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Formal Concepts in the Theory of Monotone
Systems

Abstract

Formal concept analysis and the theory of monotone systems are both well-
established methods for data mining and knowledge discovery whose connections
have so far not been well researched. This thesis explores such connections and pro-
poses some new methods for knowledge discovery that combine the features of both
approaches.

Formal concept analysis is based on the idea of a formal concept, that is charac-
terized by its extent, a set of objects, and by its intent, a set of attributes these objects
have in common. There is a mathematical relation between intent and an extent,
requiring both of them to be locally maximal in certain sense.

Theory of monotone systems is based on the monotone weight functions and is
often used for seriation: reordering of a data table to reveal the hidden structure. We
show that such structure is a set of formal concepts.

This thesis is organized around the case study about the socio-economic data of
the islands of Saaremaa and Hiiumaa. The case study had a goal of revealing the
patterns of economic and social development.

We propose a conformity plot visualization method, that gave good results for our
case study and redefinition of the problem of finding the best decision as the problem
of finding the best formal concept chain and the discovery of its symmetry in regards
to objects and attributes and propose some enhancements to the algorithm for finding
the best concept chain.

Monotone systems methods and formal concept analysis have some difficulty in
dealing with larger data tables. We propose a MONOCLE method for data min-
ing and knowledge discovery that aims to remedy these difficulties. The result of a
MONOCLE method is a list of formal concepts, sorted according to their importance.

We also propose a method for comparing these results for different contexts, like
Hiiumaa and Saaremaa: entropy based similarity measure for evaluating the unique-
ness of a formal concept.

Keywords: data mining, knowledge discovery, information visualization, mono-
tone systems, formal concept analysis.
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cept c that is relevant for calculating measure k̄p is shaded. Different
column widths illustrate different weights w̄p. . . . . . . . . . . . . 90

5.7 Weight function w0.5 is equal to wL having constant value 1. . . . . 93
5.8 Weight function w0.9 has value 1 for n > 18. For lower values of n,

the value of function gradually decreases. . . . . . . . . . . . . . . 94
5.9 Weight function w0.99999 approximates wS having value 1 when n =

N and value close to 0 in lower range. . . . . . . . . . . . . . . . . 95
5.10 Contexts K, KO and a concept c = (A,B). Area a0.9 covered by

concept c that is relevant for calculating measure k0.9 is shaded. Dif-
ferent column widths illustrate different weights w0.9. . . . . . . . . 96
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5.15 Hiiumaa: Kärdla, Käina (KrKn), 58 attributes . . . . . . . . . . . . 102
5.16 Saaremaa: Kuressaare, Orissaare (KuO), 52 attributes . . . . . . . . 102
5.17 Concept summer cabins, beach (sb). Measure ku for uniqueness for

Hiiumaa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.18 Concept summer cabins, beach. Measure au for concept cover for

Hiiumaa. Component 0: summer cabins, beach; component 1: sum-
mer cabins; component 2: beach . . . . . . . . . . . . . . . . . . . 104

11



5.19 Concept summer cabins, beach. Measure au for concept cover for
Saaremaa. Component 0: summer cabins; component 1: summer
cabins, beach; component 2: beach . . . . . . . . . . . . . . . . . . 105

5.20 Concept for landing places for fishing boats, summer cabins (fs).
Measure ku for uniqueness for Saaremaa. . . . . . . . . . . . . . . 106

5.21 Concept: landing places for fishing boats, summer cabins. Measure
au for concept cover for Saaremaa. Component 0: landing places for
fishing boats, summer cabins; component 1: summer cabins; compo-
nent 2: landing places for fishing boats . . . . . . . . . . . . . . . . 107

5.22 Concept: landing places for fishing boats, summer cabins. Measure
au for concept cover for Hiiumaa. Component 0: summer cabins;
component 1: landing places for fishing boats, summer cabins; com-
ponent 2: landing places for fishing boats . . . . . . . . . . . . . . 108
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Käina, 31 attributes match; component 2: Emmaste, 20 attributes
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Chapter 1

Introduction

The world we live in is complex, chaotic and noisy. The task of science is detecting
hidden order and patterns behind all that chaos and noise. Sometimes these patterns
take the form of absolute laws, sometimes they take the form of statistical and proba-
bilistic rules and correlations. Sometimes the result is useful terminology. This thesis
presents some automated methods for knowledge discovery whose results can form
a basis for such a terminology as well as being a basis for probabilistic rules. Some
methods presented here were invented by the author, some were not. They are influ-
enced by the theories of formal concept analysis (FCA) [45] and monotone systems
[26].

1.1 Theoretical background

FCA, as a field of study, began in 1982 with the article by Rudolf Wille [43]. It
has mathematical foundations in lattice theory and the notion of a formal concept is
based on the ideas from linguistics, semantics and philosophy. The formal concept is
characterized by its extent - a set of objects - and by its intent - a set of attributes. All
objects in concepts extent possess all the attributes in its intent and vice versa. In the
terminology of semantics, extent and intent correspond to the extension and intension
of a concept. To quote Wikipedia’s article about extension: “...in linguistics, logic,
mathematics, semantics, and semiotics, the extension of a concept, idea, or sign con-
sists of the things to which it applies, in contrast with its comprehension or intension,
which consists very roughly of the ideas, properties, or corresponding signs that are
implied or suggested by the concept in question.”. This symmetry between the set
of attributes and the set of objects is a peculiar feature of a formal concept, in con-
trast to the clusters from cluster analysis, where we have clear set of objects but not
a clear set of common attributes. Objects, attributes and relations between them in
FCA form a formal context. Informally, it could be called a binary data table. Binary
data tables are the objects of study in this thesis. This is not as restrictive as it may
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seem as any multi-valued data table can be transformed into a binary form, with a
likely loss of some precision when it comes to real-valued attributes.

Another field of research that is concerned with the knowledge discovery from
data tables (and sometimes from structures of a different nature) is the theory of
monotone systems. It was developed somewhat earlier than FCA, in Tallinn Uni-
versity of Technology by Mullat in his 1976 article [26] and later by Võhandu and
others. The theory of monotone systems is based on monotone weight functions, de-
fined for elements of the monotone system, and different clever orderings based on
those weight functions. A very common use for this theory is seriation - reordering
of rows and columns in the data table to show the hidden patterns and structure. As
we will see in the later chapters, these patterns correspond to formal concepts.

1.2 Case study

Big part of this thesis is based on the fruitful collaboration between the author and
Karin Lindroos [23], [14], [35]. The collaboration started as an attempt to apply
monotone system methods to the socio-economic data about the island of Hiiumaa
and later its southern neighbor island of Saaremaa. To resolve the question of au-
thorship: data was provided by Karin Lindroos, methods and tools were provided by
the author, interpretation is mixed and sometimes joint work and Karins contribution
here will be marked by references. Interpretation in the Chapter 5 is sole work of
the author. Idea to apply the methods of FCA came as a result of some weaknesses
of monotone systems methods that became apparent during that analysis: results of
monotone systems methods required lots of interpretation without offering guidance
for that task.

1.3 Research aims

Research aims of this thesis are following:

• To outline the connections between FCA and the theory of monotone systems.

• To present, for the first time, the theory of a monotone systems in the form
compatible with the terminology of FCA.

• To develop new data mining methods based on such an unification and to im-
prove some old ones.

• To apply those methods, along with more traditional ones, for our case study
about Hiiumaa and Saaremaa.

These research aims are motivated by the obvious connections between FCA and
the theory of monotone systems and by the fact that these two methods seem to
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complement each other well. Our case study provides an excellent test platform for
those methods.

1.4 Organization of the thesis

In Chapter 2 we will describe the FCA and the theory of Monotone Systems. We
will examine the implicit presence of the notion of formal concept in the theory of
monotone systems and describe the theory of monotone systems in the terms of FCA.
Both approaches have some weaknesses when dealing with large amounts of data -
complex concept lattices in the case of FCA and complex, though rearranged, data
table in the case of monotone systems approach.

Chapter 3 describes the application of theory of monotone systems to our case
study. We propose the conformity plot visualization that allows us to visualize the
clusters in data, according to two monotone weight function. We restate the mono-
tone systems problem of finding the best decision in FCA terms as the problem of
finding the best concept chain and describe some speed enhancements to algorithm
for finding it.

In Chapter 4 we will present our MONOCLE method that combines both FCA
and monotone systems and aims to mitigate their weaknesses by sorting formal con-
cepts according to their monotone weight function (concepts “importance”), thus pre-
senting information in the easily understandable form. Our aim is to find the concepts
that cover a large area of the formal context and that do not overlap too much with
each other. This is one of the main contributions of the thesis. We illustrate this
method through case studies.

In Chapter 5 we introduce a measure for concepts uniqueness for one context as
compared to another context. This measure allows for comparisons between differ-
ent contexts, for example the comparison of the island of Hiiumaa with the island of
Saaremaa. This can mean contexts with same attributes and different objects or con-
texts with same objects and different attributes. The aim of such a measure is to make
the interpretation of the results of MONOCLE method easier, clearer and more ob-
jective. The measure combines ideas from FCA, monotone systems and information
entropy.

The thesis contains some formal definitions, theorems and proofs, but mathemat-
ics used here is not very advanced. Basic knowledge of discrete mathematics should
be sufficient for understanding it.

1.5 Publications

Many results of this thesis have been published in international peer-reviewed jour-
nals. The problem and ehnhanced algorithm for finding the best concept chain from
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Chapter 3 are described in “WSEAS Transactions on Information Science and ap-
plications” from year 2005 [34] and also mentioned in a more general article about
monotone systems in the same publication from year 2006 [36]. The conformity
plot visualization method from Chapter 3 is described in “Proceedings of IADIS
International Conference on Applied Computing” from year 2006 [14]. The MON-
OCLE method from Chapter 4 is described in year 2008 Springer’s “Lecture Notes
in Computer Science; Conceptual Structures: Knowledge Visualization and Reason-
ing” [35]. This article was awarded Tallinn University of Technology’s best article
of a year prize in the field of social sciences. The results in Chapter 5 - measuring
concepts importance for the different contexts - are latest and not yet published.
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Chapter 2

Formal Concept Analysis and the
Theory of Monotone Systems,
State of the Art

2.1 Formal Concept Analysis

2.1.1 Introduction to FCA

Here we provide an introduction into formal concept analysis (FCA). A detailed ex-
position is given in “Formal Concept Analysis, Mathematical foundation” by Gan-
ter and Wille [11] or “Formal Concept Analysis: Foundations and Applications” by
Wille, Stumme and Ganter [45]. For the following definitions we use “Introduction
to Lattices and Order” by Davey and Priestley [9].

Formal concept analysis (FCA) is a way of automatically deriving an ontology
from a collection of objects and their properties. It was introduced by Rudolf Wille
in year 1982 [43]. FCA has many applications in linguistics [28], text retrieval and
mining [7], association rule mining [19], economics [44], software engineering [33]
and so on.

In linguistics or philosophy, concept is characterized by its extension - the set of
objects that the concept applies to - and by its intension - all attributes relevant to
concept, its definition. Formal concept is defined in the formal context (informally,
a binary data table) and is characterized correspondingly by its extent and intent that
must be related in a certain way. Formal definitions follow.

Definition 1. A context is a triple (G, M, I) where G and M are sets and I ⊆ G×M .
The elements of G and M are called objects and attributes respectively.

We can say less formally that a context is a binary data table. Relation (g,m) ∈ I
means that object g has true value for an attribute m. That is element of a binary data
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table, determined by row g and column m has value 1. We use a shorthand gIm for
this relation.

Definition 2. For A ⊆ G and B ⊆M , define

A′ =
{
m ∈M | (∀g ∈ A), gIm

}
, (2.1)

B′ =
{
g ∈ G | (∀m ∈ B), gIm

}
; (2.2)

so A′ is the set of attributes common to all the objects in A and B′ is the set of objects
possessing the attributes in B.

Definition 3. A formal concept is any pair (A, B) where A ⊆ G and B ⊆M , A′ = B
and B′ = A. The extent of the concept (A, B) is A while its intent is B.

We can say less formally that a concept is a set of objects together with the at-
tributes these objects have in common under the restriction that we cannot add an
additional attribute without removing an object and we cannot add an additional ob-
ject without removing an attribute. The special concept > has the extent G and the
special concept ⊥ has the intent M .

Algorithms for efficiently generating concepts from the context are described in
[11], [45] and [9].

2.1.2 Concept lattices

Subset relations A1 ⊆ A2 and B2 ⊆ B1 define an order on the set of all formal
concepts and it can be shown [9] that they form a complete lattice, known as the
concept lattice of the context. Concept lattices are commonly visualized as line
diagrams1 where concepts are shown as nodes, and subset relations between their
extents (and inverse subset relations between their intents) are shown by lines. More
general concepts are drawn above less general concepts. The ordered set of formal
concepts of (G, M, I) is denoted by B(G, M, I).

Let us consider the example from Figure 2.1 which describes sizes of various
watercourses. Object set G and attribute set M are abbreviated as follows: G =
{Channel, Brook, Stream, River}, M = {very small, small, large, very large}.
The set of concepts for the context B(G, M, I) is {x1, x2, x3, x4} where x1 =
({C,B}, {s}), x2 = ({S, R}, {l}), x3 = ({C}, {vs, s}) and x4 = ({R}, {l, vl}).
The corresponding concept lattice is then drawn. As the extent of x1 contains that of
x3 and the extent of x2 contains that of x4 these concepts are connected with lines
and the more general concepts are placed higher in the diagram.

It has been shown that concept lattices are isomorphic to complete lattices: every
concept lattice is complete and every complete lattice is isomorphic to some concept

1Here we used GaLicia Platform [1], [37], also known as Hasse diagrams, for the generation of
complex concept lattice diagrams.
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Figure 2.1: A context as a binary data table, same context with the concepts marked
inside the table by borders and labeled outside the table by their extents and the
corresponding concept lattice. Taken from Davey and Priestley [9]. There is no
requirement that attributes and objects in the concepts should be adjacent, we use
such data tables only for the ease of illustration.

lattice [12]. This result is known as the basic theorem on concept lattices. This result
connects FCA to the lattice theory. Lattice theory in general is not covered in this
thesis, interested reader is referred to the following books: Introduction to Lattices
and Order by Davey and Priestley [9] and General Lattice Theory by Grätzer [13].

Let H ⊆ P and a ∈ P . Then a is an upper bound of H if and only if h ≤ a, for
all h ∈ H . An upper bound a of H is the supremum of H , denoted as a =

∨
H , if

and only if for any upper bound b of H , we have a ≤ b [13]. Infimum a =
∧

H is
defined dually [13].

Let Q ⊆ P . Then Q is called supremum-dense (join-dense) in P if for every
element a ∈ P there is a subset A of Q such that a =

∨
A. The dual of supremum-

dense is infimum dense (meet dense) [9].

Theorem 1 (The basic theorem on concept lattices [12]). The concept lattice B(G, M, I)
is a complete lattice in which infimum and supremum are given by:

∧
t∈T

〈At, Bt〉 =

(⋂
t∈T

At,

(⋃
t∈T

Bt

)′′)
, (2.3)

∨
t∈T

〈At, Bt〉 =

((⋃
t∈T

At

)′′

,
⋂
t∈T

Bt

)
. (2.4)

A complete lattice L is isomorphic to B(G, M, I) if and only if there are maps γ̃ :
G→ L and µ̃ : M → L such that γ̃(G) is supremum-dense on L, µ̃(M) is infimum-
dense in L and gIm is equivalent to γ̃g ≤ µ̃m for all g ∈ G and all m ∈ M . In
particular L ∼= B(L,L,≤).
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2.1.3 Managing complexity

Not all formal concepts are equal. Some concepts have large extents and/or intents,
others have small. Example in Figure 2.2 is taken from the work of French cartog-
rapher Jaques Bertin [5], and while not originally connected to FCA, the 3 concepts
identified by Bertin are clearly formal concepts. This example is also closely con-
nected to the theory of monotone systems as it is an example of seriation [21], a
field where monotone system methods are widely used and it connects well to our
case study about settlements in two islands. Attribute set M is abbreviated as fol-
lows: M = {high school, railway station, police station, agricultural cooperative,
veterinary, land reallocation, 1 room school, no doctor, no water supply }.

Figure 2.2: A context before and after reordering (seriation) and three important
concepts (villages, towns , cities).

Concept lattices can become large for quite a small contexts. For example, a
488× 234 sparse binary data table with economic data about settlements in Estonian
island Saaremaa contained 1823 concepts. It is obvious that such a number of con-
cepts is too large for the unaided human analysis. Several methods try to mitigate
that problem. A full comparative review could be a topic for another article, here we
give only a short review.

Blocks [11] introduce additional ones into the binary data table, generating bigger
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and fewer concepts. Our method sorts original concepts, without modifying them.
Nested line diagrams [11] summarize parallel lines and display them as just one

line. Inner nodes contain sub-lattices. No concepts are removed, however, number of
lines in the lattice is reduced.

Software tools such as TOSCANA [4] aim to manage complexity by allowing
user to navigate through complex data sets with the help of nested line diagrams.

Iceberg view, described by Stumme et al. [32], is based on selecting only the
concepts that have extent of certain minimum size k, that is, cover at least k objects.
Connecting this method with our theme, it can be described as sorting concepts by
size of their extent and selecting those above some suitable cut-off point. Size of
extent is intuitive and easy-to-calculate weight function. It does, however, eliminate
concepts with few objects and many attributes. For some types of data, in our case
economic data of settlements, these concepts are of great importance as they repre-
sent, for example, important regional centers. Our method takes into account both
extent and intent sizes. But before describing our method, we need to give some
background into the theory of monotone systems.

One measure for concepts goodness is stability index, proposed by Kuznetsov
[18]. Stability measures independence of hypotheses on particular pieces of data that
can be random, similar to the way scientific hypotheses are evaluated. Informally,
stability index for the formal concept (A,B) is correlated to the number of subsets
of its extent Y ⊂ A that leave its intent unchanged, that is Y ′ = B.

Closure operators, described for example by Bělohlávek and Vychodil [6], rep-
resent a class of operators that constrain the lattice; retained concepts are guaranteed
to form a complete lattice. Iceberg view method belongs into this general class.

Role minimization problem and efficient solutions to it are described in the
article by Ene, Horne, Milosavljevic, Rao, Schreiber and Tarjan [10]. Article is not
originally framed in the FCA terms, however it is easy to relate the set of users to
the set of objects G, the set of permissions to the set of attributes M and relations
between them to set I . Role minimization problem of finding the minimal set of roles
that will cover all relations then becomes the problem of finding the minimal set of
formal concepts that covers all the relations in formal context.
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2.2 Theory of Monotone Systems

2.2.1 Introduction to the Theory of Monotone Systems

The theory of monotone systems was developed in Tallinn University of Technology
and introduced in 1976 in the article by Mullat [26]. Most of work about monotone
systems has been carried out in Tallinn University of Technology, though there have
been outside contributions like the work by Muchnik and Kuznetsov [17]. Monotone
systems have been used in many application areas, this thesis tries to present he most
central methods and some new enhancements.

A monotone system is a set of elements and a weight function. The weight func-
tion measures which elements are important for the system. Here we present the
theory of monotone systems in a way compatible with the language of FCA. This
presentation is one of the contributions of the thesis. The notation of FCA seems
quite convenient for this task.

Definition 4. A monotone system is a pair (W, w) where W is a finite set of elements,
w(x, H) is a weight for element x ∈ H for any H ⊆W and the co domain of w is a
linearly ordered set. Following property of monotonicity should hold for all x ∈ H
and for all y ∈ H where x 6= y:

w(x,H) ≥ w(x,H \ {y}) . (2.5)

That is, weights of the elements should decrease monotonically if any one el-
ement is removed from the system. There is a dual definition for monotonically
increasing weights and a more general case where the removal of an element is re-
placed by an “operation” but for this article, these are not needed. Different weight
functions and monotone systems algorithms are described in [36].

We want to measure the weight or “goodness” of subsystems of W . We use the
weakest link principle and define the function Fmin as:

Fmin(H) = min
(
{w(x,H) | ∀x ∈ H}

)
. (2.6)

We call the subsystems with the greatest value of Fmin kernels.

Definition 5. A subsystem K ⊆W is called the kernel of the system W if
Fmin(K) ≥ Fmin(H) for any H ⊆W .

Minus technique means removing an element with the smallest weight from
the monotone system and repeating this step until the system is empty. A minus
technique sequence can therefore be found by a greedy algorithm, see [36]. Formal
definition follows:

Definition 6. We denote n-th element from the minus technique sequence for the
system W by xn. Let H1 = W and Hn = (...((W \ {x1}) \ {x2})... \ {xn−1}).

xn = x ∈ Hn where w(x,Hn) ≤ w(y, Hn) for all y ∈ Hn (2.7)
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The minus technique sorts the elements by their worth for the system. If we want
to eliminate the k least interesting elements from the system we can apply minus
technique and deal only with the set Hk+1. Thus we can use the minus technique to
substitute arbitrary sized subset for the entire system. We can also use the kernels
to suggest us good cut-off points. The following theorem deals with the relationship
between the kernels and the minus technique.

Theorem 2 (Kernel as the global maximum). 2 Let w(xk,Hk) = Fmin(Hk) be the
maximal weight in the minus technique sequence x1, x2, .., xn for the monotone sys-
tem W. That is,

Fmin(Hk) ≥ Fmin(Hi) for all i ∈ {1...n} . (2.8)

Then the subsystem Hk is a kernel for the system W.

Proof. For all A ⊆ H1 where x1 ∈ A we know that Fmin(A) ≤ Fmin(H1) because
of the property of monotonicity from the Equation 2.5. Therefore, either H1 is a
kernel or there is some kernel K ⊆ H2 .

If we know that K ⊆ Hi for i ∈ {1...n} then for all A ⊆ Hi where xi ∈ A we
know that Fmin(A) ≤ Fmin(Hi). Therefore, either Hi is the kernel K, or K ⊆ Hi+1

.
By induction, there is some kernel K ∈ {H1,H2, ...,Hk, ...,Hn} . As w(xk,Hk) =

Fmin(Hk) is the maximal weight in the minus technique sequence, Hk is the kernel
for the system W .

The kernel as the global maximum provides a good cut-off point in the minus
technique sequence. For practical purposes we often want more cut-off points to
study either smaller or larger subsystems. Therefore we will also introduce the notion
of local kernels that correspond to local maxima in the minus technique sequence.

Definition 7. Let sequence H1,H2, ...,Hn be the sequence of subsets corresponding
to the minus technique sequence x1, x2, .., xn. Then Hk ∈ {H1,H2, ...,Hn} is a
local kernel if Fmin(Hk−1) ≤ Fmin(Hk) ≥ Fmin(Hk+1) .

Figure 2.3 shows an example of simple graph-based monotone system before and
after the removal of an element.

2This theorem was proven independently by A. Torim. Equivalent theorem, albeit with a longer
proof, appeared in earlier work by Mullat [26].
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Figure 2.3: A monotone system whose elements are vertices of the graph and the
weight for the element is the number of adjacent vertices. Weights are shown inside
the vertex circles. In this example, after removal of the element with the smallest
weight, we have the kernel.
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2.2.2 Seriation

Methods of monotone systems are most often used for the purpose of seriation -
reordering and arranging objects and attributes in the data table (or formal context) to
reveal the regularity and patterning. Seriation has been reinvented in many different
fields, a good overview of seriation is given in the PhD thesis by Innar Liiv [21]. A
good example of seriation is depicted in Figure 2.4 by Jaques Bertin (1981) [5]. After
reordering of initial data table, previously hidden patterns are revealed. We can also
see that those hidden patterns - villages, towns, cities - are basically formal concepts.
Attributes are abbreviated as follows:

• hs: high school

• ac: agricultural coop.

• rs: railway station

• 1rs: one-room school

• v: veterinary

• nd: no doctor

• nw: no water supply

• ps: police station

• lr: land reallocation.
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Figure 2.4: A context before and after reordering (seriation) and three important
concepts (villages, towns , cities).
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Use of seriation goes back to the works by an English egyptologist W. M. F.
Petrie (1899) [27] and Polish antrophologist Jan Czekanowski (1909) [8]. Figure
2.5 illustrates Czekanowski’s work. We can see the results of seriation that seem to
correspond to two large proto-concepts.

Figure 2.5: Czekanowski’s [8] diagram of differences and groups of skulls. Taken
from Liiv’s PhD thesis [21]
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How can we use the theory of monotone systems for seriation? For a formal
context we can define a frequency based weight function for objects or dually for
attributes that gives higher weight for an object with common attributes or an attribute
with common objects as follows:

Definition 8. For a context (G, M, I) we define a frequency based weight function
w1(x, G) for any object x ∈ G:

w1(x,G) =
∑
g∈G

∣∣{g}′ ∩ {x}′∣∣. (2.9)

We define a weight function w(y, M) for any attribute y ∈M dually:

w1(y, M) =
∑

m∈M

∣∣{m}′ ∩ {y}′∣∣. (2.10)

Frequency based weight function is illustrated by the Figure 2.6 where relevant
intersections |{g}′ ∩ {x}′| and |{m}′ ∩ {y}′| are grayed. We find that w(x,G) = 3
and w(y, M) = 10 for those contexts. Informally, weight w1(x,G) measures how
big an area of the context (G, M, I) is covered by the attributes of the object x.

Figure 2.6: Weight calculation for object x and attribute y, context area that is
summed in the weight function is gray.

Illustration of the seriation, using weight function from Definition 8 is given in
Figure 2.7. It shows all the weights for all the iterations in a minus technique se-
quence. Weights for minus technique sequence are 4, 2, 9, 6, 3 so objects correspond-
ing to the weights 9, 6, 3 form a kernel. As this context is symmetrical, weights for
attributes are exactly the same as weights of objects. It is obvious how such a re-
ordering brings out a regularity in the system and that this regularity, consisting of
the 3x3 and 2x2 ”‘squares”’, is a set of two formal concepts.
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Such a weight function is often generalized to the multivalued case, where one
attribute can have several values (nominal scale) and their use for seriation are very
common in the theory of monotone systems. Multivalued frequency based weight
function w∗ can be defined in terms of FCA by the use of conceptual scaling for
multivalued contexts, where we create a new attribute for each attribute-value pair
and apply the weight function w1 for such single valued context to find the weights
for objects. If we want to find the weights for attributes, then we need to create a
new object for each object-value pair instead. Conceptual scaling in FCA is briefly
explained in [12], with further references. Informally, weight w∗(x,G) measures
how typical object x is for the context (G, M, I) as it is the sum of frequencies of
attribute values present in object x.

It is interesting to note that initial weights 9, 9, 9, 4, 4, give here exact same or-
dering as the minus technique, with much less computational work. It does not hold
in general, but often both orderings are reasonably close. Use of such a simple and
fast ordering by a frequency based weight function is called a conformity scale and
it was introduced by L. Võhandu in his works from 1979-1981 [38], [39], [40], [41].

Figure 2.7: Seriation of 5x5 formal context. Objects and attributes of the formal
context at the left are ordered randomly, at the right they are sorted according to the
minus technique, using weight function from Definition 8. Weights of objects over
the iterations i1, i2, ..., i6 of the minus technique are shown, also 3x3 core is marked
with lines and grayed relations.

If we apply minus tecnique with frequency based weight function to the objects
and attributes from the Bertin plot from Figure 2.4 then we get an ordering shown
in Figure 2.8. Main concepts are intact but logical order Cities-Towns-Villages has
broken down.

McCormicks Bond Energy Algorithm (BEA) from 1972 [25] is an example of a
non monotone systems seriation method. Comprehensive study of different seriation
methods is given in I. Liiv’s PhD thesis [21].
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Figure 2.8: Original Bertin plot and Bertin plot after monotone systems seriation.
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Chapter 3

Additions to the Theory of
Monotone Systems

3.1 Case study: Hiiumaa and Saaremaa

3.1.1 Overview

We now apply monotone systems methods to social and economic data of two largest
Estonian islands: Saaremaa and Hiiumaa 1. Some of these results are published in an
article by author, Karin Lindroos and L. Võhandu [14] and in the PhD thesis by Karin
Lindroos [23]. For Hiiumaa |G| = 184 and |M | = 226; for Saaremaa |G| = 488
and |M | = 234. The attribute sets are mostly similar, however some attributes are
present for only one island, hence some differences. Our attributes divide roughly as
follows:

• attributes describing the population

• attributes describing the economic activity of companies

• attributes describing the private investment

• other nominal attributes, presence of some activity or a thing.

Data in our table is binary. Most attributes are binary by nature like existence
of port or school. Each numerical attribute was replaced by several attributes that
represent an interval. For example number of children in a village is represented
by four binary attributes children< 10, children10-50, children50-100, children>
100 as shown in Table 3.1. Alternative encoding that would be more suitable with

1Saaremaa is the largest island (2,673 km2) belonging to Estonia, Hiiumaa is the second largest
(989 km2). They are located in the Baltic Sea. The capital of Saaremaa is Kuressaare, which has about
15,000 inhabitants; the whole island has about 40,000 inhabitants. The capital of Hiiumaa is Kärdla,
which has about 3,700 inhabitants; the whole island has about 10,000 inhabitants.
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MONOCLE method, described in Chapter 4, is shown in Table 3.2, however, it is not
used here. Ones in data table represent presence of certain feature or value located
within interval. Data tables are sparse- for Hiiumaa only 4.7 % of values are ones.

Settlement ch
ild

re
n

<
10

ch
ild

re
n

10
-5

0

ch
ild

re
n

50
-1

00

ch
ild

re
n

>
10

0

pr
es

en
ce

of
ch

ild
re

n

...
Kärdla town 0 0 0 1 1 ...
Emmaste village 0 0 1 0 1 ...
Haldi village 1 0 0 0 1 ...
... ... ... ... ... ... ...

Table 3.1: Fragment of the input. The table fragment shows the number of children
in settlement.

Settlement ch
ild

re
n

>
0

ch
ild

re
n

>
10

ch
ild

re
n

>
50

ch
ild

re
n

>
10

0

...
Kärdla town 1 1 1 1 ...
Emmaste village 1 1 1 0 ...
Haldi village 1 0 0 0 ...
... ... ... ... ... ...

Table 3.2: Fragment of the input with alternative encoding - more ones, more chil-
dren. The table fragment shows the number of children in settlement.

We apply our frequency based weight functions w1 and w∗ to these data. In our
previous discussion it was easy to visualize the results of seriation as our example
contexts were small. For this case study, the sorted context can be quite complex and
confusing, as illustrated by the Figure 3.1 that depicts the context for Hiiumaa after
seriation by the weight function w1 and minus technique. There are some visible
”‘concepts”’ or ”‘clusters”’, like the thick black bar on the left and continuous black
line in the middle corresponding to some bigger settlement. However, there are also
lot of dots (ones in the data table, relations in the formal context) that don’t seem
to have such a clear pattern - there seem to be some horizontal sparse ribbons of
these dots, interleaved by some totally empty ribbons. It is also hard to extract the
semantic information from such a picture as it is impractical to have a full attribute
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and object information in a picture depicting a context of such size. We can not see
what attributes and objects those clusters represent. Tool support may provide some
help here, one such tool is described in article by Innar Liiv [22]. We also see that
while seriation visualizes well some concepts, some other concepts are broken up by
such a seriation. For example, we have one big settlement that is clearly visible as a
long continuous line, but there are several other big settlements that are depicted as
broken lines by this ordering.

As shown in the example from Figure 3.2, finding an ordering that arranges all
the concepts into continuous blocks is impossible for quite a simple contexts. In that
example there is no ordering of attributes that would join all the concepts A, B and
C.

Figure 3.1: Sorted context for Hiiumaa, all attributes present, seriation by w1 minus
technique.
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Figure 3.2: There is no seriation that would form continuous blocks for all three
formal concepts A, B, C.
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One common method to deal with bigger data tables is to plot the monotone
weights as a graph, either sorted by the scale of conformism or as the weights w(x1),
w(x2), ... , w(xn) in the minus technique sequence. Steep slopes in the scale of
conformism plot and local maxima in the minus technique sequence plot provide a
way to group the elements in the monotone system.

We will treat settlements - that is rows in the data table and objects in the formal
context - as elements of the monotone system.

3.1.2 Scale of conformism

Figures 3.3, 3.4, 3.5 and 3.6 depict weights of objects for full contexts - scale of
conformism. Objects are sorted according to their weights. Figures are given for
combinations of Hiiumaa, Saaremaa and weight functions w1, w∗.

Figure 3.3: Hiiumaa, scale of conformism, w1.
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Figure 3.4: Hiiumaa, scale of conformism, w∗.
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Figure 3.5: Saaremaa, scale of conformism, w1.
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Figure 3.6: Saaremaa, scale of conformism, w∗.
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We can see some steep slopes in those figures and that there are about 10-20 very
atypical objects according to the weight function w∗ as shown by the steep climb in
the range 0-20 for both Hiiumaa and Saaremaa. There seem to be several of steep
slopes for weight function w1. These plots don’t show what kind of attributes objects
in those groups have in common. Some sort of interactive tool might be of help here,
another way is to complement those plots with sequential tables describing groupings
in more detail. One such table, generated quite tediously by hand, is shown below as
Table 3.3.

Table 3.3 identifies those atypical objects mentioned before as the regional cen-
ters of island. Most typical settlements - objects with largest weights - are small set-
tlements with the population 10-50 with no economic activity. Drawing such tables
for both weight functions and producing a combined interpretation would be some-
what tedious. Next section describes a visualization that shows combined picture for
both weight functions: w1 and w∗.
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Settlement w∗ Attributes present Comment
Kärdla 21659 109 Capital of the island
Käina 24733 91 Regional center
Emmaste 32221 91 Regional center
Kõrgessaare 34849 34 Regional center
Kassari 35795 30
Nõmme 35947 27
Männamaa 36017 27
38 settlements ... ... ...
Nõmmerga 39375 0 Settlement without attributes
Sülluste 39375 0 -”-
Tiharu 39375 0 -”-
Viitasoo 39375 0 -”-
Leerimetsa 39375 0 -”-
112 settlements ... ... ...
Kuusiku 40005 8 population 10-50, children 1-10,

workers 1-10, elderly 1-10
Kõmmuselja 40005 8 -”-
Kleemu 40005 8 -”-
Laheküla 40005 8 -”-
Mäeltse 40005 8 -”-
Pärnselja 40005 8 -”-
Heigi 40005 8 -”-
Heiste 40005 8 -”-
Kidaste 40005 8 -”-
Lilbi 40005 8 -”-
Poama 40005 8 -”-
Laartsa 40029 8 population 10-50, children 1-10,

workers 10-50, elderly 1-10
Lepiku 40029 8 -”-
Ulja 40029 8 -”-
Aadma 40029 8 -”-
Jõeküla 40029 8 -”-
Ühtri 40029 8 -”-
Otste 40029 8 -”-
Kalgi 40029 8 -”-
Pilpaküla 40029 8 -”-
Sakla 40029 8 -”-

Table 3.3: Data table showing the settlements sorted according the scale of con-
formism and weight function w∗ for Hiiumaa.
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3.2 Conformity plot

Conformity plot visualization for binary data tables was developed by the author of
this thesis and was published in 2006 [14] and in 2007 [15]. It is basically a scatter
plot for objects where axes correspond to weight functions w1 and w∗. As both
weight functions generate somewhat different groupings, such scatter plot allows us
to visualize clusters of objects - elements of monotone system - that would not be
obvious if we had considered each weight function separately.

Figure 3.7: Hiiumaa, conformity plot, weight functions w1, w∗.
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Figure 3.8: Saaremaa, conformity plot, weight functions w1, w∗.
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There is striking similarity between conformity plots for Hiiumaa and Saaremaa.
It seems that conformity plot brings out similar structure in the data about island
settlements. Such a plot makes outlier groups very obvious, structure of the main
group, in the upper right is harder to see. Again, there is a problem of attaching
semantic information to these clusters.

Figure 3.9: Hiiumaa, conformity plot with marked outlier clusters, weight functions
w1, w∗.

Semantic information for easy-to-detect outlier groups as shown in Figures 3.9
and 3.10 is same for both of the islands:
A: The most non-typical villages, people do not live there and villages have no social
characteristics. But they have some economic activities, like harbor, custom, border
guard, summer-cafe, etc, which are supervised from other (central) places.
B: The second clearly differentiated settlements group, has weaker social character-
istics (no children in villages), than usual. They have also small harbors, coastal
fishing, summer-cafes, sights etc. There are no private enterprises.
C: Large settlements and administrative centers, mentioned in previous section.

Main group (upper right) contains mostly settlements with the total population
10 to 50 people and having present both children, workers and elderly.

47



Figure 3.10: Saaremaa, conformity plot with marked outlier clusters, weight func-
tions w1, w∗.
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Figure 3.11: Hiiumaa, conformity plot for main group, weight functions w1, w∗.

If we zoom into main group (Figure 3.11), we can see that elements of monotone
system are arranged in perfect lines. There seems to be some kind of relation between
the weight functions w1 and w∗ for binary data tables. As shown by the author in the
article [15] there is a linear relation between values of functions w∗ and w1 for objects
ga and gb that have same number of attributes. That is |{ga}′| = |{gb}′|. For the sake
of simplicity let us presume that objects ga and gb differ by exactly two attributes
a, b ∈ M , so that gaIa,¬gaIb, gbIb,¬gbIa. It is clear that we can transform one
object into any other with same number of attributes with enough swaps between two
attributes so such case suffices for showing the linear relationship.

Theorem 3 (Relation between w1 and w∗ for formal contexts). Let w1 and w∗ be
frequency based monotone weight functions for objects as defined in section 2.2.2
and (G, M, I) be a formal context. Lets have two objects ga, gb ∈ G and two at-
tributes a, b ∈ M so that |{ga}′| = |{gb}′|, {ga}′ − {a, b} = {gb}′ − {a, b} and
gaIa,¬gaIb, gbIb,¬gbIa. Then following linear relation holds:

w∗(gb)− w∗(ga) = 2 · (w1(gb)− w1(ga)). (3.1)

Proof. There must exist a constant C describing the part of weight w1 for ga, gb

without a of b

w1(ga) = C + |{a}′| (3.2)

w1(gb) = C + |{b}′| (3.3)
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w1(gb)− w1(ga) = |{b}′| − |{a}′|. (3.4)

There must also exist a constant K describing the part of weight w1 for ga, gb

without a of b

w∗(ga) = K + |{a}′|+ |G| − |{b}′| (3.5)

w∗(gb) = K + |{b}′|+ |G| − |{a}′| (3.6)

w∗(gb)− w∗(ga) = 2 · (|{b}′| − |{a}′|). (3.7)

w∗(gb)− w∗(ga) = 2 · (w1(gb)− w1(ga)). (3.8)

Here we don’t use such a relation much, but in an independent work by Innar
Liiv such a relation is used to speed up calculation of w∗ for sparse data tables by
deducing w∗ from faster to calculate w1 [20], [21].
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3.3 Case study: Minus technique

Minus technique allows us to find kernels and it usually gives somewhat better or-
dering than scale of conformity, though calculating it is computationally more de-
manding. Figures 3.12, 3.13, 3.14 and 3.15 show the settlements arranged by minus
technique sequence – that is, by their order of removal from the system – and their
weights while removed. Global maxima in these plots define the kernels.

Figure 3.12: Hiiumaa, minus technique, w1.

We can see from Figures 3.12, 3.13, 3.14 and 3.15 that plots for both islands
are very similar. For both islands and both weight functions, kernels (settlements
right from the global maximum) cover most of the monotone system so that it is
easier to describe elements outside the kernels. For the weight function w∗ these
are big settlements and regional centers. For the weight function w1 these are very
small settlements with no population or population less than 10. The kernels are
thus composed of mainly medium sized settlements. Local kernels, defined by the
local maxima, don’t help us here much in reducing the size of the kernel as the final
part of minus technique sequence has smoothly decreasing weights. Again, there are
difficulties in extracting the semantic information as it is not obvious from those plots
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Figure 3.13: Hiiumaa, minus technique, w∗.

and has to be extracted from source data.
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Figure 3.14: Saaremaa, minus technique, w1.
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Figure 3.15: Saaremaa, minus technique, w∗.
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How similar is minus technique sequence ordering to scale of conformism or-
dering for our case study? Scatter plots in Figures 3.16, 3.17, 3.18 and 3.19 relate
settlements position in the minus technique sequence to its weight in the full system
(scale of conformism). As we can see, ordering is pretty much the same for both
cases, with some small differences.

Figure 3.16: Hiiumaa, correlation between minus technique and scale of conformism,
w1.
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Figure 3.17: Hiiumaa, correlation between minus technique and scale of conformism,
w∗.

Figure 3.18: Saaremaa, correlation between minus technique and scale of con-
formism, w1.
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Figure 3.19: Saaremaa, correlation between minus technique and scale of con-
formism, w∗.

57



3.4 Best decision i.e. best concept chain

The problem of finding best decision and algorithms for it are based on the original
work by Rein Kuusik [16]. Author of this thesis contributed with speed enhancements
to the algorithm that provided the basis for authors bachelor thesis and year 2005
article [34]. In this thesis, for the first time, the problem of finding the best decision
is defined in the way that is compatible with the language of FCA. Such a reframing
motivates renaming the problem of finding the best decision, suggesting connection
to decision trees, into the problem of finding the best concept chain.

Definition 9. Best concept chain for the formal context (G, M, I) is the chain (A1, B1),
(A2, B2), ... , (Ai, Bi), ... , (An, Bn) of the corresponding concept lattice that maxi-
mizes the area S covered by it, defined formally as:

S = |{(g,m) ∈ I|(∃(Ai, Bi))g ∈ Ai,m ∈ Bi}|. (3.9)

A chain of a concept lattice is a subset of concepts that has a linear order: there is
a subconcept / superconcept relationship between any two concepts in a chain. More
detailed information about lattice theory is found in the voluminous literature about
the subject [13], [9] .

As we can see, such a definition is symmetrical: there is no need for dual defini-
tions for objects and attributes. That is a novel result of reframing the problem in the
terms of FCA. Previous work has described best decision as a sequence of attribute,
value pairs, clearly unsymmetrical definition. This symmetry sadly does not hold
for multivalued contexts as transformation from multivalued context into the single-
valued formal context itself breaks the symmetry. It could be said that best concept
chain is even more interesting in FCA terms than in its original, multi-valued form.

More traditional equivalent definition for best decision is following:

Definition 10. Best decision for the formal context (G, M, I) is the sequence of at-
tributes m1,m2, ...,mn where mi ∈ M that maximizes the area S covered by it,
defined formally as:

S =
∑

i=1..n

|{m1,m2, ...,mi}′| (3.10)

or dually, sequence of objects g1, g2, ..., gm where gi ∈ G that maximizes the area

S =
∑

i=1..m

|{g1, g2, ..., gi}′|. (3.11)

Figure 3.20 illustrates the equivalence of both definitions.
Best concept chain can be interpreted as a chain of concepts that describes the

formal context best, in its sequence of attributes form, attributes are ordered by their
descriptive strength, in its sequence of objects form, objects are ordered by their
descriptive strength.
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Figure 3.20: Area S (grayed) according to the definitions of best concept chain and
best decision.

We can view the attributes m ∈M (there is, of course, dual definition for objects)
as elements of the monotone system with the weight function w(m,M) = |{m}′| .
Removal of an element would mean removing appropriate column from the context
and removing all objects not in {m}′ from the data table. Minus technique sequence
would then correspond to a greedy heuristic that does not guarantee the best concept
chain, but usually a reasonably good concept chain.

To find the exact beset concept chain we can augment minus technique with back-
tracking. Lets have possibly partial set of attributes M , current best concept chain
Best and possibly partial concept chain under consideration Partial. Here we use
sequence of attributes representation for the best concept chain. Then we can define
backtracking brute-force algorithm recursively as follows:

BestCC(M , Best, Partial):
if |M | = 0 then

if S(Best) < S(Partial) then
Set Best← Partial

end if
else

for all m ∈M ordered descending by |{m}′| do
Set Best← BestCC(M −m,Best, Partial + m)

end for
end if
Return Best
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There are several enhancements that can be made to backtracking algorithms.
We can prune the search by eliminating the hopeless branches of backtracking. As
is claimed in the book about algorithm design by S. Skiena [30], good pruning tech-
niques have stronger influence to the efficiency of a backtracking algorithm than any
other factor.

There is a hard upper bound for the final area of any partial concept chain, as
an addition of a new attribute can only reduce the number of objects in the partial
context under consideration. Thus it is possible to place a hard upper limit for the
final area of the partial concept chain. This limit was introduced in the work by R.
Kuusik [16] and is called a potential.

Definition 11. We define the potential of attribute m for the partial concept chain
Partial as S(Partial) + |{m}′| · |M | where M is the set of attributes in the partial
context defined by the Partial.

It is obvious that extending Partial with m cannot give a concept chain with
bigger area S than its potential.

That gives an improved version of backtracking algorithm:
BestCC(M , Best, Partial):
if |M | = 0 then

if S(Best) < S(Partial) then
Set Best← Partial

end if
else

for all m ∈M ordered descending by |{m}′| do
if S(Best) < (S(Partial) + |{m}′| · |M |) then

Set Best← BestCC(M −m,Best, Partial + m)
end if

end for
end if
Return Best

Two further properties that allow for pruning were described in the article by the
author of this thesis [34].

First property shows that there is no need to consider an element ma that was
already considered at one level higher in the backtracking tree.

Theorem 4 (Two-element area in a concept chain). For a set of attributes M from
some formal (sub)context, if |{ma}′| ≥ |{mb}′| then

S(〈ma,mb〉) ≥ S(〈mb,ma〉) (3.12)

and partial concept chains 〈ma,mb〉 , 〈mb,ma〉 correspond to the same sub-context.

Second property shows that there is no need to consider an element ma that was
considered one level lower if it had exact same extent at lower level.
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Theorem 5 (Invariant extent). For a set of attributes M from some formal (sub)context,
if |{ma}′| = |{mb,ma}′| then there exists concept chain Cb = 〈mb, ...〉 so that for
any possible concept chain Ca = 〈ma, ...〉:

S(Cb) ≥ S(Ca). (3.13)

No proof is given as these properties are trivial.
These properties give final version of the algorithm for finding the best concept

chain. Sets of elements that can be ignored are denoted by K (from upper level) and
K ′ (from current level).

BestCC(M , Best, Partial, K):
if |M | = 0 then

if S(Best) < S(Partial) then
Set Best← Partial

end if
else

Set K ′ ← {}
for all m ∈M ordered descending by |{m}′| do

if S(Best) < (S(Partial) + |{m}′| · |M |) and not m ∈ K and not m ∈ K ′

then
Add m into K ′

Set Best← BestCC(M −m,Best, Partial + m,K ′)
Add all mi where |{mi}′| = |{m,mi}′| into K ′

end if
end for

end if
Return Best
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Figures 3.21, 3.22, 3.23 and 3.24 demonstrate the performance of all three differ-
ent versions of the algorithm. Test rig had following hardware:

• processor Intel (R) Pentium (R) 4, 2.80 GHz

• 512 MB memory

• operating system Windows XP

Tests were run for different numbers of rows and columns, for random and struc-
tured data. Enhanced versions greatly outperform brute-force algorithm. Last version
of an algorithm is also clearly faster than algorithm using only the potential for prun-
ing.

Figure 3.21: Performance of algorithms for finding the best concept chain. Random
data, 5 columns.
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Figure 3.22: Performance of algorithms for finding the best concept chain. Structured
data, 5 columns.
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Figure 3.23: Performance of algorithms for finding the best concept chain. Random
data, 100 rows.
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Figure 3.24: Performance of algorithms for finding the best concept chain. Structured
data, 100 rows.
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Chapter 4

MONOCLE Method for
Knowledge Discovery

4.1 Motivation

As described in previous chapter, standard monotone system seriation methods make
it hard to gain semantic information and meaning from the groups of objects they
uncover. Formal concepts, on the other hand, have a nice semantic description - con-
cepts intent. The problem with FCA is, that the number of concepts in the concept
lattice can be too large for unaided analysis for quite a small context. MONOCLE
method defines the formal concepts as elements of the monotone system, thus giving
results that are semantically easy to interpret and reducing the size of a concept lat-
tice. It is hard to argue why certain data analysis method is good or interesting. It is
easy to define, for example, arithmetic mean, but why is it a good measure? Good
data mining methods seem to have the properties of data compression and intuitive
definition. Arithmetic mean compresses an arbitrarily large set of values into a single
value that has intuitive definition as an “average value”. While it may seem that seri-
ation methods have no property of data compression, they reorder the data table into
the form that allows the brain to compress the visual information in the data table
into a small set of concepts. Their result has also very intuitive definition - it is the
data table being analyzed. Sadly, for the large and complex context, brains ability to
compress and interpret the data breaks down. MONOCLE method tries to compress
the context by selecting concepts with a large area with little overlap. Its result is
ordered set of formal concepts that has an intuitive and clear definition founded in
logic, mathematics, philosophy and linguistics. This method was first presented in
the 2008 article by the author of this thesis [35].
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4.2 Concept Area

MONOCLE method is based on a modified version of concept area. Area of a concept
is simply the product of the sizes of its extent and intent.

Definition 12. For the concept (A,B) its area S(A,B) is defined as S(A,B) =
|A| · |B|.

Common methods for concept lattice reduction, like iceberg view, described by
Stumme et al. [32] and common in association rule mining [3], are based on the size
of an extent. Why should we consider the concept area as an alternative?

We can interpret the size of an extent as a measure of concepts applicability.
For example, the concept Animal has a bigger extent than the concept Wasp and is
applicable to more things. On the other hand, the size of an intent measures concepts
information content. If we know that something is a Wasp and not just any Animal
we have a much richer information about its potential behavior and properties.1

If we consider which concepts are deemed important enough to have their own
words in natural language then it seems that the criteria combines both size of a con-
cepts extent and intent (and perhaps some other factors). For example we have words
for the Animal, Insect, Mammal, Fish ,Wasp, Bee, Tiger and Striped Butterfly Fish
(Chaetodon fasciatus). We have no word for yellow-black striped animals though
the extent of this concept contains that of a Wasp, Bee, Tiger and Striped Butterfly
Fish and the intent of that concept contains that of an Animal. It seems that the size
of such concepts extent does not justify its relatively information poor intent. That
is, natural language is structured more according to the concepts area than the size
of concepts extent. Finding formal concepts from the data is a way of generating
objective terminology for that domain. It enables selection and filtering of concepts
according to the criteria that seems to have some correspondence to the structure of
natural language.

Sometimes the number of attributes corresponds to some direct measure of in-
terest: number of items in the shopping basket is correlated to income, number of
economic functions performed in a settlement is correlated to the overall level of
economic activity. Concept area corresponds here very nicely with a chunk of in-
come and a chunk of economic activity.

The nature of a system studied may also necessitate an area based approach in-
stead of an extent based one. If we have a system where a single unique object
has a significant influence for the entire system then the extent based approach is
clearly inappropriate. A single shopping basket is never of a significant importance
for the shop, a single settlement may very well have such an importance for an eco-
nomic system. These systems are characterized by B. Mandelbrot in his book “The

1Here we are making a simplifying assumption that all objects and attributes are of an equal impor-
tance.
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(mis)Behavior of Markets” [24] as examples of “wild” randomness (Cauchy distri-
bution) in contrast to the systems with “mild” randomness (Gaussian distribution).
To quote Mandelbrot: “... But the difference between the extremes of Gauss and of
Cauchy could not be greater. They amount to two different ways of seeing the world:
one in which big changes are the result of many small ones, or another in which ma-
jor events loom disproportionately large”. Mandelbrot uses the software industry and
Microsoft as an example of “wild” variation, a single object having great influence
for the whole system, and argues that behavior of financial markets is also governed
by this kind of distribution - the “fat tails”.

4.3 MONOCLE method

We now introduce our MONOCLE (MONOtone Concept Lattice Elimination) method
for knowledge discovery in binary data tables [35]. We treat concepts as elements of
the monotone system and we define an appropriate MONOCLE weight function.
Generally, the MONOCLE data analysis process is as follows:

1. Concept generation.

2. Generation of minus technique sequence of concepts using MONOCLE weight
function.

3. Data analysis using subsets of suitable size from the top of the minus technique
sequence and possibly using global and local kernels to suggest good cut-off
points.

The MONOCLE weight function is monotone and is correlated with the concept
area. By concept area we mean the product of extent size and intent size |A| · |B| of
a concept (A,B). We modify the weight of each attribute and object in our area cal-
culation by its “rareness”. Such a definition preserves the symmetry between objects
and attributes, peculiar to FCA. MONOCLE method should give same results even
after the data table is transposed. Finally, we show that a certain invariance property
holds for the MONOCLE weight function.

Definition 13. Let W be the set of all concepts for some context and H ⊆W . We
denote the number of all concepts in H not containing the object g as NG(g,H) and
define it formally as

NG(g,H) =
∣∣∣∣{(A,B) | (A,B) ∈ H, g /∈ A

}∣∣∣∣ . (4.1)

We denote the number of all concepts in H not containing the attribute m as NM (m,H)
and define it formally as

NM (m,H) =
∣∣∣∣{(A,B) | (A,B) ∈ H,m /∈ B

}∣∣∣∣ . (4.2)
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Definition 14. Let W be the set of all concepts for some context and H ⊆W . Let
the concept x ∈ H have extent A and intent B. We define the MONOCLE weight
function w(x, H) as

w(x,H) =
(
|A|+

∑
g∈A

NG(g,H)
)
·
(
|B|+

∑
m∈B

NM (m,H)
)

. (4.3)

We illustrate MONOCLE weight function by examples from the Figure 4.1.

Figure 4.1: Two sample contexts with the concepts marked inside the table by borders
and labeled outside the table by their extents.

Each object and attribute of the concepts in the set H = {a1, a2} for the context
(a) is not contained in exactly one concept, so NG(g,H) = 1 and NM (m,H) = 1
for any object g or attribute m in the context (a). Weights for the concepts in the
context (a) are

w(a1, {a1, a2}) = w(a2, {a1, a2})
=
(
(1 + 1) + (1 + 1)

)
·
(
(1 + 1) + (1 + 1)

)
= 16 .

(4.4)

Both a1, a2 and a2, a1 are correct minus technique sequences,

w(a1, {a1}) = w(a2, {a2}) =
(
(0+1)+ (0+1)

)
·
(
(0+1)+ (0+1)

)
= 4 . (4.5)

so the corresponding sequence of Fmin is 16, 4 ; {a1, a2} is a kernel.
For the context (b):

w(b1, {b1, b2, b3}) = (3 + 3 + 3) · (3 + 3 + 3) = 81 ; (4.6)

w(b2, {b1, b2, b3}) = w(b3, {b1, b2, b3}) = (2+2+2) · (2+2+2+3) = 54 . (4.7)

Two minus technique sequences are b2, b1, b3 and b3, b1, b2 and the correspond-
ing sequence of Fmin is 54, 36, 12 ; thus kernel is {b1, b2, b3}. Here, minus tech-
nique sequence is clearly different from the simple area calculation |A| · |B| where
b1 would be the first element removed from the system.
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4.3.1 Invariance Property

We now demonstrate that we can change certain contexts in certain ways that preserve
the weights of corresponding concepts in the old and new contexts.

Let us consider the three pairs of contexts, where concepts do not overlap, shown
in Figure 4.2.

Figure 4.2: Three pairs of contexts with non-overlapping concepts. The concepts are
marked inside the table by borders and labeled outside the table by their extents.

The set of objects G and the set of attributes M are unchanged for the pairs.
For each concept in the upper contexts, we create r concepts in the lower contexts,
leaving extent and intent size ratios between the concepts unchanged. For the pair
(a) r = 3/2, for the pair (b) r = 3 and for the pair (c) r = 2 . We can see that the
weights of corresponding concepts are equal, for example:

w(a1, {a1, a2}) = w(a′1, {a′1, a′2, a′3}) = 36 (4.8)

w(b1, {b1}) = w(b′1, {b′1, b′2, b′3}) = 18 (4.9)

w(c1, {c1, c2, c3}) = w(c′1, {c′1, c′2, c′3, c′4.c′5, c′6}) = 144 (4.10)

w(c2, {c1, c2, c3}) = w(c′3, {c′1, c′2, c′3, c′4.c′5, c′6}) = 36 (4.11)

Fmin({a1, a2}) = Fmin({a′1, a′2, a′3}) = 36 (4.12)

Fmin({b1}) = Fmin({b′1, b′2, b′3}) = 18 (4.13)

Fmin({c1, c2, c3}) = Fmin({c′1, c′2, c′3, c′4.c′5, c′6}) = 36 . (4.14)

We now demonstrate that property formally.
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Theorem 6 (Invariance property). Let W be the system of non-overlapping concepts
with set of objects G and set of attributes M . Let W ′ be another system of non-
overlapping concepts with set of objects G′ and set of attributes M ′ so that |G| = |G′|
and |M | = |M ′| . Let r be a rational number so that for the sets of concepts defined
by any pair of natural numbers n, m

H =
{
(A,B)

∣∣ |A| = n, |B| = m, (A,B) ∈W
}

(4.15)

H ′ =
{
(A′, B′)

∣∣ |A′| = n

r
, |B′| = m

r
, (A′, B′) ∈W ′} (4.16)

it holds that
|H ′| = r · |H|. (4.17)

Then for any c = (A,B) ∈ H and c′ = (A′, B′) ∈ H ′

w(c,W ) = w(c′,W ′). (4.18)

Proof. We can see that for non-overlapping concepts

|A|+
∑
g∈A

NG(g,W ) = |W | · |A| (4.19)

|B|+
∑
m∈B

NM (m, W ) = |W | · |B| . (4.20)

We also know that

∣∣W ′∣∣ · ∣∣A′∣∣ = r · |W | · |A|
r

= |W | · |A| (4.21)

∣∣W ′∣∣ · ∣∣B′∣∣ = r · |W | · |B|
r

= |W | · |B| . (4.22)

Thus

w(c′,W ′) = (
∣∣W ′∣∣·∣∣A′∣∣)·(∣∣W ′∣∣·∣∣B′∣∣) = (|W |·|A|)·(|W |·|B|) = w(c,W ) . (4.23)

71



4.4 Case Study: socio-economic data

We now return to our case study of Saaremaa and Hiiumaa from Section 3.1 and
apply MONOCLE method to these data. Our set of objects consists of settlements
and the set of attributes consists of various social and economic characteristics like
the presence of a school, a kindergarten, shops or certain types of industry. Here we
exclude demographic attributes (number of children, workers and elderly) that were
included in our research presented in Section 3.1 and [14] as these would tend to
dominate the results and information provided by these attributes is somewhat less
interesting than that from the more qualitative attributes. We have also applied the
MONOCLE method to data with all the attributes present and results are generally
consistent with those from Section 3.1 and in a more explicit and easier to interpret
form. For Hiiumaa |G| = 184 and |M | = 206; for Saaremaa |G| = 488 and |M | =
234. The attribute sets are mostly similar, however some attributes are present for
only one island, hence some differences.

The set of concepts for Hiiumaa contained 380 concepts, the set of concepts for
Saaremaa contained 1823 concepts. The weights of minus technique sequences are
presented in Figure 4.3.

As we can see from the Figure 4.3, the global kernels HG and SG are quite large.
Smallest local kernel for Hiiumaa is HL that is still pretty large. Smallest local kernel
for Saaremaa S1 contains 17 concepts, pretty good size for the general overview
of the system. For Hiiumaa we select “almost” a local kernel H2 that contains 10
concepts instead of the too large HL. We also select subset H2 that is equal in size to
S2 and S1 that is equal in size to H1 for comparison.

We present the concept lattices for Hiiumaa corresponding to H1 and H2 as the
Figure 4.4. Note that concepts corresponding to intersections of extents and intents
are also added. Lattices were generated from data tables that contained only concepts
in H1 or H2 , using Galicia [1]. Markings for concepts in H1 or H2 were added later.

The following list is the tail of the minus technique sequence, numbered back-
wards: concepts in H1 (all 17) and H2 (first ten). Numbering corresponds to Figure
4.4. If extent or intent is large, we provide only its size. We use the format: Weight
w(xn,Hn); {extent}, {intent}.

1. Weight 116; {Kärdla, Käina}, (58 attributes)

2. Weight 250; (68 settlements), {summer cabins}

3. Weight 382; {Käina}, (83 attributes)

4. Weight 574; {Kärdla}, (101 attributes)

5. Weight 625; {Emmaste}, (41 attributes)

6. Weight 747; (17 settlements), {summer cabins, beach}
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Figure 4.3: Minus technique sequences for Hiiumaa and Saaremaa. Tails of
sequences, containing most interesting concepts, are presented separately below
main sequence. Several kernels and cut-off points used for following analysis
HG,HL,H1,H2, SG, S1, S2 are marked with dashed lines.

7. Weight 1050; {Kärdla, Käina, Emmaste}, (25 attributes)

8. Weight 1352; (22 settlements), {agriculture}

9. Weight 1536; (32 settlements), {housing}

10. Weight 1974; {Käina, Emmaste}, (27 attributes)

11. Weight 1976; {Kärdla, Emmaste}, (28 attributes)

12. Weight 2277; {Kärdla, Kõrgessaare, Käina}, (16 attributes)

13. Weight 2717; {Nõmme}, (22 attributes)

14. Weight 3000; {Kõrgessaare, Käina}, (19 attributes)

15. Weight 3620; (15 settlements), {summer cabins, housing}

16. Weight 4130; (22 settlements), {beach}
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Figure 4.4: Lattices H1 and H2 for Hiiumaa. Concepts in H1 and H2 are marked
with big numbered circles.

17. Weight 4444; {Kassari, Käina}, (17 attributes)

We present the concept lattices for Saaremaa corresponding to S1 and S2 as the
Figure 4.5.

Following is the list of concepts for Saaremaa.

1. Weight 179; {Kuressaare}, (179 attributes)

2. Weight 272; (68 settlements), {landing places for fishing boats}

3. Weight 456; (87 settlements), {summer cabins}

4. Weight 936; {Kuressaare, Orissaare}, (52 attributes)

5. Weight 1204; {Kuressaare, Nasva}, (47 attributes)

6. Weight 1878; (55 settlements), {agriculture}

7. Weight 2007; {Kuressaare, Kärla}, (44 attributes)

8. Weight 2409; {Kuressaare, Valjala}, (39 attributes)
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Figure 4.5: Lattices S1 and S2 for Saaremaa. Concepts in S1 and S2 are marked with
big numbered circles.

9. Weight 3330; (32 settlements), {landing places for fishing boats, summer cab-
ins}

10. Weight 3582; {Nasva}, (54 attributes)

11. Weight 4448; {Kuressaare, Liiva}, (35 attributes)

12. Weight 4910; {Orissaare}, (58 attributes)

13. Weight 5681; {Kuressaare, Kudjape}, (30 attributes)

14. Weight 6534; (56 settlements), {housing}

15. Weight 7449; (41 settlements), {sights}

16. Weight 8085; {Kuressaare, Orissaare, Liiva}, (24 attributes)
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17. Weight 8550; {Kuressaare, Valjala, Tornimäe, Kärla}, (17 attributes)

There is a clear division between concepts describing small monofunctional set-
tlements (agriculture, summer cabins) and larger regional centers (Kärdla, Käina,
Kuressaare). That division is fundamental to the data and not the artifact of MON-
OCLE method - there are very few settlements that are neither monofunctional nor
regional centers. The division seems to be clearer in the case of Saaremaa where
larger centers, represented by the “artificial” concept in the upper right corner of
lattices S1 and S2 do not have attributes common with concepts describing mono-
functional settlements. Upper right “artificial” concept for S1 has value {several
enterprises with turnover over million crowns}, {Kudjape, Nasva, Kuressaare, Kärla,
Liiva, Orissaare, Tornimäe, Valjala}. Role of Saaremaa’s capital Kuressaare seems
to be more important as that of Kärdla for Hiiumaa as {Kuressaare} is the extent of
the last concept in the minus technique sequence.

We finally compare graphs presented in Figure 4.3 to that of random data, having
same frequency of ones and size as the data table for Hiiumaa. Figure 4.6 shows
graph for random data and we can see that graph for minus technique sequence is
heavily influenced by the internal structure of data.

Figure 4.6: Three minus technique sequences for random data tables where size and
frequency of ones were same as that of Hiiumaa. Sawteeth correspond to different
simple concept areas.

Running speeds for building the lattice and finding the minus technique sequence
ranged from couple of seconds for Hiiumaa without demographic data to couple of
minutes for Saaremaa with demographic data. Hardware was ordinary desktop com-
puter and the program was written in Python. Detailed discussion of speed and com-
plexity issues is outside the scope of this thesis.
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4.5 Case Study: epidemiology

This case studies the epidemiological data about dengue fever outbreaks in Brazil.
These data were kindly supplied by professor Åke Sivertun from Linköping Univer-
sity. Input data table describes the number of infections per month for the districts of
the Brazil. It contains data about 201 districts, in the shape shown in Table 4.1.

District jan feb ...
Alto da Boa Vista 24.2 12.1 ...
Anchieta 14.9 52.0 ...
... ... ... ...

Table 4.1: Fragment of the input. The table shows the number of infections per 100
000 people.

Our first task is to transform the data that is in real numbers into the binary as
required by the MONOCLE method. The transformation should also relate concept
areas to some interesting epidemiological property.

We transform the input by replacing each month column with three quartile inter-
val columns. We set our first quartile strictly to zero due to the large amount of zero
values. Other three parts are equal. Quartile values are calculated over the population
of entire data table and not for the each row or column separately. Data table con-
tains 1 wherever the rate of infection is greater than the corresponding quartile. For
our previous table we found the quartiles 0, 12.9, 50.2. Such an arrangement relates
concept area to the intensity of an infection. The result is demonstrated in Table 4.2.

District jan>0 jan>12.9 jan>50.2 feb>0 feb>12.9 feb>50.2 ...
Alto da Boa Vista 1 1 0 1 0 0 ...
Anchieta 1 1 0 1 1 1 ...
... ... ... ... ... ... ... ...

Table 4.2: Fragment of the transformed table.

Following are the top concepts according to minus technique for the year 2001.
As we can see, they describe the wave of illness enveloping certain districts.

1. Weight 1704; {142 districts}, {’feb1’, ’march1’, ’march2’, ’april1’, ’april2’,
’may1’, ’may2’, ’may3’, ’june1’, ’june2’, ’july1’, ’dec1’}

2. Weight 1860; {144 districts}, {’jan1’, ’feb1’, ’march1’, ’april1’, ’april2’, ’may1’,
’may2’, ’june1’, ’june2’, ’july1’, ’dec1’}

3. Weight 2422; {144 districts}, {’march1’, ’march2’, ’april1’, ’april2’, ’april3’,
’may1’, ’may2’, ’may3’, ’june1’, ’june2’}
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Total number of ones in the transformed input table 2 was 4071, the top concept
(concept 1) covers 1704 of them, that is describes almost half of the context. Figure
4.7 illustrates these waves more clearly. We can see, that there are great similarities
for these three different descriptions of wave of illness, however there are also some
differences: concept 2 describes longer lasting, but less intense wave, concept 3 de-
scribes shorter but more intense wave. This suggests, difference in the development
of epidemic between some districts.

Figure 4.7: Waves of illness, as described by 3 top concepts for year 2001.

Following are the top concepts according to minus technique for the year 2002.

1. Weight 1705; {155 districts}, {’jan1’, ’jan2’, ’feb1’, ’feb2’, ’feb3’, ’march1’,
’march2’, ’march3’, ’april1’, ’april2’, ’may1’}

2. Weight 1848; {146 districts}, {’jan1’, ’jan2’, ’feb1’, ’feb2’, ’march1’, ’march2’,
’march3’, ’april1’, ’april2’, ’may1’, ’nov1’}

3. Weight 2506; {141 districts}, {’jan1’, ’jan2’, ’jan3’, ’feb1’, ’feb2’, ’feb3’,
’march1’, ’march2’, ’march3’, ’april1’, ’april2’}

Total number of ones in the transformed input table was 3436, the top concept
covers 1705 of them, Figure 4.8 provides graphical description.

2more formally, number of relations in the formal context
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Figure 4.8: Waves of illness, as described by 3 top concepts for year 2002.
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These results demonstrate that MONOCLE method is clearly applicable to di-
verse problem domains. It is remarkable that top concepts correspond to continuous
waves as there is nothing in the algorithm that would force the intents to be continu-
ous time intervals, in fact there is no concept of time encoded into the algorithm and
no formal way to detect which attributes are corresponding to adjacent months and
which are not. Such a result can be explained by a fact that if some set districts had
similar epidemiological pattern in time intervals t1 and t3, then it is likely that they
had similar epidemiological pattern in time interval t2, between time intervals t1 and
t3.

4.6 Discussion

MONOCLE method seems to give results, that are easy to understand, sensible and
as compact as needed. It performed well in two different case studies. Issues of
speed and complexity were not addressed. MONOCLE method requires the gener-
ation of entire concept lattice. It prunes this lattice for the human analyst but not in
the algorithmic sense. This algorithm had enough speed for our case studies but it
will not scale up very well. Some interesting fast heuristics are given by Ene, Horne,
Milosavljevic, Rao, Schreiber and Tarjan in their year 2008 work about role min-
imization [10]. All their methods apply to formal concepts and the heuristic they
describe as giving best results is basically a minus technique from the monotone sys-
tems theory. Elements of their monotone system are from the joint set of objects
and attributes G + M , elements weight is either |{g}′| or |{m}′|, and removal of an
element removes the formal concept generated by it - ({g}′′, {g}′) or ({m}′, {m}′′)
- from the context. It is interesting to note that they seem to have arrived to their re-
sults independently from FCA and monotone systems theory as neither is referenced
in their work.
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Chapter 5

How to measure formal concepts
importance for the different
contexts

5.1 Motivation

Sometimes we have different contexts that share either the set of attributes or the set
of objects with each other. We may have gathered same type of information about
different groups of objects like, for example, settlements in different islands and we
may want to know how these contexts are different and how they are similar. Or we
may want to compare the contexts that correspond to the same set of objects but with
the different sets of attributes to check how dependent our analysis is to the selection
of attributes or those sets of attributes focus on different interesting aspects and we
want to compare and integrate those separate views. This is illustrated by Figure 5.1.

5.2 Simple measures

How should we evaluate and present the information about similarities and differ-
ences of different contexts? One approach would be to find a single numerical mea-
sure corresponding to similarity of two contexts. Another approach would be to mea-
sure if a concept is relatively more important in one context than in another. Here
we use the latter concept based approach as it can show both differences and sim-
ilarities between two contexts, while context based approach would roll it all into
one number and our MONOCLE method provides us with means to select a limited
subset of concepts so we don’t have to be afraid of information overload. As such
we are interested in measures uniqueness(A, context, othercontext) and uniqueness(B,
context, othercontext) that measure whether concept (A,B) is unique for context as
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Figure 5.1: Some possible comparisons based on the case study of Saaremaa and
Hiiumaa.

compared to othercontext based on concepts relative importance.
However, finding such a measure is not a trivial task. One simple way is to define

the importance of a concept (A,B) for the context (G, M, I) as a ratio of its strict
area aS to the full area of a context |A|·|B|

|G|·|M | .
We define strict concept area aS as follows:

Definition 15. For the context K = (G, M, I) and the intent B ⊆M :

aS(B,K) = |B| · |B′| (5.1)

and dually, for the extent A ⊆ G:

aS(A,K) = |A| · |A′|. (5.2)

where A′ is the set of attributes common to all the objects in A and B′ is the set of
objects possessing the attributes in B as in definition 2.

We will speak of the strict concept area as a kind of cover: raw weight of a
concept for a certain context. We will introduce different kinds of covers later and we
will use covers as a basis for calculating measures that evaluate concepts uniqueness
for a certain context compared to another context.

If we calculate concepts uniqueness for the context K compared to the other
context KO then either concepts intent B = BO and contexts set of attributes M =
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MO or concepts extent A = AO and contexts set of objects G = GO. That is, if we
define concepts importance as a ratio between such measures then either attributes
or objects cancel out. Then we divide concepts importance for the context K by the
sum of its importance for K and KO so our result will be in the 0..1 scale where 0.5
means that concept is equally important for both contexts, 1 means that the concept
c is maximally important for context K as compared to the context KO and 0 means
the opposite.

Definition 16. We define strict ratio measure for uniqueness rS for the concept
(A,B) from the context K = (G, M, I) and compared to the context KO = (GO,MO, IO)
as follows:

If M = MO then we take A = B′ for the context K and AO = B′ for the context
KO

rS(B,K, KO) =
aS(B,K)

|G|
aS(B,K)

|G| + aS(B,KO)
|GO|

=
|A|
|G|

|A|
|G| + |AO|

|GO|

(5.3)

and dually, if G = GO then we take B = A′ for the context K and BO = A′ for the
context KO

rS(A,K,KO) =
aS(A,K)

|M |
aS(A,K)

|M | + aS(A,KO)
|MO|

=
|B|
|M |

|B|
|M | + |BO|

|MO|

. (5.4)

Figure 5.2: Contexts K, KO and a concept c = (A,B). Area covered by concept c
that is relevant for calculating measure rS is shaded.

For example, we can calculate the measure rS for the concept c = (A,B) shown
in Figure 5.2 as

rS(A,K,KO) =
3
5

3
5 + 1

5

=
3
4
. (5.5)

We can also give a general definition for the ratio measure

Definition 17. We define ratio measure for uniqueness r for the concept (A,B) from
the context K = (G, M, I) and compared to the context KO = (GO,MO, IO) as
follows:
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r(B,K, KO) =
cover(B,K)

total(K)

cover(B,K)
total(K) + cover(B,KO)

total(KO)

(5.6)

and dually,

r(A,K,KO) =
cover(A,K)

total(K)

cover(A,K)
total(K) + cover(A,KO)

total(KO)

. (5.7)

where cover is measure for concept cover and total is measure for contexts size.

If we calculate rS for an intent B containing many attributes (or dually, for an
extent A containing many objects) then it is likely that rS = 1 as GO might not
contain any objects that match to B. Furthermore, such a measure ignores all objects
in GO that almost match to B. One possible measure that tries to fix those problems
is inspired by the monotone frequency based weight function (see Definition 8) and
we denote it here as a measure rL. We define loose concept area aL as follows:

Definition 18. For the context K = (G, M, I) and the intent B ⊆M :

aL(B,K) =
∑
g∈G

|{g}′ ∩B| (5.8)

and dually, for the extent A ⊆ G:

aL(A,K) =
∑

m∈M

|{m}′ ∩A| (5.9)

Loose concept area aL is similar to frequency based monotone weight function
as defined in Definition 8.

Definition 19. We define the measure of uniqueness rL for the concept (A,B) from
the context K = (G, M, I) and compared to the context KO = (GO,MO, IO) as
follows:

If M = MO:

rL(B,K, KO) =
aL(B,K)

|G|
aL(B,K)

|G| + aL(B,KO)
|GO|

. (5.10)

and dually, if G = GO:

rL(A,K,KO) =
aL(A,K)

|M |
aL(A,K)

|M | + aL(A,KO)
|MO|

. (5.11)
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Figure 5.3: Contexts K, KO and a concept c = (A,B). Area aL covered by concept
c that is relevant for calculating measure rL is shaded.

For example, we can calculate the measure rL for the concept c = (A,B) shown
in Figure 5.3 as

rL(A,K,KO) =
12
5

12
5 + 10

5

=
6
11

. (5.12)

5.3 Measure for evaluating concept as a classifier

We can treat concepts uniqueness as a hypotheses. And as in classical statistics we
don’t want to accept concept as unique when its uniqueness may be explained as a
probable result of random noise. Not only should concept be relatively more im-
portant in one context then in another, it should also cover sufficient amount of the
context to make it unlikely that its uniqueness is a result of random noise. A number
of the measures I will propose are based on the probability measure for rule evalu-
ation as described by Witten and Frank in their book about data mining [46]. That
is we evaluate concepts accuracy as a classifier, if it is a good classifier between two
contexts then we consider it unique for that context. Probability measure for rule
evaluation is a probability of a completely random rule giving an equally good, or
better, improvement in accuracy as the rule under consideration.

How to calculate the probability of a random rule performing as well or better
as some classifier? As described by Witten and Frank [46], if we have a dataset
that contains T examples (for our purposes that is usually number of examples in
K ∪KO), total number of instances of certain class K in that dataset P , total number
of instances that the rule R selects t and number of instances of that class that the
rule selects p then the probability that of t cases selected in random, exactly i are in
class K is

Pr(t, i, K) =

(
P
i

)
·
(
T−P
t−i

)(
T
t

) . (5.13)

The probability that a random rule will do as well or better than rule R is
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Figure 5.4: Sets T , P , t and p.

m(R) =
min(t,P )∑

i=p

Pr(t, i, K). (5.14)

If the total number of instances T is large, a good approximation for the Pr(t, i, K)
is

Pr(t, i, K) =
(

t

i

)
·
(

P

T

)i

·
(

1− P

T

)t−i

. (5.15)

This probability is often approximated by an incomplete beta function Ix(a, b)
and that is what we use in our implementation 1. Relation between incomplete beta
function Ix(a, b) and m(R) approximation is

t∑
i=p

(
t

i

)
·
(

P

T

)i

·
(

1− P

T

)t−i

= IP
T
(p, t− p + 1). (5.16)

Now we define measure m(R) in terms of contexts and concepts. We can relate
total number of instances T in a dataset to total sizes of contexts K and KO.

Here we usually use number of ones in the context as a measure of its total size
if not mentioned otherwise. We could also use number of objects or attributes or
their product, but the number of ones suits our area based approach better. In such a

1While Witten and Frank[46] recommend incomplete beta function for values of t greater than a
dozen or so, my testing of Scientific Python library implementation revealed no approximation error
even for values of t as low as 1.
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case uniqueness of the concept is a measure of the concept being uniquely important
to the system described by the context. That is, concept can be uniquely important
to one context as compared to another even when both contexts object and attribute
sets are equal and both concepts have equal extents and intents when one context
contains less ones than another and therefore the concept makes up a bigger part
of the system described by the context. P is related to the total size of context K.
Author has to confess that the argument above feels somewhat vague. Evaluation
of different methods for calculating contexts total size is a research area that could
certainly benefit from future study.

Number of instances of a class p is related to the value of concepts cover over
context K and difference t− p is related to the value of concepts cover over context
KO.

Definition 20. We define the classifier measure for concept similarity k as

k(B,K, KO) = I total(K)
total(K)+total(KO)

(cover(B,K), cover(B,KO) + 1) (5.17)

and dually,

k(A,K,KO) = I total(K)
total(K)+total(KO)

(cover(A,K), cover(A,KO) + 1). (5.18)

In case of the ratio measure r high values of measure are interpreted as a sign of
concepts uniqueness for context K as opposed to context KO. In case of the classifier
measure k low values of measure are interpreted as a sign of concepts uniqueness for
context K as opposed to context KO as they indicate a low probability for generating
a better random classifier.

A simple way to define classifier measure is to use the set of objects in contexts
as total and concepts extent as a cover.

Definition 21. We define simple classifier measure for uniqueness k̂ for the con-
cept (A,B) from the context K = (G, M, I) and compared to the context KO =
(GO,MO, IO) as follows:

If M = MO then we take A = B′ for the context K and AO = B′ for the context
KO

k̂(B,K, KO) = I |G|
|G|+|GO |

(|A|, |AO|+ 1) (5.19)

and dually, if G = GO then we take B = A′ for the context K and BO = A′ for the
context KO

k̂(A,K,KO) = I |M|
|M|+|MO |

(|B|, |BO|+ 1). (5.20)

For example, we can calculate the measure k̂ for the concept c = (A,B) shown
in Figure 5.5 as follows:
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Figure 5.5: Contexts K, KO and a concept c = (A,B). Columns included in
|B|, |BO| are marked with black dots.

k̂(A,K,KO) = I 5
10

(3, 1 + 1) = 0.3125 (5.21)

As we will see in the later section dealing with our case study, simple classifier
measure is not symmetrical as k̂(B,K, KO) will tend to have much lower values for
single attribute intents than single object extents. So by design k̂(B,K, KO) will
never evaluate the concept of a single regional center as unique. This is at odds with
our area based MONOCLE approach and our other measures will be based on the
concept area.

5.4 Weighted concept area

We now introduce the weighted concept area based cover calculations. General idea
is, that each object g (or dually an attribute m) of a context has a weight w between
0..1 that denotes its similarity to the concept (A,B). Such a weight is dependent
of the size of concepts intent B (dually and extent) N and the size of intersection
between g′ and intent B that we denote n (dually an m′ and A). Concepts area a is
then defined simply as

a =
∑
g∈G

|{g}′ ∩B| · w(|{g}′ ∩B|, |B|) =
∑
g∈G

n · w(n, N) (5.22)

and dually,

a =
∑

m∈M

|{m}′ ∩A| · w(|{m}′ ∩A|, |A| =
∑

m∈M

n · w(n, N). (5.23)

We can now define previously defined strict and loose concept covers as weighted
concept area based covers with trivial weight functions.
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Definition 22.

wS(n, N) =

{
0 : n < N

1 : n = N
(5.24)

aS(B,K) =
∑
g∈G

|{g}′ ∩B| · wS(|{g}′ ∩B|, |B|). (5.25)

And dually

aS(A,K) =
∑

m∈M

|{m}′ ∩A| · wS(|{m}′ ∩A|, |A|). (5.26)

Definition 23.
wL(n, N) = 1. (5.27)

aL(B,K) =
∑
g∈G

|{g}′ ∩B| · wL(|{g}′ ∩B|, |B|) =
∑
g∈G

|{g}′ ∩B|. (5.28)

And dually

aL(A,K) =
∑

m∈M

|{m}′ ∩A| · wL(|{m}′ ∩A|, |A|) =
∑

m∈M

|{m}′ ∩A|. (5.29)

We now introduce the fuzzy concept cover āp that has non-trivial weight function
which is basically a probability of obtaining worse match to the concept by generating
data in random. First we define probability p for having a relation gIm (1 in the data
table).

Definition 24. We denote by p the probability of having a relation gIm between g
and m for m ∈ B for contexts K and KO, or equivalently, relative frequency of 1’s
in the corresponding slice B ×G of the data tables.

p =
|{gIm | m ∈ B}|+ |{gIOm | m ∈ B}|

(|G|+ |GO|) · |B|
. (5.30)

And dual case, if we use concepts extent A:

p =
|{gIm | g ∈ A}|+ |{gIOm | g ∈ A}|

(|M |+ |MO|) · |A|
. (5.31)

Definition 25. According to the Wolfram MathWorld [42] the probability of obtain-
ing more successes than the n observed in a binomial distribution is Ip(n+1, N−n).

w̄p(n, N) =

{
1− Ip(n, N − n + 1) : n < N

1 : n = N
(5.32)
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āp(B,K) =
∑
g∈G

|{g}′ ∩B| · w̄p(|{g}′ ∩B|, |B|). (5.33)

And dually

āp(A,K) =
∑

m∈M

|{m}′ ∩A| · w̄p(|{m}′ ∩A|, |A|). (5.34)

We mostly combine fuzzy concept cover with a classifier based similarity mea-
sure and we denote such combination as k̄p.

Definition 26. We define classifier based measure for concept similarity with fuzzy
concept cover as k̄p.

k̄p(B,K, KO) = I total(K)
total(K)+total(KO)

(āp(B,K), āp(B,KO) + 1) (5.35)

and dually,

k̄p(A,K,KO) = I total(K)
total(K)+total(KO)

(āp(A,K), āp(A,KO) + 1). (5.36)

Measures kL and kS for concept covers aL and aS are defined by the same pat-
tern.

Figure 5.6: Contexts K, KO and a concept c = (A,B). Area āp covered by concept
c that is relevant for calculating measure k̄p is shaded. Different column widths
illustrate different weights w̄p.

For example, we can calculate the measure āp for the concept c = (A,B) shown
in Figure 5.6 as follows:

First we calculate p:

p =
12 + 10

(5 + 5) · 3
=

11
15

. (5.37)

For this example we need weights w̄p only for three cases:
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w̄ 11
15

(1, 3) = 1− I 11
15

(1, 3− 1 + 1) = 1− 0.98 ≈ 0.02

w̄ 11
15

(2, 3) = 1− I 11
15

(2, 3− 2 + 1) = 1− 0.82 ≈ 0.18

w̄ 11
15

(3, 3) = 1

Now we can calculate area āp(A,K)

ā 11
15

(A,K) = 3 · 1+

3 · 1+
3 · 1+

2 · 0.18+
1 · 0.02 = 9.38

(5.38)

and area āp(A,KO)

ā 11
15

(A,KO) = 3 · 1+

2 · 0.18+
2 · 0.18+
2 · 0.18+

1 · 0.02 = 4.1

(5.39)

Now we can calculate the measure k̄p(A,K,KO). We use number of ones as a
measure for the total size of a context giving us 13 for K and 24 for the combination
of K and KO.

k̄ 11
15

(A,K,KO) = I 13
24

(9.38, 4.1 + 1) ≈ 0.195 (5.40)

Our classifier measure 0.195 indicates that concept c is somewhat unique for
the context K as compared to KO. Value 0.195 falls short from the 0.05 threshold
commonly used in statistics so we cannot conclude uniqueness with certainty.

5.5 General, entropy based measure

In the previous section we presented the idea of a weighted area concept cover and
also three methods for calculating it: strict area, loose area and fuzzy concept cover.
Strict area gives weight 1 for all the rows that match our concept fully and weight
0 for all the other rows. Loose area gives weight 1 for all the rows. Fuzzy concept
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cover is somewhere in between of these two extremes having weights increase with
the quality of the match, up to 1 in the case of a full match. While it would nice to
have one best measure, author of this thesis is not aware of any criteria according
which we could make such a decision. There is also no reason to believe that fuzzy
concept cover is only possible correct measure between those extremes. Still, it is
inconvenient to use a lot of different, unrelated measures.

In this section we present a new measure whose behavior depends of a real val-
ued parameter changing from 0.5 to 1.0. For the value of 0.5 it behaves like a loose
cover, for the value 1.0 it behaves like strict cover, having its behavior change gradu-
ally between those two extremes as the parameter increases. That way we are able to
use one method for our concept cover calculation though instead of a single valued
result we will get a sequence of values. It may turn out that all values indicate ap-
proximately same level of concept uniqueness. If not, we can clearly see what kind
of results we get from strict cover - like and loose cover - like behavior ranges.

Our cover calculation is based on the Shannon information entropy [29] for two
possible values. In our case Shannon information entropy measures an uncertainty in
having a particular attribute value in the row match the concept (dually object value
in the column match the concept).

Definition 27. Shannon information entropy [29] H(p1, p1) for two possible values
with probabilities p1 and p2 is

H(p1, p2) = −p1 · log(p1)− p2 · log(p2) (5.41)

We now define entropy based weight function wu for upper bound u.

Definition 28. Entropy based weight function wu(n, N) for upper bound u where
0.5 ≥ u < 1 is

wu(n, N) =


H(u, 1− u)/H(0.5, 0.5) : n

N < 0.5
H(u, 1− u)/H( n

N , 1− n
N ) : 0.5 ≥ n

N ≤ u

1 : n
N > u

(5.42)

Behavior of the function wu is illustrated by Figures 5.7, 5.5, 5.9 2 . Those
figures show the relation between wu, wL and wS . We want to prove formally that
wu behaves like wL when u = 0.5 and that wu behaves like wS when the value of u
approaches 1.

Theorem 7 (Equivalence of w0.5 and wL). For any n, N ≥ 0 where n ≤ N

w0.5(n, N) = wL(n, N). (5.43)

2These figures were generated with DISLIN scientific data plotting library [2].
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Figure 5.7: Weight function w0.5 is equal to wL having constant value 1.

Proof. Proof is trivial.
From Definition 28 we get when u = 0.5

w0.5(n, N) =


H(0.5, 1− 0.5)/H(0.5, 0.5) : n

N < 0.5
H(0.5, 1− 0.5)/H( n

N , 1− n
N ) : 0.5 ≥ n

N ≤ 0.5
1 : n

N > 0.5

(5.44)

That, we can simplify into

w0.5(n, N) =


H(0.5, 0.5)/H(0.5, 0.5) : n

N < 0.5
H(0.5, 0.5)/H(0.5, 0.5) : n

N = 0.5
1 : n

N > 0.5

(5.45)

And finally, using Definition 23

w0.5(n, N) = wL(n, N) = 1. (5.46)

Theorem 8 (Equivalence of limu→1 wu and wS). For any finite integers n, N ≥ 0
where n ≤ N

lim
u→1

wu(n, N) = wS(n, N). (5.47)
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Figure 5.8: Weight function w0.9 has value 1 for n > 18. For lower values of n, the
value of function gradually decreases.

Proof. From Definition 28 we get when limu→1

lim
u→1

wu(n, N) =


limu→1 H(u, 1− u)/H(0.5, 0.5) : n

N < 0.5
limu→1 H(u, 1− u)/H( n

N , 1− n
N ) : 0.5 ≥ n

N ≤ u

1 : n
N > u

(5.48)

From Definition 27, because log(1) = 0 and it is know that limx→0 x·log(x) = 0

lim
u→1

H(u, 1− u) = lim
u→1

(−u · log(u)− (1− u) · log(1− u)) = 0 (5.49)

If n and N are finite then

lim
u→1

wu(n, N) =


0 : n

N < 0.5
0 : 0.5 ≥ n

N ≤ u

1 : n
N > u

(5.50)

And finally, using Definition 22

lim
u→1

wu(n, N) = wS(n, N) (5.51)
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Figure 5.9: Weight function w0.99999 approximates wS having value 1 when n = N
and value close to 0 in lower range.

for any finite integers n, N ≥ 0 where n ≤ N .

We calculate cover au as a weighted concept area.

au(B,K) =
∑
g∈G

|{g}′ ∩B| · wu(|{g}′ ∩B|, |B|) =
∑
g∈G

|{g}′ ∩B|. (5.52)

And dually

au(A,K) =
∑

m∈M

|{m}′ ∩A| · wu(|{m}′ ∩A|, |A|) =
∑

m∈M

|{m}′ ∩A|. (5.53)

Definition 29. We define classifier measure for concept similarity with entropy based
concept cover as ku.

ku(B,K, KO) = I total(K)
total(K)+total(KO)

(au(B,K), au(B,KO) + 1) (5.54)

and dually,

ku(A,K,KO) = I total(K)
total(K)+total(KO)

(au(A,K), au(A,KO) + 1). (5.55)
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As all those definitions follow the same pattern as corresponding definitions for
strict and loose weight functions, it is trivial to show that a0.5 and k0.5 are equivalent
to aL and kL and limu→1 au and limu→1 ku are equivalent to aS and kS .

Figure 5.10: Contexts K, KO and a concept c = (A,B). Area a0.9 covered by
concept c that is relevant for calculating measure k0.9 is shaded. Different column
widths illustrate different weights w0.9.

For example, we can calculate the measure a0.9 for the concept c = (A,B) shown
in Figure 5.10 as follows:

For this example we need weights w0.9 only for three cases:

w0.9(1, 3) = H(0.9, 0.1)/H(0.5, 0.5) ≈ 0.33/0.69 ≈ 0.48

w0.9(2, 3) = H(0.9, 0.1)/H(
2
3
,
1
3
) ≈ 0.33/0.64 ≈ 0.51

w0.9(3, 3) = 1

Now we can calculate area a0.9(A,K)

a0.9(A,K) ≈ 3 · 1+
3 · 1+
3 · 1+

2 · 0.51+
1 · 0.48 = 10.5

(5.56)

and area a0.9(A,KO)

a0.9(A,KO) ≈ 3 · 1+
2 · 0.51+
2 · 0.51+
2 · 0.51+

1 · 0.48 = 6.54

(5.57)
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Now we can calculate the measure k0.9(A,K,KO). We use number of ones as a
measure for the total size of a context giving us 13 for K and 24 for the combination
of K and KO.

k0.9(A,K,KO) ≈ I 13
24

(10.5, 6.54 + 1) ≈ 0.357 (5.58)

Our classifier measure 0.357 indicates that concept c seems slightly unique for
the context K as compared to KO. Value 0.357 falls clearly short from the 0.05
threshold commonly used in statistics so we cannot conclude uniqueness with any
certainty.

5.6 Comparison between Saaremaa and Hiiumaa

We now return to our case study of Saaremaa and Hiiumaa. While previous results
regarding the case study were achieved in cooperation with Karin Lindroos, these
results were achieved solely by the author. We take 17 top concepts as sorted by our
MONOCLE method and calculate a number of measures for one island as compared
to another. We mostly use classifier measures k but we also add ratio measures rS

and rL for comparison. For ratio measures r uniqueness is shown by high values,
for classifier measures k uniqueness is shown by low values. We try to evaluate
agreement between different measures and concept uniqueness for islands. Concepts
that are not clearly measured as unique and values of measures that disagree with
other measures are bolded in the following tables.

Legend for Hiiumaa:

1. KrKn: {Kärdla, Käina}, (58 attributes)

2. s: (68 settlements), {summer cabins}

3. Kn: {Käina}, (83 attributes)

4. Kr: {Kärdla}, (101 attributes)

5. E: {Emmaste}, (41 attributes)

6. sb: (17 settlements), {summer cabins, beach}

7. KrKnE: {Kärdla, Käina, Emmaste}, (25 attributes)

8. a: (22 settlements), {agriculture}

9. h: (32 settlements), {housing}

10. KnE: {Käina, Emmaste}, (27 attributes)

11. KrE: {Kärdla, Emmaste}, (28 attributes)
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Concept rL rS k̂ k̄p k0.5 = kL k0.75 k0.9 k1 = kS

KrKn 1.0 0.5994 0.075 0.0001 0.0002 0.0 0.0 0.0
s 0.6576 0.6576 0.0001 0.0019 0.0019 0.0019 0.0019 0.0019
Kn 1.0 0.6017 0.2738 0.0 0.0 0.0 0.0 0.0
Kr 1.0 0.588 0.2738 0.0 0.0002 0.0001 0.0 0.0
E 1.0 0.5763 0.2738 0.0273 0.0298 0.0138 0.0088 0.0
sb 0.6927 0.6396 0.012 0.0027 0.002 0.0024 0.0034 0.0038
KrKnE 1.0 0.5917 0.0205 0.0112 0.0099 0.0024 0.0 0.0
a 0.5148 0.5148 0.4501 0.6865 0.6865 0.6865 0.6865 0.6865
h 0.6025 0.6025 0.0411 0.1426 0.1426 0.1426 0.1426 0.1426
KnE 1.0 0.6007 0.075 0.0025 0.0026 0.0005 0.0 0.0
KrE 1.0 0.5928 0.075 0.0085 0.0075 0.0014 0.0 0.0
KrKgKn 1.0 0.5927 0.0205 0.0165 0.0228 0.0094 0.0004 0.0
N 1.0 0.5901 0.2738 0.0303 0.0174 0.0188 0.0084 0.0
KgKn 1.0 0.5991 0.075 0.0075 0.0111 0.0034 0.0003 0.0
sh 0.7006 0.6379 0.0144 0.0023 0.0013 0.0018 0.0032 0.0044
b 0.5933 0.5933 0.1008 0.237 0.237 0.237 0.237 0.237
KsKn 1.0 0.6156 0.075 0.0008 0.0012 0.0005 0.0002 0.0

Table 5.1: Evaluation of importance for top 17 concepts for Hiiumaa as compared to
Saaremaa

12. KrKgKn: {Kärdla, Kõrgessaare, Käina}, (16 attributes)

13. N: {Nõmme}, (22 attributes)

14. KgKn: {Kõrgessaare, Käina}, (19 attributes)

15. sh: (15 settlements), {summer cabins, housing}

16. b: (22 settlements), {beach}

17. KsKn: {Kassari, Käina}, (17 attributes)

Legend for Saaremaa:

1. Ku: {Kuressaare}, (179 attributes)

2. f: (68 settlements), {landing places for fishing boats}

3. s: (87 settlements), {summer cabins}

4. KuO: {Kuressaare, Orissaare}, (52 attributes)

5. KuN: {Kuressaare, Nasva}, (47 attributes)
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Concept rL rS k̂ k̄p k0.5 = kL k0.75 k0.9 k1 = kS

Ku 1.0 0.4701 0.7262 0.1035 0.2556 0.1267 0.0077 0.0
f 0.8368 0.8368 0.0 0.0 0.0 0.0 0.0 0.0
s 0.3424 0.3424 1.0 0.9989 0.9989 0.9989 0.9989 0.9989
KuO 1.0 0.5238 0.5274 0.0003 0.0005 0.0007 0.0001 0.0
KuN 1.0 0.551 0.5274 0.0 0.0 0.0 0.0 0.0
a 0.4852 0.4852 0.6475 0.4068 0.4068 0.4068 0.4068 0.4068
KuKl 1.0 0.5011 0.5274 0.0068 0.021 0.0172 0.0033 0.0
KuV 1.0 0.5415 0.5274 0.0 0.0001 0.0002 0.0001 0.0
fs 0.751 0.4622 0.0167 0.2682 0.5267 0.368 0.101 0.0001
N 1.0 0.5358 0.7262 0.0001 0.0002 0.0001 0.0001 0.0
KuL 1.0 0.5331 0.5274 0.0008 0.0015 0.0039 0.0014 0.0
O 1.0 0.5218 0.7262 0.0001 0.0004 0.0004 0.0001 0.0
KuKd 1.0 0.6035 0.5274 0.0 0.0 0.0 0.0 0.0
h 0.3975 0.3975 0.9753 0.902 0.902 0.902 0.902 0.902
g 0.3557 0.3557 0.9939 0.9715 0.9715 0.9715 0.9715 0.9715
KuOL 1.0 0.5494 0.383 0.0009 0.0005 0.0032 0.0018 0.0
KuVTKl 1.0 0.6053 0.2781 0.0 0.0 0.0 0.0 0.0

Table 5.2: Evaluation of importance for top 17 concepts for Saaremaa as compared
to Hiiumaa

6. a: (55 settlements), {agriculture}

7. KuKl: {Kuressaare, Kärla}, (44 attributes)

8. KuV: {Kuressaare, Valjala}, (39 attributes)

9. fs: (32 settlements), {landing places for fishing boats, summer cabins}

10. N: {Nasva}, (54 attributes)

11. KuL: {Kuressaare, Liiva}, (35 attributes)

12. O: {Orissaare}, (58 attributes)

13. KuKd: {Kuressaare, Kudjape}, (30 attributes)

14. h: (56 settlements), {housing}

15. g: (41 settlements), {sights}

16. KuOL: {Kuressaare, Orissaare, Liiva}, (24 attributes)

17. KuVTKl: {Kuressaare, Valjala, Tornimäe, Kärla}, (17 attributes)
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As we can see, simple classifier measure k̂ accounts for most of the disagreements
with other measures. Most of those disagreements are in measures for concepts de-
scribing large settlements in Saaremaa. That is because k̂(B,K, KO) counts only
size of extent and size of intent is invisible for it and context for Saaremaa has more
objects than Hiiumaa and it is quite likely that random rule picks couple of objects
form Saaremaa and none from Hiiumaa. If we calculate classifier measure based on
concept area then that probability changes. For our case study, measure k̂ seems to
be problematic because it discriminates systematically against concepts describing
Saaremaa. Measure k̂ also disagrees with other measures over the uniqueness of con-
cept a (agricultural settlements) for some reason. Only other disagreement is over
uniqueness of concept fs (landing places for fishing boats, summer houses) from the
context of Saaremaa. According to loose measures rL and kL this concept is not
unique for Saaremaa, according to stricter measures it is. That seems to be a legiti-
mate clash between different definitions of similarity. Similar behavior is present in
the concept Ku describing Kuressaare, capital of Saaremaa. Kuressaare is classified
as clearly unique by strict measures but loose measures rL classifies it not unique
and measure kL classifies it as slightly but not clearly unique as value 0.26 is clearly
above 0.05 limit common in statistics.

Most of the top concepts generated by MONOCLE are unique, only concepts not
unique are concept a (agriculture) for Hiiumaa and concepts s (summer houses), h
(housing), g (sights) for Saaremaa.

Entropy based measure ku is in agreement with other measures, kL and kS agree
well with rL and rS and fuzzy classifier measure k̄p is mostly within minimum and
maximum values of ku, except for concepts KrKnE, KrE, N for Hiiumaa, and even
then it is not very far off. It seems sensible to confine our concept similarity analysis
to measure ku for greater ease and simplicity.

5.7 Visual analysis with entropy based measure

We can plot the values of ku for the different values of u. Such a plot allows us
quickly detect if there is any significant difference in the measures over the range
0.5...1 for u. For our case study, it turns out that measures are mostly in good agree-
ment.

Plots for some pairs of important concepts are given below.
In Figures 5.11 and 5.12 we can see the plots for regional centers of Hiiumaa and

Saaremaa, Kärdla and Kuressaare. We can see that both measures decrease monoton-
ically as value of u increases. There are no exact matches for those objects in other
context. Value of ku stays always below 0.0002 for Kärdla, so it can be declared
unique 3 with high confidence. For Kuressaare value of ku decreases monotonically

3that is: declared unique for Hiiumaa as opposed to Saaremaa, but for shortness we will omit that
from now on, if not necessary for clarity.
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Figure 5.11: Hiiumaa: Kärdla (Kr), 101
attributes

Figure 5.12: Saaremaa: Kuressaare (Ku),
179 attributes

Figure 5.13: Hiiumaa: summer cabins (s),
63 objects

Figure 5.14: Saaremaa: summer cabins
(s), 87 objects

from 0.25 to 0, reaching 0.05 at about u = 0.85. That confirms our deduction from
previous section that Kuressaare is clearly unique by the strict measures (u > 0.85),
but by looser measures (u < 0.85) it is slightly, but not clearly unique.

In Figures 5.13 and 5.14 we can see the plots for the concept summer cabins
for Hiiumaa and Saaremaa. We can see that measures stay constant, because for
one-attribute concept there can be only full match with maximum row weight and
no match that multiplies row weight by zero. Measure ku classifies that concept
as clearly unique for Hiiumaa for the reason that there is not that much difference
between objects covered by the concept when compared with the difference between
total sizes of contexts.

In Figures 5.15 and 5.16 we can see the plots for the concepts corresponding to
pairs of larger towns for Hiiumaa and Saaremaa. Measure ku classifies both concepts
as clearly unique for the entire range of u. Plot for concept Kuressaare, Orissaare is
interesting as there is maximum near u = 0.7 instead of constant or monotonically
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Figure 5.15: Hiiumaa: Kärdla, Käina
(KrKn), 58 attributes

Figure 5.16: Saaremaa: Kuressaare, Oris-
saare (KuO), 52 attributes

decreasing curve.
For some concepts, it is also useful to plot the values of entropy based concept

area au and different components that contribute to this area. Here we define the
component as a subset of concepts intent and a particular object belongs to the com-
ponent defined by the intersection of attribute values of the object and the concept.
Sadly, this approach is unlikely to scale up well as the number of different subsets
can grow exponentially. For our case study it works quite well and scaled up version
of such a method is a possible area for future study.

Let us first look at the concept summer cabins, beach (sb). Figure 5.17 shows
measure ku and Figures 5.18 and 5.19 show concept cover au for Hiiumaa and Saare-
maa. We can see that beaches without summer cabins are much more prevalent in
Saaremaa than in Hiiumaa. That concept is also clearly unique for Hiiumaa. We can
see that the cover of non-exact-match components exceeds the exact match at about
u = 0.85 for both contexts.
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Figure 5.17: Concept summer cabins, beach (sb). Measure ku for uniqueness for
Hiiumaa.
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Figure 5.18: Concept summer cabins, beach. Measure au for concept cover for Hi-
iumaa. Component 0: summer cabins, beach; component 1: summer cabins; compo-
nent 2: beach
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Figure 5.19: Concept summer cabins, beach. Measure au for concept cover for Saare-
maa. Component 0: summer cabins; component 1: summer cabins, beach; compo-
nent 2: beach
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As mentioned in previous section and illustrated in Figure 5.20, the concept land-
ing places for fishing boats, summer cabins (fs) is classified as unique for values of
u > 0.9 but is not unique in lower range. Figures 5.21 and 5.22 show concept cover
au for Saaremaa and Hiiumaa. We can see that the reason for difference between
low and high values of ku is lack of landing places for fishing boats that means low
amount of cover for higher values of u combined with lots of summer houses that
contribute to the cover when values of u are low.

Figure 5.20: Concept for landing places for fishing boats, summer cabins (fs). Mea-
sure ku for uniqueness for Saaremaa.

106



Figure 5.21: Concept: landing places for fishing boats, summer cabins. Measure
au for concept cover for Saaremaa. Component 0: landing places for fishing boats,
summer cabins; component 1: summer cabins; component 2: landing places for
fishing boats
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Figure 5.22: Concept: landing places for fishing boats, summer cabins. Measure au

for concept cover for Hiiumaa. Component 0: summer cabins; component 1: landing
places for fishing boats, summer cabins; component 2: landing places for fishing
boats
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We now turn to concepts that describe larger settlements. In a previous section
we compared similarity plots for concepts describing Kärdla (Figure 5.11), Kures-
saare (Figure 5.12), Kärdla combined with Käina (Figure 5.15), Kuressaare combined
with Orissaare (Figure 5.16). Following are similarity plots for rest of the concepts
describing larger settlements from the top 9 concepts as found by the MONOCLE
method.

Figure 5.23: Hiiumaa: Kärdla, Käina, Em-
maste (KrKnE), 25 attributes

Figure 5.24: Saaremaa: Kuressaare, Val-
jala (KuV), 39 attributes

Figure 5.25: Hiiumaa: Emmaste (E), 41
attributes

Figure 5.26: Saaremaa: Kuressaare, Kärla
(KuKl), 44 attributes
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Figure 5.27: Hiiumaa: Käina (Kn), 83 at-
tributes

Figure 5.28: Saaremaa: Kuressaare,
Nasva (KuN), 47 attributes
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All those concepts, except the concept for Kuressaare (Ku), are clearly unique to
their respective contexts. While highest value of ku for Kuressaare is k0.5 ≈ 0.25,
the next highest value for ku is k0.5 ≈ 0.025 for the concept describing Emmaste (E),
a tenfold difference. That is a curious difference between Kuressaare and rest of the
settlements.

Lets examine the components of the concept cover for the concept Ku, describing
Kuressaare.

Figure 5.29: Kuressaare (Ku). Measure au for concept cover for Saaremaa. Com-
ponent 0: Kuressaare, 179 attributes; component 1: Orissaare, 52 attributes match;
component 2: Nasva, 47 attributes match; component 3: Kärla, 44 attributes match;
component 4: Valjala, 39 attributes match; component 5: summer houses, 37 ob-
jects; component 6: Liiva, 35 attributes match; component 7: Tornimäe, 31 attributes
match; component 8: Kudjape, 30 attributes match; component 9: Kihelkonna, 29
attributes match

We can see from Figures 5.29 and 5.30 that Kärdla and Käina from Hiiumaa
match the intent of Kuressaare better with their 87 and 69 matching attributes than
any settlement from Saaremaa, where best match is Orissaare with 52 attributes. That
is quite remarkable as Hiiumaa is smaller socio-economic system. That is the reason
why measure ku does not show Kuressaare as clearly unique for Saaremaa. There
is also a contribution from other large settlements of Hiiumaa. Much of the concept
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Figure 5.30: Kuressaare (Ku). Measure au for concept cover for Hiiumaa. Compo-
nent 0: Kärdla, 87 attributes match; component 1: Käina, 69 attributes match; com-
ponent 2: Emmaste, 37 attributes match; component 3: summer houses, 27 objects;
component 4: Kõrgessaare, 23 attributes match; component 5: Kassari, 20 attributes
match; component 6: Nõmme, 17 attributes match; component 7: Männamaa, 15
attributes match; component 8: Sõru, 12 attributes match; component 9: Palade, 12
attributes match

cover for Saaremaa is made up from the ”other” components- that is the mass of
smaller settlements sharing some attributes with Kuressaare and from the Kuressaare
itself.
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Let us now examine the concept cover au of several other concepts describing
large settlements: KuO, Kr, KrKnE.

Figure 5.31: Kuressaare, Orissaare (KuO). Measure au for concept cover for Saare-
maa. Component 0: Kuressaare, Orissaare, 52 attributes; component 1: housing, 29
objects; component 2: Liiva, 24 attributes match; component 3: Kärla, 22 attributes
match; component 4: Valjala, 21 attributes match; component 5: Tornimäe, 20 at-
tributes match; component 6: Nasva, 16 attributes match; component 7: Salme, 16
attributes match; component 8: Lümanda, 16 attributes match; component 9: Must-
jala, 16 attributes match

Kärdla and Käina still match the concept better than anything from Saaremaa.
However, difference in area covered by ”other” components is here much larger than
for the concept Ku. Components 7-9 for Hiiumaa have already quite a small area,
while components 7-9 for Saaremaa have stable area of 16. It seems that Orissaare
has some attributes that are not widespread in Hiiumaa.
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Figure 5.32: Kuressaare, Orissaare (KuO). Measure au for concept cover for Hiiu-
maa. Component 0: Kärdla, 35 attributes match; component 1: Käina, 31 attributes
match; component 2: Emmaste, 20 attributes match; component 3: Kõrgessaare,
13 attributes match; component 4: housing, 12 objects; component 5: Kassari, 11
attributes match; component 6: beach, 10 objects; component 7: Suuremõisa, 8 at-
tributes match; component 8: (Mangu, Sarve, Sääre), (housing, beach); component
9: Tärkma, 5 attributes match
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Figure 5.33: Kärdla, Käina, Emmaste (KrKnE). Measure au for concept cover for
Hiiumaa. Component 0: Kärdla, Käina, Emmaste, 25 attributes; component 1:
sights, 14 objects; component 2: Kõrgessaare, 11 attributes match; component 3:
Suuremõisa, 8 attributes match; component 4: church, sights, 3 objects; component
5: Nurste, 6 attributes match; component 6: Kassari, 6 attributes match; component
7: Männamaa, 5 attributes match; component 8: Palade, 5 attributes match; compo-
nent 9: music, arts, 4 objects

We find again that ”other” components contribute much more to concept cover
for Saaremaa than for Hiiumaa. Component corresponding to the concept KrKnE
itself is a big part of the concept cover at a0.5, much bigger than Kuressaare was for
its concept cover at a0.5.
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Figure 5.34: Kärdla, Käina, Emmaste (KrKnE). Measure au for concept cover for
Saaremaa. Component 0: Kuressaare, 24 attributes match; component 1: sights, 22
objects; component 2: Kärla, 17 attributes match; component 3: Orissaare, 15 at-
tributes match; component 4: Liiva, 14 attributes match; component 5: Kihelkonna,
13 attributes match; component 6: Valjala, 11 attributes match; component 7: Leisi,
11 attributes match; component 8: Tornimäe, 11 attributes match; component 9:
Mustjala, 9 attributes match
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Figure 5.35: Kärdla (Kr). Measure au for concept cover for Hiiumaa. Component
0: Kärdla, 101 attributes; component 1: Käina, 58 attributes match; component 2:
summer houses, 30 objects; component 3: Emmaste, 28 attributes match; component
4: Kõrgessaare, 18 attributes match; component 5: Kassari, 15 attributes match;
component 6: beach, summer houses, 5 objects; component 7: Nõmme, 10 attributes
match; component 8: Männamaa, 10 attributes match; component 9: Nurste, 10
attributes match

Concept cover a0.5 for Hiiumaa is 501 and for Saaremaa 931 giving a ratio
501/931 ≈ 0.54. For the concept of Kuressaare (Ku) those figures were respectively
1360 and 578 giving a lower ratio of 578/1360 ≈ 0.42. If we eliminate component
0-s from each of the 4 concept covers to neutralize influence of object that the concept
is based on and to find out if there is some tendency for settlements in both islands
to resemble their regional centers then we find that new ratios are 400/854 ≈ 0.47
for Hiiumaa and 491/1181 ≈ 0.42 for Saaremaa. That seems to confirm the hypoth-
esis that settlements in the island tend to resemble their regional centres as ratio for
Hiiumaa is higher.
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Figure 5.36: Kärdla (Kr). Measure au for concept cover for Saaremaa. Component
0: Kuressaare, 87 attributes match; component 1: Orissaare, 36 attributes match;
component 2: summer houses, 30 objects; component 3: Liiva, 28 attributes match;
component 4: Kärla, 27 attributes match; component 5: Valjala, 26 attributes match;
component 6: landing places for fishing boats, summer houses, 13 objects; compo-
nent 7: Kihelkonna, 20 attributes match; component 8: landing places for fishing
boats, 19 objects; component 9: landing places for fishing boats, beach, summer
houses, 6 objects
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5.8 Comparison between contexts with different attributes

Attributes selected for analysis can influence the results of data mining. In our previ-
ous case study of Saaremaa and Hiiumaa we focused on the economy related, binary
attributes like presence of housing, beach and so on. We excluded population related
attributes that describe the total population in the settlement, number of children,
work-aged persons, elderly. These attributes are few in number - 20 total - but there
are many relations between the objects and those attributes, thus they can have a
strong influence on the results. These attributes follow the general pattern: x < 10,
10 ≤ x < 50, 50 ≤ x < 100, x ≥ 100, presence of x; where x is one of the follow-
ing: total population, number of children, number of workers, number of elderly. We
use similarity measure ku to estimate the influence of those new attributes to results.
We find eight 4 top concepts according to MONOCLE for each island with and with-
out the population related attributes, then we plot values of ku(A,K,KO) for each
concept (A,B). Eight top MONOCLE concepts would be a good amount for quick
analysis, so our comparison should demonstrate if that sort of analysis would have
results that are not appropriate for different attribute set. As a comparison, we make
similar plots for the different islands with same attributes for values of ku(B,K, KO)
for a total of 8 comparisons, two for each line in Figure 5.1. Influence of attribute
selection to the result is non obvious and important question and thus a good way to
test the usefulness of similarity measure ku.

Population related attributes, as described here, have several flaws from data min-
ing viewpoint. For our area based method it would be advisable to replace attributes
x < 10, 10 ≥ x < 50, 50 ≥ x < 100 with attributes x > 0, x ≥ 10, x ≥ 50
where greater population corresponds to greater concept area. As trivially correlated
attributes are not recommended in data mining literature [31], it would also be advis-
able to remove population related attributes that are sum of children, work-aged and
elderly and attributes of the type presence of x. However, our aim here is to test the
similarity measure ku for comparing the difference between different attribute sets
and not actual data analysis. Therefore we will use unchanged attributes.

Figures 5.37 to 5.44 demonstrate that different attribute sets influence the results
greatly. If we count the number of totally unique concepts, that is, concepts with a
similarity curve as visual straight line at ku = 0 then we find 26 of such concepts for
comparison between contexts with different attribute sets and about 12 for compari-
son between contexts corresponding to different islands. That is, contexts describing
same island with different attributes differ more than contexts describing different is-
lands with same attributes. That result is very important for further study of Saaremaa
and Hiiumaa as, so far, selection of attributes has unfortunately not been given much
thought. Ability to compare differences between contexts with different sets of ob-
jects to differences between contexts with different sets of attributes is a nice property

48 is the number of different line styles in DISLIN Scientific Plotting Library [2]
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Figure 5.37: Measure ku(A,K,KO) for top 8 concepts for Hiiumaa with the popu-
lation related attributes (K) as compared to Hiiumaa without the population related
attributes (KO). Line where ku = 1 consists of two concepts, line where ku = 0
consists of six concepts.

of similarity measure as it makes such differences quantifiable and co-measurable.
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Figure 5.38: Measure ku(A,K,KO) for top 8 concepts for Hiiumaa without the
population related attributes (K) as compared to Hiiumaa with the population related
attributes (KO).
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Figure 5.39: Measure ku(A,K,KO) for top 8 concepts for Saaremaa with the popu-
lation related attributes (K) as compared to Saaremaa without the population related
attributes (KO).

122



Figure 5.40: Measure ku(A,K,KO) for top 8 concepts for Saaremaa without the
population related attributes (K) as compared to Saaremaa with the population related
attributes (KO).
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Figure 5.41: Measure ku(B,K, KO) for top 8 concepts for Hiiumaa with the pop-
ulation related attributes (K) as compared to Saaremaa with the population related
attributes (KO).
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Figure 5.42: Measure ku(B,K, KO) for top 8 concepts for Saaremaa with the pop-
ulation related attributes (K) as compared to Hiiumaa with the population related
attributes (KO).
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Figure 5.43: Measure ku(B,K, KO) for top 8 concepts for Hiiumaa without the
population related attributes (K) as compared to Saaremaa without the population
related attributes (KO).
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Figure 5.44: Measure ku(B,K, KO) for top 8 concepts for Saaremaa without the
population related attributes (K) as compared to Hiiumaa with the population related
attributes (KO).
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Chapter 6

Conclusions

6.1 Discussion

Main topic of this thesis was unification of formal concept analysis with the theory
of monotone systems. There is indeed much similarity: results of monotone system
seriation, “blocks”, are essentially formal concepts; problems like finding the best
decision, developed initially without any connection to FCA, have natural counterpart
- best concept chain. Such connections suggest similarity between two fields and
possibilities for future research about combining them.

The work on this thesis was greatly influenced by the case study of Hiiumaa and
Saaremaa. The aim of data analysis has been getting the results that are compact, easy
to understand, unambiguous and describe the data well. Combination of monotone
systems methods with FCA was motivated by the difficulties of extracting semantic
information from monotone systems results. MONOCLE method, proposed here,
gives results that can be both compact and contain semantic information in an easily
accessible form. Central idea of the MONOCLE method is concept area: we are not
interested only in the size concepts intent or extent but in the product of their sizes.
Our case studies seem to confirm the validity of MONOCLE approach as results are
both interesting and sensible. Entropy based concept similarity measure aids further
in interpretation of the results and in the evaluation of concepts uniqueness for certain
context. Such a similarity measure can be used independently of the MONOCLE
method, in the other fields of FCA.

6.2 Contributions of the thesis

To summarize, main contributions of this thesis are:

• Presentation of the theory of monotone systems in a way compatible with the
language of FCA.
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• Conformity plot visualization method, that gave good results for our case study.

• Redefinition of the problem of finding the best decision as the problem of find-
ing the best concept chain and the discovery of its symmetry in regards to
objects and attributes.

• Enhancements to the algorithm for finding the best concept chain.

• MONOCLE method for data mining and knowledge discovery.

• Entropy based similarity measure for evaluating the uniqueness of a formal
concept.

• Application of known and new monotone systems methods to the case study
about Hiiumaa and Saaremaa.

Of these results, unification of FCA with the theory of monotone systems, MON-
OCLE method and entropy based similarity measure are probably mor important.

6.3 Directions for further study

This is very much a work in progress. One area for future study would be algorithmic
enhancements. MONOCLE method, for example, requires the generation of entire
concept lattice. It prunes this lattice for the human analyst but not in the algorithmic
sense. While the speed of it was adequate for our case studies, it will not scale up
for very large databases. Work by Tarjan et. al. [10] describes a fast monotone
heuristic for a related, but not same task, and comparison of its results to that of the
MONOCLE method would be of a great interest.

Comparing the results of MONOCLE method with other related methods like
clustering, association rules and so on would help greatly in defining the area of
applicability for the method.

Another necessary area of further study would be finding the new applications
for the described methods. One possible application area would be the presentation
of the search results from databases as concepts instead of a flat list.

Possibly most important area for future study would be the further unification of
different methods. For example, both monotone systems and formal concept analysis
have obvious connections to the well established research fields of bipartite graphs
and association rule mining. Such an unification would show these methods not as
separate tools but as different branches of the same general and powerful approach.
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Formaalsed mõisted monotoonsete süsteemide
teoorias

Lühikokkuvõte

Formaalne mõistete analüüs ja monotoonsete süsteemide teooria on mõlemad
hästituntud andmekavandamise ja teadmushõive meetodid, mille seoseid on seni-
maani vähe uuritud. Selles dissertatsioonis uuritaksegi neid seoseid ja pakutakse
välja mõned uued teadmushõive meetodid, mis kombineerivad mõlema lähenemise
omadusi.

Formaalset mõistet iseloomustavad tema ekstensioon, objektide hulk, ja inten-
sioon, nende objektide ühiste atribuutide hulk. Nende vahel on defineeritud teatud
matemaatiline seos, mille kohaselt need hulgad peavad olema teatud mõttes lokaalselt
maksimaalsed.

Monotoonsete süsteemide teooria põhineb monotoonsetel kaalufunktsioonidel ja
seda kasutatakse tihti järjestamiseks: andmetabeli korrastamiseks peidetud struktuuri
avamise eesmärgil. See töö väidab, et selline struktuur on formaalsete mõistete hulk.

Töös on läbiva näite ja tulemusena kasutatud Saare- ja Hiiumaa asulate sotsiaal-
majanduslike andmete analüüsi. Selle uuringu eesmärgiks oli majandusliku ja sot-
siaalse arengu mustrite leidmine.

Töös pakutakse välja konformsusgraafiku visualisatsioon, mis andis Saare- ja
Hiiumaa uuringus häid tulemusi ja defineeritakse parima otsuse leidmise probleem
ümber parima mõisteahela leidmise probleemina, mis võimaldab näha probleemi
sümmeetriat objektide ja atribuutide osas. Pakutakse välja mõned algoritmika-alased
parandused parima mõisteahela leidmiseks.

Monotoonsete süsteemide meetoditel ja formaalsel mõistete analüüsil on tea-
tud probleeme suurte andmetabelitega. Siin töös pakutakse välja MONOCLE mee-
tod andmekaevandamiseks ja teadmushõiveks, mis üritab neid raskuseid leevendada.
MONOCLE meetodi tulemiks on oma tähtsuse järgi järjestatud formaalsete mõistete
jada.

Pakutakse välja ka meetod võrdlemaks neid tulemusi üle erinevate kontekstide,
nagu Hiiumaa ja Saaremaa: entroopiapõhine sarnasusmõõt formaalse mõiste unikaal-
suse hindamiseks.

Võtmesõnad: andmekaevandamine, teadmushõive, informatsiooni visualiseeri-
mine, monotoonsed süsteemid, formaalne mõistete analüüs.
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• Võhandu, Leo; Kuusik, Rein; Torim, Ants; Aab, Eik; Lind, Grete (2006).
Some algorithms for data table (re)ordering using Monotone Systems. In:
Proceedings of the 5th WSEAS International Conference on Artificial Intelli-
gence, Knowledge Engineering and Data Bases (AIKED 2006), Madrid, Spain,
February 15-17, 2006: 5th WSEAS International Conference on Artificial In-
telligence, Knowledge Engineering and Data Bases (AIKED 2006), Madrid,
Spain, February 15-17, 2006. Madrid: 2006, 417 - 422.

• Torim, A.; Lindroos, K. (2008). Sorting Concepts by Priority Using Theory of
Monotone Systems. In: Conceptual Structures: Knowledge Visualization and
Reasoning: ICCS’08 - Conceptual Structures: Knowledge Visualization and
Reasoning, 7-11 July, Toulouse, France. Heidelberg: Springer-Verlag, 2008,
(Lecture Notes in Computer Science; 5113), 175 - 188.

135



Curriculum Vitae (in Estonian)

1. Isikuandmed

Ees- ja perekonnanimi: Ants Torim
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tud raamistik monotoonsete süsteemide loomiseks (OORMON: object-oriented frame-
work for the study of monotone systems), Tallinn University of Technology

140



8. Research interests
Natural sciences and technology, computer sciences (data analysis, data mining,

formal concept analysis, monotone systems)

141


