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Terms & Definitions

Artificial intelligence is the study of how to produce computer programs that havesome of the qualities of the humanmind. For example, the abil-ity to understand language, recognize pictures, solve problems,and learn [57].
Clinical vs. medical There are many definitions for the words clinical and medical.For this research, we see ’clinical’ as everything that is practicedon the patient in clinical conditions, i.e., diagnosis, treatment, orrehabilitation. ’Medical’ refers to the much wider domain that,besides clinical activities, includes other activities that have aconnection with human health, for instance, biomedicine, ge-netics, or healthcare technology.
Digital Decision Sup-port System (DDSS) is a computer-based system that brings together informationfrom a variety of sources, assists in the organization and anal-ysis of information and facilitates the evaluation of assumptionsunderlying the use of specific models [67]. Sometimes also re-ferred to as Clinical Decision Support System (CDSS).
Framework is a systemof rules, ideas, or beliefs used to plan or decide some-thing [72].
Incidence vs. preva-lence Incidence is the probability of occurrence of amedical conditionin a population during a specific time period while prevalence isthe proportion of a population affected by a medical conditionat a specific time.
International Classi-fication of Diseases,10th Revision (ICD-10)

is a classification and coding toolmaintained by theWHO. It con-tains codes for diseases, disease descriptions, and symptoms.

The Diagnostic andStatistical Manual ofMental Disorders,Fifth Edition (DSM-5)

is a commonly used taxonomic and diagnostic tool for mentaldisorders published by the American Psychiatric Association [6].Compared to the ICD, the DSM is only focused on psychiatricdisorders.
Symptoms are single representations of a disease. Several symptoms formthe syndrome. One symptomcould be the same for different dis-eases. Though, a bundle of symptoms refers to a syndrome thatis specific in cases where all necessary symptoms are present.
Disease vs. disorder Disease is an objective, measurable pathological process or find-ing of a person which is described according to specific symp-toms and pathomorphologies in defined taxonomies. Disorderrefers to irregularities, disturbances, or interruptions in a per-son’s health condition, somatic or psychological, which are ob-servable but difficult to measure objectively. In mental health,the term disorder is often preferred and also used by ICD-10 andDSM-5. 11



Summary
This research summary is structured as follows. In Sect. 1, I establish the motivation, pro-vide the problem statement behind this work, give an overview of the state of the artand related work (based on publications [I], [II] and [III]), and state the research questions(RQs) addressed. In Sect. 2, I provide an overview of the research methodologies used,leading to the contributions made by this work, which are described in Sect. 3 (based onpublications [I], [II] and [III]) and applied in Sect. 4 (based on publications [IV], [V], [VI]and [VII]). Related work, contributions, limitations, and further research are discussed inSect. 5, and the conclusion can be found in Sect. 6.
1 Introduction
1.1 Research Relevance and Medical Background
As the leading cause of years lived with disabilities, undiagnosed psychiatric disorders notonly induce avoidable suffering [84, 81], but also impact society at large [41]. In 2010,diseases of the brain accounted for €461 billion in healthcare costs in Europe [36]. Forundiagnosed depression alone, the quality-adjusted life years (QUALYs) lost amount to$9,950 per affected citizen in the US [83]. Diseases and disorders of the brain are, with anannual prevalence of about 38%, very common [84]. Hence accurate diagnosis and effec-tive treatment of those diseases have a high impact on our global wellbeing. Additionally,prevalence has not decreased over the years, showing that current healthcare systemsare not addressing this issue adequately [81].

The following paragraph describes what the clinical process for diagnosing psychiatricdisorders looks like in most European countries. The general practitioner (GP), also calledfamily physician, is often the first point of contact for people who are feeling unwell. TheGP examines the patient and makes an initial diagnosis. If a psychiatric disorder is sus-pected, the GP typically refers the patient to a specialist like a psychologist or psychiatristfor confirmation of the diagnosis and initiation of treatment.
In parallel, the documentation process is started. For the easier handling of diagnosisdata in IT systems, diagnoses are encoded based on disease classification systems like theInternational Classification of Diseases, 10th Revision (ICD-10)3. An ICD-10 code consistsof alphanumeric characters which clearly identify a disease. The ICD has a hierarchicaltree structure where each level in the tree adds additional information or a specificationto the disease (category). As an example, the code F33.2 can be parsed from left to rightwhere F codes all mental and behavioral disorders, F3 Mood [affective] disorders, F33 Re-current depressive disorder, and F33.3 "Recurrent depressive disorder, current episodesevere without psychotic symptoms". The coding responsibility generally lies with thephysician but is often outsourced to specialists or automatized. In most countries with apublic health insurance system, those coded diseases or medical interventions are thendigitally transmitted to the insurance provider for billing. Additionally, medical profes-sionals create documentation that is saved in the physicians’ electronic medical records(EMR). These data consist of structured data, like vital signs, as well as unstructured data,like free text or medical images. Often, documentation in an unstructured format is pre-ferred because it is easier and faster for the healthcare professional compared to fillingin structured forms. Depending on the eHealth maturity of the country, EMR data canthen be pushed into a central electronic health record (EHR) of a national digital healthplatform (DHP). There, data are mostly saved based on international standards like HL7
3https://icd.who.int/browse10/
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CDA4, DICOM5, LOINC6, and SNOMED-CT7.We often perceive the way humans work as the gold standard. In the medical domain,especially in psychiatry, some evidence shows that this "gold standard" is severely flawed.Patients are not treated according to medical guidelines [56], and diagnostic accuracy isgenerally low [1, 3, 38]. Mitchell et al. reported that only 52.7% of people with depressionare correctly diagnosed [60]. General practitioners (GPs), who are often the first pointof contact for patients entering the healthcare system, only have a 50.1% (95% CI: 41.3to 59.0) sensitivity for diagnosing depression [60]. As another example, the number ofwrongly diagnosed people with bipolar disorder is about 69% [74]. Patients stay with nodiagnosis or the wrong diagnosis for approximately 5 to 7.5 years [62].Symptoms that could indicate psychiatric disorders are typically very general and dif-ficult to distinguish from other physical illnesses like sleep disorders, headaches [52], orpain in the musculoskeletal system. Moreover, the symptom patterns sometimes spanover a large number of doctors’ visits. This makes symptoms difficult to notice. Whileother medical conditions can be diagnosed using lab tests, medical imaging, or otherquick and specific diagnostic tools, biomarkers to diagnose psychiatric disorders are stillfar away [51]. The recommended way to diagnose psychiatric illnesses is based on ques-tionnaires and assessment scales [4]. However, in order to administer them, a trainedmedical professional who takes between 10 and 30 minutes [9, 39, 61] is needed. To putthis into perspective, an average GP visit lasts approximately 11 minutes [65], even visits tospecialist doctors, like psychiatrists, only last between 19 and 21 minutes [70]. Addition-ally, the current "state of the art" diagnostic methods in psychiatry date back to the early1960s [9, 39]. However, the exact definition of mental disorders, especially the distinctionbetween normality and psychopathology is still a subject of debate under medical profes-sionals [76]. Because of the continuously changing understanding of what is consideredto be "pathological", together with the development of society in general, the contentof those questionnaires might not reflect the current state of the art anymore. A primeexample is homosexuality, which was considered a psychiatric disease by the AmericanPsychiatric Association at the time some of the currently used diagnostic tools were cre-ated [25]. Those challenges influence the fact that the clinical method of diagnosis, wheredecision-makers have no universally agreed processes or taxonomies to compile and eval-uate findings for diagnosis and treatment [23], is frequently used. Nevertheless, the ac-tuarial method of diagnosis, which eliminates the human judge and is solely based onempirically established relationships between data and the decision to diagnose, shouldbe preferred [58, 73, 23]. The situation of the high number of wrong ormissing psychiatricdiagnoses could be improved using the actuarial method [73].
1.2 Artificial Intelligence & Decision Support – Status Quo
A prime example of actuarial thinking is represented through Artificial Intelligence (AI). AIresearch was founded as a research field in the 1950s and was largely based on the ideasof Alan Turing and John von Neumann [28]. Since then, the domain has survived severalso-called AI winters, where, after a period of fast-growing enthusiasm, people becamediscouraged in the technology due to the lack of practical results [37]. From 2009 untilnow, AI has been discussed with an increasingly optimistic tenor [28]. More and moreAI successes have been triggered through the increase in affordable computing power

4http://www.hl7.org/5https://www.dicomstandard.org/6https://loinc.org/7https://www.snomed.org/
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and data storage capabilities, but also because of the introduction of deep learning [48].Nowadays, AI plays a key role in many domains by boosting efficiency through processautomation and data-driven decision-making, and by uncovering previously hidden pat-terns and facts from data more accurately [5]. According to a global McKinsey survey, AIadoption has more than doubled since 2017 [20]. The companies surveyed by McKinseyclaim that AI accounted for an increase of more than 5% in their earnings before interesttaxes (EBIT) [20]. Moreover, AI also reached the consumer space. The recent hype aroundLarge Language Models, especially Generative Pre-Trained Transformers like ChatGPT, isjust one of many, some may allege, success stories of AI. AI in health care is wrapped inso-called Digital Decision Support Systems (DDSSs). DDSSs are AI-based systems that aidclinicians in their decision-making processes to improve healthcare delivery [78]. In theearly 1970s, rule-based expert systems like INTERNIST-I were developed as the first DDSSs[55]. However, the uptake of AI in medicine has been slower compared to other domains,largely because digital data availability has only started to increase in recent years [5].One groundbreaking milestone was IBM’s Watson winning the quiz show Jeopardy! in2011. Based on Watson’s backward reasoning and natural language processing capabil-ities, several applications for AI in health care have been envisioned [29, 59], and someeven implemented [7, 10]. BesidesWatson, researchers proposed DDSS technology basedon other AI algorithms for many domains like radiology [46], dermatology [26], or internalmedicine [82]. It was argued as early as in 1987 that AI would take over the intellectualfunction of physicians [68]. In 2016, the announcement was made that it no longer makessense to train radiologists [19]. However, as of 2023, these predictions have not cometrue. AI in health care still seems to be overpromised and underdelivered [77, 8, 79]. Fur-thermore, for the domain of psychiatry, based on the numbers presented in Sect. 1.1, AIseems to have not yet brought about a large improvement in the situation of patientsor physicians. To further investigate the current state of the art in research on DDSSs inpsychiatry, Sect. 1.3 presents a systematic overview of the current state of AI research inpsychiatry.
1.3 State of the Art of DDSSs in Psychiatry – Literature Overview
This section presents the summary of two systematic literature reviews (SLRs) carried outby the author and published in publication [I] and publication [II]. For this, 585 research ar-ticles about DDSS in Psychiatrywere analysed. Publication [I] presents an SLR about DDSSsfor post-traumatic stress disorder (PTSD) to investigate the state of the art in DDSSs for aspecific psychiatric disorder; publication [II] presents an SLR about DDSSs in psychiatry ingeneral. The main outcomes relevant to this work were the following:

• DDSS prototypes in the research articles have generally low maturity levels (as de-fined in Sect. 3.7) and do not demonstrate clinical value in most cases.
• The DDSS prototypes therefore mainly focus on decision algorithm development.Hence, the DDSS evaluation also focuses on algorithmic accuracy metrics (e.g., ac-curacy, AUC, APURC).
• Sample sizes of training and testing data in current DDSS research are often low(median of 151.5 records).

Based on those findings, two major research gaps were identified. One in terms of dataand decision technology. Figure 1 presents the sample sizes and corresponding accuracyof the decision technologies included in the literature reviews carried out. It can be seenthat studies with high sample sizes are largely missing (six studies based on 5972, 11,540,
14



14,929, 45,388, 89,840, and 89,840 samples have been removed as outliers from the plotfor better readability). However, a high sample size is vital to assess whether the AI al-gorithms’ performance is one reason for the low maturity rates found in the literaturereview. The low sample sizes on which algorithms have been trained and evaluated alsomake the external validity of the claimed success rates of many DDSS algorithms ques-tionable because of potential overfitting or selection bias in the data [40]. Evaluation ofdecision technology on large, real-world, realistic datasets is needed to be able to indi-cate whether AI technologies deliver adequately high accuracy metrics to improve thesituation in psychiatry.

Figure 1: Scatter Plot DDSS Sample Size vs. Accuracy

The second research gap is the lack of holistic research, which takes into considerationnot only a specific area like the algorithmic part of the decision technology, but also ad-ditional factors like real-world data availability, medical domain knowledge, clinical pro-cesses, user interaction, or validation of the whole system. The analysed studies rarelyapplied a systematic approach that takes into consideration all or several of the above-mentioned factors. This narrow focus leads to the development of DDSS fragments, whichare created in isolation and under "textbook" conditions. Such artifacts often do not reachhigher maturity levels because they start to fail under real-world conditions since the ar-tifact is not connected to the medical or business process. The lack of a holistic approach,ultimately, could be one reason for the low adoption rate of DDSS research in medicalpractice.
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1.4 Research Questions
The aim of this work is to improve the development process of DDSSs in medical prac-tice. Therefore, this thesis fills two major research gaps: first, the lack of a systematicapproach and well-described knowledge regarding the theoretical and technological as-pects of DDSSs, which leads to the second, low adoption rates. The primary researchquestion (RQ) of this work is "How can the design and development of AI-based DDSSs in
psychiatry be improved?". To provide a clear scope and decrease complexity, this RQ wassplit into the three sub-research questions stated below. Table 1 presents the mapping ofeach sub-RQ to the corresponding publications that contribute to answering it.

• sub-RQ1: What are the current obstacles hindering the adoption of AI-based DDSSsin psychiatry?
• sub-RQ2: How can DDSSs bring value to clinicians?
• sub-RQ3: Which AI approaches are best suited, comparatively, to diverse scenariosof DDSSs implementation in psychiatry?

Table 1: Mapping of associated RQs and publications

Research Question PublicationsRQ [I], [II], [III], [IV], [V], [VI], [VII]sub-RQ1 [I], [II], [III], [IV]sub-RQ2 [I], [II], [III]sub-RQ3 [V], [VI], [VII]

2 Research Methodology
This summary is composed based on 7 original, peer-reviewed research articles (4 jour-nal articles and 3 conference papers). Publications [I] and [II] contribute through analysisof the state of the art of DDSS in psychiatry and propose a novel artifact designed as aconceptual framework to improve the design and development of DDSSs and ultimatelyraise adoption rates. The overall research process is further described in Sect. 2.1, and theframework creation in Sect. 2.2. Publication [III] shows how the framework can be appliedand then contributes by critically evaluating the framework and adding practical insightsthrough a focus group interview. The evaluation method is further described in Sect. 2.3.Publication [IV] evaluates the data quality of data sources for AI-based DDSSs. Lastly, Pub-lications [V], [VI] and [VII] propose and evaluate DDSS decision technology prototypes us-ing large, real-world data from the Estonian Health Insurance Fund (EHIF). Publication [V]contributes by showing amachine learning approach, [VI] a rule-based approach, and [VII]a deep learning-based approach for DDSS decision technology. The method of prototypedevelopment is described in more detail in Sect. 2.4. In order to strengthen the internalvalidity of the presented results, multiple sources of evidence were used to triangulatethe conclusions of this research [24]:

• Literature to assess the current state of the art.
• Subject matter experts and the authors’ own experience to better understand thepractical problem and verify potential solutions.
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• Medical data e.g., from electronic health records (EHR) from the Estonian HealthInformation System (EHIS) and databases like the data warehouse of the EHIF, todesign and evaluate systems.
A graphical overview of how the publications are linked to the overall outcomes of thisresearch is shown in Figure 2.
2.1 Research ProcessFor the work presented in this thesis, the design science research paradigm proposed byHevner et al. was utilized [43]. Design science is a systematic methodology for developingnovel artifacts (e.g., technology or frameworks) that cope with real-world problems. Thedesigned artifact needs to solve a specific problem that is rigorously defined, formally rep-resented, coherent and internally consistent, and comprehensively evaluated [42]. Designscience has been widely accepted as an information systems research method [42, 47].Based on the above-mentioned three pillars, I developed the design science research pro-cess shown in Figure 2, resulting in the framework described in Sect. 3 and the prototypesdescribed in Sect. 4.

Figure 2: Research process. The figure shows the research process of the work together with the
corresponding publications (in italics)

2.2 Quantitative and Qualitative Analysis – Framework DesignWe used a systematic literature review based on the guidelines from Kitchenham & Char-ters [49] and the PRISMA guidelines [53] to quantitatively explore the state of the art ofDDSSs in psychiatry. Based on those results, we further used thematic analysis [22] toaggregate the results into a conceptual framework for DDSSs (see Figure 3).
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2.3 Evaluation
The evaluation of the framework has been carried out on the basis of two main methods:

• We used a focus group [64] with nine experts on DDSSs to validate the literature-derived framework. Additionally, these experts were able to bring in domain knowl-edge and practical experience tomake sure that the framework is not only based onscientific literature but also serves as a tool that can be applied in real-world DDSSdevelopment and evaluation scenarios. Here, the triangulation based on the useof evidence like scientific literature, domain expertise obtained through the focusgroup interview, and the expertise of the authors strengthens the internal validityof the proposed artifact.
• Additionally, a scenario-based evaluation [43] was carried out to demonstrate theutility of the proposed artifact. Based on this scenario, each dimension of the frame-work was explained to demonstrate its usefulness. The scenario is described inSect. 3.

2.4 Prototype Development
As part of this work, DDSS prototypes were developed (see Sect. 4). We investigated thethree possible decision technologies: traditional machine learning-based [V], rule-based[VI], and deep learning-based [VII]. Most DDSS research has only been evaluated on smalldatasets [I], [II]. To obtain trustworthy results on how well these three decision technolo-gies perform, they were applied to real-world data. The machine learning and rule-basedprototypes were developed based on diagnosis, diagnosis date, and demographic data(birth year, sex) from the EHIF’s data warehouse. We obtained anonymised informationfrom 60,115 adults (18 years or older) with a total of 904,821 ICD-10 coded diagnoses be-tween 2018 and 2019. The data consist of all publicly insured people in Estonia with adepression diagnosis, either single episode (F32) or recurrent (F33), and an equally-sizedrandomsample of peoplewith other psychiatric disorders. The percentage of insured peo-ple in Estonia is above 93.63% [27], so we are confident that our dataset is representativeof the whole Estonian population. Since the deep learning-based prototype was devel-oped last, more recent data were included. The used dataset consists of 812,853 patients(all people with a psychiatric disorder as well as a random sample without a psychiatricdisorder) with a total of 26,973,943 diagnoses between 2018 and 2022. The ResearchEthics Committee of the National Institute for Health Development (TAIEK8) approved theresearch design and data usage for the prototype development (Decision No. 1148).
3 The DDSS Framework
As described in Sect. 1.3, artifacts that do not take into consideration a broader perspec-tive of their domain have a low chance of reaching high maturity levels because they failunder real-world conditions. The developed DDSS framework serves as a boilerplate fora systematic approach to DDSS development and analysis, or in other words, a system-atic AI approach to psychiatry. A detailed explanation of the framework can be found inpublication [III]. In the following subsections, the framework dimensions are explainedbased on a specific DDSS scenario. Currently, doctors are struggling to diagnose psychi-atric disorders in a timely manner. As mentioned in Sect. 1.1, GPs display low sensitivitywhen it comes to diagnosing mental disorders [60][74]. People go undiagnosed for 5 to7.5 years on average [62]. To diagnose people faster and more accurately, we propose a

8Tervise Arengu Instituudi inimuuringute eetikakomitee
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Figure 3: Developed DDSS Framework for Systematic AI Support from [III]
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DDSS that utilizes previous diagnoses of patients to give an indication as to whether thispatientmight have an underlying, currently undiagnosed psychiatric disorder. An examplepatient journey could look like this: The patient comes to a family physician complainingof headaches. The patient gets pain medication prescribed, and an ICD-10 coded diagno-sis like R51.9 (Headache, unspecified) is entered into the physician’s IT system for docu-mentation and billing purposes. A month later, the same patient comes to the GP withconstant, mild back pain. The patient gets a prescription for an ointment and the diagno-sis M54.5 low back pain. When the physician enters this diagnosis, the proposed DDSS,which works in the background and screens all past medical events entered into the pa-tient’s EHR, understands that these symptoms the patient described could be consistentwith an overlooked psychiatric disorder. It raises an alert in the physician’s system tomakethem aware of a potential underlying psychiatric disorder and shows the disease patternsthat led to this conclusion. The physician can now validate the suggestion and, if needed,refer the patient to a specialist to confirm and treat the psychiatric disorder.Please note that this scenario description has been simplified to be concise for thissummary. Realistically, the disease pattern leading to the DDSS alert would bemuchmorecomplex and span over more visits, potentially even at different healthcare providers.However, the provided example is sufficient to demonstrate the main idea and highlighthow to use the proposed framework for systematic AI support (see Figure 3). Each of thefollowing subsections now applies one dimension of the framework to the scenario.
3.1 Data
The data dimension describes the data needed for a DDSS to function. Important factorsare the type of data that should be used and the quantity needed in the right qualityfor training, evaluation and results output. Since research on lowmaturity levels typicallyuses public or other easily available datasets, it is crucial to investigatewhether these dataare also available in the same structure, quality and quantity during the clinical processin which the DDSS should be applied. For the described scenario, the usage of medicalclaims data has been chosen. This type of data is easily available in large quantities andsufficient quality in most countries, and covers a large part of the population [IV]. Medicalclaims data are typically structured and consist of demographic information (ID, sex, birthdate, etc.) as well as one or more coded diagnoses or interventions. In our scenario, thecoding system ICD-10 is used.
3.2 Technology
The technology dimension describes, based on three categories, how a DDSS is imple-mented:

• Decision technology is the algorithm that powers the decision-making of the DDSS.Based on the findings of publication [I] and publication [II], this is the most re-searched component of DDSSs. Prototypes for the proposed scenario of the de-cision technologies – machine learning [V], rule-based [VI], and deep learning [VII]– are shown and explained in Sect. 4. Additionally, hybrid approaches with a mix ofdecision technologies are possible.
• Interaction technology describes how the system interactswith different user groupsand/or the clinical process. Examples could be application programming interfaces(APIs), graphical user interfaces (GUIs), or sensory input from videos or speech. Inthe chosen scenario, the interaction technology could be the available IT system ofthe GP, the platform of the health insurance fund or the patient summary tab of
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the national EHR system. When the physician opens the patient’s data, the DDSScan automatically raise a flag in the case of an assumed undiagnosed psychiatricdisorder to make the doctor aware of it. This process has already been positivelyevaluated for the Estonian Drug-Drug Interaction System [50].
• Data collection technology defines how the data the DDSS needs for the decisiontechnology are gathered. Since medical claims data are generated from the GP’sIT system and transferred to the EHIF and NHIS, for billing and documentation pur-poses, data collection can be done directly from their data storage using ExtractTransform Load (ETL) technologies. No additional data capturing is needed.

3.3 User GroupThis dimension deals with the users involved with the DDSS and how the DDSS should beinfused into their work processes to provide maximum value. In other words, this dimen-sion should analyse what a DDSS needs to do, at which step of the clinical process andin which way in order to support medical professionals. The suggested user group in thisscenario is GPs, as they are most often the first point of contact for patients entering thehealthcare system. Therefore, most patients can be reached like this. Since the proposedDDSS uses only data generated during the diagnosis process, nomajor changes to the clin-ical process for data capturing are required. Furthermore, in the case of a positive alertfrom the DDSS, no major process changes are required. The GP can consider the DDSSoutput as just another factor in the decision-making process.
3.4 Medical DomainThe medical domain dimension deals with the medical background knowledge needed inorder to provide a functioning DDSS that brings real value tomedical professionals. Exam-ples include the decision a system should support in order to improve the process as wellas the way knowledge is transferred to the DDSS. In other words, what the DDSS learnsand how. For the proposed DDSS scenario, the medical background knowledge neededis in the areas of psychology, psychiatry, and family medicine. As shown in Sect. 1.1, themedical background investigation shows that the use case contributes to solving an actualproblem in the domain. The learning of the DDSS is based on past medical diagnoses orinterventions noted in medical claims data, which is a clinically valid data source. If theprocess of creation of these data is investigated, several potential reasons for bias can befound. For example, since the entered diagnosis is used for billing, a monetary incentiveto put specific diagnoses over others is created. These potential biases introduced by theclinical process need to be understood, closely monitored, and mitigated.
3.5 DecisionThe decision dimension deals with the output of the DDSS and how this output is used. Inthe described scenario, the decisionwould be an assessment of the current patient status.Since the goal is to detect psychiatric disorders quickly, on a large number of patients, andas early as possible, it can be classified as a screening use case.
3.6 ValidationThe validation dimension deals with the measurements of success of DDSSs. In otherwords, how is the DDSS evaluated to ensure that it works and brings benefit. There aremany types of validation, such as accuracy, user acceptance, efficacy, compliance, security,or legal validation. For the described scenario, the decision technology was evaluatedusing algorithmic accuracy, with an additional focus on practicality and user acceptance.
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3.7 MaturityTo assess the DDSS’s development status and the transition of DDSS research into clinicalpractice, a novel maturity scale has been developed. It is based on technology readinesslevels from NASA9 but has been adapted by us in publication [I] to better suit DDSSs inhealth care (see Table 2). Typically, the lower the maturity level, the fewer dimensions of
Table 2: DDSS Maturity Levels

Level Description1 Idea without implementation2 Implementation without real-world interaction (algorithm development)3 Implementation with real-world interaction but without patient intervention(no real intervention on a patient takes part based on the output of the DDSS)4 Fully functioning prototype, system triggers real-world action (e.g. clinicaltrial)5 Operational product (at least one adopter, certified if required)6 Locally adopted product7 Globally adopted product (transformational)
the proposed DDSS framework are considered in DDSS research. To increase the matu-rity level of a proposed artifact, a broader and more detailed analysis of our frameworkdimensions should be carried out by DDSS researchers to ensure that the necessary infor-mation for a successful system adoption is taken into consideration. Our proposed DDSSprototype for the mentioned scenario currently has a maturity level of 2. The clinical trialto reach level 4 is in planning.
4 Framework Application – Prototype Design
The following section describes the prototypes of DDSS decision technologies that havebeen implemented and evaluated. Decision technology of DDSSs can be implementedusing three main approaches (or a combination of those): Machine learning as describedin Sect. 4.1, rule-based as described in Sect. 4.2, and deep learning-based as described inSect. 4.3.
4.1 Machine LearningThis subsection summarizes the results of publication [V]. Here, the results of the publica-tion are used to evaluate traditional machine learning (ML) methods as decision technol-ogy for the proposed DDSS scenario. In general terms,ML has been defined by [32] as "thesystematic study of algorithms and systems that improve their knowledge or performancewith experience". Please note that deep learning algorithms, as a subset of ML, also meetthis definition but are excluded in this section and investigated separately in Sect. 4.3. Toeffectively evaluate the most common traditional ML algorithms for classification tasks,AutoAI/AutoML was used. AutoAI uses technologies like Bayesian optimization, meta-learning, and ensemble construction to automate the ML life-cycle end to end (e.g., datapreparation, feature engineering, model selection, pipeline optimization, hyperparame-ter optimization) [31]. Ideally, AutoAI should therefore be able to take a given dataset,analyse it, automatically transform and engineer features, test the classifiers, optimizethe hyper-parameters, and return the best ML model for the downstream task. Based on

9https://www.nasa.gov/directorates/heo/scan/engineering/technology/
technology_readiness_level
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this technology, we used the dataset described in Sect. 2.4 to evaluate the accuracy of15 classifiers (with 14 feature engineering techniques and 4 data pre-processing methods[30]) for predicting psychiatric disorders. We did not apply any data pre-processing ormanual feature engineering before feeding the data to the AutoML library Auto-Sklearn.Detailed information on Auto-Sklearn can be found at [30, 31]. The average accuracy ofall runs of the best classifier ensemble selected by Auto-Sklearn for the diseases and dis-ease category shown in Table 3 is 0.6, 95% CI [0.596, 0.604], with a F1-score of 0.58, aprecision of 0.61, and a recall of 0.56. According to our literature survey, the average ac-

Table 3: Auto-Sklearn classifiers – average performance

Disease Precision Recall F1-Score Accuracy Number of Test Data RecordsF32 0.60 0.56 0.58 0.59 4331F33 0.63 0.57 0.6 0.61 4325F43 0.59 0.63 0.61 0.59 1195F 0.63 0.47 0.53 0.60 17194

curacy of DDSS algorithms in psychiatry is about 82.8% [16], i.e. much higher than in ourresults. We assume that this is because traditional ML algorithms often struggle to de-liver satisfactory results when applied to complex and large datasets due to their limitedcapacity to capture intricate relationships within the data and handle high-dimensionalfeature spaces. Moreover, the inherent heterogeneity and noise in healthcare data canfurther exacerbate these limitations.
4.2 Rule-based

This subsection summarizes the results of publication [VI], which describes how Associa-tion RuleMining (ARM) [44] can be used to create rule candidates for the knowledge baseof a rule-based DDSS. ARM finds associations and correlations throughout large sets ofdata and provides information in the form of ’if-then’ statements [71]. For this research,the Apriori algorithm [2] was used to mine association rules based on the dataset de-scribed in Sect. 2.4 to find out which disease codes often co-occur. Table 4 presents theassociation rules that have a specific psychiatric diagnosis as a consequent. Table 5 trans-lates the ICD-10 codes of Table 4 to the corresponding textual description. We also usedclustering based on the hierarchical structure of the ICD-10 codes to see if there are dif-ferences in certain granularity levels. Indeed, a higher number of interesting associationrules were found by clustering all psychiatric disorders into one group. The table with de-tailed results can be found at [VI]. This symbolic AI approach of building a DDSS basedon rules found using ARM requires only limited computing power, and decisions basedon rules are fully transparent. This full transparency allows for an easy impact analysis onthe influence of certain rules to an output. While re-training a machine or deep learningmodel can lead to unpredictable outcomes, the impact of fine tuning or changing the ruleson the system can easily be assessed. However, rules need to be evaluated and selectedmanually from all the rule candidates found. This increases human involvement in theDDSS knowledge base creation, which leads to high costs and time for knowledge acqui-sition andmaintenance. Furthermore, rules based on this ARM approach do not take intoconsideration the time dimension, sequence, or frequency of patients’ visits. Therefore,the decision technology has a limited ability to find deeply hidden disease or behaviouralpatterns in data.
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Table 4: Association rules of ICD-10 codes without F-clustering

# antec
eden

ts
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e
lift lever

age
conv

iction

1 (I11) (F51) 0.1602 0.0586 0.0168 0.1051 1.7935 0.0074 1.05192 (M17) (F33) 0.0615 0.1861 0.0157 0.2553 1.3718 0.0043 1.09293 (K21) (F33) 0.0639 0.1861 0.0159 0.2490 1.3379 0.0040 1.08374 (G47) (F33) 0.0778 0.1861 0.0193 0.2479 1.3321 0.0048 1.08225 (R10) (F41) 0.0822 0.1976 0.0215 0.2621 1.3264 0.0053 1.08736 (K21) (F41) 0.0639 0.1976 0.0167 0.2604 1.3178 0.0040 1.08497 (G47) (F41) 0.0778 0.1976 0.0197 0.2537 1.2839 0.0044 1.07518 (N30) (F41) 0.0746 0.1976 0.0187 0.2506 1.2682 0.0039 1.07069 (G47) (F32) 0.0778 0.2110 0.0206 0.2644 1.2531 0.0042 1.0725

Table 5: Association rules without F-clustering (mapping table)

# antecedents count consequents count1 Hypertensive heart disease 33624 Nonorganic sleep disorders 109562 Gonarthrosis [arthrosis of the knee] 9471 Recurrent depressive disorder 599413 Gastro-oesophageal reflux disease 7350 Recurrent depressive disorder 599414 Sleep disorders 14677 Recurrent depressive disorder 599415 Abdominal and pelvic pain 6755 Other anxiety disorders 429906 Gastro-oesophageal reflux disease 7350 Other anxiety disorders 429907 Sleep disorders 14677 Other anxiety disorders 429908 Cystitis 6711 Other anxiety disorders 429909 Sleep disorders 14677 Depressive episode 53034

4.3 Deep Learning
This subsection summarizes the results of publication [VII], which evaluates different deeplearning approaches asDDSSdecision technology. Deep learning is a subsymbolic AImethodand is classified as a subset of ML. Deep learning uses several layers of artificial neu-ral networks to mimic the way the human brain learns. We investigated the accuracyof non-sequential models like logistic regression (LR) and feed forward neural networks(FNN), sequentialmodels like long short-termmemory (LSTM) [45] and convolutional neu-ral network [63] combined with LSTM (CNN-LSTM), and a gated recurrent unit [21] witha decay factor (GRU-decay), for predicting a psychiatric disorder. These were comparedagainst our own novel Att-GRU-decay deep learning model, which additionally uses a self-attention layer [80] to detect hidden patterns in the patient’s medical history that couldindicate depression. Additionally, the decay factor helps to model the irregular times be-tween events. We compare the average Area under the ROC Curve (AUC) and Area un-der the Precision-Recall Curve (AUPRC) scores obtained over 5-fold cross-validation. Allresults are reported in Table 6. Table 7 presents the specificity and sensitivity scores ofthe evaluated models. The attention layer of our proposed model allows visualizationof disease patterns which were relevant to the depression prediction. This explainabilitycomponent provides insight into how the network learns and why a certain output is gen-erated. Fig. 4 shows an example plot of the attention filter. Important to note is that theplot only shows disease patterns learned by the attention layer and does not provide com-plete explainability for the GRU-decay part of the model. The prediction accuracy of deeplearning not only outperforms all other approaches tested during this research, but ourproposed Att-GRU-decay model also outperformed the current state of the art. The rea-sons for this include the power of feature generation of deep learning algorithms, which
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Table 6: AUC and AUPRC scores on depression detection task over 5-fold cross validation (±v denotes
the standard deviation)

Models AUC AUPRCLR 0.813 ± 0.002 0.296 ± 0.003CNN-LSTM 0.849 ± 0.002 0.394 ± 0.009LSTM 0.848 ± 0.001 0.385 ± 0.005FNN 0.837 ± 0.002 0.374 ± 0.006GRU-decay 0.989 ± 0.001 0.972 ± 0.001Att-GRU-decay 0.990 ± 0.001 0.974 ± 0.002

Table 7: Specificity and sensitivity scores on the depression detection task

Specificity SensitivityThreshold
0.5 0.8 0.5 0.8ModelsLR 0.705 0.960 0.787 0.263CNN-LSTM 0.718 0.902 0.818 0.549LSTM 0.724 0.916 0.814 0.523FNN 0.714 0.911 0.810 0.528GRU-decay 0.995 0.999 0.939 0.926Att-GRU-decay 0.985 0.999 0.955 0.944

limits the amount of human intervention in data pre-processing and feature engineer-ing, and the capabilities of more effective learning from complex data. Additionally, thebest performing deep learning method in our evaluation took into consideration not onlydisease patterns but also the elapsed time between successive diagnoses. Additionally,the used dataset, which contained 26,973,943 diagnoses of 812,853 persons, strengthensthe research results. One downside is that even though the attention filter allows for ex-plainability of learned disease patterns relevant to the model output to a certain extent,full transparency as with a rule-based approach is not given. It is challenging to explainthe contribution of each artificial neuron in the deep learning network and its individualimportance in the downstream task. Additionally, massive data volumes for training arerequired since deep learning systems learn gradually. This training process is complex anddemands a lot of computational power. A detailed analysis of the challenges in applyingdeep learning can be found at [66].
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Figure 4: Example Attention Filter

5 Discussion
5.1 Outline of Research Findings and Evaluation
DDSSs in psychiatry have low adoption rates, and research generally has low maturity.This has been found in both publication [I], for DDSSs for PTSD, as well as in publication[II], for DDSSs for psychiatry as a whole. The average maturity level of research is 2.6, somostly based on pure algorithm development. Additionally, the development and eval-uation of these algorithms has mostly been done on small datasets (median sample sizeof 151.5). This raises questions about the trustworthiness of the claimed high accuracyrates of algorithms. Additionally, the clinical component, like the availability of data inthe clinical workflow, the usefulness of the DDSS for clinicians, or user acceptance, hasbeen widely neglected. All this influences low adoption rates. To overcome this, we pro-pose a systematic approach for AI support in psychiatry that provides guidance on the ITperspective in addition to the clinical perspective. The framework created is based on (i)literature (publications [I] and [II]), (ii) expert knowledge obtained through a focus groupinterview (publication [III]), and (iii) practical experience from designing DDSSs based onreal-world data (publications [IV], [V], [VI], and [VII]). This triangulation also allowed for amore thorough evaluation. While the focus group interview with a diverse group of nineDDSS experts evaluated the framework against practical usefulness, the scenario-basedevaluation showed how the framework can actually be applied to raise DDSS adoptionrates.Data quality for AI-based DDSSs was evaluated in publication [IV] to get a better un-derstanding of which features from what data source can be used for DDSS development.To find out which AI approaches are best suited to DDSS implementation, traditional ma-chine learning-based [V], rule-based [VI] and deep learning-based [VII] approaches wereinvestigated. These decision technologies were evaluated based on a real-world datasetconsisting of longitudinal diagnostic data of nearly the whole Estonian population, includ-ing those suffering from a psychiatric disorder as well as a random, healthy sample. Thedeep learning approach based on our novel AttGRU-decay model outperformed not onlythe other approaches with an AUPRC of 0.974 but also the current state of the art. Addi-tionally, our proposed rule-based approach showed promising results due to its flexibility,
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its high explainability, and the transparency of the output.
5.2 Summary of Related WorkMany frameworks in the area of digital decision support have been published. One of themost cited domain agnostic frameworks for DDSS development is [75]. While they give acomprehensive general overview of the components of DDSSs, specifics from the health-care domain are omitted to maintain a broader scope. One example of a domain-specificframework for the field of health care is the nonadoption, abandonment, scale-up, spreadand sustainability (NASSS) framework [34], which has been cited frequently. However, theNASSS does not specifically deal with the challenges of AI in health care or addresses thepractical shortcomings of DDSS development so far. As stated by Greenes et al., coveringall aspects of decision support in health care in sufficient detail in a single overarchingmodel is challenging [33]. Additionally, theoretical models that can be utilized for a widerange of scenarios often lose their usefulness for applied work. Therefore, there is a needfor a multitude of frameworks for various aspects of the complex domain of decision sup-port in health care. As for the DDSS prototype design, a compelling overview of relatedwork on implementing DDSSs in psychiatry and a description of the existing shortcomings(like low maturity, low sample sizes, and a focus on pure algorithmic development under’textbook conditions’) can be found in publications [II] and [III].
5.3 Summary of ContributionGregor and Hevner propose that design science research, as used in this work, can resultin two broad areas of contribution, namely design artifacts and design theories [35]. Bothshould provide not only an acceptable solution to a real-world problem but also novel in-puts to knowledge [35]. In Sect. 3, we present the introduced framework for systematicAI support as design theory for designing useful DDSSs that create value in everyday clin-ical practice. This design theory has since been applied and tested by creating the DDSSprototypes described in Sect. 4. The prototypes can be seen as the design artifacts of thisresearch.Fromamore practical perspective, this research contributes to threemain areaswhichwere addressed by our research questions:

1. Pointing out the shortcomings of current DDSS research, namely the lack of inter-disciplinarity for DDSS design and development, resulting in a sole focus on the al-gorithmic part of DDSSs, unreliable accuracy metrics because of low sample sizesfor AI training and testing, and lowmaturity resulting in low clinical value of DDSSs.
2. Proposing and assessing systematic AI support based on our framework as a solu-tion to raise DDSS adoption rates and increase their clinical benefit.
3. Evaluating the current decision technologies that can power DDSSs based on largeamounts of real-world data; proposing a novel deep learning model that outper-forms the current state of the art.

5.4 Limitations and Implications for Further ResearchWe do not propose that the systematic AI approach solves all problems concerning lowadoption rates and low benefits of current DDSSs, but we see it as a step in the rightdirection in order to at least increase the maturity of prototypes from a technology pointof view. Due to the technology focus of the proposed framework, dimensions aroundfinancial issues, marketing, and policy and political questions were omitted. These areasalso have a high impact on DDSS success; therefore, further research is encouraged.
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Furthermore, the generalizability of the proposed systematic AI approach and DDSSframework is suggested as an area of future research. Additional research on the valida-tion of the proposed framework is encouraged aswell. Another scenario-based evaluationusing a successfully implemented DDSS like Duodecim’s Evidence-Based Medicine elec-tronic Decision Support (EBMEDS)10 in Estonia is in planning. In order to assess whetherthe proposed DDSS scenario with the described decision technologies has a positive im-pact on patient outcome and/or the overall clinical process, a randomized control trial isneeded. Applying the proposed decision technologies would raise the maturity level ofthe described DDSS scenario from 2 to 4.Additionally, we only did an exemplary evaluation of promising algorithms for AI-baseddecision technologies. Since our Att-GRU-decay model performed so well, detailed re-search about other decision technologies like logic-based expert systems or hybrid ap-proaches that combine symbolic and subsymbolic AImethodswas consideredout of scope.Depending on the randomized control trial results, the other decision technologies will beresearched further. Especially the fusion of deep learning’s ability to automatically extractintricate patterns from complex healthcare data with rule-based systems’ capacity to in-corporate domain-specific knowledge and enforce clinical guidelines holds high potentialfor enhancing DDSSs in health care.One other limitation of this work, which also holds potential for further research, isthat we only prototyped the data and decision technology dimension. Now, research onother domains of the framework is planned as part of TalTech eMed Lab’s strategy. Thedata dimension offers the potential for further research. Currently, EHR systems mostlyfocus on recording disease data (as the data used in this research). However, recordeddiseases are only an aggregation of symptoms. The aggregation of symptoms to one ormore diseases can bewrong or biased. Especially with the high number of undiagnosed ormisdiagnosed patients in psychiatry, the value of those data sources is questionable. Therecording of symptoms itself seems to be a potential way to overcome the data qualitychallenge. Unobtrusive data collection (e.g. from wearables) offers a less biased way togain insight into a patient’s health and mental status.
6 Conclusion
Psychiatric disorders have a large impact on patients as well as society at large. Neverthe-less, diagnostic accuracy remains low, leading to many people not receiving treatment foryears. The success of AI could not yet be replicated in the psychiatric domain. There is agrowing number of research articles proposing AI-based decision support, but maturity isgenerally low and research mostly focuses on the algorithmic part of DDSSs. Additionally,those AI algorithms are largely only trained and evaluated on small datasets. Low sam-ple sizes make their claimed high accuracy rates questionable in a real-life usage scenario.This research contributes by (i) proposing a framework to raise DDSS adoption rates basedon a systematic AI approach that takes into consideration the complete business processinwhich a DDSS should be applied, (ii) evaluating common decision technologies based ona large, real-world dataset to identify whether current AI algorithms are performing wellenough, and (iii) proposing a novel deep learning algorithm that outperforms the currentstate of the art.

10https://www.ebmeds.org/en/
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Abstract
Systematic AI Support for Psychiatry: A Framework on How to
Implement Decision Support Systems

Diseases of the brain are, with an annual prevalence of 38%, not only very common, butthey also account for more than €461 billion in healthcare costs in Europe. These diseasesare often diagnosed late or not at all. Artificial Intelligence (AI) could improve the diag-nostic process. Two systematic literature reviews containing information from80 researchpapers on Digital Decision Support Systems (DDSSs) in psychiatry show low adoption ratesand generally lowmaturity. Researchmostly focuses on pure algorithm development, andevaluation is performed on small datasets. This raises questions about the trustworthi-ness of the claimed high accuracy rates of algorithms. Additionally, the clinical compo-nent, such as the availability of data in the clinical workflow, the usefulness of the DDSSfor clinicians or user acceptance, has been widely neglected. All this influences low adop-tion rates. This research proposes a systematic approach that takes into considerationboth the clinical and the technical aspects. For this systematic AI support, a frameworkwith dimension data, technology, user group, medical domain, decision, validation andmaturity serves as a tool for more holistic DDSS development. The framework was de-rived based on (i) literature, (ii) data from a focus group interview with nine DDSS expertsfrom various fields, and (iii) practical experience. A scenario-based evaluation and a focusgroup interview were used to evaluate the framework. To overcome the potential issueof insufficiently working decision technology, traditional machine learning algorithms, arule-based approach and several deep learningmethods, including our own novel attGRU-decaymodel, were benchmarked on real-world diagnostic data from812,853 patientswitha total of 26,973,943 diagnoses. Our attGRU-decay model outperformed the other meth-ods and the current state of the art with an AUPRC of 0.974.
These results can be clustered into three main contributions:

1. Pointing out the shortcomings of current DDSS research, namely the lack of inter-disciplinarity for DDSS design and development, resulting in a sole focus on the al-gorithmic part of DDSSs, unreliable accuracy metrics due to low sample sizes for AItraining and testing and low maturity and low clinical value of DDSSs.
2. Proposing and assessing systematic AI support based on our framework as a solu-tion to raise DDSS adoption rates and increase their clinical benefit.
3. Evaluating the current decision technologies that can power DDSSs based on largeamounts of real-world data; proposing a novel deep learning model that outper-forms the current state of the art.
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Kokkuvõte
Tehisintellekti süstemaatiline kasutaminepsühhiaatrias: otsus-
tustoe rakendamist toetav raamistik

Ajutegevusega seotud haigused, mille aastane levimus on 38%, ei ole mitte ainult vägalevinud haigused, vaid tekitavad Euroopas rohkem kui 461 miljardi euro väärtuses tervis-hoiukulusid. Nende haiguste diagnoosini jõutakse sageli hilja või need jäävad üldse diag-noosimata. Tehisintellekt (TI) võib aidata seda olukorda parandada. Kaks süstemaatilistkirjanduse ülevaadet, mis sisaldavad teavet digitaalsete otsustustugede (inglise keeles –Digital Decision Support Systems (DDSS)) kohta 80 uurimistööst, näitavad nende vähestkasutuselevõttu ja üldiselt madalat küpsustaset. Käesoleval ajal tehtav teadustöö kesken-dub enamasti ainult algoritmi arendamisele ja otsustustoe hindamine toimub väikesteandmekogumite põhjal. See tekitab küsimusi algoritmide väidetava suure täpsuse usal-dusväärsuse kohta. Lisaks on kliiniline komponent nagu näiteks andmete kättesaadavuskliinilises töövoos, DDSS-i kasulikkus arstide jaoks või kasutajate poolne aktsepteerimi-ne laialdaselt uurimistöös tähelepanuta jäetud. Kõik see on põhjuseks, miks DDSS-i ka-sutuselevõtt on vähene. Käesolev uurimustöö pakub välja süstemaatilise lähenemise, misvõtab DDSS-i arendamisel arvesse nii meditsiinilisi kui ka tehnoloogilisi aspekte. Selleks, etsüsteemselt toetada tehisintellekti rakendamist terviklikuma DDSS-i arendamiseks töötativälja raamistik, mis vaatleb eraldi komponentidena andmeid, tehnoloogiat, kasutajarüh-mi, meditsiinivaldkonda, otsuseid, valideerimist ja küpsusastet. Raamistik tuletati (i) kir-janduse, (ii) üheksa erineva valdkonna DDSS-eksperdi fookusgrupi intervjuu andmetel ja(iii) praktilisel kogemusel. Raamistiku hindamiseks kasutati stsenaariumipõhist hindamistja fookusgrupi intervjuud. Et lahendada väidetavalt meditsiinis seni ebapiisavalt rakenda-tud otsustustoe probleemi võrreldi traditsioonilisi masinõppe algoritme, reeglipõhist lä-henemisviisi jamitmeid süvaõppemeetodeid, sealhulgasmeie enda uudset attGRU-decaymeetodit kasutades 812 853 patsiendi, kellel oli kokku 26973943diagnoosi, tegelikke diag-nostilisi andmeid. Meie attGRU-decay ületas teisi meetodeid ja praegust parima praktikataset AUPRC-ga 0,974.
Doktoritööl on kolm peamist tulemust:

1. Uuring toob välja, et käesoleval ajal DDSS-i kohta tehtava teadustöö puuduseks onselle kavandamise ja arendamise interdistsiplinaarsuse puudumine,mille põhjusekson keskendumine ainult DDSS-i algoritmidele. Samuti ebausaldusväärsed täpsus-mõõdikud väikese valimi tõttu TI koolitamisel ja testimisel ning DDSS-idemadal küp-susaste ja kliiniline väärtus.
2. Suurendamaks DDSS-i kasutuselevõttu ja kliinilist kasu pakutakse välja raamistik,mis toetab tehisintellekti süsteemset kasutamist ja hindamist.
3. Hinnatakse praeguseid otsustustoes kasutatavaid TI meetodeid, mis suurandmeidkasutades võivad suurendada DDSS-i kasu, ja pakutakse välja käesoleval ajal kasu-tatavaid meetodeid ületav uudne süvaõppe mudel..
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A systematic literature review of
AI-based digital decision
support systems for
post-traumatic stress disorder
Markus Bertl*, Janek Metsallik and Peeter Ross
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of Technology, Tallinn, Estonia

Objective: Over the last decade, an increase in research on medical decision

support systems has been observed. However, compared to other disciplines,

decision support systems in mental health are still in the minority, especially

for rare diseases like post-traumatic stress disorder (PTSD). We aim to provide

a comprehensive analysis of state-of-the-art digital decision support systems

(DDSSs) for PTSD.

Methods: Based on our systematic literature review of DDSSs for PTSD, we

created an analytical framework using thematic analysis for feature extraction

and quantitative analysis for the literature. Based on this framework, we

extracted information around the medical domain of DDSSs, the data used,

the technology used for data collection, user interaction, decision-making,

user groups, validation, decision type and maturity level. Extracting data for all

of these framework dimensions ensures consistency in our analysis and gives

a holistic overview of DDSSs.

Results: Research on DDSSs for PTSD is rare and primarily deals with the

algorithmic part of DDSSs (n = 17). Only one DDSS was found to be a

usable product. From a data perspective, mostly checklists or questionnaires

were used (n = 9). While the median sample size of 151 was rather low,

the average accuracy was 82%. Validation, excluding algorithmic accuracy

(like user acceptance), was mostly neglected, as was an analysis concerning

possible user groups.

Conclusion: Based on a systematic literature review, we developed a

framework covering all parts (medical domain, data used, technology used

for data collection, user interaction, decision-making, user groups, validation,

decision type and maturity level) of DDSSs. Our framework was then used

to analyze DDSSs for post-traumatic stress disorder. We found that DDSSs

are not ready-to-use products but are mostly algorithms based on secondary

datasets. This shows that there is still a gap between technical possibilities and

real-world clinical work.

KEYWORDS

decision support systems (DSS), post-traumatic stress disorder (PTSD), artificial
intelligence (AI), machine learning (ML), systematic literature review (SLR), clinical
decision support (CDS), psychiatry, mental health

Frontiers in Psychiatry 01 frontiersin.org



fpsyt-13-923613 August 5, 2022 Time: 11:27 # 2

Bertl et al. 10.3389/fpsyt.2022.923613

Introduction

According to Sauter, Digital Decision Support Systems
(DDSSs) are computer-based systems that bring together
information from various sources, assist in the organization
and analysis of information and facilitate the evaluation
of assumptions underlying the use of specific models (1).
The concept of decision support systems originated in the
1960s (2) when researchers began to study computerized
methods to assist in decision-making (3–5). Since then,
the idea has extended throughout a broad spectrum of
domains, one of which is healthcare. This work focuses on
decision support systems in mental health, more precisely
on decision support systems for PTSD. The American
Psychiatric Association defines PTSD as “a psychiatric
disorder that can occur in people who have experienced
or witnessed a traumatic event such as a natural disaster, a
serious accident, a terrorist act, war/combat, rape or other
violent personal assault” (6). People with PTSD experience
recurrent thoughts about their traumatic experience that
influence their daily life. The lifetime prevalence of PTSD is
around 12.5% (7). However, people suffering from PTSD are
often undiagnosed or misdiagnosed, resulting in incorrect,
incomplete or missing treatment (8). To investigate whether
DDSSs could be a solution to this problem, we aim to
review available decision support systems for PTSD and
map their technological approaches in order to understand
possible research gaps and obstacles in introducing decision
support systems to clinical processes. Since no available
reference architecture for decision support systems is
applicable to our research, we contribute by introducing
a novel framework for decision support systems that can
be used to analyze existing systems. Ultimately, this also
accelerates the development of new systems by highlighting
essential dimensions.

Designers of earlier DDSSs have applied multiple alternative
approaches for converting real-world data into something
that stimulates better decisions. Information-management-
based DDSSs try to organize data into usable presentations;
modeling-(or data-analytics)-based DDSSs attempt to apply
statistical (learning) methods for finding patterns or calculating
indicators; and knowledge-management-based systems
apply externally prepared algorithms (expert rules) to find
matching data or derive new facts (9). While AI has been
an essential element of DDSSs throughout its history,
only recently has a new generation of decision support
been facilitated by the availability of powerful computing
tools to properly manage big data and to analyze and
generate new knowledge. The evaluation of AI’s earlier
implementations was limited to the design and development
phase; machine learning-based algorithms often do not
generalize beyond the training data set (10). However,
studies have still shown the benefits of machine learning

algorithms in DDSSs (11–13). Current studies that test
the application of healthcare AI algorithms often omit
details of DDSS tools that apply AI models. A well-designed
DDSS is likely to enable the real-world application of AI
technology (14).

This review aims to contribute by introducing a framework
for the features of DDSS implementation in mental health.
We aim to identify the prevalent features of the current state
of research on DDSS. Often, the development of information
systems involves the continuous introduction of new features
and quality improvements. We hypothesized that each available
article presents only a selection of features, a selection which
is dependent on the maturity of the DDSS. Maturity models
are increasingly used as a means of benchmarking or self-
assessment of development (15). In healthcare informatics,
many maturity models are available [e.g., Hospital Information
System Maturity Model (16)], but none of these models strictly
provides an informed approach for the assessment of research
on decision support systems (17). The available maturity models
instead tend to look at the level of organizational adoption
of specific technologies (e.g., how much an organization
values data analytics technology) and provide little support
for deciding on the readiness of DDSS tools in their early
phases of development. As AI is often an essential element of
a DDSS, we also explored AI maturity models. AI maturity
models mostly look into the level of AI adoption in an
organization rather than the maturity of the AI technology itself
(18–20).

A DDSS is not a single technology but rather a set of
integrated technologies (21–25). Sauser et al. (26) suggested
a measure of System Readiness Level (SRL), which expresses
the level of maturity of a system consisting of a set of
integrated technologies (26). Exploring AI technology
readiness or maturity, we encountered suggestions to look
separately into the AI system’s capacities of integrating
existing data sources (machine-machine intelligence),
interacting with human users (human-computer intelligence)
and applying intelligent reasoning (core cognitive
intelligence) (27).

Methods

To have a transparent and objective approach for this
literature review, we decided to apply the five stages suggested by
Kitchenham’s “Guidelines for performing Systematic Literature
Reviews in Software Engineering” (28):

(1) Search Strategy
(2) Study Selection
(3) Study Quality Assessment
(4) Data Extraction
(5) Data Synthesis
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Research questions

Since our aim is to understand current research on decision
support systems for PTSD, this paper is based on two research
questions. First, we look for state-of-the-art decision support
systems for post-traumatic stress disorder (RQ1). Second, we
investigate the component elements of current decision support
systems for PTSD (RQ2).

Search strategy

We built a search string based on the research questions
identified and applied it to the Scopus abstract and citation
database. Scopus was chosen as the primary source because
it is the largest abstract and citation database of research
literature with 100% MEDLINE coverage (29). The initial search
string consisted of the disease to investigate – post-traumatic
stress disorder – its abbreviation PTSD as well as the term
“decision support.” To find papers that covered the prediction
and classification of PTSD, we also added Artificial Intelligence.
In Scopus, we applied the search string to the title, abstract and
tags of the research papers. We restricted our search to only
include journal articles or conference proceedings in English.
We also conducted a manual search using Google Scholar and
the web to find additional research; however, this did not bring
up any new articles not already covered by our database search
and our reference screening process. We formed our search
criteria as (“decision support” OR “Artificial Intelligence”) AND
[PTSD OR (post AND traumatic AND stress AND disorder)].

We conducted the search in Scopus on 3 March 2021.
It resulted in 75 papers; reference screening of the included
literature brought up an additional 13 papers. Our search
process is visualized in Figure 1.

Study selection

The titles and abstracts of the queried articles were analyzed
to identify relevant articles from the results of the search string
queries. Articles fitting the research questions and meeting the
inclusion criteria (see section “inclusion criteria”) as well as the
quality criteria (see section “study quality assessment”) were
included. Since the goal of this research is to give an overview
of the state of the art, we did not put any constraints on
study types and designs. To reduce bias in the study selection
process, the task was done by two researchers independently.
The two result sets were then merged and deviations were
discussed among the authors. This resulted in a total set of 17
research papers.

We then repeated this process step to extract relevant studies
from the reference lists of the selected articles. This resulted in
13 new research papers.

Inclusion criteria
Table 1 presents the inclusion criteria applied to the articles

in our review (Inclusion criteria).

Study quality assessment
Table 2 presents the inclusion criteria applied to the articles

in our review (Quality criteria).

Data extraction and synthesis

Data extraction and synthesis were based on an inductive
approach. We applied thematic analysis (30) to answer our
research questions. First, clear, scoped questions for data
extraction were formed. Two researchers read through all
the articles and iteratively clustered all of the information
available on decision support systems into the extraction
parameters. These extraction parameters describe how
decision support systems work. This process is shown in
Figure 2.

The answers extracted from the EQs (see Table 3) were then
combined upon the agreement of the authors to create a feature
matrix. The extracted features were then further clustered to
create a common terminology that allows further analysis and
the possibility to compare results. In the end, we combined the
developed extraction questions and the clustered scales of each
question into a novel framework for decision support systems
in mental health.

Results

The selected 30 research articles (31–60) were published
between 2001 and 2019. Three articles were published in
journals about medical informatics, 10 in computer science
journals or proceedings and 17 in medical journals. The
following table shows how often each extraction parameter
was present and indicates the terminology used in the selected
studies. The terminology shown in Table 4 was developed by
manual, iterative clustering of the extracted features until the
authors were satisfied with the granularity.

A framework for digital decision
support systems

Based on our aim to find all relevant features of decision
support systems in the PTSD area and our systematic literature
review results, we propose a multidimensional framework
that covers the different areas of DDSS. Each dimension
represents one of our extraction parameters. Figure 3 illustrates
our framework with the different dimensions of DDSSs.
Based on the extracted data, we clustered the terminology
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FIGURE 1

Search strategy.

to develop scales for dimensions in order to make results
better analyzable.
Input Data: The input data dimension defines the information
needed by a decision support system in order to function.
Possible data could be structured like socio-demographic
information or coded data [for example, with the International
Statistical Classification of Diseases and Related Health

TABLE 1 Inclusion criteria.

# Inclusion criteria

IC1 Does the study deal with decision support systems (e.g.,
systems that help diagnose, screen, predict or treat)

IC2 Does this study apply a computerized algorithm?

IC3 Does this article deal with PTSD?

IC4 Is the article related to at least one of our research
questions?

TABLE 2 Quality criteria.

# Quality criteria

QC1 Is the research a journal article or conference proceeding?

QC2 Is the research peer-reviewed?

QC3 Does the study have a well-defined structure?

QC4 Does the study bring evidence for the proposed approach
(either by citing relevant literature or validating the
results)?

QC5 Does the study have ethics approval (if required by the
study design)?

Problems (ICD) (61) or the Diagnostic and Statistical
Manual of Mental Disorders (DSM) (62)] as well as semi-
structured information like patient records or unstructured
information like free text or medical images. A combination of
different structured, semi-structured and/or unstructured data
is also possible.
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Technology: The technology dimension describes how the
decision support system is implemented. This involves three
sub-dimensions:

Decision technology: The decision technology explains
the intelligence of the cognition of the system. This is
the algorithm that powers the decision-making. Examples
are different machine learning algorithms such as support
vector machines or other statistical methods as well as
rule-based approaches.
Interaction technology: This sub-dimension describes
the technology needed to interact with other systems or
user groups in the clinical process. Interaction technology
can be API-based interfaces to systems, graphical user
interfaces (websites, mobile apps) or sensory input like
conversational interfaces (chatbots).
Data collection technology: The data collection
technology sub-dimension defines how the data described
in the input data dimension are collected. Examples are
instance sensors, questionnaires or chatbots.

Validation: Validation describes how the success of decision
support systems is measured.

Accuracy: The decision support system is evaluated by
how many right or wrong decisions it makes. Examples
are accuracy, recall (sensitivity), precision, specificity, area
under the curve (AUC) values and F1 scores (harmonic
mean of recall and precision).
User acceptance: End-users are involved in the
evaluation of the DDSS.
Efficacy: The impact of the decision support system is
evaluated based on potential benefits.
Security: The DDSS is evaluated against
security regulations.
Legal: The legal compliance of the DDSS is evaluated.

User group: This dimension captures the different user
groups interacting with the decision support system in the
clinical process.

TABLE 3 Extraction questions (EQ).

# Extraction parameters

EQ1 On the basis of which input data do existing decision
support systems in mental health operate?

EQ1.2 What was the data sample size?

EQ2 What is the implementation technology of the DDSS?

EQ2.1 Decision technology

EQ2.2 User Interaction/Interface/Application

EQ2.3 Data collection technology

EQ3 What feature was validated?

EQ4 Which user groups are involved in the use of DDSS in
mental health?

EQ5 What diseases are currently targeted by DDSS in mental
health?

EQ6 What decisions are supported by the system?

EQ7 What maturity level does the DDSS have?

Medical domain: The medical domain dimension describes the
disease for which the decision support system can be applied.
Decision: The following scale defines the decisions a digital
decision support system can support:

Prediction: The system outputs a risk score based on the
likelihood that someone gets a disease.
Assessment: The patient is already sick (knowingly
or unknowingly).

Diagnosis: Testing individuals with symptoms
and/or suspicion of illness
Screening: Testing for individuals without specific
symptoms
Monitoring: Decision support that evaluates
symptom severity or treatment progress
Treatment: Recommendation or intervention
concerning care or therapy

Maturity: As none of the existing maturity models fits our
research, we designed a DDSS maturity model based on the SLR
scale (26), but with adaptions specific to healthcare. It introduces
additional gradation for noticing the moment where human
interaction is added to the core AI algorithm. Our maturity

30 papers

Clustering of 
available 

information on 
decision support 

systems

Extraction 
parameter

Extracting the 
terminology to 
each dimension

Iterative grouping 
of the extracted 

terminology

Scales to the 
extraction 
parameter

Combining 
extraction 

parameter and 
scales

Digital Decision 
Support 

Framework

FIGURE 2

Extraction process.
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levels describe on a scale from one to seven how advanced
the DDSS is. Not all of the abovementioned dimensions are
necessarily present in each of the maturity levels. As the maturity
level gets higher, more dimensions are described.

1. Idea without implementation
2. Implementation without real-world interaction

(algorithm development)
3. Implementation with real-world interaction but without

patient intervention
4. Fully functioning prototype, system triggers real-world

action, e.g., clinical trial
5. Operational product (at least one adopter, certified if

required)
6. Locally adopted product
7. World-wide adopted product (transformational).

Data synthesis input data (EQ1)

The data used by digital decision support systems in the
context of PTSD is diverse. Voice data (35, 45, 46, 55), text data
(38, 48, 50), checklists and questionnaires (32, 33, 37, 41–43, 52,
53, 59), bio signals (32, 33, 36, 44, 45, 51, 57) and electronic
medical records (34, 47, 56) as well as secondary data from
other clinical studies (31, 40, 49, 54) are used. One article used
the choices made by a virtual avatar in a role-playing game as
input data (39). Of the 30 publications included in this review,
28 mentioned the sample size of the data they used to develop
and test their decision support system. The minimum sample
size was 10, and the maximum was 89,840 with a median (IQR)
m = 151.5 (54.25 to 656.25). The violin plots (Figures 4, 5)
below show the distribution of the sample size. The top three
outliers (89,840; 89,840; 5,972) were neglected in Figure 5 for
better visibility.

Figure 6 shows the data dimension of the studies in
our review and indicates how the data used correlate with
the average maturity levels of the DDSS. It visualizes the
frequency and maturity of DDSSs based on the different
data sources.

Data synthesis implementation (EQ2)

The majority (n = 15) of the investigated research uses a
neural network approach (including support vector machines)
in their systems. In 11 cases, support vector machines
(SVM) were used. Other algorithms used were regressions,
decision trees, random forest and rule-based approaches. We
observed that 20 research papers did not have or mention
any user interaction but worked solely on secondary data.
The others used questionnaires or surveys, virtual humans or

virtual reality. McWorther et al. proposed using temperature
control, aromatherapy and auditory therapy capabilities for user
interaction (36). Concerning maturity levels, AI algorithms are
still mostly on maturity level two. Most advanced in terms of
maturity were statistical methods and text mining methods, as
indicated in Figure 7. The categories “statistics” and “machine
learning” (ML) arose because some studies mentioned only
these broad categories without further specifics.

Data synthesis validation (EQ3)

The majority (n = 23) of articles validated the accuracy
of the DDSS studied. Three articles validated user acceptance,
two validated efficacy and three did not mention validation.
Comparing algorithmic validation among research papers was
difficult since a variety of scores, such as F1 scores, area under
the receiver operating curve (63) or overall accuracy, were
used and they cannot be converted. To be able to provide an
estimation of how well current DDSSs perform, we extracted all
accuracy measurements present in each paper and aggregated
each scale individually. The mean accuracy (n = 11) of the
DDSSs is µ = 82.2% with a median of η = 82% and a standard
deviation of σ = 0.095. The mean area under the curve value
(n = 8) is µ = 0.845 with a median of η = 0.84 and a standard
deviation of σ = 0.064.

Data synthesis user groups (EQ4)

The user groups mentioned were patients, clinicians and
supporters of patients; however, the majority of papers did
not explicitly mention specific user groups for their systems.
Research covering decision support systems with higher
maturity levels (four and above) included this information.
Research dealing with decision support systems with lower
maturity often lacked a clear user group since the process of
using the proposed systems was not defined at that stage.

Data synthesis medical domain (EQ5)

In addition to PTSD, which was tackled by all 30 research
papers, four investigated depression (46–48, 55), two anxiety
(34, 48) and one paranoia (58).

Data synthesis decisions supported
(EQ6)

Research focusing on predicting PTSD or its symptoms was
most common (n = 11). Six papers focused on screening (35, 38,
45, 46, 50, 55) and six on treatment (32, 36, 43, 51, 53, 56). Four
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TABLE 4 Terminology extraction.

EQ Number of
mentions

Terminology (frequency)

1 – Data 30 Jerusalem Trauma Outreach and Prevention Study (3); checklist (5); questionnaire
(4); speech data (4); text data (3); electronic health records (3); sensor data (6);
reactions in VR (2)

1.1 – Sample size 28 Not applicable (quantitative features)

2.1 – Decision technology 27 Machine learning algorithm; feed forward neural network; support vector machines,
random forest; decision tree; sequential minimal optimization (SMO); Naïve Bayes;
logistic regression; text mining; (LIWC); rule based

2.2 – Interaction technology 24 Questions (3); temperature control (1); aromatherapy (1); auditory therapy (1);
virtual human (2); online survey (1); role-play-game (1); virtual reality (2)

2.3 – Data collection technology 22 Mobile app (4); web portal (3); skin conductance sensor (1); heart rate (1);
accelerometer (1); IoT devices (1); microphone (1); webcam (1); Kinect (1); VR
headset (1)

3 – Validation 29 Accuracy (23); user acceptance (3); efficacy (2)

4 – User groups 12 Patients (10); supporters (1); clinicians (6)

5 – Disease 30 PTSD (30); depression (4); anxiety (1); PTSD comorbidities (1); paranoia (1)

6 – Decisions 29 Prediction (11); assessment (1); diagnosis (4); screening (6); monitoring (5);
treatment (6)

7 – Maturity level 30 Not applicable (quantitative features)

FIGURE 3

Framework for DDSS.
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FIGURE 4

Sample size distribution.

papers investigated the diagnosis of PTSD (37, 41, 52, 60) and
five focused on monitoring PTSD (33, 35, 56, 58, 59).

Data synthesis maturity level (EQ7)

The decision support systems were ranked according to the
maturity scale described in see section “a framework for digital
decision support systems.” As stated by answering research
question two, the majority of papers work with secondary data.
This is supported by the high volume of research with a maturity
level of two. Figure 8 shows the number of articles grouped
by maturity level.

Discussion

This research highlights the state of the art in digital decision
support systems for PTSD based on our proposed framework.
We developed the framework to ensure a holistic overview of all
features of a DDSS. The dimensions of the framework represent
the topics of interest and the choice of features is based on
the conceptualization of the terminology extracted from the
included articles dimension by dimension.

Concerning the data dimension, we noticed that
questionnaires and checklists are still the most common
and most mature (see Figure 6) input for decision support
systems. When examining clinical guidelines like NICE (64)
for diagnosing PTSD, questionnaires and checklists are still the
only approach mentioned for diagnostics. Even though some
new technologies, such as virtual or augmented reality, were
investigated in the research found in this review, we noticed
an absence of input parameters based on smartphones or
wearables like GPS sensors or accelerometers. We hypothesize
that this is due to the short life cycle of modern technologies,
making it difficult to offer clinical evidence of their benefits.
Questionnaires and checklists, however, have been around
for many years and the methodology for administering
them has not changed, therefore there is more scientific
evidence of their use. Researchers and medical professionals
are more likely to research, invest and adopt technology
with strong evidence. This could be another reason why
DDSSs using new technology are not widely included in
clinical processes.

The data dimension also showed that the sample size is
on average small and the statistical significance of the results
was not proven by the majority of the research articles. Several
reasons contribute to this. In general, medical data are hard to
obtain for research because secondary use is still not easy with
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FIGURE 5

Sample size distribution excluding outliers.

FIGURE 6

Data dimension concepts.
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FIGURE 7

Decision technology concepts.

FIGURE 8

Bar chart – maturity levels.

many digital healthcare records and/or applications. Even if data
can be obtained, they need to include the right parameters and
have a structure that is usable for AI algorithms. Unstructured
and text-based information is especially challenging to use for an
AI. Further, most available datasets like the Jerusalem Trauma
Outreach and Prevention Study do not include data on modern
sensors (65).

The most common AI algorithm found during this literature
review was support vector machines. Over the last few years,
they have been developed to a de facto standard because they
are easy to use, have good library support for programming and
have low assumptions on the training data. We also observed

that the number of research items resulting in usable products
(maturity level ≥ 4) was low in three articles. Clinical studies
with patient intervention (maturity level ≥ 3) were relatively
low in nine papers out of 30. One reason for this could be that
the small sample size of the research items does not provide
sufficient evidence for clinical use.

All articles with a maturity level of 4 or more had, as
one focus, validation of user acceptance and clearly defined
user groups. Most articles with lower maturity levels did
not have defined user groups. This could indicate a lack of
strategic development and difficulties in bringing the research
to a clinical setting. Our hypothesis is that interaction with
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users or integration into clinical processes is often much more
challenging to solve than intelligence of cognition. Still, most
papers focus on cognition, not user interaction; our framework’s
validation dimension is evidence of this. We found 23 papers
evaluating accuracy, which is an evaluation of AI technology,
and five papers evaluating user acceptance or efficacy, meaning
that they attempted to improve the current clinical process.
Since most papers in our review are of maturity levels 1, 2
or 3 (meaning algorithm research), they do not include the
clinical component necessary for user acceptance and efficacy
evaluation. This shows a research gap when it comes to the
enrichment of clinical processes with IT. The same goes for
evaluating legal and IT-security constraints, which were not
mentioned by any paper in our review. Since eHealth systems
are getting increasingly focused by cyber attacks (66), IT and
data security need to be a vital part of the evaluation to allow
a safe DDSS adoption.

Further research has to be conducted on how the clinical
process needs to be adapted for DDSSs to work, also in
the context of the supported decisions. Most DDSS designers
do not really understand the medical decision process but
provide decisions in an “IT way.” One limitation of this general
hypothesis is that our research focuses solely on DDSS for PTSD.
However, the narrow approach to include only PTSD shows that
even in a very well-scoped area, a DDSS is hard to implement.

Since we used an inductive research approach to design
our framework based on currently available literature, some
important framework dimensions might be missing. One
example is that the framework includes many technical
aspects of the implementations and fewer organizational
and financial perspectives. We encourage further research to
include dimensions that describe the adoption of DDSSs in
clinical processes.

Introducing our novel framework for DDSS, we provide a
guide for decision support system evaluation. The framework
is complementary to other healthcare technology evaluation
methods (clinical, organizational, financial) and thus supports
the design of comprehensive evaluation systems for DDSSs.
Applying the maturity dimension helped us to examine what
features of a DDSS are present, thereby indicating the steps
to take in order to move up in maturity when developing
decision support systems. Since the framework was developed
out of general considerations, it can be applied to decision
support systems outside of PTSD or mental health. However, it
should be further evaluated to examine whether the terminology
suits other domains. Higher maturity scales in particular need
additional verification, since only two papers in our review had
a maturity level above 4.

Conclusion

Our research aimed to analyze existing decision support
systems for PTSD. Based on this goal, we developed a generic

framework covering all dimensions of digital decision support
systems. Our framework not only accelerates the development
and benchmarking of DDSSs, but also acts as the foundation
for our systematic literature review. Extracting data for all
framework dimensions ensures consistency in our analysis
and gives a holistic overview of DDSSs. During our review,
we found working DDSS prototypes for PTSD and described
their components. However, most of the systems are not
evaluated in production use; they are only algorithmic models
based on secondary datasets. This shows that there is still a
gap between technical possibilities and actual clinical work.
We proposed some possible explanations: small sample size,
missing domain expertise, lack of focus to bring research to
production. However, this gap should be analyzed further
by testing our hypothesis and examining it with data from
research on DDSSs for other mental diseases. For now, we
conclude that only a few rare DDSSs for PTSD are ready
for large-scale adoption in healthcare. The long-promised
revolution of AI and ML for diagnosis in psychiatry, at least for
PTSD, is yet to come.
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A B S T R A C T   

Every year, healthcare specialists collect more and more data about patients but struggle to use it to optimize 
disease prevention, diagnosis, or treatment processes. While a manual use of this medical data is virtually 
impossible considering the vast growth rate, automation with artificial intelligence (AI) and digital decision 
support systems (DDSSs) has still not yielded any large-scale success in healthcare. We aim to investigate possible 
obstacles, the trustworthiness based on potential biases, and the adoption of new technology by AI and DDSSs in 
psychiatry based on a systematic literature review. We screened 520 papers about AI or DDSSs in psychiatry. We 
added results from a literature screening of 65 articles about AI or DDSSs for post-traumatic stress disorder as one 
specific psychiatric disease to our research, given that literature possibly deviates from general decision support 
systems for psychiatry. Out of 80 articles, we extract algorithms, data collection method and sample size of the 
used training data, and testing process including accuracy metrics. The results show that sample sizes are small 
(median of 151.5), a focus on algorithm development without real-world interaction, and methodological 
shortcomings when it comes to the evaluation of DDSSs. Our survey concludes that DDSSs in psychiatry are not 
ready for the often-promised “AI revolution in healthcare”.   

1. Introduction 

Health data is growing steadily. According to an estimation by the 
International Data Corporation (IDC) 2.414 exabytes of health data were 
generated by the end of 2020. Given that time is scarce, it is already 
impossible to read all medical data of a patient before a doctor’s 
appointment, stay up-to-date with treatment methods, or track drug- 
drug interaction manually. Especially in psychiatry, the “gold stan-
dard” of human diagnosis has low accuracy (Aboraya et al., 2006; Al- 
Huthail, 2008; AlSalem et al., 2020; Hamidia et al., 2022; Kitamura 
et al., 1989). McGlynn et al. (2003) suggest that more than half of pa-
tient care in the U.S. is not administered according to medical guide-
lines. Furthermore, 52.7% of people with depression are not correctly 
diagnosed by their general practitioner (Mitchell et al., 2009). Low ac-
curacy of initial psychiatric diagnoses has also been reported by AlSalem 
et al. (2020). This evidence shows that we collect medical data but 
struggle to make use out of it. Digital Decision Support Systems (DDSSs) 
and artificial intelligence (AI) could be one way to address diagnostic 
uncertainty by assisting medical professionals in making sense of data. 

In this research, we understand DDSSs as defined by Sauter, 1997 as 
“computer-based systems that bring together information from a variety 
of sources, assist in the organization and analysis of information and 
facilitate the evaluation of assumptions underlying the use of specific 
models” (Sauter, 1997). Artificial Intelligence is defined by the Cam-
bridge Dictionary as “the study of how to produce computers that have 
some of the qualities of the human mind, such as the ability to under-
stand language, recognize pictures, solve problems, and learn”.1 

Mounting evidence suggests that demand for such systems is given. 
56% of U.S. adults are willing to share their health data with tech 
companies like Google (Day et al., 2019). The big data market for health 
data is booming (Dash et al., 2019) and is estimated to reach 7 billion 
USD by 2021. However, considerable doubt exists. 85.9% of office-based 
physicians use electronic health records in U.S. (Office-Based Physician 
Electronic Health Record Adoption, 2019). A similar trend can be 
observed in the European Union (eHealth, Well-being, and Ageing (Unit 
H.3), 2019). In today’s digitized world, even a single byte can have 
importance in health-related decisions. Digitized data shows what kind 
of treatment a person gets, what kind of medication is prescribed, 
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whether a person is allowed to drive, or even whether someone is 
allowed to make decisions on his own. Security of these data is not 
guaranteed, breaches have happened, data has been manipulated, and 
health IT has even been targeted by terroristic activities (Bertl, 2019). 
These developments could be countered by increasing investments in 
security, data protection techniques, and zero-trust computing. But AI 
itself also introduces new challenges to clinical safety (Challen et al., 
2019). For example, people increase their worry about whether AI can 
be trusted, if possible reasons for bias have been taken into account, if 
DDSSs are tested enough to be used in such a sensitive area as health, 
and what accuracy we can expect. 

A wide variety of biases in scientific publications have been studied 
extensively. Most notably, scholars have famously argued that false 
discovery rates of what researchers advertise as “experimental research 
findings” in scientific publications exceeds 50% (Ioannidis, 2005). 

In DDSS research, some researchers also begin to critique the data-
sets used for AI and the dataset culture in machine learning (Paullada 
et al., 2020). Since data is the foundational part of AI and machine 
learning, the question arises whether currently used data is curated well 
enough. Furthermore, scholars increasingly cast doubt on whether 
sampling methodologies are good enough for justifying their use in the 
medical domain. Poorly curated datasets reflect human biases. Given 
their foundational role for computerized systems, human biases run the 
risk of spreading flawed decisions at a large-scale, possibly with cata-
strophic consequences. These arguments lead to the question of what the 
current state of the art concerning AI and decision support systems is. 

The facts around the dilemma of growing data, medical complexity, 
and trustworthiness show that a thorough investigation of DDSSs and AI 
in healthcare needs to be conducted. In this paper, we investigate the 
corresponding literature to find obstacles, indications about the trust-
worthiness, and the use of emerging technologies of AI and DDSSs in 
psychiatry. Our goal is to examine the state of the art and possible ways 
of DDSS improvement. 

2. Medical background 

Psychiatric disorders represent critical non-communicable diseases 
of the 21st century. In 2010, mental disorders accounted for €461 billion 
in healthcare costs in Europe (Gustavsson et al., 2011) and ranked as the 
leading cause of years lived with disabilities (Wittchen et al., 2011). 
However, diagnostic accuracy in psychiatry is still low. For example, 
69% of patients with bipolar disorder are initially misdiagnosed by 
mental health specialists (Singh & Rajput, 2006). Such errors in di-
agnoses remain uncorrected for an average of 5.7 years (Morselli & 
Elgie, 2003). Despite some achievements in the implementation of 
DDSSs in clinical routines like drug-drug interaction databases (Met-
sallik et al., 2018), primary care or hospital DDSSs (Sutton et al., 2020), 
medical specialists have been waiting for a breakthrough of AI-based 
DDSSs in healthcare settings for at least two decades without tangible 
success. Most notably, systems still suffer from both low user acceptance 
and adoption rates (Bates et al., 2003; Gaube et al., 2021; Sittig et al., 
2006). While new medical devices supported by software, like diag-
nostic devices, digital imaging, or cardiovascular interventional equip-
ment, incorporate new technology (Bettinger, 2018; Neuman et al., 
2012), are well-accepted by clinicians and have quickly acquired sub-
stantial market shares (Schreyögg et al., 2009), DDSSs have not followed 
a similar trajectory. Innovative technology like AI does mostly not 
deliver value in clinically adopted DDSSs (Strickland, 2019). This may 
be the case because medical devices are well-targeted at specific clinical 
professionals and lead to better performance, while DDSS developers 
strive to cover a wide range of clinical disciplines with one technological 
application. These tendencies exacerbate for more specialized health-
care sections such as psychiatry. More precisely, the corresponding sit-
uation in psychiatry differs from other medical domains because 
biomarkers and technical tools for decision-making have not yet been 
validated. As a result, diagnoses and treatment decisions tend to depend 

on clinical interviews, observations, and self-report measures (Maron 
et al., 2019). These do currently not deliver as precise results as bio-
markers do. Despite the urgent need caused by increasing data, 
increasing medical complexity, as well as limited staff and financial 
capacities in healthcare, DDSSs and AI still suffer a niche existence. 
Software is still mainly used to store data rather than as a tool to rede-
sign care processes or improve decision quality and safety. Therefore, 
investigating different aspects that might hinder the broader adoption of 
DDSSs in medicine is of great interest among clinicians. We contribute to 
this debate by analyzing current obstacles and ways to improve AI-based 
DDSSs in psychiatry. 

Additionally to psychiatry as a whole, post-traumatic stress disorder 
(PTSD) was taken as a clinical entry in psychiatry. The American Psy-
chiatric Association defines PTSD as “a psychiatric disorder that can 
occur in people who have experienced or witnessed a traumatic event 
such as a natural disaster, a serious accident, a terrorist act, war/combat, 
rape or other violent personal assault”2. People with PTSD experience 
recurrent thoughts about their traumatic experience which influences 
their daily life. The lifetime prevalence of PTSD is around 12.5% 
(Spottswood et al., 2017), which renders it all the more pressing to 
examine this disorder in greater depth. Even more so, people suffering 
from PTSD are often un- or misdiagnosed, resulting in wrong, incom-
plete, or missing treatment (Meltzer et al., 2012). 

3. Methods 

3.1. Reporting Standards 

We follow Kitchenham & Charters’ (2007) five stages for performing 
systematic literature reviews in software engineering:  

(1) Search Strategy  
(2) Study Selection  
(3) Study Quality Assessment  
(4) Data Extraction  
(5) Data Synthesis 

The process of conducting this literature review is visualized in 
Fig. 1. Importantly, our research methodology complies with the 
PRISMA checklist for transparent reporting of systematic reviews and 
meta-analyses (Liberati et al., 2009; Moher et al., 2009). 

We want to highlight that our study is a systematic literature review. 
Doing a meta-analysis is not possible because most AI/ML research does 
not report effect sizes with confidence intervals which would then be 
used in a fixed or random effect model for synthesis. Because of that, we 
do not assign weights to the extracted features of the studies based on 
their sample sizes. 

3.2. Research questions 

For the literature search, we worked based on RQ1, RQ2, and RQ3 
shown in Table 1. The results of our survey were then used to answer 
RQ4 based on a narrative synthesis. 

3.3. Search strategy 

We built a search string derived from the above research questions. 
This search string consists of the objects of interest (decision support or 
artificial intelligence or subcategories of machine learning) and the 
scope of our review (psychiatry). We restricted our search to articles in 
English with a publication date between 2000 and 2020 to only include 
modern technology. The resulting search string was (((decision AND 
support AND system) OR (artificial AND intelligence) OR ((machine OR 

2 https://psychiatry.org/patients-families/ptsd/what-is-ptsd 

M. Bertl et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 202 (2022) 117464

3

deep OR supervised OR unsupervised OR reinforcement) AND learning)) 
AND psychiatry). Additionally to psychiatry as a whole, we supplement 
our analysis on general DDSSs and AI algorithms for psychiatry by also 
selecting systems designed for one specific disease. By that, we are 
reducing possible bias since approaches for the whole domain of psy-
chiatry might have different results than for one condition. For that, we 
used the data from Bertl et al. (2020), with a similar search string for 
Post Traumatic Stress Disorder (PTSD). We applied our search strings to 
the research papers’ titles, abstracts, and tags in Scopus’ abstract and 
citation database. Scopus was chosen as the primary source because it is 
the largest abstract and citation database of research literature with 
100% MEDLINE coverage (Falagas et al., 2008). 

Our Scopus search was carried out on 11th October 2021. We also 
conducted reference screening and a manual search in Google Scholar 
and the web to find additional research. 

3.4. Study selection 

Titles and abstracts of queried articles were analyzed to identify 
relevant articles derived from our search results. Articles that fitted the 
research questions and met the inclusion criteria (see 3.4.1), and the 
quality criteria (see 3.4.2) were included. To reduce bias, title and ab-
stract screening, as well as checking the inclusion and quality criteria 
were conducted independently by two researchers. The two sets were 
then merged, and deviations were discussed among the authors. 11 

articles were excluded because no full-text could be retrieved. In the 
end, we selected 49 papers from our psychiatry search and 30 papers 
from our PTSD search, a total of 80 articles for this review. Cohen’s 
Kappa was calculated to assess interrater reliability (McHugh, 2012). 
The agreement score was 90% (Cohen’s Kappa 0.718). All disagree-
ments could be resolved and were mainly concerned with whether 
maturity level 1 or 2 studies were based on computerized or paper-based 
algorithms (IC2). 

3.4.1. Inclusion criteria 
Table 2 presents the inclusion criteria used for our literature search. 

3.4.2. Study quality assessment 
Since uncovering possible research biases was one purpose of this 

review, we reduced study quality assessments to a minimum to get a 
more holistic view of the published research. Quality criteria are shown 
in Table 3. We added QC3 since we found two articles originating from 
journals without peer review through reference search. 

3.5. Data extraction and synthesis 

To answer our research questions, clear scoped questions for data 
extraction were formed (see Table 4) based on the DDSS framework 
further described in Bertl et al. (2020). The framework was created 
based on thematic analysis (Braun & Clarke, 2006) to define different 
components of DDSSs in healthcare. We use the following dimensions 
for our extraction: 

Fig. 1. search strategy for the literature review.  

Table 1 
research questions.  

# Research Question 

RQ1 What are the current obstacles of research on AI and decision support systems 
in psychiatry? 

RQ2 How trustworthy is the state of the art concerning AI and decision support 
systems in psychiatry? 

RQ3 How do AI and decision support systems in psychiatry adopt new technology? 
RQ4 What is needed to improve AI and decision support systems in psychiatry?  

Table 2 
inclusion criteria for our literature search.  

# Inclusion Criteria 

IC1 Does the study deal with decision support systems (e.g. systems that help to 
diagnose, screen, predict, or treat)? 

IC2 Does the study use computerized statistical, AI/ML, or rule-based algorithms? 
IC3 Does the article deal with psychiatric diseases or psychiatric problems? 
IC4 Is the article related to at least one of our research questions?  
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• Data used by the DDSS to get insights into what data sources are used 
and what average sample sizes are. This contributes to RQ2 by 
investigating if data sources are trustworthy and sample sizes are 
appropriate. It also contributes to RQ3 by showing what technology 
is used for data collection.  

• Technology for data collection, user interaction, and decision-making 
contributes to RQ3.  

• Validation around accuracy, user acceptance, efficacy, and legal/ 
compliance to extract information around RQ2 - trustworthiness.  

• Medical Domain or diseases that DDSSs are applied to. Different 
diseases can be used for possible subgroup analysis. 

• Decision type (prediction, diagnosis, screening, monitoring, or treat-
ment) for possible subgroup analysis.  

• Maturity level of DDSSs from 1 (idea of DDSS) to 7 (world-wide 
adopted product). This indicates general DDSS adoption rates by 
showing how they have advanced in the market. Our maturity levels 
contribute to RQ1 and RQ4. 

Using a framework for data extraction helps us to make our research 
reproducible by highlighting which features of DDSSs were used to 
answer our research questions. We omitted the framework dimension 
“user group” during extraction as it does not contribute to our research 
questions. 

We decided to reuse our own framework since it was developed 
especially for the analysis of research about DDSSs in psychiatry and has 
already been applied successfully. Other existing frameworks were 
found to be either too complex (Boza et al., 2009; Sprague, 1980) or not 
fit our research questions (Camacho et al., 2020; Sim & Berlin, 2003). 
Greenes et al. also highlight that too many different perspectives on 
studying DDSSs make a single DDSS model which can be reused for 
different applications challenging (Greenes et al., 2018). 

The extracted answers to the EQ’s were then combined into a feature 
matrix based on a common agreement among the authors. The extracted 
features were then clustered to have a common terminology that allows 
further analysis and the possibility to compare results based on a 
narrative synthesis. Fig. 1 highlights our search process. 

3.6. Risk of bias 

We used the funnel plots based on sample size and accuracy to search 
for possible publication biases (Sterne & Harbord, 2004). Funnel plots 
plot the treatment effect (accuracy in our case) against the sample size. 

Suppose studies with smaller sample sizes have equal or less variance 
than studies with higher sample sizes (accuracy’s distribution is 
skewed). In that case, publication bias can be assumed (Kitchenham & 
Charters, 2007). Our empirical accuracy distribution does not indicate 
publication bias since it is nearly symmetric with only a small left-skew 
of − 0.03. Studies with smaller sample sizes have more variance in ac-
curacy than studies with higher sample sizes. However, these results 
should be interpreted with caution since not all studies mentioned their 
systems’ accuracy values. Some studies used different metrics that could 
not be converted to accuracy (see 4.1.3). Since most articles did not yield 
statistically significant results, alternative methods for detecting publi-
cation bias or data mining like p-curve analysis were not possible. 
However, Fig. 2 shows that mostly articles with high accuracy scores 
have been published. 

4. Results 

4.1. Facts from the literature 

This sub-section deals with the hard facts obtained from the selected 
literature based on the extraction questions in Table 4. The results are 
then analyzed, synthesized, and discussed in section 4.2. In general, 
article publication dates range from 2001 to 2020. About 65% of articles 
were published between 2014 and 2020 (51/80). The majority of arti-
cles were published in medical journals (50/80), 16 were published in 
computer science journals, and 14 in journals specific to digital 
healthcare or health informatics. 

4.1.1. Data 
As shown in Fig. 3, the majority of DDSSs uses the results of ques-

tionnaires or checklists (22.5%). As of the time of this review, innovative 
technology like virtual reality or sensors for digital phenotyping has not 
been adopted widely. 

Fig. 4 shows the distribution of sample size. More precisely, sample 
size’s mean was μ = 4133 with a standard deviation of σ = 16147 and a 
median of η = 151.5. The smallest sample size observed was 4, the 
highest 89840. Outliers (5972, 11540, 14929, 45388, 89840, 89840) 
have been removed from the plot for better visibility. Additionally to 
total sample size, 33 articles listed information about the number of 
positive and negative cases in their datasets. 

Out of the 80 articles in our review did not mention possible biases of 
data collection, their data, or the DDSS algorithm. 

4.1.2. Technology 
Fig. 5 shows the different algorithms used for DDSSs in psychiatry. 

24 research projects used Support Vector Machines (SVM) as decision 
algorithm for their system. The second most popular decision technol-
ogy was logistic regression (19 articles). Together with decision trees 
and random forests (12 articles), these groups make up nearly two-thirds 
of all algorithms. Explainability or explainable AI (XAI) was not 
mentioned by any of the papers in this review. Two papers mentioned 
that their approach is a black box as a downside. 

Because of generally low maturity scores described in 4.1.5, no clear 
indication of user interaction or data collection technology could be 
found since these technologies are typically not present when only 
dealing with datasets. 

4.1.3. Validation 
Fig. 6 presents the evaluation methods of DDSSs. Since the majority 

of research found is based on algorithm development based on datasets, 
the most dominant evaluation criterion was algorithmic accuracy 
measured by precision, recall, F1 score, or area under the receiver 
operating characteristic (ROC) curve (AUC). Definitions of the 
mentioned performance measure, especially AUC, can be found at 
Bradley (1997) 80% of the articles used algorithmic accuracy for the 
evaluations. 

Table 3 
quality criteria for our literature search.  

# Quality Criteria 

QC1 Has the study a well-defined structure? 
QC2 Does the study bring evidence for the proposed approach (either by citing 

relevant literature or validating the results)? 
QC3 Has the research been peer-reviewed?  

Table 4 
extraction questions (EQ) for data collection from the literature.  

# Extraction parameters 

EQ1 What data do existing decision support systems use? 
EQ1.2 How large is the used sample size? 
EQ2 How are existing DDSSs in mental health implemented? 
EQ2.1 Decision technology 
EQ2.2 User interaction technology 
EQ2.3 Data collection technology 
EQ3 Which features were validated? 
EQ3.1 How high is accuracy? 
EQ4 What medical domains/diseases are currently targeted by the DDSS? 
EQ5 What decisions are supported by the system? 
EQ6 What maturity level does the DDSS have?  
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Most popular was the measurement “accuracy”, present in 34 out of 
the 80 studies. The second most popular performance measurement was 
the area under the curve, present in 20 studies. Since accuracy and AUC 
values cannot be converted to each other, we extracted all accuracy 
measurements present in each paper and aggregated each scale indi-
vidually. Mean accuracy of the DDSSs is μ = 82.8% with a median of η =
82.5% and a standard deviation of σ = 0.116 (Fig. 7). Mean area under 
the curve value is μ = 0.809 with a median of η = 0.805 and a standard 
deviation of σ = 0.071. 42 papers listed a confusion matrix or precision/ 
recall values apart from other evaluation metrics like AUC, F1, or ac-
curacy scores. 

Fig. 8 shows the accuracy scores with the corresponding sample size 
of the different papers in our analysis. For better visibility, we removed 

the two outliers with sample size 89840. 

4.1.4. Supported Medical Domains/Diseases and Supported Decisions. 
Table 5 lists the diseases which are currently supported by the DDSSs 

in psychiatry. 
Extracted features for supported diseases and decisions did not yield 

any results that could be linked to our research questions about prob-
lems, biases, and fairness of AI algorithms. 

4.1.5. Maturity 
Based on the digital decision support framework described by Bertl 

et al. (2020), maturity was ranked on a scale from 1 (idea) to 7 (world- 
wide adopted product). The levels are described in Table 6. Scores based 

Fig. 2. funnel plot – accuracy vs. sample size.  

Fig. 3. input data types of DDSSs.  

Fig. 4. distribution of the sample size of DDSSs with removed outliers.  
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on these maturity levels indicate advancement in the development of AI 
and DDSSs in psychiatry. 

The maturity levels of the research in this review are shown in Fig. 9. 
The majority of articles dealt with maturity levels two (30) and three 
(38). The average maturity level of research in this survey was 2.625 and 
therefore indicates that most research deals with algorithm 
development. 

A Mann-Whitney-U test (McKnight & Najab, 2010) indicated that the 

Fig. 5. decision technology used by DDSSs.  

Fig. 6. evaluation methods of DDSSs.  

Fig. 7. distribution of the accuracy of DDSSs.  
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M. Bertl et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 202 (2022) 117464

7

difference between maturity levels of articles about DDSSs and AI in 
psychiatry does not differ statistically significantly from maturity levels 
for articles about DDSSs and AI for PTSD (U(npsychiatry = 48, nPTSD = 30) 
= 544.5, z = 1.79736, p <.07186). 

4.2. Findings & discussion 

Our research summarizes the current state of the art on decision 
support systems and artificial intelligence in psychiatry based on a 
theoretical framework for DDSSs. 

4.2.1. Current Obstacles of Research of AI and Decision Support Systems in 
Psychiatry – RQ1 

Concerning RQ1 “obstacles”, we observed small sample sizes when 
examining data dimensions. Often, either datasets that were already 
available were used, or data was collected using local medical infor-
mation systems. No data source covering the whole population at the 
state or national level was found. We assume that this indicates a lack of 
standardized eHealth infrastructures, universal data access, interoper-
ability, and a lack of data reuse capabilities in psychiatry. Psychiatry, in 
particular, is still mainly based on unconnected, impractical, or ineffi-
cient electronic record systems. Sometimes, documentation is even 
paper-based. This can introduce selection bias to AI training data. 

Clinical notes in EMR are mostly entered in free text. Coding and clas-
sification of findings are either based on very general, artificial cate-
gories like ICD or DSM, or locally used legacy taxonomies. It is 
questionable whether these artificial categories reflect the actual mental 
problem present with a patient. Knowing about the problems, new 
frameworks like the Research Domain Criteria (RDoC), which take into 
account more dimensions than just patient symptoms, are currently 
developed (Cuthbert, 2014). This is especially important given that we 
found a small correlation between sample size and accuracy, indicating 
that more data does not necessarily produce better outcomes. Instead, 
quality and representativeness of the data remain the important factor. 
As we have written at the beginning of this section, such problems 
continue to bedevil research on healthcare. Additionally to quality is-
sues, fragmentation of healthcare data makes it difficult to successfully 
implement DDSSs and AI in real-world scenarios. This conclusion is 
shared by Panch et al. (2019). Although data is a fundamental part of AI 
success, it alone is not sufficient to solve all problems DDSSs are 
currently facing. Research’s generally low maturity scores also indicate 
a problem of bringing AI and DDSSs into clinical practice. Besides health 
data’s fragmentation, other explanations could be a lack of strategic 
development, resulting in difficulties to bring research into clinical 
settings. Providing well-accepted user interaction is often more chal-
lenging to solve than the AI algorithm powering the DDSS’s cognition. 
Nevertheless, the evaluation dimension indicates that most papers focus 
on evaluating the cognition by exclusively using accuracy scores. The 
human interaction with those systems is often neglected. This demon-
strates a significant research gap when it comes to the enrichment of 
clinical processes with IT. Research on AI and DDSSs should perhaps 
focus more on the effects of the clinical processes, similar to health 
technologies, that are more successful in clinical settings, e.g. diagnostic 
imaging. 

4.2.2. Trustworthiness of AI and Digital Decision Support Systems in 
Psychiatry – RQ2 

We answer RQ2 “trustworthiness” by investigating evaluation 
methods, accuracy, possible reasons for biases, and other ways which 
could lead to wrong recommendations of AI and DDSSs in psychiatry. 
We found that the majority of articles investigated neither statistical 
significance (present in 31/80 papers) nor possible reasons for biases 
(27/80). Ranking according to maturity levels revealed that research 
mainly dealt with algorithm development. In contrast, randomized 
control trials were rare, and only two systems in production were found. 
The fact that neither the concepts of decision support systems (Power, 
2008, pp. 121–140) nor AI (Yu et al., 2018) are new indicates that the 
field is both stagnating and getting increasingly complex. This fact can 
be observed in current research and is also present in commercial 
products like IBM Watson (Strickland, 2019). One crucial factor that has 
held back AI in the past has recently been overcome: the lack of 
computing power. This positive development has led to many AI-related 
success stories in areas like finance, retail, or marketing. Notable ex-
amples include Google or Amazon, which are heavily dependent on AI 
(Smith & Linden, 2017). However, the medical domain is complex, the 
generalizability of diagnoses is questionable, while data collection and 
reuse are time-consuming and expensive. Additionally, many re-
quirements concerning data protection and anonymization pose diffi-
culties. Also, diagnosing patients is not a straightforward matter, 
especially in mental health, and the reproducibility of a patient diag-
nosis by humans is low (Aboraya et al., 2006; Basco et al., 2000; Mendel 
et al., 2011; Muller, 2013). Studies suggest that not only diagnostic, but 
also administrative errors, run rampant in modern-day diagnoses (Davis 
et al., 2016). This means that AI’s training or labeling data itself is 
probably inconsistent, making establishing a ground truth for ML 
training difficult. In this context, computerized systems function as 
catalysts for already present errors in the dataset by enabling the large- 
scale reproduction of already biased decisions. It is questionable 
whether simple algorithms like SVMs (used in 24/80 papers) or logistic 

Table 5 
diseases supported by DDSSs in psychiatry.  

Disease # 

depression 10 
schizophrenia 8 
psychotic disorder 3 
anxiety 3 
PTSD 3 
bipolar disorder 2 
ADHD 2 
suicidality 2 
others 5  

Table 6 
maturity level scale for DDSSs.  

Level Description 

1 Idea without implementation 
2 Implementation without real-world interaction (algorithm development) 
3 Implementation with real-world interaction but without patient intervention 

(no 
real intervention on a patient takes part based on the output of the DDSS) 

4 Fully functioning prototype, system triggers real-world action (e.g., clinical 
trial) 

5 Operational product (at least one adopter, certified if required) 
6 Locally adopted product 
7 World-wide adopted product (transformational)  
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Fig. 9. maturity levels (according to Table 6) of DDSSs.  
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regression (19/80) can model complex neurophysiology processes pre-
sent in the human brain to a satisfactory degree. 

Evaluation is an important keyword when it comes to the question of 
trustworthiness. Data scientists and AI researchers focus on improving 
accuracy scores since the academic community has decided that this 
constitutes the primary criterion for success. Other evaluation metrics 
are often neglected. According to our review, 34 out of the 80 papers 
focus on accuracy evaluations. A mean accuracy of 82.8% seems high. 
However, accuracy alone is insufficient to measure whether AI algo-
rithms or DDSSs perform well. One crucial shortcoming of accuracy 
scores is that they are highly dependent on both sampling and the 
number of positive and negative cases that are present in the evaluation 
sets. In contrast, the class balance must be preserved to get realistic 
accuracy scores. By default, classification problems concerning psychi-
atric diseases are highly unbalanced, meaning the number of negative 
cases in a random population sample is much higher than the number of 
positive ones. Additionally, since researchers make evaluations based on 
their personally collected data, they may reproduce their own biases. 
Due to the problems mentioned above, the resulting accuracy values 
make comparisons between different research results difficult. Bench-
marking different approaches becomes even more complicated when 
only a single measure like accuracy or AUC values are mentioned, as it 
was the case in most of the investigated research. 

4.2.3. Adoption of New Technology - RQ3 
When looking at RQ3 “adoption of new technology”, our literature 

review uncovered that DDSS’ input data is mostly based on checklists or 
questionnaires. Checklists and questionnaires as a tool for diagnosis 
have been tested and validated over the past decades and are still the 
only mentioned approach for diagnosis in medical guidelines like NICE 
(NICE Guideline NG116, 2020). New data sources that could be used for 
digital phenotyping have still not been broadly adopted. Wider use of 
internationally recognized taxonomies for clinical notes and standardi-
zation of data capture would also improve the performance and quality 
of AI and DDSSs. Since new technology has a short lifecycle, it is more 
difficult to find evidence supporting their clinical use, which might 
explain why there is less research. From an algorithmic perspective, the 
most common algorithm used in articles of this review was SVM. 
Compared to other algorithms, SVMs have less stringent assumptions for 
input data and are easy to implement. However, SVMs are not 
explainable by default. Explainable AI (XAI) is still a neglected topic of 
the current state of the art in health informatics. From a legal (article 13 
and 14 of the EU General Data Protection Regulation) as well as from an 
ethical point of view, it is essential to understand why systems produce 
certain outputs (Safdar et al., 2020). Since cases are known where the 
application of AI algorithms has resulted in discrimination based on 
ethnicity or gender (Buolamwini & Gebru, 2018; Leavy, 2018), decision 
transparency is very much needed, especially in a sensitive domain like 
healthcare. XAI has the potential to bring accountability, transparency, 
and traceable results for DDSSs (Pawar et al., 2020) by enabling con-
testability of AI-based decisions (Ploug & Holm, 2020). A detailed 
definition of XAI, opportunities, and challenges are described by Bar-
redo Arrieta et al. (2020). 

The detection of causality also plays a major role in DDSS success. 
Currently used DDSS algorithms do not interpret causes and effects, thus 
are not able to detect why certain associations and correlations exist. 
This limits AI in being able to generalize beyond its narrow domains and 
transfer its skills to different problems. 

4.2.4. Ways to Improve AI and Digital Decision Support Systems in 
Psychiatry – RQ4 

Advancements of AI algorithms and DDSSs are highly dependent on 
data availability. As shown above, data impacts AI models’ training and 
is also the primary source of evaluation and benchmarking. We think 
that many current problems are unrelated to algorithms’ cognition or 
intelligence but can be better explained by a lack of high-quality data. 

We propose that further research dedicates renewed attention to the 
use of unobtrusive data by DDSSs to supplement diagnostic data and 
clinical questionnaires. This shifts the focus from a diagnosis’ perspec-
tive based on generalized artificial categorization back to physiological 
problems caused by different diseases giving better insights into the 
possible cause of mental illness and effective therapeutic intervention. 
Unobtrusive data is not impacted by current issues in healthcare con-
cerning data and diagnosis standardization and data collection. Addi-
tionally, it also helps to mitigate potential biases in available data 
sources like electronic health records or checklists/questionaries. 

To ensure that AI and DDSSs are less biased in psychiatric research, 
we propose using a unified benchmark dataset. Such datasets should 
contain anonymized, open-access data from many different resources. A 
unified benchmark can help to overcome challenges in measuring the 
correctness of DDSS algorithms. It helps to obtain standardized bench-
mark results, which makes the comparison of different approaches 
possible. This is already common in other disciplines where AI is used; 
examples include the MNIST Database for handwritten digits by the US 
National Institute of Standards and Technology (LeCun et al., 1999) or 
TweetEval for Tweet classification (Barbieri et al., 2020). Further 
research needs to specify how such unified benchmark datasets for DDSS 
and AI in psychiatry could look like. 

Apart from relying on more and better data, we want to highlight the 
importance of adding confusion matrices in academic papers. A confu-
sion matrix helps to make the performance of different algorithms 
comparable. It is impossible to produce aggregated meta-analyses to 
evaluate the performance of DDSS and AI when accuracy, AUC values, or 
F1 values are the only measures that researchers calculate since these 
values cannot be converted to a unified metric. Nevertheless, we found 
that only 42 papers listed confusion matrixes. 

Given that most studies in this review used already available datasets 
which were not sampled individually for their research (maturity level 
two or lower), their high accuracy values must not necessarily reflect on 
a good performance of level four or higher DDSSs. We suggest that 
DDSSs need to be tested in a clinical setting to evaluate their real-world 
performance and efficacy. Additionally, the high accuracy of the algo-
rithms could be an indication of overfitting. Current research mostly 
neglects this. 

Nevertheless, accurate predictions alone are not always sufficient for 
medical decision-making. We argue that one success factor of DDSSs in 
healthcare is understanding causality and dealing with counterfactuals. 
This argument is also supported by popular scientists like Judea Pearl 
(Pearl & Mackenzie, 2018). New approaches in the field of AI, like causal 
representation learning (Scholkopf et al., 2021), could help overcome 
these challenges. 

It is not sufficient to focus exclusively on one dimension of our 
framework like data or decision technology. In order to introduce DDSSs 
and AI safely into clinical practice, there is a need for standardization 
and unified evaluation criteria for every part of the decision support 
system framework by Bertl et al. (2020). A standardized way of evalu-
ating DDSSs in clinical practice is needed to show the unbiased perfor-
mance of DDSSs and AI in healthcare. At the moment, this has been 
neglected by the scientific community. However, a standardized eval-
uation is the foundation of the trustworthiness of computerized deci-
sion-making. 

4.2.5. Limitations 
This survey has several limitations. First, we only included peer- 

reviewed publications in English. Relevant DDSSs might have been 
published as pre-prints or news reports. DDSSs may also have been 
implemented in real-world clinical practice without previously pub-
lishing these systems in academic journals. We think that this concern is 
unlikely but still possible. One example of this would be the product 
EBMeDS (Duodecim Medical Publications Ltd., 2020). Several publica-
tions about EBMeDS exist, but none of them mentions psychiatry, 
although it is used in this area in production. These points may partly 
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explain why we found low maturity scores. 
Not the least, further research needs to be done to analyze maturity 

scores of currently used DDSSs. Since research about DDSSs in psychi-
atry is limited, our results are based on a small corpus of literature. This 
needs to be taken into account while interpreting the quantitative results 
of this survey. 

Regarding our research question on trustworthiness, it needs to be 
noted that this is a highly subjective matter. Indeed, no unified mea-
surement has evolved. We try to quantify trustworthiness by looking at 
maturity and accuracy scores. Further research could use other ap-
proaches like surveys of stakeholders to measure their opinion. 

Another limitation is that we calculate statistical parameters over the 
whole study population. We argue that this is valid because all our pa-
pers still belong to the top-level category of DDSSs in psychiatry, 
although they might follow different approaches and deal with various 
diseases. The overview provided by this survey is needed to establish a 
baseline on how well DDSSs in psychiatry work generally. Especially the 
aggregation of sample size used for training and evaluation, as well as 
the accuracy scores can be an indicator for trustworthiness and is 
therefore highly relevant for our research. We accept that our aggre-
gations might hide important variations in the data. A more granular 
sub-group analysis would be desirable but is unlikely to find statistically 
significant results due to the even smaller corpus of the literature. Here, 
we encourage further research. Nevertheless, such studies still cannot 
conclude on the general subject area of DDSSs in psychiatry. 

5. Conclusion 

There is no evidence of widespread usage of AI or DDSSs applications 
in psychiatry or other clinical specialties in everyday practice. Although 
the algorithms’ high accuracy scores seem to support their use, this 
systematic literature review indicated problems concerning small sam-
ple sizes, possibilities of bias, lack of evaluation in production, and po-
tential difficulties in establishing a ground truth. One reason that could 
explain why collecting new and original data is difficult might be the 
absence of standardization, centralized eHealth infrastructure, and data 

reuse capabilities in healthcare systems. Concepts to cope with health 
data fragmentation are needed as well as concepts to ensure data 
quality. Additionally, we are missing broad evidence of AI’s and DDSSs’ 
success confirmed by clinical studies to justify large-scale adoption. We 
also advocate for introducing a standardized concept for evaluating 
DDSS and AI in healthcare. One such component could include carefully 
assembled unified benchmark datasets to establish a consistent way of 
evaluating algorithmic accuracy of DDSSs and AI algorithms and helping 
to reduce bias. Algorithmic bias reflects human biases and culture, 
possibly with catastrophic consequences. On the other hand, a well- 
consolidated AI system that discovers causations in big data could 
amass the kind of knowledge of human mental disorders, their genetic 
origins and expressions in diagnoses and human behavior in a way that 
no other method can – potentially tapping into the ’source code of the 
mind’ on the deepest neurocognitive levels. However, although much 
needed, we see the opportunity for AI and DDSSs to improve psychiatry 
at the moment to remain just that – an opportunity for the future. 
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Appendix 

The following two sections list the literature used for this review:   

Publication Title (Psychiatry) Year 

A clinical risk stratification tool for predicting treatment resistance in major depressive disorder (Perlis, 2013) 2013 

A deformable registration method for automated morphometry of MRI brain images in neuropsychiatric research (Schwarz et al., 2007) 2007 

A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy 
(Khodayari-Rostamabad et al., 2010) 

2010 

A risk calculator to predict adult attention-deficit/hyperactivity disorder: Generation and external validation in three birth cohorts and one clinical sample (Caye et al., 2019) 2019 

A situation-aware system for the detection of motion disorders of patients with Autism Spectrum Disorders (Coronato et al., 2014) 2014 

A web-based clinical decision tool to support treatment decision-making in psychiatry: A pilot focus group study with clinicians, patients and carers (Henshall et al., 2017) 2017 

Automatic recognition of symptom severity from psychiatric evaluation records (Goodwin et al., 2017) 2017 

Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: The Smartcrises study protocol (Berrouiguet et al., 2019) 2019 

Computational neuroimaging strategies for single patient predictions (Stephan et al., 2017) 2017 

Computer-aided DSM-IV-diagnostics - Acceptance, use and perceived usefulness in relation to users’ learning styles (Bergman & Fors, 2005) 2005 

Design and methods of the ’monitoring outcomes of psychiatric pharmacotherapy’ (MOPHAR) monitoring program - A study protocol (Simoons et al., 2019) 2019 

Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI (Chyzhyk et al., 2015) 2015 

Drug Repositioning for Schizophrenia and Depression/Anxiety Disorders: A Machine Learning Approach Leveraging Expression Data (Zhao & So, 2019) 2019 

Drug side effect extraction from clinical narratives of psychiatry and psychology patients (Sohn et al., 2011) 2011 

From complex questionnaire and interviewing data to intelligent Bayesian network models for medical decision support (Constantinou et al., 2016) 2016 

(continued on next page) 
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(continued ) 

Publication Title (Psychiatry) Year 

Implementing a digital clinical decision support tool for side effects of antipsychotics: A focus group study (Henshall et al., 2019) 2019 

Leveraging the utility of pharmacogenomics in psychiatry through clinical decision support: A focus group study (Goodspeed et al., 2019) 2019 

Machine learning methods to predict child posttraumatic stress: A proof of concept study (Saxe et al., 2017) 2017 

Multimodel decision support system for psychiatry problem (Suhasini et al., 2011) 2011 

Predicting patient outcomes in psychiatric hospitals with routine data: A machine learning approach (Wolff et al., 2020) 2020 

Predicting persistent depressive symptoms in older adults: A machine learning approach to personalised mental healthcare (Hatton et al., 2019) 2019 

Predictive modeling for classification of positive valence system symptom severity from initial psychiatric evaluation records (Posada et al., 2017) 2017 

The development and evaluation of a computerized decision aid for the treatment of psychotic disorders (Tasma et al., 2018) 2018 

The development and validation of statistical prediction rules for discriminating between genuine and simulated suicide notes (Jones & Bennell, 2007) 2007 

Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition (Koutsouleris et al., 2009) 2009 

VisualDecisionLinc: A visual analytics approach for comparative effectiveness-based clinical decision support in psychiatry (Mane et al., 2012) 2012 

A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on 
multimodal neuropsychiatric data (Ambrosen et al., 2020) 

2020 

A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder (Perez Arribas et al., 2018) 2018 

An analysis of eye-tracking features and modelling methods for free-viewed standard stimulus: Application for schizophrenia detection (Kacur et al., 2020) 2020 

An Ensemble Approach to Predict Schizophrenia Using Protein Data in the N-methyl-D-Aspartate Receptor (NMDAR) and Tryptophan Catabolic Pathways (Lin et al., 2020) 2020 

Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia (Yoon et al., 2012) 2012 

Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals (Ay et al., 2019) 2019 

Counting trees in Random Forests: Predicting symptom severity in psychiatric intake reports (Scheurwegs et al., 2017) 2017 

Data-driven analysis using multiple self-report questionnaires to identify college students at high risk of depressive disorder (Choi et al., 2020) 2020 

Delirium misdiagnosis risk in psychiatry: A machine learning-logistic regression predictive algorithm (Hercus & Hudaib, 2020) 2020 

Elucidating a Magnetic Resonance Imaging-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning 
Algorithms (Sun et al., 2009) 

2009 

EM-Psychiatry: An Ambient Intelligent System for Psychiatric Emergency (G. R. Alam et al., 2016) 2016 

Ensemble machine learning prediction of posttraumatic stress disorder screening status after emergency room hospitalization (Papini et al., 2018) 2018 

Estimation of the Development of Depression and PTSD in Children Exposed to Sexual Abuse and Development of Decision Support Systems by Using Artificial Intelligence 
(Ucuz et al., 2020) 

2020 

Evaluating depression with multimodal wristband-type wearable device: screening and assessing patient severity utilizing machine-learning (Tazawa et al., 2020) 2020 

Local, Early, and Precise: Designing a Clinical Decision Support System for Child and Adolescent Mental Health Services (Røst et al., 2020) 2020 

Machine-based classification of ADHD and nonADHD participants using time/frequency features of event-related neuroelectric activity (Öztoprak et al., 2017) 2017 

Neuroimaging, genetic, clinical, and demographic predictors of treatment response in patients with social anxiety disorder (Frick et al., 2020) 2020 

Predicting individual clinical trajectories of depression with generative embedding (Frässle et al., 2020) 2020 

Psychiatric comorbid disorders of cognition: A machine learning approach using 1175 UK Biobank participants (Li et al., 2020) 2020 

Testing suicide risk prediction algorithms using phone measurements with patients in acute mental health settings: Feasibility study (Haines-Delmont et al., 2020) 2020 

Using a simulation centre to evaluate preliminary acceptability and impact of an artificial intelligence-powered clinical decision support system for depression treatment on 
the physician-patient interaction (Benrimoh et al., 2020) 

2020 

Using structural MRI to identify individuals at genetic risk for bipolar disorders: A 2-cohort, machine learning study (Hajek et al., 2015) 2015 

Vocal pattern detection of depression among older adults (M. Smith et al., 2020) 2020 

Web of objects based ambient assisted living framework for emergency psychiatric state prediction (M. G. R. Alam et al., 2016) 2016    

Publication Title (PTSD) Year 

A First Step towards a Clinical Decision Support System for Post-traumatic Stress Disorders (Ma et al., 2016) 2016 

A mobile app for patients and those who care about them: A case study for veterans with PTSD + anger (Barish et al., 2019) 2019 

A multimodal approach for predicting changes in PTSD symptom severity (Mallol-Ragolta et al., 2018) 2018 

A neural network based model for predicting psychological conditions (Dabek & Caban, 2015a) 2015 

A wearable health monitoring system for posttraumatic stress disorder (McWhorter et al., 2017) 2017 

An alternative evaluation of post traumatic stress disorder with machine learning methods (Omurca & Ekinci, 2015) 2015 

Bridging a translational gap: Using machine learning to improve the prediction of PTSD (Karstoft, Galatzer-Levy, et al., 2015) 2015 

Investigating voice quality as a speaker-independent indicator of depression and PTSD (Scherer et al., 2013) 2013 

Machine learning methods to predict child posttraumatic stress: A proof of concept study (Saxe et al., 2017) 2016 

Measuring post traumatic stress disorder in twitter (Coppersmith et al., 2014) 2014 

(continued on next page) 
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(continued ) 

Publication Title (PTSD) Year 

Quantitative forecasting of PTSD from early trauma responses: A Machine Learning application (Galatzer-Levy et al., 2014) 2014 

Self-Reported Symptoms of Depression and PTSD Are Associated with Reduced Vowel Space in Screening Interviews (Scherer et al., 2016) 2016 

Technology-Enhanced Stepped Collaborative Care Targeting Posttraumatic Stress Disorder and Comorbidity After Injury: A Randomized Controlled Trial (Zatzick et al., 2015) 2015 

Towards clinical decision support for veteran mental health crisis events using tree algorithm (Hossain et al., 2019) 2019 

A voice-based automated system for PTSD screening and monitoring (Xu et al., 2012) 2012 

Automated Assessment of Patients’ Self-Narratives for Posttraumatic Stress Disorder Screening Using Natural Language Processing and Text Mining (He et al., 2017) 2017 

Beyond symptom self-report: use of a computer “avatar” to assess post-traumatic stress disorder (PTSD) symptoms (Myers et al., 2016) 2016 

Customized computer-based administration of the PCL-5 for the efficient assessment of PTSD: A proof-of-principle study (Finkelman et al., 2017) 2017 

Early identification of posttraumatic stress following military deployment: Application of machine learning methods to a prospective study of Danish soldiers (Karstoft, 
Statnikov, et al., 2015) 

2015 

Feasibility, acceptability, and potential efficacy of the PTSD Coach app: A pilot randomized controlled trial with community trauma survivors (Miner et al., 2016) 2016 

Heart rate variability: Pre-deployment predictor of post-deployment PTSD symptoms (Pyne et al., 2016) 2016 

Improving speech-based PTSD detection via multi-view learning (Zhuang et al., 2014) 2014 

Leveraging Big Data to Model the Likelihood of Developing Psychological Conditions After a Concussion (Dabek & Caban, 2015b) 2015 

Linguistic predictors of trauma pathology and physical health (Alvarez-Conrad et al., 2001) 2001 

Physiology-Driven Adaptive Virtual Reality Stimulation for Prevention and Treatment of Stress Related Disorders (Ćosić et al., 2010) 2010 

Posttraumatic Stress Disorder: Diagnostic Data Analysis by Data Mining Methodology (Marinić et al., 2007) 2007 

Preliminary Evaluation of PTSD Coach, a Smartphone App for Post-Traumatic Stress Symptoms (Kuhn et al., 2014) 2014 

Temporal analysis of heart rate variability as a predictor of post traumatic stress disorder in road traffic accidents survivors (Shaikh al arab et al., 2012) 2012 

The use of immersive virtual reality (VR) to predict the occurrence 6 months later of paranoid thinking and posttraumatic stress symptoms assessed by self-report and 
interviewer methods: A study of individuals who have been physically assaulted. (Freeman et al., 2014) 

2014 

Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level (Gong et al., 2014) 2014  
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Adaptive Virtual Reality Stimulation for Prevention and Treatment of Stress Related 
Disorders. Cyberpsychology, Behavior, and Social Networking, 13(1), 73–78. https:// 
doi.org/10.1089/cyber.2009.0260 

Cuthbert, B. N. (2014). The RDoC framework: Facilitating transition from ICD/DSM to 
dimensional approaches that integrate neuroscience and psychopathology. World 
Psychiatry, 13(1), 28–35. https://doi.org/10.1002/wps.20087 

Dabek, F., & Caban, J. J. (2015a). A neural network based model for predicting psychological 
conditions (Vol. 9250). https://doi.org/10.1007/978-3-319-23344-4_25 

Dabek, F., & Caban, J. J. (2015b). Leveraging big data to model the likelihood of 
developing psychological conditions after a concussion. In Roy A., Venayagamoorthy 
K., Alimi A., Angelov P., & Trafalis T. (Eds.), Procedia Comput. Sci. (Vol. 53, pp. 
265–273). Elsevier B.V.; Scopus. 10.1016/j.procs.2015.07.303. 

Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: 
Management, analysis and future prospects. Journal of Big Data, 6(1), 54. https://doi. 
org/10.1186/s40537-019-0217-0 

Davis, K. A. S., Sudlow, C. L. M., & Hotopf, M. (2016). Can mental health diagnoses in 
administrative data be used for research? A systematic review of the accuracy of 
routinely collected diagnoses. BMC Psychiatry, 16(1), 263. https://doi.org/10.1186/ 
s12888-016-0963-x 

Day, S., Seninger, C., Fan, J., Pundi, K., Perino, A., & Turakhia, M. (2019). Digital Health 
Consumer Adoption Report 2019. Stanford Medicine. 

Duodecim Medical Publications Ltd. (2020). EBMEDS White Paper. https://www.ebmeds. 
org/wp-content/uploads/sites/16/2020/10/WhitePaper_2020-1.pdf. 

eHealth, Well-being, and Ageing (Unit H.3). (2019). EHealth adoption in primary 
healthcare in the EU is on the rise [Text]. European Commission. https://ec.europa.eu/ 
digital-single-market/en/news/ehealth-adoption-primary-healthcare-eu-rise. 

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of 
PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. 
The FASEB Journal, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF 

Finkelman, M. D., Lowe, S. R., Kim, W., Gruebner, O., Smits, N., & Galea, S. (2017). 
Customized computer-based administration of the PCL-5 for the efficient assessment 
of PTSD: A proof-of-principle study. Psychological Trauma: Theory, Research, Practice, 
and Policy, 9(3), 379–389. https://doi.org/10.1037/tra0000226 
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(2007). Posttraumatic Stress Disorder: Diagnostic Data Analysis by Data Mining 
Methodology. Croat Med J, 13. 
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Shaikh al arab, A., Guédon-Moreau, L., Ducrocq, F., Molenda, S., Duhem, S., Salleron, J., 
Chaudieu, I., Bert, D., Libersa, C., & Vaiva, G. (2012). Temporal analysis of heart rate 
variability as a predictor of post traumatic stress disorder in road traffic accidents 
survivors. Journal of Psychiatric Research, 46(6), 790–796. 10.1016/j. 
jpsychires.2012.02.006. 

Sim, I., & Berlin, A. (2003). A Framework for Classifying Decision Support Systems. 
AMIA Annual Symposium Proceedings, 2003, 599–603. 
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A B S T R A C T   

Background: Currently, health care is expert-centric, especially with regard to decision-making. Innovations such 
as artificial intelligence (AI) or interconnected electronic health records (EHRs) suffer from low adoption rates. In 
the rare cases of technically successful implementation, they often result in inefficient or error-prone processes. 
Aim & Methods: This paper explores the state of the art in AI-based digital decision support systems (DDSSs). To 
overcome the low adoption rates, we propose a systematic strategy for bringing DDSS research into clinical 
practice based on a design science approach. DDSSs can transform health care to be more innovative, patient- 
centric, accurate and efficient. We contribute by providing a framework for the successful development, eval-
uation and analysis of systems for AI-based decision-making. This framework is then evaluated using focus group 
interviews. 
Results: Centred around our framework, we define a systematic approach for the use of AI in health care. Our 
systematic AI support approach highlights essential perspectives on DDSSs for systematic development and 
analysis. The aim is to develop and promote robust and optimal practices for clinical investigation and evaluation 
of DDSS in order to encourage their adoption rates. The framework contains the following dimensions: disease, 
data, technology, user groups, validation, decision and maturity. 
Conclusion: DDSSs focusing on only one framework dimension are generally not successful; therefore, we propose 
to consider each framework dimension during analysis, design, implementation and evaluation so as to raise the 
number of DDSSs used in clinical practice. 
Public Interest Summary: The digital transformation of the healthcare sector creates the potential for the sector to 
be more accurate, efficient and patient-centric using AI, or so-called digital decision support systems. In this 
research, we explore why these systems are needed and how they can be successfully implemented in clinical 
practice. For this, we propose a systematic approach based on our conceptual framework. Against this back-
ground, we present our vision for further advancing these technologies. We see our systematic AI support as a 
primary driver, with the possibility to facilitate the much-needed breakthrough of decision support systems in 
health care.   

1. Introduction 

Innovations in the health sector are of pivotal importance for today’s 
societies. Consequently, e-health, recently also referred to as digital 
health, is an essential topic in eGovernment [1] and smart city research 
[2,3]. Smart, sustainable cities are data-driven. However, digital trans-
formation in the healthcare sector requires changing clinical workflows 
established a long time ago [4]. This change towards an improvement in 
quality is influenced by policies, health management and (clinical) care 
[5]. In all of the three mentioned areas, decisions need to be made. These 

decisions have a direct impact on patients’ lives, on caregivers as well as 
on society at large. As one example, 250,000 Americans die from med-
ical errors each year [6]. A medical error costs hospitals $939 on 
average, totalling $1 billion for US hospitals alone [7]. According to [8], 
drivers of poor medical care can be grouped into (i) “money, finance, 
and organization”; (ii) “knowledge, beliefs, assumptions, bias, and un-
certainty”; and (iii) “power and human relationships”. Additionally, the 
absence of evidence for clinicians as well as biased research were 
identified as reasons for errors in medical decisions [8]. According to the 
survey in [9], 37% of healthcare organisations lack the data they need 
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for decision-making. On the other hand, the creation of health-related 
data is rising year by year. We can assume that some of the evidence 
needed may already be present in current hospital information systems. 
However, due to legacy data silos caused by a lack of interoperability 
and data connectivity, these data are not always accessible for medical 
decision-making. We also hypothesise that the issue of interoperability 
is not merely a lack of common terminologies and archetypes, messaging 
or database formats and technical connectivity. Rather, the problem 
originates in the inability of the information systems to adapt to a 
continuous need for learning – for the flexible readjusting of ontologies 
of cognition and remaining interoperable at the same time. Therefore, 
the question of the trade-off between rigid standards and faster learning 
arises. 

If timely, high-quality data are provided, we see high potential for 
AI-driven digital decision support systems (DDSS). The Cambridge 
Dictionary defines AI as “the study of how to produce computers that 
have some of the qualities of the human mind, such as the ability to 
understand language, recognize pictures, solve problems, and learn” 
[10]. 

Sauter defines DDSSs as “computer-based systems that bring together 
information from various sources, assist in the organization and analysis 
of information and facilitate the evaluation of assumptions underlying 
the use of specific models” [11]. In the medical domain, DDSSs can 
optimise patient care by improving decisions in the aforementioned 
areas that drive poor medical care. DDSSs, therefore, play a vital role in 
making our cities, regions and communities smart and sustainable. 
Ironically, instead of improving the situation, AI and DDSSs currently 
play a niche role, even introducing new kinds of medical 
decision-making problems. In this research, we explore this role and 
provide a vision ensuring that DDSSs fulfil the expectations for making 
health care safer, better and more efficient. We propose that the key to 
these goals is a systematic approach, which we call systematic AI 
support. 

2. Background: The low adoption rates of AI-based DDSS in 
health care 

Recent studies suggest problems with AI-based DDSSs [12–14] 
despite their often cited potential. According to Heeks [15], up to 85% of 
health IT projects encounter some kind of failure. He assumes that 
traditional, structured development methodologies are one reason for 
such failure. Another problem is data alone. We lack structured elec-
tronic documentation, centralised and connected EHRs and have high 
data protection standards, making the collection and reuse of data 
difficult. Not only do these problems slow down the adoption of 
AI-based DDSSs, but low data quality also hinders administration of care 
based on evidence-based practice. 

Another factor negatively influencing DDSSs adoption is low user 
acceptance [12] caused by low IT literacy, lack of training and support 
of staff to use e-health systems, lack of time as well as missing funding 
for health IT [13]. Furthermore, systems are difficult to use because their 
integration with clinical workflows is often unsuccessful [16]. In the 
end, health professionals end up with dysfunctional systems that frus-
trate users and ironically lead to errors and avoidance of DDSSs alto-
gether [17,18]. Additional negative factors include obscured 
responsibilities between computers and humans leading to liability 
discussions and threats to clinicians’ independence [19]. 

In radiology, standardised digital imaging and structured reporting 
have existed for many years, meaning that a large foundation of labelled 
data is available to train AI algorithms. The anomaly detection algo-
rithms developed are even better than humans in some cases. Still, AI 
has not replaced radiologists quite yet, nor has it even found its way into 
radiologists’ routine daily practice. The reasons for this are the under-
estimation of the number of variables that influence meaningful advice, 
the need for iterative communication with colleagues and the consid-
eration of prior health and medical data for decision-making. Anomaly 

alone does not lead to meaningful reports or treatment [20]. Further-
more, not every anomaly is a reason for disease. AI alone brings up too 
many insignificant abnormalities. This forces radiologists to investigate 
AI-selected anomalies, leading to unnecessarily high time consumption. 
Additionally, current AI systems do not suit clinical workflows. 

There are rare examples of DDSSs in production, some even with 
high adoption rates. One is EBMeDS from Duodecim [21]. EBMeDS 
works on top of Electronic Medical Records (EMRs) or Electronic Health 
Records (EHRs) and uses a rule-based approach to assist with clinical 
guidelines and provide clinical reminders and drug assistants [22]. 
EBMeDS includes an organisational solution for creating a feedback loop 
for algorithm validation, which we assume as one success factor for 
smoother implementation. Others are functionality for the organisation 
to measure DDSS performance and thereby control the quality of input 
data and user habits. Current research projects mostly lack these func-
tionalities [14]. EBMeDS supports 3646 evidence links, 21,762 drug 
interactions and 988 custom scripts in 13 languages [23]. Another 
popular example is IBM’s Watson Health Platform, consisting of many 
modules that help analyse diagnostics, drug interactions, radiological 
images, oncological treatment or administrative tasks. Although used in 
production, some researchers are questioning whether it brings real 
value [24]. Currently, most tools in use only assist medical 
decision-making by providing information from scholarly publications. 
Examples are Wolters Kluwers UpToDate [25] or Elseviers ClinicalKey 
[26]. 

We see successful DDSSs as socio-technical learning systems, which 
have been trained by providing real-life feedback over a longer period. 
This enables the systems to overcome the difficulties encountered during 
their immaturity phase. Systems deployed in multi-institutional setups 
complicate fast feedback with high accuracy. Therefore, systems like 
EBMeDS are usually deployed internally for one institution, where 
DDSSs start to influence the feedback on organisational behaviour and 
data quality. 

3. Comparison with previous work 

Many frameworks for healthcare technology have been published, 
which have been reviewed and analysed by Greenhalgh et al. [27]. As 
stated by Greenes et al. [28], it is challenging to find a single overarching 
model that covers all the aspects of healthcare technology in sufficient 
detail to remain useful. Therefore, we see the need for multiple models 
or frameworks for various aspects of this complex domain. None of the 
currently published models deals specifically with AI-based decision 
support for health care. Popular frameworks in health informatics, like 
NASSS [27], do not address the practical shortcomings of DDSS devel-
opment so far. Using our framework with the novel healthcare tech-
nology maturity levels, we highlight the necessity of advancing maturity 
levels to the highest level in order to enable use of a system in real 
clinical work. This is especially important because the development 
process is long and systems developed in isolation under ‘textbook’ 
conditions (e.g. algorithms with lower maturity levels) have high po-
tential for non-adoption. 

4. Methods 

Our systematic AI support approach is visualised on the basis of a 
theoretical framework. For the development of our framework, we fol-
lowed the design science research paradigm proposed by Hevner et al. 
[29]. Design science is used as a systematic methodology for developing 
and evaluating a novel design artefact (technology, framework, etc.) 
that copes with a real-world problem. According to Hevner et al. [29], 
design science research is the process of creating a purposeful artefact 
for a specific domain with a comprehensive evaluation. The designed 
artefact needs to solve a specific problem that is rigorously defined, 
formally represented, and coherent and internally consistent. Design 
science has been widely accepted as an information systems research 
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method [30,31] and is a particularly good fit for our research purpose, 
since it helps to address both the role of IT artefacts in information 
system research [32] and the low level of professional relevance of many 
studies [33] on DDSSs. 

We apply the design science approach to DDSSs by developing a 
novel framework for raising the adoption rates of AI-based DDSSs. The 
resulting artefact of our design process – our framework – is further 
described in Section 5. The evaluation based on a focus group interview 
is laid out in Section 6. 

5. Results: A framework for improving AI-based DDSS adoption 
rates 

Fig. 1 presents our framework, designed based on terminology 
extracted from two previous systematic literature reviews [14,34] and 
our own observations. The terminology was extracted from 80 journal 
articles on DDSSs or AI in psychiatry using thematic analysis [35] and 
narrative synthesis [36]. 

The framework specifies key variables influencing DDSSs and pro-
vides scope for defining research problems, conducting reviews, evalu-
ating a solution or benchmarking solutions. It allows the systematic 
analysis of the steps needed for successful DDSSs adoption. Our frame-
work’s terminology also serves as a common language to bridge barriers 
in interdisciplinary medical informatics. Since health care is a complex, 
adaptive system [37], we cannot develop new approaches or study is-
sues based on isolated entities. New systems change the environment in 
which they are deployed and therefore complex feedback loops emerge 
between all involved systems. Each successful approach needs to be able 
to cope with such complexity. Based on the principle of separation of 
concerns, our framework can be used to divide the overall problem of 

DDSSs into smaller parts for investigation. It draws attention to distinct 
aspects of DDSS development, thereby supporting the coordination of 
profoundly specialised expertise. Our framework is not a static tool; as 
the environment changes, each dimension needs to be re-evaluated. 

DDSSs can fulfil many tasks. Therefore, subcategories are needed for 
a more evident scope. DDSSs can be classified into two categories based 
on their primary purpose:  

• Data entering decision support. This covers everything supporting 
the data entering information systems, e.g. taxonomies (ICD-10, 
SNOMED-CT, etc.), template tools, structuring or reporting tools.  

• Decision support based on collected data offers support based on 
data reuse. We divide these systems further by their use into six areas 
(adapted from Ross et al. [38]):  
○ Improved data usage and visualisation aim to aggregate and 

visualise data based on open data repositories, EHRs and person-
alised health records.  

○ Health management allows personalised care management to 
improve disease prevention, screening and case management.  

○ Patient monitoring involves summarised methods of analysing the 
health status of individuals to visualise treatment outcomes or the 
need for intervention. This also includes telemedicine solutions, 
patient diaries (incl. lifestyle data), prescription alerts or treatment 
adherence monitoring.  

○ Clinical decision support systems provide support for diagnoses or 
treatment decisions.  

○ Scientific gene research. Research based on genomic data.  
○ Public health analysis tools aim to aggregate and visualise data to 

find health trends for a population and uncover and support health 
promotion programmes. 

Fig. 1. Framework for systematic AI support.  
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DDSSs can also be differentiated from a workflow point of view as 
follows: 

• DDSS with a human in the loop supports tasks. However, the end de-
cision is always made or reviewed by humans.  

• DDSS without a human in the loop, or automated decision-making, acts 
completely autonomously without the need for any user approval or 
review. 

Every DDSS category requires unique framework dimensions. 
Although the framework applies to all kinds of DDSS, we focus our vision 
for the future on clinical decision support, patient monitoring, health 
management and improved data use and visualisation. Therefore, we 
facilitate every system that helps patients, caregivers and clinicians in 
making health-related decisions more effective. The following sub-
sections describe the framework dimensions in more detail. 

5.1. The data dimension 

The input data dimension defines the information needed by a DDSS 
to function. Data power the decision technology and therefore define the 
core outcomes of the system. They are a key component for the success 
of DDSSs. Not surprisingly, data quality needs to be checked and ensured 
to avoid bias and undesirable results. Recent studies even suggest that 
data quality is a crucial success factor for AI in health care [39,40]. 
Therefore, a lot of thought needs to be put into DDSS input data. 

Possible input data could be structured, such as metadata (e.g. socio- 
demographic information), numerical data, coded data (e.g. ICD-10) as 
well as semi-structured information (e.g. patient records), unstructured 
information such as free text, or medical graphs (e.g. ECG, EEG) and 
images (e.g. X-ray, ultrasound). It needs to be ensured that the data used 
for developing a decision support system are also available if the system 
should be used in production later on. This is crucial because many 
research articles only propose systems based on available datasets. 
These data might not be available in a real-world setting. Systems 
developed in isolation under those ‘textbook’ conditions have a high 
potential for failure. 

Due to the lack of centralised EHR systems, interoperability and 
standardisation, data reuse for DDSSs is often difficult to achieve [14]. 
This is especially true nationwide. Even if the legal and organisational 
challenges to accessing these data can be solved, decentralised storage of 
healthcare data and the need for integration of several data sources 
throw up additional technical barriers for DDSSs. One example of how 
data integration could be handled is through the use of grids and 
peer-to-peer networks. They can be used to integrate distributed, often 
heterogenous data sources at geographically distributed sites [41]. 
Additionally, cloud computing offers many possibilities, provided that 
ways to ensure national data security standards (like HIPAA, PIPEDA, or 
GDPR) are found [42]. In Europe, recent developments around GAIA-X, 
the European Data Platform, also attempt to tackle these problems [43, 
44]. GAIA-X was initially launched as a trusted provider of 
next-generation data infrastructure, meeting the highest standards in 
terms of data protection and data sovereignty (providing data owners 
complete control over their data). The GAIA-X ecosystem enables data 
linkage through federation services for use at a regional, national or 
European level. This is possible because GAIA-X provides and enforces a 
common set of policy rules and an architecture of standards of inter-
connection. This could be a game-changer for the healthcare sector. In 
further research, we will demonstrate how GAIA-X can be used for 
DDSSs in health care. 

Nevertheless, most data in EHRs are created by humans and there-
fore reflect their social and cultural context, cognitive biases, experience 
and emotions, sometimes even their beliefs [8]. Quality assurance and 
curation of such datasets is difficult and time-consuming. Additionally, 
in areas like mental health, decision-making is often more 
disease-focused than symptom-focused. The curative medical model 

suggests treatment based on eradication or slowing down disease pro-
gression [45]. This means that treatment success is measured in 
disease-related terms, such as tumour size or rate of survival. Outward 
manifestations such as quality of life or the patient’s subjective feeling 
are often of a lower priority. This reflects on the data used for research. 
Diagnoses are already an aggregation of data. Symptoms leading to a 
diagnosis are not always included in datasets and therefore not included 
by DDSS decision-making. This adds another level of bias and makes 
feedback loops for the correction of wrong diagnoses difficult. 

One way of avoiding these biases is unobtrusive data collection. 
Examples are sensors in wearable devices, such as smartphones; some 
sensors can even be printed on the skin or in textiles [46]. While diag-
nosis data in EHRs are aggregations of physiological measurements and 
symptoms, capturing and evaluating these data directly in an unobtru-
sive way allows for a less biased, symptom-focused (and therefore also 
patient-focused) approach to decision-making. Unobtrusive data 
collection is more robust and less labour-intensive, limits research bias 
(Hawthorne effect) and has lower associated costs. Rather than having 
data collected only at doctor’s visits, this allows a holistic view of cur-
rent problems by capturing signals more frequently. 

5.2. The technology dimension 

The technology dimension describes how DDSSs are implemented 
based on three sub-dimensions:  

• Decision technology is the algorithm that powers the decision-making. 
It can be understood as the brain of a DDSS. A decision can be 
empowered by AI, statistics, rules or mixed methods. AI as decision 
technology is already mature and performs well, as indicated by the 
success of global data-driven companies like Amazon, Google and 
Facebook. This is why we argue that the poor performance of DDSSs 
in health care is not so much connected to decision technology but 
rather to data (5.1), data collection, user interaction (5.3) and vali-
dation (5.4). However, in health care especially, AI algorithms 
should consider reproducibility and explainability.  

• Interaction technology describes the ways of interacting with systems, 
user groups or the clinical process. Examples include APIs, graphical 
user interfaces (e.g. websites, mobile apps) or sensory input such as 
conversational interfaces (chatbots). If the interaction does not fit its 
user’s needs (e.g. disruptive alerts), it becomes a major barrier. 
Additionally, computer literacy needs to be taken into consideration 
when planning the interaction.  

• Data collection technology defines how the data described in the input 
data dimension are gathered. Examples are sensors, questionnaires 
or chatbots. As described above, we hypothesise that the future of 
data collection will be a combination of high-quality structured 
sources such as centralised or federated EHRs as well as unobtrusive 
data that can be used as interaction and collection technology for 
decision-making (e.g. virtual agents collecting speech data). 

5.3. The user group dimension 

This dimension captures the user groups interacting with DDSSs in 
the clinical process. User groups play a vital role in the adoption of 
DDSSs. In general, physicians tend to distrust AI systems regardless of 
their output’s accuracy [20]. The different user groups need to be ana-
lysed and should never be neglected in the conception, development and 
testing phase, so as to raise user acceptance. This also ensures that IT 
solutions fit the clinical workflow and that the resulting application is 
usable in production. Re-engineered workflows by IT professionals 
instead of clinicians can lead to the opposite effect. DDSSs can nega-
tively disrupt the clinical workflow, especially if they are standalone 
systems or are not integrated into the IT landscape. Such disrupted 
workflows can have adverse effects, such as increased cognitive effort 
and higher time consumption [47]. Yet, this does not mean that clinical 
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workflows should not be changed. On the contrary, the introduction of 
new technology to old processes is another reason why AI cannot fulfil 
its potential. The core concept of medicine has not changed in the last 20 
years or more; however, the world around it has. Therefore, processes 
need to be adapted to the current situation. Process adaptations often 
result in an identity crisis of healthcare workers and are experienced 
more often as barriers and threats to the professional identity than as 
support. Questions concerning boundaries arise. What is the role of 
doctors or the responsibility of IT systems? Other domains clearly show 
that new technologies need new workflows. As an example, successful 
online retailer Amazon operates entirely unlike any other retailer. We 
claim that such positive disruption is also needed in health care in order 
to leverage AI’s full potential. Here, apart from the clinical process, 
possible harmful long-term effects need to be continuously addressed. As 
soon as users adapt to the safety net provided by DDSSs, they might start 
to make more mistakes without them [48,49]. On the other hand, users 
learn by using DDSSs; previously useful notifications can start to feel 
disruptive [50]. 

The traditional use of DDSSs, which has been to provide direct alerts 
and guidance to physicians in making treatment decisions for a partic-
ular patient, has been extended. These further uses include recommen-
dations for improving workflow, cost savings, prevention as well as 
public health, research and health policy decisions. Similarly, DDSS user 
groups have expanded. In addition to physicians and nurses, decision 
support can assist hospital managers in business-critical decisions, in-
surance agencies in planning funding and researchers in identifying 
patients eligible for research based on specific criteria. The number of 
decision support systems for patients is increasing rapidly with the wider 
deployment of Personal Health Records (PHR). 

The features of DDSSs and thus the development should be based on 
the needs and expectations of a specific user group. Based on the 
recommendation or analytics offered by the DDSS, as well as the time- 
critical nature of decision-making, we propose to group DDSS users as 
follows:  

• Healthcare professionals  
• Patients  
• Patient’s supporters  
• Managers of healthcare facilities  
• Researchers  
• Public health specialists  
• Healthcare financers 

The decision-making of healthcare professionals at an appointment 
or at a bedside is time-critical and requires high-quality operational data 
from the EMR and/or EHR. In general, patient support is person-specific 
and relatively time-dependant, but prevention and genome-based al-
gorithms can provide advice in the longer term. The second group 
consists of researchers, public health professionals and health financiers, 
for whom decision support uses secondary, often aggregated and non- 
time-critical data. Healthcare managers need both short-term data, 
such as hourly or daily hospital bed availability alerts, and aggregated 
data for advice on staffing or budget planning. 

Targeting user groups more specifically, we aim to develop and 
promote robust and optimal practices for clinical investigation and 
evaluation of DDSSs to encourage their adoption rates. Similarly, an 
increase in the user-orientated development of algorithms and applica-
tions in turn increases trust in DDSSs. 

5.4. The validation dimension 

Validation describes the measurement of success of DDSSs, cat-
egorised into four sub-dimensions:  

• Accuracy describes evaluation based on how many right or wrong 
decisions a system makes. Example measurements are algorithmic 

accuracy, area under the curve (AUC) values [51], F1 scores, recall 
(sensitivity), precision, and specificity [52].  

• User acceptance is about evaluating the perceived usefulness and 
perceived ease of use of DDSSs [53].  

• Efficacy evaluates the impact of systems based on potential benefits. 

Security needs to be an integral part of DDSS development to ensure 
the adoptability of the technology later on. The importance of enhancing 
security in the healthcare industry has been highlighted by recent 
studies on the increase of cyber-attacks on digital health infrastructure 
[54,55].  

• The legal & ethics sub-dimension describes the evaluation of legal 
regulations and ethical considerations (e.g. medical device regula-
tions, data protection regulations, responsibility and reliability of the 
DDSS output and its relation to the human decision). This dimension 
was identified as a key success factor for AI adoption [56]. 

For successful DDSS adoption, evaluation needs to be standardised to 
ensure trust. We propose the use of unified benchmark datasets in order 
to be able to compare the cognition performance of different systems. 
However, validation of AI based on accuracy, which evaluates the de-
cision technology dimension, is not enough. Additionally, evaluations 
for user interaction technology (user acceptance and efficacy) and data 
collection technology (accuracy, legal/compliance) need to be carried 
out to ensure that the system meets user expectations. For DDSSs with a 
maturity level of 3 or higher (see 5.7), evaluation categories need to be 
investigated not only for each dimension of our framework separately 
but also for the entire system. Each dimension itself might fulfil all the 
legal requirements; put together, however, the system still might not be 
legally compliant. 

5.5. The medical domain dimension 

The medical domain dimension describes the particular illness, medi-
cal condition or health area for which DDSSs can be applied. Even 
though the examples in the presented framework contain only two 
psychiatric diseases, in the design and implementation of DDSSs, the 
clinical domain of planned systems should be considered and relevant 
clinical specialists involved in the process. One crucial success factor is 
to find the right granularity in this dimension. If the dimension is too 
specific, DDSSs tend not to consider all the necessary variables. If it is too 
general, DDSSs do not benefit the users. As an example, we show this 
based on DDSSs in radiology. A too broadly defined DDSS might only say 
whether a radiological image is abnormal. However, this would not be of 
much value to a physician since they still need to look at the abnor-
mality, interpret it within the patient’s medical context and compile a 
meaningful report based thereon. A too narrowly defined DDSS might 
only look for one specific finding, such as lung nodules, but might miss 
other pathologies present in the radiological image. EBMeDS is one 
example where algorithms are divided between disease category and 
medical domain for better results. 

In other terms, this dimension deals with the necessary medical 
background knowledge about the domain. This is important not only to 
provide the right domain context for the system (e.g. what decision a 
system should support in order to improve the clinical process), but also 
because it deals with the way in which knowledge is transferred from the 
real world into the DDSS. This might be based on manually created rules, 
like in EBMeDS, or machine-learning or deep-learning from certain data. 
Even though rules can be generated automatically from data and AI can 
learn unsupervised, the current narrow AI is still goal orientated and 
only capable of providing specific tasks. As long as we don’t speak about 
general AI, which is still far away, a domain expert is needed to select the 
right knowledge source for the system to learn from. Otherwise, DDSS 
research might yield good results at low maturity levels (e.g. high ac-
curacy values), but systems will potentially still not perform well in a 
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production setting because assumptions about the knowledge base 
(selected rules or used training data) do not accurately reflect the clin-
ical reality. In other words, the output of current DDSSs is mostly based 
on shallow knowledge. However, for most cases, the deep knowledge of 
medical professionals is still required for verification, for consideration 
of additional variables not contained in the knowledge source of the 
DDSS (like social-economic status or other prior health and medical 
data) and for communication. 

5.6. The decision dimension 

We classify decisions into prediction, where the system outputs a risk 
score based on the likelihood of getting a disease, and assessment, where 
the patient is already sick (knowingly or unknowingly). Assessment 
contains the subcategories diagnosis (for individuals with symptoms or 
suspicion of illness), screening (for individuals without specific symp-
toms), monitoring (evaluates symptom severity or treatment progress) 
and treatment (recommendation, automated or manual intervention 
concerning care or therapy). 

5.7. The maturity dimension 

To describe the maturity of DDSSs, we suggest seven levels that 
provide a common understanding of the development status, transition 
and measurement of DDSS research progress (see Table 1). Additionally, 
they serve as a risk management tool for implementation considerations. 
Our maturity level approach is derived from the technology readiness 
levels from NASA [57]. This scale has been adopted by many institutions 
like the European Union to better describe the expectations and status of 
research results [58]. While preserving the initial idea of assessing the 
maturity of technology for production use, we changed the terminology 
and scales to fit the digital health research. 

When using our framework in combination with the maturity levels, 
it is essential to note that not all dimensions are necessarily present in 
detail at each maturity level. As the level gets higher, more dimensions 
should be described to enable successful system application in real- 
world practice. 

Currently, AI in health care has low maturity [14]. The reasons for 
this are evident in the data, user group and validation dimensions. These 
are the dimensions that are often not clearly defined in lower-level 
DDSSs. Research focusing on pure algorithmic development of AI sys-
tems usually takes certain datasets without validating whether the data 
are available in clinical practice, does not consider processes in health 
care or user groups and validates only against standard AI metrics such 
as accuracy [14,34]. This results in theoretically sound algorithms that 
are, unfortunately, not ready for higher maturity DDSSs. We suggest a 
more comprehensive approach using our framework throughout the 
development process to ensure that DDSSs can be brought to higher 
maturity. As a limitation, it is important to note that our framework does 
not consider commercial perspectives of decision support. 

6. Evaluation 

We used a focus group interview to evaluate and receive in-depth 
feedback on the usefulness of our framework. For the focus group, we 
selected international experts in DDSSs or one or more of our framework 
dimensions. Nine experts from four countries (Austria, Estonia, Sweden, 
Ukraine) of the following professions took part in the interview:  

• Programme Director – Business Information Technology  
• Lawyer – Subject Matter Expert for data privacy in health care  
• Social Scientist  
• Software Architect, Subject Matter Expert for secondary use of health 

data  
• Expert for Interoperability in health care  
• Data Integrity & Transparency Expert  
• CEO of a digital health company  
• Lead Data Scientist  
• Professor, Medical Doctor 

They received the framework with a description of the dimensions 
two weeks prior to the session. The focus group session was conducted 
remotely via the MS Teams platform to accommodate the locations of 
the experts. The interview followed a semi-structured format, with 
moderation by the lead author. In the first 15 min, the authors explained 
the protocol for the focus group interview and the participants were 
introduced to one another. Next, the framework was presented to make 
sure that all participants had a common understanding of the discussion 
topics. The rest of the session consisted of an interactive discussion 
around the usefulness and application of our designed framework. We 
recorded the 90-minute session. Afterwards, the authors coded the 
themes of the recording individually and aggregated the emerging 
topics. Clustering was based on inductive thematic analysis according to 
Brown and Clark [35]. The information was compared, reflected on and 
condensed by the authors together until a consensus was reached. 

The main observation was that all participants saw value in the 
framework for analysing DDSS. In regard to the usefulness of the 
framework in the strategic planning and development of DDSSs, the 
majority of participants would require more detailed sub-dimensions of 
the framework. One example is the legal dimension, which could be 
expanded to cover European Union regulations like the General Data 
Protection Regulation (GDPR) or the Medical Device Regulation (MDR). 
For the use of the framework in the industry, the experts advised adding 
a dimension around commercial and financial aspects. The general 
recommendation was to provide a clear scope and use groups for the 
framework from the above points. The results of our focus group and the 
implications on the framework are discussed in Section 7. 

7. Discussion, limitations and further research 

Although our framework was developed as a conceptual framework 
to analyse and aggregate current literature on DDSSs, possible applica-
tions are far more widespread. From the initial idea of a DDSS to the 
entire development cycle, our framework can be leveraged as boiler-
plate by product owners or decision-makers. Used as a blueprint, it gives 
guidance on which areas (framework dimensions) need to be consid-
ered. This is especially important because DDSS development for health 
care is an interdisciplinary research area. It requires IT knowledge as 
well as domain knowledge in health care. The suggested framework 
helps make this transparent to the two groups and to support a multi-
disciplinary approach. Our framework is developed based on literature 
and expert opinions from technology and healthcare perspectives. It is 
one of the first to consider both domains and therefore has potential to 
accelerate not only DDSS adoption but also AI and ML adoption. 

Additional use cases concern the evaluation and maturity assessment 
of DDSSs. Using a standardised method of assessment of current DDSSs 
helps make the various products in this vast growing market 

Table 1 
Maturity levels.  

Level Description 

1 Idea without implementation 
2 Implementation without real-world interaction (algorithm development) 
3 Implementation with real-world interaction but without patient intervention 

(no real intervention on a patient takes part based on the output of the DDSS) 
4 Fully functioning prototype, system triggers real-world action (e.g. clinical 

trial) 
5 Operational product (at least one adopter, certified if required) 
6 Locally adopted product 
7 Worldwide adopted product (transformational)  
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comparable. 
Our framework does not include a financial or commercial domain. 

We see this domain as separate from actual DDSS development and 
therefore did not include further details on this. Additionally, the 
framework only deals with the general components of DDSSs and DDSS 
evaluation. More detailed subdimensions could further enrich our di-
mensions. One example is the legal dimension, where a specific sub- 
dimension could serve as a checklist to highlight what rules and regu-
lations need to be taken into consideration when developing a DDSS. 
More detailed sub-dimensions tend to become increasingly country- 
specific. For now, we decided not to go into further detail for this 
research in order to make it applicable worldwide, though we 
acknowledge that this is an area for further research. 

Another area of further research is the application of the framework 
to develop and evaluate decision support systems. We are planning to 
use the framework to expand our work on automated rule generation 
from health insurance claims data [59] into a decision support system. 
This will produce further evidence as to the usefulness of a systematic 
approach in raising DDSSs adoption rates. 

8. Conclusion 

The healthcare sector is currently facing many challenges, such as 
ever-increasing complexity and information overload. This results in 
inefficient decision-making, which may cause errors. State-of-the-art 
DDSSs can transform the healthcare sector into a more efficient and 
patient-centric operation. Currently, such systems have only low adop-
tion rates, and success stories about AI bringing real value to clinicians 
or patients are rare. Our systematic AI support approach aims to bring 
DDSSs into production. By elaborating on essential perspectives from 
both health care and IT, we created a framework for the systematic 
development and analysis of DDSSs. Currently, most DDSS research fo-
cuses on either the medical or the technical domain. Since digital health 
is an interdisciplinary subject, investigating DDSSs solely from a tech-
nical or medical perspective is insufficient. Therefore, DDSSs that focus 
on only one framework dimension are generally unsuccessful. The 
development of AI algorithms without any medical knowledge and 
context or those based on inadequate datasets are especially likely to 
bring no real-world clinical value and are set up to fail. We propose to 
consider each framework dimension during architecture, development 
and evaluation. Similarly, the framework can function as a means to 
divide DDSS development based on expertise, allowing us to bring in 
experts from several subject matters while still maintaining a compre-
hensive approach. This ensures that all necessary features of a DDSS are 
investigated by experts for each dimension, from both a technical and an 
organisational perspective. Therefore, we see the proposed systematic 
AI support as a major driver for the much-needed breakthrough of 
DDSSs in health care. 
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Analysis of cloud-based solutions on EHRs systems in different scenarios. J Med 
Syst 2012;36(6):3777–82. 

[43] BMWI Germany. GAIA-X: policy Rules and Architecture of Standards. Federal 
Ministry for Econ Affairs and Energy Germany 2020. 

[44] Eggers G, Fondermann B, Maier B, Ottradovetz K, Pfrommer J, Reinhardt R, et al. 
GAIA-X: technical Architecture. Federal Ministry for Econ Affairs and Energy 
(BMWi) 2020. 

[45] Fox E. Predominance of the curative model of medical care: a residual problem. 
JAMA 1997;278(9):761–3. 

[46] Zheng Y, Ding X, Poon CCY, Lo BPL, Zhang H, Zhou X, et al. Unobtrusive sensing 
and wearable devices for health informatics. IEEE Trans Biomed Eng 2014;61(5): 
1538–54. 

[47] Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An 
overview of clinical decision support systems: benefits, risks, and strategies for 
success. Npj Digit Med 2020;3(1):1–10. 

[48] Ash JS, Sittig DF, Campbell EM, Guappone KP, Dykstra RH. Some unintended 
consequences of clinical decision support systems. AMIA Annu Symp Proc AMIA 
Symp 2007:26–30. 

[49] Goddard K, Roudsari A, Wyatt JC. Automation bias - a hidden issue for clinical 
decision support system use. Stud Health Technol Inform 2011;164:17–22. 

[50] Khalifa M, Zabani I. Improving utilization of clinical decision support systems by 
reducing alert fatigue: strategies and recommendations. Stud Health Technol 
Inform 2016;226:51–4. 

[51] Bradley AP. The use of the area under the ROC curve in the evaluation of machine 
learning algorithms. Pattern Recognit 1997;30(7):1145–59. 

[52] Thambawita V, Jha D, Hammer HL, Johansen HD, Johansen D, Halvorsen P, et al. 
An extensive study on cross-dataset bias and evaluation metrics interpretation for 
machine learning applied to gastrointestinal tract abnormality classification. ACM 
Trans Comput Healthc 2020;1(3). 17:1-17:29. 

[53] Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of 
information technology, 13. MIS Q; 1989. p. 319–40. 

[54] Bertl M. News analysis for the detection of cyber security issues in digital 
healthcare. Young Inf Sci 2019;4:1–15. 

[55] Burke W., Oseni T., Jolfaei A., Gondal I. Cybersecurity indexes for eHealth. In: 
Proceedings of the Australasian Computer Science Week Multiconference 
[Internet]. New York, NY, USA: Association for Computing Machinery; 2019 [cited 
2021 May 22]. p. 1–8. (ACSW 2019). Available from: 10.1145/3290688.3290721. 

[56] Merhi MI. An evaluation of the critical success factors impacting artificial 
intelligence implementation. Int J Inf Manag 2022:102545. 

[57] Vassigh K, Voracek D, Johnson M, Amato D, Frerking M, Beauchamp P, et al. Final 
report of the NASA technology readiness assessment (TRA) study team [Internet]. 
NASA 2015. May [cited 2021 May 19]. Available from, http://www.nasa.gov/di 
rectorates/heo/scan/engineering/technology/technology_readiness_level. 

[58] TRL [Internet]. EURAXESS. 2020 [cited 2022 Nov 20]. Available from: https://eu 
raxess.ec.europa.eu/career-development/researchers/manual-scientific-entrepre 
neurship/major-steps/trl. 

[59] Bertl M., Shahin M., Ross P., Draheim D. Finding indicator diseases of psychiatric 
disorders in BigData using clustered association rule mining. In: Proceedings of 
ACM SAC Conference (SAC’23). Tallinn, Estonia: ACM; 2023. 

M. Bertl et al.                                                                                                                                                                                                                                    



Appendix 4

[IV]

M. Bertl, K. J. I. Kankainen, G. Piho, D. Draheim, and P. Ross. Evaluationof Data Quality in the Estonia National Health Information System for Dig-ital Decision Support. In Proceedings of the 3rd International Health Data
Workshop. CEUR-WS, 2023

83





Evaluation of Data Quality in the Estonian National
Health Information System for Digital Decision
Support
Markus Bertl1,*,†, Kristian Juha Ismo Kankainen1,†, Gunnar Piho2, Dirk Draheim2 and
Peeter Ross1,3

1Department of Health Technologies, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 12616, Estonia
2Department of Software Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 12616, Estonia
3East Tallinn Central Hospital, Ravi 18, Tallinn, 10138, Estonia

Abstract
Following the implementation of Electronic Medical Records (EMR), the amount of digital health data
has increased significantly in recent decades. This trend creates an opportunity to share data between
different healthcare parties for primary and secondary use. However, the quality of this data is often
questioned, and data reuse is still rare. This study evaluates the frequency of the use and quality
of health data stored in the Estonian Health Information System (EHIS), which is one of the most
advanced digital health platforms (DHP) in the world. We collected usage data of the EHIS from its
initial release in 2008 till 2021. Comparing 2016 to 2021, the number of documents per year pushed
into the EHIS has nearly doubled. But also approximately nine times more patients and five times more
health professionals queried data from the EHIS. This increase in read access indicates that both groups
find valuable information from the system. To investigate this further, data from patients with common
diseases like stroke, cancer, or diabetes have been queried, analyzed, and compared against the actual
data needs from the point of healthcare professionals and natural persons. Contradictory to the claim
mentioned above, the manual analysis of the queried data sometimes showed poor data quality and
missing information, especially discrepancies between the structured and unstructured parts of the
documents shared through DHP. As an example of varying data quality, we looked at how smoking
behavior is reported, both in structured form and in free text form in the queried data. We analyzed
how the data quality of smoking behavior data shifts from document to document using the nine data
quality dimensions of the Data Quality Vector. The data quality is shown to shift in 7 dimensions. While
humans seem to be able to screen the data and resolve inconsistencies effectively, the data quality issues
present make data reuse for tasks like AI training for digital decision support systems challenging.
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1. Introduction

Estonia is a country in the north of Europe with 1.3 million citizens, approximately 4,500
physicians, and healthcare costs, which made up for about 7.5% of the annual GDP in 2021 [1].
The Estonian health system is based on mandatory, solidarity-based insurance and healthcare
providers which operate under private law [2]. The Estonian digital health platform (DHP),
called the Estonian nation-wide health information system (EHIS), has been operational since
2008 and allows secure and trusted online access to medical data, different kinds of medical
documents, prescriptions, and medical images of virtually every Estonian resident from birth to
death. It is fully integrated into the Estonian e-government systems, which provides a digital
identity to every citizen, secure authentication methods, the possibility to link data according
to the once-only principle, and other mature e-services [3, 4]. Instead of one large, centralized
database, the EHIS comprises different federated and mutually independent systems. One is the
nationwide electronic health record (EHR) system, which began the ongoing standardization of
health-related data in Estonia [5]. In the central EHR, patient data is saved based on international
standards like HL7 CDA1, DICOM2, LOINC3, ICD-104 and SNOMED-CT5. The EHIS uses HL7
CDA as its data collection format. The CDA structure not only permits data capture in structured
form but also allows to add medical data in unstructured free text format. Data sent to the
EHIS is digitally signed or stamped by either the physician or the healthcare institution, which
ensures accountability of the provided information. The data can be queried either directly from
the data warehouse for statistical purposes and research, via API for eHealth applications like
Hospital Information Systems (HIS), or via Web UIs like the patient portal over which residents
of Estonia can view medical data from healthcare providers, referral letters, prescriptions, or fill
out health declarations before an appointment. An overview of the first ten years of the EHIS
can be found in [6].

As of today, the data collection process works as follows – The primary data sources for the
EHIS are the electronic medical records (EMRs) of healthcare providers. Data is entered into
the EMR by doctors and nurses or automatically transmitted from digital data sources such as
laboratory equipment, etc. The data are entered in different modes: as free text, numeric data,
including different codes (ICD-10, etc.), as graphs (ECG, etc.), or images (radiology, endoscopy,
etc.). In order to share data with other institutions, the EMR exports data and digital documents
in accordance with established standards (HL7 CDA, LOINC, etc.) for nationwide use and pushes
them to the applications of various data consumers. One data consumer is the EHIS. Another
data consumer is the Estonian Health Insurance Fund (EHIF), to which the ICD-10-coded
diagnoses from the EMR are transmitted for billing purposes.

Digital decision support describes computer-based systems that bring together information
from various sources, assist in the organization and analysis of information, and facilitate the
evaluation of assumptions underlying the use of specific models [7]. Digital Decision Support
Systems (DDSSs) could be divided by their goal of using them either as data capture aids or data

1http://www.hl7.org/
2https://www.dicomstandard.org/
3https://loinc.org/
4https://icd.who.int/browse10/
5https://www.snomed.org/



analysis and presentation tools. They can, for instance, be based on summarizing or visualizing
data like the patient summary (Andmevaatur - data viewer in Estonian) functionality of the EHIS,
or based on AI-based decision technology like rule-based expert systems [8], machine learning
[9], or deep learning [10]. Regardless of the implementation flavor, data is needed for them to
work accurately. One would expect that a sufficiently large amount of data to train and operate
DDSSs is available through DHPs. Nevertheless, adoption rates of DDSSs are rather low [11].
AI algorithms for DDSS in healthcare itself, however, seem to perform sufficiently accurately
[12, 13]. Besides having a holistic approach that includes domain experts from both the medical
and the IT side, insufficient data quality has been found as one of the main barriers [11, 14].
Until now, there are two DDSSs operational in Estonia: the drug-drug interaction alert service
(Inxbase6) and clinical decision support for primary healthcare physicians (EBMeDS7). Inxbase
is part of the e-prescription services and uses manually defined rules to alert physicians if they
prescribe medication that could interact with pharmaceuticals prescribed by other physicians
[15]. There is currently no AI-based DDSS trained on data from the EHIS. Therefore, this
research investigates the data quality of the EHIS in Estonia and assesses if the data stored there
would even be usable for DDSSs.

2. Method

The EHIS has been chosen as the study object of this research because it is one of the most
advanced nationwide DHPs in the world [16]. Therefore we assume it to be representative of
the state-of-the-art in terms of data capture and data quality. We analyzed two parameters of
the EHIS in this research:

• Use of saved health data measured by counting all queries made to the EHR from health-
care professionals through their EMRs and patients through the online accessible patient
portal8 of the EHIS. Queries can be, for instance, access to lab results, patient documenta-
tion, prescribed medication, or vaccination certificates.

• Quality of the captured data, especially to analyze the difference between structured and
unstructured data, was measured by a Data Quality Vector (DQV). For this analysis, we
decided to apply the DQV to the data of patients whose smoking status has been captured.
Smoking is a highly relevant health factor and, in the EHIS case, can be documented both
in free text in the EMR or in structured form in the health declaration of the EHR. We
analyzed the entries of five randomly selected patients (12 documents in total) in this
research to obtain preliminary results about the data quality.

The primary use of data is defined as data used directly for patient care and/or healthcare
activities (including self-care). In contrast, secondary use (also called data reuse, multiple use,
and further use) is defined as all data use that is not directly linked to patient care [17].

The Data Quality Vector (DQV) [18] offers a multi-dimensional view of data quality. Its nine
data quality dimensions (Table 1) unify, according to its authors, all data quality dimensions
6https://www.medbase.fi/en/professionals/inxbase
7https://www.ebmeds.org/en/
8https://www.digilugu.ee/login?locale=en



Table 1
The nine dimensions of data quality according to the Data Quality Vector [18]

Dimension Description

Completeness The degree to which relevant data is recorded
Consistency The degree to which data satisfies specified constraints and rules

Duplicity The degree to which data contains duplicate registries representing the same entity
Correctness The degree of accuracy and precision where data is represented with respect to its real-world state
Timeliness The degree of temporal stability of the data

Spatial stability The degree to which data is stable among different populations
Contextualization The degree to which data is correctly/optimally annotated with the context in with it was acquired
Predictive value The degree to which data contains proper information for specific decision-making purposes

Reliability The degree of reputation of the stakeholders and institutions involved in the acquisition of data

proposed by other researchers previous to 2012. We used the DQV to assess in which dimen-
sions data quality shifts occur between documents over time. Shifts were assessed between
unstructured text and structured data, as well as between sequential documents.

The analyzed data concerns the smoking behavior of the subject of care, either in a structured
form as part of health declarations or as free text excerpts as part of clinical reports (discharge
summaries, referrals, etc.). The data is grouped by individual and includes all clinical documents
about the person that was reported to the EHIS during the year 2019. The detailed inclusion
criteria were: age 30–70 years, diagnosis of chronic disease (ICD-10 codes I00–I99, C00–C97,
E10–E14). The initial sample size was 90 randomly selected individuals but evenly distributed
across the diagnosis groups. The sample size was further decreased to 59 patients by filtering out
only those with available data on smoking behavior. Data on smoking behavior was discovered
by text search and annotated semantically by hand, otherwise as structured data in the health
declaration form. The health declaration is a patient-reported questionnaire and is the basis
for health certificates. Of the 59 patients with data on smoking behavior, only five had health
declarations, whereas 57 had smoking behavior mentioned in free text. Three health declarations
out of the five overlapped with information from free text. Of the two health declarations that
provided smoking behavior without it being also mentioned in free text, one expressed smoking,
and one expressed non-smoking status. We set up the DQV framework as follows. The analyzed
documents were characterized as time-stamped and reported by different healthcare providers.
Our analysis considers this time dependency, and although our data has been gathered in
retrospect, we analyze it as if it was collected in a continuous data flow. To emulate decision
support from the point of view of the document writer, we impose an imaginary constraint on
whether the data has been available during the writing. This was judged by the look of the
text, e.g., whether it is a copy-paste. The DQV was then used to analyze the documents in the
following way. For each patient with data available on smoking behavior, the documents were
ordered according to time. Thereafter the smoking behavior of each document was assessed
and compared with the information mentioned in the succeeding document using each of the
nine data quality dimensions.

The Estonian Human Research Ethics Committee (TAIEK) of the Institute for Health De-
velopment (Decision No. 1.1-12/186) approved the research design and data usage for this
study.



3. Results

3.1. Use of Health Data

Figure 1 presents the number of documents added to the EHIS per year, the number of docu-
ments accessed by patients over the patient portal, and the number of queries from healthcare
professionals from the initial launch of the EHIS in 2008 until 2021. While the number of docu-
ments pushed to the EHIS seems to reach a peak, the queries from both patients and doctors
are still increasing sharply. The red line, which represents the number of queries from health
professionals, only accounts for queries that have been actively and knowingly performed
to get information from the EHR. The number does not contain system requests which are
automatically performed during the clinical process. The blue line represents the number of
queries performed through the patient portal of the EHIS, so it shows how much EHR data the
patients view. It is worth mentioning that the number of queries is not equal to the number
of natural persons logged into the patient portal, as several queries are usually made during a
single patient portal session. Also, it is important to consider the COVID-19 pandemic when
interpreting the numbers in Fig. 1. Vaccination certificates and lab test results are also part of
the EHIS. Accessing them also contributed to the rise in patient queries in 2020 and 2021.
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Figure 1: Data access of Estonian National Health Information System 2008-2021



3.2. Shifts in data quality occurring between documents

In the following subsections, we report on five illustrative findings of how data quality was
assessed to shift between the analyzed documents according to the nine dimensions of the Data
Quality Vector introduced above.

3.2.1. Shift between discharge summary and structured health declaration – the case
of not smoking

In this example, we analyze two documents. The first document is the unstructured text of
an anamnesis section of a discharge summary. The text states in one sentence both facts of
non-smoking and alcohol-drinking behavior. The second document is a structured health
declaration form that was filled in four months later. The structure of the health declaration
form is such that data on smoking behavior and drinking behavior are in separate fields. Shifts
in the following data quality dimensions can be observed (also Table 2):

Completeness does not shift, as the smoking status "not smoking" is semantically fully intact on both documents.
Consistency shifts in a technical sense as the first document is not machine-readable while the second is.
Duplicity of data does not occur, as smoking status changes over time.
Correctness of the data does not shift.
Timeliness does not apply, as smoking status changes over time.
Spatial stability shifts similar to the consistency dimension (text VS structured).
Contextualization of data does shift because the tight connection to alcohol-drinking behavior is not preserved

in the health declaration.
Predictive value of the data does not shift. This dimension does not apply as nothing predicts a change in smoking

behavior.
Reliability of the data can be said to shift, as health declarations are often filled by the patient.

Table 2
Shifts in data quality dimensions between discharge summary and structured health declaration – the
case of not smoking (example 1, section 3.2.1).

Dimension Shift

Completeness No
Consistency Yes
Duplicity No
Correctness No
Timeliness -
Spatial stability Yes
Contextualization Yes
Predictive value -
Reliability Yes

3.2.2. Shift between discharge summary and structured health declaration – the case
of smoking

In this example, we again have an anamnesis and a health declaration form filled in four
months later. The first document states in anamnesis vitae the smoking longevity (“long-term



smoker”), temporal length (“30 years”), and the smoking amount (“one pack per day”). The
second document is a health declaration form filled in four months later stating the patient is a
smoker, the length in years (“30”), and the smoking amount in cigarettes per day (“2”). Shifts in
the following data quality dimensions can be observed (also Table 3):

Completeness was unaffected, as all three semantic attributes (smoking status, length, and amount) remained
intact. It could be argued that some interpretation of longevity (explicitly marked “long-term”) is lost,
although the length in years stays the same.

Consistency shifts as different units are used for the smoking amount (packs vs. cigarettes). Another shift could
be argued with the loss of qualifier (“long-term”).

Duplicity does not apply, as smoking status changes over time.
Correctness of the data can be analyzed both ways. If the smoking behavior has not changed, the number of

cigarettes is a typo, as one pack (in Estonia) equals 20 cigarettes. In case of a change in smoking behavior, a
decrease has occurred from 20 to 2 cigarettes per day.

Timeliness does not apply.
Spatial stability shifts similarly to consistency (text VS structured).
Contextualization did not change as both contexts can be interpreted as general knowledge about the patient’s

lifestyle.
Predictive value of the data does not shift. This dimension does not apply as nothing predicts a change in smoking

behavior.
Reliability of the data can be said to shift, as health declarations are often filled by the patient.

Table 3
Shifts in data quality dimensions between discharge summary and structured health declaration – the
case of smoking (example 2, section 3.2.2).

Dimension Shift

Completeness No
Consistency Yes
Duplicity No
Correctness No/Yes
Timeliness -
Spatial stability Yes
Contextualization No
Predictive value -
Reliability Yes

3.2.3. Shift between two inpatient discharge summaries

The first document states in the treatment synopsis of an inpatient rheumatology discharge
summary a recommendation to stop smoking, among other recommendations. The second
document is an inpatient cardiology discharge summary and states twice in the anamnesis the
fact of being a smoker (first in the problem list and then in a separate smoking status field).
Shifts in the following data quality dimensions can be observed (also Table 4):

Completeness was affected as the first document contained only the cessation recommendation, and the second
document stated only the fact of being a smoker.

Consistency was breached as our hierarchy rules state smoking status should come before cessation recommenda-
tion.



Duplicity was found inside the second document without data reuse being evident; rather, the information was
presented in two contextualizations.

Correctness of the data can be both ways: it can be seen as dependent on reasoning capabilities: if cessation
recommendation implies being a smoker, then all is correct. Another view would be to allow non-linearity
in that cessation recommendations can correctly be given to anyone, also non-smokers.

Timeliness was not evident in the data.
Spatial stability was analyzed similarly to correctness – it relies on reasoning capabilities, e.g., the rules specified

by the consistency dimension.
Contextualization was different for each occurrence: implicitly in cessation recommendation (treatment), explic-

itly in the problem list, and separately as smoking status.
Predictive value of the data does not shift. This dimension does not apply as nothing predicts a change in smoking

behavior.
Reliability of the data does not shift.

Table 4
Shifts in data quality dimensions Shift between two inpatient discharge summaries (in example 3, section
3.2.3).

Dimension Shift

Completeness Yes
Consistency Yes
Duplicity Yes
Correctness -
Timeliness -
Spatial stability Yes
Contextualization Yes
Predictive value -
Reliability -

3.2.4. Richness of the contextualization dimension

This example consists of only one document; therefore, no shift can be analyzed. Instead,
our intention here is to highlight the value and richness of contextuality from the healthcare
professional’s point of view. We found in one document that the smoking behavior was stated
in a comment next to the structured data fields with elevated blood pressure and pulse. The
textual comment had a nomenclature code for a cardiovascular observable and an interpretation
code for normal. The free text of the comment stated the patient not being a smoker.

3.2.5. Shifts occurring between multiple documents

In this example, we could trace smoking behavior across five different documents.

• The first document is the anamnesis section of a referral that states the longevity of
smoking (“long-term smoker”).

• The second document is the anamnesis section of an outpatient visit. It duplicates exactly
the text from the referral and adds no more information. This we analyze as a reuse of
timely available data.



• The third document is the anamnesis section of an inpatient discharge summary stating
smoking status, adding an approximate numerical quantification of longevity (“more than
20 years”) and the amount in packs per day as a span (“1–1.5”).

• The fourth document is the anamnesis section of a pulmonology outpatient discharge
summary. It duplicates the exact phrase from the previous document but adds to it the
current trend of smoking amount (“has tried to cut down lately”).

• The fifth document is a general practitioner outpatient discharge summary treatment
regimen. It does not mention smoking status but states the importance that the patient
stops smoking, e.g., is an instruction on smoking cessation.

Refer to Table 5 for our analysis of the shifts from document to document according to the
DQV dimensions.

Table 5
Shifts in data quality dimensions between multiple documents (example 5, section 3.2.5).

Dimension Shift I–II Shift II–III Shift III–IV Shift IV–V Shift V-VI

Completeness No shift Adds data Adds data
Consistency Is consistent No shift Shift to more

precise granu-
larity

No shift

Duplicity Duplicates Duplicates
Correctness
Timeliness Was timely Was timely
Spatial stability
Contextualization Anamnesis in referral Anamnesis in referral Anamnesis

in inpatient
discharge
summary

Anamnesis
in outpatient
discharge
summary

Needed self-
care activity,
Treatment
regime in
GP discharge
summary

Predictive value - - - - -
Reliability - - - - -

4. Discussion

Our data quality vector analyses show clearly that data quality shifts in several dimensions
between documents. We observed shifts in the following dimensions: Completeness, Consis-
tency, Duplicity, Correctness, Spatial stability, Contextualization, and Predictive value. It is
evident that the granularity of information changes throughout the clinical process. If, for
example, only the smoking status is needed for a decision, it is found in more documents than
the more precise knowledge of how many cigarettes the patient smokes daily. Additionally,
having information in both structured and unstructured forms creates redundancies, leading to
inconsistency. This not only introduces challenges to data usage for decision support but also
makes secondary use difficult because the inconsistently structured or even unstructured data
is hard to aggregate (e.g., querying the average number of smoked cigarettes per age group).

The number of new documents added per year to the EHR system seems to be reaching its
current maximum, with no sharp increases observed since 2019. In contrast, a sharp increase in



the number of queries can be observed for the same time span. This usage pattern indicates to
us that both patients and healthcare professionals have been getting useful information from the
system in recent years. Otherwise, the users would not query it increasingly. If the system did not
bring a benefit, people would use it less and query rates should stagnate or even decrease. Such
a trend is visible from 2008 to approximately 2014 in Figure 1. The EHIS was just launched back
then and did not contain enough useful information for patients and healthcare professionals
to yield high query counts. The trend of rising query rates, combined with our findings of
inconsistent and potentially low-quality data, raises the question of why medical professionals
still use the EHR system increasingly. It is a clinical routine that healthcare professionals
have to use as many data sources as reasonably possible about the patient’s health status to
make medically relevant decisions. So far, medical professionals’ education has emphasized the
importance of reading previous patient files and test results. This means that in the Estonian case,
healthcare professionals are approaching the patient data mainly in a conventional manner, not
benefiting from the full spectrum of digital data-sharing opportunities. However, the latter (e.g.,
the use of DDSS in the clinical process) is possible only if the collected data is standardized and
structured, making it available for computer processing. Also, it could be argued that humans
can make better sense of the available low-quality textual data by intuitively determining
which interpretation of the inconsistent data is most likely correct – a problem that is still
hard for AI algorithms. Recent advantages in deep learning, especially deep natural language
processing (NLP), do allow the use of unstructured data. However, whether those methods give
the needed accuracy is still questionable. Using NLP methods to structure unstructured health
data by extraction can also introduce additional inconsistencies and shifts in other data quality
dimensions. As one example, the indicated practice of exchanging (unstructured) data within
referral documents (see 3.2.5), where each receiving healthcare professional adds more detail
and sends the elaborated data with a new referral. This practice leads to a data integration
situation that is very hard to coordinate: the previously known data is duplicated, and the new
data elements are rooted within their own contexts creating instability in both the spatial and
timeliness dimensions. It is not the structuring of data that is hard, but instead, the coordination
and interpretation. The shift in spatial stability leads to the question of which source should
be accounted for, and the shift in the timeliness dimension leads to the question of when to
account for what data. These shifts, in turn, affect the completeness and consistency dimensions.
Therefore, using NLP technologies to structure textual health data would introduce additional
risks for a DDSS since it potentially would work on tainted data.

One of the few pieces of information available in a quality-controlled format is demographic
information linked from other e-government registered and the mandatory ICD-10-coded
diagnosis, which needs to be recorded for billing purposes at each physician visit. The challenge
for DDSSs is that much of the more granular information in the EHIS is still stored in a free
text format instead of a machine-readable, structured form. Humans can interpret these textual
descriptions, but they are not machine-understandable. This makes data reuse challenging.
Structured data would be desirable to train AI algorithms for decision support, effectively query
data, or perform statistical analyses. If we assume some mechanism that would make the free
text of clinical documents machine-understandable, then in the case of smoking behavior, our
results show the need not only to reuse but also to manipulate the data by later refining the
semantics (pt is smoker > pt smokes for X years > pt smokes X cig/day > pt has cut down the



amount of cig/day > pt stopped smoking > pt has not smoked for X months). Our analysis
supports the hypothesis that one document is not always enough for a granular understanding
of smoking status, but rather a cumulative view should exist. But data aggregation presupposes
structured data instead of free text. To maximize the usefulness of decision support, not only
one axis, like smoking status (yes/no), needs to be queryable through structured data, but also
at least a second, time-based dimension containing more granular data like the number of
cigarettes/day. This would introduce more information for AI-based algorithms to train on and
potentially allow more accurate predictions.

Generalizing this understanding to other health data, the rise in patient’s document retrievals
might also be due to difficulty finding the right information, resulting in multiple searches
for the document containing the needed information. For example, more documents con-
tain information answering yes/no questions, whereas few documents contain more granular
information.

We want to highlight that this research only presents a preliminary analysis that probably
does not cover all data quality issues in the current DHP. Our main goal was to show that there
are severe data quality issues even in those small, random samples. Based on the methodology
described, a more detailed data quality analysis of a larger cohort of patients will follow.

5. Conclusion

Our analysis shows that the use of nationwide electronic health records embedded in a digital
health platform is well accepted and widely used by healthcare professionals and patients,
despite the sometimes questionable quality of the data. The number of queries to the EHIS is
rising, which shows increased use and indicates that people are finding helpful information. We
discovered shifts in seven of nine data quality dimensions by analyzing individual documents in
detail. The shifts express, among other, information being added upon and made more precise,
and inconsistencies between the structured and unstructured (free text) parts of an entry to
the EHIS. Humans can make sense of the shifting data quality and unstructured data by using
abductive reasoning (intuitively using their knowledge to find the most likely interpretation
of the available information). This is challenging for machines, making the data difficult for
tasks like AI training, effectively querying data, or performing statistical analyses. For this,
high-quality, structured data would be needed. Although specific mandatory structured data
fields in the EHR, like ICD-10 coded diagnosis, can be utilized for DDSSs, structured data on
more complex information is often still not available.
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Abstract. Digital transformation enables a vast growth of health data.
Because of that, scholars and professionals considered AI to enhance
quality of care significantly. Machine learning (ML) algorithms for
improvement have been studied extensively, but automatic artificial intel-
ligence (autoAI/autoML) has been widely neglected. AutoAI aims to
automate the complete AI lifecycle to save data scientists from doing
low-level coding tasks. Additionally, autoAI has the potential to democ-
ratize AI by empowering non-IT users to build AI algorithms. In this
paper, we analyze the suitability of autoAI for mental health screening
to detect psychiatric diseases. A sooner diagnosis can lead to cost sav-
ings for healthcare systems and decrease patients’ suffering. We evalu-
ate AutoAI using the open-source machine learning library auto-sklearn,
as well as the commercial Watson Studio’s AutoAI platform to predict
depression, post-traumatic stress disorder, and psychiatric disorders in
general. We use health insurance billing data from 83,986 patients with
a total of 687,697 ICD-10 coded diseases. The results of our research are
as follows: (i) on average, an accuracy of 0.6 (F1–score 0.58) with a pre-
cision of 0.61 and recall of 0.56 was achieved using auto-sklearn. (ii) The
evaluation metrics for Watson Studio’s autoAI were 0.59 accuracy, 0.57
F1–score, a precision of 0.6, and a recall of 0.55. We conclude that the
prediction quality of autoAI in psychiatry still lacks behind traditional
ML approaches by about 24% and is therefore not ready for production
use yet.

Keywords: Artificial intelligence · AI · Machine learning · ML ·
AutoAI · AutoML · IBM Watson AutoAI · Auto-sklearn · Decision
support systems · Psychiatry · Depression · Post-traumatic stress
disorder (PTSD)

1 Introduction

Artificial Intelligence (AI) is nowadays a major driver for innovation in digital
government and will play a significant role in tackling the challenges our society

c© Springer Nature Switzerland AG 2021
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is currently facing. This especially applies to the healthcare sector. The creation
of health data is rising year by year. Together with the drastic increase in com-
puting power and the rising acceptance of AI by the general public, research
about AI-driven digital decision support systems (DDSS) gets more and more
popular. The Cambridge Dictionary defines AI as “the study of how to pro-
duce computers that have some of the qualities of the human mind, such as the
ability to understand language, recognize pictures, solve problems, and learn”
[14]. Sauter 1997 defines DDSSs as “computer-based systems that bring together
information from a variety of sources, assist in the organization and analysis of
information and facilitate the evaluation of assumptions underlying the use of
specific models” [15]. Especially in mental health, this has enormous potential to
optimize patient care. The prevalence of mental illnesses, suffering, and stigma-
tization are high – at the same time, diagnostic accuracy is low. 52.7% of people
with depression are not correctly diagnosed in a primary care [11]. Mental ill-
ness has a severe impact on the society as a whole; In [8], Greenberg et al.
estimate that major depressive disorder alone results in an economic burden of
approximately $210.5 billion annually.

These obstacles, together with the exponential data growth, create increasing
opportunities for DDSS. Recent meta-reviews showed that current research of
DDSS promises high accuracy scores using ML algorithms [1,2]. The used data
was mostly transformed and algorithms were specifically selected and tuned.
Building, maintaining, and operating AI algorithms that way not only requires
advanced data science skills but is also time-intensive.

The relatively new research area of automatic AI (autoAI), sometimes also
called automatic machine learning (autoML), tackles this problem by providing
systems that automate the whole ML lifecycle end to end (e.g., data preparation,
feature engineering, model selection, pipeline optimization, and hyperparameter
optimization). There are both open-source products (such as auto-sklearn [6], or
autokeras [10]), as well as commercial products (such as IBM Watson Studio’s
AutoAI [9]) available. AutoAI speeds up the process of developing ML models
and will be inevitable in the future of data science [17]. Additionally, autoAI can
democratize AI by enabling non-technical users to apply AI technology easily
because they do not need to understand the statistical background for selecting
and tuning the right AI algorithm. AutoAI takes data, automatically transforms
it as needed, selects a proper algorithm, and automatically tunes the hyper-
parameter of the algorithm. Currently, autoAI has not found wide adoption in
scientific literature, nor clinical practice [18].

The described benefits led us to our research question on how autoAI algo-
rithms in the healthcare sector perform compared to traditional approaches,
and if autoAI is an alternative for increasing DDSS adoption rates by enabling
a faster implementation. Our main contributions in this paper are as follows:

– A novel performance evaluation of two popular autoAI frameworks (open-
source, as well as commercial) against a large, real-world dataset in psychiatry.

– We put this evaluation into the context of traditional, manual, machine learn-
ing approaches to test the suitability of autoAI for AI-based DDSSs.
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The paper is organized as follows. In Sect. 2, we provide an overview of the
used data set and describe the investigated autoAI frameworks and the develop-
ment environment. In Sect. 3, we present the results of our evaluation. In Sect. 4,
we discuss our approach and put the results in context of other research. Finally,
we finish the paper with a conclusion in Sect. 5.

2 Method

2.1 Data

The data used was collected from the Estonian Health Insurance Fund. Our
dataset includes information on sex, birth year, diagnosis, and diagnoses year
and month from 83,986 adults (18 years or above) with a total of 687,697 diag-
noses in 2019. The data consists of all publicly insured people in Estonia with a
depression diagnosis, either single episode (F32), or recurrent (F33), an equally-
sized random sample of people with other psychiatric disorders and no depres-
sion diagnosis, and an also equally sized random sample of people without any
psychiatric diagnosis. Records with only one diagnosis were excluded.

Patients with and without the disease to predict were equally sampled, and
test and training data were divided in a 1:4 ratio. Since our goal is a benchmark
of how well autoAI performs on its own, we did no further data preparation
or feature engineering on the training data. The test data was selected using
proportionate stratified random sampling with the two strata ‘healthy’ and ‘the
disease to predict’ in a 1:1 ratio, to decrease the risk of sampling bias. Addi-
tionally, this solves the problem of misleading accuracy values because of the
oversampled ‘healthy’ group.

The diagnoses were coded using the International Statistical Classification
of Diseases and Related Health Problems, tenth revision (ICD-10) which is an
international standardized coding system for reporting diseases [19]. Each ICD-
10 code is structured based on an alpha character and two digits describing the
category of the disease followed by a dot and further digits representing more
details such as cause, location, severity, or other clinical information. As one
example, F32.2 codes for major depressive disorder, single episode, severe with-
out psychotic features. F stands for mental and behavioral disorders, F30–F39
code mood [affective] disorders where F32 is the sub-item for major depressive
disorder, single episode. The ‘.2’ in the end specifies the severity.

Our performance benchmark is based on the prediction of F32 (major depres-
sive disorder, single episode), F33 (major depressive disorder, recurrent), F43
(reaction to severe stress, and adjustment disorders), and if any F-diagnosis
present is present. For the prediction of each diagnosis we report:

precision =
true positives

true positives + false positives
(1)

recall =
true positives

true positives + false negatives
(2)
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F1-score =
2 ∗ precision ∗ recall

precision + recall
(3)

accuracy =
true positives + true negatives

true positives + false positives + true negatives + false negatives
(4)

Definitions of the measurements can be found in [16].

2.2 AutoAI Frameworks, Development Environment, and
Configuration

Our development environment consisted of JupyterLab 3.0.12 with Python 3,
Pandas 1.2.3, and auto-sklearn 0.12.4 with the Auto-Sklearn 2.0 classifier [5]. To
analyze the models produced by auto-sklearn, we are using the Python package
PipelineProfiler [13].

Auto-Sklearn was chosen because it is a state-of-the-art open-source autoAI
framework claiming to outperform its competitors [6]. Auto-Sklearn works based
on Bayesian optimization, meta-learning, and ensemble construction [6]. Auto-
sklearn supports 15 classifiers, 14 feature pre-processing techniques, and 4 data
pre-processing methods, with 110 hyperparameters [5,6]. We used a seed value
of 7 for the Auto-Sklearn 2 classifier. Since auto-sklearn is non-deterministic, we
execute each training five times to see how the different runs compare.

We also included the results from IBM Watson Studio’s AutoAI, the autoAI
platform on the IBM public cloud [9] to see if commercial platforms perform
differently. Watson Studio’s AutoAI supports 7 classifiers and 20 data trans-
formations [9]. It uses a model-based, derivative-free global search algorithm,
called RBfOpt [4] for hyperparameter optimization, in contrast to Auto-sklearn’s
Bayesian optimization. We configured accuracy as optimization metric for both
frameworks. For both frameworks, no restrictions concerning time or memory
were given. We ensured that enough RAM and disk space are available for each
training run to finish without out-of-memory errors.

3 Results

3.1 Watson AutoAI

Table 1 gives an overview of the different classifiers’ metrics resulting from Wat-
son Studio’s AutoAI on IBM Cloud. Since the F diagnoses data set was not
supported by autoAI because of file size limitations, it is omitted in the results
table. The average accuracy of all runs for all diseases is 0.59, with a F1–score of
0.57, a precision of 0.6 and a recall of 0.55. In all cases, Watson Studio’s AutoAI
chose LGBM classifier (gradient boosting with leaf-wise tree-based learning) with
first applying principal component analysis to the data.
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Table 1. Watson AutoAI – performance.

Disease Precision Recall F1-score Accuracy Test data

F32 0.65 0.52 0.58 0.62 4331

F33 0.60 0.59 0.59 0.60 4325

F43 0.55 0.55 0.55 0.55 1195

3.2 Auto-Sklearn

Table 2 shows the aggregated metrics of the different classifier ensembles created
by the five runs of auto-sklearn.

The average accuracy of all runs for all diseases is 0.6, 95% CI [0.596, 0.604],
with a F1–score of 0.58, a precision of 0.61 and a recall of 0.56. In the following
subsections, we report more details of the construction and the metrics for each
classifier ensemble. Since auto-sklearn is not deterministic, different runs can
lead to different results. However, the average standard deviation of the accuracy
values was with σ = 0.0057 small.

Table 2. Auto-sklearn classifiers – average performance.

Disease Precision Recall F1-score Accuracy Test data

F32 0.60 0.56 0.58 0.59 4331

F33 0.63 0.57 0.6 0.61 4325

F43 0.59 0.63 0.61 0.59 1195

F 0.63 0.47 0.53 0.60 17194

F32 - Major Depressive Disorder, Single Episode. During our five runs,
auto-sklearn analyzed between 200 and 213 target algorithms for this classifi-
cation task. On average, an accuracy of μ = 0.59 with a standard deviation of
σ = 0.0055 was achieved with five independent runs. The final ensemble con-
sisted of 35 pipelines. Categorical and numerical transformers were used for
pre-processing, Gradient Boosting [12], Random Forest [3], and Extra Trees [7]
as classifiers.

F33 - Major Depressive Disorder, Recurrent. Auto-sklearn analyzed
between 215 and 251 target algorithms for this classification task. On average,
an accuracy of μ = 0.612 with a standard deviation of σ = 0.0084 was achieved
with five independent runs. The final ensemble consisted of 30 pipelines. Cat-
egorical and numerical transformers were used for pre-processing and Gradient
Boosting [12] and Extra Trees [7] as classifiers.
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F43 - Reaction to Severe Stress, and Adjustment Disorders. Auto-
sklearn analyzed between 99 and 140 target algorithms for this classification
task. On average, an accuracy of μ = 0.594 with a standard deviation of σ =
0.0089 was achieved with five independent runs.

The final ensemble consisted of 18 pipelines. Categorical and numerical trans-
formers were used for pre-processing, and Random Forest [3] and Gradient Boost-
ing [12] as classifiers.

All F – Diagnoses. Auto-sklearn analyzed between 148 and 150 target algo-
rithms for this classification task. On average, an accuracy of μ = 0.6 with a
standard deviation of σ = 0.0 was achieved with five independent runs. The final
ensemble consisted of 27 pipelines. Categorical and numerical transformers were
used for pre-processing and Gradient Boosting [12] as classifier.

4 Discussion

We demonstrated that auto-sklearn can be used to predict psychiatric diseases
using health insurance billing data. However, the resulting evaluation metrics
are behind the ones that are reported using traditional AI approaches. While
we achieved an accuracy of 0.6 with auto-sklearn and 0.59 with Watson Studio’s
AutoAI Experiment, a recent literature survey reports an average accuracy of
0.84 for predicting psychiatric diseases [2]. Notable is, that the studies found by
the named survey have a by far smaller sample size (mean of μ = 5569 records
with a standard deviation of σ = 19194.28 and a median of η = 237) than we used
in our evaluation (687,697 records). While most research just has samples from
one hospital or healthcare provider, we were able to use data from all patients
with depressions in Estonia to test autoAI on a realistic, BigData sample from
a whole country.

We observed that auto-sklearn is easy to use, even for non-IT professionals,
and gives fast results without the need for data science skills. Watson Studio’s
AutoAI Experiment does not even require coding skills. All tasks can be carried
out through a web interface on the IBM Cloud. Concerning the initial research
question, our experiment showed that the tested autoAI frameworks still lag
behind traditional approaches where data scientists develop and tune ML mod-
els. AutoAI can by no means replace data scientists. While autoAI offers func-
tionality for feature engineering, model selection and tuning, data scientists still
need to attend to the human side of AI model implementation like finding the
right business problem to solve, analyze the requirements, and determining the
superiority of an AI solution compared to currently used solutions.

Nevertheless, autoAI holds the potential to save data scientists time by
automating basic, low-level tasks, enabling the professionals to focus on under-
standing the business problem and later on, the individual fine-tuning of the out-
putted autoAI models. This can decrease the time for data scientists to design
new AI models. Since autoAI is a relatively new field in computer science, it is
not fully matured and we expect it to deliver better results in the near future.
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One limitation of our research is that we compare the autoAI results to stud-
ies using other data for evaluation. In further research, we will use the applied
dataset for traditional machine learning algorithms, as well as deep learning algo-
rithms to see how they perform compared to autoAI. Additionally, our research
is limited to the binary classification functionality of auto-sklearn and IBM Wat-
son Studio’s AutoAI. Other libraries might perform differently. Because of that,
our results are not generalizable for the whole autoAI area. Neither auto-sklearn
nor Watson Studio’s AutoAI support deep learning. Considering the complexity
and high dimensionality of the dataset, deep learning algorithms could lead to
better results. Another limitation comes from the way auto-sklearns optimiza-
tion works. The system is non-deterministic, so that results may change between
different runs. To get a comprehensive picture, further research needs to be done
to compare these libraries and traditional AI approaches based on a standard
benchmark dataset.

5 Conclusion

AutoAI is an emerging research field in computer science with high potential. The
ease of use enables a faster development of AI algorithms without extensive data
science or programming knowledge. Therefore, it contributes to democratizing
AI-based solutions. One possible area where autoAI could be applied in the
healthcare sector are DDSSs. Despite the theoretical potential, there is currently
no thorough evaluation of autoAI on healthcare datasets.

We presented a novel evaluation of autoAI libraries based on real-world data.
In our setting, the accuracy of autoAI (namely auto-sklearn classifier 2.0 and
Watson Studio’s AutoAI Experiment on IBM Cloud) without any human inter-
vention could not achieve as good evaluation metrics as traditional approaches.
Our main finding is that AutoAI’s accuracy was, on average, 24% behind con-
ventional techniques. Because of that, we argue that autoAI is not yet ready
to be used for the detection of psychiatric diseases based on health insurance
billing data. Manual tuning and especially domain knowledge is still needed to
create an accurate machine learning model. Because of the ease of use, autoAI
can serve as a rapid prototyping tool for ML. It gives an initial direction and
can be seen therefore as a smart assistant for data scientists, saving their time
for the human side of machine learning projects and advanced fine-tuning tasks
after the initial model creation.
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ABSTRACT
Psychiatric disorders represent critical non-communicable diseases
of the 21st century and are ranked as the leading cause of years lived
with disabilities. Nevertheless, data that could be used to improve
our understanding of psychiatric diseases remain underutilized. In
this research, we apply clustered association rule mining to find
comorbidities and indicator diseases for patients with psychiatric
illnesses. The model was trained with health insurance billing data
from 60,115 patients with a total of 904,821 ICD-10 coded diseases.
Nine association rules were found without clustering, 40 with clus-
tering of F diagnoses. The approach proves suitable for further use
in the implementation of indicator-based digital decision support
systems in psychiatry.
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1 INTRODUCTION
Psychiatric disorders represent critical non-communicable diseases
of the 21st century and are ranked as the leading cause of years
lived with disabilities [36]. Additionally, diagnosis accuracy is low
[1, 23]. As one example, only 31% of patients with bipolar disorder
are correctly diagnosed [33] – a diagnosis which takes 5.7 years
on average [25]. The situation with depression looks similar [24].
Psychiatric diseases not only affect our health but also leave an im-
pact from a cost perspective. In Europe alone, psychiatric disorders
accounted for EUR 461 billion in healthcare costs [13].

With such a high impact on our wellbeing, as well as on society
as a whole, a clear understanding of the factors that contribute to
and/or indicate such diseases is crucial. Therefore, this research
shows the potential of applying association rule mining to find the
comorbidities of patients with psychiatric illnesses. Comorbidities
are diseases that often co-occur with a primary condition. With
hard-to-diagnose illnesses especially (such as psychiatric illnesses),
a comorbidity could be used as an indicator that a currently undiag-
nosed root cause is present. If a patient has not yet been diagnosed
with a psychiatric disease but suffers from diseases that normally
co-occur with a psychiatric disease, a mental disorder could be the
root cause.

Based on that principle, this paper shows an ARM-based ap-
proach for mining indicator diseases for psychiatry which could be
used further for building digital decision support systems (DDSSs)
to enable earlier diagnosis of mental health disorders. DDSSs based
on health insurance claims data and machine learning techniques
are nothing new [6]. However, despite their potential, they have
not yet found their way to everyday clinical practice [5, 8]. The
reasons for this are low user acceptance by health professionals
[20] and the lack of explainability [4] resulting from the black-box
character of many machine learning algorithms.
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Association rule mining (ARM) can mitigate these problems.
First introduced in 1993 [2], ARM remains one of the most popular
methods of knowledge discovery [17]. Its history lies in finding
patterns in transactional data, such as analysing which products in
a shop sell best together (market basket analysis). In more general
terms, an association rule like 𝐴 ⇒ 𝐵 describes that in a dataset
of transactions (𝐷), a given transaction 𝑇 containing itemset 𝐴 is
likely to also contain itemset 𝐵. The reliability of the association
rule is expressed as confidence. Confidence is the percentage of
transactions containing 𝐴 and 𝐵 compared to the total number
of transactions containing 𝐴. In the market basket example from
above, an association rule (𝑥1, 𝑥2) ⇒ (𝑦1) with a confidence of 𝐶%
would mean that a customer who buys products 𝑥1 and 𝑥2 will also
buy 𝑦1 with a probability of 𝐶%.

Due to its easily understandable and explainable nature, ARM
could be a potentially good fit for DDSS. This research therefore
investigates the following research question: What benefit does
association rule mining bring to Digital Decision Support Systems
in psychiatry?

The rest of this paper is organized as follows. Background and
related work are detailed in Sect. 2, followed by a description of
the used data and our methodology in Sect. 3. The experimental
results from implementation are presented in Sect. 4. The validation
approach of our results is described in Sect. 5. Sect. 6 discusses the
results and their limitations and Sect. 7 concludes the paper.

2 BACKGROUND
Evidence indicates that those with psychiatric disorders compared
to healthy subjects have a functional impairment that causes sig-
nificant distress and poorer quality of life. [27]. Research studies
provide massive volumes of heterogeneous data that are too com-
plex and voluminous to be processed and analysed by traditional
methods. We need inductive approaches like data mining meth-
ods to generate knowledge with a small number of cause-effect
mechanisms.

Data mining is becoming increasingly popular for providing a
deeper understanding of medical data, including disease pathogen-
esis and treatment, leading to discoveries from medical datasets
that conventional methods are unable to process [18]. Data mining
algorithms can be sorted into two main categories: supervised and
unsupervised learning [15]. Supervised learning algorithms like
classification or regression predict the response values for a par-
ticular outcome. Unsupervised learning algorithms describe data
form and hidden structure using clustering and anomaly detection
methods. One of the main unsupervised algorithms is association
rule mining, which is widely used in various areas, one of which
being medicine and health care [26, 29]. Association rule mining
(ARM) finds associations and correlations throughout large sets of
data and provides information in the form of ’if-then’ probabilistic
statements [32].

Several algorithms have been proposed for the generation of
association rules [2]. Apriori is a well-known primary ARM algo-
rithm for the extraction of frequent items in a set of transactions.
First introduced by Agrawal et al.[2], Sharma and Om [30] used
this algorithm for the early diagnosis and treatment of oral can-
cer. Karabatak and Ince [19] proposed an expert system for the

detection of breast cancer based on association rules and neural
networks. Chen et al. [10] used ARM to detect possible side effects
due to exposure time to drugs during pregnancy, which resulted
in the discovery of novel information. A few studies in psychiatry
applied the association rule mining approach for data extraction.
Shen et al. [31] used ARM on the Taiwan National Health Insurance
Research Database to explore associations among comorbidities
of borderline personality disorder. In another study, Schweikert
et al. [28] applied Combinatorial Fusion Analysis (CFA) and ARM
to explore the relationship between autism prevalence and lead
mercury concentration, which led to a deeper understanding of its
pathogenesis. Chen et al. [9] applied ARM to analyse the associ-
ation among two or more comorbid diseases of attention deficit
hyperactivity disorder. Hasanpour et al. [16] used the Apriori al-
gorithm on an obsessive-compulsive disorder treatment response
dataset of Iranian patients to explore the most significant factors
contributing to the treatment response. Leejin and Sungmin [22]
applied ARM on Korean National Health Insurance Data to extract
comorbidities of attention-deficit hyperactivity disorder.

Previous psychiatry-related studies have focused on examining
the strengths of associations [35] and classifying patients from
real-world clinic databases [22]. However, these methods focus on
examining symptom patterns. The current paper focuses on using
pattern mining techniques known as clustered ARM to provide a
descriptive approach for extracting symptom rules. Most research
only tackles a specific disease. Due to our large dataset, which
covers many psychiatric diseases of almost the entire population of
Estonia, we intend to show that this approach can be generalized
for psychiatry as a whole. No previous studies have focused on the
analysis of comorbidities and indicator diseases for patients with
psychiatric illnesses using ARM. This study aims to discover the
hidden relationships between patients with psychiatric illnesses,
which can aid medical decision-making for a faster, more accurate
diagnosis. Moreover, to the best of the authors’ knowledge, the
collected dataset is one of the most extensive datasets covering
psychiatric disorders. This makes our research results valuable not
only for medical professionals, but also for the computer science
community by showing how clustered ARM can be applied to
BigData.

3 METHOD
This research is based on association rule mining, a well-recognized
approach in data science and knowledge discovery [34][21]. We ex-
tend this well-established approach by applying ARM to hierarchi-
cally clustered data, thereby demonstrating not only the feasibility
of this approach for this BigData application scenario (especially
concerning the variety and veracity of the data), but also its poten-
tial for digital decision support.

3.1 Data
The data used were collected from the Estonian Health Insurance
Fund (EHIF). The EHIF manages healthcare expenses reimburse-
ment. Their digital system was introduced in 2001 as an addition
to the paper-based process. Since 2005, all reimbursement claims
and prescriptions needed to be submitted electronically.
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As of today, the process of data collection from the EHIF is part
of there reimbursement process of healthcare providers. Medical
professionals fill in the case history and demographic data in a
structured electronic medical record system. Then they compose
a discharge letter or outpatient summary where the activities are
coded based on ICD-10 codes. The International Statistical Classi-
fication of Diseases and Related Health Problems, tenth revision
(ICD-10) is an international standardized coding system for report-
ing diseases [37]. Each ICD-10 code is structured based on an alpha
character called a chapter and two digits describing the category of
the disease, followed by a dot and further digits representing more
details such as cause, location, severity or other clinical information
(sub-categories). As one example, F32.2 codes for major depressive
disorder, single episode, severe without psychotic features. F stands
for mental and behavioral disorders, F30-F39 code mood [affective]
disorders, where F32 is the category major depressive disorder,
single episode. The ’.2’ at the end specifies the severity. This infor-
mation is then sent to the EHIF where it is automatically quality
checked, and a random sample set of cases is manually validated
before the reimbursement process is started. After the checks, the
data is saved in the EHIF data warehouse (DWH). The data is then
used by the medical statisticians of the EHIF, researchers, politi-
cal or healthcare policy decision-makers, or other governmental
authorities. Based on the role of the data requestor, the data is
available either in personalized form with patient identifiers, or
anonymized.

Our dataset was queried from the EHIF DWH and includes infor-
mation on gender, birth year, ICD-10 coded diagnosis, and diagnoses
year and month from 60,115 adults (18 years or above) with a to-
tal of 904,821 diagnoses in 2018 and 2019. The data consists of all
publicly insured people in Estonia with a depression diagnosis, ei-
ther single episode (F32), or recurrent (F33), and an equally-sized
random sample of people with other psychiatric disorders. The
percentage of insured people in Estonia is above 93.63% [12], so
we are confident that our dataset is representative for the whole
population. Since we only obtained and analyzed anonymized data,
no ethics approval was required.

To decrease the dimensionality of the data, the ICD codes were
clustered by category level by removing the digits preceding the dot.
Additionally, chapter XXI "Factors influencing health status and
contact with health services" (categories Z00-Z99) was removed.
Codes in this category are provided for occasions when circum-
stances other than a disease, injury or external cause is recorded
[37]. Examples are examinations, prescriptions or diagnostic tests.

For better readability in this publication, the ICD-10 codes were
mapped to their text representation using the official ICD-10 XML
mapping files provided by the Estonian Health Insurance Fund [14].

3.2 Clustered Association Rule Mining
In this research, we are using the Apriori algorithm to mine the
rules. First introduced in 1994, it has become the standard algorithm
for association rule mining [3]. The algorithm was first designed to
identify frequent itemsets in transnational data. Given a threshold𝐶 ,
it finds frequent itemsets that are subsets of at least 𝐶 transactions
using a bottom-up approach based on breadth-first search and
hash trees [3]. An item set 𝑋 of length 𝑘 is frequent if and only

if every subset of 𝑋 , having a length of 𝑘 − 1, is also frequent.
Rules are then ranked according to interest metrics. The most basic
measurement of interestingness is support [2], also called frequency
constraints. It describes the fraction of all the transactions in which
an item set occurs divided by the total number of transactions.
Other measurements of interest are derived from support. For each
rule mined in this research, we calculated:

• 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴 ⇒ 𝐶) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴 +𝐶)
range: [0, 1]

• 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 ⇒ 𝐶) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴 +𝐶)/𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴)
range [0, 1]

• 𝑙𝑖 𝑓 𝑡 (𝐴 ⇒ 𝐶) = 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 ⇒ 𝐶)/𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐶)
range: [0, inf]

• 𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 (𝐴 ⇒ 𝐶) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴 ⇒ 𝐶)−𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴)∗𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐶)
range: [-1, 1]

• 𝑐𝑜𝑛𝑣𝑖𝑐𝑡𝑖𝑜𝑛 = [1 − 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐶)]/[1 − 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 ⇒ 𝐶)]
range: [0, inf]

Traditional ARM algorithms often cannot produce good results
with high-volume and high-dimensional data because ARM is not
able to generalize. In our example, significant associations with
diseases that would be visible when looking at aggregated groups
(e.g., mood disorders in general, not only depression) might not be
visible for individual psychiatric disorders. Clustered association
rule mining can be used to solve this problem. With clustered ARM,
the data are clustered (either by ML algorithms like K-means or –
as in our example – based on the existing hierarchic data structure
of ICD-10) before ARM is applied.

3.3 Development Environment, Libraries &
Configuration

Our development environment consisted of JupyterLab 3.0.12 with
Python 3, Pandas 1.2.3 and PyCaret 2.3.5 deployed on a virtualized
Ubuntu server with an 8 Core Intel Xeon E5-2650 v2 CPU @ 2.6
GHz and 64 GB RAM.

4 RESULTS
Weused two data pre-processing approaches for the association rule
mining. For the first approach, the original data were taken. Because
of the high dimensionality of the data (1355 variables/different dis-
eases), we decided to assign all psychiatric diagnoses to one cluster
(F) before the rule mining to reduce the dimensionality and get
better results. Since we were only interested in finding possible
indicator diseases for psychiatric disorders, all association rules
with no psychiatric disease as a consequence were removed for
better visibility. No further post-processing was applied. In order
to derive a relevant set of rules, we iteratively applied different in-
terestingness constraints. The final constraints used are mentioned
in each section.

4.1 Association Rules without Clustering
In total, 80 association rules were mined, of which nine had a
psychiatric disease as a consequence. Table 1 shows the association
rulesmined from the original dataset without any clustering applied.
Table 2 translates the ICD codes to the corresponding description.
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To reduce the set of association rules, interestingness constraints
of 0.0155 as support threshold and 1.25 as lift threshold were used.

4.2 Association Rules with Clustering
In total, 80 association rules were minded, of which 40 had a psy-
chiatric disease as consequence. Table 3 shows the association rules
mined with previous clustering of all psychiatric diseases into one
category (F). Table 4 translates the ICD codes to the corresponding
description. To reduce the set of association rules, interestingness
constraints of 0.025 as support threshold and 1 as lift threshold
were used.

5 VALIDATION
To ensure the clinical plausibility and validity of the presented re-
sults, we verified the found rules with both medical experts and
medical literature. We interviewed two domain experts from psychi-
atry and psychology and presented our research approach and the
found rules. Both experts positively attested the results obtained.
Additionally, the presented results have some overlaps with medi-
cal research on comorbidities of psychiatric diseases [11], which
increases the external validity of our findings.

6 DISCUSSION
Since comorbidities are often derived from clinical guidelines, which
are mostly based on studies from bigger western countries, comor-
bidity research is often biased towards bigger countries. This is
especially relevant to psychiatry because it has a strong cultural
component; indicator diseases might vary between countries. Our
approach could be used to mine more targeted, country-specific
comorbidities than currently available in literature. Additionally,
there is currently no standardized process on how comorbidities
are mined in health care. Most were found by manual statistical
analysis or clinical guidelines. For new diseases like COVID-19 es-
pecially, our approach can be used to vastly mine comorbidities and
refine them as soon as variables like health policies or the disease
itself change. This is especially relevant since clinical guidelines
usually take a long time to adapt.

In future research, our association rules could be used as input
for a DDSS that can alert when a patient is frequently diagnosed
with diseases that correlate to psychiatric diseases. Using this ap-
proach, possible underlying psychiatric diseases could be diagnosed
faster. Currently, deep learning algorithms are often used for the
cognition of such DDSSs. Deep neural networks not only deal with
high-dimensional data in health care, they also learn from com-
plex time-series data. This is especially helpful for diseases with
a high inter-patient variety. However, techniques like deep learn-
ing are by default not explainable. This black-box character has
been identified as a barrier to the adoption of DDSSs [7]. With an
indicator disease-based DDSS, the diagnoses leading to a DDSS
alert can be made transparent to medical professionals. The ex-
plainability of ARM could therefore help raise the currently low
user acceptance of DDSSs in psychiatry. Additionally, DDSSs based
on deep neural networks are highly computationally intensive. The
computational costs of mining ARM are much cheaper. While deep
learning often requires high-performance computing, or at least

GPU-powered training devices, the ARM approach demonstrated
ran on the above-mentioned standard server in under a minute.

For the reasons set out above, we see high potential for our ARM
approach not only in further advancing public health research by
allowing timely, country-specific comorbidity mining, but also as a
rule basis for digital decision support.

In terms of limitations, it is important to note that health insur-
ance billing data holds a certain amount of bias. One example is that
they cover only the insured population, so it might not be possible
to completely generalize the results for everyone. For the dataset
we used, this can be disregarded, since the percentage of insured
people in Estonia is around 93.63% [12]. However, the data are col-
lected for claims management. Therefore, it might not represent
the medical truth completely. Especially since private consultations,
which frequently happen in psychiatry, are typically not recorded
by those systems. Furthermore, the algorithm has certain limita-
tions. Since association rule mining often produces quite a large set
of rules, of which typically only a small subset is relevant, it relies
on picking the correct interesting rules. This is mostly done manu-
ally, with the support of different measurements of interestingness.
Manual work is prone to confirmation bias. Additionally, ARM
works based on frequencies. It does not – and cannot – take into
account medical cause and effect. Especially with healthcare data,
where some diseases are widespread and others rare, measurements
of interestingness can deviate from normal ranges. Additionally,
the large size of the dataset we used in this research contributes
to that effect. An additional point of limitation, and an area into
which we encourage further research, is clinical validation. In or-
der to design and develop a working decision support system for
psychiatry, the found rules need to be integrated not only into a
rule engine but also into the clinical process. This requires further
research on where a DDSS like this would bring the most potential
as well as further research on the benefits and validity thereof.

7 CONCLUSION
This work presented a knowledge mining example based on associ-
ation rules for extracting indicator diseases of psychiatric disorders.
Compared to other approaches that utilize healthcare data for pa-
tient benefits, such as deep learning-based decision support, ARM
excels by offering complete explainability and low computational
costs. In terms of medical validity, the found association rules match
clinical guidelines in psychiatry, which indicates the reliability of
ARM. This research has therefore demonstrated the usefulness of
association rule mining for comorbidity extraction and indicator
disease mining based on health insurance billing data. A possible
use case for this is public health research in order to allow timely,
country-specific comorbidity mining. The second area of applica-
tion could be the quick and easy creation of a knowledge-base for
a DDSS, which can alert when a psychological condition might be
present if high correlating diseases are frequently diagnosed.
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Table 1: Association rules of ICD-10 codes without F-clustering
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1 (I11) (F51) 0.1602 0.0586 0.0168 0.1051 1.7935 0.0074 1.0519
2 (M17) (F33) 0.0615 0.1861 0.0157 0.2553 1.3718 0.0043 1.0929
3 (K21) (F33) 0.0639 0.1861 0.0159 0.2490 1.3379 0.0040 1.0837
4 (G47) (F33) 0.0778 0.1861 0.0193 0.2479 1.3321 0.0048 1.0822
5 (R10) (F41) 0.0822 0.1976 0.0215 0.2621 1.3264 0.0053 1.0873
6 (K21) (F41) 0.0639 0.1976 0.0167 0.2604 1.3178 0.0040 1.0849
7 (G47) (F41) 0.0778 0.1976 0.0197 0.2537 1.2839 0.0044 1.0751
8 (N30) (F41) 0.0746 0.1976 0.0187 0.2506 1.2682 0.0039 1.0706
9 (G47) (F32) 0.0778 0.2110 0.0206 0.2644 1.2531 0.0042 1.0725

Table 2: Association rules without F-clustering (mapping table)

# antecedents count consequents count
1 Hypertensive heart disease 33624 Nonorganic sleep disorders 10956
2 Gonarthrosis [arthrosis of the knee] 9471 Recurrent depressive disorder 59941
3 Gastro-oesophageal reflux disease 7350 Recurrent depressive disorder 59941
4 Sleep disorders 14677 Recurrent depressive disorder 59941
5 Abdominal and pelvic pain 6755 Other anxiety disorders 42990
6 Gastro-oesophageal reflux disease 7350 Other anxiety disorders 42990
7 Sleep disorders 14677 Other anxiety disorders 42990
8 Cystitis 6711 Other anxiety disorders 42990
9 Sleep disorders 14677 Depressive episode 53034
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Table 3: Association rules of ICD-10 codes with F clustering
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1 (I11) (F, M54) 0.1602 0.1584 0.0324 0.2023 1.2771 0.0070 1.0550
2 (I10) (F, M54) 0.1362 0.1584 0.0275 0.2020 1.2753 0.0059 1.0546
3 (M54) (F, I10) 0.2066 0.1059 0.0275 0.1332 1.2578 0.0056 1.0315
4 (M54) (I11, F) 0.2066 0.1248 0.0324 0.1568 1.2564 0.0066 1.0380
5 (M54) (F, J06) 0.2066 0.1359 0.0352 0.1704 1.2539 0.0071 1.0416
6 (J06) (F, M54) 0.1834 0.1584 0.0352 0.1920 1.2121 0.0062 1.0416
7 (G47) (F) 0.0778 0.7474 0.0625 0.8036 1.0752 0.0044 1.2862
8 (I11, M54) (F) 0.0406 0.7474 0.0324 0.7980 1.0677 0.0021 1.2505
9 (K21) (F) 0.0639 0.7474 0.0508 0.7947 1.0633 0.0030 1.2304
10 (I10, M54) (F) 0.0348 0.7474 0.0275 0.7918 1.0594 0.0015 1.2133
11 (I49) (F) 0.0340 0.7474 0.0268 0.7892 1.0560 0.0014 1.2133
12 (H25) (F) 0.0450 0.7474 0.0353 0.7843 1.0494 0.0017 1.1713
13 (E78) (F) 0.0425 0.7474 0.0333 0.7842 1.0492 0.0016 1.1704
14 (J45) (F) 0.0496 0.7474 0.0389 0.7842 1.0492 0.0018 1.1703
15 (M17) (F) 0.0615 0.7474 0.0481 0.7820 1.0464 0.0021 1.1589
16 (H52) (F) 0.0862 0.7474 0.0674 0.7818 1.0460 0.0030 1.1576
17 (M51) (F) 0.0516 0.7474 0.0403 0.7813 1.0453 0.0017 1.1550
18 (K29) (F) 0.0746 0.7474 0.0583 0.7812 1.0453 0.0025 1.1546
19 (R51) (F) 0.0343 0.7474 0.0268 0.7809 1.0448 0.0011 1.1529
20 (G44) (F) 0.0357 0.7474 0.0279 0.7794 1.0429 0.0011 1.1452
21 (I11) (F) 0.1602 0.7474 0.1248 0.7790 1.0423 0.0051 1.1432
22 (M15) (F) 0.0355 0.7474 0.0276 0.7780 1.0409 0.0011 1.1378
23 (N39) (F) 0.0471 0.7474 0.0366 0.7779 1.0408 0.0014 1.1373
24 (I10) (F) 0.1362 0.7474 0.1059 0.7770 1.0397 0.0040 1.1330
25 (R10) (F) 0.0822 0.7474 0.0637 0.7753 1.0374 0.0023 1.1244
26 (E11) (F) 0.0489 0.7474 0.0378 0.7731 1.0343 0.0013 1.1130
27 (R07) (F) 0.0334 0.7474 0.0257 0.7695 1.0296 0.0007 1.0961
28 (H61) (F) 0.0352 0.7474 0.0270 0.7687 1.0285 0.0007 1.0920
29 (M79) (F) 0.0734 0.7474 0.0563 0.7677 1.0271 0.0015 1.0873
30 (M54) (F) 0.2066 0.7474 0.1584 0.7665 1.0256 0.0040 1.0820
31 (J20) (F) 0.0693 0.7474 0.0531 0.7661 1.0250 0.0013 1.0799
32 (J06, M54) (F) 0.0462 0.7474 0.0352 0.7626 1.0203 0.0007 1.0641
33 (E03) (F) 0.0443 0.7474 0.0336 0.7580 1.0141 0.0005 1.0437
34 (M25) (F) 0.0766 0.7474 0.0579 0.7559 1.0113 0.0006 1.0347
35 (M75) (F) 0.0407 0.7474 0.0306 0.7521 1.0063 0.0002 1.0191
36 (H10) (F) 0.0590 0.7474 0.0444 0.7517 1.0057 0.0003 1.0173
37 (H40) (F) 0.0389 0.7474 0.0293 0.7514 1.0053 0.0002 1.0160
38 (N30) (F) 0.0746 0.7474 0.0559 0.7497 1.0030 0.0002 1.0090
39 (N95) (F) 0.0546 0.7474 0.0409 0.7490 1.0022 0.0001 1.0064
40 (J04) (F) 0.0391 0.7474 0.0293 0.7483 1.0012 0.0000 1.0036

Table 4: Association rules with F-clustering (mapping table)

# antecedents count consequents count
1 (Hypertensive heart disease) (33624) (F, Dorsalgia) (254113, 24473)
2 (Essential (primary) hypertension) (23223) (F, Dorsalgia) (254113, 24473)
3 (Dorsalgia) (24473) (F, Essential (primary) hypertension) (254113, 23223)
4 (Dorsalgia) (24473) (Hypertensive heart disease, F) (33624 ,254113)

Continued on next page
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Table 4 – continued from previous page
# antecedents count consequents count
5 (Dorsalgia) (24473) (F, Acute upper respiratory infections of multi-

ple and unspecified sites)
(254113, 15507)

6 (Acute upper respiratory infections of multiple
and unspecified sites)

(15507) (F, Dorsalgia) (254113, 24473)

7 (Sleep disorders) (14677) (F) (254113)
8 (Hypertensive heart disease, Dorsalgia) (33624, 24473) (F) (254113)
9 (Gastro-oesophageal reflux disease) (7350) (F) (254113)
10 (Essential (primary) hypertension, Dorsalgia) (23223, 24473) (F) (254113)
11 (Other cardiac arrhythmias) (3849) (F) (254113)
12 (Senile cataract) (4860) (F) (254113)
13 (Disorders of lipoprotein metabolism and other

lipidaemias)
(4226) (F) (254113)

14 (Asthma) (7922) (F) (254113)
15 (Gonarthrosis [arthrosis of knee]) (9471) (F) (254113)
16 (Disorders of refraction and accommodation) (6118) (F) (254113)
17 (Other intervertebral disc disorders) (7234) (F) (254113)
18 (Gastritis and duodenitis) (8235) (F) (254113)
19 (Headache) (2610) (F) (254113)
20 (Other headache syndromes) (3839) (F) (254113)
21 (Hypertensive heart disease) (33624) (F) (254113)
22 (Polyarthrosis) (4423) (F) (254113)
23 (Other disorders of urinary system) (4173) (F) (254113)
24 (Essential (primary) hypertension) (23223) (F) (254113)
25 (Abdominal and pelvic pain) (6755) (F) (254113)
26 (Type 2 diabetes mellitus) (11880) (F) (254113)
27 (Pain in throat and chest) (2384) (F) (254113)
28 (Other disorders of external ear) (2513) (F) (254113)
29 (Other soft tissue disorders, not elsewhere clas-

sified)
(6502) (F) (254113)

30 (Dorsalgia) (24473) (F) (254113)
31 (Acute bronchitis) (5068) (F) (254113)
32 (Acute upper respiratory infections of multiple

and unspecified sites, Dorsalgia)
(15507, 24473) (F) (254113)

33 (Other hypothyroidism) (6933) (F) (254113)
34 (Other joint disorders, not elsewhere classified) (6618) (F) (254113)
35 (Shoulder lesions) (5065) (F) (254113)
36 (Conjunctivitis) (4726) (F) (254113)
37 (Glaucoma) (8829) (F) (254113)
38 (Cystitis) (6711) (F) (254113)
39 (Menopausal and other perimenopausal disor-

ders)
(4955) (F) (254113)

40 (Acute laryngitis and tracheitis) (2870) (F) (254113)
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Abstract

Human accuracy in diagnosing psychiatric disorders is still low. Even though
digitizing health care leads to more and more data, the successful adoption
of AI-based digital decision support (DDSS) is rare. One reason is that AI
algorithms are often not evaluated based on large, real-world data. This re-
search shows the potential of using deep learning on the medical claims data
of 812, 853 people between 2018 and 2022, with 26, 973, 943 ICD-10-coded
diseases, to predict depression (F32 and F33 ICD-10 codes). The dataset
used represents almost the entire adult population of Estonia. Based on these
data, to show the critical importance of the underlying temporal properties of
the data for the detection of depression, we evaluate the performance of non-
sequential models (LR, FNN), sequential models (LSTM, CNN-LSTM) and
the sequential model with a decay factor (GRU-∆t, GRU-decay). Further-
more, since explainability is necessary for the medical domain, we combine
a self-attention model with the GRU decay and evaluate its performance.
We named this combination Att-GRU-decay. After extensive empirical ex-
perimentation, our model (Att-GRU-decay), with an AUC score of 0.990,
an AUPRC score of 0.974, a specificity of 0.999 and a sensitivity of 0.944,
proved to be the most accurate. The results of our novel Att-GRU-decay
model outperform the current state of the art, demonstrating the potential
usefulness of deep learning algorithms for DDSS development. We further
expand this by describing a possible application scenario of the proposed al-
gorithm for depression screening in a general practitioner (GP) setting—not
only to decrease healthcare costs, but also to improve the quality of care and
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ultimately decrease people’s suffering.

Keywords: Artificial intelligence (AI), decision support system (DSS), deep
learning, machine learning (ML), depression, insurance data, medical claims
data, psychiatry

1. Introduction

Psychiatric disorders, especially mood disorders such as depression, rep-
resent the critical non-communicable diseases of the 21st century and are
ranked as the leading cause of years lived with disabilities [1]. Unfortunately,
these diseases are often diagnosed late or incorrectly [2, 3]. According to [4],
depression is diagnosed by general practitioners with a sensitivity of 50.1%
(95% CI: 41.3 to 59.0) and a specificity of 81.3% (95% CI: 74.5 to 87.3).
Other research suggests that in the US, two-thirds of depression patients
go undiagnosed [5]. Psychiatric diseases affect people’s health and leave an
impact from a cost perspective on a more global level. In Europe alone, psy-
chiatric disorders accounted for EUR 461 billion in healthcare costs [6]. Of all
psychiatric diseases, the economic costs of depression are among the highest.
Other research suggests that the quality-adjusted life years (QUALYs) lost
amount to $9,950 per citizen with undiagnosed depression [7].

The recommended method for diagnosing depression in 2023 is based on
questionnaires and assessment scales from the previous century [8]. In psy-
chology and psychiatry, medical professionals still rely on methods dating
back to the 1960s [9, 10]. New technologies such as Artificial Intelligence
(AI), especially deep learning, could potentially improve this situation by
supporting medical professionals. The computer-based systems that use data
to assist decision-making are called digital decision support systems (DDSS).
AI-based DDSS for psychiatry is an active research field [11, 12]. However,
research often does not make its way into clinical practice. One reason is that
the data used to develop such systems are often unavailable or of bad quality
[13]. More and more countries are applying a single public payer approach
to health care, like Canada [14], Australia [15], the UK [16] or Estonia [15],
meaning that a vast amount of medical claims data will be available in a cen-
tral place. However, data are mostly used for claims management and rarely
reused. This paper investigates which algorithm is best suited for building a
deep learning-based DDSS for depression detection based on medical claims
data. As one of the leaders of e-government [17], Estonia is a good starting
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point for such research because lots of digital data are already available.
The foundation of the Estonian e-state is its digital identity system [18].

Each of the 1.3 million residents of Estonia has their own unique ID code.
This allows for the creation of digital government services like online income
tax declaration (used by 96% of people [19]), internet voting (used by 46.7%
[20]) or e-prescription (used by 99% [21]) – e-health services especially profit
from the Estonian e-state. One example is the collection of medical data.
In Estonia, medical data are saved in two central places. The first is the
e-health system called the Estonian Nationwide Health Information System
(NHIS). The NHIS has been operational since 2008, allowing secure and
trusted online access to medical data, prescriptions and medical images for
virtually all Estonian residents. Instead of one big centralized database, the
NHIS comprises several federated and mutually independent systems. One
of them is the nationwide electronic health record (EHR) system. In the
central EHR, patient data are saved based on international standards such
as HL7 CDA1, DICOM2, LOINC3, ICD-104 and SNOMED-CT5.

The second place is the Estonian Health Insurance Fund (EHIF), which
manages healthcare expense reimbursement. Their digital system was in-
troduced in 2001 as an addition to the paper-based process. Since 2005,
all reimbursement claims and prescriptions must be submitted electronically.
As of today, the data collection process of the EHIF is part of their reim-
bursement process for healthcare providers. Medical professionals fill in the
case history and demographic data in a structured electronic medical record
system. Then they compose a discharge letter or an outpatient summary,
where the activities are coded using ICD-10 codes. This information is then
sent to the EHIF, where it is automatically quality-checked and a random
sample set of cases is manually validated before the reimbursement process
is initiated. After the checks, the data are saved in the EHIF data ware-
house. The medical statisticians of the EHIF then use the data for research,
political or healthcare policy decision-making or to supply information to
other governmental authorities. Based on the role of the data requester, the
data are available in either personalized form with patient identifiers or in

1http://www.hl7.org/
2https://www.dicomstandard.org/
3https://loinc.org/
4https://icd.who.int/browse10/
5https://www.snomed.org/
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anonymized form. In the case of Estonia, a duplication of the data is also
saved to the NHIS.

Since ICD codes are a concatenation of digits and alphabetic characters
that convey information, they are considered categorical features. Thus, for
analysis and prediction purposes involving ICD codes, we can benefit from the
state-of-the-art machine and deep learning models dedicated to NLP tasks,
such as [22, 23]. For our work, we leverage on a self-attention layer 6, which is
a transformer’s sub-layer [23], for efficient encoding of hidden relationships
between diagnoses.

Since a single data modality (in our case, diagnosis) is usually not con-
sistent enough for effective decision-making, it is common in the medical
field to merge heterogeneous features or homogeneous features with different
modalities, such as clinical text, demographics, images, or IoT sensor data
[24, 25, 26, 27]. In the case of depression detection, due to its heterogene-
ity, i.e. different types of depression, several heterogeneous data are usually
involved. Indeed, the high number of similarities that exist between some
depression types make their classification complicated. Although considering
several heterogeneous data may improve model accuracy, some are difficult
to collect or biased with inconsistent patient responses. Assuming that diag-
noses performed by a doctor are more trusted and accessible, we decided to
combine them with demographic data for more accurate depression detection.

Medical events are recorded with their corresponding date in the patient’s
electronic health record (EHR). The recording date plays a crucial role in the
clinical process: it allows practitioners to track the trajectory of the patient’s
health status over time to make appropriate decisions. The omission of this
information for decision support will undoubtedly result in lower performance
and make the model less realistic. It is therefore necessary to consider the
sequence of medical events. Like many models that have been built for health
care (or used a medical problem as a pilot case) [28, 29], we also consider the
time intervals between consecutive diagnoses as an additional input for our
model so that the process of detecting depression can rely more on recent
diagnoses. As in [28, 30], we model this temporal aspect by incorporating a
decay factor in the gated recurrent unit (GRU) [31]. Considering the time
intervals between consecutive diagnoses as additional inputs and effectively
incorporating them into the GRU’s core via a decay factor sets our proposal

6The word layer can be used interchangeably with block, model or component.
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apart from previous works on depression detection [32].
Depression is often addressed like a binary classification or multimodal

logistic regression problem [33, 34]. Binary classification determines whether
a patient suffers from depression, while multimodal logistic regression asso-
ciates each type of depression with a probability score. The highest scoring
type is then selected as the diagnosis. Although multimodal logistic regres-
sion has the advantage of learning the distribution of each depression type
mutually, it faces the problem of imbalanced class distribution. Moreover,
only patients who suffer from depression are studied. As we want to mini-
mize imbalanced class problems, detecting patients suffering from depression
and those not suffering, we choose the binary classification approach with
class-weighting factors. Unlike our predecessors, here are additional aspects
that we considered:

• Using a self-attention layer to effectively learn hidden relationships
between diagnoses to better represent patient health status.

• Weighting the significance of diagnoses based on their corresponding
record date so that the model can rely more on recently made diagnoses.

• Using weighted binary cross-entropy as the loss function to deal with
the imbalanced class problem.

• Comparing the performance of non-sequential models, sequential mod-
els and sequential models with a decay factor versus our novel approach
to show the importance of good encoding of the hidden relationship be-
tween diagnoses and the importance of considering the time factor.

• Integrating an explainable component so that physicians have greater
confidence in the decision made by the model.

With the proposed approach, we aim to provide an AI model that helps
medical professionals to overcome the challenge of low diagnostic accuracy.
To improve the diagnostic process, we not only propose a deep learning ap-
proach with sufficient accuracy, but we also ensure that our algorithm is
trained on a sufficiently large quantity of real-world data that is available
during the clinical process and propose an application scenario for our algo-
rithm.

The remainder of this paper is organized as follows: In Section 2, we
present background works. In Section 3, we formally represent the dataset
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and describe our model. Section 4 is devoted to empirically evaluating our
model against our competitors on different metrics. We have also carried out
various ablation studies to show how the model works in different configura-
tions. In Section 6, we discuss the explainability of the results. In Section 7,
we discuss possible use case scenarios, limitations and further research. Sec-
tion 8 recalls the paper’s main points and contributions and outlines future
work.

2. Related Work

Data science aims to develop computational models that can automati-
cally infer hidden patterns from data to predict results. Predictions can be
based on single or multi-modal data sources [35]. For depression detection,
several data sources like audio [36, 37, 38], EEGs [39, 40, 41, 42], IoT or wear-
able data [43, 44, 45], medical images [46, 47] and text data [48, 49, 50, 51]
have been investigated. However, these data must be specifically collected
and available for a decision support system. We argue that data generated
during the clinical process (like diagnosis data) have a much higher chance
to power DDSSs because data availability and quality are lower and privacy
issues are fewer. Examples of these data include medical claims or electronic
health record data. Promising results on using medical claims data for cal-
culating the risk of suicide prevention have been reported in [25]. Medical
claims data are also used to predict reactions to antidepressant treatment
[52]. However, studies using machine learning [33] or rule-based approaches
[53] on medical claims data for depression screening still report low accuracy
metrics.

With a growing volume of data and features and increased computing
power, deep learning starts to outperform traditional ML methods [54]. Tra-
ditional ML methods typically require good feature selection and a signifi-
cant amount of feature engineering to ensure that the features used comply
with the model’s assumptions. On the other hand, deep learning uses a
large, multi-layer network structure, allowing it to take raw input features
and still be able to learn hidden patterns in data. Deep learning archi-
tectures can be distinguished by the structure determining how the net-
work’s artificial neurons are connected. For processing sequential and/or
structured/unstructured data (like historical diagnoses and medication, clin-
ical notes and images), recurrent neural networks (RNNs) [55], convolutional
neural networks (CNNs) [56], transformers [23] and graph neural networks
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(GNNs) [57] are perfect candidates. Due to their high performance on non-
medical tasks addressed with the same data structure as medical applications,
their utilization in the medical field has increased significantly. For example,
in [58], GNNs are combined with a pre-trained transformer-based model,
namely BERT (Bidirectional Encoder Representations from Transformers)
[59] for medical code representation and medication recommendation. Also,
in [60], a pre-trained BERT (specifically its transformer-encoder component)
is used to predict 30-day hospital readmissions from clinical notes. In [61],
a cost-sensitive formulation of long short-term memory networks (LSTM)
[62] is proposed to predict 30-day readmission of congestive heart failure pa-
tients. Similar work using machine learning and deep learning approaches to
predict mortality and readmission of in-hospital cardiac arrest patients with
EHR was also conducted in [63]. In [64], a convolutional graph transformer is
developed to learn the hidden structure of Electronic Health Record (EHR)
data for graph reconstruction while predicting hospital readmission. While
some minor modifications had to be made to the core of the aforementioned
deep learning models to deal with medical data efficiently, even more signifi-
cant changes were needed to deal with the ubiquitous irregular time series in
the medical field. For example, several studies [30, 28, 65] have focused on
redesigning RNNs to better handle irregular physiological time series data
and thus improve the accuracy of downstream medical tasks.

Regarding our main concern, namely the detection of depression, we note
several studies based on deep learning methods, such as [66, 67, 68], which
have used social network data rather than medical claims data. For example,
in [69], an LSTM-based model is coupled with an attention mechanism to
detect depression from users’ tweets. The dataset was balanced (oversam-
pling or undersampling) to address the imbalanced class problem. In [70], a
data augmentation framework based on topic modelling is proposed to solve
the problem of imbalanced classes when detecting depression. In contrast
to approaches based on social network data, [70] uses patients’ responses
recorded during encounters with doctors. Unlike the technique we use (the
cost-sensitive loss function), the undersampling or oversampling technique
has the disadvantage of altering the natural distribution of the data used in
the study. In addition, they may lose some information or add noise. Al-
though several depression detection studies have been conducted using social
network data, some, like ours, have used medical claims data [71, 72]. In
[32], a bidirectional deep learning model is proposed—a pre-trained and fine-
tuned version of the BERT model. Compared to our proposal, where only
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diagnoses and patient demographics are used, the approach in [32] uses ad-
ditional modalities such as procedures, medications and clinical notes. Our
approach, as in [32], relies on the self-attention component to quantitatively
assess the association between clinical codes; however, it does not consider
the time interval when modelling consecutive visits.

As we can see, none of the aforementioned models addressing the prob-
lem of depression detection have combined self-attention with GRU-decay for
better data representation and efficient integration of temporal information,
respectively. Additionally, unlike some, we use real and voluminous medical
datasets and do not apply any undersampling or oversampling that may re-
move relevant information or introduce noise. Instead, we use a cost-sensitive
loss function to deal with the problem of imbalanced classes.

3. Method

Detecting depression from claims data involves considering three impor-
tant aspects: learning the hidden relationships between diagnoses; filtering
out the irrelevant ones; and relying more on recent diagnoses. In addition,
we may face an imbalanced class problem, as there are naturally fewer sick
patients than healthy ones.

In this section, after introducing data notation, we formally describe how
a self-attention layer is stacked with GRU-decay to cover the aforementioned
aspects. Self-Attention is dedicated to learning hidden relationships across
diagnoses and filtering out the irrelevant ones. At the same time, GRU-Decay
allows detection based on the most recent diagnoses. We name this combi-
nation Att-GRU-decay. The output of Att-GRU-decay, which is the global
health status of the patient, is combined with the patient’s demographics and
fed into a classifier that we also describe formally in the following subsec-
tions. Finally, we present the loss function used to address the imbalanced
class problem. The overall model architecture is depicted in Fig. 1.

3.1. Data Notation

Let D = {cn,dn,∆n, yn}n=1,2,··· ,N where cn = [c1, c2, · · · , ct=T ] is the
set of diagnoses (ICD-10 codes) of the patient n recorded at date index
t = 1, 2, · · · , T . If a patient suffers from depression, the highest date index
T is the one preceding the date on which the depression was detected in the
patient. Otherwise, the highest date index T is that of the last diagnosis
made. dn = [d1, d2] is the patient’s demographic vector. d1 is the age and
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Figure 1: Att-GRU-decay architecture. The embedding layer encodes diagnoses into con-
tinuous vectors; Self-attention learns the hidden relationship between the diagnoses pair;
and the Residual & Normalization retain the initial information and prevent gradient
problems. GRU-decay learns the sequential pattern of diagnoses while taking into account
the elapsed time between visits δt and generates a context vector h̃, which is a latent rep-
resentation of the patient’s health status. h̃ is concatenated with the latent representation
of the patient’s demographics and passed through the classifier.

d2 is the gender. ∆n = [δ1, δ2, · · · , δt=T ] is the elapsed time vector. More
precisely, δt with t > 1 and t < T is the time difference between the recorded
date of the medical code ct and ct−1. δ1 = δT = 1. yn is the depression state
of the patient n: equal to 0 if the patient has never suffered from depression;
otherwise, it is equal to 1.

3.2. Self-Attention

This section presents how diagnoses are transformed into a vector embed-
ding and passed through a self-attention layer responsible for learning hidden
relationships between diagnoses and filtering out the ones irrelevant to the
downstream task.
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Since neural networks require real numbers as inputs, the first step is to
map each diagnosis to a vector of real numbers. For that, we use an embedding
layer, which, based on the co-occurrence of diagnoses, will associate with
each diagnosis ct

7 a vector embedding c̃t obtained as part of a matrix C̃ of
all vector embeddings as follows:

C̃ = Embeddingθ(c) (1)

where θ are the learnable parameters of the embedding layer. C̃ ∈ RT×l

is the matrix of diagnoses encoded, where each row t of C̃ is the vector
embedding c̃t of the diagnosis ct, and l is the dimension of the embedding
space.

To discover the latent relationships between diagnoses and filter out di-
agnoses that might not be relevant for detecting whether a patient suffers
from depression, we pass C̃ through a self-attention layer. Throughout self-
attention computations, we calculate an attention filter from a query matrix
Q and a key matrix K to encode hidden relationships between diagnoses.
This attention filter is then multiplied by a value matrix V to obtain a fil-
tered version C̃ ′ of C̃. In other words, those vector embeddings c̃t that will
be detected as irrelevant for determining whether a patient suffers from de-
pression will have coefficient values close to zero. The formula for calculating
C̃ ′ is

C̃ ′ = Softmax

(
QKT

√
dk

)

︸ ︷︷ ︸
attention filter

V (2)

where Q = C̃WQ ∈ RT×j, K = C̃WK ∈ RT×j and V = C̃WV ∈ RT×j are
three different linear transformations of C̃. WQ,WK and WV are learnable
parameters, j = l is the dimension of each linear space, dk is the dimension
of the key vectors, and as usual, KT stands for the transpose of K. C̃ ′ is
normalized to prevent exploding values. The normalized version of C̃ ′ is then
added to C̃ to preserve initial relevant information that might be lost during
self-attention computation and to prevent gradient problems. Residual is the
sum of an input x with the output y = f(x) [73]. The final output of the
self-attention layer is then equal to:

7As the following formulas are valid for all patients, we omit the subscript n in the
sequel.
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Ĉ = C̃ + Normalize(C̃ ′)︸ ︷︷ ︸
residual

(3)

Ĉ ∈ RT×j is a matrix, where each row t is the final embedding represen-
tation ĉt of a corresponding diagnosis ct.

As some diagnoses may have been made long ago, assessing their signifi-
cance in terms of when they were made is crucial. Thus, in Section 3.3, we
formally show how we apply a decay factor on the hidden layer of GRU so
that past diagnoses cannot have the same level of importance as recent ones.

It is worth mentioning that self-attention aims to encode the hidden cor-
relation between pairs of clinical codes, while GRU-decay encodes the se-
quential order of visits, taking into account the time elapsed between them.
We could have used the positional encoding technique implemented in the
original Transformer [23] to model the sequential order of visits. However,
since the positional encoding vectors are static, we would not have been able
to capture the variation in elapsed time between successive visits effectively.

3.3. GRU-Decay

Although some patients may suffer from depression without prior symp-
toms, we can detect those who do with specific earlier symptoms. This then
requires browsing the patient’s historical diagnoses. Since diagnoses are de-
scribed by a set of clinical codes recorded over time, depression detection can
be approached as both time-series forecasting and NLP tasks.

With RNNs and their variants having shown spectacular results on time
series forecasting and NLP tasks, e.g. [74, 75], we can use them to model
the patient’s status while considering the time at which each diagnosis has
been recorded. Since RNNs suffer from gradient problems when processing
long sequences, we use their variant Gated Recurrent Unit (GRU), which
addresses this problem. GRU is mathematically defined as follows:

zt = σg(ĉtWz + ht−1Uz + bz) (4)

rt = σg(ĉtWr + ht−1Ur + br) (5)

h̄t = ϕh(ĉtWh + (rt ⊙ ht−1)Uh + bh) (6)

ht = zt ⊙ ht−1 + (1 − zt) ⊙ h̄t (7)

where ht−1 with (t − 1) ≥ 0 is the hidden state of the medical code
embedding ĉt−1; zt and rt are the update and reset gates associated with the
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medical code embedding ĉt, respectively; h̄t is the hidden intermediate state;
ht is the hidden state of the current input ĉt and also the GRU’s output;
Wz, Wr, Wh, Uz, Ur, Uh, bz, br; and bh are GRU training parameters; and ⊙
denotes the Hadamard product as usual.

The GRU’s equations (4)–(7) assume that the elapsed time δt between
the recording dates of two consecutive diagnoses is regular. This assumption
is not valid since δt may vary. In addition, this variation might be high. It is
then crucial to weight each hidden state ht of ĉt according to δt so that the
model places more importance on recent diagnoses than those made a long
time ago. Therefore, we introduce a decay factor in the GRU and multiply
it by ht to obtain a new hidden state h̃t. A GRU with a decay factor applied
to its hidden state is called GRU-decay. Except for the hidden state, it has
the same structure as a GRU. h̃t is obtained as follows:

h̃t = exp(−max(0, δtW̃ + b̃)) ⊙ ht (8)

where W̃ and b̃ are learnable parameters. h̃t=T = h̃ can be interpreted
as a latent summary of the patient’s health status.

As patient demographics (gender and age) are important factors to study
for depression, we formally describe, in Section 3.4, how they are combined
with the latent summary of patient health status h̃ and then run through the
classifier to predict whether the current patient will suffer from depression.

3.4. Depression Detection: Classifier

To calculate the likelihood that a patient will be detected as a depressed
patient, we first extract information from patient demographics via a feed-
forward neural network (FNN) and combine the extracted information with
ĥt. In end-to-end fashion, the result of this combination is fed into a set of
stacked FNNs that play the role of the classifier. Formally, the classifier is

ŷ = f 1
β1

◦ f 2
β2

◦ · · · ◦ fP
βP

(⟨h̃, d̃⟩) (9)

d̃ = gα(d) (10)

where gα is an FNN with Relu as an activation function; α is a set of learn-
able parameters of g; d̃ is the latent representation of patient’s demographics
vector; f 2

β2
◦ · · · ◦ fP

βP
is P stacked FNNs with Relu as an activation function;

β2, · · · , βP are learnable parameters; f 1
β1

is the final FNN with sigmoid as an
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activation function and β1 as its learnable parameters; and ŷ ∈ [0, 1] is the
likelihood that a patient suffers from depression.

We used a weighted binary cross-entropy as a loss function [76] to adjust
the models’ parameters while dealing with the problem of imbalanced classes.
It is defined as follows:

Lwbc = − 1

N

N∑

n=1

(
w1 ∗ yn ∗ ln(ŷn) + w0 ∗ (1 − yn) ∗ ln(1 − ŷn)

)
(11)

where w0 = 1 and w1 = N0/N1 are the weighted factors of class 0 and
1, respectively. w1 allows penalizing the model more when the class 1 is
misclassified. Indeed, this choice is justified because we are dealing with
imbalanced classes, i.e. the number of patients suffering from depression is
much lower than those who do not suffer from it.

4. Experimentation

4.1. Settings

We coded the proposed model using Python 3.0 and the machine learning
libraries Keras 2.4.3 and TensorFlow 2.4.0. All remaining pre-processing and
performance evaluation was done with the libraries NumPy, Pandas and
Scikit-learn. Finally, we ran the code on a cluster node with the following
characteristics: An AMD Threadripper 3960X processor with 24 cores and
48 threads, 128 GB of memory, and an NVidia 3090 GPU with 24 GB of
graphics memory.

4.2. Data

Our dataset was queried from the EHIF data warehouse and includes
information on gender, birth year, ICD-10 coded primary and secondary
diagnoses and the date of the treatment bill (diagnosis date) from 812, 853
people (15 years or above) with a total of 26, 973, 943 diagnoses between
2018 and 2022. The data consist of all publicly insured people in Estonia
with a depression diagnosis8 (80, 243 patients with 4, 252, 213 diagnoses). The
control group consists of 732, 610 patients (with 22, 721, 730 diagnoses), of

8To overcome potential data leakage, we considered all diagnoses starting with F32
(major depressive disorder) and F33 (recurrent depressive disorder) as ’depression’.
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which 498, 764 people (with 10, 779, 835 diagnoses) did not have a psychiatric
disorder diagnosed and 233, 846 patients (with 11, 941, 895 diagnoses) had a
psychiatric disorder other than depression. The percentage of insured people
in Estonia is above 93.63% [77], so we are confident that our dataset is
representative of the entire population.

Diagnoses were coded based on ICD-10. Each ICD-10 code consists of
an alpha character known as a chapter, two digits describing the disease cat-
egory, a dot and additional digits representing more details like the cause,
location, severity or other clinical information (sub-categories). For exam-
ple, F32.2 is the code for major depressive disorder, single episode, severe
without psychotic features. F stands for mental and behavioral disorders;
F30–F39 are codes for mood [affective] disorders; and F32 is the category
of major depressive disorder, single episode. The ’.2’ at the end of F32.2
specifies the severity. All patients with the ICD-10 codes F33.x or F32.x are
classified as patients with depression. For the latter, only diagnoses made
before being diagnosed with depression are taken into account in the study.
Those which followed the depression diagnosis are ignored. Figure 2 shows
the data extraction process.

The Research Ethics Committee of the National Institute for Health De-
velopment (TAIEK9) approved this study’s research design and data usage
(Decision No. 1148).

4.3. Model and Training Hyperparameters

We performed an extensive grid search over embedding space= {50, 80, 100},
dimenssion linear space= {32, 64, 80, 100}, GRU decay units= {30, 50, 80, 100},
demographics FNN units= {10, 20, 30}, classifier FNN units= {20, 30, 50},
number epochs= {20, 30, 40, 50, 60, 70, 80}, optimizer= {Adam, SGD,RMSprop}
to find the optimal value for each hyperparameter of the model. The values
retained for each hyperparameter are as follows:

• The dimension of the embedding space was set to 50.

• We used a mask on the embedding layer to skip padding values during
the calculation.

• For the attention layer, we set the dimension of linear spaces at 80.

9Tervise Arengu Instituudi inimuuringute eetikakomitee
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Figure 2: Data extraction process from two patients. For padding values, we assign 0
as elapsed time. For the first diagnosis (ICD code of the first visit), we assign 1 as the
elapsed time. When a depression code is observed in the diagnosis list, the associated
ground truth is 1. All diagnoses after the first depression diagnosis are ignored. On the
other hand, when no depression code is observed, the ground truth associated with the
sample is 0.

• The number of GRU-decay units was set to 50.

• We applied a dropout of 0.5 on the hidden layer of GRU-decay to
prevent gradient problems.

• Concerning the FNN dedicated to the extraction of demographic fea-
tures of patients, we defined the number of units as 10.

• The classifier comprises two stacked FNNs, each with 20 and 1 units,
respectively.

Once more, using the grid search technique, we defined the training hy-
perparameters as follows:

• The number of epochs was set to 20.

• The batch size was set to 1500.
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• We used Adam as the optimizer.

• The learning rate was set to 0.001.

Table 1 summarizes all the hyperparameter values.

Table 1: Model and training hyperparameters

Hyperparameters Values
Dimension of the Embedding space 50
Dimension of Linear spaces 80
Number of GRU-decay units 50
GRU-decay dropout 0.5
Number of FNN units of patient’s demographics 0.5
Number of FNN units of the classifier 20 & 1
Number of epochs 20
Batch size value 1500
Optimizer Adam

4.4. Results

To assess the performance of our model, we use the area under the ROC
Curve (AUC) and the area under the precision-recall curve (AUPRC) as
metrics. The precision-recall curve is a function of recall (12) on the x-axis
and precision (13) on the y-axis. The receiver operating characteristic (ROC)
curve is a function of false positive rate (14) on the x-axis and recall on the
y-axis.

Recall = Sensitivity =
|TP |

|TP | + |FN | (12)

Precision =
|TP |

|TP | + |FP | (13)

False Positive Rate =
|FP |

|FP | + |TN | (14)

where |TP | is the number of true positives, |FN | the number of false
negatives, |TN | the number of true negatives and |FP | the number of false
positives. Indeed, by varying the threshold when calculating recall, preci-
sion and the false positive rate, these metrics avoid biased scores caused by
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Table 2: AUC and AUPRC scores on depression detection task over 5-cross validation. ±
denotes the standard deviation

Models AUC AUPRC
LR 0.813 ± 0.002 0.296 ± 0.003
CNN-LSTM 0.849 ± 0.002 0.394 ± 0.009
LSTM 0.848 ± 0.001 0.385 ± 0.005
FNN 0.837 ± 0.002 0.374 ± 0.006
GRU-decay 0.989 ± 0.001 0.972 ± 0.001
GRU-∆t 0.986 ± 0.002 0.961 ± 0.005
Att-GRU-decay 0.990 ± 0.001 0.974 ± 0.002

the high number of non-target classes, i.e. the class 0. They are suitable
for assessing the performance of models in the face of an imbalanced class
problem.

We compare the average AUC and AUPRC scores obtained over 5-fold
cross-validation with those of the following models: logistic regression (LR);
feedforward neural network (FNN); long short-term memory (LSTM); convo-
lutional neural network combined with LSTM (CNN-LSTM); gated recurrent
unit with a decay factor (GRU-decay); and a gated recurrent unit taking as
inputs diagnostic vectors concatenated to the elapsed time vectors (GRU-
∆t). All results are reported in Table 2.

From Table 2, we can clearly see that our proposed model achieves the
best performances. Although the GRU-decay and GRU-∆t results are very
accurate, ours are slightly better. Compared to our Att-GRU-decay model
and the GRU-decay model, GRU-∆t is less accurate because it does not in-
corporate any explicit techniques to better learn existing patterns between
diagnoses and time. The slight superiority of our model highlights the addi-
tional contribution of the self-attention layer in the decision-making process.
Indeed, unlike the GRU-decay, which only benefits from decay factors that
prevent the prediction from being based on diagnoses made a long time ago,
our model, thanks to the self-attention mechanism, will also detect hidden
patterns existing between diagnoses that may be the cause of possible de-
pression in the patient. Where the difference between the AUC scores of the
models is not so large, the AUPRC scores of our model and the GRU-decay
model far exceed those of the other competitors. This huge difference reveals
how crucial it is to weigh the significance of the diagnoses according to their
respective recording dates.
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It is not surprising that the LR model, which is a traditional machine
learning model, performs worse than the other models, which are deep learn-
ing models. Indeed, unlike machine learning, which is somewhat dependent
on feature engineering, deep learning can extract hidden features by itself
thanks to its non-linear functions and therefore does not need feature en-
gineering. This property makes deep learning models more accurate than
machine learning models when processing data with complex patterns. Ma-
chine learning models can sometimes achieve results similar to or better than
deep learning models [78]. Moreover, they are more explainable. Another as-
pect that reveals the results in Table 2 is the low accuracy of non-sequential
models such as LR and FNN compared to others designed for sequence mod-
elling. Thus, we conclude that processing patients’ diagnoses at different
dates with non-sequential models leads to losing temporal patterns in de-
pression detection. Compared to GRU-decay and our model, CNN-LSTM
and LSTM, also models designed to handle sequential data, failed because
they processed diagnoses as if they were made at regular time intervals.

As AUC and AUPRC are calculated from different thresholds, we also
investigate the specificity (15) and the sensitivity of the models on fixed
threshold values of 0.5 and 0.8. This second evaluation was carried out on a
single loop of the 5-cross validation.

Specificity =
|TN |

|TN | + |FP | (15)

Indeed, the higher the threshold, the more confidence practitioners have in
the model’s outcome. A higher threshold is even more important in the med-
ical field, as misdiagnoses can have irreversible consequences. The specificity
and sensitivity scores of all models calculated from the confusion matrices in
Fig. 3 are reported in Table 3. We also report the training and testing time
for each model to give an idea of how long it will take for each of them to
produce results in a real deployment. The ROC curves and precision-recall
curves of the evaluated models are shown in Figure 4.

Table 3 and Figure 4 show that GRU-decay, GRU-∆t and ours obtain the
best specificity scores, sensitivity scores, ROC curves and Precision Recall
curves. These scores again show how incorporating a decay factor to handle
better diagnoses recorded at different dates improves the classification task.
We note that almost all models provide satisfactory results with a threshold
set to 0.5. We assume that these results are due to the large qualitative
amount of data and the weighted binary cross-entropy, which improves the
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Figure 3: Confusion matrices
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Table 3: Specificity and sensitivity scores on the depression detection task

Specificity Sensitivity
Threshold

0.5 0.8 0.5 0.8 Time (min)
Models Train Test
LR 0.705 0.960 0.787 0.263 8.680 0.008
CNN-LSTM 0.718 0.902 0.818 0.549 8.299 0.035
LSTM 0.724 0.916 0.814 0.523 30.513 0.050
FNN 0.714 0.911 0.810 0.528 1.312 0.006
GRU-decay 0.995 0.999 0.939 0.926 49.547 0.068
GRU-∆t 0.962 0.987 0.962 0.936 2.877 0.102
Att-GRU-decay 0.985 0.999 0.955 0.944 56.754 0.102

Figure 4: ROC and Precision-recall curves

models’ ability to classify the minority class, i.e. the depressed patient. If a
threshold is set to 0.5, the sensitivity scores for all models are fairly accurate.
We find a considerable drop in the performance of the LR, CNN-LSTM,
LSTM and FNN models when the threshold is set to 0.8. On the other
hand, the GRU-decay model and ours remain very accurate. Although the
specificity score of the GRU-decay model with a threshold of 0.5 is better
than that obtained with ours, with the other configurations, our model is
better overall. It is worth mentioning that, despite the high threshold value
of 0.8, we obtained spectacular sensitivity and specificity scores close to 1.
In verbal form, among the 146, 522 non-depressed patients in the training
set, our model correctly classifies 146, 409 with a probability of 0.8%. For
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the 13, 677 depressed patients, our model correctly classifies 12, 906 with a
probability of 0.8%.

For classification problems such as those related to medicine, the output
of the models must be very accurate to avoid misdiagnoses leading to inap-
propriate treatment. Especially for the early detection of psychiatric diseases
such as depression, the model’s sensitivity is crucial. With the quantitative
results we have obtained, we are very confident that our model can help med-
ical professionals in their decision-making to detect patients with depression
faster and thus significantly reduce the misdiagnosis rate.

We note that in terms of training and testing times, our model takes the
longest. This is partly due to the number of parameters (97, 121) and the
time complexity of the self-attention and GRU-decay mechanisms. Despite
having the longest test duration, 0.102 minutes is still sufficient for using it
in the clinical process. The number of parameters in the competing models
is shown in Appendix A.6.

In the next section, we conduct different ablation studies to show how
the model works in different configurations.

5. Ablation studies

We have devoted this section to evaluating the model in the following
configuration: i) without the decay factor; and ii) with and without patient
demographics.

Without the decay factor. In Table 4, we observed a considerable drop in
performance when the decay factor is not taken into account. These results
support our assertion regarding the importance of accounting for irregular
elapsed time between visits. Indeed, the normal GRU fails because it pro-
cesses diagnoses as if they were made at regular intervals and is therefore
unable to capture the correct underlying temporal pattern of diseases.

Table 4: Evaluation of the model without the decay factor over 5-cross validation

Models AUC AUPRC
Att-GRU 0.853 ± 0.001 0.405 ± 0.007
Att-GRU-decay 0.990 ± 0.001 0.974 ± 0.002
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With and without patient demographics. The AUC and AUPRC scores in Ta-
ble 5 show that patient demographics have little influence on the detection of
depression. We can see that without patient demographics, the performance
of the model is not affected. However, when patient demographics are used
exclusively, model performance drops significantly. We conclude that the
model can still produce accurate results when patient demographics are not
available. Scientific literature suggests an impact of demographic factors like

Table 5: Evaluation of the model without patient demographics and exclusively with over
5-cross validation. ex/pd stands for exclusively with patient demographics, and wo/pd
stands for without patient demographics

Models AUC AUPRC
Att-GRU-decay ex/pd 0.647 ± 0.002 0.131 ± 0.002
Att-GRU-decay wo/pd 0.990 ± 0.001 0.972 ± 0.001
Att-GRU-decay 0.990 ± 0.001 0.974 ± 0.002

gender [79] or age [80] on the likelihood of getting depression. We assume
that this effect is not visible in our ablation study because the model learns
gender and age trends through associated diseases.

As quantitative results are not sufficient to guarantee the veracity of a
model in medical applications, we also propose a component for extracting
disease patterns that influence the model output to be able to give a quali-
tative interpretation of the model behavior (see Section 6).

6. Uncovering Disease Patterns

The following section shows the interaction between features in the at-
tention layer of our model.

Apart from the benefits of increased prediction accuracy, we use self-
attention to provide insights into the disease relationships the model has
learned. We propose using this to give medical professionals a better under-
standing of the model by showing that it can correctly identify commonly
known disease correlations. Those disease correlations can also be used to
infer rules and find indicator diseases [53].

The alignment matrix in Fig. 5 shows a given patient’s last seven ICD-10
codes on the x-axis and how our trained neural network associates them with
each other. The color indicates the strength of the correlation, from blue (not
correlated) to red (strongly correlated). In this example, our trained network
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Figure 5: Attention filter – Example 1

identified a strong correlation between heart failure and type 2 diabetes. This
correlation is already well known in medicine and shows how the Att-GRUD-
decay could infer it from the training data.

Now, consider the second patient (Fig. 6). We see the last ten diagnoses,
from which the model identified that oesophagitis is correlated with migraine,
dorsalgia and abdominal and pelvic pain. While abdominal and pelvic pain
could logically make sense, there is currently no strong medical evidence for a
correlation with migraine or dorsalgia. Nevertheless, some forms of migraine
trigger strong nausea, which could lead to oesophagitis and spinal problems,
manifesting as dorsalgia and negatively influencing migraines.

The third patient (Fig. 7) shows a strong correlation between the need
for immunization against other single viral diseases and sleep disorders and
retinal disorders. We are unaware of any medical evidence of a correlation
between those ICD-10 codes.

This example demonstrates how the model learned and can find reason-
able connections from large data sets. Still, not all correlations are evidence-
based from a medical perspective.

Generally, the correlations found can be sorted into three categories:

1. True correlations, which are (based on our current medical knowledge)
reasonable (Fig. 5, and potentially Fig. 6).
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Figure 6: Attention filter – Example 2

Figure 7: Attention filter – Example 3
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2. “Hallucinations” of the deep learning network, i.e. output that does
not seem to be justifiable based on the training data (potentially Fig. 6
and Fig. 7).

3. Potentially true correlations, which we currently cannot grasp because
they exceed today’s medical knowledge (Fig. 6, potentially Fig. 7).

So, while the prediction accuracy of our model is high, the individual
correlations shown by the self-attention still need to be evaluated carefully.

It is important to note that these correlations are only based on the
attention layer of our model. They do not offer explainability of other parts,
e.g. the GRU component, of our model.

7. Discussion

Several high-performing AI models have already been proposed in the
healthcare sector. Still, success stories of AI providing real clinical value are
rare. The reasons for this include a lack of data availability, integration into
clinical processes and lack of trust due to the black-box characteristics of the
models. In the previous sections, we demonstrated that our novel Att-GRU-
decay model outperforms the current state of the art. In this section, we
elaborate on a possible application scenario to demonstrate how this model
could improve the status quo while avoiding the above-mentioned pitfalls.

Since one of the main problems in psychiatry is that patients with psy-
chiatric disorders are often diagnosed late, we propose to use this model to
screen patients when they visit a healthcare professional proactively. This
makes sense, especially for general practitioners (GPs) with high patient
turnover. The model can be plugged into the GP’s systems and rolled out
at the insurance provider level or on a national level on top of an NHIS via
a RESTful [81] API. If the GP enters the diagnosis at the end of the visit,
our model enables the doctor’s IT systems to send an alert if the patient
is thought to have undiagnosed depression. The GP can then re-evaluate
the decision, using our explainability component, and refer the patient to
a specialist for further treatment in the case of a true positive prediction.
Since the proposed system operates on diagnoses from medical claims data,
which medical professionals capture during their work anyway, no additional
effort is needed. This allows seamless integration into the current clinical
workflow. Because of the high specificity, we assume the risk of alert fa-
tigue is low. On the other hand, if we compare our sensitivity of 94.4% to
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the reported 50.1% (95% CI: 41.3 to 59.0) sensitivity of GPs for diagnos-
ing depression [4], we see that our model has the potential to decrease the
number of undiagnosed depression patients significantly. It even outperforms
population-level screening questionnaires, such as the PHQ-9, which has a
sensitivity of 88% and a specificity of 88% [82]. In addition, time-wise, the
suggested approach outperforms the current use of questionnaires and assess-
ment scales. Current depression assessment instruments, such as the Beck
Depression Inventory [9], the Hamilton Depression Rating Scale [10] or the
Montgomery-Åsberg Depression Rating Scale [83], take between 15 and 30
minutes to complete. At the same time, our proposed screening approach
outputs results in seconds.

This use case can be expanded to screening other diseases in domains
other than mental health as long as the data utilized have the same structure.
Since we operate based on medical claims data available in most countries
and cover a wide range of medical information, it should be fairly easy to
retrain our model to predict other diseases.

It is important to stress that we are not proposing to replace medical
doctors with AI algorithms. We suggest that AI algorithms can be used
as screening instruments, assisting doctors by discovering hidden patterns
in large volumes of medical data to help them diagnose faster and more
accurately. The output of an AI model still needs to be validated, checked
against the current patient situation, and communicated. Furthermore, the
subsequent steps, i.e. further diagnostic procedures and treatment decisions,
still need to be taken by doctors.

We are fairly confident that the model will perform well in a production
setting because of the large amount of real-world data used for training and
evaluation, which includes nearly every adult Estonian. For further research,
the model needs to be evaluated in a randomized control trial (RCT) to ob-
tain further evidence on its usefulness in a clinical setting. One limitation
of our study is that the data we used as ground truth might be biased, for
instance, because of the previously described low accuracy of human diag-
noses, but also because medical claims data are used for billing purposes,
which creates an incentive for medical professionals to adapt codes to maxi-
mize revenue. An RCT can help show the impact of this potential bias on the
usefulness of our proposed model. Another limitation of our research is that
we did not use any prescription, laboratory, genomics data or other unob-
trusive data sources. We focused solely on diagnostic and socio-demographic
data because this is easily accessible during the clinical process without the
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need for any specific data collection by the physician or patient. Because
of the good results of our approach, we saw the exploration of other data
sources as out of scope. Nevertheless, we encourage further research to anal-
yse whether other AI algorithms based on other clinical data sources can
give similar or better results. Additionally, we encourage further research to
evaluate the described scenario with other digital health evaluation methods
to assess usability and efficacy.

Further research is also planned to investigate how well the model can
be applied to different diseases using the same kind of data. We see the use
of self-attention rather than multi-head attention as a potential limitation
in terms of explainability and disease correlations. The use of multi-head
attention could potentially find more and deeper hidden disease patterns.

8. Conclusion

In this research, we used the medical claims data of 812, 853 patients
with 26, 973, 943 diagnoses to evaluate deep learning for depression detection.
We contribute by evaluating the most common deep learning algorithms and
introducing our novel Att-GRU-decay model, which outperforms other state-
of-the-art deep learning models with an AUC of 0.99 and an AUPRC of
0.974. We further describe a potential application scenario for using the
proposed model for screening patients in a GP setting. Since the use of
real-world data covers nearly every adult Estonian, the excellent accuracy
results of Att-GRU-decay, in addition to the proposed use-case scenario with
a potential increase in the specificity of depression diagnosis by GPs from
50.1% to as much as 94.4%, we see this research as a potential game changer
for psychiatric screening.
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[83] S. A. Montgomery, M. Åsberg, A new depression scale designed to be
sensitive to change, The British Journal of Psychiatry 134 (4) (1979)
382–389.

37



Appendix A. Number of Parameters per Model

Table A.6: Number of parameters per model

Models # of Parameters
LR 1, 649
CNN-LSTM 136, 849
LSTM 101, 871
FNN 5, 156, 331
GRU-decay 96, 725
GRU-∆t 107, 326
Att-GRU-decay 97, 121

Appendix B. Data Distribution

Figure B.8: Age distribution
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Figure B.9: Gender distribution
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Figure B.10: Top 50 ICD-10 codes in our dataset
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Figure B.11: Top 50 ICD-10 codes for patients with depression
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Figure B.12: Top 50 ICD-10 codes for patients without depression
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