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Abstract

A floating-point unit is the essential part of modern computer systems where the

carrying out operations with floating-point numbers is involved. Analysis of the existing

floating-point unit solutions has shown that many of them are functionally complex and

large in terms of the occupied area after synthesis. In addition, the designs that have

been discovered have fixed operands’ size and, therefore, the number of bits dedicated

to the fractional and exponential parts of the floating-point number cannot be changed.

Owing to these problems, a decision has been made to develop a floating-point unit in

VHDL,  which  can carry  out  the  simplest  mathematical  operations  while  having the

possibility  of  creating  a  parameterisable  design.  The  operations  performed  by  the

floating-point unit are addition, subtraction, multiplication, division and normalization.

The parameterisable floating-point unit can be simply reused as a part of other designs,

which require it as a separate block.

This thesis is written in English and is 100 pages long, including 5 chapters, 41

figures and 25 tables.
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1 Introduction

Floating-point arithmetic is an arithmetic that uses formulaic representation of

real  numbers  as  an  approximation  so  as  to  support  a  trade-off  between  range  and

precision [1]. For this reason, floating-point computations are often found in systems,

which include quite small and quite large real numbers, which require fast processing

times  [2]  [3].  Carrying  out  the  mathematical  operations  using  the  floating-point

numbers format provides a wider possible range of results comparing to the fixed point.

The  limitation  of  the  fixed  point  format  is  due  to  its  fixed  number  of  bits,  which

represent integer and fractional parts of a number. This means that fixed point format is

limited in its scope, which restricts the precision and accuracy of the calculation result.

A  floating-point  number  is  a  fractional  part  of  a  real  number  multiplied  with  its

exponent. Using the floating-point arithmetic in calculations provides a wider possible

range  for  the  number  and,  therefore,  more  precise  result,  because  the  precision  is

defined with the larger number of bits for the mantissa as well as for the exponential

part  [1].  Using  the  floating-point  format  increases  the  accuracy  of  the  calculations,

especially if the operands have approximate values. A great many scientific calculations

would be impossible to implement if the floating-point format did not exist. There are

several  floating-point  unit  formats:  single  precision,  double  precision  and  extended

precision formats. Each of them can provide different precision and accuracy. The more

detailed overview of the floating-point formats is given in section 2.3 of this thesis. The

explanation about difference between accuracy and precision is  provided in part  1.1

along with the problem formulation.

Floating-point calculations can be implemented either in software or hardware.

Owing to the resource intensive denormalizing and post-normalizing procedures, the

software implementation of the floating-point has certain restrictions. This means if the

precision  of  the  floating-point  numbers  is  increased  it  entails  limitations  in  the

processing speed. This is strongly pronounced when the width of operands are larger
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then  a  CPU width.  At  the  same time,  a  hardware  dedicated  floating-point  unit  can

bypass this limitation.

A floating-point unit (in further FPU) is the mathematical co-processor of the

modern microprocessor  devices,  either  a desktop computer  or  an embedded system.

Modern general purpose computer processors may integrate the FPU within the central

processing unit.  The FPU can be implemented as a part of a microprocessor or as a

separate  block.  Processors  for  embedded  systems  do  not  always  have  a  dedicated

mathematical coprocessor and this depends on their architectures. Typical operations,

performed  by a  mathematical  co-processor,  are  addition,  subtraction,  multiplication,

division, square root and bit shifting. Some previous computer architectures could also

execute  various  transcendental  mathematical  functions  such  as  exponential  or

trigonometric calculations.  However, in modern processors these are performed with

software  library  routines.  This  is  implemented  in  order  to  reduce  their  power

consumption and hardware complexity. Where floating-point calculations have not been

provided in hardware, they are performed in software. This technique consumes more

processing time but reduces the cost of extra hardware. Co-processors can accelerate the

system  performance  by  offloading  the  processor-intensive  tasks  from  the  main

processor.

This  thesis  addresses  the  generic  FPU  hardware  design,  its  simulation  and

testing. In particular, the VHDL generic features for the parameterisable FPU have been

considered, because this allows to change the number of bits, which are dedicated for

storing the fractional and exponential parts in the FPU operands.

1.1 Problem Formulation and Motivation

The previous section has presented the general overview and aim of using the

floating-point  numbers  format  in  calculations.  As  mentioned  previously,  due  to  the

restrictions  of  the  fixed  point  format,  the  usage  of  floating-point  format  is  highly

attractive,  because it  becomes  possible  to  represent  both relatively  small  as  well  as

relatively large real numbers.
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Before the problem formulation such terms as ‘precision’ and ‘accuracy’ need to

be defined. Precision specifies the exactness of the real value or, in other words, how

many decimal or binary digits have been used to represent this value. Different floating-

point  formats,  which  are  described  in  section  2.3,  have  various  fractional  and

exponential  widths.  This  in  turn  influences  the  represented  floating-point  number’s

precision. Accuracy defines how close the real value is to what it is meant to be. That

means that if the result of calculations is about its real value, then the result is accurate.

Although the two definitions are similar in their meanings and affect each other, they

must be distinguished as well. However, since the precision and accuracy often overlap

in computer engineering they can have a similar meaning sometimes.

The aim of this thesis is twofold. Firstly, after deep analysis of the existing FPU

solutions it has been discovered that there exist a lot of FPU designs that are complex

enough and large after being implemented. These designs also occupy a lot of space

inside the FPGA chip due to the complexity of functions that consume the hardware

resources  and  affect  the  synthesis  result,  although  they  are  fast.  Secondly,  the

discovered FPU designs are not able to be synthesized with the different custom FP

format.  Having  their  size  as  fixed  leads  to  the  impossibility  of  them  being

parameterisable for the specific synthesis needs. As also has been discovered in [4] [5],

sometimes  the  FPU  designs  with  non-standard  8  bit  formats  are  required.  The

exponential and fractional widths are closely tied to the different floating-point formats

and remained constant.  This  imposes  certain  limitations  when the  FPU needs to  be

reconfigured and reused as, for example, a part of another VHDL design. Both these

statements described above formulate the problem and that is why they have been taken

as a motivation for writing this thesis.

1.2 Technical Task

The  master’s  thesis  task  consists  of  several  requirements,  which  must  be

fulfilled. These are listed below.

• The FPU must be designed in VHDL.
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• The FPU must support addition,  subtraction,  multiplication,  division and the input

operands’ normalization. This is a set of commands, which allows the FPU to be used

as  a  basic  mathematical  co-processor.  The  FPU  design  must  perform  post-

normalization for the result and denormalization for addition/subtraction operations.

• The  FPU  design  must  be  generic.  This  means  that  width  of  the  fractional  and

exponential parts in operands must be parameterisable. Their width can be defined in

a VHDL package, which affects the whole FPU design format.

• The designed FPU must be compliant with the IEEE-754 floating-point standard [6]

as much as possible. The specific FPU exceptions such as overflow, underflow or

division by zero have to be signalled through the independent one bit outputs. Other

exceptions have not be taken into account, because this increases the complexity of

the FPU design. Five rounding modes, which are described in the IEEE-754 standard

[6] must be implemented. Rounding must take place after post-normalization.

• A generic barrel shifter must be used in the FPU design in order to shift fractions with

minimal  time delays, avoiding a shift register.  The internal  structure of the barrel

shifter must use as less multiplexers as possible. In order to achieve this, the barrel

shifter  example  from [7]  can  be  used.  Although a  usage  of  the  shift  register  for

shifting the binary numbers to the left and right can save some hardware resources,

the implementing of the parameterisable barrel shifter is still the number one priority

for the FPU design, because this minimizes timing delays.

• A compromise between the operation speed and the resulting design size has to be

found.  The  priority  is  small  resulting  design  size,  limiting  the  FPU  maximum

operating clock speed.

• The internal units of the FPU have to be implemented as VHDL components for the

simplification  of  the  design  process  and its  simulation.  Each component  must  be

implemented in a separate VHDL file. The instantiating of the components can take

place  in  the  main  high-hierarchical  design  file.  Signals  are  used  as  a  connection

between the different components.
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Considering all the described above, it is expected to create a parameterisable

FPU design, which adequately meets these requirements.

1.3 Thesis Overview

This thesis is structured as follows. The first part of the thesis concisely intro-

duces the introduced problem of the existing FPU designs and the explanation why the

parameterisable design of such a kind is needed. It also describes a technical task and

motivation for writing the thesis.

The second part is dedicated to the different FP formats and basic operations,

which can be performed between the FP numbers. As was mentioned in part 1.2, these

operations  are  addition,  subtraction,  multiplication  and division.  Since  the  hardware

multipliers are used intensively for both multiplication and division operations, the es-

timation of the multipliers’ usage is also presented in the second part of this thesis.

The third part is the main part of the thesis. It describes the design methodology

in detail as well as means and methods that have been used for the FPU design verifica-

tion and testing. The design flow is shown for every internal FPU block. Each block is

verified separately before being integrated into the main design. A parameterisable test-

bench has been written in order to simulate and verify the correctness of the FPU beha-

viour, showing that the parameterisable FPU design in VHDL is a  feasible task. The

possible design improvements have been described in the end of part 3 of this thesis.

The fourth part describes the FPU testing flow, discussing its performance. The

usage of clock cycles has been measured for the different FPU commands according to

the simulation results. Due to the multiplexer simplicity, the internal FPU multiplexer

has not been tested separately. It has been tested along with others internal FPU blocks.
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2 Floating-Point Numbers Representation

Representation  of  numbers  in  computers  requires  a  fixed  number  of  binary

digits, which are either stored in registers or in data memory. These numbers are both

positive and negative,  and, depending on the computer system architecture,  they can

have a wide range of values on a number scale. The representation of numbers in a

binary form is a most convenient way to store an integer number inside the register in

computer systems [8].

Numbers with a decimal point can be stored in the same registers. However,

some bits in registers will contain the whole part of a number and the second part will

contain all the digits after the decimal point (the fractional part). Each part stores some

number of bits, for example half of the total. As can be seen, the point is fixed and never

shifts either left or right, and, based on this, such a format is called a fixed-point. Thus,

such a data storing format is inefficient, because whole and fractional parts of large and

small numbers can use only a half of the dedicated bits, and, as a result it significantly

reduces  the accuracy of the represented numbers.  The next  chapter  2.1 explains the

difference between fixed and floating-point formats.

2.1 Difference Between Fixed and Floating-Point Formats

As was mentioned before, when using a fixed point format the amount of bits

dedicated  for  fractional  and  exponential  parts  representation  remains  the  same.

However,  due  to  this  the  result’s  precision  and  accuracy  can  be  lost,  because  the

operand and result have the same number of bits. Figure 1 shows an example of a 16 bit

fixed point number in which the radix point separates eight bits of the fraction from

eight bits of the integer part. The restriction of this example is that the maximum stored

value in the integer part is 28 for unsigned numbers. For signed numbers the range of

values, which can be stored, is from −27 to 27 , because one bit is reserved for the
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sign  encoding.  However,  this  limitation  can  be  overpassed  using  the  floating-point

format.

Figure 1. Example of the fixed point number format

Floating-point is a technique that allows the radix point to be shifted left and

right,  allowing  the  possibility  to  express  relatively  large  or  small  numbers,  without

giving either  the fractional  or the whole a set  number of digits.  To express a large

number, the floating-point should be moved all the way to the right, and the opposite to

express a small number. Usage of floating-point numbers increases the accuracy of the

data representation [8]. Mainly the accuracy of the floating-point result depends on the

precision of the fractional part.  The range of the result is defined by the exponent’s

precision. Due to the finite number of bits in registers the precision of both fractional

and exponential parts is limited by the number of dedicated bits. Thus, the floating-point

numbers represent real numbers providing a trade-off between range and precision. The

standard floating-point formats are described in the next chapter as well as a general

overview  of  the  IEEE-754  standard  [6]  being  given.  This  standard  is  also  briefly

described in [8].

2.2 IEEE-754 Standard Overview

The IEEE Standard for Floating-Point Arithmetic (IEEE-754) [6] is a technical

standard for floating-point computation established in 1985 by the Institute of Electrical

and Electronics Engineers (IEEE). The standard addressed many problems found in the

diverse  floating-point  implementations  that  made  them difficult  to  use  reliably  and

portably. Many hardware floating-point units now use the IEEE-754 standard [6]. This

standard has been used in order to design the generic FPU, which has been described in

this thesis.

2.2.1 Single precision floating-point format

According to the IEEE-754 standard [6], single precision floating-point numbers

are represented as a single 32 bit binary number, consisting of three fields:
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• sign (1 bit)

• exponent (8 bit)

• fraction (mantissa) (23 bits)

Assuming  this,  the  values  about 10−38 and 1038 are  the  minimal  and  maximum

numbers  respectively,  which  can  be  represented  in  a  single  precision  floating-point

format. The location of bits is shown in figure 2.

Figure 2. Single precision floating-point format (32 bits)

2.2.2 Double precision floating-point format

According  to  the  IEEE-754  standard  [6],  a  double-precision  floating-point

format occupies 64 bits in the computer memory. It represents a wide dynamic range of

numeric  values  by using a  floating  radix  point.  The double  precision  floating-point

number format includes three fields:

• sign (1 bit)

• exponent (11 bit)

• fraction (mantissa) (52 bits)

The location of bits is shown in figure 3.

Figure 3. Double precision floating-point number format (64 bits)

The exponent field can be interpreted as either an 11 bit signed integer from −1024 to

1023 in the 2nd’s complement format. The fraction field is represented with 52 bits.

Therefore,  the  values  of  about 10−308 and 10308 are  the  minimal  and  maximum

numbers, which can be represented in a double precision number format.

2.2.3 Extended precision floating-point format

Extended precision floating-point format provides greater precision than the ba-

sic floating-point formats [6]. Due to a larger number of bits in fractional and exponen-
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tial parts, this floating-point unit standard minimizes overflow, underflow and rounding

errors and increases the result’s accuracy by using a greater precision. The 80 bit float-

ing-point  format  has  a  range  (including  subnormals)  from  approximately

3.65×10−4951 to 1.18×10−4932 . The  extended  precision  floating-point  number

format is shown in figure 4.

Figure 4. Double precision floating-point number format (80 bits)

The extended precision floating-point number format includes four fields:

• sign (1 bit)

• exponent (15 bit)

• integer part (1 bit)

• fraction (mantissa) (63 bits)

2.2.4 Conversion from a decimal to a binary form

A fractional number in a decimal form can be converted to a binary form by us-

ing a simple algorithm. The whole part of the number should be represented as usual

with some number of bits, however the number of bits for a fractional part depends on

the required precision of the number representation. If higher precision is required, the

fractional  part  must contain more bits.  For the fractional  part,  the bit  magnitude in-

creases with the bit index. The example below shows how to convert a decimal frac-

tional number 19.490234375 into a binary form.

19.490234375 19 is 10011 in the binary form

0.490234375 x2 = 0.98046875 0

0.98046875 x2 = 1.9609375 1

0. 9609375 x2 = 1.921875 1

0.921875 x2 = 1.84375 1

0.84375 x2 = 1.6875 1

0.6875 x2 = 1.375 1
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0.375 x2 = 0.75 0

0.75 x2 = 1.5 1

0.5 x2 = 1.0 1

The binary value is 10011.011111011.

Considering the example described above, the fractional part of the number must

be multiplied by two every time until the result reaches the value of one. The number of

the  conversion  steps  will  be increased  in  cases  when the  fractional  part  is  rounded

inaccurately.  In  other  words,  such  a  conversion  represents  an  iterative  process  and

should be restricted with an available number of fractional bits. A conversion algorithm

is presented below in table 1. This table shows the bit magnitude for the conversion

example, which has been shown above.

Table 1. Bit’s magnitude of the fractional part

Bit number Bit value Bit magnitude

8 0 1/2

7 1 1/4

6 1 1/8

5 1 1/16

4 1 1/32

3 1 1/64

2 0 1/128

1 1 1/256

0 1 1/512

2.2.5 Conversion from a binary to a decimal form

A fractional number in a binary form can be converted to a fractional number in

a  decimal  form.  Every  bit  of  the  fractional  number  must  be  multiplied  with its  bit

magnitude with further addition of the gotten results. For a given fractional part in the

previous chapter the conversion can be done as follows:
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1
2
×0+

1
4
×1+

1
8
×1+

1
16

×1+
1
32

×1+
1
64

×1+
1

128
×0+

1
256

×1+
1

512
×1=0.190234375

This example shows that the result of the conversion from a binary to a decimal form is

valid.

2.3 Operations Between Floating-Point Numbers

Basic  mathematical  operations  between  the  FP  numbers  are  addition,

subtraction,  multiplication  and  division.  Depending  on  the  performed  operation,

denormalization  of  the  input  operands  and  post-normalisation  of  the  result  can  be

involved in order to perform calculations and present the result in a normalized form.

Before performing the calculations, FP operands need to be extended with additional

bits from the left and right sides of the number. Extending the widths of the operands is

an important step, which increases the accuracy of calculations and preserves the result

from overflow and underflow. After calculations the obtained result must be rounded

and truncated in order  to fit  into the FP format’s  width.  Furthermore,  the FP result

requires the performing of a post-normalizing procedure in cases when  the fractional

part of the FP result n does not satisfy a condition when 0.5⩽n<1.

2.3.1 Addition and subtraction

In order to perform the addition or subtraction between two FP numbers, their

exponents must be equal. The result of the addition or subtraction operation requires can

invoke overflow and underflow conditions respectively, which can occur. Owing to the

FP format,  the fractional  part  (mantissa)  is  always positive.  In  addition,  due to  the

interchangeability  of the addition and subtraction operations it   becomes possible  to

operate with positive numbers instead of the negatives. The sign of the result can be

calculated  independently considering the required operation (addition or subtraction)

and initial  values of operands.  This situation has been described in detail  in section

3.1.1. The example of the FP addition is shown below:

A=mA×bsn , B=mB×bsn+m , A+B=mA×bsn
+mB×bsn

×bsm

1.2359×109
+0.792×105

=12359×105
+0.792×105

=12359.792×105

12359.792×105
=0.12359792×105+5

=0.12359792×1010

The FP number subtraction is performed as follows:
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0.2359×107
−0.735×105

=23.59×105
−0.735×105

=23.59×105

23.59×105
=0.2359×102+5

=0.2359×107

2.3.2 Multiplication

FP  multiplication  does  not  require  denormalization.  However,  to  achieve  better

accuracy, the FP operands must be normalized. In order to multiply two FP numbers,

their fractional parts must be multiplied, whilst the exponents must be added. The result

might  require  post-normalization.  The  general  formula,  which  describes  the  FP

multiplication and an example are listed below.

A=mA×2eA , B=mB×2eB , A×B=mA×mB×2eA +eB

0.35×103
×0.51×102

=0.35×0.51×103+2
=0.1785×105

2.3.3 Division

FP division is  performed by dividing the operands’ fractions  and subtracting

their exponential parts. The general formula, which describes the FP division is showed

below:

A=mA×2eA , B=mB×2eB , A /B=
mA

mB

×2eA−eB

There  exist  different  methods  of  division.  Bit  by  bit  division  and  division

through the subtraction are not considered in this thesis, because the speed of these

division algorithms is extremely small. Bit by bit division takes the number of cycles,

which is equal to the dividend width in bits. Division through the subtraction depends

on the value of operands. Furthermore, both of these division methods require dividends

to be greater than divisors.

However, these limitations, which are imposed by these division methods, can

be overpassed using the Newton-Raphson division algorithm. The only requirement for

the  FP operands  is  that  they  need  to  be  normalized  in  order  to  avoid  the  possible

overflow  situation.  This  algorithm  can  divide  the  fractional  part  through  the

multiplication,  significantly  increasing  the  division  speed.  The  number  of  cycles

required for the Newton-Raphson division is acceptable and usually it is less than the

number of bits in an operand. Due to the  Newton-Raphson algorithm’s iterative nature,

each next intermediate result becomes closer to the real value of the result. This division

method is described more in detail in section 3.1.3 of this thesis.
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2.4 DSP Slices Usage Estimation

Due to the intensive usage of internal FPGA multipliers in the FPU design for

both  multiplication  and  division  operations,  the  using  of  multipliers  needs  to  be

estimated.  The  multiplication  time  delay  have  to  be  considered  as  well.  There  are

various synthesis tools, which can help to perform this estimation [9]. The tool, which

has been chosen for this experiment and for the FPU synthesis is ISE Project Navigator.

The hardware multiplication has been performed by the dedicated internal DSP slices,

which  Spartan-6  and  other  FPGA  families  contain.  In  Spartan-6,  for  example,  the

multiplier has a width of 18 bits and it is a part of an internal DSP slice. Thus, if the

width of the multiplier is not enough for performing the multiplication, the resulting

multiplier width will be increased by using additional 18 bit multipliers. 

In  order  to  estimate  the  DSP  slices  usage,  the  series  of  binary  numbers

multiplication in VHDL have to be performed. The first FP unit format, which has been

used to carry out the experiment is 16 bit and the largest is 80 bits. The relation between

the FP format, unsigned fractional and unsigned exponential parts of the FP number are

shown in table 3. The table shows that usage of DSP slices rises almost exponentially

with the increasing number of bits in the fractional part of the FP operands. Figure 5

illustrates the dependency of the DSP slices usage from the FP number fractional part

width.

Time  delay  in  the  cascaded  multiplier  is  another  factor,  which  must  be

considered, because this restricts the maximum operating FPU design frequency. The

delay in multiplier increases gradually depending on the operands’ widths. The relation

between time delay and the fraction’s width is shown in figure 6.

From these two graphs it can be discovered that the combinational multiplier

uses more DSP slices in order to maintain the time delay as small  as possible with

increasing number of bits in the fractional part of the FP number. This is confirmed by

the numbers, which have been obtained after the series of the FP multiplications have

been performed.

24



Table 2. Usage of DSPs by different FP formats

Example FP format, bits Fraction, bits Exponent, bits Usage of DSPs

1 16
8 8

1
10 6

2 18
10 8

1
12 6

3 20
10 10 1

14 6 1

4 24
12 12

2
16 8

5 28
14 14

4
18 10

6 32
16 16

24 8

7 40 30 10 8

8 48 35 13 11

9 64 50 14 12

10 80 60 20 23

According  to  the  graphs,  starting  from 16  bit  and  finishing  with  80  bit  FP

format, the DSP slices usage increased from 1 to 23. However, the time delay rose only

from 5 ns to 15 ns, which is about three times more. Although the time delay grows

with increasing number of bits in FP operands, the synthesizer attempts to eliminate the

delay by the extensive usage of hardware.
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Figure 5. Usage of DSP slices with different fractions

Figure 6. Multiplication time delay for different fraction widths
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Conclusions

This part of the thesis has introduced an overview of the different FP standards

and basic operations between the FP numbers. The IEEE-754 standard [6] has been

briefly highlighted and the DSP slices usage has been estimated. The DSP slices contain

the multipliers, which are essential for the FPU multiplication and the iterative division

through  the  multiplication.  The  multipliers  usage  grows  exponentially  with  the

increasing number of bits  in the fractional  and exponential  part  of the FP numbers.

However, the time delay is increased more gradually compared with the number of the

multipliers,  which  are  used.  This  concludes  to  an  assumption  that  the  ISE  Project

Navigator synthesis tool creates the combinational multipliers, inferring the additional

internal DSP slices in order to decrease signal propagation delays inside the FPGA.
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3 Generic Floating-Point Unit Design

This  chapter  describes  a  boundary  cases  analysis,  design  and  testing

methodologies, which have been used for the FPU design and testing flow. In order to

clarify the FPU design process, the cases when the FP operands and/or the result acquire

their minimum, maximum or inappropriate values have to be considered. This explains

how the result’s value must be truncated and rounded and how the overflow, underflow

and  division  by  zero  exceptions  must  be  handled.  The  boundary  cases  analysis  is

required in order to investigate the FP numbers’ values, which cannot be handled by a

given FPU format due to its limitations. The high-level synthesis principles have been

described in [10] [11] [12]. This chapter also explains in more detail the FPU internal

blocks’ structure and their input and output signals. Each internal FPU block has its

specific functionality and is connected with other necessary internal structural units in

order  to  provide  the  proper  FPU operation.  From the  design  point  of  view,  all  the

internal blocks are implemented as the VHDL components, which are instantiated in the

FPU  top  hierarchical  VHDL  module.  The  idea  of  VHDL  components  has  been

described in  [13] [14].

3.1 Boundary Cases Analysis

Performing operations between the FP numbers can lead to unexpected results

when operands have values, which are close to the bounds of their range or even exceed

the maximum or minimum allowed values. The boundary cases analysis helps to define

the FPU design paths, which impact on being able to handle the FP result by the FPU.

For the overflow, underflow and division by zero exceptions the result of calculation

cannot be stored as it is due to the physical limitations of the FPU hardware. This is due

to the finite number of the registers bits storing the binary values.

In order to increase the accuracy of the calculation result, the precision of the FP

operands is extended with additional bits as was mentioned in part 2.3 of this thesis.

According  to  the  IEEE-754  standard  [6],  a  rounding  takes  a  number  regarded  as
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infinitely precise in respect to the obtained result and, if necessary, modifies it to fit in

the destination’s format, while signalling the underflow, overflow or division by zero

exceptions when appropriate.  Each FP operation has to be performed as if it is firstly

produced as  an intermediate  result  correct  to  infinite  precision  and with unbounded

range,  and  then  that  result  is  rounded  according  to  one  of  the  rounding  attributes.

Inexact  numeric  FP  results  always  have  the  same  sign  as  the  result,  which  is  not

rounded.

The  IEEE-754  standard  [6]  defines  various  rounding  types  and  calculation

exceptions. The two most important rounding modes are rounding to the nearest and

directed  rounding.  Each  of  two  rounding  types  has  its  own  rounding  attributes.

According to the standard, the FP numbers in a binary form must be rounded to the

nearest  value.  However,  the  generic  FPU,  which  has  been  designed,  supports  five

rounding modes. Due to the simplification of the FPU design, some of the IEEE-754

requirements [6], such as inexact exception have not been considered. The implemented

rounding modes and signalled exceptions are described in detail in part 3.2.6 of this

thesis.

3.1.1 Addition and subtraction

Addition  and  subtraction  of  the  FP  operands  can  be  performed  when  their

exponential  parts  are equal.  In order to satisfy this  requirement,  a special  procedure

must be applied, which is called denormalization. The denormalization procedure have

to be performed on one of the input FP operands. This requires the extending of both

operands’ precision by adding additional least significant bits to them. The result of the

FP operation  needs  post-normalization  in  order  to  be  outputted  as  a  normalized  FP

value.

Denormalization  of  a  FP operand in  a  way when its  exponent  is  decreased,

requires shifting of its fractional part to the right. Therefore, in order to preserve the

precision and accuracy, the two extra bits must be added to the operand after the right

least  significant  bit.  Due  to  the  practical  implementation  approach,  considering  the

overflow and underflow exceptions described in the IEEE-754 standard [6], in cases

when  these  exceptions  arise,  the  maximum  and  minimum  number  value  must  be

outputted for overflow and underflow situation respectively.
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Both addition and subtraction operations are interchangeable. The subtraction of

a negative number can be replaced with the addition with an opposite sign. All possible

addition  and  subtraction  scenarios  are  shown  in  table  3,  which  illustrates  their

interchangeability depending on the FP operands’ signs. This in turn helps to define the

design path for the adder/subtractor, which is a part of the FPU.

Table 3. Interchangeability of addition and subtraction operations

A > 0; B > 0 A > 0; B < 0 A < 0; B > 0 A < 0; B < 0

Addition A + B A + (-B) (-A) + B (-A) + (-B)

Subtraction A + (-B) A + B (-A) + (-B) (-A) + B

Based  on  the  data  in  the  table  above,  in  order  to  implement  addition  and

subtraction two ways can be used. One of these requires the usage of a number’s two’s

complement form. This means that the half of a number’s possible range is used for

representing the positive numbers and the other half is used for negatives. This entails

confusion, because numbers in a two’s complement’s form are not straightforward to

deal with. Another way of the adder/subtractor implementation is to operate only with

positive  operands,  removing  the  sign  which  can  be  calculated  independently.  The

required addition or subtraction operation is calculated based on operands signs and

their values. The second method of the adder//subtractor implementation has been used

in this thesis. This method has been described in part 3.2.3.

The denormalization of the FP operands have to be performed with the higher

precision  in  order  to  avoid  a  loss  of  accuracy  in  the  result.  In  fact,  when  the  FP

operands’ exponents differ from each other not more than by the fraction’s width, the

accuracy can be lost to a certain extent.  In addition,  the most accurate  result  of the

addition and subtraction can be achieved when the FP operands have the same value in

the exponential part. The example below demonstrates the addition of two FP numbers

with eight digits after the radix point and without the extra bits:

0.111111112×23
+0.111111112×20

=0.111111112×23
+0.00011111×23

=

=1.000111102×23
=1.117187510×23

The example  above demonstrates  the exponents,  which have become equal  and the

second  operand’s  fraction,  which  has  been  shifted  to  the  right  by  three  positions.
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Because  of  this  the  accuracy  can  be  lost  to  some  extent,  depending  on  the  least

significant bits in the fractions.

In order to prevent this situation with accuracy loss to some extent, the precision

of the fractions in the FP operands must be extended before performing a calculation. In

fact,  the  precision  of  operands’  fractions  cannot  be  extended infinitely,  because the

number  of  bits  in  registers  is  always  limited.  However,  according  to  the  IEEE-754

standard [6], the precision has to be extended by the two least  significant bits. The

example below demonstrates  obtaining of a more accurate  addition result,  using the

operands’ precision extended by two additional least significant bits:

0.11111111002×23
+0.11111111002×20

=0.11111111002×23
+0.00011111112×23

=

=1.00011111002×23
=1.12011718810×23

Therefore,  two  examples  described  above  show  the  difference  in  accuracy

between  the  resulted  mantissas  (fractions)  using  the  different  precision  for  the  FP

numbers representation. This difference is:

mdiff =1.12011718810−1.117187510=0.00292968810

The expressions below show an example how the extra precision bits affect the

result, when adding a number, which is almost equal to 1:

0.111111112+0.000000012=1.000000002=110

0.111111112+0.00000001112=1.00000000112=1.002929687510

This analysis shows the importance of the FP operands’ precision extention in

order to obtain more accurate results. However, after rounding the FP mantissa must be

truncated to the number of bits, which are defined by a chosen FP format. For any FP

widths the precision of the fractional part must always be extended by the two least

significant bits.

3.1.2 Multiplication

FP multiplication does not require denormalization. The fractional parts of the

FP numbers must be multiplied and their exponents must be added. The multiplication

result requires performing post-normalization.

If both input FP operands have been normalized before the multiplication (when

condition 0.5⩽fraction<1 is satisfied), then the overflow situation will not take place.

The example below shows such a feature:
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0.11111111112×0.11111111112=0.111111111000000000012≈0.11111111102

0.999023437510×0.999023437510≈0.99804687510

The fractional result, which is almost equal to 1, can be rounded by truncating it

within the equal amount of bits as the input operands have in their fractional part. This

happens because the least significant bit of the result’s fractional part is likely to always

have a zero value in the cases when input operands fractions approximately equal to 1. 

The overflow and underflow conditions never take place in fraction multiplica-

tion. In some cases the result can be rounded up to 1 and in other cases down to 0. The

sign of the multiplication result is calculated as an exclusive OR operation between the

signs of the input operands.

3.1.3 Division

Division of two FP numbers is performed by division of their fractional parts,

whilst subtracting their exponents. The general formula, which describes the FP division

is as follows:

A=mA×2eA , B=mB×2eB , mA≥mB , A /B=
mA

MB

×2eA−eB

Different dividend and divisor values have been used in order to investigate the

boundary cases for division. These values are shown in table 4.

Table 4. Results of division caused by different dividend and divisor values

N Dividend Divisor Result of the division

1 0 Any number 0

2 0.00000001 0.00000001 1

3 0.00000001 0.11111111 0

4 0.11111111 0.00000001 Overflow

5 0.11111111 0.11111111 1

6 Any number 0 Division by zero exception

The underflow exception cannot occur for the division. However, the overflow

might take place if the divisor is much smaller than the dividend. The division by zero

exception is a mathematical exception, which happens if the divisor is equal to zero.
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Various division algorithms have been described in [15]. In order to increase the

speed  of  division  and  eliminate  dependency  on  a  dividend  and  divisor  values,  the

Newton-Raphson division algorithm will be used in the practical part of this thesis. The

idea of this algorithm is to obtain a division result through the series of multiplications.

The algorithm finds the opposite value of a divisor  D and multiplies that reciprocal

value by dividend  N to find the final quotient  R. To demonstrate how the algorithm

works, the simple example in a decimal form has been shown below. The dividend and

divisor values are: N=0.40625 , D=0.75 . The result is calculated as follows:

R0=2−D=2−0.75=1.25

N1=N×R0=0.40625×1.25=0.5078125

D1=D×R0=0.75×1.25=0.9375

R1=2−D1=2−0.9375=1.0625

N2=N1×R1=0.5078125×1.0625=0.539550781

D2=D1×R1=0.9375×1.0625=0.99609

R2=2−D2=2−0.99609=1.00391

N3=N2×R2=0.539550781×1.00391=0.5416600425

D3=D2×R2=0.99609×1.00391=0.999984712

The  result  of  division,  which  has  been  obtained  after  a  few  iterations  is

0.5416600425. The series of calculations must be performed with the increasing index

of each of the operands R x , N x and Dx until the D approaches to the value of 1. In

the example described above the maximum value of D is 0.999984712 and takes place

on the third iteration.

Below is shown the same example, but in a binary form with a 16 bit fractional

part after the radix point.

N=0.011012 , D=0.112

R0=10.02−0.112=1.01

N1=0.011012×01.012=0.10000012

D1=0.112×01.012=0.11112

R1=10.02−0.11112=1.00012

N2=0.10000012×1.00012=0.100010100012

D2=0.11112×1.00012=0.111111112

R2=10.02−0.111111112=1.000000012
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N3=0.100010100012×1.000000012=0.1000101010101010001

D3=0.111111112×1.000000012=0.11111111111111112

The  calculations  were  performed  until  D acquired  the  maximum  value  -

0.11111111, which is equal to the value of 0.99609375 in a decimal form. However, the

factions,  consisting from the less  amount  of  bits,  can produce an inaccurate  results

because of the smaller precision.

3.2 Floating-Point Unit Hardware Description

Different parts of the FPU have been described in this chapter. The algorithm of

each FPU internal block has been presented in more detail in the form of a diagram.

Each diagram has been explained, covering the most important steps in the algorithms.

Referring  back to  the  technical  task described in  chapter  1.2,  the  FPU must

have an adder/subtractor, a multiplier and a divider. Therefore, the FPU have to include

the functional hardware blocks, which perform the required mathematical operations. In

addition, the denormalization unit is essential for addition and subtraction, whilst the

post-normalization  unit  is  important  for  every  operation.  A  dedicated  finite  state

machine is needed in order to synchronize different parts of the FPU. This state machine

has to produce the output ready signal, which indicates that the calculated result is valid

and can be read from the FPU output. The post-normalizing circuitry is synchronized by

the same state machine and used in order to post-normalize the result of the operation

when it  is  needed.  The four  operations  required  from the  technical  task  have  been

implemented  by using  three  hardware  units:  an adder/subtractor,  a  multiplier  and a

divider. For addition and subtraction the input FP operands pass to the denormalizing

unit  first  in  order  to  have  the  exponents  equal.  The multiplication  and division  are

performed without the need for input operands to be normalized. However, in order to

avoid the possible overflow situation for division, the normalized input operands need

to be applied, considering that fact that the FPU has an ability to normalize the input

operands.

3.2.1 FPU top-hierarchical block description

The top-hierarchical FPU block is shown in figure 7. According to this figure,

the FPU has inputs and outputs, which are both single wires and buses. The input FP
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operands,  output  result,  and  inputs  for  selecting  of  rounding  modes  and  required

operations are the data buses. Other signals are single inputs and outputs. The symbol’s

n value is equal to the OpWidth, which is why the width of the operands is written as

[OpWidth-1..0]. The explanation about the all FPU signals is presented in table 5. The

table consists of the names of signals, their types, width and the functional purpose. The

FPU inputs and outputs are the top-level signals in the FPU hierarchical structure. They

descend inside the FPU to its internal blocks, which all together perform the necessary

computational and internal data flow operations.

Figure 7. FPU top hierarchical block 

The  FPU  can  perform  four  operations  such  as  the  addition,  subtraction,

multiplication,  division  and normalization  of the operands A and B.  The list  of  the

operations and flags affected by each operation are shown in table 6. The  opsel[2..0]

signal’s value is latched at the rising edge of the signal start.  Any manipulations with

this signal during the calculation do not affect the FPU internal state after the signal

value has been latched. This feature allows the FPU to avoid the unnecessary influence

of the opsel[2..0] input on the FPU result.

The FPU supports five rounding modes that can be chosen by rndm[2..0] inputs.

The list of the rounding algorithms is presented in table 7. Rounding takes place after

the post-normalization procedure and it is described in detail in part 4.1.5 of this thesis.

The FPU exceptions are signalled through the overflow, underflow and division

by zero outputs. The input clk is required in order that the FPU be synchronized by the

external oscillator. The input rst resets the FPU to its initial state.
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Table 5. FPU input and output signals

Signal Type Description

op_a[n-1..0] Input, bus Operand A input data bus

op_b[n-1..0] Input, bus Operand B input data bus

opsel[2..0] Input, bus Three wire input control bus is used for selection of the
operation, which have to be performed. These inputs 
are edge-sensitive and latch their values at the rising 
edge of the input signal start

rndm[2..0] Input, bus Three wire input control bus is used for selecting the 
rounding mode. These inputs’ values are latched at the 
rising edge of the input signal start

start Input, single Rising edge-triggered control input. This input 
activates the performing of the selected FPU operation 
and the result’s rounding

clk Input, single FPU clock synchronization input (it is recommended to
have the duty cycle of 0.5 in order to guarantee the 
proper operation of the FPU)

rst Input, single FPU reset input. A high level is active

result[n-1..0] Output, bus The output result data bus. Its width is equal to the 
input operands’ width

ready Output, single This output signal provides a high pulse when the FPU 
result has been obtained

overflow Output, single Overflow exception flag. Arises to a high level when 
the overflow takes place

underflow Output, single Underflow exception flag. Arises to a high level when 
the underflow takes place

div_0 Output, single Division by zero flag. This output acquires a high level 
if the operand B has the zero value and the division 
operation has been attempted to execute

The next  chapter  describes  the FPU internal  block diagram and contains  the

explanation of the general FPU operation algorithm. The chapters after the next chapter

describe each of the FPU internal blocks in more detail.
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Table 6. FPU operations

opsel[2..0] 
signal’s value 

Executed operation Affected exception flags

000 Addition Overflow, underflow

001 Subtraction Overflow, underflow

010 Multiplication Overflow

011 Division Overflow, division by zero

100 Reserved -

101 Reserved -

110 Normalization of the operand A Underflow

111 Normalization of the operand B Underflow

Table 7. FPU rounding modes

rndm[2..0] 
signal’s value 

Selected rounding mode

000 TowardsZero

001 to nearest/TiedToEven

010 to nearest/TiedAwayFromZero

011 TowardPlusInfinity

100 TowardMinusInfinity

101 Reserved

110 Reserved

111 Reserved

3.2.2 FPU internal block diagram description

The  FPU  consists  of  the  several  independent  units,  which  are  internally

connected through the signal buses and separate signals. Before synthesis the FPU can

be configured to be synthesized with a different FP format. The sign bit always occupies

only one bit in any FP format, including customer formats. The FPU format is defined

in the configuration package by three constants.  The FPU internal  block diagram is
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shown in figure 8. It consists of an adder/subtractor, which is a single unit, a multiplier,

a divider, a denormalization unit, a post-normalization unit, an exponent and fraction

multiplexer, a barrel shifter, and a control FSM. The multiplier, the divider and the post-

normalizer  unit  accept  the  operands  directly  form  the  FPU  inputs,  while  the

adder/subtractor  receives  them through the denormalizer,  which modifies  one of the

input operands in a way to obtain both exponents equal before the fractions can be

added or subtracted. This modification includes shifting the smaller operand’s bits to the

right by the number, which is a difference between exponential parts’ values of both

operands.  The  adder/subtractor,  multiplier  and the  divider  (in  further  computational

units) produce the intermediate results and their fractional parts are passed to the post-

normalization unit directly. However, the exponential parts of each result are connected

to the post-normalization unit through the multiplexer, which commutates the different

exponential results, depending on the operation being selected. This multiplexer is used

in order to commutate the barrel shifter’s fractional and shifting control signals between

the denormalization and post-normalization units. Shifting control signals derive from

the multiplexer and they specify the number of shifts and the shifting direction (left of

right).  Shifting  control  signals  are  connected  directly  to  the  barrel  shifter.  The

multiplexer is controlled by an internal FSM, which synchronizes all the internal FPU

units.

The  internal  FSM  controls  the  internal  FPU  operation.  Depending  on  the

operation between the input operands, the FSM connects different fractions to the barrel

shifter at the specific clock cycle during the ongoing calculation. Furthermore, the FSM

generates  the  internal  ready signal,  which  indicates  that  current  operation  has  been

completed. This signal is a single pulse, whose rising edge in turn triggers the post-

normalization unit to output the FP result to the FPU result[n-1..0] output.

A post-normalizer  is  a  block,  which  takes  the  intermediate  operation  result,

normalizes, rounds and truncates it in order to fit it into the specific FP format. The

post-normalizer  receives  the  intermediate  resulting  exponents  from the  multiplexer.

This  has  been  implemented  in  order  to  reduce  the  number  of  inputs  in  the  post-

normalization unit and simplify the FPU design flow.
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Figure 8. FPU internal block diagram

The majority of the internal FPU blocks (but not all of them) have clock clk and

reset  rst input  signals,  which  are  used  for  the  FPU synchronization  and reset.  The

multiplier, the divider, the post-normalizer and control FSM have both of these inputs,

whilst the denormalization unit has only the clk input. Due to the combinational nature

of the adder/subtractor, multiplexer and barrel shifter, these internal units do not use the

clk and rst signals. A start input initiates the FSM operation. The division unit is also

triggered, if the division operation has been selected. The rndm[2..0] input selects the

rounding mode, which will be performed on the FP result after its normalization. This

input is connected directly to the post-normalization unit as is shown in figure 8. The

auxiliary extra digital logic is used among the FPU internal blocks in order to avoid the

output signal’s jitter during the calculations. The inputs and outputs of the FPU internal

blocks are described in the next chapters in more detail.
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Figure 9. FPU general algorithm

The general algorithm of the FPU operation is illustrated in figure 9. At first, the

FPU reads the input operands’ values, the operation, which is need to be executed and

the rounding mode. Each operation is triggered by a rising edge of the start input signal.

At this  rising edge the  opsel[2..0] and  rndm[2..0]  inputs are latched and store their

value until the arrival of the next rising edge of the start signal. It is recommended not
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to  change  opsel[2..0] and  rndm[2..0]  input  signals’  values,  applying  the  additional

pulses  at  the  start input  during  the  ongoing  calculation.  This  prevention  measure

guarantees the correctness of the FP result.

The  FPU  algorithm  depends  on  the  selected  operation.  In  cases,  when  the

normalization  of  the input  operands has  been selected,  the post-normalizer  starts  to

normalize  them  immediately.  In  other  cases  one  of  the  calculations  (addition,

subtraction,  multiplication  or  division)  will  be  triggered.  Computational  operations

require additional extra clock cycles. The exact number of clock cycles required for

each operation has been described further in part 4 of the thesis.

The FPU design has  been implemented  in  such a  way that  the  width of  the

fractional and exponential parts of the FPU are defined in the VHDL package, which is

a part of the FPU design. All the internal FPU buses, which connect internal FPU blocks

between themselves, change their widths according to the constants, which are defined

in this package.

3.2.3 Denormalization unit description

A denormalization unit makes the exponents of two input operands equal by

shifting one of the fractions to the right. It calculates the difference between exponents

of two input operands and shifts to the right the operand’s fraction with the smaller

exponent by a numbers of bits, which is equal to this difference. The denormalization

unit provides the modified input operands’ fractions to the adder/subtractor. 

The denormalizer  is  connected  through the  internal  multiplexer  to  the barrel

shifter,  which  performs  logical  shifting.  The  logical  shift  left  is  not  used  for

denormalization  purposes. Denormalization requires two clock cycles in cases, when

the operands’ exponents are not equal. If the exponents are equal, then denormalization

is  not  performed,  taking  one  clock  cycle  and  passing  the  fractions  from  the

denormalization unit to the adder/subtractor directly. The common exponent after the

denormalization  procedure  is  passed  to  the  internal  FPU  multiplexer.  The  top

hierarchical block of the denormalization unit is shown in figure 10.
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Figure 10. Denormalizer’s top hierarchical block

The description of all the inputs and outputs of the denormalizer is shown in

table 8. The number frn is the input operands fractions’ width. The number exn is equal

to the number of bits in one of the input operands’ exponent. The constant  frlog  is a

calculated logarithm based on the fractions’ width. This calculation formula has been

described in more detail in part 3.2.6 of this thesis.

The algorithm,  which  describes  the  operation  of  the  denormalization  unit,  is

shown in figure 12. According to the diagram, when the input FP operands A and B are

read, their exponents are compared first. If the exponential part of operand A is less than

the  exponential  part  of  operand  B  or  vice  versa,  then  the  difference  between  their

exponential  parts  is  the  number  of  the  required  shifts  to  the  right  for  the  smaller

operand’s fraction.

If  the  difference  between  two  exponents  is  larger  than  the  value  of

[FractionalWidth-1],  then the lowest  fraction  is  assigned with all  zeros,  because its

shifted value is too small and can be neglected. The larger operand is outputted as it is.

However, both operands are extended with two least significant bits from the right side

and three most significant bits from the left side in order to keep the accuracy in the

addition/subtraction unit and deal with overflow situations. If the difference between

operands’  exponents  is  zero,  then  their  fractional  parts  remain  unchanged.  Both

fractions are always extended with the extra bits in order to preserve the calculation’s

precision. If the difference between the exponential parts is less than the value of  the

[FractionalWidth-1], then, depending on their comparison result, the fractional part of

the FP number  with the larger exponent value remains unchanged. 
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Table 8. Denormalization unit input and output signals

Signal Type Description

op_a[n-1..0] Input, bus Operand A input data bus. Derives directly from the 
FPU input

op_b[n-1..0] Input, bus Operand B input data bus. Derives directly from the 
FPU input

shifted[frn+4..0] Input, bus Shifted fraction from the barrel shifter’s output

clk Input, single FPU clock synchronization input

frsel Input, single Control input for storing of the denormalized operands

exp_o[exn..0] Output, bus The common exponent for both operands. It is 
extended by one most significant bit to prevent the 
overflow

fra_o[frn+4..0] Output, bus Denormalized operand’s A fractional part 

frb_o[frn+4..0] Output, bus Denormalized operand’s B fractional part

sh_cnt[frlog-1..0] Output, bus Number of the required shifts. It is connected to the 
FPU internal multiplexer

sh_init[frn+4..0] Output, bus The initial fraction, which is needed to be shifted. It is 
connected to the FPU internal multiplexer

dexp_eq Output, single This flag is set, when the exponential parts of both 
input operands are equal

siga Output, single Sign of the operand A

sigb Output, single Sign of the operand B
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However,  other  fraction  is  shifted  to  the  right  by  a  number  of  bit  positions

determined  by the  exponents  difference.  Three  extra  bits  from the  left  side  for  the

resulting fractions ShFrA and ShFrB are not shown in the algorithm for simplification.

The  resulted  fractions’  length  after  denormalization  is  always  equal  to

[FractionalWidth+4]. The testing of the denormalization unit is described in part 4.1.1

of the thesis.

Figure 11. Denormalization unit algorithm
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3.2.4 Addition/Subtraction unit description

An addition/subtraction unit is a fully combinational circuit.  The width of its

data buses is equal to [FractionalWidth+4],  which is five bits wider than the width of

the input operands. The adder/subtractor receives its operands from the denormalization

unit, which has been described in the previous section. The top hierarchical block of the

adder/subtractor is shown in figure 12.

Figure 12. Adder/subtractor top hierarchical block

The inputs  fra_in[n+4..0] and  frb_in[n+4..0]  are the operands’ denormalized

fractions, which are derived from the denormalization unit. The inputs siga and sigb are

the operands’ signs. The  fres_o[n+4..0] and  adsign  are the fractional result and sign

respectively. Both the input and output fractions are extended with five bits. That  is

why the width of these signals is  [n+4..0] instead of  [n-1..0]. The width extension is

essential  for  increasing  of  the  precision  and  for  dealing  with  the  fraction  overflow

situation. In the adder/subtractor the selection between addition or subtraction operation

is defined by the  opsel[2..0] signal, which derives from the FPU input. If the signal

opsel[2..0] has a value of “000”, the addition is performed, whilst the subtraction takes

place when the  opsel[2..0] signal’s value is “001”.  The addition/subtraction unit does

not check the overflow or underflow conditions, if they arise. Instead of this, the result

of the addition or subtraction is passed directly to the post-normalization unit, which

checks these conditions by itself.

In  more  detail,  the  addition/subtraction  unit  does  not  deal  with  negative

numbers. By contrast, depending on the input operands’ values and their signs and due

to the interchangeability of the addition and subtraction operations,  the adder/subtractor

replaces the required operation, which is being performed with the opposite one as well

as the sign of the result.  This situation has been described in section 3.1.1 of this thesis.
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Table 9. Addition and subtraction interchangeability

Operands

relation

A sign B sign Required

operation

Signal

fra_lt_frb

Signal

s_addop

Resulted

operation

Resulted

sign

|A| > |B| + + Addition 1 0 A + B +

|A| > |B| + - Addition 1 1 A - B +

|A| > |B| - + Addition 1 1 A - B -

|A| > |B| - - Addition 1 0 A + B -

|A| < |B| + + Addition 0 0 A + B +

|A| < |B| + - Addition 0 1 B - A -

|A| < |B| - + Addition 0 1 B - A +

|A| < |B| - - Addition 0 0 A + B -

|A| > |B| + + Subtraction 1 1 A - B +

|A| > |B| + - Subtraction 1 0 A + B +

|A| > |B| - + Subtraction 1 0 A + B -

|A| > |B| - - Subtraction 1 1 A - B -

|A| < |B| + + Subtraction 0 0 A + B -

|A| < |B| + - Subtraction 0 1 A - B +

|A| < |B| - + Subtraction 0 1 B - A -

|A| < |B| - - Subtraction 0 0 A + B +

|A| = |B| + + Addition X 0 A + B +

|A| = |B| + - Addition X 1 A - B X

|A| = |B| - + Addition X 1 B - A X

|A| = |B| - - Addition X 0 A + B -

|A| = |B| + + Subtraction X 1 A - B X

|A| = |B| + - Subtraction X 0 A + B +

|A| = |B| - + Subtraction X 0 A + B -

|A| = |B| - - Subtraction X 1 A - B X

X means “don’t care” value
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The addition/subtraction unit defines the larger fraction between two fractions

and then applies this for calculating of the result.  Based on the fractions’ signs, the

actual  operation  may  be  different  from  the  operation,  which  is  defined  by  the

opsel[2..0] input signal. The actual operation and the sign are calculated by the separate

boolean expressions, which create look-up tables in the FPGA after synthesis. If the

resulted operation is required to be an addition, then two fractions are simply added.

However, in the case of subtraction, a smaller fraction is always subtracted from

a larger. This has been implemented in order to simplify dealing with negative numbers.

The relation between the input operands, the resulting operation and its result sign is

shown in table 9. According to this table, there are three possible groups of operands’

values. These groups are related to such conditions as |A| > |B|, |A| < |B| and |A| = |B|.

The addition/subtraction unit has the internal signal  fra_lt_frb.  This signal acquires a

high level when the fraction of the operand A is larger than the fraction of the operand

B, whilst becoming zero otherwise. Another signal is called addsub, which has the same

value  as  the  FPU  opsel[2..0]  input’s  least  significant  bit.  It  defines  for  the

adder/subtractor’s  internal  logic,  which  operation  (addition  or  subtraction)  must  be

performed.  The  value  of  the  signal  addsub is  ‘0’  for  the  addition  and  ‘1’  for  the

subtraction. This signal is not shown in table 9. The signal s_addop depends on the two

previous signals’ values and it defines the resulted operation, which is being performed.

If  this  signal  is  equal  to  ‘0’,  then  the  addition  operation  is  performed,  but  for  the

subtraction the smaller exponent is always subtracted from the larger as was mentioned

above. X means that the value is “don’t care”. These three signals fra_lt_frb, addsub and

s_addop define the actual operation and the sign of the result. Their VHDL expressions

have been written by analysing the data given in table 9. The boolean expressions for

these signals, including for the resulted sign’s value are shown below:

addsub <= '1' when opsel = "001" else '0';

fra_lt_frb <= '1' when (efra > efrb) else '0';

s_addop <= ((not addsub) and (asign xor bsign)) or

                    (addsub and (not (asign xor bsign)));

res_sign <= (fra_lt_frb and asign) xor ((not fra_lt_frb) and

                                (((not addsub) and bsign) xor (addsub and (not bsign))));

Due to the simplification of the FPU internal structure, the denormalization unit

output is always connected with the adder/subtractor’s input. The adder/subtractor has
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been written  in  a  parameterisable  form in order  to  meet  the different  widths of the

internal interconnecting FPU buses. The testing of the addition/subtraction unit has been

described in chapter 4.1.2 of this thesis.

3.2.5 Multiplication unit description

A  multiplication  unit  performs  multiplication  between  the  FP  numbers,

producing  the  fractional  and  exponential  parts,  which  are  passed  to  the  post-

normalization unit.  In order to preserve precision and accuracy of the multiplication

result, the input operands’ fractional parts must be normalized.  The multiplication unit

calculates the result using a fast parallel multiplier, which is synthesized from the built-

in FPGA DSP slices, which perform the multiplication. The multiplier’s top hierarchical

block is shown in figure 13. The input data for the multiplier is obtained directly from

the FPU inputs as well as the opsel[2..0], clk and rst signals.

The  fractional  part  of  the  result  is  passed  to  the  multiplier’s  output  port

mfres_o[mf-1..0], which is connected with the post-normalization unit. Its width mf is

two times larger than the width of the input faction of each operand. The exponential

part of the result is outputted to the mexp_o[me+1..0] port, which is connected with a

multiplexer.  The  exponential  width is  one  bit  wider  than  the  width  of  the  input

exponents  me.  The sign of the multiplication is the signal  msign.  The multiplication

algorithm is shown in figure 14.

Figure 13. Multiplier’s top hierarchical block

According to the above diagram, the multiplication unit reads the values of the

fractional parts, exponents and sign bits of the input FP operands from the FPU inputs.

If the signal opsel[2..0] is equal to “010”, then each of the exponents are extended with

the additional bit from the left side, producing new signed exponents, whose widths are

equal to  [ExpWidth+1]. The bit extension procedure is important, because it provides

the possibility to check the overflow and underflow conditions when they occur.
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 According to to the FP multiplication algorithm, which is shown in figure 15,

the input operands’ fractions are multiplied,  while their exponents are added. Owing to

the nature of the binary division,  the resulting fraction is  two times wider,  than the

fraction’s width of the input operands.

Figure 14. Multiplication unit algorithm

The exponents are added as a signed VHDL data type. Therefore, the sign of the

addition  operation  is  taken  into  account.  The  resulting  exponent’s  value  is  passed

directly  to  the  post-normalization  unit,  which  defines  whether  the  overflow  or

underflow occurred or not. The output result’s sign is calculated as an exclusive OR

operation between signs of the input operands. The multiplier’s simulation results and

the performance estimation are listed in section 4.1.3 of this thesis.

3.2.6 Division unit description

A divider  performs  division  between  the  input  FP  operands.  The  operands’

fractional  parts  are  divided,  whilst  their  exponents are subtracted.  Different division

algorithms  have  been  described  in  [15].  However,  the  Newton-Raphson  division
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algorithm,  which  has  been  described  in  section  3.1.3,  has  been  used  for  the  FPU

implementation due to its simplicity. The speed of the division is the second advantage

of this algorithm. Furthermore, the algorithm is not dependent on the operands’ values.

The only one condition, which must be fulfilled is that fractions have to be normalized.

Using not normalized operands entails a possible overflow and wrong division result.

The divider’s top hierarchical block is shown in figure 15.

Figure 15. Divider’s top hierarchical block

The input  operands  op_a[n-1..0], op_b[n-1..0]  and the  opsel[2..0] signal  are

directly derived from the FPU inputs. The signals clk and rst are clock and reset signals

respectively, whilst the  start signal’s rising edge initiates the division. The fractional

division result and a sign bit are passed to the post-normalization unit, whilst the result’s

exponential part is connected to the multiplexer. Due to the Newton-Raphson  division

algorithm’s iterative nature, the fractional result’s precision has been limited to the input

operands’ fraction width and it is only extended with three bits from the MSB side in

order to avoid the fractional overflow. The  ready signal produces a single high level

pulse when the division unit has finished the calculation. A division by zero exception is

generated by the divider itself and propagated to the post-normalization unit. 

The Newton-Raphson division algorithm calculates the result through a series of

multiplications, which is why the result is always approximate. Both the final fraction

and exponent are calculated in parallel in order to maintain the FPU throughput at the

top.  In  order  to  save  the  calculation  time,  the  fractional  result  and  exponent  are

calculated  in parallel.  The number of the iterations,  which are needed to obtain the

division result depends on the fractional parts’ widths. The division algorithm is shown

in figure 16. The division unit starts its operation when a value of the opsel[2..0] signal

is equal to “011” and a single pulse has been applied to the the FPU input  start. The

division starts if the divisor is not equal to zero. A dividend N and a divisor D are read
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from the FPU input. The dividend is always operand A, whilst the divisor is always

operand B. The sign extension procedure is applied to both operands’ exponential parts.

The resulting division sign is calculated as an exclusive OR operation between the input

operands’  signs.  The  division  unit  does  not  generate  the  overflow  and  underflow

exceptions by itself and the post-normalizer performs the normalization of the result

instead.  By  contrast,  as  was  mentioned  above  the   division  by  zero  exception  is

generated by the division unit itself. According to the diagram, which is described in

figure 16,  N is  the dividend (numerator),  D is  the divisor (denominator)  and  R is a

reminder.  In order to avoid the potential  overflow in the result’s fractional  part,  the

extra most significant bits from the left are added to the operands’ fractions. The whole

part in the fraction is needed in cases, when, for example, the divider’s fraction is in a

range between 0.0625 and 0.5. Therefore, to avoid a possible overflow situation, the

divisor  should not be less than 0.0625, if  the dividend’s  value is  close to one.  The

fractions’  overflow  condition  is  not  occur  if  dividend’s  and  divisor’s  fractions  are

normalised. According to the diagram, which is listed in figure 16, at the first division

step, the divisor D is subtracted from the constant with a value of two. The result is

stored in the reminder R. At the second step, both the dividend N and the divisor D are

multiplied with the reminder. Multiplication is performed in parallel to save calculation

time. However this increases the usage of the FPGA DSP slices. Then the new divisor’s

result (after the multiplication step) is used in the second iteration, when is is subtracted

again from a constant with a value of two. Then the cycle repeats as many times as

needed, until the divisor D(x) will reach its maximum value, which is close to a value of

one. After that the fractional division result is outputted as well as the resulting division

exponent. The number of iterations depends on the input operands’ widths. The division

unit has been written in a parameterisable style and it adjusts its internal registers’ and

buses’ widths according to the constants defined in the FPU package. The division unit

testing is described in chapter 4.1.4 of this thesis.
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Figure 16. Division algorithm

3.2.7 Generic barrel shifter description

A barrel shifter is a combinational digital circuit, which can shift a data word by

a specified number of bit positions. Due to the absence of sequential logic in the barrel

shifter, the shift operation does not require synchronization signals. The generic barrel

shifter is the heart of the FPU and it can parametrize its input and output widths and the

control shifting input width after the synthesis according to the constants, which are

defined in the FPU package. Barrel shifter has been designed using the barrel shifter’s
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example from [7] on page 566. This example has been modified in order to meet the

generic  FPU requirements.  The  top  level  hierarchical  block  of  the  barrel  shifter  is

shown in figure 17. The input shiftIn[n+4..0] takes the initial binary data word, which is

needed to be shifted. The width of the data word is defined by the width of the input

operand’ extended fractions. The width of  n is always equal to  [FractionalWidth+4].

The  input  numShifts[mlog-1..0]  specifies  the  number  of  required  shifts,  which  are

performed for the input shiftIn[n+4..0]. The number mlog is the logarithm of base two

of the number n, rounded up to the nearest larger whole number. This number defines

the number of the multiplexer layers inside the barrel shifter.

Figure 17. Barrel shifter’s top hierarchical block

The mlog is defined in the FPU package as a fr_log_width constant as follows:

constant fr_log_width: integer := integer(ceil(log2(real(FractWidth))));

The signal  left  defines whether a shift to the left  or shift to the right will be

performed. If this signal has a high level, then the selected direction of shifting is to the

left.  When the  left  has a low level,  then shifting to the right is selected.  Finally, an

output  shiftOut[n-1..0] provides a shifted data word. All the barrel  shifter inputs are

connected to the internal FPU multiplexer, which is commutated by the control FSM,

which has been described in part 3.2.10 of this thesis.

The generic barrel shifter’s internal structure is shown in figure 18. Depending

on the  fraction  width,  which  is  defined in  the FPU package,  a  different  number  of

shifting slices will be synthesized inside the barrel shifter. Each slice consists of two

multiplexers, which are connected in such a way that every slice is able to shift an input

data word  to the left or right by only a fixed number of bit positions. Each slice shifts

the input for a number of bit positions, which is equal to 2**n, where n is the number of

the control shift input bit, starting from 0. This means that the shifting slice 0 shifts the

input data word by one position. For the next shifting slices a shifting step is increased
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Figure 18. Generic barrel shifter’s internal structure

by two times from the number of shifts in the previous slice. All the internal shifting

slices in the barrel shifter are identical, except for the inputs connection order of the first

multiplexer  MUX1 in  each  shifting  slice.  In  order  to  understand the  mechanism of

shifting,  the  shifting  slice  0  has  been more  detailed  in  figure  18.  According to  the

drawing, each shifting slice consists of two multiplexers with the same input data width.

The first multiplexer MUX1 commutates the two data inputs, which are connected to the

pre-shifted to the right and pre-shifted to the left input data word. The shift, which is

performed by each of barrel shifter’s slices is a logical shift. This means that ‘empty’

places  after  shifting  of  a  data  word  are  filled  with  zeros.  This  is  opposite  to  the

arithmetical  shift,  when  the  least  significant  bit  acquires  the  value  of  the  most

significant bit or vice versa, whether the arithmetical shifts to the left or to the right are

performed respectively. The first multiplexer  MUX1 selects the pre-shifted to the left
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input and passes its value to the output, which is connected with the second multiplexer

MUX2. The first multiplexer MUX1 is controlled by the barrel shifter’s input left.  The

second multiplexer MUX2 is controlled by one of the bits of the input numShifts[m..0].

Each bit  of  this  input  corresponds to  the  shifting  slice  with the same number.  The

second multiplexer MUX2 passes a shifted data word to its output, when its controlling

input acquires a high level.  If it  has a low level,  then the slice’s input data word is

passed unchanged to the slice’s output, which in turn is connected to the next slice in

the  presented  slice  chain.  All  other  slices  operate  in  the  same manner.  Finally,  the

resulting shifted data word is derived from the slice  m to the barrel  shifter’s  output

shiftOut[n+4..0].  This  output  is  connected  to  both  denormalization  and  post-

normalization  units.  Due  to  the  simplicity  of  the  barrel  shifter’s  algorithm  and  its

combinational  logic  nature,  its  algorithm diagram has  not  been shown.  The generic

barrel shifter testing has been described in section 4.1.6 of this thesis.

3.2.8 FPU multiplexer description

The  FPU  has  an  internal  separate  multiplexer,  which  is  used  in  order  to

commutate  control  and  data  signals  between  the  barrel  shifter  and  other  FPU

peripherals, which are the denormalization and post-normalization units. Furthermore,

the multiplexer has a dedicated channel for selecting one of the exponential parts of the

calculation result, which are derived from the denormalizer, multiplier and divider. 

Figure 19. Multiplexer’s top hierarchical block

55



This  internal  FPU multiplexer  significantly  reduces  the  number  of  the  post-

normalizer’s inputs and gives the physical possibility to have the only one barrel shifter

instead of two. The top level hierarchical multiplexer’s block is shown in figure 19.

Table 10. Multiplexer input and output signals

Signal Type Description

ads_exp[exn..0] Input, bus The exponential part of the result, which is derived 
from the addition/subtraction unit

div_exp[exn..0] Input, bus The exponential part of the result, which is derived 
from the division unit

mul_exp[exn..0] Input, bus The exponential part of the result, which is derived 
from the multiplication unit

opsel[2..0] Input, bus Selects the final exponent for the post-normalizer input 
according to the operation being performed

fract1_in[frn+4..0] Input, bus Fraction which is derived from the denormalization 
unit

fract2_in[frn+4..0] Input, bus Fraction which is derived from the post-normalization 
unit

sh_dn[frlog-1..0] Input, bus This input is connected to the denormalizer and defines
the number of the required shifts

sh_pn[frlog-1..0] Input, bus This input is connected to the post-normalizer and 
defines the number of the required shifts

fract_sel Input, single Selects the denormalizer fraction (when it is ‘0’) or the 
post-normalizer fraction (when it is ‘1’)

left_sel Input, single Selects between the sifting right or left. The fraction is 
shifted left when this input acquires a high level

fin_exp[exn..0] Output, bus The final exponent, which is passed to the post-
normalization unit

fr_out[frn+4..0] Output, bus Fraction, which is passed to the post-normalization unit

sh_out[frlog-1..0] Output, bus Shift  controlling  outputs  for  the  barrel  shifter.  This
signal bus defines for how many bit positions a fraction
must be shifted.

left_so Output, single Shifting  direction  selection  output.  It  is  connected
directly to the barrel shifter.
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A list of all the multiplexer’s inputs and outputs is presented in table 10. The

important  thing is that the  left_sel  input affects  the output signal  left_so  only if  the

fract_sel signal has a high level and, therefore, the post-normalization unit is connected

to the barrel shifter through the multiplexer. In this case, the value of the signal left_sel

is  copied  to  the  left_so output.  The  number  exn  is  equal  to  the  width of  the  input

operands’ exponential parts.

The  number  frn is  the  fractions’  width  and  frlog  is  the  constant,  which  is

calculated by the VHDL code expression, which is listed in section 3.2.7 of this thesis.

The multiplexer is controlled by the internal FSM, which has been described in section

3.2.8, and by the post-normalization unit, which has been described in the next chapter

3.2.9. The FSM affects the fract_sel input state, while the post-normalizer can select the

shifting direction by the left_sel signal, whether the shifting to the right or to the left is

required.

3.2.9 Post-normalization unit description

A post-normalization unit, which is shown in figure 20, performs normalization

of  the  FP  intermediate  results  of  addition,  subtraction,  multiplication  and  division

operations.  Also,  the  post-normalization  unit  performs  the  input  operands’

normalization.  The  normalized  result  is  outputted  from  the  FPU.  Exceptions  are

signalled if they occur.

The post-normalization unit  is connected internally  to other  FPU peripherals.

Some of the inputs and outputs are connected directly with the FPU input and outputs

through the auxiliary internal digital logic. Due to the significant number of the post-

normalization unit’s inputs and outputs, they have been split in two tables. Table 11

corresponds to the inputs, whereas table 12 shows the outputs.

In these two tables a constant frn defines the fractional width, a constant exn is

the  exponential  width  and,  finally,  the  width  of  the  controlling  shifting  output  is

encoded by a constant frlog. The FP result, which is provided to the post-normalization

unit from the different sources is selected by the  opsel[2..0]  input. These sources are

both input operands ports and internal computational blocks. The current result’s source

is defined by  the  opsel[2..0]  signal’s value. The relation between this signal and the
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selected intermediate FP result, which will be used for the post-normalization, is shown

in table 13.

The post-normalization unit receives the result of the calculation or one of the

input  operands  and,  depending  on  this  received  value,  decides  whether  this  value

requires the post-normalization or not. If the fraction is not normalized, then the post-

normalization unit calculates by how many bit positions the fraction must be shifted to

the  left  or  to  the  right  in  order  to  obtain  the  value  n,  which  is  satisfied  with  an

expression 0.5⩽n<1.

The shifting direction is defined by the fraction’s value. In cases, when overflow

or underflow situations occur (if the value of the fraction is greater or equal to ‘1’), the

fraction will be always shifted to the right in order to fit into the given FP format. The

fraction is shifted to the left in cases, when its value is less than 0.5. Depending on how

the fraction is shifted, the exponent is incremented when the fraction is shifted to the

right, or decremented when the fraction is shifted left. The exponential value is 

Figure 20. Post-normalizer’s top hierarchical block
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increased by a number, which is equal to the number of needed shifts to the left or right.

According to the tables  11 and 12, the width of the calculation  results  from

different  sources is  equal to  [frn+4..0].  The three most significant  bits are used for

storing the fractional number’s whole part of the the FP number result, whilst the two

least  significant  bits  in  this  range  are  used  for  rounding  purposes.  The  post-

normalization unit  controls the barrel shifter’s direction input through the FPU internal

multiplexer by using the output signal sh_left_pn. When this signal has a high level, the

Table 11. Post-normalization unit input signals

Signal Type Description

as_res[frn+4..0] Input, bus Fractional part of the addition/subtraction result

div_res[frn+2..0] Input, bus Fractional part of the division result

mult_res[frn+1..0] Input, bus Fractional part of the multiplication result

opa[n-1..0] Input, bus Input operand A

opb[n-1..0] Input, bus Input operand B

opsel[2..0] Input, bus Selects the fractional and exponential parts of the 
computational results or input operands

pre_exp[exn..0] Input, bus Exponent, which derives from the multiplexer

rnd_mode[2..0] Input, bus Selects the rounding mode for the resulted fraction

shifted[n+4..0] Input, bus Shifted fraction from the barrel shifter’s output

asign Input, single Sign bit from the addition/subtraction unit

msign Input, single Sign bit from the multiplication unit

dsign Input, single Sign bit from the division unit

div_zero Input, single Division  by  zero  exception  input.  Derives  from the
divider

ready Input, single This  signal  is  derived  from  the  control  FSM  and
signals  that  the  post-normalization  result  can  be
outputted

clk Input, single Synchronization signal

rst Input, single Reset signal
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Table 12. Post-normalization unit input and output signals

Signal Type Description

pexp_o[exn-1..0] Output, bus Exponential part of the FPU result

pres_o[frn-1..0] Output, bus Fractional part of the FPU result

sh_cnt_pn[frlog-1..0] Output, bus This  signal  is  connected  to  the  multiplexer  and  it
defines the number of shifts for the fraction

sh_init_pn[frn+4..0] Output, bus Initial fraction, which is needed to be shifted

psign_o Output, single Sign of the FPU result

sh_left_pn Output, single This  output  is  connected  with  the  multiplexer  and
indicates whereas the fraction is needed to be shifted
left, when is ‘1’, or right, when it is ‘0’

pn_need Output, single This output indicates does the FPU resulted fraction
requires  the  post-normalization.  The  post-
normalization is needed, when this signal is ‘1’. This
signal is connected with the control FSM

div0 Output, single Division by zero exception flag. It is connected to the
FPU output

ovf Output, single Overflow exception flag. It  is connected to the FPU
output

unf Output, single Underflow exception flag. It is connected to the FPU
output

exponential part of the result is shifted left by the number of shifts, which are defined by

the output signal bus sh_init_pn[frn+4..0]. Shifting of the fraction to both left and right

is possible only during the post-normalization procedure due to the fact that shifting to

the left is not required for denormalization.

The overflow and underflow exceptions are generated by the post-normalization

unit  itself.  Depending  on  the  exponential  value  of  the  FP  result  after  the  post-

normalization, one of these exceptions is raised. If the resulted exponent, which has the

width  n, acquires a value after the post-normalization, which is larger than 2n
−1 or

less than −(2n
) , then the overflow or underflow exception is signalled respectively.

The algorithm of the post-normalization unit is shown in figure 21.
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Figure 21. Post-normalization unit algorithm

61



Table 13. Selected result’s source for the post-normalization

Input opsel[2..0] Result’s source

000/001 Addition/subtraction unit

010 Multiplication unit

011 Division unit

100 Not used, reserved

101 Not used, reserved

110 Operand’s A input

111 Operand’s B input

The FPU supports five rounding modes, which have been listed in table 7 in part

3.2.1 of  this  thesis.  The normalized  and rounded fraction  is  derived from the  post-

normalizer and outputted from the FPU, concatenating with the exponential part of the

FP result and its sign. This occurs at the rising edge of the output signal  ready.  This

signal is produced by the control FSM, which has been described in chapter 3.2.10. The

exception signals are derived from the post-normalization unit and outputted from the

FPU.

3.2.10 Control FSM description

A control FSM performs synchronization between different internal FPU blocks.

The control FSM top hierarchical block is shown in figure 22. The FSM controls the

multiplexer’s inputs in order to connect the barrel shifter’s input to the fraction, which

derives  from either  denormalization  or the post-normalization  unit.  Furthermore,  the

control FSM generates the ready signal fsm_rdy, which triggers the post-normalizer to

store the ready calculation or normalization result and its sign to the FPU output port.

Depending on the operation, which is being performed by the FPU, the FSM controls

the fraction’s selection output  fsm_sel, which  connects the barrel shifter to the denor-

malization and post-normalization units at the specific clock cycle. This is defined by

the FPU synchronization signal clk and starts from the moment, when one of the FPU

commands has been triggered by the rising edge of the FPU input signal  start.  The

rising edge at this input initiates the FSM operation. During the addition or subtraction
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operation,  the control  FSM ensures that  the denormalizer  is  connected to the barrel

shifter first, owing to the necessity of denormalization before the calculations. After that

the FSM connects the post-normalization unit to the barrel shifter. For other operations

the denormalizer’s fraction is always disconnected from the barrel shifter and the FSM

generates the output signal fsm_rdy only, which affects the post-normalizer as was men-

tioned above.

Figure 22. Control FSM top hierarchical block

The  control  FSM input  and  output  signals  are  listed  in  table  14.  The  FSM

algorithm  varies  upon  a  selected  FPU  operation.  In  general,  the  FSM  has  its  five

internal states. These states are: idle, calc_st1, calc_st2, postn_st1 and postn_st2.

The  FSM begins  its  operation  from the  state  idle and  it  concerns  any FPU

operation. The states calc_st1 and calc_st2 are used while performing the calculations,

whereas  postn_st1 and postn_st2 are the states of the control FSM, when the FPU post-

normalizes  the  result  of  calculations.  Due  to  the  complexity  of  the  control  FSM

algorithm, it has been split into the three diagrams. Each diagram illustrates different

groups  of  the  FPU  operations’  flow.  These  groups  are  the  addition/subtraction,

multiplication/division and, finally, the numbers’ normalization. Such a distinction is

explained by the operations, which have been grouped according to their similarity. The

FSM output signals  fsm_sel and  fsm_rdy directly depend on the internal FSM signals

fsel1, fsel2, psel1,  psel2  and  sel.  Each diagram shows the formulas how the signals

fsm_sel  and  fsm_rdy  are  affected  by  the  internal  signals.  Different  groups  of  the

operations require the FSM to switch between the different FSM states, which sequence

is specific for each case and it is shown in the following three diagrams.
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Table 14. Control FSM input and output signals

Signal Type Description

opsel[2..0] Input, bus This signal indicates to the FSM, which FPU 
operation is being performed

clk Input, single Synchronization signal

rst Input, single Reset signal

start Input, single This signal indicates to the FSM that one of the FPU 
operation has been initiated

dres_rdy Input, single Division result ready input. Connected with the 
divider’s output ready.

fexp_eq Input, single Exponents equation input. Connected with the output 
dexp_eq of the denormalization unit

need_pn Input, single This input signal indicates the necessity of the post-
normalization for the FPU operation result. Connected
with the output pn_need of the post-normalization unit

fsm_rdy Output, single FPU result ready signal. It triggers the post-
normalization unit to output the final result from the 
FPU

fsm_sel Output, single Fraction selection signal. This signal is connected to 
the multiplexer, which switches the barrel shifter’s 
input between the denormalizer and post-normalizer

The first diagram, which is shown in figure 23, illustrates the FSM algorithm in

cases when the FPU performs the addition or subtraction. In this diagram all states of

the FSM are used, given that the FP addition and subtraction operations usually require

both denormalization and post-normalization, depending on the input operands’ values.

According to this diagram, after the signal  start has been applied, the control

FSM compares whether the operands’ exponents are equal or not. If they are equal, then

the signal  fsel1 will acquire a high value at the next FSM state  calc_st1. During this

state the FSM checks the condition, when sel = ‘1’, need_pn  = ‘0’ and fexp_eq = ‘1’.

If this condition is met, then the FSM switches to the next state  post_st2, the signal

psel1 will acquire a high level, while the signal fsel2 will become low. If the condition

is not satisfied, then the FSM checks the exponents’ equity. If the exponents are equal,

then the signals  fsel1  and  psel1 obtain low levels at the next FSM state  post_st1.  If
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exponents are not equal, then the next FSM state will be switched  to the calc_st2 and

the signals fsel2 and psel1 will obtain the values ‘1’ and ‘0’ respectively. 

Figure 23. FSM algorithm for the addition and subtraction

At the state  calc_st2 the FSM checks the value of the signal  need_pn.  If its

value is  high,  then the signal  psel1  will  acquire  a high level  at  the next  FSM state

post_st2.  In cases, when the value of the signal  need_pn  is low, the signal  psel1  will

obtain a low level  at  the next FSM state  post_st1.  The signal’s  psel2  value will  be

changed  to  ‘0’  at  any  of  these  two  states  post_st1  or  post_st2.  According  to  the

remaining part of the shown diagram, at the state post_st1 the value of the signal psel2
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is going to be changed to ‘1’ at the next FSM state post_st2. Finally, at the FSM state

post_st2, all the internal signals’ next values will be reset when the FSM reaches the

state  idle.  There  is  no  a  clear  distinction  between additions  and subtractions  in  the

diagram,  because  these  are  the  interchangeable  operations  as  has  been described  in

chapter 3.2.3.

The second diagram, which is shown in figure 24, describes the FSM algorithm

for the multiplication and division operations. For these two FPU operations the FSM

state calc_st1 is not required. After the input signal start has been applied, the FPU is

switched to the state  calc_st2  and the signal  fsel1  is set. The signal  psel1  is held in a

zero  state.  If  the  division  operation  is  selected,  then  the  control  FSM  checks

continuously the division ready flag dres_rdy. When this flag switches to a high level,

the FSM checks if the division result requires the post-normalization by reading the

signal’s  need_pn  value. If the division result does not require the post-normalization,

then the FSM is switched to the state post_st2 and the signals fsel1 and psel2 acquire a

high level, while the other signals are held in zero. If the post-normalization is required,

then the FSM is switched to the state post_st1 and only the signal fsel1 obtains a high

level. At the state post_st1 if the division operation is ongoing then the FSM is switched

to the state  post_st2, while setting the same internal controlling signals as if the result

did  not  require  the  post-normalization.  If  at  the  state  post_st1  the  multiplication

operation is being performed, then the signal need_pn is checked. If this signal, then the

signal psel2 acquires a high level, when it is switched to the state post_st2. Otherwise,

the FSM is switched to the state post_st2 while both signals psel1 and psel2 obtain low

levels. The state post_st2 ensures that all the internal controlling signals are reset, when

the FSM has changed its state to the idle  state. When the multiplication or division is

executed again, the scenario described above is repeated again.

The  absence  of  the  state  calc_st1 is  explained  by  the  fact  that  the

denormalization  is  not  required  for  these  two  operations.  However,  applying  the

normalized operands is highly recommended in order to preserve the result’s precision.

A diagram, which is depicted in figure 25, explains the FSM algorithm when the

FPU  normalizes  one  of  the  input  operands.  This  algorithm  is  straightforward  and

contains only two operational states post_st1 and post_st2.
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Figure 24. FSM algorithm for the multiplication an division

After the signal start has been applied and the normalization operation has been

selected, the FSM is switched to the state  post_st1, while changing the signal’s  fsel1

value to ‘1’. Then the control FSM toggles to the state post_st2, setting the signal psel2

to the high level, while keeping the other signals low. At the state  post_st2 the FSM

ensures that all the internal controlling signals will be reset at the state idle.

67



Figure 25. FSM algorithm for the operands’ normalization

If  any of  the FPU commands  are  executed  again,  then one  of  the described

algorithms is repeated again. The FSM is not sensitive to any input controlling signals,

when one of the FSM algorithms is ongoing. If some internal signals have not been

shown, then they are considered as these, which acquire a low level at the next FSM

state.

3.3 Synthesis Results and Timing Constraints

The designed FPU is able to be synthesized with different FP formats, allowing

the designer to select the best trade-off between precision and the occupied area in the

FPGA. The resulted IP core can be configured before the synthesis. The environment

ISE Project Navigator has been used for the FPU synthesis. According to the technical

task of this thesis, which has been set, the widths of fractional and exponential parts of

the FPU operands can be defined in the FPU package, which corresponds to the file

fpu_pack.vhdl in the FPU design. In order to estimate the resources usage, the FPU has

been  synthesized  according  to  the  five  FP  defined  standards:  half  precision,  single

precision,  double  precision,  extended  precision  and  128-bit  FP.  The  result  of  this

synthesis is shown in table 15, which contains the most important hardware units that

have  been  extensively  used.  Also,  the  multipliers,  adders,  counters  and  FSMs  are

inferred in the FPU core synthesis, but in the table they are not shown. Due to the quite
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small percentage of the logic utilization, which targets these hardware resources, they

are ignored in  the FPU synthesis  summary table.  The number of GPIOs, which are

necessary for the FPU implementation on the real hardware platforms depends on the

FPU input operands’ width, and, consequently on the width of the result.

Table 15. FPU synthesis summary

16 bit FP 32 bit FP 64 bit FP 80 bit FP 128 bit FP

Multipliers 3 3 3 3 3

Adders/Subtractors 10 10 10 10 10

Slice Registers 233 423 875 1068 1646

Comparators 7 8 8 8 8

Multiplexers 156 197 286 253 327

DSP48E1s 3 10 39 44 106

Slice LUTs 495 914 2287 2742 5500

Used LUT-FF pairs 207 389 800 976 1506

Different  FPU formats  entail  different  usage  of  the internal  FPGA hardware

resources and, due to this, different timing delays affect the maximum FPU operating

frequency.  In the  technical  task the  aim was  to  create  as  small  design  as  possible,

compromising with the maximum design operational speed. In order to achieve this, the

speed grade -1 has been selected in the ISE design properties.

Table 16. FPU timing summary

FPU format Minimum period Maximum frequency

16 bits 6.608 ns 151.332 MHz

32 bits 10.564 ns 94.661 MHz

64 bits 14.612 ns 68.436 MHz

80 bits 15.415 ns 64.871 MHz

128 bits 26.989 ns 37.053MHz
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Table 16 contains timing summary for the FPU designs with different FP format.

According to this table, the FPU designs with greater precision are restricted to operate

at higher frequencies. This is due to the signal propagation delays. According to the

previous two tables, the resulting generic FPU design is enough efficient and can be

used in other designs as the separate internal computational block.

However,  in  cases,  when  a  design  is  required  to  be  fast,  it  cannot  be  too

compact. Fast data processing requires a pipeline, which is needed in order to increase

the computational throughput. The additional extra computational units, which perform

calculations in parallel, will be inferred in the synthesis process. This usually needs the

preliminary  analysis  of  the  required  extra  hardware  with  its  binding  to  the

computational cycles, number of which must minimal. Due to this, in order to achieve

the better FPU performance comparing with the achieved one in the thesis, the pipeline

for multiplication and division operations could be created. Another FPU improvement,

which could increase its throughput, is to pipeline the FPU computational and de/post-

normalization  steps.  This  means  that  the  computational  and  de/post-normalization

operations could be executed at the same time.

On the other hand, the pipelining allows to balance critical combinational path

of the design. The increasing combinational delay in the barrel shifter and multiplier is

the main reason why the pipelining can be used. Pipelining them allows to increase the

clock frequency at the cost of increasing the number of clock steps for some FPU parts

and/or operations. In addition, having higher clock frequencies can simplify to some

extent the design of other modules in FPGA, which are not part of the FPU.
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Conclusions

In this part of the thesis have been described the FPU itself and its internal parts

such as the adder/subtractor, multiplier, divider, denormalizer, post-normalizer, barrel

shifter, multiplexer and control FSM. The operation algorithms and the input and output

signals  have  been  presented  for  every  hierarchical  block.  This  data  introduces  the

relatively simplified internal FPU structure, which gives understanding of its hardware

features  and  the  internal  data  flow.  Due  to  the  hardware  complexity  of  almost  all

internal units, their detailed internal structure is not shown, except the barrel shifter,

which is the major valuable part of the generic FPU design. The simulation results of

the FPU internal blocks have been described in the next part of the thesis.

The generic FPU design has been successfully created and simulated using the

“black box” principle  in VHDL, which allows for separating the complex hardware

algorithms into more simplified ones. This entails the possibility of design separation

and  the  simulation  of  its  separate  internal  hardware  units,  which  in  turn  can  be

combined into one complex design.

Creating  the  design  as  parameterisable  is  highly  attractive  and  practical  for

different applications. Indeed, the code re-usability will increase to a certain extent, if

the VHDL generic features are used as much as possible. This allows digital designers

to  configure  their  designs  according  to  the  specific  project  needs,  eliminating  the

necessity of modifying the large and complex code pieces.
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4 Generic Floating-Point Unit Simulation and Testing

This section describes the generic FPU simulation and testing flow. Each FPU

internal block has been simulated and verified in order to validate its proper operation

and, consequently, the correctness of the FPU behaviour. The timing diagrams have also

been included in this section. The clock cycle usage for each FPU operation has been

estimated. In addition, some of the FPU operations have been validated with different

FP formats in part 4.2 of this thesis. This ensures that the FPU design is generic and

fully  complies  with  the  thesis  technical  task.  The  FPU  design  contains  a  generic

testbench,  which  allows  the  FPU  to  be  simulated  and  tested  before  its  real

implementation. This testbench validates the FPU operation at the synthesis level.

4.1 Testing Methodology

The FPU is tested by applying the appropriate signals to its inputs. The internal

units  are tested by using their  internal  intermediate  signals,  which are derived from

each block. The sequence of the signals being applied is described further. The response

from the FPU outputs is checked and the specific assertions are made. This allows one

to  ensure  that  the  FPU  provides  the  correct  calculation  results  before  the  real

implementation. For this purpose, ISE Project Navigator tool has been used in order to

create  a testbench in VHDL for the test  signals generation and checking the output

responses from the FPU. The testbench verifies the addition, subtraction, multiplication,

division and normalization operations. Also it checks whether the overflow, underflow

and division by zero exceptions arise or not.

The testbench has been written in the generic form, which allows its usage with

testing of different FPU designs with various FP formats. Although the division result

cannot be checked by the testbench assertions accurately due to its iterative division

nature, all other operations are successfully verified with different widths of the fraction
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and exponent. However, the division unit has been simulated using the VHDL real data

type and the division results, which have been obtained, are valid.

Each following chapter  describes how the different  FPU internal  parts  have

been tested. In this part of the thesis, a single precision FP format has been used in order

to test the internal FPU blocks’ operation. By contrast, in part 4.2 of this thesis different

FP formats have been used in order to verify the FPU parametrizability feature, which

demonstrates the flexibility of the FPU design.

4.1.1 Denormalization unit testing

A  denormalization  unit  is  tested  by  applying  the  operands  with  different

exponential parts to the FPU inputs. The denormalization unit provides the initial data

for  the  addition/subtraction  unit.  The  common  exponent  is  calculated  by  the

denormalization unit. The denormalizer always shifts one of the fractions to the right. A

set of the FP operands, which have been used for the denormalization unit testing are

shown in table 17.

Table 17. FP operands for the denormalization unit testing

Denorm. 
example

Operand A Operand B
Fraction A Fraction B

Common 
exponentFraction Exponent Fraction Exponent

a 0.5 7 0.25 6 0.5 0.125 7

b 0.25 11 0.5 7 0.25 0.031250 11

c 0.75 10 0.5 12 0.187500 0.5 12

d 0.625 9 0.25 9 0.625 0.625 9

e 0.875 -7 0.5 -5 0.218750 0.5 -5

The denormalization examples  a - c have been simulated and shown in figure

26. For the example a the colour orange highlights that the fraction with a value 0.25 is

shifted by one bit position to the right in order to align the exponents. The exponents

before the denormalization and the final common exponent are marked with the colour

red. As has been illustrated, the final common exponent is always equal to the larger

exponent  of  the input  operands.  This targets  all  the next  denormalization  examples,
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except  the  fourth  example,  where  both  operands’  exponents  are  equal.  The

denormalization examples d and e are shown in figure 27.

a) A=0.5×27 ,B=0.25×26
→B=0.125×27

b) A=0.25×211 ,B=0.5×27
→B=0.031250×211

c) A=0.75×210
→A=0.1875×212 , B=0.5×212

Figure 26. Denormalization examples a - c

In  order  to  test  the  denormalization  operation  in  the  FPU,  the  addition  or

subtraction operation must be initiated by a single high pulse at the  start input. This

entails  the  operands  being  denormalized  before  the  addition  or  subtraction  can  be

performed.  The exponents equity affects  the  number of clock cycles  clk,  which are

required for the denormalization unit to perform the denormalization. If exponents of
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the input operands are different (examples  a,  b,  c and  e), then the denormalization is

started taking two clock cycles to be finished. 

d) A=0.625×29 ,B=0.25×29

e) A=0.875×2−7
→ A=0.21875×2−5 ,B=0.5×2−5

Figure 27. Denormalization examples d - e

However, if the exponents are equal (example d), then the denormalization is not

performed  and  only  one  clock  cycle  is  spent,  storing  the  operands  to  the

denormalization unit output at the rising edge of the signal frsel. This signal is derived

from the control FSM output and shown in all the the simulation diagrams above.

4.1.2 Addition/subtraction unit testing

Testing of the addition/subtraction unit can be performed with the testing of the

entire FPU, due to the fact that the FPU output result is much easier to observe then the

internal  signals.  Furthermore,  this  ensures  that  other  FPU  internal  blocks  work

correctly. The input signal opsel[2..0] has a value “000” for the addition and “001” for

the subtraction operations respectively. The list of operands, which have been used for

the addition and subtraction simulation is shown in table 18. Although the testbench
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contains  more  addition  and  subtraction  examples,  in  order  to  demonstrate  the

adder/subtractor operation only some of them have been shown in the thesis report.

Table 18. FP operands for the addition/subtraction unit testing

N Operation Operand A Operand B Result

a (-6) + 1.25 = (-4.75) (-0.75) * 2^3 0.15625 * 2^3 (-0.59375) * 2^3 

b (-12) + (-0.75) = (-12.75) (-0.75) * 2^4 (-0.09375) * 2^3 (-0.796875) * 2^4

c 48 - 112 = (-64) 0.75 * 2^6 0.875 * 2^7 (-0.5) * 2^7

d (-1.5) - (-7) = 5.5 (-0.75) * 2^1 (-0.875) * 2^3 0.59375 * 2^3

e “+infinity” + “+infinity” 0.875 * 2^127 0.625 * 2^127 Overflow

f “- infinity” - “- infinity” 0.5 * 2^(-128) 0.25 * 2^(-128) Underflow

The addition/subtraction simulation results are shown in figures 28 and 29. The

examples  a and  b are  addition  examples,  whereas  examples  c  and  d  correspond to

subtraction.  The  colour  orange  highlights  the  binary  input  operands  and  the

addition/subtraction results, whereas the corresponding real numbers are shown with the

colour  red.  If  the  addition  or  subtraction  result  is  larger  or  less  than  maximum or

minimum  FPU  value,  which  can  be  stored  after  the  post-normalization,  then  the

underflow or  underflow exception  occurs  respectively.  The overflow and underflow

exceptions  are  simulated  in  the  examples  e  and  f  in  figure  29.  The  operations  are

initiated at the rising edge of the start  signal. The result of the addition or subtraction

always  becomes  available  at  the  same time,  as  when the  FPU output  signal  ready

produces a rising edge.

The number of clock cycles, which are needed for the addition or subtraction

operations,  depends on  the  input  operands  and the  intermediate  addition/subtraction

result. Due to this, the time of the calculation can vary from two to four clock cycles. As

has been described in the previous section, denormalization requires 1-2 clock cycles. In

addition,  the  post-normalizer  requires  two  clock  cycles  if  the  post-normalization  is

needed. Otherwise the post-normalization is not performed and the result is outputted

one clock cycle after the post-normalization has been started.
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a) (−0.75)×23
+0.15625×23

=(−0.59375)×23

b) (−0.75)×24
+(−0.09375)×23

=(−0.796875)×24

Figure 28. Addition/Subtraction examples a – c 
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d) (−0.75)×21
−(−0.875)×23

=0.59375×23

e) 0.875×2127
+0.625×2127

=overflow

f) 0.5×2−128
−0.25×2−128

=underflow

Figure 29. Addition/Subtraction examples d - f
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When exceptions arise, the FPU output result must be ignored. The overflow

exception occurs only when the final adder/subtractor’s operation is addition, whereas

the underflow relates to subtraction. The relation between the required and the actual

addition/subtraction operation has been described in detail in part 3.2.4 of this thesis.

4.1.3 Multiplication unit testing

In order to test the multiplication unit, the opsel[2..0] signal must have a value

“010”. This switches the FPU to the multiplication mode. The rising edge at the input

start  triggers the multiplication operation. A set of numbers, which have been used in

order  to verify the multiplier,  are shown in table  19.  The simulation results  for the

multiplication examples are shown in figures 30 and 31. The two last examples e and f

correspond to the overflow and underflow exceptions.

Table 19. FP operands for the multiplier testing

Example Form Operand A Operand B Result

Fraction Exponent Fraction Exponent Fraction Exponent

a Binary (-0.5) (-1) (-0.125) -1 0.5 (-5)

Decimal (-0.25)  (-0.0625)  0.015625

b Binary (-0.5) (-1) 0.25 -15 (-0.5) (-19)

Decimal (-0.25) 0.000008 (-0.000002)

c Binary 0.5 2 0.25 5 0.5 5

Decimal  2 8 16

d Binary (-0.25) 20 (-0.375) 12 0.75 29

Decimal (-262144) (-1536) 402653184

e Binary 0.5 127 
(MAX)

0.5 2 Overflow

Decimal → “infinity” 2

f Binary 0.25 -128 
(MIN)

0.5 -3 Underflow

Decimal → “- infinity” 0.0625
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a) (−0.5)×2−1
×0.125×2−1

=0.5×2−5

b) (−0.5)×2−1
×0.25×2−15

=(−0.5)×2−19

c) 0.5×22
×0.25×25

=0.5×25

Figure 30. Multiplication examples a - c
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d) (−0.25)×220
×(−0.375)×212

=0.75×229

e) 0.5×2127
×0.5×22

=overflow

f) 0.25×2−128
×0.5×2−3

=underflow

Figure 31. Multiplication examples d - f
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The FP multiplication is performed by the FPU in three clock cycles,  including

the  post-normalization.  A  rising  edge  at  the  output  ready indicates  that  the

multiplication result  can be read from the FPU output. The overflow and underflow

conditions are signalled with an active high logical level after two clock cycles.

4.1.4 Division unit testing

The division unit is tested by applying the input operands and triggering the

division operation.  In order to perform this,  the input  opsel[2..0] must be set  to the

value “011” and a single high pulse at the input  start has to be applied. Due to the

division algorithm, which has been used in the FPU, the division result is produced after

some number of clock cycles. This number depends on the operands’ width and their

values. When the division is finished, the output signal  ready produces a high pulse.

Table 20 contains several division examples for the division testing and checking of its

exceptional conditions such as the overflow, underflow and division by zero.

Table 20. FP operands for the divider testing

Division 
example

Dividend Divisor  Result

Fraction Exponent Fraction Exponent Fraction Exponent

a
0.25 0 0.375 0 0.666667 0

0.25 0.375 0.666667

b
0.5 10 0.75 8 0.66667 2

512 192 2.666667

c
(-0.625) 4 0.875 1 (-0.714286) 3

(-10) 1.75 (-5.714233)

d
0.5 5 0 0

Division by zero
16 0

e
0.5 127 (MAX) 0.875 (-1)

Overflow
→ “infinity” 0.4375

f
0.75

(-128) 
(MIN)

0.625 3
Underflow

→ ‘0’ 5
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a) 0.25×20
÷0.375×20

=0.666667×20

b) 0.5×210
÷0.75×28

=0.666667×22

c) (−0.625)×24
÷0.875×21

=(−0.714286)×23

Figure 32. Division examples a - c

83



d) 0.5×25
÷0=divisionby zero

e) 0.5×2127
÷0.875×2−1

=overflow

f) 0.75×2−128
÷0.625×23

=underflow

Figure 33. Division examples d - f
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The first three FP division examples  a - c, which are shown in figure 32, are

regular division operations. These examples have been tested graphically,  due to the

complexity of the exact result’s prediction.  The division unit confidently divides FP

numbers from the half FP precision to the extended FP precision and even more.

The three last FP division examples d - f, which are shown in figure 33, illustrate

the  cases  when  different  exceptions  are  generated.  The  overflow  and  underflow

exceptions  are  signalled  with  delay.  This  is  due  to  the  fact  that  the  overflow and

underflow exceptions  are  generated  in  the  post-normalization  unit  after  the division

intermediate result is ready. By contrast, the division by zero exception is indicated by

the divider itself and that is why it is signalled by the FPU immediately.

Table 21. FP division performance

N FP format, bits Fraction, bits Exponent, bits Division clock cycles

1 16 10 5 9

2 24 16 7 14

3 32 23 8 15

4 40 30 9 19

5 48 36 11 23

6 56 44 11 27

7 64 52 11 31

5 80 64 15 37

6 128 112 15 61

In this chapter, all the FP division examples, which have been simulated and

illustrated, are in the single precision FP format. However, different FP formats require

various number of cycles, which are required in order to perform the FP division. This

information is listed in table 21.  In order to verify this, the various FP formats have

been synthesized and the number of the required clock cycles have been measured for

each case. The number of the clock cycles, which are required, has been measured from

the rising edge of the start signal to the rising edge of the output signal ready.
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4.1.5 Post-normalization unit testing

The post-normalization unit can be tested with an intermediate result from any

computational unit or from the FPU inputs. Due to the fact that the previous simulation

examples have demonstrated the proper operation of the post-normalization unit with

only the FPU computational blocks, the input operands’ normalization and the rounding

modes have been simulated in this chapter. The examples a - c, which are listed in table

22, are shown in figure 34.

Table 22. FP operands for the post-normalizer testing

Normali
zation 
example

Operand A Operand B Result

Fraction Bin. Exp. Fraction Bin. Exp. Fraction Bin. Exp.

a 0.125 7 X X 0.5 5

16 X 16

b X X 0.09375 6 0.75 3

X 6 6

c the smallest
fraction

-128 X X Underflow

the smallest number X

All the normalization examples, except the third example, show the same real

values for both the input and output. However, the binary values are different and the

results are normalized. The third example simulates the underflow situation for the FPU

operand A. This situation takes place when the final exponential value must be less than

a value, which can be stored by a chosen FP format.

In order to test the rounding modes in the post-normalization unit, the addition

and  subtraction  operations  have  been  selected.  This  involves  a  using  of  two  least

significant extra bits in the result’s fraction. Although the number of simulations in the

testbench for the rounding modes testing is about 40, many of them are interchangeable.
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a) A=0.125×27
→ A=0.5×25

b) A=0.09375×26
→ A=0.75×23

c) A=0.00..01×2−128
→underflow

Figure 34. Normalization examples a - c
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For performing this experiment, an operand’s A value were kept fixed, but the

operand’s B two least significant bits varied among values “00”, “01”, “10” and “11”.

The simulation examples, which have been listed in this section, show the internal FPU

signals and their binary values. However, due to the simulation tool limitations, the FPU

results, which are shown as real values, are rounded by the simulator roughly. Owing to

this, the binary numbers have been considered as a measure of rounding correctness.

Table 23 shows different rounding modes on the real decimal numbers. These examples

demonstrate the interchangeability of the simulation results, which have been obtained.

The signal fres[27..0], which is shown in each figure is the fractional intermediate result

before its rounding. For the rounding simulation simplification, this result have been

chosen as always normalized. The rounding procedure is always performed as the last

FPU operation step, before the FPU result is being outputted.

Table 23. Rounding mode examples (decimal)

Rounding mode / Values opsel[2..0] +10.5 +11.5 -10.5 -11.5

TowardsZero (a) 000 +10 +11 -10 -11

to nearest/TiedToEven (b) 001 +10 +12 -10 -12

to nearest/TiedAwayFromZero (c) 010 +11 +12 -11 -12

TowardPlusInfinity (d) 011 +11 +12 -10 -11

TowardMinusInfinity (e) 100 +10 +11 -11 -12

The simulated examples are different from the examples, which are shown in

the table 23. This is due to simplification of the numbers’ observation. The simulated

numbers have much greater precision.

The  data,  which  is  shown  in  table  24,  demonstrates  how  the  binary  least

significant bits are rounded before the fraction’s truncation. Figure 35 shows the three

first rounding examples a - c. According to this figure, for the TowardsZero rounding

mode (example  a) the two least significant bits are simply cut off, due to the positive

fraction and the selected rounding mode. The next example b, which have been shown

in the same figure, relates to the rounding to nearest/TiedToEven rounding mode. The

rounding  mode  to  the  nearest/TiedAwayFromZero has  been  shown  in  this  figure.
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Finally,  the rounding modes  TowardPlusInfinity and  TowardMinusInfinity have been

illustrated in figure 36.

Table 24. Rounding mode examples (binary)

Rounding mode / 
Values

opsel
[2..0]

..00.00 +..00.01 +..00.10 +..00.11 -..00.01 -..00.10 -..00.11

TowardsZero (a) 000 ..00 +..00 +..00 +..00 -..00 -..00 -..00

to nearest/

TiedToEven (b)

001 ..00 +..00 +..10 +..10 -..00 -..10 -..10

to nearest/

TiedAway

FromZero (c)

010 ..00 +..00 +..01 +..01 -..00 -..01 -..01

Toward

PlusInfinity (d)

011 ..00 +..01 +..01 +..01 -..00 -..00 -..00

Toward

MinusInfinity (e)

100 ..00 +..00 +..00 +..00 -..01 -..01 -..01

The  final  rounding  result  also  relies  on  the  fraction’s  sign  and  that  is  why

different  rounding operations  seem to produce  the  same final  fractional  result.  This

situation has been shown in tables 23 and 24 above.

The rounding modes affect the final result’s accuracy to some extent in cases,

when the chosen FPU precision is relatively small. This is due to the fact that the most

significant bits of the fraction have the highest value for encoding of the final fractional

result  in  a  binary  form.  For  cases  when the  FPU precision  is  larger,  the  two least

significant bits of the fractional result can be ignored, because they do not contribute

significantly to a resulting floating point value.
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a) TowardsZero rounding mode

b) To nearest/TiedToEven rounding mode

c) To nearest/TiedAwayFromZero rounding mode

Figure 35. Rounding modes a – c

Figures  35 and 36 show all  the  rounding examples.  Due to  this,  in  order  to  avoid

confusion, each rounding mode in tables 23 and 24 has been marked with letters a – e.
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d) TowardPlusInfinity rounding mode

e) TowardMinusInfinity rounding mode

Figure 36. Rounding modes d – e

4.1.6 Generic barrel shifter testing

The barrel shifter has been simulated and tested separately from the FPU design.

In order to check the barrel shifter’s proper operation, the input signals must be applied

to it.  The shifted binary word appears at the shifter’s output immediately, due to its

combinational structure. The two examples with shifting to the left and to the right are

shown in figures 37 and 38 respectively. The barrel shifter shifts a binary word to the

left, if the input signal  dir_left  has a high level. In order to demonstrate shifting, the

input data width has been chosen less than the fractional width in the single precision

FP format. The clock is not required for shifting. Clock has been used in simulation

figures in order to observe the shifting result at the time axis.

The barrel shifter is the essential hardware unit for the denormalization and post-

normalization  procedures.  Furthermore,  the  other  internal  blocks  correct  simulation

results also implicitly indicate that the barrel shifter’s operation is valid.
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Figure 37. Shifting to the left

Figure 38. Shifting to the right

4.1.7 Control FSM testing

The control FSM can be tested by observing its internal signals, due to the fact

that the majority of them are not connected with the FPU external inputs and outputs.

Only two output FSM signals are called the  fsm_sel and  fsm_rdy  respectively. These

signals are changed by the FSM in the same sequence, but the time when one or the

other is changed varies upon the selected operation and an intermediate result’s value. A

rising edge at the input signal start is circled with the colour red. After this signal has

been applied, the FSM changes its state according to the diagrams, which have been

described  in  part  3.2.10  of  this  thesis.  The  three  FSM operation  examples  for  the

multiplication, subtraction and normalization are shown in figure 39.

The control signals are switched by the FSM according to the values of signals

opsel[2..0], fexp_eq, need_pn, dres_rdy at the different FSM states. These values affect

the FSM timing and, consequently, the number of clock cycles which are required in

order to perform the specific operation. The detailed FSM algorithm has been described

in  the  previous  part  of  the  thesis.  The  simulation  diagrams  in  this  part  mainly

demonstrate that the FSM is switched between its states according to the required FPU

algorithm.
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a) Multiplication

b) Subtraction

c) Normalization

Figure 39. FSM simulation
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4.2 FPU Testing with Different FP Formats

In order to prove the FPU parametrizability, it must be synthesised with different

FP  formats.  In  the  previous  part  4.1,  all  the  FPU  calculation  and  normalization

examples have been simulated with a single precision FP format. This has been done in

order to simplify and standardize the simulation.  This part of the thesis describe the

simulated calculation examples, which deal with different FP formats. However, this

imposes certain limitation in cases when the FP exponential part exceeds the length of

32 bits. This problem is due to the maximum and minimum VHDL real signal possible

range. Although, the calculation result can be observed and asserted in a binary form,

the exceeding of the given exponential part’s width with more than 32 bits will make it

impossible to check the result in a decimal form. However, this issue does not affect the

FPU operation itself. Table 25 contains the examples, which have been used for testing

the FPU parametrizability.

Table 25. Examples of the operations with different FP formats

Performed 
operation

Fractional 
width

Exponential 
width

Operand A Operand B Result

Multiplication 52 11 0.5*2^2 0.25*2^5 0.5*2^5

Subtraction 64 15 0.375*2^(-4) 0.3125*2^4 -0.622...*2^3

Multiplication 37 20 -0.5*2^(-2) 0.5625*2^0 -0.5625*2^(-3)

Multiplication 10 5 -0.5*2^(-1) -0.125*2^(-1) -0.5*2^(-5)

The simulation examples, which are shown in figures 40-41, illustrate that the

FPU can be synthesised with different FP formats. The division examples have not been

shown.  However,  the  generic  testbench  can  be  run  with  different  fractional  and

exponential  widths  in  the  FPU.  In  this  section  the  simulation  results  have  been

validated. The colour red in the simulation pictures shows the number of bits, which are

used in  a FP format.  The colour orange highlights  the input  operands and the final
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results  which  have  been  obtained  after  the  normalization.  The  correctness  of  the

simulation results has been checked by the ISE simulator.

a) Double precision FP addition example

b) Extended precision FP subtraction example

Figure 40. Different FP addition and subtraction examples
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a) Custom FP multiplication examples

b) Half precision FP multiplication example

Figure 41. Different FP multiplication examples
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Conclusions

In this part of the thesis the simulation and testing of the generic FPU has been

performed.  The  internal  FPU blocks  have  been  simulated  in  order  to  validate  their

proper operation. The simulation pictures, which have been presented, show the relation

between the expected calculation results, and the results which have been obtained after

the FPU simulations. All the FPU simulated results match with the expected results. The

exception signals have been checked during the simulations.  Due to their  simulation

results, the FPU exceptions are signalled properly.

The rounding modes, which are performed after the normalization, have been

checked  in  this  part.  The  final  rounded  fractional  values  correspond  to  the  five

predefined IEEE-754 rounding standards, which have been implemented in the generic

FPU design. The FPU parametrizability feature has been simulated and tested in part 4.2

of this thesis. The FPU can be synthesized and simulated with various numbers of bits,

which are dedicated for the fractional and exponential parts of the FP format. Although

the VHDL real data type is restricted to the length of 32 bits and, due to this, certain

limitations  occur for the decimal  numbers’ simulation,  the simulation results  for the

binary numbers have been checked and they are valid.
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5 Summary

In this master’s thesis the generic FPU has been designed, simulated and tested.

The FPU is able to be synthesized with different, even non-standard, FP formats. The

operations supported by the FPU are: addition, subtraction, multiplication, division and

the  normalization.  The  FPU  includes  the  internal  denormalization  and  post-

normalization units, which simplify the input FPU operands handling. Due to having

these internal blocks, the FPU supports the normalization of the input operands.

Part 1 of the thesis introduced the problems of the existing FPU solutions, which

are not parameterisable. The second part provides an overview of the basic FP standard

formats as well as highlighting the main IEEE-754 standard [6] features. It also shows

how the operations between the FP numbers are performed. The FPU design flow, its

major internal signals and algorithms have been described in part 3 of this thesis. At the

end of this part the FPU synthesis results with different FP formats have been presented.

Also  the  timing  constraints  and  possible  ways  of  improving  the  FPU  have  been

described  in  the  end  of  part  3.  Part  4  describes  the  simulated  calculation  and

normalization  examples  and  the  performance  results  of  the  designed  FPU.  The

simulation  diagrams  have  been  illustrated  in  order  to  illustrate  and  test  the  FPU

operation flow step by step. The FPU VHDL source code is not listed in appendixes, but

the actual repository link is provided in references [15].

Although  various  draw-backs  occurred  during  the  FPU  implementation  and

simulation, the technical task of the thesis has been fulfilled. This has been achieved

due to a deep analysis of problems described in the introductory part, applying previous

experience  with  VHDL  and  analysing  the  existing  FPU  solutions,  which  are  not

satisfactory in terms of their parametrizability. The design VHDL code has been stored

into the Bitbucket repository. This FPU design might require further improvements. It

can be pipelined in order to achieve better throughput and the new computational blocks

for other mathematical functions also can be added.
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