
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Sergei Lukauškin 194061IADB

Network Operations Center Monitoring

Automation using Machine Learning on the

Example of Elisa Eesti AS

Bachelor’s thesis

Supervisors: Hayretdin Bahsi

 PhD

 Valdo Kiks

 Bachelor

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Sergei Lukauškin 194061IADB

Võrguoperatsioonide keskuse monitooringu

automatiseerimine masinõppe abil Elisa Eesti

AS-i näitel

Bakalaureusetöö

Juhendajad: Hayretdin Bahsi

 Doktorikraad

 Valdo Kiks

 Bakalaurusekraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Sergei Lukauškin

16.05.2022

4

Abstract

We live in a time when every second person has a portable device that has access to the

Internet and a mobile network. In order to provide users with access to it, data centres are

required to process incredible streams of user data every second. Each error resulting from

the processing of requests can be very costly for the telecommunications service provider.

In order to avoid such problems and quickly locate existing ones, network operations

centres are used to facilitate data management. These centres always have a monitoring

system to track bugs and create tickets for problem cases. Recently, for a faster response

to new flaws in the system, tools have appeared in the world to automate the error

handling process. Such solutions helped filter out unnecessary or fake errors or

automatically correct the rest. However, as in any system, this solution has several flaws.

The problem lies in the time of recognition of errors and the quality of such recognition.

In order to optimize the process of finding errors, this thesis considers the possibility and

effectiveness of using machine learning methods as a means of recognizing the validity

of errors obtained from such monitoring systems. This will minimize the time required

for the system to validate errors and increase the accuracy of these predictions.

This thesis is written in English and is 42 pages long, including 6 chapters, 8 figures and

2 tables.

5

Annotatsioon

Elame ajal, mil igal teisel inimesel on kaasaskantav seade, millel on juurdepääs Internetile

ja mobiilivõrgule. Selleks, et anda kasutajatele sellele juurdepääs, peavad andmekeskused

töötlema iga sekund uskumatuid kasutajaandmete vooge. Iga päringute töötlemisest

tulenev viga võib telekommunikatsiooniteenuse pakkujale olla väga kulukas. Selliste

probleemide vältimiseks ja olemasolevate kiireks leidmiseks kasutatakse andmehalduse

hõlbustamiseks võrguoperatsioonide keskusi. Nendel keskustel on alati seiresüsteem

vigade jälgimiseks ja probleemsete juhtumite jaoks piletite loomiseks. Hiljuti on

maailmas uutele süsteemivigadele kiiremaks reageerimiseks ilmunud tööriistad

veakäsitluse automatiseerimiseks. Sellised lahendused aitasid välja filtreerida

mittevajalikud või võltsvead või ülejäänu automaatselt parandada. Kuid nagu igal

süsteemil, on ka sellel lahendusel mitmeid puudusi. Probleem seisneb vigade tuvastamise

ajas ja sellise tuvastamise kvaliteedis. Vigade leidmise protsessi optimeerimiseks

käsitletakse käesolevas lõputöös masinõppemeetodite kasutamise võimalust ja

efektiivsust sellistest seiresüsteemidest saadud vigade õigsuse tuvastamise vahendina.

See vähendab süsteemil vigade kinnitamiseks kuluvat aega ja suurendab nende

prognooside täpsust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 42 leheküljel, 6 peatükki, 8

joonist, 2 tabelit.

6

List of abbreviations and terms

AI Artificial Intelligence

API Application Programming Interface

CLI Command-Line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CSP Communications Service Provider

FD Flapping Detection

GPU Graphics Processing Unit

HMM Hidden Markov Model

HTTP Hypertext Transfer Protocol

LSTM Long-Short Term Memory

ML Machine Learning

MLP Multilayer Perceptron

NN Neural Network

NOC Network Operations Center

OPEX Operating Expense

PD Perpetual Detection

PReLU Parametric Rectified Linear Unit

QA Quality Assurance

QoS Quality of Service

ReLU Rectified Linear Unit

REST REpresentational State Transfer

RNN Recurrent Neural Network

RPC Remote Procedure Call

SIMD Single Instruction, Multiple Data

SIT System Integration Testing

SNMP Simple Network Management Protocol

UAT User Acceptance Testing

7

Table of contents

1 Introduction ... 10

2 Alarm Pre-Processing .. 12

2.1 Perpetual & Flapping Detection ... 12

3 Machine Learning .. 14

3.1 Dataset .. 15

3.1.1 Dataset Processing ... 16

3.2 Model Structure & Optimization .. 17

3.2.1 Input Layer .. 17

3.2.2 Inner Layers ... 17

3.2.3 Activation Layers .. 18

3.2.4 Optimization .. 22

3.3 Related Work .. 23

3.3.1 Fault Management ... 25

4 Solution .. 28

4.1 Local Hardware & Software ... 28

4.2 Production System Description .. 29

4.3 Testing .. 30

4.4 Existing Statistics ... 30

4.5 Training Results .. 31

4.6 Service Architecture ... 32

4.7 Service Integration Results ... 33

5 Future Work ... 35

6 Summary .. 37

References .. 39

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 41

Appendix 2 – Example of SNMP trap data structure for VSWR alarm 42

8

List of figures

Figure 1. Data flow of monitoring service ... 11

Figure 2. Sigmoid activation function [11] .. 19

Figure 3. Example: binary classification with a sigmoid function [11] 20

Figure 4. ReLU activation function [11] .. 21

Figure 5. Leaky ReLU activation function [11] ... 21

Figure 6: RMSProp, Adam and Adamax optimization algorithms [12]......................... 23

Figure 7. Underfitting versus overfitting from the research of Danish Rafique and Luis

Velasco [4] .. 24

Figure 8. The case-based reasoning process [14] ... 27

https://livettu-my.sharepoint.com/personal/seluka_ttu_ee/Documents/Lõputöö.docx#_Toc103611689

9

List of tables

Table 1. Dataset features used for training ... 31

Table 2. Example of SNMP-trap with VSWR alarm ... 42

10

1 Introduction

The monitoring industry is an essential part of any IT system. Especially if we are talking

about data centres or network operation centres with an enormous customer base and the

need to maintain the QoS at a high enough level [1]. With the increase in the scale of the

enterprise, the number of logs collected from the servers also grows. Therefore, it

becomes more and more challenging to maintain even with an increased number of

employees. Reaching the scale of big tech makes enterprises use special utilities to collect

and organize information about managed devices or IP networks and modify that

information to change device behaviour. One of such utilities is the Simple Network

Management Protocol (SNMP), widely used for network monitoring and simplifies the

network elements configuration process. Simple Network Management Protocol

technology is well documented and has been the research topic many times, though pure

protocol cannot handle errors. Error handling is made possible by applying third-party

services to a monitoring system. There are plenty of ready SNMP-based monitoring

solutions available, and many of them support error handling. One of those solutions is

NOC Project, which provides Root Cause Analysis, topology correlation, escalation,

active probing and passive alarm condition detection in Syslog and SNMP traps [2].

Unfortunately, the more complex cases are frequently not handled properly and are

ignored instead of notifying the support team.

The main goal of the current thesis is to analyze network operation centre systems which

use different monitoring solutions, such as the NOC Project. Existing algorithms work by

strict rules and spend too much time waiting for needed events to arrive. Events could be

predicted by using machine learning to prevent such behaviour. Network operation

centres may have millions of recorded events or traps per minute. The fault management

and handling systems play a significant role in a system of this size. Dozens of products

include customizable solutions that automate resolving issues and creating tickets for

system administrators, but only a few can handle more complex situations like false

positive and false negative alarms. False alarms are pretty standard in existing error

handling systems, and on some occasions, one can account for up to half of all cases.

11

Furthermore, monitoring services may send multiple simultaneous events that include

both the error and fixed events, which may confuse many existing algorithms.

The latest algorithms include the pre-processing method of resolving toggling behaviour

and dealing with such circumstances. The effectiveness of methods is questionable, but

not as much as the speed and the algorithm behind them. The solution to the problem is

to include machine learning in the error handling pre-processing step to increase the speed

and efficiency of the algorithm and reduce the production cost of the system. The solution

would analyze the received trap batch and resolve false alarms, including edge cases. The

prediction may not give such high accuracy as the algorithm solution, but it can be close

enough to handle errors properly and sometimes even be more beneficial than the old

algorithm. Depending on alarm type, the time taken to pre-process step may exceed hours

or even days, so this aspect is critical to testing and production environments.

The data flow in the monitoring service begins with sending events from the server to

services subscribed for processing and parsing for further processing. Once an event has

been converted into a structure suitable for further processing, it can be sent to a service

responsible for managing and creating tickets. If the algorithm decides the issue

referenced by received alarms is valid, the ticket is created. Otherwise, the alarm is

rejected, and a ticket is not created.

Figure 1. Data flow of monitoring service

Monitoring

Events

Alarms

Tickets

12

2 Alarm Pre-Processing

The pre-processing step is used to manage events received from the server correctly. This

step helps to filter out alarms before they reach further steps. The exemplary

implementation of the pre-processing module can handle Flapping Detection (FD) and

Perpetual Detection (PD) cases for relevant algorithms. One of the cases should always

retrieve false or invalid alarms on high-level triggering. Nevertheless, there are many

edge cases in the real world, and some false alarms come through from time to time. Such

edge cases can occur due to high latency or adverse weather conditions. Behaviour like

that could be prevented by a more significant alarm query or changes in module

configuration. However, this dramatically affects the speed of processing and cannot

always guarantee the correctness of the result due to the time frame set in the

configuration.

2.1 Perpetual & Flapping Detection

Most networks have many temporary issues that trigger alarms but are cleared without

creating a ticket. While flapping Detection only checks for the second received alarm

being positive, the Perpetual Detection helps resolve such occasions by providing a query

of recent alarms with the same identifier. The query has the two most critical settings in

the current module: a perpetual wait time and a query size. Query size refers to the number

of positive alarms that should be waited for until further steps can be taken.

Perpetual wait represents the time till an unfilled query may be considered cleared. Thus,

the ticket is not created. Optimizing the algorithm could be done by applying other

sources of information, for example, the current day of the week or weather conditions.

The problem is that it might take a long time for an endless wait configuration until the

algorithm moves on. Increasing the query size improves the prediction rates but slower

the whole process. Lowering the wait time benefits alarm processing and average

resolution time but decreases the certainty of predictions. Many possible configurations

exist, but a simple algorithm has its stop point, where statistics will not raise more.

13

Flapping Detection means the system produces multiple alarms with different states in a

short time range. This is typical behaviour due to bugs, configuration errors, and system

failures. The operation algorithm of this service is slightly different from Perpetual

Detection, but there are similarities, and it will be possible to unify in the prediction

process.

14

3 Machine Learning

Machine learning is a broad field with many possibilities in statistical analysis and

predictions based on data. Flapping Detection is a straightforward step that only reacts

too quickly by switching alarm states, and its optimization will not be so tangible if not

harmful. The production environment logs always include results of the ticket created by

the algorithm and the process of declining them or, in other words, marking them as false.

Example input-output pairs provided lead to supervised learning. The supervised learning

methods with prediction include classification and regression, but as there is a need for

resolving more than one type of alarm, the classification algorithm is the best choice [3].

The algorithm used for a supervised learning classification occasion is a neural network

since dealing with the processing of complex structures with lots of categorical data [4].

There are two groups the network model needs to classify. The first one is valid alarms,

which should pass the pre-processing step and create a ticket depending on the further

stages. The second group consists of invalid alarms, and the tickets must not be created

for those as they will be filtered out during the pre-processing step. If the alarm was

classified as invalid, it is named “false” and processed separately.

Input node must be represented by a nested variable-length list of received alarms of the

same identifier. The equivalent data structure is a ragged tensor in the machine learning

field. Inner layers will consist of LSTM (Long Short-Term Memory) model and a few

optimization layers [5]. Outputs include four classified label nodes.

Data features might vary from the network monitoring configuration and setup. However,

the features must not heavily depend on one particular configuration like SMTP- or

gRPC-based monitoring [6, 7].

A unified set of features includes:

• An alarm identifier is an alpha-numeric categorical value that is based on

reference.

• Occurrence time – numerical timestamp – the time alarm occurred.

• Location, site, node – categorical – features show where the alarm belongs.

15

• Equipment – categorical – the equipment used on a machine that broke. Alarms

will be grouped by location and alarm id and processed as an input.

3.1 Dataset

Dataset can be viewed as a collection of data objects, also called records, points, vectors,

patterns, events, cases, samples, observations, or entities. Data objects are described by

several features that capture the fundamental characteristic of an object [8]. Data

collection is always a trouble for any dataset. Using programmatically generated data can

only train the model to follow the strict rules the data is generated with. To be more

precise, collected data should be gathered from a production environment. Some

occasions could be generated algorithmically, though the model trained with such data

might struggle with real-world situations. For the testing and prototype model training

programmatically, generated data would suit fine, but further development and training

are better with data collected from a real network. The inner neural network structure will

quickly swap the dataset if needed. Most monitoring services can produce logs. The logs

received from the service can be parsed and processed with scripts to produce data for

training. For security purposes, the received data should be anonymized. The data for the

dataset should also be categorized, e.g., the string typed values must be categorized and

exchanged for numerical references.

Data that could be gained from the monitoring service has two most common sources [1]:

• Predicting monitoring frequency sampling: in this case, the optimum monitoring

time interval is calculated as the first monitoring time interval at which the

difference between the current and previous measurement metrics values are

below a certain threshold.

• Predicting monitoring data: An optimum monitoring data can be obtained by

investigating the metrics values at specified frequency sampling. Intuitively,

measurement metrics which does not change frequently are not necessary to

monitor frequently.

16

3.1.1 Dataset Processing

Any supervised machine learning for neural networks needs labelling. The dataset

labelling is the machine learning process to identify the raw data that also allows labelling

the informative data and meaningful data to provide context to it, and machine learning

can use that data to learn from it. Data labelling is a critical concept due to adding context

to data before using that in the training model. Furthermore, the data labelling helps select

a correct approach when it is crucial to improve the scalability and quantity factors. The

dataset labelling has many approaches, which can be done by using a combination of

several methods. For example, the amount of production data might be too significant to

label manually. Active learning prioritizes the data labelled to have the highest impact on

training a supervised model. Active learning can be used in situations where the amount

of data is too large to be labelled, and some priority needs to be made to label the data

smartly. For example, the amount of data gathered from the production environment will

not count millions of alarms, though manually labelling each data would take too long.

However, due to its use with the LSTM model, it is not advisable to use active learning

[9]. Instead, the logs parsing utility will automatically compare the alarm states with the

resulting state and produce a separate labelling file for each unique issue.

The pre-processing step is done before providing the dataset for training. This step

includes filtering out all the invalid or corrupted data and checking the validity of data,

for example, timestamps or coordinate values [10]. This is needed to make sure the model

will only retrieve correct data, which will raise the prediction rate.

Before proceeding with the pre-processing step, the dataset should also be filled with

corrective data, which is the data, for improving the recognition of edge cases. The

corrective data might include any other data that correlates with the initial data. For

example, the weather data or the server rack status at the time alarm occurred. The

randomization technique could reduce the prediction loss and increase the accuracy for

the edge cases. The numeric values like timestamps, longitude or latitude could be

modified using randomization to refine the model edge case handling. For example, a

timestamp modified by a few hundred milliseconds might reduce the time correlation for

the model and pay attention to other features. Randomization improves the prediction

accuracy and helps recognize the relation between the alarm’s timestamps.

17

Dataset size influences the prediction rate a lot. Various methods could increase the

number of items in the dataset. As the input data is represented by an array of alarms with

the same alarm identifiers, the dataset could be populated by duplicates. For example, an

array which includes four alarms will be duplicated without one or several last alarms,

leaving it with only part of the initial number of alarms. Such duplication might increase

the size of the dataset by a considerable amount and will increase the prediction rate a lot.

The duplicated data will be handled separately and not related to the initial array. The

unique alarm identifier remains the same to simulate a real-world situation where once

the alarm arrives, it is added to earlier received alarms and sent to the model. The issue

case would not be closed until the model can give over 80% of prediction certainty.

After initial training, the validation stage is needed for testing the trained model. A

training set is implemented in a dataset to build a model, while a test (or validation) set

validates the built model. Data points in the training set are excluded from the test set.

Usually, a dataset is divided into a training set and a validation set. The dataset will be

split into 70% and 30% for training and testing datasets [10].

3.2 Model Structure & Optimization

3.2.1 Input Layer

To increase the model accuracy, it must go through an optimization process. With an

enormous dataset, the training time will increase respectively. Training the model in the

production workflow may affect the development release cycle. The first layer in the

neural network model is the input layer, a vector of alarms with variable sizes to support

different alarms. Unstable layers with uncertain tensor dimensions are often used for text

recognition, but it suits the current case well. The vector inner structure is a fixed size

with pre-defined features, and the only variable size is the length of the vector.

3.2.2 Inner Layers

The native representation of variable length vector creates a tensor with the maximum

size the system could work with and matches other structures to this size, filling undefined

spots with zeroes. This could be achieved by using an additional embedding layer. It will

keep padding for the data to ensure that all sequences are the same length. The padding

step affects the model’s performance and should not be set to a high value. The padding

18

change has an exponential correlation to performance and training time. The loss

decreases much slower if the padding is too high. The slight padding values will decrease

the maximum length of the alarms vector the model could handle.

The inner part of the layers is an LSTM model, which is an extension of recurrent neural

networks (RNNs) [9]. The idea of RNN is to consider the previous output and store it in

the memory for a short period. With LSTM, there is no need to keep a finite number of

states from beforehand as required in the Hidden Markov model (HMM), and it helps to

solve an issue with long term storage. Furthermore, LSTM helps resolve the connection

between the alarms with the O(1) weight complexity, increasing the loss minimization

and gradient calculation speed.

3.2.3 Activation Layers

Activation functions are applied to the weighted sum of inputs in the hidden layer(s) and

the output layer. Inputs can be raw data or the output of a previous layer. Most of the

activation functions are non-linear. Linear functions are mainly used for regression

problems and would not suit to current use case. A linear function takes the input z and

returns the output, cz, a multiplication of the constant c and the input. In mathematical

form, this would be written as f(z) = cz — no input changes and is represented by a single

straight line on the plot. Any function that is not linear can be classified as a non-linear

function. The graph of a non-linear function is not a single straight line. It can be a

complex pattern or multiple linear components [11]. The leading contenders for activation

functions are Sigmoid and some variations of ReLU.

19

The sigmoid activation function (logistic function) is a non-linear function which is

primarily used in logistic regression models and has an s-shaped graph. The sigmoid

function converts its input into a probability between 0 and 1. It is common to see this

function being used for hidden layers in MLPs, CNNs and RNNs. The leading contenders

for activation functions are Sigmoid, Binary Step and some variations of ReLU. The rest

of the functions are too computationally expensive or are mainly used for other neural

network architectures.

Figure 2. Sigmoid activation function [11]

20

Figure 3. Example: binary classification with a sigmoid function [11]

Another activation function is ReLU which is an acronym for Rectified Linear Unit.

ReLU resolves the vanishing gradient problem, which is an issue for the sigmoid function.

The function is also computationally inexpensive and up to 6 times faster than the sigmoid

or the tanh functions. In addition, the ReLU convergence is faster than sigmoid and tanh

functions because of the fixed derivate for one linear component and a zero derivative for

the other linear component; therefore, the learning process is much faster. The only issues

with the ReLU function are a dying ReLU problem and the computational issues due to

enormously big function output.

21

Figure 4. ReLU activation function [11]

Many ReLU functions like leaky ReLU, PReLU (Parametric ReLU) or ReLU6 solve

dying ReLU problems and optimize the learning process. For example, the leaky ReLU

differs from the original ReLU by not using any linear component with zero derivatives.

Excluding the zero derivatives also increases the computational performance.

Figure 5. Leaky ReLU activation function [11]

22

As the most effective activation function for the binary classification, the leaky ReLU

suits perfectly. The leaky ReLU solves the vanishing gradient problem and the dying

ReLU issue. Furthermore, the increased learning performance of the function optimizes

the training process, so the ReLU and its derivatives are chosen for further research.

3.2.4 Optimization

Every neural network needs a loss function to calculate the loss of each iteration. Binary

cross-entropy is a commonly used loss function for binary classification problems. It is

intended to use only two categories, either 0 or 1. It is a loss function that is utilized in

binary classification tasks. A theoretically perfect model has a binary cross-entropy loss

of 0.

Optimization is a mathematical discipline that determines the most effective solution in a

well-defined sense. Optimization algorithms in machine learning aim at minimizing an

objective function, which is intuitively the difference between the predicted data and the

expected values field [12]. The most common optimization problem encountered in

machine learning is continuous function optimization, where the input arguments to the

function are real-valued numeric values, e.g., floating-point values. The output from the

function is also a real-valued evaluation of the input values. Many different optimization

algorithms can be used for continuous function optimization problems.

RMSprop is one of the fastest and the most efficient first-order optimization algorithms

for the neural network, but it does not work well with large datasets and is outperformed

by other algorithms. Adam is another algorithm which includes momentum and bias

correction.

The graphs below represent the comparison of the RMSProp, Adam and Adamax

algorithms. The dataset used comprises 60 000 handwritten training examples and 10 000

testing examples. The RMSProp and Adam are close, but RMSProp produces slightly

better results than Adam [12]. Depending on the dataset, the results may vary, but it is

decided to use both algorithms and compare the results for the thesis.

23

Figure 6: RMSProp, Adam and Adamax optimization algorithms [12].

3.3 Related Work

Many scientific papers by famous universities wrote about machine learning used for

network automation and the applications the machine learning could be used for. In the

research paper written by Danish Rafique and Luis Velasco, unsupervised learning was

described in practice as “neither easily accessible nor abundantly available” [4]. The

unsupervised learning technique was criticized for usage in the network section, though

many supervised learning solutions were found. The reinforcement learning algorithms

could be used, but it mainly handles the situations where the relationship between the data

is needed to be resolved then the general input-output labelling. On the other hand,

supervised learning could be used in many different fields in networking. The hardest part

about applying machine learning is the data aspect. The fundamental aspect of building

24

an ML model is to separate the available data set into a training, validation, and test sets.

The reason to divide data into these sets is to avoid overfitting the training data.

Figure 7. Underfitting versus overfitting from the research of Danish Rafique and Luis Velasco [4]

It can be seen from the graph above (Fig. 7) that as the model approaches convergence—

underfitting, which refers to an overly simplistic model—the training and validation data

sets show similar results; however, beyond this phase, training errors continue to improve,

whereas validation errors start deteriorating—overfitting, which refers to an

unnecessarily complex model. Therefore, the model that enables the best performance for

the validation set is selected as the optimum model. Furthermore, various cross-validation

approaches may split the training and validation set for model construction based on data

characteristics. Finally, the “Predictive Maintenance” section describes how machine

learning applies to fault management and maintenance. For example, early detection of

equipment failure states and consequent remedial actions can prevent network downtime

and enable scheduled preventive maintenance.

The part of the Network Operations Center could include Cloud Computing, which is

rapidly becoming an accepted computing paradigm [1]. However, the unsupervised and

reinforcement machine learning paradigms are not suited for predicting the alarms

received from monitoring. The Elisa Virtual NOC integrates with many monitoring

solutions. One of such solutions is Nagios, which lacks the database to be named a proper

lightweight monitoring solution. It is also hard to configure, but the data produced by

25

Nagios is still easily processable and usable with the machine learning automation

solution [1].

Many research papers describe the use cases for machine learning within the SNMP

dataset for describing network anomalies [13, 7]. The research primarily aims to prevent

basic attacks and vulnerabilities from being exploited on the SNMP server, though the

approach they use is also capable of handling more complex cases like false alarms.

Researchers concentrate on passing the network traffic data directly to the machine

learning classifier to train the model while integrated into the service. Classification is

one of the supervised machine learning techniques mainly applied to intrusion and error

detection. In the thesis written by Ghazi Al-Naymat [13], only AdaboostM1, Random

Forest and multi-layer perceptron algorithms are compared. Algorithm choice could be

explained by the thesis dedicated to low-level intrusion detection and does not profoundly

investigate fault management.

3.3.1 Fault Management

The methodology of applying machine learning to a fault management system is

described in the research paper by Denise W. Gürer [14]. Despite being old, the

information from this document is still relevant for the research. Denise states that

automation of network management activities can benefit from Artificial Intelligence

(AI). For example, the neural network model is integrated with a telecommunications

synchronous optical network with asynchronous transfer mode. Alarm filtering can be

thought of as four processes [15]:

• Compression – reduce occurrences of the same alarm.

• Count – substitution a specified number of occurrences of the same alarm into a

single alarm.

• Suppression – filter out all low-priority alarms if high-priority alarms are present.

• Generalization – refers to an alarm by the superclass, which domain experts

determine.

Currently, most AI-based fault diagnosis systems struggle with some limitations. One

such is the inability to handle unforeseen situations due to either new alarms in the system

or changed network topology. This requires a model to be trained each time on a new

topology if the model is not suited to live learning and train all the time while running.

26

Live learning will surely increase the adaptation rate to the new environment without

retraining the model. Artificial networks do not scale well and are not suited for large

domains constantly changing their topology and evolving. The dataset for training must

avoid fuzziness in it to avoid fuzzy rules from being formed, and the rudimental,

uncorrelated, ambiguous, and incomplete data should be excluded. In order to maintain

the model, the system must be well understood.

The research paper proposes a hybrid AI system that combines multiple algorithms

matching each task rather than creating a single service to deal with all the tasks. The

downside of using hybrid AI is the requirement of familiarity with all the methods and

techniques. The process includes collecting alarms coming from the system and

categorizing them to be managed by a specific algorithm.

The alarm correlation is a necessary step to be applied after the alarm filtering. The author

suggests that using a feedforward neural network (NN) is effective in medical diagnosis

[16], target tracking, and data compression systems. In addition, the neural network solves

many problems of alarm correlation [15].

• Similar conditions or edge cases (Pattern matching)

• NN is flexible due to functions approximation

• Incomplete or uncertain data

The most necessary part of the research for the current thesis is the “Fault Identification”

[14]. It shows how the alarms can be identified by comparing the Expert Systems and

case-based reasoning (CBR). Unlike ES, the CBR does not require extensive maintenance

and can handle new and changing data through the ability to use an analogy. CBR can

also learn from experience gained from the analysis of new cases.

As shown in Figure 8, the CBR process consists of:

• Retrieval

• Interpretation and adaptation

• Evaluation and repair

• Implementation

• Evaluation and learning

27

Figure 8. The case-based reasoning process [14]

To be considered ideal, the system should automatically retrain itself when the new cases

come and handle the unknown occasions without any issues. The research also covers

fault correction, but this is out of the current thesis’ scope. [16]

28

4 Solution

4.1 Local Hardware & Software

The selection of neural network hardware depends on many factors. Some of the points

to be considered include whether the network will be memory or computation bound. In

addition, the topology and architecture of the network are important deciding factors

when choosing hardware for neural networks. Whatever the size of the network, some

testing must be performed to understand the real-time needs of the neural network

hardware implementation. It is also worth considering the need to work with confidential

data, which implies a ban on storing non-anonymized data in unencrypted form. Finally,

not only the hardware is needed for training, but for the production environment, once the

trained model is executed as a service, it is necessary to choose a performant enough

hardware.

Scalability and usability with microservices are other factors which affect the workflow.

The services always depend on processing before sending a result to an end-user. The

scalability resolves this issue by running multiple instances of the same application or

service. Scalability could be an issue with neural networks because the computing power

needed for model execution varies with the inner layers’ architecture and hardware used.

Running multiple service instances using a neural network model would not be cost-

effective and will increase the OPEX (Operating Expense).

The Python programming language with TensorFlow [17] library with Keras support

module was used for the training. Hardware part included personal computer with CUDA

or OptiX compatible GPU. This would improve the training speed and not pass data

further than the local network. In addition, a Python JIT compiler like Numba could speed

up the training process. With Numba’s help, it is possible to move low-level computations

to compiled form. Compiled numerical algorithms in Python can approach the speeds of

compiled programming language, which is a superior increase. Moreover, the

multithreading, SIMD vectorization optimization and GPU acceleration will be more

budget effective than the pure Python scripts.

29

4.2 Production System Description

The system to which this solution will be applied is a specific existing enterprise solution

named Elisa Virtual Operations Center (vNOC). It uses microservice architecture written

mainly in Kotlin programming language but includes many services written in Python,

TypeScript and Golang programming languages. In addition, most services rely on the

Spring Boot library and use it for state management.

The system is divided into SNMP enrichment, ticketing, and rule engine. The SNMP

enrichment parses and extends the received alarms with the needed metadata. The

ticketing manages the ticket creation process and sends it to the ticket dashboard or third-

party services like Jira, where other employees can work on the received ticket. The rule

engine is used precisely for the configured rule application to the alarms gathered from

the SNMP enrichment service. The Kafka provides a foundation for the current data

platform, including event-driven microservice architecture. The deployment is managed

by Kubernetes clusters using “Argo CD” for continuous development and “GitHub

Actions” as a continuous integration solution.

The problem described in the thesis is related to the rule engine service, which is a bridge

between SNMP enrichment service and ticketing service. The service uses Final State

Machine to manage the state of each separate alarm and keep maintainability on a high

level. The Perpetual Detection and Flapping Detection stages are handled by a rule-based

algorithm on a pre-processing step. The algorithm only includes perpetual wait time and

the minimum query size settings. Once the minimum query size is achieved, the pre-

processing step is completed. The alarm is considered perpetual and passed once the

query size exceeds the required amount and the wait time surpasses the perpetual wait

time.

The solution will be the sub-service for a rule engine service to replace the existing

Flapping Detection and Perpetual Detection algorithms. The communication between the

sub-service will be handled by Kafka messaging broker using the Python corresponding

library. The trained model will be executed each time it receives an alarm and share the

state with the rule engine service. The algorithm will handle the pre-processing step in

the result.

30

4.3 Testing

Testing for the solution is divided into pre-deployment testing, System Integration

Testing (SIT) and User Acceptance Testing (UAT) steps and the QA tester is responsible

for the SIT and UAT testing. Pre-deployment testing includes writing unit tests,

integration tests and end-to-end tests using the internal Python library. There are 11 unit

tests, which ensure that the prediction for the common cases is high enough and the model

activation function is not too strict. Integration tests check whether the communication

between services works without issues using the service mocking technique.

Unit testing sometimes showed unpredictable results depending on the model prediction

percentage. Due to this, the initial prediction threshold was introduced that would let

results vary, not affecting the test efficiency. This change ensured tests were passed every

time, even when the accuracy was on the edge of succeeding.

4.4 Existing Statistics

The statistic is collected from the data exported from the internal Grafana service and the

public resources. The current statistic shows that the Communication Service Providers

(CSPs) produce 8 million calls per second from over 150 connected systems. The Elisa

monitoring solution helps CSPs increase QoS and enhance customer experience through

preventive, accurate error detection and rapid problem resolution. [18] As of 1 February

2022, the percentage of successfully resolved issue cases collected from Elisa Polystar

company’s internal statistics monitoring solution was slightly over 90%. About 10% of

cases are not handled properly and are created the ticket when not needed and vice versa.

The average waiting time does not exceed two days, though some cases might require

seven or more days until the system resolves the case validity. The goal of the service is

to reduce the waiting time needed and increase the resolving rate. The service can also be

tough to configure and requires much testing in the simulated environment before

deployment to the production environment. Although vNOC usage can decrease the

resolution time by 79% and the incidents count by 71%, it is still far from perfect [18].

31

4.5 Training Results

The programmatically generated dataset structure includes algorithmically generated

identifiers and location values. The initial dataset included 10 000 alarms divided into

3 500 issues with unique issue identifiers. After the pre-processing step, the number of

alarms did not change, but the total unique cases count grew to 18 000 due to

randomization and duplication techniques. Next, the dataset was divided into training and

validating datasets. 70% or 12 600 cases were used as a training dataset, and the left ones

were used for testing.

Table 1. Dataset features used for training

Name Type Comment

alarm_id Categorical Alarm case identifier

reflecting the error type

occurrence_time Numerical The timestamp of alarm

occurrence

location Categorical Location identifier

site Categorical The network centre identifier

node Categorical The node identifier

equipment Categorical A set of equipment used

For the first attempt, a 100 epoch was trained. The optimizer used was Adam, and for the

loss computing algorithm, the binary cross-entropy was chosen. The embedding layer

padding value was set to 10 as the maximum number of alarms for one case did not exceed

ten alarms in the training dataset. The loss reduced rapidly and then stopped at 0.4752,

and the prediction rate was around 79.21%. Once the padding was increased up to 15, the

loss raised and became 0.5158 and the prediction rate reduced to 74.92%. Adding a

hidden layer before the LSTM layers helped increase the accuracy to 83% and reduce the

loss to 0.41.

Setting the epoch value to 10 000 and reducing the learning rate helped achieve the loss

of 0.2412 and the accuracy of 88%, and then the data overfitting occurred. However,

adding more layers to the model increased the training time and execution time by 2. The

additional data like temperature did not solve the issue, but the additional feature of alarm

receiving time improved the prediction rate to almost 90%.

32

The better prediction rates could be achieved with additional layers added to the model,

which will increase the training and execution time by a lot. Adding features and

improving the pre-processing step could raise the model accuracy without significant time

costs. The best result was achieved using two additional layers between the embedding

and LSTM layers using the weather and the alarm receiving time. Epochs count was

100 000, and the learning rate was set to 0.000001. This setup gave a loss of 0.21 and an

accuracy of 91%.

4.6 Service Architecture

To properly integrate the solution into the production environment, it is necessary to

create a Kubernetes deployment script, and the Helm chart as the existing system uses it

to manage the cluster versioning. The Python programming language was used to write a

prototype version of the service. Python is the interpreted language with easy syntax, and

writing in it can produce relevant results in a short period.

The application integrates with other monitoring solutions and provides REST API to

communicate with other services. FastAPI Python library was used, which provides an

HTTP request multiplexer with the data typing. Another benefit is that it is faster than

most competitors like Flask, as it suggests a fully asynchronous backend with support for

multithreading. The dependencies and packaging are managed by Poetry, which provides

an easy-to-use CLI interface to set up the project and build it to a package. This decision

can also handle different Python version usage. The default Python library was used for

logging, but the logging integration using API service is also available with some

configuration.

The application does not have any internal data storage included. Instead, it relies upon

the external Kafka storage for storing the data. However, if there is a need for separate

internal storage, the microservice architecture allows for creating an internal database for

storing the data. In addition, the service provides many ways to integrate with the services,

including the REST API, Kafka and gRPC.

The configuration is done by passing environment variables to the application. This is the

most secure and flexible implementation. To improve the development experience, a

separate settings interface is created. It helps to centralize all the configuration needed

33

and increase the application’s maintainability. Environment variables can also pass the

path to the neural network model though the variant of passing the path using the CLI

exists.

The production environment would require increasing the performance of the service as

the data flow requires over 5 million predictions per second. However, this could be

solved using the Kubernetes replica set to run multiple service instances and provide load

balancing to handle such load. Even a lag of a millisecond is critical for such an

ecosystem.

4.7 Service Integration Results

The solution was tested in the local testing environment. Further results will only include

the usage of the model with the highest accuracy and the lowest loss values. Before

integrating into an enterprise, the solution was tested locally using the environment

consisting of Docker containers deployed on a local machine. The dataset with fake data

improved resolution time by up to 17.3% for the local testing environment. Due to the

usage of a service that uses a model with fake data instead of the production one, the

prediction rate lowered from an initial 90% down to 79%. The service using a model

trained with the operational data would have a higher prediction rate.

Access to the operational data is prohibited due to being confidential, and the data cannot

be gathered for the thesis. The integration into an operational SIT, UAT or production

environment is also strictly prohibited by the company’s privacy policy. Also, the direct

integration to the production branch could drastically change the service workflow and

affect the statistic. Therefore, changes are applied to a separate development Kubernetes

cluster. Due to restrictions, only the model trained with the fake data will be applied to

the integration step. Further model training with operational data is for the company’s

internal use only.

After the testing inside Docker containers, the service is tested for scalability. A new

Kubernetes environment using Minikube was created, and the deployment script was

written. Access to the Virtual NOC services is gained through the internal container

registry using the company’s internal network. The script uses the replica set structure for

deployment with the replicas amount set to 10. Once the service had been deployed, the

34

load testing was done using a Python script for sending requests to the service REST API.

The success would mean handling at least 10 000 requests per second with only ten

replicas of service being balance loaded. This means each replica should handle the load

of 1 000 requests per second.

The load testing showed an impressive result of 11 273 requests per second for ten

replicas of REST API. The latency for each request is slightly under 112 milliseconds.

Asynchronous processing helped reduce the total processing time. For the complete load

testing, the average accuracy of the model was equal to around 68%, which is an

impressive result considering the fact model was not trained to handle amounts of alarms

this large.

35

5 Future Work

Further development involves increasing the efficiency of an existing algorithm. This can

be achieved by revising the internal structure of the neural network model and adding

new features to the dataset. The features are the most critical thing in the model training.

Due to the lack or excess of features. Whether or location-based features would be an

excellent addition to the existing features and be added to the dataset pre-processing stage.

Such features would increase the prediction rates for conditions caused by weather or the

location, for example, deterioration of communication quality due to the formation of ice

on antennas and other equipment or equipment failure due to high average temperatures.

The training shown in the thesis does not consider highly loaded traffic, though the model

showed an impressive result for such occasions. The additional training for such cases

will be included in the future development of the service.

Improving detection rates for the Flapping Detection algorithm is also necessary.

Currently, Perpetual Detection is the main goal as it takes much time to execute. Flapping

Detection would not benefit as much because it does not need many alarms to decide, but

if some known algorithms spend too much time on the process, the neural network model

could be used. It might be necessary to train a separate model for such cases because the

flapping detections are different from Perpetual Detection, and the labelling would

significantly differ.

The problem with any machine learning algorithm is data overfitting, which can be solved

by increasing the number of units or hidden layers. An increase of hidden layers might

worsen the performance and training time but will raise the model’s accuracy under the

data. The LSTM model was considered because of being able to handle the relations

between the alarms’ timestamps better though the model could be improved. This might

include customization of the initial LSTM model.

Further development may include a solution to analyze and predict the next alarm before

entering the system. This will require an increase in the amount of data for the analyst

and a deeper analysis of the information received. There is no such implementation on

the market at the moment. Even predicting one-fifth of the total number of events can

significantly increase turnover speed.

36

The speed of this service is limited by the speed of the Python interpreter. If it is necessary

to process requests faster and improve scaling parameters, the service can be rewritten in

Java, Kotlin or Go since most of the existing services in the company are already written

in these languages. The number of developers in these languages also exceeds the number

of Python developers. Therefore, the latency using compiled languages would decrease

significantly, and the execution time of the neural network model will reduce. The

TensorFlow bindings for listed languages could be used for this purpose.

37

6 Summary

In conclusion, the solution provided in the thesis, which includes machine learning, might

struggle on some occasions. The prediction rate will not be that close to the rule-based

algorithms unless the dataset has enough features, and the pre-processing data stage will

be configured to filter out all the data that could affect the training. Many things might

influence the prediction rates and change the model behaviour making it hard to control.

Using machine learning will help resolve edge cases and reduce the issue resolution time.

The data gathering process was done algorithmically. For real-world data, the active

learning methodology will be used. The production data gathering was checked using the

local testing environment using the SNMP-based monitoring service. The logs produced

were parsed using the Python script and processed with the active learning to do the

labelling. Dataset pre-processing filtered out less than 2% of invalid data due to parser

imperfections and other issues. The pre-processing step also exchanged string typed data

for categorical values.

During the thesis writing, many methods and configurations were used. The exception is

the production data, which was not obtained, but the programmatically generated data

was used for the prototype stage using the pre-processing steps described in the thesis.

The optimization function comparison did not notice changes to the prediction rates,

though using the Adam optimization algorithm helped reduce training time. The loss

function comparison showed that the binary cross-entropy is the quickest one for the

binary classification needs and slightly increased the performance of the training script.

Embedding the initial dataset with padding and masking zeroes to exclude them from the

output is the part that influences the result a lot. The size padding can vary the prediction

rate by a few per cent and increase the training and execution time. The data overfits the

model if the embedding step is skipped and stays around 65%. Once the embedding layer

is included with padding of 10, the prediction rate rises to about 75-80%, but the change

also increases the training time by 40%.

38

The integration step for the enterprise services is straightforward as it only includes

running the execution script and configuring the path to the trained model. The script is

scalable as the trained model execution time, CPU, GPU, and memory usage are low

enough to scale the neural network properly. Also, the model is configurable to match the

needs of the enterprise. Settings like padding, optimization function, loss function, and

activation function are configurable and could be changed in future.

The Helm chart is used for version management, and the Kubernetes deployment script

is added to the Harbor repository used in the enterprise for container image management.

39

References

[1] H. G. Abreha, C. J. B. Cano, A. D. L. Oliva, L. Cominardi and A. A. Saloa, “Self-

Adaptive Monitoring in Fog Computing by Leveraging Machine Learning,” 2018.

[Online]. Available:

https://www.academia.edu/40052411/Machine_learning_in_fog_monitoring. [Accessed

15 May 2022].

[2] NOC, “NOC Project - Open-Source Network Managemenet,” 2019. [Online]. Available:

https://getnoc.com. [Accessed 5 May 2022].

[3] S. Marsland, Machine Learning: An Algorithmic Perspective, CRC Press, 2011.

[4] D. Rafique and L. Velasco, “Machine Learning for Network Automation: Overview,

Architecture, and Applications [Invited Tutorial],” 10 October 2018. [Online]. Available:

https://upcommons.upc.edu/bitstream/handle/2117/125214/jocn-10-10-D126.pdf.

[Accessed 16 February 2022].

[5] S. Hochreiter, “Long Short-term Memory,” December 1997. [Online]. Available:

https://www.researchgate.net/publication/13853244_Long_Short-term_Memory.

[Accessed 5 May 2022].

[6] S. Pandey, M.-J. Choi, Y. J. Won and J. W.-K. Hong, SNMP-based enterprise IP

network topology discovery, Int. J. Netw. Manage., 2011.

[7] A. Hwoij, M. Al-kasassbeh and M. Al-Fayoumi, “Detecting Network Anomalies using

Rule-based machine learning within SNMP-MIB dataset,” January 2020. [Online].

Available:

https://www.researchgate.net/publication/339088761_Detecting_Network_Anomalies_u

sing_Rule-based_machine_learning_within_SNMP-MIB_dataset. [Accessed 15 May

2022].

[8] P. Pandey, “Data Preprocessing: Concepts,” Towards Data Science, 25 November 2019.

[Online]. Available: https://towardsdatascience.com/data-preprocessing-concepts-

fa946d11c825. [Accessed 05 May 2022].

[9] H. Sak, A. Senior and F. Beaufays, “Long Short-Term Memory Recurrent Neural

Network Architectures for Large Scale Acoustic Modeling,” 2014. [Online]. Available:

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43905.

pdf. [Accessed 5 May 2022].

[10] U. Verma, “Data Cleaning and Preprocessing,” Analytics Vidhya, 19 November 2019.

[Online]. Available: https://medium.com/analytics-vidhya/data-cleaning-and-

preprocessing-a4b751f4066f. [Accessed 5 May 2022].

[11] R. Pramoditha, “How to Choose the Right Activation Function for Neural Networks,”

Towards Data Science, 19 January 2022. [Online]. Available:

https://towardsdatascience.com/how-to-choose-the-right-activation-function-for-neural-

networks-3941ff0e6f9c. [Accessed 05 May 2022].

[12] R. Sanghvi, “A Complete Guide to Adam and RMSprop Optimizer,” Medium, 20

February 2021. [Online]. Available: https://medium.com/analytics-vidhya/a-complete-

guide-to-adam-and-rmsprop-optimizer-75f4502d83be. [Accessed 5 May 2022].

[13] G. Al-Naymat, M. Al-Kasassbeh and E. Al-Hawari, “Using machine learning methods

for detecting network anomalies within SNMP-MIB dataset,” January 2018. [Online].

Available:

40

https://www.researchgate.net/publication/327445794_Using_machine_learning_methods

_for_detecting_network_anomalies_within_SNMP-MIB_dataset. [Accessed 15 May

2022].

[14] D. W. Gürer, I. Khan and R. Ogier, “An Artificial Intelligence Approach to Network

Fault Management,” 2007. [Online]. Available:

http://www.sce.carleton.ca/netmanage/docs/An_AI_Approach.pdf. [Accessed 5 May

2022].

[15] S. Aidarous and T. Plevyak, Telecommunications Network Management into the 21st

Century: Techniques, Standards, Technologies, and Applications, Wiley-IEEE Press,

1994.

[16] Pubrica Academy, “Overview of artificial neural network in medical diagnosis,” 16

October 2020. [Online]. Available: https://pubrica.com/academy/medical-

writing/overview-of-artificial-neural-network-in-medical-diagnosis/. [Accessed 15 May

2022].

[17] GitHub. Inc, “TensorFlow–An open source machine learning framework for everyone,”

GitHub. Inc, 2018. [Online]. Available: https://www.tensorflow.org/. [Accessed 15 May

2022].

[18] Elisa Polystar, “Network Monitoring - Focus your effort,” Elisa Eesti AS, 2021.

[Online]. Available: https://www.elisapolystar.com/network-monitoring. [Accessed 5

May 2022].

[19] Elisa Polystar, “Polystar and Elisa Automate combine operations, bringing advanced

automation and analytics solutions to operators worldwide,” Elisa Eesti AS, 4 May 2020.

[Online]. Available: https://www.elisapolystar.com/combine-operation-automation/.

[Accessed 16 February 2022].

[20] B. Cone, “The Best NOC Tools and Software (2022): An Expert Guide,” NOC Lifecycle

Solutions, 25 January 2022. [Online]. Available: https://www.inoc.com/blog/noc-tools-

and-software. [Accessed 16 February 2022].

[21] H. Kumar, M. Babu and S. Baskaran, “Machine Intelligence at the NOC,” Ericsson, 7

June 2018. [Online]. Available: https://www.ericsson.com/en/blog/2018/6/machine-

intelligence-at-the-noc. [Accessed 16 February 2022].

[22] N. Williams, “Evaluating Machine Learning Algorithms for Automated Network

Application Identification,” 2006. [Online]. Available:

https://researchrepository.murdoch.edu.au/id/eprint/36 413/1/CAIA-TR-060410B.pdf.

[Accessed 22 December 2021].

[23] A. Saabas, “Deploying Machine Learning Models on Node.js,” Bolt, 19 October 2018.

[Online]. Available: https://medium.com/bolt-labs/deploying-machine-learning-models-

on-node-js-ff25c540cb13. [Accessed 5 May 2022].

[24] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research

Directions,” 22 March 2021. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983091/pdf/42979_2021_Article_592.

pdf. [Accessed 15 May 2022].

[25] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed., Prentice

Hall, 2009.

41

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Sergei Lukauškin

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Network Operations Center Monitoring Automation using Machine Learning

on the Example of Elisa Eesti AS”, supervised by Hayretdin Bahsi

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until the expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the Tallinn University of Technology library

until the expiry of the copyright term.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

16.05.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation

thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

42

Appendix 2 – Example of SNMP trap data structure for

VSWR alarm

Table 2. Example of SNMP-trap with VSWR alarm

Field Name Example Value

alarmAckTime null

alarmAddionalInfo RF Unit Name=0-20-0

alarmCSN 123456789

alarmCategory FAULT

alarmClearCategory 1

alarmClearType 0

alarmConfirm 2

alarmDevCsn 12345

alarmExtendInfo Cabinet No.=0, Subrack No.=20, Slot No.=0, TX Channel No.=0

alarmID 12345

alarmLevel 3

alarmMOName SITENAME_TAL123-Cabinet No.=0, Subrack No.=20, Slot

No.=0,0-20-0

alarmOccurTime 2021/08/12 - 13:32:12 +02:00[+01:00]

alarmOperator null

alarmProbablecause RF Unit VSWR Threshold Crossed

alarmRestore 2

alarmRestoreTime null

alarmServiceAffectFlag 0

alarmSpecificproblems null

alarmType 5

ipAddress null

trapTime null

	Author’s declaration of originality
	Abstract
	Annotatsioon
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Alarm Pre-Processing
	2.1 Perpetual & Flapping Detection

	3 Machine Learning
	3.1 Dataset
	3.1.1 Dataset Processing

	3.2 Model Structure & Optimization
	3.2.1 Input Layer
	3.2.2 Inner Layers
	3.2.3 Activation Layers
	3.2.4 Optimization

	3.3 Related Work
	3.3.1 Fault Management

	4 Solution
	4.1 Local Hardware & Software
	4.2 Production System Description
	4.3 Testing
	4.4 Existing Statistics
	4.5 Training Results
	4.6 Service Architecture
	4.7 Service Integration Results

	5 Future Work
	6 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Example of SNMP trap data structure for VSWR alarm

