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The dataset of KELT-9 happened to have some unreliable values in the spectral region

of  blue  light  because  the  measuring  instrument  was  not  specialized  on  these

wavelengths. Values smaller than zero were not taken into account.

The Python wrap-up code used to read some data in an inefficient way and had some

duplications.  Wavelength  ranges  that  are  used  for  the  comparing  model  and  the

observation was modified to be read directly from zmodel.dat file.

The project was also designed to print out the percentage of the work that is completed

to give the user some estimate how much time is left until the end.

4.2 Testing combinations of hyperparameters

It is possible to use different hyperparameter combinations: some hyperparameters have

to be free and others have to be fixed. Also, it is possible to choose different number of

walkers, chain size and burn-in size. There are also different wavelength ranges that can

be used for fitting. Finally, the MCMC walkers can be given different initial values,

described by the central values and standard deviations (epsilons) of the distributions of

the free model parameters. This subsection describes all different experiments and their

results.

In the beginning, first informal experiments were done by hand to get better overview of

the program and convergence of the chains with the dataset of KELT-9. Then, a more

systematic testing was done.
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The initial values of the walkers were set by randomly sampling a Gaussian distribution

in each free model parameter. The center of the starting points of the walkers were later

chosen to be typical  values of the given spectral  class.  Also, the standard deviation

values were set (also referred as epsilons in  emcee and this thesis). The initial values

and epsilons tested are given in Table 4.

Table 4. Startingpoints and epsilons of the walkers

Parameter Value Epsilons

Teff KELT-9: 10000.0
HD 235349: 15000.0

100.0

Vr 30.0e5 0.1e5

logg 3.4 0.1

vsini 65.0e5 1.0e5

Vmic 2e5 0.01e5

metal 0.0 0.1

contNorm [1.0, 0.0, 0.0] [0.01, 0.001, 0.001]
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Figure 9: Resulting plot of walkers with 50 walkers and
1000 steps. Values for each model parameter are shown

as a function of the step in the chain, with a line for
each walker.



The burn-in phase was set to be half of the chain size, so the first part of the chains got

discarded. This means that 500-step chains discard first 250 steps and 2000-step chains

first 1000 steps.

Later, the testing system was automated using the subprocess and argparse modules in

Python.  subprocess allows  calling  other  executable  programs  as  though  they  were

subroutines of the calling program and argparse allows to create Linux command line

parameters. This implementation (testCombinations.py) was based on nested for-loops

to reflect the multi-dimensional nature of the experiments. testCombinations.py calls the

wrap-up  code  zemceeWrap03cont.py,  the  spectra  plotting  code  plotSpectra.py,  and

plotChain.py that plots walkers and makes a corner plot, all with subprocess using the

parameter combination generated by the nested for-loops.

The routine of experiments consists of two values for each hyperparameter, given in

Table 5.

Table 5. Values in the set of experiments

Hyperparameter First value Second value

Number of 
walkers

50 100

Chain length 500 2000

Epsilons 1 5

Vmic 0 (fixed parameter) 1 (free parameter)

metal 0 (fixed parameter) 1 (free parameter)

contNorm 0 (fixed parameter) 1 (free parameter)

Epsilon values 1 and 5 mean that in the first version original epsilon values from Table

4  are  used  but  in  the  second  one,  all  of  them  are  multiplied  by  5.  ContNorm is

represented as a list, so all its elements get multiplied by 5.

To reduce  the  time  consumption,  the  whole  folder  was zipped and transferred  to  a

virtual machine with 48 vCPUs in Google Cloud. 

Before the final experiment, a rough estimate was made of the time consumption. Some

ensembles  were  run  on  the  cloud  and  all  of  them  were  50  steps  long.  It  took
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approximately  10  minutes  to  run  each  such  ensemble.  So  running  two  500-step

experiments and two 2000-step experiments should take approximately 

10⋅2⋅( 500
10

+ 2000
10

)=500 min .

If  contNorm, metal and vmic can all be either fixed or free and there are two possible

epsilons, the whole set should take approximately

2⋅2⋅2⋅2⋅500=8000 min .

To reduce the time consumption by a factor of four, vmic was set always as fixed and

metal always as a free parameter.

Two wavelength ranges were chosen in this work 5000-5100 Å and 5000-5200 Å. This

spectrum region has remarkable advantages: a high density of strong lines that makes

estimating Teff easier, and also a good signal-to-noise ratio. In lower wavelength regions

the density of the lines is even higher but the lines bend too much together. On the other

hand, in higher wavelength region the lines are located more sparsely.

The set of experiments was run in four parts:

 Wavelength range 5000-5100 Å, KELT-9

 Wavelength range 5100-5200 Å , KELT-9

 Wavelength range 5000-5100 Å, HD 235349

 Wavelength range 5100-5200 Å, HD 235349

Since the set takes days to run, Linux  screen command was used to keep a session

running in a hidden way. Four files were created after each experiment:

 Walkers

 Corner plot

 Spectra

 Text file

47 



The following Table 6 summarizes the time consumption of all four sets:

Table 6. Time consumption of the sets of experiments. Real time refers to the duration between the
beginning and end of a call, while user time pertains to the quantity of CPU time utilized by the user-

mode code in a given process.

Set Real time User time

1 3649m31.153s 23430m0.565s

2 3482m19.318s 22760m26.036s

3 1957m15.235s 21173m10.107s

4 1885m1.152s 21549m52.303s

The  set  of  tests  retrieved  64  results,  each  one  of  them  consisting  of  the  four

aforementioned parts (see appendix for more details). One example is provided below.

It represents the analysis of the spectrum of KELT-9 in the wavelength range 5000-

5100 Å, fixed continuum normalization parameters, larger epsilon vector, 50 walkers

and 2000 steps.

One result image was plot of walkers  (illustrated in Fig. 10). On this plot, positions of

all walkers can be seen in all the steps.
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Figure 10: Plot of walkers



Another retrieved result  was a corner plot (illustrated in Fig. 11). It  consists of two

parts:

 Histograms on the diagonal where each bar represents number of samples in the

corresponding range of values. The burn-in phase is excluded from the samples.

 Two-dimensional  probability  distributions  of  all  possible  pairs  of  the

parameters.

The spectrum plot  (illustrated in Fig. 12) shows the observation, a model spectra at the

final  ‘best’  parameters  and  that  model  spectrum  interpolated  onto  the  observed

wavelengths. In case of good result, they should be closely matching each other.
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Figure 11: Corner plot



In addition to the three plots, a text file was produced. It consists of the following parts:

 chi2 and reduced chi2 value for a model with the final parameters

 Values of all  the estimated  parameters  with error  bars,  based on the median

(50th percentile), 16th and 84th percentiles of the distributions of parameters.

 Acceptance fraction and autocorrelation time estimate

 Real time of running the experiment in seconds

chi2 10306.74010862799
reduced chi2 3.222870578057533
Vr     -1.67688e+06 +23999.3 -22528.4
Teff     9860.75 +23.4454 -20.2498
logg     4.51339 +0.0304182 -0.0226443
vsini     1.05543e+07 +23919.0 -28353.1
metal     0.0729812 +0.00632129 -0.0056008
acceptance fraction 0.5005
autocorrelation time estimate [211.72777482 
216.13258954 223.4097405   41.9663503  
229.38502929]
real: 24171.165317058563

Figure 13. Text file 
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Figure 12: Spectrum plot



4.3 Determining the correlation between the parameters

Four correlation matrices were produced using autocorr.py, both visual and numerical.

For both stars the versions with fixed and free continuum normalization were produced.

They were calculated from chain.dat file after discarding the burn-in. One example is

displayed  below.

On this plot of the correlation matrix, red colors indicate strong positive correlation,

blue colors show strong negative correlation and very light colors indicate weak or non-

existent correlation.

4.4 Chi2 method based experiment

The  pure  Zeeman  code  without  the  wrap-up  was  run  with  both  datasets,  for  a

comparison  with  the  results  of  MCMC  experiments.  Zeeman  is  fitting  a  synthetic

spectrum to an observation using a Levenberg–Marquardt chi2 minimization routine, to

determine stellar parameters. This was done using the same free parameters as in the

MCMC experiments.

There were four experiments:

 Wavelength range 5000-5100 Å, KELT-9

 Wavelength range 5100-5200 Å, KELT-9
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Figure 14: Correlation matrices between physical parameters for KELT-9 (left) and HD 235349
(right) if the continuum normalization is free



 Wavelength range 5000-5100 Å, HD 235349

 Wavelength range 5100-5200 Å, HD 235349

Each experiment retrieved results including the reduced chi2 value (see Table 7) and

parameter estimates with confidence intervals. 

Table 7. Reduced chi2 values of the four experiments based on the chi2 method

Star Wavelength range 
(Å)

Reduced chi2

KELT-9 5000-5100 3.1025

KELT-9 5100-5200 2.9269

HD 235349 5000-5100 0.9343

HD 235349 5100-5200 0.5209

After each experiment,  plotSpectra.py was run to produce the visuals. One example is

provided below in Fig. 15.
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4.5 Profiling

In addition to more general testing, the code also needed profiling. This is a process

where the time consumption of all  the subroutines is determined.  It  was done using

Gprof profiling tool and the call graph was visualized using Gprof2dot.

First  the  table  of  the  time  consumption  of  the  functions  was  generated  using  the

following commands:

gfortran -o testProgram -pg -O3 lmau-zuc0.9.5.2-dil.f zuc-0.9.7.10-sub.f hline-extras-

0.9.7.6n.f multi-magff-0.9.7-dil.f rewriterU0.9.7-dil.f

./testProgram

gprof testProgram

In the first command -o denotes file name of the output, -pg enables Gprof profiling and

-O3 turns on level 3 optimization.

The first result of the profiling was a flat profile that shows the total amount of time that

the program spent executing every function. If transformed from text to table, the flat

profile looks as follows in Table 8:

Table 8. Extract of flat profile of Zeeman code (full profile available in Appendix 4)

% time    cumulativ
e seconds

self 
seconds

calls self ms/call total 
ms/call

name

75.86 0.22 0.22 8 27.50 27.50 linpro_

13.79 0.26 0.04 1 40.0 280.0 dskint_

3.45 0.27 0.01 4 2.50 2.50 spprof_

3.45 0.28 0.01 1 10.00 10.00 correctgf_

3.45 0.29 0.01 1 10.00 10.00 voigt_

The profiler also outputs explanations:

 % time - the percentage of the total running time of the program used by this

function.
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 Cumulative seconds - a running sum of the number of seconds accounted for by

this function and those listed above it.

 Self seconds - the number of seconds accounted for by this function alone.  This

is the major sort for this listing.

 Calls  -  the  number  of  times  this  function  was  invoked,  if  this  function  is

profiled, else blank.

 Self ms/call - the average number of milliseconds spent in this function per call,

if this function is profiled, else blank.

 Total ms/call - the average number of milliseconds spent in this function and its

descendents per call, if this function is profiled, else blank.

 Name -  the name of the function.  This is the minor sort for this listing. The

index shows the location of the function in the gprof listing. If the index is in

parenthesis it shows where it would appear in the gprof listing if it were to be

printed.

Another result of profiling was the graph profile that displays procedure subroutines

using a call-tree format  (Table 9). The function line, which corresponds to a procedure

in  the  call-tree,  is  denoted  by an index number  enclosed  in  square  brackets  on the

leftmost  column.  The  lines  above  it  are  the  parent  lines,  while  the  lines  below  it

represent the descendant lines. The columns self and children are presented in seconds. 

Table 9. Extract of graph profile of Zeeman code (full profile available in Appendix 4)

index   % time self children called name

[7] 0.04 0.24 1/1 zeemanu_ [5]

96.6 0.04 0.24 1 dskint_ [7]

 0.22 0.00 8/8 linpro_ [8]

0.01 0.00 4/4 spprof_ [9]

0.01 0.00 1/1 voigt_ [12]

0.00 0.00 8/8 magfld_ [18]
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0.00 0.00 8/8 abzsp_ [17]

In addition to general profiling, the call graph was also visualized using Gprof2dot with

the following command:

gprof testProgram gmon.out | gprof2dot | dot -Tpng -o output.png

The call  graph (Fig.  16)  shows how all  the  functions  call  each  other  and how big

percentage of time is spent in each one of them.
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5 Discussion

In  the  previous  chapter,  the  process  to  retrieve  results  with  different  parameter

combinations  and profiling  results  was described.  This  chapter  analyzes  them using

different quality metrics.

5.1 Reduced chi2 and time consumption as quality metrics

Reduced chi2 should be as close as possible to one to indicate a good fit. It would be

user-friendly to consume as little time as possible. This subsection presents values of

these two quality metrics for each experiment.

Table 10. Reduced chi2 values and time in seconds for KELT-9  if continuum normalization is fixed.
Wavelength range (Å) and epsilon coefficient (rows) / number of walkers and their length (columns).

Winning model with the best hyperparameters is marked with green.

50, 500 100, 500 50, 2000 100, 2000

5000-5100, 1.0 3.2498 / 6022 4.3492 / 6015 3.2229 / 24396 3.2229 / 24292

5000-5100, 5.0 3.2417 / 5844 3.3140 / 5825 3.2229 / 24171 3.2229 / 24284

5100-5200, 1.0 3.7560 / 5734 2.7487 / 5914 2.7448 / 23481 2.7448 / 23494

5100-5200, 5.0 2.7860 / 5525 6.0297 / 5641 2.7449 / 23480 2.7448 / 23527

For KELT-9, a fixed continuum normalization produced a reliable and stable fit for

2000-step  chains  (Table  10).  The  table  shows  that  500-step  chains  produced  more

variation in chi2 values, and typically larger values, which makes them less reliable.

500-step experiments took on average 5815 seconds and 2000-step experiments 23891

seconds. It can be concluded, that it is worth to spend approximately four times more

time to get better and more reliable fit.

Table 11. Reduced chi2 values for KELT-9 if continuum normalization is free. Wavelength range (Å) and
epsilon coefficient / number of walkers and their length. Winning model with the best hyperparameters is 
marked with green.

50, 500 100, 500 50, 2000 100, 2000
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5000-5100, 1.0 18.5836 / 5753 13.6946 / 5624 17.2043 / 20209 14.7471 / 22168

5000-5100, 5.0 18.5882 / 5098 16.4935 / 5529 9.5754 / 21654 12.4732 / 21274

5100-5200, 1.0 28.2609 / 5381 24.5012 / 5737 18.7883 / 20518 17.5598 / 20078

5100-5200, 5.0 23.6422 / 4920 24.7596 / 5144 8.0799 / 21974 24.9132 / 19934

Setting continuum normalization free had negative impact on the results (Table 11). In

none  of  the  cases  was  the  reduced  chi2  close  to  one,  the  closest  being  8.0799.

Surprisingly, the experiments took slightly less time than the ones with fixed continuum

normalization. An average time consumption of 500-step chains was 5398 seconds and

the same metric for 2000-step chains was 20976.

Table 12. Reduced chi2 values and time in seconds for HD 235349 if continuum normalization is fixed.
Wavelength range (Å) and epsilon coefficient / number of walkers and their length. Winning model with

the best hyperparameters is marked with green.

50, 500 100, 500 50, 2000 100, 2000

5000-5100, 1.0 0.8992 / 3182 0.8994 / 3112 0.8992 / 12728 0.8991 / 12623

5000-5100, 5.0 0.8992 / 3173 0.8991 / 3169 0.8991 / 12692 0.8991 / 12770

5100-5200, 1.0 0.5221 / 2933 0.5221 / 2886 0.5225 / 11664 0.5223 / 11938

5100-5200, 5.0 0.5228 / 3056 0.5226 / 2989 0.5223 / 12118 0.5222 / 12061

The dataset of HD 235349 produced very different results from KELT-9 (Table 12). If

continuum normalization  was fixed,  all  reduced chi2 values  were less  than  one.  As

expected, low resolution reduced the time consumption: running 500-step chain took on

average 3063 seconds and 2000-step took on average 12324.

Table 13. Reduced chi2 values for HD 235349 if continuum normalization is free. Wavelength range (Å) 
and epsilon coefficient / number of walkers and their length. Winning model with the best 
hyperparameters is marked with green.

50, 500 100, 500 50, 2000 100, 2000

5000-5100, 1.0 1.6240 / 2968 1.4159 / 3027 0.7198 / 12050 0.7233 / 10149

5000-5100, 5.0 1.4560 / 2747 1.4336 / 2770 1.1672 / 9872 0.7228 / 10377

5100-5200, 1.0 0.7043 / 2894 0.7726 / 2824 0.4894 / 11566 0.4900 / 11354

5100-5200, 5.0 0.7450 / 2587 0.7966 / 2627 0.4905 / 9949 0.4897 / 9575
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Setting continuum normalization free caused big differences between the two studied

wavelength ranges (Table 13). The reduced chi2 values for 5100-5200 were always less

than one, ranging from 0.4894 to 0.7966, but for 5000-5100 some of them were more

than one, ranging from 0.7198 to 1.6240. The 500-step experiments took on average

2806 seconds to run and their 2000-step peers 10612 seconds.

The longer chains with free continuum sometimes reach a smaller reduced chi2 than

their counterparts with a fixed continuum.  But since the reduced chi2 is less than 1, that

suggests these case may be over-fitting, and some of the variance of the reduced chi2

with the epsilon coefficient  suggests the results  with a  free continuum may still  be

unstable.

Epsilon  coefficient  5.0  made  experiment  take  slightly  less  time  than  the  default

coefficient 1.0.

5.2 Proximity to literature values and uncertainties as quality metrics

In this subsection,  the results of the experiments will be compared to the ones from

previous literature based on [5] and [7]. The following tables compare these literature

values with the results produced by the best models.

Table 14. Comparison of literature values of physical parameters of KELT-9 [5] and the values produced 
in this work of the winning model

Parameter Literature 
value

Literature 
error

Thesis value Thesis error 
positive

Thesis error 
negative

Teff 9495 104 9440 647 447

logg 4.17� 0.17� 4.60 0.37 0.90

vsini 114.9� 3.4� 112.19 1.93 1.73

Vr -11.71 2.19 -13.21 3.93 1.95

metal 0.07 0.14 -0.09 0.27 0.13

It can be seen (Table 14) that the estimated parameter values are roughly consistent with

the literature values. Only for surface gravity is the difference larger than the joint error
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bar, and even then the difference is less than two times the joint error. Problematically,

effective temperature has 5.26 times larger errorbar from the MCMC analysis. In other

words, this estimate is much more uncertain.

Table 15. Comparison of literature values of physical parameters of HD 235349 [7] and the values 
produced in this work

Parameter Literature 
value

Literature 
error

Thesis value Thesis error 
positive

Thesis error 
negative

Teff 14189 492 14233 268 326

logg 3.43 0.21 4.34 0.33 0.39

vsini 64.8 7.1 69.1 2.1 2.0

Vr -0.14 8.58 0.16 0.13 0.13

metal 0.03 0.21 -0.15 0.05 0.06

The estimates for HD 235349 (Table 15) were quite consistent with [7] except for the

surface gravity log g. Most errorbars were smaller than in the literature [7].

5.3 Autocorrelation time and acceptance fraction

The authors  of  emcee recommend  to  take  into  account  acceptance  fraction  and  the

autocorrelation time estimate. They are analyzed below.

The lowest acceptance fraction was 0.2132 (KELT-9, 5000-5100, 5.0, 50, 500) and the

highest 0.5410 (HD 235349, 5000-5100, 5.0, 100, 2000). This means that we can be

satisfied with acceptance fraction of all experiments because it should be approximately

from 0.2 to 0.5.

The  autocorrelation  time  estimate  is  heavily  influenced  by  the  length  of  the  chain.

Below, the  autocorrelation  time estimate  lists  are  presented  for  the winning models

(marked with green in Tables 10-13). For each winning model autocorrelation times are

also given for the 500-step analogue, and calculated the ratio between the 2000-step

version and 500-step version is also calculated. 

The parameters are presented in the following order: Vr, Teff, log g, v sin i, metal. In case

of free continuum normalization, the three parameters before the metal are  contnorm.
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The following list represents autocorrelation time for each of the free parameters of the

winning model of KELT-9 with fixed continuum normalization (5100-5200, 1.0, 100

walkers, 2000 steps):

[173.35082135  33.35579734 121.98309726 134.39310998  50.0858676].

The following list is its 500-step alternative:

[68.5460505  36.81132621 43.1641339  36.09850946 38.49189672].

As it can be seen the in the longer chain version the estimates are the following times

larger, the estimate cannot be trusted if the chain is only a factor of ten longer than the

estimate itself:

[2.5267065, 0.9075969, 2.8274240, 3.7162809, 1.2989589].

Analogously,  the  following  lists  represent  autocorrelation  time  for  each  of  the  free

parameters of the winning model of KELT-9 with free continuum normalization (5100-

5200, 5.0, 50 walkers, 2000 steps), its 500-step counterpart and the ratio between them:

[264.96362699  108.23807284  151.67406278  246.77036207  120.59512537

70.13791418  38.76992107 174.00586809]

[66.33547072  41.02577161  63.70516036  47.92537701  37.23602326  37.37296144

28.61336508 43.45130393]

[3.99671768 2.63564156 2.38499445 5.14610961 3.23344111 1.87644381 1.35503868

3.99600278]

The following lists represent autocorrelation time for each of the free parameters of the

winning model of HD 235349 with fixed continuum normalization (5000-5100, 1.0, 100

walkers, 2000 steps), its 500-step counterpart and the ratio between them:

[171.68121849  65.53973087  51.87444833  73.82820409  65.07212845]

[65.2832794  30.03621738 41.52675992 56.75039525 27.15718095]

[2.62877391 2.1804173  1.24984705 1.30138732 2.39492474]
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The following lists represent autocorrelation time for each of the free parameters of the

winning model of HD 235349 with free continuum normalization (5000-5100, 1.0, 100

walkers, 2000 steps), its 500-step counterpart and the ratio between them:

[261.78635986 215.7502878  101.22448616 186.97573076 115.45336771 82.3972775

46.10974467 193.15826037]

[45.69057367  56.4375322   40.94100803  60.74025464  42.35353522  28.78095773

23.45365017 43.32959613]

[5.72782646   3.82491338   2.46829535   3.0789329    2.72760962   2.86402719

1.97221984  4.45371431]

If  the  length  of  the  chain  is  increased  by a  factor  of  four,  the  autocorrelation  time

estimate increased usually two or three times. It can be implied that the autocorrelation

times of too short chains are unreliable.

5.4 Time consumption and parallelization

As expected, MCMC methods were time consuming. Table 16 presents the speedup of

the program computed as a relationship between the user and real time.

Table 16. Speedup computed as the relationship between real and user time (in seconds)

Set Real time User time Speedup

1 1405801 218971 6.42

2 1365626 208939 6.54

3 1270390 117435 10.82

4 1292992 113101 11.43

Combined 5334809 658447 8.10

As  mentioned  in  2.2.2,  Amdahl’s  law connects  the  speedup S=8.10 ,  number  of

processors (in this work equal to the number of vCPUs) P=48 and sequential fraction

of the program F :

61 



S= 1

F+ 1− F
P

.

According  to  Amdahl’s  law  the  sequential  fraction  of  the  program  is F=0.105 ,

meaning that the parallel fraction is 0.895.

The efficiency of the project would benefit the most if  linpro_ subroutine would be

optimized in Zeeman. According to the profiling call graph, it takes 75.89% of the time.

5.5 Comparison with chi-square method

This subsection compares the quality of the chi2-method based pure Zeeman code and

the chi2-method based Python wrap-up code. The main quality metric is the reduced

chi2 value.

Table 17. Reduced chi2 values of the four experiments. Comparison between average and best of MCMC
experiments with 2000 steps and chi2-based experiments

Star Wavelengt
h range

MCMC 
(average)

MCMC 
(best)

chi2

KELT-9 5000-5100 8.3614 3.3140 3.1025

KELT-9 5100-5200 10.0401 2.7448 2.9269

HD 
235349

5000-5100 0.8662 0.7233 0.9343

HD 
235349

5100-5200 0.5061 0.5225 0.5209

The results suggest that chi2 method slightly outperforms the MCMC-based method if

the wavelength range is chosen to be 5000-5100 but if the wavelength range is 5100-

5200 it is the other way around. Paired sample T-test suggests that the difference in

quality between the winning MCMC models and the chi2-based fittings are statistically

insignificant  if  we  use  an  alpha-value  of  0.05  since  the  p-value  computed  by

pairedTTest.py is much larger: 0.68. 

As expected the reduced chi2 values for MCMC are similar to the ones of the chi2

minimization  method.  It  confirms  that  MCMC also  converges  well.  Sadly,  MCMC
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methods are far more time consuming compared to chi2-based method that takes less

than a minute to run. 

5.6 Correlation between the stellar parameters

Correlation matrices for both studied stars were produced (both fixed (Fig. 17) and free

(Fig.  14)  continuum normalization.  Some correlations  between  the  parameters  were

similar  for  both  stars,  and  others  were  different.  In  case  of  fixed  continuum

normalization, the most strongly correlated physical parameters for KELT-9 were Teff

and  v  sin i,  with correlation of -0.828046, and for  HD 235349 Teff and log  g  had

correlation of 0.806103.

If continuum normalization was fixed, Vr and v sin i were relatively strongly correlated

for both stars but in opposite directions: for KELT-9 the correlation was -0.724703, and

for HD 235349 0.668147. Similarly, Teff had opposite correlations with log g and metal:

-0.451322  and  -0.609801  for  KELT-9  but  for  HD  235349  the  same  values  were

respectively 0.806103 and 0.760774.

On  the  other  hand,  some  correlations  were  similar  for  both  stars.  The  correlation

between Vr and log g was -0.433320 for KELT-9 and -0.336929 for HD 235349. The

correlation between log  g and metal was even more similar: 0.785568 and 0.776555,

respectively.

If continuum normalization was used as a free parameter, the three parts of continuum

normalization were not strongly correlated with each other, nor with other parameters
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Figure 17: Correlation matrices between physical parameters for KELT-9 (left)
and HD 235349 (right) if the continuum normalization is fixed



for  HD  235349.  It  was  very  different  for  KELT-9,  where  the  parts  of  continuum

normalization were correlated with Vr and Teff with an absolute value of around 0.85,

and with each other with an absolute value of around 0.99.

5.7 Visual comparison of convergence

As described in the previous chapter, in addition to text files, also visual plots were

produced.

It can be clearly seen (in Fig. 18) that 500-step experiments did not produce reliable

results:
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Figure 18: Corner plot of the experiment for KELT-9 with wavelength range 5000-5100 Å,
fixed continuum normalization, 1.0 as epsilon coefficient,100 walkers and 500 steps



On the other hand, the 2000-step analogue of the previous example, presented in Fig.

19, converged well:

It can be also seen on the plot of walkers (Fig. 20) that it takes nearly 500 steps to

converge and 500 steps is not long enough length for a chain.

65 

Figure 19: Corner plot of experiment with wavelength range 5000-5100 Å, fixed continuum
normalization, 1.0 as epsilon coefficient, 100 walkers and 2000 steps



It can be also seen in Fig. 21 that if the wavelength range is set to 5100-5200 Å, the

quality of the result suffers because it is a multimodal distribution:
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Figure 20: Walkers of experiment with wavelength range 5000-
5100 Å, fixed continuum normalization, 1.0 as epsilon

coefficient, 100 walkers and 2000 steps



While MCMC methods have some ability to handle multimodal distributions, this may

slow convergence, and will likely lead to larger uncertainties than for the 5000-5100 Å

case.

5.8 Comparison of the datasets

Above, multiple different quality metrics were used to analyze the results based on both

datasets. This subsection summarizes the differences between the datasets based on the

results and quality metrics.
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Figure 21: Corner plot of experiment with wavelength range 5100-5200 Å, fixed continuum
normalization, 1.0 as epsilon coefficient,100 walkers and 2000 steps



On the  one  hand,  the  datasets  of  the  two  stars  were  quite  different.  The  different

instrument  and  lower  signal-to-noise  ratio  for  HD 235349 has  probably  caused  the

surprisingly small reduced chi2 value. If the fit to the observation is limited only by

noise, as in this lower signal-to-noise case, then an  overestimate in the errorbars will

cause the reduced chi2 value to be small. In the observation of HD 235349 the scatter in

values between adjacent pixels (in the continuum regions) is often less than the error

bar, which supports the idea that these errors are overestimated.

On the other hand, the datasets had also significant similarities. Both of them produced

results  with  similar  error  bars,  as  described  in  5.2.  Both  of  them  gave  physical

parameter values that are consistent with result from the literature. In both cases, it was

important to run long chains and keep the continuum normalization fixed.
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6 Summary

In this thesis, integration of MCMC methods with the stellar spectrum synthesis code

Zeeman was tested. The quality of MCMC methods was compared to results from chi2

minimization method. In addition to producing MCMC and chi2 results, the Zeeman

code was profiled.

It  can be concluded that the chains should be thousands of steps long to produce a

reliable  result.  A  high  resolution  and  a  high  signal-to-noise  ratio  in  the  observed

spectrum is also crucial to produce a good fit.

The  best  model  for  KELT-9  turned  out  to  be  the  one  with  the  following

hyperparameters:  wavelength range 5100-5200 Å, fixed continuum normalization, 50

walkers,  2000  steps  and  1.0  epsilon  coefficient;  and for  HD 235349 the  following

hyperparameters: wavelength range 5000-5100 Å, fixed continuum normalization, 100

walkers,  2000  steps  and  1.0  epsilon  coefficient.  Continuum  normalization  did  not

perform well as a free parameter in this work and produced unstable results.

The  results  produced  by  chi2  minimization  method  and  the  ones  produced  by  the

corresponding winning models of MCMC were similar. According to the reduced chi2

values chi2 method slightly outperformed the MCMC-based method if the wavelength

range wass chosen to be 5000-5100 Å but if the wavelength range was 5100-5200 Å it

was the other way around.

The relationship between real and user time, and a computation based on Amdahl’s law,

shows that the project is well parallelized. According to the Gprof call graph the most

time-consuming subroutine in Zeeman program code is  linpro_,  which evaluates the

radiative transfer equation, and that would be useful to optimize in the future works.

In conclusion, the project fundamentally worked, but it needs sufficiently long chains to

converge completely and reduce the error bars.  In future projects,  the program code

could benefit from additional automation. For example, the experiment could be run in
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more stages. After the first stage, some parameters could become fixed based on their

estimates from the first stage. Also, it would be good to experiment with some other

wavelength ranges both with and without free continuum normalization.

This work taught me to connect knowledge from different branches of science. Stellar

spectroscopy was a good example to get started with MCMC methods.
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Appendix 2 – Directory tree

Table 18. Directory structure of the project

File or directory Description

data Contains multiple files of which the most important 
are:
zmodel.dat – input parameters
vlines.dat – spectral lines
Contains also ATLAS9 and MARCS folders with 
precomputed results.

out Directory that contains 
out-atmosphere.krz - copy that code uses, 
interpolated values
out-model.dat - copy of zmodel.dat 
outzfit-u.dat - diagnostic log for potential problems

testedResults Directory that contains the results of 
testCombinations.py

venv Creates and manages virtual environments that 
isolate and manage dependencies for the project.

lmamp Compiled executable file, generated by the compiler

multi-magff-0.9.7-dil.f Should make multiple calls to Zeeman, merge the 
resuts, return them and provide a model spectrum, 
with different filling factors of different magnetic 
fields.

hline-extras-0.9.7.6n.f Additional subroutines for ZEEMAN; includes 
features for improved calculation of Hydrogen lines

rewriterU0.9.7-dil.f Generates the out/out-model.dat

zuc-0.9.7.10-sub.f Subroutine version of Zeeman that can be ran by the 
fitting routine

zuc-0.9.7.10.f Stand-alone version of Zeeman that does calculations
but not fitting (currently not used)

lmau-zuc0.9.5.2-dil.f Runs a Levenberg-Marquardt fitting routine, 
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File or directory Description

interpolation between model atmospheres

testProgram The Gprof profiling routine created in the terminal.

output.png The Gprof2dot call graph that is the result of 
profiling.

requirements.txt A file that contains all the Python modules that have 
to be installed

zemceeWrap03cont.py The wrap-up code around Zeeman code. Uses 
MCMC to fit the empirical observations in 
observed.dat.

plotChain.py Creates two plots: a plot of walkers and the corner 
plot. Originally displayed them but was changed to 
save them to the directory testedResults.

plotSpectra.py Plots the observed spectrum and the two spectra 
generated by the most recent zemceeWrap03cont.py 
run

testCombinations.py Runs the set of experiments

plotCorrelation.py Plots the visual correlation matrix and prints it out in 
the terminal

PairedTTest.py Runs paired T-test to estimate the statistical 
significance (needed in 5.5)

observed.dat Observations of HD 235349

observed_kelt9.dat Observations of KELT-9

zmodel.dat Input parameters

inlmam.dat Contains the fittable parameters, overrides zmodel.dat
if their content happens to be in conflict

plot1 Most recent synthetic spectrum from Zeeman

results.dat Diagnostic output from the chi2 fitting routine, final 
parameters after minizing chi2

outSpeci.dat The spectrum calculated with the median values in 
the chain

chain.dat All positions of the walkers of the most recent run of 
zemceeWrap03cont.py

arraysizes.mod Temporary file by compiler
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File or directory Description

savespec.mod Temporary file by compiler

Makefile Contains the compilation instructions

plotff1 The spectrum without interpolation

plotff1i The spectrum after double shifting and interpolating 
with chi2

subprocess Side product of profiling

gmon.out Side product of profiling
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Appendix 3 – Project code and results 

The project with all the Python files is available at GitHub (some other files are not 

included because of copyright issues): 

https://github.com/jaanikaraik/jaanika-raik-master-thesis 

The  results  of  the  experiments  are  located  in  the  folder  testedResults.  They  are

distributed between four folders: 

 KELT9 – all MCMC experiments with the KELT-9 dataset

 HD235349 – all MCMC experiments with the Hd 235349 dataset

 chi2experiments – all four chi2 experiments

 correlationMatrices – all four visual correlation matrices and their numberical

values in a text file
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Appendix 4 – Full profiling results
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Flat profile
Each sample counts as 0.01 seconds.
 %   cumulative   self              self     total            
time   seconds   seconds    calls  ms/call  ms/call  name     
75.86      0.22     0.22        8    27.50    27.50  linpro_
13.79      0.26     0.04        1    40.00   280.00  dskint_
 3.45      0.27     0.01        4     2.50     2.50  spprof_
 3.45      0.28     0.01        1    10.00    10.00  correctgf_
 3.45      0.29     0.01        1    10.00    10.00  voigt_
 0.00      0.29     0.00     9728     0.00     0.00  ltelc_
 0.00      0.29     0.00      192     0.00     0.00  kappac_
 0.00      0.29     0.00      192     0.00     0.00  stancilh2p_
 0.00      0.29     0.00        9     0.00     0.00  parse_quantum3_
 0.00      0.29     0.00        8     0.00     0.00  abzsp_
 0.00      0.29     0.00        8     0.00     0.00  magfld_
 0.00      0.29     0.00        1     0.00   290.00  MAIN__
 0.00      0.29     0.00        1     0.00     0.00  compon_
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 0.00      0.29     0.00        1     0.00     0.00  correctvald_
 0.00      0.29     0.00        1     0.00     0.00  covsrt_
 0.00      0.29     0.00        1     0.00   290.00  funcs_
 0.00      0.29     0.00        1     0.00     0.00  gaussj_
 0.00      0.29     0.00        1     0.00     0.00  
magffinterppassed_
 0.00      0.29     0.00        1     0.00   290.00  magffzeeman_
 0.00      0.29     0.00        1     0.00     0.00  modelatmo_
 0.00      0.29     0.00        1     0.00   290.00  mrqmin_
 0.00      0.29     0.00        1     0.00    10.00  readvald3_
 0.00      0.29     0.00        1     0.00     0.00  rewriteru_
 0.00      0.29     0.00        1     0.00   290.00  zeemanu_

%         the percentage of the total running time of the
time       program used by this function.

cumulative a running sum of the number of seconds accounted
seconds   for by this function and those listed above it.

80 



self      the number of seconds accounted for by this
seconds    function alone.  This is the major sort for this
          listing.

calls      the number of times this function was invoked, if
          this function is profiled, else blank.

self      the average number of milliseconds spent in this
ms/call    function per call, if this function is profiled,
          else blank.

total     the average number of milliseconds spent in this
ms/call    function and its descendents per call, if this
          function is profiled, else blank.

name       the name of the function.  This is the minor sort
          for this listing. The index shows the location of
          the function in the gprof listing. If the index is
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          in parenthesis it shows where it would appear in
          the gprof listing if it were to be printed.

Copyright (C) 2012-2022 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.

                    Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 3.45% of 0.29 
seconds

index % time    self  children    called     name
               0.00    0.29       1/1           main [6]
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[1]    100.0    0.00    0.29       1         MAIN__ [1]
               0.00    0.29       1/1           mrqmin_ [4]
-----------------------------------------------
               0.00    0.29       1/1           mrqmin_ [4]
[2]    100.0    0.00    0.29       1         funcs_ [2]
               0.00    0.29       1/1           magffzeeman_ [3]
               0.00    0.00       1/1           modelatmo_ [24]
               0.00    0.00       1/1           rewriteru_ [25]
-----------------------------------------------
               0.00    0.29       1/1           funcs_ [2]
[3]    100.0    0.00    0.29       1         magffzeeman_ [3]
               0.00    0.29       1/1           zeemanu_ [5]
               0.00    0.00       1/1           magffinterppassed_ 
[23]
-----------------------------------------------
               0.00    0.29       1/1           MAIN__ [1]
[4]    100.0    0.00    0.29       1         mrqmin_ [4]
               0.00    0.29       1/1           funcs_ [2]
               0.00    0.00       1/1           gaussj_ [22]

83 



               0.00    0.00       1/1           covsrt_ [21]
-----------------------------------------------
               0.00    0.29       1/1           magffzeeman_ [3]
[5]    100.0    0.00    0.29       1         zeemanu_ [5]
               0.04    0.24       1/1           dskint_ [7]
               0.00    0.01       1/1           readvald3_ [11]
               0.00    0.00    9728/9728        ltelc_ [13]
               0.00    0.00     192/192         kappac_ [14]
               0.00    0.00       1/1           compon_ [19]
-----------------------------------------------
                                                <spontaneous>
[6]    100.0    0.00    0.29                 main [6]
               0.00    0.29       1/1           MAIN__ [1]
-----------------------------------------------
               0.04    0.24       1/1           zeemanu_ [5]
[7]     96.6    0.04    0.24       1         dskint_ [7]
               0.22    0.00       8/8           linpro_ [8]
               0.01    0.00       4/4           spprof_ [9]
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               0.01    0.00       1/1           voigt_ [12]
               0.00    0.00       8/8           magfld_ [18]
               0.00    0.00       8/8           abzsp_ [17]
-----------------------------------------------
               0.22    0.00       8/8           dskint_ [7]
[8]     75.9    0.22    0.00       8         linpro_ [8]
-----------------------------------------------
               0.01    0.00       4/4           dskint_ [7]
[9]      3.4    0.01    0.00       4         spprof_ [9]
-----------------------------------------------
               0.01    0.00       1/1           readvald3_ [11]
[10]     3.4    0.01    0.00       1         correctgf_ [10]
-----------------------------------------------
               0.00    0.01       1/1           zeemanu_ [5]
[11]     3.4    0.00    0.01       1         readvald3_ [11]
               0.01    0.00       1/1           correctgf_ [10]
               0.00    0.00       9/9           parse_quantum3_ [16]
               0.00    0.00       1/1           correctvald_ [20]
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-----------------------------------------------
               0.01    0.00       1/1           dskint_ [7]
[12]     3.4    0.01    0.00       1         voigt_ [12]
-----------------------------------------------
               0.00    0.00    9728/9728        zeemanu_ [5]
[13]     0.0    0.00    0.00    9728         ltelc_ [13]
-----------------------------------------------
               0.00    0.00     192/192         zeemanu_ [5]
[14]     0.0    0.00    0.00     192         kappac_ [14]
               0.00    0.00     192/192         stancilh2p_ [15]
-----------------------------------------------
               0.00    0.00     192/192         kappac_ [14]
[15]     0.0    0.00    0.00     192         stancilh2p_ [15]
-----------------------------------------------
               0.00    0.00       9/9           readvald3_ [11]
[16]     0.0    0.00    0.00       9         parse_quantum3_ [16]
-----------------------------------------------
               0.00    0.00       8/8           dskint_ [7]
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[17]     0.0    0.00    0.00       8         abzsp_ [17]
-----------------------------------------------
               0.00    0.00       8/8           dskint_ [7]
[18]     0.0    0.00    0.00       8         magfld_ [18]
-----------------------------------------------
               0.00    0.00       1/1           zeemanu_ [5]
[19]     0.0    0.00    0.00       1         compon_ [19]
-----------------------------------------------
               0.00    0.00       1/1           readvald3_ [11]
[20]     0.0    0.00    0.00       1         correctvald_ [20]
-----------------------------------------------
               0.00    0.00       1/1           mrqmin_ [4]
[21]     0.0    0.00    0.00       1         covsrt_ [21]
-----------------------------------------------
               0.00    0.00       1/1           mrqmin_ [4]
[22]     0.0    0.00    0.00       1         gaussj_ [22]
-----------------------------------------------
               0.00    0.00       1/1           magffzeeman_ [3]
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[23]     0.0    0.00    0.00       1         magffinterppassed_ [23]
-----------------------------------------------
               0.00    0.00       1/1           funcs_ [2]
[24]     0.0    0.00    0.00       1         modelatmo_ [24]
-----------------------------------------------
               0.00    0.00       1/1           funcs_ [2]
[25]     0.0    0.00    0.00       1         rewriteru_ [25]
-----------------------------------------------

This table describes the call tree of the program, and was sorted by
the total amount of time spent in each function and its children.

Each entry in this table consists of several lines.  The line with the
index number at the left hand margin lists the current function.
The lines above it list the functions that called this function,
and the lines below it list the functions this one called.
This line lists:
    index      A unique number given to each element of the table.
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               Index numbers are sorted numerically.
               The index number is printed next to every function name
so
               it is easier to look up where the function is in the 
table.

    % time     This is the percentage of the `total' time that was 
spent
               in this function and its children.  Note that due to
               different viewpoints, functions excluded by options, 
etc,
               these numbers will NOT add up to 100%.

    self       This is the total amount of time spent in this 
function.

    children   This is the total amount of time propagated into this
               function by its children.

    called     This is the number of times the function was called.
               If the function called itself recursively, the number
               only includes non-recursive calls, and is followed by
               a `+' and the number of recursive calls.
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    name       The name of the current function.  The index number is
               printed after it.  If the function is a member of a
               cycle, the cycle number is printed between the
               function's name and the index number.

For the function's parents, the fields have the following meanings:

    self       This is the amount of time that was propagated directly
               from the function into this parent.

    children   This is the amount of time that was propagated from
               the function's children into this parent.

    called     This is the number of times this parent called the
               function `/' the total number of times the function
               was called.  Recursive calls to the function are not
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               included in the number after the `/'.

    name       This is the name of the parent.  The parent's index
               number is printed after it.  If the parent is a
               member of a cycle, the cycle number is printed between
               the name and the index number.

If the parents of the function cannot be determined, the word
`<spontaneous>' is printed in the `name' field, and all the other
fields are blank.

For the function's children, the fields have the following meanings:

    self       This is the amount of time that was propagated directly
               from the child into the function.

    children   This is the amount of time that was propagated from the
               child's children to the function.
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    called     This is the number of times the function called
               this child `/' the total number of times the child
               was called.  Recursive calls by the child are not
               listed in the number after the `/'.

    name       This is the name of the child.  The child's index
               number is printed after it.  If the child is a
               member of a cycle, the cycle number is printed
               between the name and the index number.

If there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole.  This entry shows who called the
cycle (as parents) and the members of the cycle (as children.)
The `+' recursive calls entry shows the number of function calls that
were internal to the cycle, and the calls entry for each member shows,
for that member, how many times it was called from other members of
the cycle.

Copyright (C) 2012-2022 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.

Index by function name

  [1] MAIN__                 [22] gaussj_                 [4] mrqmin_
 [17] abzsp_                 [14] kappac_                [16] 
parse_quantum3_
 [19] compon_                 [8] linpro_                [11] 
readvald3_
 [10] correctgf_             [13] ltelc_                 [25] 
rewriteru_
 [20] correctvald_           [23] magffinterppassed_      [9] spprof_
 [21] covsrt_                 [3] magffzeeman_           [15] 
stancilh2p_
  [7] dskint_                [18] magfld_                [12] voigt_
  [2] funcs_                 [24] modelatmo_              [5] zeemanu_
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