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INTRODUCTION 
 
The potential demand in the power generation market requires cheap photovoltaic 
(PV) modules with efficiencies in excess of 10%. Therefore, research and 
development efforts shifted gradually from crystalline Si to polycrystalline thin film 
technologies, such as copper indium gallium diselenide (CIGS), cadmium telluride 
(CdTe), dye-sensitized, kesterite (CZTS) and Perovskite solar cells due to their low 
price materials and rapidly escalating efficiencies. During the past twenty years, 
CdTe and CIGS solar cells have demonstrated long-term stability and competitive 
performance, and they continue to attract production-scale capital investments. Very 
recently (February, 2015), First Solar set a world record for CdTe PV research cell 
conversion efficiency, achieving 21.5% efficiency [1], whereas the Centre for Solar 
Energy and Hydrogen Research Baden-Württemberg set the world record efficiency 
for CIGS solar cells at 21.7% in September, 2014  [1]. These achievements place 
CdTe- and CIGS-based solar cells well above multicrystalline silicon solar cells, 
which peaked at 20.8% [1]. Another common feature for CdTe and CIGS solar cells 
is the use of a CdS buffer film, which is shown to drastically influence the 
performance of both solar cells. 
 

 
 

Fig. 1. Best research-cell efficiencies documented in the U.S. Department of 
Energy's National Renewable Energy Laboratory. 

 
     In a CdS/CdTe solar cell, the crystallization and morphology of the absorber are 
strongly affected not only by the CdCl2 treatment but also by the CdS deposition 
method and the structure of the CdS layers on the transparent conductive oxide (TCO) 
substrates [2]. Additionally, the intermixing of CdS/CdTe is very much dependent on 
the properties of the CdS layers. CdS pre-treatments, designed to limit intermixing 
by increasing the grain size, clearly restructure the CdS and sharpens the transmission 
edge. However, depending on the CdS thickness, it may be detrimental to the open-
circuit voltage and fill factor of the CdS/CdTe solar cell [3]. 
     In a CIGS/CdS solar cell, the bulk properties of the CdS buffer create 
modifications to the CIGS surface: sulfur passivation, the formation of a transition 
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region (such as CdInxSey) [4] and etching effects by the removal of secondary phases, 
oxides and carbonates [5]. Moreover, with an increased impurity concentration in the 
CdS layer, the open-circuit voltage of a CIGS solar cell may exhibit a noticeable 
increase [6]. 
    For an optimal impact on solar cell performance, the CdS layer should be very thin, 
uniform, adherent and compact. These requirements are mainly fulfilled by chemical 
bath deposition (CBD), which is a proper technique to produce suitable CdS films 
with low cost at reduced temperature. However, to fulfill the compactness issue, an 
adequate post-deposition thermal treatment is required to recrystallize the CdS film 
by increasing the grain size. As long as CdS is subjected to a thermal processing step 
during absorber deposition in a CdTe solar cell or TCO deposition in a CIGS solar 
cell, the post-deposition treatment of the CdS film represents an important step. 
     The target of this study is the optimization of CdS films for application in CdTe 
and CIGS solar cells. This improvement of CdS properties is obtained through a post-
deposition thermal treatment at variable conditions, including annealing time from 3 
to 120 min, annealing temperatures from 200 ˚C to 450 ˚C and the presence of 
different annealing gases, such as hydrogen, nitrogen or air. 
     The present doctoral thesis is a continuation of the previous studies on the 
deposition and thermal treatment of CBD CdS films that have been conducted in the 
Laboratory of Thin Film Chemical Technologies, Department of Materials Science, 
at Tallinn University of Technology [7, 8, 9]. The aim of this doctoral thesis was to 
study systematically the effect of post-deposition thermal treatment variables on the 
optical, structural and electrical properties of CdS films. From an application point 
of view, we also investigated the influence of an annealed CdS buffer layer on the 
final performance of CdS/CdTe solar cells. Research regarding CdS/CdTe solar cells 
with annealed CBD CdS layers was possible through a collaboration with the 
Department of Physics and Engineering from Moldova State University. 
     The thesis is divided into three Chapters. Following the introduction, Chapter 1 
includes a literature overview describing the main properties of CdS, deposition 
methods for CdS films, the properties of CBD CdS thin films and solar cells based 
on a CdTe absorber with CBD CdS as a buffer layer. Chapter 2 briefly describes the 
preparation, annealing and characterization of CBD CdS thin films, as well as the 
fabrication and characterization of CdS/CdTe solar cells. Chapter 3 is divided into 
three sections and includes the results and a discussion of CdS film properties, 
followed by the application of annealed CBD CdS thin films in practical devices. 
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1. LITERATURE OVERVIEW 
 
1.1.  The main properties of CdS 
 

CdS is a group II-VI compound semiconductor. This material can be used in the 
development of several optoelectronic device applications, such as photoconductive 
detectors, gas sensors, light emitting diodes and particularly in solar cells as a buffer 
layer due to its suitable optical and electrical properties. CdS crystallizes in a cubic 
zinc blende and/or hexagonal wurtzite structure with lattice parameters a=5.825 Å, 
and a=4.136 Å, c=6.716 Å, respectively [10]. CdS films with cubic structure grow 
perpendicular to the (111) plane, while the hexagonal structure is textured in the [002] 
orientation. 
     The optical transmission of CdS is approximately 80 - 90% at λ > 520 nm, and the 
room temperature energy band gap (Eg) value for bulk CdS is 2.5 eV [11], with a 
temperature coefficient in the range of (3.4 – 5.1)·10-4 eV/K [10]. For CdS thin films, 
there is a wide spread of reports on Eg values that varies from 2.2 eV [12] to 2.6 eV 
[13] depending on the deposition technique, deposition parameters and post-
deposition treatments [14, 15]. 
     The specific conductivity of CdS is approximately 10-7 Ω-1·cm-1 at room 
temperature [16], and its resistivity ranges from 10−3 Ω·cm to 108 Ω·cm [17]. Room 
temperature mobility for holes was as high as 48 cm2/(V·s) [10], while for electrons 
the value was up to 2.42·103 cm2/(V·s) [18]. CdS is invariably an n-type 
semiconductor due to the asymmetry in the energetic dislocations of the conduction 
and valence bands [17]. 
     Six types of isolated native defects are considered for CdS: Cd and S vacancies, 
Cd and S interstitials, Cd and S anti-sites [19]. In addition to the intrinsic dopants, 
CdS can be doped with B, Al, Ga, In, Cl, Br and I to obtain an enhanced conductivity 
and/or with Cu, Ag and Au acceptors to obtain the compensation of donor dopants. 
H, O and related complexes, as (OH) group, can also be incorporated, acting mainly 
as shallow donors in CdS [20]. 
      
1.2.  Reported preparation methods for CdS thin films 
     
Thin films of CdS have been prepared by various deposition techniques: physical 
vapor deposition (PVD), close spaced sublimation (CSS), radio frequency (RF) 
sputtering, screen printing, pulsed laser evaporation, CBD, electrodeposition, spray 
pyrolysis, successive ionic layer adsorption reaction, and metal organic chemical 
vapor deposition. For comparison, we will provide a review of the reported work on 
CdS thin films grown by some of the most commonly used methods, which are 
further analyzed. 
 
1.2.1.  Chemical deposition methods 
 
CBD: In recent years, high priority has been given to the development of low-cost 
deposition techniques for CdS thin films, one of which is the CBD method. The first 
reported compound semiconductor films formed by CBD included PbS, SbS and CuS 
[21]. The deposition of CdS films by CBD was first reported by Mokrushin in 1961 
[22] and has now become the most widely studied material produced by CBD. The 
range of materials deposited by CBD was gradually extended to include sulfides and 
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selenides of many metals [23, 24], oxides [25], CdTe [26] and several ternary 
compounds [27]. 
     CBD was confirmed as a simple and promising technique to deposit CdS for high 
efficiency polycrystalline thin film solar cells based on CIGS, CdTe or CZTS in both 
substrate and superstrate configurations. 
     The traditional CBD setup consists of a magnetic stirrer with controllers for the 
temperature and stirring rate, a solution container, a bath, a thermometer and a holder 
for substrates (Fig. 1.1). The deposition of CdS films is carried out using an alkaline 
aqueous solution composed mainly of a Cd salt (CdCl2, CdSO4, CdI2, etc.), thiourea 
(SC(NH2)2) as the sulfur source and ammonia (NH3) as the complexing agent. The 
formation of CdS takes place heterogeneously on the substrate surface or 
homogeneously in the solution due to the spontaneous precipitation of CdS in the 
form of secondary particles. Homogeneous deposition is highly undesirable, as it 
yields powdery and non-adherent films. For better quality films, the heterogeneous 
process is desirable and achieved by slow deposition of CdS at a low concentration 
of Cd2+ and a low rate of S2- release by the decomposition of thiourea in the basic 
solution. 
 

 
 

Fig. 1.1. Traditional setup scheme for CBD technique. 
 
     The interaction between ions of the cadmium-ammonia complex and thiourea 
molecules in ammoniacal solution is given by the global reaction (1.1). 

 
CdሺNHଷሻସ

ଶା ൅ SCሺNHଶሻଶ ൅ 2OHି → CdS ൅ CHଶNଶ ൅ 4NHଷ ൅ 2HଶO (1.1) 
 
     The mechanism of CdS growth has been studied by many authors; however, the 
process model described by Lincot [23] is considered one of the most suitable for the 
description of the reaction scheme: 

1. Reversible adsorption of cadmium hydroxide species (1.2). 
2. Formation of a surface complex with thiourea (1.3). 
3. Formation of CdS with site regeneration (1.4). 

 
CdሺNHଷሻସ

ଶା ൅ 2OHି ൅ Site ↔ CdሺOHሻଶ ൅ 4NHଷ   (1.2) 
 
CdሺOHሻଶ ൅ S ൌ CሺNHଶሻଶ → ሾሺCdሺS ൌ CሺNHଶሻଶሻሺOHሻଶሿ  (1.3) 
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ሾሺCdሺS ൌ CሺNHଶሻଶሻሺOHሻଶሿ → CdS ൅ CNଶHଶ ൅ 2HଶO ൅ Site  (1.4) 
 
     The epitaxial growth process of CdS [23] appears to be strongly dependent on 
temperature. At room temperature, no deposition occurs within a few hours [15], 
whereas a small increase of temperature multiplies the growth rate by a factor of 2.5. 
An increase in ammonia concentration strengthens the complexation of hydroxide 
ions with cadmium, slowing down the growth rate of CdS [24]. Other important 
deposition parameters in this technique are the molar concentration of the precursors, 
pH of solution, deposition time and stirring rate. Moreover, there are several 
parameters of the post-deposition processing of CBD CdS that also strongly influence 
the film properties. The details of CBD processing parameters and post-deposition 
conditions for CdS thin films will be discussed later in Section 1.3. 
      Chemical spray pyrolysis: The sprayed CdS thin films are deposited at a substrate 
temperature of 400 ˚C using a Cd salt and thiourea solution, similar to CBD [7]. 
Chemically sprayed CdS films have an excellent photoconductivity as well as 
permeability in the visible range, but the resistivity is approximately 108 Ω·cm [18], 
which limits their use as transparent window in solar cells. Annealing or chemical 
doping is applied as an effective solution in this situation [28]. However, in 
comparison to CBD CdS films, the out diffusion and evaporation of chlorine from 
sprayed CdS takes longer and complicates the control of film resistivity [7]. 
     Electrodeposition: Compared with CBD film, CdS films prepared by 
electrodeposition from an aqueous solution is deposited more slowly, however, the 
film is denser and has a higher absorption coefficient in the wavelength region of 400 
– 1000 nm [29]. Though an alternating current voltage method with a two-electrode 
cell was proposed to improve the quality of electrodeposited CdS films [30], the 
control of the deposition process remains an open issue for the electrodeposition of 
CdS film [31], not to mention the need to control the electrical properties. 
 
1.2.2.  Physical deposition methods 
 
PVD: For industrial production, in-line vacuum deposition methods such as PVD is 
preferred for CdS deposition. Co-evaporation, compound evaporation and sputtering 
are all physical vapor deposition methods. PVD of CdS is usually performed in a 
high-vacuum thermal evaporation system (<10-7 Torr) from a high-purity powder of 
CdS at very slow rates (40-400 Å/min) [32, 33]. PVD CdS films are polycrystalline 
and show continuous coverage and larger grains than CBD films [34]. Moreover, in 
a solar cell structure, CBD and PVD CdS show different lattice (mis)matches with 
respect to the absorber. This mismatch is connected to the fact that a CBD CdS layer 
is a mixture of CdS, Cd–OH and Cd–O, which offers a range of lattice constants that 
apparently leads to a better lattice match to CIGS than the lattice constants of PVD 
CdS [6]. As a result, efficiencies of CIGS solar cells achieved by PVD CdS buffer 
layers hardly exceed 13% [34], whereas those with CBD CdS buffer layers yield 
efficiencies of approximately 16-17% [1]. 
     CSS: With the CSS technique, CdS films are prepared within several minutes at a 
pressure below 10-6 Torr and with a very low source-to-substrate distance (0.7 cm in 
[35], 0.2 cm in [36] and 0.03 cm in [37]). The crystallized material has a much lower 
density of defects, higher degree of crystallinity and larger grain sizes than CBD CdS 
film. Better crystallinity contributes to a lower stress in the CSS film, however it also 
contributes to an insufficient driving force to recrystallize CdS during CdCl2 
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treatment. Moreover, due to the large grain size and roughness, CSS CdS films are 
less able to conform to the substrate during growth than CBD CdS, which might be 
the reason that solar cells with CBD CdS generally show comparable efficiencies 
with solar cells that use CSS CdS [38]. 
     RF Sputtering: Sputtered CdS thin films are obtained at substrate temperatures 
between 25 ˚C and 320 ˚C [39], and all CdS thin film properties depend on the 
sputtering parameters [40]. RF sputtered CdS is a dense and pin-hole free film with 
a preferential [002] orientation, compared with the random orientation for CSS or 
CBD CdS. The small grain size, rough surface and defects, located either in the bulk 
of the CdS or at the CdS/TCO interface, negatively affect the properties of solar cell 
[41]. Defects of RF sputtered CdS thin films are induced by the sputter process itself 
due to Ar-ion bombardment of the target material [41, 42]. 
     To summarize, all of the vacuum-based techniques require complex, expensive 
equipment and strict deposition conditions. In contrast, the wet techniques are 
characterized by their low cost, simplicity and low temperatures. Among the wet 
methods, CBD has achieved high popularity and has been widely applied to the 
manufacture of CdS thin films due to its major advantages: 

 low-cost equipment; 
 epitaxial growth; 
 conformal coating of large area; 
 compatibility with a variety of substrates for plating, including plastics; 
 low film thicknesses which can be controlled easily by changing the deposition 

parameters; 
 post-deposition treatment in a defined atmosphere or in the presence of CdCl2. 

     Nevertheless, despite the simplicity of the CBD procedure, it is a complicated task 
to understand the kinetics of the film growth mechanisms involved in the deposition 
process. 
 
1.3. Properties of CBD CdS films 
 
The physical and electrical properties of CBD CdS films depend on the deposition 
procedure and post-deposition treatment conditions. 
     As deposited CBD CdS thin films: In the process of the formation of the film 
during the deposition steps, the CdS thin film properties are influenced by the 
following parameters: Cd salt, S/Cd ratio, complexing agent, pH, temperature and 
duration of deposition, substrate nature and bath geometry. 
     Small details, such as a constant rate of magnetic stirring and the addition rate of 
thiourea, also should be considered to obtain uniform CBD CdS films [43]. A review 
of the CBD CdS properties influenced by the deposition parameters is presented in 
Table 1.1. 
     Annealed CBD CdS thin films: CdS thin films deposited by CBD were shown by 
several authors to have poor crystalline qualities, even to be amorphous, and tend to 
form the cubic phase [44]. A reorganization of CdS by annealing always favors better 
quality films [45]. Another problem with CBD films is the high concentration of 
impurities and the numerous adherent particulates of homogeneously nucleated CdS 
[46-48]. The presence of these impurities endows the layers with a high speed of 
recrystallization at low temperatures with major changes in the structural and optical 
properties [45, 49]. These features make the annealing treatment steps necessary to 
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improve the properties of CdS thin film. Generally, the beneficial effects of a thermal 
annealing for CBD CdS films are as follows: 
- improvement of crystalline quality by removal of random strain [50-52]; 
- phase transition and thereby change of the band gap [53]; 
- improvement of electrical properties, in particular, the reduction of CdS 

resistivity [9], conferring the required concentration and mobility of electrons to 
the layers, and good ohmic front contact in the TCO/CdS interface. 
In the last few years, several groups have studied the influence of thermal 

annealing in different atmospheres on the properties of CdS thin films. This influence 
was shown to be directly dependent on whether the annealing atmosphere is neutral, 
reducing or oxidizing [44, 49, 53-57], as well as the duration and/or temperature of 
the annealing process [8, 46]. Generally, neutral annealing brings a significantly 
improved crystalline quality of the film, while the oxidizing atmosphere assures grain 
growth and a pinhole free CdS thin film. The presence of H2 in a reducing atmosphere 
strongly decreases the concentration of oxygen containing species [58], creates a 
moderately reducing ambient environment and decreases the concentration of Cd 
vacancies [59], which are responsible for acceptor centers that participate in the 
compensation of charge carriers in CdS [60]. A review of CBD CdS properties 
influenced by the post-deposition treatment is presented in Table 1.2. 
 

Table 1.1. Influence of deposition parameters on the properties of CBD CdS thin films. 
 

Deposition 
parameter 

Changes in CdS properties Ref. 

Increase of 
duration and 
temperature 

 Promotes the adherence of colloids and larger 
particles from the solution; 

 Increases the pinhole density; 
 Promotes the cubic–hexagonal transformation with 

improvement of film crystallinity;  
 Decreases the Eg; 
 Decreases the grain size; 
 Highest deposition temperature of 85 ˚C leads to the 

lowest resistivity and highest mobility. 

[23] 
[61] 
[62] 
[63] 
[64] 

Different 
Cd salts 

 Lower release rate of Cd2+ from Cd(CH3COO)2 in 
the solution implies higher deposition rates; 

 CdCl2 promotes CdS films with relatively larger 
band gaps and higher quality; 

 CdI2 has the lowest initial growth rate.  

[23] 
[65] 

Increase of 
S/Cd ratio 

 Increases the Eg; 
 Reduces the grain size; 
 Increases the optical transmission above the 

threshold; 
 Improves the coverage of grains. 

[8] 
[66] 
[67] 

Complexing 
agent 

 Ammonium determines the pH of solution; 
 Tartaric acid improves the quality of CdS film in 

terms of thickness, uniformity and adherence to the 
substrate surface. 

[44] 
[68] 
[69] 
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pH 
 Controls the rate of CdS formation; 
 Inversely influences the band gap. 

[23] 
[70] 
[71] 
[72] 

Nature of 
substrate 

 Si substrates suffer structural changes during CdS 
deposition; 

 The choice between indium doped tin oxide (ITO) 
and fluorine doped tin oxide (FTO) is determined 
primarily by the deposition temperature of CdS 
and/or the absorber; 

 For solar cell applications, FTO substrates give 
excellent reproducibility. 

[37] 
[73] 
[74] 

Construction of 
the CBD set up 

 Keeping a constant pH of solution during the 
deposition; 

 Controlling the stirring of solution; 
 Removing bubbles from the CdS surface; 
 Improving utilization of Cd species. 

[43] 
[69] 
[75] 

 
Table 1.2. Influence of annealing parameters on the properties of CdS thin films. 

 
Annealing 
parameter 

Changes in CdS properties Ref. 

Increase of
duration and 
temperature 

 Increases the rate of changes in the properties of 
film; 

 Increases the risk of porosity; 
 Allows the tuning of Eg; 
 Decreases the refractive index at a given 

wavelength; 
 Contributes to sulfur effusion from the film at 

higher temperatures. 

[8] 
[45] 

Reducing 
atmosphere 

 Requires lower exposure times; 
 H2 is a strong agent for grain boundary passivation 

by oxygen removal; 
 Substantially decreases the resistivity; 
 Preserves the cubic phase during the entire thermal 

process. 

[49] 
[54] 
[55] 
[56] 

 

Oxidizing 
atmosphere 
 

 Increases the grain size; 
 Improves the film crystallinity; 
 Substantially decreases the Eg; 
 Creates oxygen containing phases on the CdS 

surface; 
 Increases the resistivity of the films. 

[44] 
[50] 
[55] 
[57] 
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Neutral 
atmosphere 
 

 Improves the film crystallinity; 
 Reorients the as deposited CdS film; 
 Decreases the resistivity; 
 Increases the grain size; 
 Decreases the number of grain boundaries; 
 Assures the phase transition from cubic to 

hexagonal.  

[53] 
[55] 

 
     To summarize, a correlation between deposition and post-deposition treatment, 
capable of conferring suitable properties to CBD CdS films, is still missing. Although 
plenty of research has been conducted in this direction, there is a lack of commonly 
accepted understanding for the physico-chemical nature of the processes taking place 
in the thermal annealing process and the resulting changes of CdS properties. This 
thermal annealing in a defined atmosphere is an important method to reduce the 
extent of disorder in CBD CdS and to control the changes in the film properties. 
 
1.4. Application of CBD CdS film in CdTe solar cells 
 
CBD received an important impetus in the PV sector because CdS films chemically 
deposited on CdTe [76] and CuInSe2 [77] absorbers were shown to result in superior 
solar cells compared with the previously studied evaporated CdS [78]. Currently, a 
CBD CdS buffer layer is also used in monograin and kesterite solar cells [79, 80]. 
     For solar cell applications, CdS films should be conductive, thin and uniform [3]. 
High conductivity of CdS films increases the built-in potential as an absorber, which 
in turn improves the photovoltage of the solar cell [81]. Film uniformity avoids 
shorting pathways between the TCO and the absorber [82]. If thinning raises the 
transparency of the CdS film and increases short-circuit current [83], then thicker 
films stop the decrease in VOC and CdS is not consumed as a result of interdiffusion 
[84, 85] at the junction interface. 
     Cell-processing conditions promote this interdiffusion between the absorber and 
CdS in response to the thermodynamic driving force for alloy formation on each side 
of the interface. For example, in a CdS/CdTe solar cell, a narrow intermixing between 
CdS and CdTe allows a smoother transition between both lattices, but the resulting 
shift of the CdS bandgap reduces the film transmission and lowers the shorter-
wavelength quantum efficiency (QE) [4]. CdS intermixing can be minimized by a 
thermal treatment that would recrystallize the film or by judicious control of device 
processing [86, 87]. Another proposed strategy to reduce CdS absorption losses was 
to mix CdS with ZnS in order to increase the bandgap and transmission of the buffer 
layer. However, as ZnS is chemically less stable than CdS during the CdCl2 treatment 
[88], simple mixing has not produced net performance gains [4]. 
     Despite the lower crystallinity of CBD thin films in comparison with other 
techniques, the CBD CdS films give excellent results for PV applications due to their 
high relative photoconductivity in the n-type region and better morphological 
properties, such as low roughness and pinhole density [89]. Furthermore, regardless 
of toxicity, compatibility or waste aspects, manufacturers of CIGS solar cells 
preferably apply CBD CdS buffers simply because they result in the highest 
efficiencies [32]. 
     To summarize, CBD CdS thin films represents a suitable buffer layer for several 
types of solar cells, but still require some improvements in terms of pinhole free 
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coverage, reduced absorption and limited interdiffusion with the absorber. 
Additionally, when applied in a solar cell construction, CBD CdS is highly sensitive 
to the post-deposition thermal processes due to the high concentration of impurities 
and defects. A solution for these issues can be the thermal annealing of CBD CdS, 
which would improve film compactness, minimize the interdiffusion by 
recrystallizing the film and tailor the properties of CBD CdS to the relevant 
application. 
 
1.5. Summary of the literature overview and aim of the study 
 
The studies reported in the literature on the chemical bath deposition of CdS, and its 
subsequent thermal annealing as well as the solar cell application of this material can 
be summarized as follows: 

1. A CdS thin film represents an interesting II-VI compound semiconductor in 
the field of material science due to its properties, such as wide band gap, high 
transparency, tunable electrical properties, the ability to have a zinc blende 
or wurtzite structure and the numerous available fabrication techniques. 

2. One of the most important applications of CdS is in the fabrication of solar 
cells. CdS is considered the perfect n-type buffer for CdTe, CIGS and 
kesterite absorbers in superstrate or substrate configurations. 

3. Among the various techniques to produce CdS, the most popular dry methods 
for CdS thin films are considered to be RF sputtering and thermal 
evaporation, while the most used wet method is CBD, with the latter having 
significant advantages in simplicity and low cost. Other major advantages of 
CBD for CdS can be listed as follows: large area deposition, conformal 
coating, controllable thickness and compatibility with a variety of applicable 
substrates. 

4. As deposited CBD CdS films tend to form in the cubic phase and have poor 
crystalline quality. Also these films contain numerous adherent particulates 
of homogeneously nucleated CdS and a high concentration of impurities, 
which endows the layers with a high speed of recrystallization at low 
processing temperatures. 

5. A thermal annealing step is required for CBD CdS, as it improves the film 
crystalline quality, removes the random strain, changes the Eg, supports the 
phase transition and improves the electrical properties. In other words, 
annealing can be used as a tool for the management of CBD CdS properties 
by adjusting the parameters of the thermal process. 

6. For solar cell applications, the thermal annealing of CBD CdS could also 
solve issues related to shortcutting pathways and interdiffusion at the 
junction interface. 

7. Although the thermal annealing of CBD CdS thin films is widely studied by 
many groups, a mechanism describing the physico-chemical processes 
responsible for the changes in CdS properties is still missing. The 
understanding of such mechanism would help us to control and tailor the 
properties of CBD CdS thin films for solar cell applications. 

 
     On the basis of studies made on CdS thin films and from an application point 
of view, the aims of the present doctoral thesis were: 



20 

1. to prepare CdS thin films by chemical bath deposition and to anneal them in 
reducing, neutral or oxidizing atmosphere for different durations and 
temperatures; 

2. to study the effect of annealing process on the crystallographic, 
microstructural, optical and electrical properties of CBD CdS films; 

3. to describe the physico-chemical processes responsible for the changes in 
CdS thin film properties as a result of annealing; 

4. to use annealed CdS films in a CdS/CdTe solar cell structure and to show the 
influence of CdS annealing on the properties of junction. 
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2. EXPERIMENTAL 
 
2.1. Chemical bath deposition and thermal treatment of CdS films 
 
Using a traditional CBD setup (Fig. 1.1), CdS thin films were deposited successfully 
onto different substrates, including glass, ITO/glass, FTO/glass and polyimide. 
Because of the large number of experiments, data on CdS films on polyimide 
substrate were not included in this work. The 25 mm × mm glass plates were properly 
cleaned and immersed in the water solution of 1 mM CdSO4, 10 mM thiourea, 0.2 M 
NH4OH and 30 mM (NH4)2SO4. For CdS doping, a low concentration of NH4Cl 
solution (0.1 μM) was added in the deposition bath. The pH, temperature, and 
agitation speed of the solution were 10.5, 85 ˚C and 500 rpm, respectively. Different 
durations of deposition were used to tune the thickness of the CdS films. Except the 
duration, all other deposition parameters were constant [I].  

 

 
 

Fig. 2.1. Scheme of annealing setup. 
 

     After deposition and rinsing with deionized water, all ̴ 100 CdS films were 
vacuum dried in a closed quartz tube at 120 ˚C for 1 h in order to remove most of the 
secondary phases of water, hydroxides and organic impurities. At this stage, the CdS 
films obtained the “as deposited” label. Afterwards, a thermal annealing step was 
applied in preheated furnace using the same process tube (Fig. 2.1). The vacuumed 
process tube with CdS samples was filled with 1 atm. hydrogen, nitrogen or a mixture 
of H2 and N2 gases at room temperature then closed and introduced into the 
cylindrical ceramic tube (Fig. 2.1), where the constant temperature and time were set 
(Table 2.1). The gas pressure in the process tube was maintained by a standard gas 
reduction system and was not influenced by the gas expansion at higher temperatures 
of annealing. Large diameter (55 mm) and volume (1.5 l) of the process tube ensured 
a gas convection flow so that the reaction products were transported in the colder part 
of the tube. In the case of air annealing the process tube was opened at the colder part 
of the quartz tube. A detailed description of the annealing process is presented in 
papers I-IV. 
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Table 2.1. Variable parameters of the annealing process for CBD CdS films. 
 

Gas Annealing parameters 

H2 
T, ˚C 200, 250, 300, 350, 400, 450 

Time, min. 3, 5, 10, 20, 30, 60,120 

N2 
T, ˚C 250, 400 

Time, min. 10, 30, 60, 120 

Air 
T, ˚C 250, 400 

Time, min. 10, 30, 60, 120 

5% H2 + 95% N2 
T, ˚C 250, 400 

Time, min. 60 

 
2.2. Characterization of CBD CdS films 
 
The morphology, coverage, grain size and elemental composition of CdS films were 
studied by scanning electron microscopy (SEM), atom force microscopy (AFM) and 
energy dispersive spectroscopy (EDX). High-resolution SEM apparatus (Zeiss EVO-
MA15) was used at an operating voltage of 10 kV. The AFM operated in a “semi-
contact” (tapping) mode using the NT-MDT Solver 47 Pro system. The image 
analysis of AFM 2D images was performed using the Media Cybernetics Image Pro-
3.0 program. For the EDX analysis the Rontec EDX XFlash 3001 detector and the 
Oxford Instruments INCA Energy system were used. The quantitative results were 
obtained by the help of factory defined standard using the PAP correction – a method 
for light elements. Due to the low thickness of the CBD CdS films and the strong 
signal from glass substrate, the amount of oxygen from the EDX data was estimated 
by subtracting the concentration of SiO2 from the total oxygen content in the film [I]. 
     The phase composition, crystallographic properties and optical phonons were 
observed by X-ray diffraction (XRD) and Raman spectroscopy. The XRD 
measurements were made in the Bragg–Brentano (θ–2θ) geometry by the Rigaku 
Ultima IV diffractometer with Cu-Kα radiation. The room temperature Raman 
spectra were recorded in a 180˚ backscattering geometry by using the Horiba's 
LabRam HR high resolution spectrometer. The incident laser light with the 
wavelength of 532 nm was focused on the sample within a spot of 10 μm in diameter 
and the spectral resolution of the spectrometer was about 1.5 cm−1. Each spectrum 
was smoothed with Lorentz fitting and peak position and Full Width at Half 
Maximum were obtained. 
     From the XRD patterns, the crystallite size (L) was obtained by the Scherrer 
formula (2.1), where B is the peak width, K is the Scherrer constant, lambda is the 
wavelength of X-radiation, and θ is ½ the diffraction angle. 
 

ሻߠሺ2ܤ      ൌ
௄ఒ

௅௖௢௦ఏ
      (2.1) 

 
      To determine the interplanar distance (d) Bragg’s law was applied (2.2), 
where n is a positive integer and λ is the wavelength of the incident wave. 
 
ߠ݊݅ݏ2݀					 ൌ  (2.2)      ߣ݊
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     The optical characteristics were measured in the wavelength range of 200–2500 
nm on the Jasco V-670 UV–vis–NIR spectrophotometer equipped with an integrating 
sphere. Total optical transmission and reflection spectra were used to determine the 
transmittance of CdS and the optical thickness. Based on the Tauc relation (2.3), the 
values of Eg have been estimated from the (αhν)2 versus hν dependence, by taking the 
intercept of the extrapolation to zero absorption on a hν axis. 
  
ߥ݄					 ൌ ߥሺ݄ܣ െ  ௚ሻ௥      (2.3)ܧ
 
     α is the absorption coefficient, given by α = 2.303 log(T/d) (d here is film 
thickness and T is transmission), hν is the photon energy, and the exponent r denotes 
the nature of the transition (r = ½ for direct allowed transitions). 
     The electrical properties of the CdS films (resistivity, charge carrier concentration 
and mobility) were measured in the temperature range of -100 ˚C to 100 ˚C, using 
MMR's Variable Temperature Hall System and a Hall, Van der Pauw Controller H-
50. The contact material used for electrical measurements was evaporated indium [II, 
IV]. In-plane resistivity and charge carrier concentrations were calculated for the 
thickness (300 - 350 nm) estimated from transmission and reflection spectra and 
confirmed by SEM analysis. The impurity levels were analyzed by 
photoluminescence (PL) measurements at room temperature with a green laser (532 
nm) and 10 mW density of excitation. PL spectra were registered by a Renishaw - 
type device with a built-in measuring Raman installation [IV]. 
 
2.3. Fabrication and characterization of CdS/CdTe solar cells 
 
With the as deposited and annealed CBD CdS films in H2 and air at 400 ˚C for 1 h 
and 2 h, complete CdS/CdTe solar cell devices were fabricated. A 3 – 4 µm thick 
CdTe layer was deposited by CSS onto the CBD CdS layer (Fig. 2.2) at source and 
substrate temperatures of 610 ˚C and 500 ˚C, respectively. This was followed by a 
soaking in CdCl2solution, air treatment at 420 ˚C, NP etching and deposition of gold 
back contact by evaporation. Finally the CdS/CdTe samples were scribed into cells 
of 5 mm × 5 mm dimension. More technological details are shown in [V]. 

 

 
 

Fig. 2.2. Schematic structure of superstrate CdTe solar cell. 
 

    The surface morphology of the cross-section of the CdS/CdTe solar cell was 
examined by SEM, whereas the performance of the CdS/CdTe solar cells were 
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characterized by J–V curves and quantum efficiency (QE) measurements under 
AM1.5 (100 mW/cm2) illumination [V]. 
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3. RESULTS AND DISCUSSION 
 
The following sections, 3.1 and 3.2, contain a systematic study of the structural, 
electrical and optical properties of the CBD CdS thin films, altered by thermal 
processing at various annealing conditions in hydrogen, air and nitrogen gas. The 
mechanism of physico-chemical processes responsible for the changes in the 
properties of CBD CdS are proposed. Results have been published in papers I, II, III 
and IV. 
 
3.1. Properties of CBD CdS films annealed in variable conditions of 
ambient 
 
3.1.1. Structural properties 
 
Several characteristics for all as deposited and thermally annealed CBD CdS films 
were revealed by microstructural analysis: 

 The surfaces of CBD CdS films may rarely feature large aggregated particles, 
which were homogeneously formed in the deposition solution. (Fig. 3.1); 

 The grains of CBD CdS films have a columnar shape and grow perpendicular 
to the glass substrate (Fig. 3.2); 

 CdS grains have a mean diameter of 260 nm and are formed by small 
crystallites (Fig. 3.2b), with sizes in the range of 30 to 45 nm (from XRD 
analysis); 

 The oxidizing ambient slightly enhanced the grain growth at 250 ˚C, while 
annealing at 400 ˚C in N2 and H2 ambients contracted the grains (Fig. 3.1, 
Table 3.1).  

Fig. 3.1. SEM plane view of as deposited (a) and annealed CdS films – in air at 250 ˚C (b) 
and in nitrogen at 400 ˚C (c) both for 1 h. (A modified version of Figure 1 from [I]) 

a)  c)b) 
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Fig. 3.2. a) SEM cross section view of CdS film annealed in H2 at 250 ˚C for 1 h; b) AFM 
image of as deposited CdS film. 

 
Table 3.1. RMS roughness values for the as deposited and annealed CdS films in different 

ambient conditions at 250 ˚C and 400 ˚C. 
 

Sample name 
RMS, nm 

As dep. 250 ˚C 400 ˚C 
H2 annealed CdS 

17.9 
11.7 13.4 

N2 annealed CdS 14.8 13.4 
Air annealed CdS 16.2 15.4 

 

 
Fig. 3.3. SEM top view of CdS film annealed in H2 at 450 ˚C for 10 min (a), 20 min (b) and 

60 min (c) [I]. 
 
     Based on morphology studies of CBD CdS films, we assessed the maximal 
temperature for thermal annealing of conformal and pinhole free CdS. Annealing for 
only 10 min at 450 ̊ C generated pinholes in the film, whereas longer processing made 
it porous (Fig. 3.3). CdS porosity is attributed to the intra-grain recrystallization and 
sintering of the primary crystallites, resulting in the contraction of grains. Therefore, 
400 ˚C seems to be the highest applicable temperature for thermal annealing that 
provides low porosity CdS films with suitable properties for the following 
applications in PV devices. 
 

a)  b)

a)  b) c)
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3.1.2. Electrical properties 
 
As we studied CBD CdS thin film as a potential n-type buffer partner for CdTe, CIGS 
and CZTS p-type absorbers, the electrical properties of CdS films and how are they 
affected by the thermal annealing process were considered extremely important.  
     The kinetics of electron density for CdS films annealed in H2 at temperatures from 
200 ˚C to 400 ˚C (Fig. 3.4) can be divided into two stages. The first one is 
characterized by a sharp increase of electron concentration to the level of 1019 cm-3, 
whereby the growth rate substantially increases with the processing temperature. This 
fast process, as later will be discussed, corresponds to the interactions in the lattice 
of crystallites at the atomic level. In the second stage, at 200 – 250 ˚C, the electron 
density reaches a plateau, and at higher temperatures (350 – 400 ˚C), the electron 
density will slowly decrease with a temperature dependent rate, indicating that this 
kinetics is limited by diffusion processes. At each annealing temperature, a 
technologically important plateau of stable electron concentration is reached at 30 
min for low annealing temperatures and at 60 min for higher temperatures (Fig. 3.4). 
These changes in electrical properties are stable to subsequent etching with acetic 
acid, which indicates that they occur in the bulk of the polycrystalline material and 
not only at the CdS film surface. 
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Fig. 3.4. Electron concentration vs annealing time for CBD CdS thin films annealed in H2 at 

different temperatures. 
 
     Similar to the case of H2 annealing, a stable electron density is reached for air and 
nitrogen environments (Fig. 3.5) after 60 min of annealing at 400 ˚C, while for 250 
˚C it will stabilize at 30 min. The ambient gas does not influence the general trend of 
changes in CdS conductivity. Due to the presence of oxygen, the air annealed CdS 
films will have lower conductivity than H2 and N2 annealed samples. The same 
processes with higher rates take place at 400 ˚C, and significantly higher resistivity 
is achieved in air and N2 annealing (Fig. 3.5) in comparison with the H2 atmosphere. 
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Fig. 3.5. Electrical conductivity of CdS films at room temperature as a function of annealing 

time, temperature and atmosphere. 
  
     The temperature dependence of electrical conductivity (Fig. 3.6) shows that high 
conductivity of CdS films annealed at low temperatures is generated by shallow 
donors with activation energies of approximately 10  20 meV. The conductivity of 
such degenerated semiconductor films weakly depends on the measurement 
temperature. Higher annealing temperatures, approximately 400 ˚C, remove these 
shallow donors and the lower conductivity is caused by the deep donors located at 
approximately 120 meV below the conduction band. 
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Fig. 3.6. Temperature dependence of electrical conductivity for CdS films annealed for 1 h 

in H2, N2 and air [IV]. 
 
3.1.3. Optical band gap 
 
Figure 3.7 shows that the decreasing trend of Eg becomes more prominent as the 
annealing temperature increases, and a similar behavior of Eg is typical for all 
annealing atmospheres (Fig. 3.8).  
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Fig. 3.7. Band gap of H2 annealed CdS films as a function of annealing time and 
temperature [I]. 

 
     The annealing process steadily reduces the Eg to 2.34 and 2.33 eV for 300 and 350 
˚C, respectively. The lowest Eg value (2.32 eV) is reached after 30 min annealing in 
H2 at 400 ̊ C. Longer annealing at 400 ̊ C and 450 ̊ C increase the band gap, becoming 
closer to the Eg value for bulk CdS (2.42 eV). One can observe a striking similarity 
between the kinetics of band gap and electrical conductivity for CBD CdS films 
annealed in different gas environments (Fig. 3.5, 3.8). 
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Fig. 3.8. Band gap of CdS films vs annealing time for different ambient conditions and 

temperatures [IV]. 
      
3.1.4. XRD and Raman analyses 
 
XRD patterns for H2 annealed CdS films show no evidence of secondary phases, 
except a crystalline CdS phase textured in the [111] orientation [I], while annealing 
in air and nitrogen for 1 h at 400 ˚C generate a CdSO3 phase on the CdS surface (Fig. 
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3.9). After 2 h annealing in nitrogen, this secondary phase is removed, whereas in air 
annealing it is transformed to CdO. 
     The main (111) peak located at approximately 26.4˚ has been treated in the 
literature as corresponding to both cubic and hexagonal modifications [90]. We 
analyzed the diffraction patterns in the region of 26 – 27˚ at higher resolution (Fig. 
3.10). Compared with cubic 26.4˚ and hexagonal 26.8˚ positions [91, 92], one can 
see that, for the as deposited film and those annealed at low temperatures in H2, the 
main peak is located close to the hexagonal position. With increasing annealing 
temperature up to 400 – 450 ˚C, this peak shifts towards the cubic position. For air 
and N2 annealed samples, the position of the (111) peak is stabilized at approximately 
60 min of 400 ˚C annealing, before reaching the cubic position. This shift is not 
affected by whether the substrate is glass or ITO (Fig. 3.11) or by the annealing 
atmosphere (Fig. 3.12). 
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Fig. 3.9. XRD patterns of CdS films annealed at 400 ˚C in H2, N2 and air for 

1 h (solid line) and 2 h (dash line) [IV]. 
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Fig. 3.10. Shift of the (111) peak with increasing annealing temperature for H2 annealed 
CdS films. (A modified version of Figure 4 from [I]) 
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Fig. 3.11. Shift of the (111) peak in dependence of glass or ITO substrate, annealing 
temperature and ambient (H-hydrogen, N-nitrogen, 5H-5% H2 with 95% N2) [III]. 

 
    On the other hand, the displacement of the (111) peak to the position corresponding 
to the cubic CdS structure is accompanied by the lattice relaxation as the interplanar 
distance and lattice constant become larger when annealing temperature increases 
(Table 3.2). Additionally, a slight destruction of crystallites is observed, similar to 
the Metin’s study of nitrogen annealed CdS films [45]. 
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Table 3.2. Crystallite size (s), interplanar distance (d) and lattice constant (α) for CdS 
layers annealed for 1 h at 400 ˚C in H2 [I]. 

 
Tanneal, ˚C s, nm d, Å α, Å 

200 42.9 3.335 5.77 

250 42.0 3.338 5.79 

300 39.1 3.343 5.79 

350 40.3 3.343 5.81 

400 40.3 3.354 5.82 

 
     The lattice stress shown by XRD [IV] was confirmed by Raman measurements. 
The 1LO peak (300 cm-1) of the as deposited CdS films narrows at 400 ˚C annealing 
(Fig. 3.13). Additionally, the decreased intensity of 1LO peak with annealing was 
attributed to the shift of the crystalline structure to a more cubic phase [IV], which is 
in accordance with the XRD data 
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Fig. 3.12. Displacement of the (111) peak vs processing duration at 250 ˚C (open circles) 

and 400 ˚C (solid circles) for different ambient gases: H2. N2, and air [IV]. 
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Fig. 3.13. Raman spectra of CdS films annealed at 400 ˚C for 1 h in different ambient [IV]. 

 
3.1.5. Elemental analysis 
 
EDX analysis (Table 3.3) indicates that our CBD CdS films are Cd-rich for all 
annealing temperatures. In addition, for as deposited CdS thin films and those 
annealed at 200 – 250 ˚C, strong evidence for O impurity (10 at.%) was found, 
whereas at higher annealing temperatures, [O] was decreased by 3 – 5 at.%. 
 

Table 3.3. EDX relative atomic concentrations in H2 annealed CdS thin films vs annealing 
temperature. Annealing time was 1 h. (A modified version of Table 1 from [I]) 

 

Element 
Relative atomic concentration, at.% 

200 ˚C 250 ˚C 300 ˚C 350 ˚C 400 ˚C 

S 39.4 39.5 39.1 38.6 42.2 

Cd 46.8 47.4 46.7 46.5 48.5 

O 10.0 11.0 10.0 3.0 5.0 

 
     Because our measurement possibilities for the chemical composition of CBD CdS 
have been limited, we compared our EDX data with results from the literature. Niles 
and Nair proved an 11 at.% abundance of oxygen by X-ray photoelectron 
spectroscopy (XPS) [93, 57], while Weber et al. showed the same atomic amount of 
hydrogen by nuclear reaction analysis [58]. Moreover, Kylner indicated the presence 
of Cd(OH)2 and CdO using XPS [94], whereas Danaher claimed an uniform 
distribution of Cd(OH)2 and CdO through the film by secondary ion mass 
spectroscopy [47]. All of these statements confirm our EDX results and indicate the 
presence of both oxygen and hydrogen in CBD CdS films, most likely as an (OH) 
group. 
 
3.2. Physico-chemistry of the processes in CBD CdS thin films induced by 
thermal annealing 
 
An as deposited CBD CdS thin film with 300 – 350 nm thickness is characterized by 
a wide band gap (2.42 eV), high resistivity (600 Ω·cm in dark), high 
photoconductivity and noticeable PL at approximately 1.65 eV [IV], corresponding 
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to the well-known complex (VCdD)-, where D is a donor impurity. Reduction of CBD 
CdS film resistivity by 3 – 4 orders of magnitude [II] with the creation of high 
electron density of approximately 1019 cm-3 (Fig. 3.4, 3.5) after 10 min of annealing 
at relatively low temperatures (200 – 250 ̊ C) represents the most striking result. Such 
a degenerated semiconductor layer might crucially influence the quality of the p-n 
junction in a substrate configuration solar cell when it is heated to approximately 200 
˚C for the sputtering deposition of the i-ZnO/ZnO:Al layer. Therefore, it is extremely 
important to explain the physico-chemical mechanism behind the changes in the CdS 
properties. 
     The high conductivity of CdS films annealed at low temperatures in reducing, 
oxidizing and neutral atmosphere cannot be explained by the creation of a conductive 
phase of CdO from residual oxide components [49, 57] because reduction of CdO in 
H2 already begins intensively at approximately 200 ˚C [I]. Moreover, the formation 
of CdO in the processing solution is prevented by the basic ammonia medium we 
used for CdS deposition. Additionally, it cannot be explained by the recrystallization 
of “amorphous” CdS [46], as CdS is deposited in the form of 40 nm sized crystallites 
[I] and no growth or sintering of these crystallites is observed up to 250 ˚C. And 
finally, we will later show that it cannot be explained only by the creation of sulfur 
vacancies by decomposition of CdS, as proposed in [45, 49]. 
     For the explanation of the abrupt fall in resistivity, we raised a hypothesis about 
the incorporation of cadmium hydroxide into the CdS lattice in the deposition process 
from a basic ammonia solution [II]. This hypothesis is in accordance with the 
hydroxide mechanism of CdS formation in the CBD process, where hydroxide 
clusters act as a catalyst for thiourea decomposition so that CdS formation occurs 
preferentially on the surface of hydroxide rather than nucleating separately in the 
solution [27]. Comparing our results to those of other groups (Section 3.1.5), we 
claim that all oxygen indicated by the EDX analysis in the as deposited CBD CdS 
(Table 3.3) is present in the (OH) form. The hydroxide group, which is spatially 
compatible with sulfur (Table 3.4), seems to incorporate into CdS on a sulfur site, 
acting as a shallow donor [20], thereby forming the cadmium hydroxysulfide as a 
solid solution of cadmium hydroxide in CdS (3.1). 
 

Table 3.4. Covalent radii of components [95]. 
 

Chemical component Cd S O H OH Cl 
Covalent radius, pm 144 105 66 31 96 102 

 
ܵ݀ܥ݊ ൅ ሻଶܪሺܱ݀ܥ 	→ ሻௌܪ௡ାଵܵ௡2ሺܱ݀ܥ	 ஼ܸௗ    (3.1) 
 
     Actually, (OH) incorporates on sulfur site similarly to the scheme of ClS 
incorporation, introduced in the deposition solution as NH4Cl (3.2) (Section 2.1). 
Both CdCl2 and Cd(OH)2 create one VCd per every pair of incorporated ClS or (OH)S 
(3.1). In result, the double charged acceptor VCd

2- compensates the (OH)S
+ and ClS

+ 
shallow donors, so that the as deposited CBD CdS thin film represents a compensated 
and resistive n-type semiconductor. 
 
݈ܥସܪ2ܰ ൅ ܵ݀ܥ ସܱ 	↔ ଶ݈ܥ݀ܥ ൅	ሺܰܪସሻଶܵ ସܱ    (3.2) 
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    The (3.1) reaction can be written for one mole of CdS, where a very small number 
m of Cd(OH)2 moles is incorporated (3.3). 
 
ܵ݀ܥ ൅ ሻଶܪሺܱ݀ܥ݉ 	→ ሻௌܪ݉ሾ2ሺܱ	ଵା௠ܵ݀ܥ	 ஼ܸௗሿ    (3.3) 
 
     When CBD CdS undergoes a thermal treatment, at low annealing temperatures, 
the hydroxide groups become unstable and start to decompose (3.4), releasing water, 
creating sulfur vacancies (VS

2+) and resulting in the transition from cadmium 
hydroxysulfide to cadmium oxysulfide solid solution, where the isovalent oxygen 
occupies a sulfur site.  
 

ሻௌܪ݉ሾ2ሺܱ	ଵା௠ܵ݀ܥ ஼ܸௗሿ 	
	ஹଶ଴଴	Ԩ
ሱۛ ۛۛ ሮۛ ݉ሾ	ଵା௠ܵ݀ܥ	 ௌܱ ௌܸ ஼ܸௗሿ ൅  ଶܱ  (3.4)ܪ݉

 
     The increase in [VS

2+] (3.4) implies the reduction of [VCd
2-], thereby raising the 

electrical conductivity of CdS thin films annealed at temperatures ≥ 200 ˚C (Fig. 3.4, 
3.5). 
     Another way of looking at this high density of electrons can be achieved by 
analyzing the side effects of annealing, such as the precipitation of black Cd noticed 
on the cold regions of the process tube. Low [96] also had shown, by thermal analysis, 
that Cd(OH)2 decomposes to CdO0.81, which means that the product of thermal 
decomposition of Cd(OH)2 is highly enriched with cadmium. This experimental 
evidence of Cd precipitation allows us to explain the origin of excess Cd in the 
annealed samples and the decreased transmittance of the annealed CdS films [IV]. 
We have to assume that the incorporated Cd(OH)2 contains less than two (OH) 
groups. In such an extreme case, the cadmium mono-hydroxide (CdOH) is 
incorporated into the CdS lattice, which is accompanied by the absence of VCd. As a 
result, [VS

2+] will be much higher than [VCd
2-] and, by the thermal destruction of the 

(OH) group, the CdS lattice reveals a Cd excess. This excess of Cd might enable the 
impurities of (OH)S

+ and ClS
+

 to behave as shallow donors, increasing the electron 
density of the CdS films at low annealing temperatures (Fig. 3.4). At higher annealing 
temperatures (>300 ̊ C), although the destruction of the incorporated hydroxide group 
is accelerated, the concentration of electrons starts to decrease due to the gradual 
removal of the shallow donor defects (Fig. 3.6). 
     The hydroxide group mechanism allows us to explain other CBD CdS properties, 
such as elemental composition, together with the crystallographic and optical 
properties of CBD CdS films. 
     Because incorporated Cd(OH)2 naturally crystallizes into a hexagonal lattice, 
whereas CdS and CdO tend to grow in cubic structures, the position of the main XRD 
peak of the as deposited CdS1-x(OH)x solid solution is located between the hexagonal 
and cubic structures (Fig. 3.10). As a result, the structure of crystalline lattice of the 
as deposited layer and those annealed at low temperatures (200 – 250 ˚C) is 
intermediate between hexagonal and cubic modifications with a low lattice constant 
and a narrow interplanar distance (Table 3.2). Durose at al. attributed the strained 
crystalline lattice of ball milled CdS to specific disorder [90]. In our case, this 
disorder could be caused by Cd(OH)2 incorporated into the CdS lattice during the 
deposition process. The large Eg for the as deposited and low-temperature-annealed 
CdS (Fig. 3.7) is also associated with the incorporated Cd(OH)2, which has a high 
band gap [97]. 
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     An increase in the annealing temperature (300 – 350 ˚C) is likely to accelerate the 
sintering of the as deposited polycrystalline CdS, and the incorporated Cd(OH)2 starts 
to decompose to water and CdO (3.1, 3.3). High water pressure, ̴ 104 atm. [I], 
contributes to the cracking of CdS crystallites annealed at up to 350 ˚C (Table 3.1), 
whereas the presence of CdO narrows the band gap of CdS to a minimum value of 
2.32 eV (Fig. 3.8). Due to the decomposition peculiarity of Cd(OH)2 the excess of 
Cd decreased the transmission of CdS and FTO substrates [III] in the range of 400 – 
1000 nm [IV]. Additionally, at this region of annealing temperatures, the CdS lattice 
relaxes with the transition from the intermediate to the cubic structure, confirmed by 
the shift of the main (111) peak (Fig. 3.10, 3. 11). In other words, the thermal 
annealing eliminates the lattice disorder generated by incorporated Cd(OH)2 and 
reorders the CdS film to the cubic structure. 
     The highest annealing temperatures (>400 ˚C), together with removal of oxygen 
and deposit of elemental cadmium observed on the cold walls of process tube, start 
the out diffusion of chlorine due to high vapor pressure of CdCl2 (3.2) [98], thereby 
decreasing the electron density to the level of 1016 cm-3. Some other CdS properties 
also change in a reverse way: the oxygen content in CdS is slowly increased 
compared with 350 ˚C (Table 3.3), the lattice constant (Table 3.2) and Eg (Fig. 3.7) 
are restored to the intrinsic values for pure CdS, and the crystallite size starts to 
increase (Table 3.2). At this temperature region, the oxygen out diffusion is slowed 
by the closing cracks and retention of oxygen containing phases (Fig. 3.9) in the bulk 
of the polycrystalline material. The increasing Eg values for longer annealing at 400 
˚C and 450 ˚C may be also explained by the appearance of the (100) and (101) 
wurtzite peaks in the XRD patterns of CdS films annealed at these temperatures [I]. 
     This phenomenological model is applicable to CdS annealed in various 
environments with small differences. Because air is more active than H2 ambient, air 
annealing shows a deeper removal of oxygen. This is connected with the interaction 
between CdS, oxygen and CdCl2 (3.5) proposed by McCandless in [3]. Due to the 
CdCl2 flux (3.2) and the high solubility of both cadmium oxygen containing phases 
and CdS in the CdCl2 flux [99], the oxygen diffuses into the melted phase and at 400 
˚C CdSO3 and CdO are extracted for both air and nitrogen annealed films (3.6, 3.7). 
The appearance of the CdSO3 phase instead of CdSO4, both being also shown by 
extended and near-edge x-ray absorption fine structures in [100], might be explained 
by the limited access of oxygen in the 1.5 l semi closed process tube. This is supported 
by the out diffusion of Cd, which creates reducing conditions on the film surface. 
 
ܵ݀ܥ ൅	݈ܥ݀ܥଶ ൅	ܱଶ 	→ ଶ݈ܥܵ	 ൅  (3.5)     ܱ݀ܥ2
 
	ܵ݀ܥ ൅ 	1.5ܱଶ 	→ 	ܱ݀ܥ	 ൅	ܱܵଶ      (3.6) 
 
	ܵ݀ܥ ൅ 	1.5ܱଶ 	→  ଷ      (3.7)ܱܵ݀ܥ	
 
     For longer annealing in N2, these oxygen containing phases expelled as metallic 
Cd and SO2 (3.8, 3.9), while for longer annealing in air at 400 ˚C, Cd forms CdO on 
the CdS surface (3.10). 
 

	ܵ݀ܥ ൅ ଷܱܵ݀ܥ2	 	
ேమ
ሱሮ ݀ܥ3	 ൅ 	3ܱܵଶ     (3.8) 

 



37 

	ܵ݀ܥ ൅ 	ܱ݀ܥ2	
ேమ
ሱሮ 	݀ܥ3	 ൅	ܱܵଶ      (3.9) 

 

ଷܱܵ݀ܥ 	
௔௜௥
ሱሮ 	ܱ݀ܥ	 ൅	ܱܵଶ      (3.10) 

 
     Because of these oxygen containing phases (Fig. 3.9) on the grain boundaries 
acting as sources of oxygen back diffusion, the shift of the main (111) peak for CdS 
films annealed in air and N2 was stabilized before reaching the position corresponding 
to the cubic structure (Fig. 3.12). 

To summarize, CBD CdS film with a high concentration of electrons (1019 cm-

3) was obtained after 10 min of thermal annealing in H2 at only 200 - 250 ˚C. As an 
explanation for the changing properties of CdS films, the incorporation of hydroxide 
group in the CdS crystalline lattice during deposition process and its destruction 
during annealing process was proposed. 
Due to incorporation of hydroxide group: 
 the created Cls

+ and (OH)s
+ shallow donors are compensated by the double 

charged acceptor VCd
2-, so that the as deposited CBD CdS thin film represents a 

compensated and resistive n-type semiconductor; 
 the lattice parameter and interplanar distance of CdS thin film are lower than 

values corresponding to bulk cubic CdS, both indicating a stressed crystalline 
lattice with the main (111) XRD peak located between the positions 
corresponding to hexagonal and cubic structures; 

 the band gap of 2.41 eV, stable up to 250 ˚C annealing temperatures, is also 
attributed to the wide band gap of the incorporated Cd(OH)2. 

     Due to the destruction of the incorporated hydroxide group: 
 the water is released, the sulfur vacancies VS

2+ are created and the transition from 
cadmium hydroxysulfide to cadmium oxysulfide solid solution takes place; 

 the increase in [VS
2+] implies the reduction of [VCd

2-], thereby Cls
+ and (OH)s

+ 
shallow donors increase the CdS film electron density at 200 – 250 ˚C annealing 
temperatures; 

 at annealing temperatures higher that 300 ˚C the decrease in electron 
concentration of CdS films is attributed to the removal by out diffusion and 
evaporation of both excess Cd and chlorine dopant due to high vapor pressure 
of both Cd and CdCl2 [98]; 

 the crystalline lattice relaxes with increasing annealing temperature and the main 
(111) XRD peak shifts towards the position corresponding to the cubic structure 
of bulk CdS; 

 the systematic decrease of crystallites size demonstrates their cracking due to 
the evaporation of water in the rapid thermal process in preheated furnace at 200 
– 350 ˚C, while from 400 ˚C it starts to increase due to higher rate of solid state 
diffusion; 

 the out diffusion of oxygen and Cd at annealing temperatures higher than 400 
˚C restores the bulk values of the lattice constant and Eg for pure CdS. 

     The nature of the annealing gas does not modify the trend of changes in CdS 
properties, but it influences the removal of trace oxygen from CdS films: annealing 
processes in air and N2 create a stable CdS1-yOy solid solution in the CdS films, while 
H2 annealing completely removes the oxides, resulting in pure CdS films (Fig. 3.9). 
     The presence of trace oxygen in CdS lattice has an important impact on the 
electrical behavior of CdS as buffer layer in solar cells because, when 66 pm oxygen 
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atom incorporates on the site of 107 pm sulfur atom [95], the sulfur sub-lattice 
contracts and the Cd sub-lattice responds with the formation of cadmium vacancies 
- the acceptor defects that participates in the compensation of charge carriers in the 
CdS buffer layer. In this sense, by varying the conditions of temperature, duration 
and environment, annealing can be a convenient and appropriate method to control 
the oxygen content in the CBD CdS thin films. 

 
3.3. Application of annealed CBD CdS film in a CdS/CdTe solar cell 
 
Because each annealing atmosphere brings both positive and negative effects to the 
properties of the CdS films needed for PV applications (Section 1.4), in this section 
we illustrate the direct influence of CdS annealing on the final parameters of a 
CdS/CdTe solar cell in the superstrate configuration (Fig. 2.2). 
     From the various annealing conditions used in our investigations, CBD CdS films 
annealed in H2 and air at 400 ˚C for 60 min were chosen for application in CdS/CdTe 
solar cell [V], and as deposited CdS films were used as a reference. The N2 annealed 
CdS film was excluded from this experiment because it had the lowest transmittance 
in comparison to the other two annealed films [III].  
     The surface view of CdS films, uncovered by CdTe (Fig. 3.14), was registered 
after absorber deposition and CdCl2 treatment (Fig. 3.15). For air annealed CdS, the 
presence of oxygen containing phases, together with co-deposited chloride, improved 
the film recrystallization, increasing the grain size. From the analysis of the annealed 
CBD CdS properties, H2 annealing was the appropriate thermal treatment for the 
removal of impurities from CdS films and for the destruction of hydroxide 
components incorporated during deposition. 
 

 
Fig. 3.14. Plan view of CdS/CdTe solar cell on glass/FTO substrate. 

 
     Nevertheless, because H2 also removes the oxygen compounds from CdS grain 
boundaries, additional thermal shocks during absorber preparation have left them 
open in the form of short-cutting pathways between CdTe and FTO (Fig. 3.15). 
Therefore, to evaluate the net influence of the annealed CdS film on the solar cell, all 
the structures were sectioned into 5×5 mm2 regions. 

FTO/glass 

CdTe

CdS
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Fig. 3.15. SEM images of the as deposited and annealed CdS films after deposition and 
CdCl2 treatment of CdTe [V]. 

 
     A solar cell with an as deposited CdS film is characterized by the lowest short-
circuit current (JSC), open-circuit voltage (VOC), fill factor (FF) and efficiency values 
(Table 3.5), emphasizing the necessity of annealing the CBD CdS film before its 
application in a superstrate CdTe solar cell. The solar cell based on air annealed CdS 
film shows better performance compared with the cells based on as deposited and H2 
annealed CdS film (Fig. 3.16), although the air annealed CdS had lower band gap 
than the other studied films (Fig. 3.8). 
 

Table 3.5. Parameters of CdS/CdTe solar cells with as deposited and annealed CBD CdS 
films [V]. For comparison, cell parameters for the best solar cell of our laboratory (with 

CSS CdS) are included [101]. 
 

CdS film VOC, V JSC, mA/cm2 FF, % Eff, % 
CBD, as deposited 525.7 17.7 39.1 3.6 
CBD, H2 annealed 535.7 18.2 46.4 4.5 
CBD, air annealed 777.4 23.4 62.7 11.4 
CSS 810.0 23.0 62.0 11.6 

 
     A reducing factor of solar cell performance could be the Cd precipitate, appearing 
in CdS films as a result of H2 annealing, and decreasing the transmittance of CdS and 
FTO [V]. On the other hand, the improvement of solar cell parameters is attributed 
to the oxygen containing phases such as CdSO3 (Fig. 3.9) that reside on the grain 
surfaces as active components (3.5-3.7) for the following 420 ˚C CdCl2 treatment of 
the CdS/CdTe solar cell. In the case of H2 annealing, the smaller grain size of low-
oxygen-containing CdS films implies a faster intermixing at the CdS/CdTe interface 
after CdCl2 treatment [84, 102], leading to a significant consumption of the CdS layer. 
When the as deposited films are annealed in air, CdS consumption is reduced, and Te 
intermixing with CdS layer is minimized [103].  

As deposited H2 annealed Air annealed
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Fig. 3.16. J-V characteristics of CdS/CdTe solar cells with as deposited and annealed CBD 

CdS films [V]. 
 
     Therefore, in a solar cell structure, the presence of oxygen containing phases on 
the grain boundaries in the CdS buffer layer is considered beneficial. As for the 
presence of CdSO3, it is an active component due to the presence of sulfur in the 
fourth oxidation state, which makes its interaction with CdS and CdCl2 possible for 
the formation of SCl2 (3.11, 3.12). SCl2 is an important reaction component that 
contributes to the mass transfer of CdS by the formation of sulfur pieces (3.13). 
 
CdS + 2O2→ CdSO4       (3.11) 
 
CdS + CdSO4 +CdCl2→ 2SCl2 +4CdO     (3.12) 
 
CdS + SCl2→ S2 + CdCl2      (3.13) 
 
     Interestingly, we obtained similar efficiency values (Table 3.5) for two CdTe solar 
cells - one with a CBD CdS film and another – with a CSS CdS film [101]. The latter 
CdS film was of much higher quality in terms of larger grains and lack of porosity. 
This achievement indicates the importance of CdS annealing in general and the 
impact of oxygen containing phases on the junction formation. The components of 
the CdCl2 flux have to be closer to the junction of the solar cell as they accelerate the 
mass transfer between the polycrystalline phases of both CdS and CdTe for the 
formation of an effective CdS/CdTe heterojunction.  
     In other words, during the CdCl2 treatment of a solar cell, applied in air at 420 ˚C 
at the back side of the CdTe layer, the flux penetration through the absorber will be 
enhanced by the presence of oxygen containing phases from CdS. Therefore, 
annealing in air for a CBD CdS film looks to be a solution, as it brings the oxygen 
and incorporated chlorine from CdS to the region of junction formation. The effect 
of oxygen on the CdS/CdTe interface has also been applied in [2, 46] by introducing 
oxygen into the CdS sputtering process. 
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     Nevertheless, the film uniformity remains an issue for CBD CdS, which is firstly 
affected by annealing and then by the high temperature processes of CdTe fabrication 
(Fig. 3.15). We looked closer at these uniformities, shown by SEM cross section 
imaging of solar cells, and identified two types of peeling. The peeling from the CdS 
surface (Fig. 3.17a) seems to be caused by the undesirable conglomerates on the 
surface of the CdS film (Fig. 3.1). Peeling from the FTO surface (Fig. 3.17b) is 
generated only in the case of H2 annealed CdS; its origin is still unclear and requires 
further investigation. 

 
Fig. 3.17. Cross section of a “bad contact” region of a CdS/CdTe solar cell: peeling from 

CdS surface (a), peeling from FTO surface (b) [V]. 
 
     To summarize, each annealing condition studied for CBD CdS thin films improves 
the performance of superstrate solar cells. 
     H2 annealing removes the oxygen compounds from the grain boundaries and 
opens them as shortcutting pathways through CdS layer, thereby decreasing device 
parameters. CdS/CdTe solar cells with air annealed CBD CdS show the highest 
performance: 23.4 mA/cm2 current density and 11.4% efficiency. The simultaneous 
presence of both oxygen and CdCl2 from CdTe thermal activation contribute to the 
recrystallization and sintering of the highly textured columnar CBD CdS. Moreover, 
annealing in air of CBD CdS assures the presence of oxy-chloride components at both 
sides of the CdTe absorber, contributing to the formation of an effective junction.  
     Although our CdS films show similar performances to CSS CdS when included 
in a CdTe solar cell, the porosity of the annealed CBD CdS, which intensifies during 
CdTe deposition and CdCl2 thermal treatment, remains an issue to resolve. 
 

CdTe
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glass
 b a 
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CONCLUSIONS 

 
The systematic study of changes in the properties of CBD CdS thin films allowed an 
understanding and description of the physico-chemical processes occurring during 
thermal annealing. 
 

1. We claim that in the deposition process, the hydroxide group incorporates 
into the CdS lattice on the sulfur site, resulting in the formation of cadmium 
hydroxysulfide solid solution. The explanation of the simultaneous changes 
in structural, optical and electrical properties that occur as a result of thermal 
annealing of CdS thin films is based on this claim. 

2. During thermal processing, the hydroxide groups seem to decompose to 
water and OS, resulting in the cracking of crystallites and the formation of a 
cadmium oxysulfide solid solution which contains VS. 

3. The increase of [VS
2+] creates an excess of elemental Cd as precipitates 

resulting in a sharp increase of electron density at 200 ˚C annealing 
temperature. 

4. At 350 – 400 ˚C annealing temperatures, the density of electrons 
exponentially decreases, indicating that the kinetics is limited by the slow out 
diffusion of Cd and dopants such as chlorine. 

5. As the oxygen content in the sulfur sub-lattice decreases with increasing 
annealing temperature, the crystalline lattice of CdS thin films transforms to 
a stable cubic structure. 

6. The nature of the annealing ambient does not modify the trend of the changes 
in the CdS properties, but it influences the removal of trace oxygen from the 
CdS films. 

7. The chlorine dopant, introduced in the process of deposition, do not provide 
optimal structural, optical and electrical properties of the CBD CdS film for 
application in CdTe solar cell. The thermal annealings were proved to be 
appropriate technological tools for controlling the properties of CdS thin 
films and improving the performance of CdS/CdTe device. 

 
     In result of the present work the effect of annealing on the properties of CBD CdS 
thin films, which is still considered controversial, have received an unambiguous 
physico-chemical explanation. 
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ABSTRACT 

Interest in CdS thin films has been raised by their successful application as buffer 
layers in CdTe, CIGS and kesterite solar cells. Although a CdS thin film possesses 
several advantages in comparison to Zn based buffers, issues such as controllable 
properties and shortcutting pathways through the film remain open. 
     These internationally recognized issues have represented some of the main goals 
of the FP7 Project "Development of Flexible Single and Tandem II-VI-Based High 
Efficiency Thin Film Solar Cells” (FLEXSOLCELL) between Tallinn University of 
Technology, Moldova State University, and Trieste University from Italy. In the 
frame of FLEXCSOLCELL the creation of thinner and more uniform CdS thin films 
by chemical bath deposition (CBD) has been one of the improvement routes for 
CdS/CdTe solar cell. This deposition method was chosen due to its major advantages 
over other techniques: epitaxial growth, conformal coating and controllable thickness 
of the film, and also because the Department of Material Science from Tallinn 
University of Technology has a long experience in the chemical deposition processes 
of semiconductor thin films. 
     This PhD research has been done in the Laboratory of Thin Film Chemical 
Technologies with the main financial support from Doctoral Studies and 
Internationalisation Programme “DoRa”, Estonian Ministry of Education and 
Research (IUT19-4, SF0140092s08) and FP7 Project “FLEXSOLCELL”. 
     The aim of the thesis is to study systematically the impact of post-deposition 
thermal treatment variables on the optical, structural and electrical properties of CdS 
thin films, an understanding of which is essential for device applications. 
     The thesis is based on five publications and it is divided into three Chapters. 
Following the introduction, Chapter 1 includes a literature overview describing the 
main properties of CdS, deposition methods for CdS films, the properties of CBD 
CdS thin films and solar cells based on a CdTe absorber with CBD CdS as a buffer 
layer. Chapter 2 briefly describes the preparation, annealing and characterization of 
CBD CdS thin films, as well as the fabrication and characterization of CdS/CdTe 
solar cells. Chapter 3 is divided into three sections and includes the results and a 
discussion of CdS properties, followed by the application of annealed CBD CdS thin 
films in practical devices. 
     CdS thin films were prepared by CBD in a basic ammonia solution with CdSO4 
as the Cd source, thiourea as the sulfur source, and a low concentration of NH4Cl as 
dopant. Afterwards, the films were annealed at temperatures from 200 to 450 ˚C in 
different environments, including hydrogen, nitrogen and air as source of oxygen. 
The work covered approximately 100 samples and every experimental point 
represents a new CdS thin film annealed at unrepeated conditions. 
     Based on energy dispersive X-ray spectrometry, X-ray diffraction, and band gap 
studies, the mechanisms of the changes in CdS thin film properties were 
systematically studied. It was assumed that cadmium hydroxide incorporates into the 
CdS thin film during chemical bath deposition, forming the cadmium hydroxysulfide 
alloy as a compensated semiconductor with a stressed crystalline lattice. The 
destruction of the hydroxide group which intensifies at 300 ˚C annealing implies the 
cracking of crystallites due to the escape of water and the creation of an excess of Cd, 
resulting in the transition from cadmium hydroxysulfide to a cadmium oxysulfide 
solid solution. This excess Cd decreases the concentration of cadmium vacancies so 
that ND>>NA, and enables the impurities of (OH)S

+ and ClS
+ to behave as shallow 
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donors, increasing the electron density of the CdS films at low annealing 
temperatures (200 – 300 ˚C). At higher annealing temperatures (350 – 400 ˚C), the 
out diffusion of Cd is enhanced and the isovalent oxygen contracts the sulfur sub-
lattice due to smaller size of oxygen compared to sulfur; in result the concentration 
of cadmium vacancies increases and the conductivity of CdS thin films is reduced. 
Additionally, due to the reduced content of oxygen in the sulfur sub-lattice, the bulk 
values of the lattice constant and Eg for pure CdS thin films are restored and the CdS 
lattice transforms from an intermediate to a cubic structure. 
     The nature of the annealing gas does not modify the trend of changes in the CdS 
properties, but it influences the removal of trace oxygen from the CdS films. 
Annealing processes in air and N2 create a stable cadmium oxysulfide solid solution 
in CdS films, whereas H2 annealing completely removes the oxygen containing 
phases and the dopants such as chlorine, resulting in pure resistive CdS films with 
sphalerite structure. The presence of oxygen as isovalent dopant in the CdS lattice 
has an important impact on the final parameters of the CdS/CdTe solar cell. A 
CdS/CdTe solar cell with air annealed CBD CdS shows the highest performance due 
to the presence of oxygen containing phases on CdS surface, which in the CdCl2 
treatment process promote the mass transfer of junction components, contributing to 
the sintering and formation of an effective junction. 
     The systematic study of changes in structural, optical and electrical properties of 
annealed CBD CdS thin films as a result of thermal treatment allowed us to describe 
the physico-chemical mechanism of the processes. We have demonstrated that 
varying the conditions of temperature, duration and environment of annealing is a 
convenient and appropriate technological tool for controlling the properties of CdS 
thin films. Moreover, because the properties of CBD CdS thin films are drastically 
changed by the annealing in the temperature interval from i-ZnO/ZnO:Al sputtering 
(200 ̊ C) up to temperatures of CdTe processing (>400 ̊ C), the results of present work 
are highly important for the technological development of both substrate CIGS and 
superstrate CdTe solar cells, respectively. 
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KOKKUVÕTE 
 
CdS õhukesed kiled pakuvad huvi tänu rakendamisele puhverkihtidena CdTe, CIGS 
ja CZTS päikesepatareides. Ehkki CdS õhukestel kiledel on rida eeliseid, võrreldes 
Zn baasil ehitatud puhverkiledega, vajavad omaduste kontrollitavus ja lühised läbi 
kile detailsemat uurimist.  
     Need rahvusvaheliselt tõdetud probleemid kuulusid FP7 projekti 
"Kõrgefektiivsete paindlike õhukesekileliste mono- ja tandemsiirdeliste 
päikesepatareide arendamine II-VI tüüpi ühendite baasil" (FLEXSOLCELL) 
eesmärkide hulka. Projekti partneriteks olid Tallinna Tehnikaülikool, Moldova 
Riiklik Ülikool ja Trieste Ülikool Itaalias. FLEXSOLCELL raames õhemate ja 
ühtlasemate CdS kilede valmistamine keemilise vannsadestamise meetodil (CBD) oli 
üheks CdS/CdTe päikesepatareide täiustamise teeks. See sadestamise meetod valiti 
tänu olulistele eelistele võrreldes teiste meetoditega: epitaksiaalne kasv, ühtlane 
katmisvõime ja kile paksuse kontrollitavus, aga ka tänu pooljuhtkilede keemiliste 
sadestusmeetodite pikaajalisele viljelemisele Tallinna Tehnikaülikooli 
Materjaliteaduse instituudis. 
     Käesolev PhD uurimus sooritati Õhukeste Kilede Keemilise Tehnoloogia 
Laboratooriumis Doktoriõpingute ja Rahvusvahelistumise Programmi "DoRa", Eesti 
Teadus- ja Haridusministeeriumi (IUT19-4, SF0140092s08) ja FP7 projekti 
"FLEXSOLCELL" toel. 
     Töö eesmärgiks oli süstemaatiliselt uurida sadestusjärgse termilise käsitluse mõju 
CdS õhukeste kilede optilistele, struktuursetele ja elektrilistele omadustele, et saadud 
seaduspärasusi rakendada seadmetes. 
     Teesid baseeruvad viiel publikatsioonil ja sisaldavad kolm peatükki. 
Sissejuhatusele järgneb I peatükk kirjandusülevaatega, mis käsitleb CdS põhilisi 
omadusi, CdS kilede sadestamise meetodeid, CBD CdS õhukeste kilede omadusi ja 
CdTe absorberile ning CBD CDS puhverkilele ehitatud päikesepatareisid. II peatükk 
kirjeldab lühidalt CBD CdS õhukeste kilede valmistamise, lõõmutamise ja mõõtmise 
meetodeid. III peatükk on jaotatud kolme sektsiooni, millest esimene sisaldab CdS 
omaduste uurimustulemusi, teine tulemuste arutelu ning analüüsi ja kolmas käsitleb 
CBD CdS õhukeste kilede rakendustulemusi tegelikes seadmetes. 
     Õhukesed CdS kiled sadestati CdSO4 ja tiokarbamiidi ammoniakaalses 
vesilahuses (pH 10,3) NH4Cl juuresolekul 0,1%. Saadud kiled lõõmutati 
temperatuurivahemikus 200 – 400 ˚C vesiniku, lämmastiku ja õhu gaasilistes 
keskkondades. Töö rajaneb ligikaudu 100 proovile ja iga eksperimentaalne punkt 
vastab uuele CdS kilele lõõmutatuna kordumatutes tingimustes. 
     Termilise käsitluse tulemusel CdS õhukestes kiledes tekkivate muutuste 
mehhanismi süstemaatiline uurimine baseerus energia dispersioon 
röntgenspektroskoopia, röntgendifraktomeetria ja optilise keelutsooni laiuse 
mõõtmismeetoditel. Töö tulemusena leiti, et sadestamise protsessis 
kaadmiumhüdroksiid suure tõenäosusega ehitub CdS kristallvõresse, moodustades 
kaadmiumhüdroksisulfiidse tahke lahuse kui kompenseeritud pooljuhi, mille võre on 
CdS suhtes pinge all. Termilisel käsitlusel hüdroksiidgrupp laguneb, eriti 
intensiivistudes 300 ̊ C piirkonnas, millega kaasneb veeauru eraldumine, kristalliitide 
pragunemine ning Cd liia tekkimine. Tulemuseks on hüdroksisulfiidi 
transformeerumine kaadmiumoksisulfiidseks tahkeks lahuseks. Cd ülekaalu toimel 
väheneb kaadmiumi vakantside kontsentratsioon nii, et ND>>NA, mistõttu (OH)S

+ ja 
ClS

+ defektid kui madalad doonorid emiteerivad elektronid juhtivustsooni, 
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suurendades elektronide tihedust kiles juba madalatel lõõmutustemperatuuridel. 
Lõõmutustemperatuuri kasvamisel elektrijuhtivus CdS kiledes hakkab vähenema, 
mis on ühest küljest seotud Cd väljadifusiooni intensiivistumisega ja teisest küljest 
isovalentse hapniku kontsentratsiooni jätkuva suurenemisega, mis soodustab 
kaadmiumi vakantside kontsentratsiooni tõusu väävli alavõre kokkutõmbumise arvel. 
Ka hapniku väljadifusioon suureneb, mistõttu võre konstant ja keelutsooni laiuse 
väärtused puhtale kaadmiumsulfiidile taastuvad ning CdS võre läheb üle 
heksagonaalse ja kuubilise vahepealsest kuubilisse struktuuri.  
     Lõõmutusgaasi iseloom ei muuda muutuste trendi CdS kiledes, aga mõjutab 
hapniku jääkide eemaldumist. Lõõmutusprotsessid õhus ja lämmastikus tekitavad 
CdS kiledes stabiilse oksisulfiidse tahke lahuse. Lõõmutamine vesinikus eemaldab 
täielikult oksiidid ja lenduvad lisandid nagu kloor, andes puhta kõrge takistusega ja 
sfaleriitse struktuuriga CdS kile. Hapnik isovalentse lisandina CdS võres soodustab 
kaadmiumi vakantside suuremat kontsentratsiooni ja on olulise mõjuga CdS/CdTe 
päikesepatarei omadustele. Õhus eellõõmutatud CBD CdS rakendamine CdS/CdTe 
päikesepatarei tehnoloogias on soodsaim võrreldes teiste gaasiliste keskkondadega 
tänu aktiivsete oksiidide tekkimisele kile pinnal, mis soodustavad CdCl2 juuresolekul 
vaba väävli sisalduse suurenemist sulandajas ja intensiivistavad massiülekannet nii 
kile paakumisprotsessis kui ka efektiivse siirde moodustumisel. 
     Termiliselt käsitletud CBD CdS õhukeste kilede struktuursete, optiliste ja 
elektriliste omaduste süstemaatiline muutumine võimaldas kirjeldada 
lõõmutusprotsessi füsikokeemiat. Me näitasime, et lõõmutuse temperatuuri, aja ja 
keskkonna varieerimine on oluline tehnoloogiline vahend CdS õhukeste kilede 
omaduste kontrollimiseks. Kuna CBD CdS kile omadused muutuvad drastiliselt juba 
i-ZnO/ZnO:Al katoodpihustamise madalatest kuni CdTe sadestamise kõrgete 
temperatuurideni, siis käesoleva töö tulemused on väga olulised nii CIGS kui ka 
CdTe päikesepatareide tehnoloogiate arendustele. 
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PAPER II

N. Maticiuc, J. Hiie, T. Potlog, V. Valdna, A. Gavrilov, Influence of annealing in H2 
atmosphere on the electrical properties of thin film CdS, Mater. Res. Soc. Symp. 
Proc. 1324 (2012) 69. 
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