
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Yaroslav Hrushchak 172685IVSM

Visual Localization for Iseauto Using
Structure from Motion

MSc thesis

Supervisor
Juhan-Peep Ernits, PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Yaroslav Hrushchak 172685IVSM

Visuaalne lokaliseerimine Iseautole
kasutades ruumilise info tuletamist

kaamera liikumisest

Magistritöö

Juhendaja
Juhan-Peep Ernits, PhD

Tallinn 2019

Declaration

I declare that this thesis is the result of my own research except as cited in the refer-
ences. The thesis has not been accepted for any degree and is not concurrently submitted
in candidature of any other degree.

May 14, 2019

Yaroslav Hrushchak

........................
(Signature)

Abstract

This thesis describes an approach of solving a localization problem for Iseauto based
on visual data only utilizing an open-source structure-from-motion software (OpenSfM).
OpenSfM is a structure-from-motion library written in Python originally intended for
reconstructions of 3D objects based on feature matching and tracking among a set of
images. This work describes a workflow of performing localization, gives an overview of
main difficulties and provides a performance evaluation.

The main unit of interest is the Iseauto project of TalTech. For the data collection,
I am utilizing fish-eye and rectilinear cameras which are installed on the vehicle as well
as the RTK GNSS device for retrieving geolocation data. The approach described in this
work provides a relatively accurate results with an error of 0.5-1.5 meters with a single
3.2 megapixel camera. The precise error estimation is possible due to the high precision
of the installed GNSS device (precision up to 2cm). As the software for accessing the data
from the GNSS device was in development during the experiments in the current thesis,
not all collected data contains high precision coordinates. The computation performance
in its current form does not allow to localize the vehicle in real-time, but can be improved
in future work. The approach has value as it can be used as an auxiliary localization
system or as the only localization system for cost reduction purposes.

The thesis is in English and contains 61 pages of text, 6 chapters, 22 figures, 3 tables.

Annotatsioon

Käesolev magistriöö uurib kaamera liikumisest tuletatud ruumilise kujutise saamise
(SfM) meetodi rakendamist isesõitva auto lokaliseerimiseks kasutades vabavaralist teeki
OpenSfM. OpenSfM on ruumilise kujutise kaamera liikumisest tuletamise teek, mis on
kirjutatud programmeerimiskeeles python ja mis on algselt mõeldud 3D kujutiste tule-
tamiseks hulgast kujutistest. Käesolev töö kirjeldab töövoogu, kuidas kaamera asukohta
kaadri järgi lokaliseerida ning annab ülevaate põhilistest raskustest tulemuse saavutamisel
ning kirjeldab jõudlustulemusi.

Käesoleva töö kontekstiks on Tallinna Tehnikaülikooli Iseauto projekt. Andmete
kogumiseks kasutasime autole paigaldatud kaameraid lainurkobjektiiviga ning väga
väikeste moonutustega objektiiviga. Lisaks kasutasime RTK GNSS seadet, mis võimal-
das suure täpsusega salvestada auto asukohta.

Töös kirjeldatud lähenemine annab üsna täpse tulemuse: katsetustes on kaamera
asukoha arvutamise viga vahemikus 0,5 - 1,5 m, kasutades üht 3,2 megapikslise sen-
soriga kaamerat. Üsna täpse veahinnangu saamine oli võimalik, kuna Iseautole on paigal-
datud väga suure täpsusega GNSS seade (täpsusega kuni 2 cm). Kuna GNSS seadmega
suhtlemise tarkvara oli käesoleva töö kirjutamise ajal samuti arenduses, ei ole kõigis
kogutud andmekomplektides täpseid GNSS andmeid.

Loodud tarkvaralahendus ei sobi veel jõudluselt reaalajas lokaliseerimiseks, kuna
koordinaadivihjega (nt ebatäpselt GNSS sealdmelt) kaadri lokaliseerimine võtab u. 30
sekundit ja vihjeta mõned minutid sõltuvalt rekonstruktsiooni suurusest, kuid jõudlust
saab järgnevates töödes parandada näiteks arvutusi paralleliseerides ning sobivat kaadrite
indekseerimissüsteemi kasutades.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 61 leheküljel, 6 peatükki,
22 joonist, 3 tabelit.

Contents

1 Introduction 1

1.1 Problem statement and contribution of the thesis 1

1.2 Autonomous vehicles . 2

1.3 TTÜ Iseauto project . 3

1.4 Outline of the thesis . 5

2 Related work: Existing approaches to the visual localization problem 6

2.1 Robust Visual Robot Localization Across Seasons Using Network Flows . 6

2.2 Visual Simultaneous Localization and Mapping (SLAM) 7

2.3 Localization for an Autonomous Vehicle with a Multi-Camera System . . 8

3 Structure from Motion and available implementations 10

3.1 Structure from motion . 10

3.2 Available solutions . 11

3.3 OpenSfM workflow . 13

4 Factors which influence the accuracy of camera pose estimation 18

4.1 Camera and lenses . 18

4.2 Exposure . 21

4.3 Weather conditions . 22

4.4 Physical obstacles . 24

v

4.5 Structural properties . 24

5 Geographic coordinate system and georeferencing 26

5.1 World Geodetic System 1984 (WGS84) and Universal Transverse Mer-
cator (UTM) . 26

5.2 Georeferencing the reconstruction . 27

5.3 Extraction of geopositions from the GNSS 29

6 Experimental Results 32

6.1 Manual georeferencing . 32

6.2 Automatical georeferencing . 34

7 Conclusion 38

References 40

Code examples 43

List of Figures 44

List of Tables 46

47

A Appendixes 48

A.1 Appendix A . 48

vi

1. Introduction

Self-driving cars are becoming more and more popular (both for research and com-
mercial purposes) as data processing units become smaller, more powerful and financially
accessible. The development of sensors and the development of data processing tools and
algorithms makes it possible to construct more complex systems.

Self-driving vehicles have some important advantages over the traditional way of
driving a car. First of all, a machine using different sensors might perceive more surround-
ing information than most humans (especially at night time). Secondly, unlike a human,
a machine cannot be distracted, cannot become tired or fall asleep (only discharge, but
that does not influence perception of the traffic situation) and also cannot be influenced
by diseases which cause loss of consciousness or muscle strength (stroke, heart attack,
seizure etc.). Any of these factors might lead to serious injuries and even deaths. Thirdly,
even if a driver doesn’t have any health problems and is able to drive safely, having a ma-
chine drive autonomously will ease the life of a passenger. Finally, eliminating the need
for car controls and a driver, it is possible to make the vehicle more spacious and carry
more people.

In a static environment with no possible obstacles such vehicle could be programmed
to move from a departing point to a destination point using special floor marks, but in a
dynamic environment (mainly outdoors) the surroundings tend to change unpredictably.
Thus, a self-driving machine has to assess the surrounding situation using sensors and
make a decision how to move further safely with less time consumption.

1.1 Problem statement and contribution of the thesis

One of the important abilities of a self-driving vehicle is to determine its position in
space in order to plan a path to the destination point. Although localization for a self-

1

driving vehicle could be implemented using a LiDaR system or a GNSS system, which
provide high accuracy, these devices are relatively expensive. and if it is possible to de-
velop a cheaper alternative with a competitive accuracy, it would allow to reduce expenses
on a single car unit and allow smaller researchers or developer teams to contribute to this
field. In addition to that, it would be preferably to have a fallback in case if main local-
ization solutions will end up with a failure (from a safety perspective).

Current approach for localization is using LiDaR system and Point Cloud Library to
map collected data onto a 3D point cloud map as described in [1]. The sensor measures
distances to objects in all directions by illuminating objects with pulsed lasers and esti-
mating the respond pulse time. These collected voxels afterwards are used to define the
machine position in space through pattern matching of a local point cloud onto a complex
point cloud (which should be preliminarily composed for an area of interest where the
vehicle is going to operate).

The main research goal would be to determine how well cameras can be utilized
within the Iseauto localization problem.

The expected outcome of this thesis is:

• An analysis of how to get a better reconstruction;

• Description of a visual based localization workflow;

• Analysis of the offered approach;

Expected approach to test if the goal of the developing system is being achieved is to
compare the accuracy with the GNSS system whose average error is up to 2cm and would
be considered as successful if the error would be not greater than 20cm.

1.2 Autonomous vehicles

In the recent years the development of autonomous vehicles is becoming more and
more popular object of development. Different organizations and companies get involved
in engineering and assembling of their own autonomous cars, i.e. vehicles which use var-
ious sensors for gathering data, a processing unit to process this data for making decisions
on further actions and actuators to actually move the whole unit. As summarized in [2],

2

There are a number of industrial companies worldwide working on self-
driving car projects, such as Volkswagen, BMW, Hyundai Motors, Audi,
Ford, General Motors, Honda, Mercedes, Nissan, Nvidia, Tesla, Toyota, etc.
It is interesting to note that Silicon Valley companies, including Google, Ap-
ple, and Uber, are seeking to become key players in this market even though
their history is not directly tied to the production of cars.

There are various reasons which influenced the gain in the number of developers.
First of all, the rapid technical progress led to the manufacturing of electronics, whose
computation power and data gathering precision is increasing while the size is becoming
smaller. Also, as the manufacturing technology improves and the competition between
manufactures increases, these electronics are becoming cheaper, which means that engi-
neering projects are becoming more affordable not only for private organizations but also
for university researchers.

Secondly, different developer teams and individual developers upload free open-
source software which can be reused for creating new functional. For example, in terms
of self-driving vehicles there is an open-source software named Autoware [3] which has
a rich number of modules for data gathering, computing and mechanisms actuation ca-
pabilities. This software might be used as a base for a self-driving vehicle allowing new
developers to focus on other aspects, such as safety, usability, objects recognition, opti-
mization of travel path etc.

Thirdly, such vehicles are welcomed by the society as they either eliminate a need
of having a driver on public transport, have a higher environment perception capabilities
which might provide a better decision making outcome, for individual drivers it might
allow to save energy after a hard day or during a long ride or at least cannot be affected
by diseases which cause loss of consciousness or muscle strength (stroke, heart attack,
seizure etc.).

1.3 TTÜ Iseauto project

The project of designing and construction of a self-driving vehicle at TTU started in
June 2017 and already has made a significant progress with a demo drive being conducted
on 20th of September. The main software which is used to control the vehicle is an open-
source Autoware which is run using Robot Operating System on Linux (Ubuntu). As
stated in [4], “next sensors are used in the ISEAUTO project to observe the environment

3

and mapping, localization and navigation:

• LiDaR Velodyne VLP-16x2;

• Ultrasonic sensors at the front and back x8;

• Ultrasonic sensors at the door side x6;

• A short-distance radar;

• Cameras x8;

• An RTK-GNSS;

• An IMU sensor."

The RTK-GNSS is a real-time satellite based navigation system which is very precise
(error up to 1 cm), although is expensive. The IMU sensor is an inertial measurement unit
used to measure a body’s angular rate (pitch, roll, yaw).

Figure 1.1: Design of ISEAUTO last-mile bus [4]

4

1.4 Outline of the thesis

Chapter 2: Related work

This chapter overviews the existing approaches to a visual based localization prob-
lem, like an approach using network flows.

Chapter 3: Structure from Motion and available implementations

This chapter introduces the principle of the structure from motion technique, cov-
ers the existing implementation and describes the reconstruction stages of the OpenSfM
software.

Chapter 4: Factors which influence the accuracy

Considering the localization problems based on camera vision it is important to take
into account that there are various types of lenses and factors like the weather, lighting
conditions, environment might continuously change. This chapter will cover these factors
as each of them might influence the final reconstruction.

Chapter 5: Geographic coordinate system and georeferencing

Usually a reconstruction is bound to a local coordinate system where coordinates
represent only relative positions between objects (voxels and cameras). To be able to
locate cameras and objects, it has to be bound to a geographical coordinate system. This
section will cover the main geographic coordinate systems and also compare available
georeferencing methods available in the OpenSfM.

Chapter 6: Results

This chapter will provide a test scenario and provide an analysis of this approach.

Chapter 7: Conclusion

The final chapter will conclude the thesis, its possible application and provide sug-
gestions for further improvements.

5

2. Related work: Existing approaches to the
visual localization problem

This chapter gives an overview of the existing approaches to solving the localization
problem based on visual data.

2.1 Robust Visual Robot Localization Across Seasons Us-
ing Network Flows

The work written by Tayyab Naseer, Luciano Spinello, Wolfram Burgard and Cyrill
Stachniss [5] proposes a solution of visual based localization across seasons which is
supposed to work at low frame rate and doesn’t require season-based feature learning. To
achieve the localization, they compute network flows in an association graph and compute
minimum cost flow. For this they use an image description which is computed using a
dense grid of Histogram of Gradients (HOG) descriptors [5]:

Instead of relying on keypoints, we compute for each image a fixed quantity
of descriptors. To achieve this, we tessellate the image into a grid of regular
cells, see Fig. 3. For each cell, we compute a HOG descriptor and combine
all descriptors into a single, dense description of the whole image. The over-
all image descriptor h is a vector composed of the concatenation of all the
histograms of gradients computed on all the cells.

There are various factors described in the paper which make the process non-trivial,
which include the difference in weather, illumination, change of the scene constructions
and also the difference in vehicle positions and speed of movement.

The data association graph is shown on Figure 2.1

6

Figure 2.1: Flow network graph [5]

Because the image is tessellated into small cells and each cell is used independently
to define a match, it is more likely that seasonal changes wouldn’t affect the resulting
accuracy much, as even if some cells might differ across seasons (covered by leaves or
revealed), other cells would look equal and would allow to recognize the place.

Although this method “accurately matches image sequences across seasons and it
outperforms two state-of-the-art methods such as FABMAP2 and SeqSLAM“ [5], it has
some disadvantages: firstly, it requires to store a large amount of images (thousands)
along the movement path which further would be processed to localization; secondly, the
vehicle has to move along a predefined route in order to recognize its location on this
route and the accuracy might dramatically fall if the vehicle would deviate from the route
as moving along a deviated route would provide images which would not match with the
ones stored in the database: “The car drove approximately along the same route but with
different speeds and due to traffic, it had to stop a few times at different locations while
acquiring the query images“ [5].

2.2 Visual SLAM

A paper written by José Ruiz-Ascencio [6] considers a localization approach, similar
to the approach used and evaluated in this work, based on images as the only data source,
but it considers an approach when a map creation and localization in space is being done
simultaneously. In addition, the paper only briefly describes the idea without going into
any details or analysis.The authors divided the visual SLAM problem into three groups:
probabilistic filters (maintenance of a probabilistic representation of a robot pose and

7

locations of environment landmarks), a technique employing a Structure from Motion
and bio-inspired models.

The standard procedure in this technique is to extract environment features, match
them and perform Bundle Adjustment (BA) to minimize the re-projection error, [6] :

SfM allows a high precision in the location of the cameras but does not nec-
essarily intend to create consistent maps. Despite this, several proposals have
been made using SFM to locate with precision while creating a good repre-
sentation of the environment.

The technique might match key features across images and estimate relative posi-
tions of the cameras buto depending on the image quality, the reconstructed structure or
point cloud might not be good enough for extraction of 3D objects and might not even be
recognized by a human. There are several factors which might cause to these inaccurate
reconstructions: blurred image due to the movement of a camera or an out-of-focus fo-
cusing (small vibrations an image might blur and it might have a significant influence for
thin structure element or for elements in the distance), dynamic objects in the environment
which might constantly move and therefore lead to false matches across images; repetition
of structure in different locations (traffic lights, brick/stone walls, buildings etc.).

2.3 Localization for an Autonomous Vehicle with a
Multi-Camera System

A recently published paper by Lionel Heng “Project AutoVision“ [7] (March 2019)
proposes the use of a 360 degree camera for visual based localization utilizing multi-view
geometry and deep learning. In order to perform localization, the authors have installed
12 Near-Infrared cameras with fisheye lenses (Figure 2.2). The cameras were calibrated
using ApriTag markers [8] which allows to calibrate multiple cameras at the same time
due to uniqueness of markers.

For estimating camera geolocation, authors propose two approaches. The first one is
used for localization at an unmapped area. For that, they have two thread running: track-
ing and mapping. Initially there should be a starting geolocation (received for example by
a GNSS device) and then using the last two frames and a depth information from a stereo-
cameras a new position is computed. An average computed geoposition error with this

8

Figure 2.2: Auto Vision vehicle platform [7]

direct visual-inertial odometry approach was about 9.5 meters but with high frequency
of 30Hz. The second one is used to localize at a mapped area using a Sparse 3D map
reconstruction. Having the pre-made map and an initial geoposition, they perform fea-
ture matching between the closest frame to estimate a location. This method has higher
accuracy (with error at about 3m), but lower frequency (2Hz).

In general, both approaches seem to have value for localization and the performance
is high for localizing a vehicle, the accuracy is not precise enough to be used for naviga-
tion purposes or for localization in an urban environment as a 3-9 meters error is signif-
icant. Another drawback is that the project uses simultaneously 12 cameras which is a
serious load for a CPU and a network.

In order to have a more flexible localization approach, I utilized the SfM technique
which is originally used for recreation of environment structure. As this technique in-
volves estimation of a relative camera positions, it is supposed to be able not only localize
along the covered route but also in the nearby area. As there are already existing software
products for performing reconstruction using SfM, I am going to overview them and using
the most suitable software, I will research how to utilize it for localization, evaluate prob-
lems, accuracy, efficiency and possible application. The work is oriented on the Iseauto
project and therefore I will have to utilize the software and hardware already installed on
the vehicle.

9

3. Structure from Motion and available imple-
mentations

A low-cost photogrammetric technique for structure reconstruction is called
Structure-from-Motion (SfM) [9] and was first developed in 1990s [10]. The software
implementations are to this date under active development and different developers pro-
vide various solutions with its own interface, functionality, performance, accuracy. Not all
of the implementations are free, but they are all based on the basic principles of tracking
common features across images. The SfM approach is mostly being used for geomorpho-
logical research and usually is based on data collected by drones. On the other hand, as
has been shown in [11], SfM can be customised for visual localization.

3.1 Structure from motion

Structure from motion is a special technique in computer vision for reconstruction
three-dimensional models from a sequence of two-dimensional images by analyzing the
motion between these images. This method allows computers to estimate distances to
objects using camera images in a similar way as humans when they move around some
object, as show on Figure 3.1.

The main data source in this method is a set of features. A feature is a piece of infor-
mation and on images it is represented by points and edges. Usually, a feature is detected
in a place where the intensity of an image significantly changes and can be represented
in a boolean value (presence or absence) or in a float value (by a corresponding level
of certainty). These detected features are then tracked within a set of images and used
to estimate interior and exterior parameters of cameras as well as the 3D position of the
features itself. The main requirement is that a single feature has to be visible on at least
three images but the additional images would provide better accuracy. As for the camera,

10

Figure 3.1: Camera positions for an SfM dataset [12]

the best result should be achieved using a digital SLR camera with a fixed focus lens and
capturing a static scene.

3.2 Available solutions

The area of image based localization has being studied for several decades and
there are various papers in this direction [6], [13], [14]. There are various tools
available for PC, smartphones and available as a service, which provide similar re-
construction output, but have different functionality and performance. The web-based
solutions include Autodesk 123D (which was replaced with Autodesk Recap [15])
and until 2017 Microsoft Photosynth. For local install there are Agisoft Photoscan,
PhotoModeler, VisualSFM (http://ccwu.me/vsfm/), SFMToolkit (http://
www.visual-experiments.com/demos/sfmtoolkit/), Agisoft Metashape
[16] and OpenSfM (https://github.com/mapillary/OpenSfM) and probably
more. Among the available solutions, the OpenSfM was selected as it operates on a Linux
system, has a permissive open source license which allows to modify the code to extend
functionality. For a comparison purpose on how good this open-source software recon-
struct objects, VisualSfM solution was tested, running both utilities on the same dataset.
Regarding the feature detection algorithms, VisualSfM uses HAHOG, but have a possi-
bility to use some other algorithms as would be described later.

For performing experiments, two types of images were collected: images extracted
from the Iseauto bus fisheye cameras and from a DSLR camera for comparison. The
images from the DSLR camera were slightly adjusted in a photo editing software, as
this already takes more time and effort to collect images comparing to the recordings

11

http://ccwu.me/vsfm/
http://www.visual-experiments.com/demos/sfmtoolkit/
http://www.visual-experiments.com/demos/sfmtoolkit/
https://github.com/mapillary/OpenSfM

from a vehicle which is more automated, so it seems reasonable to try to make the result
more accurate. The adjustments included removing highlights, amplifying shadows and
increasing sharpness and photo editors allow to apply defined settings to a bunch of photos
at once. For the Iseauto camera, the images also need adjustments because with the
fisheye lens they have a barrel distortion. Tackling the distortion will be covered in the
next chapter.

The results of running a reconstruction if presented on the Figures 3.2-3.5.

Figure 3.2: DSLR camera with OpenSfM

Figure 3.3: Fisheye camera with OpenSfM

Figure 3.4: DSLR camera with VisualSfM

Although, the results might look similar, on a closer look it is noticeable that
OpenSfM provides more 3D points and more precise result. The computation time is
presented in Table 3.1.

12

Figure 3.5: Fisheye with VisualSfM

Camera Type Lens model Software Reconstruction time
DSLR Nikkor 18-55mm OpenSfM 6m 40s
DSLR Nikkor 18-55mm VisualSfM 9m 45s

Fisheye Sunex DSL315 2.7mm OpenSfM 5m 25s
Fisheye Sunex DSL315 2.7mm VisualSfM 10m 5s

Table 3.1: Computation time comparison between OpenSfM and VisualSfM

It can be concluded that as OpenSfM provides a relatively accurate reconstruction
and also can be modified according to one’s needs being open-source, it was decided to
proceed with this software.

3.3 OpenSfM workflow

OpenSfM [17] is an open-source Structure from Motion library developed in Python
and still being developed with new developers willing to contribute to the project. It
consists of several modules which perform the estimation of camera poses and point cloud
reconstruction from images in a step-by-step manner.

There are two ways to setup the project:

1. Clone the repository, its submodules and dependent libraries:

1 git clone --recursive https://github.com/mapillary/OpenSfM}

2 cd OpenSfM

3 git submodule update --init --recursive

4
5 python setup.py build

Code example 3.1: Installing OpenSfM from a repository

13

Manually install the dependent libraries:

• OpenCV

• OpenGV

• Ceres Solver

• NumPy, SciPy, Networkx, PyYAML, exifread

2. Using a Dockerfile run a container

The docker file is presented in listing A.1 and was taken from a forum thread [18].

Here is the list of main modules with the description of what are they responsible
for:

1. extract_metadata

This module is responsible for extracting all the available metadata from the dataset
images. If the dataset provides an exif_overrides file it will read all the values from
that file. The most important values which can be overwritten are the focal length of
the lens which was used to take the photo and GNSS position of the frames, as the
first field might increase accuracy of the resulting reconstruction and the second one
allow to georeference the reconstruction either by manually estimating the location
or if there is another device which collects GNSS data along with images. Other
fields are hight, width, projection type, orientation, capture time. The GNSS and
the capture time also allow to decrease the computation time and in some cases
increase accuracy by restricting the feature matching pairs to a fixed number of
neighbours.

After the metadata has been read from the dataset images and from the exif_override
file it saves this metadata for each image into a separate folder so on the next run it
would not repeat the same operation.

2. detect_features

This module is responsible for detecting features on the dataset images. The fea-
tures are places on an image where the intensity significantly changes, representing
corners, edges and dots. The process of feature detection is needed to transform vi-
sion information into a vector space, which further might be used to perform math-
ematical operations (transformation, rotation, comparison etc.). The features are

14

extracted for each image in using OpenCV implementation of the specified feature
extraction algorithm and then also are saved into a separate folder.

There are various feature extraction algorithms like SIFT, SURF, AKAZE, HA-
HOG, ORB, which differ in accuracy and performance. In general, the most widely
used algorithms are SIFT and SURF, where SIFT provides better results and SURF
has lower accuracy but works about 3 times faster. In the experiments the default
HAHOG feature detector was used which is combination of Hessian Affine feature
point detector and HOG descriptor.

3. match_features

This module is responsible for matching image pairs. First it creates a set of images
pairs depending on a configuration file. It can either make a combination of all
images, which would make the reconstruction process the most time consuming,
create matching pairs by GNSS data, by name order or by a timestamp. Then after
the matching pairs have been computed, its goes through each pair and estimates
a match value. These matches are then being saved to the dataset folder and later
would be used to track common features’ motion among images.

4. create_tracks

This module is for creating tracks from pair-wise matches retrieved in the previous
step. A track basically represent a set of feature points which was detected both
images of image-pair and correspond to the same place in real world.

5. reconstruct

This is the main module which runs the incremental reconstruction algorithm and
the main goal of this module is to estimate the 3D positions of feature points (tracks
from the previous stage) and positions of cameras, which represent dataset images
with some translation and rotation. It starts the process by loading the data from
the previous steps and creating initial reconstruction made of two images. After
that it grows the initial reconstruction using the remaining images. At this step the
basic point cloud along with camera positions already can be observed in using the
internal web-viewer.

6. mesh

This module computes a triangular mesh of the scene and is used to simulate a
smooth transition between images in the web-viewer. The meshed reconstruction is
saved in a separate file and is only intended for demonstration purposes.

15

7. undistort

This module attempts to remove radial distortion form the reconstruction as well
as from the images (in case if the radial distortion parameters have been provided).
The undistorted version of the reconstruction is intended for further computation of
depthmaps.

8. compute_depthmaps

This module allow to extract a dense point cloud of the reconstruction in a format
which can be used by viewers which support .ply files (e.g. MeshLab).

In order to be able to perform path planning and path following, the localization pro-
cess should take as little time as possible. With the default setup, the OpenSfM recom-
putes everything using the available input dataset and doesn’t allow to add new images to
an existing reconstruction. The process of feature detection, feature matching, tracks cre-
ation and incremental reconstruction might take a significant amount of time depending
on the amount of input data. Thus, the code needs a modification which would allow the
software to use already computed reconstruction to dynamically add new frames to the
reconstruction.

The main idea of performing localization with the OpenSfM is to execute reconstruc-
tion process for an area of interest using a georeferenced set of images and then using the
reconstruction find a match for only one frame.

The modifications applied to the OpenSfM are listed in Appendix A.4. These
changes include:

• dataset auxiliary functions for saving and loading intermediate results (e.g. tracks)

• match_features for each matching method compute matches only for new images

• create_tracks load previously computed tracks, compute tracks only for new im-
ages

• reconstruction load existing reconstructions, for each reconstruction execute incre-
mental reconstruction using new images

The Table 3.2 shows the computation time for each reconstruction stage for different
scenarios. The dataset taken for this experiment consists of 30 rectified images taken from

16

Experiment extract metadata detect features match features create tracks reconstruct
Initial run without GNSS 1.5 s 11.4 s 56 s 2.7 s 33.4 s

New image without GNSS 0.7 s 4.4 s 49.2 s 3.2 s 7.3 s
Initial run with GNSS 2.8 s 12.9 s 13.6 s 2.5 s 35.9 s

New image without GNSS 0.7 s 6.1 s 46.4 s 2.8 s 11.0 s
New image with GNSS 0.7 s 6.0 s 8.9 s 2.7 s 7.6 s

Table 3.2: Computation time comparison for different scenarios

the Iseauto vehicle fish-eye camera and an additional file which contains GNSS positions
for each frame.

To sum up the table, to achieve the best performance the dataset used for reconstruc-
tion should have GNSS metadata as it will speed up the feature matching process which
takes the most time. Additionally, if a new image has GNSS data, even an approximate
value just to reduce the number of matching candidates, it will add it to the reconstruction
significantly faster.

When there is no GNSS data available, OpenSfM perform matching process for each
possible image pair combinations. Each such pair feature matching with the current setup
takes about 1.5 - 2 seconds and the bigger the area of interest is, the more time it would
take to add a single image, unless it has a hint of where the car might be at this moment.
Such a hint might be received from an Inertial Measurement Unit (IMU), an electronic
device which measures a body’s specific force and angular rate.

17

4. Factors which influence the accuracy of
camera pose estimation

The structure from motion technique completely depends on the visual data from
cameras, namely on the quality of the input images. There are various factors which
can influence on the reconstruction process. Considering the localization problems based
on camera images it is important to take into account that the environment might look
different during different time of a day, during different seasons or even during different
years. This chapter will cover the main aspects of the image acquisition process.

4.1 Camera and lenses

All modern cameras are equipped with lenses whose main purpose is to focus the
light rays from the objects of interest onto the camera sensor. When a camera sensor is
exposed to light, each single point of the sensor would collect a lot of light rays making
it impossible to receive an image. There is a projection model called pinhole perspective
(proposed by Brunelleschi in 15th century), which solves the problem of overlaying rays
by making a very small hole in a surface between an object of interest and an image plane
which would let a single ray from the object to be visible only on a single spot on the
image plane. The resulting image on the image plane will be inverted horizontally, but
would the light rays would not overlay meaning that the image should be sharp.

Nevertheless, in reality, making a hole so tiny that it will allow to pass only a single
ray of light is very hard if not impossible and, most importantly, such small hole wouldn’t
let too much light to go through, making the resulting image really dark. In order to focus
the light rays onto the image plane (or sensor) while keeping the amount of light on a
sufficient level, lenses are used.

There is a wide variety of lenses which have different sizes, different optical prop-

18

erties and purposes. The cameras which are installed in the Iseauto vehicle have fish-eye
lenses which means that the image they provide has barrel distortion. This is a form of
optical aberration when magnification decreases from the center of an image to its edges.
One of the widely used approach to solve this problem is to use an Open-Source Com-
puter Vision (OpenCV) library and a flat printed pattern (for example, a grid of black and
white boxes with known dimensions). With this setup as described in paper [19],

to calibrate one camera it takes several images of the calibration pattern in
various orientations. In the process either the calibration pattern or like in this
case the camera must be fixated while moving the other one around. In each
image the feature points of the pattern have to be detected by a pattern specific
feature detection algorithm like the algorithm for chessboards by Bennett [20]

Applying this algorithm would provide a non-distorted image, but as image has to be
rectified, the edges of the image would be cut out.

For the cameras (Basler aca2040-gc35) which are installed in the vehicle with a wide
angle lens (Sunex DSL315) and used for the datasets, the barrel distortions parameters has
already been estimated and can be found at [21]. The approach to correcting for the non-
linear relationship is to fit a suitable polynomial to the data points. A general function for
the latitude ϕ might be ϕ (r) = a0 + a1r + a2r

2 + ... + air
i + anrn. And for the DSL315

this function is ϕ (r) = 0.748x − 0.0272x2 − 0.0032x3 − 0.0198x4

A simple script might be used to rectify a group of images using a command-line
‘’convert” tool, which accepts two arguments (distortion type and distortion parameters)

1 #!/bin/bash

2
3 mkdir ./images

4 for img in ./*.jpg; do

5 convert $img -distort Barrel "-0.0198 -0.0032 -0.0272 0.748" ./

images/$img

6 done

Code example 4.1: Script for rectification of DSL315 frames

The result of tool execution with the mentioned parameters is presented on the Figure
4.1. Although the rectification produced more useful images, a significant part of images
was cut out as highlighted on the Figure 4.2.

19

(a) Before rectification (b) After rectification

Figure 4.1: Barrel distortion rectification

Figure 4.2: Highlight of the area received after rectification process in relation to the
original frame

Although such cameras have distortions and have to be calibrated using software,
they have an advantage over other cameras as they provide a wider field of view.

Another property which differ lenses is called a focal length, which stands for the
distance between a point where light rays converge forming a sharp image and a sensor.
The focal point primarily defines the field of view: the shorter the focal length, the wider
is the field of view. For the same camera sensor lenses with different focal length would
provide images with different magnifications and it would will seem that images were
made from different distances while in reality the camera would remain on the same spot.

Taking this into account, it important to understand that the lens used to create an
initial reconstruction and a lens, which is going to be used during the localization, have
to be of the same focal length. The SfM algorithm estimates position of a camera based

20

on the image features and their translation among a series of images and if an initial
reconstruction was made using a camera with low focal length lens, then an image made
with a higher focal lens camera would be recognized to be closer to objects than it is.

The last main aspect of a lens is its focus, as even slightly unfocused lens can signifi-
cantly decrease the resulting quality as blurry image would reduce the amount of detected
features. Considering the Iseauto bus, which is the main object of interest within the lo-
calization problem, it has three fish-eye lenses placed on the front and on the sides of the
car. The lenses are not securely attached to the camera body, but are rather in a floating
position where it can be screwed in or out and thus the focus would also change. Initially,
the lenses seemed to be in focus, but on a closer look it was noticeable that it is slightly
out of focus and objects’ edges were not as sharp as they should be, especially for further
objects. Slightly adjusted the focus on the lenses although didn’t bring much difference
in appearance for a common user but noticeably increased the resulting reconstruction
quality. Considering that the camera in its current placement is easily reachable, the lens
should be fixed in place after being properly adjusted.

4.2 Exposure

Exposure defines how bright or dark a resulting image would be. There are two
settings which affect the exposure. These are: the shutter speed and the aperture.

The aperture defines the opening through which light travels to the sensor. The bigger
the aperture is the more light a sensor will receive, but at the same time with smaller
aperture it is easier to adjust focus on objects at different distances.

The shutter speed defines the amount of time during which a sensor will be exposed
to light. The longer the shutter speed the brighter the resulting image would be, but at the
same time non-static objects would result to be blurry (motion blur). In case if the camera
is not static then the whole image would be blurry and unusable.

There is also a camera ISO, which stands for a sensor sensitivity, meaning how hard
each pixel received by the sensor would be brightened. This setting is usually used only
in those cases when it is not possible to get a sharp image and at the same time bright
image using the two previously mentioned settings. This setting should be the last one to
adjust, as the higher the sensitivity is set the more noise the image would get.

Keeping in mind these parameters it is important to define how they should be ad-

21

justed in order to get images with the highest amount of information without too dark
or too bright spots. The main problem is that outdoor in a changing environment, the
exposure has to be dynamically adjusted as the brightness can significantly change for
example due to changing natural precipitation as illustrated on the Figure 4.3.

Figure 4.3: Example of over- and underexposed images (frames were collected with the
same settings with a 10 minutes difference)

4.3 Weather conditions

During the whole year the weather has a great influence on the resulting image.
Firstly, this includes precipitation, e.g. snow flakes, rain or fog, which reduce the general
visibility and also after falling on a lens might blur (Figure 4.4), distort or refract the
environment. In addition to area of view, the weather change might also change the
lighting conditions as was previously shown on Figure 4.3. The fog reduces the viewing
range in general and might fluctuate in density.

Secondly, the clouds has a significant influence on how many details it is possible to
retrieve from the environment. During a day, when the clouds absent or present in very
small amount, the sun as a single lighting point might create a lot of contrast spots where
darker ones are harder for feature detection. As opposed to that, during a cloudy day the
clouds diffuse the sunlight and serve as a light area. When an environment is illuminated
with a light area, it is easier to detect the actual structure features.

We can expect that same environment might produce different images in terms of

22

Figure 4.4: Example of precipitation: a snowflake blurred a part of the image

shadows. Assuming we have a flat rectangle surface which has some object on one of
its sides. When the main outdoor source of light illuminates this surface without any
obstacles, all the surface would look smooth and solid. But when the light source is
positioned in such a way that some part of the light doesn’t reach the surface, being
absorbed by an object nearby, the image of the surface would be separated into 2 parts:
lighter one and darker one. The transition between these two parts might be sharp enough
for an edge detector to be classified as an edge, although in reality there are no edges.
Similarly to this, an edge that exists might not be detected if the color/brightness intensity
of the object would be similar to the background. This phenomenon is was mentioned in
[7]:

We think of sharp changes in image intensity as lying on curves in the image,
which are known as edges; the curves are made up of edge points. Many
effects can cause edges; worse, each effect that can cause an edge is not
guaranteed to cause an edge.

These effects mostly occur when the light mostly arrives from a single point source
unlike area sources where light is scattered and producing soft shadows (e.g. when sun-
light is scattered by clouds). According to [7],

The sun is usually modeled as a distant bright point. Light from the sun is
scattered by the air. In particular, light can leave the sun, be scattered by the
air, strike a surface, and be reflected into the camera or the eye. . . . A natural
model of the sky is to assume that air emits a constant amount of light per unit
volume; this means that the sky is brighter on the horizon than at the zenith
because a viewing ray along the horizon passes through more sky.

23

4.4 Physical obstacles

For performing structure from motion algorithm, the scene should be as static as
possible and the object of interest should be well visible. There are various possible fac-
tors which brings difficulties in visibility. They include moving people, parked vehicles,
fences and also foliage. The first two might continuously change during a day or a week.
The main problem is that the cameras currently are installed close to the ground and al-
though it can be usable for obstacle detection it blocks a lot of information as soon as any
object approaches or is being approached close enough as shown at Figure 4.5.

(a) (b)

Figure 4.5: An example of visibility problem when vehicles cover structure

In general, if not all the structure is covered, OpenSfM should still be able to localize
the images matching and tracking the visible features, but not always. For creating an
initial reconstruction the scene is still has to be as empty as possible, otherwise it does not
produce a usable output (Figure 4.6)

4.5 Structural properties

Problems with structural properties occur when a structure is homogeneous, repet-
itive, transparent or reflective. This might be affect even if matching is performed by
closest neighbours.

Homogeneous means that a surface is uniform in color or texture (Figure 4.7a).
When a surface is homogeneous it doesn’t have enough distinct features to be tracked be-
tween a set of images. When a repetitive structure or objects present, the feature matching

24

Figure 4.6: Bad reconstruction caused by the presence of parked vehicles which cover the
view. The dataset is georeferenced and rectified

process might match images from different locations assuming that as the features match,
they correspond to the same object. Figure 4.7b shows an example when it is possible
to have repetitive structure along with reflections, which is an another problem because
reflections might bring additional features which should not be recognized.

(a) Homogeneous (b) Repetitive with reflections

Figure 4.7: An example of homogeneous and reflective structures

25

5. Geographic coordinate system and georef-
erencing

In order to be able to estimate an image geolocation within a reconstruction, it has
to be georeferenced. This section will cover basics about coordinate systems, available
options to georeference the OpenSfM reconstruction and also an attempt to extract geopo-
sition from the GNSS device installed on the Iseauto.

5.1 WGS84 and UTM

The WGS84 is a standard definition of a global reference system for geospatial data
and serves as a reference system for GPS. It was established in 1984 and last updated in
2004 with the responsible organization called National Geospatial-Intelligence Agency
(NGA). This system projects coordinates onto an ellipsoid which has been estimated to
best fit the Earth shape with its origin in the Earth’s center of mass. The coordinates are
usually measured in decimal degrees or degrees, minutes, seconds. The latitude values
reside within the -90 degrees (to the South) and the +90 degrees (to the North). The
longitude values reside between -180 degrees (to the West) and +180 degrees (to the
East).

The UTM is a standard coordinate system which divides the Earth plane into 60
vertical zones each of which is six degree wide. The projection tries to minimize the
distortion in each zone, where the error is minimal near the central meridian and increases
when moving away. The coordinates itself have an easting range between 167 000 and
833 000 meters and a northing range between 1 100 000 and 9 300 300 [22].

For example, on figure 5.1 from [23] the UTM zones for Europe is presented.

Both of these systems are used in the OpenSfM: WGS84 for georeferencing and

26

Figure 5.1: Map of Europe divided into UTM zones [24]

UTM is the output format of the images’ coordinates.

5.2 Georeferencing the reconstruction

In the resulting reconstruction the position of the 3D points and cameras’ positions
are stored in world coordinates relatively to a reference frame, where X axis points to the
east, Y axis points to the north and Z axis points to the zenith. The camera position here
represents a position and rotation of a single shot in relation to other shots and points.

When there is no GNSS data provided for the input frames, the reference frame
contains zero coordinates and the reconstruction process tries to rotate the world reference
frame so Z is pointing in the vertical direction assuming that images were taken at the
similar altitudes and the up vector of the images correspond to the up vector of the world.
When GNSS data is provided, the software uses the topocentric reference frame for the
world coordinates reference in a form of latitude/longitude/attitude. This reference frame
is then used to compute the geo coordinates of all available images.

There are three possible ways to connect the reconstruction with the GPS data:

• Using Ground Control Points (GCP)

Ground Control Points are specific landmarks which are visible on the provided
images and which has a geospatial positions specified. To provide the dataset with
GCP it is required to create a file within the dataset which would specify the projec-
tion format to be used for the geo coordinates and then row by row GCP informa-
tion, including image name, pixel coordinate (x,y) and geospatial position (latitude,

27

longitude, altitude). Each GCP can be observed on several frames.

There are three possible formats in which the geospatial coordinates can be speci-
fied:

– WGS84 - standard latitude, longitude and altitude in degrees.

– UTM - format which splits the globe into 60 zones and uses coordinates in
meters.

– Proj4 - format which allows to specify a projection with various parameters.

The GCP points are used by the OpenSfM during two stages:

– Alignment: points are used to move the reconstruction in such a way that GCP
align with the GNSS positions. This stage requires at least two observations
for each GCP.

– Bundle adjustment: all GCP points are used to refine the reconstruction.

During an experiment I have provided a test dataset with several GCPs defining each
of them on several frames, but the resulting GNSS coordinates were not usable.
Probably the number of GCP were not enough or the image quality was not good
enough, but this approach takes too much effort and time to manually define a GCP
pixel coordinate on a frame, discover its geospatial position and save it into a file.

• Using GPS data available within the images’ metadata.

This approach is the easiest if the camera is able to capture a frame and save a GPS
position. In this case it is enough to just submit all the frames into the software and
launch the computation.

As long as all the images contain the Global Positioning System (GPS) data it is also
possible to boost the performance of the reconstruction process by restricting the
number of neighbours used by the software to capture motion, so it would compare
frames which correspond to totally different places.

• Overriding metadata of images.

This approach suggests creating a file in the root folder of a dataset which will over-
ride the images’ parameters in a form of a json file. There are various parameters
including GNSS location in a form of (latitude/longitude/altitude) and Dilution Of
Precision (DOP) in meters.

Providing the GNSS locations for the images might be done manually for each
image by identifying the position on a map and saving the coordinates or taking an
input from a navigation system.

28

5.3 Extraction of geopositions from the GNSS

In the Iseauto project it is possible to utilize the GNSS receiver which provides lo-
cation data with errors as low as 2 cm using the VRS Now GNSS correction service
(depending on conditions).

At the time of writing the thesis, there are two ROS topics which contain geospatial
data: nmea_sentence and gnss_pose. A message examples are presented in a block 5.1.
There are various messages in nmea_sentence, but the most relevant one is GNGGA.
It includes such fields as: Coordinated Universal Time (UTC) time, latitude, longitude,
number of satellites in use and altitude. The gnss_pose messages contain coordinates
in LAMBERT-EST of 1997 (L-EST97) [25] coordinate system and the nmea_sentence
messages contain positions projected onto a three-dimensional spherical surface which is
more usable as is more widely used.

1 #gnss_pose

2 −−−
3 header :

4 seq: 1636

5 stamp:

6 secs : 1555072188

7 nsecs : 564685106

8 frame_id: "map"

9 pose:

10 position :

11 x: 538012.246977

12 y: 6584245.13438

13 z: 23.076

14 orientation :

15 x: 0.0

16 y: 0.0

17 z: 0.0

18 w: 1.0

19 −−−
20 #nmea_sentence

21 header :

22 seq: 1639

23 stamp:

29

24 secs : 1555072188

25 nsecs : 764707088

26 frame_id: ''

27 sentence : "$GNGGA,122854.00,5923.66687006,N,02440.14221173,E,4,09,2.1,23.078,M

,18.400,M,0.8,2012*60"

Code example 5.1: Gnss_pose and nmea_sentence sample messages

In order to build an initial georeferenced reconstruction which could be used for
localization of new frames, it is necessary to record the area of interest in a form of
frames from the side cameras and GNSS positions of the frames. Although modern smart
cameras are able to make images along with GNSS positions, the cameras installed in the
Iseauto bus are only able to collect visual data and, thus, GNSS location can be collected
separately and then merged with the images.

In order to extract frames and GNSS locations, it is enough to subscribe to the
nmea_sentence and to one or several camera topics. Each Robot Operational System
(ROS) message consists of a Header (sequence ID, Unix timestamp, frame ID) and re-
quired data fields. One of the possible ways to synchronize images with GNSS data is to
use the timestamp from the messages’ headers. It should be also possible to save this data
in a real-time but saving these two groups of messages explicitly gives more flexibility.

The script A.2 collects the data from the left/right cameras and from the GNSS. The
images are saved into separate folders according to camera positions and the filename
corresponds to the timestamp of the message. GNSS data is stored in two formats in two
separate files. One of them is used to create a .kml file which is convenient for exploration
and another file is used to generate an exif_overrides.json file which would describe GNSS
location for each image and would be used by OpenSfM.

The exif_overrides.json file can be generated with the script A.3. It uses the folder
with timestamp-named images and a file with timestamp-referenced GNSS locations, gen-
erated by the script A.2 and attempts to find for a each image a corresponding GNSS lo-
cation and save this information in correct format into separate file. Due to the fact that
messages from the ROS topics are generated with different nanoseconds value (especially
if they have different frequency), it was decided to match images with a seconds precision
as difference in nanoseconds might filter out a lot of data. When a match is found, it is
written into the output file. If the image doesn’t have a corresponding GNSS position it is
removed from the folder.

The GNSS device was installed and configured only recently and is still under de-

30

velopment. Although it provides accurate geospatial data, it seems that there are some
problems with message generation (at the same frequency with cameras (5 Hz)) as the
GNSS messages are shifted and stretched in time. For example, we made two test-drives
recording data from cameras and GNSS. As can be seen at Figure 5.2, GPS positions
from the first file correspond to the path which was covered to the starting point before
we started to record anything. The second file contains GNSS positions which correspond
to the last part of the first run, but although this path was covered in about 30 seconds,
the GNSS positions cover about 90 seconds of recording. Later it was discovered that it
is possible to get correct data with correct timestamp at a frequency of 2 Hz, but getting
data at higher frequency has to be investigated.

Figure 5.2: Visualization of recorded GNSS locations during two test-drives (red line -
first recording, yellow line - second recording, blue line - the actual path covered during
the first recording)

31

6. Experimental Results

In this chapter an account for an experiment of collecting data with Iseauto and
performing visual localization on the data is given.

First of all, to be able to perform localization of a new image, an initial reconstruction
has to be computed. The dataset required for initial reconstruction is a folder with a set
of images of an area of interest and an OpenSfM config file, which overwrites default
settings.

The dataset should also contain GNSS coordinates of the vehicle for the purpose of
estimating the localization precision for the images.

In the Iseauto bus, the data extraction can be done in real-time from the vehicle or
from a rosbag recording. In both cases it is enough to subscribe to the left/right camera and
nmea_sentence topics. A subscriber written in Python was mentioned in previous chapters
and is listed in the Appendix A.2. The images from the first topic can be grayscale as
feature detection doesn’t use the colors and have to be rectified if barrel distortion is
present using the “convert“ tool as described in the previous chapters.

The last topic is used to retrieve GNSS positions for the images, but at the time of
writing the thesis the GNSS position messages were recorded with 2 Hz frequency, while
the images are recorded at 10 frames per second.

6.1 Manual georeferencing

For the first experiment the GNSS data for the extracted images was assigned manu-
ally using a Google Maps. In either way, the GNSS locations should be saved in a specific
.json file in a specific format understandable by OpenSfM.

32

(a) Point-cloud loaded using a web-viewer
(b) GPS locations of the
images

Figure 6.1: Initial reconstruction

The config file is optional and is used to override the default settings. The most useful
parameters which should be overwritten are: a number of threads for parallel computa-
tions (should be configured according to the hardware), a number of image neighbours
for feature matching process (by timestamp, by name or by GNSS location) and maxi-
mal distance to the neighbours. Depending on the number of threads, quality of images,
number of images and applied matching limitation this step might some amount of time
(starting from 1-2 minutes for a very small dataset). After an initial reconstruction has
been done and it is of a good quality it should be possible to perform localization.

For the actual localization, a one need to extract an image from a camera, rectify it (in
the case of a wide angle lens) and add it to the dataset. If possible, it would be very useful
to provide the image with an approximate geoposition (manually or, for example, using
IMU to estimate possible location based on the previous location). This rough position
would be used by the OpenSfM only to restrict the number of images for feature matching
and would give a boost in performance.

A manually georeferenced sample dataset of a 65-meter area as shown at Figure 6.1
was reconstructed within about a minute. The dataset for the initial reconstruction was
taken from a one direction run and the image to localize was taken 10 minutes later on the
way back.

To extract the geolocation coordinates the following command is used:

33

(a) An updated reconstruction with a new image

(b) Coordinate of the newly
added image produced by the
software

Figure 6.2: Result of localization of an image

1 opensfm export_geocoords --proj="+proj=utm +zone=35 +north +ellps=

WGS84 +datum=WGS84 +units=mm +no_defs" --image-positons

path_to_the_dataset

Code example 6.1: Script for rectification of DSL315 frames

This generates a list of coordinates by a frame name in a UTM format for the 35th
zone. As shown on the Figure 6.2a the position of the camera is estimated correctly.

The process of estimating of a new image within the initial reconstruction took 65
seconds without a hint (takes about 25 seconds with a GNSS hint). A bigger reconstruc-
tion would take more time but as the functionality of getting the GNSS locations for
images automatically emerged only at the time of finishing the thesis, bigger areas were
not tested.

6.2 Automatical georeferencing

For the next experiment a bigger dataset was recorded along with GNSS data from
the GNSS device. The images were taken from two cameras for comparison: one was
directed to the left (fisheye lens) and another one to the forward-left (non-distorted lens
lifted about 150 cm above the ground). As can be seen on Figure 6.3 rectified images from
a fisheye lens produced much worse results even with GNSS data and it does not seem
reasonable to attempt to localize with respect to such reconstruction. Utilizing images

34

(a) Using rectified images from a fisheye camera (b) Using images from a rectilinear camera

Figure 6.3: Reconstruction of the same area with different lenses

from fish eye lenses requires the SfM approach to be elaborated as in e.g. [7].

In order to estimate the localization error, some images with GNSS data were not
included in the initial reconstruction and were used as test images. This way there would
be no direct image match with the dataset and the position should be computed in relation
to other images. Although it could be more useful to take data from different recordings
and, with under different environmental and light conditions, it was out of scope of the
current thesis because of time limits and the fact that subsystems such as GNSS were
developed in parallel. In the data sets collected during many of the early experiments,
it often happened that the coordinate data was completely unusable. In Figure 6.4 two
similar routes were recorded with a 1 minute interval and only one of the recordings
contains usable GNSS data. The localization result of 15 test images is summarized in
the Table 6.1 and visualized on the Figure 6.5

Figure 6.4: Illustration of two GNSS data recordings from the Iseauto GNSS device

An average error according to the test results is fluctuating between 0.3 and 1.5

35

Image seq GNSS geoposition Estimated geoposition Error
1 59.3937204442, 24.6707128648 59.393723, 24.670715 0.3 m
2 59.3937692218, 24.6711889497 59.393774, 24.671185 0.578 m
3 59.3938169573, 24.6716236708 59.393821, 24.671618 0.554 m
4 59.3939723272, 24.671755331 59.39397, 24.671702 3.02 m
5 59.3943693802, 24.6716013055 59.394361, 24.671579 1.574 m
6 59.393743884, 24.6709495815 59.393747, 24.670944 0.470 m
7 59.3937936787, 24.6714144602 59.393796, 24.671407 0.497 m
8 59.393879209, 24.6717783962 59.393876, 24.671762 0.998 m
9 59.3940674252, 24.6717060073 59.394056, 24.671688 1.633 m

10 59.3942685987, 24.6716375402 59.394237, 24.671652 3.615 m
11 59.3944661977, 24.6715488305 59.394457, 24.67153 1.481 m
12 59.394516873, 24.6714009375 59.394511, 24.671397 0.691 m
13 59.3944589815, 24.6712752842 59.394464, 24.671277 0.568 m
14 59.394369202, 24.6713067248 59.394367, 24.671282 1.426 m
15 59.394274858, 24.6713594573 59.394283, 24.67136 0.908 m

Table 6.1: Comparison of actual and computed geopositions with an error in meters

Figure 6.5: Illustration of actual and estimated image geopositions (green and cyan re-
spectively)

meters, and only 2 times the error is above 3 meters. In almost all cases, the estimated
position has a shift towards the direction of the camera, which is consistent with the
camera positioning within the vehicle. In general, the conditions for the dataset were
good (despite the presence of reflections both from the windows of the buildings and from
the vehicle window in front of the lens). As part of the future work it would be useful
to collect data the accuracy during different seasons, in more locations and perform a
more complete evaluation of various combinations of settings. Within this dataset size,
localization takes about 10 minutes, but if a hint is provided, the time can be reduced
up to 30 seconds (depending on the precision of the hint). The feature matching process
across image pairs takes the most time, so when it comes to improving the performance,
the matching stage has to be optimized in the first place.

36

With the average localization error of 1.5 m and computation time for localizing each
frame in 30 seconds, the approach not yet usable for real time navigation purposes, but the
experiment demonstrates that visual localization is a worth while topic to be researched
further.

37

7. Conclusion

The main purpose of the localization functionality is to enable the vehicle to be aware
of where it is in space (on the map) and to be able to follow a path. A path is the result
of path planning between the starting and destination point. The ability to carry out path
following depends heavily on the performance and accuracy of localisation.

In the current thesis we investigated how visual localisation could be realized using
structure from motion. The goal was to run experiments where we could measure the
precision of camera pose estimation with the SfM approach based on the sensor set avail-
able in Iseauto. We benefitted from the fact that Iseauto has an RTK GNSS positioning
solution with localisation precision of down to 2 cm, thus giving us a precise reference
framework.

The visual localisation solution developed within the thesis is currently not yet fit for
real time localisation as the reconstruction process that is used for camera pose estimation
takes on average about 30 seconds if a new image has a rough hint of where it might be
(something that can be estimated from inertial tracking and cheap GNSS receivers) and
might take minutes if no hint is provided. The computation time also depends on the size
of the reconstruction, i.e. how many frames the current part of the map contains. The
number of images can be limited by the functionality of dividing the map into submodels
(a feature present in OpenSfM). An obvious optimisation would be to utilize the GPU
for critical computations (as has been done in VisualSfM). The most time consuming
operation is currently feature matching. There are approaches in the literature to optimise
the matching as well. Currently the software performs feature matching of all-to-all or
neighbour image-pairs depending on the settings.

Considering the experiments, it can be concluded that although the computation time
of the camera pose for a frame does not allow to perform localization in real time, the
error is fairly small (we observed an error of 0.5-1.5m) considering that we only used
a single 3.2 megapixel camera. The result confirms that it is worth while to investigate

38

visual localisation further and try combining information from multiple cameras with the
information from the inertial tracking unit. As part of the future work it would be worth
while to investigate how to reduce the computation time of the next position relative to the
previous position despite the size of the initial reconstruction or the way the reconstruction
is divided into submodels.

Additionally, it is worth while to ask how to optimize the overall reconstruction
pipeline to allow to perform localization in real time. For example, it should be possi-
ble make the feature matching process more parallel or modify the code not to save the
intermediate results to the disk but keep critical data in memory.

The benefit of the visual localization approach is that the setup is much cheaper than
the use of a GNSS or a LiDAR, therefore can be used in the context where cost needs to
be optimized. For the Iseauto project it can be used as an auxiliary localization system.

39

References

[1] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato
Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii,
and Takuya Azumi. Autoware on board: Enabling autonomous vehicles with em-
bedded systems. In Proceedings of the 9th ACM/IEEE International Conference on

Cyber-Physical Systems, ICCPS ’18, pages 287–296, Piscataway, NJ, USA, 2018.
IEEE Press. ISBN 978-1-5386-5301-2. doi: 10.1109/ICCPS.2018.00035. URL
https://doi.org/10.1109/ICCPS.2018.00035.

[2] Raivo Sell, Anton Rassõlkin, Mairo Leier, and Juhan Ernits. Self-driving car iseauto
for research and education. 06 2018. doi: 10.1109/REM.2018.8421793.

[3] Autoware repository. URL https://github.com/

autowarefoundation/autoware. Accessed 2019-01-09.

[4] Anton Rassõlkin, Raivo Sell, and Mairo Leier. Development case study of the first
estonian self-driving car, iseauto. Electrical, Control and Communication Engineer-

ing, 14:81–88, 07 2018. doi: 10.2478/ecce-2018-0009.

[5] Tayyab Naseer, Luciano Spinello, Wolfram Burgard, and Cyrill Stachniss. Robust
visual robot localization across seasons using network flows. In Proceedings of the

Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI’14, pages 2564–
2570. AAAI Press, 2014. URL http://dl.acm.org/citation.cfm?id=

2892753.2892907.

[6] Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rendón-Mancha. Vi-
sual simultaneous localization and mapping: a survey. Artificial Intelligence Review,
43(1):55–81, Jan 2015. ISSN 1573-7462. doi: 10.1007/s10462-012-9365-8. URL
https://doi.org/10.1007/s10462-012-9365-8.

[7] Lionel Heng, Benjamin Choi, Zhaopeng Cui, Marcel Geppert, Sixing Hu, Benson
Kuan, Peidong Liu, Rang M. H. Nguyen, Ye Chuan Yeo, Andreas Geiger, Gim Hee

40

https://doi.org/10.1109/ICCPS.2018.00035
https://github.com/autowarefoundation/autoware
https://github.com/autowarefoundation/autoware
http://dl.acm.org/citation.cfm?id=2892753.2892907
http://dl.acm.org/citation.cfm?id=2892753.2892907
https://doi.org/10.1007/s10462-012-9365-8

Lee, Marc Pollefeys, and Torsten Sattler. Project autovision: Localization and 3d
scene perception for an autonomous vehicle with a multi-camera system. CoRR,
abs/1809.05477, 2018. URL http://arxiv.org/abs/1809.05477.

[8] John Wang and Edwin Olson. Apriltag 2: Efficient and robust fiducial detection. In
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

2016, Daejeon, South Korea, October 9-14, 2016, pages 4193–4198. IEEE, 2016.
ISBN 978-1-5090-3762-9. doi: 10.1109/IROS.2016.7759617. URL https://

doi.org/10.1109/IROS.2016.7759617.

[9] J. L. Schönberger and J. Frahm. Structure-from-motion revisited. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 4104–
4113, June 2016. doi: 10.1109/CVPR.2016.445.

[10] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under
orthography: a factorization method. International Journal of Computer Vision, 9
(2):137–154, 1992. doi: 10.1007/BF00129684. URL https://doi.org/10.

1007/BF00129684.

[11] Torsten Sattler, Michal Havlena, Filip Radenovic, Konrad Schindler, and Marc
Pollefeys. Hyperpoints and fine vocabularies for large-scale location recognition.
In 2015 IEEE International Conference on Computer Vision, ICCV 2015, San-

tiago, Chile, December 7-13, 2015, pages 2102–2110. IEEE Computer Society,
2015. ISBN 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.243. URL https:

//doi.org/10.1109/ICCV.2015.243.

[12] N Micheletti, Jim Chandler, and Stuart Lane. Structure from motion (sfm) pho-
togrammetry. pages 1–12, 01 2013.

[13] Wei Zhang and Jana Kosecka. Image based localization in urban environments. In
Proceedings of the Third International Symposium on 3D Data Processing, Visual-

ization, and Transmission (3DPVT’06), 3DPVT ’06, pages 33–40, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 0-7695-2825-2. doi: 10.1109/3DPVT.
2006.80. URL https://doi.org/10.1109/3DPVT.2006.80.

[14] Zhiwei Zhu, Taragay Oskiper, Supun Samarasekera, Rakesh Kumar, and Harpreet S
Sawhney. Real-time global localization with a pre-built visual landmark database. In
2008 ieee conference on computer vision and pattern recognition, pages 1–8. IEEE,
2008.

41

http://arxiv.org/abs/1809.05477
https://doi.org/10.1109/IROS.2016.7759617
https://doi.org/10.1109/IROS.2016.7759617
https://doi.org/10.1007/BF00129684
https://doi.org/10.1007/BF00129684
https://doi.org/10.1109/ICCV.2015.243
https://doi.org/10.1109/ICCV.2015.243
https://doi.org/10.1109/3DPVT.2006.80

[15] Autodesk Recap: Structure from motion utility from Autodesk, . URL https:

//www.autodesk.com/products/recap/overview. Accessed 2019-04-
22.

[16] Agisoft Metashape: Structure from motion utility from Agisoft, . URL https:

//www.agisoft.com/features/professional-edition/. Accessed
2019-04-22.

[17] Pau Gargallo. OpenSfM Structure from motion utility. URL https://github.

com/mapillary/OpenSfM. Accessed 2019-04-22.

[18] Walter Morawa. OpenSfM Dockerfile, 2017. URL https://stackoverflow.

com/questions/42742067/opensfm-setup-py-file-returning-

error-after-building-via-docker. Accessed 2019-01-07.

[19] Kühling C. Fisheye Camera System Calibration for Automotive Applica-
tions., 2017. URL http://www.mi.fu-berlin.de/inf/groups/ag-

ki/Theses/Completed-theses/Master_Diploma-theses/2017/

Kuehling/Master-Kuehling.pdf. Accessed 2018-12-15.

[20] Stuart Bennett and Joan Lasenby. Chess - quick and robust detection of chess-board
features. CoRR, abs/1301.5491, 2013. URL http://arxiv.org/abs/1301.

5491.

[21] DSL315 Specification Sheet. URL http://www.optics-online.com/

OOL/DSL/DSL315.PDF. Accessed 2018-11-23.

[22] Universal Transverse Mercator coordinate system. URL https:

//en.wikipedia.org/wiki/Universal_Transverse_Mercator_

coordinate_system. Accessed 2019-04-26.

[23] The UTM zones for Europe., . URL https://www.xmswiki.com/wiki/

File:Europe.png. Accessed 2019-04-26.

[24] UTM zones of Europe, . URL https://www.xmswiki.com/wiki/UTM_

Coordinate_System. Accessed 2019-03-15.

[25] Raivo Aunap. Estonian coordinate system, 2001. URL http://www.geo.ut.

ee/~raivo/ESTCOORD.HTML. Accessed 2019-04-24.

42

https://www.autodesk.com/products/recap/overview
https://www.autodesk.com/products/recap/overview
https://www.agisoft.com/features/professional-edition/
https://www.agisoft.com/features/professional-edition/
https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM
https://stackoverflow.com/questions/42742067/opensfm-setup-py-file-returning-error-after-building-via-docker
https://stackoverflow.com/questions/42742067/opensfm-setup-py-file-returning-error-after-building-via-docker
https://stackoverflow.com/questions/42742067/opensfm-setup-py-file-returning-error-after-building-via-docker
http://www.mi.fu-berlin.de/inf/groups/ag-ki/Theses/Completed-theses/Master_Diploma-theses/2017/Kuehling/Master-Kuehling.pdf
http://www.mi.fu-berlin.de/inf/groups/ag-ki/Theses/Completed-theses/Master_Diploma-theses/2017/Kuehling/Master-Kuehling.pdf
http://www.mi.fu-berlin.de/inf/groups/ag-ki/Theses/Completed-theses/Master_Diploma-theses/2017/Kuehling/Master-Kuehling.pdf
http://arxiv.org/abs/1301.5491
http://arxiv.org/abs/1301.5491
http://www.optics-online.com/OOL/DSL/DSL315.PDF
http://www.optics-online.com/OOL/DSL/DSL315.PDF
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://www.xmswiki.com/wiki/File:Europe.png
https://www.xmswiki.com/wiki/File:Europe.png
https://www.xmswiki.com/wiki/UTM_Coordinate_System
https://www.xmswiki.com/wiki/UTM_Coordinate_System
http://www.geo.ut.ee/~raivo/ESTCOORD.HTML
http://www.geo.ut.ee/~raivo/ESTCOORD.HTML

Code examples

3.1 Installing OpenSfM from a repository 13

4.1 Script for rectification of DSL315 frames 19

5.1 Gnss_pose and nmea_sentence sample messages 29

6.1 Script for rectification of DSL315 frames 34

A.1 Changes applied to the project to allow adding frames without recomput-
ing everything from scratch . 48

A.2 Python subscriber for ROS topics (Pylon camera and GNSS) 49

A.3 Python source code for generating an exif_overrides.json, which refer-
ence images with the corresponding GPS coordinates 52

A.4 Changes applied to the OpenSfM project to allow a dynamic addition of
new images . 53

43

List of Figures

1.1 Design of ISEAUTO last-mile bus [4] 4

2.1 Flow network graph [5] . 7

2.2 Auto Vision vehicle platform [7] . 9

3.1 Camera positions for an SfM dataset [12] 11

3.2 DSLR camera with OpenSfM . 12

3.3 Fisheye camera with OpenSfM . 12

3.4 DSLR camera with VisualSfM . 12

3.5 Fisheye with VisualSfM . 13

4.1 Barrel distortion rectification . 20

4.2 Highlight of the area received after rectification process in relation to the
original frame . 20

4.3 Example of over- and underexposed images (frames were collected with
the same settings with a 10 minutes difference) 22

4.4 Example of precipitation: a snowflake blurred a part of the image 23

4.5 An example of visibility problem when vehicles cover structure 24

4.6 Bad reconstruction caused by the presence of parked vehicles which cover
the view. The dataset is georeferenced and rectified 25

44

4.7 An example of homogeneous and reflective structures 25

5.1 Map of Europe divided into UTM zones [24] 27

5.2 Visualization of recorded GNSS locations during two test-drives (red line
- first recording, yellow line - second recording, blue line - the actual path
covered during the first recording) . 31

6.1 Initial reconstruction . 33

6.2 Result of localization of an image . 34

6.3 Reconstruction of the same area with different lenses 35

6.4 Illustration of two GNSS data recordings from the Iseauto GNSS device . 35

6.5 Illustration of actual and estimated image geopositions (green and cyan
respectively) . 36

45

List of Tables

3.1 Computation time comparison between OpenSfM and VisualSfM 13

3.2 Computation time comparison for different scenarios 17

6.1 Comparison of actual and computed geopositions with an error in meters . 36

46

List of Acronyms

HOG Histogram of Gradients

IMU Inertial Measurement Unit

SfM Structure-from-Motion

OpenCV Open-Source Computer Vision

WGS84 World Geodetic System 1984

UTM Universal Transverse Mercator

NGA National Geospatial-Intelligence Agency

GCP Ground Control Points

GPS Global Positioning System

DOP Dilution Of Precision

UTC Coordinated Universal Time

L-EST97 LAMBERT-EST of 1997

ROS Robot Operational System

SLAM Simultaneous Localization and Mapping

BA Bundle Adjustment

47

A. Appendixes

A.1 Appendix A

1
2 FROM ubuntu:16.04

3
4 # Install apt-getable dependencies

5 RUN apt-get update \

6 && apt-get install -y \

7 build-essential \

8 cmake \

9 git \

10 libatlas-base-dev \

11 libboost-python-dev \

12 libeigen3-dev \

13 libgoogle-glog-dev \

14 libopencv-dev \

15 libsuitesparse-dev \

16 python-dev \

17 python-numpy \

18 python-opencv \

19 python-pip \

20 python-pyexiv2 \

21 python-pyproj \

22 python-scipy \

23 python-yaml \

24 wget \

25 && apt-get clean \

26 && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

27
28
29 # Install Ceres from source

30 RUN \

48

31 mkdir -p /source && cd /source && \

32 wget http://ceres-solver.org/ceres-solver-1.10.0.tar.gz && \

33 tar xvzf ceres-solver-1.10.0.tar.gz && \

34 cd /source/ceres-solver-1.10.0 && \

35 mkdir -p build && cd build && \

36 cmake .. -DCMAKE_C_FLAGS=-fPIC -DCMAKE_CXX_FLAGS=-fPIC -

DBUILD_EXAMPLES=OFF -DBUILD_TESTING=OFF && \

37 make install && \

38 cd / && \

39 rm -rf /source/ceres-solver-1.10.0 && \

40 rm -f /source/ceres-solver-1.10.0.tar.gz

41
42
43 # Install opengv from source

44 RUN \

45 mkdir -p /source && cd /source && \

46 git clone https://github.com/paulinus/opengv.git && \

47 cd /source/opengv && \

48 mkdir -p build && cd build && \

49 cmake .. -DBUILD_TESTS=OFF -DBUILD_PYTHON=ON && \

50 make install && \

51 cd / && \

52 rm -rf /source/opengv

53
54 #Clone the OpenSfM Repository

55 RUN git clone https://github.com/mapillary/OpenSfM.git

56
57 #Add additional functions that for some reason didn't come with the

docker file

58 Run apt-get update \

59 && apt-get install python-networkx \

60 python-exif \

61 python-xmltodict

62
63 #Automatically build OpenSfM so that its prebuilt in the docker

64 Run cd OpenSfM && python setup.py build

Code example A.1: Changes applied to the project to allow adding frames without
recomputing everything from scratch

1 #! /usr/bin/python

2 # Copyright (c) 2015, Rethink Robotics, Inc.

3
4 # Using this CvBridge Tutorial for converting

49

5 # ROS images to OpenCV2 images

6 # http://wiki.ros.org/cv_bridge/Tutorials/

ConvertingBetweenROSImagesAndOpenCVImagesPython

7
8 # Using this OpenCV2 tutorial for saving Images:

9 # http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/

py_gui/py_image_display/py_image_display.html

10
11 # rospy for the subscriber

12 import rospy

13 # ROS Image message

14 from sensor_msgs.msg import Image

15 from nmea_msgs.msg import Sentence

16 # ROS Image message -> OpenCV2 image converter

17 from cv_bridge import CvBridge, CvBridgeError

18 # OpenCV2 for saving an image

19 import cv2

20 import os

21 import math

22
23 def gngga_to_decdeg(gngga):

24 pos_p1 = int(gngga/100)

25 pos_p2 = (gngga - pos_p1*100)/60

26 return pos_p1 + pos_p2;

27
28 # Instantiate CvBridge

29 bridge = CvBridge()

30
31 def image_callback(msg, camera):

32 print("Received an image! #" + msg.header.frame_id)

33 try:

34 # Convert your ROS Image message to OpenCV2

35 cv2_img = bridge.imgmsg_to_cv2(msg, "bgr8")

36 except CvBridgeError, e:

37 print(e)

38 else:

39 # Save your OpenCV2 image as a jpeg

40 stamp = str(msg.header.stamp)

41 cv2.imwrite("./images_" + camera + "/" + stamp[:11] + '.jpg',

cv2_img)

42
43 def nmea_callback(msg):

44 stamp = str(msg.header.stamp)

45 sentence = str(msg.sentence) #$GNGGA,123640.60,5923.66067385,N

,02440.20087100,E,4,12,1.7,25.827,M,18.399,M,1.4,2012*60

50

46 if (sentence.startswith('$GNGGA')):

47 print("Position received")

48 N_f = sentence.index(',') + 1

49 N_f = sentence.index(',', N_f) + 1

50 N_s = sentence.index(',', N_f)

51 N = sentence[N_f:N_s]

52
53 E_f = sentence.index(',', N_s + 1) + 1

54 E_s = sentence.index(',', E_f)

55 E = sentence[E_f:E_s]

56
57 Z_f = sentence.index(',', E_s) + 1

58 Z_f = sentence.index(',', Z_f) + 1

59 Z_f = sentence.index(',', Z_f) + 1

60 Z_f = sentence.index(',', Z_f) + 1

61 Z_f = sentence.index(',', Z_f) + 1

62 Z_s = sentence.index(',', Z_f)

63 Z = float(sentence[Z_f:Z_s])

64
65 Z_f = sentence.index(',', Z_s+3)

66
67 Z = Z + float(sentence[Z_s+3:Z_f])

68
69
70 with open('nmea_out_NEZ.txt', 'a') as nmea_kmz, open('

nmea_out_tNE.txt', 'a') as nmea:

71 nmea.write(stamp + "," + N + "," + E + "\n")

72 nmea_kmz.write(str(gngga_to_decdeg(float(E))) + "," +

str(gngga_to_decdeg(float(N))) + ","+ str(Z) + "\n")

73 # print(stamp + " " + N + " " + E)

74
75 def mkdir_for(camera):

76 if not os.path.exists('./images_'+camera):

77 os.mkdir("./images_"+camera)

78
79 def main():

80 mkdir_for("left")

81 mkdir_for("right")

82 mkdir_for("side")

83
84 rospy.init_node('image_listener')

85 # Define your image topic

86 image_topic = "/pylon_camera_right/image_raw"

87 nmea_topic = "/nmea_sentence"

88 # Set up your subscriber and define its callback

51

89 rospy.Subscriber("/pylon_camera_right/image_raw", Image,

image_callback, callback_args = "right")

90 rospy.Subscriber("/pylon_camera_left/image_raw", Image,

image_callback, callback_args = "left")

91 rospy.Subscriber("/pylon_camera_side/image_raw", Image,

image_callback, callback_args = "side")

92 rospy.Subscriber(nmea_topic, Sentence, nmea_callback)

93 # Spin until ctrl + c

94 rospy.spin()

95
96 if __name__ == '__main__':

97 main()

Code example A.2: Python subscriber for ROS topics (Pylon camera and GNSS)

1 import os

2 import math

3
4 def gngga_to_decdeg(gngga):

5 pos_p1 = int(gngga/100)

6 pos_p2 = (gngga - pos_p1*100)/60

7 return pos_p1 + pos_p2;

8
9 camera = "side"

10
11 images = sorted(os.listdir("./images_"+camera))

12 nmea = open("nmea_out_tNE.txt", "r")

13 exif_f = open("exif_overrides.json", "w")

14
15 nmea_lines = nmea.readlines()

16 index = 0

17 nmea_ptr = nmea_lines[index]

18
19
20 exif_f.write("{\n ")

21 for image_ptr in images:

22 image_s = int(image_ptr[:11])

23 nmea_s = int(nmea_ptr[:11])

24 print("searching nmea for "+ str(image_s))

25 while(True):

26 print(str(image_s) +" ? "+str(nmea_s))

27 if (image_s == nmea_s):

28 # print("gps for " + image_ptr + " exists")

29 N_s = nmea_ptr.index(',') + 1

52

30 N_e = nmea_ptr.index(',', N_s)

31 exif_f.write("\"" + image_ptr + "\": {\n" +

32 " \"gps\": {\n" +

33 " \"latitude\": " + str(gngga_to_decdeg(float(

nmea_ptr[N_s:N_e]))) + ",\n" +

34 " \"longitude\": " + str(gngga_to_decdeg(float(

nmea_ptr[N_e+1:]))) + ",\n" +

35 " \"altitude\": 29.0\n }\n },")

36 if (index < len(nmea_lines)-1):

37 index += 1

38 nmea_ptr = nmea_lines[index]

39 nmea_s = int(nmea_ptr[:11])

40 break;

41 if ((image_s > nmea_s) and (index < len(nmea_lines)-1)):

42 print(str(image_s) +" > "+ str(nmea_s))

43 index += 1

44 nmea_ptr = nmea_lines[index]

45 nmea_s = int(nmea_ptr[:11])

46 continue;

47 if ((image_s < nmea_s) or (index >= len(nmea_lines)-1)):

48 print(str(image_s) +" < "+ str(nmea_s))

49 print("NO GPS FOR " + image_ptr + "... deleting...")

50 os.remove("./images_"+camera+"/" + image_ptr)

51 break;

52
53 exif_f.seek(-1, os.SEEK_END)

54 exif_f.truncate()

55 exif_f.write("\n}")

56
57 print("The ./exif_overrides.json file has been updated with ./images_"+

camera+"/* and ./nmea_output_tNE.txt")

58
59 #image 1555072912946558476.jpg

60 #nmea 1555072888664709091,5923.66067385,02440.20087100

Code example A.3: Python source code for generating an exif_overrides.json, which
reference images with the corresponding GPS coordinates

1 diff --git a/bin/clean b/bin/clean

2 index 2d825fb..c545959 100755

3 --- a/bin/clean

4 +++ b/bin/clean

5 @@ -17,3 +17,4 @@ mv -vf $1/features $trash

6 mv -vf $1/undistorted* $trash

53

7 mv -vf $1/tracks.csv $trash

8 mv -vf $1/reports $trash

9 +mv -vf $1/track_sets.pkl $trash

10 diff --git a/opensfm/commands/create_tracks.py b/opensfm/commands/

create_tracks.py

11 index c3e6ecb..949c1e4 100644

12 --- a/opensfm/commands/create_tracks.py

13 +++ b/opensfm/commands/create_tracks.py

14 @@ -19,14 +19,25 @@ class Command:

15
16 def run(self, args):

17 data = dataset.DataSet(args.dataset)

18 + images = data.images()

19
20 start = timer()

21 - features, colors = tracking.load_features(data, data.images())

22 + try:

23 + graph = data.load_tracks_graph()

24 + tracks, processed_images = tracking.tracks_and_images(

graph)

25 + except IOError:

26 + graph = None

27 + tracks = None

28 + processed_images = []

29 +

30 + remaining_images = set(images) - set(processed_images)

31 +

32 + features, colors = tracking.load_features(data, images)

33 features_end = timer()

34 - matches = tracking.load_matches(data, data.images())

35 + matches = tracking.load_matches(data, remaining_images)

36 matches_end = timer()

37 graph = tracking.create_tracks_graph(features, colors, matches

,

38 - data.config)

39 + data.config, data)

40 tracks_end = timer()

41 data.save_tracks_graph(graph)

42 end = timer()

43 diff --git a/opensfm/commands/detect_features.py b/opensfm/commands/

detect_features.py

44 index e15a6ee..657e7f3 100644

45 --- a/opensfm/commands/detect_features.py

46 +++ b/opensfm/commands/detect_features.py

47 @@ -54,10 +54,12 @@ def detect(args):

54

48 log.setup()

49
50 image, data = args

51 - logger.info('Extracting {} features for image {}'.format(

52 - data.feature_type().upper(), image))

53 +

54 +

55
56 if not data.feature_index_exists(image):

57 + logger.info('Extracting {} features for image {}'.format(

58 + data.feature_type().upper(), image))

59 start = timer()

60 mask = data.load_combined_mask(image)

61 if mask is not None:

62 diff --git a/opensfm/commands/match_features.py b/opensfm/commands/

match_features.py

63 index 8c0615f..1e95e58 100644

64 --- a/opensfm/commands/match_features.py

65 +++ b/opensfm/commands/match_features.py

66 @@ -90,7 +90,7 @@ def has_gps_info(exif):

67 'longitude' in exif['gps'])

68
69
70 -def match_candidates_by_distance(images, exifs, reference,

max_neighbors, max_distance):

71 +def match_candidates_by_distance(images, exifs, reference,

max_neighbors, max_distance, data):

72 """Find candidate matching pairs by GPS distance.

73
74 The GPS altitude is ignored because we want images of the same

position

75 @@ -113,6 +113,8 @@ def match_candidates_by_distance(images, exifs,

reference, max_neighbors, max_di

76
77 pairs = set()

78 for i, image in enumerate(images):

79 + if data.matches_exists(image):

80 + continue

81 distances, neighbors = tree.query(

82 points[i], k=k, distance_upper_bound=max_distance)

83 for j in neighbors:

84 @@ -121,7 +123,7 @@ def match_candidates_by_distance(images, exifs,

reference, max_neighbors, max_di

85 return pairs

86

55

87
88 -def match_candidates_by_time(images, exifs, max_neighbors):

89 +def match_candidates_by_time(images, exifs, max_neighbors, data):

90 """Find candidate matching pairs by time difference."""

91 if max_neighbors <= 0:

92 return set()

93 @@ -135,6 +137,8 @@ def match_candidates_by_time(images, exifs,

max_neighbors):

94
95 pairs = set()

96 for i, image in enumerate(images):

97 + if data.matches_exists(image):

98 + continue

99 distances, neighbors = tree.query(times[i], k=k)

100 for j in neighbors:

101 if i != j and j < len(images):

102 @@ -142,7 +146,7 @@ def match_candidates_by_time(images, exifs,

max_neighbors):

103 return pairs

104
105
106 -def match_candidates_by_order(images, max_neighbors):

107 +def match_candidates_by_order(images, max_neighbors, data):

108 """Find candidate matching pairs by sequence order."""

109 if max_neighbors <= 0:

110 return set()

111 @@ -150,6 +154,8 @@ def match_candidates_by_order(images, max_neighbors

):

112
113 pairs = set()

114 for i, image in enumerate(images):

115 + if data.matches_exists(image):

116 + continue

117 a = max(0, i - n)

118 b = min(len(images), i + n)

119 for j in range(a, b):

120 @@ -186,14 +192,18 @@ def match_candidates_from_metadata(images, exifs,

data):

121 pairs = combinations(images, 2)

122 else:

123 d = match_candidates_by_distance(images, exifs, reference,

124 - gps_neighbors, max_distance)

125 - t = match_candidates_by_time(images, exifs, time_neighbors)

126 - o = match_candidates_by_order(images, order_neighbors)

127 + gps_neighbors, max_distance,

56

data)

128 + t = match_candidates_by_time(images, exifs, time_neighbors,

data)

129 + o = match_candidates_by_order(images, order_neighbors, data)

130 pairs = d | t | o

131
132 res = {im: [] for im in images}

133 for im1, im2 in pairs:

134 - res[im1].append(im2)

135 + if not data.matches_exists(im1):

136 + res[im1].append(im2)

137 + else:

138 + #assert not data.matches_exists(im2)

139 + res[im2].append(im1)

140
141 report = {

142 "num_pairs_distance": len(d),

143 @@ -213,6 +223,9 @@ def match(args):

144 log.setup()

145
146 im1, candidates, i, n, ctx = args

147 + if ctx.data.matches_exists(im1):

148 + #assert(len(candidates) == 0)

149 + return

150 logger.info('Matching {} - {} / {}'.format(im1, i + 1, n))

151
152 config = ctx.data.config

153 diff --git a/opensfm/commands/mesh.py b/opensfm/commands/mesh.py

154 index 7cae57a..c55314b 100644

155 --- a/opensfm/commands/mesh.py

156 +++ b/opensfm/commands/mesh.py

157 @@ -21,6 +21,8 @@ class Command:

158 graph = data.load_tracks_graph()

159 reconstructions = data.load_reconstruction()

160
161 + logger.debug("Starting calculation of reconstructed mesh")

162 +

163 for i, r in enumerate(reconstructions):

164 for shot in r.shots.values():

165 if shot.id in graph:

166 diff --git a/opensfm/dataset.py b/opensfm/dataset.py

167 index 52aaeca..4272ee0 100644

168 --- a/opensfm/dataset.py

169 +++ b/opensfm/dataset.py

170 @@ -485,6 +485,19 @@ class DataSet(object):

57

171 return im2_matches[im1][:, [1, 0]]

172 return []

173
174 + def __track_sets_file(self, filename=None):

175 + """Return path of unionfind file"""

176 + return os.path.join(self.data_path, filename or 'track_sets.

pkl')

177 +

178 + def load_track_sets_file(self, filename=None):

179 + """Return unionfind of tracks"""

180 + with open(self.__track_sets_file(filename), 'rb') as fin:

181 + return load_track_sets_file(fin)

182 +

183 + def save_track_sets_file(self, unionfind, filename=None):

184 + with open(self.__track_sets_file(filename), 'wb') as fout:

185 + save_track_sets_file(fout, unionfind)

186 +

187 def _tracks_graph_file(self, filename=None):

188 """Return path of tracks file"""

189 return os.path.join(self.data_path, filename or 'tracks.csv')

190 @@ -712,3 +725,9 @@ def save_tracks_graph(fileobj, graph):

191 r, g, b = data['feature_color']

192 fileobj.write(u'%s\t%s\t%d\t%g\t%g\t%g\t%g\t%g\n' % (

193 str(image), str(track), fid, x, y, r, g, b))

194 +

195 +def load_track_sets_file(fileobj):

196 + return pickle.load(fileobj)

197 +

198 +def save_track_sets_file(fileobj, unionfind):

199 + pickle.dump(unionfind, fileobj, protocol=pickle.HIGHEST_PROTOCOL)

200 diff --git a/opensfm/reconstruction.py b/opensfm/reconstruction.py

201 index a599be7..af6def4 100644

202 --- a/opensfm/reconstruction.py

203 +++ b/opensfm/reconstruction.py

204 @@ -1152,12 +1152,33 @@ def incremental_reconstruction(data, graph):

205 if not data.reference_lla_exists():

206 data.invent_reference_lla(images)

207
208 - remaining_images = set(images)

209 + try:

210 + existing_reconstructions = data.load_reconstruction()

211 + for reconstruction in existing_reconstructions:

212 + reconstruction.points = {k: point for k, point in

reconstruction.points.items() if k in graph}

213 + except IOError:

58

214 + existing_reconstructions = []

215 +

216 + reconstructed_images = set(image for reconstruction in

existing_reconstructions for image in reconstruction.shots.keys())

217 +

218 + remaining_images = set(images) - reconstructed_images

219 gcp = None

220 if data.ground_control_points_exist():

221 gcp = data.load_ground_control_points()

222 - common_tracks = tracking.all_common_tracks(graph, tracks)

223 +

224 reconstructions = []

225 + for reconstruction in existing_reconstructions:

226 + grow_reconstruction(data, graph, reconstruction,

remaining_images, gcp)

227 + reconstructions.append(reconstruction)

228 + reconstructions = sorted(reconstructions,

229 + key=lambda x: -len(x.shots))

230 + data.save_reconstruction(reconstructions)

231 +

232 + if len(reconstructed_images) != 0:

233 + common_tracks = tracking.all_common_tracks(graph, tracks,

remaining_images=remaining_images)

234 + else:

235 + common_tracks = tracking.all_common_tracks(graph, tracks)

236 +

237 pairs = compute_image_pairs(common_tracks, data)

238 chrono.lap('compute_image_pairs')

239 report['num_candidate_image_pairs'] = len(pairs)

240 diff --git a/opensfm/tracking.py b/opensfm/tracking.py

241 index 0466545..2b0085a 100644

242 --- a/opensfm/tracking.py

243 +++ b/opensfm/tracking.py

244 @@ -35,10 +35,16 @@ def load_matches(dataset, images):

245 return matches

246
247
248 -def create_tracks_graph(features, colors, matches, config):

249 +def create_tracks_graph(features, colors, matches, config, data):

250 """Link matches into tracks."""

251 logger.debug('Merging features onto tracks')

252 - uf = UnionFind()

253 + try:

254 + uf, track_ids, max_id = data.load_track_sets_file()

255 + except (IOError, EOFError) as e:

59

256 + uf = UnionFind()

257 + track_ids = {}

258 + max_id = 0

259 +

260 for im1, im2 in matches:

261 for f1, f2 in matches[im1, im2]:

262 uf.union((im1, f1), (im2, f2))

263 @@ -50,13 +56,19 @@ def create_tracks_graph(features, colors, matches,

config):

264 sets[p].append(i)

265 else:

266 sets[p] = [i]

267 + if p not in track_ids:

268 + track_ids[p] = max_id

269 + max_id += 1

270 +

271 + track_sets = (uf, track_ids, max_id)

272 + data.save_track_sets_file(track_sets)

273
274 min_length = config['min_track_length']

275 - tracks = [t for t in sets.values() if _good_track(t, min_length)]

276 + tracks = [(track_ids[track_name], t) for track_name, t in sets.

items() if _good_track(t, min_length)]

277 logger.debug('Good tracks: {}'.format(len(tracks)))

278
279 tracks_graph = nx.Graph()

280 - for track_id, track in enumerate(tracks):

281 + for track_id, track in tracks:

282 for image, featureid in track:

283 if image not in features:

284 continue

285 @@ -107,7 +119,7 @@ def common_tracks(graph, im1, im2):

286 return tracks, p1, p2

287
288
289 -def all_common_tracks(graph, tracks, include_features=True, min_common

=50):

290 +def all_common_tracks(graph, tracks, include_features=True, min_common

=50, remaining_images=None):

291 """List of tracks observed by each image pair.

292
293 Args:

294 @@ -116,11 +128,19 @@ def all_common_tracks(graph, tracks,

include_features=True, min_common=50):

295 include_features: whether to include the features from the

60

images

296 min_common: the minimum number of tracks the two images need

to have

297 in common

298 + param remaining_images: if not none, only find pairs from

within this list

299
300 Returns:

301 tuple: im1, im2 -> tuple: tracks, features from first image,

features

302 from second image

303 """

304 +

305 + if remaining_images is not None:

306 + # We just look at the subgraph comprising of remaining images,

and tracks that pass through them

307 + tracks = {track for imagename in remaining_images for track in

graph[imagename]}

308 + filtered_nodes = set(remaining_images).union(tracks)

309 + graph = graph.subgraph(filtered_nodes)

310 +

311 track_dict = defaultdict(list)

312 for track in tracks:

313 track_images = sorted(graph[track].keys())

Code example A.4: Changes applied to the OpenSfM project to allow a dynamic addition
of new images

61

	Introduction
	Problem statement and contribution of the thesis
	Autonomous vehicles
	TTÜ Iseauto project
	Outline of the thesis

	Related work: Existing approaches to the visual localization problem
	Robust Visual Robot Localization Across Seasons Using Network Flows
	Visual SLAM
	Localization for an Autonomous Vehicle with a Multi-Camera System

	Structure from Motion and available implementations
	Structure from motion
	Available solutions
	OpenSfM workflow

	Factors which influence the accuracy of camera pose estimation
	Camera and lenses
	Exposure
	Weather conditions
	Physical obstacles
	Structural properties

	Geographic coordinate system and georeferencing
	 WGS84 and UTM
	Georeferencing the reconstruction
	Extraction of geopositions from the GNSS

	Experimental Results
	Manual georeferencing
	Automatical georeferencing

	Conclusion
	References
	Code examples
	List of Figures
	List of Tables
	
	Appendixes
	Appendix A

