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Abstract

Interpolation methods are widely used in various scientific fields to estimate values be-

tween discrete data points. In the laboratory, interpolation methods are used to predict

values for unmeasured variables based on existing data. However, field data collection

often occurs under highly uncertain conditions, which can lead to incomplete or sparse

datasets. In this thesis, the author explores the use of interpolation methods for lab data to

interpret field data collected under highly uncertain conditions by reviewing the different

types of interpolation methods and their strengths and weaknesses. This work also eval-

uates the effectiveness of various interpolation methods in accurately predicting missing

data points and estimating the overall trends in the data as well as analyze the impact of

different levels of uncertainty on the accuracy of the interpolation results. It was found

that spline methods performed well in predicting missing data points, while kriging meth-

ods for surface interpolation is more effective in capturing the overall trends in the data

as it takes into account the spatial correlation of data and provide a smooth continuous

surface.

Keywords: Interpolation methods; underwater data analysis; freshwater fish; down-

stream passage; barotrauma detection sensor; skin friction; pressure
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Chapter 1

Introduction

Over 58,700 single and multiple purpose dams have been built worldwide as of 2020 [1],

which include flood control, fish farming, hydropower, irrigation, water supply, recre-

ation, navigation, tailing, and others, with hydropower accounting for about 16% of the

world’s source of power supply. There has been a well-established center around the ex-

treme physical issue dangers to fish because of hydroelectric turbines, wounds and pass-

ings brought about by entrainment and impingement during downstream entry through

hydropower dams can possibly hurt fish populaces [2] [3], as well as prevent them from

moving between feeding and breeding grounds, disrupting their lives and limiting their

reproductive capabilities. Mechanical contact with the turbine, share force turbulence,

and pressure changes in water flow can injure or kill fish [4]. Shear caused by rapid

changes in water velocity can cause physical damage to fish, including hemorrhaging,

tissue damage, and scale loss, which can lead to mortality in extreme cases [5]. Pressure-

related fish injury and mortality can occur due to pressure nadir, changes in pressure

along with the change in log pressure ratio and to determine whether fish can pass and

survive during downstream migration, barotrauma sensors for hydropower turbines have

been developed [5]. The barotrauma detection system (BDS) sensors are fault-tolerant

sensors that can travel through hydropower turbines. They’ve also been used successfully

in glaciers, pressure pipelines, waterfalls, over weirs, and under gates. They are tough

and built to record pressure and inertial data in the harshest underwater conditions. Key

features include fault-tolerant pressure sensors with triple modular redundancy to ensure
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the quality of each individual measurement, absolute orientation of the sensor relative to

gravity and magnetic North, self-calibrating pressure sensors (atmospheric) and inertial

sensors (accelerometer, magnetometer and rate gyro).

1.1 Problem Statement

Fish populations may be negatively impacted by injury and mortality brought on by

entrainment or/at the time of passing downstream through/over hydropower infrastruc-

ture [2]. Pressure, shear, and impacts are three known categories of physical mechanisms

that harm and kill fish. There do not exist measurement devices for the direct measure-

ment of fluid shear under the extreme states of being capable during downstream turbine

section. One of the goals of this thesis will be to take flow information from underwater

measurements and visualize them in a unique way. The main objectives of this thesis were

to address the following two research questions:

(1) Which is interpolation method is the best performing for the skin friction and pressure

dataset?

(2) Which interpolation methods are suitable for creating surfaces to estimate the skin

friction and pressure difference for Reynolds numbers without direct measurement data?

1.2 Objectives and Contributions

In this study, pressure difference measurements from the BDS in the field were converted

into estimates of skin friction by using data from a well-known laboratory experiment

that linked pressure differences to shear (skin friction) and this experimental results were

digitized and subjected to interpolation methods.

Secondly, data from the experiment were visualized in a unique way that will aid fluid

dynamics researchers in understanding turbulent flow and as well help to understand mi-

gratory pathways of fish around the hydropower dams. Natural flows are frequently very

different from those observed in the laboratory. The research looks into how those dif-

ferences affect biological organisms, particularly fish. Many aquatic animals have evolve
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sophisticated sensory systems that function in turbulent flows. Turbulence includes both

fast and slow vortices, as well as large and small vortices, and comparing laboratory and

natural flows which is difficult using standard methods. The main contribution of this

work is to test and develop an interpolation method which allows for the BDS pressure

difference data to be converted into skin friction (shear).

1.3 Thesis Outline

The first chapter of this work covers the introduction, start-of-the-art and the thesis ob-

jectives. Chapter 2 described the architectural design and functionalities of the existing

barautrauma detection system (BDS). It also highlight how the BDS structural designed

was modified for the purpose of this research, the data extraction process and digitiza-

tion of the conveyance of nearby strain and skin erosion around a roundabout chamber

in cross-stream up to Reynolds Number Re = 106, the spline interpolation theory and

validation of the extracted data and interpolated data and also finding the RMS errors.

Chapter 3 described how the data acquisition process using BDS in the field and labora-

tory respectively, data analysis and visualization, result analysis and comparison. Python

programming language was used in the developing program that transformed the raw data

into a user-friendly application. Chapter 4 contains the surface interpolation with the goal

for smooth surface creation and the surface that is able to pass through the sample points,

allowing for the estimation of values at other locations on the surface and the last Chapter

is summary of the activities carried out in the thesis, the result and the conclusion drawn

based on the analysis carried out and outlines the recommended future work.
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Chapter 2

State of the Art

The worries about the impacts of manmade dams on the population of fish have been

developing alongside the quantity of dams worked across the globe. Dams might work

as a hindrance to resident (i.e., those that finish their life cycle inside a supply or sec-

tion of the stream) and transient (i.e., anadromous, catadromous, and potamodromous)

fish, fragmenting rivers and harming ecosystems [2]. The detrimental effects of dams on

diadromous fish migration upstream are well known, and several fishways have been in-

stalled to make up- stream transit easier [6]. However, it is still difficult for fish to migrate

downstream near dams [7,8] depending on the stage of their life cycle, migrating fish may

need to cross dams and continue downstream in order to reach their respective spawning

grounds (for catadromous species) or raising and feeding areas (for iteroparous species).

For breeding, rearing, and foraging purposes, within a river system, local species may

cover large distances, or they may merely move within reservoirs in which they could

travel via wetlands and estuaries. Fish populations may suffer significant effects as a

result of entrainment or impingement(which happens when fish become stuck against in-

frastructure) and fish passage, which happens when fish (non-)voluntarily migrate through

hydroelectric equipment, both of which are connected to hydroelectric plants [9].

To quantify mortality across turbine types and fish species, Radinger et al. assembled

and analyzed a world- wide dataset of turbine fish-mortality evaluations encompassing

>275,000 individual fish of 75 species [4] thinking about the typical mistakes related

with observational evaluations, the rate of death of fish in general is brought about by
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hydroelectric turbines was 22.3% (95% CI 17.5-26.7%). Estimates of mortality varied

considerably between and even within individual turbine designs, research approaches,

and taxonomic groups [5]. The demand for renewable energy and the conservation of

fish biodiversity may be reconciled if hydroelectric turbines could be configured techni-

cally in a way that would significantly minimize fish mortality, and if this method became

the worldwide norm. With the utilization of latent sensors that record the tension, speed

increase, and pace of turn or rotation angle, Pauwels et al. looked at the danger of dam-

age and mortality for many species of fish as they passed downstream through a huge

Archimedes hydrodynamic screw [5].

Several novel measures, including as impact event timing and duration, translational and

rotational kinetic energy, and pressure gradients are proposed in this study for evaluating

downstream passage. The outcomes of the study described that bream had the highest

mortality rate (37%) of the three species studied, followed by roach (19%), and eel (3%)

on average. For just a few species-specific injury and fatality rates did the operating sce-

nario prove to be statistically significant [5]. An information based on sensor showed

extremely tumultuous actual conditions in the screw for Archimedes hydrodynamics in

contrast to research with Kaplan turbines, where there was no variance in physical met-

rics across operating situations. Pollution, over fishing, global warming, coastal growth,

and other human activities all pose significant risks to the world’s fish stocks. A com-

prehensive review was conducted to investigate the impacts of entertaining the fish and

impingement at hydroelectric dams on freshwater fish and their production in mild envi-

ronments, along with the role of type of site, type of mediation and viewpoints life cycle.

The review looked at both mainstream and alternative sources of information (commer-

cially published and grey literature) in accordance with the collaboration for environ-

mental evidence’s standards [2]. In total, 87 publications included 264 studies that were

evaluated critically and synthesized in narrative form. The majority of research (93%)

focused on species within the Salmonidae family, and the majority of studies (86%). In

terms of minimizing fish damage and death, their analysis reveals that bypasses are the

"fish friendliest" transit option as they looked at how freshwater fish may be harmed or

killed as they made their way through standard hydroelectric facilities [2]. various kind of

investigative work and researches on the frameworks beyond North America, on species
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other than salmonids and sportfish, and on the impacts of entrainment and impingement

on the population of fish is expected to fill in the holes in our comprehension. For down-

stream section at projects in the US, government controllers and organizations answerable

for hydropower oversight frequently request evaluation studies and moderation to address

adverse consequences, with the primary target of keeping away from fish impingement

and turbine capture and death. Evaluations of entrainment and impingement rates, all out

downstream entry endurance, turbine endurance, spillway door section, and Oberymeyer

door section were made for an exceptional little water based projects or hydro-projects on

the Mississippi Waterway to assess the downstream passage’s impact on fish populations.

The garbage racks were designed such that only 15% of the fish that would normally swim

downstream would be physically blocked by the narrow bar spacing with a bypass rate

of 10% for the Obermeyer gates and a bypass rate of 90% for the gates, the anticipated

overall project survival rates are 77.3% and 96.6%, respectively, when 55% of the river

flow reaches the turbine intake channel [10].

Another research looked at the tolerance of a surface bypass with varying aperture diam-

eters and the damage sustained by fish during the passage. Bypass’s overall acceptability

was lower than that of the turbine passage, the quantity of fish swimming downstream

did not change much whether the bypass apertures were modest or big. The quick death

of any fish species was not seen, amputations and other severely damaging injuries were

recognized seldom and weakly at best. The most frequent injuries were lost scales, fin

rips and hemorrhages, and skin lesions on the body, with notable species-specific vari-

ances [11]. Offering a bottom bypass as a secondary option to the current surface bypass

is likely to be helpful in increasing bypass efficiency. By making structural changes to

the bypass, such as concealing projecting components, the risk of bypass-related injuries

might be substantially mitigated. Alves et al. outlined a technique for determining how

hydroelectric dams affect the survival of fish larvae as they pass through the dams’ hy-

draulic components, filling in knowledge gaps that currently exist [12]. Presented and

addressed are potential options to aid in mortality reduction and hydraulic structure man-

agement, inferences on the efficacy of fish relocation programmes, and a sampling and

analytic strategy suited to measure the impacts of passage by the larvae via dams in situ.

In situ evaluation of downstream ichthyoplankton transit via dams is made possible with
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the suggested method [12] to determine how downstream transit via dams operating under

different regimes correlates with fish injuries and deaths, the suggested sample approach

is simple, readily conducted, and economical in comparison to alternatives requiring more

complex technology or that combine field and lab investigations.

The fast growth of the hydroelectric industry, particularly in the major tropical basins,

highlights the significance of its widespread adoption, dams are being built at a rapid

rate all around the globe, and this has sparked growing worries about the impact on fish

populations. Damage to fish populations can result from three main causes at hydroelec-

tric facilities: migratory fish passing through the facilities on their way downstream, fish

impinging on screens and trash racks, and resident fish becoming entrained. Given the

importance of both resident and migratory fish to overall fish production, it is imperative

that we assess the effects of fish damage and death due to entrainment and impingement

at hydroelectric dams. As a result, knowing how fish impingement and entrainment re-

lated to hydroelectric dams affect fish productivity is important for ensuring the long-term

viability of fish species that rely on our freshwater ecosystems [13]. It was suggested by

Mueller et al. to use a dataset of 52,250 fish to conduct a complete evaluation of tradi-

tional and novel hydropower [14]. Kaplan turbine locations had the highest fish mortality

(83%) due to hydropower. While innovative hydropower is frequently hailed as "fish-

friendly," a recent study found that 64 percent of fish died as a result and according to

our results, the number of turbine blades, the amount of turbulence at the turbine outputs,

and the runner’s peripheral speed are the most crucial variables [14]. Optimal turbine

technologies and operating modes need to take site-specific variables like head drop, by-

pass possibilities, and river-specific species composition into account more thoroughly to

lessen the effect of hydropower on fish collision, fast decompression, and fluid shear are

the three most prevalent stresses that fish face while passing through hydroelectric plants.

Ninety-nine biological reaction models have been created using specialized equipment to

simulate the effects of blade hit, fast decompression, or fluid shear and there are 31 distinct

species of fish included in the models, and they all have different expected outcomes [15].

Significant species-to-species diversity in vulnerability to the stressors has been identified

across these models, and the sensitivity of one species to one stressor does not always

predict equivalent susceptibility to another. While the responses of a number of species
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to various stressors have been studied, it is still unknown how many additional species,

which may have distinct physical features, may react. These models may and have been

implemented in a number of scenarios, to better comprehend the risk of injury or death

to fish during transit at hydropower facilities, Hydropower Biological Evaluation Toolset

(HBET) and Biological Performance Assessment (BioPA) are often used. These models

have also been used. This encompasses a wide range of applications, some of which

include the replacement of turbines, the installation of new turbines, and the change of

the operations of turbines that are already in existence. Tools like BioPA and HBET,

when combined with integrated biological response models, may help engineers design

hydropower systems that have minimal ecological impact.

2.1 Barotrauma Detection Sensor

The Barotrauma detection center is a multi-modular submerged sensor that screens out-

right direction (roll, pitch and yaw points), unbiased lightness, attractive field strength,

rate of rotation, straight speed increase, and complete water pressure. In the structure of

the European Association’s H2020 FITHydro project, the Tallinn College of Innovation

(Tal-Tech) Biorobotic community made the sensors [5]. Exposure to events like decom-

pression, collisions, and extreme turbulence may be determined by analysis of data col-

lected by the BDS sensor unit. In section 2.1, we get an overview of the various sensors.

The BDS’s neutral buoyancy may be adjusted in the field by increasing or decreasing the

volume of the device by rotation of the flat end cap. Three identical digital total pressure

transducers [5] are installed within the hemispherical end cap to measure the combined

atmospheric, hydrostatic, and hydrodynamic pressures. Laboratory tests confirmed the

precision are installed within the hemispherical end cap to measure the combined atmo-

spheric, hydrostatic, and hydrodynamic pressures. According to Pauwels et al, the labo-

ratory tests confirmed the precision each BDS is pressure tested in a barochamber up to

550kPa, or 2.75 times the sensor’s maximum rated pressure, and compared to a commer-

cial pressure sensor. The triple modular redundancy provided by the extra sensors makes

up for the vulnerability of a single sensor. There are three pressure transducers available,

and each may be set to measure pressures between 200 and 3000kPa. The two AAA
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batteries and the Barotrauma detection sensor are housed in a bespoke waterproof casing

that is 140mm long, 40mm in diameter, and has two machined polyoxymethylene end

caps for a total dry mass of 147g [5]. The reference value for the BDS sensors is set to

1000mbar and they are designed to automatically compensate for the local atmospheric

pressure. To change the pressure measurements there is no reason especially to a standard

air pressure datum in post-handling since this is the only data processing that happens

during sensor deployment. Overview of the BDS sensors with labels which describe the

various part of the BDS and what they represent Figure 2.1.

Figure 2.1: Barotrauma Detection Sensor (image source, Pauwels et al). The top end-cap (A,B) –contains
three pressure transducers–(F,K). Below there are two electronics boards containing the WiFi module–(C),
magnetic switch–(D), microSD storage– (E), AAA battery holder–(G). The sensor and electronics payload
(A–G) is screwed by hand onto the bottom end-cap (I), which also includes two rugged nylon attachment
strings (J) for the balloon tags to bring the neutrally buoyant sensor back to the water surface.

2.2 Distribution of local pressure and skin friction around

a circular cylinder in cross-flow up to Re = 5× 106

In 1968, E. Achenbach conducted research on skin friction and the local pressure distri-

bution around the cylinder that is circular in shape in cross-flow up to Re = 5×106 at the

Institute für Reaktorbauelemente, KFA-Jülich, Germany, and obtained some experimental
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results that were plotted on graphs as shown Figure 2.2, 2.3 and 2.4. Different Reynolds

values and ϕ = 5◦ increments around the cylinder’s circumference (ϕ = 360◦) were used

to find out the distribution of skin friction and pressure. All three diagrams show the skin

friction and pressure distribution as a function of the cylinder’s peripheral angle [16]. Lo-

calizing point of separation is achieved by analyzing the skin friction distribution. It is

possible to distinguish three distinct flow regimes based on these measurements: the sub-

critical flow, characterized by bubble separation and subsequent turbulent reattachment;

the supercritical flow, characterized by an unexpected change from the laminar to the

tempestuous limit layer at a basic separation from the stagnation point; and the progress

between the two.

2.2.1 Skin friction Distribution

The skin rubbing around a roundabout chamber in cross-stream is likewise portrayed by

a dimensionless boundary called the coefficient of friction of skin. The coefficient of

friction of skin is characterized as the powerful strain of the stream partitioned by the

extraneous power per unit region following up on the outer layer of the chamber. The ap-

proach and the Reynolds number influence the skin grating coefficient. The coefficient of

friction of skin remains largely constant as one moves around a cylinder at low Reynolds

numbers, while at higher Reynolds numbers, it decreases along the forward-facing part

of the cylinder and increases along the rear-facing part of the cylinder [16]. The equation

(2.1), shows how Achenbach [16] determined the skin contact from the encompassing

of the stagnation point from the conveyance of the strain around the chamber. As per

Achenbach, the condition was fetched by a layered examination in a limit layer for a test

boundary. he considered the viscosity η of the fluid and the length, h or the height of the

edge of the cylinder.

△p

τ0
= f

(
△ph2ρ

η2

)

(2.1)

where:
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△p is the pressure difference (Pa)

η is the viscosity of the fluid (Nsm−2)

h is the length (m)

ρ is the density (Kgm−3)

p is pressure (Pa)

T =
τ0

ρU2
∞

√
Re

(2.2)

T is temperature (0C), τ0 is the wall-shear stress (Pa) and U∞is the undisturbed velocity

(ms−1)

2.2.2 Pressure Distribution

A pressure coefficient describes the pressure distribution around a roundabout chamber

subject to cross-stream. Separating between the powerful strain of the stream and the local

pressure yields the pressure coefficient. The pressure coefficient changes depending on

the flow’s Reynolds number and angle of attack. As the Reynolds number decreases, the

pressure distribution around the cylinder becomes more symmetrical, and the stagnation

point experiences its maximum pressure coefficient (where the flow velocity is zero) [16].

P =
p− p∞
(1/2ρ)U2

∞
(2.3)

where:

P is the pressure coefficient(Pa)

p∞ the static pressure of the infinite flow (Pa)

ρ is the density (Kgm−3)

p is pressure (Pa)
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U is the undisturbed velocity, (ms−1)

Increases in Reynolds number cause an uneven distribution of pressure, with the maxi-

mum value of the pressure coefficient occurring at an angle of approximately 80-90 de-

grees from the stagnation point.

2.2.3 Achenbach Pressure and Skin Friction Distribution Results

Different Reynolds values and ϕ = 5◦ increments around the cylinder’s circumference

(ϕ = 360°) were used to determine the pressure and skin friction distributions. All three

diagrams show a relationship between the cylinder’s peripheral ϕ and the friction o f skin

and strain conveyance [16]. Figure 2.2 − 2.4 shows the strain dissemination or distribution

of pressure and friction of skin as a function of the cylinder’s peripheral angle. Subcritical

flow at Re = 105 is seen in Figure 2.2, where the boundary layer begins to laminarly

divide at ϕ = 78o (ϕ = 282o) before reaching the main cross-section. The loss of skin

friction is a sign of detachment.

Figure 2.2: Circular cylinder: skin friction and pressure distribution. Re= 105

Re = 2.6 × 105, the flow behavior is seen in Figure 2.3; at Re = 3 × 105, the transition
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into the critical zone occurs. Even at an angle of ϕ = 94o (ϕ = 266o), the boundary layer

separates laminarly. When compared to the flow at Re = 105, both the amplitude and

location of the minimum have shifted. The drag coefficient decreases as the dimensionless

pressure at the rear of the cylinder increases [16].

Figure 2.3: Circular cylinder:skin friction and pressure distribution. Re = 2.6× 105

The normal distribution of skin friction in the crucial area is seen in Figure 2.4. There

is not complete separation at ϕ = 105o(ϕ = 225o), location of separation. This implies

that the wall shear strains should theoretically disappear in the transition zone between

laminar detachment and turbulent reattachment. The skin friction then rapidly increases

downstream, reaching levels that are often higher than the laminar maximum. The bound-

ary layer is likely turbulent at an angle of ϕ = 147o(ϕ = 220o), when the two layers begin

to physically separate [16].
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Figure 2.4: Circular cylinder:skin friction and pressure distribution. Re = 8.5×105

2.2.4 Digitization of Achenbach Pressure and Skin Friction Distribu-

tion Graphs

Method : The data was extracted using a special software called WebPlotDigitizer [17],

the numerical data was carefully captured in the range of 0 to 180◦ in selecting the data

points and a desired datasets were obtained for all three Figure 2.5−the data was extracted

at the same vertical scale but horizontal scale 0 - 180° peripheral angle ϕ of the cylinder

for each graph. The data extraction/digitization and visualization methods are described

further below. The WebPlotDigitizer [17] was used to extract data from the Achenbach

experimental result, which aided in reverse-engineering the graphical images in Figure

2.2 – 2.4 and allowed the underlying numerical data to be extracted. It allows for precise

adjustment of every data point between the X and Y axes to produce the correct list of

datasets (see Appendix C).
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(a) Skin friction and pressure Re = 105 (b) Skin friction and pressure Re = 2.6× 105

(c) Skin friction and pressure Re = 8.5× 105

Figure 2.5: Graphs after digitization of the Achenbach experimental result

This extracted dataset has not been processed and does not need to be cleaned. The project

file containing this data is contained in the .tar file in https://github.com/abkisssb/Distribution-

of-Local-Pressure-and-Skin-Friction-Around-A–Circular-Cylinder-In-A-Cross-Flow-.git ,

and the dataset was exported as a .csv for use in matplotlib visualization, which will be

discussed next.

V isualization : The captured datasets were saved in a usable data format, .csv, with no
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data cleaning required. Matplotlib, a comprehensive Python library for creating interac-

tive visualizations, was used to re-plot a new graph using these datasets. The Jupyter note-

book IDE was used to create the code for plotting the various datasets obtained (see Ap-

pendix A) are the graphs for the three different Reynolds numbers after digitization which

were plotted on a horizontal scale of 0 – 360o for each of the graphs, and 0− 180o for the

newly digitized graphs, Figure 2.5. The dataset derived and how it was used to generated

the graphs can be accessed through the link https://github.com/abkisssb/Distribution-of-

Local-Pressure-and-Skin-Friction-Around-A–Circular-Cylinder-In-A-Cross-Flow-.git.There

are three folders in the link, in each folder is a .ipynb file, when clicked opens the code

which generated the graphs as shown in Figure 2.5.
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Chapter 3

Methods

3.1 Interpolation

Mathematically, the process of interpolation of creating new data points that fall inside the

bounds of a discrete set of already established data points [18]. It also involves estimating

a function that passes through a known data point and can be used to calculate the value of

say y for any new value of x within the range of the known data [18]. Generally, interpola-

tion problem statement involves having a known data point (x1, y1), (x2, y2) . . . ., (xn, yn)

Figure 3.1, where each xi and yi represents a known data values so we can find the value

of y for a new value of x which is not part of the original set of data points [18]. The

issue explanation in this setting is the dataset extricated from Achenbach research on

the conveyance of neighborhood strain and skin contact around a round barrel shaped in

crossflow up to Re = 5 × 106 to predict y, given x, where x is the angle ϕ, and y is the

vertical value on either the pressure or skin friction.

3.2 2D-Interpolation Methods

The second part of the experiment involves interpolation of the regenerated or extracted

datasets for the three Reynolds numbers (Re = 105, Re = 2.6 × 105, Re = 8.5 × 105

), as the estimated values between the observed data points varies. The main reason
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Figure 3.1: Illustration of the interpolation problem: estimate the value of a function in-between data
points.

for interpolation was because the points were plotted by painstaking tracing each data

points which subjected the dataset to some level roughness or inconsistency and required

interpolation to smoothen out the irregularities in the plots making it easier to analyze and

visualized. Another aim of applying interpolation was to re-sample the data at different

resolution then the original data plotted from the Achenbach results Figure 2.2 − 2.4, as

document containing the original data had to be zoomed from very low resolution which

allowed for plotting between two points easier. There are various kinds of techniques for

interpolation that are regularly employed, but the method utilized is always determined

by the nature of the data and the intended application of the interpolated values. With

the objective of smoothing out the data that is noisy, three different types were chosen

according to the types of data utilized in this study.

3.2.1 Linear Interpolation:

This is the simplest of all the three methods chose for this analysis and visualization,

in which a straight line is used to connect two adjacent data points, where the value

of the unknown point is determined by calculating the slope of the line and finding the

y − intercept [18].

y (x) = yi +
(yi+1 − yi) (x− xi)

(x+1 − xi)
(3.1)
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Whereyi and yi+1 are the values of the two known y-values data points and xi andxi+1 are

the values of the two x − values data points, x is the unknown estimated value and y is

the estimated value, both x and y are directly proportional, that is any changes in y will

cause a change in x.

Figure 3.2: Python function for linear interpolation (see Appendix for full code)

3.2.2 Polynomial Interpolation:

This is another type of interpolation method of finding a polynomial function that passes

through a given set of data points. Say we have a polynomial of degree n − 1, and

number of data points are denoted by n to fits the data as closely as possible [19, 20].

From (2) show the equations for polynomial of degree n-1 with data points in the form

(x1, y1), (x2, y2) . . . ., (xn+1, yn+1) where are the coefficients.

p (x) = an+1x
n + anx

n−1 + ...+ a3x
2 + a2x+ a1 (3.2)

y1 = a0 + a1x
1 + a2x

2
1 + ...+ an−1x

n−1
1
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y2 = a0 + a1x
2 + a2x

2
2 + ...+ an−1x

n−1
2

yn = a0 + a1x
n + a2x

2
n + ...+ an−1x

n−1
n

Using linear algebra techniques like Gaussian elimination, it’s possible to solve n equa-

tions of the form where the coefficients of the n equations can be found, and that polyno-

mial can be used to interpolate the values at any point along the data range [19]. There

is a tendency for polynomial interpolations to behave erratically outside the range of the

data, known as overfitting [19]. The subsequent chapter explains the problem that was

encountered and how it was fixed. [19].

Figure 3.3: Python function for polynomial interpolation (see Appendix A for full code)

3.2.3 Spline Interpolation:

Spline is the third method used in the investigation. It is a piecewise-defined function

that is fitted to a set of data points. It is defined by a set of polynomial functions that

are smoothly joined together at the data points [18,19]. Interpolation between data points

is performed using a second-degree polynomial using quadratic splines [21] . Take the

example in Figure 3.4, where there are n+1 data points (x1, y1), . . . , (xn+1, yn+1),leading

to n intervals and n quadratic polynomials. The form of each quadratic polynomial is:
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Si (x) = aix
2 + bixi + ci....i = 1, 2, ....., n (3.3)

where ai, bi, ci(i = 1, 2, . . . , n) are unknown constants to be calculated. The total num-

ber of unknown constants is 3n because there are n such polynomials, each with three

unknowns.

S1 (x1) = y1

Sn (xn+1) = yn+1

a1x
2
1 + b1x1 + c1 = y1

anx
2
n+1 + bnxn+1 + cn = yn+1

Therefore, exactly 3n equations the first polynomial S1(x) must go through (x1, y1) and

the last polynomial Sn(x) must go through (xn+1, yn+1):

Figure 3.4: Quadratic spline equations

30



Figure 3.5: Python function for spline interpolation (see Appendix A)

3.3 Testing of Interpolation Methods

The three datasets for the different Reynold’s numbers 105, 2.6× 105 and 8.5× 105 were

interpolated using linear, polynomial and spline interpolation methods and their graphi-

cal behaviors were analyzed for skin friction and pressure respectively. Theoretically, of

the three interpolation methods, polynomial methods are expected to erratically behave

as depicted in Figure 3.6. The performance of the spline, linear and polynomial of which

spline shows to be a best fit of all, linear shows a minor deviation and polynomial over-fit

or outliers. The error of the interpolated value is composed of two parts, one part which

is due to measurement error of the digitized document or graphs from Achenbach re-

sults, and another part which is the error of the interpolation itself such as the polynomial

interpolation.
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(a) Re = 105

(b) Re = 2.5× 105

(c) Re = 8.5× 105

Figure 3.6: Spline(fitted), Linear(deviation) and Polynomial (oscillating) for Re = 105, 2.6×105, 8.5×105
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3.3.1 Interpolation Error

After plotting the graphs of the three interpolated datasets, the performance of each

method was observed where the spline method provides the best fitting, while the lin-

ear shows some deviation at the beginning of the curve and the polynomial method was

oscillating as shown in Figure 3.6 (a), (b) and (c). In further investigation and studies

of interpolation shows that polynomial interpolation can result in end values that appear

to be outliers because of the nature of polynomial functions. Polynomial functions can

oscillate wildly as they extend beyond the range of the data points used to fit the curve.

This is known as the "Runge’s phenomenon" and can lead to polynomial functions that

exhibit large oscillations, particularly at the ends of the interval where they are being ex-

trapolated [19]. The function must pass through each data point when fitting a polynomial

function to a series of data points using polynomial interpolation. Nevertheless, a poly-

nomial generated by such an approach can swing a great deal if its degree is too high or

if the data points are not well-behaved. Employing a greater degree of polynomial or in-

cluding additional data points close to the ends are two strategies for reducing the impact

of oscillations at the endpoints of the interval, however, this may not always be possible

or desirable [19]. Another approach is to use alternative interpolation techniques, such as

spline interpolation, which are better suited for handling oscillatory data.

3.3.2 Interpolation Error Parameters

3.3.2.1 Root Mean Square Error (RMSE)

The RMSE is commonly used as a metric to evaluate the accuracy of interpolation meth-

ods because it provides a measure of how well the interpolation method approximates the

actual values at the observed data points. In this thesis, the goal is to estimate the values

of a function at points that are not observed based on the values of the function at a set of

observed data points [22]. RMSE measures the difference between the predicted-values

(yp_new_spline) from the interpolation method and the actual-values (y_resized) at the

observed data points in Figure 3.7. It provides a quantitative measure of how well the

interpolation method fits the observed data points. When MAE and RMSE are compared,
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it’s easy to see which is more intuitive and provides a simple way to compare the perfor-

mance of the three types of interpolation methods. Furthermore, RMSE can be used to

optimize the parameters used in interpolation methods, such as polynomial fit or radial

basis function size. RMSE for interpolation can be calculated by estimating the values

at the observed points using the interpolation method. Based on these estimated values,

you would calculate the difference between the actual values and the estimated values.

Finally, you would calculate the square of these differences, average them, and take the

square root to get the RMSE [23]. To calculate the root-mean-square error (RMS er-

ror), square the differences between known (actual-value) and unknown (predicted-value)

points, sum these squares, divide by the total number of test points, and then square root

the result

RMSE Equation:

RMSE =

√
1

n

∑
((predicted− actual)2 (3.4)

where:

n− is the number of observed data points.

predicted− is the estimated value from the interpolation method.

actual− is the actual value at the observed data point.

3.3.2.2 Mean Average Error (MAE)

The MAE is also used to evaluate the accuracy of interpolation methods, and it has some

advantages over Root Mean Square Error (RMSE) in certain situations [24]. Like RMSE,

MAE measures the difference between the predicted-values (yp−new−spline) from the

interpolation method and the actual-values (y−resized) at the observed data points Fig-

ure 3.7. However, unlike RMSE, MAE does not square the differences, which makes it

less sensitive to outliers [22] . In other words, if there are a few data points that are far
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from the other points, these outliers will have a greater impact on RMSE than on MAE.

MAE is also easier to interpret than RMSE because it is in the same units as the data.

The formula for calculating MAE is:

MAE = (
1

n
)×

∑
(|predicted− actual|) (3.5)

where:

n− is the number of observed data points.

predicted− is the estimated value from the interpolation method.

actual− is the actual value at the observed data point.

The interpolation procedure is more accurate the lower the MAE. As with RMSE, it is es-

sential to observe that MAE alone may not provide a complete picture of the interpolation

method’s performance and should be used in conjunction with other evaluation metrics.

MAE provides an easily interpretable measure of the interpolation method’s accuracy and

is a suitable alternative to RMSE when working with datasets containing outliers.

3.3.3 Python Implementation of Interpolation Methods

This Python code implements interpolation functions for processing CSV-formatted in-

put data and producing interpolated output data. The code contains three interpolation

functions: spline, linear, and polynomial. The data in the CSV file are organized in

two columns, with the first column representing the angle (Theta) values and the sec-

ond column representing either pressure or skin friction. The code can be applied si-

multaneously to multiple ”Input” folder input files; for each file, it calculates the in-

terpolated values using the three interpolation functions and prints the RMSE and MAE

values for each function. Importing the necessary libraries (os, numpy, pandas, and

InterpolatedUnivariateSpline from scipy.interpolate) is the first step of the code.

Then, three functions are defined for the three interpolation methods. Upon receiving
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two arrays, x and y, the spline_interpolation function returns the interpolated values for

x and y. It utilizes the InterpolatedUnivariateSpline function to interpolate the spline.

The linear_interpolation function accepts two arrays,x and y, and returns the linearly in-

terpolated values for x and y (Appendix A, Fig. A.1).

The polynomial_interpolation function accepts three arguments: the x and y arrays, as

well as the degree of the polynomial to be fit. It returns the values interpolated using poly-

nomial interpolation for x and y. The program then retrieves the input file paths from the

”Input” folder that contains the dataset and stores them in a list (Appendix B, Fig. B.1—

B.3). If there is no input file, the code prints a message and exits. The code scans each

CSV file into a pandas DataFrame and stores the angle values in the x array and the data

values in the values array for each file in the list. Using the three interpolation functions,

it then calculates the interpolated values for x and values and stores them in three distinct

arrays. The degree of the polynomial to be fitted by the polynomial_interpolation function

is determined by the filename and data type (pressure or skin friction). Finally, the code

outputs the RMSE and MAE values for each interpolation function using the calculated

interpolated values for the pressure data. The RMSE is computed using numpy.sqrt and

numpy.mean, while the MAE is computed using numpy.abs and numpy.mean. The

RMSE and MAE values for each interpolation function and input file are displayed (Ap-

pendix A, Fig. A.1—A.5).

3.3.4 Improving The Polynomial Interpolation Methods

For the deviation in the linear method according to the graphs, it was found that the issue

was in the python script while reading the input data from the files. Specifically, the code

was skipping one row from each dataset. To resolve the issue, the algorithm was modified

to include that first row of data. This fixed the deviation issue with the linear method and

the graphs were plotted again as shown in Figure 3.8. After applying this fix, it was found

that the interpolation techniques produced more accurate results and better represented

the underlying data.
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Table 3.1: RMSE and MAE Results for 2D-Spline, Linear and Polynomial Interpolation. Polynomial
Degree for Pressure [Re = 105 (15 degree) Re = 2.6 × 105 (19 degree) Re = 8.5 × 105(19 degree).
Polynomial Degree for Skin friction [Re = 105 (17 degree) Re = 2.6× 105 (13 degree), Re = 8.5× 105

(25 degree)

Pressure Skin Friction

Re 1×105 2.6×105 8.5×105 1×105 2.6×105 8.5×105

Methods

Spline 1.018 1.189 1.613 1.018 1.856 1.974
RMSE Linear 1.018 1.184 1.608 1.798 1.868 1.966

Polynomial 1.022 1.185 1.615 1.816 1.862 1.975

Spline 0.683 0.879 1.267 1.377 1.418 1.579
MAE Linear 0.681 0.876 1.264 1.374 1.433 1.572

Polynomial 0.685 0.878 1.274 1.378 1.449 1.589

3.3.5 Result and Comparative Analysis

This part explains the result and comparison for the two-dimensional interpolation and

visualization of the datasets with different interpolation methods. Three interpolation

methods as introduced theoretically in the beginning of this chapter were tested on the

datasets which are from the same source. This study intends to find the most appropriate

or suitable interpolation method in terms of RMSE and MAE for these datasets Table

3.1 . In order to analyze and verify the results of accuracy assessment, the relative per-

formance of three interpolation methods have been examined, both mathematical studies

and visual comparisons was performed. The graphs produced by the three interpolation

techniques—linear, polynomial, and spline—are shown in Figure 3.6 represent the first

set of result analyses for Re = 105 , Re = 2.6 × 105 and Re = 8.5 × 105 (skin friction

and pressure) and in terms of RMSE and MAE in Table 3.1. According to the results

of the error analyses in Figure 3.6, there is high variations in this instance especially for

polynomial compared to Figure 3.8, the second set which has a low variations. In both

instances it is clear that spline provides the best outcomes, while linear comes close be-

hind and the worst outcomes were once more produced by polynomial. However, even

though there is no much difference between linear and spline, spline consistently outper-

37



forms linear in terms of performance. Figure 3.7 and Table 3.1 shows the best-performing

interpolation technique by comparing the RMSE and MAE and based on the result, for

Pressure—Spline has the lowest MAE values of 0.683 [0.683, 0.879, 1.267]. In terms of

RMSE, spline also has the lowest values of 1.018 [1.018, 1.189, 1.613]. Also for Skin

friction, Spline has the lowest MAE values of 1.377 [1.377, 1.418, 1.579] and RMSE val-

ues for 1.803 [ 1.803, 1.856, 1.974]. In comparison to linear interpolation which shows

MAE values of 0.681 [0.681, 0.876, 1.264] and RMSE, 1.018 [1.018, 1.184, 1.608] and

for Skin friction shows MAE values of 1.374 [1.374, 1.433, 1.572] and RMSE values for

1.798 [1.798, 1.868, 1.966]
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(a) Re = 105

(b) Re = 2.6× 105

(c) Re = 8.5× 105

Figure 3.7: Spline(fitted), Linear(fitted) and Polynomial (fitted) for Re = 105, 2.6 × 105, 8.5 × 105.
Polynomial Degree for Pressure [Re = 105 (15 degree) Re = 2.6 × 105 (19 degree) Re = 8.5 × 105(19
degree). Polynomial Degree for Skin friction [Re = 105 (17 degree) Re = 2.6 × 105 (13 degree), Re =
8.5× 105 (25 degree)
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Chapter 4

Surface Interpolation

Surface interpolation refers to the process of estimating values for points on a surface

based on known values at discrete sample points. Using these sample points, we create

a smooth continuous surface, allowing the estimation of values at other locations. The

techniques for surface interpolation include polynomial interpolation, spline interpola-

tion, nearest neighbor, and kriging. They vary in complexity, computational requirements,

and accuracy. The data type determines the interpolation method, level of accuracy, and

computational resources available, but for this thesis, nearest neighbor, spline, and kriging

were used.

The reason for the surface interpolation is to make a surface that includes all three Reynolds

Numbers (Re) and can be used to interpolate values of pressure and skin friction for val-

ues of Re which lie in between the datasets. By providing accurate estimates of pressure

and skin friction values at any point on a surface, surface interpolation can aid in simu-

lations, design optimizations, and in identifying regions of high pressure or skin friction

gradients that may indicate flow separation or boundary layer transition.
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4.1 3D-Interpolation Methods

4.1.1 Kriging Interpolation:

Kriging is a geostatistical interpolation technique used to gauge the worth of a variable

at an unsampled area in view of the values of neighboring sampled locations [25]. This

technique is often used in spatial analysis to create continuous surface models from dis-

crete data points [26]. Kriging is a powerful tool that uses the spatial correlation of data

to produce accurate estimates with quantified uncertainty. The basic principle of kriging

is to model the spatial correlation of data using a mathematical function called a vari-

ogram [27]. The variogram measures how the variance of the data changes as the distance

between points increases. By analyzing the variogram, kriging calculates a set of weights

for each sampled location based on the distance to the unsampled area and the spatial

connection of the information. At the unsampled area, these special kind of loads are

utilized to measure the variable worth [27]. Kriging is a process that can be expressed

mathematically as:

Z(S0) =
N∑
i=1

⋋iZ(Si) (4.1)

where :

Z(Si)− is the i-th position of the measured value;

i− is the i-th position measurement values of the unknown weight;

S0− is the predicted position;

N− is the number of measurements.

Simple, Ordinary and Universal are three special kinds of kriging that are used. The data

is known and constant is the theory that comes under simple kriging [28]. The mean esti-

mation from the information given is known as ordinary kriging [28] [27]. The covariates

are included in the universal kriging. These universal covariates include temperature el-

evation, interpolation accuracy etc. there are various flaws and benefits of each type of

kriging as well. our choice is kriging is generally based on special characteristics of the

under analysis data [27] [28].
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One of the key advantages of kriging is that it produces estimates with quantified uncer-

tainty. This is because kriging takes into account the spatial correlation of the data, which

provides information about how reliable the interpolation is likely to be [29]. Nearest

neighbor and spline interpolation, for example, don’t provide you quite as much detail.

However, kriging is not without its drawbacks. It may not work well with huge datasets

or non-stationary data since it demands more processing resources than alternative inter-

polation methods. In addition, kriging’s interpolation precision is susceptible to outliers,

and it’s all reliant on how well the variogram model works.

In conclusion, kriging is a powerful geostatistical interpolation technique that produces

accurate estimates with quantified uncertainty. The interpolation’s accuracy is improved

because spatial correlations between data are included. While effective for some data

sets, kriging typically calls for more processing power. The decision to utilize kriging, as

with any analytical method, is contextual, based on the nature of the data and the desired

outcomes of the study.

4.1.2 Spline Interpolation:

Spline surface interpolation is a method used to construct a smooth surface that passes

through a set of given points in three-dimensional space [29]. It involves the use of piece-

wise polynomial functions, called splines, to approximate the surface. The process begins

by selecting a set of control points that define the shape of the surface. The spline function

is then constructed by fitting a polynomial curve to each section of the surface between

adjacent control points. The degree of the polynomial used for each curve is typically

chosen to be cubic or higher to ensure smoothness. The spline function is chosen such

that it satisfies certain continuity conditions across the boundaries between adjacent poly-

nomial curves. This ensures that the resulting surface is smooth and does not have any

sharp discontinuities. Once the spline function has been constructed, it can be evaluated

at any point in three-dimensional space to obtain an approximation of the surface. The

general formula for spline surface interpolation can be expressed as follows:

Given a set of n sample points
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{(xi, yi, zi)} (4.2)

where xi , yi , and zi represent the x,y , and z coordinates , the goal is to estimate z at

any arbitrary point(x, y) on the surface. Triangulating sample coordinates creates a mesh

(Appendix A, Fig. A4). After that, the mesh is broken into smaller sub-triangles and a

polynomial function is fitted to each using the sample points at its vertices. Most poly-

nomials are bivariate quadratic or cubic spline. Then, the value of z at any surface point

(x, y) can be estimated by locating the sub-triangle containing the point and evaluating

the polynomial function for that sub-triangle at the point.

4.1.3 Nearest Neighbor Interpolation:

Nearest Neighbor Surface Interpolation (NNSI) is a method of surface interpolation used

to estimate the value of a function at unsampled points based on the values of the function

at nearby sampled points [30] . NNSI assumes that the function being interpolated is

continuous and that nearby points on the surface of the function have similar values [28].

NNSI is particularly useful when the sampled points are irregularly spaced or when there

is a high density of data points. It is a simple and fast method that can quickly approximate

the surface of a function. To estimate the value of the function at an unsampled point,

NNSI finds the nearest sampled point to that unsampled point. The value of the function

at the unsampled point is then estimated as the value of the function at the nearest sampled

point [30].

However, It does not create a smooth surface and produces findings that are sensitive to

the sampled point distribution. NNSI also ignores spatial relationships between sampling

sites, which can be essential. NNSI is useful in many situations that require simple and

quick surface interpolation despite these constraints. It can enhance other surface inter-

polation algorithms.

From the observations from the other two methods above, the NNSI was found to be

particularly useful because the method is simple and fast, NNSI works by assuming that
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the function being interpolated is continuous and that nearby points on the surface of the

function have similar values. When estimating the value of the function at an unsampled

point, NNSI finds the nearest sampled point to that unsampled point and estimates the

value of the function at that point.

Table 4.1: RMSE and MAE Results for 3D-Nearest, Spline and Kriging Interpolation

Pressure Skin Friction

Re 1×105 2.6×105 8.5×105 1×105 2.6×105 8.5×105

Methods

Nearest 1.018 1.189 1.613 1.803 1.856 1.974
RMSE Spline 1.018 1.184 1.608 1.798 1.868 1.966

Kriging 1.022 1.185 1.615 1.810 1.862 1.975

Nearest 0.683 0.879 1.267 1.377 1.418 1.579
MAE Spline 0.681 0.876 1.264 1.374 1.433 1.572

Kriging 0.685 0.878 1.274 1.378 1.449 1.589

4.1.4 Griddata—Python Implementation of Surface Interpolation Meth-

ods

This Python code incorporates commonly used libraries for scientific computing and data

visualization, such as math, os, numpy, pandas, and matplotlib.pyplot. Additionally,

pykrige and scipy.interpolate are imported for interpolation purposes (see Appendix B,

Fig. B.1). This code is designed to interpolate pressure or skin friction data at various

angles and Reynolds numbers. The code requests two user inputs using the input func-

tion. Choose between pressure and skin friction data as the first input. The second input

consists of choosing a Reynolds number from the three options provided. The program

then locates the file in the Input directory that corresponds to the selected inputs. It filters

the list of files according to the specified Reynolds number and assigns the first file to the

variable ”file.” Additionally, it extracts this file into a pandas dataframe and stores the

angle, pressure, or skin friction data in numpy arrays (see Appendix B, Fig. B.1).
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The code subsequently specifies three interpolation techniques: nearest, spline, and krig-

ing. It generates a mesh grid of pressure and angle values and interpolates using the

specified methodologies. Utilizing the matplotlib library, the interpolated values are plot-

ted on a 3D surface. For interpolation using kriging, the pykrige library is utilized. The

interp2d function from the scipy.interpolate library is used for spline interpolation. The

griddata function from the same library is used for additional interpolation methods. The

code computes and stores in rmse_dict and mae_dict, respectively (see Appendix B, Fig.

B.1— B.4), the root mean squared error (RMSE) and the mean absolute error (MAE) for

each interpolation method. The results and 3D surface plots are printed at the conclusion

of the code. The surface plots display interpolated data for pressure or skin friction at var-

ious angles and Reynolds numbers. The RMSE and MAE values indicate the precision of

each method’s interpolated data.

Overall, this code is beneficial for interpolating pressure or skin friction data at varying

Reynolds numbers and angles. Additionally, the code is adaptable and permits simple

customization of interpolation methods and plotting options. The RMSE and MAE cal-

culations provide a quantitative measure of the interpolation methods’ accuracy, making

them valuable for validation.

4.2 Results and Comparative Analysis

This section explains the result and comparison for the three-dimensional interpolation

and visualization of the datasets with different interpolation methods: spline, nearest

neighbor, and kriging, in the context of surface interpolation. These methods were ap-

plied to these datasets for Re = 105 , Re = 2.6 × 105 and Re = 8.5 × 105 (skin

friction and pressure) and estimate the RMSE and MAE with missing values in order to

predict the values at these locations and create a continuous surface. After conducting a

comparative analysis of the results in Table 4.1, it was found that for the kriging shows

the lowest error of 0.685 in terms of MAE for pressure (0.685, 0.878, 1.274) and 1.378

[1.378, 1.449, 1.589] for skin friction. The same is true for RMSE Table 4.1. Kriging

outperformed the other two methods in terms of accuracy and provided the most realistic
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and continuous surface Figure 4.1—4.3. The results of these methods highlight the im-

portance of selecting an appropriate interpolation method when working with spatial data.

While spline and nearest-neighbor methods are commonly used, they may not always be

the most suitable choice for surface interpolation. Kriging, with its ability to incorporate

spatial correlation and variability into the interpolation process, can be a powerful tool for

accurately predicting values and creating continuous surfaces.

(a) Skin Friction

(b) Pressure

Figure 4.1: Griddata Results For Nearest, Spline and Kriging for Re = 105

This study also demonstrated the significance of considering the spatial characteristics of

the data when selecting an interpolation technique. By taking into consideration the un-

derlying spatial variability and correlation, kriging was able to generate a more accurate

and continuous surface, which is crucial for many spatial applications. This paper shows

how kriging can be used for surface interpolation and provides vital insights into interpo-

lation algorithms. This work hopes to expand the use of kriging in surface interpolation

46



and improve spatial forecasts and decision-making across disciplines.

(a) Skin Friction

(b) Pressure

Figure 4.2: Griddata Results For Nearest, Spline and Kriging for Re = 2.6× 105

In each instance, it is evident that kriging yields the best results, followed by nearest

neighbor and spline, which produced the worst results. Despite the fact that there is

little difference between kriging and nearest neighbor, kriging consistently outperforms

the nearest neighbor. In addition, error analyses were conducted Table 4.1, and according

to the mean absolute error (MAE), the interpolation technique that performed the best was

kriging, while spline performed the worst compare to root mean square error (RMSE).
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(a) Skin Friction

(b) Pressure

Figure 4.3: Griddata Results For Nearest, Spline and Kriging for Re = 8.5× 105

4.3 Summary

The process of transforming physical data into digital representations that can be quickly

evaluated, displayed, and changed using software tools is known as data extraction and

digitization. Dealing with incomplete or incorrect data points, which might happen be-

cause of things like low data quality, human mistakes, or the constraints of the digitization

process itself, can make this procedure difficult. In order to approximate missing data

points or values inside a given dataset, interpolation techniques are frequently employed

in data processing and analysis. The practice of guessing a function’s value at a point

within a specified range using the values of nearby points is known as interpolation.

This thesis investigated the most appropriate or suitable interpolation method for the

datasets extracted and digitized (Figure 2.5) from E.A Achenbach research [16] which
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formed the basis of the entire research. In order to analyze and verify the results of the

accuracy assessment, the relative performance of three interpolation methods has been

examined, and both mathematical studies and visual comparisons were performed. The

study further demonstrated the importance of considering the spatial characteristics of

the data when selecting an interpolation technique. The spline interpolation method was

found to be the best fit for the two-dimensional interpolation, while for the three- di-

mension, the kriging interpolation method was able to generate a more accurate and con-

tinuous surface by taking into account the underlying spatial variability and correlation.

These methods have been widely studied and compared in terms of their performance and

both can provide accurate and reliable results, but their performance depends on the char-

acteristics and data distribution. Overall, spline and kriging methods have been found to

have the best performance for spatial interpolation for the datasets used in this research.
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Conclusions

Three interpolation methods as introduced theoretically in chapter three and four respect-

fully, were applied to the extracted and digitized datasets from the Achenbach experiment

Figure 2.5 which is half of the entire data points from the Achenbach experiment Figure

2.2 – 2.4. The datasets contains 50% of the data points from each figure, which means

extraction occur between 0 and 180 degrees angle for Re = 105 , Re = 2.6 × 105 and

Re = 8.5×105 (skin friction and pressure) and a total of 180 sample data points (0 to 180)

was used, for example (see Appendix C, Datasets, C.1—C.3). Referring to Figure 3.8

which shows the generated graphs by the three interpolation methods in two-dimension,

presents the visibility comparisons on the datasets for the three interpolation methods.

This study intends to find the most appropriate or suitable interpolation method for these

datasets. In order to analyze and verify the results of accuracy assessment, the relative per-

formance of three interpolation methods have been examined, both mathematical studies

and visual comparisons was performed. In Chapter three, the graphs produced by the three

interpolation techniques—Spline, Linear, and Polynomial—are shown in Figure 3.8, rep-

resent the first set of result analyses for Re = 105 , Re = 2.6× 105 and Re = 8.5× 105

(skin friction and pressure) in two-dimension. In all the instances, it is clear that spline

provides the best outcomes, while linear comes close behind and the worst outcomes were

once more produced by polynomial. Additionally, some error analyses were carried out

(Figure 3.7 and Table 3.1) and the best-performing interpolation technique by comparing

the RMSE and MAE and based on the result, for pressure, spline has the lowest MAE

values of 0.683, 0.879, 1.267 respectively. In terms of RMSE, spline also has the lowest

values of 1.018, 1.189, 1.613, respectively. Also for Skin friction, spline has the lowest

MAE values of 1.377, 1.418, 1.579 and RMSE values for 1.803, 1.856, 1.974 respectfully.
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In Chapter four, the performance of three different interpolation methods: Spline, Nearest

Neighbor, and Kriging in the context of surface interpolation in three-dimension was in-

vestigated. These methods were applied to the three-dimensional datasets (see Appendix

C, C.4—C.5) in order to predict the values at these locations and create a continuous sur-

face Figure 41—4.3. After conducting a comparative analysis of the results (Table 4.1 and

Figure 41—4.3), for Re = 105 , Re = 2.6 × 105 and Re = 8.5 × 105 (skin friction and

pressure), it was found that kriging outperformed the other two methods in terms of accu-

racy and precision and provided the most realistic and continuous surface. Based on the

result, for pressure, kriging performs best for both RMSE and MAE for all three Reynolds

Numbers, it has the lowest MAE error of 0.685 (0.685, 0.878, 1.274) and 1.378 for skin

friction (1.378, 1.449, 1.589). In terms of RMSE, kriging has 1.022 which is the lowest

values of (1.022, 1.185, 1.615) for pressure and for skin friction has the lowest value of

1.810 (1.810, 1.862, 1.975) Table 4.1.

Finally, this investigation showed the need of considering data spatial properties while

choosing an interpolation method. Spline interpolation is more flexible and accurate, es-

pecially for irregular data points. Spline interpolation also creates a smooth curve that

better represents the function. For many spatial applications, kriging’s allowance for spa-

tial variability and correlation created a more realistic and continuous surface. This study

sheds light on surface interpolation methods and shows the efficacy of kriging and spline.

This work hopes to increase the use of these interpolation approaches to improve spatial

predictions and decision-making.

Future Work
The study is hindered by the fact that it only looked at a small number of datasets. It

would have been The study’s limited datasets impede it. A large collection would have

made results more universal. . The study also didn’t look into the parameter space of each

approximation method as much as it could have. It would be helpful to look at a bigger

range of parameter values and assumptions to learn more about how each method works.

The metrics used are another drawback. More metrics, like the mean absolute percentage

error (MAPE) or the coefficient of determination (R-squared), could be used to give a

complete picture of how well each approximation method works.
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The first suggestion for future work is to investigate the impact of different parameters or

assumptions used in each interpolation method: Many interpolation methods have various

parameters and assumptions that can affect their performance. Polynomial interpolation

accuracy depends on the degree of the polynomial, the range of the kriging neighborhood,

and the kind of spline basis function. Each interpolation approach has downsides. There-

fore, future research might create new interpolation methods or alter existing methods to

better meet specific issues or restrictions, such as non-stationarity or big datasets.

Second, using interpolation methods with regression or machine learning to construct

hybrid models that combine their strengths: Hybrid models can combine interpolation

methods with regression or machine learning to take use of their capabilities. Hybrid

models frequently yield more accurate and robust findings than single methods.
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Appendix B

Python code for 2D-Interpolation

Figure B.1: Code for linear interpolation function
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Figure B.2: Polynomial interpolation function ..(continuation from A.1)
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Figure B.3: Code to get files from input folder ..(continuation from A.2)
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Figure B.4: Code for RMSE Calculation....(continuation from A.3)
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Figure B.5: Code for MAE Calculation...(continuation from A.3)
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Appendix C

Python code for 3D-Interpolation

Figure C.1: Code for griddata surface interpolation
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Figure C.2: Code for griddata surface interpolation.....continuation from Fig. A.1
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Figure C.3: Code for griddata surface interpolation.....continuation from Fig. B.2
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Figure C.4: Code for griddata surface interpolation.....continuation from Fig. B.3

68



69



Appendix D

Datasets

Figure D.1: Input data for Re = 105

70



Figure D.2: Input for Re = 2.6×106
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Figure D.3: Input Data Re = 8.5×105
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Figure D.4: Pressure-Data for Griddata for Re =105,Re = 2.6×105, Re = 8.5×105
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Figure D.5: Skin friction-Data for Griddata for Re =105,Re = 2.6×105, Re = 8.5×105
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