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SUMMARY

Anovel, general framework for performing whole-cost optimization of water

production and distribution in real-time was developed in this dissertation.

Optimization enables signi�cant savings in energy and chemical costs.

Optimization resulted in near optimal settings for all pump, valve and source

stations, and optimal frequencies for all pumps in the water supply system as a

function of time for the next 24 hours in near real-time.

This dissertation developed a novel way to formulate the design variables of

the optimization problem in order tominimize the size of the search space, a novel

way to preoptimize operation of pump batteries, a novel way to model pressure

or �ow controlled variable-speed driven pumping and a novel method to model

complex control strategies in the hydraulic simulator.

The optimization algorithmused is amodi�ed version of greedy,meta-heuristic,

single-solutionHybridDiscrete DynamicallyDimensioned Search (HD-DDS), that

has not been applied in operational optimization of water supply systems before.

According to the author’s review of previous studies, this research is the �rst

where real-time operative optimization of a large-scalewater supply system (WSS)

is performed using a non-simpli�ed and non-surrogate model covering all pipes

in the system, and where the raw water production, conveyance and treatment

are also included in the model and optimization.

In the case study (Tampere Water) the proposed optimization framework re-

sulted in 20 % savings in the production and distribution costs, while ensuring

better quality of service than before. Real-time aspect is ensured by the optimiza-

tion run taking about two hours of computation time.
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KOKKUVÕTE

Käesolev doktoritöö esitleb uuenduslikku, üldistatud raamistikku, tervikli-

ku veevõrgumaksumuse reaalajas optimeerimist, mis kaasab nii vee tootmis-

tsüklit kui ka selle juhtimist tarbijani.

Optimeerimine võimaldabmärkimisväärset kokkuhoidu nii energiakulu kui ke-

mikaalide maksumuse seisukohalt.

Optimeerimise käigus leitakse optimumile lähedased kõikide pumpade, klap-

pide, lähteallikate seaded ning kõikide veevõrgu süsteemi pumpade optimaalsed

pöörete arvud järgnevaks 24 tunni perioodiks reaalajale lähedase aja jooksul.

Käesolev doktoritöö esitleb unikaalset, optimeerimiseks vajalike disaini para-

meetrite de�neerimise võimalust, et minimeerida lahendite ruumi; uudset pump-

late eeloptimeerimist; uuenduslikku pöörete-arvu reguleerimisega pumba elemen-

tide modelleerimist lähtuvalt �kseeritud surve või vooluhulga tagamisest ning

uudset lähenemisviisi kontrollimaks hüdraulilise simulaatori keerukamaid juhti-

mise strateegiaid.

Optimeerimisalgoritm on tuletatud hybrid discrete dynamically dimensioned

search (HD-DDS) baasil, mida pole varasemalt veevõrgu süsteemi opereerimise

optimeerimise juures kasutatud.

Lähtuvalt autori poolt teostatud kirjanduse ülevaatest hõlmab käesolev uuri-

mustöö esmakordselt suuremahulise veevõrgu reaalajas juhtimise optimeerimist,

kus mudel kaasab kõiki süsteemi torusid ning toorvee tootmine, transport ning

töötlus on samaaegselt kaasatud mudelisse ning ka selle optimeerimisse.

Doktoritöö raames rakendati Tampere linna veevõrgule väljatöötatud lahen-

dust, kus optimeerimine andis 20 % kokkuhoiu vee tootmise- ja vee transpordi

kuludelt, tagades samal ajal varasemast parema teenusekvaliteedi. Reaalaja termi-

nit kaasatakse optimeerimises lähtuvalt asjaolust, et optimeeritud lahendi otsing

võtab ligikaudu kaks tundi aega.
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YHTEENVETO

Tässä väitöskirjassa kehitettiin uusi, yleinen ratkaisu vedentuotannon ja -jakelun

kokonaiskustannusten optimoimiseksi reaaliaikaisesti. Optimoinnin avulla

on mahdollista saada aikaan merkittäviä säästöjä energia- ja kemikaalikuluissa.

Optimoinnilla haetaan asetusarvot kaikille asemille ja optimitaajuudet kaikille

vedenjakelujärjestelmän pumpuille ajan funktiona aina 24 tuntia optimointihet-

kestä eteenpäin lähes reaaliajassa.

Väitöstutkimuksessa on kehitetty uusi tapa muotoilla optimoinnin suunnit-

telumuuttujat hakuavaruuden minimoimiseksi, uusi tapa esioptimoida pumppu-

pattereiden toiminta, uusi tapa paine- tai virtaussäädetyn, taajuusmuuttajaohja-

tun pumppauksen mallintamiseksi sekä menetelmä monimutkaisten säätötapo-

jen mallintamiseksi verkostosimulaattorissa.

Työssä käytetään optimointialgoritmina muokattua versiota ahneesta, meta-

heuristisesta, yhtä ratkaisua käsittelevästä hybrid discrete dynamically dimensio-

ned search (HD-DDS) -optimointialgoritmista, jota ei ole aiemmin sovellettu ve-

denjakelujärjestelmän operatiivisissa optimoinnissa.

Tekijän kirjallisuusselvityksen perusteella tämä tutkimus on ensimmäinen, jos-

sa reaaliaikaista operatiivista optimointia tehdään yksinkertaistamattomalla ko-

ko verkoston kattavalla mallilla, jossa on mukana myös raakavedentuotanto ja

vedenpuhdistusprosessit.

Tapausesimerkissä (Tampereen Vesi) optimoinnilla saatiin aikaan 20 %:n säästö

tuotanto- ja jakelukustannuksissa samalla, kun palvelutaso parani. Vuorokauden

aikajakson optimointi vaati tapausesimerkissä noin kaksi tuntia laskenta-aikaa.
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PREFACE

Before you lies the culmination of several years’ worth of labor and research

into pumping, electrical motors, and water supply systems (WSS), their per-

formance characteristics and optimization.

This PhD thesis is part of my doctoral studies at Tallinn University of Technol-

ogy, Estonia. The research was conducted at the request from the Tampere Water

Utility.

Main motivation for the research was that no such a study had earlier been

applied in Finland, and that the earlier work done elsewhere neglected some of

the complexeties of the optimization problem of the water supply system (WSS).

This work is expected to show that it is possible to optimize large-scale WSSs

using full-scale hydraulic models and to include all components a�ecting energy

usage and e�ciency, while still achieving near real-time performance.

Solving the complex multi-part problem resulted in multiple new tools and

products, new business, and proved to be very rewarding.

I hope this work is of interest and will be improved upon by other researchers.
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1 INTRODUCTION

1.1 General

During the last years growing consideration is attached to the so-called water-

energy nexus. Producing potable water and supplying it to the users requires

a considerable amount of energy. No matter how energy is produced, the produc-

tion always requires water at some stage. Typically, this water is not available for

further consumption.

Energy is one of the largest expenses for water utilities, usually the second

right after wages. Water supply uses 2 % to 3 % of the total energy consumption

globally. Pumping water is the main energy consumer, using up to 80 % of the

energy used in water supply systems. [46]

A more complete picture of the energy use of a water supply system can be

painted by calculating energy balance for the system. [58, 57] The somewhat ex-

tended version of energy balancemethodology is presented by the author in [255].

Hydraulic model is used for calculating energy use components as shown in Fig-

ure 1. The balance can be calculated for the whole supply system or any part of

it. The energy balance, however, does not include any other energy consuming

operations in water treatment processes besides transferring the water.

Consumers require a certain amount of energy, Erequired. That energy is the ac-

tual useful part of the total hydraulic energy input Einput into the system. Losses

occur in the network both due to the friction E f riction and leakage Eleak. The energy

input comes into the system in the form of potential energy or it is produced by

the pumps Epump. Pumps convert electricity into hydraulic energy only partially

because of hydraulic losses occurring in the pump itself, Ehyd.losses, and losses in

the motor and the variable-speed drive (VSD) Emotorlosses + EVSDlosses, and thus elec-

tricity consumption is larger than the hydraulic energy input of the pump into

the system.

Some energy use parameters gleaned from Saviranta [237] are presented in

Table 1. The data represents �ve di�erent Finnish water supply systems, each

serving 20 000 to 250 000 inhabitants. On average, the electrical e�ciency, η =
Erequired
Eelectrical

, is about 36 %; so there is clearly room for improvement.

In the systems examined, the raw water extraction and treatment used 14 % to

22 % of the total hydraulic energy use in the system, which is a clear indication

that the water production energy use cannot be neglected, even if the focus is

23
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Figure 1. Energy balance components[255]

on the water distribution network. Likewise, hydraulic losses in pumps account

for 29 % of the electrical energy input, and motor and VSD losses account for

additional 12 %. In practice, the motor and VSD e�ciencies must be accounted

for when optimizing network operations to obtain correct results.

Table 1. Selected energy use parameters in Finnish water supply systems[237]

Parameter Unit Median 60 % Con�dence Interval

Speci�c hydraulic energy use kWh/m3 0.37 0.31–0.36

Speci�c electrical energy use kWh/m3 0.45 0.45–0.50

Hydraulic e�ciency % 49 47–52

Electrical e�ciency % 36 32–38

Pumping total e�ciency % 59 52–61

Hydraulic losses in pumps % 29 22–40

Pump motor and VSD losses % 12 10–13

Excess energy delivered to users % 18 18–22

Friction energy losses % 19 17–22

Energy loss due to leakage % 10 9–13

Hydraulic energy used for raw water
extraction and treatment

% 19 14–22

The classi�cation of the energy e�ciency of an electrical motor is covered in

IEC 60034-30 [123] standard. The standard introduces three e�ciency classes of

the international standard: IE3 premium e�ciency, IE2 high e�ciency and IE1

standard e�ciency. IEC 60034-31 [124] introduces preliminary limits for the IE4
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super-premium e�ciency class. The minimum nominal e�ciencies required by

the classes are shown in Figure 2.
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Figure 2. Lower nominal e�ciency limits for di�erent four-pole motor sizes as per IEC
energy e�ciency classes IE1–IE4. [73]

European Union Commission regulation EC/640/2009 [85], implementing Di-

rective 2005/32/EC [86], requires that all motors (0.75 kW to 375 kW) have at least

IE3 e�ciency class or IE2 with variable speed drive, starting from 1st January

2017. From 1st January 2015, pumps with nominal power 7.5 kW to 375 kW had

to meet the same limits. Comparative requirements have been applied in USA

in 2010 [66]. These regulatory actions promise signi�cant energy savings in the

longer term. However, a large body of installed equipment remains, and optimiza-

tion can reduce the energy usage for the older pumps and motors.

Besides considerable and immediate economic bene�ts, reducing energy con-

sumption lowers the water utility’s environmental impact, as energy production

causes negative environmental e�ects and only a small percentage of the primary

energy input is converted into kinetic energy of water, as shown in Figure 3.

Good design can save up to 30 % of the energy demand, but when the system

is already functional, many aspects are �xed for long periods of time and cannot

be easily or economically changed. The optimal design should also account for

the speci�cs of the system, such as variable �ow and head. The greatest energy

savings can be achieved when energy usage optimization is incorporated into

urban planning and the water supply system design from early on. [139]

Considerable amount of research has been done in the �eld of optimal network

design. Also, redesign and replacement of pumps, building new storage capacity

or new mains, optimizing the water treatment process or parallel pumping – all

of these measures have signi�cant savings potential.

Operational optimization changes the control settings and parameters, or the

control algorithms the water supply control system uses for operating the vari-
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Figure 3. Typical energy �ow from primary energy to kinetic energy of water [279]

ous pumps, valves and tanks installed in the system. Optimizing the operational

aspects of the system is attractive, because signi�cant bene�ts can be achieved in

multiple fronts with simple changes to the control system or its parameters, and

no investments in the network or equipment are needed.

The operational optimization, often named pump scheduling, �nds parameters

that result in optimal behavior in terms of total operational cost, energy consump-

tion, water quality, system reliability or environmental impact, namely green-

house gas emissions. These goals can be contradictory in part, and the con�icting

goals are either formulated into constraints or penalties, or as a multi-objective

optimization problem.

Often the water utilities have multiple sources of water with varying produc-

tion costs. This adds an additional aspect to the optimization problem. It can be

cheaper to produce water in a far away source, even though the energy costs may

be higher than producing the water closer to the demand.

Usually the price of electricity is not �xed and can vary based on the time of

the day, weekday, season, location and peak consumption. The price of electric-

ity does not necessarily re�ect the environmental e�ect of the energy production.

Both wind and solar energy have better availability during daytime, but typically

electricity is the cheapest o�-peak, especially during night. Thus, lowering the

energy consumption is always bene�cial in terms of both economics and envi-

ronmental impact, but minimizing energy costs and environmental impact may

be con�icting goals.

26



1.2 objective of the thesis

One example of the complexity and size of the water network optimization

problems is presented in [50] where a small case-study included four pumping

stations having a total of 10 pumps and one valve, and �ve chlorine dosing loca-

tions. The search-space for the optimal settings for each pump, valve and chlorine

dose was 8.9 · 1028 in the study. Enumerating such a large number of solutions

is impractical, and the search-space grows exponentially, as more stations are

included in the optimization. Numerous numerical optimization methods have

been developed by di�erent authors to cope with such large search-spaces and

non-linearity of the water supply systems.

1.2 Objective of the thesis

Focus in this thesis research is on the following questions:

1. Which components a�ecting energy use are typically missing from the op-

erational optimization problem solutions, and how can they be included?

2. Can near real-time optimization be performed using a full-scale, all-pipe

network model, including rawwater extraction, conveyance and treatment,

and an accurate pump energy model?

The main objective of this thesis research is to develop a method for near real-

time whole-cost optimization of the operation of the water supply system (WSS)

containing elevated storage and variable-speed driven pumps. Optimization has

to take into account every pumping that happens in the system and all factors

a�ecting the pumping e�ciency and system energy consumption, including raw

water extraction and conveyance, which are not included in the earlier research.

The cost optimization must not violate the quality of service (QoS) constraints.

The cost does not only include the cost of energy, but also water treatment costs

at individual sources.

The optimization will be done on multiple interconnected layers all at once:

1. water distribution system (WDS) level: from where, where to and how

much water is pumped or conveyed through valves in order to meet the

water demand and hydraulic and operational constraints

2. water treatment level: what the production costs at di�erent sources are

3. raw water extraction and conveyance level: what the energy costs of ex-

traction and conveyance are

4. pump battery level: how the individual pumps working in parallel will be

driven to achieve best e�ciency
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The design variables, or output from the optimizer, are the time-varying �ow

and pressure settings for all stations in the water supply system, and optimal

frequencies for every pump in the system over the optimization horizon of 24

hours.

The hydraulic state including energy consumption and constraints is evaluated

using a modi�ed and extended version of the EPANET [226] simulator, originally

developed by the Environmental Protections Agency of U.S.A. The constraint vi-

olations are handled using the penalty function.

The optimization framework has to be generic and fast enough for real-time

use. It includes an easy way to integrate it with various supervisory control and

data access (SCADA) systems in use at di�erent water utilities.

The speci�c research objectives of the thesis are:

1. Chapter 3.2: Development of an accurate model for pump, motor and vari-

able speed drive combination accounting for all loss components as a func-

tion of rotational speed

2. Chapter 3.3: Development of a method for �nding globally optimal frequen-

cies for pumps running in parallel for the whole operational range of the

pump battery that can be used for pre-optimizing batteries of pumps work-

ing in parallel at di�erent stations in the system

3. Chapter 3.4.1: Development of an EPANET simulator component that al-

lows accurate and e�cientmodelling of �ow and pressure control of variable-

speed driven pumps working in parallel

4. Chapter 3.4.2: Development of a methodology for modeling complex water

supply control strategies in EPANET, for example controlling raw water

extraction, conveyance and treatment, and network pumping

5. Chapter 3.7: Development of an e�cienct formulation for optimizing the

whole water supply system, including the production side

6. Chapters 3.8 and 3.11: Finding out or developing a custom meta-heuristic

algorithm that can be used for optimizing the whole system, including the

listed developments in a near real-time setting

7. Chapters 3.4.3, 3.4.4 and 3.11.1: Ensuring satisfactory computational time of

the optimization by improving hydraulic simulation and objective function

evaluation performance.

8. Chapter 3.12: Implementation of a generally useable framework combining

the listed developments

28



1.3 layout of the thesis

1.3 Layout of the thesis

This thesis is divided into �ve chapters.

Chapter 1 provides a general overview of the domain and sets the objective of

the thesis.

Chapter 2 reviews the relevant literature. The objective is to focus on the stud-

ies of optimization methods applied in the water supply system design and op-

eration, e�ciency measures of a water distribution system, and �nally, pumping

e�ciency and optimization. Hydraulic modeling and water demand forecasting

are brie�y described, because they are important for the operative optimization

process.

Chapter 3 presents the real-time optimization framework and related develop-

ments in this thesis research. For example, extensions developed for EPANET, par-

allel pump optimization methodology, and SCADA access method are described

along with the optimization problem formulation and the optimization algorithm.

The optimization framework is applied in a full-scale case study in Chapter 4.

The chapter presents the case and relevant results.

Finally, conclusions and discussion, along with some future research paths are

presented in Chapter 5.
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2 WATER SUPPLY SYSTEMS

2.1 Introduction

Optimizing the operational aspects of a water supply system can yield con-

siderable energy and cost savings. The optimization frameworks, however,

tend to be complex systems of multiple components. Schematic presentation of

a generic framework for the operation optimization of a water supply system is

shown in Figure 4. First, a hydraulic simulator is needed for simulating the behav-

ior of the system under various conditions. A demand forecast method is used for

approximating the future water demand in various parts of the system to be op-

timized for the optimization network. Finally, an optimization algorithm drives

the optimization process in order to �nd a nearly optimal solution.

Automated
Real-time
Control

Real Water

Supply System

Optimisation

Hydraulic

Simulation

Data Base

Water Demand

Prediction

Figure 4. Framework for optimal operation of a water supply system using a supervisory
control and data acquisition (SCADA) system. [65]

This chapter �rst provides a general overview of water supply systems, and

then proceeds with a literature review related to the optimization and its con-

stituents parts: hydraulic simulation, demand forecasting, design optimization,

pump and pumping optimization, and �nally operational optimization.

2.2 Water supply system structure

Water supply system produces and delivers potable water to the consumers using

a complex network of pipes, pumps, valves, tanks, and treatment plants. Accord-

ing to Walski et al. [287], water supply system (WSS) can be divided roughly into
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delivered using pumps. A clear well also levels the changes in the water demand,

chemical dosing, and improves reliability. Surface water treatment plants require

some clean water, typically about 10 % of the production, for the treatment pro-

cess, mainly for �lter �ushing. This water is normally taken from the clear well

using pumps. [220]

The water distribution network (WDN) is formed by pipes of various sizes

and materials dug in the ground connecting the water consumers with the water

sources. WDNs are typically looped: there are several routes for water between

any two points in the network.

WDNs typically include tanks that are used for leveling the di�erences in the

water demand and ensuring that water supply functions in the case of electricity

loss and pipe bursts. Because of ground elevation di�erences,WDN is divided into

pressure zones that are connected using pumping stations (to raise the pressure)

and control valve stations (to lower the pressure).

Moving �uid contains both potential and kinetic energy. The energy content

is normally expressed as pressure in meters of water column relative to sea level

or some other base elevation using Bernoulli’s equation: [284]

H = z +
p

ρg
+

v2

2g
, (2.1)

where H is the total or energy head, z the elevation, p the pressure, ρ the density of

the �uid, v the �uid velocity and �nally, g acceleration due to gravity. The kinetic

energy term v2

2g is usually very small compared to the potential energy z + p
ρg and

it is thus often left out from the calculations.

Flow through a hydraulic element, for example, a pipe, depends on the energy

di�erence between the ends of the element. Fluid �ows always from the higher

energy towards the lower. Besides the energy di�erence, certain physical proper-

ties of the element a�ect the �ow. For example, pipe diameter, or more generally

the cross-sectional area, has a major impact on the �ow. [239]

Reynolds number

Re =
ρvd

µ
=

vd

ν
, (2.2)

where d is the pipe diameter [m] for round pipes, µ is the dynamic viscosity of the

�uid and ν = µ
ρ
is the kinematic viscosity, can be used for determining the �ow

regime. When Re < 2000 �ow is laminar, 2000 ≤ Re ≤ 4000 �ow is transitional,

and Re > 4000 �ow is turbulent. [287]

When a �ow is laminar, the friction factor depends completely on the Reynolds

number, and when a �ow is fully turbulent, the friction factor depends mostly on

33



water supply systems

the relative roughness. Thus, roughness does not a�ect the friction factor much,

when �ow is laminar, and the signi�cance of viscosity becomes smaller when the

�ow is turbulent. [287]

Pressure loss hL describes the loss of the head due to the friction in the pipe.

According to the Darcy–Weisbach equation

hL = f ·
L

d

v2

2g
= f ·

8 · LQ2

gd5π2
, (2.3)

where L is the length of the pipe [m]. Friction factor f can be calculated using

di�erent methods, most common of which for turbulent �ows are the Colebrook–

White equation:

1
√

f
= −0.86 · ln

(

ǫ

3.7 · d
+

2.51

Re ·
√

f

)

(2.4)

and the Swamee–Jain equation:

f =
1.325

[

ln

(

ǫ

3.7·d + 5.74

Re0.9

)]2
. (2.5)

In both equations, ǫ is the roughness of the pipe [m. There are many other explicit

approximations of Colebrook–White equation besides the Swamee–Jain equation.

A through statistical review of di�erent methods is presented in [98].

For a laminar �ow, the Hagen–Poiseuille equation can be used for estimating

the friction factor [226]:

f =
64

Re
. (2.6)

Consumers are of utmost importance for the WSS – the whole system is built

for serving the water demand of the consumers. Consumers include, for exam-

ple, the inhabitants, industry and other companies, and public buildings, such as

hospitals and schools, in the area served by the WSS. The consumers require that

they always dispose the needed amount of safe and high quality water with high

enough pressure. [287]

The amount of water consumed, demand, and both the spatial and temporal

water demand distribution are central to the design, functioning and operating

of a WSS. Water demand varies constantly for various reasons, such as consumer

type, hour of day, weekday and season. The water supply system has to be able

to meet the demand under all conditions. [287]
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2.3 pump energy use

In practice, using hydraulic simulation is the only way to analyze how changes

in di�erent parameters a�ect the system as a whole. It is virtually impossible to

measure all hydraulic parameters everywhere in the network, or make distribu-

tive tests on a live system without endangering the water supply, and often con-

ducting such tests could be prohibitively expensive.

2.3 Pump energy use

Figure 6 shows a typical pumping system schematically. A pump is connected

to an inlet reservoir via piping. The pump is driven by an electric motor, which

may, in turn, be driven by a variable-speed drive (VSD). When the pump has a

VSD, its rotational speed, and thus the �ow and head generated, can be controlled

programmatically. This kind of a pump is called a variable-speed pump (VSP). If

no VSD is present or its setting is not to be changed, the pump is single or �xed

speed pump (SSP or FSP).

The incoming electrical energy is transformed into mechanical rotation energy

in themotor, andmechanical energy into hydraulic energy (pressure and velocity)

in the pump. Piping leaves the pump and connects it to an outlet reservoir. [281]

M

Pump Electric

motor

VSD

Pump drive train or

pump unit

Pumping system

Inlet reservoir

Outlet
reservoir

Electric
grid

Piping

Figure 6. Pump drive train in a pumping system. Variable-speed drive may be included in
the unit for rotational speed control. [279]

Energy losses occur in the pump itself, in the motor and in the VSD. The e�-

ciencies of the components are typically in the range of 60 % for pumps, 85 % for

motors and 95 % for VSDs, but the e�ciencies vary based on the �ow and speed.

[33, 279]

35



water supply systems

Motors used in pumps consume 22 % of the electrical energy in the industry

and 16 % in the service sector in EU. It is widely shown that using variable-speed

pumps saves a considerable amount of energy: installing VSDwould be bene�cial

for 33 % of the pumps in the industry and for 40 % in the services. [14, 164, 227,

228]

A pump’s performance at its nominal rotational speed is described by two

curves, one expressing the produced head H as a function of the �ow Q (per-

formance curve), and the other expressing the pump’s hydraulic e�ciency ηH or

power P as a function of the �ow Q (e�ciency or power curve). The pump char-

acteristic curves are provided by the pump manufacturer and they can also be

independently measured. [281] An example of a typical set of curves is shown in

Figure 7.

�

✁2

✁1

Figure 7. Example of pump characteristic curves for SLV.80.80.220 pump model as given by
the manufacturer, Grundfos. The curves shown here include the performance curve QH,
pump’s hydraulic e�ciency η2 and pump’s and motor’s combined e�ciency η1. [7]

When either the head or the �ow is known, the other can be looked up from

the pump characteristic Q–H curve, and then the pump’s hydraulic power PH can

be calculated:

PH = ρgQH . (2.7)
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2.3 pump energy use

By looking up the pump’s hydraulic e�ciency ηH from the pump curves, the

pump shaft power is

PS =
PH

ηH
. (2.8)

Shaft power is the amount of power that the motor must produce.

Variable-speed drive (VSD) can change the motor’s and thus the pump’s rota-

tional speed N. VSDs are introduced in order to control the produced �ow and

pressure in an energy e�cient manner. The introduction of variable speed drives

allows for signi�cant energy savings and more �exibility in the control of pump-

ing. [164, 227] The need for controlling pumping arises from signi�cant variations

in the water demand over time, and other changes in the system, like varying wa-

ter tower levels.

Flow Q2, head H2 and power P2 at some rotational speed N2 are calculated using

a�nity laws, based on the known values Q1, H1 and P1 at the nominal speed N1

[281]

Q2

Q1

=
N2

N1

(2.9a)

H2

H1

=

(

N2

N1

)2

(2.9b)

P2

P1

=

(

N2

N1

)3

(2.9c)

While Equations (2.9a) and (2.9b) have been shown to be valid in a multitude

of conditions, the last a�nity law, Equation (2.9c), as it is, is shown not to de-

scribe the experimental data accurately. [e.g. 244] Thus, a more accurate model is

required to describe the e�ect of the rotational speed on the e�ciency.

Decrease in pump’s hydraulic and overall e�ciency at lowered pump rotational

speeds has been reported by several authors. [244, 283, 99] Part of the observed

e�ciency loss compared to the a�nity law is due to Equation 2.9c assuming a

zero-head system, part due to the actual change in the pump’s hydraulic e�ciency

curve when the rotational speed is reduced, part due to the lowering e�ciency of

the motor and the VSD on partial loads.

Various models have been developed to account for decrease in pump’s hy-

draulic e�ciency at lower rotational speeds. Gülich [105] states that it is compli-

cated to solve the problem of e�ciency scaling e�ectively because of considerable

uncertainties in the process of predicting small di�erence between comparatively

large �gures accurately. There are, however, various methods to model the e�ect

with reasonable accuracy for practical applications.
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Gülich [105] proposes an accurate yet elaborate method that physically mod-

els the various e�ciency a�ecting processes. A simpler, still a general method is

presented in [250]. The proposed method is based on the friction factor f (see

Equations (2.4) and (2.5)), and on the assumption that only part of the losses are

dependent on it:

1− η2

1− η1

=
V + (1−V)

f2
f∞,2

V + (1−V)
f1

f∞,1

, (2.10)

where V is the fraction of losses that depend on the friction factor, and f∞ is

the friction factor when Re = ∞. Another common method to model e�ciency

scaling is based on the Reynolds number:

1− η2

1− η1

= K + (1− K)

(

Re1

Re2

)m

, (2.11)

where K is the fraction of losses that depend on the Reynolds number. Typical

values for K range from 0.00 to 0.57 and m from 0.10 to 0.50 depending on the test

data. Measurements are necessary to accurately model any speci�c pump. [293]

Traditionally, the motor e�ciency is assumed to stay constant, especially in the

50–100 % load range [281, 269, 164], typically to simplify calculations. However,

the motor’s e�ciency depends heavily on the load, and it is reported that there

can be signi�cant reductions in the e�ciency even when the load is above 50 %,

especially for small or low-e�ciency motors. [55, 33] A more comprehensive re-

view of the energy usage of an electrical motor is provided by Saidur [227].

The constant e�ciency assumption can be valid when the load is close to the

motor’s nominal power, which is typically the case when the pump has no vari-

able speed drive. The pump’s hydraulic power, however, is inversely proportional

to the relative speed cubed (see Equation 2.9c); thus, even small changes in the

rotational speed can lower the power and the motor load considerably. This can

cause considerable errors in the energy use calculations.

The exact motor e�ciency ηM at di�erent relative loads is motor speci�c, and

the motor manufacturers provide load–e�ciency curves. IEC 60034-31[124] stan-

dard also provides a general equation to calculate an approximation of motor

e�ciency at any partial load.

When the motor e�ciency is known for the particular pump working point,

the motor power

PM =
PS

ηM
=

PH

ηH · ηM
(2.12)
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can be calculated.

The VSD e�ciency ηVSD depends on the relative load. IEC 60034-31[124] stan-

dard provides a lookup table for approximate e�ciencies based on the nominal

VSD power and rotational speed.

The �nal pump train electrical power consumption is

PE =
PM

ηVSD
, (2.13)

and the total pump train e�ciency is

ηTOT =
PH

PE
= ηH · ηM · ηVSD . [33] (2.14)

Frequency scaling and accurate modeling of a motor and variable speed drive

e�ciencies under di�erent rotational speeds and loads are incorporated into the

pump energy use model used in this thesis, as described in Chapter 3.2. Accord-

ing to the author’s literature review, this results in the most accurate energy use

model used in the operational optimization of water supply systems reported in

the literature.

2.4 Optimizing parallel pumping

Studies focusing on optimizing variable-speed pumps working in parallel in wa-

ter supply are scarce according to the literature review performed. Usually only

single speed parallel pumping is considered as part of the pump scheduling prob-

lems, and only few sources mention variable speed pumping (see Chapter 2.8).

Neither are there many papers tackling the parallel pump optimization problem

separately from pump scheduling.

The methods used in the scheduling problems typically neglect many aspects

a�ecting the pump energy use as outlined in the previous section, and they rely

on the EPANET simulator for energy consumption calculations, even though EPA-

NET is shown to givewrong e�ciency and energy results when VSPs and reduced

rotational speeds are used [165, 99].

Much of the VSP optimization research is related to heating, ventilation and

air conditioning systems or control system engineering. These methods, three of

which are presented next, avoid the use of mathematical optimization methods,

and instead rely on heuristics, simpli�ed system models and measurements done

in real time, to facilitate easier implementation in programmable logic controllers

(PLC).
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Wang and Burnett [291] developed an adaptive and derivative control strategy

for controlling heat exchanger pump pressure setting based on recursive least

squares approximation of pump energy usage. The reported energy savings were

5 %.

Ma and Wang [157] developed several optimal strategies for controlling heat

exchanger pumping in a building based on polynomial approximation of wire to

water e�ciency of the pumps. The method includes pumpmaintenance costs, but

the optimization algorithms themselves are mainly heuristic. The optimal strat-

egy using the optimal pressure di�erential set-points at the critical loops and

optimal pump sequence control resulted in a savings potential of 12 % to 32 %.

Viholainen et al. [280] and [279] developed a reliable control method for par-

allel pumping based on the preferable operational area method. Based on each

pump’s measured �ow and power measurements at each VSD, the working point

for each pump is calculated, and a new reference speed is calculated, so that each

pump would work inside the preferable area. The reported energy savings were

20 % to 25 %.

There are also some more generic, mathematical optimization based methods

in the literature. Wu et al. [294] and Olszewski [183] used Genetic Algorithm

(GA), Costa Bortoni et al. [68] used the dynamic programming method, and Yang

and Borsting [304] and Koor et al. [143] both used the non-linear programming

(NLP) method with Lagrange multipliers. All the other cited methods, except Wu

et al. [294], can be quite easily implemented in PLC controlling the pump battery.

In their respective models Wu et al. [294], Yang and Borsting [304] and Koor et al.

[143], however, ignore the degrading e�ect of lower rotational speed on the pump

hydraulic e�ciency, and the motor and variable-speed drive e�ciencies [105].

Costa Bortoni et al. [68] use penalty function to constrain the pumps to work

close to their best e�ciency points and the paper thus assumes that the motor

and the VSD work in a high-e�ciency range, and the motor and VSD e�ciencies

can be ignored. All except Koor et al. [143] allow the working pumps to work on

di�erent frequencies.

Koor et al. [142] build upon the earlier work presented in [143], and extend the

methodology to work with non-identical pumps and to include frequency scaling.

The method uses the Levenberg–Marquardt optimization algorithm (LMA) for

calculating the optimal discharges for single pumps working in di�erent working

points.

Chapter 3.3 describes the parallel pump optimizationmethod developed as part

of this research and included in the optimization framework. Opposed to the ear-

lier research, the method models accurately all energy loss components a�ecting

the pumping, and uses exhaustive search to guarantee �nding the globally opti-

mal solution for minimizing the parallel pumping energy use for every possible
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working point of the pump battery. The parallel pump optimization process itself,

however, is time-consuming and cannot be implemented in PLC, but the results

can be used, for example, as a basis for regression model based control.

2.5 Hydraulic simulation

The aim of a hydraulic water supply simulation model is to calculate pressures,

�ows, the propagation of quality parameters, feeding of storage tanks, and the

operation of pumps and control devices of the system under prede�ned loading

conditions. [79]

Hydraulic simulation is an integral part of any water supply system optimiza-

tion. Simulation is also typically the most time-consuming component of any op-

timization framework. Accuracy, available features, convergence and stability fea-

tures of the simulator can pose limitations to the optimization methods available.

For optimal control of water supply pumping, hydraulic network modeling is

done using one of the four main approaches. In mass balance models the head

loss dependency on �ow rates is neglected, and it is assumed that pumps work

against constant head. Mass balance models, most often used in linear program-

ming (LP) problems, are fast, but they do not guarantee hydraulic feasibility of

the solutions. Regression models are based on a set of non-linear regression equa-

tions prepared for a speci�c water supply system and need to be reformulated

if the system is modi�ed. Simpli�ed network hydraulic models are highly skele-

tonized versions of the full models [267, 191, 192]. Finally, full hydraulic simu-

lation models include a set of quasi-steady-state hydraulic equations solved in

terms of adjustment factors. Full hydraulic models are most accurate, but require

considerably more computational resources than the other models. [186]

The rest of this section focuses on full hydraulic simulation models, as they are

most general, accurate and widely used of the methods listed above.

Ormsbee [184] provides a good overview of the evolution of the hydraulic mod-

eling. The article lists the most important methods to solve the �ows and pres-

sures in a water distribution system, starting with the Hardy Cross method [69],

simultaneous nodemethod, simultaneous loopmethod, linear method (simultane-

ous pipe method) and gradient method (simultaneous network method). Figure 8

shows various solutions developed for solving the hydraulic equations.

Hardy Cross method published in 1936 is an iterative method that can be man-

ually calculated. The problem with the method is that initial guess for either the

heads or �ows has to be quite close to the �nal solution for the method to con-

verge. The method was �rst computerized in 1957[156].
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Figure 8. Di�erent versions to the solution of the pipe network problem. Linearization
variable is shown in parentheses. [262]

Currently, the most widely used hydraulic simulator [80] is EPANET [226] that

uses the Global Gradient Algorithm (GGA) presented in [260]. The algorithm

solves �ows and heads simultaneously.

There has been renewed interest in rebooting EPANET development as a real

open source project instead of being developed only in the U.S. Envinronmental

Protection Agency (EPA). Some ideas for future development are presented in van

Zyl and Chang [270], Rossman and van Zyl [223], and Rossman [222].

The latest o�cial version of EPANET was released in 2008. Since then multiple

corrections and enhancements have been published, but not incorporated into a

common code base. Finally the converences of Water Distribution System Analy-

sis (WDSA), 2014 and Computing and Control for Water Industry (CCWI), 2015

resulted in the creation of EPANET Open Source Initiative [38] and related code

repository at https://github.com/OpenWaterAnalytics/EPANET.

Several ports of EPANET in di�erent programming languages exist, like Python

[249], C# [21], C++ [271, 108, 116], Java [1] and even Java Script that can be run

in a web browser. Even without port to a language, EPANET toolkit can still be

called from various other languages like Visual Basic [63] or Matlab [207].

Todini [259] and [262] provide a thorough analysis of the various algorithm

formulations and their convergence properties. When choosing the solver, other

factors besides the convergence speed should be evaluated: the size of the in-

vertable matrix, symmetricity of the solution matrix, the matrix density, whether

a fundamental set of loops must be identi�ed, and whether a balanced set of ini-

tial �ows is required. Based on these criteria, GGA and a new linear theory global

algorithm (LT-GA) presented in [262] emerged as the most suitable and robust al-

gorithms.

This thesis research uses an enhanced version of the latest publicly available

version of the EPANET simulator. The enhancements are described in more detail
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below. In this work, the water supply system is modeled completely, including all

pipes, rawwater extraction, conveyance and treatment, and control systemmodel,

and the complete model is directly used in the optimization process, which is un-

common in previous studies. Extra steps are taken to ensure the hydraulic stability

of the model under insu�cient or excessive water supply by adding extra reser-

voirs to the system along with penalty costs. The model structure is described in

Chapters 3.5 and 3.4.2.

2.5.1 Reducing simulation time

Because of the non-linear nature of water supply systems, iterative methods are

used in hydraulic models. This increases the computational time required by the

simulation. Various methods have been developed in order to reduce the compu-

tational time.

One popular method is the use of surrogate models reviewed in [215]. Surro-

gate modeling or meta-modeling replaces the computationally intensive model

with simpler approximation. The performance of the surrogate model must be

carefully assessed, especially for the critical points in the network, because ap-

proximation lowers the accuracy of the model.

Typically used surrogate modeling methods include the use of mass-balance

models: e.g., [88], [160] and [29], the use of arti�cial neural networks (ANN): e.g.,

[168], [212] and [50], andmodel simpli�cation or skeletonization: e.g., [267], [240],

[191] and [19]. Behandish [30] uses the Graphics Processing Unit (GPU) based

ANN surrogate model. The reported speed-ups compared to full-scale EPANET

based hydraulic simulation can be up to 25 [234]. More creative use of a meta-

model is reported in Chang and van Zyl [60] where compression heuristic method

is introduced: only critical periods are simulated using a full-scale model and the

meta-model is used otherwise, resulting in 8.8 times speed-up.

Van Zyl et al.[273] use two-point linearization instead of the tangent method.

The proposedmethod results in better approximations for �ows than theNewton–

Raphson method used in EPANET, and thus reduces the number of iterations re-

quired. The method, however, is a trade-o� between speed-up and accuracy.

More recent developments in speeding up the hydraulic simulation use vari-

ous partitioning and decomposition algorithms, which deliver promising perfor-

mance. However, no generally available mature implementations exist.

Alonso et al. [15] introduced the parallel EPANET solver based on graph de-

composing. The methodology also runs quality simulation in parallel and syn-

chronously to hydraulic simulation (in the normal EPANET, quality simulation

can only be run after hydraulic simulation).
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Deuerlein [79] has developed a general decomposition model for WDN. One of

the presented applications was the high-performance hydraulic simulation. The

Schur complement domain decomposition was used in [80]. The articles show 4

to 8 time speedups compared to EPANET.

Deuerlein et al. [76] developed theGraphMatrix PartitioningAlgorithm (GMPA).

The method reduced the problem size for di�erent networks by 80 % on average.

Abraham and Stoianov [11] have used partitioning and sparse null space algo-

rithm to only update the changed matrix elements. The article reports computa-

tional time savings of up to 68 % over the Schur decomposition method.

Giustolisi et al. [104] introduced the EnhancedGlobal Gradient Algorithm (EGGA),

which reduces the problem size by transforming the network topology while pre-

serving the energy and mass balances. The computational time was reduced up

to 90 % compared with GGA, as implemented in EPANET.

Luvizotto et al. [155] have introduced an interesting new method that avoids

matrices altogether, but currently the method is two orders of magnitude slower

than EPANET, even though it lends itself easily to parallel processing.

Paluszczyszyn et al. [193] developed a proof-of-concept hydraulic simulator

based on quantized state systemmethods. The benchmarks show that event-based

simulation is much faster on small networks than EPANET. Work is still needed

to develop an actual hydraulic simulation tool based on the methodology.

Other attempts to improve the simulation speed include o�oading the matrix

calculations to the GPU. GPUs are highly parallel and very e�cient in solving ma-

trix equations. [208] The downside with the approach is that it is time-consuming

to move the matrices between the computer’s main memory and GPU, so that any

bene�ts are lost if the network is not very large.

Guidolin et al. [109], [110] and [301] have explored the possible performance

gains using single instruction multiple data (SIMD) instructions or GPU for hy-

draulic simulators in CWSnet and EPANET, respectively. None of these were able

to achieve much improvement. Only little of the total simulation time is spent

in the linear solver, as shown in Table 2; thus, even signi�cant performance im-

provements in the code yield only small performance gains.

Various decomposition methods and other more e�cient algorithms such as

GMPA and EGGA would yield considerable performance improvements. Unfor-

tunately, no publicly available robust and free implementations of those exist. As

parallelizing the matrix solvers in EPANET either using GPU or multiple CPU

cores does not seem to yield considerable performance, this work uses the nor-

mal EPANET with custom enhancements.

Consistent with the goals of the thesis research, this work uses no surrogate

models, but instead makes use of a full-scale model, extended with raw water

extraction, conveyance and treatment, aiming at maximal accuracy. While sur-
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Table 2. CPU time allocation solving a 150 000 pipe hydraulic model with EPANET[301]

Computing Task Time [s] Time [%]

Total 67.45 100.0

Open Model 7.77 11.5

Solve Model 58.59 86.9

Solve Hydraulics 54.56 80.9

Demands & Controls 0.04 0.1

Network Solver 20.05 29.7

Linear Solver 8.94 13.3

Hydraulic Status 0.33 0.5

Save Results 4.04 6.0

Report 0.00 0.0

Close Model 1.08 1.6

rogate models o�er great performance bene�ts, their preparation and validation

are laborious and system speci�c processes, and their use cause inaccuracies, es-

pecially in the energy distribution [191].

In this work, su�cient computational performance for near real-time optimiza-

tion is ensured by utilizing the most aggressive and modern compiler optimiza-

tion techniques, applying somemanual optimizations to the EPANET code, reusing

the same, preloaded EPANET simulator instance and model for all optimizer eval-

uations and disabling all �le input and output operations in EPANET.

A multi-threadable version of EPANET was developed to utilize the multiple

cores available in current computers by running multiple simulations in parallel.

The multi-threading approach taken here utilizes thread-local storage (TLS) vari-

ables available in modern C compilers instead of redesigning the EPANET API to

be re-entrant, as was done in [149]. This work also uses simulation preemption

[214], which saves computational time considerably.

Chapters 3.4.4, 3.4.3 and 3.11 describe the developed methods in more detail.

2.5.2 Modeling variable-speed pumping

Incorporating variable-speed pumping stations controlled for �xed head or �ow

has proven to be quite complicated. EPANET does not provide an easy way to

use variable speed pumps, which causes problems in online modeling (e.g. [115]).

EPANET simulator is also known to calculate wrong e�ciencies for pumps at

reduced speeds[244, 165, 99].

Wu et al. [296] used high elevation reservoir and �ow control valve (FCV) to

model the VSD pump and the author’s [256] mention the use of a pump, FCV
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and pressure reducing valve (PRV) triplet. These methods failed to account for

pumps’ e�ciencies directly at di�erent rotational speeds. To solve the pump e�-

ciency, the author’s [252] used a pump and FCV so that the required pump speed

reduction was calculated from the head loss over the FCV; however, the method

had some numerical stability issues. The numerical stability issues caused by EPA-

NET control devices are widely reported in literature (e.g. [243] and [78]).

Another methodology proposed in [125] and the author’s [256] uses software

Proportional Integral Derivative (PID) controller [32] integrated into EPANET

for controlling the pumps. This, however, requires careful tuning of the controller

parameters [180] and the use of very short simulation time steps, which increases

the computational time considerably.

Todini et al. [261] modi�ed the EPANET solver so that it can calculate pumps’

relative speed when the pumps are controlled for a �xed head and [297] for a

�xed �ow. The methods presented in the papers, however, are patented under

[263] and only available in WaterCAD and WaterGEMS simulation software by

Bentley.

The other problem related to modeling the pumps is that EPANET does not en-

able calculation of the right e�ciency values for variable speed driven pumps. For

example, both in [165] and [99] modeled pump e�ciency in EPANET is compared

with experimental data. The papers show that EPANET is incapable of modeling

the pump e�ciency at lowered speeds. While [165] proposes the usage of a�nity

laws and assuming that best e�ciency point (BEP) stays constant, [99] and [244]

propose using the frequency scaling function proposed in [235] to provide more

accurate estimates for the pump e�ciency at lower rotational speeds.

An alternative way for accurate and e�cient modeling of the �ow or pressure

controlled variable speed pumps and VSPs working in parallel was developed in

this thesis research, as described in detail in Chapter 3.4.1. The developed method

allows for both pressure and �ow controlled pumping, also within onemodel, and

allows changing the controlmode dynamically. Pump battery is basicallymodeled

either as FCV or PRV, but negative head losses are allowed. The pump perfor-

mance and energy usage characteristics are modeled separately, as described in

Chapter 3.3, solving the problems in modeling pump e�ciencies correctly by uti-

lizing the full pump drive energy calculation and optimization method developed

in this thesis.

2.5.3 Online and operative modeling

One of the problems in EPANET regarding operational optimization is the inabil-

ity to change the utilization pattern used for pump or control rules depending
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on multiple variables, such as time and tank level, programmatically [167, 150].

For example, Marchi et al. [167] developed an extension to EPANET toolkit to

allow the control rules to be changed dynamically and López-Ibáñez [150] added

a new variable, EN_UPATTERN, for ENsetlinkvalue function that allows

the pattern to be changed.

Besides problems related to modeling variable-speed pumps, EPANET has con-

vergence problems when modeling other control devices, such as �ow control

and pressure control valves. [243, 78]

Typically, hydraulic modeling is used o�ine as a tool for design problems, or

as a part of a network design optimization process. The model can be, however,

linked to the SCADA system for a real-time or online analysis of the system, and

form one data source for an expert system.

Several publications have reported online modeling, for example, [125], [158],

[77], [116], [61] and [255]. It has been used in various kinds of decision-making:

most commonly in risk studies [187] and/or for fault detection [221], but also as a

soft sensor and quality modeling, as in [77] and [255]. Risk studies have played an

important role in water quality analysis, where any kind of intrusion or human

error causes changes in water quality parameters that may cause a serious risk

for human life [188]. O�ine calculations are preferable due to the large amount

of data analysis and calculations needed for any updates in the model. Online

models need di�erent problem descriptions to minimize the calculation time, or

allocation of more processing resources either locally [296] or using cloud ser-

vices [21, 199].

Online modeling is not important only because of water quality aspects, but

using optimal control settings in the system at all times can save a lot of oper-

ational costs. [95, 195] Obviously, not all calculations can be done in real time.

Therefore, in reality, o�ine calculations are combined with online calculations.

Optimal pump scheduling in real time with or without near-optimal tank water

levels has been studied in [177] and [31]. O�ine calculations are common for

some particular network components that do not change in time, for example,

optimal pump working combinations that can be selected during an online cal-

culation step so that the energy use will be optimal [254]. Any kind of real-time

optimization needs also real-time measurements. Those measurements are usu-

ally received through SCADA and used in terms of the real-time control model

[90, 277].

Real-time data usage poses some data quality and quantity problems, which

have to be tackled.[35] For example, there can be missing or incorrect data, and

time synchronizing problems, that the online model has to cope with.[287] Hatch-

ett et al. [116] de�ne real-time modeling as the integration of network hydraulic

and quality model with operations data collected and stored via SCADA. They
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use open source hydraulic modeling packages EPANET[226] in conjunction with

Real-Time Extension (RTX) module [115].

To further facilitate model online use Paluszczyszyn et al. [191] developed a

methodology to skeletonize the hydraulic model real-time and Okeya et al. [181]

used data assimilation to keep the model always up to date.

Online model provides a way to have better overall view of the current water

supply system state, and to analyze the historical performance when the simu-

lation results are stored in an appropriate format to facilitate analysis at a later

time. An automatic anomaly detection can be performed by comparing the sim-

ulated and measured parameters. In particular, the online quality modeling can

be a useful tool for improving the system performance and preventing quality

problems. For example, water source tracing and water age that are both hard to

measure can be readily simulated online and shown in SCADA to facilitate the

decision-making process and the system analysis. [255]

While online modeling is understood well and the online simulation process

in itself is simple, the problem with incorrect or missing data still remains. In

the context of operational optimization, problems with measured data are most

apparent in water forecasting calculations; they are discussed in the next section.

A new general library for accessing measurements in SCADA, laboratory in-

formation systems (LIMS) and other systems was developed in this research (see

Chapter 3.6). The library is used for data access (fetching water tower levels, con-

trol system settings, �ow measurements), calculating water balances and partly

�xing the missing or incorrect data.

2.6 Demand forecasting

The most important aspect in operating a water supply system is to satisfy the

consumer water demand. Accurate demand forecasts are required for strategic,

operational and tactical decisions for water utilities. Short-term demand forecast-

ing is a prerequisite for any optimal control system. [20, 140, 117]

There is no single established terminology for the forecast horizon used. [82]

Here the focus is on the short-term, or tactical, water demand forecast de�ned as

an hourly resolution for at least 24-hour forecast horizon.

Herrera et al. [117] list several bene�ts for accurate short-term demand fore-

casts available:

1. From an operative point of view, it enables water managers to determine

optimal regulation and pumping schemes to supply the predicted demand.

The aim is to improve the energetic e�ciency through lower pumping en-

ergy consumption.
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2. From the quality point of view, the more suitable combination of water

sources to obtain a given standard in the supplied water may be selected.

3. From the vulnerability point of view, the comparison between the predicted

and the real �owmeasurements can help pinpoint possible network failures

(water leaks and pipe bursts). This provides the �rst step of a procedure for

establishing an early warning management.

There has been considerable and continuing interest in developing methods to

forecast the demand. Donkor et al. [82], Coelho and Andrade-Campos [65] and

House-Peters and Chang [120] review the forecasting methodology and concepts

in depth.

Commonly used methods include linear regression models and auto-regressive

integratedmoving average (ARIMA)models.More recently, variousmachine learn-

ing algorithms and Fourier analysis methods have been used.

Bakker et al. [28] argue, that the results are inconclusive in practical applica-

tions of ANN based methods compared to more traditional time series forecasting

methods in short-term forecasting. According to Herrera et al. [117] the ANN and

pattern models have not performed well, but Alvisi et al. [18] argue that pattern

based methods work well, whereas ANN based do not, especially when the week-

day changes. Earlier in Jain and Ormsbee [127], it was concluded that arti�cial

intelligence (AI) methods perform better than the statistical methods.

Themodel accuracy and requirements, and thus the best forecast method, seem

to depend on the externalities a�ecting the demand and explanatory variables

chosen for the model. This might partly explain the partly contradictory and in-

conclusive results.

Water demand has strong daily and weekly patterns, and often exhibits clear

yearly seasonality. The most commonly used explanatory variables in the liter-

ature are previous demand, especially at the same hour and same weekday, day

of the year, and outdoor temperature and rainfall. The hotter the climate, the

stronger the e�ect of temperature and rainfall on the demand. [317, 18]

Homwongs et al. [118] developed a method based on recursive least squares

and Winters exponential smoothing algorithm. In [20], enhanced rough-set ap-

proach was used for automatic heuristic rule discovery based on observed data.

The authors note that resulting if–then rules are easily understood by the users.

Zhou et al. [317] developed a time-series based method including climatic corre-

lation and auto-correlation for forecasting daily demands. In [107] pattern recog-

nition is used.

Herrera et al. [117] present a comprehensive study on the accuracy of multiple

di�erent machine learning algorithms for short-term demand forecasting. The
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analyzed algorithms were arti�cial neural network (ANN), projection pursuit re-

gression (PPR), multivariate adaptive regression splines (MARS), support vector

regression (SVR), random forests, and �nally, weighted pattern-based model as

baseline. Weighted pattern based method and ANN performed the worst of all

tested algorithms: root-mean-square error (RMSE) about 8 and 6, respectively,

and SVR models performed the best, closely followed by MARS: RMSE about 4.5

in both cases.

Bai et al. [27] propose the variable-structure support vector regression (VS-

SVR) method for demand forecasting, and Brentan et al. [47] use the hybrid SVR

and adaptive Fourier series model for real-time demand forecasting.

Arti�cial neural network (ANN) based forecasting models have been widely

used in demand forecasting. [128, 310] More recent developments in the �eld in-

clude the usage of dynamic neural network (DAN2) based approaches. The DAN2

algorithm was �rst introduced by Ghiassi et al. [102], and it has been successfully

applied to water demand forecasting by several authors.

Traditional multi-layer perceptron with back-propagation ANN, DAN2 and

two di�erent hybrid models based on the ANNs and Fourier series method were

compared in Odan et al. [178]. Hybrid model based on DAN2-H was found to be

the most accurate.

Velásquez-Henao et al. [276] have improved the original DAN2 by using the

ordinary least squares method (OLS), thus reducing the number of parameters

and automatically estimating all the linear parameters.

An example of the neural–heuristic hybrid algorithm can be found in Yurdusev

and Firat [308]. The adaptive neuro-fuzzy inference system was used for monthly

demand forecasts. Alvisi et al. [18] used a two-level pattern based method.

Felfelani and Kerachian [93] examinedmodeling of water demand at signi�cant

changes in the population size over year. Their approach uses ANNs. Altunkay-

nak et al. [17] used time series and fuzzy logic for forecasting monthly demands

for Istanbul. The method was compared with an auto-regressive model, and the

proposed method performed favorably.

Recent research in [190] comparesmultiple short-term demand forecastmodels

for the same two-year long datasets from seven di�erent networks and districts.

The comparedmodels were the ANNmodel, the pattern basedmodel, twomoving

time window methods, the probabilistic Markov Chain based model, and a naïve

model using long-term hourly averages. The results show that di�erent non-naïve

models performwell and o�er similar forecasting accuracy. However, the moving

time window models perform best outside the calibration data set.

Much of the research focuses on longer time horizon forecasts and the e�ects

of weather on the demand. AI models have gained more popularity lately, and

they show promising performance. The problem with AI models is, however, that
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they require careful teaching, long input data time-series, and over-learning has

to be avoided. Neither do they provide much insight into the reasons for varying

demand.

The method used in this thesis research is described in Chapter 3.9. This work

opts for a classic moving average model for the water forecasts. For each pressure

zone or district metering area (DMA), three-month data is grouped by weekday

and hour (noting national holidays), and a median, 10 and 90 % percentiles are

calculated for each hour of each weekday. Previous 24-hour demand is calculated,

divided by the typical demand at the same period. The typical usage, median,

for the forecast horizon is then multiplied by the resulting factor. Missing and

incorrect data is handled by limiting the hourly demand in each zone to 10 % to

90 % percentiles.

2.7 Water network optimization

The water network optimization problems can be roughly categorized into three

di�erent classes: calibration, design optimization and operational optimization.

In terms of published literature, design optimization dominates the research.

All problems can be solved either o�ine or in near real-time. The di�erent

classes share much of the challenges, and the same optimization methods can

mostly be applied in the di�erent classes of optimization problems.

Calibration problems try to modify model parameters such that the error be-

tween some simulated and measured hydraulic parameters, such as pressures and

�ows, isminimized. Calibration ismost commonly used to ensure that themodel’s

hydraulic capacity matches the real system ([209], [275], [129]). Other uses in-

clude �nding leakages ([302], [207]), locating closed valves ([285]) and calibrating

quality parameters ([132], [233]).

Design problems relate to �nding optimal pipe diameters, network structure,

valve, pumping station and tank locations and sizes. The optimality is often de-

�ned as a minimum cost required to meet the constraints, but more recently,

multi-objective optimization has become more and more common. Typical mul-

tiple objectives include, for example, cost and resilience [274] or cost and green-

house gas emissions [138]. Design problems often include operational aspects,

like optimizing pump scheduling problems [137, 138, 144].

As most of the network performance characteristics are decided during the

design process and cannot be easily or economically changed later, the design

optimization is very important. For example, signi�cant cost reductions in water

supply systems can be obtained by optimizing the storage tank volumes and levels

in conjunction with the optimal control of pumping stations (see Table 3). [176]
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Table 3. The estimated energy savings potential in water supply systems (adapted from [176])

Energy e�ciency actions Savings potential

The use of tanks for �ow control and storage 10–20 %

Correct pump sizing 15–25 %

Real-time energy monitoring 5–20 %

The use of high e�ciency motors 5–10 %

The use of variable-speed motor-pump sets 10–50 %

The operational optimization of pumping systems 15-30 %

Pump �ow variation through VSDs instead of valve throttling vary, >50 %

Operational optimization problems try to reduce costs of operating a WSS by

changing some operational parameters, like pump and valve settings. In multi-

objective cases, other parameters, such as greenhouse gas emissions or water

quality, can be included, but multi-objective optimization is not commonly used

– only 15 % of the operational optimization papers presented in the next section,

Chapter 2.8, use multi-objective optimization.

One advantage of operational optimization over other measures is that it may

be deployed without the large investments or changes to the network. In addition,

the cost reductions from operational optimization are realized in a short term.

[176]

Operational optimization literature is reviewed in more detail in Chapter 2.8.

Some space is dedicated to network optimization too, as many of the problems

and methods are shared between the di�erent classes of network optimization

problems. The network design problems often solve a pump scheduling problem

besides the design, as the network design and operation are tightly interlinked.

Multiple di�erent optimization algorithms have been applied in design problems

that would be readily applicable in other water network optimization problem

classes too.

Yates et al. [305] prove that water system optimization problems are computa-

tionally NP-hard even for the simplest branched networks and even more so for

complex looped systems. NP-hardness implies that only approximate methods

exist for obtaining the optimum, and thus classical optimization methods do not

work well.

Lansey [145] provides an analysis on the development of WSS optimization

problems. The article recognizes three distinct phases in the development of WSS

system optimization: linear and dynamic programming era from about 1968–1984,

non-linear programming era from about 1986–1994 and stochastic era from 1994.
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2.7 water network optimization

Alperovits and Shamir [16] developed a linear programming gradient method

for design optimization; Lansey and Mays [146] have optimized network design

for Anytown like WDN using dynamic programming; Gupta et al. [111] also use

non-linear programming for design optimization, and Simpson et al. [245] intro-

duced genetic algorithms (GA) to the WDN design optimization.

Some recent examples of linear and non-linear methods include [232] using

optimal power use surface (OPUS) methodology and [230] using Mock Tree II al-

gorithm in Hanoi, Balerma, R28 and Taichung networks, in which the algorithms

quickly provided results similar to previously reported best designs. Price and

Ostfeld [203] have used iterative linear programming for solving pump schedul-

ing problems, and in [45] the classic network design problems are formulated

as mixed integer non-linear integer programming (MINLP) problems and solved

using a solver implemented in the basic open-source non-linear mixed integer

programming (BONMIN) version 1.0 package.

Stochastic or meta-heuristic methods are e�cient, both in terms of precision

and computational e�ort, in solving many real-life optimization problems. Their

de�nite bene�t is that it is not required to formulate the problem in analytical

form and the formulation can be non-differentiable.

Meta-heuristics fall in two categories: trajectory-basedmeta-heuristics and pop-

ulation-based meta-heuristics. The main di�erence is the number of proposed so-

lutions used in each step of the (iterative) algorithm. [13]

A trajectory-based technique starts with a single initial solution and at each

step of the search, the current solution is replaced by another solution found in

its neighborhood. Trajectory-based meta-heuristic methods allow a locally opti-

mal solution to be found quickly, therefore they are called exploitation-oriented

methods. [13]

Population-based algorithmsmake use of a population of solutions. In this case,

the initial population is randomly generated (or created with a greedy algorithm),

and then enhanced through an iterative process. At each generation of the pro-

cess, the population is replaced by newly generated individuals. These techniques

are called exploration-oriented methods because their main ability depends on

the diversi�cation in the search space. [13]

Constraints are typically formulated as penalty costs, whenmeta-heuristicmeth-

ods are used because they often do not support direct constraints. Disadvantage

of penalty methods is that choosing penalty parameters is time-consuming and

requires great care. In addition, penalty parameters are case-sensitive and do not

necessarily steer the search toward the best solutions in every situation. [242]

Afshar and Mariño [12] introduce a GA variant with self-adaptive penalty costs

similar to [299]. Other self-adaptive �tness formulations can be found in [91] and

[92]. Siew and Tanyimboh [242] present a penalty free approach for optimizing
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WDNs by utilizing multi-objective optimization and pressure dependent simula-

tion.

Examples of using stochastic methods in the WDN design include the follow-

ing: genetic algorithm (GA) [245], harmony search (HS) [97], simulated anneal-

ing (SA) [70], ant colony optimization (ACO) [161], shu�ed leaping frog algo-

rithm (SLFA) [87], tabu search (TS) [71], particle swarm optimization (PSO) [173],

memetic algorithm (MA) [23], hybrid discrete dynamically dimensioned search

(HD-DDS) [265], genetic heritage evolution by stochastic transmission (GHEST)

[40], honey bee mating optimization algorithm (HBMOA) [172], genetic expres-

sion programming (GEP) [288], di�erential evolution (DE) [312], and state transi-

tion algorithm (STA) [318].

The most commonly used meta-heuristic method in the water sector is de�-

nitely GA with its multiple variants. Some examples are presented in [112], [272],

[42], [240], [189], [296], and [31]. The genetic algorithm simulates natural evo-

lution: the algorithm begins with a randomly generated population of solutions,

and after each iteration, the best solutions are most likely to survive into the next

iteration (generation). The surviving solutions exchange design variable values

(genes) with each other, and there is a chance for mutations (random changes in

design variable values).

Each article typically compares the resulting costs and required computational

time or number of iterations with some previous algorithms on the benchmark

networks. [288] In [72], GA, PSO andDE inNewYork tunnels andHanoi problems

are compared. Artina et al. [22] compare BONMIN algorithm with NSGA-II and

GHEST for optimal design in the Modena water distribution system.

The literature, especially in the design optimization, deals merely with single

speed, on-o� controlled pumps. One reason is that the typical benchmark net-

works are gravity-fed, and the di�culties in modeling VSD pumps in EPANET

certainly play a part (see Chapter 2.5). [294] One of the few papers using variable-

speed pumping, [296], approximates the pump energy usage employing a com-

bination of a high elevation reservoir and a �ow control valve in the EPANET

model.

There seems to be a trend to introduce more methods that combine aspects

of both stochastic methods and classical optimization. Some examples include

[219] combining LP and GA for longer term operational optimization of a multi-

reservoir system, [206] combines LP with hybrid discrete dynamically dimen-

sioned search (HD-DDS), Geem [96] combines particle-swarm concept with har-

mony search, and Giacomello et al. [103] apply LP together with a greedy algo-

rithm for pump scheduling problems in Anytown and Richmond networks.

Linear programming was combined with di�erential evolution in Zheng et al.

[314]. Network is �rst partitioned into trees. Binary linear programming is used
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2.7 water network optimization

for optimizing the trees and �nally, DE is used for optimizing the core of the

network containing loops.

Multiple stochastic methods or the stochastic method and machine learning

can also be combined together in order to utilize each algorithm’s strengths. For

example, PSO and GA were combined in [25] for design optimization, Raad et al.

[210] have utilized amulti-algorithm, genetically adaptivemulti-objective (AMAL-

GAM) algorithm that uses multiple meta-heuristic algorithms simultaneously,

and Dipierro et al. [81] analyse the performance of the extended version of hybrid

evolutionary algorithms of e�cient global optimization (ParEGO) [141] and the

multi-objective evolution model (LEMMO) [133], combining a level of machine

learning with evolutionary algorithms.

The use of surrogate models is a very popular way to speed up the optimiza-

tions (see 2.5). The most typical surrogate models are ANNs [49]. One example of

advanced surrogate model usage is online retraining of ANN during the design

optimization process in [34].

Graph decomposing can be applied in optimization algorithms in order to re-

duce the problem search space size and to divide the simulations into multiple

much smaller units. One example of the graph decomposition approach to the

network design problem using DE can be found in [315].

Many of the stochastic algorithms can be parallelized in order to reduce the

computational time by utilizing multiple CPU cores or cloud computing services

now commonly available. Trajectory-based meta-heuristics can be parallelized in

three ways: the parallel exploration and evaluation of the neighborhood (parallel

moves model), the parallel multi-start model, and the parallel evaluation of a sin-

gle solution (move acceleration model). Two parallelizing strategies are common

for population-based algorithms: parallelization of computations, i.e. each indi-

vidual is evaluated in parallel, and parallelization of population, i.e. is population

is split into di�erent parts that can be exchanged or evolved separately, and then

joined later. [13]

There is an ongoing research to develop completely new meta-heuristic algo-

rithms that can better utilize multiple CPU cores and GPUs. [13] Even though

the optimization algorithm itself is not parallelized, the objective function evalu-

ations can bene�t from parallel processing (e.g. [300] and [30]).

Other new hydraulic simulation developments, such as graph decomposition

and quantised state-models, hold a lot of promise to speed up the simulations and

optimization processes (see Chapter 2.5).

The most common benchmark networks used for evaluating the optimization

method performance are Two loop, New York tunnels, Hanoi, Richmond and Any-

town networks shown in Figure 9. Balerma irrigation network[217] has also been

used as benchmark in several studies.
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(a) Two loop network (b) Hanoi network (c) New York tunnels

(d) Richmond
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Figure 9. The traditional test networks for optimization algorithms[148], [272] apud [103],
[286] apud [198]

Use of the current benchmark models (see e.g. [89], [137], [72]) has been criti-

cized, especially for operational optimization because for the most part, they are

gravity-fed and the networks do not represent actual large-scale network models

too well. Many of the methods in literature, however, have been tested on these

test networks in order to make it easier to compare the results.

Di�erent algorithms and problem formulations have been shown to be e�-

cient in reducing network investment and operational costs. New developments

reduce computational time, use more accurate methods and often give better so-

lutions than earlier methods. Currently, various meta-heuristic methods are the

state-of-the-art solution for network optimization problems. New meta-heuristic

and hybrid algorithms are constantly developed and succesfully applied in water

network optimization.
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2.8 operational optimization

2.8 Operational optimization

Operational optimization is directed to the optimal operation of the water supply

system usually in terms of energy cost by �nding out optimal time-varying set-

tings for the various controllable devices, such as pumps and valves, in the water

supply system, while ensuring su�cient quality of service.

The optimal operation of distribution systems with multiple water storage

reservoirs and multiple sources is a large-scale nonlinear optimization problem

with continuous and discrete variables, whichmakes the problem di�cult to solve

mathematically. [176]

Cherchi et al. [62] review the operational aspects of the water supply system

management, focusing on the energy and quality aspects. The article reports op-

erational costs savings of 8 % to 15 % and energy savings of 6 % to 9 %. An earlier

review by Coelho and Andrade-Campos [65] focuses more comprehensively on

all aspects of water supply systems and their energy optimization, starting from

the system design. The review reports operational optimization cost savings of

6 % to 26 %.

Historical research is reviewed in Ormsbee and Lansey [185], and Lansey [145]

reviews the evolution of WSS optimization in quite broad perspective. According

to the paper, however, energy optimization was intensively studied 1988–1997,

and the �eld was already complete by 2006, except that potential in reducing

computation times existed. Research published afterwards suggests that many

more questions had to be solved than it was concluded in [145].

Operational optimization can be performed o�ine or online. O�ine opera-

tional optimization can generate optimal operational rules for di�erent scenarios

[272, 43, 278, 203, 167], from which the system operators can choose the solution

to apply for the actual situation at hand.

Online optimization, on the other hand, predicts the future water demands and

uses the current system state as initial conditions to �nd out the optimal way to

operate a system in the short-term future, typically for the next 24 hours [169,

213, 238, 122, 179].

The online optimization requires a good automatic control system, in which

tank levels, �ow measurements, pump operations, and a decision-system tool are

all linked together [167]. Some additional issues related to hydraulic simulation

and data quality have to be tackled as well, as stated earlier in Chapter 2.5.

The operational optimization of WSSs can be performed through four steps,

including (1) establishing the de�nition of the optimization problem, (2) carrying

out the computational modeling of the system, (3) calibrating and validating the

hydraulic model, and (4) performing the simulation and optimization procedures.
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[176] The following subsections review the various constituent parts of the oper-

ative optimization.

Table 5 lists most of the published research related to the operational optimiza-

tion of water supply systems starting from the 1990s. The parameters listed in

the table are the algorithm used, whether it is reported that the method supports

variable speed pumps (VSP), objectives, constraints and design variables (please

refer to Table 4 for explanations of the values), number of and type of the objects

for which optimal settings are sought, size of the hydraulic model used in the opti-

mization, the possible surrogate model used instead of a full hydraulic simulation,

time of optimization run and the best result reported in the article.

Next sections discuss the various aspects of the operational optimization in

more detail: objective function, decision variables, optimization algorithms, real-

time considerations, and �nally, real-time operation optimization frameworks.

Table 4. Short-hands used for objectives, constraints and design variables in Table 5

Letter Objective Constraint Design variable

A Energy cost Min pressure Pump status

B Production cost Max pressure Tank trigger levels

C Chlorine cost/conc. Tank level same in the end Pump/valve setting

D Leaks Min tank level/volume Valve status

E Pump switches Max tank level/volume Chlorine content

F Maintenance cost Source and/or pump limits Time triggers

G Peak power Number of warnings or errors Station �ow

H Tank level variation Tank capacity

I Min pump stop time Pump switches

J Hydraulic reliability Pipe �ow/velocity limit

K Quality
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2.8.1 Objective function

Most commpnly, the objective function includes only the cost of network pump-

ing electricity while raw water extraction and water treatment pumping costs

are left out, even though a major part of the electricity is consumed in these parts

of the supply system [237]. Only 15 % of the literature cited in Table 5 uses ex-

plicit multi-objective optimization, though 45 % of the articles include multiple

variables in the single objective function, and could be regarded as scalarized

multi-objective problems.

Motor and variable speed drive e�ciencies are not typically accounted for, ex-

ceptwhenmotor e�ciency is included in the pump’s e�ciency curve. Themethod

is valid when the pump runs at its nominal speed, but otherwise it gives wrong

results. [254, 165]

Water treatment costs are only rarely included in the objective function. Few

articles, such as Farmani et al. [90], [44], [169], [247], [50] and [205], include any

production costs. Some others, like [134] mention that including water produc-

tion costs is straightforward.

Multiple studies have addressed multi-objective optimization. Savic et al. [236]

have minimized energy and maintenance costs, [153] has optimized pumping

costs and average minimum pump stop time, [29] has used electricity cost, num-

ber of pump switches, reservoir level variation and maximum peak power, [289]

and [296] have optimized cost and environmental e�ects, [203] has optimized

leakage and costs, and [24] has optimized electricity and chlorine costs, and hy-

draulic and quality reliability.

Production costs are not often included in the objective, but if the system has

multiple sources with varying production costs, excluding them can result in so-

lutions that are not optimal in terms of the total costs, as the production cost can

be higher than the energy cost.

Pump maintenance costs are di�cult to quantify, and often the number of

pump startups is used as a surrogate (e.g. [236], [282] and [151]), but the cost

of pump maintenance or replacements varies by the pump, and even the need

for maintenance does not necessarily correlate directly with the number of pump

startups. This thesis research limits the number of pump setting switches implic-

itly by the design variable formulation, as shown in the next chapter.

In this thesis the objective function is de�ned to include variable water pro-

duction costs: energy and chemicals needed, and energy costs: every pump in the

system be it part of the water treatment process or pressure booster station in the

network. The average production costs are aggregated into source speci�c unit

costs AC/m3. Water supply reliability is taken into account by using constraints

formulated as penalty functions. More detailed description of the development
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2.8 operational optimization

of the objective function can be found in Chapter 3.7. The way water treatment

processes and their energy consumption are modeled applying control system

modeling [252, 256] is described in Chapter 3.5.

2.8.2 Decision variables

Decision variables of the pump scheduling problem can be formulated either ex-

plicitly as pump settings or implicitly using surrogate variables like tank trigger

levels or pump station discharges. [185] Combination of both can also be used

[167].

By far the most common approach is to explicit formulation use binary string

for each single speed pump. Each bit in the string represents the pump status, on

or o�, at that time interval. This approach has been demonstrated, for example,

in [160], [236], [170], [272], [151], and [218].

Tank triggers have been used, for example, in [272], [100] and [50]. When the

operational rules are optimized o�ine, implicit formulation in terms of tank trig-

ger level is regarded as more robust and it works better under uncertain water

demands than explicit formulation, but generally explicit pump schedules tend to

result in greater savings and utilize o�-peak price tari�s better [10, 167].

Other decision variable formulations exist too. Di�erent formulations can re-

strict the search space or allow formore �exible description of the problem. López-

Ibáñez et al. [152] propose variable encoding based on the pumping period length

with a �xed number of pump switches; similar formulations have been used else-

where too, for example, in [26] and [179].

VSPs require some more work, and they are considered only in a subset of pub-

lications on pump scheduling problems. However, variable speed driven pumps

are already quite common in water utilities, and they o�er major energy savings

and better controllability than single speed pumps (SSP) [164]. Using variable

speed control tends to lower the pump maintenance costs [121].

Some examples of methods where VSPs were considered, include [88], [10],

[296], [166], [114], [144], [39], and [24].

The problem with most VSP approaches present in the literature is that motor

and VSD e�ciencies at lower speeds are typically not considered, even though

they have a major e�ect on the total e�ciency [254, 255, 237], and frequency

scaling is not taken into consideration [244]. Neglecting the e�ects, the accuracy

of the published results considerably if no extra measures are taken to ensure that

the pumps work close to the nominal speed (e.g. [68]).

While few articles, like [166] and [39], explicitly state how the energy usage of

the pumps is calculated, it can be reasonable to assume that energy consumption
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values calculated by EPANET are used. EPANET, however, has major �aws in

calculating VSP e�ciency at reduced rotational speeds [166, 165]. Some of the

published VSP optimization results can thus be inaccurate.

Variable speed pumps can be modeled and formulated in di�erent ways, and

this has a major impact on the problem complexity and computational time. Solv-

ing explicitly speed settings for every pump increases the search-space consider-

ably; thus, methods that solve for the whole pump station’s �ow setting and then

calculate single pump speeds based on the result can be much more e�cient in

terms of computational time. [309, 186]

Wu et al. [296] include �ow controlled VSD pumps into a genetic algorithm

driven system design and operational optimization problem by replacing pump-

ing stations with high-elevation reservoirs and EPANET’s �ow control valves

(FCV), and calculating the pump energy usage by the real inlet reservoir head

and down-stream head of FCV.

Hashemi et al. [114] introduced a proper VSD controlled pumping station op-

timization with ant-colony optimization (ACO). The pumping station is replaced

with a reservoir, the head of which is found through the optimization process.

Resulting head and �ow is divided between the pumps using ordinary, naïve vari-

able speed control, and energy usage is calculated separately, based on the head

and �ow solved by the hydraulic simulator. A similar two-level method was also

used in [24]. Analogical methods to reduce the number of decision variables have

been introduced earlier for single-speed pumps in the 1990s (e.g. [309], [186] and

[175]).

Several papers, e.g. [10], [166] and [144], use the optimization algorithm to

directly solve the VSP speed and model the VSPs using ordinary EPANET pumps

with relative speed settings.

This thesis research uses the purposely developed pump battery component

in the EPANET model [256] presented in more detail in Chapter 3.4.1 to model

pump stations. The parallel pump pre-optimization ([254], Chapter 3.3) is then

used for solving each pump’s speed and the total energy usage. In this way, the

VSD controlled pumps in a pumping station can be e�cientlymodeled, as only the

setting for the whole station has to be found, and the optimal way of producing

the working point inside the station is ensured.

The decision variables for each station are the 24-hout pattern index and four

�ow or pressure settings that are used during di�erent time periods, as described

in more detail in Chapter 3.7.1. The method develops on ideas from [186], [114]

and [152], and manages to reduce the number of decision variables from 24 per

pump to �ve per station, while retaining much of the properties of the explicit

pump schedule formulation. Proposed formulation reduces search-space to a frac-

tion of the typical.
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2.8 operational optimization

2.8.3 Optimization algorithms in operational optimization

Pump scheduling problems can be solved using a variety of optimization algo-

rithms. Many of the algorithms used for network design optimization or cali-

bration can also be used for operational optimization, as the problems are quite

similar (see Chapter 2.7). Currently, meta-heuristic methods are typically used,

because they are well suited for the problem type. The eras of various techniques

are the same as in the network design optimization, and since about 1994 stochas-

tic methods have dominated the �eld. [145]

Early literature on pump scheduling includes Fallside et al. [88] who used dy-

namic programming, and Jowitt and Germanopoulos [134] who used linear pro-

gramming. Sun et al. [251] have developed the EMNET algorithm that solves LP

with network structures very e�ciently. The method was applied for operational

optimization of a Southern Californian water utility. Ormsbee and Reddy [186]

used non-linear heuristic combined with a KYPIPE hydraulic simulator and per

pumping station settings for optimizing pumping schedules for Washington D.C.

Nitivattananon et al. [175] used dynamic programming for Pittsburgh’swater sup-

ply system operational optimization, and Zessler and Shamir [309] used the pro-

gressive optimality method, which is an iterative dynamic programming method.

The method was tested on an unnamed regional water supply system. Mäckle

et al. [160] was the �rst to use GA for pump scheduling optimization. The system

examined consisted of a reservoir and a tank connected by four pumps.

Dynamic programming solutions are usually case-speci�c and cannot be read-

ily applied to other systems. [186] Dynamic programming solutions also su�er

more from the curse of dimensionality and are limited to smaller problems than

other methods. [48]

Linear programming solutions are often case speci�c too. Discretizing contin-

uous results and inaccuracies due to linearization cause di�culties. [194]

An example of more recent LP solution for pump scheduling is that of Pasha

and Lansey [194]. They applied LP for optimizing pumping costs in Anytown-

like network. Their proposed method, however, only works for a single source

and single tank system. A series of papers [202], [203] and [201] present further

developments and use linearization to solve pump scheduling problems.

A more recent example of dynamic programming can be found in [101], and

non-linear programming in [44], which uses the generalized reduced gradient

algorithm (GRG) and simple branch and bound (SBB) to optimize pump station

�ows, and Sakarya andMays [229], which uses GRG2 and three di�erent objective

functions: pumping time, total cost and chemical concentrations.

Skworcow et al. [246] optimizes pump and valve schedules using CONOPT [84]

NLP algorithm found in the general algebraic modeling system (GAMS) and skele-
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tonized EPANET model [192]. The methodology allows for variable-speed driven

pumps. The optimization method is fast, it took about �ve minutes to optimize for

24 hours in one hour intervals, but no energy savings data were reported. A sim-

ilar method has been implemented in [36], but instead of using EPANET model

for objective function evaluation, a simple linear mass balance model of WDS is

used.

Bagirov et al. [26] encode pump start and run times as continuous variables

and pump status at the start of the �rst period as a binary variable. In addition,

the number of pump switching periods is limited to �ve. These reduce the search

space remarkably. The problem is then transformed into a MINLP problem, and

it is solved with grid-search and Hooke–Jeeves [119] search.

Savic et al. [236] applied multi-objective GA (MOGA) for optimizing cost and

number of pump switches. McCormick and Powell [171] investigated the use of

two-level simulated annealing. The total costs included energy cost, pump switch-

ing andmaximum demand charges. An initial solution was produced by a descent

method, then two-stage simulated annealing optimized the �nal schedule.

Kurek andOstfeld [144] use the strength pareto evolutionary algorithm (SPEA2)

to perform multi-objective optimization on both water quality and energy use.

The design variables were relative pumps speeds for VSPs and chlorine concen-

trations at water sources, and tank diameters. The methodology was tested on

one of EPANET’s example networks.

Barán et al. [29] optimized pump schedules for four di�erent parameters elec-

tric energy cost, maintenance cost, maximum power peak, and level variation in a

reservoir using size di�erent multi-objective evolutionary algorithms. The same

case and algorithms were examined earlier in von Lücken et al. [282], which also

used both parallel and sequential versions of the algorithms.

López-Ibáñez et al. [153] used the SPEA2 algorithm in the pump scheduling

problem for minimizing energy andmaintenance costs. Constraints were handled

using a methodology based on the dominance relation rather than using penalty

functions.

Gogos et al. [106] appliedGA for optimizing pump schedules in 30 min intervals.

Their method included an algorithm to repair infeasible solution chromosomes

by adding or removing pumps so that reservoirs will not over�ow or empty too

much. The reported savings were 28 %, but few details of the system are provided.

The paper does not explain how the pump power use is calculated exactly, but it

seems that no hydraulic simulations are performed, instead a tabulated pump

energy consumption values and a mass balance model are used.

AbdelMeguid and Ulanicki [10] solve the optimal pump scheduling problem

in implicit form for a large real network consisting of both SSPs and VSPs using

GA. Optimal tank trigger levels and relative rotational speeds for VSPs were gen-
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erated for each pumping station for each tari� level. The optimization was done

o�ine and the resulting tank trigger levels were then incorporated into PLCs con-

trolling the pumping stations. A sensitivity analysis showed the methodology to

be robust.

Marchi et al. [166] solve the optimal pump scheduling problem for both SSP

and VSP using GA. Only two very small systems were studied. However, the

study shows that VSPs improve the energy usage considerably over SSPs and

that EPANET has major �aws in the way energy use is calculated for VSPs.

Bohórquez et al. [39] use GA for optimizing tank trigger levels for single speed

pumps and speeds at di�erent tank levels for VSPs. Only EPANET rule-based

controls were used and the rotational speed was controlled directly. The method

used included not only pumping costs, but also leakage costs in the objective

function.

Some other algorithms used include neutral evolutionary search [238], honey

beemating optimization algorithm (HBMOA) [100], which optimized a set of tank

trigger levels for pumps in the system, and ant colony optimization (ACO) was

applied for explicit pump scheduling in [151] in van Zyl and Richmond networks.

Hybrid optimization algorithms combining multiple di�erent optimization al-

gorithms have been applied to operational optimization problems too. Some ex-

amples include those in [103].

Dynamically dimensioned search (DDS) algorithm was �rst presented in [264].

The algorithm is greedy, constant-time general purpose optimization algorithm,

that �rst performs global search and as the number of objective function eval-

uations gets closer to the allowed number, the algorithm changes dynamically

into more and more local search. The algorithm thus exhibits hybrid properties.

The algorithm was later extended to support discrete variables and named hybrid

discrete DDS (HD-DDS) [265].

Tolson et al. [265] compare DDS performance for optimizingWDN using class-

ing New York tunnels problem, its double pipe version and Hanoi network, with

di�erent other algorithms such as GA, CE and PSO. The algorithm required less

computational time and gave as good or better results than the other algorithms

tested.

DDS performed well in relation to GA and various surrogate modeling ap-

proaches in [216] when several test functions were used, but [313] and [312] ar-

gue that DDS’s performance in terms of speed and result quality is not in the best

class in the con�guration of the water supply network system. Puleo et al. [206]

argue, on the other hand, that the principal advantage of DDS class of algorithms,

compared with genetic and ant colony algorithms, is their good ability to �nd

near globally optimal solutions while being signi�cantly more computationally

e�cient.
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Giacomello et al. [103] apply LP together with a greedy algorithm for pump

scheduling problems in Anytown and Richmond networks. Puleo et al. [206]

have used multi-stage LP for pump scheduling in Anytown. The results from LP

were further optimized by HD-DDS[265]. Both studies show promising results

by doing a rough approximate optimization with LP and then re�ning the results

further with stochastic methods resulting in smaller computational time require-

ments.

Van Zyl et al. [272] use the hybrid algorithms the other way: �rst, optimiz-

ing more globally using GA and then re�ning the results using Hooke–Jeeves

or Fibonacci hill climbing algorithms. The methods were tested using Richmond

network.

Skworcow et al. [247] optimize pumping and water treatment costs for York-

shire Water Services. The system includes both �xed and variable speed pumps

and pressure reducing valves. The problem was solved using skeletonized [267]

EPANET model including leaks modelled as emitters. CONOPT non-linear pro-

gramming solver found in GAMS package was used as a solver. The continuous

schedules solved by CONOPT were transformed into discrete schedules using

an algorithm developed in Matlab. The reported savings were almost 34 %. The

article explicitly includes the price of water treatment as �xed per-station unit

cost. The use of �xed price, however, fails to capture the e�ect of varying energy

losses in the treatment process due to friction, and pump and pump drive train

e�ciencies.

Nitivattananon et al. [175] decomposed the problem temporarily into short and

long term sub-problems and spatially into several subsystems. Dynamic program-

ming was then applied to optimize the pump schedules real time. Heuristics were

used to rearrange the pump schedules in order to minimize the number of pump

switches. The optimal discharges were calculated for each station, and the short-

term optimization derived the single pump schedules. The only constraints are

tank levels, and only rough approximation of the �ow dependent pressure losses

between tanks and pumping stations were considered. The method was applied

in Pittsburgh and it showed 20 % reduction in pump energy costs.

Broad et al. [50] have optimized pumping and chlorine costs using the GA and

ANN surrogate model. Optimization time of 1.4 h yielded operational cost savings

of 21 % for the network of Wallan, Victoria, Australia.

Marchi et al. [167] extend EPANET rules engine in order to allowmore complex

rules, taking into account simultaneously several conditions (e.g., the time of the

day and the tank level), to be generated and changed online. The extended EPA-

NET is used with GA to optimize the operational rules based on both tank trigger

levels and time of the day. The resulting solutions were cheaper than previously

found simple rule based solutions.

68



2.8 operational optimization

Ostojin et al. [189] used GA optimized fuzzy logic control for real-time pump

schedule optimization in a sewer pumping station resulting in 5 % energy cost

savings. Zhuan andXia [319] used reduced dynamic programming for operational

pump schedule optimization. Farmani et al. [90] used GA for o�ine whole-cost

optimization based on optimal pump-scheduling.

Babaei et al. [24] used multi-objective ACO to optimize pumping and chlo-

rine costs, having explicit pump schedules and chlorine doses as design variables.

The other objective was one of di�erent reliability measures: hydraulic reliabil-

ity, quality reliability or integrated reliability. For VSPs, an alternative reservoir

method presented in [114] was used. The method was applied in the Anytown

network.

Zheng and Huang [316] developed and applied a novel improved dynamic pro-

gramming algorithm (IDPA) in the operational optimization of two-stage deep

well pumping (single-speed). Themethodwas comparedwith the traditional branch

and bound (B&B) method. IDPA was almost two orders of magnitudes faster than

B&B method, and the resulted costs were smaller.

Price and Ostfeld [200] and Price and Ostfeld [204] developed a novel way to

solve pump scheduling problems by presenting the problem as a graph and using

the shortest path algorithm to �nd the optimal pump schedule.

Based on the review, it seems apparent thatmore traditional optimizationmeth-

ods, such as LP and DP, have superior computational performance compared to

meta-heuristics. However, meta-heuristics are much simpler to apply, and the

literature shows that performance of di�erent meta-heuristic methods, both in

terms of the solution quality and computational resources required, can be rea-

sonable.

While GA is most commonly used, many other methods can perform better,

especially in terms of the number of solution evaluations. It was decided to ex-

plore the possibilities o�ered by the dynamically dimensioned search (DDS) in

operational optimization, where it has not been applied before. DDS is very easy

to implement, seems to converge on acceptable solutions quickly and it exhibits

both global and local search properties like many hybrid methods, which have

proven to be e�ective in this class of problems.

Based on the initial performance assessment, the DDS algorithm was slightly

modi�ed in this work. The performance was much better if a certain degree of

non-greediness was allowed. The optimization algorithm is presented in Chap-

ter 3.8.
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2.8.4 Real-time considerations

The use of meta-heuristic optimization approach requires a great number of hy-

draulic simulations. Even though a single simulation can be reasonably fast, the

simulations still are the bottleneck of the optimization process. Much of the re-

search focuses on �nding the best optimization methods in terms of the number

of hydralic simulations performed (e.g. [229]). Some research dealing exclusively

with more e�cient hydraulic simulation was already presented in Chapter 2.5.

As multi-core processors and powerful graphical processing units (GPU) with

general purpose programming facilities, such as Nvidia’s CUDA and open com-

puting language (OpenCL), have become more commonplace, there has been a

growing interest in parallelizing hydraulic simulators and re-implementing the

matrix operations on GPU, and thus reducing the computational time needed.

There have been several attempts to utilize better the multiple CPU and GPU

cores available in the modern workstations. Two kinds of approaches are in-

volved: improving the performance of the EPANET simulator by parallelizing the

simulator or improving the performance of the optimization algorithm by run-

ning several distinct simulator processes in parallel [162].

Guidolin et al. [109] implemented the EPANET solver, the conjugate gradient

method on GPU using sparse matrices. According to the paper, there is potential

to reduce the computational time for repetitive runs.

Wu and Lee [301] replaced the linear equation solver in EPANETwith a parallel

version and compared how the parallelized version performed solving hydraulic

models with 1000 to 150 000 pipes. While the matrix solver performance increase

was signi�cant, overall e�ciency was signi�cantly reduced by introducing the

new solver. The slowdownwas more pronounced with smaller models. Even with

a very large model, only 29.7 % of the processor time is spent solving the network

equations. Actually 19.1 % of the time is spent opening and closing the model

and saving the results, which serves as a hint of major simulation time savings

potential there. [301]

Wu and Zhu [298] and [149] use distributed and parallel simulations, respec-

tively, to reduce the computational time required by the optimization. Von Lücken

et al. [282] used asynchronous parallel multi-objective optimization. The parallel

optimization framework used in [298] was later generalized for any parallel GA

based optimization in [303].

Ibarra and Arnal [122] formulate an implicit pump scheduling problem as a

mixed integer programming problem and use computational infrastructure for

operations research (COIN-OR) toolkit to solve it using parallel processing. The

solution is obtained using the branch and boundmethod. Themethodwas applied

to a small part of WDN of Granada, Spain, and the reported savings were 20 %.
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Using multiprocessing via openmulti-processing (OpenMP) and message passing

interface (MPI) reduced the computational time almost linearly as the number of

cores increased.

Broad et al. [50] used ANN for optimal control of water supply systems. The

ANN method was several orders of magnitude faster than using EPANET for the

Wallan, Victoria, Australia network. Behandish [30] used multiple ANNs, trained

using GPU, for extended period simulation.

Razavi et al. [215] compared the computational performance of various sur-

rogate models using Griewank, Ackley, Rastrigin and Schwefel functions as test

functions. The paper concludes that using surrogatemodels is not always a proper

solution for coping with limited computational budget. Choosing a suitable sur-

rogate model is not simple, and a bad choice can be counter-productive. For ex-

ample, in [30] accumulated tank level error from ANN usage was about 0.5 m to

1.0 m in the presented case study over a 168 h period. Still, surrogate models are

widely used in operational optimization, as they can be up to 700 times faster

than full-scale hydraulic simulation [49].

Paluszczyszyn et al. [191] and [192] present a model simpli�cation methodol-

ogy that can be applied online, thus enabling the real-time modeling. Compared

with [267], [191] adds support for multi-threaded simpli�cation, which allows

simpli�cation of a 3500 node network in 1 min to 37 min depending on the num-

ber of threads. The method compares both the hydraulic equivalence and energy

distribution characteristics of the simpli�ed and original models.

Hakimi-Asiabar et al. [113] uses self-learning (using self-organizingmaps, SOM)

multi-objective GA for optimizing reservoir operations. The method shows clear

improvement of results quality over NSGA-II in the studied case: NGSA-II had

to be run for 1000 generations and the run took 23 min while the self-learning

genetic algorithm variant (SLGA) took only 100 generations and 6 min to satisfy

the stopping criteria.

Zheng et al. [313] used the graph decomposition method to solve the design

optimization problem more e�ciently. The network is partitioned and each sub-

network is optimized separately using di�erential evolution. The method per-

formed very well in terms of the optimized costs and computational time, and

could be applied in the operational optimization setting to speed up the optimiza-

tion.

Computational budget can also be saved by introducing preemption. When

the objective function value is monotonic, and the optimization algorithm does

not require the �nal objective function value, the hydraulic simulation can be

preempted as soon as it becomes apparent that the result would be worse than

the current best value. According to [214], preemption can save up to 60 % of the

computation time. The methodology, however, cannot be used with many meta-
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heuristic algorithms, because the algorithms, for example GA and ACO, require

that the �nal objective function value is known.

Pasha and Lansey [196] state that developing good initial solutions that already

approximate the optimum, the computation time required by the stochastic opti-

mization algorithm can be reduced signi�cantly. The speed-up can be especially

noticeable, when the optimization is combined with a surrogate model.

Pasha and Lansey [195] used LP to generate warm solutions for SFLA based

stochastic optimization to speed up the optimization process. The optimization

time is further reduced by using support vector machine as a surrogate model to

avoid full EPANET simulations. The method was tested on the Anytown network.

Unfortunately, no computation time information was published. The paper also

recommends the use of previous day’s optimal solution as a warm initial solution.

Jung et al. [136] uses GA with a skeletonized model and explicit SSP pump

formulation. They use previous hour’s results as a warm initial solution to speed

up the optimization process.

Developing a surrogate model for full hydraulic simulation requires much ef-

fort and typically sacri�ces some accuracy. The performance gains, however, can

be signi�cant. Parallelized versions of the GGA hydraulic solver or using a GPU

does not yield signi�cant speed-ups. New developments in hydraulic simulation,

as discussed in Chapter 2.5, such as graph decomposing, hold a lot of promise, but

it will take some time before practical implementations are readily available.

Avoiding unnecessary calls to the hydraulic simulator, avoiding IO-operations

and caching as much of the simulator state as possible between di�erent calls

to the simulator, preempting simulation when the solution is proven to be bad,

and generating good initial solutions for optimization algorithms are more easily

implemented and provide more generally applicable solutions.

This work implements some code level optimizations and heavy compiler op-

timization for the simulator, avoids much of the IO of the simulations, uses pre-

emption [214], results from previous optimization run as an initial solution for

the next (as in e.g. [213] and [136]), and avoids the use of surrogate models. One

goal of this thesis research is to show that it is feasible to use full-scale hydraulic

models in conjunction with real-time optimization. The applied methodology is

described in Chapter 3.11.

2.8.5 Real-time operational optimization frameworks

The aim of the real-time operational optimization is to minimize costs, energy

usage or chemical consumption while ensuring su�cient quality of service for

the consumers by varying the control parameters that can be changed remotely
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Figure 10. Control scheme for online energy and leakage management using skeletonized
hydraulic model [192]

by the SCADA system in use. Typical control parameters include pump and valve

settings. One example of a general model predictive control (MPC) system for

energy and leakage management is shown in Figure 10.

The complete real-time optimization framework includes all the elements needed

for the optimization: SCADA connection, demand forecasting, optimization algo-

rithm, and solution evaluation module. The literature review performed, unfor-

tunately, yielded only a few articles describing complete real-time operational

optimization frameworks.

Bunn [51], Bunn [52] and Thorstensen [258] examine the bene�ts of using De-

creto’s online pump scheduling and operational management system in various

US cities. The publications show that signi�cant energy savings of 10 % to 15 %

are possible in real systems, but the implementation details are not documented.

Zhao et al. [311] present a general framework for the online analysis and oper-

ational optimization of WSS. The framework has been in use for two years, and

energy savings of 3.4 % have been reported, along with much fewer pipe burst,

smaller leakage and better service pressure.

Odan et al. [179] describe a real-time optimization framework. Demand fore-

cast is calculated using the DAN2-H algorithm and the operational optimization

is done using the AMALGAM algorithm. Pump schedules are formulated as time-

triggers. The optimization was multi-objective, including pumping costs and var-

ious reliability measures. Their case-study showed cost savings of 13 %.

Jamieson et al. [130] describe the POWADIMA project that developed a generic

real-time operational optimization framework. The various aspects of the frame-

work were presented in more detail in various papers. Rao et al. [211] and Rao

and Salomons [213] focus on the optimization using the GA and the ANN surro-

gate model. The design variables are pump on-o� statuses and valve settings for
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a 24-hour period. The optimization was applied to a hypothetical modi�ed Any-

town network [212, 213] and real networks Haifa-A [234] and Valencia [169]. For

Haifa-A case, each solution had 408 bits, population size was 50 and the number of

generations was 1000. The network model used for Haifa-A had 112 nodes. Using

the GA-ANN, method the 24-hour optimization took about four minutes, which

was 25 times faster than using the full hydraulic model with GA. The reported

energy savings were about 20 % for both Haifa-A and Valencia cases.

The Haifa system was further optimized in [240] using the GA with a skele-

tonized version of more accurate, 867 node, hydraulic model. The skeletonized

model had only 77 nodes, while retaining much of the accuracy of the original

model. The framework laid in [130] remained otherwise the same. The reported

energy cost savings were 10 % and the reduced model was reported to be 15 times

faster than the full model – one optimization run took about 15 min.

This work develops a real-time operational optimization framework with the

structure similar to those published earlier, as there is not much room for im-

provement in the framework structure in itself. The framework is described in

more detail in Chapter 3.1.

2.9 Conclusions

This chapter provided a general overview of the water supply system and the rele-

vant hydromechanics. The chapter reviewed literature related to various subjects

needed for constructing a real-time operational optimization framework. The cov-

ered subjects included pump energy use and pump energy optimization, hydraulic

simulation, demand forecasting, and WSS optimization.

Compared to the optimization of water distribution network design, the oper-

ational optimization is a subject relatively little studied, especially in a real-time

setting. Much of the challenges and solutions apply equally to both classes of

problems. The requirements for computational performance are typically, how-

ever, more pronounced in operational optimization problemswhen near real-time

performance is needed.

In the literature, major short-comings in many reported operational optimiza-

tion methods are shown to lie in focusing mostly on �xed-speed pumps and the

lack of accuracy: surrogate models are used, VSP energy consumption is only

roughly approximated or sometimes calculated incorrectly, and raw water pump-

ing and treatment or chemical costs are rarely included in the objective function.

Multiplemeta-heuristic optimization algorithms have been successfully applied

to both design and operational optimization, and their performance has been

good. Classical optimization methods have shown good overall performance, but
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implementing them is more problem-speci�c. Various hybrid algorithms combin-

ing classical and meta-heuristic or di�erent meta-heuristic algorithms have also

been successfully applied and they have shown good performance.

One major reason for the use of rough approximations is certainly the rela-

tively long time it takes to simulate a full-scale network using the current ver-

sion of EPANET. The new developments in hydraulic simulation, especially the

promising decomposition methods, can change this in the near future. Another

main reason for simpli�cations and the use of small benchmark models is that

authors focus on the optimization algorithm itself, and try to produce results that

are easily comparable to earlier research. Thus, authors tend to report results us-

ing small but widely available models such as Anytown.

The next two chapters describe the real-time operational optimization frame-

work developed in this thesis that builds upon and addresses some short-comings

in the earlier research.

The approach chosen in this thesis research is to use a model as accurate as

possible. According to the literature review, novel developments of this thesis

in the �eld of real-time operational optimization in the hydraulic modeling are:

a full-scale hydraulic model that includes raw water extraction, conveyance and

treatment (see Chapter 3.5), controlled by the real control systemmodel (see Chap-

ter 3.4.2) used in conjunction with an accurate model for pump energy usage (see

Chapter 3.3).

The accurate pump energy use model, integration of �ow and pressure con-

trolled variable-speed driven pump batteries in EPANET (see Chapter 3.4.1), and

the use of globally pre-optimized pump battery pump and frequency con�gura-

tions (see Chapter 3.3) ensure, together with the accurate hydraulic model, that

results obtained by the optimization accurately present the system performance

and that the solutions are feasible.

The performance of hydraulic simulations is ensured by optimizing the sim-

ulator both manually and using the best optimizations modern C compilers (in

this case the GNU C Compiler, GCC) have to o�er (see Chapter 3.4.4). Parallel pro-

cessing is utilized in the optimization process via a novel way of making EPANET

thread-safe by utilizing thread local storage (TLS) features of modern compilers

(see Chapter 3.4.3) without making any API changes.

More gains in computational e�ciency are achieved by the preemption of the

objective function evaluation, and loading, and initializing EPANET only once,

and reusing the same simulator for all evaluations while avoiding as much of �le

input and output operations as possible (see Chapter 3.11.1), which, according to

the literature review, can make the simulation about seven times faster compared

to the straightforward use of a simulator.
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While the optimization framework structure (see Chapter 3.1) itself is quite

conventional if not for its generality (see Chapter 3.12.1), and likewise, the de-

mand forecasting algorithm (see Chapter 3.9) is not very special, the problem

formulation and optimization algorithms o�er considerable novelty.

Thanks to the control system modeling and the pump battery EPANET compo-

nent and pre-optimization, the optimization framework does not have to optimize

each single pump’s frequency, but it can �nd out the station speci�c optional set-

tings, which are then transformed into pump-speci�c frequencies by the control

system model and pump battery pre-optimization. This enables the system to in-

clude every single pump in the system, while managing to keep the size of the

search space reasonable.

This makes it possible to accurately model and include water production en-

ergy costs in the objective function. Objective function (see Chapter 3.7) includes

not only the energy costs, but also other water production costs, like chemicals,

which are not typically included in the objective function in the literature.

Further reduction of search space is gained by the novel way to formulate the

decision variables (see Chapter 3.7.1) as a hybrid of explicit and implicit formula-

tion on the station level. The formulation developed in this thesis research �xes

the number of setting changes to four and imposes minimum run length for each

setting to ensure better usability and feasibility of the settings. The formulation,

however, also allows high level of freedom for the algorithm to choose the times

when the di�erent settings are used.

The optimization algorithm used is based on both DDS and HD-DDS that ex-

hibit both global and local search properties, and according to the literature seems

to provide good performance. The algorithm has not been applied in operational

optimization problems before. This work modi�es the algorithm somewhat to al-

low for solvingMINLP problems and allowing for temporal non-greediness of the

algorithm, as described in Chapter 3.8.

Warm initial solutions are used, thus providing the algorithm with a known

good starting point from the result of the last optimization run (see Chapter 3.10).

The simulation preemption is also used to avoid simulation of further timesteps

after it is apparent that the solution candidate is worse than the currently known

best solution. This reduces the computational time remarkably.

The work always runs several independent optimization runs in parallel and

selects the best solution to ensure high level of certainty of the optimality of the

solution. A certain level of population-based properties is thus brought to the

otherwise single solution DDS algorithm.
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3.1 Introduction

This chapter describes the generic optimization framework for real-time whole-

cost optimization of water production and distribution developed in this the-

sis.
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Figure 11. Structure of the developed optimization framework in its general form

Figure 11 shows the components of the optimization framework and their re-

lations to each other. The optimization of a given historical or future time period

can be initiated from the web user interface manually, programmatically using

the provided Representational State Transfer (REST) Application Programming

Interface (API), or using a scheduled task – as performed in the operational real-

time setting.

The literature review in Chapter 2 shows, that while there is a considerable

body of research addressing the operational optimization of a water supply sys-

tem (WSS), only few papers focus on optimizing systems with variable-speed

drive (VSD) controlled pumps.

The existing research typically ignores energy consumed by raw water extrac-

tion, conveyance and pumping at water treatment plants along with non-energy
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costs related to water production. Pump motor and variable-speed drive e�cien-

cies are also typically neglected. Most of the published research uses simpli�ed

or surrogate models for the optimization instead of full-scale network models.

In order to accurately model and optimize the energy usage of the whole water

supply system, the method presented here assumes the use of a full-scale hy-

draulic model, including all pipes, all pumps along with motor and VSD e�cien-

cies (see Chapter 3.3), raw water extraction and water treatment processes (see

Chapter 3.5) and the control system model controlling the pumps and valves in

the WSS (see Chapters 3.4.2 and 3.4.1).

The method presented will achieve near real-time operational optimization us-

ing a full-scale hydraulic model by following:

1. reducing the number of design variables by using a novel problem formu-

lation: only time patterns and four di�erent �ow settings are optimized on

a station level (see Chapter 3.7.1 – treatment processes are driven by con-

trol system model (see Chapters 3.4.2 and 3.4.1), and internal pump battery

optimization is done beforehand o�ine (see Chapter 3.3)

2. using highly optimized, parallel version of EPANET simulator (see Chap-

ters 3.4.4 and 3.4.3)

3. using preloading, preemption and parallel processing to reduce computa-

tional time, when performing hydraulic simulations as part of the objective

function and constraint evaluation (see Chapter 3.11.1)

4. using previous optimization results as warm initial solutions (see Chap-

ter 3.10)

5. using a novel Modi�ed Hybrid Discrete Dynamically Dimensioned Search

(MHD-DDS) meta-heuristic optimization algorithm, which is e�cient and

supports a �xed number of evaluations (see Chapter 3.8).

The following sections describe the main components of the proposed frame-

work in more detail, starting with the model preparation: pump train energy

use model, parallel pumping optimization, EPANET enhancements and hydraulic

model construction, optimization preparation: the tool for SCADA data access,

and proceeds to the optimization problem itself: problem formulation, optimiza-

tion algorithm, demand forecasting, generating initial solutions and solution eval-

uator. Finally, some implementation details and the concluding remarks are pre-

sented.
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3.2 Pump energy use model

The pump energy model is also presented in the author’s articles [253] and [254].

The related literature is reviewed in Chapter 2.3.

Variable-speed drive (VSD) can change the motor’s and thus the pump’s rota-

tional speed N. VSDs are introduced in order to control the produced �ow and

pressure in an energy e�cient manner. The introduction of variable speed drives

allows for signi�cant energy savings and more �exibility in the control of pump-

ing. [164] The �ows and pressures need to be controlled because the system pa-

rameters, for example water demand vary signi�cantly over time.

Flow Q2, head H2 and power P2 at some rotational speed N2 are calculated using

a�nity laws.

Pump’s hydraulic e�ciency in relation to the rotational speed can be modeled

using frequency scaling. More complexmodels are based on the Reynolds number

[105], but if it is assumed that no losses are dependent on the Reynolds number,

the frequency scaling function can be written as in [235]:

η2 = 1− (1− η1)

(

N1

N2

)0.1

. (3.1)

While Equation (3.1) is approximate, according to [244], it provides reasonably

good estimates if the rotational speed is not reduced more than 70 % from the

nominal or the pump is small. The formulation is becoming accepted in the �eld

[99].

Motor’s e�ciency depends on the load. The motor load

L =
PS

PNOM
ηM,100

, (3.2)

where PNOM is the motor’s nominal power and ηM,100 is the motor e�ciency at

the rated load. [5]

According to Equations (2.8) and (2.9c), shaft power PS is approximately propor-

tional to the cube of the relative rotational speed ω3. Thus, lowering the pump’s

rotational speed to 50 %, lowers the shaft power – and the motor load – to about

12.5 %. The load L diminishes quickly as the rotational speed is reduced.

The exact motor e�ciency ηM at di�erent loads is motor speci�c, and typically

themotormanufacturers provide load–e�ciency curves. Generally, largermotors

have higher e�ciency, and higher e�ciency motors can keep better e�ciency at

lower loads.
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IEC 60034-31 [124] standard provides a general equation to calculate an approx-

imation of motor e�ciency at any partial load based on motor’s rated (ηM,100) and

3/4 load e�ciencies (ηM,75):

vL =

(

1
ηM,100

− 1

)

− 0.75 ·
(

1
ηM,75

− 1

)

0.4375
(3.3a)

v0 =

(

1

ηM,100

− 1

)

− vL (3.3b)

ηM =
1

1 +
v0
L + vL · L

. (3.3c)

Equation (3.3) can be used to approximate the motor e�ciency when the exact

e�ciency curve is not available.

When the motor e�ciency is known for the particular pump working point,

the motor power

PM =
PS

ηM
=

PH

ηH · ηM
(3.4)

can be calculated.

Based on experiments presented in [56] and [55], this work assumes that mod-

ern VSDs can mostly compensate the VSD generated losses in motors, and only

VSD e�ciency itself is considered as per IEC 60034-31 [124].

VSD load is calculated similar to the motor load in Equation (3.2). The VSD

e�ciency ηVSD is linearly interpolated from a lookup table constructed based on

IEC 60034-31 [124]. The e�ciency at various loads for VSDs of di�erent nominal

power is shown in Figure 12.

The pump train electrical power

PE =
PM

ηVSD
, (3.5)

and the total pump train e�ciency

ηTOT =
PH

PE
= ηH · ηM · ηVSD . [33] (3.6)

The total electrical power for a pump expressed as the function of the working

point (Q, H) becomes

PE =
PH

ηH · ηM · ηVSD
=

g · ρ ·Q · H

ηH · ηM · ηVSD
. (3.7)

80



3.2 pump energy use model

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0,1 1,0 10,0 100,0 1000,0

V
F

D
 E

ff
ic

ie
n
c
y
 (
%

)

VFD Nominal Output (kW)

VFD Eff iciency in Partial Load

Speed 100% Torque 100% (Load

100%)

Speed 75% Torque 56% (Load 42%)

Speed 50% Torque 25% (Load 13%)

Speed 25% Torque 6% (Load 2%)

Figure 12. Typical VSD e�ciency at di�erent loads [124]

Table 6 shows how the load and di�erent e�ciency components change using

the selected method, when pump’s rotational speed is reduced in a zero static

head system. The motor presented in the table is a 75 kW IE2 class motor, with

a full load e�ciency of 95.4 % and 75 % load e�ciency of 94.6 %. The VSD is also

75 kW in power. Pump’s best e�ciency point (BEP) is 75 % at the nominal rota-

tional speed at 50 Hz. It is assumed that pump’s shaft power is 75 kW at BEP at

the nominal rotational speed. While pump’s BEP decreases from 75.0 % to 73.2 %

when the rotational speed is reduced from 50 Hz to 25 Hz, motor’s e�ciency re-

duces from 95.4 % to 77.6 % and VSD’s e�ciency from 98.0 % to 95.3 %. This results

in the total e�ciency of 70.1 % at 50 Hz and only 54.5 % at 25 Hz.

Table 6. Di�erent e�ciency components at various loads and rotational speeds

Hz Load
E�ciency

Motor VSD Pump Total

50.0 100.0 % 95.4 % 98.0 % 75.0 % 70.1 %

45.4 75.0 % 94.6 % 97.9 % 74.8 % 69.2 %

39.7 50.0 % 92.8 % 97.3 % 74.4 % 67.2 %

31.5 25.0 % 87.2 % 96.5 % 73.8 % 62.2 %

25.0 12.5 % 77.6 % 95.8 % 73.2 % 54.5 %

18.4 5.0 % 58.2 % 95.3 % 72.4 % 40.1 %

14.6 2.5 % 41.1 % 94.9 % 71.7 % 28.0 %

10.8 1.0 % 21.8 % 94.6 % 70.9 % 14.6 %
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3.3 Parallel pumping optimization

The pump optimization method is also presented in the author’s articles [253]

and [254]. The related literature is reviewed in Chapter 2.4.

The pump battery is described as a set of pumps. Each pump is given a char-

acteristic curve, an e�ciency curve, minimum and maximum allowed frequency,

nominal motor power PNOM, and either IE e�ciency class and number of poles,

for standard motor e�ciency values based on IEC 60034-30[123], motor e�ciency

values at both 100 % and 75 % load, ηM,100 and ηM,75 respectively, or motor e�-

ciency curve in tabular format. Minimum and maximum frequencies can be set

equal, when no VDS is present or in use.

The power used by the whole battery of n pumps is

PTOT =
n

∑
i

PE,i , (3.8)

where PE,i is pump i’s electrical power use (see Equation (3.7)).

Mathematically, the problem of �nding an optimal combination of pumps and

their respective frequencies for a working point (Q, H) can be stated as

min
f̄∈X

PTOT(Q, H, f̄ ) , (3.9)

where f̄ is a vector of combinations of frequencies for di�erent pumps and the

search space X includes all allowed combinations of frequencies and pumps that

produce �ow Q and head H.

A parallel exhaustive direct search [119] is performed on the full pump battery

working regime (Q, H) ∈ {Qmin . . . Qmax, Hmin . . . Hmax}. For each working point

(Q, H), all allowed combinations of di�erent pumps and their frequencies that can

produce the �ow Q and head H are considered, and for each working point, the

optimal combination of pumps and their frequencies f̄ in terms of total e�ciency

is chosen and stored in the results array.

First, each pump’s working regime is determined. Minimum and maximum al-

lowed head, and maximum allowed �ow are calculated based on the pump char-

acteristic curve and the allowed frequency range.

The calculation loops over the pump’s allowed �ow range for the frequency,

and calculates matching the head and the total pump train e�ciency ηTOT . If mul-

tiple frequencies result in overlapping working points in the Qstep × Hstep resolu-

tion, the frequency that produces the highest total e�ciency is chosen for that

particular working point.
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The results of the working regime calculation are stored in two pump speci�c

lookup arrays shown in Equation (3.10). The �rst, F, contains the optimal fre-

quency for all working points and the other, H, contains the total pump train

e�ciencies at those points. Arrays elements that present invalid working points

are set to 0.

F =

















fQ1, H1
fQ2, H1

· · · fQm , H1

fQ1, H2
fQ2, H2

· · · fQm , H2
...

...
. . .

...

fQ1, Hn fQ2, Hn · · · fQm , Hn

















(3.10a)

H =

















ηQ1, H1
ηQ2, H1

· · · ηQm , H1

ηQ1, H2
ηQ2, H2

· · · ηQm , H2
...

...
. . .

...

ηQ1, Hn ηQ2, Hn · · · ηQm , Hn

















. (3.10b)

Next, all the possible non-identical pump combinations are considered. For

each combination the algorithm iterates over the allowed head range [Hmin, Hmax]

using the user-de�ned head step size Hstep. Each head step Hi is added to a FIFO

queue, where one of the processor threads picks it up for calculation.

A processor thread calculates all possible combinations of �ows for the running

pumps in the given pump combination for the head Hi. The �ow step used in this

step is
Qstep

n , where n is the number of pumps running in the combination. Each

pump’s total e�ciency is looked up from that pump’s working regime array H.

Every time there are multiple possible combinations that produce the same total

�ow, the one with best over all e�ciency is chosen and stored in the results arrays.

The end result is two arrays that cover the full working regime of the whole

pump battery. Each element represents an area de�ned by Qstep and Hstep. Results
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array C contains the numerical presentation of the optimal combination binary

string and R contains the optimal total e�ciency of the pump battery:

C =

















cQ1, H1
cQ2, H1

· · · cQm , H1

cQ1, H2
cQ2, H2

· · · cQm , H2
...

...
. . .

...

cQ1, Hn cQ2, Hn · · · cQm , Hn

















(3.11a)

R =

















ηQ1, H1
ηQ2, H1

· · · ηQm , H1

ηQ1, H2
ηQ2, H2

· · · ηQm , H2
...

...
. . .

...

ηQ1, Hn ηQ2, Hn · · · ηQm , Hn

















. (3.11b)

Two naïve algorithms were implemented too, to facilitate easier comparison

of various control strategies. Naïve 1 algorithm drives all running pumps with

equal frequency, and naïve 2 algorithm adjusts only the last pump’s frequency

while the other pumps run at their respective maximum frequencies. Naïve 1 is

the most common way to control parallel pumping in the �eld.

EPANETwasmodi�ed to use the total e�ciency calculated by the abovemethod

in all energy calculations instead of the default incorrect and inaccurate method.

The method is used for pre-computing the globally best combinations of run-

ning pumps and their frequencies for all sets of parallel pumps in the system to be

modeled. The actual online-optimization then only needs to �nd the best settings

on the station level, as the stations know what the most e�cient way is to drive

the pump battery at the station in order to produce the required �ow or pressure.

3.4 EPANET enhancements

This section describes the enhancements developed for EPANET as part of this

research. As shown in the literature review (see Chapters 2.3 and 2.4), EPANET

lacks a proper component for modeling variable-speed controlled pumps and at

reduced rotational speeds the pump energy consumption is calculated incorrectly.

Together, the pump battery component and control system modeling framework

allow accuratemodeling of rawwater extraction, conveyance and treatment, while

reducing the number of decision variables.

Hydraulic simulation is also typically the bottleneck in the meta-heuristic opti-

mization (see Chapters 2.5 and 2.8 in the literature view); thus EPANETwas made

thread-safe and various other computational speed enhancing optimizationswere

applied to enable the use of full-scale model in the optimization.
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3.4.1 Pump battery component

EPANET has a pump component that can be used for modeling pumps - both

single pumps and pumpsworking in parallel or series. EPANET providesmeans to

control individual pump’s status and the relative rotational speed ω but there are

no means to directly regulate the �ow or pressure. The related literature review

is presented in Chapter 2.5.

In order to control the pumps based on �ow or pressure, it is required to imple-

ment PID controllers externally using the EPANET toolkit. PID-control, however,

requires that the hydraulic time step is a fraction of second rather than the typi-

cal time step of several minutes or an hour. Tuning the controller parameters can

also be a time-consuming task.

Use of a short time step increases the computational time and makes the simu-

lation more mathematically unstable because more numerical inaccuracies accu-

mulate over the simulation as the number of steps increases.

Author’s paper [256] introduces a new pump battery component into the EPA-

NET hydraulic solver. The component enables one to model a pump battery con-

sisting of one or more possible non-identical pumps working in parallel. The bat-

tery can be either �ow, pressure or head di�erence controlled, and the control

mode, setting and limit can be dynamically controlled using both application pro-

gramming interface (API) and EPANET control rules.

To allow e�cient and advanced pump battery analysis and optimization, the

pump battery component in EPANET is mathematically very simple. The com-

ponent only calculates the head and �ow required to meet the given setting and

limit in the active controlling mode.

The component also accepts a limit to the non-controlled parameter, for exam-

ple if the pump battery is �ow controlled, maximum allowed downstream pres-

sure can be limited to a user-supplied value, typically 80 or 100 meters of pres-

sure head. Alternatively, in constant pressure mode of operation the maximum

allowed �ow can be limited. In practice, especially when operating in constant

�ow controlled manner, the maximum allowed pressure is limited in order to

avoid pipe breakage when the �ow falls below the setting.

The component uses an externally de�ned callback function to check that the

pump is working in an allowed regime, and the program running EPANET sim-

ulation or utilizing the hydraulic results calculates the internal pump con�gura-

tion, each pump’s frequency and energy consumption, based on the simulated

head and �ow. Thus, the more complex and time-consuming tasks are delegated

to external code. The optimizing implementation of the back-end is presented in

Chapter 3.3 and in the author’s papers [253] and [254].
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The callback is registered within EPANET using new API ENsetbattery-

callback(int (*battery)(int, int, double, double)).

The callback function is called every iteration from linkstatus() function

in hydraul.c module for each pump battery in the model. The arguments

are pump battery link index, current status, current �ow, and current head, re-

spectively. The callback must return the new status for the battery in question.

Typical return values include OPEN, XFLOW and XPRESSURE for a normally

functioning pump, invalid �ow and invalid head, respectively.

The pump battery component is described in EPANET *.inp �le by identi-

�er, and start and end nodes. Optionally, the initial control mode (constant pres-

sure/�ow), initial setting (�ow or pressure), and pressure/�ow limit can be speci-

�ed. An example is shown in Listing 1.

Listing 1. Example of de�ning pump batteries in EPANET inp �le. First battery has the initial

control mode set to constant �ow at 10 l
s
with the pressure limit of 80 m and the second has

no initial values and is initially closed.

[BATTERIES]

Battery1 Reservoir1 Junction1 TYPE FLOW SETTING 10 LIMIT 80

Battery2 Reservoir1 Junction2

The changes required in the EPANET source are minimal and localized. Be-

sides introducing a new component type, the new link values and the code to

read battery speci�cations from the *.inp �le, a few new functions are added

into the hydraul.c module: batterycoeffs(), which is called by new-

coeffs(), andbatterystatus(int index, char status, dou-

ble h1, double h2), which is called by linkstatus(). The matrix

coe�cients in the global gradient algorithm[260] are calculated by battery-

coeffs() and batterystatus(...) only changes the battery status

based on the hydraulic results, and calls the possible external callback function

to check that the battery is working within allowed regime.

When the pump battery is in the �ow control mode or the �ow limit is exceeded

in constant pressure or pressure di�erence mode, the pump battery works similar

to the �ow control valve in EPANET, but the head loss over the link is allowed to

be negative. The EPANET system matrix A coe�cients [260, 226, 261] are

pij =
1

108
(3.12a)

Aij = Aij − pij (3.12b)

Ajj = Ajj + pij (3.12c)

Aii = Aii + pij , (3.12d)

86



3.4 epanet enhancements

where i is the index of the start node, j is the index of the end node, p is the inverse

of derivative of the head loss over link, and Qset is the �ow setting.

Correction terms in the EPANET solution system are set to

Fi = Fi −Qset (3.13a)

Fj = Fj + Qset (3.13b)

yij = Qij −Qset . (3.13c)

When the pump battery is in the pressure or pressure di�erence control mode

or the pressure limit is exceeded in the constant �ow mode, the pump battery

works simlar to the pressure reducing valve in EPANET, but the head loss over

the link is allowed to be negative. The EPANET system matrix coe�cients are

pij = 0 (3.14a)

Fj = Fj + 108 · Hset (3.14b)

Ajj = Ajj + 108 , (3.14c)

where Hset is the head setting.

The EPANET API was extended to allow changing the mode and limit value,

and to allow setting the callback function, which can check that the pump is

working in the allowed regime and can limit the generated head and/or �ow if

necessary.

The added link values are named EN_MODE, accepting settings CONST_-

FLOW, CONST_PRESSURE and CONST_DIFF, and EN_LIMIT, accepting

�ow limit in model units when the battery is operated at constant pressure or

constant pressure di�erence mode, and the pressure limit in model units when

operated in constant �ow mode. The values can be queried and set using the

standard ENgetlinkvalue and ENsetlinkvalue functions.

The new EN_MODE setting was also implemented for valves, so that the con-

trol valve type can be dynamically changed between �ow control valve (FCV) and

pressure reducing valve (PRV).

The output from EPANET for a given pump battery is the time dependent work-

ing points (Qt, Ht), setting and mode of operation. Thus, the higher level simula-

tion packagemust implement somemeans to show and analyze each pump’s prop-

erties, such as frequency, e�ciency and power consumption at di�erent working

points.

In this research, the battery’s internal state is checked from a lookup table

generated by the parallel pump optimizer (see Chapter 3.3). The chosen method

allows modeling the pump battery consisting of non-identical pumps with di�er-

ent allowed frequency ranges and di�erent parallel pump control strategies: equal
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frequencies for all running pumps (naïve 1), only the last pump’s frequency is con-

trolled (naïve 2) or a globally optimal control strategy. In addition, the methodol-

ogy handles the frequency scaling problem [244] and canmodel the pump’smotor

and variable-speed drive e�ciencies, and thus give very accurate approximation

of the real energy usage.

An example of a simple model and its results is shown in Figure 13. The pump

battery’s constant pressure setting changes to a higher setting for 8 am to 9 pm

time period using EPANET control rules. The left-hand side of the �gure shows

the model and the water demand at the far end node, and the right-hand side

shows the simulated head at the pump battery discharge node and the pump’s

relative speed.
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Figure 13. A small sample model of a pump battery working with di�erent pressure
settings and varying �ow. The changes in the pump outlet head and relative pump speed are
shown in the �gure.

Every pump battery and �ow or pressure controlled pump in the water supply

system to be optimized is modeled using the pump battery component with the

actual pump characteristic and e�ciency curves, and with the correct motor size

and e�ciencies, and the battery is to be driven by the solutions proposed by the

system optimization algorithm. Therefore, the globally optimal control for the

battery’s inner operations can be utilized.

The energy calculations used for EPANET’s ordinary pumpswere also changed

to use the same back-end as the pump battery so that correct e�ciency calcula-

tion, frequency scaling, and motor and VSD e�ciencies can be taken into account.

3.4.2 Modeling of the water supply control system

EPANET provides only rudimentary tools for modeling the control system behav-

ior. The tools o�ered are “controls” and “rules” that can change valve and pump

setting, and open and close pipes based on time or some hydraulic variables. [226]

Both control mechanisms are limited to changing the settings to a prede�ned con-

stant values only. Thus, for example, using a PID controller requires implement-
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ing the control externally and interfacing EPANET from outside the simulation.

Often, these control system models are built and executed fromMatlab (e.g. [290]

and [266]).

Author’s paper [256] presents a control system modeling framework, origi-

nally developed in the Master’s thesis [252]. The framework embeds a Python

interpreter into EPANET. In order to allow for modeling complex control system

algorithms, a Python 2.7.x programming language based framework was built.

Python is widely used [3, 2] modern multi-paradigm general purpose program-

ming language. It supports both object oriented and functional programming, and

it has very extensive built-in library and extensive set of third-party libraries.

Python has arguably a low learning curve, and the programs and scripts written

in it tend to be terse compared to languages like C or C++. [154]

Python is an interpreted language, which means that no tools other than text

editor are needed for developing Python programs and libraries. The interpreter

is easily embeddable in C programs [174], making it suitable for use as a script-

ing language for other programs. Implementations of Python exist for other lan-

guages too: Jython for Java [135] and IronPython for Microsoft’s .NET-platform

[94], which make it easy to embed and extend Python using those languages too

and use either Java Virtual Machine (JVM) based or Common Language Runtime

(CLR) based libraries from Python code.

The interpreted nature, feature set, easy embeddability, ease-of-use, strong set

of programming libraries and popularity make Python a good choice for the con-

trol systemmodel programming language. The method presented here makes the

control system model code an integral part of the EPANET simulation process.

In ENopen function, the Python framework is initialized, and a Python mod-

ule is searched, identi�ed by the same �lename as the EPANET model but with

*.py extension. If the module is found, it is loaded using the Python interpreter

and function pointers toepanet_init,epanet_callback andepanet_-

close functions are retrieved. During the Python module load, the module can

import and use other Python modules and libraries, such as xlrd [159] for reading

the control system parameters from MS Excel spreadsheet �les.

After the hydraulic simulation is initialized in ENopenH function, the loaded

Python module’s epanet_init function is called. The function can then in-

state the EPANET link and node objects that are required for its functioning. Typ-

ically, this phase �nds the indices of the controlled pump batteries and valves,

and components representing the measurements needed in the operation in the

EPANET simulator. The init function also sets initial settings for all controlled

components.

After each simulation time step, in ENstep function, the Python module’s

epanet_callback function is called. The function can query the system
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state and alter settings for di�erent components. This callback is where the con-

trol systemmodel done in Python language is given full control over the simulated

system and all the control algorithm calculations take place.

The framework provides mapping of the standard C language programming

interface available in EPANET in a higher level object oriented Python API. The

EPANET errors are mapped into Python exceptions and the node and link prop-

erties are accessed through an object oriented wrapper, part of which is shown

in Figure 14. Properties are either read-only or read-write, depending on whether

the parameter can be changed or not. A lower level 1:1 Python mapping to the C

API is also available, but its usage is not recommended.

epanet

Node

volume : Float

elevation : Float

head : Float

pressure : Float

demand : Float

type : Integer

index : Integer

name : String

<<create>> Node(index : Integer)

<<create>> Node(name : String)

Link

flow : Float

velocity : Float

unitheadloss : Float

status : Integer

setting : Integer

mode : Integer

type : Integer

index : Integer

name : String

<<create>> Link(index : Integer)

<<create>> Link(name : String)

Figure 14. Part of the Python language object oriented wrappers around the low level
EPANET API

Using the API, network state can be queried, controlled and altered during the

simulation. It is possible, for example, to query the �ow, head and pressure, and

tank level and volume. The API allows open and close pipes, change valve and

pump settings, and control pump batteries. Demands and emitter coe�cients can

be changed too. But in order to remain strictly a control systemmodel, only those

components that can be controlled in real world should be controlled.

Finally, when the hydraulic simulation is completed, the ENcloseH function

calls the epanet_close function, which can, for example, store internal con-

trol system state results to a �le for later analysis. After the call, the Python in-

terpreter is closed.

The simulation and calling the control systemmodel is wholly controlled by the

EPANET simulator, and thus the use of the control system model is transparent

to any program using the simulator. While the control system model can query
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and set hydraulic model parameters during the simulation, it cannot control the

simulation in any other manner.

The control system model code can be divided into multiple modules which

can call each other and EPANET at will, and all tools, libraries and programming

techniques available in Python can be used freely. Typically, it is reasonable, for

example, to create classes to present various system components or to read con-

trol system parameters. Porting code from any programmable logic controller

(PLC) or supervisory control and data acquisition (SCADA) system is straightfor-

ward, and designing common libraries for often used components is easy.

A very simple example of a control system model is shown in Listing 2 and

Figure 15. Pumping into the network is �ow controlled, and the �ow is linearly

interpolated between minimum and maximum �ow values based on the water

tower level, such that when the water tower is at the upper level, the �ow is

minimal and vice versa. While the example is simple, similar control is commonly

used, and cannot be implemented with the EPANET control rules. The example

demonstrates some potential of using a general purpose programming language

as a control system modeling tool.

Listing 2. An example of a control system model that interpolates pump battery �ow setting

based on a water tower level

import epanet

MIN_LEVEL = 2.0 # meters

MAX_LEVEL = 4.5

MIN_FLOW = 3.0 # l/s

MAX_FLOW = 13.0

def epanet_init(filename):

global watertower, battery

watertower = epanet.Node( ’WATERTOWER ’)

battery = epanet.Link( ’BATTERY1 ’)

battery.mode = epanet.Link.CONST_FLOW

epanet_callback(0)

def epanet_callback(time):

global watertower, battery

level = watertower.pressure

if level >= MAX_LEVEL:

battery.setting = MIN_FLOW

elif level <= MIN_LEVEL:

battery.setting = MAX_FLOW

else:

dL = MAX_LEVEL - MIN_LEVEL

dQ = MAX_FLOW - MIN_FLOW

battery.setting = MAX_FLOW - dQ * (level - MIN_LEVEL) / dL
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Figure 15. An example of control system model, that interpolates pump battery �ow setting
based on a water tower level.

In this work the control system model is mainly used for controlling the mod-

eled raw water extraction and pumping inside the water treatment processes. Ev-

ery water source typically has a clear well, fromwhich the water is pumped using

pump batteries to di�erent parts of the network.

Typically the water treatment processes utilize constant level control: the clear

well level is kept constantly close to the maximum level. The raw water extrac-

tion and any pumpings in the treatment process are �ow controlled. The �ow

pumped into and through the treatment process is directly proportional to the

�ow pumped into the network from the clear well, and often greater than the

network pumping. For typical surface water sources, the extracted and processed

volume is about 10 % greater than the volume pumped into the network. This

extra volume must be accounted for, in order to calculate the correct energy use.

For this purpose, a simple Python module was developed. It accepts a descrip-

tion of the system as a list of water sources. Names of the network pump batteries,

internal pump batteries, valves, representing the hydraulic losses in the process,

and raw water batteries are speci�ed along with the raw water �ow coe�cient

used for calculating the �ow setting for each pump based on the network pump-

ing. The code automatically sets the �ow settings for all the components based

on the amount pumped into the network and the water water �ow coe�cient.

The method enables calculating the energy use of the rawwater extraction and

treatment without introducing new design variables.
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3.4.3 Parallel EPANET

EPANET uses global variables extensively, and as such only one thread can use

the simulator at once. This is especially problematic in the Java EE environment,

where multiple requests can be made in parallel. The limitation also means, that

EPANET cannot be readily used to evaluate multiple solutions in parallel.

To alleviate this, several rewrites of EPANET have been proposed, such as those

in López-Ibáñez et al. [149], Guidolin et al. [108] and Baseform’s Java implementa-

tion of EPANET [1] to properly encapsulate the state in a variable that is passed

along the calls to the simulator engine, thus making EPANET thread-safe. Be-

sides CWSNet, the thread-safe variants use General Public License (GPL), mak-

ing them unsuitable for proprietary development. It was determined that making

only small modi�cations to the stock EPANET and avoiding any changes to the

EPANET API would be an optimal solution.

The EPANET simulator was made thread-safe by marking all the 192 global

variableswith thread local storage (TLS) [59, 83] storage-classmodi�er__thread.

An example of required modi�cations around the matrix variables is shown in

Listing 3. The storage-class modi�er instructs the C compiler to produce automat-

ically code that makes the variable thread-local meaning that every thread has an

own copy of the variable. While the o�cial thread_local TLS storage-class

modi�er was standardized only in 2011 in C11 de�ned by the ISO/IEC9899:2011

standard [126], most of the C compilers have supported themodi�er,__thread,

as compiler speci�c extension for years.

The changes make the EPANET library completely thread-safe, though not re-

entrant. Only the EPANET API functions were exported and link time optimiza-

tions were utilized, which together allow the compiler to the emit most e�cient

code for thread-local variable access, such as initial executable or local excutable

access model [182, 4].

Listing 3. Some examples of the use of thread-local storage-class modi�er __thread

[...]

EXTERN __thread double *Aii, /* Diagonal coeffs. of A */

*Aij, /* Non-zero, non-diagonal coefs. */

*F; /* Right hand side coeffs. */

EXTERN __thread double *P, /* Inverse headloss derivatives */

*Y; /* Flow correction factors */

EXTERN __thread int *Order, /* Node-to-row of A */

*Row, /* Row-to-node of A */

*Ndx; /* Index of link’s coeff. in Aij */

[...]
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3.4.4 Optimized EPANET

The EPANET simulator was compiled with highest level of optimizations avail-

able in the new GCC 6.2 C-compiler. The compilation was done especially for

the target machine, latest generation of Intel Xeon processor, by specifying –

march=core-avx-i machine architecture and enabling all SMID and other

extended �oating point operations: MMX, 3DNOW, SSE1–4.2, SSSE and AVX.

Some examples of additional optimizations include the use of –fast-math and

–fno-math-errno �ags which reduce the time required for �oating point

operations. Linking time optimization –flto also provides measurable increase

in the execution speed. According to [150], using GCC’s -O3 optimization level

provides about 30 % speed-up.

Most of the internal EPANET functions were marked as static inline

to enable the compiler to further localize and optimize their usage.

Amemory leak that was small but signi�cant over time, was �xed in thesave-

output function inoutput.c that allocates an array of sizemax(Nnodes, Nlinks)

but fails to free it upon return.

Some time-consuming and redundant operations were reduced. For example,

thelinsolve function insmatrix.c allocates three arrays of sizeNjuncs

each time it is called (on each iteration). The size of the arrays is the same each

time. Instead of allocating and freeing the bu�ers multiple times, the code was

modi�ed to allocate the arrays only once in allocsparse and free them on

the simulator close in freesparse. The arrays are then only zeroed out on

each call to linsolve using memset function calls.

Other code optimizations and changes for EPANET that are described in Ap-

pendix D in López-Ibáñez [150] were included to further reduce the simulation

time and correct some aspects of the EPANET simulator. Problems in energy cal-

culations were also corrected and frequency scaling applied as per Marchi and

Simpson [165] and Simpson and Marchi [244].

As shown in Wu and Lee [301] and Table 2, 19.1 % of total running time of

an EPANET simulation is spent opening and closing the model and saving the

results. All these steps are completely unnecessary in the optimization process,

if all the model parameters can be changed dynamically, which is the case in the

methodology presented in this thesis research. Thus, calling the simulator appro-

priately, i.e. opening the model once and making multiple hydraulic simulations

on the samemodel by calling onlyENinitH,ENrunH andENnextH functions

repetitively, can save a considerable amount of simulation time.
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if the solution does not ensure su�cient supply. Because the reservoir has very

low head, the minimum pressure and minimum water tower capacity penalties

ensure that these solutions will be very expensive and will thus be avoided. Like-

wise, the high-head reservoir accepts any extra water, when the demand is less

than the volume pumped into the system, and there is no water tower in the zone

or the tower is full. High head ensures that pumping energy costs and maximum

pressure and water tower maximum level penalties will be high, and the solution

will be avoided.

3.6 SCADA data access

Chapter 2.5 reviews some literature related to online modeling and the WSS

SCADA data access. SCADA connection is needed in the optimization process for

two reasons. First, the initial state for the system before optimization has to be

fetched. The required information consists of the water levels in each water tower.

Second, the connection is used for calculating the water usage in all demand mea-

surement areas (DMA) and pressure zones. The historical demand information

is used for producing a demand forecast for each area in the network. Both the

initial levels and the forecast are set in the hydraulic model used for simulations

and evaluating the objective function.

A tool [255] was developed for accessing and analyzing the SCADA data. It

was developed in Java programming language version 8 [8], and it provides both

a graphical user interface (GUI) for end users and an API for developers.

The software can connect to a variety of di�erent data sources that can present

any numerical data in a time series, via di�erent APIs, including but not lim-

ited to SCADA system connections via direct SCADA API usage or Open Process

Control (OPC), to relational databases and SCADA systems using Java Database

Connectivity (JDBC) or Open Database Connectivity (ODBC), to tab and comma

separated �les and Excel-worksheets, and to various laboratory and customer in-

formation systems. The data sources can have di�erent time zones, and di�erent

and time-varying time resolution.

An Extensible Markup Language (XML) con�guration �le describes the data

sources and describes which values are available and how those values are calcu-

lated based on the data read from the sources. The calculations can include, for

example, calculating a water balance for a pressure zone based on the �ows in

and out of the zone and changes in the possible water tower volume.

Each position can freely perform calculations on data from all declared data

sources. The raw data can be either lagged or interpolated at this stage to cope

with varying time intervals in di�erent sources. The expression language sup-
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ports all typical arithmetic operations andmathematical functions, such asfloor,

ceil and sqrt. In addition, the expression system supports both boolean alge-

bra and time algebra.

An example of a con�guration �le fragment de�ning positions is shown in

Listing 4. In the example, the demand for Pressure Zone 1 is calculated as the

di�erence between incoming and outgoing �ows to the area de�ned by the in

and out attributes at station de�nitions. The water tower �ow is calculated as

the volume di�erence divided by the time between two measurements in hours.

Station 100 pumps water out of Pressure Zone 1 into another zone identi�ed by

the code “AREA02”. The station’s �ow is de�ned di�erently before and after 2014-

01-01.

The tool enables return data for multiple parameters at once for a user-re-

quested time-span using a user-de�ned time step. All the required raw data are

fetched at once from the di�erent data sources, and all requested parameters val-

ues, like water use for a certain area, are calculated in the user de�ned time steps.

Raw data are averaged, interpolated and extrapolated as needed in a deterministic

and user-de�ned manner. Typically, for example, hourly averages for data stored

in a minute long interval are retrieved.

The tool used in this work to retrieve initial water tower levels for optimization,

and historical water consumption data for pressure zones in order to facilitate

demand forecasting.

3.7 Optimization problem formulation

The aim of the optimization process is to minimize the costs of the water pro-

duction and supply by choosing appropriate time-dependent �ow and pressure

settings for all the stations, and ultimately the frequency settings for all pumps in

the network, while ensuring a su�cient quality of service (QoS), so that pressures

are satisfactory, water source yields are not exceeded and water tower levels and

capacities stay within the constraints.

Mathematically, the optimization can be described as the minimization of the

objective function f (x̄) subject to constraints gi(x̄):

min
x̄∈X

f (x̄)

subject to gi(x̄) ≤ 0, i = 1, . . . , m
, (3.15)

where x̄ is vector containing design variable values chosen from the set of possible

values X. Objective function includes the costs associated with the operations:
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Listing 4. An example of de�ning a few stations and an area with water balance calculation

<data-sources>

<data-source name= " hda ta " native-interval= " 3600000 " ... />

[...]

</data-source>

[...]

<area name= " P r e s s u r e Zone 1 " number= "AREA01 ">
<parameter name= "Demand " expression= " IN − OUT">

<value name= " IN " position= " Flow " all= " i n "/>
<value name= "OUT" position= " Flow " all= " out "/>

</parameter>

</area>

<watertower name= " Water Tower 1 " number= "TOWER01" out= "AREA01 ">
<parameter name= " L eve l " expression= " h d a t a : w t 0 1 _ l i "/>
<parameter name= " Volume " expression= " hda ta :wt01_V "/>
<parameter name= " Flow " expression= " ( hdata :wt01_V−

hdata:PREV_wt01_V ) / ( s t e p / 3 6 0 0 ) "/>
</watertower>

<source name= " Source 102 " number= " STATION102 " in= "AREA01 ">
<parameter name= " Flow " expression= " h d a t a : s o u r c e 1 0 2 _ f i "/>

</source>

<pumpingstation name= " S t a t i o n 100 " number= " STATION100 " in= "AREA02 "
out= "AREA01 ">

<parameter name= " Flow " expression= " i f ( now < da t e ( 2 0 1 4 , 1 , 1 ) ,
h d a t a : s t a t 1 0 0 _ f i −h d a t a : s t a t 1 0 0 _ f i 2 ,
h d a t a : s t a t 1 0 0 _ f i 2−h d a t a : s t a t 1 0 0 _ f i ) " />

</pumpingstation>
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water production and pump energy costs. Constraints de�ne, for example, the

acceptable pressure range.

Water distribution system optimization problems are NP-hard [13] because var-

ious aspects of the water supply system exhibit a non-linear behavior. Pressure

loss hL in a pipe is a non-linear function of the �ow Q

hL(Q) = f ·
L · v2

2 · g · d

∣

∣

∣

∣

v =
Q

A
, A =

πd2

4

= f ·
8 · L ·Q2

g · d3 · π2
, (3.16)

and the pumping power

P =
ρgQH

η
, (3.17)

where the pump head H depends on the pressure in the network, and thus on

the head losses and workings of the other pumps in the network, and the total

pumping e�ciency η is a non-simple function of the pump working point (Q, H).

While energy costs and constraints cannot be readily expressed analytically,

they can be evaluated iteratively using a hydraulic simulator, such as EPANET.

The use of the hydraulic model for objective function and constraint evaluation

makes it di�cult to calculate or estimate partial di�erentials of the design vari-

ables. The lack of derivative functions, and the non-linear nature of the energy

and constraint functions make the use of classical optimization methods, such as

linear or dynamic programming, complicated, without heavy linearization and

approximation.

In order to make the optimization problem simpler and tomake it behave better

when using meta-heuristic optimization methods, the constraints are included in

the objective function as penalty costs. Thus, the objective function becomes

f (x̄) = W(x̄) + E(x̄) + P(x̄) , (3.18)

where W(x̄) is the sum of water production costs, E(x̄) is the sum of pumping

energy costs and P(x̄) is the sum of penalty costs, or constraint violation costs.

The proposed formulation extends the existing research, for example [211], by

including raw water extraction, conveyance and treatment pumping and chemi-

cal costs in the objective function, and by accurately modeling the pump energy

usage. Some chemical costs have been included in earlier research, for example,

Broad et al. [50] included chlorination costs.

The following sub-sections describe the system, design variables and their in-

terpretation, and objective function evaluation in more detail. Objective function
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evaluation is done by the evaluator module using a modi�ed EPANET hydraulic

simulator. The evaluator is presented in Chapter 3.11.

3.7.1 Design variables and encoding

Traditional pump scheduling problems use one binary design variable per hour

for each pump, that is 24 binary variables per pump for the whole 24 h optimiza-

tion period [153]. The approach works well if pumps are on-o� controlled and

minimum allowed pumping time is one hour. This work, however, uses a di�er-

ent approach, inspired by the in-station scheduling presented in Hashemi et al.

[114], in order to optimize �ow or pressure controlled pumping stations with

logic control and variable-speed driven parallel pumping.

The number of design variables is reduced from 24 per pump or valve to �ve per

station. Every optimizable station has the following design variables: an integer

identifying the time pattern and four real valued settings for di�erent times of

the day: morning, day, evening and night settings. The optimization problem thus

becomes a mixed integer non-linear programming (MINLP) problem in terms of

the design variables.

Time pattern is identi�ed by an integer 0 . . . 529. The time pattern is a string of

24 characters from the set M, D, E and N, representing the morning, day, evening

and night settings, respectively. The active setting is chosen based on the pattern

character at the position of the active hour of the day (0 . . . 23).

All feasible time patterns were enumerated and stored in a database before-

hand. Morning values can be used from 05:00 to 12:00, day values from 07:00 to

21:00, evening values from 14:00 to 04:00 and night values from 20:00 to 10:00.

Each setting must be present in every pattern, and the minimum length for the

di�erent settings is 2 hours for morning, 5 hours for day, 2 hours for evening,

and 4 hours for night. The minimum lengths ensure the setting is not changed

too frequently. “NNNNNMMMDDDDDDDDEEEEENNN”, “NNNNNNNNMMD-

DDDDDDDDDDDEE” and “EEENNNNNMMDDDDDDDDDDEEEE” are a few

examples of the generated patterns.

If a station is �ow controlled, the settings are encoded as S = Qsetting−Qmin + 1,

where Qsetting is the �ow setting and Qmin is the station’s minimum allowed �ow.

The upper bound for the encoded setting thus becomes Qmax − Qmin + 1. If the

encoded setting, 0 ≤ S < 1, the station is closed. Pressure controlled stations

work analogous to the �ow controlled stations, excepts that instead of �ow limits

Qmin and Qmax, pressure limits Pmin and Pmax are used.

The station level settings are interpreted into the sub-process and sub-oper-

ation speci�c settings using fully modeled stations (see Chapter 3.5) and con-

101





3.7 optimization problem formulation

2. there should be enoughwater in each tower to supply the zone for a de�ned

number of hours

3. the water towers should not be over-�lled

4. pressure at all points must be at least at the speci�c minimum level of a

pressure zone

5. pressure must not exceed the speci�c maximum level of a pressure zone at

any point.

These constraints ensure a level of resilience and reliability in the distribution

system on the one hand and su�cient quality of service on the other hand.

Minimum and maximum pressure limits are very commonly used in the liter-

ature (e.g. [39]). Tank end levels are often (e.g. [309, 236, 149, 246]) constrained

to be equal to the initial levels. The constraint, however, does not guarantee any

reliability, and it assumes that the initial levels in tanks are optimal, and thus re-

stricts the possible solutions. Often, the initial level can be too high or low for

what is needed for reliable operations and in terms of optimality, especially in

a real-time setting, where the levels are a�ected by demand variability and pipe

bursts, and thus this constraint is not included in the method presented here.

Water tower capacity at the instant t1 is de�ned as the number of hours that

the total volume in the zone’s water towers Vt1
su�ces for the zone’s forecasted

water demand Ft. The capacity is C = t2 − t1, where t2 is solved from

VF =
∫ t2

t1

Ft dt , (3.19)

when for the �rst time

VF ≥ Vt1
. (3.20)

Together, the minimum volume and capacity provide an intuitive way to de�ne

the desired minimum level of reliability.

Additionally, the system must ensure that the daily yield of a water source is

not exceeded. While the optimization algorithm ensures that hourly settings are

within prede�ned minimum and maximum, some water sources can have yields

that are smaller than 24 ·Qmax and thus, the yield can be exceeded, and a constraint

must be de�ned.

The penalty parameters, violation inequations, limit and penalty coe�cient

units, penalty coe�cient notations, andwhich element de�nes the limit and penalty

coe�cient are shown in Table 7. The model speci�c parameters for penalty calcu-

lations are de�ned along with the other model parameters in the system model.
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Table 7. Penalty parameter de�nitions

Parameter Violation Limit Unit Pen. Notation Penalty Unit De�ned in

Min. tower capacity ∑ C < Cmin h σC
AC

h h
Pressure Zone

Min. tower volume ∑ V < Vmin m3 σV
AC

m3 h
Pressure Zone

Max. tower level h > hmax m σh
AC

m h
Water Tower

Min. pressure p < pmin m σpmin
AC

m h
Pressure Zone

Max. pressure p > pmax m σpmax
AC

m h
Pressure Zone

Max. yield ∑ Q > Qyield
m3

d
σQyield

AC
m3 d

Source

Penalty cost is calculated by multiplying the magnitude of the violation with

the penalty coe�cient σ. In the following equations max(0,violation) notation is

used to make penalty zero, when the constraint is not violated. Thus, the penalty

function for the time step t becomes

P(x̄)t =
nzones

∑
i

P(x̄)i, t +
ntowers

∑
i

T(x̄)i, t +
nsource

∑
i

S(x̄)i, t , (3.21)

where pressure zone speci�c penalty for zone i

P(x̄)i, t = σpmin,i ·

njunctions,i

∑
j

max(0, pmin, i − p(t)j)

+ σpmax,i ·

njunctions,i

∑
j

max(0, p(t)j − pmax, i)

+ σC,i ·max

(

0, Cmin, i −

(ntowers,i

∑
j

C(t)j

))

+ σV,i ·max

(

0,

(

Vmin, i −

ntowers,i

∑
j

V(t)j

))

, (3.22)

tower level penalty for water tower i

T(x̄)i,t = σh ·max(0, hmin,i − h(t)i) , (3.23)

and �nally, the source yield penalty for source i

S(x̄)i,t = σQyield
·max

(

0,

(

24

∑
u=t−24

Q(u)i

)

−Qyield,i

)

. (3.24)
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The penalty function and the objective functions as awhole are evaluated using

the hydraulic simulator by the evaluator module.

3.8 Optimization algorithm

Dynamically dimensioned search (DSS) is a global optimization method �rst in-

troduced in Tolson and Shoemaker [264]. DSS is a single-solution heuristic algo-

rithm that works with a speci�ed maximum objective function evaluation limit.

Besides the maximum number of evaluations, the original algorithm has no other

stopping criteria.

As mentioned in the literature review, the performance and computational ef-

�ciency of the algorithm are attractive. Being a constant time algorithm, DDS is

a good candidate for near real-time optimization. DDS can also be used together

with preemption, which further drives down the computational time. The only

tunable parameter of the algorithm is r, the relative perturbation size. The default

and recommended value r = 0.2. [264]

First, the algorithm starts with global search and by iteration, the search be-

comes more local, by dynamically and probabilistically reducing the number of

dimensions searched in the neighborhood. [264]

Candidate solutions are created by perturbing the current solution values in

randomly selected dimensions. Perturbation magnitudes are random, and they

follow normal distribution with a mean of zero. DDS is a greedy algorithm: the

current solution is always the best found so far, and it is never updated with an

inferior solution. [264]

Pseudo-code for the algorithm is shown in Algorithm 3.1. The DDS inputs are:

r, maximum number of function evaluations m, vectors of lower x̄min and upper

bounds x̄max for all n decision variables x̄, and initial solution x̄0. First, the objective

function is evaluated at the initial solution and the result is stored as current best.

Then, the perturbed dimensions are chosen randomly, and they are perturbed

according to normal distribution. Finally, the objective function value is evaluated

for the new solution. If the new solution is better than the previous best, the new

solution replaces the previous.

While the original DDS uses continuous values for the variables, Tolson et al.

[265] have introduced a hybrid discrete version of the algorithm (HD-DDS). The

algorithm works almost identical to the continuous version, except the decision

variable, xj boundaries are de�ned to be (xmin
j − 0.5, xmax

j + 0.5) and rounding to

the nearest integer occurs in the perturbing phase. The modi�ed part of the algo-

rithm is shown inAlgorithm 3.2. As can be seen fromAlgorithm 3.2, the algorithm
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Algorithm 3.1 Dynamically dimensioned search algorithm [264]

fbest ← f (x̄0)

x̄best = x̄0

for i← 1, m do
Randomly select the decision variables that will be perturbed.

p← 1− ln i
ln m

N ← ∅

for d← 1, n do
X ∼ U([0, 1])

if X ≤ p then N ← N ∪ {d}

end for
if N = ∅ then ⊲ Ensure variable change

X ∼ U([1, n])

N = {X}

end if
Construct new solution by perturbing the current best

x̄ ← x̄best

for ∀j ∈ N do
xj ← xbest

j + r · (xmax
j − xmin

j ) · N([0, 1])

if xj < xmin
j then

xj ← xmin
j + (xmin

j − xj)

if xj > xmax
j then xj ← xmin

j

else if xj > xmax
j then

xj ← xmax
j − (xj − xmax

j )

if xj < xmin
j then xj ← xmax

j

end if
end for
Evaluate the objective function value for the new solution

f ← f (x̄)

if f ≤ fbest then
fbest = f

x̄best = x̄

end if
end for
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could be easily adapted to work with both discrete and continuous variables at

the same time.

Algorithm 3.2 Hybrid discrete dynamically dimensioned search algorithm[265]

[...]

Construct new solution by perturbing the current best

x̄ ← x̄best

for ∀j ∈ N do
xj ← xbest

j + r · (xmax
j − xmin

j ) · N([0, 1])

if xj < xmin
j − 0.5 then

xj ← 2xmin
j − xj − 1

if xj > xmax
j + 0.5 then xj ← xmin

j

else if xj > xmax
j + 0.5 then

xj ← 2xmax
j − xj + 1

if xj < xmin
j − 0.5 then xj ← xmax

j

end if
xj ← ⌊xj + 0.5⌋ ⊲ Round to nearest integer

if xj = xbest
j then xj ∼ U([xmin

j , xmax
j ]) ⊲ Ensure variable change

end for
[...]

The algorithm implemented in this thesis combines the HD-DDS and DDS

variants to allow solving mixed integer non-linear programming problems. Af-

ter initial testing, the algorithm was changed to temporarily accept results that

are worse than the current best in order to broaden the search neighborhood. The

resulting algorithm is called Modi�ed Hybrid Discrete Dynamically Dimensioned

Search (MHD-DDS).

MHD-DDS �rst chooses the perturbation algorithm between DDS and HD-

DDS based on the design variable type. Every �fth dimension starting with in-

dex 0 is the integer coding time pattern index, and all other dimensions are real

valued.

MHD-DDS allows for the solution to worsen temporarily. The implementation

keeps track of the current result x̄current the last result that was better than the pre-

vious result x̄last improvement and the best result so far x̄best. The algorithm also counts

the number of iterations when no improvement to the current result is made nequal

and the number of iterations when the result was worsenig since �rst accepting

a worse result nworse. If the current result has not improved during 50 iterations,

then solutions the cost of which, f < 1.15 · fbest and f < 1.05 · flast improvement, are

accepted as current.

If the current result does not improve for 50 more iterations, the best known so-

lution is restored as the current solution, and the counters are zeroed. Whenever
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the cost is lowered, the counters are zeroed, and thus the search can continue in

the direction as long as the solution cost is less than f < 1.15 · fbest and there is

still any progress.

The modi�ed part of the algorithm is shown in Algorithm 3.3.

3.9 Demand forecast

The typically used water demand forecasting methods in the literature include

time series analysis basedmethods, various variations of auto-regressive (AR) and

moving-average (MA)models and their generalization, auto-regressive integrated

moving average (ARIMA)models. More recently, arti�cial neural networks (ANN)

and other machine learning algorithms, such as support vector machines (SVM),

have gained popularity.

As some research has shown (e.g. [28] and [190]), moving-window and pattern-

based can perform similarly and even surpass more sophisticated machine learn-

ing based algorithms, while being simpler to implement and more general.

The short-term 48 h demand forecasting algorithm used in this work is a simple

moving time-window basedmethod. For each zone in the network, hourlymedian

and 10 % and 90 % percentiles for di�erent weekdays for the past 13 · 7 = 91 days

are calculated. The measured zonal demands are fetched using the data access

library described in Chapter 3.6.

Because national holidays and their eves a�ect water demand considerably, an

automatic, national holiday calendar was implemented. The current implementa-

tion only includes the Finnish holidays, but it is easy to add other nations’ calen-

dars.

Holiday calendar calculates the dates for Easter, Christmas, New Year, Inde-

pendence Day and so on, and the dates of the holidays’ eves. Apparent weekday

and a demand multiplier can be given for each holiday and its eve. The calen-

dar then returns the multiplier and apparent weekday for any given date. The

apparent weekday is the actual weekday for any non-holiday date. In this way,

the demand on holidays is not categorized incorrectly as working day usage, and

appropriate scaling can be used for forecast evaluation.

The forecast F0...47 is then constructed by utilizing the week day speci�c hourly

median values med Dt and the measured hourly usage data Dt:

Ft =

24

∑
i=t−24

Di

24

∑
i=t−24

med Di

·med Dt . (3.25)
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Algorithm 3.3 Modi�ed part of (HD-)DDS algorithm as used in MHD-DDS,

when temporarily worse results are allowed

[...]

Evaluate the objective function value for the new solution

f ← f (x̄)

if f ≤ fcurrent then
nworse ← 0

nequal ← 0

fcurrent ← f

x̄current ← x̄

flast improvement ← f

x̄last improvement ← x̄

if f ≤ fbest then
fbest = f

x̄best = x̄

end if
else if nworse > 50 then

Restore the best solution as current solution

nworse ← 0

nequal ← 0

fcurrent ← fbest

x̄current ← x̄best

flast improvement ← fbest

x̄last improvement ← x̄best

else if nequal > 50 and f < 1.05 · flast improvement and f < 1.15 · fbest then
Accept the solution as current solution, tough it is worse

nworse ← nworse + 1

fcurrent ← f

x̄current ← x̄

else if nworse > 0 then
nworse ← nworse + 1

else
nequal ← nequal + 1

end if
[...]
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The resulting hourly forecasted demand is restricted to be between the 10th and

90th percentiles, Dt, 10% and Dt, 90% so that Dt, 10% ≤ Ft ≤ Dt, 90%, in order to avoid

producing overly large or small forecasts because of, for example, measurement

errors, missing data or short-term pipe bursts.

3.10 Initial solution generation

Optimizations methods require some initial solution. Random solutions are typ-

ically used for population based optimization algorithms, such as genetic algo-

rithm and particle swarm optimizations.

Pasha and Lansey [196] propose the use of warm solutions to speed up the

pump scheduling optimization process. The strategies presented in the paper are

using linear programming, support vector machine and historical solutions as a

warm initial solution in order speed up the optimization and to provide more

optimal solutions.

The method presented here uses a historical solution as an initial solution. The

latest solution covering the start time of the optimization is chosen. If multiple

such solutions exists, the one with the lowest total cost is chosen as initial. If no

previous solution is available, then a deterministic initial solution is generated.

The setting pattern is determined on a pressure zone level. The setting pattern

is formed by analyzing zone’s demand forecast. Analysis starts from t = 00:00.

While the demand D is above the 24 hour average demand Davg and t < 04:00

the evening setting is used. When for the �rst time D < Davg night setting usage

begins. Night setting is used while D < Davg or t > 09:00. Morning setting is used

until D < 1.1 · Davg or for a maximum of three hours. Day setting is used after

morning setting, while D < 1.1 · Davg or until t ≥ 22:00, whichever occurs �rst.

The rest of the 24 character pattern string is �lled either evening setting or night

setting, depending on whether D > Davg or D ≤ Davg. The pattern string created

in this way is then fuzzily matched to the pregenerated patterns, and the closest

match is chosen. The same pattern is used for all the stations pumping into the

zone.

All settings, morning, day, evening and night, of every station are set to the

midpoint between minimum and maximum �ow or pressure allowed for the sta-

tion. Two-way station settings are set to zero.

3.11 Evaluator

Evaluator is responsible for calculating the value of the objective function for a

solution and ensuring that the constraints are met. Evaluator uses a simulator to
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perform the hydraulic simulations, results of which are used by the evaluator to

calculate the objective function value.

The framework allows using any hydraulic simulator with a required set of fea-

tures with a reasonable e�ort. In this research the evaluator was built on the mod-

i�ed and extended version of EPANET simulator [226], as described in the previ-

ous sections. EPANET is a public-domain hydraulic extended period simulator

for pressurized systems. EPANET is based on Todini’s formulation of hydraulic

equations known as the gradient method [260]. EPANET is the most widely used

and researched simulator for water distributions systems, extensively used in the

optimization problems for objective function and constraint evaluation.

The EPANET simulator is loaded and prepared only once per optimization run,

because loading the model into EPANET and closing the model is slow, and can

take up to 13 % [301] of the total simulation time.

A control system model interprets the design variables as settings for valves

and pumps batteries and drives the EPANET model dynamically, using ENset-

linkvalue calls to set pump battery (see Chapter 3.4.1) and valve settings.

This enables to bypass EPANET’s built-in controls and rules, and their limitations

[150, 167, 256].

Writing simulation results and a report into �les is disabled in order to reduce

the simulation time by about 6 % [301]. Instead, the evaluator accesses the node

results programmatically using ENgetnodevalue and link results using EN-

getlinkvalue as the simulation progresses.

Certain extensions to the vanilla EPANET were made in the course of this re-

search. The C programming language and the programming techniques used in

EPANET are somewhat outdated. The code is, however, well-structured and docu-

mented. Some issues related to EPANET programming are described in [270] and

[224]. Several projects have developed more modern versions of EPANET, such

as van Zyl et al. [271], Ste�elbauer and Fuchs-Hanusch [249]; however, this thesis

used the latest published o�cial EPANET version 2.00.12 from 2008 as a basis for

the extensions.

3.11.1 Real-time concerns

In order to speed up the optimization process, the hydraulic simulator was paral-

lelized (see Chapter 3.4.3), so that multiple simulations can be run in parallel us-

ing multiple computer threads. The parallelization was done similar to the recent

parallelization of EPASWMM [53] – using OpenMP library and more speci�cally

its thread local storage (TLS) functionality, which allows declaring certain global

variables as being thread speci�c and thus enabling calling EPANET from multi-
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ple threads. While the DDS algorithm has to proceed sequentially, parallelization

still provides bene�ts, as multiple optimization runs can be performed in parallel.

The simulator was also heavily optimized manually and using the latest op-

tions, such as link time optimization and single instruction multiple data (SIMD)

extensions provided by the compiler (see Chapter 3.4.4).

Wu and Lee [301] report that in EANET 19.1 % of the total simulation time is

spent opening and closing the model and saving the results (see Table 2 on page

45). The evaluator developed in this thesis only opens the model once per thread

when the optimization process starts. Afterwards, the same prehypinitialized sim-

ulator is used as only the pump settings vary between di�erent solutions.

Neither are the results nor the simulation report generated or saved into a �le

to save time both on EPANET’s and the evaluator’s side. Instead, the results are

dynamically read using EPANET API. This also avoids the quality simulation run

required by the traditional EPANET toolkit usage to generate the �nal results �le.

Preemption is used for avoiding unnecessary objective function evaluations.

Preempting means that full objective function evaluations are unwarranted if the

candidate is predictably poor or infeasible. Razavi et al. [214] propose a formal

method to preemptively stop the ongoing model evaluation, when it becomes

apparent that the current individual presents a low-quality solution and it is not

going to a�ect the optimization algorithm.

The method proposed in [214] can be used when the �tness function value is

monotonic during themodel evaluation. The objective function used in this thesis

is monotonic, and thus suitable for preemption.

The other constraint is that preempting the simulation cannot a�ect the opti-

mization algorithm behavior. Thus, GA and ACO, for example, cannot be used

as the �nal value for objective function because every individual must be known

for the algorithm to work, but PSO and DSS can be preempted as the �nal objec-

tive function values are not needed. The modi�ed DDS version developed in this

thesis, MHD-DDS, is suitable for preemption.

The evaluator module preempts the simulation when the cumulative cost f >

1.1 · fcurrent. The preemption is implemented by throwing a Java exception of type

PreemptionException, which is caught in the simulator loop. The simu-

lation is then interrupted, and the cumulative cost so far is returned to the opti-

mization algorithm.

The testing done in the case study shows that preemption avoids simulating

and evaluatingmore than 50 % of the time steps, on average, and therefore halving

the time required for objective function evaluations.

TheMHD-DDS optimization algorithm used in the framework only uses a �xed

number of objective function evaluations. This makes the algorithm well suitable

for real-time setting, because the approximate run-time for each optimization is
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known in advance and can be easily tuned according to the available processor

speed, model size and time available for the optimization.

3.12 Implementation details

The framework was developed in Java programming language [8], version 8, and

using Java EE 7 technologies [131, 9] for web and back-end development. The

framework provides both REST API and a graphical web user interface. The opti-

mization framework can also be readily interfaced from SCADA systems.

Java was chosen because it has a strong feature set, a wide array of program-

ming libraries and standards for web development and scienti�c purposes, and it

is widely accepted in the industry and is regarded as the most popular program-

ming language [3, 2].

The following section presents the implementation details of the key parts of

the framework.

3.12.1 System model

In order to remain general, the optimization framework allows con�guring and

storing one or more systems in a database. The system model describes the com-

ponents forming the system to be optimized and their relations, along with costs

and penalties. This section describes the high-level system model used by the

framework. The model is shown in Figure 19.

The system model has name and database identi�er used for managing the

system model. Locations of the base hydraulic model �le and con�guration �le

for SCADA access are also stored in the model object.

The basic object for optimization is the station. There are several classes of

stations: source, transfer and two-way station. The source produces water into

the system, the transfer station conveys water from one pressure zone to another,

and the two-way station convesy water between two pressure zones either way.

The complete list of stations available for optimization is stored in the model.

All station classes share common properties with each other, such as name,

EPANET model link name, minimum and maximum allowed �ow and pressure

settings, default control type (�ow or pressure controlled), and electricity price

function. The source stations has additional properties, for example, for produc-

tion costs, AC
m3 , and daily yield, m3

d
. The two-way station has additional properties

for minimum and maximum �ow and pressure to the other direction, and for

name of the EPANET link that controls the �ow to the other direction.
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Component

name : String

sahtiUUID : String

epanetID : String

Station

in : PressureZone

energyCost : Double

minimumFlow : Double

maximumFlow : Double

minimumPressure : Double

maximumPressure : Double

defaultControlType : ControlType

WaterTower

zone : PressureZone

minLevel : Double

minLevelPenalty : Double

maxLevel : Double

maxLevelPenalty : Double

PressureZone

name : String

sahtiUUID : String

epanetID : String

minimumPressure : Douvle

maximumPressure : Double

minPressPenalty : Double

maxPressPenalty : Double

minCapacity : Double

minCapPenalty : Double

minVolume : Double

minVolPenalty : Double

Model

name : String

zones 1..*

Source

yield : Double

infeasibleYield : Double

yieldPenalty : Double

productionCost : Double

Transfer

out : PressureZone

TwoWay

epanetID2 : String

maximumFlow2 : Double

minimumFlow2 : Double

minimumPressure2 : Double

maximumPressure2 : Double

components 1..*

in 1..*

Control

startingFrom : Date

controlType : ControlType

setting : Double

controls

out 0..*

waterTowers 0..*

Figure 19. Uni�ed modeling language (UML) class diagram of the optimization framework
system model

The transfer and two-way stations link pressure zones together via in and out

relationships. The source stations only specify the pressure zone receiving the

produced water.

Pressure zones have name, EPANET pattern name, and universally unique iden-

ti�cation (UUID), which identi�es the position in the SCADA access con�gura-

tion that contains the zone’s water demand. The other properties of the zone

include allowed minimum and maximum pressures along with the penalty costs

[AC/mh], minimumwater tower capacity expressed in hours and the related penalty

cost [AC/hh], and minimum and maximum water tower volume [%], and the re-

lated penalty costs [AC/mh].

Stations that are related to a zone are available via inStations and out-

Stations relations. A zone also has zero or more water towers. Water tower

components have UUID for SCADA access (initial water tower level) and EPANET

component name.

Besides the system components, the model also includes a possibility to con-

trol any station manually or change station’s control method (�ow or pressure) at

any point of time. Likewise, water towers can be marked to be disabled. This func-
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tionality enables the optimizer to optimize correctly, even when some stations or

water towers are unavailable or working at partial or �xed capacity.

The model, its components and all parameters can be changed in the web in-

terface or directly in the database.

3.12.2 Optimization process implementation

Figure 20. Sequence diagram of the optimization preparation process

When the optimization process is �rst initiated, either by a user, an external

program or a scheduled task, an Optimizator class instance is created and

its optimize method is called. First, the Optimizator performs the optimiza-
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tion preparation as depicted in the uni�ed modeling language (UML) sequence

diagram in Figure 20.

First, the EPANET model is loaded, connection is made to the SCADA for data

access, and both EPANET model and SCADA data are validated against the sys-

tem model. The hydraulic model is also validated for simulation.

After loading and validating themodels, themanual control overrides are fetched

from the database and updated into the model. UpdateModel method creates

the demand forecasts for all the pressure zones and updates the demands in the

hydraulic model. The method also sets the initial levels of the water towers to

match the measured levels read from SCADA.

When the updated model is ready, it is exported into EPANET inp �le, which is

loaded into themodi�ed EPANET simulator for objective function and constraints

evaluation.

Finally, an initial solution is generated. The system model, the exported EPA-

NET �le, and initial solution are passed on and used in the optimization process

itself.

Figure 21. Sequence diagram of the optimization process
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The optimization process is shown in the sequence diagram in Figure 21. Simu-

lator instance is created and an evaluator is created and attached to the simulator,

and �nally, the MHD-DDS implementation DynamicallyDimensioned-

Search instance is created, and its optimizemethod is called with the initial

solution as an argument.

The search algorithm evolves the solution passing solution candidates to the

simulator for evaluation. The simulator returns the objective function value, the

total cost, to the optimizer, which continues the process, until the number of itera-

tions is exhausted, or the process is interrupted by the user. The �nal best solution

and its cost information is returned to the caller and stored in the database.

3.12.3 Java interface for EPANET

The optimization framework presented here is written in the Java programming

language. It was thus necessary to be able to use EPANET from Java. Because

hydraulic simulation is the performance bottleneck in the meta-heuristic opti-

mization, it was decided against porting EPANET to Java or using existing Java

versions of EPANET. Instead, the optimized version (see Chapter 3.4.4) of the C

language version EPANET was used by adding a Java interface for it.

A JavaNative Interface [147] (JNI) modulewaswritten, that provides almost 1:1

mapping of the EPANET Toolkit [225] application programming interface (API).

Instead of returning error codes, the JNI function calls throw an exception of

type gov.epa.EpanetException, and instead of using pass by reference

variables to return values, the function calls directly return the result to the caller.

Thus, the API is simpler to use and more modern: there is no need for reference

variables and error code checking.

The JNI module forms a basis for the simulator module used by the objective

function value evaluator presented in the next section.

3.12.4 Evaluation of the objective function value

The evaluation of the objective function is split into two classes in the implemen-

tation of the framework. Simulator class is responsible for driving the EPANET

simulation process, calling the model speci�c control system model, controlling

the optimizable stations according to the design variables in the solution to be

evaluated, and �nally calling the Evaluator class to calculate the objective

function values.

The simulator is instantiated once per optimization process for each parallel

thread. During the initialization, the modi�ed EPANET simulator is prepared call-
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ing ENopen function with the previously exported EPANET inp �le, containing

the base model, possible manual control overrides, the latest demand forecast and

the initial tank levels as read from SCADA (see Chapters 3.9 and 3.12.2), and the

Python interpreter is initialized and control system model is loaded. Saving any

report or hydraulic results are explicitly disabled.

When a new solution is required to be evaluated, the search algorithm calls

simulator’s simulate method, with the current solution, x̄, as argument. The

simulator �rst calls back the evaluator’sinitmethod, which zeroes the accumu-

lated costs and penalties. The simulator then starts actual hydraulic simulation

by calling the ENopenH and ENinitH functions in EPANET.

Then, hydraulic simulation is processed time step by time step. First, the cur-

rent manual controls, if any, or the controls speci�ed by the design variables in

the current solution, x̄, are applied using EPANET’sENsetlinkvalue(set-

ting, EN_SETTING) function. Then the simulation is progressed by calling

ENrunH and ENnextH functions in EPANET.

When the hydraulic results and the next time step, t2, are known after the

ENnextH call, the evaluator’s evaluate method is called with the time step

length, t = t2 − t1 as argument.

Evaluator then calculates the production costs at sources W(x̄) by looping over

the sources, and inspecting the �ows going out of the source using EN-get-

linkvalue(index, EN_FLOW) function call, converting the �ow into

cubic metres and multiplying the result by the source’s production cost fprod., i:

W(x̄) =
nsources

∑
i

Qi · t · fprod., i . (3.26)

Energy costs E(x̄) are calculated by looping over all the pumps in the sys-

tem and calling parallel pump optimizer’s back-end power function Pi(Qi, Hi)

to calculate the power. The value of Q is determined by calling ENgetlink-

value(index, EN_FLOW) and H by callingENgetlinkvalue(index,

EN_UNITHEADLOSS). Station speci�c energy price fe, i is used for calculating

the price:

E(x̄) =
npumps

∑
i

Pi(Qi, Hi) · t · fe, i . (3.27)

Finally, the penalties P(x̄) are calculated. The water tower penalties and pres-

sure penalties are calculated by inspecting the water tower levels and junction

pressures using ENgetnodevalue(index, EN_PRESSURE) function

calls and then applying the calculation logic described earlier in Chapter 3.7.2.

The yield penalties are calculated in a similar manner.
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The various costs are summed together and accumulated over time

f (x̄)t =
t

∑
u=0

Wu(x̄) + Eu(x̄) + Pu(x̄) . (3.28)

If the resulting accumulated total cost ft > 1.1 · fcurrent, then the simulation process

is preempted by throwing an exception of type PreemptionException.

Otherwise, the simulation goes on until the end.

Finally, ENcloseH is called to clean things up for the current hydraulic simu-

lation run, and the objective function value f is returned to the caller – the search

algorithm. The EPANET simulator remains initialized and ready for the next sim-

ulation run.

3.12.5 User and application programming interfaces

Both the user and the application programming interfaces were constructed us-

ing the same Java EE version 7 technologies [75] as the rest of the optimization

framework.

The user interface was developed using Java Server Faces [54] (JSF) library

PrimeFaces version 5.3 [64]. The user interface is web based and it works using

any modern Internet browser on PCs and tablets.

The user interface allows creating, browsing andmodifying systemmodels and

their parameters. Optimization process can be initiated using the interface, and

previous optimization runs along their results can be examined. The web inter-

face allows users set up the online-optimization process parameters, such as the

demand forecast and optimization horizon, and whether and how often the opti-

mization is run automatically by a scheduled task.

The intended operational use-case is that a scheduled task runs the optimiza-

tion process every few hours for the next 24 hours. The results are stored in the

optimization frameworks own database, and the optimal controls — both �ow

and pressure settings on the station level and frequencies for every pump — are

sent to the SCADA system so that an optimal solution is readily available for the

operators’ use in their preferred system.

A REST API was developed using Java API for RESTful Web Services (JAX-RS)

version 2.0 [197]. The REST API provides the same functionality as the user inter-

face to enable external programs to call the framework. The API was extensively

used in this thesis to automatically analyze the optimizer performance.

119



optimization framework

3.13 Conclusions

A general whole cost optimization framework for water supply system opera-

tions was developed. The optimization framework �nds optimal time dependent

settings for all the stations and ultimately optimal frequencies for every single

pump in the system. The framework is suitable for near real-time optimization.

The presented framework implements an e�cent problem formulation and

choice of design variables minimizing the search-space size. Pump e�ciency fre-

quency scaling and motor and VSD e�ciencies are all modeled as the function

of pump rotational speed and used in the pre-optimization of the pump batteries

at all stations. A full-scale hydraulic model, including raw water extraction and

treatment and driven by a control system model, is used for objective function

evaluations in the optimization process. The optimization algorithm used by the

framework is MHD-DDS with simulation preemption.

The optimization framework provides a web based interface along with a REST

API for calling the framework programmatically. The framework was designed to

enable the results to be readily integrated into a SCADA system.

The research and development work has resulted in multiple EPANET exten-

sions that can be used outside the optimization framework regime. The thread-

safe version of EPANET makes it possible to e�ciently and easily utilize multiple

cores for hydraulic analysis, and pump battery component and parallel pump

optimization along with the control system model framework open for novel pos-

sibilities for water supply system modeling.
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towns in the network. The pressure zones are listed in Table 8, along with their

respective network lengths, average daily demands, non-revenue water (NRW),

inhabitants and water tower volumes. Six zones have their own water tower.

Water usage data are available through the SCADA system for ten of the pres-

sure zones. The four zones, Kurikka, Ollikantie, Linnakallio and Mustimäki, that

have no data available for the optimization of their own water usage, are all lo-

cated within the municipality of Pirkkala, and two of them are using negligible

amount of water. The whole Pirkkala is regarded as one pressure zone when the

water balance is calculated and updated in the model.

Table 8. Pressure zones in the Tampere water supply system

Zone Network Demand NRW NRW-% Inhabitants Water Tower

[km] [m3/d] [m3/d] % [m3]

Kauppi 332.3 26 760 3 328 12.4 114 356 12 000

Tesoma 150.2 7 357 1 067 14.5 36 798 5 500

Pyynikki 60.2 4 837 517 10.7 28 318 3 200

Hervanta 32.9 4 803 256 5.3 23 100 1 000

Atala 56.8 2 629 421 16.0 17 673

Pirkkala 79.2 3 404 551 16.2 15 779 1 200

Peltolammi 42.9 2 785 243 8.7 8 436 2 300

Kurikka 6.4 290 63 21.8 3 009

Hallila 6.8 429 33 7.6 2 922

Pispala 3.2 157 34 21.7 2 489

Ylä-Rusko 7.8 204 61 29.8 2 478

Ollikantie 6.0 298 45 15.0 2 471

Mustimäki 0.9 29 11 36.7 468

Linnakallio 5.8 39 39 100.0 260

Lempäälä 1 420

Kangasala 0

Nokia 0

Raw Water 17.8

Sum 809 55 440 6 667 12.0 258 557 25 200

The network has eight water sources, with a current maximum daily capacity

of 126 500 m3. When the renovation of the Kaupinoja plant was completed in 2017,

the daily capacity was raised to 178 500 m3. Table 9 lists the water sources, their

capacities allowed by the environmental permits, raw water sources, raw water

multpliers (i.e. the ratio between the extracted rawwater and the amount pumped

into the network), minimum and maximum hourly �ows, and production costs.
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Two of the sources, Rusko and Kaupinoja, use lake water as raw water. To-

gether, the surface water sources provide about 70 % of the water used in the

system. One of the sources, Saurio, serves nearby city of Ylöjärvi, and it is used

in Tampere only when extra capacity is required.

Six of the sources are groundwater sources. Their combined capacity is 28 500 m3.

All the ground water sources, except Messukylä, are located on the western side

of the network.

Table 9. Water sources in the Tampere water supply system

Station Capacity RawWater RawWater Min. Flow Max. Flow Prod.cost

[m3/d] Multiplier [m3/h] [m3/h] [€/m3]

Rusko 78 000 Lake 1.1035 500 3000 0.0753

Kauppi 20 000 Lake 1.1035 100 800 0.0700

Messukylä 7000 Ground water 1.0628 20 300 0.0645

Hyhky 3000 Ground water 1.0603 10 130 0.0534

Mustalampi 5000 Ground water 1.0311 10 210 0.0513

Pinsiö 8000 Ground water 1.4165 10 330 0.0185

Julkujärvi 3500 Ground water 1.7500 10 145 0.0133

Saurio 2000 Ground water 1.0000 10 80

Figure 24 shows the di�erent components of the production costs. The costs are

calculated by dividing yearly costs by the volume pumped into the network, and

thus, the values are yearly averages. Chemical costs include expenses of major

chemicals used in the treatment. Active carbon costs include approximate yearly

regeneration and replacement costs. Electricity component includes total elec-

tricity used at the source, except for the energy used for pumping the bulk water.

Where available, the pumping energy was calculated using power data in SCADA.

Otherwise, the simulated energy consumption was used [255].

In total, there are 79 pumps transferring water through the system, excluding

the pumps at currently (as of 2016) renovated Kaupinoja surface water plant. All

pumps are variable-speed drive controlled. The pumps are located in 25 di�erent

remote controllable stations. Table 10 lists all the stations (including sources) and

their pumps. The table indicates source and destination pressure zones for the

stations, and the pump types.

Most of the stations can only supply water one way. Two of the stations, Po-

hjanmaantie and Satakunnankatu, can deliver water both ways. Pohjanmaantie

can supply Pyynikki with water through a control valve and Tesoma through

pumps. Satakunnankatu uses pumps for serving Pyynikki and a control valve is

used when water is supplied to Kauppi. Together, the stations enable transfer of

water over the ridge through Pyynikki both ways.
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Figure 24. Production cost structure at the water sources in Tampere WSS

Table 10. List of all pumps transferring water in the Tampere water supply system and in-
cluded in the hydraulic model

Station From To Pump Type Pump Model

Aitolahti Kauppi Atala Pressure Booster Z-H12N-1

Pressure Booster NK50-160/162

Hallila Itä Kauppi Hallila Pressure Booster APP-32-65

Pressure Booster APP-32-65

Hallila Länsi Kauppi Hallila Pressure Booster PF-27/315

Pressure Booster PF-24/200

Holvasti Kauppi Atala Pressure Booster MEN-80-65-160

Pressure Booster MEN-80-65-160

Hyhky Pyynikki Network KSB UPA250-41/3C

Network KSB UPA250-41/3C

Raw Water KSB UPA150S-65/3

Raw Water KSB UPA150S-65/3

Raw Water TVS8_2-1_VV_L6W552D

Julkujärvi Tesoma Well to Network PN83-3

Well to Network PN83-3

Well to Network PN83-3

Karhumäentie Kauppi Pyynikki Pressure Booster LP100-125/137

Pressure Booster LP100-125/137

Kauhakorpi-Hervanta Kauppi Hervanta Pressure Booster MEN-100-80-200L

Pressure Booster MEN-100-80-200L

Continued on next page
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Table 10 – continued from previous page

Station From To Pump Type Pump Model

Pressure Booster MEN-125-100-200L

Kauhakorpi-Vuores Kauppi Peltolammi Pressure Booster MEN-100-80-160

Pressure Booster MEN-125-100-200L

Keskuojanpolku Kauppi Pirkkala Pressure Booster LP100-125/137

Pressure Booster LP100-125/137

Killo Pirkkala Linnavuori Pressure Booster CR32-4

Pressure Booster CR32-4

Koivistonkylä Kauppi Peltolammi Pressure Booster NK65-160/173

Pressure Booster NK65-160/173

Kurikka Pirkkala Kurikka Pressure Booster CR16-40

Pressure Booster CR20-4

Lukonmäki Kauppi Hervanta Pressure Booster NK80-200/222

Pressure Booster PPL12

Messukylä Kauppi Network QN83-7

Network QN83-7a

Raw Water PN104-3

Raw Water SP160-2A

Raw Water SP160-2A

Metsäkylä Tesoma Tesoma From Tank to Network APP-32-125

From Tank to Network APP-32-125

From Tank to Network APP-44-150

Mustalampi Tesoma Network (Epilä) ELL10-2

Network (Epilä) ELL10-2

Network (Epilä) ELL10-2

Network (Tesoma) ELL10-3

Network (Tesoma) ELL10-3

Network (Tesoma) ELL10-3

Raw Water PN82-2

Raw Water QN65-4

Raw Water PN84-2A

Raw Water PN84-2A

Mustimäki Pirkkala Mustimäki Pressure Booster CR4-80

Pressure Booster CR4-80

Ollikantie Pirkkala Ollikantie Pressure Booster CR30-30

Pressure Booster CR30-30

Continued on next page
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Table 10 – continued from previous page

Station From To Pump Type Pump Model

Pinsiö Tesoma Well to Network Q-82-3

Well to Network Q-82-4

Well to Network Q-82-3

Pohjanmaantie Tesoma Pyynikki Pressure Booster Z-K15R-380

Pressure Booster Z-K15R-380

Rusko Kauppi Network (Kauppi) Z-V35T-450

Network (Kauppi) Z-V35T-450

Network (Ylä-Rusko) APP-33-100

Network (Ylä-Rusko) APP-33-100

Lift inside the Process AFP-2006

Lift inside the Process AFP-2006

Lift inside the Process AFP-2006

Lift inside the Process XP201G CB2

Lift inside the Process XP201G CB3

Lift inside the Process XP201G CB4

Raw Water 2PLP-30

Raw Water 2PLP-30

Raw Water 2PLP-30

Raw Water 2PLP-30

Satakunnankatu Kauppi Pyynikki Pressure Booster Z-K15R-380

Pressure Booster Z-K15R-350

Ylä-Pispala Pyynikki Pispala Pressure Booster KCF-5-140

Pressure Booster KFF-8-145

Currently, the operators operate the water supply system manually by chang-

ing the �ow and pressure settings at di�erent stations. There are only a few es-

tablished rules on how the system should be operated, and thus the behavior and

costs depend on the operator making the changes. The basic principle, however,

is to try to avoid transferring water over the ridge, and keeping the �ow settings

as constant as possible, and thus utilizing the water tower volume to level the

changes in the water demand.

The full-scale network model was built using the modi�ed EPANET hydraulic

modeling software, and the model contains 5443 nodes and 6457 links. The length

of the modeled network is 809 km with an average inner pipe diameter of 185 mm.

There are 21 368 water users in the model. The ground elevations vary from 78 m

to 170 m above the sea level. The network model is shown in Figure 25.
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Figure 25. Network model used in the optimization process

Themodel includes all the pipes in the network, rawwater extraction and trans-

fer, along the hydraulic behavior of the water treatment processes at all sources,

and every pump in the system. All pumps are modeled using the pump battery

component (see Chapter 3.4.1), and the internal operation of the pump batteries

is pre-optimized using the parallel pumping optimization tool (see Chapter 3.3).

The water treatment processes and raw water extraction is controlled by a

control system model (see Chapter 3.4.2). The �ow pumped into the network Q

is multiplied by the source speci�c raw water coe�cient (see Table 9), resulting

in the raw water �ow Qraw ≥ Q. The control system model controls how Qraw

is pumped through the process and raw water extraction. In this way, the full

energy costs can be calculated.

The original model used a pressure-dependent leakage model utilizing EPA-

NET’s nodal emitters[257]. The global emitter coe�cient was 1.0. Each zone’s

calculated non-revenue water is assigned to nodes proportionally to the con-

nected pipe length, pipe diameter and average pressure by iteratively calibrating

the emitter coe�cients.

However, analyzing the leakage �ow from the zonal demands and calibration

of emitter coe�cients in a real-time setting was deemed a problem that could be

deferred for a later project. For the online operational optimization, it was decided

to replace the pressure-dependent emitters by �xed nodal demands calculated

based on the total zonal leakage and proportionally the connected pipe length,

pipe diameter and node’s average pressure. The leakage is scaled with the rest of

the zonal water usage when the demand forecast is applied to the model.

128



4.3 optimization problem formulation

4.3 Optimization problem formulation

The goal is to optimize the total production and energy costs associated with

the Tampere Water utility water supply system online. Chapter 3.7 describes the

general problem formulation in detail. The case speci�c details are presented in

this chapter.

The small pressure booster stations, for which no SCADA data are available,

were excluded from the set of stations to be optimized. The exclusion set includes

Mustimäki, Ollikantie, Kurikka, Killo, and Pispala. The �nal list pressure booster

stations included in the optimization, along with their minimum and maximum

�ows and pressure parameters used in the optimization are listed in Table 11.

It is worth noting that even though �ve pressure booster stationswere excluded

from the optimization set, their energy consumption is still included when calcu-

lating the objective function.

Table 11. Pressure booster station parameters

Flow Pressure Flow – direction 2

Station Min. Max. Min.. Max. Min. Max.

[m3

h
] [m3

h
] [m] [m] [m3

h
] [m3

h
]

Kauhakorpi-Hervanta 30 500 70 85

Lukonmäki 30 500 75 90

Hallila-Itä 5 126 44 80

Hallila-Länsi 1 72 42 80

Aitolahti 10 210 50 80

Holvasti 10 210 48 80

Koivistonkylä 20 280 65 90

Kauhakorpi-Vuores 50 350 45 75

Keskuojanpolku 10 150 58 70

Karhumäentie 10 200 52 65

Satakunnankatu 50 540 10 420

Pohjanmaantie 10 420 50 540

The optimization also includes all sources listed earlier in Table 9, except Saurio,

which is reserved strictly for emergencies. Mustalampi source includes two pump-

ing stations that pump into the same pressure zone but via di�erent valve sepa-

rated routes. The pumping stations,Mustalampi–TesomaMustalampi–Epilä, have

separate pumps and can be controlled separately. The stations’ respective mini-

mum and maximum �ows are 10 m3

h
to 280 m3

h
and 10 m3

h
to 210 m3

h
.

129



case study – tampere water supply system

In total, there are eight sources and twelve pressure booster stations, two of

which can pump both ways. The �nal list of design variables includes the setting

pattern and morning, day, evening and night settings for the 20 stations. Hallila-

Itä, Hallila-Länsi, Aitolahti and Holvasti are pressure controlled by default, and

all other stations are �ow controlled. The control type can be changed, and the

settings can be manually overridden using the web interface.

Using the traditional formulation for pump scheduling, there would be 79 · 24 =

1896 design variables. The formulation used in this thesis, together with the con-

trol system model, reduces the number of design variables to 20 · 5 = 100, which

is 5.3 % of the classical amount, while still providing optimal frequency for every

single pump in the system. Even the pumping stations excluded from the system

level optimization are still optimized locally using the parallel pumping optimiza-

tion.

Pressure zone penalty parameters are listed in Table 12. The penalty costs

are the same for all zones: 10 AC
h h

for capacity penalty, 10 AC
m3 h

for volume penalty,

0.1 AC
m h

for minimum pressure penalty and 0.01 AC
m h

for maximum pressure penalty.

Table 12. Pressure zone penalty parameters

Pressure Zone Cmin Vmin pmin pmax

[h] [m3] [m] [m]

Kauppi 4 2 400 25 70

Tesoma 4 1 100 25 80

Pyynikki 4 640 25 65

Hervanta 1 200 25 65

Atala 25 75

Pirkkala 7 240 25 70

Peltolammi 7 460 25 70

Hallila 25 65

Ylä-Rusko 25 65

Lempäälä 25 65

Kangasala 25 65

Nokia 25 90

The maximum allowed water level for all water towers was �xed to 95 % of the

over�ow level, and the penalty of exceeding that level was set to 200 AC
% h

, to make

it costly to over�ll the towers.

Rusko and Messukylä have a reasonable yield, that is below the maximum al-

lowed. The yield limits are 50 000 and 5000, respectively, which is about 70 % of
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the full capacity in both cases. These limits were stored in the database, with the

penalty cost 0.2 AC
m3 .

The price for electricity was assumed to be 0.085 AC
kW h

. There are no di�erent

tari�s in use.

4.4 Baseline costs

In order to analyze the optimization framework performance, the historical costs

of the system were �rst analyzed. For this purpose, the two-week period between

2nd November and 15th November 2015 was chosen. During the period, water

demandwas close to the typical and there were nomajor incidents in the network.

The cost calculation was done day-by-day, by �rst preparing the model to

match the measured situation, and then simulating and evaluating the costs using

the same exact cost and penalty parameters, and the code as the optimizer uses.

The optimizer programming API provides a function to calculate historical costs

automatically.
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Figure 26. Historical costs and cost components for 2nd–15th November 2015

The resulting costs and cost components are shown graphically in Figure 26

and in tabular format in Table 13. The �gure groups tower capacity and volume

penalties into one, and volume penalty is not shown in the table, because the av-

erage value was below 1 AC
d
and the maximum was 2 AC

d
. During the period, total

costs are 5086–5519AC and real costs, i.e. the sum of production and energy costs

is 4113–4589AC. Average values are respectively 5519AC and 4428AC. The penalties

account for about one �fth of the total cost. Pressure penalty, including both min-

imum and maximum pressure penalties, is consistently close to the average 566AC.

Tower capacity penalty varies more, average being 356AC. Yield capacity penalty
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Table 13. Historical costs and cost components for 2nd–15th November 2015

Cost [AC] Penalties [AC]

Date Total Real Prod. Energy Pressure Capacity Yield

2015-11-02 5 086 4 113 3 044 1 069 507 356 110

2015-11-03 5 614 4 388 3 261 1 126 567 460 199

2015-11-04 5 736 4 546 3 388 1 158 581 409 200

2015-11-05 5 533 4 486 3 344 1 141 566 370 110

2015-11-06 5 745 4 553 3 360 1 192 580 413 200

2015-11-07 5 280 4 274 3 157 1 116 549 258 199

2015-11-08 5 340 4 285 3 184 1 101 559 296 199

2015-11-09 5 493 4 481 3 321 1 161 544 357 110

2015-11-10 5 727 4 564 3 410 1 154 556 407 200

2015-11-11 5 566 4 507 3 353 1 154 561 299 199

2015-11-12 5 542 4 523 3 371 1 152 566 343 110

2015-11-13 5 852 4 589 3 427 1 162 607 454 200

2015-11-14 5 372 4 290 3 187 1 103 594 287 199

2015-11-15 5 386 4 394 3 277 1 116 587 277 129

Min 5 086 4 113 3 044 1 069 507 258 110

Max 5 852 4 589 3 427 1 192 607 460 200

Average 5 519 4 428 3 292 1 136 566 356 169

averages at 169AC. Sum total cost for the two-week period is 77 272AC and sum real

cost is 61 991

4.5 Optimization results

The savings potential o�ered by the optimizer and its computational performance

was analyzed by comparing both cold start performance on 2nd November 2015

to the historical values, and long-term sustained performance by performing ten

di�erent optimization runs for the whole 2nd to 15th November 2015 period in

twelve hour intervals.

The calculationswere performed onDell Precision T7610workstationwith two

six-core Intel Xeon E5-2620 v2@ 2.10 GHz processorswith hyper threading, 32 GB

memory, and 500 GB solid state drive hard-disk. The operating system was 64-bit

Windows 7 Enterprise, the Java runtime was 64-bit and version number 1.8.0u66.

The optimizer softwarewas run inside GlassFish 4.1.1 application server. The �nal

132



4.5 optimization results

hardware will be similar, except the processors will be Intel Xeon E5-2620 v3 @

2.40 GHz, and thus more performant.

Penalty parameters were initially estimated by analyzing the hydraulic model.

Later they were tuned based on the historical performance and early optimization

results. Currently, the penalties are on average one �fth of the total cost.

4.5.1 Cold start performance

Initial optimizator parameter tuning was performed on 2nd November 2015. The

relative perturbation size r, penalty parameters, the number of iterations, aggres-

siveness of preemption, initial solution algorithm and upward trending were all

considered. Monday, 2nd November 2015 was optimized 100 times using each

di�erent setting combination, and the results were analyzed.
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Figure 27. Box plot of the total cost results for 100 optimization runs with di�erent
parameters for 2nd November 2015

The total cost results of key parameter combinations are shown graphically

as box plots in Figure 27 and real cost results in Figure 28. The same results are

shown in tabular format in Table 14. Combination names in the �gures are as

follows: the number after @ sign signi�es the number of iterations, 1800, 3600

or 4500, word UP before the @ sign signi�es that the runs were allowed to accet

temporarily worse results, and �nally the number before @ sign, 0.35 or 0.50,

signi�es the relative perturbation value, r. If the value is missing, the default r =

0.20 is used. The analyzed combinations respectively are: 1800 iterations, 1800,

3600 and 4500 iterations with worse results allowed, and 3600 iterations with

worse results allowed with r = 0.35 and r = 0.50.

The savings on the 1st quartile compared to the baseline performance on 2nd

November 2015 are shown in Table 15. The baseline total cost is 5086AC and the

baseline real cost is 4113AC. Comparison is done on the 1st quartile, because the
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Figure 28. Box plot of the real cost results for 100 optimization runs with di�erent
parameters for 2nd November 2015

Table 14. Total and real cost results of the optimization runs with di�erent parameters. The
results are shown as 1st quartile, median and 3rd quartile for the population of 100 optimiza-
tions for 2nd November 2015.

Total Cost Real Cost

Parameters 1st Quart. Median 3rd Quart. 1st Quart. Median 3rd Quart.

@1800 5 328 5 517 5 734 4 455 4 707 4 876

UP@1800 4 232 4 478 4 882 3 685 3 859 4 239

UP@3600 3 947 4 061 4 203 3 447 3 571 3 704

UP@4500 3 866 3 929 4 043 3 374 3 463 3 556

0.35;UP@3600 3 903 3 970 4 120 3 442 3 527 3 645

0.50;UP@3600 3 917 3 994 4 133 3 464 3 557 3 652

online optimization does ten parallel optimization runs, and the best of the ten

results is chosen as the optimum. Following binary distribution, there is a 94.4 %

chance, that at least one of the ten runs is within the �rst quartile.

The calculation performance numbers are shown in Table 16. CPU time re-

quired by the optimization is approximately linearly proportional to the number

of iterations when other parameters are kept the same. Preempting saves typi-

cally about 55 % of time step simulations, and the savings increase slightly as the

number of iterations rises. Rising of the r parameter makes preemption slightly

less e�cient and likewise increases the CPU time required. This is likely because

the solutions vary more, and the greater proportion of the solution candidates are

close to the current best solution.
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Table 15. Total cost and real cost savings using di�erent parameters. The 1st quartile results
are compared with the baseline e�ciency.

Savings [€] Savings [%]

Parameters Total Real Total Real

@1800 -242 -342 -4.7 % -8.3 %

UP@1800 854 428 16.8 % 10.4 %

UP@3600 1 139 666 22.4 % 16.2 %

UP@4500 1 220 739 24.0 % 18.0 %

0.35;UP@3600 1 183 671 23.3 % 16.3 %

0.50;UP@3600 1169 649 23.0 % 15.8 %

While it is not possible to optimize the system hourly, it is more than feasible to

perform the optimization once every three to six hours, which would still provide

su�ciently rapid response to the changes happening in the system.

Table 16. Average computational time required for an optimization run and the percentage
of time steps saved by preemption using di�erent parameters

Parameters Mean CPU Time [h] Preemptions

@1800 0.8 46 %

UP@1800 1.3 55 %

UP@3600 2.5 58 %

UP@4500 3.0 59 %

0.35;UP@3600 2.7 56 %

0.50;UP@3600 2.7 53 %

It was found out that the optimizer gives signi�cantly better results, when the

search is allowed to temporarily accept results worse than the current best. Ag-

gressive preemption using the cost estimation had a negative impact on the cost

savings. Using 3600 iterations yielded much better results than 1800 iterations,

while the computation time was still below 2.5 h. By increasing the number of it-

erations to 4500 further improves the results. Preemption saves about 50 % to 60 %

of hydraulic simulator time steps compared with the full 24 h evaluation, and thus

reduces the optimization time to half.

The best results and overall performance was given by enabling the upward

trend and disabling aggressive estimation. Using simple initial solution genera-

tion and 3600 iterations, gives 1st quartile result 3947AC for total and 3447AC for

real costs, and median result 4061AC for total and 3447AC for real costs. Compared

with the historical values, 5086AC and 4113AC, the 1st quartile savings are 1139AC
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or 22 % and 666AC or 16 %. The yearly savings potential in the real costs would be

more than 200 000AC. Using 4500 iterations makes the costs still 80AC lower and

bumps the savings percentages to 24 % and 18 %. Besides the lower real costs, the

quality of service is better than the manual solution. In particular the minimum

water tower capacities are higher in the optimized solutions.

Increasing the value of the relative perturbation parameter r from the default

and recommended value of 0.20 to 0.35, or further to 0.50, gives only slightly better

results.

It is worth noting that the optimizer returned always better results than the

baseline when temporary worsening of the results was allowed and the number

of iterations was at least 3600.

4.5.2 Sustained performance

Sustained performance of the optimization framework was analyzed by perform-

ing ten di�erent optimizations for 2nd to 15thNovember 2015 period using twelve-

hour intervals for the optimization runs. Based on the results of optimizing a sin-

gle day, the relative perturbation parameter r value was set to 0.35, the number

of iterations to 4500, and the results were allowed to temporarily worsen.

The results are shown in Table 17 and graphically in Figure 29. Total baseline

cost for the two-week period was 77 272AC (total cost) and 61 991AC (real cost).

Optimized costs are 57 410AC and 49 780AC, which are 25.70 % and 19.70 % lower

than the baseline. The CPU time required for the optimization was on average

2.0 h.

The optimizer gave consistently better results compared with the historical

baseline performance.

4.6 Online operative application

As of October 2017, the optimization framework is being installed to a server

in the Tampere Water utility’s o�ce network. Optimization process is started

automatically once every six hours by a scheduled task.

Ten optimization runs are performed parallel to each other at once. The Best

solution of the ten is chosen. Doing multiple optimizations and choosing the best

ensures high probability of obtaining the best possible result.

Because the chance for an optimization result being in the 1st quartile (among

the best 25 %) is 25 %, X ∼ B(10, 0.25), the probability for at least one of ten op-

timization runs being in 1st quartile is 94.4 % and being in 2nd quartile is 99.9 %.
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Table 17. Results of the sustained performance runs

Total Cost [€] Real Cost [€]

Start CPU [h] 1st Quart. Median 3rd Quart. 1st Quart. Median 3rd Quart.

2015-11-02 00:00 1.9 3 908 3 921 3 956 3 398 3 454 3 538

2015-11-02 12:00 2.1 3 931 4 043 4 183 3 302 3 444 3 600

2015-11-03 00:00 2.1 4 441 4 545 4 673 3 923 4 028 4 093

2015-11-03 12:00 2.1 4 088 4 153 4 201 3 551 3 576 3 655

2015-11-04 00:00 2.1 4 283 4 398 4 882 3 765 3 892 4 314

2015-11-04 12:00 2.2 4 056 4 191 4 372 3 530 3 651 3 807

2015-11-05 00:00 2.2 4 441 4 544 5 274 3 895 4 009 4 526

2015-11-05 12:00 2.1 3 903 4 091 4 140 3 364 3 502 3 577

2015-11-06 00:00 2.2 4 430 4 513 4 690 3 947 4 069 4 218

2015-11-06 12:00 1.9 3 740 3 825 3 947 3 253 3 324 3 376

2015-11-07 00:00 2.0 4 061 4 178 4 298 3 583 3 699 3 907

2015-11-07 12:00 2.1 3 426 3 657 3 881 2 922 3 112 3 249

2015-11-08 00:00 2.3 4 073 4 180 4 353 3 561 3 682 3 810

2015-11-08 12:00 2.3 3 974 4 151 4 280 3 298 3 545 3 694

2015-11-09 00:00 1.7 4 396 4 474 4 571 3 746 3 861 4 094

2015-11-09 12:00 2.2 3 872 4 091 4 210 3 292 3 467 3 521

2015-11-10 00:00 1.9 4 677 4 829 5 120 4 138 4 307 4 484

2015-11-10 12:00 1.8 3 993 4 052 4 376 3 392 3 558 3 730

2015-11-11 00:00 2.0 4 646 4 834 4 935 4 072 4 293 4 393

2015-11-11 12:00 2.0 4 162 4 215 4 344 3 594 3 674 3 767

2015-11-12 00:00 2.0 4 454 4 570 5 326 3 923 4 060 4 629

2015-11-12 12:00 2.0 3 925 4 053 4 167 3 363 3 454 3 569

2015-11-13 00:00 2.0 4 599 4 838 5 543 4 079 4 419 4 721

2015-11-13 12:00 1.0 3 650 4 011 4 263 3 093 3 361 3 697

2015-11-14 00:00 2.0 4 070 4 276 4 474 3 622 3 780 3 957

2015-11-14 12:00 1.9 3 510 3 660 3 932 2 969 3 090 3 399

2015-11-15 00:00 2.0 4 222 4 285 4 334 3 669 3 788 3 910

2015-11-15 12:00 1.8 3 888 3 939 4 027 3 317 3 406 3 456

Average 2.0 4100.7 4232.8 4455.4 3555.7 3696.7 3881.9

Sum 56.4 57 410 59 259 62 376 49 780 51 754 54 346
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Figure 29. Sustained performance of the optimizer 2nd–15th November 2015 compared
with baseline costs

Doing ten optimizations practically ensures that the obtained solution is always

better than the median.

The actual historical costs are stored in the utility’s open database. Likewise,

the optimal costs calculated by the optimizer will be saved in the same database,

so that it is possible to analyze, how well the optimizer performs and to better

assess the savings potential.

4.7 Conclusions

The Tampere Water utility’s network including the city of Tampere and the mu-

nicipality of Pirkkala was modeled fully. The model includes every pump, pump

motor and variable-speed drive in the system. Raw water extraction and treat-

ment processes were also modeled, along the logic controlling them.

The obtained optimization results show that the optimization framework pre-

sented in the thesis works as intended. The savings potential varies from 7645AC

to 12 211AC for the analyzed two-week period, which results in yearly real cost

savings potential of 214 000AC to 342 000AC (12.3 % to 19.7 %). Even cold start per-

formance can result in 18 % or 739 AC
d
real cost savings.

The optimization time, 2.0 h on average, is reasonable for near real-time use.

The implementation proved to be robust, and integration into the SCADA system

lowers the usage barrier and provides the operators with a familiar user interface.
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5.1 Summary of work

The aim of this thesis research was to develop a general framework for near

real-time whole-cost optimization for operation of a water supply system

(WSS) containing elevated storage, variable-speed driven pumps andmultiple wa-

ter sources.

The major goal for the framework was to use a hydraulic model as accurate

as possible, and take into account every pumping that happens in the system

and each aspect that a�ects the pumping e�ciency and energy consumption, in-

cluding raw water extraction and conveyance, which were usually left out in the

earlier research. The focus was not only on the cost of energy, but also on water

production costs.

The goal was achieved, as such a system was developed and successfully tested

on a real, large-scale network in a case-study. The case-study shows that it is pos-

sible to use a non-simpli�ed full-scale hydraulic model and include raw water

extraction, conveyance and treatment in the near real-time operational optimiza-

tion.

The developed optimization framework makes a 24-hour demand estimate for

each demand measurement area and pressure zone, �nds optimal �ow and pres-

sure settings for every station, and �nally, optimal pump frequencies for all pumps

in the system over the 24-hour optimization horizon, so that energy and water

production costs are minimized while ensuring good quality of service. The opti-

mization happens near real-time.

The optimization time is kept reasonable by a novel optimization problem for-

mulation, considerably reducing the search-space, and by using two-step opti-

mization, i.e. �rst calculating the global optimum for all possible working points

on pump battery level o�ine, and then focusing the real-time optimization on the

optimal �ows from the stations using the pre-computed optimal pump combina-

tions and frequencies for each battery.

The global optimization is performed using the novel meta-heuristic optimiza-

tion algorithm MHD-DDS and utilizing the enhanced EPANET simulator for the

objective function and constraint evaluation.

The case studies presented in Publication I and Publication II show that opti-

mizing just the internal functioning of pumping stations can result in savings of

5 % to 8 %. Further, the full-scale high-level optimization results in 20 % savings
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in energy and 29 % savings in total costs, including the penalties in the case study

presented in this dissertation (see Chapter 4) and in Publication V and Publication

VI. The total yearly savings potential in the production and distribution costs in

the case-study was 342 000AC. The computational time required by the optimiza-

tion was on average 2.0 h.

5.2 Conclusions

The questions this thesis research set to answer were:

1. What components a�ecting energy use are typically missing from the op-

erational optimization problem solutions, and how can they be included?

2. Can near real-time optimization be performed using a full-scale, all-pipe

network model, including rawwater extraction, conveyance and treatment,

and an accurate pump energy model?

Both questions were properly addressed, and the case-study shows that the

proposed methodology works and yields better results than the operators are

currently able to achieve. However, it is still required to compare themethodology

to other optimization methods and use benchmark networks.

Full-scale, non-simpli�ed models can be used even in a near real-time setting,

when the proposed problem formulation and enhancements are applied to the

EPANET simulator.

The proposed optimization framework is the most complete presented in the

literature, including all energy usage components of pump train, and the water

production and distribution. Thus, the work can provide a baseline against which

to compare other more computationally e�cient methodologies.

The completion of this study raises new research questions: how signi�cant it is

to use a method as accurate as proposed here, and how di�erent the optimization

results would be using a simpler model.

5.3 Thesis contributions

The dissertation provides contributions in three main areas: optimal operation

of variable-speed driven pumps, water supply system modeling, and global opti-

mization of a water supply system as a whole.

Contributions to optimal operation of variable speed driven pumps are:

1. General and accurate model for pump drive train energy usage and e�-

ciency
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2. Method to globally pre-optimize operation of the pumps working in paral-

lel in a pump battery using exhaustive search. The method supports both

variable speed and �xed-speed pumps, and pumps with non-unique and

non-analytic pump characteristic curves,

Contributions to water supply system modeling and the EPANET simulator

are:

1. Novel EPANET component for modeling of �ow or pressure controlled bat-

teries of variable-speed driven pumps

2. General and accurate model for pump drive train energy usage and e�-

ciency

3. Novel method to model arbitrary complex WSS control strategies in EPA-

NET

4. Novelmethod for enabling parallel processing using EPANETwithout break-

ing the existing API

5. Various optimizations in EPANET to reduce time required for simulations.

Contributions to operational optimization of water supply system are:

1. Novel operational optimization problem formulation resulting in substan-

tially reduced search space size

2. Inclusion of rawwater extraction, conveyance and treatment in the system-

wide optimization problem, and utilizing a non-simpli�ed full-pipe system

model in the optimization

3. Novel heuristic MINLP optimization algorithm, MHD-DDS, developed by

fusing and modifying slightly continuous DDS and discrete HD-DDS

4. A complete, generally usable framework for optimizing water supply and

distribution systems with variable-speed pumping either online or o�ine.

5.4 Future work recommendations

The performance of theMHD-DDS algorithm and problem formulation presented

here should be comparedwith other problem formulations and commonly used al-

gorithms, such as particle swarm optimization, genetic algorithm, and ant colony

optimization. The case studies should include Tampere and other water supply

systems, including the commonly used benchmark networks.
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conclusions and discussion

This would show how much of the performance is due to the problem formu-

lation, especially due to the reduced search space size, and how much is due to

the MHD-DDS algorithm being e�cient.

The results obtained from the optimization still require more careful analy-

sis, as to how the optimization utilizes di�erent sources and stations and where

exactly the savings come from. The actual implementation phase is also still an

ongoing project and separate from this research work. Part of the implementation

phase budget will be dedicated on more through results analysis and on solution

implementability analysis.

More careful tuning of the penalty and optimization algorithm parameters

could result in greater savings and better performance. Optimizing the penalty

parameters would be an interesting line of research. Some studies focus on the

automatic optimization of the penalty parameters (meta-optimization), such as

[299], [12], [74], and [210]. These methods could be included in the framework

quite easily.

Optimization against the spot energy pricing or a daily price pattern instead

of a �xed energy price would be another interesting line of research. The use of

dynamic electricity pricing and price forecasts [292] could result in a new level

of energy cost savings. The inclusion of spot energy prices or some energy price

forecast module in the framework would be quite straightforward, and could re-

sult in further savings in energy costs.

New developments in hydraulic simulation (see Chapter 2.5) can reduce the

simulation time remarkably, and thus allow for more extensive optimization and

better approximation of the global optimum in the same time-frame. The opti-

mization framework allows using other hydraulic simulators than EPANET. Uti-

lizing another simulator could yield better performance with regard to the com-

putational time required, and could allow one to remediate some remaining limi-

tations of EPANET.

There is only little research done on the actual e�ect of inaccuracies in the

demand forecasts on the results in the operational optimization. Doing a compar-

ison of select demand forecasting methods and the resulting optimization perfor-

mance would be useful. It is also likely that the demand forecast model currently

in use could be further improved.

One major improvement that could be investigated is the pressure-dependant

leakagemodeling. The presented case study includes �xed leakage component cal-

culated for each measurement area and distributed to nodes proportional to pipe

lengths, pipe diameters and average pressures. Online analysis of background

leakage from demandmeasurements is not, however, a simple task, and especially

calibrating the nodal emitter coe�cients online without human intervention can

be challenging, but could possibly yield greater savings.
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5.4 future work recommendations

Another interesting track for future research would be to analyze the realized

long-term savings and how well in general the operators use controls suggested

by the optimization frameworks. The optimization framework could also be eas-

ily altered to directly control the water supply system, after being used for long

enough to prove its reliability. Direct model predictive optimal control would be

especially bene�cial if the operators do not follow the suggested optimal controls.

The future research could also explore how including a posteriorimulti-objective

optimization, for example, presenting costs versus some resilience index, a�ects

the choices done by the operators. This would enable the operators make con-

scious choices between the costs and resilience and would not need them to

blindly trust the optimization results.

Water supply resilience and reliability [231, 306, 248] often con�ict with en-

ergy optimization goals [295]. Themethodology presented here include reliability

aspects such as pressure and water tower capacity and volume penalties, and be-

cause besides lowering real costs, the optimization also lowers the penalties it can

be assumed, that the resilience is on a better level after optimization. Nonetheless,

it would be interesting to compare various resilience and hydraulic performance

metrics [22] along with energy balance [255, 237] of the optimized solutions with

the historical performance of the system. Some reliability metrics could be in-

cluded as a multi-objective goal besides the costs and penalties, and the choice of

the exact solution to be implemented would be left to the operator.

Many of the developments, especially those done in the EPANET simulator

and pump energy modeling, have much wider applicability besides the optimiza-

tion discussed in this dissertation. Hopefully, much of the developments could

be contributed to Open Water Analytics open source project to bene�t and to be

improved by other researchers and EPANET users.

This thesis research forms a good basis for future research and commercializa-

tion. The whole development forms an integrated system that can be easily tested

and extended upon. The large-scale case-study shows that the chosen methodol-

ogy holds potential. Several lines of research available can be pursued to further

improve the methodology.
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✙✖✑✴✛✎✓✘✤ ✸✏✤✘✍ ✖✴ ❊✑✒✛✓✚✒✘ ✙✎✓✛✘✎✓✏ ■✤✤✘✤✤✥✘✴✛✂ ✦✧✁❇✂
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189



�✁✂ ✄☎✆✝ ✞✟✠✡✂ ☛☞✌ ✍☞✎✏✑✎✒✓ ✔✕✖✕✗✎✓✘ ✙✏ ✍✚✕✑✎✕✛ ✔✛✕✒✒✎✒✓ ✎✒ ✜✢✑✙✒✎✕✣ ☛☞✌ ✤✎✢✌ ✙✏

✥✌✎✓☞✦✙✧✖☞✙✙✗ ✔✕✖✑✎★✎✚✕✑✎✙✒ ✕✒✗ ✩✙✒✢✌✖✪✕✑✎✙✒ ✙✏ ✫✧✎✛✑✬✧✚ ✭✖✌✕✢ ✑☞✖✙✧✓☞ ✑☞✌ ✮✌✑✕✎✛✌✗

✩✕✢✌ ✍✑✧✗✯ ✙✏ ✍✧✚✎✛✎✒✒✰ ✕ ✱✎✢✑✙✖✎★ ✍✧✦✧✖✦ ✙✏ ☛✕✖✑✧ ✩✎✑✯✰ ✜✢✑✙✒✎✕✂ ✲✳✁�✂

�✲✂ ✄☎✆✝✟✴ ✞✵✟✴✶✵✵✂ ☛☞✌ ✤✕✚✎✗ ✔✖✌✗✎★✑✎✙✒ ✙✏ ✷✖✙✧✒✗✎✒✓ ✫✌☞✕✪✎✙✖ ✙✏ ✮✙✧✦✛✌ ✫✙✑✑✙✘

☛✕✒✸✌✖✢✂ ✲✳✁�✂

�✹✂ ✺✻☎✆☎✝ ✄☎✻☎✆✼☎✴✂ ✍✑✙✖✘✽✕✑✌✖ ✾✧✕✒✑✎✑✯ ✕✒✗ ✾✧✕✛✎✑✯ ✙✏ ✿✕✖✓✌ ❀✖✦✕✒ ✩✕✑★☞✘✌✒✑ ✎✒

☛✕✛✛✎✒✒✂ ✲✳✁�✂

�❁✂ ❂✵❃✵ ❂❄✝✝✂ ☛☞✌ ✤✌✢✑✙✖✕✑✎✙✒ ✙✏ ✥✕✑✎✙✒✕✛✛✯ ✔✖✙✑✌★✑✌✗ ✜✢✑✙✒✎✕✒ ❅✕✒✙✖ ✔✕✖✸✢ ✎✒ ✑☞✌

✿✎✓☞✑ ✙✏ ✑☞✌ ❆✛✙✖✌✒★✌ ✩☞✕✖✑✌✖✂ ✲✳✁❇✂

�❈✂ ❉❃❃☎✆ ❊❃✵✶✂ ✤✌✒✙✪✕✑✎✙✒ ✕✒✗ ✜✒✌✖✓✯ ✔✌✖✏✙✖✘✕✒★✌ ❋✘✚✖✙✪✌✘✌✒✑ ✙✏ ✜✢✑✙✒✎✕✒

●✙✙✗✌✒ ✤✧✖✕✛ ✱✙✧✢✌✢✂ ✲✳✁❇✂

��✂ ❍✟■✠ ❏❃✠■✵✝❑✂ ✤✌✒✙✪✕✑✎✙✒ ✥✌✌✗ ✕✒✗ ✔✌✖✏✙✖✘✕✒★✌ ✙✏ ✜✒✪✌✛✙✚✌✢ ✙✏ ✩✙✒★✖✌✑✌

✭✚✕✖✑✘✌✒✑ ✫✧✎✛✗✎✒✓✢ ✎✒ ✜✢✑✙✒✎✕✂ ✲✳✁❇✂

�❇✂ ❊✆▲✠ ▼❄❄❑✟◆✂ ✮✌✑✌✖✘✎✒✎✒✓ ✫✎✙✓✕✢ ❖✎✌✛✗ ✏✖✙✘ ❋✒✗✧✢✑✖✎✕✛ ✫✎✙✗✌✓✖✕✗✕✦✛✌ ●✕✢✑✌✂

✲✳✁❇✂

�P✂ ▼☎✝✆✟ ◗✟✴❘❑✠✠✂ ✍✚✕✑✎✙✬☛✌✘✚✙✖✕✛ ✩☞✕✒✓✌✢ ✎✒ ✑☞✌ ✩✙✘✚✙✒✌✒✑✢ ✙✏ ✜❙✑✖✌✘✌ ●✕✑✌✖

✿✌✪✌✛✢ ✙✒ ✜✢✑✙✒✎✕✒ ✩✙✕✢✑✢✂ ✲✳✁❇✂

190




