
TALLINN UNIVERSITY OF TECHNOLOGY DOCTORAL THESIS
19/2020

Model-Based Testing Framework for
Autonomous Multi-Robot Systems

GERT KANTER

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Software ScienceThe dissertation was accepted for the defence of the degree of Doctor of Philosophy in Informatics on June 15, 2020
Supervisor: Professor Jüri Vain

Department of Software Science
School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Opponents: Anatoliy Gorbenko, PhD
Leeds Beckett University
Leeds, United Kingdom
Dragos Truscan, PhD
Åbo Akademi University
Turku, Finland

Defence of the dissertation: July 3, 2020, Tallinn
Declaration:
Hereby I declare that this doctoral dissertation, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Gert Kanter signature

Copyright: Gert Kanter, 2020ISSN 2585-6898 (publication)ISBN 978-9949-83-558-4 (publication) ISSN 2585-6901 (PDF)ISBN 978-9949-83-559-1 (PDF)
Printed by Koopia Niini & Rauam

TALLINNA TEHNIKAÜLIKOOL DOKTORITÖÖ
19/2020

Mudelipõhine testimisraamistik
autonoomsetele multirobotsüsteemidele

GERT KANTER

Contents
List of Publications 7

Author’s Contributions to the Publications 8

Foreword 9

Abbreviations 10

Terms 12

List of Figures 14

1 Introduction 151.1 Chapter overview . 151.2 Terminology . 151.3 Motivation . 151.4 Research questions . 161.5 Hypotheses . 171.6 Research contributions . 181.6.1 Industry application . 191.7 Structure of the dissertation . 19
2 Preliminaries 212.1 Chapter overview . 212.2 Software testing methods . 212.3 Cyber-physical systems and autonomous multi-robot systems 222.3.1 Cyber-physical systems testing challenges 222.3.2 Autonomous multi-robot systems and system validation 242.3.3 Robot software development 252.4 Model-based testing and modeling . 272.5 Model-based testing of autonomous multi-robot systems 282.6 Related tools . 302.7 Uppaal timed automata . 322.8 Applying Uppaal TA for CPS conformance testing 342.9 Model-based test development process for autonomous multi-robot sys-tems . 362.9.1 Model-based test development 362.9.2 Provably correct test development 382.10 Chapter summary . 38
3 TestIt: an open-source scalable testing toolkit 393.1 Chapter overview . 393.2 Design considerations . 393.2.1 General considerations . 393.2.2 Suitability for MBT . 393.2.3 Continuous integration orientation 403.2.4 Long-term autonomy testing support 413.3 Architecture . 413.3.1 Pipelines . 43

5

3.3.2 Software packaging . 433.3.3 Test coverage measurement requirements 433.3.4 Test scenario generation . 443.3.5 Test results logging . 443.3.6 Test runner . 453.4 Features . 453.4.1 Test configurability and observability 453.4.2 Scalability . 463.4.3 Long-term autonomy testing . 473.4.4 Test optimization support . 483.5 Chapter summary . 54
4 Case study: Model-based testing of robotic intruder detection system 564.1 Chapter overview . 564.2 Rationale of the case study . 564.3 System under test . 564.4 Test scenario description . 584.5 SUT model construction . 594.6 Test feasibility verification . 614.7 TestIt configuration . 614.8 Case study results . 624.9 Chapter summary . 64
5 Conclusion 655.1 Chapter overview . 655.2 Results . 655.3 Future work . 66
References 67

Acknowledgements 79

Abstract 80

Kokkuvõte 81

Appendix 1 83

Appendix 2 101

Appendix 3 109

Appendix 4 117

Appendix 5 125

Appendix 6 135

Curriculum Vitae 144

Elulookirjeldus 146

6

List of Publications
Publication I: G. Kanter and J. Vain. Model-based testing of autonomous robots usingTestIt. Journal of Reliable Intelligent Environments, 6(1):1–17, 2020 (ETIS category 1.1)
Publication II: G. Kanter and J. Vain. Testit: an open-source scalable long-term autonomytesting toolkit for ros. In Proceedings of the 10th International Conference Dependable

Systems, Services and Technologies, DESSERT’2019, pages 45–50, 2019 (ETIS category3.1)
Publication III: G. Kanter, J. Vain, S. Srinivasan, and S. Ramaswamy. Provably correct con-figuration management of precision feeding in agriculture4.0. In 2019 IEEE Inter-

national Conference on Systems, Man and Cybernetics (SMC), pages 1631–1637, 2019(ETIS category 3.1)
Publication IV: J. Vain, G. Kanter, and A. Anier. Learning timed automata from interactiontraces. In 14th IFAC SymposiumonAnalysis, Design, and Evaluation of HumanMachine

Systems, HMS 2019, volume 52-19, pages 205–210, 2019 (ETIS category 3.1)
Publication V: J. Ernits, E. Halling, G. Kanter, and J. Vain. Model-based integration testingof ros packages: a mobile robot case study. In 2015 IEEE European Conference on

Mobile Robots, pages 1–7. IEEE, 2015 (ETIS category 3.1)
Publication VI: J. Vain, G. Kanter, and S. Srinivasan. Model based testing of distributedtime critical systems. In 2017 6th International Conference on Reliability, Infocom

Technologies and Optimization (ICRITO), pages 99–105. IEEE, 2017 (ETIS category 3.1)

7

Author’s Contributions to the Publications
I In Publication I, I was the main author, developed the model-based testing toolkitTestIt, carried out the experiments, analysed the results, prepared the figures, andwrote the manuscript.
II In Publication II, I was the main author, developed the presented toolkit, carried outthe experiments, analysed the results, prepared thefigures, andwrote themanuscript
III In Publication III, I developed and validated the provably correct test configurationmanagement on autonomous multi-robot case study (farm feeding system).
IV In Publication IV, I defined the learning context and the extraction of model learningassumptions, validated the learning algorithm on IEEE1394 leader election protocol.
V In Publication V, I developed the framework for connecting Dtron and ROS, con-ducted simulation experiments, specified the test coverage criteria, validated thetest configuration.
VI In Publication VI, I developed the correctness criteria for test deployment in dis-tributed architectures.

8

Foreword
The field of autonomous systems research and development is expanding rapidly. Thelevel of autonomy exhibited by such systems is also increasing, perhaps only surpassedby the expectation for them by their potential users. Besides the expectations of reliev-ing human labor from routine or dangerous jobs, there is also an acute need for safetyand trust around these autonomous systems. This is especially true as these systems arebeginning to become more commonplace in environments where they are supposed tocollaborate safely and seamlessly with non-robotic specialists and bystanders. Ensuringthat the participants in the highly dynamic environments come to no harm relies directlyon the quality assurance of autonomous systems.A need for safe and correct behavior is further exacerbated by the fact that the like-lihood of multiple autonomous systems encountering each other is also increasing. Thisadds a layer of complexity in ensuring autonomous systems operate safely and correctlyeven in dynamic multi-party situations.The advances in autonomy are largely thanks to improvements in software which inturn has been enabled by more capable and affordable hardware. As part of quality as-surance process, the autonomous system behavior powered by its software needs to betested and validated according to much higher standards than any common office soft-ware or web application.This dissertation is focused on model-based testing of autonomous robotic systemswith the aim of improving their quality assurance process and providing novel methodsand tools for its automation.

9

Abbreviations

AAL Adapter Action Language
API Application Programming Interface
AS Autonomous System
AWS Amazon Web Services
AWS EC2 Amazon Web Services Elastic Compute Cloud
BDI Belief-Desire-Intention
CADP Construction and Analysis of Distributed Processes
CAN Controller Area Network
CI Continuous Integration
CLI Command Line Interface
CPS Cyber-Physical System
DREAM Distributed Real-time Embedded Analysis Method
DTRON Distributed Testing Real-time systems ONline
EFSM Extended Finite State Machine
fMBT Free Model-Based Testing
HAROS High Assurance ROS
HRI Human-Robot Interaction
ioco Input Output Conformance
IOTS Input-Output Transition System
JSXM Java Stream X-Machines
MARL Multi-Agent Reinforcement Learning
MBT Model-Based Testing
MRS Multi-Robot System
OPRoS Open Platform for Robotic Services
PCD Provably Correct Development
QA Quality Assurance
REST Representational State Transfer
ROS Robot Operating System
rtioco Relativized Timed Input Output Conformance
SDLC Software Development Life Cycle
SMACH State MACHine
SUT System Under Test

10

SXM Stream X-Machines
SysML Systems Modeling Language
TDD Test-Driven Development
TRON Testing Real-time systems ONline
TTrS Symbolic Timed Trace
UML Unified Modeling Language
UTA Uppaal Timed Automata

11

Terms

Container A container is a standard unit of software that packagesup software and all its dependencies so that the applica-tion runs from one computing environment to another.[7]
Cyber-PhysicalSystem

A cyber-physical system consists of a collection of com-puting devices communicating with one another and in-teracting with the physical world via sensors and actua-tors in a feedback loop. [8]
Multi-RobotSystems A collection of two or more autonomous robots workingtogether to achieve some well defined goals [9].
Provably cor-rect develop-ment

Development process that can be proved to be correctusing formal methods and mathematical proofs.
Real-TimeSystem A Real-time system is a system that is subjected to guar-anteeing a response within a specified timing constraint.The timing constraint can specify a hard real-time systemthat is never allowed tomiss a deadline and soft real-timesystem that can occasionally miss a deadline without dis-astrous consequences.
Robot A robot is an automatic or semiautomatic machine capa-ble of purposeful motion in response to its surroundingsin an unstructured environment. [10]
Robotics The science and technology of robots. [11]
Simulator Software that is designed to computationally reproducethe expected physical behavior of the CPS.
Software De-fect An error in coding or logic that causes a program to mal-function or to produce incorrect results. [12]
System UnderTest SUT is the software component or the robotic systemthat is being tested. The SUT can also be a collection ofsystems under test as is the case in multi-robot systems.
Testing The process of investigating that CPS or software meetsthe specified requirements, responds correctly to all sys-tem inputs, performs its functionswithin acceptable timeand is usable to the required level.
Validation The process of evaluating a system or component duringor at the end of the development process to determinewhether it satisfies requirements. [13]
Verification The process of evaluating a system or component to de-termine whether the products of a given developmentphase satisfy the conditions imposed at the start of thatphase. [13]

12

Verification &Validation The process of determining whether the requirementsfor a system or component are complete and correct, theproducts of each development phase fulfill the require-ments or conditions imposed by the previous phase, andthe final system or component complies with specifiedrequirements. [13]

13

List of Figures
1 Uppaal sample . 332 Uppaal test adapter[117] . 333 Iterative and incremental development 364 CPS validation process . 375 High-level overview of TestIt . 426 TestIt architecture . 427 TestIt component communication diagram 438 TestIt testing flow diagram . 439 TestIt log format . 4510 Test infrastructure configuration . 4611 Linear scalability . 4712 Example model . 4913 Probabilistic optimization graph . 5114 Best trace optimization graph . 5115 Combined optimization graph . 5216 Optimization gain tree . 5217 Testing workflow . 5518 Simplified ROS computation graph . 5719 ICT building navigation graph . 5820 Intruder model and responder . 6021 Robot 1 model and responder . 6022 Test pipeline configuration . 6123 Test execution visualization . 6224 Relative code coverage . 63

14

1 Introduction
1.1 Chapter overview
In this chapter, the context of the dissertation is introduced and the motivation for devel-oping automated testing tools for autonomous robotic systems is described.
1.2 Terminology
This dissertation contains several terms that are closely related: cyber-physical systems(CPS), autonomous systems (AS), and multi-robot systems (MRS). CPS are an umbrellaterm for a large set of systems in which physical and virtual (i.e., software) componentsare combined. Examples of CPS categories include among other things smart power grid,industrial process control, aerospace, smart homes and buildings, medical and health-care systems, and robotics [14]. This categorization establishes robots as an instance ofCPS. Robots can be divided into automated (e.g., automated guided vehicles [15]) and au-tonomous. Finally, robot systems can be divided based on the size of the collective intosingle robot or multi-robot systems [16].This dissertation focuses on autonomousMRS testing but since a vast amount of theoryand techniques have been developed by the research community for wider areas such asAS or CPS which are applicable to a more narrow area such as MRS as well. Therefore,these terms are used where appropriate.
1.3 Motivation
CPS testing is critical as defects have had fatal outcomes. At the time of preparing the dis-sertation, there have been five traffic accidents with driver fatalities with Tesla Autopilotsystem and one accident in which a pedestrian was killed [17].The damages that software defects cause can also be financial. For example, Ariane5 launcher failure in which a float number conversion caused a disaster which resultedin a destruction of a 500 million USD payload. These facts exemplify the importance oftesting CPS on thewhole but great caremust be takenwith software testing since not onlyhardware failures can have far-reaching and fatal consequences.According to Gartner’s assessment on autonomous robotics in its report [18] within thenext 10 years autonomous vehicles and robot systems will conquer the public space anddominate inmost of the economic sectors. The term autonomous systems covers systemswhich involve most diverse forms of vehicles, such as transport, robots, or devices thatare capable of motion in the physical world in a self-controlling manner without directhuman intervention. As detailed in [19], an AS is characterized by the fact that it is capableof independently heading for and achieving a given mission goal. AS functions can begrouped as follows:

• Sensing: the system can capture the signals and data relevant to its mission andoccurring in its environment.
• Perceiving: the system can recognize patterns or situations based on signals anddata.
• Analyzing: the system can identify options for action appropriate to the respectivesituation.
• Planning: the system can select appropriate or best options for action.

15

• Acting: the system can implement the chosen action correctly and on time.
Regardless the attractive perspective of using AS, the major public concern and chal-lenge for AS developers is to ensure that these systems are sufficiently safe and reliableso that they are verified and can be approved for use in public space.Testing AS requires careful balancing of the design complexity between the hardwareand software components. A recent evaluation of industrial and societal trends reportedin [20] that AB Volvo estimates software driving 70 percent of all innovation in its trucksand Volvo Cars estimates that electronics and software drive 80 to 90 percent of its in-novation. The evaluation also reports that telecommunications company Ericsson’s focushas shifted, with more than 80 percent of its research and development budget beingdedicated to software. This shift in focus makes software testing increasingly importantas the importance of software in not only CPS but in all other areas is growing.A recent survey on the current state of the art focusing on formal specification andverification of autonomous robotic systems [21] identifies and categorizes the challengesposed by the formal approaches for the specification and verification of autonomousrobots. The authors find that model checking is by far the most popular formal verifica-tion approach in verification of autonomous robotic systems. The study shows that formalsoftware frameworks, integrated formalmethods, theorem proving and runtimemonitor-ing are less favoured by the research community. The authors of [21] conclude that fieldtests and using simulations are both useful tools for robotic system development, butstress that formal verification including formal model-based testing are crucial, especiallyat the early stages of development when field tests of the control software are infeasibleor dangerous. They identify a strong need for tool support which supports a combinationor integration of formal methods since no single formalism is capable of adequately cap-turing that all aspects of a robotic system behave as expected. A comprehensive analysisof the state of the art is presented in Section 2.3.1.Asmodern software development practices favor agile software development life cycle(SDLC) [22] supported by continuous integration (CI) methodology, the modern toolkitsfor testing must also be designed with such practices in mind. The SDLC and CI aspectsconstitute a second design requirement for modern testing tools.Model-based testing (MBT) has been shown to be effective in AS verification (see 2.5for more details). MBT uses models of the system to generate test cases and is used toverify model and actual behavior conformance (i.e., input output conformance). Model-based testing is discussed in detail in Section 2.4.

1.4 Research questions
RQ1 How is the CPS software testing process improved using novel Model-Based Testing(MBT) methods and tools?

The answer to the posed question is sought in Publication I, Publication II, Publi-cation III and Publication V. The publications propose that using an incrementalmodel-based approach improves the quality of tests and reduces the cost of soft-ware development by tool supported earlier discovery and fixing of software de-fects. The model-based testing improvements are discussed in Section 2.4.
RQ2 How to realize the MBT productivity methods?

The productivity and performance questions are explored in Publication I, Publica-tion III and Publication VI. The publications show that by utilizing parallelism and
16

test distribution it is possible to increase the effectiveness and performance of test-ing. I present the toolkit named TestIt that demonstrates an improvement in theseaspects. TestIt toolkit is presented in Chapter 3.
RQ3 How to decrease validation time and design space exploration for complex multi-robot systems operating in dynamic environments?

Multi-robot systems being the object of study in this dissertation, belong to theclass of Cyber-Physical Systems (CPS). CPS design validation time and design spaceexploration are important criteria for development cost optimization. The processof validation and its stages are presented in Publication III. The validation processis described in Section 2.9.
RQ4 How to overcome the main bottleneck of model-based methods, i.e., model con-struction, namely, how to accelerate the test model construction by automatedmodel learning (based on system logs) and model generation (based on specifica-tion)?

One of the primary bottlenecks in model-based validation and verification of au-tonomous robot systems is the process of model construction. Publication IV andPublication V address this issue by proposing algorithms ofmodel construction fromrecorded input-output observation logs. Information about SUTmodel constructionis presented in Section 4.5.
RQ5 Can model-based scenario specification improve model-based test quality and re-duce test development time?

Test development time is an important factor in CPS testing cost. Test quality is alsovery important as low quality tests waste resources and can yield incorrect results.These factors are discussed in Publication V. Details about scenario description inSection 4.4.
RQ6 Can the test correctness proof developed for MBT technique be extended to dis-tributed time-critical systems?

The need for proving correctness in distributed time-critical cyber-physical systemsarises due to the fact that modern CPS have distributed architecture. Publication VIproposes a technique of deriving and proving the correctness of distributed tests.Provably correct test development is discussed in Section 2.9.2.
1.5 Hypotheses
The solutions of the dissertation’s research questions are founded on the hypotheses H1 toH6. These hypothesis will be validated using the theoretical results and by demonstratingthe usability of proposed toolkit TestIt.

H1 MBT-based approach provides improvements in testing efficiency and performance(RQ1).
H2 Test process parallelization by using pipelines increases test efficiency (RQ2).
H3 Incremental validation of test development steps improves the quality and trustof test results and decreases the design validation time, design space explorationeffort and total cost of CPS development (RQ3).

17

H4 Automatic model learning andmodel generation decreases themodel constructioneffort that is a key drawback in applying all model-based techniques (RQ4).
H5 Optimizing test scenarios narrows down design space exploration which, in turn,improves test quality and testing time (RQ5).
H6 Generating distributed tests from centralized remote tests is algorithmically feasi-ble and the correctness of test distribution result can be proved by showing thebisimilarity of the centralized and distributed test models constructed by alterna-tive methods (RQ6).

1.6 Research contributions
Themain contribution of the dissertation is the testing framework for autonomous robotsfeaturing a provably correct test development process. In addition to the research contri-butions presented in the dissertation publications listed below, the dissertation clarifiesand adds details about the testing framework for AS.
Contributions in Publication I:
RC1 The proposed testing toolkit initially presented in Publication II is improved with anonline test runner. The results are validated on a robotic intruder detection system.
RC2 An adaptive test optimization technique is proposed that takes advantage of themulti-pipeline architecture where testing threads can communicate and coordinatethe test runs based on their cooperatively collected test performance data.
Contributions in Publication II:
RC3 The main novelty of presented solution is the scalable multi-pipeline testing archi-tecture that enables incorporation of multi-purpose testing tools including thoseused in state-of-the-art model-based testing.
Contributions in Publication III:
RC4 The investigation presents an incremental model-based approach for robot farmruntime configurationmanagement and itsmodel-based testing. It has beendemon-strated how configuration parameters are generated automatically using Uppaalmodel checker and the synthesized farm configuration feasibility is checked. Thensimulation based verification by introducing low-level operational details andfinally,operational correctness in real exploitation conditions is tested against the simula-tion.
RC5 Results show that the proposed incremental parametric configuration synthesis val-idation and themodel-based generation of autonomousmulti-robot system coordi-nation planminimizes the validation time, design space exploration and cost duringearly stages of design, rather than during operations which could lead to significantcost.
Contributions in Publication IV:
RC6 Novel algorithm for automatic learning a subclass of Uppaal timed automata (TA)models from the system and its environment interaction logs has been developed.
Contributions in Publication V:

18

RC7 An automated approach to generating an Uppaal TA model from the topologicalmap that specifies where the robot can move to.
RC8 The specification of interesting scenarios including adding human models to thesimulated environment according to a specified scenario.
RC9 Test code coverage measurement shows empirically that it is possible to achieveincreased test coverage by specifying simple scenarios on the automatically gener-ated model of the topological map.
Contributions in Publication VI:
RC10 Demonstration of Uppaal TA models and related tool family supporting the devel-opment and verification of test models that serve as abstract representations oftests.
RC11 Present the test controllability criteria for remote and distributed testing.
RC12 An algorithm for deriving distributed remote tests from centralized remote testingmodel is provided to improve the test performance.
RC13 A technique for proving the correctness of derived distributed tests in terms ofbisimulation equivalence between the remote and distributed tests is proposed.
1.6.1 Industry application
The testing framework proposed in the dissertation and the TestIt toolkit has been usedin the development of an autonomous feeding farm robot in collaboration with the indus-try partner Norcar AB. TestIt was used in this project to test the autonomous navigationand feeding operations separately. This approach increased the effectiveness of testing byallowing the software development teams to work in parallel and test their respective al-gorithms without being dependent on the other team after the application programminginterface (API) contracts had been specified.The toolkit has also been used in the industry project "Applied research on system ofsensors and software algorithms for safety and driver assistance on remotely operatedground vehicles for off-road applications" [23] in collaboration with the industry partnerAS Milrem. In the scope of that project, TestIt was used to test the localization algorithmfor the unmanned ground vehicle and hyperparameter optimization for the localizationcomponent.
1.7 Structure of the dissertation
The dissertation is structured as follows:Chapter 2 gives an overview of the background and presents the related work. Thischapter introduces the specifics of cyber-physical systems (CPS) testing and robot systemstesting. Model-based testing (MBT) as mainstream technique to tackle the complexityand heterogeneity issues of CPS testing is discussed. The CPS MBT is elaborated furtherby introducing simulation-based testing as an important approach to reduce the testingeffort of autonomous mobile robot systems and its benefits are explained. The rationalebehind selecting Robot Operating System (ROS) as the default middleware around whichthe TestIt MBT methodology has been built is presented. Modeling, model-based testingof autonomous multi-robot systems is described. A thorough account of the related toolsis given. The background information about Uppaal TA is given and the process of applying

19

Uppaal TA for conformance testing is detailed. The chapter concludeswith the descriptionof the model-based test development process for autonomous multi-robot systems. Thesteps for test development are shown as well as the full cycle of MBT CPS testing process.Chapter 3 provides a detailed overview of the testing toolkit TestIt. The chapter be-gins with the presentation of the design considerations. The architecture of the toolkit isexplained next. Finally, the TestIt toolkit functional and non-functional features are pre-sented.Chapter 4 exemplifies the usability of TestIt toolkit, namely how the toolkit is appliedto a practical case study - robotic intruder detection system.The dissertation ends with the conclusion, reviewing the contributions of the disserta-tion and outlining the ideas for future work.

20

2 Preliminaries
2.1 Chapter overview
This chapter gives the fundamentals and an overview of background information relatedto thework presented in this dissertation. The chapter investigates the research questionsRQ1, RQ3 and RQ6.
2.2 Software testing methods
Software testing is defined as "the process of operating a system or component underspecified conditions, observing or recording the results, andmaking an evaluation of someaspect of the system or component" [13]. This definition states that in order to verify thesoftware correctness the software should be executed to detect defects. In contrast totesting, static analysis is a verification technique in which the software is not executed butits code is inspected and analysed to detect defects instead. While testing is a partial sys-tem state space exploration method, static analysis is an exhaustive exploration method.Therefore, static analysis faces severe problems of scalability when applied to a full suiteof robot software with many integrated parts and the complex component interactions.Autonomous robotic systems typically comprisemultiple actively interacting software andhardware components working under non-trivial timing, computation resource, energy,and algorithmic constraints.Among several AS quality assurance techniques, such as code inspection, risk assess-ment and defect detection, Test-Driven Development (TDD) is considered to be one ofthe most promising trends. In [24], Beck defines TDD as a method of software develop-ment driven by automated tests. In TDD, new source code is written only if an automatedtest has failed or duplication needs to be eliminated. According to [24], TDD promisesto manage and reduce uncertainty during programming by incorporating software testseven before writing the source code.Autonomous robots are inherently cyber-physical systems, meaning that their devel-opment and testing techniques can be partitioned based on what component they aretargeted to. This dissertation focuses on robot software testing although in integrationlevel testing the borderline between hardware and software becomes hard to distinguish.The two of the most prevalent testing strategies are white-box and black-box testing[25]. White-box testing (also called logic-driven testing) involves examining the internalstructure of the program. This approach allows generating test cases from the program’slogic. The weakness of white-box testing is that by definition it requires access to theinternal structure of the program and access to all components of a MRS might not beavailable due to intellectual property rights. Anothermajor concern is the complexity (i.e.,the number of parallel components) of MRS which makes white-box integration testingvery difficult.An alternative to white-box testing is black-box testing. Black-box testing has becomean important concept to abstract irrelevant implementation details of software compo-nents and tackle only with the components’ interface behavior. Black-box testing is a test-ing technique used when the implementation of the system is not known to the tester orthe SUT externally observable behavior is verified. The tests are carried out by sendingstimuli and observing the behavior of the system. Black-box testing is typically applied toverify whether the system conforms to the specification. This is known as input outputconformance (ioco) testing [26]. Black-box ioco technique is a key concept for the testingframework proposed in the dissertation that is focused on testing autonomous roboticsystems.

21

2.3 Cyber-physical systems and autonomous multi-robot systems
2.3.1 Cyber-physical systems testing challenges
Testing robotic systems or any CPS is labour intensive and expensive constituting up to 70percent of the development costs according to [27]. These high costs are associated withtesting due to requiring a physical robot or a CPS to be available for the tester. Physicaldedicated testbeds are also necessary to carry out tests on robotic systems in the realworld. In addition to that, testing such systems requires significant human expertise andeffort which can also be exceedingly expensive ([28], [29]).Running tests on real implementations is not expensive only because of substantialallocation of time and human resources but also because the access to the SUT may belimited or applying tests may be unsafe to the system itself or its environment. There-fore, simulation-based testing is often used to reduce the cost of testing and the risk ofdamaging the robotic systems during testing.A study on robot software defect detection using simulation has been studied in [30].The authors conclude thatmany defects do not require the reproduction of complex phys-ical phenomena to be revealed. In fact, the authors reported that only a single defect wasnot detected out of 21 potentially detectable defects. Using low-fidelity simulation, theauthors managed to detect 11 defects.There are criticisms of simulation-based testing presented in [31]. The paper presentsa qualitative study based on interviews with practitioners. The authors find based on theinterviews that there is some distrust of simulation even though the participants acknowl-edged the theoretical benefits of simulation-based testing. The main concerns raised bythe participants were the distrust of the simulation accuracy and the validity of the simu-lated operations.Another paper [32] analyzes testing robots in virtual worlds using simulators with apresentation of preliminary work for an agricultural robot. The author argues that part ofthe software validation could use simulation means.The authors of [33] test autonomous robot software using procedural content genera-tion. The study details an automated approach to testing by generating 500 randomisedsituations to test. The prototype tool simulated and rated them. The highest rated situa-tions were analyzed in depth which revealed weaknesses in the robot control algorithm.Automatic testing of self-driving cars with search-based procedural content generationis studied in [34]. The authors combine procedural content generation with search-basedtesting to create challenging scenarios for testing self-driving car software. The presentedtool was not only more efficient, but also caused up to twice as many lane departures.Experience of autonomous transportation systems [35] has proven that simulation isoften drastically more cost-effective than testing such complex robotic systems in the realworld. Simulation is also considered as the primary means to scale the tests by usingmore computational resources instead of requiring more physical robots and testbeds.Simulation-based testing is also encouraged in [36] as physical real-world deployment isoften too late in the development stage to start testing. This can result in significant sav-ings in product development.In order to verify that the software behaves correctly it must be subjected to differ-ent input data. This input data can be generated randomly (i.e., random testing) or byfollowing certain test scenarios. In random testing, the programs are tested by randomlygenerated independent inputs. The output is compared to software specifications to ver-ify whether the test passed or failed. This testing method can be improved upon by usinga model of the system to generate the input data more systematically. Using a model ofthe system and its environment allows generating test sequences rather than mere iso-

22

lated test cases. This approach is called model-based testing (MBT) and this approach isoften applied in combination with scenario-based testing. In scenario-based testing, thetest case is defined as a concrete scenario that the SUT has to perform (e.g., a robot hasto move to a location, perform a task and return to the starting position). Such scenar-ios can be designed manually but in order to minimize manual labour, it is desirable toautomate scenario generation using models. The scenario-based testing has been shownto be more effective than random testing and other testing approaches ([37], [38], [28],[29]).
According to [39], the relative cost of fixing software defects grows immensely fromdesign phase to maintenance phase. The authors of [39] claim that a defect fixed at im-plementation phase is 6.5 times more expensive to fix than a defect fixed in the designphase. Fixing a defect at the acceptance testing phase increases the cost to 15 times. Thiscost grows to 100 times if the defect would be fixed at the maintenance phase. Such alarge cost increase motivates finding software defects at the earliest possible phase. Us-ing model-based testing approach supports early detection of defects since it is possibleto start testing early as model development can occur in parallel with software develop-ment rather than after development has been finished. In test-driven development thetest design can start even earlier, as soon as requirements specification is made available,i.e., even before software implementation.
Last but not least, model-based approaches reduce the complexity of specifications byremoving unnecessary details and focusing on more significant parts of the system de-scription. These are the main motivators why in complex software systems developmentprocesses the use ofmodel-basedmethods becomemore extensively accepted ([40], [41],[42]). Addressing the challenges of autonomous multi-robot system quality assurance is-sues using model-based methods, in particular, those that need advancing automatedtest and verification methods and tools is the main topic of this dissertation. The generalconsiderations discussed above lead to concrete research questions outlined in Section1.4.
Cyber-Physical Systems (CPS) have been defined in recent literature in [43] as systemsof collaborating computational entities which are in intensive connection with the sur-rounding physical world and its on-going processes, providing and using, at the same time,data-accessing and data-processing services available on the internet. In other words, CPScan be generally characterized as “physical and engineered systems whose operations aremonitored, controlled, coordinated, and integrated by a computing and communicatingcore”.
Testing cyber-physical systems is more challenging compared to pure software testingdue to several factors discussed below.
The challenges of CPS, including robots and AS, testing have been mapped and ana-lyzed by multiple authors ([31], [44], [19], [45], [46], [47], [48]). Here, just an extract ofthem are presented to exemplify the growing interest towards the topic. In [31], roboticsystems testing issues have been examined and categorized in three major themes: real-world complexities, community and standards, and component integration. The authorscall attention to the fact that very little of the work on testing takes into account the physi-cal aspects of the problem (i.e., abstraction of the environment is exceedingly difficult andtesting in physical environments requiresmore resources). The second themebrought outthe issue of diversity among developers and the lack of standards in testing robotic sys-tems. The final factor examined in [31] showed that testing integrated hardware and soft-ware is highly complicated since this integration increases the complexity of the system,the cost associated with testing and introduces complications when defining test oracles.

23

Further, the issues of testing specifically autonomy related functionalities have beendiscussed in [44] and [19]. Here, alongside with showing major challenges that appearwith testing autonomy and highly dynamic nature of systems behavior, prospectives onhow to apply MBT combined with simulations have been suggested by the authors. In thefollowing, some of the challenges are discussed.
Cyber-physical systems are systems of systems due to the different technologies usedin CPS integrating on multiple scales. In [49], CPS are defined as integrations of computa-tion and physical processes. This means there are usually several hardware componentswith each having software layers. Numerous interconnected components make testingcomplex. Testing CPS requires focusing on specific aspects and layers separately and to-gether to verify that the integration of components is working correctly.
In addition to architectural integration complexity, there is a high level of concurrencywith complex computations and interactions where timing and physical location are crit-ical. Timing issues are challenging in testing as the timing deadlines (hard, firm and softRT systems) can affect the SUT behavior and have been studied in Publication VI. Tim-ing correctness is an important aspect to be tested and verified under the various load,security and safety constraints. CPS quality assurance practice relies on integration andsystem level testing in addition to relevant to specific components formal design and ver-ification methods. This is because, in CPS, there are many levels of integration (hardwareand software). Non-determinism problems stemming from communication latency andrace conditions show up sporadically in the course of system execution making them veryhard to predict, find and reproduce. CPS testing challenges are covered in more detail inSection 2.5.
CPS testing usually mandates using black-box testing method because testing all levelsof technology integrations aswhite-box testing becomes prohibitively expensive and com-plex. Black-box testingmesheswell withmodel-based testing since it is based on the spec-ification of the system. Model-based testing checks the conformance of the SUT againstan abstract behavioral model. Abstract tests hide irrelevant implementation details, allowautomatic design and execution of tests, provide systematic coverage and measure cov-erage of model and requirements. The drawback of model-based testing is the modelingoverhead. This overhead can be substantial in large-scale projects but for CPS operatingin proximity to humans the benefits of MBT can easily outweigh the overhead costs [50].

2.3.2 Autonomous multi-robot systems and system validation
The terms group behavior robotics [51], collective behavior robotics [52], cooperative be-havior robotics [53], swarm robotics [54] and multi-robot systems [55] have been usedrather interchangeably by researchers over several decades to refer to the same phe-nomenon. Authors of a review of research in multi-robot systems [9] offer the definitionof multi-robot systems as a collection of two or more autonomous mobile robots workingtogether to achieve somewell defined goals. Multiple robots instead of a single robot addadditional complexities to motion coordination, communication, object manipulation, re-configuration, task planning, control, localization, mapping, exploration and learning. Allthe listed areas become more intertwined in heterogeneous multi-robot systems (MRS)which in turnmakes their validation exceedingly difficult. The autonomy related function-ality (self-learning, strategy adaptation), as already pointed out above, adds even morecomplexity to the system design and testing challenge. In order to reduce the complexityof designing and testing such systems, it is possible to employ robot softwaremiddlewaresto simplify themulti-component design complexity. This will be discussed in the followingsubsection.

24

2.3.3 Robot software development
Software paradigms are varied as described in [56] but, in essence, software can be cat-egorized as having a single large monolithic architecture or contrastingly as being com-posed of multiple smaller interconnected modules. Both general approaches have theirstrengths and weaknesses. According to [57], the monolithic approach has the benefitof being easier to debug and test. Monolithic software can also be simpler to developas there are less cross-cutting concerns that affect the whole application. In addition, ananalysis onmonolithic architecture performance [58] showed that it is possible to achievebetter memory performance compared to multi-component (microservice) architecture.Also, a monolithic architecture does not require an extra data distribution layer for com-munication between its components since it is a single monolithic block. On the otherhand, monolithic architecture creates a single point of failure since all of the componentsare packaged into a single application. If thismonolithic component fails, the robot systemwould fail and would need to be restarted. Such complete failures can be catastrophic inrobotic systems (e.g., fastmovingmobile robots). Recovery time from failure is also longerin monoliths since the component itself is larger and takes longer to restart.

Alternatively, the robot software can be developed as multiple smaller componentsworking in parallel as distributed applications [56]. This approach has certain distinct ad-vantages over a monolithic architecture. Firstly, structuring the robot software as a setof small components more readily supports fault-tolerant design. Fault-tolerant designallows the system to continue operation with degraded performance rather than com-pletely failing [59]. If the robot software is designed as modules the non-critical compo-nents can fail while the robot might still retain some essential functionality to fail safely.This is not the case withmonolithic architecture as a critical failure (e.g., a memory accessviolation causing a segmentation fault) would result in complete robot failure. The secondkey advantage is the fact that clear partitioning into smaller components allows simulta-neous work on different components by development teams with different competencesin parallel [60]. Finally, smaller components also promote code reuse which allows thedevelopment team to focus on innovation [61]. These advantages are part of the reason-ing why autonomous robots are often composed of multiple software components ratherthan a massive monolithic block.
Developing modular software for autonomous robots is considerably less complicatedwhen the software takes advantage of some existing solutions that provide functionalityfor inter-process data exchange. This functionality is provided by software called middle-ware.
A comparison study between robot middlewares in [62] covers ROS, RT-Middleware,OPRoS and Orocos as being the most popular and widely adopted platforms for robotsoftware development. The authors conclude that ROS having the biggest ecosystem ofusers and components can be the best choice for a robot middleware but other optionsmay have some specific advantages depending on the requirements for the concrete usecase.
According to [63], ROS is an open-source,meta-operating system for robots. It providesthe services commonly expected from an operating system, including hardware abstrac-tion, low-level device control, implementation of commonly-used functionality, message-passing between processes, and package management.
The TestIt toolkit presented in this dissertation is generally robot software implementa-tion agnostic as it can be augmentedwith additional specificmiddleware support but sup-port for ROS based robots has been developed as the default supportedmiddleware. ROS[64] has been selected as the initial support target due to its popularity both in academia

25

and industry.
Another comprehensive literature survey [65] gives also a detailed overview of a largenumber of middlewares. There are many options for robot middleware that makes theinformed choice complex and requires in-depth analysis. A selection of features [66] pro-vided by ROS middleware are highlighted as follows:
Popularity. The yearly report on ROS [67] stresses a steady growth of documented ROSrobots which has grown to over a hundred robots. This list includes both experimentaland commercially available robot platforms. Additionally, the number of papers citingthe original ROS publication has increased 22% [67] over the previous year. These factorsindicate that the growth trend continues for the ROS community.
Hardware support. Anoften overlooked aspect formiddleware choice is hardware sup-port. Numerous sensors have ROS hardware drivers readily available for use which makestheir integration to the robot platform much less time consuming and allows the devel-opment team to focus on other matters [66]. Thus, also the number of ROS-supportedhardware components is a strong argument for selecting ROS as the primary support tar-get for the testing toolkit TestIt.
Data sharing. The key feature that is required from a robot software developmentstandpoint is data sharing between software components. ROS offers a message passinginterface providing inter-process communication [66]. ROS has a built-in and well-testedmessaging system that saves development time substantially by managing the details ofcommunication between components. This is achieved by the anonymous publish andsubscribe mechanism. Clear communication interfaces improve component encapsula-tion and enables better scalability. Data transmission is peer-to-peer which minimises theoverhead.
Message recording and playback. Another key feature that advocates for using ROS isthe message recording and playback [66]. The message recording is naturally supporteddue to the publish and subscribe systemwhich is anonymous and asynchronous. Data caneasily be captured and replayed without changes to software components. This improvesthe complex task of robot software debugging as it allows the developers to reproducedefects from recorded data more easily.
Synchronous interprocess communication. ROS features synchronous request and re-sponse interactions between processes [66]. This feature is useful in situations when soft-ware components need to communicate synchronously. Using synchronous communica-tion is achieved by using ROS services which enable guaranteed but blocking responsesto requests.
Global data sharing. ROSprovides away for software components to share informationthrough a global key-value store [66]. This allows the components to easily modify tasksettings and even allows to reconfigure these settings dynamically by other components.
Since TestIt toolkit presented in the dissertation aims to improve testing workflow foras many robot software engineers as possible, it has made the choice in favor of ROS asthe default middleware a natural decision.
A recent study [68] surveyed the architectures of ROS-based systems. This study isfounded on analysis of numerous repositories and provided evidence-based guidelines forarchitecting robot software. The study details that ROS-based systems are predominantlycomposed of numerous components working in parallel. According to [69], the number ofparallel interdependent components can easily reach hundreds of individual components.This motivates the need for advanced integration testing tools which the toolkit proposedin this dissertation aims to satisfy.

26

2.4 Model-based testing and modeling
In [70], model-based testing is defined via four main approaches:

1. Generation of test input data from a domain model.
2. Generation of test cases from an environment model.
3. Generation of test cases with oracles from a behavior model.
4. Generation of test scripts from abstract tests.
Each of these approaches has a different meaning. The first approach generates testinput from a specific domain model but does not specify how to determine whether toconsider the test to pass or fail. The second approach uses a model of the expected envi-ronment of the SUT. Such an approach allows automated generation of the environmentvariables for testing the SUT (e.g., operation frequencies, data value distributions) but alsolacks the possibility to easily determine whether a test passed or not. The third approachuses behavior models of the SUT to generate test cases for the SUT but also declare theexpected result of each test case. This approach is far more complex than simply generat-ing SUT inputs without checking the actual output values of the SUT. The fourth approachis different as the aim is to generate concrete test cases from concise abstract descriptionof test cases. The approach referred to as MBT in this dissertation is the third approach.Taking this into account, MBT can be defined as the automation of the design of black-boxtests [70].The main motivation behind using model-based testing is that it aims to reduce thecost of testing, enables early detection of requirements defects, allowing traceability andgenerating less overlap among tests. The respondents in a MBT survey [71] reported thatthanks toMBT, test design becomesmore efficient, testing becomesmore effective, mod-els help manage the complexity of the system with respect to testing, models improvecommunication between stakeholders and help start testing design earlier.The criticismsofMBT inmodern software development processes are listed in [72]. Thereport outlines slow modeling speed, competence development issues, concerns aboutreturn on investment and about complexity along with expense of model-based tools asmain criticisms of MBT. According to [72], there is a negative attitude towards modelingafter the demise of thewaterfall software development life cycle (see Section 2.9 formoreinformation) which is making some developers see modeling as a chore and somethingthat does not provide value. Manual modeling is time consuming and prone to errors.Modeling usually requires background knowledge about formal methods and modelingwhich can also be an issue. Due to these factors, MBT has still not reached ubiquitousadoption and is still mostly used for only critical components (e.g., aerospace and spacetechnology). These concerns must be taken into account when developing newMBT toolsif the tool is to be adopted by the community.The advantages of model-based testing get the best exposure while the models areconcise and they are created at a suitable abstraction level for the desired test scope. Dif-ferent granularity models are required for verification of the system at different levels andthe chosen abstraction level can have a significant impact on the scalability of verification[73]. If the model is too detailed it will contain superfluous information and details thatincrease the complexity of the model. Conversely, models with too little information arealso not very useful for generating interesting test scenarios. Therefore, it is important todetermine the relevant abstraction level for the model used in MBT.

27

Generally, themodel should only include the operations that need to be tested to avoidthe state explosion problem [74]. It is inadvisable to add data fields that are not requiredfor testing the operations. To keep the model concise, complex data fields can be simpli-fied with an enumeration or generated by an external algorithm that does not necessarilyhave to be included in the model itself [73]. The operations themselves can be modeledat an abstraction level that is not exactly the same as it is in the SUT (i.e., not all statesand transitions are listed explicitly). This is especially true in case of automatically learnedmodels where only behavior observed during learning is represented in the model. As aresult of automatic model learning, the model can not include information the system didnot exhibit during learning ([75], [76]).Another aspect of models’ relevance is their expressive power. There are multiple no-tations formodeling the SUT. Different notations have different strengths andweaknesses.Notations have been grouped in [77] into the following classes: history-based specifica-tion, state-based specification, transition-based specification, functional specification andoperational specification.Besides expressive power, the modeling formalisms are most often categorized by thedifferent aspects they are focused on, such as scope, characteristics, paradigm, test se-lection criteria, technology and whether they are designed for online or offline use [78].Though de facto standard modeling languages such as UML, SysML, and their numerousprofiles have been widely used in the software industry due to their intuitive nature andmature tool support they have not been designed originally specifically for robotics [79].The formalism used in this dissertation is a state machine based formalism called Up-paal timed automata (TA) [80]. This formalism has some distinct benefits over some othernotations for modeling and verification of CPS as outlined in [81]. Uppaal TA will be cov-ered in more detail in Section 2.7.Model-based testing has been mapped into different categories in [78]. The taxon-omy is created based on different aspects of the MBT process. One of the key aspects iswhether the tests can be executed online or offline. The toolkit presented in this disser-tation supports online testing which is desirable for testing autonomous systems becauseof inherently non-deterministic nature of interaction between the robots and their envi-ronment.
2.5 Model-based testing of autonomous multi-robot systems
As MRS are instances of CPS, CPS testing steps described in [82] are generally also appli-cable to MRS. According to [82], the CPS testing is divided into the following levels:

1. Hardware components testing, including testing of component functionality w.r.t.system requirements.
2. Structural and computation testing with focus on the design and structure of theprogram.
3. Extra-functional properties testing with non-functional requirements correctnesstesting (e.g., temperature, power consumption).
4. Network testing for testing communication flow amongmultiple devices and users.
5. Integration testing of individual software modules.
6. System level testing of the full system composed of both hardware and software.

28

As the TestIt toolkit presented in this dissertation is primarily focused on integrationtesting of software, only the integration and system-level testing efforts will be covered inmore detail. The authors of [82] direct their attention to several efforts by researchers tar-geted at integration and system testing in order to verify CPS. Notably, they point out [83]as an example of system level testing approach of a CPS. In this paper, the authors inves-tigate an automotive development platform with limited source code access and the testinterface is only using controller area network (CAN) bus messages. They report success-ful monitoring of a hardware-in-the-loop vehicle simulator and analysis of the prototypevehicle log data to detect violation of high-level critical properties.
The authors of [82] conclude that little research has focused on testing and validationfor CPS where suitable testing method can arguably have profound impact in preventingcostly and possibly fatal system failures. The authors find that using model-based testinghas potential and should be explored further.
Using MBT for testing CPS specifically was covered in [84]. In this publication, the au-thor used data-driven approaches to obtain values of features and variables from a pas-senger lift CPS. However, this case study explores a relatively small example where com-plexity issues are not significantly exposed. The sensors used in the process only providedlow-level system information such as acceleration and air pressure.
MBT efficiency has been studied in several papers and the results have shown signif-icant improvement in testing time and efficiency ([37], [38], [28], [29]). Timed automataand Belief-Desire-Intention (BDI) automata were compared to pseudorandom testing in[37]. The authorsmeasure code coveragewhich is defined as the number of lines executedas a result of stimuli sent by running the model. The goal is to achieve the largest codecoverage in the shortest amount of time. The results of the study showed a significant im-provement in code coverage accumulation speed for model-based approaches over thebasic pseudorandom method.
Another paper [85] investigated the BDI agent model-based approach further in thedomain of human-robot interaction (HRI). Their paper covers three test case generationmethods (manual, pseudorandomand reinforcement learning based). The authors demon-strate the results using simulation. The paper concludes that using models for test gen-eration clearly outperforms existing approaches in terms of coverage, test diversity andthe level of automation that can be achieved. The motivation for using simulation fortesting software comes from the fact that large-scale physical test in the real world in theearly stage of testing is unfeasible due to costs and time. A recent study focusing on au-tonomous driving [86] found that to fully demonstrate the vehicle reliability in terms offatalities and injuries the vehicle would have to be driven hundreds of millions of kilome-tres and in some cases even hundreds of billions of kilometres. This is clearly not feasibleas it would take the existing autonomous cars fleets tens and sometimes hundreds ofyears to drive such vast distances.
Grieskamp et al. [38] applied MBT methods to Microsoft products and reported aver-age testing effort per requirement to be 1.39 person-dayswhile traditional testing required2.37 person-days (41% improvement in testing time).
Large-scale technology evaluation study [28] of 13 industry cases from the transporta-tion domain shows verification and validation cost reduction between 29% and 34%. Thisstudy was conducted over a three-year time period and featured projects from the trans-portation domain (automotive, avionics, rail system). In addition to the improvement inverification and validation, the study reports less significant improvements regarding testcoverage (8%), number of remaining defects (13%) and time to market (8%).
Felderer et al. [29] studied defect taxonomies (ESA multi-mission user services infras-

29

tructure testing) and their return on investment depending on several parameters like theaverage test design time or the number test cycles and experience values of a test orga-nization. The authors find that MBT requires a potentially larger resource investment inthe beginning of the project compared to traditional methods. But after the initial invest-ment, the incremental effort required for testing using MBT is drastically lower comparedto manual testing.These results lead to the conclusion that applying MBT methods to CPS brings signifi-cant improvements over traditional testing methods.
2.6 Related tools
As detailed in Publication I and Publication II there are other frameworks and tools thatare targeted to robot software testing in different capacities and model-based testing ingeneral. Each of the analysed tools has had some limitations which reduce its usability,effectiveness, focus or scope compared to the toolkit presented in this dissertation.A generic testing framework for TDD of robotic systems has been presented in [87].This framework provides functionalities for developing and running unit tests in a lan-guage and middleware independent manner by allowing users to use independent plug-ins in their code. The framework does not feature integratedmodel-based testing supportand is targeted towards unit test level testing.One of the first attempts to provide a unified, tool-supported methodology for CPStesting and optimization is presented in [88] where the authors consider a black-box ap-proach to perform test input sequence optimization by testing the input-output behaviorof the CPS. They claim their tool is the first CPS testing tool that supports Bayesian opti-mization. It is also the first attempt to employ fully automated dimensionality reductiontechniques for CPS testing.Using simulation in testing has been proposed in [89] where the authors presented atest harness that allows initialization of the simulation in specified conditions based onprevious computation. However, this harness is not specifically designed to support ROS-based robots nor does it aim to aggregate and automate the debugging process for theaccidents the authors managed to detect using their proposed approach.Another approach is proposed in [90]. The authors focusmainly on testing autonomousvehicles (AVs) by introducing a risk-based framework. It uses the cross-entropy algorithmto produce so called rare events which have considerably higher probabilities to lead to anAV crash. The generativemodel for such behavior of the vehicles is trained using imitationlearning based on the public traffic data collected by the US Department of Transporta-tion. The approach described in the paper does not utilize model-based testing methodsbut relies on the rare-event probability evaluation of the data to generate specific highwayscenarios.The concept of utilizing simulation in a massively parallel configuration has been usedbefore for example in [91]. In the publication, the authors describe how they used ApacheSpark and ROS bag files to train deep-learning models for autonomous driving. The pre-sented architecture is used for model training and not for discovering scenarios and opti-mizing tests.Using simulation to uncover software defects has been shown successfully in [92]. Theauthors propose a high-level framework for automatically testing robotic systems.Robot system specific testing tools have more narrow focus and most of them are ad-justed to ROS-based software testing. At present, there is no known significant effortmade in the development of model-based testing toolkits designed specifically for au-tonomous multi-robot systems and their application.

30

There are several general purpose testing tools that allow test parallelization but theydo not employ the model-based testing of ROS-based autonomous robots. An exampleof such general purpose testing tool is a continuous integration (CI) platform Testributor[93].
Testributor is an open-source continuous integration platform that reduces buildingtimes by slicing up the test suite and runs the slices in parallel. This platform is not specifi-cally designed for testing ROS software components and it does not support model-basedtesting natively.
An alternative to Testributor is a ROS specific automated test framework (ATF)[94]which has been developed specifically for ROS applications. ATF framework supports ex-ecuting integration and system tests and running benchmarks. Unfortunately, it is notreadily scalable and is designed to run on a single machine. ATF framework also only pro-vides the execution of the test suite but does not offer tools to create or optimize the testsuite itself.
In addition to test execution tools outlined above, numerous general purpose model-based testing tools have been developed which focus on the testing process itself with-out providing the required supporting functions such as infrastructure allocation, environ-ment and test suite launching and test results aggregation.
The following list is limited to recently updated projects with open source or a free aca-demic license. Comparison to Uppaal TA is provided for pertinent tools. This analysis wastaken into account when selecting the initial formalism to include in the toolkit presentedin this dissertation.
GraphWalker [95] is an open-source tool based on finite statemachines. It offersmodelverification by running test path generations (offline and online path generation as RESTor a WebSocket service). GraphWalker is essentially a test generation tool but it lacks thesupport for testing timing constraints which is important in testing time-critical systems.Another important limitation is the absence of test execution support which means thatthe tool does not interact with the SUT itself and requires additional effort to integratethe tool to the test framework. Finally, GraphWalker does not include a model checkerand hence does not support test model verification.
Free Model-Based Testing (fMBT) [96] is another open-source tool which generatestest cases frommodels written in the AAL/Python pre/postcondition language. fMBT pro-vides a set of tools for test generation and execution. This tool is similar to GraphWalkerin the sense that it generates tests based on the model but it also lacks the notion of timethat is present in Uppaal TA and lacks model checking capability.
The tool named 4Test [97] is a commercial tool with limited free version which uses acombinatorial approach called constraint driven testing to select test cases from textualmodels specified in a syntax inspired by the Gherkin language. The main demonstrationuse cases for this tool are website testing use cases and the tests do not include time asopposed to Uppaal TA which is a limiting factor for CPS testing.
JSXM [98], [99] is a model animation and test generation tool. This tool uses a specialkind of extended finite-state machine (EFSM) called Stream X-machines (SXM) as its un-derlying data structure. The tool supports generation of concrete test cases from abstracttest cases from SXM models in the implementation language of the SUT. The main areaof use for JSXM is web services. This tool lacks timed automata support like the previoustools.
The toolModbat [100] is amodel-based testing tool that is based on EFSMs. Modbat isspecialized to testing the application programming interfaces (API) of software. This toolprovides a domain-specific modeling language with features for probabilistic and non-

31

deterministic transitions, component models with inheritance, and exceptions. Modbatsuffers from lack of model checking and timed automata support.MoMut [101] is a free for academic-use family of automated, model-based test casegeneration tools. The tools can work with different inputs: UML state charts, action sys-tems, timed automata and assume-guarantee contracts. It features a fault-based test casegeneration strategy using mutation operators. Compared to Uppaal TA, this tool does notsupport model checking and lacks concurrency support.OSMOmodel-based testing tool [102], [103] is an open-source test case generation andexecution tool. The test models are expressed as Java programs which the test generatorexecutes based on annotations defined in the model. This tool does not support modelconcurrency and model checking.Tcases[104] is an open-source model-based test case generator. Tcases is a combinato-rial testing tool that can generate n-wise (generalized pair-wise) or randomized test suites.This tool does not support model concurrency and model checking.TorXakis [105] is an open-source model-based testing tool that generates test casesbased on the composition of process instances that model the behavior of the SUT. TorX-akis uses the ioco theory to check the actual behavior against the specified externallyobservable behavior. This tool lacks model checking and timed automata support.There is also a cluster of other tools that provide model checking functionality (e.g.,CADP [106] [107], DREAM [108], Romeo [109]) but they lack other properties such as tim-ing constraints support, native test execution support, have limited monitoring, graphicalspecification or lack counterexample visualization support.Based on the analysis of related tools and the formalisms they are based upon, Uppaalfamily and Uppaal TA was selected as the initial tool and formalism to be supported in thetoolkit presented in this dissertation. More information about Uppaal TA are presentedin Section 2.7 and its application in CPS conformance testing in Section 2.8.
2.7 Uppaal timed automata
In order to perform model-based testing, the SUT must first be modeled using some for-malism. Testing robotic systems is well suited for modeling notation enabling modelingof both inputs and outputs to and from the SUT (i.e., the stimuli and the response of therobot). In addition, the formalism needs to have tool support (e.g, online execution) to bepractically usable for automated testing of robotic systems. These constraints eliminateformalisms such asMarkov chains [110] and Event-Flow graphs [111] as these notations aremore relevant for environment specification. Event-B [112], Finite statemachines [113] andState charts [114] all have tool support but in their original forms lack another importantaspect for robotic system testing, namely, the notion of time. Timed Petri Net and TimedAutomata are formalisms with the support of time. The expressiveness and properties ofTimed Automata and timed extensions of Petri Nets are compared in [115]. The authorof [115] brings attention to the fact that for Timed Petri Nets reachability is not decidablewhich can be a concern in verification of MRS. Translation between variants of these twoformalisms have been shown to be possible as shown in [115] giving indication that bothformalisms could be used via automatic translation under some conditions. According tothe analysis in [115], Timed Automata are a suitable formalism for modelling of systemsof industrial sizes and the tool support is sufficiently mature. The analysis in [115] alsoconcludes that Timed Petri Nets are too expressive and are therefore unsuitable for auto-matic verification. Considering these aspects, Timed Automata was selected as the initialformalism to be supported in the toolkit presented in this dissertation. Timed Automataformalism is supported by the tool Uppaal TA tool family.

32

According to [116], a timed automaton is a finite-state machine extended with clockvariables. The automaton uses a dense-time model. As outlined in Publication II, UppaalTA are defined as a closed network of timed automata extended with integer variables,structured data types, and channel synchronisation [80]. These timed automata are com-bined into a network by parallel composition. An automaton consists of vertices calledlocations (similar to vertices in graph notation) and edges (directed arcs in graph nota-tion) between the locations.The set of variables associatedwith an automatonhave valuations that are called statesand the configuration ofmodel consists of current control location of each automaton andassignments to all model data variables and clocks [80]. The automata in the networkcan be synchronized using synchronization links named channels between edges [80]. Inthis work, the channel names follow naming convention due to their specific use in testmodels. The channels that prefixes i and o in their names are used for sending commandsto the SUT and receiving feedback from the SUT respectively.

Figure 1: Uppaal sample.

An example of Uppaal TAwith two simple automata template instances calledProcess1and Process2, respectively, and composed in parallel is depicted in Figure 1. Both pro-cesses start from their initial location (similar to vertex in graph notation) Start_i and
Start_ j, respectively. At its firstmove from location Start_i toWait, theProcess1 synchro-nizes with Process2 via channel chA that labels edge (Start_ j, Operation). At the sametime, Process1 updates variable x with the value of constant initial_value and Process2resets the clock cl. After reaching location Operation Process2 waits maximum ub timeunits, i.e. till the location invariant cl <= ub holds. Next edge (Operation, Stop_ j) canbe fired earliest after lb time units (by clock cl) counted from arriving to the location
Operation. This is specified in guard condition cl >= lb. A guard is an expression whichevaluates to a boolean (and other conditions described in [80]). Firing edge (Operation,
Post2) is synchronized again with edge (Wait, Stop_i) in Process1. An edge is said to firewhen it is executed which, in turn, leads the automaton to a new state. When firing edge(Operation, Stop_ j) the variable y is updated with the value of function f where vari-able x is an argument. Both automata terminate at the same time in locations Stop_i and
Stop_ j respectively.

Figure 2: Uppaal test adapter. [117]

33

As detailed in Publication V, mapping the symbolic inputs and outputs [118] generatedby test model to actual test inputs and outputs requires a test adapter that connects theUppaal TA model to the robot (either real or simulated). Symbolic inputs and outputs inthe model essentially denote sets of possible values that real test inputs and outputs canhave. The test configuration is shown in Figure 2. The adapter connects to the SUT usingDtron which in turn uses Spread Toolkit [119] and Google Protocol Buffers. More detailsabout the adapter and test configuration is available in Publication V.
2.8 Applying Uppaal TA for CPS conformance testing
Conformance testing aims to determine whether the implementation of the system con-forms to its specification. The notion of conformance in the context of model-based test-ing of labeled transition systems was introduced by Tretmans [26] as the input outputconformance (ioco) relation. Provided the input to SUT and its specification are same, thetest results can be evaluated by comparing the outputs of the implementation with thoseof the specification. In case the implementation gives an output not expected by the spec-ification the test verdict is f ail. Upon outputting the expected values for the given inputsequence, the test is declared pass.Conformance testing is especially suitable to employ when designing software andhardware simultaneously since these processes can be worked on in parallel. The teamsworking on software and hardware can focus on developing the product that fulfills therequirements without spending resources on developing extraneous test interfaces. Con-formance testing can start immediately when both teams have finished developing theirrespective parts of the product.Uppaal TA has proved to be usable for CPS conformance testing [120]. Among othertools Uppaal tool suite contains Uppaal TRON [121] which offers the possibility of perform-ing on-line conformance testing of real-time systems with respect to timed input-outputautomata. Uppaal TRON implements a sound and (theoretically) complete randomizedtesting algorithm, and uses a formally defined notion of correctness to assign verdicts.Uppaal TRON uses the Uppaal TA model checking engine to create symbolic timed tracesof the model [122]. The reachable symbolic states are computed from each precedingstate and then an enabled transition (and related to that input or output) is selected ran-domly. Upon reaching a final state the test ends. The test is terminated when the testduration expires or a violation of conformance between implementation and model isencountered.In the following, the definition of ioco-relation and its extension rtioco (Eq. 4) for real-time systems are given formally using symbolic timed traces. Symbolic timed trace T TrSof anUppaal TAmodel is a possibly infinite sequence of symbolic states, each state definedas a tuple (l̄,D, v̄), where l̄ is a locations vector, D is the set of clock constraints (zone) [123]and v̄ a vector of non clock variable values. In operational semantics it is shown that thetransition (Eq. 1) from a symbolic state to another can be either an action (ai) or a delay(δi).

(l̄i,Di, v̄i)
ai/δi−−−→ (l̄ j,D j, v̄ j) (1)

Uppaal TA actions are either I/O events e or internal state updates (assignments to vari-ables ofV). After each state transition, either an event e or update of variablesV or bothoccurs. The status of transitions (i.e., enabled or disabled) in a given state is evaluatedduring model execution by Uppaal Tron [117]. The state transition is enabled in case theguard condition of that transition evaluates to true.
34

The Uppaal TA test model executed by Uppal test execution tool Tron is assumed tohave two parallel partitions E and S that represent the observable behavior between thetester and the SUT. The partition E models the environment and S models the SUT. Theinteraction between these partitions is achieved via input (AI) and output (AO) observableactions. Input actions, controllable by test, are used as stimuli to the SUT and the outputactions are used for deciding on conformance. In addition, both E and S have internalactions ε which are confined to each individual partition which are used to evolve thepartition to the next state where an observable action can be taken.
The observable actions are triggered based on a testing event e after an observabledelay ∆ ∈ R≥0. This delay represents an internal delay for the events at an abstract level.Global variables in Uppaal TA (i.e., a vector of externally visible global variables) v arealso observable. The events and variables are partitioned into three disjoint sets of inputevents/variablesEvin/Vin, output events/variablesEvout/Vout and internal events/variables

Evint/Vint [124].Consequently, after partitioning a symbolic trace can be rewritten as a timed I/O trace.A trace of a state s (Eq. 2) is a possibly infinite sequence of observations starting from agiven state. Each observation is a tuple (e, D, v) consisting of an event e∈ Evin (e∈ Evout),a clock zone D and a vector v ∈Vin (v ∈Vout) containing the values of data variables thatare externally visible as inputs/outputs at the time of event e.
ttri/o(s) = (e0,D0,v0)(e1,D1,v1)...(ei,Di,vi)... (2)

Uppaal Tron is using the observable events to interactwith the SUT. The internal actions
τ and internal delays d are represented as observable delays∆. As a result, the test sessionis recorded as a finite sequence of events Tseq in the following form in [125]:

Tseq = (e0,(τ0 +d0), v̄0),(e1,(τ1 +d1), v̄1), ...,(en,(τn +dn), v̄n) (3)
The trace in the form of Eq. 3 can be written in terms of observable delays and actionsas:

Tseq = (e0,∆0, v̄0),(e1,∆1, v̄1), ...,(en,∆n, v̄n) (4)
where Eq. 4 allows checking of timed conformance of the SUT against the specificationvia the rtioco relation by allowing the SUT to refine the timing behavior of the specification[125].
The relativized timed input/output conformance (rtioco) is defined in [80] as follows:
An implementation I conforms to its specification S under the environmental con-straints if for all timed input traces σ ∈ T Tri(E) the set of timed output traces of I isa refinement of the set of timed output traces of S for the same input trace.

I rtioco S i f f ∀σ ∈ T Tri(E) : T Tro((I,E),σ)v Tro((S,E),σ) (5)
Such a sequence of test events is provided by Uppaal Tron. Each test event is specifiedin terms of clock constraints, variable valuation, list of next available states and a list ofinput/output actions. After each test event occurs at a specific time, the clock constraintsare updated, a transition to a new symbolic state occurs and the list of the next states isupdated [125].

35

2.9 Model-based test development process for autonomousmulti-robot
systems

2.9.1 Model-based test development
CPS development is somewhat different to traditional software development as it is moreinterdisciplinary. The standard software development processes still apply but as CPS usu-ally contain electrical andmechanical components in addition to software, there is a needfor increased interdisciplinary collaboration support. This collaboration can be supportedby themodel-based approach. Inter-team communication is challenging and can bemademore clear by using unambiguousmediums such asmodels. Thesemodels can be createdat various levels of abstraction depending on the purpose of the model.The iterative and incremental development cycle [126] suggested for autonomous sys-tems in [127] is a software development life cycle (SDLC) which is loosely based on the tra-ditional waterfall [128]. The waterfall model divides development into well defined stageswhich are completed sequentially. The process consists of requirements specification, de-sign, implementation, test, installation and maintenance phases. Such a development cy-cle supports clear understanding of the full project to all stakeholders. Unfortunately, thatdevelopment cycle is very hard to implement in practice as requirements tend to changeover the course of the project development life cycle. Another serious concern lies in thefact that the testing phase occurs at the end of the development cycle. If the softwarefails to satisfy the requirements at this late stage, invariably a substantial redesign of thesoftware is required.

Figure 3: CPS iterative and incremental development.

The iterative and incremental development cycle aims to correct the aforementionedshortcomings. The general iterative development approach is depicted in Figure 3. Thecycle is divided into discrete increments which are developed from the requirements todeployment phase before starting a new iteration. The first cycle begins with the initialplanning phase during which a general overview of the whole project is developed. Oncethe general plan has been formed, the cyclical development process can start. Testing isperformed at every iteration which reduces uncertainty about requirements satisfaction.To overcome the limitations of the traditional waterfall, in Publication III, it is proposedto follow a novel combination of iterative and incremental SDLC [126] that is comple-mented with verifiable MBT steps. The novelty of this approach lies in the iterative devel-opment process that refines the abstraction incrementally by iterating model synthesis,model checking, simulation-based validation and testing.Each cycle starts again with the planning phase. The iterative planning phase servesto concretize the requirements for the implementation. Next, after the planning phase,comes the implementation phase which takes up a large portion of the full cycle time asit also includes the analysis and design of the system increment that is being developed in
36

that iteration. After the implementation is finished, the implementation must be tested.This phase is often given disproportionate resources compared to the other phases. Aspointed out in Section 1.3, adequate testing is crucial for the overall success of the project.Inadequate testing can lead to increased technical debt as well as system defects that canbe very costly to fix at a later state. Finally, after the testing phase is finished the teamenters the evaluation phase. In this phase, the team assesses the development performedin the cycle and identifies problems and issues that arose during development.

Figure 4: CPS validation process.

The SDLC must also fit into the general system validation process. This process, pre-sented in Publication III, as depicted in Figure 4, starts after new increment of require-ments is specified and partially runs in parallel with other development cycle steps suchas design and implementation. The test results are used also in the evaluation phase asshown in Figure 3. The final SDLC quality assurance step is field testing that follows thedeployment phase.The simulation-based validation process depicted in Figure 4 presumes formalizationof the requirements. The requirements are used to create the models in the model syn-thesis and checking step. Once themodels have been created and checkedwith themodelchecker the process continues with simulation-based validation step. The details of thisstep are depicted in Figure 4 in the blue rectangle. This step contains the provably correcttest development process that is detailed in subsection 2.9.2. After test purpose has beenspecified, the tests can be generated. The tests are then deployed to either simulationenvironment or to the server connected to real hardware. Finally, the test is executed and
37

the results logged.
2.9.2 Provably correct test developmentAs detailed in Publication VI, provably correct development (PCD) studied in [129], cap-italizes on the development process paired with verification and design correctness as-surance steps. Applying PCD processes to testing is motivated by the need to improvethe trustability of testing results by showing their formal correctness through entire testdevelopment and execution process.Model-based test generation algorithms presume that SUT models have propertieswhich guarantee the feasibility of generated tests. Among these properties are connect-edness, input completeness, output observability and strong responsiveness. These prop-erties formulated originally for input-output transition system (IOTS) models [26] can beverified on well-formed Uppaal TA models as well by applying Uppaal model checker.Publication IV presents verification conditions and themodel checkingmethod of prov-ing the correctness properties for test development steps.As explained in Publication VI, after the test model has been proved to bewell-formed,the test purpose is specified in terms of coverage criteria. The SUTmodel structural cover-age is expressed as a set of boolean trap variable updates that are added to the Uppaal TAedges. The trap updates may also be conditional boolean assignments presuming somecontextual on model state variables to be satisfied. Such edges labeled with traps need tobe executed in the course of the test run for satisfying the entire test purpose. The timebounded reachability of such specified coverage items can be proved by applying modelchecking.The test deployment in the physical test execution architecture introduces additionalprocessing and communication delays that are not natively expressed in the SUT require-ments specification. For instance, these delays of test harness are caused by the phys-ical distance between the SUT entities and/or by non-negligible processing time in testadapters. Thus, proper test feasibility verification presumes also the test model updatewith these delays and rechecking the correctness properties preservation thereafter. Thisverification step concerns timing correctness of the executable test in the first place. Addi-tional details about such delays andmodeling of timing aspects can be found in PublicationVI. After passing the verification process the tests are ready for execution while the testresults can be provably trusted.
2.10 Chapter summary
In this Section, it is argued that testing CPS and autonomous robot systems, in particular,requires a different approach to testing than traditional software testing. Related worksection provides an overview of other candidate frameworks and tools to be used forMBTof AS. But as shown by analysis in Section 2.6 none of them is supporting the combinationof functionalities and features supported by the framework developed in this dissertation.The chapter also introduces theoretical foundations applied in our testing framework, theUppaal TA as a suitable formalism for modeling AS and its use for verification and testing.Since this dissertation is focused on model-based conformance testing of autonomoussystems with timing constraints, the rtioco relation is defined as relevant conformancerelation verified by MBT of time-critical autonomous robot systems.

38

3 TestIt: an open-source scalable testing toolkit
3.1 Chapter overview
The chapter gives a detailed overview of the testing toolkit TestIt. First, the general designissues are outlined and an explanation of the design choices that have beenmade regard-ing the toolkit is presented. Secondly, the architecture of TestIt is described. Thirdly, thescalability aspect of the toolkit is discussed. Following that, long-term autonomy testingis presented. Finally, the TestIt test runner featuring the test optimization algorithm isproposed. This chapter investigates the research question RQ2.
3.2 Design considerations
The general design considerations of the TestIt toolkit are well aligned with the findingsof review on CPS testbeds in [130]. The authors of the review list the key future researchissues for CPS testbeds. They find that the desirable characteristics include accuracy, au-tomation, controllability and observability, reliability and reproducibility, safe execution,high speed and capacity. The authors of [130] agree that CPS testing is time consuming andlabor intensivewhich iswhy test automation is key. Because of that the future tools shouldimprove the generation and execution of suitable test cases since CPS have complex in-teraction between software, hardware and networks. TestIt features test automation asits core concept. The design considerations of TestIt are discussed in detail in the follow-ing sections from the perspective of compensating the shortcomings of existing solutionsdiscussed in Section 2.6 and addressing the needs stated in Section 2.5. The advantagesof TestIt framework are outlined in the course of presenting its novel solutions.
3.2.1 General considerations
TestIt is a flexible testing toolkit that is designed to bemodular and extensible. Autonomousrobot software is highly heterogeneous as robotic platforms are diverse. The capabilitiesand the purpose of robots also differs from robot to robot. This fact makes designing auniversal testing tool for all robot types very challenging. To alleviate this problem, TestItwas designed to be open-source and flexible so that new testing tools can be integratedinto it without significant overhead. For example, it is possible to run ROS linters (e.g.,roslint [131] and static code analysis tools (e.g., HAROS [132])) as part of the testing pro-cess but it might not be required for robots not using ROS. Such individual requirementscan be accommodated in TestIt due to its container-oriented design.The tools that need to be used in the testing process for a given project can be pack-aged into the TestIt test Docker [133] container and executed as part of the test package.Thanks to this, TestIt is testing methodology agnostic. However, to demonstrate TestItfeasibility and considering the benefits of model-based testing described in the previoussections, support for model-based testing tool family Uppaal has been developed. Uppaaltool suite includes a wide range of tools [134] making it a sensible first choice. Also, basedon the reasoning in section 2.3.3, ROS has been selected as the default supported robotmiddleware.
3.2.2 Suitability for MBT
One of the most important benefits of using MBT is the complex emergent scenarios thatcan be discovered by simulating both the SUT and the environment (i.e., the static worldand the dynamic actors in the world) together. It is very difficult to design test scenariosfor autonomous systems which explore the full software stack thoroughly. This is due tothe fact that usually software is developed by different teams and the knowledge of the

39

full software stack concentrated in a single individual is very rare.
Accounting for all permutations of the conditions that can arise in complex dynamicenvironments is exceedingly difficult evenwith full knowledge of the software stack. UsingMBT and tools (e.g., Uppaal TA[116], NModel[135]) helps in this regard by allowing modu-larity and separation of design concerns that is important when applying the "divide andconquer" principle [136] in complex system testing. The possibility to model different ac-tors of the SUT and the environment separately reduces the modeling complexity whichin turn reduces the cost of testing. Taking advantage of the functionality provided by Up-paal, it is possible to instantiate multiple copies of the single actor models. This featuresimplifies the test setup and increases test maintainability.
TestIt uses MBT approach to generate test cases in test model exploration (i.e., modelexecution)mode to create SUT traces (i.e., SUT input sequences). These traces are used bythe test optimization algorithm (described in detail in Section 3.4.4) to create probabilisticmodels which in turn are used by the TestIt test runner to optimize test scenario executiononline.

3.2.3 Continuous integration orientation

ROSIN [137], a project funded by the European Union’s Horizon 2020 research and innova-tion programme under grant agreement No 732287, aims to amplify its impact by makingROS-based industry oriented components better and evenmore business-friendly and ac-cessible. The ROSIN project report[138] highlights the need for better QA practices to beadopted in ROS software development. One of the main issues is that the QA practicesare not consistent across the various development streams (i.e., core, drivers and reusablepackages). The report also indicates that the utilization of CI service in its current form isnot sufficient because it is simply compiling and building the ROS projects. Analysis resultsshow that the QA practice would be improved significantly by extending the CI service torun a collection of different kinds of code-scanning tools. To address these needs, TestIthas been designed to be easily integrated with the CI service. The CI integration is simpli-fiedby the command line interface (CLI). TestIt can be controlled directly via CLI commandswhich can easily be integrated into any CI service. It also provides a framework that canbe augmented with aforementioned tools and bundled in a convenient package.
Another aspect the ROSIN report highlights is that although testing is regarded as crit-ical in robotics, developers working on new components tend to focus more on creatingthe components rather than creating and setting up tests and gathering data based onsimulation. As stated in the report, automated testing should compensate this practiceby saving time and increasing software quality. TestIt aims to comply with these recom-mendations. It reduces time overhead by supporting automation of all testing phases,maximizing testing efficiency by using concurrent testing pipelines and minimizing testingtime by learning from executed tests and optimizing test scenarios based on that.
Considering this, integrating testing into robotics software development CI processesis highly coveted. TestIt is well suited for integrating into CI services as the testing pipelinesare designed to work with Docker containers. Using Docker containers makes it easier tointegrate into CI processes because of the ephemeral on-demand nature of the containertechnology. The containers are always started from the same state and the state is notstored after finishing, which is the desired behavior in testing context. This feature ensuresthat testing is stable and there is no risk of influencing the initial state on subsequent testexecution. Executing testswithout sandboxing the software can run intomutability issues.

40

3.2.4 Long-term autonomy testing support

Reliability of long-term autonomy is another key concern for autonomous robots whichoperate in dynamic environments. Finding software defects that appear immediatelyor within a short time window is significantly easier than detecting erratic defects thatemerge after a long time has elapsed (e.g., memory leaks and cumulative corner cases).Still, long-term testing with real robots is challenging and limited by real-time factor.
In some cases, it is possible to perform simulation faster than real-time to further in-crease the time efficiency of testing. For example, when using ARGoS, a multi-physicsrobot simulator [139], with simple wheeled robots it is possible to simulate about 10,000robots 40% faster than real-time. Stage simulator has been demonstrated to simulate asingle simple robot 1,000 times faster than real time [140]. Time compression is also pos-sible in more advanced simulators such as Gazebo [141], CARLA [142] and AirSim [143]. Butas pointed out in [144], simulation at merely real-time is already challenging. In order toachieve high simulation speed, richer collision response and advanced ground interactionmodels have been ignored in AirSim. However, the gravity of the aforementioned con-cerns diminish over time as advances in hardware performance carry over into simulationspeed and level of detail improvements.
Considering these factors, it is important to utilize the available resources to the fullest.To that end, TestIt supports running tests over long time periods to find interesting sce-narios that are exceedingly difficult to discover without model-based generated tests.
Using simulation for long-term autonomy testing with compressed timescale improvesefficiency by reducing the amount of real-world time spent on simulation. Testing at un-compressed timescale (i.e., wall time) does not offer any time improvements over testingin real-world but time compression is not always possible due to computational complex-ity involved with simulating high-detail robot models and environments. Time compres-sion requires additional computational resources depending on the compression level.This is especially true for high detail simulation as faster than real-time physics simulationcan consume infeasible amounts of resources [144].

3.3 Architecture

Publication I presents a model-based testing toolkit named TestIt1, an open-source ROSpackage containing the daemon, a CLI (Command-Line Interface) program to interact withthe daemon, and aDocker container[133]with bundled testing tools. A high-level overviewof a common TestIt configuration is depicted in Figure 5. As can be seen from the figure,TestIt is executed by the CI server (e.g., Jenkins [145]) after being triggered to build andtest the SUT software stack. The CI server can be configured to send feedback to thedeveloper on test failure.
The architecture of the TestIt toolkit is shown in Figure 6. The TestIt Docker containerand the SUT (one or more containers over one or more servers) together form a testingpipeline.
The configuration for the SUT and TestIt Docker container is defined in the YAML [146]format configuration file which is passed to the daemon upon start up. The configurationconsists of infrastructure configuration and test scenarios. The pipelines can be configureddepending on the available hardware or budget constraints for the cloud testing.
1https://github.com/GertKanter/testit

41

Figure 5: High-level overview of TestIt.

Figure 6: TestIt toolkit architecture.

42

3.3.1 Pipelines
TestIt daemon is the process which handles all TestIt commands (e.g., starting and stop-ping pipeline servers, initiating testing, examining results). The daemon can control mul-tiple TestIt pipelines as can be seen in Figure 7. Test scalability is one of the benefits ofsimulation-based testing which using multiple pipelines provides. Each pipeline can runon a separate server, for example in the cloud (AWS [147], Google Cloud [148] or Azure[149]), ensuring scalability.

Figure 7: TestIt toolkit component communication diagram.

TestIt supports starting and stopping the servers hosting the testing pipelines as partof the testing workflow depicted in Figure 8. Only using the servers when needed helpsreduce testing costs in case of using cloud servers for testing since cloud services are billedbased on the time used. Therefore, only bringing them online when needed is cost effi-cient.

Figure 8: TestIt toolkit testing flow diagram.

3.3.2 Software packaging
The packaging requirements for the software running in the SUT are not strictly con-strained. TestIt toolkit ROS integration relies on the SUT running the ROS master service(i.e., roscore) to which the tools in the TestIt container can connect. Other than that, theSUT can be considered as a black-box system and TestIt can be used as a black-box testingtoolkit which requires no modification by the tester. If test code coverage measurementis required, the SUT must be configured in a way that supports it. The necessary precon-ditions are detailed in Section 3.3.3.
3.3.3 Test coverage measurement requirements
In model-based testing the test coverage can be measured either by using model cover-age or coverage of the code units abstracted in the model or both combined. Code cov-erage measurement can target a number of different criteria such as function coverage,statement coverage, edge coverage, and branch coverage [25]. Statement code coveragemeasures the number of statements executed. Statement coverage and line coverage areoften used interchangeably since conventionally each line contains a single statement.

43

Traditionally, line counters are never reset during themeasurement process. This is not anissue in case of measuring the lines that are executed during a full test execution. This ap-proach is refined with model-based testing with TestIt by measuring the lines of code thatget executed when performing some action represented as a transition in themodel. Thisdetailed coverage information is later used to maximize the code coverage while keepingthe test length reasonably bounded.
In order for the code coverage to be measurable, possibly in combination with modelstructural coverage, both the test model execution and the SUT software stack must sup-port it. Themain programming languages used in ROS software development are C++ andPython. For code coverage, the C++ stack must be compiled with code coverage supportoptions (profile-arcs and test-coverage) [150]. Python programsmust be run via awrapper(e.g., Coverage.py library) which collects the code coverage information [151].
The SUT software stack has to handle the SIGUSR1 signal to support the state transitioncode coverage measurement. The C++ code needs to call __gcov_flush() function to flushthe coverage data [152]. For Python, the coverage wrapper must call a save function. If

Coverage.py is used, coverage.save()must be called [153] and internal class variables linesand arcs must be reset. If these variables are not reset, the subsequent calls to the savefunction will return the full list of lines executed since the start of the program.
3.3.4 Test scenario generation
The test scenarios specify the concrete cases that are executed to test the software. Thescenarios can be executed in different ways. The simplest is to execute a program or scriptthat gives inputs to the SUT software stack (e.g., goals for navigation) but the scenarios canbe defined also using complexmodels. For instance, Uppaal timed automata [154] modelsused as test oracles are currently supported in TestIt and are executed using DTRON [155].

For other types of formal models and their analysis tools TestIt can be extended toaccommodate other model checkers (e.g., DIVINE [156], NModel [135]), SMT constraintsolvers (e.g., Z3 [157], CVC4 [158]) and other decision support tools in a way that does notinconvenience the toolkit user. This is one of the design goals of TestIt that the third-partycomponents of the toolkit are packaged into the TestIt Docker container. It is possible topre-install and configure everything inside the container so that the toolkit user or a CIservice does not need to install and configure all of the tools separately.
One of the criticisms of model-based testing is the difficulty and labour intensive pro-cedure of creating models. TestIt toolkit is addressing this issue by supporting generationof models from other specification formats as can also be seen in Figure 6. The genera-tion of a model from topological map format developed for use in STRANDS project[159]has already been implemented in TestIt. The support for generating models from SMACH[160] state machines, ROS BehaviorTrees [161] or other formats can be achieved in a sim-ilar way. Creating models from other specification formats saves time and gives a goodstarting point to expand the models for automatic model-based testing. An algorithm oflearning Uppaal TA models from SUT interface logs has been developed in Publication IV.

3.3.5 Test results logging
An important component for test results analysis supported by TestIt is the logger. The logsare used to diagnose the possible causes of test failure and to optimize the test scenar-ios for better coverage and efficiency. The log entries are stored as JSON notation stringswith each string denoting one event. The entry is a dictionary with the test run identi-fier, timestamp, coverage information related to the transition, data transmitted to theSUT, transmission channel information and information whether the entry corresponds

44

to before or after transmitting the information to the SUT. This discrimination allows theinformation to be further analyzed based on the result of executing a test model transi-tion.Specific feature to Uppaal TA logging is that TestIt gathers the information about theUppaal TA channel that models interaction between the SUT and the environment con-tains the name, type and proxy name if required (for services and action library). Theproxy is used to allow logging to occur without requiring modification of the softwarethat is tested. This is caused by ROS design, namely, services can only be handled by asingle server. To allow services to be monitored as state transitions, the logger needs tobe able to provide a proxy service that forwards the actual service request to the SUT andgives the result to the requester. The proxies can be set up with ROS remapping withoutmodification of the SUT.An example of the log format (coverage data is omitted for brevity but more informa-tion about coverage is in Section 3.4.4) is shown in Figure 9.
{"run_id": "34e07c0c-316f-4044-8994-be95483e4af6", "timestamp": 49.2,

"coverage": {}, "test": "T1", "data": {"header": {"stamp":

{"secs": 0, "nsecs": 0}, "frame_id": "map", "seq": 1}, "pose":

{"position": {"y": 35.0, "x": 2.0, "z": 0.0}, "orientation":

{"y": 0.0, "x": 0.0, "z": 0.0, "w": 1.0}}}, "event": "POST",

"channel": {"identifier": "/robot_0/move_base_simple/goal",

"type": "geometry_msgs.msg.PoseStamped", "proxy": ""}}

{"run_id": "34e07c0c-316f-4044-8994-be95483e4af6", "timestamp": 54.6,

"coverage": {}, "test": "T1", "data": {"status": {"status": 3,

"text": "Goal reached.", "goal_id": {"stamp": {"secs": 49,

"nsecs": 200000000},

"id": "/robot_0/move_base_node-1-49.200000000"}}, "header":

{"stamp": {"secs": 54, "nsecs": 600000000}, "frame_id": "",

"seq": 0}, "result": null}, "event": "RESPONSE", "channel":

{"identifier": "/robot_0/move_base/result",

"type": "move_base_msgs.msg.MoveBaseActionResult", "proxy": ""}}

Figure 9: TestIt log format.

3.3.6 Test runnerThe final component of TestIt is the online test runner. This component uses the opti-mization algorithm to dynamically guide the system into maximum gain states (e.g., gainfunction maximizes code coverage). As the online tester is executed at the same timeas the SUT, it is possible to take actual gain information from the SUT into account whileplanning the next SUT input signal.
3.4 Features
3.4.1 Test configurability and observabilityAs robotic systems are heterogeneous, the toolkit needs to be configurable to accommo-date the wide field of projects. TestIt toolkit has been designed to be flexible in terms ofconfiguration. The general test configuration and execution cycle contains the followingsteps: infrastructure allocation, SUT launch (simulation-in-the-loop or hardware-in-the-loop), testing and infrastructure deallocation. TestIt allows the testing step to be config-

45

ured in differentways. It is possible to configure the test to optionally include a test oracle.A test oracle is a software component that observes the SUT while testing takes place andmakes a verdict whether the test was a pass or f ail (inconclusive is regarded as f ail inthis dichotomy). In the case of not using model-based testing, it is possible to configureTestIt to receive the test verdict from the test script itself.Observability is another key concern while configuring the test process for the project.Autonomous robotic system software is usually composed of multiple components andmight include complex inter-process dependencies. Due to this, it can be difficult to con-figure the test process efficiently. TestIt features different verbosity levels for monitoringthe test process so that misconfiguration detection is simplified by receiving more outputfrom TestIt and the SUT.
3.4.2 Scalability
Testing of robotic systems often suffers from the problem of scalability due to complex-ity issues. Scalability issues can be mitigated by introducing simulation-based testing intothe testing process. However, in order to take full advantage of the simulation-in-the-loop approach the simulation must be parallelized (multiple simulation threads runningconcurrently), the processmust be controlled dynamically (infrastructure allocation, deal-location and reallocation) and the results of simultaneous threads must be aggregated foranalysis and test optimization.The support for parallelized testing is present in the proposed toolkit TestIt. TestIt al-lows testing to be scaled up using multiple testing pipelines. Using several pipelines in-creases testing throughput by running multiple simulations concurrently. In Publication I,linear scalability of TestIt using multiple pipelines is demonstrated (Figure 11). The detailsof the individual pipeline configuration used to acquire the shown results are presentedin Section 4.7. This linear scalability is possible w.r.t. log data generation speed in bothtest explorationmode (i.e., execution of the SUT and environment statemachine) and testoptimization mode. The speed increase w.r.t. the code coverage and other criteria acqui-sition time might not be strictly linear since the test pipelines might have some overlap interms of the state space traversed for each test scenario. For example, in case the robots(i.e., the SUT) always have to start at the same initial conditions and different scenariossplit only after several identical steps in all scenarios. In such case, it is understandablethat the increase is not linear w.r.t. the number of pipelines as there is some overlapbetween the scenarios.

Figure 10: Test infrastructure configuration.

The scalability of TestIt was measured in AWS EC2 cloud. The infrastructure config-uration is shown in Figure 10. During the testing procedure TestIt daemon managed theinfrastructurewith four pipelines dynamically. The serverswere brought online just beforethe test execution and shut down upon test completion in order to optimize test resourceconsumption. During the test, TestIt loggers recorded log entries in each pipeline.
46

Time (hh:mm:ss)

Lo
g

en
tri

es

0

20

40

60

80

100

120

140

00:02:00 00:04:00 00:06:00 00:08:00

1 Pipeline 2 Pipelines 3 Pipelines 4 Pipelines

Figure 11: Linear scalability of TestIt.

The numerical results are shown in Figure 11 to demonstrate that entry generationscales roughly linearly in the number of pipelines configured in the system. As the plotis based on measuring simulation data there is a small margin of variance due to the factthat the robots generate state transition logs at different rates based on their actual navi-gation speed and waypoint reaching success rate. It must be stressed that linear scaling isexpected as individual pipelines are operating separately and the overhead from commu-nication with the TestIt daemon is negligible. The individual logs are retrieved from testpipelines after tests are finished which means there is no data transmission bottleneckeven with very large pipeline configurations.
3.4.3 Long-term autonomy testing
Autonomous robotic systems are usually designed to operate for extended periods of timewhich adds another facet to their software testing. It is considerably less cumbersome toverify that the SUT conforms to its specification in the short-term scenarios comparedto the long-term ones. Long-term autonomy can be regarded as the highest level of au-tonomy as it involves the robotic system operation for a long time without intervention.Testing physically whether the SUT performs without defects over a long time period iscomplex and expensive.As pointed out in 2.5, the long-term software testing of autonomous robot systemscan be simplified and its cost drastically reduced by utilizing simulation. Naturally, thequality of the simulation engine and the detail level of the robot and the environmentplays a major role in the performance gain that can be achieved using simulation in test-ing. The SUT software algorithms can be tested at a higher level (e.g., task allocation andnavigation planning) using simplified simulation models and physics simulation with lim-ited realism. Testing lower level software requires more advanced simulation models andenvironments in order to be beneficial to the overall quality assurance which can requireexponentially more resources to develop.An aspect that simulation-based testing will provide the testing process regardless ofthe simulation model and environment quality or level of detail is verifying that the soft-

47

ware does not have memory leaks or issues stemming from long-term operation. Thisis due to the fact that the SUT software will exhibit memory leaks in both the real-worldhardware and the simulation environments. TestIt can be configured to run the simulationwithout concrete time limit whilemonitoring thememory consumption for each softwarecomponent. Thismonitored value can also be integrated into the test run optimization as aweighted argument of possible test gain function. For example, there might be a memoryleak in very specific conditions that can occur only when several circumstances coincideand its coverage by test gives substantial gain increase.
As a concrete example, let us suppose a situationwhere there is a defect in the testablesoftware of a mobile robot that adds detected objects into a list in memory. The defectin the software would be that it adds objects without releasing the allocated memoryonce the object is no longer detected thus exhibiting a memory leak. This scenario canbe detected with TestIt as it can be configured to prioritize a scenario in which the totalmemory consumption of the software stack grows without limit. The resulting scenariowould possibly consist of a loop that involves guiding the robot to a location where itwould add the detected object, then guide the robot away from the location so that itcould add the object again later. This software defect and its detection do not rely onhigh detail simulation as this memory leak will exhibit itself regardless of the simulationquality level. Of course, this example is simplified and this concrete defect should havebeen detected at the unit testing level but this example serves only to give some intuitionwhat kind of defects can be detected using this approach.
To increase simulation-based testing efficiency even further, it is feasible to use timecompression in simulation. Accelerated simulation is supported inmultiple simulation en-gines such as Gazebo simulator [141] and Stage simulator [162]. Increased speed increasesthe amount of potential defect-exposing encounters the robot will experience and also al-lows tomaximize the resource utilization. The real-time factor can be fine-tuned tomatchthe test infrastructure performance capacity to maximize the test efficiency.
As discussed in the previous section, TestIt can be scaled up to test multiple instancesof the SUT by means of parallelization over the available test pipelines. This concurrenttesting also allows gathering simulated defect-free operation hours and use in analogousstudy of the system to estimate mean time between failures like MTBF methodology isused for hardware testing.

3.4.4 Test optimization support
One of the most important features of TestIt is the concrete test model independenttest scenario optimization functionality. As model-based testing approach allows gener-ation of infinite test cases by executing the models, it is crucial to optimize the traversedstate space to trim superfluous steps and only include the important steps. The test opti-mization algorithm is inspired by the reactive planning tester (RPT) gain tree constructionmethod proposed in [163].

As detailed in Publication I and Publication II, the test optimization algorithm mini-mizes the input sequence to the SUT to provide the maximum gain in the least amount ofsteps. At its core, the algorithm recursively deepens the gain tree to the specified max-imum depth level. The algorithm (pseudocode is presented in Algorithm 1) is initializedand started in compute_sequence() function. The initial state is the (None) node of theoptimization graph (Figures 13, 14 and 15).
The supporting functions get_state_hash() and get_chan_hash() provide a way to en-code and decode the states and data channels so that they are unique and can be usedas dictionary key values for the data structures used in the optimization algorithm. These

48

Figure 12: An example model.

data channels can be both internal and external w.r.t. ioco relation. For example, they canbe the messages passed between different software components which are not observedat that particular model refinement level. As a concrete example, this can be the robotbattery level data channel. This data channel might be used by the navigation componentto decide whether to select a shorter but more battery draining path or longer but moreeasily traversable path.
The expand() function expands each tree node (calculates the gain values of the chil-dren). Each gain tree level depends on the values of the previous level which means ithas to be created level by level. After reaching the maximum depth level, the algorithmpropagates the gain values (i.e., gained code coverage or other desired parameter gain)from the terminal nodes (the leaves at the maximum depth) to their ancestors up thetree to the root via the update_path_gain() function. Once all the gain values have beenbackpropagated to the root node (creating the path of maximum gain) the algorithm canjust return the best gain path first element of this maximum gain path as the next input tothe SUT. The function compute_edge_gains() computes the edge gains (i.e., possible gainvalues for the next step) for a state based on the current parameter state (e.g., it takesinto account the code lines which have already been covered).
The novelty of the optimization algorithm is that it takes into account the actual values(code coverage and other measured parameters) from the online test runner. These mea-sured values are compared to the probabilistic values based on the probabilistic modelconstructed by the optimization algorithm. The optimization algorithm gathers data fromall parallelized pipelines to construct the probabilistic model. This probabilistic model isused to find the best sequence of steps to maximize the gain of code coverage or othercriteria.
For example, the probabilistic model might contain the probabilities of the SUT soft-ware to execute specific lines of code after sending the specific input while being in aspecific state. Since models are abstractions of the actual system the probability mea-sures are required to handle the inherent non-determinism. In other words, the specificlines of codes might or might not be executed due to some hidden variable that is notaccounted for in the SUT model.
An example state transition model of the SUT used for test optimization can be seen inFigure 12. The states (waypoints in this example) are denoted WP1, WP2 and WP3. Thetransitions between the states are labeled from a through f .
The optimization algorithm starts by constructing a graph from the logs. For clarity,only the relevant parts of the log entries are presented. The following example has threeseparate test execution paths denoted as L1, L2 and L3.

49

L1 : (a,cov1 = {...}, t = 0)→ (b,cov2 = {...}, t = 2)→ (6)
(f ,cov3 = {...}, t = 3)

L2 : (f ,cov4 = {...}, t = 0)→ (c,cov5 = {...}, t = 1)→
(b,cov6 = {...}, t = 4)

L3 : (a,cov7 = {...}, t = 0)→ (d,cov8 = {...}, t = 4)→
(e,cov9 = {...}, t = 5)→ (f ,cov10 = {...}, t = 6)

Each execution comprises several entries (state transitions) and is denoted as a tuple
(T,cov, ts), where T is the transition (the source state is inferred from previous state), covis the the code coverage set (i.e., the set of lines that have been executed since last query)recorded at the moment of logging and ts is the timestamp of the entry. An example ofentries is shown in Eq 6. The coverage entries encode the dictionaries where the keysare tuples (f ile, l), where f ile is the file name and l is the code line (or non-overlappingcode interval if pre-processed in this way) that was executed since the last log event. Thevalues referred by the dictionary are the probabilities of the specific line (or interval) be-ing executed. This probability is initially always 1.0 but the probability is modified as thegraph is simplified. Each simplification step includes merging of edges and the coverageprobability changes when similar edges are merged. The merge takes place if the transi-tion occurs in the log multiple times. This results in several edges occurring between thesame states. These transitions can be merged into a single edge with modified combinedprobabilities.An example of such a merge is shown in Eq 7. As can be seen, if the line is executed inboth coverage sets, the probability remains 1.0 but if some lines of code are not presentin both coverage sets, after normalization the combined probability is reduced. In theexample, line 1 of file a is executed in the coverage set cov_1. The cov_2 set specifies thatlines 1 and 2 of file a are both executed. This implies that line 2 of a was not executedin cov_1. Therefore, when combining the coverages we deduce that line 2 of file a isexecuted with probability 0.5 and line 1 of file a is executed with probability 1.0.

cov1 = {(”a”,1) : 1.0}

cov2 = {(”a”,1) : 1.0,(”a”,2) : 1.0}

n(cov1 + cov2) = {(”a”,1) : 1.0,(”a”,2) : 0.5} (7)
It is possible to create the optimization graph in three ways with each method pro-viding different benefits. The first method and the one we use in the case study is theprobabilistic graph optimization shown in Figure 13. The probabilistic graph is cyclic byconstruction as long as the logs it is constructed from have sequences in which the sys-tem has visited the same states in a loop. For example, if the logs show a transition from

A to B in one log and from B to A in another, the resulting graph will have a loop between
A and B states. Because of this the probabilistic graph is compact and allows long SUTinput sequences to be generated due to normally having cyclic structure. Considering theprevious example, we could generate an infinite input sequence A→ B→ A→ B→ ...with each transition potentially providing some gain.

50

Figure 13: Graph for probabilistic optimization.

Figure 14: Graph for best trace optimization.

The second option is the best trace optimization for which the graph is constructed asa tree of state transition sequences that is based on the logs. As can be seen in Figure 14,the states are linked together as chains but there are no loops. This means that we canonly generate a finite number of inputs to the SUT starting from the initial state becauseof bounded branching factor of the tree of finite depth. This method is the least computa-tionally complex but the resulting graph can not be used to generate long sequences. Thismeans that once the best trace has been traversed the test stops and no effort is made toattain more coverage based on recorded probabilities. This option can be used to simplypick and execute the best trace (chosen by static analysis) from all known traces. Thereare scenarios in which this can be useful. For example, if the logs are generated from realworld data and tests are executed on real world systems with the requirement that thegenerated SUT input sequence has been seen before and is guaranteed to have workedpreviously.
The final option is the combination of the two aforementioned methods shown in Fig-ure 15 and creates graphs that have both the logs with timestamps but also generalizes toprobabilistic optimization after traversing through the logs. In order to benefit from thebest trace optimization (i.e., initially follow a logged input sequence) but still be able tocontinue the test after traversing a known trace the final state of an actual log entry needsto be connected to a probabilistic fragment of the graph.
Following the optimization graph construction, the gain tree is created which is whatthe optimization algorithm uses to determine the best input to send the SUT to gain themost code coverage improvement (in the exemplified case). This can be combined withother optimization criteria such as localization covariance (localization uncertainty) [164]

51

Figure 15: Graph for combined (probability and trace) optimization.

Figure 16: Optimization gain tree.

based on the simulation. It is possible to find sequences of inputs that maximize suchuncertainty which in turn creates efficient test scenarios by forcing the SUT into a difficultsituation. This difficult situation can possibly reveal a software defect thatwould not be re-vealed without the confluence of said localization uncertainty and some other action. Thegain tree based on a probabilistic graph in Figure 15 is shown in Figure 16. The optimiza-tion algorithm generates the gain tree from top down with each level denoting its depthlevel. Each successive level contains more nodes and the number of which is directly de-pendent on the branching factor of the optimization graph. Large branching factor graphswill reduce the effective maximum depth of the tree since computation requirements willincrease as more nodes are added to the tree. The optimization algorithm is greedy in thesense that it will choose the highest gain increase chain (chains are denoted as C1 throughC6 in Figure 16) at each step.
The properties of Algorithm 1 are demonstrated in Section 4.
As detailed in Publication I, a sample TestIt incremental test development workflow is

52

Algorithm 1 Test scenario optimization algorithm
1: tree_id← 0
2: function compute_sequence(state,step_lim,max_d)
3: seq← []
4: next← [state,{},0]
5: for _ in range(step_lim) do
6: next← compute_step(max_d,next[0],next[1])
7: data← get_state_hash(next[0])
8: chan← get_chan_hash(next[0])
9: seq← seq+(chan,data)
10: end for
11: return seq
12: end function
13: function compute_step(max_d,state,param)
14: tree_id← 0
15: gain_tree← expand({}, [0,state,{}, param],max_d)
16: update_path_gain(gain_tree)
17: best_g← 0
18: for key in gain_tree do
19: for child in gain_tree[key] do
20: node← gain_tree[child[0]]
21: if node = None then . Terminal node
22: if child[4]>= best_g or best_g == 0 then
23: best_g← child[4]
24: best_step← child[5][1]
25: end if
26: end if
27: end for
28: end for
29: sel_step← None
30: for edge in gain_tree[0] do
31: if edge[0] == best_step then
32: sel_step← edge[1]
33: best_param← edge[3]
34: end if
35: end for
36: return (sel_step,best_param)
37: end function

53

38: function expand(tree,elem,max_d)
39: el_id← elem[0]
40: state← elem[1]
41: param← elem[3]
42: depth+= 1
43: gains← compute_edge_gains(state, param)
44: tree[el_id]← []
45: for g in gains do
46: tree_id← tree_id +1
47: new_el← [tree_id,g,gains[g][0],gains[g][1]]
48: tree[el_id]← tree[el_id]+new_el
49: if depth <= max_d then
50: tree← expand(tree,new_el,max_d,depth)
51: end if
52: end for
53: return tree
54: end function

depicted in Figure 17. The shown workflow is designed for offline test optimization withincremental feasibility verification using model checking. The input to the workflow is anexecutable SUT increment. Its execution in interaction with the simulated environmentprovides the SUT input-output logs. The logs include context information, timestampsand code coverage data, etc. necessary for test coverage optimization.The model updates need to be verified for feasibility of test generation. The model isfeasible if the goal specified in terms of the SUT model elements or other coverage itemsis reachable. The test goal can be, e.g., the coverage of a specific code segment in the SUTor reaching a specific state in the SUT model. The test goal reachability is verified usingmodel checking [165]. In case the verification provides a negative result, it means eitherthe log file does not include necessary traces to provide an executable model and furthermonitoring experiments are needed, or alternatively, the design itself is incorrect andexcludes the behaviors that implement thetest goal. The decision on how to resolve theissue is put to the SUT developer and the test engineer involved in the process. Providedthe verification proves the test model feasibility, i.e., the tests can be generated using thetest model, further steps proceed with the test optimization.
3.5 Chapter summary
In this chapter, TestIt toolkit and its features are described in detail and the test optimiza-tion algorithm is presented. TestIt toolkit’s core features such as scalability, simulation-based long-term autonomy testing and configuration flexibility were presented in thecontext of needs articulated in autonomous robotic testing state-of-the-art scientific lit-erature and practice.

54

Figure 17: Offline testing workflow diagram.

55

4 Case study: Model-based testing of robotic intruder detec-
tion system

4.1 Chapter overview
This chapter describes the case study used in the demonstration of TestIt toolkit featuresand functionality. First, the system under test as well as the test scenario is describedin detail. Secondly, the test model construction for model checking purposes before testgeneration phase is described. Thirdly, the test feasibility verification using model check-ing is covered. This is followed by the description of the TestIt configuration that was usedto acquire the results. Finally, the results and a conclusion of the study are presented. Thischapter investigates the research questions RQ4 and RQ5.
4.2 Rationale of the case study
The feasibility of themethods introduced in the dissertation and the TestIt toolkit is demon-strated on a robotic intruder detection system. Publication I presents a concise case studyfor the toolkit demonstration that presents the benefits of MBT-based approach clearly.Case studies are commonly used to validate and demonstrate the benefits of the pro-posed theory or method. The most suitable use cases are emblematic of a larger popu-lation of use cases. The TestIt toolkit has been used in different industrial and academicprojects and it has shown to be useful in widely variable contexts. Real-world projectsare complex and have many superfluous details that impede clear understanding of thebenefits the toolkit provides. In addition to that issue, the real-world projects might onlyuse a subset of features that need to be demonstrated. To address these shortcomings, asynthetic but realistic use case that is a fragment of a larger building wide security systemhas been created.One important design goal of TestIt is to increase software testing automation whichis supported by the fact that the toolkit is based on black-box testing. Black-box testingapproach enables the toolkit to test the SUT without requiring intensive manual effort fordesigning the test suite. We showcase this aspect with the case study.The case study focuses on testing the software of security guard robots. The soft-ware under test is the software component dealing with the building floor explorationand cooperative intruder detection. For the intruder detection software to be tested itis necessary to have an intruder present in the environment partition of the model. Wealso know that there can be more than one guard robots patrolling the area to increasethe patrol coverage. Therefore, the demonstration use case features several actors: twopatrol robots and a single intruder. Each patrol robot moves around in the environmentwhile using its lidar sensor for both navigation as well as for intruder detection.
4.3 System under test
The SUT in the case study is the software of the guard robot. The case study featuresan intruder detection algorithm together with the patrol planner component which is re-sponsible for planning the patrol route. These algorithms together constitute the softwarecomponents under test. The features outlined in this SUT are the concurrency of actions,non-determinism in decision making, coordinated navigation and timing constraints to beaddressed in testing. The goal of the testing toolkit in this case study is to maximize thetest code coverage.The robot has several co-acting software components to achieve the task of securitypatrolling. The ROS computation graph is shown in Figure 18. Rectangles denote ROS

56

Figure 18: Simplified ROS computation graph.

topics and ellipses denote ROS nodes (software components). As can be seen from thegraph, the SUT contains three robots (two guard robots and one intruder). Each robothas similar components which are needed for navigation. In addition to the navigationcomponents, the system contains the TestIt SUT service2. This component is necessaryfor gathering the code coverage data. The code coverage can only be gathered at the SUTlocally as it relies on sending signals (i.e., SIGUSR1 signal) to the software componentswhich are then handled by each component by dumping the coverage information.The SUT software includes also the standard ROS navigation software which is notshown in the figure (i.e., move_base [166] with AMCL [167] localization component). The
move_base component is responsible for planning the trajectory of the robot. The com-ponent essentially consists of the global and the local planner. The global planner findsthe navigation trajectory based on the robot position on the map and the goal position.The local planner on the other hand uses the global plan to create a local plan which takesinto account dynamic obstacles that are not present on the static map.The AMCL localization component is responsible for providing correction to the robotpose. This component uses the lidar data (i.e., laser scan) to detect whether the robotactually has the position and the orientation it believes it has. Position and orientationcorrection is often required as the initial prediction is based on odometry data. This datais seldom accurate as the wheels of the robot can slip which introduces defects into thepredicted robot pose.The planner component determines the least visited neighbor of the current waypointand sends that waypoint as the goal to the move_base navigation component.The SUT software publishes and subscribes to broadcast topicwhich updates the knownguard robot positions to theMRS.When a guard robot detects an intruder, it sends ames-sage to sighting topic.The components denotedwith green color are TestIt components. The system containsone test adapter (test_adapter_1) which acts as a bridge between the Uppaal TA modeland ROS. The adapter transmits navigation goals to robot_0 which acts as the intruder inthis case study. Since Uppaal TA model is controlling only the intruder, only this robot isconnected to the triggering of log events. Log events are triggered every time the robot

2https://github.com/GertKanter/testit_sut
57

is sent a navigation goal and upon receiving navigation feedback. Upon receiving the log-ging request, the logger component publishes a message to f lush_coverage topic whichtriggers code coverage data transmission to the f lush_data topic by the sut_∗ nodes. Thesystem contains multiple copies of the TestIt SUT component because each componentruns on a different server. Section 4.7 contains more detailed information about the usecase configuration.Figure 18 also contains the simulator node (stageros) and map server (map_server)for completeness. The simulator node publishes sensor data to the robots and receivesmotor commands (i.e., cmd_vel) commands from the robots. The map server publishesthe map data which in this use case is the floor plan of the building.
4.4 Test scenario description
The test scenario in this case study deals with the navigation and intruder detection in theICT building of TallinnUniversity of Technology in Estonia. The floor plan of the fourth floorof the building has been implemented in the Stage simulator and can be seen in Figure 19.Stage simulator was chosen as the simulator for the case study primarily because of itssimplicity. Demonstration of TestIt capabilities does not require an advanced simulator.TestIt itself is simulator agnostic allowing various simulators to be used depending on theSUT specifics.

Figure 19: ICT building navigation graph.

The scenario includes three robots: two guard robots and one intruder.For the sake of simplicity the intruder always starts at the same initial position (the topleft node on the navigationmap) in the navigationmap and can choose the next waypointto move to randomly. The patrol robots also start at the same starting location and theymove along possible routes from waypoint to waypoint by preferring the least attendedneighbor waypoint or if there are several options the decision is based on the waypointidentification number by preferring the larger identification number.The patrol route before the intruder detection may be quite long and in general caseit takes considerable time to complete. This means that in case a software fault occursnear the end of the route, it would take an excessive amount of time to recreate thescenario which would include numerous state sequences leading up to fault occurrence(i.e., software defect reproduction).When using simulation for testing, it might be possible in some cases to drasticallyreduce the fault reproduction time by initializing the simulation at or near the fault occur-
58

rence state and/or optimizing the length of the test path and detect the fault again. Thisis possible only in cases of low degree of non-determinism in the model, i.e., when themodel is sufficiently elaborate to correspond to the simulation or real-world environmentcompletely. As this is rarely the case, it is not feasible to make this assumption and relyon this for improving the test efficiency.Faults can also often exhibit after a specific sequence of events occurs which can notreadily be identified. This sequence can not always be extracted as it is unclear what sizefragment needs to be extracted in order for the fault to reoccur upon reinitialization.Lastly, faults such as memory mismanagement can not be reproduced by reinitializ-ing the simulation at the fault occurrence state as it might not occur without the correcthistory (prefix sequence). TestIt toolkit makes it possible to guide the SUT into the statesalong the test paths where the events of interest have occurred with higher probabil-ity. TestIt identifies the highest potential gain sequences based on occurrence probabilityand takes the achieved goals (e.g., code coverage) into account dynamically while direct-ing the test path towards yet unachieved goals (i.e., the gain function changes over time).The gain function composition and test optimization is elaborated in 3.4.4.
4.5 SUT model construction
Typically, model-based conformance testing process starts with SUT model construction.This is based on the formalization of the requirements the SUT is implemented from. Testmodel construction from requirements is common in most of test driven developmentmethodologies as discussed in Publication VI. Alternatively, the model can be learnedfrom system monitoring logs by applying various machine learning techniques. In Publi-cation IV, an algorithm has been developed for learning the Uppaal TA composition un-der synchronous communication assumptions. The feasibility of the algorithm has beendemonstrated on the IEEE1394 leader election protocol example. Therefore, for ROS-based robot systems where asynchronous communication is prevailing as demonstratedin Publication I, we apply the combined approach where the model for test purpose fea-sibility verification is constructed from the SUT requirements description. For test opti-mization the model is augmented with additional coverage information extracted fromthe SUT interface logs. The latter is to demonstrate the TestIt usefulness in the develop-ment processes where the test model is evolving in lock step with the SUT developmentincrements.For verifying the feasibility of the test with respect to the test purpose specificationthe reachability of targeted test coverage needs to be proved, at first. This helps avoid-ing generating inconclusive test cases and waste of time when designing further testingsteps. In the sequel, at first, the testmodel construction and test feasibility verification aredemonstrated based on Uppaal TA modeling formalism and Uppaal model checker. Themodel for test feasibility analysis can be constructed even before the real development ofSUT is started since themodel and verification goals can be extracted directly from systemrequirements specification. Further coverage based test optimization steps can be madelater incrementally in the course of SUT implementation, as demonstrated in the rest ofthis section.For model construction, the state space of the model is constructed at first, to specifythe conditions and effects of model actors. The actors are an intruder, and two robots pa-trolling on the office floor. The formal description of actors environment is based on a realoffice building floor topology that is abstracted in the form of a navigation graph (Figure19). The data structure representing the navigation graph is a vector that consists of graphnodes names. Each node in the graph denotes a waypoint to be covered when the robots

59

Figure 20: Intruder model and responder.

Figure 21: Robot 1 model and responder.

are patrolling. At the same time, the waypoints also denote the potential locations of theintruder to be detected. Possible moves of actors in the navigation graph are modelledusing a two-dimensional array EDGEs with first dimension of length N (N is the numberof waypoints and second dimension of length Br (Br is maximum branching factor of thegraph). Each row in the array EDGEs corresponds to a waypoint and the elements of a rowcorrespond to the neighbour waypoints of that node. The model is depicted graphicallyin Figures 20 and 21.
The data structures that describe the actors’ state are vectorPos the elements ofwhichencode the current positions of actors in the navigation graph. The vector Occ of size Nencodes the occupancy of waypoints by robots and vector Vis the number of visits toeach waypoint. Boolean variable Detected is assigned the value true when the intruderis located. Each actor’s behavior is modelled using a pair of automata, one emulating theagent’s decision making (named Intruder_decide or Robot_i_decide respectively, where

i in the name denotes the number of the patrolling robot), and the other automaton(named Intruder_act and Robot_i_act, respectively) emulating the action performed toactuate the decision. The automata decide the order of exploration of waypoints. In-truder picks the next waypoint randomly from the list of adjacent nodes of its currentlocation. The patrolling robots pick the next node by preferring the least visited ones. Theautomata Intruder_act and Robot_i_act emulate moving from one waypoint to another.Moving takes time specified by an interval [lb, ub], lb and ub denoting lower and uppertimebounds respectively. The navigation graph is designed so that the distance betweenwaypoints is approximately the same. This keeps the duration interval [lb, ub] and themove duration approximation close to real moving duration.
Since the robots’ navigation is not perfect it can fail reaching the waypoint in somecases. This is represented in themodel as a probabilistic transition. The probabilistic tran-sitions of Intruder_act andRobot_i_act automata are labelled with probability estimates.The probability of reaching the targeted waypoint is denoted by p. The probability esti-mates are normalized with value range 0−100, so the failure of reaching target waypointhas estimate 100− p. If the target waypoint is not reached, robot returns to its previouslocation and tries the same target again by changing its route. Intruder detection in themodel is close to a real implemented detection mechanism. The intruder is visible to the

60

patrol robot when the robot is oriented towards the next waypoint where the intruder islocated, i.e., the distance between robots is not more than the distance between neigh-bourwaypoints, and the intruder is visible in the robot’s front view sector. This ismodelledwith conditional assignment Detected = (NPos == Pos[0]?true : Detected), where NPosis the variablemodeling the next waypoint for a patrol to go andPos[0]models the currentposition of the intruder.
4.6 Test feasibility verification
Supposing that for maximum code coverage, both the robot navigation and intruder de-tection scenarios have to be represented in the model the verification property shouldexpress the reachability condition that it is always the case that at least one of the robotseventually detects the intruder. By referring to the model global variable Detected, thiscan be expressed by TCTL formula A <> Detected. The variable Detected is updated to
true in the model whenever any of patrolling robots satisfies the detection condition. Theverification experiments show that this test case is feasible for the navigation graph thatincludes 86 nodes and patrols implement described search strategy when there are atleast three patrol robots and if the robots are at least three times faster than the intruder.The robot’s navigation failure probability should be lower than 5 percent. Weaker verifi-cation condition E <> Detected that is valid if there exists at least one of such behaviorwhere the intruder is located has been proved under more relaxed conditions where onlytwo robots with equal speeds are finding the intruder in the building. If further actionis not needed to be covered in the test case, this proof is sufficient for continuing withthe test case optimization. Keeping in mind, the test is feasible under given constraints,further test optimization steps are targeted to reduce the test length by allocating proba-bilistic gain functions to the test model that guide the test run towards the goal along theoptimal test path.
4.7 TestIt configuration
TestIt configuration for testing the SUT is specified in a separate source code repository3as encapsulating the testing configuration is preferable to keep both repositories (i.e., theSUT repository and TestIt configuration repository) clean and concise. The TestIt config-uration itself essentially consists of the testing infrastructure control configuration, SUTlaunch and test launch parameter specification. TestIt SUT launch is configured to startthe full software stack and bring all robots (i.e., patrol robots and intruder robot) onlineand ready to receive navigation goals. After a short duration, the patrol planning as wellas detection algorithm (the SUT component in this case study) is also started.

Figure 22: Test pipeline configuration.

To demonstrate our approaches scalability we have used the AWS cloud to create fourpipelines which can run the tests and simulations in parallel. The configuration is shown in
3https://gitlab.com/GertKanter/testit-patrol-aws

61

Figure 10. Each pipeline consists of a SUT ROS master server (including the simulator), anintruder navigation stack server, two guard navigation stack and patrol algorithm serversand a TestIt logger and test runner server as seen in Figure 22.
4.8 Case study results
As discussed in Section 3.4.4, TestIt is designed to run in two modes. Exploratory mode isused to generate data for test scenario optimization. An example of exploratory phase isshown in Figure 23 visualized using RViz tool. In the figure, the trajectories of the robotsare visualized as a collection of odometry arrows. In this particular example, the intruder(denoted as yellow) was operating in a limited area in the top left. The trajectories of thepatrol robots are denoted in red and blue.

Figure 23: Test execution visualization.

After a sufficient amount of data has been logged the optimized scenario can be ex-tracted from the log. The amount of log data required for effective optimization varies byuse case. Optimization requires that the logs contain an event of interest (i.e., a situationwhere increased code coverage is achieved) in order to be useful. In our case, the loggercaptured a high coverage event near the starting point of one patrol robot (denoted as ared node in Figure 19). The optimization algorithm was used on the test runner and thealgorithm guided the robot to achieve full relative coverage of the patrol_detector node.The term relative coverage refers to the coverage based on what have been captured inthe logs. This means that the sections of code that have not been executed during loggingremain unknown to the optimization algorithm.The coverage plot is presented in Figure 24. The plot presents three cases: worst-casescenario, random scenario and optimized scenario coverage strategy. The test time wasset to 500 seconds to allow the test runner sufficient time for guiding the intruder intodifferent states. The number of states traversed ranged from 17 to 22.In the worst-case, the test runner always chooses the worst possible next input thatgains the least coverage. This is achieved by continually traversing the farthest left topcorner edges on the navigation map in a loop. Based on the logs, there is no detectionevent occurring in that region and therefore the relative code coverage remains constant.The random strategy test runner picks the next input randomly from the known alter-natives. The result shown is the average case in multiple runs. As can be seen from thefigure, the random strategy achievesmarginally improved code coverage compared to theworst-case strategy.In order to attain the best coverage as rapidly as possible we employ the optimizationstrategy in test generation. The beginning of the tests is similar as the main loop of the
62

Time (s)

C
ov

er
ag

e
(%

)

80

90

100

100 200 300 400 500

Optimized Worst-case Random

Figure 24: Relative code coverage of the SUT.

SUT software is running and covered evenwithout optimal control. The real benefit of theoptimization algorithm becomes evident after some time has been given for the controlalgorithm to navigate the robot into position for the high code coverage event. The highcode coverage event for this particular use case is when the intruder is detected by theguard robot and it takes time for both the guard robot and intruder to move to the samelocation. After sufficient time has been given for navigation we can see the strategy suc-ceeding in achieving full relative coverage within the time limit when the other strategiesfail.
The test runner takes into account live code coverage when executing the test whichmakes it very responsive to actual results. This means that each test can be unique as thetest runner tries to achieve full code coverage based on the actual online learning resultsand adjusts the optimal input sequence to the SUT accordingly. This makes the approachrobust and enables to determine when to restart the simulation if the test optimizationalgorithm detects that the code coverage can not be improved sufficiently and in reason-able time from the current state.
The online test runner is especially useful in high branching state space with low prob-ability high code coverage events as the test runner can identify the correct sequencein advance. This can be witnessed also in the presented use case with limited branch-ing factor. The random strategy failed to find the high code coverage events whereas theoptimization algorithm succeeded.
In the case study we did not actively control the patrol robots to demonstrate thatit is possible to test autonomous systems using the black-box approach without explic-itly modeling their internal behavior. If the patrol robots would have been deterministi-cally controllable the results would have been different and full coverage could have beenachieved faster with the cost of drastic model state space increase.

63

4.9 Chapter summary
This chapter gave a detailed overview of the demonstration case study. Firstly, the SUTfor the case study was described. This was followed by a description of the test scenario.A detailed account of the SUT model construction and test feasibility verification camenext. Finally, the TestIt configuration was presented and finished up with outlining thetest results.

64

5 Conclusion
5.1 Chapter overview
This chapter concludes the dissertation and outlines the future work.
5.2 Results
The testing framework described in the dissertation provides support for MBT of AS inthree categories, these are

• testing methodology
• formal test verification and optimization
• testing process tooling.
The MBT process that is integrated into incremental and iterative AS development ad-dresses the need for provably correct test development where each test developmentstep starting from well-formed test model construction to test deployment and execu-tion presumes formal correctness verification. The issue is addressed in the dissertationbecause the test results cannot be fully trusted without the test correctness has been ver-ified. Properly generated tests decrease the uncertainty of test conclusions and the needfor repetitive testing. Also, late design defect discovery and need for expensive defectcorrection decreases.The formal techniques proposed in the dissertation address the following three issuesin MBT:
• the verification of test development increments;
• automated model learning that is commonly acknowledged bottleneck when ap-plying MB techniques in the AS development and testing;
• test optimization.
New contributions have been elaborated in each of these aspects. For verification ofdevelopment increments the templates of correctness properties have been expressedin temporal logic TCTL and their verification technique using Uppaal model checker hasbeen demonstrated.An algorithm for learning a subclass of Uppaal timed automata models from systemand its environment interaction logs has been developed. A probabilistic online optimiza-tion algorithm is proposed that generates an optimal with respect to code coverage andother user-defined parameters gain test paths.To provide automation support to the testing process TestIt toolkit has been devel-oped. TestIt toolkit’s primary focus is model-based testing of autonomous multi-robotsystems to improve software quality assurance in various applications. The main noveltyof the presented toolkit is the open and scalable multi-pipeline architecture that enablesincorporation of test development and execution tools from various vendors. The sec-ond main contribution is adaptive test optimization technique that takes advantage ofthe proposedmulti-pipeline architecture where testing threads can communicate the testruns based on their cooperatively collected test performance data. The usability of TestItfor test generation, its validation and optimization in autonomous navigation context isdemonstrated using a robotic intruder detection system case study.

65

The framework has been validated also in industrial AS development projects in col-laboration with Norcar AB and AS Milrem. The proposed framework helped improve thequality assurance of the autonomous robot software in these projects. The results showthat the proposed framework and TestIt toolkit add value to the quality assurance work-flow in autonomous multi-robot systems development.
5.3 Future work
TestIt toolkit can be improved inmultiple aspects. One of the ongoing improvementworksis adding an online state space exploration feature to TestIt. This functionality adds thepossibility to learn the state transitions automatically without extra modeling overhead.This process uses the same logging facility as the rest of TestIt but these logs are generatedby an exploration algorithm which aims to map the state space sequences that the SUTis able to complete. The resulting state space traversal automata can be used as input totest scenario optimization algorithm described in this dissertation. Combining automaticautomata learning with TestIt will reduce the manual effort required to configure TestItand lowers the modeling qualification requirements for using TestIt. The overall goal ofTestIt is to minimize the manual work for testing in order to provide maximum test costsavings.The second ongoing work is adding a universal Dtron test adapter to TestIt. Currently,new Uppaal TA synchronizations need to be added by the user manually but this new ad-dition will make it possible for TestIt to support essentially any ROS-based robot projectwithout requiringmanual development effort. This can be achieved by shifting the specifi-cation of the channels and channel types from adapter source code to a configuration file.There is no need to change anything in Uppaal TA as the integer type is usable for encod-ing the configuration specification (i.e., configuration specification selection is encoded asintegers).Another research direction worth further consideration is reward-based scenario ex-ploration. Reward-based exploration of the state space could reduce optimal test scenariodiscovery time by exploring the state space based on system feedback which would guidethe search algorithm to explore in the most promising state space regions. TestIt wouldbenefit from an improved method of test scenario exploration as would any test casegeneration tool. One of the possible implementations for this functionality would be touse Multi-Agent Reinforcement Learning (MARL) [168]. The MARL approach is resource-intensive but could result in a fully-automatic testing flow for the robotics software engi-neer.

66

References
[1] G. Kanter and J. Vain. Model-based testing of autonomous robots using TestIt.

Journal of Reliable Intelligent Environments, 6(1):1–17, 2020.
[2] G. Kanter and J. Vain. Testit: an open-source scalable long-term autonomy testingtoolkit for ros. In Proceedings of the 10th International Conference Dependable

Systems, Services and Technologies, DESSERT’2019, pages 45–50, 2019.
[3] G. Kanter, J. Vain, S. Srinivasan, and S. Ramaswamy. Provably correct configura-tion management of precision feeding in agriculture4.0. In 2019 IEEE International

Conference on Systems, Man and Cybernetics (SMC), pages 1631–1637, 2019.
[4] J. Vain, G. Kanter, and A. Anier. Learning timed automata from interaction traces.In 14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine

Systems, HMS 2019, volume 52-19, pages 205–210, 2019.
[5] J. Ernits, E. Halling, G. Kanter, and J. Vain. Model-based integration testing of rospackages: a mobile robot case study. In 2015 IEEE European Conference on Mobile

Robots, pages 1–7. IEEE, 2015.
[6] J. Vain, G. Kanter, and S. Srinivasan. Model based testing of distributed time criticalsystems. In 2017 6th International Conference on Reliability, Infocom Technologies

and Optimization (ICRITO), pages 99–105. IEEE, 2017.
[7] What is a container?, 2020. https://www.docker.com/resources/what-

container, Accessed on 2020-05-09.
[8] Rajeev Alur. Principles of Cyber-Physical Systems. The MIT Press, 2015.
[9] A. Gautam and S. Mohan. A review of research in multi-robot systems. In 2012 IEEE

7th International Conference on Industrial and Information Systems (ICIIS), pages1–5, Aug 2012.
[10] Vladimir Lumelsky. Sensing, Intelligence, Motion: How Robots and Humans Move

in an Unstructured World. 01 2006.
[11] Bruno Siciliano andOussama Khatib. Springer handbook of robotics. Springer, 2016.
[12] R. Bangia. Dictionary of Information Technology. Laxmi Publications Pvt Limited,2010.
[13] IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990,pages 1–84, Dec 1990.
[14] S. K. Khaitan and J. D.McCalley. Design techniques and applications of cyberphysicalsystems: A survey. IEEE Systems Journal, 9(2):350–365, 2015.
[15] Iris F.A. Vis. Survey of research in the design and control of automated guidedvehicle systems. European Journal of Operational Research, 170(3):677 – 709, 2006.
[16] Gregory Dudek, Michael Jenkin, and Evangelos Milios. A taxonomy of multirobotsystems. Robot teams: From diversity to polymorphism, pages 3–22, 2002.
[17] List of self-driving car fatalities, 2020. https://en.wikipedia.org/wiki/

List_of_self-driving_car_fatalities, Accessed on 2020-05-09.
67

[18] Top 10 strategic technology trends for 2019: Autonomous things, 2019.
https://www.gartner.com/en/documents/3904571/top-10-strategic-

technology-trends-for-2019-autonomous-t, Accessed on 2020-05-09.
[19] T. Linz. Testing autonomous systems. In S. Goericke, editor, The Future of Software

Quality Assurance, pages 61–75, Cham, 2020. Springer International Publishing.
[20] J. Bosch. Speed, data, and ecosystems: The future of software engineering. IEEE

Software, 33(1):82–88, Jan 2016.
[21] Matt Luckcuck,Marie Farrell, Louise A. Dennis, Clare Dixon, andMichael Fisher. For-mal specification and verification of autonomous robotic systems: A survey. ACM

Comput. Surv., 52(5), September 2019.
[22] John Jeremiah. Survey: Is agile the new norm?, 2015. https://techbeacon.

com/app-dev-testing/survey-agile-new-norm, Accessed on 2020-05-09.
[23] Estonian Research Information System - "Private sector (Estonia)" projectLEP18082IT, 2018. https://www.etis.ee/Portal/Projects/Display/

3618849e-98af-4ca6-8942-ea713c6d0312?lang=ENG, Accessed on 2020-05-09.
[24] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,2003.
[25] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.Wiley Publishing, 3rd edition, 2011.
[26] Jan Tretmans. Test generation with inputs, outputs, and quiescence. In TizianaMargaria and Bernhard Steffen, editors, Tools and Algorithms for Construction and

Analysis of Systems, Second International Workshop, TACAS ’96, Passau, Germany,
March 27-29, 1996, Proceedings, volume 1055 of Lecture Notes in Computer Sci-
ence, pages 127–146. Springer, 1996.

[27] Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, WernerDamm, Thomas Henzinger, and Kim Guldstrand Larsen. Contracts for System De-sign. Research Report RR-8147, INRIA, November 2012.
[28] M. Kläs, T. Bauer, A. Dereani, T. Söderqvist, and P. Helle. A large-scale technologyevaluation study: Effects of model-based analysis and testing. In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, volume 2, pages 119–128, May 2015.
[29] M. Felderer and A. Beer. Estimating the return on investment of defect taxonomysupported system testing in industrial projects. In 2012 38th Euromicro Conference

on Software Engineering and Advanced Applications, pages 426–430, Sep. 2012.
[30] T. Sotiropoulos, H. Waeselynck, J. Guiochet, and F. Ingrand. Can robot navigationbugs be found in simulation? an exploratory study. In 2017 IEEE International Con-

ference on Software Quality, Reliability and Security (QRS), pages 150–159, 2017.
[31] A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley. A study on challenges of test-ing robotic systems. In Proceedings of IEEE International Conference on Software

Testing, Verification and Validation (ICST) 2020. IEEE, In press.
68

[32] C. Robert. First insights into testing autonomous robot in virtual worlds. In 2017 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW),pages 112–115, 2017.

[33] James Arnold and Rob Alexander. Testing autonomous robot control software usingprocedural content generation. InProceedings of the 32nd International Conference
on Computer Safety, Reliability, and Security - Volume 8153, SAFECOMP 2013, page33–44, Berlin, Heidelberg, 2013. Springer-Verlag.

[34] Alessio Gambi, Marc Mueller, and Gordon Fraser. Automatically testing self-drivingcars with search-based procedural content generation. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA2019, page 318–328, New York, NY, USA, 2019. Association for Computing Machin-ery.

[35] Franz Wotawa, Bernhard Peischl, Florian Klück, and Mihai Nica. Quality assur-ance methodologies for automated driving. Elektrotechnik und Informationstech-
nik, 135(4):322–327, 2018.

[36] Sandeep K.S. Gupta, Tridib Mukherjee, Georgios Varsamopoulos, and Ayan Baner-jee. Research directions in energy-sustainable cyber–physical systems. Sustainable
Computing: Informatics and Systems, 1(1):57 – 74, 2011.

[37] Dejanira Araiza-Illan, Anthony G. Pipe, and Kerstin Eder. Model-based test genera-tion for robotic software: Automata versus belief-desire-intention agents, 2016.
[38] Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Victor Braberman. Model-based quality assurance of protocol documentation: Tools andmethodology. Softw.

Test. Verif. Reliab., 21(1):55–71, March 2011.
[39] Maurice Dawson, Darrell Burrell, Emad Rahim, and Stephen Brewster. Integratingsoftware assurance into the software development life cycle (sdlc). Journal of In-

formation Systems Technology and Planning, 3:49–53, 01 2010.
[40] Gabriela Nicolescu and Pieter J. Mosterman, editors. Model-Based Design for Em-

bedded Systems. CRC Press. -1-4200-6784-2, Computational Analysis, Synthesis,and Design of Dynamic Systems. 1., 2010.
[41] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer,39(2):25–31, Feb 2006.
[42] Alberto Rodrigues da Silva. Model-driven engineering: A survey supported by theunified conceptual model. Computer Languages, Systems & Structures, 43:139 –155, 2015.
[43] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: The next com-puting revolution. In Design Automation Conference, pages 731–736, June 2010.
[44] P. Helle, W. Schamai, and C. Strobel. Testing of autonomous systems - challengesand current state-of-the-art. INCOSE International Symposium, 26:571–584, 072016.
[45] D. Marijan, A. Gotlieb, and M. Kumar Ahuja. Challenges of testing machine learn-ing based systems. In 2019 IEEE International Conference On Artificial Intelligence

Testing (AITest), pages 101–102, 2019.
69

[46] F. Ingrand. Recent trends in formal validation and verification of autonomous robotssoftware. In 2019 Third IEEE International Conference on Robotic Computing (IRC),pages 321–328, 2019.
[47] P. Duan, Y. Zhou, X. Gong, and B. Li. A systematic mapping study on the verificationof cyber-physical systems. IEEE Access, 6:59043–59064, 2018.
[48] Xi Zheng and Christine Julien. Verification and validation in cyber physical systems:Research challenges and a way forward. In Proceedings of the First International

Workshop on Software Engineering for Smart Cyber-Physical Systems, SEsCPS ’15,page 15–18. IEEE Press, 2015.
[49] E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC), pages 363–369, 2008.

[50] Chapter 2 - the pain and the gain. In Mark Utting and Bruno Legeard, editors, Prac-
tical Model-Based Testing, pages 19 – 57. Morgan Kaufmann, San Francisco, 2007.

[51] Maja J. Matarić. Designing and understanding adaptive group behavior. Adaptive
Behavior, 4(1):51–80, 1995.

[52] C. Ronald Kube and Hong Zhang. Collective robotics: From social insects to robots.
Adaptive Behavior, 2(2):189–218, 1993.

[53] Y. Uny Cao, Alex S. Fukunaga, and Andrew Kahng. Cooperative mobile robotics:Antecedents and directions. Autonomous Robots, 4(1):7–27, Mar 1997.
[54] Erol Şahin. Swarm robotics: From sources of inspiration to domains of application.In Erol Şahin and William M. Spears, editors, Swarm Robotics, pages 10–20, Berlin,Heidelberg, 2005. Springer Berlin Heidelberg.
[55] Tamio Arai, Enrico Pagello, Lynne E Parker, et al. Advances in multi-robot systems.

IEEE Transactions on robotics and automation, 18(5):655–661, 2002.
[56] Stephen Hendrick Kaisler. Software paradigms. Wiley Online Library.
[57] Romana Gnatyk. Microservices vs monolith: which architecture is the bestchoice for your business?, 2018. https://www.n-ix.com/microservices-vs-

monolith-which-architecture-best-choice-your-business/, Accessedon 2020-05-09.
[58] Robin Flygare and Anthon Holmqvist. Performance characteristics between mono-lithic and microservice-based systems, 2017.
[59] Elena Dubrova. Introduction, pages 1–4. Springer New York, New York, NY, 2013.
[60] Mirko Ferrati, Alessandro Settimi, Luca Muratore, Alberto Cardellino, Alessio Roc-chi, EnricoMingo Hoffman, Corrado Pavan, Dimitrios Kanoulas, Nikos G. Tsagarakis,Lorenzo Natale, and Lucia Pallottino. The walk-man robot software architecture.

Frontiers in Robotics and AI, 3:25, 2016.
[61] GuillaumeWalck, Ugo Cupcic, Toni Oliver Duran, and Véronique Perdereau. A CaseStudy of ROS Software Re-usability for Dexterous In-HandManipulation. Journal of

Software Engineering for Robotics, 5(1):36–47, 2014.
70

[62] GergelyMagyar, Peter Sincak, and Zoltán Krizsán. Comparison study of robotic mid-dleware for robotic applications. Advances in Intelligent Systems and Computing,316:121–128, 01 2015.
[63] What is ROS?, 2018. http://wiki.ros.org/ROS/Introduction, Accessed on2020-05-09.
[64] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating system. vol-ume 3, 01 2009.
[65] Ayssam Elkady and Tarek Sobh. Robotics middleware: A comprehensive literaturesurvey and attribute-based bibliography. Journal of Robotics, 2012, 05 2012.
[66] Core components. https://www.ros.org/core-components/, Accessed on2020-05-09.
[67] Tully Foote. Community metrics report, 2019. http://download.ros.org/

downloads/metrics/metrics-report-2019-07.pdf, Accessed on 2020-05-09.
[68] Ivano Malavolta, Grace Lewis, Bradley Schmerl, Patricia Lago, and David Garlan.How do you Architect your Robots? State of the Practice and Guidelines for ROS-based Systems. In Proceedings of the 42nd ACM/IEEE International Conference on

Software Engineering, page to appear, 2020.
[69] A. Santos, A. Cunha, and N. Macedo. Static-time extraction and analysis of theros computation graph. In 2019 Third IEEE International Conference on Robotic

Computing (IRC), pages 62–69, 2019.
[70] Chapter 1 - the challenge. In Mark Utting and Bruno Legeard, editors, Practical

Model-Based Testing, pages 1 – 18. Morgan Kaufmann, San Francisco, 2007.
[71] Robert V Binder, Bruno Legeard, and Anne Kramer. Model-based testing: Wheredoes it stand? Queue, 13(1):40–48, 2014.
[72] Matti Vuori. Model-based testing in modern agile software development - howto integrate it into the development process?, 2014. http://www.cs.tut.fi/

~swtest/atac/ATAC_report_MBT_in_modern_agile_development.pdf, Ac-cessed on 2020-05-09.
[73] Sanjit A. Seshia, Natasha Sharygina, and Stavros Tripakis. Modeling for Verification,pages 75–105. Springer International Publishing, Cham, 2018.
[74] Dennis Dams and Orna Grumberg. Abstraction and Abstraction Refinement, pages385–419. Springer International Publishing, Cham, 2018.
[75] Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi, MartinTappler, and Masoumeh Taromirad. Model Learning and Model-Based Testing,pages 74–100. Springer International Publishing, Cham, 2018.
[76] Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald Raffelt, andBernhard Steffen. On the correspondence between conformance testing and reg-ular inference. In Maura Cerioli, editor, Fundamental Approaches to Software En-

gineering, pages 175–189, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
71

[77] Axel van Lamsweerde. Formal specification: A roadmap. In Proceedings of the
Conference on The Future of Software Engineering, ICSE ’00, page 147–159, NewYork, NY, USA, 2000. Association for Computing Machinery.

[78] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing approaches. Software testing, verification and reliability, 22(5):297–312, 2012.
[79] Mohd Azizi Abdul Rahman, Katsuhiro Mayama, Takahiro Takasu, Akira Yasuda, andMakoto Mizukawa. Model-driven development of intelligent mobile robot usingsystems modeling language (sysml). In Mobile Robots, chapter 1. IntechOpen, Ri-jeka, 2011.
[80] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.In Lecture Notes on Concurrency and Petri Nets, Lecture Notes in Computer Science

vol. 3098, pages 87–124. Springer-Verlag, 2004.
[81] Ernst Moritz Hahn, Arnd Hartmanns, Christian Hensel, Michaela Klauck, JoachimKlein, Jan Křetínský, David Parker, Tim Quatmann, Enno Ruijters, and Marcel Stein-metz. The 2019 comparison of tools for the analysis of quantitative formal mod-els. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen, editors,

Tools and Algorithms for the Construction and Analysis of Systems, pages 69–92,Cham, 2019. Springer International Publishing.
[82] Sara Abbaspour Asadollah, Rafia Inam, and Hans Hansson. A survey on testing forcyber physical system. In Khaled El-Fakih, Gerassimos Barlas, andNina Yevtushenko,editors, Testing Software and Systems, pages 194–207, Cham, 2015. Springer Inter-national Publishing.
[83] Aaron Kane, Thomas Fuhrman, and Philip Koopman. Monitor based oracles forcyber-physical system testing: Practical experience report. In Proceedings of the

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN ’14, page 148–155, USA, 2014. IEEE Computer Society.

[84] Teck Ping Khoo. Model based testing of cyber-physical systems. In Jing Sun andMeng Sun, editors, Formal Methods and Software Engineering, pages 423–426,Cham, 2018. Springer International Publishing.
[85] Dejanira Araiza-Illan, Anthony G. Pipe, and Kerstin Eder. Intelligent agent-basedstimulation for testing robotic software in human-robot interactions. In Proceed-

ings of the 3rdWorkshop onModel-Driven Robot Software Engineering, MORSE ’16,page 9–16, New York, NY, USA, 2016. Association for Computing Machinery.
[86] Nidhi Kalra and Susan Paddock. Driving to safety: Howmanymiles of driving wouldit take to demonstrate autonomous vehicle reliability? Transportation Research

Part A: Policy and Practice, 94:182–193, 12 2016.
[87] Ali Paikan, Silvio Traversaro, Francesco Nori, and Lorenzo Natale. A generic testingframework for test driven development of robotic systems. In Jan Hodicky, editor,

Modelling and Simulation for Autonomous Systems, pages 216–225, Cham, 2015.Springer International Publishing.
72

[88] Jyotirmoy V. Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, andVinayak S. Prabhu. Testing cyber-physical systems through bayesian optimization.
ACM Trans. Embedded Comput. Syst., 16:170:1–170:18, 2017.

[89] Houssam Abbas, Matthew O’Kelly, Alena Rodionova, and Rahul Mangharam. Safeat any speed: A simulation-based test harness for autonomous vehicles. In RogerChamberlain,Walid Taha, andMartin Törngren, editors, Cyber Physical Systems. De-
sign, Modeling, and Evaluation, pages 94–106, Cham, 2019. Springer InternationalPublishing.

[90] Matthew O' Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John CDuchi. Scalable end-to-end autonomous vehicle testing via rare-event simulation.In S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,editors, Advances in Neural Information Processing Systems 31, pages 9827–9838.Curran Associates, Inc., 2018.
[91] S. Liu, J. Tang, C. Wang, Q. Wang, and J. Gaudiot. A unified cloud platform forautonomous driving. Computer, 50(12):42–49, December 2017.
[92] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues. Crashingsimulated planes is cheap: Can simulation detect robotics bugs early? In 2018

IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST), pages 331–342, April 2018.

[93] Smart continuous integration, 2020. http://www.testributor.com/, Accessedon 2020-05-09.
[94] The automated test framework (atf), 2020. https://github.com/

floweisshardt/atf/, Accessed on 2020-05-09.
[95] Graphwalker, an open-source model-based testing tool, 2020. http://

graphwalker.github.io/, Accessed on 2020-05-09.
[96] fmbt, 2020. https://01.org/fmbt, Accessed on 2020-05-09.
[97] Boost your test automation for devops!, 2019. https://4test.io/, Accessed on2020-05-09.
[98] Jsxm, 2014. http://www.jsxm.org/, Accessed on 2020-05-09.
[99] Dimitris Dranidis, Konstantinos Bratanis, and Florentin Ipate. Jsxm: A tool for auto-mated test generation. In George Eleftherakis, Mike Hinchey, and Mike Holcombe,editors, Software Engineering and Formal Methods, pages 352–366, Berlin, Heidel-berg, 2012. Springer Berlin Heidelberg.
[100] Modbat - a model-based tester, 2019. https://people.kth.se/~artho/

modbat/, Accessed on 2020-05-09.
[101] Momut, 2020. https://momut.org/, Accessed on 2020-05-09.
[102] Osmombt tool, 2020. https://github.com/mukatee/osmo, Accessed on 2020-05-09.
[103] Teemu Kanstrén and Olli-Pekka Puolitaival. Using built-in domain-specific modelingsupport to guide model-based test generation. Electronic Proceedings in Theoreti-

cal Computer Science, 80, 02 2012.
73

[104] Tcases: A model-based test case generator, 2020. https://github.com/

Cornutum/tcases, Accessed on 2020-05-09.
[105] J. Tretmans. On the Existence of Practical Testers, pages 87–106. Springer Interna-tional Publishing, Cham, 2017.
[106] Construction and analysis of distributed processes - software tools for designingreliable protocols and systems, 2020. https://cadp.inria.fr/, Accessed on2020-05-09.
[107] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. Cadp 2011:a toolbox for the construction and analysis of distributed processes. International

Journal on Software Tools for Technology Transfer, 15(2):89–107, Apr 2013.
[108] Distributed real-time embedded analysis method - dream, 2009. http://dre.

sourceforge.net/, Accessed on 2020-05-09.
[109] Guillaume Gardey, Didier Lime, Morgan Magnin, et al. Romeo: A tool for analyzingtime petri nets. In International Conference on Computer Aided Verification, pages418–423. Springer, 2005.
[110] David Freedman.Markov chains. Springer-Verlag, New York-Berlin, 1983. Correctedreprint of the 1971 original.
[111] Ahmed Tamrawi, Kang Gui, and Suresh Kothari. Event-flow graphs for efficient path-sensitive analyses. ArXiv, abs/1404.1279, 2014.
[112] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. 012010.
[113] John E. Hopcroft, RajeevMotwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pub-lishing Co., Inc., USA, 2006.
[114] Unified modeling language, 2020. https://www.omg.org/spec/UML/About-

UML/, Accessed on 2020-05-09.
[115] J. Srba. Comparing the expressiveness of timed automata and timed extensions ofpetri nets. In Franck Cassez and Claude Jard, editors, Formal Modeling and Analysis

of Timed Systems, pages 15–32, Berlin, Heidelberg, 2008. Springer Berlin Heidel-berg.
[116] Gerd Behrmann, Alexandre David, and Kim Larsen. A tutorial on uppaal. volume3185, pages 200–236, 01 2004.
[117] Anders Hessel, Kim G. Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson,and Arne Skou. Testing real-time systems using uppaal. In Formal Methods and

Testing, 2008.
[118] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and IreneFinocchi. A survey of symbolic execution techniques. ACM Computing Surveys

(CSUR), 51(3):1–39, 2018.
[119] The spread toolkit, 2019. http://www.spread.org/, Accessed on 2020-05-09.

74

[120] Kim Guldstrand Larsen. Dependable and optimal cyber-physical systems. In SOF-
SEM 2017, volume 10139 of Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pages3–10, Germany, 2017. Springer.

[121] Kim Guldstrand Larsen. Validation, synthesis and optimization for cyber-physicalsystems. In Tools and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017 held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2017, Proceedings, volume 10205LNCS of Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), pages 3–20, Germany,2017. Springer. 23rd International Conference on Tools and Algorithms for the Con-struction and Analysis of Systems, TACAS 2017 held as Part of the European JointConferences on Theory and Practice of Software, ETAPS 2017 ; Conference date:22-04-2017 Through 29-04-2017.

[122] Kim Larsen, Marius Mikučionis, Brian Nielsen, and Arne Skou. Testing real-timeembedded software using uppaal-tron: An industrial case study. pages 299–306,01 2005.
[123] J. Bengtsson. Clocks, DBMs and States in Timed Systems. PhD thesis, Uppsala Uni-versity, Dept. of Information Technology, 2002.
[124] Paula Herber. A framework for automated hw/sw co-verification of systemc designsusing timed automata. it - Information Technology, 54, 11 2012.
[125] Junaid Iqbal, Dragos Truscan, Jüri Vain, and Ivan Porres. Reconstructing timedsymbolic traces from rtioco-based timed test sequences using backward-induction.In Proceedings of the Fifth European Conference on the Engineering of Computer-

Based Systems, ECBS ’17, New York, NY, USA, 2017. Association for Computing Ma-chinery.
[126] Craig Larman and Victor Basili. Iterative and incremental development: A briefhistory. Computer, 36:47 – 56, 07 2003.
[127] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software& systems engi-neering process and tools for the development of autonomous driving intelligence.

JACIC, 4:1158–1174, 09 2007.
[128] W. W. Royce. Managing the development of large software systems: concepts andtechniques. In ICSE ’87, 1970.
[129] Ralph Jeffords, Constance Heitmeyer, Myla Archer, and Elizabeth Leonard. A formalmethod for developing provably correct fault-tolerant systems using partial refine-ment and composition. In Ana Cavalcanti and Dennis R. Dams, editors, FM 2009:

Formal Methods, pages 173–189, Berlin, Heidelberg, 2009. Springer Berlin Heidel-berg.
[130] Xin Zhou, Xiaodong Gou, Tingting Huang, and Shunkun Yang. Review on testing ofcyber physical systems: Methods and testbeds. IEEE Access, 6:52179–52194, 2018.
[131] roslint, 2017. http://wiki.ros.org/roslint, Accessed on 2020-05-09.

75

[132] A. Santos, A. Cunha, N. Macedo, and C. Lourenço. A framework for quality assess-ment of ros repositories. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4491–4496, Oct 2016.

[133] Docker, 2017. https://www.docker.com, Accessed on 2020-05-09.
[134] Kim Guldstrand Larsen, Florian Lorber, and Brian Nielsen. 20 years of real real timemodel validation. In Klaus Havelund, Jan Peleska, Bill Roscoe, and Erik de Vink, edi-tors, Formal Methods, pages 22–36, Cham, 2018. Springer International Publishing.
[135] Juhan Ernits, Rivo Roo, Jonathan Jacky, and Margus Veanes. Model-based testingof web applications using nmodel. In Manuel Núñez, Paul Baker, and Mercedes G.Merayo, editors, Testing of Software and Communication Systems, pages 211–216,Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
[136] T.Y. Chen and Man Lau. On the divide-and-conquer approach towards test suitereduction. Information Sciences, 152:89–119, 06 2003.
[137] Ros-industrial quality-assured robot software components, 2020. https://

rosin-project.eu/, Accessed on 2020-05-09.
[138] Quality assurance process and community management in ros, 2017.

http://rosin-project.eu/wp-content/uploads/D3.1-Quality-

Assurance-Process-and-Community-Management-in-ROS.pdf, Accessedon 2020-05-09.
[139] C. Pinciroli, V. Trianni, R. OǴrady, and G. Pini et al. Argos: A modular, multi-enginesimulator for heterogeneous swarm robotics. In 2011 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 5027–5034, 2011.
[140] Richard Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence,2(2):189–208, Dec 2008.
[141] Gazebo - robot simulation made easy, 2020. http://gazebosim.org/, Accessedon 2020-05-09.
[142] Carla simulator, 2020. https://github.com/carla-simulator/carla, Ac-cessed on 2020-05-09.
[143] Airsim simulator, 2020. https://microsoft.github.io/AirSim/, Accessed on2020-05-09.
[144] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field and Service

Robotics, 2017.
[145] Jenkins, 2020. https://www.jenkins.io/, Accessed on 2020-05-09.
[146] Yaml: Yaml ain’tmarkup language, 2020. https://yaml.org/, Accessed on 2020-05-09.
[147] Amazon web services, 2020. https://aws.amazon.com/, Accessed on 2020-05-09.
[148] Solve more with google cloud, 2020. https://cloud.google.com/, Accessedon 2020-05-09.

76

[149] Microsoft azure: Cloud computing services, 2020. https://azure.microsoft.
com/en-us/, Accessed on 2020-05-09.

[150] GCC - program instrumentation options, 2020. https://gcc.gnu.org/

onlinedocs/gcc/Instrumentation-Options.html, Accessed on 2020-05-09.
[151] Python - increase test coverage, 2020. https://devguide.python.org/

coverage/, Accessed on 2020-05-09.
[152] Howto: Dumping gcov data at runtime - simple example, 2011. http:

//www.osadl.org/Dumping-gcov-data-at-runtime-simple-ex.online-

coverage-analysis.0.html, Accessed on 2020-05-09.
[153] The coverage class, 2019. https://coverage.readthedocs.io/en/v4.5.x/

api_coverage.html, Accessed on 2020-05-09.
[154] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal, pages 200–236.Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
[155] Aivo Anier and Jüri Vain. Model based continual planning and control for assistiverobots. HealthInf 2012, (Proceedings of the International Conference on HealthInformatics):382–385, 2012.
[156] Vladimír Štill, Petr Ročkai, and Jiří Barnat. Divine: Explicit-state ltl model checker.In Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms for the

Construction and Analysis of Systems, pages 920–922, Berlin, Heidelberg, 2016.Springer Berlin Heidelberg.
[157] Z3 theorem prover, 2020. https://github.com/z3prover/z3, Accessed on2020-05-09.
[158] H. Barbosa, A. Reynolds, D. El Ouraoui, C. Tinelli, and C. Barrett. Extending smtsolvers to higher-order logic. In P Fontaine, editor, Automated Deduction – CADE

27. CADE 2019. Lecture Notes in Computer Science, vol 11716. Springer, Cham, 2019.
[159] N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mudrova, J. Young, J. Wy-att, D. Hebesberger, T. Kortner, R. Ambrus, N. Bore, J. Folkesson, P. Jensfelt, L. Beyer,A. Hermans, B. Leibe, A. Aldoma, T. Faulhammer, M. Zillich, M. Vincze, E. Chinellato,M. Al-Omari, P. Duckworth, Y. Gatsoulis, D. C. Hogg, A. G. Cohn, C. Dondrup, J. PulidoFentanes, T. Krajnik, J. M. Santos, T. Duckett, andM. Hanheide. The strands project:Long-term autonomy in everyday environments. IEEE Robotics Automation Maga-

zine, 24(3):146–156, Sep. 2017.
[160] Smach - state machine, 2018. http://wiki.ros.org/smach, Accessed on 2020-05-09.
[161] Behaviortree.cpp, 2020. https://github.com/BehaviorTree/

BehaviorTree.CPP, Accessed on 2020-05-09.
[162] The stage simulator, 2019. https://github.com/rtv/Stage, Accessed on 2020-05-09.
[163] Juri Vain, Marko Kääramees, and Maili Markvardt. Online testing of nondetermin-istic systems with the reactive planning tester. Dependability and Computer Engi-

neering: Concepts for Software-Intensive Systems, pages 113–150, 01 2011.
77

[164] Roger A. Horn and Charles R. Johnson.Matrix Analysis. Cambridge University Press,2 edition, 2012.
[165] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representa-

tion and Mind Series). The MIT Press, 2008.
[166] move_base, 2018. http://wiki.ros.org/move_base, Accessed on 2020-05-09.
[167] amcl - adaptive (or kld-sampling) monte carlo localization, 2019. http://wiki.

ros.org/amcl, Accessed on 2020-05-09.
[168] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcementlearning: An overview. In Innovations in multi-agent systems and applications-1,pages 183–221. Springer, 2010.

78

Acknowledgements
I would like to express my sincere gratitude to my supervisor Professor Jüri Vain for hisguidance and support. I also thank my colleagues at Tallinn University of Technology fortheir support and advice.

79

Abstract
Model-Based Testing Framework for AutonomousMulti-Robot
Systems
Alleviating the need for increased quality assurance in the face of rapidly growing num-ber of autonomous robots, this dissertation presents a model-based testing frameworkincluding TestIt toolkit. The main goal of the framework is to provide methods and toolsfor automated model-based testing of autonomous multi-robot systems to verify correctbehavior in various applications. The main contribution of the dissertation is a testingtoolkit TestIt which features several novelties. Firstly, the open and scalablemulti-pipelinearchitecture that enables incorporation of test development and execution tools from var-ious vendors. The second main contribution is the adaptive test optimization techniquethat takes advantage of the proposed multi-pipeline architecture where testing threadscan communicate and coordinate the test runs based on their cooperatively collected testperformance data. The usability of TestIt for test generation, testing process performanceimprovement and optimization in multi-robot autonomous navigation context is demon-strated using a robotic security system case study.Additionally, a provably correct test development process within an iterative and in-cremental software development cycle is detailed. The results show that the proposedincremental validation minimizes the validation time, design space exploration and costduring early stages of design, rather than during operations which could lead to significantcost increase.The results of the framework have been validated in industry projects and have shownto add value to the quality assurance process.

80

Kokkuvõte
Mudelipõhine testimisraamistik autonoomsetele multirobot-
süsteemidele
Seoses autonoomsete robotsüsteemide kasvava levikuga süveneb vajadus tagada nendefunktsionaalsus, töökindlus ja ohutus valdkondades, kus robotid töötavad ja liiguvad vahe-tult inimkeskkonnas. Käesolev dissertatsioon esitleb mudelipõhise testimise raamistikkuning testi automatiseerimise töövahendeid autonoomsete multirobotsüsteemide mude-lipõhiseks testimiseks. Töö põhitulemuseks on testimistööriist TestIt, mis pakub mitmeiduusi lahendusi. Esiteks, avatud ja skaleeritav multikonveier arhitektuur, mis võimaldaberinevate osapoolte testimistööriistade integreerimist arendusprotsessis. Teiseks, loodudon multikonveier arhitektuuril põhinev adaptiivne optimeerimisalgoritm, mis võimaldablõimede omavahelise andmevahetuse tulemusi kasutada testistsenaariumite optimeeri-miseks. TestIt tööriista võimalusi ja eeliseid testijuhtude genereerimisel, testimisprotsessijõudluse tõstmisel ja optimeerimisel on demonstreeritud robotturvasüsteemi rakendus-esmultirobotsüsteemi autonoomse navigatsiooni testimise näitel. Lisaks eelnevale on dis-sertatsioonis esitatud testide tõestatavalt korrektne arendusprotsess ja selle integreerimi-ne iteratiivsesse ja inkrementaalsesse tarkvaraarendustsüklisse. Töö tulemused näitavad,et pakutud inkrementaalne valideerimine võimaldab vähendada disaini valideerimisaegaja disaini lahendusteruumi analüüsi mahtu juba varajases arendusstaadiumis, vältimaksvigade kandumist arenduse lõpufaasi, kus vigade avastamine ja parandamine on oluliseltkulukam. Töö tulemused on valideeritud tööstuslike robotiprojektide raames ja tulemu-sed on näidanud, et väljatöötatud raamistik annab robotsüstemide kvaliteedi tagamiseprotsessile olulist lisaväärtust.

81

Appendix 1

Publication I

G. Kanter and J. Vain. Model-based testing of autonomous robots usingTestIt. Journal of Reliable Intelligent Environments, 6(1):1–17, 2020

83

Journal of Reliable Intelligent Environments
https://doi.org/10.1007/s40860-019-00095-w

ORIG INAL ART ICLE

Model-based testing of autonomous robots using TestIt

Gert Kanter1 · Jüri Vain1

Received: 3 June 2019 / Accepted: 17 December 2019
© Springer Nature Switzerland AG 2020

Abstract
This paper presents a testing toolkit named TestIt. Its main goal is to provide tools for automated model-based testing
of autonomous multi-robot systems to verify long-term autonomy in various applications including those of smart city
environments and smart buildings. Themain novelty of the presented toolkit is the open and scalablemulti-pipeline architecture
that enables incorporation of test development and execution tools from various vendors. The second main contribution is
adaptive test optimization technique that takes advantage of the proposed multi-pipeline architecture where testing threads
can communicate and coordinate the test runs based on their cooperatively collected test performance data. The usability of
TestIt for test generation, testing process performance improvement and optimization in multi-robot autonomous navigation
context is demonstrated using a smart building robotic security system case study.

Keywords Autonomous robotics · Robot operating system · Integration testing · Model-based testing · Smart building ·
Simulation

1 Introduction

New security technologies such as AI-supported data fusion,
video analytics and application of mobile sensor platforms
have provided substantial quality improvement of security-
related services in smart city and smart building environ-
ments [2].Despite recent advances in security technology, the
weakest link in the security assurance loop (sensor/camera
data capture, monitoring data fusion, malicious act threat
recognition, decision making, prevention/counter action) is
human involvement. As the experiment with autonomous
robot security guard Knightscope’s K5 shows, one promis-
ing way of raising the level of security systems’ reliability
and autonomy is replacing human personnel, e.g. patrols and
remote operators with mobile guardian robots which instead
of remote surveillance can guarantee required level of pres-
ence, situation awareness and timely reaction to events in the
place.

Since security systems must be safe and secure them-
selves, it means the services provided by them must be

B Gert Kanter
gert.kanter@taltech.ee

Jüri Vain
juri.vain@taltech.ee

1 Department of Software Science, Tallinn University of
Technology, Akadeemia tee 15a, Tallinn, Estonia

validated and verified against the requirements set by the
given application. The quality of service (QoS) characteris-
tics studied in this paper include in the first place functional
correctness, performance stability, reliability and scalability.
For instance, the quality of the security system enforced with
patrolling robots should ensure that the robots collaboration
satisfies the criteria necessary for successful mission com-
pletion under given operation conditions (e.g. dimmed light,
accessibility to rooms, presence of moving obstacles).

In this paper, we provide a novel testing framework TestIt
formulti-robot surveillance system quality testing in the sim-
ulated operation environment. Since setting up a full-scale
field test environment is expensive and running tests in there
is time consuming, the goal of this work is to provide easier,
faster and cheaper validation of system quality than tradi-
tional full-fledged field tests allow. he novel feature of this
approach is the capability of runtime optimization of tests by
using live feedback from the SUT. An edge labeled with a
name and postfix symbol “!” synchronizes with an edge or
edges of all other automata that are labelled with the same
name and postfix symbol “?”.

The autonomous patrolling robot systems such as autono-
mous robots in general are designed to operate in highly
dynamic and unpredictable environments. Therefore, it is dif-
ficult to assure that these autonomous systems function safely
in all possible situations. Moreover, even capturing such
high-dimensional context data that characterize real opera-

123

Journal of Reliable Intelligent Environments

tion environments in all emerging border cases is exceedingly
difficult. Therefore, to accelerate the validation of the algo-
rithms used in autonomous robots, simulation is used to
generate scenarios to ensure correct behaviour under large
variety of constraints.

Simulation is beneficial not only because it is inexpen-
sive as it does not require a physical robot, but also because
it is scalable. Testing on multiple physical robots requires
multiple test sites and evaluation systems which may con-
stitute a substantial part of development costs. To conserve
time and validate multiple simulated scenarios at the same
time, these simulations can be run in parallel. For the sim-
ulation to be well integrated into the software production
workflow, also the robot’s software stack should support such
integration. This support is present in robot operating system
(ROS)-based robots’ software thanks to the design principles
of ROS [18]. ROS uses a publisher–subscriber communica-
tion model which allows easy component interoperability.
This interoperability enables easily switching out physical
hardware with simulation without the software being aware
of the difference.

As an example of a combined testing solution where sen-
sor data emitted by stationary security system are used for
triggering and planning the mobile patrolling robots inspec-
tion missions, we introduce a case study where a team of
collaborating robots locates and captures an intruder in the
office building floor after the stationary monitoring system
has released the alarm of unauthorized movement in the
guarded zone.

The case study demonstrates the advantages of the pro-
posed collaborative robot action testing method by providing
high coverage of the simulated world state space as well as
the coverage of the robots’ software. Also, we show that the
high variability of test scenarios needed for testing long-term
autonomy of themulti-robot system in dynamic environment
can be encoded in the test models, which in turn minimizes
the need for human intervention in the course of testing pro-
cess and, thus, allows improving the overall testing process
performance.

The rest of the paper is structured as follows. In Sect. 2,
we position our work with respect to testing toolkits from the
point of view of simulation-based verification of multi-robot
applications. Section3 presents preliminaries that explain
the methods, principles and underlying formal basis of our
model-based testing approach. Section4 outlines the TestIt
architecture and workflows supported by it. In Sect. 5, the
practical aspects of configuring TestIt for test execution are
explained. In Sect. 6, the test development, optimization and
execution process using TestIt is illustrated using the robotic
intruder detection systemcase study. Finally, conclusions and
future work are discussed.

2 Related work

TestIt toolkit is designed for testing systems that can be
broadly classified as cyber physical systems. The authors of
[3] state that CPS are typically so complex that solving their
analysis and optimization problem analytically by examin-
ing the system dynamics is not feasible. An extensive survey
on hybrid dynamic CPS monitoring techniques is presented
in [4] with the focus on runtime verification. This survey is
targeted to unification of tool-supported monitoring method-
ologies which is motivated by the need for an alternative to
CPS exhaustive verification approaches. The main limitation
of exhaustive verification techniques is their limited scalabil-
ity for CPS. Our work has different focus, instead of passive
monitoring we use active testing while the scalability issues
of the method are addressed by parallelizing the testing tasks
and applying runtime optimization of testing threads based
on on-the-fly gathered tests execution data.

One of the first attempts to provide a unified, tool-
supported methodology for CPS testing and optimization
is presented in [3], where the authors consider a black-box
approach, to perform optimization by testing the input–
output behaviour of the CPS. They claim their tool is
the first CPS testing tool that supports Bayesian optimiza-
tion. It is also the first attempt to employ fully automated
dimensionality reduction techniques for CPS testing. Our
model-based testing technique is similar to that of [3] in
the sense that the SUT is defined as a black box, where
only its interface behaviour is observable. Similarly, TestIt
supports Bayesian optimization, but the underlying compu-
tational model Uppaal TA [5] is different from that used in
[3]. Another principal difference is that instead of a single
testing thread, we apply multi-thread approach which pro-
vides a clear performance advantage. In TestIt, each of the
test threads is runtime optimizing to form the posterior dis-
tribution over the test driving objective function. It uses the
data about test runs’ performance which is collectively gath-
ered by all threads. The authors of [6] provide a thorough
overview of traditional and advanced simulation-based mod-
elling, testing, and verification techniques applied in the field
of embedded systems (subset of CPS). Like the approaches
referred in [6], TestIt enables running tests against SUT sim-
ulation instead of physical SUT. TestIt is specific in the sense
that it is not restricted to any particular tool ormethod listed in
[6], but rather provides flexible infrastructure for configuring
the methods and tools that are most suited for a given testing
task. The goal of TestIt is to improve the performance by
parallelization, flexible test infrastructure and efficient coor-
dination of methods working in parallel.

Robot system-specific testing tools have more narrow
focus and most of them are adjusted to ROS-based soft-
ware testing. At present, there is not any known significant
effort made in the development of model-based testing toolk-

123

Journal of Reliable Intelligent Environments

its designed specifically for autonomousmulti-robot systems
and their application.

There are several general purpose testing tools that allow
test parallelization, but they do not employ the model-based
testing of ROS-based autonomous robots. An example of
such a general purpose testing tool is a continuous integration
(CI) platform Testributor.1

Testributor is an open-source continuous integration plat-
form that reduces building times by slicing up the test suite
and runs the slices in parallel. This platform is not specifically
designed for testing robot operating system ROS software
and it does not support model-based testing natively. In con-
trast, TestIt toolkit is designed to automatize testingworkflow
by using model-based testing and to perform test scenario
optimization by learning from earlier executed tests. This
approach increases testing efficiency compared to Testrib-
utor’s simple test suite slicing, because slicing does not
improve the tests themselves. TestIt aims to provide tools
to improve the tests themselves as well as provide a highly
scalable test execution environment.

An alternative to Testributor is anROS-specific automated
test framework (ATF)2 whichhas beendeveloped specifically
for ROS applications. The ATF framework supports execut-
ing integration and system tests and running benchmarks.
Unfortunately, it is not readily scalable and is designed to run
on a single machine. The ATF framework also only provides
the execution of the test suite, but offers no tools to create
or optimize the test suite itself. Additionally, the project is
currently not in active development.

The ROSIN project report3 highlights the need for better
QA practices to be adopted in ROS software development.
One of themain issues is that the QA practices are not consis-
tent across the various development streams (i.e. core, drivers
and reusable packages). The report also indicates that the
current utilization of CI service is not sufficient, because it
is simply compiling and building the ROS projects. Their
results show that the QA practice would be improved sig-
nificantly by extending the CI service to run a collection
of different kinds of code-scanning tools. To address these
needs, TestIt has been designed to be easily integrated with
the CI service. It also provides a framework that can be
augmented with the aforementioned tools and bundled in a
convenient package.

Another aspect the ROSIN report highlights is that
although testing is regarded as critical in robotics, developers
working on new components tend to focus more on creating
the components rather than creating and setting up tests and
gathering data based on simulation. As stated in the report,

1 http://www.testributor.com/.
2 https://github.com/floweisshardt/atf.
3 http://rosin-project.eu/wp-content/uploads/D3.1-Quality-
Assurance-Process-and-Community-Management-in-ROS.pdf.

automated testing should compensate this practice by saving
time and increasing software quality. TestIt aims to com-
ply with these recommendations. It reduces time overhead
by supporting automation of all testing phases, maximizing
testing efficiency by using concurrent testing pipelines and
minimizing testing time by learning from executed tests and
optimizing test scenarios based on that.

3 Preliminaries

3.1 Model-based testing

Model-based testing (MBT) presumes the usage of models
for specifying the expected behaviour of system under test
(SUT) and the test purpose. The behaviours and model ele-
ments to be covered by the test are subject to test purpose
specification. Both, the SUT model and test purpose specifi-
cation are prerequisites for automatic test generation.

The advantages of MBT are experienced most clearly in
integration and system level testing, where the functionality,
timing, safety, security and other aspects of SUT are exposed
in their most intertwined form. MBT focuses most often on
the conformance testing where the SUT is considered to be
a ’black box’, i.e. only its inputs and outputs are assumed
to be controllable and observable respectively by test. The
internal behaviour of the system is abstracted away in the
model. The aim of black-box conformance testing, according
to [7], is to check if the behaviour observable on the system
interfaces conforms to that given in the system requirements
specification.

During MBT, a tester executes selected test cases by run-
ning SUT in the test harness and emits a test verdict (pass,
fail, inconclusive). The verdict shows test result in terms
of conformance relation between SUT and the requirements
model. A conformance relation used most often in MBT is
input–output conformance (IOCO) introduced in [8]. For the
behaviour of an implementation to be IOCO-correct it should
respect the following restrictions:

• the outputs produced by SUT should be the same as
allowed in the requirements model;

• if a quiescent state (a situation where the system cannot
evolve without an input from the environment) is reached
in SUT, this should also be the case in the model;

• any time an input is possible in the model, this should
also be the case in the SUT.

3.2 Model-based testing with TestIt

TestIt is designed to work with a wide variety of tools and
models that are used in the test development process. Thanks
to the open architecture of TestIt, the user can pick and use

123

Journal of Reliable Intelligent Environments

Test goal
reachable?

SUT devel.
increment

SUT I/O logging

Logs repository

Model construc�on

Test model

Feasibility
verifica�on

Test op�miza�onCoverage op�mal
test

Fig. 1 A sample of test generation workflow in TestIt

the appropriatemodel-based testing tools that support various
testing workflows. As a concrete example of tool integration,
we consider Uppaal tool family being used in TestIt toolkit.

Typically, the model-based conformance testing process
starts fromSUTmodel construction. This is based on formal-
ization of the requirements the SUT is implemented from.
The test model construction from requirements is common
in most of the test-driven development methodologies [9].
Alternatively, themodel can be learned from systemmonitor-
ing logs by applying variousmachine learning approaches. In
this paper, we demonstrate the combined approach where the
model for test purpose feasibility verification is constructed
from the SUT requirements description and for test opti-
mization the model is augmented with additional coverage
information extracted from the SUT interface logs. The lat-
ter is to demonstrate the TestIt usefulness in the development
processes where the test model evolves in lock step with the
SUT development increments.

A sample of TestIt incremental test development work-
flow is depicted in Fig. 1. The input to the workflow is an
executable SUT increment. Its execution in interaction with
the simulated environment provides the SUT input–output
logs. Based on the monitoring data, the logs are extended
with context information, time stamps, semantic tags, etc.
necessary for test coverage optimization (for more detailed
description of logging ,we refer to Sect. 4.2).

The model updates needs to be verified for feasibility of
test generation. The model is feasible if the test goal speci-
fied in terms of the SUT model elements or other coverage
items is reachable. The test goal can be, e.g. the coverage
of a specific code segment in SUT or reaching a specific
state in the SUT model. The test goal reachability is verified
using model checking [10]. In case the verification provides
negative result, it means either the logs repository does not
include necessary traces to provide an executable model and
further monitoring experiments are needed, or alternatively,

Fig. 2 Simple example of Uppaal TA model

the design itself is incorrect and excludes the behaviours that
implement the test goal. The decision on how to resolve the
issue is up to the SUT developer and test engineer involved in
the process. Provided the verification proves the test model
feasibility, i.e. the tests can be generated using the test model,
further steps (described in Sect. 6.1) proceed with the test
optimization.

3.3 Uppaal timed automata

TestIt uses Uppaal timed automata (TA) as core formalism.
Uppaal TA are defined as a closed network of extended timed
automata. These automata are combined into a single system
by synchronous parallel composition. An automaton con-
sists of locations (vertices in graphical notation) and edges
(directed arcs in graphical notation) between the locations.

The set of variables associated with an automaton have
valuations that are called states and the configuration of a
model consists of its current control location and assign-
ments to all model variables and clocks. The automata can
be synchronized using synchronization links named chan-
nels between edges. The channels that by modelling naming
convention have prefixes in and out in their names are used
for sending commands to the SUT and receiving feedback
from the SUT.

An example of Uppaal TA with two simple processes
composed in parallel is depicted in Fig. 2. Both processes
start from their initial location Pre1 and Pre2, respec-
tively. At its first move from location Pre1 to Wait , the
Process1 synchronizes with Process2 via channel ch that
labels edge (Pre2, Compute). At the same time, Process1
updates variable i_x with the value of constant const
and Process2 resets the clock cl. After reaching loca-
tion Compute Process2 waits maximum ub time units,
i.e. till the location invariant cl <= ub holds. Next, edge
(Compute, Post2) can be fired earliest after lb time units
(by clock cl). This is specified in guard condition cl >= lb.
Firing edge (Compute, Post2) is synchronized again with
edge (Wait , Post1) in Process1. When executing transi-
tion (Compute, Post2), the variable o_y is updated with
the value of function f un where variable i_x is an argu-
ment. Both processes terminate at the same time in locations
Post1 and Post2, respectively.

123

Journal of Reliable Intelligent Environments

3.4 Model checking with Uppaal TA

The correctness verification of Uppaal TA models is per-
formed using model checking technique [10]. Uppaal TA
model checking problem can be stated as follows: given a
correctness property ϕ stated in temporal logic TCTL and a
model formalized in Uppaal TA, the validity of ϕ in modelM
can be verified by solving the satisfiability problem M |� ϕ.
Model checker explores the model M state space trying to
find an interpretation of formula ϕ. If it succeeds, the formula
is declared to be valid and witness trace is issued. Otherwise,
the counterexample is generated that provides diagnostic
information why the formula is not valid. This allows to dis-
cover unintended behaviours in the model, such as states and
transitions that the test case never reaches. The liveness prop-
erties are expressed as reachability constraints of legal model
states and safety properties as non-reachability of illegal or
unintended states. Typically, deadlocks and livelocks indicate
violation of liveness properties. Such a model-based analy-
sis can reveal the design errors of tests before their further
development and execution.

In addition to standard safety and liveness properties ver-
ifiable in the test models, Uppaal model checker supports
verifying timing properties such as time-bounded leads_to,
timed race conditions and other. Another practical outcome
of model checking for testing is that verification witness
traces can be used as symbolic test sequences applicable to
verify that the correctness property is implemented properly
also in SUT.

3.5 Symbolic test execution

Uppaal TA models are executed using DTRON [11] tool
which extends Uppaal TRON [12], a testing tool based on
Uppaal engine. TRON is suited for black-box conformance
testing of timed systems. This tool enables simulation of the
model in real time and allows interfacing with the SUT. For
the Uppaal TA to send executable test inputs to the SUT, it
needs an adapter to handle the synchronization signals from
the model. These adapters have to be created depending on
the use case. For the use case presented in this paper, we cre-
ated an adapter for sending abstracted navigation goals to the
SUT and converting the SUT outputs back to the symbolic
form interpretable in the model.

3.6 Test coveragemeasurement

In model-based testing, the test coverage can be measured
either by using model coverage or coverage of the code units
abstracted in themodel or both combined. Themost common
code coverage measurement is achieved by counting all the
lines that have been executed. Traditionally, line counters
are never reset during the measurement process. This is not

an issue in case of measuring the lines that are executed
during a full test execution. This approach can be improved
with model-based testing by measuring the lines of code that
get executed when performing some action represented as a
transition in the model. This information can later be used to
maximize the code coverage of the test.

For the code coverage to be measurable, possibly in com-
bination with model structural coverage, both the test model
execution and the SUT software stack must support it. The
main programming languages used in ROS software devel-
opment are C++ and Python. For code coverage, the C++
stack must be compiled with code coverage support options
(profile-arcs and test-coverage). Python programs must be
run via a wrapper (e.g. Coverage.py library) which collects
the code coverage information.

The software stack has to handle the SIGUSR1 signal to
support the state transition code coverage measurement. The
C++code needs to call __gcov_flush() function to flush the
coverage data. For Python, the coverage wrapper must call a
save function. If Coverage.py is used, coverage.save() must
be called and internal class variables lines and arcs must be
reset. If these variables are not reset, the subsequent calls to
the save function will return the full list of lines executed
since the start of the program.

4 TestIt toolkit

4.1 General design considerations

TestIt is designed to be used with existing and new testing
tools and supporting software. For example, it is possible to
run linters (e.g. roslint4 and static code analysis tools (e.g.
HAROS [13])) as part of the testing process. The main use
case for TestIt is however model-based testing.

One of the most important benefits of using MBT is the
complex emergent scenarios that can be discovered by sim-
ulating both the SUT and the environment (i.e. the static
world and dynamic actors in the world) together. It is very
difficult to design test scenarios for autonomous systems
which test the full software stack thoroughly. This is due
to the fact that usually software is developed by different
teams and the knowledge of the full software stack is very
rare. Accounting for all permutations of conditions that can
arise in complex dynamic environments is exceedingly dif-
ficult even with full knowledge of the software stack. Using
MBT and tools (e.g. Uppaal TA,NModel) helps in this regard
by allowing the environment and SUT (i.e. the autonomous
system being developed) to be modelled separately. The pos-
sibility of modelling different actors separately reduces the
modelling complexity which in turn reduces the cost of test-

4 http://wiki.ros.org/roslint.

123

Journal of Reliable Intelligent Environments

ing. After creating the single actor models, it is possible to
instantiate these models in parallel and in multiple instances.

As discussed in Sect. 2, integrating testing into robotics
software development CI processes is highly coveted. TestIt
is well suited for integrating into CI services as the test-
ing pipelines are designed to work with Docker containers.
Using Docker containers makes it easier to integrate into CI
processes, because of the ephemeral on-demand nature of
the container technology. The containers are always started
from the same state and the state is not stored after finishing,
which is the desired behaviour in testing context. This feature
ensures that testing is stable and there is no risk of influenc-
ing the initial state on subsequent test execution. Executing
tests without sandboxing the software can run intomutability
issues.

Long-term reliability is another key concern for autono-
mous robots which operate in dynamic environments. Find-
ing software bugs that appear immediately or within a short
time window is significantly easier than detecting errors that
emerge after a long time has elapsed (e.g. memory leaks and
difficult corner cases). Using simulation for long-term auton-
omy testing with compressed timescale improves efficiency.
Still, long-term testing with real robots is challenging and
limited by real-time factor. In many cases, it is possible to
perform simulation faster than real time to further increase
the time efficiency of testing. TestIt supports running tests
over long time periods to find interesting scenarios that are
exceedingly difficult to discover without model-based gen-
erated tests.

4.2 Architecture

TestIt5 comprises an open-source ROS package containing
the daemon and the Command-Line Interface (CLI) to send
commands to the daemon and a Docker container6 with bun-
dled testing tools.

The daemon can control multiple TestIt pipelines as can
be seen in Fig. 3. Due to the parallelization of test execution,
usingmultiple pipelines in simulation based testing improves
test scalability. Each pipeline can run on a separate server,
for example in the cloud (AWS, Google Cloud or Azure),
ensuring scalability.

TestIt supports starting and stopping pipeline servers as
part of the testing workflow depicted in Fig. 4 which works
well in case of using cloud servers for testing as cloud ser-
vices are billed based on the time used. Therefore, only
bringing them online when needed is cost efficient.

The configuration for the SUTandTestItDocker container
is defined in the YAML7 format configuration file which is

5 https://github.com/GertKanter/testit.
6 https://www.docker.com.
7 https://yaml.org/.

Fig. 3 TestIt architecture

Fig. 4 TestIt pipeline workflow

passed to the daemon upon start up. The configuration con-
sists of infrastructure configuration and test scenarios.

The overview of a single pipeline is shown in Fig. 5.
The infrastructure configuration defines the pipelines that
are used for running the test scenarios. A pipeline com-
prises the SUT with the software that is tested as well as
the TestIt docker container configuration. The pipelines can
be configured depending on the available hardware or budget
constraints for the cloud testing. TestIt can even be used in a
single pipeline testing configuration with a single computer.

The packaging requirements for the software running in
the SUT are not strictly constrained. TestIt toolkit ROS inte-
gration relies on the SUT running theROSmaster service (i.e.
roscore) to which the tools in TestIt container can connect.
Other than that, the SUT can be considered as a black-box
system and TestIt can be used as a black-box testing toolkit
which requires no modification by the tester. If test code cov-
erage measurement is required, the SUT must be configured
in a way that supports it. More information about this feature
is provided in Sect. 3.6.

As can be seen in Fig. 5, the SUT can either run in sim-
ulation or in a hardware-in-the-loop configuration. TestIt is
simulator agnostic. The concrete simulator that is used is not
fixed thanks to ROS design principles. The simulation com-
municates directly with ROS along with the SUT software
stack and TestIt interacts directly with ROS and not the sim-
ulator itself. This allows TestIt to be used in a broader field
of robot software development.

The test scenarios specify the concrete cases that are exe-
cuted to test the software. The scenarios can be executed in

123

Journal of Reliable Intelligent Environments

different ways. The simplest is to execute a program or script
that gives inputs to the software stack (e.g. goals for naviga-
tion), but the scenarios can be defined also using complex
models. Uppaal timed automata [14] models are currently
supported for model-based testing using DTRON. TestIt can
be extended to accommodate other model checkers (e.g.
DIVINE [15], NModel [16]) in a way that does not incon-
venience the toolkit user. This is one of the design goals of
TestIt as it is packaged into a Docker container. It is possible
to pre-install and configure everything inside the container
so that the toolkit user or a CI service does not need to install
and configure all of the tools separately.

As depicted in Fig. 5, TestIt Docker container can be bun-
dled with multiple supporting tools. One of the criticisms
of model-based testing is the difficulty and labour-intensive
procedure of creating models. TestIt toolkit addresses this
issue by supporting generation of models from other speci-
fication formats as can also be seen in Fig. 5. The generation
of a model from topological map format developed for use
in STRANDS project [17] has already been implemented in
TestIt [18]. The support for generatingmodels from SMACH
state machines, ROS BehaviorTrees or other formats can be
achieved in a similar way. Creating models from other spec-
ification formats saves time and gives a good starting point
to expand the models for automatic model-based testing.

An important component for TestIt is the logger. The logs
are used to optimize the test scenarios. The log entries are
stored as JSONnotation stringswith each string denoting one
event. The entry is a dictionary with the test run identifier,
timestamp, coverage information related to the transition,
data transmitted to the SUT, transmission channel informa-
tion and information whether the entry corresponds to before
or after transmitting the information to theSUT.This discrim-

Fig. 5 TestIt pipeline

ination allows the information to be further analysed based
on the result of executing a test model transition. The infor-
mation about the Uppaal TA channel that models interaction
between the SUT and the environment contains the name,
type and proxy name if required (for services and action
library). The proxy is used to allow logging to occur without
requiring modification of the software that is tested. This is
caused by ROS design, namely, services can only be handled
by a single server. To allow services to be monitored as state
transitions, the logger needs to be able to provide a proxy
service that forwards the actual service request to the SUT
and gives the result to the requester. The proxies can be set
up with ROS remapping without modification of the SUT.

Thefinal component of TestIt is the online test runner. This
component uses the optimization algorithm to dynamically
guide the system intomaximumgain states (e.g. gain function
maximizes code coverage). As the online tester is executed
at the same time as the SUT, it is possible to take actual gain
information from the SUT into account while planning the
next SUT input signal.

5 Configuring TestIt for test execution

To start testing with TestIt, the following steps have to be
taken. First, the SUTmust be defined. For ROS-based robots,
a convenient way to test the robot software is by packaging
the SUT in a Docker container. This allows TestIt to easily
start and stop the SUTwithoutmutability problems. By using
Docker containers, we can be sure that the initial state of the
system is always the same which ensures repeatability.

TestIt can be configured to test systems that are not
packaged into containers as well. The ROS-based use case
requires that the TestIt container has access to the ROS core
node. Thismeans that one can also useTestIt to test hardware-
in-the-loop systems if the ROS core node actually runs not
in simulation but on real hardware.

In general, TestIt can be used to test non-ROS systems as
well, as there is no strict requirement on software configu-
ration. It is possible to configure TestIt to launch tests that
use non-ROS connection to the SUT and it is still possible to
assess whether tests pass or fail.

In the rest of the paper, we focus on ROS-based system
as it is the main use case of TestIt. Once the SUT interaction
(i.e. starting and stopping the SUT) is specified in the config-
uration file, the TestIt test runner docker container must be
configured. The base TestIt configuration includes an ROS
installation and TestIt ROS-logger which logs the interaction
between the tester and the SUT.

Next, the test scenarios have to be configured. A test sce-
nario can include both a test and an oracle to monitor the
outcome of the test. In case a scenario is configured without
an oracle, the outcome of the test is based on the return code

123

Journal of Reliable Intelligent Environments

of the test itself. This means that the test script should ter-
minate with a return code zero upon success and non-zero
upon failure. If the test is executed using an MBT tool (e.g.
Uppaal and DTRON), the test does not terminate itself (i.e.
the model is executed without time limit) and must be ter-
minated after an oracle determines the test as a success or
failure. An alternative termination method is via timeout that
can be specified for the scenario. The outcome of a timeout
occurrence (i.e. pass or fail) can also be defined in the test
scenario specification.

It is also possible to run an individual test scenario in
parallel to take advantage of concurrency if there is enough
computing power available for multi-threaded testing. To
support this, TestIt features a credit-based system. The cred-
its can be added or removed via the TestIt command-line
interface. Each test execution decrements the credit value by
one and testing will continue until the credit value reaches
zero.

Finally, the test pipelines must be configured. Each
pipeline consists of the SUT and the TestIt Docker con-
tainer. In the main use case, both are Docker contain-
ers which simplifies pre-test setup and post-test teardown.
The simplest configuration uses the same host machine
for testing as the TestIt daemon host (i.e. running the
tests on local host). But, as discussed, TestIt can be
scaled as resources allow by creating several pipelines
that are run on different servers. This allows for more
time-efficient testing by running the scenarios in paral-
lel.

TestIt is highly flexible, as it can provide value to the
testing process even when the SUT is considered a black
box and only its environment behaviour is modelled. In that
case, the SUT model just needs to be responsive to the
environment inputs. That is necessary to avoid blocking of
model-simulated interactions. TestIt can still be used to log
the interaction and results of changing the environment. In
case the SUT is deterministic, it is possible to create a model
of an environment process that is executed in the simulation
(e.g. opening or closing of doors in a mobile robot use case).

6 Test optimization

To increase testing efficiency, it is possible to optimize the
tests. TestIt is designed to be run in two modes: exploratory
testing (learning) mode and focused testing mode (aiming
to maximize gain via either code coverage, data coverage or
model coverage criteria).

In the exploratory testing mode, we send stimuli to the
SUT (both the software under test and the environment)
according to some specification. In the main use case, this
specification consists of models for all the aspects that are
necessary to model the system at the required level of detail.

For example, this can be a navigation graph model for an
autonomous vehicle augmented with a behaviour model of a
pedestrian and traffic light state machine in an autonomous
driving scenario. In the exploratory testing mode, TestIt will
explore the SUT according to the model and will log all the
inputs sent to the SUT. In addition to the details of the input,
the result of the sent input as well as code coverage informa-
tion is logged. It is also possible to log additional variable
values that might be useful for improving testing quality and
efficiency.

After the exploratory phase when enough log data has
been gathered, it is possible to perform optimized testing
based on the data. Optimized testing is performed using the
online test runner. This approach ensures time-efficient test-
ing. Combining TestIt and MBT will help the software team
to automatically discover edge and corner cases in the com-
plex interaction of multiple components of an autonomous
system. To achieve test optimization, we propose an opti-
mization algorithm based on weighted gain function. To
compute the gain function, the optimization criteria need to
be specified. For example, if the SUT consists of two soft-
ware packages it is possible to define different weights for
each package and each source code file which optimizes the
scenario based on these weights. This allows teams that work
on different components to create test scenarios that are the
most efficient for their developed component by maximizing
the code coverage and other criteria that are most interesting
for them (Fig. 6).

The optimization algorithm has three modes. Each mode
has a different way of creating the optimization graph, but
is algorithmically identical. The optimization modes are
probabilistic, best trace and combined. The different opti-
mization graphs that are generated are depicted in Figs. 7, 8, 9
respectively. These figures use different notation semantics
compared to other figures presented. The states are marked
in parentheses (e.g. (WP1)). The cov and Q signify the cov-
erage set and the edge quantity, respectively. The coverage
sets can be merged with a plus operator (denoted as + in
the figures). The merge operation is demonstrated in Eq (1).
For example, the notation cov = 1 + 7 in the Fig. 7 at the
edge from (WP2) to (WP1) denotes the merge operation
of coverage sets cov1 and cov7. It is important to note that
one state is considered an initial state (marked with a double
circle). The initial state is undefined due to the fact that the
optimization graphs are constructed from logs and it is not
possible to determine the initial state from the log because
only the monitored events are logged (i.e. the source of the
first transition is not explicit). The transitions in the figures
are encoded with lowercase characters.

123

Journal of Reliable Intelligent Environments

6.1 Optimization algorithm

The algorithm for optimization algorithm is shown in Algo-
rithm1.

The optimization algorithm optimizes the input sequence
to the SUT to provide the maximum gain in the least amount
of steps. At its core, the algorithm recursively deepens
the gain tree to the specified maximum depth level. The
algorithm is initialized and started in compute_sequence()
function. The initial state is the (None) node of the opti-
mization graph. The supporting functions get_state_hash()

and get_chan_hash() provide a way to encode and decode
the states and data channels so that they are unique and can
be used as dictionary key values for the other data struc-
tures. The recursive computation happens in the expand()

function which expands each tree node (calculates the gain
values of the children). Each gain tree level depends on the
values of the previous level which means it has to be cre-
ated level by level. After reaching the maximum depth level,
the algorithm propagates the gain values (i.e. gained code
coverage or other desired parameter gain) from the terminal
nodes (the leaves at the maximum depth) to their ances-
tors up the tree to the root via the update_path_gain()

function. Once all the gain values have been propagated
to the root node (creating the path of maximum gain),
the algorithm can just return the best gain path first ele-
ment of this maximum gain path as the next input to the
SUT. The function compute_edge_gains() computes the
edge gains (i.e. possible gain values for the next step) for
a state based on the current parameter state (i.e. it takes
into account the code lines which have already been cov-
ered).

The novelty of the optimization algorithm is that it takes
into account the actual values from the online test runner (i.e.
what actually happened) and uses these values on the prob-
abilistic values based on the constructed probabilistic model
from all parallelized pipelines to find the best sequence of
steps to maximize the gain of code coverage or other criteria.

6.2 Example

To illustrate how the optimization algorithm works, we
present an untimedmodel for simplicity. The example model
which generates the inputs to the SUT is shown in Fig. 6. The
model consists of three states, WP1, WP2 and WP3, and
transitions, a, b, c, d, e, f , with the arrows showing the
direction of the transition.

The optimization algorithm starts by constructing a graph
from the logs. Only the relevant parts of the log entries are
presented. The following example has three separate test exe-
cutions denoted as L1, L2 and L3.

L1 : (a, cov1 = {...}, t = 0) → (b, cov2 = {...}, t = 2) →
(f , cov3 = {...}, t = 3),

L2 : (f , cov4 = {...}, t = 0) → (c, cov5 = {...}, t = 1) →
(b, cov6 = {...}, t = 4),

L3 : (a, cov7 = {...}, t = 0) →
(d, cov8 = {...}, t = 4) →

123

Journal of Reliable Intelligent Environments

Fig. 6 An example model

(e, cov9 = {...}, t = 5) → (f , cov10 = {...}, t = 6).

Each execution comprises several entries (state transi-
tions) and are denoted as a tuple (T , cov, ts), where T is the
transition (the source state is inferred from previous state),
cov is the the code coverage recorded at the moment of log-
ging and ts is the timestamp of the entry. The coverage entries
are dictionaries where the keys are tuples (file, l), where file
is the file name and l is the line (or non-overlapping interval
if pre-processed in this way) that was executed since the last
log event. The values of the dictionary are the probabilities
of the specific line (or interval) being executed. This proba-
bility is initially always 1.0, but is modified as the graph is
simplified and the similar edges are merged. An example of
such merge is shown in Eq (1). As can be seen, if the line is
executed in both coverage sets, the probability remains 1.0,
but if some lines of code are not present in both coverage sets,
after normalization the combined probability is reduced.

cov1 = {("a", 1) : 1.0},
cov2 = {("a", 1) : 1.0, ("a", 2) : 1.0},

n(cov1 + cov2) = {("a", 1) : 1.0, ("a", 2) : 0.5}. (1)

As discussed in Sect. 6.1, it is possible to create the opti-
mization graph in three ways with each method providing
different benefits.

The first method and the onewe use in the case study is the
probabilistic graph optimization shown in Sect. 7. The prob-
abilistic graph is cyclic by construction as long as the logs
it is constructed from have sequences in which the system
has visited the same states in a loop. For example, if the logs
show a transition from A to B in one log and from B to A in
another, the resulting graph will have a loop between A and
B states. Because of this the probabilistic graph is compact
and allows long SUT input sequences to be generated due
to normally having cyclic structure. Considering the previ-
ous example, we could generate an infinite input sequence
A → B → A → B → ... with each transition potentially
providing some gain.

The second option is the best trace optimization for which
the graph is constructed as chains of states based on the logs.

Fig. 7 Graph for probabilistic optimization

Fig. 8 Graph for best trace optimization

Fig. 9 Graph for combined (probability and trace) optimization

As can be seen in Fig. 8, the states are linked together as
chains but there are no loops. This means that we can only
generate a finite number of inputs to the SUT starting from
the initial state since there are no loops. This method is the
least computationally complex, but the resulting graph can-
not be used to generate long sequences. This means that once
the best trace has been traversed, the test stops and no effort
is made to attain more coverage based on recorded probabil-
ities. This option can be used to simply pick and execute the
best trace from all known traces. There are scenarios inwhich
this can be useful, for example, if the logs are generated from
real-world data and tests are executed on real-world systems
with the requirement that the generated SUT input sequence
has been seen before and is guaranteed to have worked pre-
viously.

The final option is the combination of the two aforemen-
tioned methods shown in Fig. 9 and creates graphs that have
both the logs with timestamps but also generalizes to prob-
abilistic optimization after traversing through the logs.To
benefit from the best trace optimization (i.e. initially follow
a logged input sequence) but still be able to continue the test
after traversing a known trace, the final state of an actual log
entry needs to be connected to a probabilistic state.

123

Journal of Reliable Intelligent Environments

Following the optimization graph construction, the gain
tree is created which is what the optimization algorithm uses
to determine the best input to send the SUT to gain the most
of code coverage (in the exemplified case). This can be com-
bined with other optimization criteria such as localization
covariance (localization uncertainty) based on the simula-
tion. It is possible to find sequences of inputs that maximize
such uncertainty which in turn creates efficient test scenar-
ios by forcing the SUT into a difficult situation (possibly
to an edge or corner case). The gain tree based on proba-
bilistic graph in Fig. 9 is shown in Fig. 10. The optimization
algorithm generates the gain tree from top down with each
level denoting its depth level. Each successive level contains
more nodes, the number ofwhich is directly dependent on the
branching factor of the optimization graph. Large branching
factor graphs will reduce the effective maximum depth of the
tree, since computation requirements will increase as more
nodes are added to the tree. The optimization algorithm will
choose the highest gain increase chain (chains are denoted
as C1 through C6 in Fig. 10) at each step.

7 Case study: model-based testing of robotic
intruder detection system

7.1 System under test

Robotic systems comprise numerous subsystems and rely
on both software and hardware which means that there are
enormous challenges to overcome before achieving a reliable
autonomous system. For this case study, we only focus on the
software component as TestIt toolkit is designed to improve
testing predominantly software. With this is mind and to
emulate a more realistic use case of autonomous system
software development scenario, we limit the testing scope to
one critical component for the smart house system—intruder
detection algorithm. Therefore, the SUT in this case study is
the robot software responsible for detecting the intruder. This
means that all other components are not under test, but are still
used as prerequisites for testing the SUT. As TestIt is used for
testing complex integrations of the full software stack, it is
usually advantageous to create placeholder components for
subsystems that have not yet been developed. This allows the
SUT component to be tested before all the components that
the SUT component depends on are finished. This allows for
faster time to market for the developed product.

The robot model used for this use case is based on Turtle-
Bot.8 This robot features a Kinect sensor which is converted
to lidar data, as this data source is easier to integrate with
available software components. For navigation,we utilize the
standard ROS navigation stack. Relying on standard compo-

8 https://www.turtlebot.com/.

nents is preferred because it allows easier integration if the
need for replacing some component arises in the later stage
of product development. The robot model is also irrelevant
from the point of software development, as the software team
only relies on the input data and not how this data is gener-
ated. If a need for a different robot arises at a later stage, the
model can easily be replaced and the tests can be executed
again.

The SUT component for this use case is available at a
source code repository.9 At this repository, there are two
ROS components: patrol_detector and patrol_planner .
The patrol_detector is responsible for analysing the lidar
data to detect a target. The patrol_planner plans the navi-
gation goals to cover the whole area of the floor as specified
by the navigation graph. It is important to note that we inten-
tionally designed the planner to be deterministic to make the
demonstration use case more easy to follow.

7.2 Test scenario description

To demonstrate the feasibility of TestIt toolkit, we present
the following scenario. To improve the security of smart
buildings, autonomous patrol robots are deployed to investi-
gate unidentified visitors. For the use case, we have created
the floor plan based on the Information and Communication
Technology (ICT) building 4th floor in the TalTech campus.
The plan depicted in Fig. 11 is annotated with the naviga-
tion graph for the robots with the nodes denoted as blue dots
and the edges are indicated as lines between them. For this
case study, we use two autonomous patrol robots working as
a team to discover unidentified moving targets. The patrol
robots start positions are marked with red and green dots.
There is also one actor that is designated as the intruderwhose
starting location is denoted by the yellow dot. The intruder
uses the same simulation model as the patrol robots, but it
does not have an active autonomous navigation planner.

7.3 SUTmodel construction

For verifying the feasibility of the test with respect to the
test purpose specification, the reachability of the targeted
test coverage needs to be proved, at first. This helps avoid-
ing generting inconclusive test cases and waste of time when
designing further testing steps. In this paper, the test model
construction and test feasibility verification are demonstrated
based on Uppaal TAmodelling formalism and Uppaal model
checker. As discussed in Sect. 3.2, the model for test fea-
sibility analysis can be constructed even before the real
development of SUT is started, since the model and verifica-
tion goals can be extracted directly from system requirement
specification. Further coverage-based test optimization steps

9 https://gitlab.com/GertKanter/testit-patrol-sut.

123

Journal of Reliable Intelligent Environments

Fig. 10 Gain tree

Fig. 11 ICT building 4th floor navigation graph

can be made later incrementally in the course of SUT imple-
mentation, as demonstrated in the rest of this section.

Formodel construction, the state spaceof themodel is con-
structed at first, to specify the conditions and effects ofmodel
actors. The actors are intruder, and two robots patrolling on
the office floor. The formal description of actors environ-
ment is based on a real office building floor topology that is
asbtracted in the form of a navigation graph (Fig. 11). The
data structure representing the navigation graph is a vec-
tor that consists of graph nodes names. Each node in the

graph denotes a waypoint to be covered when the robots are
patrolling. At the same time, the waypoints also denote the
potential locations of the intruder to be detected. Possible
moves of actors in the navigation graph are modelled using a
two-dimensional array EDGEswith first dimension of length
N (N is the number of waypoints) and second dimension of
length Br (Br is maximum branching factor of the graph).
Each row in the array EDGEs corresponds to a waypoint and
the elements of a row correspond to the neighbour waypoints
of that node. The models of the intruder and the guard robot
behaviour are depicted in Figs. 12, 13, respectively.

The data structures that describe the actors’ state are
vector Pos, the elements of which encode the current posi-
tions of actors in the navigation graph. The vector Occ
of size N encodes the occupancy of waypoints by robots
and vector V is the number of visits to each waypoint.
Boolean variable Detected is assigned the value true when
the intruder is located. Each actor’s behaviour is modelled
using a pair of automata, one emulating the agent’s deci-
sionmaking (named I ntruder_decide or Robot_i_decide,
respectively, where i in the name denotes the number
of the patrolling robot), and the other automaton (named
I ntruder_act and Robot_i_act , respectively) emulating
the action performed to accomplish the decision. The
automata decide the order of exploration of waypoints.
Intruder picks the next waypoint randomly from the list of
adjacent nodes of its current location. The patrolling robots
pick the next node by preferring the least visited ones. The

123

Journal of Reliable Intelligent Environments

Fig. 12 Intruder model and responder

automata I ntruder_act and Robot_i_act emulate moving
from one waypoint to another. Moving takes time specified
by an interval [lb, ub], lb and ub, denoting lower and upper
timebounds, respectively. The navigation graph is designed
so that the distance between waypoints is approximately the
same. This keeps the duration interval [lb, ub] and the move
duration approximation close to real moving duration. Since
the robots’ navigation is not perfect, it can fail to reach the
waypoint in some cases. This is represented in the model
as probabilistic transition. The probabilistic transitions of
I ntruder_act and Robot_i_act automata are labelled with
probability estimates. The probability of reaching the tar-
geted waypoint is denoted by p. The probability estimates
are normalized with value range 0 − 100, so the failure
of reaching target waypoint has estimate 100 − p. If the
target waypoint is not reached, the robot returns to its pre-
vious location and tries the same target again by changing
its route. Intruder detection in the model is close to real
implemented detection mechanism. The intruder is visible
to the patrol robot when the robot is moving towards the
next waypoint where the intruder is located, i.e. the distance
between robots is not more than the distance between neigh-
bour waypoints, and the intruder is visible in robot’s front
view sector. This is modelled with conditional assignment
Detected = (N Pos == Pos[0]?true : Detected), where
N Pos is the variablemodelling the nextwaypoint for a patrol
to go and Pos[0] models the current position of the intruder.

7.4 Test feasibility verification

Supposing that for maximum code coverage, both the robot
navigation and intruder detection scenarios have to be repre-
sented in the model the verification property should express
the reachability condition that it is always the case that at
least one of the robots eventually detects the intruder. By
referring to the model global variable Detected, this can
be expressed by the TCTL formula A <> Detected. The
variable Detected is updated to true in the model when-
ever any of the patrolling robots detects the intruder. The
verification experiments show that this test case is feasi-

Fig. 13 Robot 1 model and responder

ble for the navigation graph that includes 86 nodes and
patrols implement described search strategy when there are
at least three patrol robots, and if the robots are at least
three times faster than the intruder. The robots’ navigation
failure probability should be lower than 5%. Weaker ver-
ification condition E <> Detected that is valid if there
exists at least one of such behaviour where the intruder
is located has been proved under more relaxed condi-
tions where only two robots with moving speeds find the
intruder in the building. If further action is not needed to
be covered in the test case, this proof is sufficient for con-
tinuing with the test case optimization. Keeping in mind
the test is feasible under given constraints, further test opti-
mization steps are targeted to reduce the test length by
allocating probabilistic gain functions to the test model that
guide the test run towards the goal along the optimal test
path.

7.5 TestIt configuration

TestIt configuration for testing the SUT is specified in a sep-
arate source code repository10, as encapsulating the testing
configuration is preferable to keep both repositories (i.e. the
SUT repository and TestIt configuration repository) clean
and concise. The TestIt configuration itself essentially con-
sists of the testing infrastructure control configuration, SUT
launch and test launch parameter specification. TestIt SUT
launch is configured to start the full software stack and bring
all robots (i.e. patrol robots and intruder robot) online and
ready to receive navigation goals. After a short duration, the
patrol planning as well as detection algorithm (the SUT com-
ponent in this case study) is also started. To demonstrate our

10 https://gitlab.com/GertKanter/testit-patrol-aws.

123

Journal of Reliable Intelligent Environments

Fig. 14 TestIt AWS configuration

Fig. 15 Pipeline configuration for multi-robot system

approaches scalability we have used the AWS cloud to cre-
ate four pipelines which can run the tests and simulations in
parallel. The configuration is shown in Fig. 14. Each pipeline
consists of a SUT ROS master server (including the simula-
tor), an intruder navigation stack server, two guard navigation
stack and patrol algorithm servers and a TestIt logger and test
runner server as seen in Fig. 15.

The scalability of TestIt was measured and is shown in
Fig. 16 to demonstrate that it scales roughly linearly with the
number of pipelines configured in the system. As the plot
was based on measuring real simulation data, there is a small
margin of variance due to the fact that the robots generate
state transition logs at different rates basedon their navigation
speed and waypoint reaching success rate. Linear scaling
is expected as individual pipelines operate separately and
the overhead from communication with the TestIt daemon
is negligible. The logs are retrieved after tests are finished,
which means there is no data transmission bottleneck even
with very large pipeline configurations.

We have configured two separate tests for demonstra-
tion purposes. The first test is used to generate data for
the optimization algorithm (log generation). The test launch
parameter for this test specifies the process and how to gen-
erate inputs to the process. For this case study, we use Uppaal
model and DTRON with a test adapter. The intruder goals
are sent using this navigation model, but the patrol robot
navigation goals are determined by the patrol_planner .
The second test starts the online test runner which uses the
optimization algorithm to efficiently navigate the intruder to
achieve maximum coverage. The logs generated while run-
ning the optimization algorithm can also be used to modify

Time

Lo
g

en
tri

es

0

20

40

60

80

100

120

140

00:02:00 00:04:00 00:06:00 00:08:00

1 Pipeline 2 Pipelines 3 Pipelines 4 Pipelines

Fig. 16 Linear scalability of TestIt

Fig. 17 Stage simulation visualization

the model probabilities which make the future tests more
accurate with continuous feedback from the system.

7.6 Results

As discussed in Sect. 6.1, TestIt is designed to run in two
modes. Exploratory mode is used to generate data for test
scenario optimization to create optimal test scenarios. An
example of exploratory phase is shown in Fig. 17 which
is simulated with Stage simulator [19] and visualized using
RViz tool. In the figure, the trajectories of the robots are visu-
alized as a collection of odometry arrows. In this particular
example, the intruder (denoted as yellow) was operating in
a limited area in the top left. The trajectories of the patrol
robots are denoted in red and blue.

After sufficient amount of data has been logged, it is
possible to extract the optimized scenario from the log. Opti-
mization requires that the logs contain an event of interest
(i.e. a situation where increased code coverage is achieved)
to be useful. In our case, the logger captured a high cover-

123

Journal of Reliable Intelligent Environments

Time (s)

C
ov

er
ag

e
(%

)

80

90

100

100 200 300 400 500

Optimized Worst-case Random

Fig. 18 Relative code coverage of the SUT

age event near the starting point of one patrol robot (denoted
as a red circle in Fig. 11). The optimization algorithm was
used on the test runner and the algorithm guided the robot to
achieve full relative coverage of the patrol_detector node.
The term relative coverage refers to the coverage based on
what has been captured in the logs. This means that the sec-
tions of code that have not been executed during logging
remain unknown to the optimization algorithm.

The coverage plot is presented in Fig. 18. The plot presents
three cases: worst-case scenario, random scenario and opti-
mized scenario coverage strategy. The test time was set to
500 s to allow the test runner sufficient time for guiding the
intruder into different states.

In the worst case, the test runner always chooses the worst
possible next input that gains the least coverage. This is
achieved by continually traversing the farthest left top cor-
ner edges on the navigation map in a loop. Based on the
logs, there is no detection event occurring in that region and
therefore the relative code coverage remains constant.

The random strategy test runner picks the next input ran-
domly from the known alternatives. The result shown is the
average case in multiple runs. As can be seen from the fig-
ure, the random strategy achieves marginally improved code
coverage compared to the worst-case strategy.

To attain the best coverage as rapidly as possible, we
employ the optimization strategy. The beginning of the tests
are similar to the main loop of the SUT software that is
running and covered even without optimal control. The real
benefit of the optimization algorithm becomes evident after
some time has been given for the control algorithm to navi-
gate the robot into position for the high code coverage event.
The high code coverage event for this particular use case is
when the intruder is detected by the guard robot and it takes
time for both the guard robot and intruder tomove to the same
location. After sufficient time has been given for navigation,
we can see the strategy succeeding in achieving full relative
coverage within the time limit when the other strategies fail.

The test runner takes into account live code coveragewhen
executing the test which makes it very responsive to actual
results. This means that each test can be unique as the test
runner tries to achieve full code coverage based on the actual
results and adjusts the optimal input sequence to the SUT
accordingly. This makes our approach robust and enables us
to determine when to restart the simulation if the test opti-
mization algorithm detects that the code coverage cannot be
improved sufficiently and in reasonable time from the current
state.

The online test runner is especially useful in high branch-
ing state space with low probability high code coverage
events, as the test runner can identify the correct sequence in
advance. This can be witnessed also in our use case with lim-
ited state branching. The random strategy failed to find the
high code coverage events, whereas the optimization algo-
rithm succeeded.

In the case study, we did not actively control the patrol
robots to demonstrate that it is possible to test autonomous
systems using the black-box approach without explicitly
modelling their internal behaviour. If the patrol robots would
have been controllable, the results would have been different
and full coverage could have been achieved faster.

8 Conclusion

This paper addresses the quality assurance problem of smart
building security systems where autonomous surveillance
robots-based solution is studied. The quality of autonomous
robotic systems integration needs significant testing effort to
be supported by the test automation toolset. To address this
need, the paper presents a testing toolkit named TestIt. Its pri-
mary focus is model-based testing of autonomous systems to
improve long-term autonomy in the context of smart environ-
ment applications. The testingmethodology, architecture and
tools incorporated in TestIt are introduced. The main novelty
of the presented solution is the scalablemulti-pipeline testing
architecture that enables incorporation of multi-purpose test-
ing tools including those used in state-of-the-artmodel-based
testing. As the secondmain contribution, test verification and
optimization techniques have been presented. The usability
of TestIt for test generation, its validation and optimization
in autonomous navigation context is demonstrated using a
realistic smart building intruder detection case study.

Acknowledgements This research was partially supported by the Esto-
nian Ministry of Education and Research institutional research Grant
no. IUT33-13.

123

Journal of Reliable Intelligent Environments

References

1. Quigley M et al (2009) ROS: an open-source robot oper-
ating system. In: ICRA workshop on open source soft-
ware, 2009(online). https://www.willowgarage.com/sites/default/
files/icraoss09-ROS.pdf

2. Kumar S, Vealey T, Srivastava H (2016) Security in internet of
things: challenges, solutions and future directions. 49th Hawaii
international conference on system sciences (HICSS). Koloa, HI,
pp 5772–5781

3. Deshmukh J, HorvatM, Jin X,Majumdar R, Prabhu V (2017) Test-
ing cyber-physical systems through Bayesian optimization. ACM
Trans Embed Comput Syst 16(5s):1–18. https://doi.org/10.1145/
3126521 (article 170, Sep 2017)

4. Bartocci E et al (2018) Specification-based monitoring of cyber-
physical systems: a survey on theory, tools and applications. In:
Bartocci E, Falcone Y (eds) Lectures on runtime verification. Lec-
ture notes in computer science, vol 10457. Springer, Cham

5. Larsen KG, Pettersson P, Yi W (1997) Uppaal in a nutshell. Int
J Softw Tools Technol Transf 1(1–2):134–152. https://doi.org/10.
1007/s100090050010

6. Kapinski J, Deshmukh JV, Jin X, Ito H, Butts K (2016) Simulation-
based approaches for verification of embedded control systems:
an overview of traditional and advanced modeling, testing, and
verification techniques. IEEE Control Syst Mag 36(6):45–64

7. Utting M, Pretschner A, Legeard B (2012) A taxonomy of model
based testing approaches. Softw Test Verif Reliab 22(5):297–312.
https://doi.org/10.1002/stvr.456. Accessed 18 May 2015

8. Tretmans J (1996) Test generation with inputs, outputs, and quies-
cence. In: TACAS, vol 1055 of LNCS, p 127–146. Springer, New
York

9. Vain J, Kanter G, Srinivasan S (2017) Model based testing of dis-
tributed time critical systems. In: 2017 6th international conference
on reliability, Infocom technologies and optimization (ICRITO)
(trends and future directions), 20–22 Sep 2017, Noida

10. Baier C, Katoen J-P (2008) Principles of model checking (repre-
sentation and mind series). MIT Press, New York

11. Anier A, Vain J, Tsiopolous L (2017) DTRON: a tool for dis-
tributed model-based testing of time critical applications. Est Acad
Sci 66:75–88

12. Larsen KG, Mikucionis M, Nielsen B, Skou A (2005) Testing real-
time embedded software using UPPAAL-TRON: an industrial case
study. In: EMSOFT

13. Santos A, Cunha A, Macedo N, Lourenço C (2016) A framework
for quality assessment of ROS repositories. In: 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
Daejeon, pp 4491–4496

14. Behrmann G, David A, Larsen KG (2004) A tutorial on UPPAAL.
In: BernardoM, Corradini F (eds) SFM-RT 2004. LNCS, vol 3185,
pp 200–237. Springer, New York

15. ŠtillV,Ročkai P,Barnat J (2016)DIVINE: explicit-stateLTLmodel
checker. Tools and algorithms for the construction and analysis of
systems. Springer, Berlin

16. Ernits J, Roo R, Jacky J, Veanes M (2009) Model-based test-
ing of web applications using NModel. TESTCOM/FATES 2009.
Springer, New York

17. Hawes N et al (2017) The STRANDS project: long-term autonomy
in everyday environments. IEEERobotAutomMag24(3):146–156

18. Gummel A (2018) Modelbased testing with TestIt: the robot
operating system case-study. MSc Thesis, Tallinn University of
Technology, Tallinn, Estonia. https://digi.lib.ttu.ee/i/?10616

19. Vaughan R (2008) Massively multiple robot simulations in stage.
Swarm Intell 2(2–4):189–208 (Springer)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

Appendix 2

Publication II

G. Kanter and J. Vain. Testit: an open-source scalable long-term autonomytesting toolkit for ros. In Proceedings of the 10th International Conference
Dependable Systems, Services and Technologies, DESSERT’2019, pages 45–50, 2019

101

The 10th IEEE International Conference on Dependable Systems, Services and Technologies, DESSERT’2019
5-7 June, 2019, Leeds, United Kingdom

978-1-7281-1733-1/19/$31.00 ©2019 IEEE

TestIt: an Open-Source Scalable Long-Term
Autonomy Testing Toolkit for ROS

Gert Kanter1, Jüri Vain1
1 Tallinn University of Technology, Tallinn, Estonia, {gert.kanter, juri.vain}@taltech.ee

Abstract—This paper presents an open-source testing

toolkit TestIt that is primarily developed for model-based
testing of autonomous systems to improve long-term
autonomy. The architecture and tools within this
architecture are introduced. The main novelty of presented
solution is the scalable multi-pipeline testing architecture
that enables incorporation of multi-purpose testing tools
including those used in state-of-the-art model-based testing.
The usability of TestIt for software testing in autonomous
navigation context is demonstrated using Uppaal timed
automata model based testing and Uppaal-family tools such
as model checker and test execution environments Uppaal
TRON and DTRON.

Keywords—autonomous robotics; robot operating system;
integration testing; model-based testing; timed automata;
simulation.

I. INTRODUCTION

Autonomous robotics is growing at a rapid pace as can
be witnessed by the fast development of self-driving cars as
well as an increase in the number of mobile robots in other
sectors. According to Technavio's global autonomous
mobile robots market research report 1 , the market is
expected to grow at a compound annual growth rate of 24%
during 2018 to 2022. Double digit compound annual
growth rate is expected for all service robot sectors
according to International Federation of Robotics report2.
Also, the sales value of service robots for professional use
has increased by 39 percent 3 and the prospect remains
positive, as it is currently the primary field for startups.

Autonomous vehicles are designed to operate in a
highly dynamic and unpredictable environment, it is
difficult to ensure that these autonomous systems function
safely. Due to the high complexity and dimensionality of
such environments it is difficult to validate the correctness
of robot behaviour based solely on real world data. It is
exceedingly difficult to gather enough real world data to
sufficiently cover the vast number of different scenarios
emerging in such complex state space. To help accelerate
the validation of the algorithms used in autonomous robots,
simulation is used to generate scenarios to ensure correct
behaviour.

1 https://www.businesswire.com/news/home/20181211005561/en/
Global -Autonomous-Mobile-Robots-Market-2018-2022-Growth
2 https://ifr.org/downloads/press2018/WR_Presentation_
Industry_and_Service_Robots_rev_5_12_18.pdf

Simulation is beneficial not only because it is
inexpensive as it does not require a physical robot but also
because it is scalable. Testing on multiple physical robots
requires multiple test sites and evaluation systems which
are very expensive. To validate different scenarios at the
same time many simulations can be run in parallel in order
to conserve time. In order for the simulation to be well
integrated into the software production workflow the
robot's software stack should support such integration.

Robot Operating System (ROS) [1] has become the de
facto standard for developing autonomous robots which
also supports simulation integration. According to an
International Federation of Robotics report4, over 66% of
all service robot suppliers use ROS.

At present, there is a lack of toolkits that provide model-
based testing support for long-term autonomy verification.
There has been some efforts made in this area but to the
best of the authors' knowledge there are no tools that utilize
model-based testing as an integral part of the solution. This
strongly motivates the creation of testing toolkits for
automated testing of autonomous systems.

In addition, due to continuous integration (CI) servers
becoming very widely used in the software development
industry [2], there is significant need for such a toolkit to
support CI server integration.

In this paper, we present an open-source testing toolkit
named TestIt which allows testing ROS based robot
software. TestIt has integrated support for model-based
testing using Uppaal TA [3]. The proposed toolkit is
designed to be scalable to maximize testing efficiency and
minimize testing time.

II. RELATED WORK

Currently, there has not been significant effort made in
development of model-based testing toolkits designed
specifically for autonomous robots. There are several
general purpose quality assurance (QA) tools but there is no
toolkit that is specifically designed to employ model-based
testing of ROS based autonomous robots.

An example of a general purpose QA tool is a CI
platform Testributor 5 . Testributor is an open-source
continuous integration platform that reduces building times

3 https://ifr.org/downloads/press2018/2018-10-
18_Press_Relase_IFR_WR_2018_Service_Robots_ENG.pdf
4 https://ifr.org/downloads/press/Presentation_PC_11_Oct_2017_1.pdf
5 http://www.testributor.com

by slicing up the test suite and runs the slices in parallel. This
platform is not specifically designed for testing ROS
software and it does not support model-based testing
natively. In contrast, TestIt toolkit is designed to improve
testing workflow and test scenario optimization by using
model-based testing. This approach increases testing
efficiency compared to Testributor's simple test suite slicing
because slicing does not improve the tests themselves. TestIt
aims to provide tools to improve the tests themselves as well
as provide a highly scalable test execution.

There exists a ROS specific automated test framework
(ATF) 6 which has been developed specifically for ROS
applications. ATF framework supports executing
integration and system tests and running benchmarks.
Unfortunately, it is not readily scalable and is designed to
run on a single machine. ATF framework also only provides
the execution of the test suite but offers no tools to create or
optimize the test suite itself. Additionally, the project is
currently not in active development.

The ROSIN project report7 highlights the need for better
QA practices to be adopted in ROS software development.
One of the main issues is that the QA practices are not
consistent across the various development streams (i.e.,
core, drivers and reusable packages). The report also
indicates that the current utilization of CI service is not
sufficient because it is simply compiling and building the
ROS projects. Their results show that the QA practice would
be improved significantly by extending the CI service to run
a collection of different kinds of code-scanning tools. The
proposed TestIt toolkit addresses some of these concerns by
introducing a framework that can be augmented with
aforementioned tools and bundled in a convenient package.
This toolkit has been designed to be easily integrated with
the CI service.

The ROSIN report also highlights that although testing
is regarded as critical in robotics, developers working on
new components tend to focus more on working on the
component rather than creating and setting up tests and
gathering data based on simulation. As stated in the report,
automated testing is a way forward and will save time and
increase software quality. TestIt aims to comply with these
recommendations. It reduces time overhead by supporting
automation as much as possible, maximizing testing
efficiency by using concurrent testing pipelines and
minimizing testing time by optimizing test scenarios using
model-based testing approach.

III. ARCHITECTURE

TestIt8 is a testing toolkit which comprises an open-
source ROS package containing the daemon and the CLI
(Command-Line Interface) to send commands to the
daemon and a Docker9 container with bundled testing tools.

The daemon can control multiple TestIt pipelines as can
be seen in Fig. 1. Test scalability is one of the benefits of

6 https://github.com/floweisshardt/atf
7 http://rosin-project.eu/wp-content/uploads/D3.1-Quality-Assurance-
Process-and-Community-Management-in-ROS.pdf

simulation-based testing which using multiple pipelines
provides. Each pipeline can run on a separate server, for
example in the cloud (e.g., AWS, Google Cloud or Azure),
ensuring scalability.

Figure 1. TestIt architecture.

TestIt supports starting and stopping pipeline servers as
part of the testing workflow depicted in Fig. 2 which works
well in case of using cloud servers for testing as cloud
services are billed based on the time used. Therefore, only
bringing them online when needed is cost efficient.

Figure 2. TestIt pipeline testing workflow.

The configuration for the system under test (SUT) and
TestIt Docker container is defined in the YAML10 format
configuration file which is passed to the daemon upon start
up. The configuration consists of infrastructure
configuration and test scenarios.

The overview of a single pipeline is shown in Fig. 3.
The infrastructure configuration defines the pipelines that
are used for running the test scenarios. As mentioned
before, a pipeline comprises the SUT with the software that
is going to be tested as well as the TestIt Docker container
configuration. The pipelines can be configured as needed
depending on the available hardware or budget constraints
for the cloud testing. TestIt can even be used in a single
pipeline testing configuration with a single computer.

The packaging requirements for the software running in
the SUT is not strictly constrained. TestIt toolkit ROS
integration relies on the SUT running the ROS master
service (i.e., roscore) to which the tools in TestIt container
can connect. Other than that, the SUT can be considered as
a black-box system and TestIt can be used as a black-box
testing toolkit which requires no modification by the tester.
If test code coverage measurement is required, the SUT

8 https://github.com/GertKanter/testit
9 https://www.docker.com
10 https://yaml.org

must be configured in a way that supports it. More
information about this feature is provided in Section IV.

As can be seen in Fig. 3, the SUT can either run in
simulation or in a hardware-in-the-loop configuration.
TestIt is simulator agnostic. The concrete simulator that is
used is not fixed thanks to ROS design principles. The
simulation communicates directly with ROS along with the
SUT software stack and TestIt interacts directly with ROS
and not the simulator itself. This allows TestIt to be used in
a broader field of robot software development.

Figure 3. TestIt pipeline.

The test scenarios specify the concrete tests that are
executed to test the software. The scenarios can be executed
in different ways. The simplest way is to execute a program
or script that gives inputs to the software stack (e.g., goals
for navigation) but the scenarios can be defined using
models. Uppaal timed automata (Uppaal TA) [3] is
currently supported for model-based testing using DTRON.

TestIt can be extended to accommodate other model
checkers (e.g., DIVINE [4], NModel [5]) in a way that does
not inconvenience the toolkit user. This is one of the design
goals of TestIt as it is packaged into a Docker container, it
is possible to pre-install and configure everything inside the
container so that the toolkit user or a CI service does not
need to install and configure all of the tools separately.

As depicted in Fig. 3, TestIt Docker container can be
bundled with multiple tools that support testing. One of the
criticisms of model-based testing is the difficulty and
labour intensive procedure of creating models. TestIt
toolkit is addressing this issue by supporting generation of
models from other specification formats as can also be seen
in Fig. 3. The generation of a model from topological map
format developed for use in STRANDS project [6] has
already been implemented in TestIt [7]. The support for
generating models from SMACH state machines, ROS
BehaviorTrees or other formats can be achieved in a similar
way. Creating models from other specification formats

11 http://wiki.ros.org/roslint

saves time and gives a good starting point to expand the
models as necessary. These models can then be used for
automatic model-based testing.

IV. TESTIT TOOLKIT

TestIt is designed to be used with existing and new
testing tools and supporting software. For example, it is
possible to run linters (e.g., roslint11 and static code analysis
tools (e.g., HAROS [8])) as part of the testing process. The
main use case for TestIt is however model-based testing.

One of the most important benefits of using MBT is the
complex emergent scenarios that can be discovered by
simulating both the SUT and the environment (i.e., the
static world and dynamic actors in the world) together. It is
very difficult to design test scenarios for autonomous
systems which test the full software stack thoroughly. This
is due to the fact that usually software is developed by
different teams and the knowledge of the full software stack
is very rare. Accounting for all permutations of conditions
that can arise in complex dynamic environments is
exceedingly difficult even with full knowledge of the
software stack. Using MBT and tools (e.g., Uppaal TA,
NModel) helps in this regard by allowing the environment
and SUT (i.e., the autonomous system being developed) to
be modelled separately. The possibility to model different
actors separately reduces the modelling complexity which
in turn reduces the cost of testing. After creating the single
actor models it is possible to instantiate these models in
parallel and in multiple instances. It is possible to create
complex behaviour from simple actors.

As discussed in Section II, integrating testing into
robotics software development CI processes is highly
coveted. TestIt is well suited for integrating into CI services
as the testing pipelines are designed to work with Docker
containers. Using Docker containers makes it easier to
integrate into CI processes because of the ephemeral on-
demand nature of the container technology. The containers
are always started from the same state and the state is not
stored after finishing, which is the desired behaviour in
testing context. This feature ensures that testing is stable
and there is no risk of influencing the initial state on
subsequent test execution. Executing tests without
sandboxing the software can run into mutability issues.

Long-term reliability is a key concern for autonomous
robots which operate in dynamic environments. Finding
software bugs that appear immediately or within a short
time window is significantly easier than detecting errors
that emerge after a long time has elapsed (e.g., memory
leaks and difficult corner cases). Using simulation for long-
term autonomy testing with compressed timescale
improves efficiency. Long-term testing with real robots is
very challenging and is still limited by real-time factor. In
many cases, it is possible to perform simulation faster than
real-time to further increase the time efficiency of testing.
TestIt toolkit supports running tests over long time periods
using model-based approach to find interesting scenarios

that are exceedingly difficult to discover with manual test
scenario design.

A. Model-based testing

TestIt is designed to work with wide variety of tools that
are used in the development process. Thanks to the open
architecture of TestIt, the user can pick and use the
appropriate model-based testing tools. As a concrete
example of tool integration, we consider Uppaal tool family
into TestIt toolkit.

The modelling formalism of Uppaal tools is Uppaal TA.
Uppaal TA are defined as a closed network of extended
timed automata. These automata are combined into a single
system by synchronous parallel composition. The automata
are composed of locations (vertices in graphical notation)
and edges (directed arcs in graphical notation) between the
locations. The set of variables associated with the
automaton has valuations that are called state and the
configuration of a model consists of its current control
location and assignments to all variables and clocks. The
automata can be synchronized using synchronisation links
named channels between edges. The channels that by
modelling naming convention have prefixes in_ and out_ in
their names are used for sending commands to the SUT as
well as receiving feedback from the SUT.

Uppaal TA models are executed using DTRON [9]
which extends Uppaal TRON [10], a testing tool based on
Uppaal engine. TRON is suited for black-box conformance
testing of timed systems. This tool enables simulation of the
model in real-time and allows interfacing with the SUT.

In order for the Uppaal TA to be able to send executable
test inputs to the SUT, it needs an adapter to handle the
synchronization signals and test data from the model. These
adapters have to be created depending on the use case. For
the use case presented in this paper, we have created a
DTRON adapter12 for sending navigation goals to the SUT
and converting the SUT outputs back to the symbolic form
interpretable in the model.

B. Code coverage measurement

Code coverage is an important metric for software
testing. Code coverage measurement is achieved by
counting all lines that have been executed. Traditionally,
these line counters are never reset during the measurement
process which is not an issue in case of measuring the lines
that are executed during a full test execution. This approach
can be improved with model-based testing by measuring
the lines of code that get executed when performing a
certain action (represented as a transition in the model).
This information can later be used to optimize test
scenarios.

In order for the code coverage to be measurable, the
SUT software stack must support it. The main
programming languages used in ROS software
development are C++ and Python. For code coverage, the
C++ stack must be compiled with code coverage support

12 https://github.com/GertKanter/testit_dtron

options (profile-arcs and test-coverage). Python programs
must be run via a wrapper (e.g., Coverage.py library) which
collects the code coverage information.

The software stack has to handle the SIGUSR1 signal
to support the state transition code coverage measurement.
The C++ code needs to call __gcov_flush() function to flush
the coverage data. For Python, the coverage wrapper must
call a save function. If Coverage.py is used,
coverage.save() must be called and internal coverage data
must be erased. If the coverage data is not reset, the
subsequent calls to the save function will return the full list
of lines executed since the start of the program.

C. Test scenario optimization

The test actions and SUT reactions logged during test
run are automatically annotated with test coverage items
showing which part of the implementation code is executed
when the given action is triggered. This allows decorating
the Uppaal TA edges with weights used for calculating the
achieved coverage metrics. Composing such a test model
with test trajectory optimizer, generated by Uppaal model
checker, allows choosing test sequences that either
maximize the code coverage provided a fixed bound of test
sequence length is given, or minimize the test sequences
provided required minimum coverage is defined.

V. USE CASE

The advantage of model-based testing is demonstrated
with a sample use case. In this use case, a
Turtlebot\footnote{https://www.turtlebot.com} robot is
simulated in Stage simulator [11]. The robot software stack
is packaged into a Docker container. The relevant software
is depicted in Fig. 4. The SUT container contains ROS
navigation stack along with an object detector program and
Stage simulator.

Figure 4. Turtlebot use case software stack.

The simulated robot environment is shown in Fig. 5.
The robot is in a square-shaped room with 20 meter sides
(the black dotted lines represent 5 by 5 meter squares).
Robot's starting position is in the bottom left corner
depicted as a blue circle. The small black circle represents
an object to be detected.

Figure 5. Simple environment with an object.

The software under test in this use case is the object
detection program. The object detection program
specification states that it should detect an object from the
laser scan.

In case black-box testing methodology is used, the
actual implementation of the software is assumed to be
unknown to the tester. Provided the navigation space is
given by the requirements model, the robot should navigate
to the object according to this model to find the object. The
test is designed to validate that the detection node succeeds
in this task. Due to efficiency reasons, we target to optimize
the scenario to reach the object as quickly as possible.

The optimized scenario will be generated from an
Uppaal trace which includes a situation where the object is
in view of the lidar.

Testing is divided into two phases: learning phase and
optimized execution phase. In the first phase, the state
space is explored randomly while executing the robot
software and measuring the code coverage. DTRON
generates the sequence of actions to navigate the robot
according to the Uppaal model. For this use case the model
is depicted in Fig. 6.

The executed lines of code during the exploration are
recorded in the model. The number of lines covered are
then assigned to the variable V as shown in Fig. 7. After
annotating the model with these assignments, it is possible
to use the model checker with TCTL query
E<>V==maxcov. This finds the optimal trace which leads
to the location with the largest code coverage.

In the second phase, after finding the optimal trace, the
robot is guided to that location. This optimized scenario
implemented by the test model in Fig. 8 can then be added
to the regression testing suite.

The workflow described above can then be reused in
regression testing where changes are introduced
incrementally in the model and the need for manual or
semi-automatic test scripting can be discarded.

Figure 6. Uppaal TA model.

Figure 7. Uppaal TA model annotated with weights.

Figure 8. Optimized test model.

VI. CONCLUSION

This paper presents a testing toolkit named TestIt.
TestIt's primary focus is model-based testing of
autonomous systems to improve long-term autonomy. The
architecture and tools within this architecture are
introduced. The main novelty of presented solution is the
scalable multi-pipeline testing architecture that enables
incorporation of multi-purpose testing tools including those
used in state-of-the-art model-based testing.

The usability of TestIt for software testing in
autonomous navigation context is demonstrated using
Uppaal TA model based testing and Uppaal-family tools
such as model checker and test execution environments
Uppaal TRON and DTRON.

VII. FUTURE WORK

In the future, we plan to improve the scenario learning
capability by using active machine learning methods in
simulation. Currently, the learning phase uses stochastic
exploration. Finding interesting operational situations
(edge and corner cases) for testing in this way is not
optimal. Among other machine learning methods, we
would like to explore the efficiency of using reactive
planning algorithms [12] for price function-guided state
space exploration.

VIII. ACKNOWLEDGEMENTS

This research was partially supported by the Estonian
Ministry of Education and Research institutional research
grant no IUT33-13.

REFERENCES

[1] M. Quigley et al., "ROS: An open-source Robot Operating
System," ICRA Workshop on Open Source Software, 2009.
[Online].Available:

https://www.willowgarage.com/sites/default/files/icraoss09-
ROS.pdf

[2] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. "Usage,
costs, and benefits of continuous integration in open-source
projects," Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pp. 426-437,
2016.

[3] G. Behrmann, A. David, and K.G. Larsen, "A tutorial on UPPAAL,
" in M. Bernardo and F. Corradini (eds.), SFM–RT 2004, volume
3185 of LNCS, 200–237. Springer Verlag, 2004.

[4] V. Štill, P. Ročkai, J. Barnat, "DIVINE: Explicit-State LTL Model
Checker," Tools and Algorithms for the Construction and Analysis
of Systems, Springer Berlin Heidelberg, 2016.

[5] J. Ernits, R. Roo, J. Jacky, M. Veanes, "Model-Based Testing of Web
Applications using NModel," TESTCOM/FATES 2009, Springer
Verlag, 2009.

[6] N. Hawes et al., "The STRANDS project: long-term autonomy in
everyday environments," in IEEE Robotics & Automation
Magazine, vol. 24, no. 3, pp. 146-156, Sept. 2017.

[7] A. Gummel, "Model-Based Testing with TestIt: the Robot
Operating System case-study," M.S. thesis, Tallinn Univ. of
Technology, 2018, Accessed on: Feb.13, 2019. [Online].
Available: https://digi.lib.ttu.ee/i/?10616

[8] A. Santos, A. Cunha, N. Macedo, and C. Lourenço, "A framework
for quality assessment of ROS repositories," 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Daejeon, pp. 4491-4496, 2016.

[9] A. Anier, J. Vain, and L. Tsiopolous, "DTRON: a tool for
distributed model-based testing of time critical applications," Est.
Acad. Sci. 66, 75–88, 2017.

[10] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. "Testing
real-time embedded software using UPPAAL-TRON: an industrial
case study," EMSOFT, 2005.

[11] R. Vaughan. "Massively Multiple Robot Simulations in Stage",
Swarm Intelligence 2(2-4):189-208, Springer, 2008.

[12] J. Vain, M. Kääramees, and M. Markvardt. "Online testing of
nondeterministic systems with the reactive planning tester," in
Dependability and Computer Engineering: Concepts for Software-
Intensive Systems, pp. 113-150. IGI Global, 2012.

Appendix 3

Publication III

G. Kanter, J. Vain, S. Srinivasan, and S. Ramaswamy. Provably correct con-figuration management of precision feeding in agriculture4.0. In 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC), pages1631–1637, 2019

109



Abstract— Agriculture4.0 aims to use recent advances in

technology to enhance productivity and reduce operating costs.

In precision feeding systems with robots farm configuration

should support robot maneuvers and precision feeding

operations. Such configuration needs to be checked during

design and operations to avoid costly modifications and damage

to robots. This investigation presents an incremental model-

based approach for robot farm runtime configuration

management. First, an abstract model of the configuration is

generated and its feasibility is verified using model checking.

Then, simulation based verification by introducing low-level

operational details (robot speed, capacity, etc.) is performed

which is used to refine formal verification. Finally, operational

correctness in real exploitation conditions is tested against the

simulation. Our results show that the proposed incremental

validation minimizes the validation time, design space

exploration and cost during early stages of design, rather than

during operations which could lead to significant cost.

I. INTRODUCTION

Agriculture’s contribution to global gross domestic product

has fallen below 3% and more than 800 million people suffer

from hunger worldwide [1]. This has necessitated adoption of

novel techniques in farming for not only modernizing the

operations but also for optimizing the resources [2]. This has

led to the development of the concept of Agriculture4.0 which

aims to use recent advances in technology for enhancing

productivity and profits from agriculture. While technologies

such as the Internet of Things [3]-[5], precision farming [6]-
[8], aerial images [9]-[10], data-analytics [11]-[13] and others

are becoming a major enabler for Agirculture4.0, human labor

is emerging as a scarce resource. Furthermore, hostile

environments and scalability of manual operations have

necessitated automation of human tasks. Robots have been

deployed for farming operations for automating tasks [14],

weed recognition [15], plant diseases [16] and smart farming.

Within the livestock farming, robots have been deployed for

milking [17], precision livestock management [18] and other

operations. Robots are becoming important due to their ability

to scale, operations over large spaces and hostile

environments. Furthermore, robots could save farmers against
odour, high ambient noise, night shifts and unfavorable

working conditions.

Robotic feeding is targeted to taking care of animals around

the clock with precise ration and schedule adjusted to the

groups or even individual animals. Health monitoring can be

*This research was supported by the Estonian Ministry of Education and

Research institutional research grant no. IUT33-13, and in part by industry

contract LEP15048.

G. Kanter and J. Vain are with Tallinn University of Technology, Estonia

19086, gert.kanter@ttu.ee, juri.vain@ttu.ee

done indirectly by measuring the animals’ appetite based on

the fodder consumption rate, or more directly, using computer
vision algorithms to assess their physical conditions. Farms

are deployed on large territories and they may accommodate

tens of thousands of animals. Ideally, in the fully automated

farm the feeding program can be flexible to be adjusted to

animal needs. Automated farming system is also life-critical.

Though small deviations in feeding regime do not have direct

effect on animals’ health, longer breaks in feeding due to

mistakes in planning or robots’ task coordination may cause

fatal consequences to animals’ health. Farm animals are

sensitive to feeding regularity especially during the gestation

period and extreme outdoor temperatures. Thus, the robotic

farm should minimize the downtime and keep operating even
in degraded mode till the normal operation is restored.

While robotic applications have been exacerbated in existing

investigations, often the deployment constraints are ignored.

Securing the farm operation with an ample backup fleet of

robots is not economically feasible either. To achieve a

resilient but economically still feasible farm operation in

changing conditions the re-planning procedures need to

include also feasibility analysis of possible configurations

changes and evaluate the decisions under the operational

constraints throughout the farm life cycle. For robots to

operate in farms, configuration management is important as
they need to operate with farming constraints. Verifying these

constraints after deployment could lead to costly farm

modifications and damaging of robots. Furthermore, they

could also endanger livestock health and productivity.

However, such management should also consider low-level

information such as robot kinematics, operating speed etc. To

our best knowledge a configuration management tool for

precision feeding considering robot information is not

available in the literature. Existing smart feeding solutions

for pig farms, e.g. Pellon [19] and dairy farms, e.g. [20]

presume infrastructure in the farm that inherently supports the

robot navigation and operation solution. For instance, such
farm infrastructure enhancements include magnetic or colour

stripes on the floor/wall for navigation, RFID tags on cages

are needed for robot positioning, special light conditions for

visual inspection, etc. Investments to such augmenting

infrastructures bring along also higher maintenance costs due

to the need for regular inspection and repair of those

instrumentation assets. Another drawback of existing robotic

farm solutions is their inflexibility to changing operation

Seshadhri Srinivasan is with Berkeley Education Alliance for Research in

Singapore, Singapore 138602, seshadhri.srinivasan@bears-berkeley.sg

Srini Ramaswamy is with ABB Inc. USA srinitn@gmail.com

G. Kanter, J. Vain, Seshadhri Srinivasan and Srini Ramaswamy

Provably Correct Configuration Management of Precision Feeding

in Agriculture4.0

conditions. Any farm system upgrade, e.g. extending the farm

territory, constructing new buildings, introducing new

mechanism, or downgrade due to robots maintenance, needs

redesign of the infrastructure and the investments might be far

from optimal. Chrisiansen et al. [30] studied the used of

model-based control design for single robots, the problem of
multiple robot deployment has not been studied in the

literature. To overcome shortcomings referred in literature,

this investigation proposes a dynamic configuration

management for farms using model checking. We start with

an abstract model whose feasibility is verified using model-

checking and simulation-based verification is done by

embedding low-level information (e.g. robot speed). Finally,

we test the operational constraints against environmental

conditions. The methodology is illustrated on a mink farm in

Estonia.

The paper is organized into five sections including the

introduction. Section II presents the preliminaries and mink
farm case-study is presented in Section III. Farm

reconfiguration and its validation is presented in Section IV.

Conclusions and discussions are presented in Section V.

II. PRELIMINARIES

A. Modelling with Uppaal Timed Automata

Uppaal Timed Automata (UTA) [21] address the behavioral

and timing aspects of systems providing efficient data

structures and algorithms for their representation and analysis

through model checking. UTA is a network of extended timed
automata where each automaton is defined as the

tuple (𝐿, 𝐸, 𝑉, 𝐶𝐿, 𝐼𝑛𝑖𝑡, 𝐼𝑛𝑣, 𝑇𝐿), where 𝐿 is a finite set of

locations, 𝐸 is the set of edges defined by 𝐸 ⊆ 𝐿 ×
𝐺(𝐶𝐿, 𝑉) × 𝑆𝑦𝑛𝑐 × 𝐴𝑐𝑡 × 𝐿, 𝐺(𝐶𝐿, 𝑉) is the set of

transitions’ guard conditions, 𝑆𝑦𝑛𝑐 is a set of synchronization

actions over channels and 𝐴𝑐𝑡 is a set of sequences of

assignment actions with integer and boolean expressions as

well as with clock resets. 𝑉 denotes the set of integer and

boolean variables. 𝐶𝐿 denotes the set of real-valued clocks
(𝐶𝐿 ∩ 𝑉 = ∅). 𝐼𝑛𝑖𝑡 ⊆ 𝐴𝑐𝑡 is a set of assignments of initial

values to variables and clocks. 𝐼𝑛𝑣 ∶ 𝐿 → 𝐼(𝐶𝐿, 𝑉) is a map

that assigns an invariant over clocks 𝐶𝐿 and variables 𝑉 to

each location in L. 𝑇𝐿 ∶ 𝐿 →
{𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦, 𝑢𝑟𝑔𝑒𝑛𝑡, 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑} is the function that assigns
the type to each location of the automaton.

The graphical representation of UTA (see, e.g. Fig. 4) is a

directed graph, where locations are represented by vertices

and are connected via edges. Locations are labelled with

invariants. The invariants are Boolean expressions where the

literals are predicates on clock variables and integer constants,

e.g. Clock <= const. The edges are annotated with guards,

synchronisation conditions and updates. An edge is enabled if

the guard evaluates to true. The parameterized instances of

automata templates, called processes, synchronize their

transitions via channels. The edges of two parallel automata

to be synchronous must be labelled with a common channel
name. The channel names of synchronous edges are suffixed

with ! and ?, respectively where symbols ! and ? denote

emitting and receiving end of the channel. Updates that also

label edges express the change of the system state when the

edge is executed, e.g., Clock = 0 resets the value of model

clock named Clock.

B. Verification with model checking

Model checking is an algorithmic verification technique for

checking satisfiability relation ╞ stated as follows: “Given a

model M of a system and its specification , check
exhaustively and automatically whether this model meets a

given specification”. Satisfiability is expressed symbolically

as M ╞ . For UTA models the specification is defined in
terms of Timed Computation Tree Logic TCTL [22]. We use

UPPAAL [23] model checker which is designed to check a

subset of TCTL formulas for networks of timed automata.

The formulas contain no nested temporal operators and

should be one of the following forms [24]:

- A[]  - invariantly;

- E<>  - possibly ;

- A<>  - always Eventually ;

- E[]  - potentially always ;

-  -->  -  always leads to . This is a shorthand for TCTL

formula [](  <>), where ,  are properties that can
be checked locally on a state, i.e. Boolean expressions over

predicates on locations, integer variables, and clock

constraints of model M. Note that local property formulas 

and  above may involve also 1st order quantifiers over
integer variable domains.

C. Design validation with model-based testing

Conformance testing with UTA means interpreting symbolic

timed traces generated by UTA test model and comparing

these interpretations with the i/o traces of System Under Test

(SUT). A symbolic timed trace TTrS of a UTA model is a

sequence of symbolic states, each state being defined as a

tuple (l, D, v), where l is a location, D is the clock constraint,
and v is a set of non-negative variables’ values. A transition

from a symbolic state to another state is possible either by an

action a or by delay d denoted as (l, D, v) a/d (l’, D’, v’). The
test models expressed in UTA have two partitions, one

representing the SUT and the other representing its

environment. These partitions are synchronized by

input/output actions. The interaction between the system and

its environment are identified as observable test actions.

During test execution, the internal actions are abstracted as

delays. Therefore, in conformance testing the abstract test

sequences comprise delays and observable i/o actions only.

Definition: Relativized Timed Input/Output Conformance

(rtioco) relation

For input enabled timed input/output labeled transition

systems i (i denotes SUT in testing context), s (denotes the

model of SUT) and e, (the environment of SUT) relativized

timed input/output conformance is defined as:

i rtiocoe s iff   TTr(e):

Out(i, e  after )  Out(s, e  after ),

where TTr(e) is a set of timed i/o traces of the environment e,

 i, e  and  s, e  are observable synchronized i/o actions

respectively of i and e and s and e. Out(i, e  after ) and

Out(s, e  after ) return the sets of output actions of system

implementation and specification respectively. The practical

interpretation of the given definition is that the

implementation conforms to the specification within a shared

environment if and only if the observable i/o behavior of the

system implementation is always the same as the behavior

defined by its specification. The result of conformance testing
will be one of the three cases: passed, failed, or inconclusive.

If the implementation output is not in the set of inputs

specified for the environment or no input/output is provided

within the defined time (test timeouts), then the test result is

interpreted as inconclusive.

III. CASE STUDY: MINK FARM AUTOMATION

The model of mink fur farm consists of entities such as farm

houses, feeding robots, and a loading station where food is

loaded to robots. The number of mink farm houses can differ

from farm to farm, and they tend to be aligned in parallel (see

Figure 1a). The standard length of row of mink farm houses

varies from 30 meters to several hundred meters. The widths
of the entrance and exit is 1.2 to 1.55 meters and they are the

narrowest parts the robot must drive through.

Fig. 1. a) Outlook of the farm; b) Feeding robot.
The loading station (Figure 2) includes a food silo lifted on

metal bars and a remotely controlled loading door. For

loading the robot has to position itself under the loading door

so that the opening above is centred to the robot’s food

container. When the right position is achieved the robot starts

loading by remotely operating the loading door. The loading

is stopped by robot when the food level in the robot’s

container reaches a pre-calculated margin.

The feeding robot (Figure 1b) is a four-wheeled autonomous

vehicle with front wheels steering and the rear wheels

differential driving. The robot receives sensory inputs from a

laser-range scanner, GPS, IMU, and rotary encoders on the
back wheel and front wheel kingpins. Actuators control the

vehicle steering, driving, and feeding system. Two feeder

arms are mounted on the robot to dispense the food on the top

of cages at the predetermined locations.

Fig. 2. a) Loading station; b) Simulation view

Fused sensory data are utilized to determine the current

location and enable the robot to navigate and perform feeding

operations. Aruco tags are placed along the animal cage rows

at every 20 m, for localization. The characteristic of the

feeding robot are following:

- Maximum indoors speed during feeding is 0.5 m/s
- Maximum vehicle speed outdoors is 1.5 m/s

- Feeding precision is 10 cm inside the placement areas.

- Collision free navigation that means that neither the

vehicle nor feeding arm collide with the surroundings.

The causes of farm reconfiguration are following: populating

empty farm houses with animals or emptying farm houses,

adding/removing robots in operation due to technical

maintenance, changing the topology of connecting roads

between houses and loading station, changing the speed of

robot loading, cruising with and without load and changing

food delivery speed indoors. As a result of reconfiguration the

following characteristics can change: the number of robots,
consumption of food per house, time of loading, point-to-

point transport delay of robots, duration of food delivery per

house. For automatic generation of farm configuration models

all these characteristics are defined as parameters of the model

components’ templates.

IV. FARM RECONFIGURATION AND ITS

VALIDATION

A. Reconfiguration validation process

The reconfiguration validation process is divided into
incremental stages (Figure 3). The goal of incremental

validation is to minimize the validation time and cost. The

design and implementation faults detected at an earlier stage

are considerably less costly to rectify than the ones detected

after system is fully implemented. In the first stage, a formal

model is generated from farm configuration specification.

The model allows verification of configuration feasibility by

abstracting from implementation details. The model is

generated using Uppaal TA templates of farm entities.

Feasibility verification of farm configuration means proving

that configuration satisfies constraints, e.g. “animals get

always fed on time and with required amount of food”.

Fig. 3. Farm reconfiguration validation process

In the next validation stage, the reconfiguration feasibility is

validated using a simulation model which incorporates

implementation aspects that refine the initial verification

model. Lastly, when all model-based abstract verification

steps are successfully passed the robots are deployed and

long-term field test scenarios are executed to validate the

simulation results in the real farm environment. In case some

Configuratio

n

specification Model synthe-
sis & checking

Simulation–
based
validation

Field tests

of the validation stages fails the process backtracks to the

configuration specification stage for finding an alternative

solution. After the configuration correction, the validation

process is repeated. Note that the configuration correction can

be assisted by the diagnostics provided by the earlier model

checking stage to localize the cause of feasibility violation.

B. Generating high-level farm model

The configuration model synthesis is based on composing

model templates each corresponding to some farm functional

entity. For verification the model templates are instantiated
with configuration specific parameter values such as the

number of farm houses and robots, house traversal time, travel

time between the robot navigation waypoints in the territory

and indoors.

Fig. 4. Model template Robot

The active entities of the farm model are feeding robot,

loading station, global planner (task broker), and robot’s on-

board planner. The rest of attributes of farm entities are

represented as variables in the model. Composed farm model

specifies an observable behaviour and interactions of entities.

Feeding robot (template Robot, Fig. 4). The template is

parameterized by robot ID. The states of a robot are: Parking,

Planning next action, Moving to the action location, Loading

food, and Feeding animals. Loading is divided into two sub-

states: Waiting in the queue and Loading.

Fig. 5. Model template Loader

Initially, all robots are in their parking position and sampling

if there are tasks in the tasks queue. For a task to be allocated,

the robot communicates with the Broker which decides on the

next task (defines the house to be fed). The tasks to be

executed are kept in the Broker’s task list. The task

acceptance decision is made by robot in the state Planning

(on-board planning actions are refined in the template

Planner). To accomplish the feeding task the robot needs

enough food in its tank. If the tank is full for a task the robot

navigates to the destination building and starts feeding there.

If the tank is not filled the robot moves to the loading station
and registers in the waiting queue (function enqueue). After

loading, the robot returns to planning state to pick a new task.

Loading station (template Loader, Fig. 5) operates the loading

queue of robots that have registered for loading. When the

queue is empty the Loader returns to state Idle. The Loader

activates in the arrival of any robot. Each time some robot

finishes loading its ID is removed from the queue (function

dequeue) and the waiting robots’ IDs are shifted one position

further in the queue.

Global planner (template Broker, Fig. 6) periodically samples

the status of the food in the feeding houses to decide on the

next feeding task. When the time comes to feed a house the
corresponding task (defined by house number, the cage row

and deadline) are generated and added to the tasks list.

Whenever a task is taken by some robot the task status

changes to assigned, and when it is completed the task is

removed from the tasks list.

Fig. 6. Model template Broker

Robot’s on-board planner (template Planner, Fig. 7) models

the robot decision process of choosing next actions. After the

task is chosen from the Broker’s task list the Planner decides

if it can be completed with the food amount it has in the tank.

If not the Planner chooses task loading. Otherwise, the robot’s

individual goal is updated with the task assigned the highest
priority by Broker.

Fig. 7. Model template Planner (Robot’s on-board planning)

C. Formal verification of the farming system

After model generation the validation process starts with

model checking to prove that the farm operation under given

configuration constraints does not violate the farm feasibility

criteria. The primary criterion is that animals get fed with

required amount of food and the feeding intervals meet the

prescribed constraints, that is, each feeding house should be

fed with right intervals where the timing deviations can vary

only within some prescribed error margin. The verification

goals are formalized as TCTL formulas in which following

farm model terms can be referred to: Constants: L - number

of loading stations; N - number of robots; M - number of
buildings; K - number of grids in one row of the building; P -

the number of feeding priority groups; dT1/dT2 – lower/upper

bound of the food delivery time per grid; Tick - model time

step; SamplgT - period of sampling the need for feeding;

Horizon – verification time horizon; FeedP[P] – vector of

criticality thresholds of feeding delays (FeedP[0] corresponds

to the highest priority); Norm – size of the portion per animal;

T_size - the size of on-board food tank; LoadTime - maximum

duration of loading the tank; Length[m] - number of grids in

one row of m-th building; Dist[i][j] - durations of moving

between i-th and j-th outdoor objects of the farm.
Variable arrays: LastFed[m] – clock variables counting time

since the last feeding of the m-th house; task[p][m] – two

dimensional array of feeding tasks, where p  [1, P] is index

showing the priority queue and m  [1, M] index of the
building to be fed in the task. Goal[n] - the destination of n-

th robot to navigate to; OPos[n] – location the n-th robot

departed from when navigating; FTank[n] – amount of the

food left in the n-th robot tank; house[n] - the building n-th

robot is heading to or is feeding; loadQ[.] – the queue of

robots waiting in the loading station.

Functions: enqueue(n) – adding n-th robot in the loading

queue; dequeue() – removing a robot from the loading queue

after loading; taken(i) – returns true if the i-th task in the task

queue is assigned to some robot, false otherwise.

The weakest feasibility constraint (1) requires that for all
buildings the feeding can be delayed at most delta after the

building feeding has reached the highest priority, i.e. the delay

from last feeding exceeds an upper bound FeedP[0], and, on

the other hand, it is not more frequent than the feeding interval

lower bound FeedP[2].

 A[] forall (i: [1,M]) LastFed[i] < FeedP[0] + delta (1)

 && LastFed[i] >= FeedP[2]

Normally, it is expected that the feeding period is within

interval [FeedP[2], FeedP[1]], i.e. not letting any feeding

house to wait longer than specified by second highest priority

value FeedP[1]. It means if there is no emergency the

condition (1) reduces to (2).

 A[] forall (i: [1,M]) LastFed[i] < FeedP[1] (2)

 && LastFed[i] >= FeedP[2]

D. Simulation based validation

Simulation based validation means running test scenarios in
the simulation world. The simulation world is dynamically

generated using parameterized generator scripts. The

parameters are specified based on the Uppaal model checking

results. The properties verified in Uppaal guide selecting the

specific configuration of the simulation, e.g., the number of

houses and robots. Simulation experiments enable validation

of the configuration in deeper level of detail which in turn can

be tested in a full real world scenario. A screenshot of the
simulated scenario on a real robot is shown in Fig. 8. Any

significant deviation from simulation are detected by runtime

monitor and analyzed in order to localize the source of the

problem. As the simulation is never exactly the same as real

world, improvements can be made to the simulation models

and parameters to better match the real world conditions. Fig.
8. Validation of farm scenarios against simulation

Fig. 9 depicts an excerpt of simulated feeding scenario. The

feeding system is designed to maximize efficiency by

simultaneously dispensing fodder on both rows of cages. The

amount of fodder dispensed per cage is reconfigurable and

can be tailored to suit the specific requirements of the animals

(based on age or other characteristics).

Fig. 9. Simulated feeding scenario

E. Testing workbench TestIt for robotic systems

The Gazebo simulator [28] based validation of the system was

performed using the testing toolkit TestIt [27]. At its core, the
TestIt toolkit is a test runner and test result aggregator but it

also enables the tests to be more efficient and useful when

combined with model-based testing techniques and tools.

TestIt toolkit enables tests to be run in parallel in flexible

configuration which scales well with hardware. The tests were

executed on Amazon Web Services [25] cloud servers in

parallel to minimize testing time. TestIt toolkit is designed to

work with Docker containers [29]. This is not a strict

requirement and the TestIt tool can be used in a variety of

ways as a test runner and result aggregator. In the robotic

farming use case, we have the SUT software stack running in

one container and the tests are running in another container

(TestIt container). This follows the traditional separation of

concerns principle and enables black-box testing. Black-box
testing allows the testing process to be unbiased and is more

flexible as the tests are not closely coupled to the source code

implementation. In this use case we utilize an extension of

TestIt which incorporates model-based testing tool Dtron

[27]. Dtron enables executing Uppaal models as abstract tests.

For this use case the tests were divided into two categories:

navigation and feeding. The navigation tests focused on

testing whether the navigation algorithms were able to

maneuver the robot successfully and the feeding tests focused

on the correctness of feeding process. The tests were asserted

as successes if the robot completed the scenario in the allotted

time. The completion of tasks was evaluated by an oracle
which was running as a separate stand-alone process.

V. CONCLUSIONS AND DISCUSSION

This paper presented an approach for incremental

configuration management and configuration validation for

robotic feeding in Agriculture 4.0. The method proposed had

several modelling and validation steps that gradually refine

the farm description and verified feasible operation. The

approach was incremental in the sense that abstract model was

generated automatically and once verified, it served as a

starting point for the simulation model adding low-level

information. We presented a case study of a mink farm and
our studies showed that as lower level information is added,

the validation time and complexity increased substantially.

Consequently, the proposed approach could be used to detect

configuration fault early during the modelling and validation

stages saving reconfiguration cycles and extensive simulation

experiments. It also eliminates the need for more intensive

field tests and only a final validation test is required. As

against existing results wherein only model-based simulations

have been studied with a goal for single robot design, the

proposed approach evaluated the feasibility of the entire farm

operation by integrating complimenting techniques: formal

verification, simulation, and model-based testing. Partial
validation by simulation experiments and field tests is

supported by exhaustive state space exploration using formal

model checking, thereby providing re-use capability to

system components that constitute the configuration builds

through system life time.

References

[1] CLERQC, M., A. Vats, and A. Biel. "Agriculture 4.0: The Future of
Farming Technology." Nova Iorque: Oliver Wyman (2018).

[2] Hamrita, Takoi K., E. W. Tollner, and Robert L. Schafer. "Toward

fulfilling the robotic farming vision: Advances in sensors and
controllers for agricultural applications." IEEE Transactions on

Industry Applications 36.4 (2000): 1026-1032.

[3] Ramachandran, V., R. Ramalakshmi, and Seshadhri Srinivasan. "An

Automated Irrigation System for Smart Agriculture Using the Internet
of Things." 2018 15th International Conference on Control,

Automation, Robotics and Vision (ICARCV). IEEE, 2018.

[4] Dlodlo, Nomusa, and Josephat Kalezhi. "The internet of things in
agriculture for sustainable rural development." 2015 international

conference on emerging trends in networks and computer

communications (ETNCC). IEEE, 2015.

[5] TongKe, Fan. "Smart agriculture based on cloud computing and

IOT." Journal of Convergence Information Technology 8.2 (2013).

[6] Auernhammer, Hermann. "Precision farming—the environmental
challenge." Computers and electronics in agriculture 30.1-3 (2001): 31-

43.

[7] Blackmore, Simon. "Precision farming: an introduction." Outlook on
agriculture 23.4 (1994): 275-280.

[8] Ahmed, Faraz, et al. "Survey on Precision Farming using Mobile

Applications." Global Journal of Computer Science and
Technology (2019).

[9] Potena, Ciro, et al. "AgriColMap: Aerial-Ground Collaborative 3D

Mapping for Precision Farming." IEEE Robotics and Automation
Letters (2019).

[10] K. Visalini, Giovanni Palmieri, K. Bekirogulu, S. Thiyaku, B. Subathra,

and Seshadhri Srinivasan, “Sensor Placement Algorithm with Range
Constraints in Precision Agriculture”, IEEE Aerospace and Electronic

Magzine, 2019.

[11] Sowmya, B. J., et al. "IOT and Data Analytics Solution for Smart

Agriculture." The Rise of Fog Computing in the Digital Era. IGI
Global, 2019. 210-237.

[12] Grossi, Marco, et al. "Sensors and Embedded Systems in Agriculture

and Food Analysis." Journal of Sensors 2019 (2019).

[13] Elijah, Olakunle, et al. "An overview of Internet of things (IoT) and data
analytics in agriculture: Benefits and challenges." IEEE Internet of

Things Journal 5.5 (2018): 3758-3773.

[14] Zhang, Dan, and Bin Wei. "From Manual Farming to Automatic and
Robotic Based Farming." Robotics and Mechatronics for

Agriculture (2017): 121.

[15] Kounalakis, Tsampikos, Georgios A. Triantafyllidis, and Lazaros
Nalpantidis. "Weed recognition framework for robotic precision

farming." 2016 IEEE International Conference on Imaging Systems and
Techniques (IST). IEEE, 2016.

[16] Ampatzidis, Yiannis, Luigi De Bellis, and Andrea Luvisi. "iPathology:

robotic applications and management of plants and plant
diseases." Sustainability 9.6 (2017): 1010.

[17] Bach, Alex, and Victor Cabrera. "Robotic milking: Feeding strategies
and economic returns." Journal of dairy science 100.9 (2017): 7720-

7728.

[18] Halachmi, I., and M. Guarino. "Precision livestock farming: a ‘per
animal’approach using advanced monitoring

technologies." Animal 10.9 (2016): 1482-1483.

[19] Pellon URL. https://www.pellon.fi/en/pig_husbandry/ feeding/
pig_robot/

[20] Wbur URL. https://www.wbur.org/hereandnow/ 2017/08/10/ midwest-

dairies-robots/

[21] Behrmann, G., David, A., Larsen, K.G. (2004) A tutorial on uppaal. In:
M. Bernardo, F. Corradini (ed.), SFM-RT 2004, LNCS, vol. 3185,

Springer Verlag. 200 - 237.

[22] Alur, R., Courcoubetis, C., and Dill D.L. (1990) Model-checking for
real-time systems. In Proceedings, Seventh Annual IEEE Symposium

on Logic in Computer Science. IEEE Computer Society Press. 414–425.

[23] Uppaal URL. http://www.uppaal.org/

[24] Bengtsson J., Yi W. (2004) Timed Automata: Semantics, Algorithms

and Tools. In: Desel J., Reisig W., Rozenberg G. (eds) Lectures on
Concurrency and Petri Nets. ACPN 2003. Lecture Notes in Computer

Science, vol 3098. Springer, Berlin, Heidelberg. 87-124.

[25] Amazon Web Services URL. https://aws.amazon.com/

[26] TestIt URL. https://github.com/GertKanter/testit/

[27] Dtron URL. https://cs.ttu.ee/dtron/

[28] Gazebo simulator URL. http://gazebosim.org/

[29] Docker URL. https://www.docker.com/

[30] Christiansen, M.P., Larsen, P.G., Jørgensen, R.N. (2016) Agricultural

Robotic Candidate Overview using Co-model Driven Development.
International Conference on Integrated Modeling and Analysis in

Applied Control and Automation. Bruzzone, Dauphin-Tanguy, Junco
and Longo (ed.), 41- 47.

Appendix 4

Publication IVJ. Vain, G. Kanter, and A. Anier. Learning timed automata from interactiontraces. In 14th IFAC Symposium on Analysis, Design, and Evaluation of Hu-
man Machine Systems, HMS 2019, volume 52-19, pages 205–210, 2019

117

Learning Timed Automata from Interaction
Traces ?

J.Vain, ∗ G.Kanter, ∗ A.Anier ∗

∗ Tallinn University of Technology, Akadeemia tee 15A, Tallinn, 12618
Estonia (e-mail: juri.vain@ taltech.ee).

Abstract:
The design of load-critical human-machine systems presumes thorough modelling and analysis of
interaction profiles the systems are meant to withstand at peak loads. The need for mathematical
modelling of interactions is often ignored due to significant modelling effort and lack of
relevant tools. We propose an algorithm for automatic learning a subclass of Uppaal timed
automata models from system and its environment interaction logs. The learning method
relies on synchronous communication assumption that is characteristic to communication
protocols of networked HMS distributed components. The method is demonstrated on IEEE1394
protocol learning example. Beside enhancing automatic test generation, the learned model allows
verifying test feasibility and test optimization already in early phases of test design.

Keywords: Machine learning, timed automata, human-machine interaction, leader election
protocol, load testing.

1. INTRODUCTION

Human-machine systems, such as early warning of natural
disasters, rescue planning from disaster areas, and other
are not only time critical but should also withstand sharp
load fluctuations in the crisis situation. The performance
issues manifest themselves when the number of entries,
e.g. phone calls, to the system suddenly grows in short
time and the services availability may drop noticeably
causing denial of life critical services. Anticipating sharp
load fluctuations in such circumstances without thorough
modelling and analysis of user behaviour is often source
of ambiguous requirements and rises the risk of infeasible
solutions in critical HMS design. One frequent reason of
insufficient availability and scalability of an interaction
intensive HMS, is the design practice where instead of
systematic model-based development (MBD) often ag-
ile and heuristic approaches are preferred. According to
Dias Neto et al. (2007) the most frequent reasons why
rigorous model-based system development methods have
not been easily accepted in software industry are:

• considerable modelling effort,
• model-based approaches have poor integration with

current software development practices,
• model-based methods lack empirical evaluation from

industrial environments.

Model-based analysis of HMS environment behaviour and
proper specification of system requirements are not needed
only for design activities but also for testing to what extent
the system implementation conforms to its requirements.
Performance testing of HMS presumes generating the test
cases that represent different load patterns from human
controlled environment. One most natural source for ex-
? This research was partially supported by the Estonian Ministry of
Education and Research institutional research grant no IUT33-13.

tracting data about load characteristics is the interaction
log which shows how real users have interacted with the
systems of similar purpose and expectedly would interact
with the system under design. Shaw (2000) states that
in performance testing, it is important that the traffic
generated from workload models mimic the load generated
by real users as closely as possible. Otherwise it is not
possible to draw any reliable conclusions from the test
results. In this paper we address the problem of reduc-
ing the modelling effort in model-based testing of load
critical HMS and search for solutions of constructing test
models by means of machine learning methods. Learning
the system load profiles from realistic i/o logs provides,
in the first place, the test data to be tried with the
system under test (SUT). Second outcome of the learning
method is extracting the test scenarios that determine the
order and frequency of applying test data in the situa-
tions under test. The model learning algorithm proposed
in this paper for automatic model-based test generation
presumes exploring the time stamped interaction logs that
are recorded when monitoring the traffic between the
ports of distributed HMS and its environment or traffic
between its components. The learning algorithm outputs
the model in the form of a subclass of Uppaal timed
automata (TA) (Behrmann et al., 2004) where all input
actions in system side and corresponding output actions in
the environment side are assumed to be synchronous. Same
applies symmetrically to output actions of the system
and corresponding input actions from the environment.
The learning approach we propose is demonstrated on
IEEE1394 distributed leader election protocol. This pro-
tocol is used in ad hoc radio communication networks that
are often part of the critical HMS infrastructures. Another
reason of choosing this case study for learning models
for load testing is that all the nodes in IEEE1394 leader
election infrastructure follow the same protocol and it is

Preprints, 14th IFAC Symposium on
Analysis Design and Evaluation of Human Machine Systems
Tallinn, Estonia, Sept. 16-19, 2019

Copyright © 2019 IFAC 205

easy to validate the model learned against the model com-
posed manually by the description of standard IEEE1394.
Finally, the modularity and symmetry of studied protocol
allows easy rescaling of models by changing the number of
nodes and running different load patterns that put system
under the stress. The load tests are considered to be passed
if the load patterns are responded properly by HMS and
its reconfiguration procedures.

2. TIMED AUTOMATA LEARNING: RELATED
WORK

The construction of automata models by observing system
i/o behaviour is regarded as an automata learning prob-
lem (Freund et al., 1993). For finite-state reactive systems,
the active learning means constructing a (usually deter-
ministic) finite automaton from the answers to a finite
set of membership queries, each of which asks whether
a certain sequence of input symbols (observed events) is
accepted by the automaton or not. There are several tech-
niques (for overview we refer to Angluin (1987), Kearns
and Vazirani (1994)) which use the same basic principles.
They differ by how membership queries are chosen and
how an automaton is constructed from the answers. The
techniques guarantee that a correct automaton will be
constructed if sufficient information is obtained. In order
to check the sufficiency of learning sets, the equivalence
queries are used that ask whether a hypothesized automa-
ton accepts the correct sequences of symbols. Such a query
is answered either by “yes” or by a counterexample on
which the hypothesis and the correct language disagree. In
Grinchtein et al. (2004) the algorithm of Angluin (1987) is
extended to event recording timed automata. This class is
restricted to be event-deterministic meaning that timing
constraints for the occurrence of an action depend only on
the past sequence of actions, and not on their relative tim-
ing. Another timed automata learning method has been
proposed in Tappler et al. (2018). This model generation
approach is based on genetic programming method. The
technique is entirely passive, i.e. the model is learned from
a set of timed traces (observations), collected beforehand
by random testing. As an alternative to learning methods
discussed above a passive learning method of Uppaal TA is
proposed in this work. While referred approaches construct
ordinary timed automata (without data variables), our al-
gorithm learns Uppaal TA which are extension of ordinary
timed automata. Due to the application specifics of learn-
ing outcome, that is HMS load test model construction,
the method is built upon following assumptions:

(1) The algorithm must be incremental to implement
online learning strategy, i.e. the learner does not have
a possibility to back-track and ask equivalence or
membership queries about the arbitrary length pre-
fixes of the learning input trace. The algorithm con-
structs a complete (relative to the input trace) non-
deterministic timed I/O automaton, i.e. observation
sequences learned are reproducible by automaton.

(2) Since the aim is to learn interactions between multiple
automata instead of learning a single automaton, the
algorithm has to construct the parallel composition of
interacting Uppaal automata. Two alternative cases
of automata synchronization within their composition
can be considered:

• Case 1: the processes communicate via i/o vari-
ables and synchronize only by means of clock con-
straints. That is because the forward stability of
synchronization hypothesis cannot be guaranteed
in the incremental and unsupervised learning of
unpredictable interactions. To ensure the incre-
mental learning (for details we refer to Ade et al.
(2013)) it has to be guaranteed that the model
built based on past observations will not be back-
tracked during learning. If a new observation
would violate the synchrony hypothesis (made
based on past observations) then potentially ex-
tensive backtracking is required to change the
synchrony attributes in the model.
• Case 2: If the communication of processes over

i/o variables is assumed to be synchronous the
forward stable synchronization assumption is due
to the fact that observable communication ac-
tions always incorporate both communicating
parties and the learner can record the fact of
synchrony in the first occurrence of such an input-
output action pair.

(3) The algorithm needs to use predicate abstraction for
clustering the events and for encoding their occur-
rence conditions on clock and state variables. The
transition guards and location invariants, both possi-
bly non-deterministic, are constructed in the form of
linear interval constraints. Monotonous expansion of
the interval bounds during leaning helps keeping the
balance between the learning algorithm complexity
and the precision of the resulting model.

The algorithm which covers the Case 1 has been proposed
in Vain et al. (2009). It assumes that system input-output
actions are asynchronous and their timing refers to global
observer’s clock. These assumptions are motivated again
by the application context, i.e. learning surgeon’s and
scrub nurse’s collaborative movements during surgeries.
Here, in case of unsupervised learning, the learner does not
have knowledge if the motions observed simultaneous once
are causally related or they just happened to be simultane-
ous accidentally. Therefore, in general, the traces used for
robot training are not supposedly forward stable (Morin,
2008) regarding synchronization. The idea of learning
timed automata from logs to encode load patterns is not
completely new. Probabilistic Timed Automata (PTA)
have been proposed in Abbors et al. (2013). The prob-
ability estimates accumulated by log analysis give metrics
for prioritizing the test sequences to cover most typical
load situations. On the other hand, the bugs occurring
in behaviours of low probability may remain undetected
and can cause considerable damage in rare but critical
situations. This motivates the usage of non-deterministic
TA instead of PTA in testing critical HMS. We assume
implicitly that non-deterministic choices encoded in the
model are strongly fair (Francez et al., 1979). Another as-
sumption is synchrony of communication actions. The data
communication between the parallel components of the
system once observed synchronous remains synchronous
in further communication. Thus, the traces are assumed
to be forward stable regarding synchrony and the use of
synchronization constructs of Uppaal TA models is justi-
fied. Last but not least, the traces extracted from logs and

2019 IFAC HMS
Tallinn, Estonia, Sept. 16-19, 2019

206

used for learning are assumed to be recorded at the same
ports of SUT that will be used later as test ports.

3. PRELIMINARIES: UPPAAL TIMED AUTOMATA

Uppaal TA (Behrmann et al., 2004) are defined as a closed
network of extended timed automata that are called pro-
cesses. The processes are combined into a single system
by synchronous parallel composition. The nodes of the
automata graph are called locations and directed vertices
between locations are called edges. The state of an au-
tomaton consists of its current location and assignments
to all variables, including clocks. Synchronous communi-
cation between processes is done by synchronisation links
called channels. A channel relates a pair of edges in par-
allel processes where synchronised edges are labelled with
symbols for input and output actions (denoted ch? and,
respectively, ch!). Formally, Uppaal TA is a tuple (L, E ,
V , CL, Init, Inv, TL), where:

• L is a finite set of locations,
• E is the set of edges defined by E ⊆ L×G(CL, V)×
Sync×Act× L, where:
· G(CL, V) is the set of constraints in guards,
· Sync is a set of synchronisation actions over

channels and
· Act is a set of integer and boolean assignments

and clock resets.
• V denotes the set of integer and boolean variables.
• CL denotes the set of real-valued clocks CL ∩ V = ∅
• Init ⊆ Act is a set of assignments that assigns the

initial values to variables and clocks.
• Inv : L → I(CL, V) is a function that assigns an

invariant to each location, with I(CL, V) denoting
the set of invariants over clocks CL and variables V .

• TL : L → {ordinary, urgent, committed} assigns the
type to each location

4. UNSUPERVISED LEARNING OF UPPAAL TIMED
AUTOMATA WITH SYNCHRONOUS
COMMUNICATION ASSUMPTION

The learning algorithm introduced in this paper though
inspired by Vain et al. (2009) relies on different assump-
tions. It takes the log of input-output events monitored
on ports of system and constructs the Uppaal TA model
where processes communicate over shared variables and
synchronize using both clock constraints and channels.
The set of model locations is not known in advance, it is
generated in the course of learning process by identifying
the equivalence classes of system inputs. Since the inter-
actions between system and its environment need to be
learned we distinguish the components of environment by
ports of the system they have direct access. The automata
that model environment components are assumed to be
output deterministic, i.e. there is one-to-one correspon-
dence between the locations of environment automata
and the equivalence classes of environment components’
outputs.

4.1 Assumptions of model construction

The assumptions coming from the learning context are
summarised in the following: (i) The model learned for

model-based testing includes two partitions: the compo-
nents of SUT and the components of environment Env.
The interactions between the components of SUT and
Env are observable as events that update the values at
components’ ports. Each port is allocated to only one
component either that of SUT or Env. Thus, a link
between components is identified by the pair of ports it
is connecting. (ii) The communication between ports is
unidirectional. A connection between ports PE

i and PS
j

belonging to environment component PE and SUT com-
ponent PS respectively, is modelled in the Uppaal TA as a
channel chij =

〈
PE
i , P

S
j

〉
from the i-th output port of PE

to the j-th input port of PS . (iii) The learning objective
is to construct a model that represents how environment
chooses inputs of SUT after SUT has responded to the
earlier stimuli from environment. Since the model learning
algorithm is targeted to load test generation, the specific
control structure of SUT model can be ignored. We simply
assume the input enabledness of SUT w.r.t. all of its ports.
Technically, it suffices introducing an automaton for each
SUT component where the automaton has canonical con-
trol structure like proposed in Brinksma (1989). The SUT
component automaton responds either by writing data
to its output ports or by executing unobservable internal
actions that results in a special timeout event issued by
network monitor. (iv) From Environment perspective the
set E of events observable at ports consists of two subsets
E = ESUT ∪ EEnv, where ESUT are the events produced
by SUT (observable to Env events), and the events EEnv

produced by the components of the environment (test
controllable events). It is assumed that set ESUT includes
also timeout events (TO), i.e. initiated when SUT does
not respond to input within given time bound. (v) The
event log Lg(E) starts with the Environment event and
ends with the event produced by SUT, i.e. e1 ∈ EEnv and
en ∈ ESUT , where n = |Lg(E)| (vi) The observations of
events ei in the log are recorded as triples 〈P, TS, X〉,
where - the pair of ports (P = 〈Porti, Portj〉) identifies
the channel chij between send and receive processes (fur-
ther, for shorthand we use channel label chij instead of
the pair of ports); - TS is the network monitor’s clock
timestamp; - the vector X of data variables communicated
between ports is denoted by X = Xi if data propagate
from Porti ∈ PE to Portj ∈ PS and by X = Xo if data
propagate from Porti ∈ PS to Portj ∈ PE ; - timeout as
special event is recorded in the form of triple 〈., TS, ∗〉,
where for all i, xouti = ∗ (“.” and “*” are wildcard symbol
for channel and for variable xouti value). To treat the
symbol * uniformly with numeric values we extend the
semantics of standard functions min and max as follows:
min (∗, x) = min (x, ∗) = max (∗, x) = max(x, ∗) = x.

4.2 Building blocks of the constructed model

In this subsection the Uppaal TA elements from which the
learned model is built are introduced. (i) Two types of
edges of environment automata are distinguished by their
channels direction: the edges are controllable if they model
controllable events and observable if they model observ-
able events. (ii) The locations with observable incoming
edges and controllable outgoing edges are called active and
the locations are passive if they have controllable incom-
ing edges and observable outgoing edges. (iii) The non-

2019 IFAC HMS
Tallinn, Estonia, Sept. 16-19, 2019

207

deterministic invariant and guard conditions are specified
with closed intervals [lb, ub] with lb being lower and ub
upper bound respectively. (iv) The updates on outgoing
edges in the environment automata are identified by values
of Xi sent by the environment, and by values of Xo of the
observable event. The guard condition of the observable
edge that is incoming to current active location is identified
as in Algorithm 1.

Notation

• g,asg,inv,ch are meta-variables that denote the
model syntax elements such as guard condition, as-
signment, invariant and channel respectively;
• x̄ and c̄l denote valuation of variables cl and x;
• h is the stack of generated location names;

• Interval extension to the length R: [x−, x+]
lR

=
[x− − δ, x+ + δ] , where δ = R − (x+ − x−), and x−,
x+ are interval lower and upper bound respectively;
• . denotes the concatenation of terms in syntactic ex-

pressions (term is either an atom if within quotes, e.g.
’clock <= ’, or the value of an expression otherwise);
• .. denotes unspecified value (used when the model

terms have not been fully constructed yet).

4.3 Implementation of the Algorithm

The Algorithm 1 comprises two blocks: BLOCK 1 inter-
prets the controllable events and BLOCK 2 observable
events. Both blocks have two cases. In the Case 1 the event
to be learned is within an already existing equivalence class
of active locations and controllable edges or it can extend
the classes within the limits that are defined by parameter
R. In the Case 2 the event is out of the bounds of any
existing equivalence class and a new class is introduced
with the initial value defined by the value vector X̄ of the
event that has observable attributes x ∈X.

5. CASE STUDY: MODEL LEARNING FOR
PERFORMANCE TESTING OF IEEE1394

PROTOCOL

The IEEE 1394 protocol standard specifies leader election
protocol. The leader is needed to control a communication
bus after network reset. Initially all nodes in the network
have equal status, and they know only which neighbour
nodes they are connected to. The leader, after elected,
becomes the root of the tree provided the network is
connected and acyclic. Each node proceeds in two phases
depending on the number of children and the number of
neighbours still to negotiate with. If there is more than one
neighbour, the node waits for requests from its neighbours
to become their parent. If there is only one neighbour and
this neighbour is not a child, then the node sends a request
to this neighbour to become its parent. This implies
that leaf nodes are the first to communicate with their
neighbours, and the spanning tree is built from the leaves
towards root. Furthermore, the protocol may not proceed
in one run because the parent requests are not atomic
and contention may arise (two nodes simultaneously send
the parent requests to each other). Since only one of the
conflicting nodes can be a parent, the contention must be
resolved. This is achieved by random waiting time before

Algorithm 1 Learning Uppaal TA with synchronous
communication assumption

1: while E 6= ∅ do e ← pop(E),
% read the latest event recorded in the buffer E
2: if e ∈ ESUT then e−1 ← e
% if the event is initiated by SUT, save it in e−1

3: else
4: BEGIN BLOCK 1:
% recording environment events e =< chi, TS,Xi >
5: ch← e[1] , cl← (e[2]− hcl), xin ← e[3], push(hcl, e[2])
6: if ∃k, la, lp : t(la, lp, k) ∈ T (Menv) for some Menv s.t.
7: c̄h = chan(t(la, lp, k)),∀xini ∈ Xin : x̄ini ∈
asg(t(la, lp, k))lRi ∧ c̄l ∈ [glbcl(t(l

a, lp, k)), invubcl (la)]lRcl

8: then
% CASE 1: the parameters of event e extend an
existing equivalence class of ei events
9: gcl(t(l

a, lp, k))←
’cl>=’.min(c̄l, glbcl(t(l

a, lp, k)), invubcl (la)]lRcl

10: invubcl (la) ← ’cl<=’.max(cl, invubcl (la)),
11: for all xini ∈ Xin do
% extend the bounds of non-deterministic assignment
12: asg(t(la, lp, k), xini)←′ xini :′

.[min(x̄ini , asg
lb(t(la, lp, k)),max(x̄ini , asg

ub(t(la, lp, k))]
13: end for all
14: else
% CASE 2: if the attributes of event e are
not within existing equivalence classes of events
15: o← |La(Menv)|+ 1, r ← |Lp(Menv)|+ 1,
% compute indexes for new locations
16: La ← La ∪ lao , where
% create a new active location lao
17: invcl(l

a
o)←’cl>=’.c̄l,

% add location invariant
18: push(h, lao),
% add new active location to the stack
19: Lp ← Lp ∪ lpr , where r = |Lp|+ 1,
% create new passive location lpr ,
20: push(h, lpr),
% add new passive location to the stack
21: k ← |t(lak, lpr , .)|+ 1,
% compute the index for new edge t(lak, l

p
r , .)

22: T ← T ∪ {t(lao , lpr , k)},
% add new controllable edge
23: gcl(t(l

a
o , l

p
r , k))←’cl>=’.c̄l,

% add clock guard
24: ch(t(lao , l

p
r , k))← c̄h,

% add channel with suffix‘?’
25: asg(t(lao , l

p
r , k))← ’cl:=0’

% add clock reset
26: for all xini ∈ Xin

% create new state eqviv. class for non-det. assignments
27: asg(t(lao , l

p
r , k))← asg(t(lao , l

p
r , k)) ∪′ xini :′ .[x̄ini , x̄

in
i]

28: end for all
29: end if
30: END BLOCK 1

next attempt. Both conflicting nodes choose randomly
whether to wait for a long or short time interval. If, after
the wait period is over, there is a parent request from the
other node, then the node becomes a parent. If there is no
such request, then the node resends its own parent request
and contention may result again. In Figure 1 an example of
network consisting of four nodes is depicted where central

2019 IFAC HMS
Tallinn, Estonia, Sept. 16-19, 2019

208

31: BEGIN BLOCK 2:
% recording SUT events e =< cho, TS,Xo >
32: e ← pop(pop(E)), % get an observable event e
preceding the latest controllable event in the buffer E
33: h−1 ← pop(h), h−2 ← pop(h),
34: c̄h← e−1[1] , c̄l← (e−1[2]− h−1cl), x̄out ← e−1[3],
35: if ∃h−2, h−1, k : t(h−2, h−1, k) ∈ T (MEnv) for
some MEnv such that
36: ch = chan(t(h−2, h−1, k)) ∧ ∀xouti ∈ Xout(MEnv) :
x̄outi ∈ gx(t(h−2, h−1, k))lRi ∧
c̄l ∈ [gcl(t(h

−2, h−1, k)), Invub(h−2)]lRcl

37: then
% CASE 1: the parameters of event e extend
an existing equivalence class of eo events
38:gcl(t(h

−2, h−1, k))←’cl>=’.min(c̄l, glbcl(t(h
−2, h−1, k))

39: invcl(h
−2)←’cl<=’.max(c̄l, invubcl (h−2)),

40: asg(t(h−2, h−1, k))← asg(t(h−2, h−1, k))∪ ’cl:=0’,
% add clock reset
41: for all xouti ∈ Xout do
% extend the bounds of non-deterministic assignment
42: gx(t(h−2, h−1, k), xouti) ← xouti ∈ [min(x̄outi ,
glbx (t(h−2, h−1, k), xouti),max(x̄outi , gubx (t(h−2, h−1, k), xouti)]
44: end for all
45: else
% CASE 2: the attributes of event e are not
within the existing equivalence classes of eo events
46: invcl(h

−2)←’cl<=’.max(c̄l, invubcl (h−2))
% add clock inv to location h−2

47: k ← |t(h−2, h−1, ..)|+ 1, % find index for new edge
48: T ← T ∪t(h−2, h−1, k), % add new observable edge
49: gcl(t(h

−2, h−1, k)←’cl>=’.c̄l, % add clock guard
50: ch(t(h−2, h−1, k)← c̄h, % add chnl with suffix ‘?’
51: asg(t(h−2, h−1, k)←’ cl:=0’ % add clock reset
52: for all xouti ∈ Xout do % add grd on state vars
53: gx(t(h−2, h−1, k), xouti)←xouti ∈ [x̄outi , x̄outi]
54: end for all
55: end if
56: END BLOCK 2
57: end while

node Node #0 is the system under test and the other nodes
Node #1 to Node #3 constitute the Environment the test
needs to emulate. Thus, the learning goal is to construct
the model of Environment i/o behavior by studying the
logs recorded on interfaces between SUT and Environment
nodes. Let Reqij and Ackij denote parent request from
node i to node j and its acknowledgement back from node
j to node i; TOij denotes delay of retrying either Reqij or
Reqji after detecting contention between Reqij and Reqji.

The Algorithm 1 learns from traces depicted in Figure
2 and constructs the model in Figure 3 that describes
interactions of environment (Node #1, Node #2 and Node
#3) with SUT (Node #0). When browsing the events of
each log Algorithm 1 simultaneously extends the automata
involved in current interaction event.

6. CONCLUSION

We propose an algorithm of learning interaction models
that are formalized as a subclass of Uppaal TA with
synchronous communication assumption. The constraints
and assumptions to the algorithm are due to the specifics

Fig. 1. IEEE1934 test case: data flow between SUT and
Environment

Fig. 2. IEEE1934 network monitoring logs

of algorithm application. The learned model of interaction
between a system and its environment is relevant for
generating load tests of load critical HMS and its com-
ponents. The method is exemplified with the learning of
the IEEE1394 protocol model. Regardless the limited size
of the example the learning method is scalable thanks to

2019 IFAC HMS
Tallinn, Estonia, Sept. 16-19, 2019

209

Fig. 3. Model of IEEE1394 leader election protocol con-
structed by learning

the interval abstraction mechanism built in the algorithm.
The key features of the algorithm are following:

(i) learning is incremental, i.e., the model elements al-
ready learned cannot be removed during learning
process, the equivalence classes of model elements
can only be extended to certain bound and new ones
created if the log analysis detects the observation
instances not maching with already recoded classes;

(ii) the model learned can be applied for verifying the
feasibility of tests generated from the learned model;

(iii) the learning algorithm can be driven by parameters
such as feature vector, state space granularity, depth
of control state history vector, domain scaling etc.
This allows generating families of models with differ-
ent level of state and time abstraction.

Proposed model learnign approach is approximative in the
sense that it interpolates the border cases of equivalence
classes encoded in time invariants of Uppaal TA model
locations. Therefore, for method validation it has been
checked that the traces used in the learning set and the
traces generated by the learned Uppaal TA model are
equivalent modulo timing equivalence defined by interval
abstraction parameter R applied in the algorithm.

ACKNOWLEDGEMENTS

This research was supported by the Estonian Ministry
of Education and Research institutional research grant
IUT33-13.

REFERENCES

Abbors, F., Ahmad, T., Truscan, D., and Porres, I. (2013).
Model-Based Performance Testing of Web Services Us-
ing Probabilistic Timed Automata. In K.H. Krempels
and A. Stocker (eds.), Proceedings of the 9th Inter-
national Conference on Web Information Systems and
Technologies, 99–104. Webist.

Ade, M., GHRIET, P., Deshmukh, P., and SCOE&T, A.
(2013). Methods for incremental learning: A survey.
International Journal of Data Mining & Knowledge
Management Process, 3(4), 119–125.

Angluin, D. (1987). Learning regular sets from queries and
counterexamples. Information and computation, 75(2),
87–106.

Behrmann, G., David, A., and Larsen, K.G. (2004). A
tutorial on UPPAAL. In M. Bernardo and F. Corradini
(eds.), SFM–RT 2004, volume 3185 of LNCS, 200–237.
Springer Verlag.

Brinksma, E. (1989). Formal approach to conformance
testing. In Proc. Int. Workshop on Protocol Test Sys-
tems, 311–325. North-Holland.

Dias Neto, A.C., Subramanyan, R., Vieira, M., and Travas-
sos, G.H. (2007). A survey on model-based testing
approaches: a systematic review. In Proceedings of the
22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE) 2007, 31–36. ACM.

Francez, N., Hoare, C., Lehmann, D.J., and De Roever,
W.P. (1979). Semantics of nondeterminism, concur-
rency, and communication. Journal of Computer and
System Sciences, 19(3), 290–308.

Freund, Y., Kearns, M., Ron, D., Rubinfeld, R., Schapire,
R.E., and Sellie, L. (1993). Efficient Learning of Typical
Finite Automata from Random Walks. In Proceedings
of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, 315–324. ACM, New York.

Grinchtein, O., Jonsson, B., and Leucker, M. (2004).
Learning of event-recording automata. In Y. Lakhnech
and S. Yovine (eds.), Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems, 379–395.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Kearns, M.J. and Vazirani, U.V. (1994). An introduction
to computational learning theory. MIT press.

Morin, R. (2008). Semantics of deterministic shared-
memory systems. In CONCUR 2008-Concurrency The-
ory, 36–51. Springer.

Shaw, J. (2000). Web application performance testing—a
case study of an on-line learning application. BT
Technology Journal, 18(2), 79–86.

Tappler, M., Aichernig, B.K., Larsen, K.G., and Lor-
ber, F. (2018). Learning timed automata via ge-
netic programming. CoRR, abs/1808.07744. URL
http://arxiv.org/abs/1808.07744.

Vain, J., Miyawaki, F., Nõmm, S., Totskaya, T., and
Anier, A. (2009). Human-robot interaction learning
using timed automata. In ICCAS-SICE, 2009, 2037–
2042. IEEE.

2019 IFAC HMS
Tallinn, Estonia, Sept. 16-19, 2019

210

Appendix 5

Publication VJ. Ernits, E. Halling, G. Kanter, and J. Vain. Model-based integration testingof ros packages: a mobile robot case study. In 2015 IEEE European Confer-
ence on Mobile Robots, pages 1–7. IEEE, 2015

125

Model-based integration testing of ROS packages:
a mobile robot case study

Juhan Ernits, Evelin Halling, Gert Kanter and Jüri Vain

Abstract—We apply model-based testing – a black box testing
technology – to improve the state of the art of integration testing
of navigation and localisation software for mobile robots built
in ROS. Online model-based testing involves building executable
models of the requirements and executing them in parallel with
the implementation under test (IUT). In the current paper we
present an automated approach to generating a model from the
topological map that specifies where the robot can move to. In
addition, we show how to specify scenarios of interest and how
to add human models to the simulated environment according
to a specified scenario. We measure the quality of the tests
by code coverage, and empirically show that it is possible to
achieve increased test coverage by specifying simple scenarios
on the automatically generated model of the topological map.
The scenarios augmented by adding humans to specified rooms
at specified stages of the scenario simulate the changes in the
environment caused by humans. Since we test navigation at
coordinate and topological level, we report on finding problems
related to the topological map.

I. INTRODUCTION

The software for robots gets increasingly complex as
computational resources keep increasing at reduced power
budgets. Thus it has become possible to develop software that
enables robots to cope in realistic human environments. The
current research in, e.g. long term behaviour of mobile robots is
concerned with changing environments involving humans and
human interaction with robots. The research targets specific
scenarios e.g. involving recurring robot behaviour over time
in dynamic environments as in [14], [1], and techniques to
reason about changing scenes, as in [16], [15]. Such problems
stem from the dynamic nature of human environments and the
need for robots to cope in them.

While the current robotics research advances the frontiers
of what can be achieved by robots, we are aware of relatively
moderate amount of work done on how to test robot software
to ensure that such solutions are robust and actually work
as expected. Evaluation and testing such software is often
achieved by running extended tests on real hardware and in
simulation. But how much testing is enough? When different
development teams develop separate components, how can the
influence of a changeset on the overall system behaviour be
efficiently evaluated?

Most contemporary software for robots uses some kind
of data sharing framework to fascilitate interconnection of
sensors, various data processing nodes and actuators. While
there exist several such frameworks, we target ROS [18] as a
representative and widely used such framework.

Department of Computer Science, Tallinn University of
Technology Akadeemia tee 15a, 12618 Tallinn, Estonia
firstname.lastname@ttu.ee

The primary focus of the current paper is how to improve
the state of the art of integration testing ROS packages involved
in high level robot control, such as e.g. localisation and
navigation of mobile robots.

In order not to delve into the very basics of integration test-
ing, it is useful to assume that there is some kind of integration
testing system in place, e.g. Jenkins [13]. Jenkins attempts to
build all software that gets uploaded to the repository and run
the existing tests. When the tests pass, the Jenkins instance can
be instructed to upload the binaries to a distribution site. Our
goal is to support such integration testing scenario and provide
feedback whether some lines of code, e.g. the ones that just
got updated, were active in certain test scenarios or not.

We take the approach of Robot Unit Testing [6] and extend
it in two ways: first we introduce a white box metric of
code coverage, in particular statement and branch coverage,
as a quality measure of the tests. Second, we combine a
technique called model-based testing [19] into the test setup,
that allows us to formalise the requirements of the system into
a formal model and check the conformance of the formalised
requirements to the implementation under test (IUT), in our
case the appropriate stack of ROS packages together with
either a real or simulated set of sensors and actuators.

The experiments involve modelling and testing the nav-
igation and localisation components of the software stack
developed in the STRANDS1 project. The stack was cho-
sen because it involves multiple layers of functionality on
top of the standard ROS move_base mobile base package
that is responsible for accomplishing navigation, it is open
sourced, accessible on GitHub, contains a working simulation
environment built using Morse [7], and many existing quality
assurance techniques are actively used in the project, including
unit tests and a Jenkins based continuous integration system.

A. Test metrics

In order to evaluate and compare different test methods, it
is important to quantitatively measure the results. There exist
several metrics for software tests, like the number of code
errors found, number of test cases per requirement, number of
successful test cases etc, that are difficult to apply in our setting
where the requirements are not completely clear. Instead we
will use the metric of statement and branch coverage of the
ROS packages that we are interested in and we prefer tests
that excercise a larger percentage of the robot code.

It is important to keep in mind that 100% statement
coverage does not guarantee that the code is bug free. On

1Spatio-Temporal Representation and Activities for Cognitive Control in
Long-Term Scenarios (STRANDS). The project is funded by the EC 7th
Frameworks Programme, Cognitive Systems and Robotics, project reference
600623.978-1-4673-9163-4/15/$31.00 c© 2015 IEEE

the other hand, code coverage is a metric that gives some idea
about how much of the code gets touched by the tests.

Another relevant metric in the setting of ROS is perfor-
mance, i.e. how much CPU and memory resources get used
by certain nodes under certain scenarios. We will only use
the code coverage metric in the current paper as we have no
reference for evaluating the performance results in the context
of the chosen case study and monitoring performance has been
addressed in e.g. [17] previously.

For computing code coverage of Python modules we use
the tool coverage.py [4]. The approach is programming
language agnostic, for example, llvm-cov or gcov can be
used for measuring C++ code coverage in ROS with little
additional effort.

B. Model-based testing

Model-based testing is testing on a model that describes
how the system is required to behave. The model, built in
a suitable machine interpretable formalism, can be used to
automatically generate the test cases, either offline or online,
and can also be used as the oracle that checks if the IUT passes
the tests. Offline test generation means that tests are generated
before test execution and executed when needed. In the case
of online test generation the model is executed in lock step
with the IUT. The communication between the model and the
IUT involves controllable inputs of the IUT and observable
outputs of the IUT. For example, we can tell the robot to go
to a node called Station, and we can observe if and when the
robot achieves the goal.

There are multiple different formalisms used for building
models of the requirements. Our choice is Uppaal timed
automata (TA) [5] because the formalism naturally supports
state transitions and time and there exists the Uppaal Tron
[11] tool that supports online model-based testing.

II. RELATED WORK

A. Testing in ROS

Testing is required in the ROS quality assurance process2,
meaning that a package needs to have tests in order to comply
with the ROS package quality requirements. However, the
requirement is compulsory only for centrally maintained ROS
packages and it is up to the particular maintainers to choose
their quality assurance process.

The ROS infrastructure supports different levels of testing.
The basic testing methodology used in ROS is unit testing.
The most used testing tools in ROS unit testing are gtest
(Google C++ testing framework), unittest (Python unit testing
framework) and nosetest (a more user-friendly Python unit
testing framework, which extends the unittest framework).
Using the aforementioned tools is not a strict requirement as
the tools are agnostic to which testing framework is used. The
only requirement is that the used testing framework outputs
the test results in a suitable XML format (Ant JUnit XML
report format).

ROS has support for higher level integration tests as well.
Integration testing can be done using the rostest package,

2http://wiki.ros.org/QAProcess

which is a wrapper for the roslaunch tool. Rostest allows
specifying complex configurations of tests, which enables
integration testing of different packages.

The ROS build tool (catkin_make) has built-in support
for testing and it is fairly simple to include tests for the
package. The main concern, however, is with creating the tests
as it is up to the developer to write the tests for their packages.
This can be difficult, because many robotics packages deal with
dynamic data (e.g. object detection from image stream) and
testing with dynamic data is more challenging than unit testing
simple functions. For this reason, many developers neglect
creating unit tests.

To our knowledge there is relatively little research pub-
lished on testing robot software in ROS, but we think it
deserves further attention, since it is not trivial to apply the
testing techniques known in the field of software engineering
to robot software. Bihlmaier and Wörn [6] introduced RUT
(Robot Unit Testing) methodology to bring modern testing
techniques to robotics. They outline the process of testing
robots utilizing a simulation environment (e.g. Gazebo or
MORSE) and control software to test robot performance and
correctness of the control algorithm without actually running
the tests on real hardware. Our approach follows theirs, but
we have firstly introduced quantified measurement of Python
code in the context of ROS and secondly embedded online
model-based testing into the ROS framework, that enables not
only to drive the system through scenarios deemed interesting
by the developers, but also checks if the behaviour conforms
to the models, i.e. formalised requirements.

Robotic environments entail uncertainty, and testing in
the presence of uncertainty is a hard problem, especially
automatically deciding whether a test succeeded or failed.
There is an attempt to address the issue in [8] where some ideas
in the future handling of uncertainty in testing are outlined. The
main emphasis is on using probabilistic models to specify input
distributions and to accommodate environment uncertainty in
the models. We take a different approach to accommodating
uncertainty by abstracting behaviour and measuring whether
goals are reached within reasonable time limits.

B. Robot monitoring and fault detection

Several fault detection and monitoring approaches in con-
junction with robotic frameworks have been proposed, e.g.
[10], [12], [17], that enable to detect various faults in robot
software. These complement our approach, as we introduce
monitoring conformance to certain aspects of specifications
that we have encoded into our model, e.g. that the robot
makes reasonable progress from topological location to another
connected topological location. Our approach differs from the
above in the sense that in addition to monitoring, we also
provide control inputs to the system. In fact, we get the
continuous patrolling feature for free, as we generate the model
from the topological map.

III. MODELLING ROBOT REQUIREMENTS WITH TIMED
AUTOMATA

The overall test setup used in the context of model-based
testing with Uppaal Tron as the test engine and dTron as the
adapter generation framework is given in Fig. 1. The model

contains the formalisation of the requirements of the IUT
and the environment. We model the topological map of the
environment and encode distances as deadlines. The adapter
is responsible for translating messages from the model to
postings to appropriate topics in ROS, and vice versa. The
dTron layer allows the adapter to be distributed across multiple
computers while ensuring that measuring the time stays valid.

Uppaal Tron

dTron

Fig. 1. The test setup involving the Uppaal Tron test engine and the distributed
adapter library dTron.

The test configuration used in the current work consists
of test execution environment dTron and one or many test
adapters that transform abstract input/output symbols of the
model to input/output data of the robot. The setup is outlined
in Fig. 1. Uppaal Tron is used as a primary test execution
engine. Uppaal Tron simulates interactions between the IUT
and its environment by having two model components – the
environment and the implementation model. The interactions
between these component models are monitored during model
execution. When the environment model initiates an input
action i Tron triggers input data generation in the adapter
and the actual test data is written to the robot interface.
In response to that, the robot software produces output data
that is transformed back to model output o. Thereafter, the
equivalence between the output returned and the output o
specified in the model is checked. The run continues if there is
no conformance violation, i.e. there exists an enabled transition
in the model with parameters equivalent to those passed by the
robot. In addition to input/output conformance, the rtiocoe
checking supported by Uppaal Tron also checks for timing
conformance. We refer the reader to [5] for the details.

A. Uppaal Timed Automata

Uppaal Timed Automata [5] (TA) used for the specification
of the requirements are defined as a closed network of extended
timed automata that are called processes. The processes are
combined into a single system by the parallel composition
known from the process algebra CCS. An example of a system
of two automata comprised of 3 locations and 2 transitions
each is given in Fig. 2.

The nodes of the automata are called locations and the di-
rected edges transitions. The state of an automaton consists of
its current location and assignments to all variables, including
clocks. The initial locations of the automata are graphically
denoted by an additional circle inside the location.

Synchronous communication between the processes is by
hand-shake synchronisation links that are called channels. A
channel relates a pair of transitions labelled with symbols for
input actions denoted by e.g. chA? and chB? in Fig. 2, and
output actions denoted by chA! and chB!, where chA and
chB are the names of the channels.

Fig. 2. A sample system with two Uppaal timed automata with synchroni-
sation channels chA and chB. The automaton at the top denotes Process i
and the one below Process j. In addition to the automata, the model also
includes the declarations of channels chA and chB, integer constants lb=1,
ub=3, and initial_value=0, integer variables x and y, a clock cl, and
a function f(x) defined in a subset of the C language.

In Fig. 2, there is an example of a model that represents
a synchronous remote procedure call. The calling process
Process i and the callee process Process j both include three
locations and two synchronised transitions. Process i, initially
at location Start i, initiates the call by executing the send
action chA! that is synchronised with the receive action chA?
in Process j, that is initially at location Start j. The location
Operation denotes the situation where Process j computes the
output y. Once done, the control is returned to Process i by
the action chB!

The duration of the execution of the result is specified
by the interval [lb, ub] where the upper bound ub is given
by the invariant cl<=ub, and the lower bound lb by the
guard condition cl>=lb of the transition Operation→ Stop j.
The assignment cl=0 on the transition Start j → Operation
ensures that the clock cl is reset when the control reaches
the location Operation. The global variables x and y model
the input and output arguments of the remote procedure call,
and the computation itself is modelled by the function f(x)
defined in the Uppaal model.

Please note that in the general case these inputs and outputs
are between the processes of the model. The inputs and
outputs of the test system use channels labelled in a special
way described later. Asynchronous communication between
processes is modelled using global variables accessible to all
processes.

Formally the Uppaal timed automata are defined as follows.
Let Σ denote a finite alphabet of actions a, b, . . . and C a
finite set of real-valued variables p, q, r, denoting clocks. A
guard is a conjunctive formula of atomic constraints of the
form p ∼ n for c ∈ C,∼∈ {≥,≤,=, >,<} and n ∈ N+. We
use G(C) to denote the set of clock guards. A timed automaton
A is a tuple 〈N, l0, E, I〉 where N is a finite set of locations
(graphically denoted by nodes), l0 ∈ N is the initial location,
E ∈ N × G(C) × Σ × 2C × N is the set of edges (an edge
is denoted by an arc) and I : N → G(C) assigns invariants
to locations (here we restrict to constraints in the form: p ≤ n
or p < n, n ∈ N+. Without the loss of generality we assume
that guard conditions are in conjunctive form with conjuncts
including besides clock constraints also constraints on integer
variables. Similarly to clock conditions, the propositions on
integer variables k are of the form k ∼ n for n ∈ N, and
∼∈ {≤,≥,=, >,<}. For the formal definition of Uppaal TA
full semantics we refer the reader to [5].

Fig. 3. Automatically generated timed automaton representation of the topological map containing locations “ChargingPoint”, “Station” and “Reception”.

Fig. 4. Automatically generated timed automaton denoting the topological map (below) and the desired scenario (above).

Fig. 5. A scenario involving models of humans

B. Modelling the topological map

One of the general requirements of a mobile robot is that
it should be able to move around in its environment. We relate
the requirement to the topological map and state that the robot
should be able to move to the nodes of the topological map.
The details of how the topological map gets constructed for
the particular case study are given in [9], but for the purpose
of the current requirements, we assume that each node of the
topological map should be reachable by the robot and that
from each node, it should be possible to reach adjacent nodes
without having to visit any further nodes.

Since the topological map is an artefact frequently present
in mobile robots, we chose to automate the translation of the
topological map to the TA representation.

In Fig. 3 there is an example of a TA model of the
environment of a robot specifying where the robot should be
able to move and in what time the robot should be able to
complete the moves. The environment stipulates that when the
robot moves from the node called ChargingPoint to Station
on the topological map, it synchronises on the communication
channel i_goto with the robot model. This corresponds to
passing the command to the robot to go to the state number

16, which denotes the Station node on the topological map.
The destination node number is assigned on the transition
to a parameter i_goto_state that is passed along with
the synchronisation command to the test adapter which in
turn will pass the command to move to the Station node
on to the robot. There is an additional assignment on the
transition, res_g=16 which denotes that the current goal is
node 16, i.e. the Station node. The assignment cl_inv=25
means that the maximum time allowed for the robot to be
on its way from ChargingPoint to Station is 25 time units.
The clock cl is then reset to 0. The automaton transitions to
the intermediate location ChargingPoint Res where it awaits
reaching the Station node. When Station is reached, the robot
will indicate it to the test adapter which converts the indication
to the response o_response that is passed back to the model.
The guard res_g==16 only allows the transition to be taken
for the goal node 16. While on the second transition the guard
does not influence the behaviour as there is no other value
res_g can have taken, there is a choice on transitions starting
from the Station node. It is possible either to go back to the
ChargingPoint node when taking the transition below with the
assignment res_g=1 or go to the Reception node by taking
the transition above with the assignment res_g=13. Then, the

guards res_g==1 and res_g==13 will restrict which will
be the valid transition after the robot has reached the goal.
In this way the model will be able to distinguish which node
it started off to. If the robot for some reason wonders to a
wrong node or is kidnapped on the way without covering the
sensors, it will be detected as a conformance failure. Also,
if the robot takes too much time to reach another node, the
model will trigger an error. The time restrictions are enforced
by invariants cl<=cl_inv at the intermediate states. The
robot is modelled as an automaton with a single location and
the edges synchronising on the IUT input and output messages
– those denoted by the i_... and o_... channels. The
model of the robot is input enabled, i.e. it does not restrict any
behaviour, it is up to the implementation – the robot software.

In Fig. 4 there is a model where the behaviour is restricted
with a scenario. The model contains an automaton corre-
sponding to the topological map, an automaton corresponding
to a scenario above it, and an input enabled single location
automaton denoting the robot. Now there is one additional
intermediate state to facilitate synchronisation with the sce-
nario over the sc_chan channel. It is important to note
that when synchronisation over the sc_chan takes place, an
integer variable sc_g is assigned the value 13. After such
synchronisation, when the map model is at ChargingPoint Res
location, the only option to proceed is to the Reception
location. In this way a goal is set that is not an immediate
neighbour of the current node on the map.

If multiple such combinations of pairs are enabled, one
is chosen either randomly or according to some test coverage
criterion involving model elements. We have omitted the clock
resets and invariants from Fig. 4 for brevity. The automaton
with a single location denotes the model of the robot.

In our approach both models are automatically generated
from the topological map file in the yaml format. The time
delays allowed to transition from a node to node on the
topological map are computed based on the distances along
the edges between nodes and are computed with a margin to
accommodate time spent on turning. The resulting model is
able to detect situations when the robot gets stuck for example
when moving too close to a low wall in simulation or when
there is a link on the topological map that is not present in the
environment. In the case of scenarios we compute the length
of the shortest path between each pair of nodes specified in the
scenario and add appropriate time restrictions to the invariant
of the intermediate location introduced between the nodes on
the topological map automaton stipulated by the scenario.

In Fig. 5 we add the human factor to the environment.
As the simulator, Morse, supports models of humans, we
can create scenarios where humans are either moved around
or “teleported” to desired locations. We leave the actual
locations to be specified at the adapter level and specify in
the scenario automaton when which configuration of humans
should be present in certain rooms. This way we can change
the environment in chosen rooms and emulate varying patterns
involving humans.

We can think of the scenarios as high level test cases in
the context of integration testing. In the example above there
is a test case for moving along a predefined adjacent set of
nodes, one for moving to a remote location on the topological

map, and one moving throught rooms with humans present.

In addition to actual testing, such scenarios run in cycles
can be used for generating data, e.g. representing long term
behaviour in simulation. As we can leave certain parts of the
scenario less strictly specified, the model-based testing tool
will vary the scenarios randomly.

Once a test failure is encountered, the search for the causes
is currently left to the user. If the problem is repeatable after a
certain patch set, the problem obviously may be related to the
patch set, but it may also be the problem with the simulator
or wrong estimates of deadlines in the model. The process of
getting the requirements related to the model right requires
work, that can be considered the overhead in our approach.

IV. TEST EXECUTION

In order to connect the model to the robot we need an
adapter (sometimes called harness) that connects the abstract
messages from the model to the concrete messages compre-
hensible by the robot and vice versa. We use the dTron tool
to fascilitate connecting our ROS adapter to Uppaal Tron. We
refer to the dTron setup as the tester.

A. dTron

dTron3 [3] extends the functionality of Uppaal Tron by
enabling distributed and coordinated execution of tests across
a computer network. It relies on Network Time Protocol (NTP)
based clock corrections to give a global timestamp (t1) to
events arriving at the IUT adapter. These events are then
globally serialized and published to other subscribers using the
Spread toolkit [2]. Subscribers can be other IUT adapters, as
well as dTron instances. Subscribers that have clocks synchro-
nised with NTP also timestamp the event received message
(t2) to compute and if necessary and possible, compensate for
the messaging overhead D = t2 − t1. The parameter D is
essential in real-time executions to compensate for messaging
delays in test verdict that may otherwise lead to false-negative
non-conformance results for the test-runs.

B. ROS test adapter

We have created a test adapter that can be used as a
template for test adapters in any similar dTron-based MBT
setup. The template adapter is implemented in C++ and the
specific case study inherits from the template adapter and
implements the one specific to the case study. The template
adapter has the implementations for receiving and sending
messages between the tester and the adapter – a generic
prerequisite for performing model-based testing with dTron.

In essence, the test adapter specifies what is to be done
when a synchronisation message is received from the tester. In
the mobile robot case, the model specifies the goal waypoint
where the robot must travel. Upon receiving the waypoint
information via a synchronisation message (i_... channel),
it is either passed as a goal to the standard ROS move_base
action server or the action server responsible for topological
navigation – topological_navigation, depending on
which level we choose to run the tests. In the implementation
the goal topic is specified in the configuration of the adapter.

3http://www.cs.ttu.ee/dtron

After publishing the goal, the adapter waits for the action
server to return a result for the action (i.e. whether it was
successful or not). In case the action was successful, the
adapter sends a synchronisation message (o_... channel)
back to the tester and waits for a new goal to be passed on
to the action server. If the goal was not achieved, the adapter
does not send a synchronisation to the tester and the tester will
detect a time-out and report the test failure.

V. EXPERIMENTAL RESULTS

We specified different scenarios, i.e. high level test
cases, and ran the tests in two different simulated environ-
ments4 and repeated same scenarios by sending the goals to
the move_base and topological_navigation action
servers. The results are summarised in Table I and the highest
coverage results for the particular test case for each package
are highlighted in cases they can be distinguished. The “Total”
columns represent total number of statements of Python code
in the package, “Missed” columns represent the number of
statements missed, and the “%” columns represent a combined
statement and branch coverage percentage. That is why there
are same statement counts but different percentages in the
results of e.g. the localisation node.

Initially we tested the code coverage by manu-
ally specifying a neigbouring node on the topological
map to move_base. Then we proceeded giving the
same topological node to the robot as a goal via the
topological_navigation action server. These are the
rows marked by manual goal.

Then we repeated the same neighbouring node goals, but
controlled the robot from the model (rows marked by model).
It is expected that the code coverage is very close in these
cases.

Next we specified a scenario with the goal node not being
a neighbour. It can be seen from the results that signifi-
cantly more code was exercised in the topological naviga-
tion node in the case of scenarios with goals passed to the
topological_navigation action server.

Next we tested the scenario when human models are
moved to different locations in a room and robot is given
tasks to enter and leave the room. We managed to run
the tests when passing goals to move_base, but the
topological_navigation case failed because the robot
got stuck with “DWA planner failed to produce path” error
from move_base. We cannot confirm the problem to be
a code error, as it can also be related to a local simulator
configuration. But we have successfully demonstrated that it
is possible to produce code coverage results in cases where
the tests succeed and point out scenarios where the goals are
not reached.

We also augmented the topological map with a transition
through a wall. The test system yielded a test failure based on
exceeding the deadline for reaching the node.

We used different versions of code in C1 and C2, that
is why there is are slightly different statement counts in

4C1 corresponds to AAF simulation environment and C2 to Bham SoCS
building ground floor simulation environment.

similar components. C1 experiments were done on STRANDS
packages taken from the GIT repository while C2 experi-
ments were done using current versions of packages avail-
able from the Ubuntu Strands deb package repository. In
the case of the actionlib package, it appears that more
code is utilized in the case of topological navigation. The
strands_navigation package contains only messages in
Python, thus there are very little differences in coverage. In
the topological_navigation module utilisation there
is clear correlation between the use of topological goals and
code coverage. The localisation node uses practically the
same amount of code regardless of the scenario. In the case of
the navigation node the difference is the largest and there
is clear correlation between larger code coverage and harder
navigation tasks5.

When interpreting the results it is important to keep in mind
that the coverage numbers are for single high level test cases.
When analysing e.g. the navigation package coverage,
then the code covered in the move_base case is a subset
of the coverage in the topological_navigation case.
Developing a test suite with a higher total code coverage is
an iterative process of running the tests and looking at what
code has still been missed. In the current case study, the test
suite needs to be extended with a scenario with a goal that
is the same as the current node, there need to be scenarios
triggering the preemting of goals, and triggering several differ-
ent exceptions. Such behaviour requires extending the model,
and perhaps the adapter. While the coverage numbers of the
reported scenarios are below 100%, the added value provided
by the current approach lies in clear feedback, either in the
form of test failure, or in the case of success, what code was
used in the particular set of scenarios and what was missed.

VI. CONCLUSION

We presented a case study of applying model-based testing
in ROS and evaluating the results in terms of code coverage
of code related to topological navigation of mobile robots.
Relying on the empirical evidence, we conclude that the
proposed automatic generation of models from topological
maps and defining scenarios as sequences of states provides
a valuable tool of exercising the system with the purpose to
achieve high code coverage. By performing the tests on the
move_base coordinate level and topological navigation level,
we showed that our approach can also be used to validate
and discover problems in configurations, such as topological
maps. We also showed how to build models of the environment
involving human models in simulation. Similar scenarios can
be carried out also in real life, but then the test adapter needs
to be changed to give humans instructions when and where to
move to, and when humans are in place, the adapter can return
to giving the robot next goals.

The future work on the model and adapter side involves
extending the dynamic reconfiguration of the environment, e.g.
connecting collision detection probes in Morse with the test
adapter and introducing natural human movement. Improving
the code coverage requires insight into the packages and man-
ual extension of model and the adapter to support triggering
various exceptions and other specific actions.

5The code and detailed coverage statistics is available at http://cs.ttu.ee/
staff/juhan/mobile robot mbt/.

TABLE I. THE EXPERIMENTAL RESULTS OF MODEL-BASED TESTING A MOBILE ROBOT IN SIMULATION IN TWO DIFFERENT VIRTUAL ENVIRONMENTS,
C1 AND C2.

actionlib strands navigation topological navigation localisation node navigation node

To
ta

l

M
is

se
d

% To
ta

l

M
is

se
d

% To
ta

l

M
is

se
d

% To
ta

l

M
is

se
d

% To
ta

l

M
is

se
d

%

C1 manual goal move base 1347 733 46 13024 10969 16 1954 1502 23 154 37 72 349 251 24
C2 manual goal move base 1347 872 35 13024 10902 16 1789 1479 17 154 37 73 344 247 24
C1 model goal move base 1347 733 46 13024 10969 16 1954 1502 23 154 37 73 349 251 24
C2 model goal move base 1347 872 35 13024 10902 16 1789 1479 17 154 37 73 344 247 24
C1 manual goal topo-nav 1347 565 58 13024 10832 17 1954 1335 32 154 37 72 349 99 64
C2 manual goal topo-nav 1347 678 50 13024 10864 17 1789 1346 25 154 37 73 344 159 48
C1 model goal topo-nav 1347 598 56 13024 10832 17 1954 1335 32 154 37 73 349 97 65
C2 model goal topo-nav 1347 615 54 13024 10749 17 1789 1311 27 154 37 73 344 98 64

C1 scenario topo-nav 1347 598 56 13024 10832 17 1954 1315 33 154 37 73 349 77 72
C2 scenario move base 1347 872 35 13024 10902 16 1789 1475 18 154 37 73 344 247 24
C2 scenario topo-nav 1347 613 54 13024 10749 17 1789 1286 28 154 37 73 344 73 73

C2 scenario with humans move base 1347 871 35 13024 10902 16 1789 1479 17 154 37 73 344 247 24

Acknowledgements

We would like to thank Nick Hawes, Marc Hanheide and
Jaime Pulido Fentanes for useful discussions and support in
setting up a local copy of the STRANDS simulation environ-
ment. We also thank the anonymous referees for their con-
structive comments. This work was partially supported by the
European Union through the European Regional Development
Fund via the competence centre ELIKO.

REFERENCES

[1] Rares Ambrus, Nils Bore, John Folkesson, and Patric Jensfelt. Meta-
rooms: Building and maintaining long term spatial models in a dynamic
world. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA, September 14-18, 2014, pages
1854–1861, 2014.

[2] Yair Amir, Michal Miskin-Amir, Jonathan Stanton, and John Schultz
et al. The Spread toolkit, 2015. http://spread.org/, accessed in May
2015.

[3] Aivo Anier and Jüri Vain. Model based continual planning and control
for assistive robots. In Emmanuel Conchon, Carlos Manuel B. A.
Correia, Ana L. N. Fred, and Hugo Gamboa, editors, HEALTHINF 2012
- Proceedings of the International Conference on Health Informatics,
Vilamoura, Algarve, Portugal, 1 - 4 February, 2012., pages 382–385.
SciTePress, 2012.

[4] Ned Batchelder and Gareth Rees. Coverage.py – code coverage testing
for Python, 2015. http://nedbatchelder.com/code/coverage/, accessed in
April 2015.

[5] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg,
editors, Lectures on Concurrency and Petri Nets, Advances in Petri
Nets, volume 3098 of Lecture Notes in Computer Science, pages 87–
124. Springer, 2003.

[6] Andreas Bihlmaier and Heinz Wörn. Robot unit testing. In Davide
Brugali, Jan F. Broenink, Torsten Kroeger, and Bruce A. MacDon-
ald, editors, Simulation, Modeling, and Programming for Autonomous
Robots, volume 8810 of Lecture Notes in Computer Science, pages
255–266. Springer International Publishing, 2014.

[7] Gilberto Echeverria, Séverin Lemaignan, Arnaud Degroote, Simon
Lacroix, Michael Karg, Pierrick Koch, Charles Lesire, and Serge
Stinckwich. Simulating complex robotic scenarios with MORSE. In
SIMPAR, pages 197–208, 2012.

[8] Sebastian G. Elbaum and David S. Rosenblum. Known unknowns:
testing in the presence of uncertainty. In Shing-Chi Cheung, Alessandro
Orso, and Margaret-Anne D. Storey, editors, Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,
pages 833–836. ACM, 2014.

[9] Jaime Pulido Fentanes, Bruno Lacerda, Tomás Krajnı́k, Nick Hawes,
and Marc Hanheide. Now or later? Predicting and maximising success
of navigation actions from long-term experience. In IEEE International
Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA,
26-30 May, 2015, pages 1112–1117, 2015.

[10] Raphael Golombek, Sebastian Wrede, Marc Hanheide, and Martin
Heckmann. Online data-driven fault detection for robotic systems.
In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2011, San Francisco, CA, USA, September 25-30, 2011,
pages 3011–3016. IEEE, 2011.

[11] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian
Nielsen, Paul Pettersson, and Arne Skou. Testing real-time systems
using UPPAAL. In Robert M. Hierons, Jonathan P. Bowen, and Mark
Harman, editors, Formal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers, volume 4949 of Lecture
Notes in Computer Science, pages 77–117. Springer, 2008.

[12] Hengle Jiang, Sebastian G. Elbaum, and Carrick Detweiler. Reducing
failure rates of robotic systems though inferred invariants monitoring.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Tokyo, Japan, November 3-7, 2013, pages 1899–1906. IEEE,
2013.

[13] Kohsuke Kawaguchi, Andrew Bayer, and R.Tyler Croy. Jenkins –
an extensible open source continuous integration server, 2015. http:
//jenkins-ci.org, accessed in April 2015.

[14] Tomás Krajnı́k, Jaime Pulido Fentanes, Óscar Martı́nez Mozos, Tom
Duckett, Johan Ekekrantz, and Marc Hanheide. Long-term topological
localisation for service robots in dynamic environments using spectral
maps. In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Chicago, IL, USA, September 14-18, 2014, pages 4537–
4542, 2014.

[15] Lars Kunze, Chris Burbridge, Marina Alberti, Akshaya Thippur, John
Folkesson, Patric Jensfelt, and Nick Hawes. Combining top-down
spatial reasoning and bottom-up object class recognition for scene un-
derstanding. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA, September 14-18, 2014, pages
2910–2915, 2014.

[16] Lars Kunze, Keerthi Kumar Doreswamy, and Nick Hawes. Using
qualitative spatial relations for indirect object search. In 2014 IEEE
International Conference on Robotics and Automation, ICRA 2014,
Hong Kong, China, May 31 - June 7, 2014, pages 163–168. IEEE,
2014.

[17] Valiallah Monajjemi, Jens Wawerla, and Richard T. Vaughan. Drums:
A middleware-aware distributed robot monitoring system. In Canadian
Conference on Computer and Robot Vision, CRV 2014, Montreal, QC,
Canada, May 6-9, 2014, pages 211–218. IEEE Computer Society, 2014.

[18] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source
Robot Operating System. In ICRA Workshop on Open Source Software,
2009.

[19] Mark Utting and Bruno Legeard. Practical Model-Based Testing - A
Tools Approach. Morgan Kaufmann, 2007.

Appendix 6

Publication VIJ. Vain, G. Kanter, and S. Srinivasan. Model based testing of distributedtime critical systems. In 2017 6th International Conference on Reliability,
Infocom Technologies and Optimization (ICRITO), pages 99–105. IEEE, 2017

135

978-1-5090-3012-5/17/$31.00 ©2017 IEEE

Model Based Testing of Distributed
Time Critical Systems

J¨uri Vain1, Gert Kanter2, Seshadhri Srinivasan3
1Department of Software Science Tallinn University of Technology Tallinn, Estonia; juri.vain@ttu.ee

2Department of Software Science, Tallinn University of Technology, Tallinn, Estonia; gert.kanter@ttu.ee
3Berkeley Education Alliance for Research, Singapore; Seshadhri.srinivasan-bears@berkeley.sg

Abstract — Model-based testing incorporates steps such as test
model construction, test purpose specification, test generation,
deployment and execution. While the verification has not been
traditionally an obligatory part of this process we extend the test
development model by introducing model-based techniques, a
tool and verification conditions of provably correct test
development for time critical distributed systems. We
demonstrate how Uppaal Timed Automata models and related
tool family supports the development and verification of symbolic
tests. Since distributed testing needs additional test deployment
effort, we present the test controllability criteria for remote and
distributed testing, provide an algorithm of distributing remote
tests to improve the test performance and propose a technique of
proving the correctness of distributed tests in terms of
bisimulation equivalence between the remote and distributed
tests.

I. INTRODUCTION

In the process of developing complex networked systems such
as Cyber-Physical Systems (CPS) the problems of inherent
concurrency over wide spectrum of services and
heterogeneous architectures need to be addressed. The
heterogeneous components introduce functional, timing,
safety, performance, and security features on multiple scales.
In safety/mission/business-critical applications the networking
of feature-rich components needs to be paired with
predictability of system’s emerging behaviour to guarantee
required QoS. This is almost impossible to achieve without
design validation methods that are scalable and relevant to
holistic design views. While the features of functionality have
gained major attention in traditional software development
approaches, achieving the predictable timing of critical
services in the presence of heterogeneous and evolving
distributed architectures remains still a challenge. Therefore,
validation methods like bench testing and encasing alone,
although helpful and widely used, have become inadequate for
full–fledged networked systems. As stated in [1] CPS software
quality and software process productivity issues can be
mitigated with model-based (MB) techniques and tools that
operate on relevant level of abstraction. Model-based testing
(MBT) as one group of these techniques provides the black-
box testing solution for reducing software testing effort [2].
MBT suggests the use of abstract models for specifying the
expected behaviour of the system under test (SUT) and
automatically generating tests from models. According to
Utting et al. [3] MBT incorporates steps such as SUT

modelling, test purpose specification, test generation, test
deployment and execution. Though MBT workflow relies
inherently on the techniques of model engineering, the
verification of the test development process and its products is
not generally an obligatory part of MBT. On the other hand,
the provably correct development (PCD) disciplines studied in
[4], capitalize on the development process paired with
verification and design correctness assurance steps. Applying
PCD processes to testing is motivated by the need need to
improve the trustability of testing results by showing their
formal correctness through entire test development and
execution process. In this paper we focus on the model-based
online testing of distributed systems with timing constraints
capitalizing on the correctness criteria and proving them
through MBT workflow.

MBT is generally understood as conformance testing where
the SUT is assumed to be a black-box where only its inputs
and outputs are externally controllable and observable
respectively. The internal behavior of the system is abstracted
away. The aim of black-box conformance testing according to
[3] is to check if the behaviour observable on the system
interfaces conforms to the system requirements specification.
During MBT a tester executes selected test cases (extracted
from the system requirements model) by running SUT in the
test harness and emits a test verdict (pass, fail, inconclusive).
The verdict shows test result in the sense of conformance
relation between SUT and the requirements model. A
“classical“ conformance relations is Input-Output
Conformance (IOCO) introduced by Tretmans [5]. The
behaviour of a IOCO-correct implementation should respect
after some observations following restrictions:

(i) the outputs produced by SUT should be the same as
allowed in the requirements model;

(ii) if a quiescent state (a situation where the system can not
evolve without an input from the environment) is reached in
SUT, this should also be the case in the model;

(iii) any time an input is possible in the model, this should also
be the case in the SUT.

The set of tests that forms a test suite is divided into test cases,
each addressing some specific test purpose. In MBT, the test
cases are generated from formal models that specify the
expected behaviour of the SUT and from the coverage criteria

2017 6th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 20-22, 2017,
AIIT, Amity University Uttar Pradesh, Noida, India

100

2017 6th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 20-22, 2017,
AIIT, Amity University Uttar Pradesh, Noida, India

101

2017 6th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 20-22, 2017,
AIIT, Amity University Uttar Pradesh, Noida, India

102

2017 6th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 20-22, 2017,
AIIT, Amity University Uttar Pradesh, Noida, India

103

2017 6th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 20-22, 2017,
AIIT, Amity University Uttar Pradesh, Noida, India

104

2017 6th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 20-22, 2017,
AIIT, Amity University Uttar Pradesh, Noida, India

105

Curriculum Vitae
1. Personal data

Name Gert KanterDate and place of birth 17 September 1983 Tallinn, EstoniaNationality Estonian
2. Contact information

Address Tallinn University of Technology, School of Information Technology,Department of Software Science,Ehitajate tee 5, 19086 Tallinn, EstoniaPhone +372 620 2325E-mail gert.kanter@taltech.ee
3. Education

2012–. . . Tallinn University of Technology, School of Information Technology,Computer Science, PhD studies2009–2012 Tallinn University of Technology and University of Tartu,Faculty of Information Technology,Software Engineering, MSc2003–2008 Tallinn University of Technology, Faculty of Information Technology,Telecommunication, BSc

4. Language competence

Estonian nativeEnglish fluentFinnish proficientRussian basic skills
5. Professional employment

2015– . . . Tallinn University of Technology, Lecturer in Computer Science2012–2015 ELIKO Technology Competence Centrein Electronics-, Info- and Communication Technologies, Researcher2003–2011 Hardmeier A&D OÜ, Software Engineer

6. Honours and awards

• 2019, Dependable Systems, Services and Technologies (DESSERT 2019) conferencebest paper award
7. Defended theses

• 2012, Robot Manipulator Control Using Stereo Visual Feedback, MSc, supervisorProf. Jüri Vain, Tallinn University of Technology, Department of Computer Science

144

8. Field of research

• Model-based testing
• Autonomous systems testing
• Software testing

9. Scientific work
Papers

1. G. Kanter and J. Vain. Model-based testing of autonomous robots using TestIt. Jour-
nal of Reliable Intelligent Environments, 6(1):1–17, 2020

2. G. Kanter and J. Vain. Testit: an open-source scalable long-term autonomy testingtoolkit for ros. In Proceedings of the 10th International Conference Dependable
Systems, Services and Technologies, DESSERT’2019, pages 45–50, 2019

3. G. Kanter, J. Vain, S. Srinivasan, and S. Ramaswamy. Provably correct configurationmanagement of precision feeding in agriculture4.0. In 2019 IEEE International Con-
ference on Systems, Man and Cybernetics (SMC), pages 1631–1637, 2019

4. J. Vain, G. Kanter, and A. Anier. Learning timed automata from interaction traces. In
14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Sys-
tems, HMS 2019, volume 52-19, pages 205–210, 2019

5. J. Ernits, E. Halling, G. Kanter, and J. Vain. Model-based integration testing of rospackages: a mobile robot case study. In 2015 IEEE European Conference on Mobile
Robots, pages 1–7. IEEE, 2015

6. J. Vain, G. Kanter, and S. Srinivasan. Model based testing of distributed time criticalsystems. In 2017 6th International Conference on Reliability, Infocom Technologies
and Optimization (ICRITO), pages 99–105. IEEE, 2017

145

Elulookirjeldus
1. Isikuandmed

Nimi Gert KanterSünniaeg ja -koht 17.09.1983, Tallinn, EestiKodakondsus Eesti
2. Kontaktandmed

Aadress Tallinna Tehnikaülikool, Tarkvarateaduse Instituut,Ehitajate tee 5, 19086 Tallinn, EstoniaTelefon +372 620 2325E-post gert.kanter@taltech.ee
3. Haridus

2012–. . . Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,Info- ja kommunikatsioonitehnoloogia, doktoriõpe2009–2012 Tallinna Tehnikaülikool ja Tartu Ülikool, Infotehnoloogia teaduskond,Tarkvaratehnika, MSc2003–2008 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,Telekommunikatsioon, BSc
4. Keelteoskus

eesti keel emakeelinglise keel kõrgtasesoome keel kesktasevene keel algtase
5. Teenistuskäik

2015– . . . Tallinna Tehnikaülikool, Arvutiteaduse lektor2012–2015 ELIKO Tehnoloogia Arenduskeskus OÜ, Teadur2003–2011 Hardmeier A&D OÜ, Tarkvaraarendaja
6. Autasud

• 2019, Dependable Systems, Services and Technologies (DESSERT 2019) konverentsiparima teadusartikli auhind

146

7. Kaitstud lõputööd

• 2012, Visuaalsel tagasisidel põhinev robotmanipulaatori juhtimine, MSc, juhendajaProf. Jüri Vain, Tallinna Tehnikaülikool, Arvutiteaduse Instituut
8. Teadustöö põhisuunad

• mudelipõhine testimine
• autonomoosete süsteemide testimine
• tarkvara testimine

9. TeadustegevusTeadusartiklite, konverentsiteeside ja konverentsiettekannete loetelu on toodud ingliskeelseelulookirjelduse juures.

147

