
A Type-Theoretical Study of
Nontermination

NICCOLÒ VELTRI

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C123

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

This dissertation was accepted for the defense of the degree of
Doctor of Philosophy in Informatics on 8 March 2017.

Supervisors: Tarmo Uustalu, PhD
Tallinn University of Technology

James Chapman, PhD
University of Strathclyde, UK

Opponents: Venanzio Capretta, PhD
University of Nottingham, UK

Martin Hötzel Escardó, PhD
University of Birmingham, UK

Defense: 26 May 2017

Declaration: Hereby I declare that this doctoral thesis, my original in-
vestigation and achievement, submitted for the doctoral degree at Tallinn
University of Technology has not been previously submitted for any degree
or examination.

/Niccolò Veltri/

Copyright: Niccolò Veltri, 2017
ISSN 1406-4731
ISBN 978-9949-83-100-5 (publication)
ISBN 978-9949-83-101-2 (PDF)

INFORMAATIKA JA S TEHNIKA C123ÜSTEEMI

Tüübiteoreetiline uurimus
mittetermineeruvusest

NICCOLÒ VELTRI

Contents

List of publications 9

Author’s contribution to the publications 10

Accompanying code 10

Introduction 11
Motivation . 11
Problem statement . 11
Contribution of the thesis . 12
Outline of the thesis . 13

1 Background 15
1.1 Partiality in category theory 15
1.2 Partiality in type theory . 17
1.3 Categorical approaches to iteration 18

2 Type theory 21
2.1 Martin-Löf type theory . 21

2.1.1 Additional principles 23
2.2 Quotient types . 23

2.2.1 Setoids . 24
2.2.2 Inductive-like quotients 24

2.3 Choice principles . 28
2.3.1 Axiom of choice . 29
2.3.2 Axiom of countable choice 30
2.3.3 Axiom of weak countable choice 31
2.3.4 Axiom of propositional choice 33

2.4 Summary . 33

3 Delay monad 35
3.1 Delay and weak bisimilarity 36
3.2 Quotiented delay datatype 38

3.2.1 A solution using LPO 39

5

3.2.2 A solution using weak countable choice 40
3.2.3 A solution using propositional choice 43

3.3 A monad or an arrow? . 45
3.4 Quotiented delay delivers free ωcppos 46

3.4.1 Free ωcppo structure up to ≈ 46
3.4.2 Lifting the construction to D≈X 48

3.5 Partiality in homotopy type theory 49
3.6 Summary . 54

4 ω-complete pointed classifying monads 57
4.1 The mathematics of partiality 58

4.1.1 Partial map categories 58
4.1.2 Restriction categories 60
4.1.3 Idempotents, splitting idempotents 62
4.1.4 Completeness . 63

4.2 ω-complete pointed classifying monads 64
4.2.1 Classifying monads 64
4.2.2 ω-joins . 66
4.2.3 Uniform iteration . 67

4.3 Classifying monad structure on D≈ 68
4.4 D≈ is the initial ω-complete pointed classifying monad . . . 70
4.5 Other monads of non-termination 73

4.5.1 Dominances and partial map classifiers 73
4.5.2 Countable powerset monad 77
4.5.3 State monad transformer 77

4.6 Summary . 77

5 Conclusions 79
5.1 Future work . 80

5.1.1 Quotiented delay datatype in general categories . . . 80
5.1.2 Partiality in homotopy type theory 81
5.1.3 Formalizing restriction categories, continued 81
5.1.4 Initial complete Elgot monad 82

References 83

Appendices 91

A Formalizing restriction categories 93
A.1 Quotients . 94
A.2 Categories . 95
A.3 Monics, isomorphisms and pullbacks 96

A.3.1 Monic maps . 96
A.3.2 Isomorphisms . 97

6

A.3.3 Pullbacks . 97
A.4 Partial map categories . 101
A.5 Restriction categories . 107
A.6 Soundness . 110
A.7 Idempotents . 114
A.8 Restriction idempotents . 119
A.9 Completeness . 120

Acknowledgements 127

Abstract 129

Resümee 131

Curriculum Vitae 133

Elulookirjeldus 135

7

List of publications

I Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay monad
by weak bisimilarity. In: Leucker, M., Rueda, C., Valencia, F. D.
(eds.) Proc. of 12th Int. Coll. on Theoretical Aspects of Computing,
ICTAC 2015, Lect. Notes in Comput. Sci., v. 9399, pp. 110–125,
Springer (2015)

II Veltri, N.: Two set-based implementations of quotients in type the-
ory. In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.) Proc.
of 14th Symposium on Programming Languages and Software Tools,
SPLST 2015, CEUR Workshop Proceedings, v. 1525, pp. 194–205,
CEUR-WS.org (2015)

III Chapman, J., Uustalu, T., Veltri, N.: Formalizing restriction cate-
gories. J. Formalized Reasoning, 10(1), 1–36 (2017)

9

Author’s contribution to the publications

The candidate is responsible for the development of the theory described
in this thesis and their Agda formalization. In addition, the candidate had
the lead role in conceiving, drafting and producing the manuscripts. Also
the work was presented at conferences by the thesis author.

The idea of formalizing restriction categories in Agda originated from
James Chapman. The general idea of proving that the quotiented delay
monad is universal among monads for non-termination was conceptualized
and motivated by Tarmo Uustalu. Both Chapman and Uustalu helped in
the writing of the articles on which some parts of the thesis are based on.

Accompanying code

The thesis is accompanied with formalization in the Agda proof assistant
[1, 74]. The code is located at:

• http://cs.ioc.ee/~niccolo/thesis/.

The development uses Agda version 2.5.2 and Agda Standard Library ver-
sion 0.13.

10

http://cs.ioc.ee/~niccolo/thesis/

Introduction

Motivation

Martin-Löf type theory is a formal system for the development of construc-
tive mathematics and a very expressive functional programming language.
In this language, it is possible to reason and prove properties about the
implemented programs. For this reason, interactive theorem provers based
on (variations of) Martin-Löf type theory, such as Coq, Agda or Lean, are
very useful tools widely employed in software verification and security.

Being a foundational system for the development of mathematics, pro-
grams written in Martin-Löf type theory must be terminating. Several tech-
niques for implementing possibly non-terminating programs have been de-
veloped. Notorious is Capretta’s approach, in which possible non-termina-
tion is treated as a computational effect. Applications of Capretta’s solution
include representation of general recursive functions [26], formalization of
domain theory [17], operational semantics for While languages [41] and nor-
malization by evaluation [2].

While formal reasoning about non-termination is important, it is noto-
riously subtle and connected with inherent difficulties for foundational rea-
sons. My thesis makes a contribution here by solving a number of technical
problems concerning termination/non-termination reasoning in dependently
typed programming. It furthers the principles and practice of the latter and
thereby trustworthy software technology.

Problem statement

In this thesis, we present a formalization of the mathematics of partiality
in dependently typed programming, specifically in Martin-Löf type the-
ory. In particular, we continue the study of Capretta’s delay monad [26].
This monad serves as a constructive alternative to the maybe monad, al-
lowing the implementation of possibly non-terminating programs in type
theory. An element in the delay datatype (that we typically refer to as a
computation) is specified by two ingredients: its rate of convergence and,
in case of termination, a value. Generally we are interested only in the
terminating/non-terminating behavior of a computation. This requires us

11

to quotient the delay datatype by the weak bisimilarity relation. Two com-
putations are (termination-sensitively) weakly bisimilar if, whenever the
first converges to a value, the second also converges to the same value, and
vice versa. We can say that the quotiented delay datatype is an useful tool
for modeling partiality in type theory, or that the quotiented delay monad
(if it is indeed a monad) introduces partiality as an effect in type theory.
Our goal in this thesis is to make such statements rigorous. Our strategy
to achieve the latter can be summarized as follows:

• we prove that the delay monad quotiented by weak similarity is a
monad;

• we choose a well-established notion of “framework for partiality” from
category theory and we formalize its theory in the Agda proof assistant
[1, 74];

• inside this framework, we identify a good notion of “monad for par-
tiality” and we prove that the quotiented delay monad is canonical
among such monads.

Contribution of the thesis

The strategy sketched above led us to the following contributions:

• We check if the delay datatype quotiented by weak bisimilarity is in-
deed a monad. Different approaches to quotients in type theory gives
different results. Type theory does not possess quotient types. Quo-
tients can be simulated by working with setoids, i.e., pairs consisting
of a set and an equivalence relation. Another possibility is to extend
type theory with inductive-like quotients à la Martin Hofmann [54].
Using setoids, it is easy to show that the quotiented delay datatype
is a monad. With inductive-like quotients, the answer is surprisingly
more involved: we need to employ classical or semi-classical princi-
ples, notably the limited principle of omniscience, the axiom of (weak)
countable choice or the axiom of propositional choice, in order to con-
struct the monad structure. This exposes a more general foundational
problem in type theory: a bad interaction between quotients and infi-
nite datatypes such as non-wellfounded or wellfounded but infinitely
branching trees. We formalize this development in Agda.

• We develop a general category-theoretical framework for reasoning
about partiality in Agda. Our choice fell on Cockett and Lack’s re-
striction categories [35]. These categories possess an operation on
homsets called restriction, subject to some axioms. Intuitively, the

12

restriction of a function is the partial identity specifying the domain
of definedness of the function. We present a formalization of the first
chapters of the theory of restriction categories. In particular, our for-
malization includes the proof that every restriction category can be
fully embedded in a partial map category.

• We prove that the quotiented delay monad is canonical among monads
for non-termination from iteration (in the sense of repeat-until/tail-
recursion). We introduce (and formalize in Agda) the notion of ω-
complete pointed classifying monad, as a combination of the existing
notions of classifying monad [36] and finite-join restriction category
[53]: a ω-complete pointed classifying monad is a monad whose Kleisli
category is a restriction category which is ωCPPO-enriched with re-
spect to the ordering specified by the restriction operation. This class
of monads captures the notion of monad for non-termination from
iteration. We show that the quotiented delay monad is the initial
ω-complete pointed classifying monad in type theory.

Outline of the thesis

In Chapter 1, we present background material. This includes treatment
of partiality in category theory and Martin-Löf type theory. Moreover we
review some categorical approaches to iteration and other “cyclic” phenom-
ena.

In Chapter 2, we review some aspects of Martin-Löf type theory, the for-
mal system in which we are developing our mathematics. We describe the
basics of the system and the additional principles that we need to postu-
late. We give a detailed exposition of two extensions of the theory that are
of specific interest for our results: inductive-like quotient types and choice
principles, notably (weak) countable choice and propositional choice. exten-
sions are The material in this chapter appears in the author’s publication
Paper I [30]. The description of quotient types given in Section 2.2 also
appears in Paper II [84].

In Chapter 3, we introduce Capretta’s delay datatype. We know that the
latter type defines a monad. The main goal of this chapter is to understand
if the delay datatype quotiented by weak bisimilarity preserves the monad
structure. We prove that this is the case if one postulates classical (the
limited principle of omniscience) or semi-classical (weak countable choice
and propositional choice) principles. Moreover, we show that the quotiented
delay monad delivers ω-complete pointed partial orders, assuming countable
choice. On top of this, we provide a new implementation of a monad for
partiality in homotopy type theory and we compare the latter with the
quotiented delay monad and Altenkirch et al.’s monad delivering free ω-

13

complete partial orders by construction [9]. The material in this chapter,
apart from Sections 3.4 and 3.5, appears in the author’s publication Paper
I [30]. The material in Sections 3.4 and 3.5 is unpublished, but appears in
the manuscript for a journal version of [30], currently under review. Section
3.2.3 on a solution using propositional choice was added for completeness
sake after this work was completed; the new ideas belong to Martin Escardó.

In Chapter 4, we introduce the notion of ω-complete pointed classifying
monad. In type theory, the initial such monad is given by the quotiented
delay monad. This shows that the latter is canonical among monads for
non-termination from iteration. In order to make the initiality result mean-
ingful, we provide other non-trivial examples of ω-complete pointed clas-
sifying monads in type theory. Our main examples include partial map
classifiers, constructed using Rosolini’s notion of dominance. The mate-
rial in this chapter is currently unpublished. It has been submitted to a
conference.

In Appendix A, we describe a formalization of the mathematics of par-
tiality in Agda. More specifically, we formalize the theory of restriction cat-
egories and their connection with partial map categories. This corresponds
to a formalization of Section 4.1. We have developed our own library of basic
utilities: implementation of quotient types, definitions of categories, func-
tors, monics, isomorphisms, sections, idempotents and pullbacks; proofs of
various properties about them, e.g., the pasting lemmas for pullbacks. The
main part of the formalization consists of definitions of restriction cate-
gories, partial map categories; proofs of important lemmata; proof of the
soundness Theorem 4.1; construction of splitting of idempotents; proof of
the completeness Theorem 4.2. The material in this chapter appears in the
author’s publication Paper III [31].

The majority of the results presented in this thesis have been formalized
in the Agda proof assistant. The formalization is available at http://cs.
ioc.ee/~niccolo/thesis/.

14

http://cs.ioc.ee/~niccolo/thesis/
http://cs.ioc.ee/~niccolo/thesis/

Chapter 1

Background

In this chapter we discuss background material. As our aim is the study
of Capretta’s delay monad in Martin-Löf type theory, we give an overview
of different ways to express partiality in category theory and type theory
(Sections 1.1 and 1.2). Since we are also interested in a general treatment of
non-termination in type theory, we review different categorical approaches
to iteration (Section 1.3). In the next chapter, in particular Section 2.1, we
give an overview of Martin-Löf type theory (we refer to [73] for a general
introduction). For a general introduction to category theory we refer to
[70, 10]. Alternatively, the reader can check our Agda formalization of
restriction categories, that we discuss in Appendix A, which includes the
majority of the basic definitions of category theory that we employ in this
thesis.

1.1 Partiality in category theory

The simplest example of category of partial maps is given by the category
Pfn of sets and partial functions, that can be presented in the following
way:

Objects: sets.

Maps: a map f : A ⇀ B is a pair (A′, f), where A′ ⊆ A and f : A′ → B.

Identities: identity on A is the pair (A, id).

Composition: composition of maps (A′ ⊆ A, f : A′ → B) and (B′ ⊆
B, g : B′ → C) is given by the pair

A′′ = f−1(B′) ⊆ A h = g ◦ f|A′′ : A′′ → C

The preimage of the function f , used to define the composition of partial

15

maps, can be constructed using the categorical notion of pullback:

A′′ = f−1(B′)� _

��

f|A′′ // B′� _

��
A′

f
// B

The construction of Pfn can be generalized to what we refer to as par-
tial map categories, that we formally introduce in Section 4.1. These are
pairs consisting of a category X and a collection of monic morphisms in X
satisfying a number of conditions. Such collections of monics appear under
several different names in the literature: stable systems of monics [35], do-
minions [79, 47], admissible class of subobjects [77], notion of partial [78]
and domain structure [72].

A different approach is given by providing direct, domain-free axiomati-
zations of categories of partial maps. This means that one does not build
a category of partial morphisms on top of a given category of total mor-
phisms, as one does in the definition of partial map categories. Instead, one
requires from the start the existence of additional structure, sufficient for
specifying a notion of partiality. Di Paola and Heller [42], motivated by the
development of recursion theory in abstract categorical terms, introduced
the notion of dominical category. The notion of partiality is specified by the
existence of partial products and zero morphisms (maps which are nowhere
defined). A refinement of this approach was given by Robinson and Rosolini
[77]. They introduce the notion of p-category, in which the requirement of
zero morphisms is dropped. Different axiomatics, but similar in flavor to
p-categories, has been given by Carboni [28] and Curien and Obtulowicz
[40].

Cockett and Lack introduced the notion of restriction category [35],
which generalizes the earlier untyped axiomatization by Menger [69]. Re-
striction categories represent a minimalistic approach to partiality: the only
requirement is the existence of a restriction operator satisfying certain equa-
tional conditions. The existence of a symmetric monoidal structure, fun-
damental in previous axiomatizations, is dropped. The restriction operator
takes a morphism f : A → B to a morphism f : A → A, which has to be
thought as specifying the domain of definedness of f . Intuitively, f is the
partial function that behaves like identity on the elements on which f is
defined. We review restriction categories and their connection with partial
map categories in Section 4.1.

Often partial maps are the Kleisli maps of monad on the total map
category. This is the situation of partial map classification [25, 36, 72].

16

Monads arising in this way in the restriction categories setting are called
classifying monads. We discuss such monads Section 4.2.

Using restriction categories, categorical axiomatic approaches to com-
putability [33] and complexity [34] have been developed. Moreover, restric-
tion categories with additional structure (such as Cartesian products, meets,
iteration, etc.) have been thoroughly investigated [37, 53]. Of particular
interest for us are Guo’s finite-join restriction categories [53]. Inspired by
these, we introduce ω-complete pointed restriction categories. These are re-
striction categories which are ωCPPO-enriched wrt. the “less defined than”
order on homsets induced by the restriction operation. In Chapter 4, we
introduce the notion of ω-complete pointed classifying monad. These are
monads whose Kleisli category is a ω-complete pointed restriction category
in which pure maps are total.

The general categorical frameworks for partiality discussed in this section
have found several applications, most notably in (axiomatic and synthetic)
domain theory and semantics [47, 48, 57, 58]. Recently, a variation of join
restriction categories has been used for modeling reversible recursion [11].

1.2 Partiality in type theory

In Martin-Löf type theory, described in Chapter 2, function types only con-
tain total functions, therefore partial functions are not first-class objects.
Nonetheless, there exist several techniques for encoding partiality in type
theory. Recently, Bove et al. [23] have given a systematic overview of par-
tiality and recursion in type theory and higher-order logic, describing also
different tools for dealing with partial and recursive functions in theorem
provers such as Agda, Coq and Isabelle/HOL. We recall some of the tech-
niques specific for dealing with partiality in Martin-Löf type theory. In
particular, we focus on techniques for representing partial functions with-
out extending the logical foundation of the theory (that Bove et al. [23]
call “definitional techniques”). This means that partial maps are considered
as total maps in which either the domain is restricted to a particular sub-
domain or the codomain is extended with an undefined value. Classically,
this corresponds to considering a partial function f : X ⇀ Y either as a
total function of type X ′ → Y , for some X ′ ⊆ X (as in the presentation
of the category Pfn given in the previous section), or as a total function
of type X → Y + 1, where the element of 1 represents undefinedness. In
a constructive setting, the situation is more complex. The maybe monad
MaybeX = X + 1 cannot be used to model possibly non-terminating com-
putations without the assumption of classical principles (more on this in
Section 3.2.1).

Bove and Capretta [21, 20] showed that, if a partial function f : X ⇀ Y
is given in terms of recursive equations, then it is possible to inductively

17

characterize the domain of definedness of f , i.e. a predicate Domf : X → U ,
and represent f as a function of type (

∑
x:X Domf x) → Y . For nested

recursive functions, the method uses inductive-recursive types [43]. Later,
Bove [19] and Setzer [80] came up with similar methods that do not rely on
inductive-recursive definitions.

Capretta [26] introduced the coinductive delay monad D as construc-
tive alternative to the maybe monad. He also considered the delay monad
quotiented by weak bisimilarity in the setoid approach. A partial function
f : X ⇀ Y is given by a map of type X → DY . Megacz [68] presented
a refined version of Capretta’s datatype. The delay monad is formally in-
troduced in Section 3.1. Bove and Capretta [22] described a method that
gives a coinductive characterization of the codomain of functions given in
terms of recursive equations, dualizing the method described in [21, 20] for
inductively specifying the domain of definedness.

Altenkirch et al. [9] have defined a monad which delivers ω-complete
partial orders by construction. They work in homotopy type theory, and
their construction makes use of a particular form of higher inductive types,
called higher inductive-inductive types. We discuss how their monad relates
to our constructions in Section 3.5.

Very recently, Escardó and Knapp [46] have introduced partial functions
via dominances in homotopy type theory. We give a general account on
dominances and their connection to ω-complete pointed classifying monads
in Section 4.5.1.

Another approach consists in formalizing a categorical framework for
partiality in type theory. We gave an overview of such frameworks in the
previous section. This approach is more general and flexible: the notion
of partiality is not restricted to undefinedness and non-termination, but
takes into account a larger spectrum of other possibilities. Benton et al.’s
formalization of domain theory in Coq [17] is an example of this approach.
In this thesis, we also report on our formalization of the theory of Cockett
and Lack’s restriction categories [35] in type theory, described in Appendix
A.

1.3 Categorical approaches to iteration

In Section 1.1, we described several general categorical settings for partial-
ity. In this section we present categorical frameworks specific for modeling
iteration and other cyclic phenomena.

Joyal et al. [60] introduced the notion of traced monoidal category, i.e.
a symmetric monoidal category with a feedback operation

f : A⊗X → B ⊗X
Tr f : A→ B

18

satisfying a number of conditions. When the monoidal structure is given by
finite coproducts, one can interpret the feedback as a generic repeat-until
loop. In fact, giving a feedback is equivalent to giving an iteration operation

f : X → A+X

iter f : X → A

satisfying a number of conditions [29]. The most important of these condi-
tions, which characterizes the behavior of iteration, is the unfolding axiom:

iter f = [idA, iter f] ◦ f.

Dually, when the monoidal structure is given by finite products, one can
interpret the feedback as a parametric fixpoint operation [56, 81]. Building
on these results, Milius and Litak [70] have given an axiomatic formulation
of guarded fixpoint operations.

A different but closely related direction of research investigates iteration
as an effect, following Moggi’s idea of using monads for modeling effect-
ful computations [71]. Aczel et al. [4, 6] studied the notion of completely
iterative monad. These monads provide unique solutions to guarded sys-
tems of recursive equations and constitute the categorical parallel of Elgot’s
completely iterative theories [44].

Solution to unguarded systems of recursive equations can be constructed
using complete Elgot monads [51, 50, 52]. These are monads whose Kleisli
category possesses an iteration operator with the same type of the operator
iter described above, satisfying analogous conditions.

19

Chapter 2

Type theory

In this chapter, we give an overview of Martin-Löf type theory, a foun-
dational system for constructive mathematics developed by the Swedish
logician Per Martin-Löf. We summarize its main features and we specify
our extensions to the system. For a general introduction to Martin-Löf type
theory we refer to [73]. In Section 2.1, we give a short presentation of the
theory. In Section 2.2, we describe how to represent quotients in type the-
ory. In Section 2.3, we discuss the axiom of choice, countable choice, weak
countable choice and propositional choice.

2.1 Martin-Löf type theory

We consider Martin-Löf type theory with inductive and coinductive types
and a cumulative hierarchy of universes Uk. The first universe is simply
denoted U and when we write statements like “X is a type”, we mean
X : U unless otherwise specified. We write = for judgmental (definitional)
equality.

Given a type X : U and a type family Y : X → U , we indicate with∏
x:X Y x the type of dependent functions between X and Y . The elements

of a dependent function type are functions whose codomain type can vary
depending on the element of the domain to which the function is applied. In
other words, f :

∏
x:X Y x is a function that, given x : X, returns an element

f x : Y x. A dependent function type can be interpreted set-theoretically
as an indexed product over a given type (hence the resembling notation).
By considering a constant type family (i.e., a type) Y : U , we obtain the
usual non-dependent function space X → Y . We allow dependent functions
to have implicit arguments and indicate implicit argument positions with
curly brackets (as in Agda [1, 74]).

Given a type X : U and a type family Y : X → U , we indicate with∑
x:X Y x the type of dependent pairs of X and Y . The dependent pair

type is a generalization of the product type, in which we allow the type of
the second component of a pair to vary depending on the choice of the first

21

component. In other words, every element p :
∑

x:X Y x is a pair p = (x, y),
with x : X and y : Y x. A dependent pair type can be interpreted set-
theoretically as an indexed sum over a given type (hence the resembling
notation). By considering a constant type family Y : U , we obtain the
usual non-dependent product X ×Y . We write fst and snd for the first and
second projection of a pair:

fst (x, y) = x snd (x, y) = y

We specify inductive types using single rule lines. For example, the type
of natural numbers N is defined by the rules

zero : N
n : N

sucn : N

We specify coinductive types using double rule lines. For example, the
type of conatural numbers N∞ is defined by the rules

zero : N∞
n : N∞

sucn : N∞

The double line signifies that the rule can be potentially applied an infi-
nite amount of times. For example, applying infinitely often the second
constructor of N∞ one can corecursively define ∞ = suc∞.

We indicate with 1 the unit type, inductively defined by the rule

∗ : 1

We indicate with 0 the empty type with no constructors. The disjoint union
(or coproduct) X + Y of two types X and Y is inductively defined by the
rules

x : X
inlx : X + Y

y : Y

inr y : X + Y

A fundamental example of inductive type is the identity type. Here we
define the identity type as heterogeneous propositional equality. For all
x : X and y : Y , the type x ≡ y is inductively defined by the rule

refl : x ≡ x

Symmetry, transitivity and substitutivity of ≡ are named sym, trans and
subst, respectively. We use a heterogeneous equality instead of a homoge-
neous one for readability and usability reasons. In particular, we want to
avoid excessive usage of the substitutivity proof subst.

22

2.1.1 Additional principles

On top of basic Martin-Löf type theory we postulate a series of principles.
We assume the principle of function extensionality, expressing that point-
wise equal functions are equal, i.e., the inhabitedness of

FunExt =
∏

{X,Y :U}

∏
{f1,f2:X→Y }

(∏
x:X

f1 x ≡ f2 x

)
→ f1 ≡ f2

We assume function extensionality also for dependent functions. Likewise
we will assume analogous extensionality principles stating that strongly
bisimilar coinductive data and proofs are equal for the relevant coinductive
types and predicates, namely, the delay datatype and weak bisimilarity
(check DExt and ≈Ext in Section 3.1).

We also assume uniqueness of identity proofs for all types, i.e., an inhab-
itant for

UIP =
∏
{X:U}

∏
{x1,x2:X}

∏
p1,p2:x1≡x2

p1 ≡ p2.

A type X is said to be a proposition, if it has at most one inhabitant,
i.e., if the type

isPropX =
∏

x1,x2:X

x1 ≡ x2

is inhabited. We say that a predicate P : X → U is propositional if
isProp (P x) holds for all x : X.

For propositions, we postulate a further and less standard principle of
proposition extensionality, stating that logically equivalent propositions are
equal:

PropExt =
∏

{X,Y :U}

isPropX → isPropY → (X ↔ Y)→ X ≡ Y

Here X ↔ Y = (X → Y)× (Y → X).
Alternatively, we could set our development in homotopy type theory

[83], but restrict ourselves to work with 0-truncated types, i.e., sets. In
the latter framework, the principles FunExt and PropExt are consequences
of the univalence axiom, while the restriction to 0-truncated types implies
UIP.

2.2 Quotient types

Martin-Löf type theory does not have built-in quotient types. There are
two main approaches to compensate for this: to mimic them by working
with setoids or to extend the type theory with inductive-like quotients à la
Hofmann.

23

2.2.1 Setoids

A setoid is a type X equipped with an equivalence relation R on X [13].
The equivalence relation R has to be thought of as a particular notion of
“equality” on X. So one can think of the setoid (X,R) as the quotient of
X by R. Quotienting a setoid (X,R) further corresponds to replacing the
equivalence relation R with a coarser one.

The notion of setoid is very useful, but has some shortcomings. When
working with setoids, every type comes with an equivalence relation (an idea
that can be traced back to Bishop [18]). This approach forces the change
of the concept of function type. A setoid morphism between setoids (X,R)
and (Y, S) is a function f : X → Y such that x1Rx2 implies (fx1)S(fx2),
for all x1, x2 : X. In other words, a setoid morphism is a function that
sends “equal” values in the domain into “equal” values in the codomain. So
every time we define a function between two types, we also have to provide
an additional proof of compatibility with the equivalence relation.

Another drawback appears when defining types depending on other types,
e.g. the type of lists over a type X. Now we have to construct setoid-lists
over a setoid (X,R). The carrier type is the usual type of lists inductively
defined by the rules

[] : ListX
x : X xs : ListX
x :: xs : ListX

We also have to lift the equivalence relation R to an equivalence relation
ListR on ListX. The relation ListR is the functorial lifting of R and is
inductively defined by the rules

[](ListR)[]

x1Rx2 xs1(ListR)xs2

x1 :: xs1(ListR)x2 :: xs2

Notice that this operation must be performed for all polymorphic type for-
mers. We want to avoid this so-called “setoid hell”. Therefore we choose to
work with quotient types, introduced in the next section.

2.2.2 Inductive-like quotients

In this section, we describe quotient types as particular inductive-like types
introduced by M. Hofmann in his PhD thesis [54]. These quotient types are
ordinary types rather than setoids. The particular specification of quotient
types described below has been given in [84], where we also discussed an
impredicative encoding of quotients, reminiscent of Church numerals and
more generally of encodings of inductive types in Calculus of Constructions.

Let X be a type and R an equivalence relation on X. A quotient of X
by R is described by the following data (i)–(iv):

24

(i) a carrier type Q;

(ii) a constructor [_] : X → Q;

For any family of types Y : Q→ U and dependent function f :
∏
x:X Y [x],

we say that f is R-compatible (or simply compatible, when the intended
equivalence relation is clear from the context), if the type

compat f =
∏

{x1,x2:X}

x1Rx2 → f x1 ≡ f x2

is inhabited.

(iii) a proof sound : compat [_];

(iv) a dependent eliminator: for every family of types Y : Q → U and
function f :

∏
x:X Y [x] with p : compat f , there exists a function

lift f p :
∏
q:Q Y q together with a computation rule

liftβ f p x : lift f p [x] ≡ f x

for all x : X.

Let QuotientX R : U1 be the type of all such records. The type QuotientX R
is not a proposition, since the carrier of a quotient is unique only up to
isomorphism. We typically write X/R instead of Q for the carrier of a
quotient of X by R.

We postulate the inhabitedness of QuotientX R for all types X and
equivalence relations R on X. Hofmann has shown that quotient types
are a conservative extension of Martin-Löf type theory [54]. We also pos-
tulate the existence of a large dependent eliminator, i.e., one that takes as
an argument a family of types of the form Y : X/R→ U1.

The propositional truncation (or squash) ‖X‖ of a type X is the quo-
tient of X by the total relation x1Totalx2 = 1, i.e., an inhabitant of
QuotientX Total. We write |_| instead of [_] for the constructor of ‖X‖.
The non-dependent version of the elimination principle of ‖X‖ is employed
several times in this thesis, so we spell it out: in order to construct a func-
tion of type ‖X‖ → Y , one has to construct a constant function of type
X → Y . The type ‖X‖ can have at most one inhabitant, informally, an
“uninformative” proof of X. For example, an inhabitant of ‖

∑
x:X P x‖ can

be thought of as a proof of there existing an element of X that satisfies
P from which all information has been removed: both the witness element
and the proof that it is good. Propositional truncation and other notions of
weak or anonymous existence have been thoroughly studied in type theory
[63].

25

We call a function f : X → Y surjective, and we write isSurj f , if the type∏
y:Y ‖

∑
x:X f x ≡ y‖ is inhabited. We call f a split epimorphism, and we

write isSplitEpi f , if the type ‖
∑

g:Y→X
∏
y:Y f (g y) ≡ y‖ is inhabited. We

say that f is a retraction, if the type
∑

g:Y→X
∏
y:Y f (g y) ≡ y is inhabited.

Every retraction is a split epimorphism, and every split epimorphism is
surjective.

Proposition 2.1. The constructor [_] is surjective for all quotients.

Proof. Given a type X and an equivalence relation R on X, we define:

[_]surj :
∏
q:X/R

∥∥∥∥∥∑
x:X

[x] ≡ q

∥∥∥∥∥
[_]surj = lift (λx. |x, refl|) p

The compatibility proof p is trivial, since |x1, refl| ≡ |x2, refl| for all x1, x2 :
X.

A quotient X/R is said to be effective, if the type
∏
x1,x2:X [x1] ≡ [x2]→

x1Rx2 is inhabited. In general, effectiveness does not hold for all quotients.
In fact, postulating effectiveness for all quotients implies LEM [66]. But
we can prove that all quotients satisfy a weaker property. We say that a
quotientX/R is weakly effective, if the type

∏
x1,x2:X [x1] ≡ [x2]→ ‖x1Rx2‖

is inhabited.

Proposition 2.2. All quotients are weakly effective.

Proof. LetX be a type, R an equivalence relation onX and x : X. Consider
the function ‖x R _‖ : X → U , ‖x R _‖ = λx′. ‖x R x′‖. We show that
‖x R _‖ is R-compatible. Let x1, x2 : X with x1 R x2. We have x R x1 ↔
x R x2 and therefore ‖x R x1‖ ↔ ‖x R x2‖. Since propositional truncations
are propositions, using proposition extensionality, we conclude ‖xRx1‖ ≡
‖xRx2‖. We have constructed a term px : compat ‖x R _‖, and therefore
a function lift ‖x R _‖ px : X/R → U (large elimination is fundamental in
order to apply lift, since ‖x R _‖ : X → U and X → U : U1). Moreover,
lift ‖x R_‖ px [y] ≡ ‖x R y‖ by its computation rule.

Let [x1] ≡ [x2] for some x1, x2 : X. We have:

‖x1 R x2‖ ≡ lift ‖x1R_ ‖ px1 [x2] ≡ lift ‖x1 R_ ‖ px1 [x1] ≡ ‖x1 R x1‖

and x1 R x1 holds, since R is reflexive.

As already pointed out, not all quotients are effective. This is because a
relation R is generally proof-relevant, i.e., the type x1Rx2 is not a proposi-
tion, and there is no canonical way of constructing an inhabitant of x1Rx2

26

knowing [x1] ≡ [x2] (remember that the latter type is a proposition, since
we are assuming uniqueness of identity proofs). But notice that, if R is
propositional, then the quotient X/R is effective, because a function of
type ‖x1Rx2‖ → x1Rx2 can be defined by lifting the identity function on
x1Rx2, which is constant in this case. Moreover, for all equivalence rela-
tions R, the type X/R is also the carrier of an effective quotient of X by
the equivalence relation x1‖R‖x2 = ‖x1Rx2‖.

Notice that the constructor [_] is not a split epimorphism for all quo-
tients. The existence of a choice of representative for each equivalence class
is a non-constructive principle, since it implies the law of excluded middle,
i.e., the inhabitedness of the following type:

LEM =
∏
{X:U}

isPropX → X + ¬X

where ¬X = X → 0.

Proposition 2.3. Suppose that [_] is a split epimorphism for all quotients.
Then LEM is inhabited.

Proof. Let X be a type together with a proof of isPropX. We consider
the equivalence relation R on Bool, x1Rx2 = x1 ≡ x2 + X. By hypothesis
we obtain ‖

∑
rep:Bool/R→Bool

∏
q:Bool/R [rep q] ≡ q‖. Using the elimination

principle of propositional truncation, it is sufficient to construct a constant
function of type ∑

rep:Bool/R→Bool

∏
q:Bool/R

[rep q] ≡ q

 → X + ¬X

Let rep : Bool/R → Bool with [rep q] ≡ q for all q : Bool/R. We have
[rep [x]] ≡ [x] for all x : Bool, which by Proposition 2.2 implies ‖rep [x]Rx‖.

Note now that the following implication (a particular instance of axiom
of choice on Bool) holds:

acBool :

(∏
x:Bool

‖rep [x]R x‖

)
→

∥∥∥∥∥ ∏
x:Bool

rep [x]R x

∥∥∥∥∥
acBool r = lift2 (λ r1 r2. |λx. if x then r1 else r2|) p (r true) (r false)

where if true then r1 else r2 = r1 and if false then r1 else r2 = r2, and lift2 is
the two-argument version of lift. The compatibility proof p is immediate,
since the return type is a proposition.

We now construct a function of type ‖
∏
x:Bool rep [x]R x‖ → X+¬X. It

is sufficient to define a function (
∏
x:Bool rep [x]R x)→ X + ¬X (it will be

constant, since the type X +¬X is a proposition, if X is a proposition), so

27

we suppose rep [x]R x for all x : Bool. We analyze the (decidable) equality
rep [true] ≡ rep [false] on Bool. If it holds, then we have true R false and
therefore an inhabitant of X. If it does not hold, we have an inhabitant of
¬X: indeed, suppose x : X, then trueR false, so [true] ≡ [false] and therefore
rep [true] ≡ rep [false] holds, which contradicts the hypothesis.

One can always specify a quotient structure on the codomain of a sur-
jective function b : X → Q. We can define a relation ≡b on X: x1 ≡b x2 if
and only if b x1 ≡ b x2.

Proposition 2.4. The type Q is the carrier of a quotient of X by the
equivalence relation ≡b. The map b sends each element to its equivalence
class.

Proof. We construct a dependent eliminator lift. Given a family of types
Y : Q→ U , a≡b-compatible map f :

∏
x:X Y (b x) and an element q : Q. We

have to give an inhabitant of Y q. We apply the proof of surjectivity of b to q,
and we obtain a proof of ‖

∑
x:X b x ≡ q‖. We are done using the elimination

principle of propositional truncation and constructing a constant map f ′ :
(
∑

x:X b x ≡ q)→ Y q.

f ′ :

(∑
x:X

b x ≡ q

)
→ Y q

f ′ (x, e) = substY e (f x)

Using the ≡b-compatibility of f , it is easy to see that f ′ is constant.

Notice that the quotient described above is effective, since the relation
≡b is propositional. Proposition 2.4 gives a sufficient condition to prove
that a type is a quotient. This will be exploited in Sections 3.2.2 and 3.4.2.

2.3 Choice principles

In this section, we discuss the axiom of choice and two specific instances of
it, the axiom of countable choice and the axiom of weak countable choice.
We show why we cannot assume the full axiom of choice from a constructive
perspective. The axiom of (weak) countable choice is a fundamental ingre-
dient in proving that the delay datatype quotiented by weak bisimilarity
is a monad. Moreover, it is necessary to show that the quotiented delay
datatype delivers free ωcppos.

28

2.3.1 Axiom of choice

The full axiom of choice (AC) is defined as follows:

AC =
∏

{X,Y :U}

∏
P :X→Y→U

∏
x:X

∥∥∥∥∥∥
∑
y:Y

P x y

∥∥∥∥∥∥
→

∥∥∥∥∥∥
∑

f :X→Y

∏
x:X

P x (f x)

∥∥∥∥∥∥
Notice that AC is fundamentally different from the type-theoretic axiom of
choice:

∏
{X,Y :U}

∏
P :X→Y→U

∏
x:X

∑
y:Y

P x y

→ ∑
f :X→Y

∏
x:X

P x (f x)

which is provable in type theory.
AC is a controversial semi-classical axiom, generally not accepted in con-

structive systems [67]. We give some alternative formulation of AC.

Theorem 2.1. The following are logically equivalent:

(i) AC;

(ii) AC2 =
∏
{X:U}

∏
P :X→U (

∏
x:X ‖P x‖)→ ‖

∏
x:X P x‖;

(iii) every surjective map is a split epimorphism;

(iv) the covariant hom-functor Z → _ : (X → Y) → ((Z → X) → (Z →
Y)), Z → g = λf. g ◦ f , preserves surjections;

(v) the map Z → [_] : (Z → X) → (Z → X/R) is surjective for all
quotients X/R.

We do not give a proof of Theorem 2.1. We will prove Theorem 2.2
instead, which has a similar proof.

We reject the axiom of choice, since in our system it implies the law of
excluded middle.

Proposition 2.5. AC implies LEM.

Proof. Assume AC. By Theorem 2.1, (i)→(iii), we have that the surjective
constructor [_] is a split epimorphism for all quotients X/R. By Proposi-
tion 2.3, this implies LEM.

29

2.3.2 Axiom of countable choice

The axiom of countable choice (ACω) is a specific instance of the axiom of
choice where the binary predicate P has its first argument in N:

ACω =
∏
{X:U}

∏
P :N→X→U

(∏
n:N

∥∥∥∥∥∑
x:X

P nx

∥∥∥∥∥
)
→

∥∥∥∥∥∥
∑

f :N→X

∏
n:N

P n (f n)

∥∥∥∥∥∥
Similarly to the full axiom of choice, countable choice is also a controversial
principle [76]. But, differently from AC, it does not imply excluded middle
and generally constructive mathematicians like it more [82, Ch. 4]. On the
other hand, there exist models of type theory in which countable choice
does not hold [39]. Countable choice can be given alternative formulations
analogous to those given in Theorem 2.1 for AC.

Theorem 2.2. The following are logically equivalent:

(i) ACω;

(ii) ACω2 =
∏
P :N→U (

∏
n:N ‖P n‖)→ ‖

∏
n:N P n‖;

(iii) every surjective map of type X → N is a split epimorphism;

(iv) the covariant hom-functor N → _ : (X → Y) → ((N → X) → (N →
Y)) preserves surjections;

(v) the map N → [_] : (N → X) → (N → X/R) is surjective for all
quotients X/R.

Proof.

(i)→(ii) : Assume acω : ACω. Let P : N → U and p :
∏
n:N ‖P n‖.

Define P ′ : N → 1 → U , P ′ n ∗ = P n. Using p and the elimi-
nation principle of propositional truncation, it is easy to construct
p′ :

∏
n:N ‖

∑
∗:1 P

′ n ∗ ‖. By applying acω to P ′ and p′ we obtain
an inhabitant of ‖

∑
f :N→1

∏
n:N P ′ n (f n)‖, and from this we can

conclude ‖
∏
n:N P n‖ using the elimination principle of propositional

truncation.

(ii)→(iii) : Assume acω2 : ACω2. Let f : X → N with a proof of surjectivity
p : isSurj f . Define P n =

∑
x:X f x ≡ n. By applying acω2 to P and p

we obtain an inhabitant of ‖
∏
n:N P n‖, and from this we can conclude

isSplitEpi f using the elimination principle of propositional truncation.

(iii)→(iv) : Suppose that every surjective function with codomain N is a
split epimorphism. Let g : X → Y with a proof of surjectivity p :
isSurj g, let h : N → Y . Define X ′ =

∑
n:N

∑
x:X g x ≡ hn and

30

h′ : X ′ → N, h′ = fst. Using the elimination principle of propositional
truncation and the proof p, it is easy to prove the surjectivity of
h′. Therefore h′ is a split epimorphism, i.e., we have an inhabitant
of ‖

∑
s:N→X′

∏
n:N fst (s n) ≡ n‖. From this, using the elimination

principle of propositional truncation, we can conclude ‖
∑

f :N→X g ◦
f ≡ h‖.

(iv)→(v) : If the hom-functor N → _ preserves surjections, than N → [_]
is surjective, since the map [_] is surjective by Proposition 2.1.

(v)→(i) : Suppose that the map N → [_] is surjective for all quotients.
Let P : N → X → U such that p :

∏
n:N ‖

∑
x:X P nx‖. Let Y =∑

n:N
∑

x:X P nx and consider the following equivalence relation R
on Y : (n1, x1, q1)R(n2, x2, q2) = n1 ≡ n2. Notice that the type Q =∑

n:N ‖
∑

x:X P nx‖ is the carrier of a quotient of Y by R. The map
[_] : Y → Q sends a triple (n, x, q) to (n, |x, q|). By hypothesis, the
map N→ [_] is surjective. We apply this surjectivity proof to the map
g : N→ Q, g n = (n, p n). We obtain an inhabitant of ‖

∑
f :N→Y [_] ◦

f ≡ g‖. Using the elimination principle of propositional truncation it
is straightforward to conclude ‖

∑
f :N→X

∏
n:N P n (f n)‖.

We will assume ACω in Section 3.4 when proving that the quotiented
delay datatype delivers free ωcppos. But we will see in Section 3.2.2 that, in
order to prove that the quotiented delay datatype is a monad, it is sufficient
to assume a weaker version of countable choice, that we introduce in the
next section.

2.3.3 Axiom of weak countable choice

The weak axiom of countable choice (WACω) is a specific instance of the
axiom of countable choice. We present it here as an instance of ACω2,
introduced in point (ii) of Theorem 2.2:

WACω =
∏
{X:U}

∏
P :N→X→U

(∏
m<n

isProp

(∑
x:X

P mx

)
+ isProp

(∑
x:X

P nx

))

→

(∏
n:N

∥∥∥∥∥∑
x:X

P nx

∥∥∥∥∥
)
→

∥∥∥∥∥∥
∑

f :N→X

∏
n:N

P n (f n)

∥∥∥∥∥∥
The principle WACω is like countable choice, but restricted to predicates
P : N→ U for which intuitively the type

∑
x:X P nx is a proposition for all

but possibly one n : N. This is expressed by stating that, for any m < n, at

31

least one of
∑

x:X P mx and
∑

x:X P nx is a proposition. WACω is an ax-
iom with enough strength to prove Bishop’s principle and the fundamental
theorem of algebra [24].

We present three alternative formulations of WACω. We introduce some
notation. Let f : X → Y and y : Y , we define the preimage of y under f as
f−1y =

∑
x:X f x ≡ y. We also introduce a variant of the covariant hom-

functor N → _. Given two types X,Y and a predicate P : (N → Y) → U ,
we define the map:

N→P _ :
∏

g:X→Y

∑
f :N→X

P (g ◦ f)→
∑

f :N→Y
P f

(N→P g) (f, p) = (g ◦ f, p)
The function N→P g acts in the same way of N→ g, but it only operates
on maps f : N→ X such that g ◦ f satisfies the predicate P .

Theorem 2.3. The following are logically equivalent:

(i) WACω;

(ii)

WACω2 =
∏

P :N→U

(∏
m<n

isProp (P m) + isProp (P n)

)

→

(∏
n:N
‖P n‖

)
→

∥∥∥∥∥∏
n:N

P n

∥∥∥∥∥ ;

(iii) a surjective map f : X → N is a split epimorphism if, for all m < n,
we have isProp(f−1m) + isProp(f−1 n);

(iv) for any surjective g : X → Y , we have that the map N →Pg g is
surjective, where Pg : (N→ Y)→ U is the following predicate:

Pg f =
∏
m<n

isProp (g−1 (f m)) + isProp (g−1 (f n));

(v) the map N →P [_] is surjective for all quotients, where P : (N →
X/R)→ U is the following predicate:

P f =
∏
m<n

isProp ([_]−1 (f m)) + isProp ([_]−1 (f n)).

Condition (v) states that the map N→ [_] is surjective when restricted
to streams f : N→ X for which the equivalence class of f n is a proposition
for all but possibly one n : N. We refrain from proving Theorem 2.3 since
its proof is a straightforward adaptation of the proof of Theorem 2.2.

The axiom of weak countable choice will be employed in Section 3.2.2 in
order to prove that the quotiented delay datatype is a monad.

32

2.3.4 Axiom of propositional choice

The axiom of propositional choice is a variant of the full axiom of choice in
which the binary predicate P has its first argument in a proposition X:

PAC =
∏

{X,Y :U}

∏
P :X→Y→U

isPropX

→

∏
x:X

∥∥∥∥∥∥
∑
y:Y

P x y

∥∥∥∥∥∥
→

∥∥∥∥∥∥
∑

f :X→Y

∏
x:X

P x (f x)

∥∥∥∥∥∥
The axiom of propositional choice admits alternative formulations similar
to the one of AC given in Theorem 2.1. Kraus et al. [63] show that PAC is
equivalent to the inhabitedness of

∏
X:U ‖‖X‖ → X‖. PAC is known to fail

in some toposes [49].
Following a suggestion by Martin Escardó, in Section 3.2.3 we will employ

PAC to construct a monad structure on the quotiented delay datatype. We
will use the following alternative formulation of PAC: given a proposition
Z, a type X and an equivalence relation R on X, the following isomorphism
holds:

(Z → X)/(Z → R) ∼= (Z → X/R)

where as usual Z → R is the pointwise lifting of R to the function space
Z → X.

2.4 Summary

In this chapter, we gave a brief description of Martin-Löf type theory, the
constructive framework within we develop our results. A complete presen-
tation of the framework can be found in [73]. The additional principles we
introduced in Section 2.1.1 are standard extensionality principles that one
often puts on top of the basic type theory in order to formalize and prove
mathematical concepts [83].

Less standard is the quotient types extension presented in Section 2.2,
inspired by Martin Hofmann’s inductive-like quotients [54]. The material of
Section 2.2 was extrapolated from the author’s publications [30] and espe-
cially [84], in which the author also introduced an impredicative encoding of
quotients reminiscent of Church numerals and more generally of encodings
of inductive types in Calculus of Constructions.

In the last part of the chapter, we gave a brief introduction to choice
principles we will exploit in several constructions. In particular, we pre-
sented alternative equivalent formulations of countable and weak countable
choice. Countable choice is considered an important axiom of computability
theory [14] and it is traditionally employed in the construction of Cauchy

33

real numbers. Weak countable choice is sufficient to prove Bishop’s principle
and the fundamental theorem of algebra [24]. The status of weak countable
choice in Martin-Löf type theory is not very clear. It is known that there
exist models of type theory in which countable choice does not hold [39].

34

Chapter 3

Delay monad

The delay datatype was introduced by Capretta [26] as a means to deal with
partial functions (as in computability theory) in Martin-Löf type theory. It
is used in this setting to cope with possible non-termination of computations
(as, e.g., in the unbounded search of minimalization). Inhabitants of the
delay datatype are delayed values, that we call computations. Crucially
computations can be non-terminating and not return a value at all. The
delay datatype constitutes a (strong) monad, which makes it possible to deal
with possibly non-terminating computations just like any other flavor of
effectful computations following Moggi’s general monad-based method [71].
Often, one is only interested in termination of computations and not the
exact computation time. Identifying computations that only differ by finite
amounts of delay corresponds to quotienting the delay datatype by weak
bisimilarity. The quotient datatype is used as a constructive alternative to
the maybe datatype (see, e.g., [17]) and should also be a (strong) monad.

In Section 3.1, we present the delay datatype and (termination-sensitive)
weak bisimilarity. In Section 3.2, we quotient the delay datatype by weak
bisimilarity and we discuss how to construct a monad structure on top
of it assuming one of the following three axioms: the limited principle of
omniscience, weak countable choice or propositional choice. In Section 3.3,
we look at the arrow structure (in the sense of Hughes [55]) on the Kleisli
homsets for the delay monad and show how this survives quotienting by
pointwise weak bisimilarity. In Section 3.4, we prove that the quotiented
delay datatype delivers free ωcppos, assuming countable choice. In Section
3.5, we present a new monad for partiality in homotopy type theory and
show how it relates to the quotiented delay monad and to Altenkirch et al.’s
monad delivering free ωcppos by construction [9].

The results of this chapter have been formalized in the Agda proof as-
sistant. The formalization is available at http://cs.ioc.ee/~niccolo/
thesis/. The material presented in this chapter is based on a paper writ-
ten by the author together with James Chapman and Tarmo Uustalu [30]
and on a manuscript for a journal version of [30], currently under review.

35

http://cs.ioc.ee/~niccolo/thesis/
http://cs.ioc.ee/~niccolo/thesis/

3.1 Delay and weak bisimilarity

For a given type X, each element of the delay type DX is a possibly infinite
computation that returns a value of X, if it terminates. We define DX as
a coinductive type by the rules

now x : DX
c : DX

later c : DX

The non-terminating computation never is corecursively defined as never =
later never.

Propositional equality is not suitable for coinductive types. We need
different notions of equality, namely strong and weak bisimilarity.

Let R be an equivalence relation on a type X. The relation lifts to an
equivalence relation ∼R on DX that we call strong R-bisimilarity. The
relation is coinductively defined by the rules

p : x1Rx2

now∼ p : now x1 ∼R now x2

p : c1 ∼R c2

later∼ p : later c1 ∼R later c2

We alternatively denote the relation∼R with DR, since strongR-bisimilarity
is the functorial lifting of the relation R to DX. Strong ≡-bisimilarity is
simply called strong bisimilarity and denoted ∼.

While it ought to be the case, one cannot prove that strongly bisimilar
computations are equal in intensional Martin-Löf type theory. Therefore
we postulate an inhabitant for

DExt =
∏
{X:U}

∏
{c1,c2:DX}

c1 ∼ c2 → c1 ≡ c2

We take into account another equivalence relation ≈R on DX called weak
R-bisimilarity, which is in turn defined in terms of convergence. The latter
is a binary relation between DX and X relating terminating computations
to their values. It is inductively defined by the rules

now↓ : now x ↓ x
p : c ↓ x

later↓ p : later c ↓ x

Two computations are considered weakly R-bisimilar, if they differ by a
finite number of applications of the constructor later (from where it follows
classically that they either converge to R-related values or diverge). Weak
R-bisimilarity is defined coinductively by the rules

p1 : c1 ↓ x1 p2 : x1Rx2 p3 : c2 ↓ x2

↓≈ p1 p2 p3 : c1 ≈R c2

p : c1 ≈R c2

later≈ p : later c1 ≈R later c2

36

Weak ≡-bisimilarity is called just weak bisimilarity and denoted ≈. In this
case, we modify the first constructor for simplicity:

p1 : c1 ↓ x p2 : c2 ↓ x
↓≈ p1 p2 : c1 ≈ c2

Remark 3.1. Notice that the type c1 ≈ c2 is not a proposition. But weak
bisimilarity can be defined alternatively as the following propositional rela-
tion:

now x ≈′ now x

c ↓ x
later c ≈′ now x

c ↓ x
now x ≈′ later c

c1 ≈′ c2

later c1 ≈′ later c2

We have c ≈′ c′ if and only if c ≈ c′. We prefer to work with ≈ instead
of ≈′, since proofs of ≈ are somewhat easier to construct, there is more
freedom.

In fact, there are even more robust versions of weak bisimilarity with even
more proofs. For example, the following relation, closer to weak bisimilarity
in CCS:

c1 ↓ x c2 ↓ x
c1 ≈′′ c2

c1 ↘ c′1 c′1 ≈′′ c′2 c2 ↘ c′2

later c1 ≈′′ later c2

where the type c1 ↘ c2 states that the computation c1 reduces to the
computation c2 and it is inductively defined by the rules

c↘ c

c1 ↘ c2

later c1 ↘ c2

In this thesis we only use the relation ≈ and not its equivalent variants ≈′
and ≈′′.

The delay datatype D is a (strong) monad. The unit η is the constructor
now while the multiplication µ is “concatenation” of laters:

µ : D (DX)→ DX

µ (now c) = c

µ (later c) = later (µ c)

We denote by bind : (X → DY) → DX → DY the bind operation and
by str : X × DY → D (X × Y) the strength operation of D (which it has
uniquely, as any monad on Set).

Proposition 3.1. The delay datatype D is a monad.

We already noted that not all quotients are effective. But the quotient
we are interested in, namely DX/≈ for a type X, is indeed effective. Notice
that, by Proposition 2.2, it suffices to prove ‖c1 ≈ c2‖ → c1 ≈ c2 for all
c1, c2 : DX.

37

Lemma 3.1. For all c1, c2 : DX, there exists a constant endofunction on
c1 ≈ c2. Therefore, the type ‖c1 ≈ c2‖ → c1 ≈ c2 is inhabited.

Proof. Let c1, c2 : DX. We consider the following function.

canon≈ : c1 ≈ c2 → c1 ≈ c2

canon≈ (↓≈ now↓ p2) = ↓≈ now↓ p2

canon≈ (↓≈ (later↓ p1) now↓ = ↓≈ (later↓ p1) now↓

canon≈ (↓≈ (later↓ p1) (later↓ p2)) = later≈ (canon≈ (↓≈ p1 p2))

canon≈ (later≈ p) = later≈ (canon≈ p)

The function canon≈ canonizes a given weak bisimilarity proof by maximiz-
ing the number of applications of the constructor later≈. This function is
indeed constant, i.e., one can prove

∏
p1,p2:c1≈c2 p1 u p2 for all c1, c2 : DX,

where the relation u is strong bisimilarity on proofs of c1 ≈ c2, coinductively
defined by the rules:

↓≈ p1 p2 u ↓≈ p1 p2

p1 u p2

later≈ p1 u later≈ p2

Similarly to extensionality of delayed computations, we assume that strongly
bisimilar weak bisimilarity proofs are equal, i.e., that we have an inhabitant
for

≈Ext =
∏
{X:U}

∏
{c1,c2:DX}

∏
p1,p2:c1≈c2

p1 u p2 → p1 ≡ p2

Theorem 3.1. The quotient DX/≈ is effective.

Notice that the above theorem is trivial when working with the equivalent
relation ≈′ instead of ≈. This is because the relation ≈′ is propositional
and quotients by propositional relations are always effective.

3.2 Quotiented delay datatype

Remember that Martin-Löf type theory does not have quotient types. We
discussed in Section 2.2 two possible ways to overcome this issue: using se-
toids or extending the theory with inductive-like quotients à la Hofmann. In
the first approach to quotients, the quotiented delay datatype is a monad,
while in the second approach we need to employ an additional choice prin-
ciple among those described in Section 2.3.

In the quotients-as-setoids approach, it is trivial to define the corre-
sponding (strong) monad structure on the quotient of D by ≈. The role
of the quotiented datatype is played by the setoid functor D̂, defined by

38

D̂ (X,R) = (DX,≈R). The unit η̂ and multiplication µ̂ are just η and
µ together with proofs of that the appropriate equivalences are preserved.
The unit η̂ is a setoid morphism from (X,R) to (DX,≈R), as x1 R x2 →
now x1 ≈R now x2 by definition of ≈R. The multiplication µ̂ is a setoid mor-
phism from (D (DX),≈≈R) to (DX,≈R), since c1 ≈≈R c2 → µ c1 ≈R µ c2

for all c1, c2 : D (DX). The monad laws hold up to ≈R, since they hold up
to ∼R.

In the quotients-as-sets approach, we define D≈X = DX/≈. Let us try
to equip the functor D≈ with a monad structure. Let X be a type. As the
unit η≈ : X → D≈X, we can take η≈ = [_] ◦ now. But when we try to con-
struct a multiplication µ≈ : D≈ (D≈X)→ D≈X, we get stuck immediately.
Indeed, µ≈ must be of the form liftµ′≈ p for some µ′≈ : D (D≈X) → D≈X
with p : compatµ′≈, but we cannot define such µ′≈ and p. The problem
lies in the coinductive nature of the delay datatype. We are trying to con-
struct a function of type D (D≈X) → D≈X that sends a converging com-
putation to its converging value and a non-terminating one to the equiva-
lence class of non-termination. This discontinuity makes constructing such
a function problematic. Moreover, one can show that a right inverse of
[_] : DX → D≈X, i.e., a canonical choice of representative for each equiv-
alence class in D≈, is not definable [75, Ch. 5.4.3]. Therefore, we cannot
even construct µ′≈ as a composition [_] ◦ µ′′≈ with µ′′≈ : D (D≈X) → DX,
since we do not know how to define µ′′≈(now q) for q : DX/≈.

A function µ′≈ would be constructable, if the type D (D≈X) were a
quotient of D (DX) by the equivalence relation D≈ (remember that D≈
is a synonym of ∼≈, the functorial lifting of ≈ from DX to D (DX)).
In fact, the function [_] ◦ µ : D (DX) → D≈X is D≈-compatible, since
x1(D≈)x2 → µx1 ≈ µx2, and therefore the elimination principle would do
the job. But how “different” are D (D≈X) and the quotient D (DX)/D≈?
More generally, how “different” are D (X/R) and the quotient DX/DR, for
a given type X and equivalence relation R on X?

3.2.1 A solution using LPO

Intuitively, the inhabitants of D≈X are the elements of X and the non-
terminating computation never. But notice that the type D≈X is not iso-
morphic to MaybeX = X + 1 constructively. One can always construct the
map:

Maybe2D≈ : MaybeX → D≈X

Maybe2D≈ (inlx) = [now x]

Maybe2D≈ (inr ∗) = [never]

39

But D≈X ∼= MaybeX is equivalent to the limited principle of omniscience
(LPO), an instance of the principle of excluded middle.

LPO =
∏

f :N→2

(∑
n:N

f n ≡ 1

)
+

(∏
n:N

f n ≡ 0

)

Proposition 3.2. The isomorphism D≈X ∼= MaybeX is logically equivalent
to LPO.

Proof. Assuming LPO, one can decide if a computation c : DX is termi-
nating or not. In fact, construct a stream fc : N → 2 that is everywhere 0
expect for the unique position n : N such that c = latern (now x) (if such an
n exists), in which fc n = 1. Using LPO we can decide if fc is everywhere 0,
in which case c = never, or if there exists a position n for which fc n = 1, in
which case c = latern (now x) for some x : X. Clearly, if we can decide if a
computation is terminating, the types D≈X and MaybeX are isomorphic.

Vice versa, assume D≈X ∼= MaybeX. In particular, there exists a func-
tion D≈2Maybe : D≈X → MaybeX inverse of Maybe2D≈. Given a binary
stream f : N → 2, construct the computation cf : D 1 that has as many
laters as the length of the maximal prefix of f containing only the ele-
ment 0. If D≈2Maybe [cf] = inl ∗, then [cf] = Maybe2D≈ (D≈2Maybe [cf]) =
Maybe2D≈ (inl ∗) = [now ∗]. Since, by Theorem 3.1, the quotient D≈X is
effective, we obtain cf ≈ now ∗, i.e. cf = latern (now ∗) for a certain n : N.
The latter natural number corresponds to the position n in which f n ≡ 1.
Instead, if D≈2Maybe [cf] = inr ∗, then [cf] = Maybe2D≈ (D≈2Maybe [cf]) =
Maybe2D≈ (inr ∗) = [never], and therefore cf ≈ never. This implies that
f n ≡ 0 for all n : N.

Since Maybe is a monad, assuming LPO we have that the functor D≈ has
a monad structure as well.

3.2.2 A solution using weak countable choice

In previous work [30], we proved that the quotiented delay datatype is a
monad assuming the axiom of countable choice. Here we show that weak
countable choice, introduced in Section 2.3.3, is enough to construct the
monad structure.

In order to use the results of Section 2.3.3, we think of possibly non-
terminating computations as streams. More precisely, let X be a type and
c : DX. Now c can be thought of as a stream ε c : N→ X + 1 with at most

40

one value element in the left summand X.

ε : DX → (N→ X + 1)

ε (now x) zero = inlx

ε (later c) zero = inr ?

ε (now x) (sucn) = inr ?

ε (later c) (sucn) = ε c n

Conversely, from a stream f : N→ X+ 1, one can construct a computation
π f : DX. This computation corresponds to the “truncation” of the stream
to its first value in X.

π : (N→ X + 1)→ DX

π f = case f zero of

inlx 7→ now x

inr ? 7→ later (π (f ◦ suc))

We see that DX is isomorphic to a subset of N→ X + 1 in the sense that,
for all c : DX, π (ε c) ∼ c, and therefore π(ε c) ≡ c by delayed computation
extensionality. More precisely, we have the following isomorphism:

DX ∼=
∑

f :N→X+1

isProp

(∑
n:N

∑
x:X

f n ≡ inlx

)
(3.1)

As already pointed out before, if one could prove that the type D (D≈X)
is the carrier of a quotient of D (DX) by the equivalence relation D≈, then
one can define multiplication. By Proposition 2.4, we know that if there
exists a surjective map b : D (DX)→ D (D≈X), then the type D (D≈X) is
the carrier of a quotient of D (DX) by the equivalence relation ≡b. We have
a map of type D (DX)→ D (D≈X), namely D[_]. We show that the map
D[_] is surjective under the assumption of the principle of weak countable
choice.

Theorem 3.2. Assume wacω : WACω. Let X be a type and R an equiva-
lence relation on X. The function D[_] : DX → D (X/R) is surjective.

Proof. Let c : D (X/R). We need to prove ‖
∑

d:DX D[_] d ≡ c‖. The proof
goes via the axiom of weak countable choice. Therefore we construct a
predicate P : N → U together with a proof ip :

∏
m<n isProp (P m) +

isProp (P n) and a function p :
∏
n:N ‖P n‖.

Let P n =
∑

x:X+1 ([_] + id)x ≡ ε c n. We give a proof p :
∏
n:N ‖P n‖.

Let n : N, we proceed by case analysis on ε c n : X/R+ 1:

• if ε c n = inl q for some equivalence class q : X/R, then by surjec-
tivity of [_], we have ‖

∑
x:X [x] ≡ q‖, and ‖P n‖ follows using the

elimination principle of propositional truncation;

41

• if ε c n = inr ∗, we return |inr ∗, refl| : ‖P n‖.

We now give a proof ip :
∏
m<n isProp (P m)+isProp (P n). Supposem < n,

we proceed by case analysis on ε cm and on ε c n:

• if ε cm = inl q1 and ε c n = inl q2, for some equivalence classes q1, q2 :
X/R, then we obtain a contradiction, since there is at most one entry
from X/R in the stream ε c;

• if ε cm = inr ∗, we are done since P m is a proposition;

• if ε c n = inr ∗, we are done since P n is a proposition.

We can apply WACω to the predicate P and the terms ip and p. We
obtain a proof of

∥∥∏
n:N

∑
x:X+1 ([_] + id)x ≡ ε c n

∥∥. Using the elimination
principle of propositional truncation, we assume that there exists a stream
g : N→ X+1 such that ([_]+ id) (g n) ≡ ε c n, for all n : N, and we need to
construct a computation d : DX such that D[_] d ≡ c. We define d = π g.
It is not difficult to see that D[_] (π g) ≡ π (([_]+ id)◦g), and by hypothesis
we have ([_] + id) ◦ g ≡ ε c. We are done, since c ≡ π (ε c).

Theorem 3.2 and Proposition 2.4 tell us that, under the assumption of
WACω, the type D (D≈X) is the carrier of a quotient of D (DX) by the
equivalence relation ≡D[_]. One can then construct multiplication µ≈ :
D≈ (D≈X)→ D≈X in the following way:

D (DX)
µ //

D [_]

��

DX

[_]

��
D (D≈X)

[_]

��

liftD ([_]◦µ) p // D≈X

D≈ (D≈X)

µ≈=lift (liftD ([_] ◦µ) p) p′

88

In the diagram we wrote liftD for the dependent eliminator of D (D≈X). The
above diagram makes sense only if we can construct the two compatibility
proofs p and p′.

• We have to prove that D[_] c ≡ D[_] d implies [µ c] ≡ [µd], for all
c, d : D (DX). Using the soundness property of quotients, it is enough
to show µ c ≈ µd. First, notice that D[_] c ≡ D[_] d implies D[_] c ∼

42

D[_] d, which in turns implies c ∼≈ d, since by Theorem 3.1 the
quotient D≈X is effective. A easy corecursive construction shows
that c ∼≈ d implies µ c ≈ µd.

• We have to prove that c ≈ d implies liftD ([_] ◦ µ) p c ≡ liftD ([_] ◦
µ) p d, for all c, d : D (D≈X). Using the elimination principle of
quotients, we have to prove that D[_] c ≈ D[_] d implies liftD ([_] ◦
µ) p (D[_] c) ≡ liftD ([_] ◦ µ) p (D[_] d), for all c, d : D (DX). Using
the computation rule of liftD and the soundness principle of quotients,
we are left to prove µ c ≈ µd. Notice that D[_] c ≈ D[_] d implies
c ≈≈ d, again by effectiveness of D≈X. An easy corecursive construc-
tion shows that c ≈≈ d implies µ c ≈ µd.

We omit the proof of the monad laws, which is the easy part—essentially
the proofs for the unquotiented delay datatype carry over.

Theorem 3.3. Assuming WACω, the type functor D≈ is a monad.

3.2.3 A solution using propositional choice

In this section, we show how to construct a monad structure on the quo-
tiented delay datatype using the axiom of propositional choice introduced
in Section 2.3.4. This solution was suggested to us by Martin Escardó. In
a recent paper [46], Escardó and Knapp describe an implementation of the
partial map classifier associated to Rosolini’s dominance (that we discuss in
Sections 3.5 and 4.5.1). Their datatype carries a monad structure assuming
a form of propositional choice. More precisely, they assume propositional
choice from Rosolini propositions. A proposition X being Rosolini is equiv-
alent to the type ‖

∑
c:D 1 (c ↓ ∗ ↔ X)‖ being inhabited. They conjecture

their monad to be isomorphic to the quotiented delay monad.
First, we show that the functor D≈ is specified by a container [3].

Proposition 3.3. The following isomorphism holds:

D≈X ∼=
∑
x:D≈1

(x ≡ [now ∗]→ X)

Proof. We define a ≈-compatible map f : DX →
∑

x:D≈1 (x ≡ [now ∗] →
X).

f : DX →
∑
x:D≈1

(x ≡ [now ∗]→ X)

f c = ([D! c], p)

where ! is the unique map into 1 and p : [D ! c] ≡ [now ∗]→ X is constructed
as follows. Assume [D ! c] ≡ [now ∗], which is equivalent to D ! c ↓ ∗. By an

43

easy inductive proof, the latter implies that there exists x : X such that
c↓x. The output of p is exactly x. The function f is clearly ≈-compatible: if
c1 ≈ c2 then D ! c1 ≈ D ! c2; moreover, if both D ! c1 and D ! c2 converge to ∗,
we have that c1↓x1 and c2↓x2 for some x1, x2 : X, but x1 ≡ x2 since c1 and c2

are weakly bisimilar. Therefore, using the elimination principle of quotient
types, we obtain a function f≈ : D≈X →

∑
x:D≈1 (x ≡ [now ∗]→ X).

Vice versa, we define a map g :
∏
c:D 1 (c↓∗ → X)→ DX by corecursion.

g :
∏
c:D 1

(c ↓ ∗ → X)→ DX

g (now ∗)h = now (h (now↓ refl))

g (later c)h = later (g c (h ◦ later↓))

Using the elimination principle of quotient types, it is not difficult to lift
the map g to a map g≈ :

∑
x:D≈1 (x ≡ [now ∗] → X) → D≈X. The maps

f≈ and g≈ are each other inverses.

Assuming the propositional axiom of choice, we are able to define a
monad structure on the quotiented delay datatype.

Theorem 3.4. Assuming PAC, D≈ is a monad.

Proof. In Proposition 3.3 we showed that D≈ is (isomorphic to) a functor
specified by a container [3]: the set of shapes is S = D≈1, while the set of
positions is P x = x ≡ [now ∗]. Therefore, D≈ carries a monad structure if
and only if it comes with certain extra structure [8], namely

e : D≈1 • :
∏
x:D≈1

(x ≡ [now ∗]→ D≈1)→ D≈1

q0 :
∏
x:D≈1

∏
v:x≡[now ∗]→D≈1

x • v ≡ [now ∗]→ x ≡ [now ∗]

q1 :
∏
x:D≈1

∏
v:x≡[now ∗]→D≈1

∏
p:x•v≡[now ∗]

v (q0 x v p) ≡ [now ∗]

satisfying the equations

x • (λ_. e) ≡ x e • (λ_. x) ≡ x

(x • v) • (λp.w (q0 x v p) (q1 x v p)) ≡ x • (λp. v p • w p)

Notice that, in general, more equalities between positions are required to
hold. In our case, these equations are all trivial, since the type x ≡ [now ∗]
is a proposition, for all x : D≈1.

44

We take e = [now ∗] and we define • in two steps. First we construct a
map •D :

∏
c:D 1 (c ↓ ∗ → D 1)→ D 1, similar to the map g introduced in the

proof of Proposition 3.3.

•D :
∏
c:D 1

(c ↓ ∗ → D 1)→ D 1

now ∗ •D h = h (now↓ refl)

later c •D h = later (c •D (h ◦ later↓))

Using the elimination principle of quotient types twice, we can lift •D to
a function •′ :

∏
x:D≈1 (x ≡ [now ∗] → D 1)/(x ≡ [now ∗] → ≈) → D≈1,

where as usual the equivalence relation x ≡ [now ∗] → ≈ is the lifting
of ≈ to the function space x ≡ [now ∗] → D 1. By propositional choice,
since x ≡ [now ∗] is a proposition, we have that the types (x ≡ [now ∗] →
D 1)/(x ≡ [now ∗] →≈) and x ≡ [now ∗] → D≈ 1 are isomorphic. Applying
this isomorphism to •′, we are able to define •.

The terms q0 and q1, together with the proofs of the three equations, are
constructed using the elimination principle of quotient types.

Notice that in the above theorem we employed only a restricted form
of the axiom of propositional choice. More precisely, we employed what
Escardó and Knapp call propositional choice from Rosolini propositions
[46]. In fact, it is not difficult to prove that the proposition x ≡ [now ∗] is
Rosolini, since the proposition ‖

∑
c:D 1 (c ↓ ∗ ↔ x ≡ [now ∗])‖ holds.

3.3 A monad or an arrow?

Hughes [55] has proposed arrows as a generalization of monads. Jacobs et
al. [59] have sorted out their mathematical theory.

We have seen that it takes a semi-classical principle to show that quo-
tienting the functor D by weak bisimilarity preserves its monad struc-
ture. In contrast, quotienting the corresponding profunctor KD, defined by
KDX Y = X → DY , by pointwise weak bisimilarity can easily be shown to
preserve its (strong) arrow structure (whose Freyd category is isomorphic
to the Kleisli category of the monad) without invoking such principles.

Indeed, the arrow structure on KD is given by pure : (X → Y) →
KDX Y , pure f = η ◦ f and≪: KDY Z → KDX Y → KDX Z, `≪ k =
bind ` ◦ k.

Now, define the quotiented profunctor by KDX Y = (X → DY)/(X →
≈). We can define pure : (X → Y)→ KDX Y straightforwardly by pure f =
[puref]. But we can also construct ≪ : KDY Z → KDX Y → KDX Z
as `≪ k = lift2 (≪) p ` k, where p is an easy proof of `1 (Y → ≈) `2 →
k1 (X → ≈) k2 → (`1 ≪ k1) (X → ≈) (`2 ≪ k2).

45

This works entirely painlessly, as there is no need in this construction
for a coercion (X → Y/≈)→ (X → Y)/(X → ≈). From the beginning, we
quotient the relevant function types here rather than their codomains.

There are some further indications that quotienting the arrow may be
a sensible alternative to quotienting the monad. In particular, the work
by Cockett et al. [34] suggests that working with finer quotients of the
arrow considered here may yield a setting for dealing with computational
complexity rather computability constructively.

3.4 Quotiented delay delivers free ωcppos

In this section, we show that the type D≈X is the free ω-complete pointed
partial order over X.

3.4.1 Free ωcppo structure up to ≈

First, we show that the type DX is endowed with a ωcppo structure up
to ≈. Moreover, it is the free ωcppo up to ≈ over X. The construction
performed in this subsection will be lifted to the quotient DX/≈ in Section
3.4.2. Following [26], we introduce an information order on DX:

c1 ↓ x c2 ↓ x
c1 v c2

c1 v c2

later c1 v later c2

c1 v c2

later c1 v c2

The type c1 v c2 is inhabited when c1 ≈ c2, but also when c1 has some
(possibly infinitely many) laters more than c2. The relation v is reflexive
and transitive. Moreover, it is antisymmetric up to ≈, i.e., c1 v c2 → c2 v
c1 → c1 ≈ c2, for all c1, c2 : DX. Notice also that the relation v is not
propositional. The least element is the non-terminating computation never.

We define a binary operation race on DX that returns the computation
with the least number of laters. If two computations c1 and c2 converge
simultaneously, race c1 c2 returns c1.

race : DX → DX → DX

race (now x) c = now x

race (later c) (now x) = now x

race (later c1) (later c2) = later (race c1 c2)

Notice that generally race c1 c2 is not an upper bound of c1 and c2, since the
two computations may converge to different values. The binary operation
race can be extended to an ω-operation ωrace. The latter constructs the
first converging element of a stream of computations. It is defined using the

46

auxiliary operation ωrace′:

ωrace′ : (N→ DX)→ N→ DX → DX

ωrace′ s n (now x) = now x

ωrace′ s n (later c) = later (ωrace′ s (sucn) (race c (s n)))

The operation ωrace′, when applied to a stream s : N → DX, a number
n : N and an computation c : DX, constructs the first converging element
of the stream s′ : N→ DX, with s′ zero = c and s′ (suc k) = s (n+ k). The
operation ωrace is constructed by instantiating ωrace′ with n = zero and
c = never. In this way, we have that the first converging element of s is the
first converging element of s′, since never diverges.

ωrace : (N→ DX)→ DX

ωrace s = ωrace′ s zero never

Generally, ωrace s is not an upper bound of s. But if the stream s is in-
creasing, then ωrace s is the join of s, i.e., the following terms exist:

ωraceisUB :
∏

s:N→DX

∏
i:isIncr s

∏
n:N

s n v ωrace s

ωraceisSupremum :
∏

s:N→DX

∏
i:isIncr s

∏
c:DX

(∏
n:N

s n v c

)
→ ωrace s v c

where isIncr s states that the stream s is increasing wrt. v, i.e. a chain.
So far we have showed that (DX,v, never, ωrace) is a ωcppo up to ≈.

We prove that it is the free one over X. Let (Y,≤,⊥,∪) be a ωcppo and
f : X → Y a function. Every computation in DX defines an stream in Y .

cpt2chainf : DX → N→ Y

cpt2chainf (now x) n = f x

cpt2chainf (later c) zero = ⊥
cpt2chainf (later c) (sucn) = cpt2chainf c n

Given a computation c = latern (now x) (if n = ω, then c = never), the
chain cpt2chainf c looks as follows:

⊥ ⊥ . . . ⊥︸ ︷︷ ︸
n

f x f x f x . . .

Since the latter is increasing wrt ≤, it is possible to extend the function f to
a function f̂ : DX → Y , f̂ c = ∪(cpt2chainf c). We have that f̂ (now x) ≡

47

f x. Moreover f̂ is strict and continuous, i.e., the following terms exist:

hatOrderpreserving :
∏

c1,c2:DX

c1 v c2 → f̂ c1 ≤ f̂ c2

hatStrict : f̂ never ≤ ⊥

hatContinuous :
∏

s:N→DX

∏
i:isIncr s

f̂ (ωrace s) ≤ ∪(f̂ ◦ s)

(3.2)

The last statement makes sense because, if s is increasing, then f̂ ◦ s is also
increasing, thanks to hatOrderpreserving. Moreover, f̂ is ≈-compatible and
it is the unique ≈-compatible map of the form g : DX → Y that satisfies
the inequalities in (3.2) and such that g (now x) ≡ f x.

3.4.2 Lifting the construction to D≈X

The first step we need to perform in order to lift all the constructions of
Section 3.4.1 to D≈X is the lifting of the relation v. Unfortunately, this
cannot be done directly. In fact, if we try to define a binary relation v≈ on
D≈X as follows:

v≈ : D≈X → D≈X → U
v≈ = lift2v p

we realize that we need to give a term p of type
∏
{c1,c2,d1,d2:DX} c1 ≈ d1 →

c2 ≈ d2 → c1 v c2 ≡ d1 v d2, which is not a true statement. In fact, let
c1 = c2 = now x and d1 = d2 = later (now x), then the type c1 v c2 is a
proposition, while the type d1 v d2 is not.

In order to overcome this issue, we lift the propositional truncation of
the relation v instead of the relation v directly, as follows:

v≈ : D≈X → D≈X → U
v≈ = lift2 (λ c1, c2. ‖c1 v c2‖) p

where p is a proof of
∏
{c1,c2,d1,d2:DX} c1 ≈ d1 → c2 ≈ d2 → ‖c1 v c2‖ ≡

‖d1 v d2‖, which can be proved with the help of proposition extensionality.
The relation v≈ is propositional and the proofs of reflexivity, transitivity
and antisymmetry up to ≈ of the relation v lift straightforwardly to the
relation v≈.
Remark 3.2. There is an alternative way of lifting v to D≈X. Following
[17], we introduce a binary relation v′ on DX:

c ↓ x
now x v′ c

c1 v′ c2

later c1 v′ later c2

c v′ now x

later c v′ now x

48

Notice the similarity with the definition of ≈′ in Remark 3.1. The relation
v′ is equivalent to v, but it is propositional. This implies that v′ is liftable
to D≈X:

v′≈ : D≈X → D≈X → U
v′≈ = lift2v′ p

where p is a proof of
∏
{c1,c2,d1,d2:DX} c1 ≈ d1 → c2 ≈ d2 → c1 v′ c2 ≡

d1 v′ d2, which is a true statement. We prefer to work with v instead of
v′ for the same reasons specified in Remark 3.1 about ≈ and ≈′.

In order to lift the operator ωrace, we rely on the axiom of countable
choice described in Section 2.3.2. Under the assumption of ACω, we know
from Theorem 2.2 that the map N→ [_] is surjective. Therefore, by Propo-
sition 2.4, the type N→ D≈X is the carrier of a quotient of N→ DX by the
relation ≡N→[_]. Notice that the relations ≡N→[_] and N → ≈ are equiva-
lent, since D≈X is effective by Theorem 3.1. Therefore the type N→ D≈X
is also the carrier of a quotient of N → DX by the relation N → ≈. The
map N → [_] sends streams to their equivalence classes. We write liftN
for the dependent eliminator of N → D≈X considered as the quotient of
N→ DX by N→ ≈. Using liftN we are able to lift ωrace to the quotient:

ωrace≈ :
∏

s:N→D≈X

isIncr s→ D≈X

ωrace≈ = liftN (λs, i. [ωrace s]) p

where p is a proof of compatibility of the function λs, i. [ωrace s] with the
relation N → ≈, which is indeed the case. The proofs attesting that
(D≈X,v≈, [never], ωrace≈) is the free ωcppo over X are obtained by di-
rectly lifting the corresponding proofs described in Section 3.4.1 to D≈X,
with the fundamental help of the elimination principle liftN.

Given a map f : X → Y into a ωcppo Y , we also indicate with f̂ :
D≈X → Y the unique ωcppo morphism extending f given by the universal
property.

3.5 Partiality in homotopy type theory

The quotiented delay monad constitutes a possible way of representing
partiality an an effect in type theory. Recently, Altenkirch et al. have
constructed another datatype A for partiality in homotopy type theory
[9]. Their construction makes use of higher inductive-inductive types and
it resembles the implementation of Cauchy reals in the HoTT book [83,
Ch. 11.3]. The datatype A delivers free ωcppos by construction and it
carries a monad structure without recourse to choice principles. Higher

49

inductive inductive types rather than ordinary higher inductive types are
needed because the join constructor ∪ takes as argument a proof that a
given stream is increasing. So the type AX has to be introduced mutu-
ally with the partial order ≤ on it. Altenkirch et al. proved that AX is
isomorphic to DX/≈ under the assumption of countable choice.

In this section we present yet another datatype for partiality in homo-
topy type theory, which does not make use of choice principles or higher
inductive-inductive definitions. It is constructed using standard higher in-
ductive types [83, Ch. 6.13]. As a consequence, our partiality datatype
can be directly implemented in proof assistants such as Coq, which cur-
rently lack support for inductive-inductive types, and added to the HoTT
library [16]. The datatype we present in this section is isomorphic to A and
therefore, under the assumption of countable choice, also isomorphic to the
quotiented delay datatype.

Our construction is based on the implementation of free countably-
complete join semilattices as higher inductive types. A countably-complete
join semilattice is a partially ordered set (X,≤) with a bottom element
⊥ : X and a countable join operation

∨
: (N → X) → X. Notice that the

join operation
∨

is defined for all streams, not just the increasing ones. A
countably-complete join semilattice morphism between countably-complete
join semilattices X and Y is a monotone function between X and Y which
preserves bottom and joins.

Notice that countably-complete join semilattices admit an equational
presentation as an infinitary algebraic theory. In homotopy type theory, it
is possible to introduce the free object of an algebraic theory as a higher
inductive type. This procedure is exemplified in the construction of the
free group over a type [83, Ch. 6.11]. Let X be a type, the free countably-
complete join semilattice on X is defined similarly as the following higher
inductive type:

x : X
η x : P∞X ⊥ : P∞X

s : N→ P∞X∨
s : P∞X

x ∨ y ≡ y ∨ x x ∨ (y ∨ z) ≡ (x ∨ y) ∨ z x ∨ x ≡ x x ∨ ⊥ ≡ x∏
n:N s n ∨

∨
s ≡

∨
s

∨
s ∨ x ≡

∨
(λn. s n ∨ x)

the 0-truncation constructor

where the binary join operation is derived as x ∨ y =
∨

(x, y, y, y, . . .). We
define x ≤ y = x ∨ y ≡ y.

The type P∞X is the free countably-complete join semilattice on X by
construction. In the types of its constructors, it is possible to identify the
algebraic theory of countably-complete join semilattices. The 0-truncation
constructor forces the type P∞X to be a set, i.e., to satisfy the principle of

50

uniqueness of identity proofs UIP. The dependent eliminator of P∞X is an
induction principle expressing freeness.

It is a well-known fact that the free countably-complete join semilattice
on a type X is the countable powerset of X, i.e., the type whose elements
are the subsets of X with countable cardinality. The order ≤ is the inclusion
order.

We define S = P∞1. This type has > = η ∗ as its top element, as we can
prove by induction that x ≤ > for all x : S. The type S is the countable
powerset of 1. It is important to realize that S is not isomorphic to Bool.
⊥ corresponds to the empty subset of 1 and > corresponds to the full set
1. We can prove that x 6≡ > implies x ≡ ⊥ for all x : S. But we cannot
decide whether x ≡ ⊥ or x ≡ >. For a general s : N→ S, even if we happen
to know that s n is either ⊥ or > for all n : N, we cannot decide whether
s n ≡ > for at least one n : N, unless we assume LPO.

S happens to be also the initial σ-frame, i.e., a countably-complete join
semilattice with finite meets which distribute over the joins. In fact, > is
the top element and binary meets can be defined by induction.

S has an interesting relation with the free ωcppo on 1. If the latter exists,
then they are isomorphic.

Proposition 3.4. The free ωcppo on 1 is also the free countably-complete
join semilattice on 1.

Proof. Let (X,≤,⊥,∪) be the free ωcppo on 1. We only need to construct
a countable join operation

∨
.

For any x : X, by the universal property of X, there exists a unique
ω-continuous map fx : X →

∑
y:X x ≤ y, since the latter is a ωcppo

over 1. We can define a binary join operation as x ∨ y = fst (fx y). The
countable join operation is defined as

∨
s = ∪s′, where the stream s′ is

the majorization of s defined by induction as follows: s′ zero = s zero and
s′ (sucn) = s′ n∨ s (sucn). The stream s′ is increasing and can be supplied
as an argument of the join operation ∪ of X.

It is not difficult to show that the type X, together with the data de-
scribed above, is a countably-complete join semilattice on 1.

Let Y be another countably-complete join semilattice on 1. Notice that
Y is also a ωcppo on 1. Therefore, by the universal property of X, there
exists a unique ωcppo morphism between X and Y . It is not difficult to
prove that the latter is also a countably-complete join semilattice morphism
and, moreover, the only existing one.

Notice that the free ωcppo on a general X is not the free countably-
complete join semilattice on X since it does not have binary joins. We
noticed this already in Section 3.4.1 when we introduced the binary opera-

51

tion race on DX. As a consequence, the majorization of a stream presented
in the proof of Proposition 3.4 is not definable.

From Theorem 3.3 and Proposition 3.4, we have that S is isomorphic to
D 1/≈, under the assumption of countable choice. Moreover it is isomorphic
to A 1.

We define PSX =
∑

x:S (x ≡ > → X). We show that PS carries a monad
structure without the requirement of choice principles.

Proposition 3.5. PS is a monad.

Proof. Notice that PS is a functor specified by a container [3]: the set of
shapes is S = S, while the set of positions is P x = x ≡ >, for all x : S.
Therefore, PS carries a monad structure if and only if it comes with certain
extra structure [8], namely

e : S • :
∏
x:S

(x ≡ > → S)→ S

q0 :
∏
x:S

∏
v:x≡>→S

x • v ≡ > → x ≡ >

q1 :
∏
x:S

∏
v:x≡>→S

∏
p:x•v≡>

v (q0 x v p) ≡ >

satisfying the equations

x • (λ_. e) ≡ x e • (λ_. x) ≡ x

(x • v) • (λp.w (q0 x v p) (q1 x v p)) ≡ x • (λp. v p • w p)

Notice that, in general, more equalities between positions are required to
hold. In our case, these equations are all trivial, since the type x ≡ > is a
proposition, for all x : S.

We take e = >, while the function • is defined by induction on its first
argument:

> • v = v refl

⊥ • v = ⊥∨
s • v =

∨
(λn. s n • v′ n)

where, in the last row, v′ :
∏
n:N (s n ≡ > → S) is obtained from v :

∨
s ≡

> → S by noticing that s n ≡ > implies
∨
s ≡ >, for all n : N. It is not

difficult to see that the function • “respects equality”, i.e., that terms made
equal by the 1-constructors of S have the same image under •.

The terms q0 and q1 are constructed by induction on their first argument
x : S. The equation e • (λ_. x) ≡ x holds definitionally. The other two
equations are proved by induction on the argument x : S.

52

We can prove that, similarly to the quotiented delay monad, the monad
PS delivers free ωcppos. Instead of countable choice, we have to assume
that S is the free ωcppo on 1. We know that for this assumption to hold, it
suffices that the free ωcppo on 1 exists, by Proposition 3.4.

Proposition 3.6. If S is the free ωcppo on 1, then PSX is the free ωcppo
on X.

Proof. We construct an ωcppo structure on the type PSX:

• A partial order relation on PSX is constructed as follows:

(x1, f1) ≤′ (x2, f2) =
∑

p:x1≤x2

∏
q:x1≡>

f1 q ≡ f2 (le2equiveta p q)

where le2equiveta : x1 ≤ x2 → x1 ≡ > → x2 ≡ > is an easy conse-
quence of > being the maximal element of the relation ≤.

• The bottom element is (⊥, f), where f : ⊥ ≡ > → X is the empty
function, since the type ⊥ ≡ > is empty.

• Let t be a stream increasing wrt. ≤′. The function t is of the form
〈s, f〉, for some stream s : N → S increasing wrt. ≤ and some func-
tion f :

∏
n:N s n ≡ > → X. The least upper bound of t is com-

puted as (
∨
s, f ′), where f ′ :

∨
s ≡ > → X is constructed as follows.

First one proves that from a proof of
∨
s ≡ > one has a proof of

‖
∑

n:N s n ≡ >‖. A function from the latter type to X is given apply-
ing the elimination principle of propositional truncation to the term f .
This operation can be performed because the function f is constant,
i.e., f n p ≡ f mq for n,m : N, p : s n ≡ > and q : sm ≡ >, and the
latter fact is true because the stream s is increasing.

Moreover, there exists a function h : X → PSX, given by hx = (>, λ_. x).
It is not difficult to check that the type PSX, together with the previous
data, is a ωcppo on X.

Next, we are given an arbitrary ωcppo on X, let us call it Y . We have
to construct a ωcppo morphism between PSX and Y . We give a sketch of
this construction. The desired map is defined in two steps. First, we give
a proof p :

∏
x:S (x ≡ > → X) → Y . Remember that, by hypothesis, the

type S is the free ωcppo on 1 and therefore it has an associated induction
principle derivable from the freeness property. The term p is constructed
using this induction principle applied to x : S1. Second, we show that the
uncurried version of p is ω-continuous. Moreover, it is the only such map
between PSX and Y .

1Notice that, by definition, S has another induction principle given by its dependent
eliminator. This induction principle is not strong enough to construct the term p and we
need to recourse to the stronger induction principle of the free ωcppo on 1.

53

In the presence of higher inductive inductive types, A 1 is the free ωcppo
on 1. Therefore, the type PSX is isomorphic to AX. As a consequence,
assuming countable choice, PSX is isomorphic to DX/≈. We do not show it
here, but one can construct the isomorphism between PSX and DX/≈ also
directly, without going through AX, but still assuming countable choice.

By Proposition 3.5, we know that PS is a monad. One can prove a
stronger result: PS is a partial map classifier in the sense of [72], classifying
specifically partial functions with a semidecidable domain of definedness.
This means that maps in the Kleisli category of PS are in one-to-one cor-
respondence with maps in a category of partial maps. In fact, notice that
the following isomorphism holds:

(X → PS Y) =

(
X →

∑
x:S

(x ≡ > → Y)

)
∼=

∑
f :X→S

((∑
x:X

f x ≡ >

)
→ Y

)

An inhabitant of the last type can be considered as a map between a subtype
U of X and Y . The subtype U is of the form

∑
x:X f x ≡ > for a certain

function f : X → S. The type S behaves like a type of truth values, where
> corresponds to truth and ⊥ to falsehood. The function f can then be
seen as a predicate over X with values in S. In this sense U corresponds to
a subtype of X characterized by the predicate f .

The type S is typically called Sierpinski set [45] or Rosolini’s dominance
[79]. It is a fundamental ingredient in the development of synthetic domain
theory [57] and synthetic topology [15].

3.6 Summary

In this chapter, we studied Capretta’s delay datatype D [26] and its vari-
ant D≈ obtained by quotienting D by weak bisimilarity. In particular, we
showed that the monad structure on D does not naively lift to D≈. We pro-
vided three solutions involving the assumption of classical or semi-classical
principles, namely the limited principle of omniscience, the axiom of weak
countable choice or the axiom of propositional choice. The solution us-
ing weak countable choice, presented in Section 3.2.2, is a refinement of
a solution obtained using countable choice described in the author’s pub-
lication [30]. The solution using propositional choice has been suggested
to us by Martin Escardó. Our investigation exposes a general issue in-
volving the relation between quotient types and infinite datatypes, such as
non-wellfounded trees or well-founded but non-finitely branching trees.

Afterwards, to argue that the need for choice principles to define the mul-
tiplication of the quotiented delay monad was not incidental, but pointed
to an intrinsic issue, in Section 3.4 we showed an additional construction
related to the quotiented delay datatype that requires the assumption of

54

countable choice. We showed that the type D≈X is the free ω-complete
pointed partial order over X, under the assumption of countable choice.

Finally, in Section 3.5 we presented a refinement of Altenkirch et al.’s
construction of the partiality monad in homotopy type theory [9]. We de-
fined a monad for partiality using standard higher inductive types and we
showed that our datatype is isomorphic to Altenkirch et al.’s datatype and
to the quotiented delay datatype, assuming countable choice. Our construc-
tion is directly implementable in the Coq proof assistant, which currently
lack support for inductive-inductive definitions.

The material presented in Sections 3.4 and 3.5 is included in a journal
extension of the author’s publication [30] currently under revision.

55

Chapter 4

ω-complete pointed classifying monads

The quotiented delay monad, introduced in Section 3.2, is useful for “mod-
eling partial functions” and “introducing non-termination as an effect” in
type theory. In this chapter, we explain in what sense exactly the quo-
tiented delay monad meets these aims. To do so, we introduce the notion
of ω-complete pointed classifying monad. A monad like this is first of all
a “monad of partiality”, that Cockett and Lack have termed a classifying
monad [36], in that its Kleisli category is a restriction category whose pure
maps are total.

Restriction categories are an abstract axiomatic framework by Cockett
and Lack [35] for reasoning about (generalizations of the idea of) partiality
of functions. In a restriction category, every map defines an endomap on
its domain, the corresponding partial identity map. Restriction categories
cover a number of examples of different flavors and are sound and complete
with respect to the more concrete partial map categories. A partial map
category is based on a given category (of total maps) and a map in it is a
map from a subobject of the domain.

A ω-complete pointed classifying monad is a “monad of non-termination”
in that its Kleisli category is ωCPPO-enriched wrt. the “less defined than”
order on homsets induced by the restriction operation. In other words, it is
an ω-complete pointed restriction category (in a sense that is analogous to
finite-join restriction categories [53]).

We show that the quotiented delay datatype possesses an ω-complete
pointed classifying monad structure. This is a consequence of the fact that
the quotiented delay datatype delivers free ω-complete pointed partial or-
ders (Section 3.4). From this observation, we further prove that the quo-
tiented delay datatype is the initial ω-complete pointed classifying monad.
Intuitively, this tells us that the Kleisli category of this monad is the mini-
mal setting in Martin-Löf type theory for non-terminating functions.

The initiality result is only interesting, if the category of ω-complete
pointed classifying monads contains at least some other interesting exam-
ples. A class of examples is given by partial map classifiers, specified using

57

Rosolini’s notion of dominance [79]. Some further examples are ω-complete
pointed almost-classifying monads where the word ‘almost’ refers to drop-
ping one of the conditions of a classifying monad. We present two of such
monads: the countable powerset monad and the state monad transformer.

This chapter is organized as follows. In Section 4.1, we review partial
map categories, restriction categories and the completeness theorem. In Sec-
tion 4.2, we define ω-complete pointed classifying monads and prove some
properties about them. In Section 4.4, we prove that the quotiented delay
monad is the initial ω-complete pointed classifying monad. In Section 4.5,
we present some other examples of ω-complete pointed classifying monads.

Our discussion on ω-complete pointed classifying monads applies to gen-
eral categories. The discussion of the delay monad is carried out for Set;
generalizing it is future work.

In Appendix A, we present the Agda formalization of Section 4.1. The
Agda formalization of Sections 4.2, 4.3 and 4.4 is available at http://cs.
ioc.ee/~niccolo/thesis/.

4.1 The mathematics of partiality

In this section, we present an overview of partial map categories and re-
striction categories.

4.1.1 Partial map categories

Partial map categories are a concrete approach to partiality. A partial map
category is based on some given category whose maps one wants to regard
as total.

The idea then is that a partial map is just a total map from a subobject
of the domain, the “domain of definedness”. It is ok to accept only cer-
tain subobjects as domains of definedness. But the collection of acceptable
subobjects must satisfy some closure conditions.

Definition 4.1. A stable system of monics for a category X is a collection
M of monics of X containing all isomorphisms and closed under composition
and arbitrary pullbacks.

(Note that built into this definition is existence of arbitrary pullbacks of
monics fromM.)

Definition 4.2. Given a category X and a stable system of monicsM for
it, the corresponding partial map category Par(X,M) is given as follows:

Objects: objects in X.

58

http://cs.ioc.ee/~niccolo/thesis/
http://cs.ioc.ee/~niccolo/thesis/

Maps: a map from A to B is a span

A′oO
m

~~

f

A B

in X, with m ∈M.

Identities: identity on A is the span

AoO
id

��

id

��
A A

(note thatM contains all isomorphisms, so all identities).

Composition: composition of spans

A′oO
m

~~

f

A B

B′nN
m′

~~

g

B C

is given in terms of the pullback of f along m′ by

WnN
h

~~

k

A′oO

m

~~

f

B′nN
m′

~~

g

A B C

(note thatM is closed under arbitrary pullbacks and composition).

Equality of maps in Par(X,M) is defined up to isomorphism of spans:
two maps (m, f) and (m′, f ′) between two objects A and B are consid-
ered equal, if there exists an isomorphism u such that the triangles in the
following diagram commute.

A′p P

m

��

o u
��

f

��

A′′nN

m′~~ f ′
A B

59

(As a consequence, it is unproblematic that pullbacks are uniquely deter-
mined only up to isomorphism.)

A map (m, f) is called total, if m is an isomorphism.
X is a subcategory of Par(X,M).

4.1.2 Restriction categories

Restriction categories are an axiomatic formulation of categories of “partial
functions”. Very little is stipulated: any partial function must define a
partial endofunction, intuitively the corresponding partial identity function
on the domain, satisfying some equational conditions.

Definition 4.3. A restriction category is a category X together with an
operation called restriction that associates to every f : A → B a map
f : A→ A such that

R1 f ◦ f ≡ f

R2 g ◦ f ≡ f ◦ g for all g : A→ C

R3 g ◦ f ≡ g ◦ f for all g : A→ C

R4 g ◦ f ≡ f ◦ g ◦ f for all g : B → C

The restriction of a map f : A → B should be thought of as a “partial
identity function” on A, a kind of a specification, in the form of a map, of
the “domain of definedness” of f .

A map f : A → B of X is called total, if f ≡ idA. Total maps define a
subcategory Tot(X) of X.

Definition 4.4. A restriction functor between restriction categories X and
Y, with restrictions (−) resp. (−)

:
, is a functor F between the underlying

categories such that Ff ≡ Ff
:

.

Restriction categories and restriction functors form a category.

Lemma 4.1. In a restriction category

(i) monic maps are total, i.e., f ≡ idA for any monic map f : A→ B;

(ii) for any map f : A → B, its restriction f is an idempotent, i.e.,
f ◦ f ≡ f ;

(iii) the restriction operation itself is idempotent, i.e., f ≡ f for any map
f : A→ B;

(iv) g ◦ f ≡ g ◦ f for any maps f : A→ B and g : B → C.

60

Every restriction category is equipped with a partial order: f ≤ g if and
only if f ≡ g ◦ f . That is, f is less defined than g, if f coincides with g on
f ’s domain of definedness. Notice that, for all f : X → Y , we have f ≤ idX .

Lemma 4.2. In a restriction category X

(i) the ordering ≤ makes X Poset-enriched, i.e., for all h : W → X,
f, g : X → Y and k : Y → Z, if f ≤ g, then k ◦ f ◦ h ≤ k ◦ g ◦ h;

(ii) if f ≤ g, then f ≤ g, for all f, g : X → Y .

Example 4.1. The category Set of sets and functions (and more generally
any category X) is a restriction category with the trivial restriction f =
id. The category Par(Set, “all bijections”) is isomorphic, as a restriction
category, to Set.

Example 4.2. The category Pfn of sets and partial functions is a restric-
tion category with the restriction

f(x) =

{
x if f(x) is defined
undefined otherwise

Pfn is the Kleisli category of the maybe monad defined by Maybe A =
A + 1. The category Par(Set, “decidable injections”) is isomorphic, as a
restriction category, to Pfn.

Example 4.3. The subcategory Prfn of Pfn given by the object N and all
unary partial recursive functions is a restriction category with restriction
as defined in Example 4.2. Note that for a partially recursive function its
restriction is also partially recursive. No partial map category is isomorphic,
as a restriction category, to the restriction category Prfn. The reason is
that Prfn does not have objects for all domains of definition of the maps
of Prfn, i.e., recursively enumerable sets.

Example 4.4. Other examples are given by Kleisli categories of almost-
classifying monads, that we introduce and study later in this chapter. Our
central example is the Kleisli category of the quotiented delay monad.

Theorem 4.1. Any partial map category is a restriction category, with the
restriction operation given by

A′oO
m

~~

f

A B

7→ A′oO
m

~~

m

A A

61

4.1.3 Idempotents, splitting idempotents

Recall that an endomap e : A → A is called an idempotent, if e ◦ e ≡ e.
It is called a split idempotent, if there exists an object B and two arrows
s : B → A (section) and r : A → B (retraction) such that the following
diagrams commute.

A

e

��

r

�� ��
BoO

s

��
A

B

A

r
?? ??

B
O/

s

__

(it is automatic that s is monic and r epic).
Every split idempotent is an idempotent. In the converse direction, idem-

potents do not always split. But one can take any collection E of idempo-
tents of a category X that includes all identity maps and formally split them
by moving to another category SplitE(X) defined by:

Objects: idempotents from E .

Maps: a map from e : A → A and e′ : B → B is a map f : A → B of X
such that

A

e

��

f // B

A
f

// B

e′

OO

Identities: identity on e : A→ A is e.

Composition: inherited from X.

When E is the collection of all idempotents of X, the category SplitE(X)
is known as the Karoubi envelope of X.

X embeds fully in SplitE(X) because the collection E contains all the
identities. Moreover, all idempotents from E split in SplitE(X): given an
idempotent e : A → A from E , the corresponding map e : idA → idA in
SplitE(X) splits via the object e : e → e with section e : e → idA and
retraction e : idA → e.

Lemma 4.3. Given a restriction category X and any collection E of idem-
potents of X, X embeds fully, as a restriction category, into SplitE(X), with
the restriction of f : e→ e′ given by f̂ = f ◦ e.

62

In a restriction category X, we call a map e : A→ A a restriction idem-
potent, if e ≡ e. Lemma 4.1(ii) tells us that every restriction idempotent is
an idempotent. It follows from Lemma 4.1(iii) that restriction idempotents
are precisely those maps e for which e ≡ f for some f .

X is called a split restriction category, if all of its restriction idempotents
split.

Lemma 4.4. Given a restriction category X, for R the collection of all re-
striction idempotents, the restriction category SplitR(X) is a split restric-
tion category.

The lemma is proved by observing that every restriction idempotent
f : e→ e of SplitR(X) is a restriction idempotent of X (as f ≡ f̂ = f ◦ e ≡
f ◦ e ≡ f ◦ e) and therefore an object of SplitR(X). We can therefore split
it via f (as an object) with the section f : f → e and retraction f : e→ f .

Example 4.5. In Prfn, restriction idempotents do not split. By splitting
the restriction idempotents of Prfn, we embed it fully, as a restriction
category, into a restriction category Prfn∗, where an object is a recursively
enumerable subset of N and a map between two such sets A and B is a
partial recursive function between A and B, by which we mean a partial
recursive function f : N → N such that dom(f) ⊆ A and rng(f) ⊆ B. Its
restriction is the corresponding partial identity function on A.

In the subcategory Tot(Prfn∗), a map between A and B is a total
recursive function between A and B, i.e., a partial recursive function f :
N→ N such that dom(f) = A and rng(f) ⊆ B.

4.1.4 Completeness

If all restriction idempotents of a restriction category split, which intuitively
means that all domains of definedness are present in it as objects, then the
restriction category is a partial map category on its subcategory of total
maps.

Theorem 4.2. Every split restriction category X is isomorphic, as a re-
striction category, to a partial map category on the subcategory Tot(X):
for M the stable system of monics given by the sections of the restriction
idempotents of X, it holds that

X ∼= Par(Tot(X),M)

From Lemmata 4.3 and 4.4 and Theorem 4.2 we obtain the following
corollary.

Corollary 4.1. A restriction category X embeds fully, as a restriction cat-
egory, into a partial map category.

63

Example 4.6. The restriction categoryPrfn∗ is isomorphic, as a restriction
category, to Par(Tot(Prfn∗), “all total recursive injections”).

4.2 ω-complete pointed classifying monads

In this section, we introduce our monads of non-termination, that we call
ω-complete pointed classifying monads. Their definition is built on Cockett
and Lack’s restriction categories and classifying monads [36] and Cockett
and Guo’s finite-join restriction categories [53].

4.2.1 Classifying monads

First, some notation. Given a monad (T, η,_∗), we write Kl(T) for its
Kleisli category. We write g � f for the composition g∗ ◦ f of g and f in
Kl(T).

Definition 4.5. We call a monad T an almost-classifying monad, if there
exists an operation

f : X → TY

f : X → TX

called restriction, subject to the following conditions:

CM1 f � f ≡ f , for all f : X → TY

CM2 g � f ≡ f � g, for all f : X → TY and g : X → TZ

CM3 g � f ≡ g � f , for all f : X → TY and g : X → TZ

CM4 g � f ≡ f � g � f , for all f : X → TY and g : Y → TZ

CM5 ηY ◦ f ≡ ηX , for all f : X → Y

We call it a classifying monad, if it also satisfies

CM6 idTX ≡ TηX

In other words, T is an almost-classifying monad, if its Kleisli category
Kl(T) is a restriction category (conditions CM1–CM4) in which pure maps
are total (condition CM5). Notice that the condition CM1 is a consequence
of CM4 and CM5:

f � f ≡ f � ηY � f
CM4≡ ηY � f

CM5≡ ηY � f ≡ f

The additional condition CM6 of a classifying monad was postulated
by Cockett and Lack in order to connect classifying monads and partial
map classifiers, or more generally, classified restriction categories and clas-
sified M-categories (Theorem 3.6 of [36]), M-categories being Robinson

64

and Rosolini’s [77] framework for partiality. While it fulfills this purpose,
this condition is very restrictive for other purposes. First of all, it forbids a
general monad T from being a classifying monad whose Kleisli category has
all maps total. Indeed, define f = ηX , for all f : X → TY . Then conditions
CM1–CM5 trivially hold, while condition CM6 is usually false, since gener-
ally idTX = ηTX 6≡ TηX . Moreover, it excludes some other useful monads,
as we will see in Section 4.5.2.

Definition 4.6. A classifying monad morphism between classifying monads
T and S, with restrictions (−) resp. (−)

:
, is a monad morphism σ between

the underlying monads such that σ ◦ f ≡ σ ◦ f
:

, for all f : X → TY .

(Almost) classifying monads and (almost) classifying monad morphisms
form categories.

An important class of classifying monads is given by the equational lifting
monads of Bucalo et al. [25]. Recall that a strong monad T , with left
strength ψ, is called commutative, if the following diagram commutes [62]:

T X × T Y
ψTX,Y //

φX,TY

��

T (T X × Y)

φ∗X,Y

��
T (X × T Y)

ψ∗X,Y // T (X × Y)

Here φ = T swap ◦ ψ ◦ swap is the right strength.

Definition 4.7. An equational lifting monad is a commutative monad mak-
ing the following diagram commute:

TX
∆ //

T 〈ηX ,idX〉

$$

TX × TX

ψTX,X

��
T (TX ×X)

(4.1)

Every equational lifting monad is canonically a classifying monad. Its
restriction operation is defined with the aid of the strength:

f = X
〈idX ,f〉// X × TY

ψX,Y // T (X × Y)
Tπ0 // TX

Notice that, in order to construct an almost-classifying monad, we can
relax condition 4.1 above and consider Cockett and Lack’s copy monads
[37].

65

Definition 4.8. A copy monad is a commutative monad making the fol-
lowing diagram commute:

TX
∆ //

T∆

**

TX × TX
ψTX,X // T (TX ×X)

φ∗X,X

��
T (X ×X)

The notion of copy monad is equivalent to Jacobs’ notion of relevant
monad [58]. Every equational lifting monad is a copy monad:

φ∗ ◦ ψ ◦∆ ≡ φ∗ ◦ T 〈η, id〉 ≡ (φ ◦ (η × id) ◦∆)∗ ≡ (η ◦∆)∗ = T∆

Every copy monad is canonically an almost-classifying monad. Its restric-
tion operation is defined as the one of equational lifting monads.

4.2.2 ω-joins

Notice that, being a restriction category, the Kleisli category of a classifying
monad is Poset-enriched in the partial order: f ≤ g if and only if f ≡ g � f
(Lemma 4.2).

Definition 4.9. A classifying monad T is a ω-complete pointed classifying
monad, if there exist two operations

⊥X,Y : X → TY

s : N→ (X → TY) isIncr≤ s

∪s : X → TY

satisfying the following conditions:

BOT1 ⊥X,Y ≤ f , for all f : X → TY

BOT2 ⊥Y,Z � f ≡ ⊥X,Z , for all f : X → TY

LUB1 s n ≤ ∪s, for all n : N and increasing s : N→ (X → TY)

LUB2 if s n ≤ t for all n : N, then ∪s ≤ t, for all t : X → TY and
increasing s : N→ (X → TY)

LUB3 ∪s � f ≡ ∪(λn. s n � f), for all f : X → TY and increasing s : N→
(Y → TZ)

Conditions BOT1, LUB1 and LUB2 state that every homset in Kl(T) is
a ω-cppo. Conditions BOT2 and LUB3 state that precomposition in Kl(T)
is strict and continuous.

66

It is actually possible to prove that Kl(T) is ωCPPO-enriched. More-
over, the ⊥ and ∪ operations interact well with restriction, as stated in the
following lemma.

Lemma 4.5. Let T be an ω-complete pointed classifying monad. Then the
following equalities hold:

BOT3 f � ⊥X,Y ≡ ⊥X,Z , for all f : Y → TZ

BOTR ⊥X,Y ≡ ⊥X,X

LUB4 f � ∪s ≡ ∪(λn. f � s n), for all f : Y → TZ and increasing s : N→
(X → TY)

LUBR ∪s ≡ ∪(λn. s n), for all increasing s : N→ (X → TY)

Notice that the right-hand sides of LUB3, LUB4 and LUBR are well
defined, i.e., the streams that the ∪ operation is applied to are chains,
thanks to Lemma 4.2.

Definition 4.10. A ω-complete pointed classifying monad morphism be-
tween ω-complete pointed classifying monads T and S is a classifying monad
morphism σ between the underlying classifying monads such that σ◦⊥ ≤′ ⊥′
and σ ◦ ∪s ≤′ ∪′ (λn. σ ◦ sn), for all increasing s : N→ (X → TY).

In the definition above, the least upper bound ∪(λn. σ ◦ sn) is well-
defined, since postcomposition with a classifying monad morphism is a
monotone operation. In other words, for all f, g : X → TY with f ≤ g, we
have σ ◦ f ≤′ σ ◦ g. ω-complete pointed classifying monads and ω-complete
pointed classifying monad morphisms form a category.

4.2.3 Uniform iteration

If a category is ωCPPO-enriched, it has an iteration operation that is
uniform wrt. all maps. Given a monad T whose Kleisli category is ωCPPO-
enriched, this means that we have an operation

f : X → T (Y +X)

f † : X → TY

satisfying the conditions

ITE1 f † ≡ [ηY , f
†] � f , for all f : X → T (Y +X)

ITE2 g � f † ≡ ([T inl ◦ g, T inr ◦ ηX] � f)†, for all f : X → T (Y + X) and
g : Y → TZ

ITE3 (T [idY+X , inr] ◦ f)† ≡ (f †)†, for all f : X → T ((Y +X) +X)

67

ITEU if f � h ≡ [T inl ◦ η, T inr ◦ h] � g then f † � h ≡ g†, for all f : X →
T (Y +X), g : Z → T (Y + Z) and h : Z → T X

Concretely, the operation (−)† is defined as follows. Let f : X → T (Y +
X). We construct a stream s : N→ (X → TY) by

s 0 = ⊥X,Y s (n+ 1) = [ηY , s n] � f

The stream s is a chain, since the function λg. [ηY , g]�f is order-preserving.
We define f † = ∪s. That (−)† satisfies ITE1 is checked as follows. Clearly,
f † ≤ [ηY , f

†] � f , since s n ≤ [ηY , f
†] � f , for all n : N. For the converse

inequality [ηY , f
†] � f ≤ f †, it is enough to notice that [ηY ,∪s] � f ≡

∪(λn. [ηY , s n] � f) and that [ηY , s n] � f ≤ f †, for all n : N.
A monad whose Kleisli category has an iteration operation uniform wrt.

pure maps is called a complete Elgot monad [50, 51].

4.3 Classifying monad structure on D≈

In this section, we see how to construct almost-classifying and classifying
monad structures on D and D≈. Notice that the monad structure on D
described in Section 3.1 does not possess any non-trivial classifying monad
structure. Intuitively, the reason lies in the fact that computations which
converge to the same value at different paces are not equal. We propose
two solutions to this problem.

(i) We change the notion of equality to weak bisimilarity and work with
the quotiented delay monad D≈ described in Section 3.2. This monad
is an equational lifting monad.

(ii) Alternatively, we can change the notion of bind on D. In this way we
are able to construct a copy monad structure already on D, without
quotienting. Hence, with this modification, D becomes an almost-
classifying monad. Still, for obtaining a classifying monad, this does
not suffices.

First, we give a proof of (i).

Theorem 4.3. The monad D≈ is an equational lifting monad and therefore
a classifying monad.

Proof. We need to prove that, for all q : D≈X, we have str≈ (q, q) ≡
D≈〈η≈, id〉 q, where str≈ is the strength operation of D≈. Using the in-
duction principle of quotients, it is sufficient to show that, for all c :
DX, we have str≈ ([c], [c]) ≡ D≈〈η≈, id〉 [c]. We know that str≈ ([c], [c]) ≡
[str ([c], c)] and D≈〈η≈, id〉 [c] ≡ [D〈η≈, id〉 c]. We show by corecursion on c
that str ([c], c) ∼ D〈η≈, id〉 c:

68

• if c = now x, then both terms are equal to now ([now x], x));

• if c = later c′, we have to show, after an application of the second
constructor of strong bisimilarity, that str ([later c′], c′) ∼ D〈η≈, id〉 c′.
This is true, since by corecursion we have str ([c′], c′) ∼ D〈η≈, id〉 c′
and we know [c′] ≡ [later c′].

In the rest of this chapter, we build on top of Theorem 4.3 and we show
that D≈ is the initial ω-complete pointed classifying monad.

We now move to the proof of (ii). We show how to endow the type
D with a copy monad structure without the need of quotienting by weak
bisimilarity. The unit is again now, we change the bind operation. In order
to have an easy description of this construction, it is convenient to give an
alternative presentation of the delay monad. We already showed in Section
3.2.2 that the type DX is isomorphic to the type of streams over X + 1
containing at most one element from X (the isomorphism in Equation 3.1).
Alternatively, we can say that DX is isomorphic to the type of increasing
streams over X + 1 with respect to the ordering ≤S on X + 1 inductively
defined by the rules:

inlx ≤S inlx inr ∗ ≤S inlx

So we define the type DSX =
∑

s:N→X+1 isIncr≤S
s, isomorphic to DX.

Notice that the stream functor StreamX = N → X is a monad. The
unit returns a constant stream, while the bind operation on a function
f : X → StreamY and a stream s : StreamX returns the diagonal of the
stream of streams [f (s 0), f (s 1), f (s 2), . . .]. The existence of a distributive
law lX : (StreamX) + 1→ Stream (X + 1) between the stream monad and
the maybe monad induces a monad structure on the functor Stream+1X =
Stream (X + 1). Concretely, its unit and bind operations can be described
as follows:

ηS : X → Stream+1X

ηS xn = inlx

bindS : (X → Stream+1 Y)→ Stream+1X → Stream+1 Y

bindS f s n = case s n of

inlx 7→ f xn

inr ∗ 7→ inr ∗

It is easy to see that ηS x is increasing wrt. ≤S, for all x : X. Moreover,
given a function f : X → DSY and an increasing stream s : Stream+1X,
the stream bindS (fst ◦ f) s is also increasing. Therefore, DS inherits the
monad structure from Stream+1.

69

Since the types DSX and DX are isomorphic, we also described a monad
structure on D. Intuitively, the new bind operation on D, that we call bind∧,
acts on a function f : X → DY and a computation c : DX as follows: if
c = never, then bind∧ f c = never; if c ↓ x, then bind∧ f c = c ∧ f x, where
the meet operation ∧ is corecursively defined with the help of the auxiliary
operation ∧′:

∧′ : DX → DY → D (X × Y)

(now x) ∧′ (now y) = now (x, y)

(now x) ∧′ (later c2) = later ((now x) ∧′ c2)

(later c1) ∧′ (now y) = later (c1 ∧′ (now y))

(later c1) ∧′ (later c2) = later (c1 ∧′ c2)

∧ : DX → DY → DY

c1 ∧ c2 = D snd (c1 ∧′ c2)

The meet of two computations laterk (now x) and latern (now y) is given by
latermax(k,n) (now y). Notice the difference between bind∧ and the operation
bind introduced in Section 3.1: if c = laterk (now x) and f x = latern (now y),
then bind∧ f c = latermax(k,n) (now y), while bind f c = laterk+n (now y).

Theorem 4.4. The monad (D, now, bind∧) is a copy monad and therefore
an almost-classifying monad.

Proof. We need to prove that, for all c : DX, we have costr∗∧(str∧ (c, c)) ≡
D∆ c, where str∧ and costr∧ are the left and right strength operations as-
sociated to the monad (D, now, bind∧). It is not difficult to show that the
functions costr∧ � str∧ and D∆ are both propositionally equal to ∧′.

4.4 D≈ is the initial ω-complete pointed classifying
monad

We extend the order v≈ from Section 3.4.2 to maps in Kl(D≈) in the usual
pointwise way. Namely, let f, g : X → D≈ Y , we say that f v≈ g if and
only if, for all x : X, f x v≈ g x. (Notice that we use the same notation v≈
for functions as well).

Lemma 4.6. For all f, g : X → D≈ Y , we have f v≈ g if and only if f ≤ g
(where ≤ is the restriction order).

Theorem 4.5. The monad D≈ is an ω-complete pointed classifying monad.

70

Proof. Let X and Y be two types. The bottom element of the homset
X → D≈Y is the constant map λ_. [never]. Let s : N → (X → D≈ Y) be
an increasing stream wrt. ≤. We define

∪≈ s : X → D≈ Y

(∪≈s)x = ωrace≈ (λn. s n x) p

where p is a proof that the stream λn. s n x is increasing wrt. v≈, which is
the case thanks to Lemma 4.6.

One now should verify that conditions BOT1, BOT2 and and LUB1–
LUB3 are satisfied. Conditions BOT1, LUB1 and LUB2 follow directly
from D≈ Y being a ωcppo, as described in Section 3.4. Conditions BOT2
and LUB3 follow from the fact that bind≈ (the bind operation of D≈) is a
strict and continuous function between X → D≈Y and D≈X → D≈Y .

Let T be a ω-complete pointed almost-classifying monad. We already
noted that the type X → T Y is a ωcppo, for all types X and Y . In
particular, every type T X ∼= 1→ T X is a ωcppo. Explicitly, given x1, x2 :
T X, we define x1 ≤ x2 as (λ∗. x1) ≤ (λ∗. x2). The bottom element of T X
is ⊥1,X ∗, while the join of a chain s : N→ T X is ∪(λnλ∗. s n) ∗.

We show that there is a unique ω-complete pointed almost-classifying
monad morphism between D≈ and T . This characterizes the quotiented
delay monad as the universal monad of non-termination.

Theorem 4.6. D≈ is the initial ω-complete pointed almost-classifying monad
(and therefore also the initial ω-complete pointed classifying monad).

Proof. Let (T, η, bind) be a ω-complete pointed almost-classifying monad.
Since T X is a ωcppo, there is a unique ωcppo morphism between D≈X
and T X. Therefore, we define

σ : D≈X → T X

σ = η̂

Remember from Section 3.4.2 that η̂ is the unique ωcppo morphism such
that η̂ ◦ η≈ ≡ η.

First, we show that σ is a monad morphism:

• σ ◦ η≈ ≡ η by the universal property of the free ωcppo.

• Given f : X → D≈ Y , we have σ ◦ bind≈ f ≡ bind (σ ◦ f) ◦ σ, because
both maps are ωcppo morphisms between D≈X and T Y and both
maps are equal to σ ◦ f when precomposed with η≈.

71

Second, we show that σ is an almost-classifying monad morphism. We have
to show that σ ◦ f ≡ σ ◦ f

:
for all f : X → D≈ Y . Notice that, for all

x : 1→ X, we have:

σ ◦ f ◦ x CM4≡ σ ◦ D≈ x ◦ f ◦ x
nat≡ T x ◦ σ ◦ f ◦ x

σ ◦ f
:

◦ x CM4≡ T x ◦ σ ◦ f ◦ x
:

Therefore it is sufficient to show σ ◦ c ≡ σ ◦ c: for all c : 1 → D≈X. The
maps g c = σ ◦c and h c = σ ◦ c: are both strict and continuous maps of type
(1 → D≈X) → (1 → T 1), and the latter type is isomorphic D≈X → T 1.
Notice that, since D≈X is the free ωcppo over X, we know that there
exists only one strict and continuous map between D≈X and T 1 that sends
terminating computations to η ∗. Notice that, for all x : 1→ X, we have

g (η≈X ◦ x) = σ ◦ η≈X ◦ x
CM5≡ σ ◦ η≈1 ≡ η1

h (η≈X ◦ x) = σ ◦ η≈X ◦ x: ≡ ηX ◦ x: CM5≡ η1

This shows that g ≡ h, and therefore σ is a classifying monad morphism.
Finally, σ is a ω-complete pointed almost-classifying monad morphism

since η̂ is a ωcppo morphism between D≈X and T X. In particular, it
preserves the bottom elements and it is continuous.

It remains to check that σ is the unique ω-complete pointed almost-
classifying monad morphism between D≈ and T . Let τ be another ω-
complete pointed almost classifying monad morphism between D≈ and T .
In particular, for all types X, we have that τ is a ωcppo morphism between
D≈X and T X and also τ ◦ η≈ ≡ η. Therefore, by the universal property
of the free ωcppo D≈, we have that τ ≡ η̂ = σ.

One might wonder whether Kl(D≈) could be the free ω-complete pointed
restriction category over Set. This is not the case, since the latter has as
objects sets and as maps between X and Y elements of D≈(X → Y).
This observation is an adaptation of a construction for finite join restriction
categories by Grandis described by Guo [53].

Notice that the fundamental ingredient in the proof of Theorems 4.5 and
4.6 is the fact that D≈ delivers ωcppos. In fact, one can prove a more general
statement without assuming countable choice. Suppose that P is a monad
delivering ωcppos. Then P is an equational lifting monad. Moreover, it is
the initial ω-complete pointed classifying monad.

One might also wonder if Theorems 4.5 and 4.6 could be further gen-
eralized to settings different from Set, for example, to Cartesian closed
categories with a natural number object, in which it is possible to internal-
ize the notion of ωcppo [12]. We believe that such generalization is possible.
It is left for future work.

72

4.5 Other monads of non-termination

In the previous section, we showed that D≈ is the initial ω-complete pointed
almost-classifying monad and also the initial ω-complete pointed classify-
ing monad. This would not be a significant result, if the categories of
ω-complete pointed classifying and almost-classifying monads were lack-
ing other interesting examples. It is immediate that these categories are
non-trivial, since at least the monad TerminX = 1 is another ω-complete
pointed classifying monad. Since Termin is the final object in the category
of monads, it is also the final ω-complete pointed almost-classifying monad
and the final ω-complete pointed classifying monad. But of course we are
looking for more interesting examples.

4.5.1 Dominances and partial map classifiers

The notion of dominance was introduced by Rosolini in his PhD thesis
[79]. In topos theory, dominances are used to characterize the domain of
definedness of partial maps, generalizing the notion of subobject classifier.
In type theory, the notion of dominance was reformulated by Escardó and
Knapp [46]. Here we give a definition which is equivalent to theirs.

Definition 4.11. A type D is a dominance if it comes with the following
data:

• an injective map [[−]] : D → Ω;

• an element 1D : D;

• an operation ΣD :
∏
X:D ([[X]]→ D)→ D:

• a proof of [[1D]] ≡ 1;

• a proof of [[ΣDX Y]] ≡
∑

x:[[X]] [[Y x]], for all X : D and Y : [[X]]→ D.

The type Ω is the type of all propositions, Ω =
∑

X:U isPropX. Given
X : Ω, we simply write x : X meaning x : fstX. Remember that we
are assuming proposition extensionality, whose formal definition is given
in Section 2.1.1. This means that X ≡ 1 is equivalent to say that the
proposition X is inhabited.

Here are some examples of dominances.

Example 4.7. The initial dominance is the unit type 1, while the final
dominance is Ω. Other important examples of dominances include the type
of booleans Bool and the Sierpinski type S introduced in Section 3.5. As-
suming propositional choice, the type D≈ 1 is also a dominance (this is
essentially the proof of Theorem 3.4). In all these examples, the interpre-
tation morphism is defined as [[X]] = (X ≡ 1D).

73

Example 4.8. Every Lawvere-Tierney topology [65, Ch. 5.1] specifies a
dominance. Remember that a Lawvere-Tierney topology is given by an
endomap j : Ω→ Ω such that

• j 1 ≡ 1;

• j (j X) ≡ j X;

• j (X × Y) ≡ j X × j Y .

The dominance associated to j is given by the type of j-closed truth values∑
X:Ω j X ≡ X. A standard example of Lawvere-Tierney topology is the

double negation operator ¬¬. More generally, every monad on Ω specifies
a dominance in a similar way.

Definition 4.12. A dominance morphism between two dominances D and
E is a function f : D → E such that the following triangle commutes:

D
f //

[[−]]D ��

E

[[−]]E��
Ω

A dominance morphism preserves the dominance structure: f 1D ≡ 1E
and f (ΣDX Y) ≡ ΣE (f X)Y ′, for X : D and Y : [[X]]D → D, where Y ′ is
defined as follows:

Y ′ : [[f X]]E → E

Y ′ = subst (λa. a→ E) e (f ◦ Y)

and e : [[f X]]E ≡ [[X]]D follows from f being a dominance morphism.
Given a dominance D, we define the partial map classifier [72]:

PDX =
∑
U :D

[[U]]→ X

This is a monad, thanks to the dominance laws. Moreover, it is not difficult
to prove that it is an equational lifting monad and therefore a classifying
monad.

Example 4.9. (i) P1X ∼= X, i.e. PD is the identity monad.

(ii) PBoolX ∼= X + 1, i.e. PD is the maybe monad.

(iii) PS is the partial map classifier introduced in Section 3.5.

(iv) By Proposition 3.3, PD≈1X ∼= D≈X.

74

(v) A non-example: the type TerminX = 1 is isomorphic to
∑
∗:1 0→ X.

The latter looks similar to a partial map classifier, but it is not. In
fact, for D = 1 and [[∗]] = 0, we have that D is not a dominance, since
[[1D]] = [[∗]] 6≡ 1.

Clearly, not all monads PD are ω-complete pointed classifying monads.
The main example of this phenomenon is the maybe monad. In order to
construct the join of a chain s : N → X + 1, we need to decide whether
there exist an element x : X and a number k : N such that s k = inlx, or
s n = inr ∗ for all n : N. This decision requires LPO. As discussed in Section
3.2.1, the assumption of LPO is sufficient to show that MaybeX and D≈X
are isomorphic types.

It turns out that the monad PD is a ω-complete pointed classifying
monad if the dominance D is closed under countable joins wrt. the partial
order X ≤ Y = [[X]]→ [[Y]].

Definition 4.13. A dominance D is a countably-complete dominance if it
comes with the following data:

• an element 0D;

• an operation
∨
D : (N→ D)→ D;

• a proof [[0D]] ≡ 0;

• a proof [[
∨
D S]] ≡ ‖

∑
n:N [[S n]]‖.

A countably-complete dominance is also called “a dominance for which
the type N is overt” [15]. It is not difficult to show that 0D is the bottom
element of D, while

∨
D S is the least upper bound of the stream S.

Notice that a dominance morphism f : D → E also preserves the
countably-complete dominance structure: f 0D ≡ 0E and f (

∨
D S) ≡

∨
E (f◦

S), for S : N→ D.
Remember that the type S of Section 3.5 is the free countably-complete

join semilattice on 1 by construction. Notice that every countably-complete
dominance D is a countably-complete join semilattice on 1. Therefore there
exists a unique countably-complete join semilattice morphism f between S
and D. It is not difficult to show that f is a dominance morphism (this
is proved using the induction principle of S). This shows that S is the
initial countably-complete dominance. In other words, we recovered in our
framework the fact that the Sierpinski type is the smallest dominance such
that the type N is overt [15].

Given a countably-complete dominanceD, the monad PD is a ω-complete
pointed classifying monad. This is because every type PDX is a ωcppo. To

75

see this, we first define a partial order on PDX:

(U, f) ≤ (V, g) =
∑

h:[[U]]→[[V]]

∏
x:X

f x ≡ g (hx)

That is, two elements in PDX are related by ≤, if there exists a morphism
in the slice category of X connecting their images under [[−]]:

[[U]]

f !!

h // [[V]]

g
}}

X

In other words, the poset (PDX,≤) is the full subcategory of the slice
category of X in which objects are propositions in D. If D is a countably-
complete dominance, this poset is also a ωcppo. The bottom element is
given by 0D (the only inhabitant of the type [[0D]]→ X is the empty func-
tion, since [[0D]] is the empty type).

Let F : N → PDX be an increasing stream. Therefore F = 〈S, f〉, for
some S : N→ D and f :

∏
n:N [[S n]]→ X. We write fn instead of f n. We

define the least upper bound ∪F = (
∨
D S, fω), where fω is computed as

the following colimit:

[[S 0]] //

f0

**

[[S 1]] //

f1

))

[[S 2]] //

f2

$$

[[S 3]] //

f3

��

[[S 4]] //

f4

��

. . .

‖
∑

n:N [[S n]]‖ fω // X

∑
n:N [[S n]]

|_|
OO

λ(n,x).fn x

33

The function fω is obtained as the lifting of λ(n, x).fn x :
∑

n:N [[S n]]→ X.
Notice that the latter function is constant, i.e., fn xn ≡ fm xm for all xn :
[[S n]] and xm : [[S m]]. In fact, suppose w.l.o.g. m ≤ n. Then, since the
stream is increasing, there exists a function h : [[S m]] → [[S n]] such that
fm xm ≡ fn (hxm). The type [[S n]] is a proposition, therefore hxm ≡ xn,
which in turns implies fm xm ≡ fn xn.

As usual, the order ≤ extends to function spaces. The monad PD is an
equational lifting monad. It is not difficult to show that this is equivalent
to the restriction order and that PD satisfies the laws of an ω-complete
pointed classifying monad. Theorem 4.6 tells us that, under the assump-
tion of countable choice, there exists a unique ω-complete pointed classi-
fying monad morphism between D≈ and PD for any countably-complete
dominance D.

76

4.5.2 Countable powerset monad

An example of an ω-complete pointed almost-classifying monad that is not
a classifying monad (since the condition CM6 is not met), is given by
the countable powerset construction. This monad is typically employed
to model non-deterministic computations. We introduced the countable
powerset of a type X as the higher inductive type P∞X in Section 3.5.
Another possible implementation is the following:

P ′∞X = Stream (X + 1)/SameElem

where SameElem s1 s2 =
∏
x:X x ∈ s1 ↔ x ∈ s2 and x ∈ s =

∑
n:N s n ≡

inlx. The types P∞X and P ′∞X are isomorphic under the assumption of
countable choice.

Intuitively, the restriction f of a map f : X → P∞Y is the map that,
given x : X, returns the singleton {x}, if f x is non-empty, and returns the
empty set otherwise. Notice that the restriction order on P∞X ∼= 1→ P∞X
is therefore different from set inclusion. In fact, for s1, s2 : P∞X, intuitively
s1 ≤ s2 if and only if s1 ≡ s2 or s1 ≡ ∅.

4.5.3 State monad transformer

New ω-complete pointed almost-classifying monads can be constructed from
already constructed ones with the state monad transformer. Recall that
the state monad is defined as StateX = S → X × S, where S is a fixed
set of states. Given an ω-complete pointed almost-classifying monad T ,
the functor StateTT defined by StateTT X = S → T (X × S) is another
ω-complete pointed almost-classifying monad. All operations of StateTT
are defined in terms of the operations of T . For example, the restriction
operation is constructed in the following way:

(_)
:

: (X → S → T (Y × S))→ X → S → T (X × S)

f
:

= curry (uncurry f)

The bottom and least upper bound operations are constructed analogously.

4.6 Summary

In this chapter, we gave a precise mathematical characterization of the quo-
tiented delay monad as a monad for non-termination. First, in Section 4.2,
we introduced ω-complete pointed classifying monads, a refinement of Cock-
ett and Lack’s classifying monads [36] in which we ask the restriction order
to possess a bottom element and a join operation for increasing streams. In
Section 4.4 we proved the main result of this thesis: the quotiented delay

77

monad D≈ is the initial ω-complete pointed classifying monads. This shows
that D≈ is canonical universal among monads for non-termination in type
theory.

The latter result is made meaningful by the existence of other interesting
examples of ω-complete pointed classifying monads in type theory, that we
presented in Section 4.5, notably partial map classifiers [72] specified by
countably-complete dominances.

Another result described in this chapter is the construction of an almost-
classifying monad structure on the (unquotiented) delay datatype D given in
Section 4.3. This shows that Capretta’s delay datatype, when endowed with
an optimized monad structure, is already a monad for partiality without the
need of quotienting by weak bisimilarity.

The material presented in this chapter is currently unpublished. It has
been submitted to a conference.

78

Chapter 5

Conclusions

In this thesis we continued the study of non-termination in type theory
following Capretta’s approach [26]. It is a well known fact that the delay
monad D is the free completely iterative monad over the identity functor
[4], and therefore it is canonical among monads capturing guarded iteration.
The delay monad also captures unguarded iteration up to weak bisimilarity.
If we wish to capture unguarded iteration up to propositional equality, a
natural solution is obtained by quotienting the delay datatype by weak
bisimilarity, as suggested by Uustalu in a talk given in 2005 [27].

When trying to formally prove the latter statement, we have to be precise
and specify what we mean by “quotienting”, since type theory does not
possess quotient types. Extending the theory with inductive-like quotients
à la Hofmann [54], we found out that D≈ cannot be shown to be a monad
without assuming additional classical or semi-classical principles, such as
LPO, weak countable choice or propositional choice. More generally, this
exposes a bad interaction between quotient types and infinite datatypes
(non-wellfounded or well-founded but infinitely branching trees).

Capretta [26] showed that using the delay datatype one can encode gen-
eral recursion in type theory. One would expect this to lift unproblemati-
cally to the quotiented delay monad, but this again requires the assumption
of LPO or countable choice. Similarly, we need such extra principles when
proving that the quotiented delay monad is the lifting monad delivering
free ωcppos. This shows that the quotiented delay monad is not a very
useful tool for the development of computability theory and domain theory
in type theory, if it is not used in combination with additional non-fully
constructive principles, such as countable choice.

Nonetheless, we showed that the monad D≈ is a partial map classifier,
classifying partial maps with semidecidable domain of definedness. We
proved the latter result using restriction categories, Cockett and Lack’s
categorical framework for partiality [35]. This spawned a formalization of
the theory of restriction categories in Agda [1, 74]. The main effort in our
formalization is the completeness theorem, stating intuitively that every

79

restriction category with enough domain of definedness is a partial map
category.

Our successive goal was to show that D≈ captures unguarded iteration.
Monads that do that are called complete Elgot monads. We were indeed able
to prove that D≈ possesses a complete Elgot monad structure. Goncharov et
al. [51] proved that the maybe monad is the initial complete Elgot monad, if
the base category is hyperextensive [5]. We first tried to replicate the latter
initiality proof in a constructive setting, switching from Maybe to D≈, but
without success.

We then aimed at a more specific characterization of the quotiented
delay monad. We introduced the notion of ω-complete pointed classify-
ing monad, i.e., classifying monads whose Kleisli categories are ωCPPO-
enriched wrt. the restriction order. We showed that the monad D≈ is the
initial ω-complete pointed classifying monad, a consequence of the fact that
D≈ delivers free ωcppos. The initiality result is meaningful because the
class of ω-complete pointed classifying monads is non-trivial, since it also
contains other partial map classifiers specified by ω-dominances.

5.1 Future work

5.1.1 Quotiented delay datatype in general categories

The main topic of this thesis is the study of the delay monad and the quo-
tiented delay monad in Martin-Löf type theory. The construction of the
delay monad can be performed in more generality in a category with co-
products C for which the functor FAX = A + X admits a final coalgebra
for all objects A, i.e., DA = νX.A + X. The construction of the monad
structure on D is straightforward. The quotiented delay monad can hypo-
thetically be constructed in several ways. One idea could be to follow the
type-theoretic development of Chapter 3. We can introduce the following
relation:

DA
id

||

later

""
DA DA

If the base category C has all finite colimits, we can then take the coequalizer
of the above parallel maps:

DA //// DA // D≈A

Proving that D≈ is a monad is not straightforward, as one ends up in
troubles similar to the ones discussed in Section 3.2. This means that the
construction of a monad structure on D≈ also requires the assumption of
classical or semi-classical principles.

80

Alternatively, we could directly take the above coequalizer in the cate-
gory of monads over C. But this cannot be done, since later is not a monad
morphism. Therefore, we consider a different relation:

D(N×A)

Dsnd

yy

bind g

%%
DA DA

where g : N × A → DA is the unique (co)algebra morphism between the
initial and the final coalgebra of FA (notice that N×A ∼= µX.A+X). Notice
that GA = N × A is a monad, and D ◦ G is a monad since there exists
a distributive law N × DA → D(N × A) given by the strength operation
of D. In this way, D≈ would be a monad by construction. A general
treatment of transfinite constructions, including coequalizers of monads,
has been developed by Kelly [61].

Another further possible direction of research is the generalization of
Theorems 4.5 and 4.6 to settings different from Set. For example, in carte-
sian closed categories with a natural number object, in which it is possible
to internalize the notion of ωcppo [12].

5.1.2 Partiality in homotopy type theory

We set the development of the theory of the quotiented delay monad in
Martin-Löf type theory, but we could have alternatively developed our for-
malization in homotopy type theory [83], more specifically in 0-truncated
homotopy type theory, as already stated in Section 2.1.1. In fact, func-
tion extensionality and proposition extensionality are consequences of the
univalence axiom, while working with 0-truncated types, i.e. sets, simu-
lates uniqueness of identity proofs. We still need to postulate that bisimilar
coinductive data is equal.

There exist several libraries for homotopy type theory in dependently
typed programming languages such as Coq (UniMath, HoTT library), Agda
(HoTT-Agda library) and Lean. Future work will include formalizing the
Sierpinski space, defined as the higher inductive type S of Section 3.5, in one
of these libraries, and formally proving that the partial map classifier PS is
isomorphic to Altenkirch et al.’s partiality monad [9]. Our implementation
has the advantage of employing only standard higher inductive types and
does not require inductive-inductive definitions, which at the moment are
not available in the Coq proof assistant.

5.1.3 Formalizing restriction categories, continued

As presented in Appendix A, we have formalized in Agda the first chapters
of the theory of restriction categories and the connection between the latter

81

and partial map categories, whose theory is described in Section 4.1. The
next natural step would be to formalize classifying monads and partial map
classifiers, and prove similar soundness and completeness results [36]. We
also have an Agda formalization of classifying monads, following the theory
presented in Chapter 4. But this formalization only includes classifying
monads on Set. Therefore future work will involve extending the latter to
general categories.

Another possible extension of the restriction categories library would be
in the direction of restriction categories with additional structure (products,
meets, iteration operators, etc.) [37] and Turing categories [33].

5.1.4 Initial complete Elgot monad

As already discussed in the beginning of this chapter, we failed to replicate
in type theory Goncharov et al.’s construction of the initial complete Elgot
monad in hyperextensive categories [51]. A complete Elgot monad is a
monad T that comes with an unguarded iteration operation

f : X → T (Y +X)

f † : X → TY

which is uniform wrt. pure maps. It is indeed possible to construct a mor-
phism of type ξ : DX → TX. First we define the the following composite
map:

DX
[now,later]−1

// X + DX
η // T (X + DX)

where [now, later]−1 is the final coalgebra structure of DX, which is the in-
verse of [now, later], and η is the unit of T . We define ξ = (η◦[now, later]−1)†.
Problems arise when trying to lift the function ξ to the quotient D≈X. In
fact, we have to provide a compatibility proof of c1 ≈ c2 → ξ c1 ≡ ξ c2. We
do not know how to construct such a proof.

Future work will involve understanding the constructive content of Gon-
charov et al.’s initiality proof. This would hopefully guide us in proving
that the quotiented delay monad is the initial complete Elgot monad on
Set constructively (under reasonable semi-classical principles). If the latter
proof fails, we should come up with a different construction. Our idea would
be to define a monad delivering complete Elgot algebras [7]. Recently, Gon-
charov et al. [52] also declared finding the initial complete Elgot monad in
a constructive setting an open problem.

82

References

[1] The Agda Team: The Agda wiki (2015) http://wiki.portal.
chalmers.se/agda/

[2] Abel, A., Chapman, J.: Normalization by evaluation in the delay
monad: a case study for coinduction via copatterns and sized types.
In: Levy, P., Krishnaswami, N. (eds.) Proc. of 5th Wksh. on Mathe-
matically Structured Functional Programming, MSFP 2014, Electron.
Proc. in Theor. Comput. Sci., v. 153, pp. 51–67, Open Publishing As-
soc. (2014)

[3] Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing
strictly positive types. Theor. Comput. Sci., 342(1), 3–27 (2005)

[4] Aczel, P., Adámek, J., Milius, S. and Velebil, J.: Infinite trees and
completely iterative theories: a coalgebraic view. Theor. Comput. Sci.,
300(1–3), 1–45 (2003)

[5] Adámek, J., Borger, R., Milius, S., Velebil, J.: Iterative algebras: how
iterative are they? Theory Appl. Cat., 19, 61–92 (2008)

[6] Adámek, J., Milius, S., Velebil, J.: Free iterative theories: a coalgebraic
view. Math. Struct. Comput. Sci., 13(2), 259–320 (2003)

[7] Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Meth. Comput.
Sci., 2(5), article 4 (2006)

[8] Ahman, D., Chapman, J., Uustalu, T.: When is a container a
comonad? Log. Meth. Comput. Sci., v. 10, n. 3, article 14 (2014)

[9] Altenkirch, T., Danielsson, N. A., Kraus, N.: Partiality, revisited: The
partiality monad as a quotient inductive-inductive type. In: Esparza,
J., Murawski, A. eds., Proc. of 20th Int. Conf. on Foundations of Soft-
ware Science and Computation Structures, FoSSaCS 2017, Lect. Notes
in Comput. Sci., v 10203, pp. 534–549. Springer (2017)

[10] Awodey, S.: Category Theory. Oxford Logic Guides, Oxford University
Press (2006)

83

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/

[11] Axelsen, H. B., Kaarsgaard, R.: Join inverse categories as models of
reversible recursion. J. Log. Algebr. Meth. Program., 87, 33–50 (2017)

[12] Barr, M.: Fixed points in Cartesian closed categories. Theor. Comput.
Sci., 70, 65–72 (1990)

[13] Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct.
Program., 13(2), 261–293 (2003)

[14] Bauer, A.: First steps in synthetic computability theory. Electron.
Notes Theor. Comput. Sci., 155, 5–31 (2006)

[15] Bauer, A., Lesnik, D.: Metric spaces in synthetic topology. Ann. Pure
Appl. Logic, 163(2), 87–100 (2012)

[16] Bauer, A., Gross, J., Lumsdaine, P.L., Shulman, M., Sozeau, M., Spit-
ters, B.: The HoTT library: a formalization of homotopy type theory
in Coq. In: Proc. of 6th ACM SIGPLAN Conf. on Certified Programs
and Proofs, CPP 2017, pp. 164-172, ACM (2017)

[17] Benton, N., Kennedy, A., Varming, C.: Some domain theory and
denotational semantics in Coq. In Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) Proc. of 22nd Int. Conf. on Theorem Proving
in Higher Order Logics, TPHOLs 2009, Lect. Notes in Comput. Sci.,
v. 5674, pp. 115–130, Springer (2009)

[18] Bishop, E.: Foundations of constructive analysis. McGraw-Hill (1967)

[19] Bove, A.: Another look at function domains. Electron. Notes Theor.
Comput. Sci., 249, 61–74 (2009)

[20] Bove, A., Capretta, V.: Recursive functions with higher order domains.
In: Urzyczyn, P. (ed.) Proc. of 7th Int. Conf. on Typed Lambda Calculi
and Applications, TLCA 2005, Lect. Notes in Comput. Sci., v. 3461,
pp. 116–130, Springer (2005)

[21] Bove, A., Capretta, V.: Modelling general recursion in type theory.
Math. Struct. in Comput. Sci., 15(4), 671–708 (2005)

[22] Bove, A., Capretta, V.: Computation by prophecy. In: Ronchi Della
Rocca, S. (ed.), Proc. of 8th Int. Conf. on Typed Lambda Calculi and
Applications, TLCA 2007, Lect. Notes in Comput. Sci., v. 4583, pp.
70–83, Springer (2007)

[23] Bove, A., Krauss, A., Sozeau, M.: Partiality and recursion in inter-
active theorem provers - an overview. Math. Struct. in Comput. Sci.,
26(1), 38–88 (2016)

84

[24] Bridges, D. S., Richman, F., Schuster, P.: A weak countable choice
principle. Proc. Amer. Math. Soc., 128(9), 2749–2752 (2000)

[25] Bucalo, A., Führmann, C., Simpson, A.: An equational notion of
lifting monad. Theor. Comput. Sci., 294(1–2), 31–60 (2003)

[26] Capretta, V.: General recursion via coinductive types. Log. Methods
Comput. Sci., 1(2), article 1 (2005)

[27] Capretta, V., Altenkirch, T., Uustalu, T.: Partiality is an effect. Slides
for a talk given by Uustalu at the 22nd meeting of IFIP Working Group
2.8 (2005)

[28] Carboni, A.: Bicategories of partial maps. Cah. Top. Geom. Diff., 28,
111–126 (1987)

[29] Cazanescu, V.-E., Stefanescu, G.: Feedback, iteration and repetition.
In: Paun, G. (ed.) Mathematical Aspects of Natural and Formal Lan-
guages, pp. 43–62, World Scientific (1995)

[30] Chapman, J., Uustalu T., Veltri, N.: Quotienting the delay monad
by weak bisimilarity. In: Leucker, M., Rueda, C., Valencia, F. D.
(eds.) Proc. of 12th Int. Coll. on Theoretical Aspects of Computing, IC-
TAC 2015, Lect. Notes in Comput. Sci., v. 9399, pp. 110–125, Springer
(2015)

[31] Chapman, J., Uustalu, T., Veltri. Formalizing Restriction Categories.
J. Formalized Reasoning, 10(1), 1–36 (2017)

[32] Chicli, L., Pottier, L., Simpson, C.: Mathematical quotients and quo-
tient types in Coq. In: Geuvers, H., Wiedijk, F. (eds.) Selected Papers
from Int. Wksh. on Types for Proofs and Programs, TYPES 2002,
Lect. Notes in Comput. Sci., v. 2646, pp. 95–107, Springer (2003)

[33] Cockett, J. R. B., Hofstra, P. J. W.: Introduction to Turing categories.
Ann. Pure Appl. Logic, 156(2–3), 183–209 (2008)

[34] Cockett, J. R. B., Díaz-Boïls, J., Gallagher, J., Hrubes, P.: Timed sets,
complexity, and computability. Electron. Notes in Theor. Comput. Sci.,
286, 117–137, Elsevier (2012)

[35] Cockett, J. R. B., Lack, S.: Restriction categories I: categories of
partial maps. Theor. Comput. Sci. 270(1–2), 223–259 (2002)

[36] Cockett, J. R. B., Lack, S.: Restriction categories II: partial map
classification. Theor. Comput. Sci., 294(1–2), 61–102 (2003)

85

[37] Cockett, J. R. B., Lack, S.: Restriction categories III: colimits, partial
limits, and extensivity. Math. Struct. in Comput. Sci., 17(4), 775–817
(2007)

[38] Cohen,C.: Pragmatic quotient types in Coq. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) Proc. of 4th Int. Conf. on Interactive
Theorem Proving, ITP 2013, Lect. Notes in Comput. Sci., v. 7998, pp.
213–228, Springer (2013)

[39] Coquand, T., Mannaa, B., Ruch, F.: Stack semantics of type theory. In:
Proc. of 32th Ann. ACM/IEEE Symp. on Logic in Computer Science,
LICS 2017, to appear (2017)

[40] Curien, P.-L., Obtulowicz, A: Partiality, cartesian closedness, and
toposes. Inform. Comput., 80, 50–95 (1989)

[41] Danielsson, N. A.: Operational semantics using the partiality monad.
In: Thiemann, P., Findler, R. B. (eds.) Proc. of 17th ACM SIGPLAN
Inte. Conf. on Functional Programming, ICFP 2012, pp. 127–138, ACM
(2012)

[42] Di Paola, R. A., Heller, A.: Dominical categories: recursion theory
without elements. J. Symb. Log., 52(3), 594–635 (1987)

[43] Dybjer, P.: A general formulation of simultaneous inductive-recursive
definitions in type theory. J. Symb. Log., 65(2), 525–549 (2000)

[44] Elgot, C. C., Bloom, S. L., Tindell, R.: On the algebraic structure of
rooted trees. J. Comput. Syst. Sci., 16(3), 361–399 (1978)

[45] Escardó, M.: Synthetic topology of data types and classical spaces.
Electron. Notes Theor. Comput. Sci., 87, 21–156, (2004)

[46] Escardó, M. H., Knapp, C. M.: Partial elements and recursion via
dominances in univalent type theory. Preprint (2017) http://www.cs.
bham.ac.uk/~mhe/papers/partial-elements-and-recursion.pdf

[47] Fiore, M. P.: Axiomatic domain theory in categories of partial maps.
Distinguished Dissertation Series, Cambridge University Press (1996)

[48] Fiore, M. P., Plotkin, G. D. , Power, A. J.: Complete cuboidal sets
in axiomatic domain theory. In: Proc. of 12th Ann. IEEE Symp. on
Logic in Computer Science, LICS 1997, pp. 268-278, IEEE Computer
Society (1997)

[49] Fourman, M. P., Ščedrov, A.: The “world’s simplest axiom of choice”
fails. Manuscripta Math. 38(3), 325–332 (1982)

86

http://www.cs.bham.ac.uk/~mhe/papers/partial-elements-and-recursion.pdf
http://www.cs.bham.ac.uk/~mhe/papers/partial-elements-and-recursion.pdf

[50] Goncharov, S., Milius, S., Rauch, C.: Complete Elgot monads and
coalgebraic resumptions. Electron. Notes Theor. Comput. Sci., 325,
147–168 (2016)

[51] Goncharov, S., Rauch, C., Schröder, L.: Unguarded recursion on coin-
ductive resumptions. Electron. Notes Theor. Comput. Sci., 319, 183–
198 (2015)

[52] Goncharov, S., Schröder, L., Rauch, C., Piróg, M.: Unifying guarded
and Unguarded iteration. In: Esparza, J., Murawski, A. eds., Proc.
of 20th Int. Conf. on Foundations of Software Science and Computa-
tion Structures, FoSSaCS 2017, Lect. Notes in Comput. Sci., v 10203,
pp. 517-533. Springer (2017)

[53] Guo, X.: Products, joins, meets and ranges in restriction categories.
PhD thesis, University of Calgary (2012)

[54] Hofmann, M.: Extensional constructs in intensional type theory.
CPHS/BCS Distinguished Dissertations, Springer (1997)

[55] Hughes, J.: Generalising monads to arrows. Sci. Comput. Program.,
37(1–3), 67–111 (2000)

[56] Hasegawa, M.: Models of sharing graphs: A categorical semantics of
let and letrec. PhD thesis ECS-LFCS-97-360, University of Edinburgh
(1997)

[57] Hyland, J. M. E.: First steps in synthetic domain theory. In: Carboni,
A., Pedicchio, M. C., Rosolini, G. (eds.) Proc. of Int. Conf. on Category
Theory, CT ’90, Lecture Notes in Mathematics, v. 1488, pp. 131–156,
Springer (1991)

[58] Jacobs, B.: Semantics of weakening and contraction. Ann. Pure Appl.
Logic, 69(1), 73–106 (1994)

[59] Jacobs, B., Heunen, C., Hasuo, I.: Categorical semantics for arrows.
J. Funct. Program., 19(3–4), 403–438 (2009)

[60] Joyal, A., Street R., Verity, D.: Traced monoidal categories. Math.
Proc. Cambridge Phil. Soc., 119(3), 447–468 (1996)

[61] Kelly, M.: A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves and so on. Bull.
Austral. Math. Soc., 22(1), 1–83 (1980)

[62] Kock, A.: Strong functors and monoidal monads. Arch. Math., 23(1),
113–120 (1972)

87

[63] Kraus, N., Escardó, M., Coquand, T., Altenkirch, T.: Generalizations
of Hedberg’s Theorem. In: Hasegawa, M. (ed.) Proc. of 11th Int. Conf.
on Typed Lambda Calculi and Applications, TLCA 2013, Lect. Notes
in Comput. Sci., v. 7941, pp. 173–188, Springer (2013)

[64] Mac Lane, S.: Categories for the working mathematician, Graduate
Texts in Mathematics, v. 5, Springer, 2nd ed. (1998)

[65] Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic - a first
introduction to topos theory. Universitext, Springer (1992)

[66] Maietti, M. E.: About effective quotients in constructive type theory.
In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) Selected Papers
from Int. Wksh. on Types for Proofs and Programs, TYPES 1998,
Lect. Notes in Comput. Sci., v. 1657, pp. 166–178, Springer (1999)

[67] Martin-Löf, P.: 100 years of Zermelo’s axiom of choice: what was the
problem with it? Comput. J., 49(3), 345–350 (2006)

[68] Megacz, A.: A coinductive monad for Prop-bounded recursion. In:
Stump, A., Xi, H. (eds.) Proc. of ACM Wksh. on Programming Lan-
guages meets Program Verification, PLPV 2007, pp. 11–20, ACM
(2007)

[69] Menger, K.: An axiomatic theory of functions and fluents. In: Henkin,
L., Suppes, P., Tarski, A. (eds.) The Axiomatic Method, Studies Logic
Found. Math., v. 27, pp. 454–473, North-Holland (1959)

[70] Milius, S., Litak, T.: Guard your daggers and traces: on the equa-
tional properties of guarded (co-)recursion. In: Baelde, D., Carayol,
A. (eds.) Proc. of Wksh. on Fixed Points in Computer Science, FICS
2013, Electron. Proc. in Theor. Comput. Sci. 126, pp. 72–86, Open
Publishing Assoc. (2016)

[71] Moggi, E.: Notions of computation and monads. Inform. Comput.,
93(1), 55–92 (1991)

[72] Mulry, P. S.: Partial map classifiers and partial Cartesian closed cate-
gories. Theor. Comput. Sci., 136(1), 109–123 (1994)

[73] Nordström, B., Petersson, K., Smith, J. M.: Programming in Martin-
Löf’s type theory: an introduction. Oxford University Press (1990)

[74] Norell, U.: Dependently typed programming in Agda. In: Koopman,
P., Plasmeijer, R., Swierstra, S. D. (eds.) Revised Lectures from 6th
Int. School on Advanced Functional Programming, AFP 2008, Lect.
Notes in Comput. Sci., v. 5832, pp. 230–266, Springer (2009)

88

[75] Nuo, L.: Quotient types in type theory. PhD thesis, University of
Nottingham (2015)

[76] Richman, F.: Constructive mathematics without choice. In: Schus-
ter, P., Berger, U., Osswald, H. (eds.) Proc. of Symp. Reuniting the
Antipodes - Constructive and Nonstandard Views of the Continuum,
Synthese Library, v. 306, pp. 199–205, Springer (2001)

[77] Robinson, E., Rosolini, G.: Categories of partial maps. Inform. Com-
put., 79(2), 95–130 (1988)

[78] Rosolini, R.: Domains and dominical categories. Riv. Mat. Univ.
Parma, 11, 387–397 (1985)

[79] Rosolini, G.: Continuity and effectiveness in topoi. D.Phil thesis,
Oxford University (1986)

[80] Setzer, A.: Partial recursive functions in Martin-Löf type theory. In:
Beckmann, A., Berger, U., Löwe, B., Tucker, J. V. (eds.) Proc. of 2nd
Conf. on Computability in Europe, CiE 2006, Lect. Notes in Comput.
Sci., v. 3988, pp. 505–515 (2006)

[81] Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point
operators. In: Proc. of 15th Ann. IEEE Symp. on Logic in Computer
Science, LICS 2000, pp. 30–41, IEEE Computer Society (2000)

[82] Troelstra, A. S., Van Dalen, D.: Constructivism in mathematics: an in-
troduction, v. I. Studies in Logic and the Foundations of Mathematics,
v. 121, North-Holland (1988)

[83] The Univalent Foundations Program: Homotopy type theory: univa-
lent foundations of mathematics. Institute for Advanced Study (2013)
http://homotopytypetheory.org/book

[84] Veltri, N.: Two set-based implementations of quotients in type theory.
In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.) Proc. of 14th
Symposium on Programming Languages and Software Tools, SPLST
2015, CEUR Workshop Proceedings, v. 1525, pp. 194–205, CEUR-
WS.org (2015)

89

http://homotopytypetheory.org/book

Appendices

91

Appendix A

Formalizing restriction categories

We now illustrate how we formalized the mathematics presented in Sec-
tion 4.1 in the Agda proof assistant [1, 74]. We have developed our own
library of basic utilities: implementation of quotient types, definitions of
categories, functors, monics, isomorphisms, sections, idempotents and pull-
backs; proofs of various properties about them, e.g., the pasting lemmas
for pullbacks. The main part of the formalization consists of definitions of
restriction categories, partial map categories; proofs of important lemmata;
proof of the soundness Theorem 4.1; construction of splitting of idempo-
tents; proof of the completeness Theorem 4.2.

We represent algebraic-like structures such as categories as dependent
records with fields for the data of the structure and fields for the laws.
Typically in our formalization record types are opened before their projec-
tion functions are utilized. For example in Section A.2, in the definition of
Functor, the field Hom from the record type Cat is in scope and it takes a
category as its first argument. Sometimes we open only one specific record.
For example, in Section A.3, we fix a particular category X. In that section,
the field Hom is in scope and it corresponds to homsets in X. We always spec-
ify which terms are in context in a section or in a paragraph. Therefore, the
reader should not find difficulties in understanding how to interpret fields
of records in different situations.

It is common practice in type theory (and Agda) to use setoids to rep-
resent the homset when representing categories, so that the laws are given
in term of the equivalence relation of the setoid. For this particular formal-
ization using setoids would be especially heavy as we would require setoids
of objects as well as homsets: when constructing the category SplitE(X)
we take objects to be idempotent maps from the class E in the underlying
category X. We instead use inductive-like quotient types, introduced in 2.2.

In Agda, unfinished parts of a definition are denoted by a question mark
?. In this chapter, we leave some definitions incomplete. We omit some
definitions due to reasons of space and/or readability. The full formalization
contains no unfinished parts.

93

The Agda formalization of this chapter is available at http://cs.ioc.
ee/~niccolo/thesis/. The material presented in this chapter is based on
a paper written by the author together with James Chapman and Tarmo
Uustalu [31].

A.1 Quotients

We show how we formalize quotient types in Agda. Similar formalizations
have been performed in Coq [32, 38].

We define a record type Quotient for a type X and an equivalence relation
R on X using the standard library machinery for equivalence relations. An
equivalence relation on a type X is a binary relation on X together with a
proof of it being reflexive, symmetric and transitive (this predicate is called
isEquivalence in Agda’s standard library).

EqR : Set → Set
EqR X = Σ (X → X → Set) IsEquivalence

The Quotient record type has a field Q for the type of equivalence classes
of X and a field box for the canonical projection map X → Q. As well as
box we have a dependent eliminator lift, which lifts dependent functions
from X to functions from Q. This operation can only lift compatible functions
and hence it takes a compatibility proof as an extra argument. compat is a
predicate on functions from X stating that the function takes related argu-
ments in X to equal results. Notice that box is compatible by sound. Axiom
liftβ states that applying a lifted function to an abstracted argument is
the same as applying the function to the argument directly. The last two
fields liftL and liftLβ correspond to the large dependent eliminator and
its computation rule.

record Quotient (X : Set)(EQ : EqR X) : Set1 where
open Σ EQ renaming (proj1 to R)
field

Q : Set
box : X → Q

compat : (Y : Q → Set)(f : (x : X) → Y (box x)) → Set
compat Y f = {x1 x2 : X} → R x1 x2 → f x1 ≡ f x2

field
sound : compat _ box
lift : (Y : Q → Set)(f : (x : X) → Y (box x))

(p : compat Y f)(q : Q) → Y q
liftβ : (Y : Q → Set)(f : (x : X) → Y (box x))

94

http://cs.ioc.ee/~niccolo/thesis/
http://cs.ioc.ee/~niccolo/thesis/

(p : compat Y f)(x : X) → lift Y f p (box x) ≡ f x
liftL : (Y : Q → Set1)(f : (x : X) → Y (box x))

(p : compat Y f)(q : Q) → Y q
liftLβ : (Y : Q → Set1)(f : (x : X) → Y (box x))

(p : compat Y f)(x : X) → liftL Y f p (box x) ≡ f x

Every type together with an equivalence relation on it gives rise to a quo-
tient. This is what we need to postulate in Agda. The record type Quotient
gives a specification of a quotient, quot assumes that this specification holds
(is inhabited) for any type and equivalence relation on it.

postulate
quot : (X : Set)(EQ : EqR X) → Quotient X EQ

A.2 Categories

Categories are described as a record type with fields for the set of objects,
the set of maps between two objects, for any object an identity map and for
any pair of suitable maps their composition. Further to this, we have three
fields for the laws of a category given as propositional equalities between
maps.

record Cat : Set1 where
field

Obj : Set
Hom : Obj → Obj → Set
iden : ∀{A} → Hom A A
comp : ∀{A B C} → Hom B C → Hom A B → Hom A C
idl : ∀{A B}{f : Hom A B} → comp iden f ≡ f
idr : ∀{A B}{f : Hom A B} → comp f iden ≡ f
ass : ∀{A B C D}{f : Hom C D}{g : Hom B C}{h : Hom A B}
→ comp (comp f g) h ≡ comp f (comp g h)

Functors are also described as a record type with fields for the mapping of
objects, the mapping of morphisms and the two laws stating that the latter
must preserve identities and composition.

record Fun (X Y : Cat) : Set where
field

OMap : Obj X → Obj Y
HMap : ∀{A B} → Hom X A B → Hom Y (OMap A) (OMap B)
fid : ∀{A} → HMap (iden X {A}) ≡ iden Y {OMap A}
fcomp : ∀{A B C}{f : Hom X B C}{g : Hom X A B}
→ HMap (comp X f g) ≡ comp Y (HMap f) (HMap g)

95

The identity functor has identity maps as mapping of objects and mapping
of morphisms, and reflexivity proves the functor laws.

idFun : {X : Cat} → Fun X X
idFun = record{

OMap = id;
HMap = id;
fid = refl;
fcomp = refl}

The properties of functors being full and faithful are given as predicates on
functors.

Full : {X Y : Cat}(F : Fun X Y) → Set
Full {X}{Y} F =
∀{A B}{f : Hom Y (OMap F A) (OMap F B)}
→ Σ (Hom X A B) λ g → HMap F g ≡ f

Faithful : {X Y : Cat}(F : Fun X Y) → Set
Faithful {X} F =
∀{A B}{f g : Hom X A B} → HMap F f ≡ HMap F g → f ≡ g

A.3 Monics, isomorphisms and pullbacks

In this section, we work in a particular category X. In Agda, this corresponds
to working in a module parameterized by a category X. Moreover, as already
specified in the beginning of the chapter, we open the specific record X. This
implies that, for example, the projections Obj, Hom and iden refer to objects,
homsets and identity morphisms in the category X.

A.3.1 Monic maps

A map f is monic if for any suitable maps g and h, if comp f g ≡ comp f h
then g ≡ h.

Mono : ∀{A B}(f : Hom A B) → Set
Mono f = ∀{C}{g h : Hom C _} → comp f g ≡ comp f h → g ≡ h

We prove a lemma idMono stating that every identity map is monic. An
equational proof starts with the word proof and ends with the symbol �.
The proof is an alternating sequence of expressions and justifications. It
is very close to how one would write it on paper, but we do not gloss over
minor details such as appeals to associativity of composition in a category.
We must also be very precise about where in an expression we apply a
rewrite rule.

96

idMono : ∀{A} → Mono (iden {A})
idMono {g = g}{h} p =

proof
g
≡〈 sym idl 〉
comp iden g
≡〈 p 〉
comp iden h
≡〈 idl 〉
h
�

A.3.2 Isomorphisms

Isomorphism is defined as a predicate on maps which is witnessed by a
suitable inverse map and proofs of the two isomorphism properties.

record Iso {A B : Obj}(f : Hom A B) : Set where
field

inv : Hom B A
rinv : comp f inv ≡ iden {B}
linv : comp inv f ≡ iden {A}

We prove that any identity map is trivially an isomorphism, the proof ar-
guments are given by the left identity property idl (right identity idr also
works) of the category X.

idIso : ∀{A} → Iso (iden {A})
idIso = record{

inv = iden;
rinv = idl;
linv = idl}

A.3.3 Pullbacks

The definition of pullback is divided into three parts. First we give the
definition of a square over a cospan, i.e., a pair of maps f : Hom A C and
g : Hom B C with the same target object. It is a record consisting of an
object W, two maps h and k completing the square, and a proof scom that
the square commutes.

record Square {A B C}(f : Hom A C)(g : Hom B C) : Set where
field

W : Obj
h : Hom W A

97

k : Hom W B
scom : comp f h ≡ comp g k

W
h

~~

k

A

f

B

g
~~

C

Then we define a map between two squares, called a SqMap. It consists of
a map sqMor between the respective W objects of the squares together with
proofs of commutation of the two triangles that the map sqMor generates.

record SqMap {A B C : Obj}{f : Hom A C}{g : Hom B C}
(sq’ sq : Square f g) : Set where

field
sqMor : Hom (W sq’) (W sq)
leftTr : comp (h sq) sqMor ≡ h sq’
rightTr : comp (k sq) sqMor ≡ k sq’

W ′

h′

k′

��

��
W

h}} k !!
A

f !!

B

g
}}

C

A pullback of maps f and g consists of a square sq and a universal
property uniqPul: for any other square sq’ over f and g there exists a
unique map between sq and sq’.

record Pullback {A B C}(f : Hom A C)(g : Hom B C) : Set where
field

sq : Square f g
uniqPul : (sq’ : Square f g)
→ Σ (SqMap sq’ sq)

λ u → (u’ : SqMap sq’ sq) → sqMor u ≡ sqMor u’

Later we will need two results regarding pullbacks. The first is the defi-
nition of a pullback of a map f along the identity map. The other two sides
completing the pullback square are f and the identity map.

98

trivialSquare : ∀{A B}(f : Hom A B) → Square f iden
trivialSquare {A} f = record{

W = A;
h = iden;
k = f;
scom =

proof
comp f iden
∼=〈 idr 〉
f
∼=〈 sym idl 〉
comp iden f
�}

A
f

""
A

f ""

B

B

Let sq be another square over f and the identity map. We call W the object,
h and k the two maps that complete the square sq, and scom the proof that
the square commutes. Then h together with the straightforward proofs that
the two triangles it generates commute is a map between the two squares.

trivialSqMap : ∀{A B}(f : Hom A B)(sq : Square f iden) →
SqMap sq (trivialSquare f)

trivialSqMap f sq = record{
sqMor = h sq;
leftTr = idl;
rightTr =

proof
comp f (h sq)
∼=〈 scom sq 〉
comp iden (k sq)
∼=〈 idl 〉
k sq
�}

99

W

h

k

��

h��
A

f ##
A

f ""

B

B

To complete the construction of the pullback, it remains to supply a proof
that the map trivialSqMap f sq between the arbitrary square sq and
trivialSquare f is unique.

trivialPullback : ∀{A B}(f : Hom A B) → Pullback f iden
trivialPullback f = record{

sq = trivialSquare f;
uniqPul = λ sq →

trivialSqMap f sq ,
λ u →

proof
h sq
∼=〈 sym (leftTr u) 〉
comp iden (sqMor u)
∼=〈 idl 〉
sqMor u
�}

The second result regarding pullbacks we need is a theorem stating that
any two pullbacks over the same cospan are isomorphic. The isomorphism is
the unique map between the two squares provided by the universal property
of pullbacks.

pullbackIso : ∀{A B C}{f : Hom A C}{g : Hom B C}
(p p’ : Pullback f g) →
Iso (sqMor (proj1 (uniqPul p (sq p’))))

pullbackIso p p’ = ?

W ′

h′

k′

��

��
W

h{{ k ##
A

f ##

B

g{{
C

100

A.4 Partial map categories

Let X be a category. A stable system of monics in X is a set of maps given by
a membership predicate ∈sys satisfying four properties: every element is
monic; all isomorphisms are elements; the set is closed under composition;
and the set is closed under pullbacks along arbitrary maps.

record StableSys : Set1 where
field
∈sys : ∀{A B}(f : Hom A B) → Set
mono∈sys : ∀{A B}{f : Hom A B} → ∈sys f → Mono f
iso∈sys : ∀{A B}{f : Hom A B} → Iso f → ∈sys f
comp∈sys : ∀{A B C}{f : Hom A B}{g : Hom B C}
→ ∈sys f → ∈sys g → ∈sys (comp g f)

pul∈sys : ∀{A B C}(f : Hom A C){m : Hom B C}
→ ∈sys m → Σ (Pullback f m) λ p → ∈sys (h (sq p))

A partial map category is a category defined on a stable system of monics
M on X. The objects are the objects of X and the maps are spans which
are defined as a record type indexed by source and target objects A and B
consisting of a third object A’, two maps mhom and fhom for the left and
right leg of the span, and a proof that the left leg mhom is a member of the
stable system of monics.

record Span (A B : Obj) : Set where
field

A’ : Obj
mhom : Hom A’ A
fhom : Hom A’ B
m∈sys : ∈sys mhom

A′oO
m

~~

f

A B

Equality on spans is defined up to isomorphism. We prove the properties
of spans up to this isomorphism, and then use a quotient to work with this
isomorphism in the place of equality. Two spans mf and ng are ‘equal’,
if, for some isomorphism between their source objects, the two triangles it
generates commute.

record _∼Span∼_ {A B}(mf ng : Span A B) : Set where
field

s : Hom (A’ mf) (A’ ng)
sIso : Iso s

101

leftTr∼ : comp (mhom ng) s ≡ mhom mf
rightTr∼ : comp (fhom ng) s ≡ fhom mf

A′p P

m

��

o s
��

f

��

A′′nN

n
~~

g

A B

Notice that, for all mf ng : Span A B, the type mf ∼Span∼ ng is a propo-
sition, i.e. any two inhabitants of this type are equal. In fact, suppose there
are two isomorphisms s and t between the spans mf and ng.

A′p P

m

��

s
��

t
��

f

��

A′′nN

n
~~

g

A B

In particular, comp n t ≡ m ≡ comp n s. Since n is monic, we have
s ≡ t. The relation _∼Span∼_ forms an equivalence relation.

Span∼EqR : ∀{A B} → EqR (Span A B)
Span∼EqR = _∼Span∼_ , ?

We quotient Span A B by this equivalence relation and we call the result
qspan A B.

qspan : ∀ A B → Quotient (Span A B) Span∼EqR
qspan A B = quot (Span A B) Span∼EqR

The carriers QSpan A B of such quotients are the maps in the partial map
category.

QSpan : ∀ A B → Set
QSpan A B = Quotient.Q (qspan A B)

We define shorthand names for referring to the quotient machinery for an
arbitrary span, e.g.

box : {A B : Obj} → Span A B → QSpan A B
box {A}{B} = Quotient.box (qspan A B)

102

Shorthands for the other fields are given in a similar way. From now on the
names compat, sound, lift and liftβ always refer to the respective fields
in qspan A B.

The partial map category has sets as objects and QSpans as homsets.
Just as homsets are defined in two steps (first Span, then QSpan), the oper-
ations and laws are also defined in two steps. We first define operations on
Spans and then port them to QSpans. Analogously, we prove the laws up to
∼Span∼ and then port them to equality proofs. Note that the whole con-
struction of the partial map category and the soundness proof is performed
first up to _∼Span∼_. This means that this part of our formalization could
be reused even if one wants to take the “setoid approach” to formalizing
category theory in type theory.

The identity span is trivial to describe. The left and right legs are identi-
ties and identities are isomorphisms, hence they are available in any stable
system of monics.

idSpan : {A : Obj} → Span A A
idSpan {A} = record{

A’ = A;
mhom = iden;
fhom = iden;
m∈sys = iso∈sys idIso}

The identity maps in the partial map category are given by box idSpan.
Let ng : Span B C and mf : Span A B be two spans. Let n and m be

the left legs of ng and mf respectively, g and f be the right legs, and n∈
and m∈ be the proofs that n and m are in the stable system of monics. In
order to form the composite span compSpan ng mf, we take the pullback of
f along n. W is the object, and h and k are the two maps that complete the
square underlying such pullback. The composite span is given by composing
h with m and k with g. The span is well defined, since both h and m are in
the stable system of monics, which is closed under composition.

compSpan : ∀{A B C} → Span B C → Span A B → Span A C
compSpan ng mf =

let sq’ = sq (proj1 (pul∈sys (fhom mf) (m∈sys ng)))
in record{
A’ = W sq’;
mhom = comp (mhom mf) (h sq’);
fhom = comp (fhom ng) (k sq’);
m∈sys =

comp∈sys (proj2 (pul∈sys (fhom mf) (m∈sys ng)))
(m∈sys mf)}

103

WnN
h

~~

k

A′oO

m

~~

f

B′nN
n

~~

g

A B C

We need a lemma ∼cong stating that _∼Span∼_ is a congruence with
respect to composition of spans. compSpan is an operation on spans, so when
reasoning about spans up to equality, we need that compSpan respects it.

∼cong : ∀{A B C}{ng n’g’ : Span B C}{mf m’f’ : Span A B}
→ mf ∼Span∼ m’f’ → ng ∼Span∼ n’g’
→ compSpan ng mf ∼Span∼ compSpan n’g’ m’f’

∼cong p r = ?

Composition is obtained by lifting the map λ x y → box (compSpan x y),
which is compatible with _∼Span∼_. The eliminator lift2 is the two-
argument variant of lift.

qcompSpan : ∀{A B C} → QSpan B C → QSpan A B → QSpan A C
qcompSpan =

lift2 _ (λ x y → box (compSpan x y))
(λ p q → sound (∼cong p q))

The function qcompSpan is propositionally equal to box (compSpan ng mf),
when applied to terms box ng and box mf. The computation rule liftβ2
is the two-argument variant of liftβ.

liftβComp : ∀{A B C}{ng : Span B C}{mf : Span A B}
→ qcompSpan (box ng) (box mf) ≡ box (compSpan ng mf)

liftβComp =
liftβ2 _ (λ x y → box (compSpan x y))

(λ p q → sound (∼cong p q)) _ _

Next we present the proof of the left identity law for a partial map
category. We have to prove that a span composed with the identity span is
‘equal’ to itself (up to _∼Span∼_). Let mf : Span A B be a span. Let A’
be the object, m and f the left and right legs of mf. We take the pullback of
the identity map along f given by the fact that the identity map is in every
stable system of monics. We call W the object, and h and k the two maps
that complete the square underlying such pullback. Let scom be the proof

104

that the square commutes.

WnN
h

~~

k

A′oO

m

~~

f

B

A B B

We have to find an isomorphism between W and A’ that makes the two
generated diagrams commute.

WnN
h

~~
o
��

k

A′oO

m

~~

A′iI

m
vv

f
''

B

A B

Note that there is also another pullback of the identity map along f,
namely trivialPullback f. By the definition of trivialPullback f, the
underlying morphism of the unique map to it from the given pullback is h;
by pullbackiso, it is an isomorphism We supply h and the isomorphism
proof together with the proofs that the two triangles in the diagram above
commute. The first one is just refl and the second one follows immediately
from the proof scom of the pullback of the identity map along f.

W

h

k

��

h
��
A′

f
A′

f

B

B

idlSpan : ∀{A B}{mf : Span A B}
→ compSpan idSpan mf ∼Span∼ mf

idlSpan {mf = mf} = record{
let p = proj1 (pul∈sys (fhom mf) (iso∈sys idIso))

sq’ = sq p
in record{

105

s = h sq’;
sIso = pullbackIso (trivialPullback (fhom mf)) p;
leftTr∼ = refl;
rightTr∼ = scom sq’}

We will use the quotient machinery in conjunction with this proof in the
definition of the partial map category.

The composition qcompSpan is defined using lift2. Therefore, when it
is applied to arguments box ng and box mf, it is propositionally equal to
box (compSpan ng mf). Using this result, we prove the left identity law
for the partial map category.

qidlSpan : ∀{A B}{x : QSpan A B}
→ qcompSpan (box idSpan) x ≡ x

qidlSpan {x = x} =
lift (λ mf →

proof
qcompSpan (box idSpan) (box mf)
≡〈 liftβComp 〉
box (compSpan idSpan mf)
≡〈 sound idlSpan 〉
box mf
�)

(fixtypes ◦ sound)
x

In the above proof, we used the lemma fixtypes, useful to deal with the
common situation where we have proofs of two equations with equal right
hand sides.

fixtypes : {A B C D : Set}{a : A}{b : B}{c : C}{d : D}
{p : a ≡ b}{q : c ≡ d} → b ≡ d → p ≡ q

fixtypes {p = refl}{refl} refl = refl

The right identity law and associativity of qcompSpan are proved simi-
larly to the left identity law.

Par : Cat
Par = record{

Obj = Obj;
Hom = QSpan;
iden = box idSpan;
comp = qcompSpan;
idl = qidlSpan;
idr = ?;
ass = ?}

106

A.5 Restriction categories

A restriction category is a category with a restriction operation, i.e., every
map comes with an endomap on its domain subject to four laws.

record RestCat : Set1 where
field

cat : Cat
rest : ∀{A B} → Hom cat A B → Hom cat A A
R1 : ∀{A B}{f : Hom cat A B}
→ comp cat f (rest f) ≡ f

R2 : ∀{A B C}{f : Hom cat A B}{g : Hom cat A C}
→ comp cat (rest f) (rest g) ≡

comp cat (rest g) (rest f)
R3 : ∀{A B C}{f : Hom cat A B}{g : Hom cat A C}
→ comp cat (rest g) (rest f) ≡

rest (comp cat g (rest f))
R4 : ∀{A B C}{f : Hom cat A B}{g : Hom cat B C}
→ comp cat (rest g) f ≡

comp cat f (rest (comp cat g f))

A restriction functor between two restriction categories is a functor between
the underlying categories preserving the restriction operation.

record RestFun (C D : RestCat) : Set where
field

fun : Fun (cat C) (cat D)
frest : ∀{A B}{f : Hom (cat C) A B} →

rest D (HMap fun f) ≡ HMap fun (rest C f)

The identity functor is always a restriction functor.

idRestFun : {C : RestCat} → RestFun C C
idRestFun = record{

fun = idFun;
frest = refl}

We fix a restriction category X with underlying category Xcat. We prove
lemmata lem1, lem3, lem2 and lem4 (Lemma 4.1(i)-(iv) in Section 4.1.2).
We show them here, since they are nice examples of the kind of equational
reasoning one can do with restriction categories.

lem1 : ∀{A B}{f : Hom A B} → Mono f → rest f ≡ iden
lem1 {f = f} p =

p (proof

107

comp f (rest f)
≡〈 R1 〉
f
≡〈 sym idr 〉
comp f iden
�)

lem2 : ∀{A B}{f : Hom A B}
→ comp (rest f) (rest f) ≡ rest f

lem2 {f = f} =
proof
comp (rest f) (rest f)
≡〈 R3 〉
rest (comp f (rest f))
≡〈 cong rest R1 〉
rest f
�

lem3 : ∀{A B}{f : Hom A B} → rest (rest f) ≡ rest f
lem3 {f = f} =

proof
rest (rest f)
≡〈 cong rest (sym idl) 〉
rest (comp iden (rest f))
≡〈 sym R3 〉
comp (rest iden) (rest f)
≡〈 cong (λ g → comp g (rest f)) (lem1 idMono) 〉
comp iden (rest f)
≡〈 idl 〉
rest f
�

lem4 : ∀{A B C}{f : Hom A B}{g : Hom B C} →
rest (comp g f) ≡ rest (comp (rest g) f)

lem4 {f = f}{g} =
proof
rest (comp g f)
≡〈 cong (λ f’ → rest (comp g f’)) (sym R1) 〉
rest (comp g (comp f (rest f)))
≡〈 cong rest (sym ass) 〉
rest (comp (comp g f) (rest f))
≡〈 sym R3 〉
comp (rest (comp g f)) (rest f)

108

≡〈 R2 〉
comp (rest f) (rest (comp g f))
≡〈 R3 〉
rest (comp f (rest (comp g f)))
≡〈 cong rest (sym R4) 〉
rest (comp (rest g) f)
�

Notice how equational proofs in Agda look literally like those one would
write by hand. E.g., compare the formal proof of lem4 given above with
the following pen-and-paper proof:

g ◦ f = g ◦ (f ◦ f) = (g ◦ f) ◦ f = g ◦ f ◦ f = f ◦ g ◦ f = f ◦ g ◦ f = g ◦ f

Restriction categories allow us to work with partial maps in a total set-
ting. However, we still need to be able to identify total maps. In a restriction
category, a total map is a map whose restriction is the identity map.

record Tot (A B : Obj) : Set where
field

hom : Hom A B
totProp : rest hom ≡ iden {A}

We need a lemma totEq stating that two total maps are equal, if their
underlying morphisms are equal. This is a consequence of uniqueness of
identity proofs.

totEq : ∀{A B}{f g : Tot A B} → hom f ≡ hom g → f ≡ g
totEq p = ?

The category Total of total maps in X inherits its identity idTot and com-
position compTot from the underlying category Xcat, but we must prove
that the totality property totProp is satisfied. For the identity map idTot,
the condition follows from the facts that identity maps are monic (idMono)
and monic maps are total (lem1).

idTot : ∀{A} → Tot A A
idTot = record{

hom = iden;
totProp = lem1 idMono}

Given two total maps g and f, the totality condition compTotProp for the
composite compTot g f follows from totality of g and f and lem4.

109

compTotProp : ∀{A B C}{g : Tot B C}{f : Tot A B}
→ rest (comp (hom g) (hom f)) ≡ iden

compTotProp {g = g}{f} =
proof
rest (comp (hom g) (hom f))
≡〈 lem4 〉
rest (comp (rest (hom g)) (hom f))
≡〈 cong (λ h → rest (comp h (hom f))) (totProp g) 〉
rest (comp iden (hom f))
≡〈 cong rest idl 〉
rest (hom f)
≡〈 totProp f 〉
iden
�

compTot : ∀{A B C}(g : Tot B C)(f : Tot A B) → Tot A C
compTot g f = record{

hom = comp (hom g) (hom f);
totProp = compTotProp}

Having defined identities and composition, we can now define the category
of total maps. The totEq lemma reduces the laws of a category to those of
the underlying category.

Total : Cat
Total = record{

Obj = Obj;
Hom = Tot;
iden = idTot;
comp = compTot;
idl = totEq idl;
idr = totEq idr;
ass = totEq ass}

A.6 Soundness

The next step in the formalization is the soundness theorem, which states
that any partial map category is a restriction category. In order to prove it,
we equip the given partial map category with a restriction category structure
(a restriction operator, proofs of R1, R2, R3 and R4). We perform the
construction in two steps: first on spans and then we port it to quotiented
spans, as we did in the definition of partial map categories. We fix a category
X and a stable system of monics M. The restriction on spans simply copies
the left leg of a span into the right leg position.

110

restSpan : ∀{A B} → Span A B → Span A A
restSpan mf = record{

A’ = A’ mf;
mhom = mhom mf;
fhom = mhom mf;
m∈sys = m∈sys mf}

We require that restriction respects the equivalence relation on spans. This
is easy: the left commuting triangle q is copied to the right.

∼congRestSpan : ∀{A B}{mf ng : Span A B} → mf ∼Span∼ ng
→ restSpan mf ∼Span∼ restSpan ng

∼congRestSpan eq = record{
s = s eq;
sIso = sIso eq;
leftTr∼ = leftTr∼ eq;
rightTr∼ = leftTr∼ eq}

We port the restriction operator on spans to quotiented spans. We post-
compose restSpan with box, obtaining a map from Span A B to QSpan A A.
Then we lift this map. Compatibility follows from axiom sound and the
above proved congruence ∼congRestSpan.

qrestSpan : ∀{A B} → QSpan A B → QSpan A A
qrestSpan = lift (box ◦ restSpan) (sound ◦ ∼congRestSpan)

The function qrestSpan is propositionally equal to box (restSpan mf),
when applied to a term box mf.

liftβRest : ∀{A B}{mf : Span A B}
→ qrestSpan (box mf) ≡ box (restSpan mf)

liftβRest =
liftβ _ (box ◦ restSpan) (sound ◦ ∼congRestSpan) _

To prove R1 for the partial map category, we will use the basic fact that
one can construct the following pullback from any monic map.

A′

A′ � p

m

A′nN

m
~~

A

monicPullback : ∀{A’ A}{m : Hom A’ A} → Mono m → Pullback m m
monicPullback p = ?

111

R1 states that composing a map f with its restriction is the same as f. We
prove this property up to equivalence of spans first. Let mf : Span A B be
a span. Let A’ be the object, m and f the left and right legs of mf, and m∈ the
proof that m is in the stable system of monics. Note that there are two pull-
backs of m along itself: (i) the pullback monicPullback (mono∈sys m∈),
where mono∈sys m∈ is a proof that m is monic; (ii) the pullback given by
the fact that m is in the stable system of monics, and therefore the pullback
of m along any map exists. We call W the object, h and k the two maps that
complete the square underlying the pullback (ii), and scom the proof that
the square commutes.

W

h

k

��

A′

A′ � p

m

A′nN

m
~~

A

We need to prove that the spans compSpan mf (restSpan mf) and mf
are in the relation ∼Span∼. Remember that the first span is constructed
as follows:

WnN
h

~~

k

A′oO

m

~~

p�

m

B′nN
m

~~

f

A A B

Therefore, we have to find an isomorphism between W and A’ that makes
the two generated diagrams commute.

WnN
h

~~

k

o
��

A′oO
m

~~

A′iI

m
vv

f
((

B′

f

A B

The map h does the job. The left diagram commutes by reflexivity. The
right diagram commutes because h ≡ k, and this follows from scom and m

112

being a monic map. Note moreover that h is the unique map between the
pullbacks (i) and (ii), and therefore it is an isomorphism.

R1Span : ∀{A B}{mf : Span A B}
→ compSpan mf (restSpan mf) ∼Span∼ mf

R1Span {mf = mf} =
let p = proj1 (pul∈sys (mhom mf) (m∈sys mf))

sq’ = sq p
in record{
s = h sq’;
sIso =

pullbackIso (monicPullback (mono∈sys (m∈sys mf))) p;
leftTr∼ = refl;
rightTr∼ =

cong (comp (fhom mf)) (mono∈sys (m∈sys mf) (scom sq’))}

The restriction qrestSpan is defined using lift, therefore, when applied
to an argument box mf, it is propositionally equal to box (restSpan mf).
Having proved R1 up to _∼Span∼_, we can port this proof to _≡_.

qR1Span : ∀{A B}{x : QSpan A B}
→ qcompSpan x (qrestSpan x) ≡ x

qR1Span {x = x} =
lift (λ x → qcompSpan x (qrestSpan x) ≡ x)

(λ mf →
proof
qcompSpan (box mf) (qrestSpan (box mf))
≡〈 cong (qcompSpan (box mf)) liftβRest 〉
qcompSpan (box mf) (box (restSpan mf))
≡〈 liftβComp 〉
box (compSpan mf (restSpan mf))
≡〈 sound R1Span 〉
box mf
�)

(fixtypes ◦ sound)
x

The proofs of the laws R2, R3 and R4 are performed in a similar way. This
completes the proof of soundness (constructing a restriction category from
a partial map category).

RestPar : RestCat
RestPar = record{

cat = Par;
rest = qrestSpan;

113

R1 = qR1Span;
R2 = ?;
R3 = ?;
R4 = ?}

A.7 Idempotents

We fix a category X. Idempotent maps in X are represented as records
with three fields: an object E, an endomap e on E and a proof idemLaw
of comp e e ∼= e. Our main use of idempotents will be as objects in a
category so we choose to define them as below as opposed to as a predicate
on maps (see Mono).

record Idem : Set where
field

E : Obj
e : Hom E E
idemLaw : comp e e ∼= e

The identity map on any object is an idempotent.

idIdem : {A : Obj} → Idem
idIdem {A} = record{

E = A;
e = iden;
idemLaw = idl}

A class of idempotents IdemClass is given primarily in terms of a mem-
bership relation (see stable systems of monics StableSys). The second
condition states that all identities are members.

record IdemClass : Set where
field
∈class : Idem → Set
id∈class : ∀{A} → ∈class (idIdem {A})

A morphism between idempotents i and i’ is a map between the underlying
objects paired with a proof of an equation.

record IdemMor (i i’ : Idem) : Set where
field

imap : Hom (E i) (E i’)
imapLaw : comp (e i’) (comp imap (e i)) ∼= imap

Two such morphisms are equal if their underlying maps are equal. This is
a consequence of uniqueness of identity proofs.

114

idemMorEq : {i i’ : Idem}{f g : IdemMor i i’}
→ imap f ∼= imap g → f ∼= g

idemMorEq p = ?

Every morphism f : Hom A B in the category X lifts to a morphism between
idempotents idIdem {A} and idIdem {B}, since
comp iden (comp f iden) ∼= f.

idemMorLift : {A B : Obj}(f : Hom A B)
→ IdemMor (idIdem {A}) (idIdem {B})

idemMorLift f = record{
imap = f;
imapLaw =

proof
comp iden (comp f iden)
∼=〈 idl 〉
comp f iden
∼=〈 idr 〉
f
�}

In the proof of Lemma 2, we need the following property of a map f between
idempotents i and i’: precomposing imap f with e i is equal to imap f.
This is a direct consequence of the equality imapLaw f.

idemMorPrecomp : {i i’ : Idem}{f : IdemMor i i’}
→ comp (imap f) (e i) ∼= imap f

idemMorPrecomp {i}{i’}{f} =
proof
comp (imap f) (e i)
∼=〈 cong (λ y → comp y (e i)) (sym (imapLaw f)) 〉
comp (comp (e i’) (comp (imap f) (e i))) (e i)
∼=〈 cong (λ y → comp y (e i)) (sym ass) 〉
comp (comp (comp (e i’) (imap f)) (e i)) (e i)
∼=〈 ass 〉
comp (comp (e i’) (imap f)) (comp (e i) (e i))
∼=〈 cong (comp (comp (e i’) (imap f))) (idemLaw i) 〉
comp (comp (e i’) (imap f)) (e i)
∼=〈 ass 〉
comp (e i’) (comp (imap f) (e i))
∼=〈 imapLaw f 〉
imap f
�

Analogously, one can prove that postcomposing imap f with e i’ is equal
to imap f.

115

idemMorPostcomp : {i i’ : Idem}{f : IdemMor i i’}
→ comp (e i’) (imap f) ∼= imap f

idemMorPostcomp {i}{i’} f =
proof
comp (e i’) (imap f)
∼=〈 cong (comp (e i’)) (sym (imapLaw f)) 〉
comp (e i’) (comp (e i’) (comp (imap f) (e i)))
∼=〈 sym ass 〉
comp (comp (e i’) (e i’)) (comp (imap f) (e i))
∼=〈 cong (λ y → comp y (comp (imap f) (e i))) (idemLaw i’) 〉
comp (e i’) (comp (imap f) (e i))
∼=〈 imapLaw f 〉
imap f
�

Idempotents and morphisms between them form a category. Identities
are given by the idempotents themselves.

idIdemMor : {i : Idem} → IdemMor i i
idIdemMor {i} = record{

imap = e i;
imapLaw =

proof
comp (e i) (comp (e i) (e i))
∼=〈 cong (comp (e i)) (idemLaw i) 〉
comp (e i) (e i)
∼=〈 idemLaw i 〉
e i
�}

Composition is inherited from the underlying category.

compIdemMor : {i1 i2 i3 : Idem}
→ (g : IdemMor i2 i3)(f : IdemMor i1 i2)
→ IdemMor i1 i3

compIdemMor {i1}{i2}{i3} g f = record{
imap = comp (imap g) (imap f);
imapLaw =

proof
comp (e i3) (comp (comp (imap g) (imap f)) (e i1))
∼=〈 cong (comp (e i3)) ass 〉
comp (e i3) (comp (imap g) (comp (imap f) (e i1)))
∼=〈 cong (λ y → comp (e i3) (comp (imap g) y))

idemMorPrecomp 〉

116

comp (e i3) (comp (imap g) (imap f))
∼=〈 sym ass 〉
comp (comp (e i3) (imap g)) (imap f)
∼=〈 cong (λ y → comp y (imap f)) idemMorPostcomp 〉
comp (imap g) (imap f)
�}

The associativity law follows directly from the associativity law of the un-
derlying category. The identity laws do not follow directly, since identities
in this new category are idempotents, but they are immediate consequences
of idemMorPrecomp and idemMorPostcomp.

SplitCat : IdemClass → Cat
SplitCat E = record{

Obj = Σ Idem (∈class E);
Hom = λ ip jq → IdemMor (proj1 ip) (proj1 jq);
iden = idIdemMor;
comp = compIdemMor;
idl = idemMorEq idemMorPostcomp;
idr = idemMorEq idemMorPrecomp;
ass = idemMorEq ass}

Given a class of idempotents E, our category X is a full subcategory of
SplitCat E. We define the inclusion functor InclSplitCat. It sends an
object A to its corresponding identity idIdem {A}, which belongs to E by
definition of class of idempotents, and it sends a morphism f to its lifting
idemMorLift f. The functor laws hold trivially.

InclSplitCat : (E : IdemClass) → Fun X (SplitCat E)
InclSplitCat E = record{

OMap = λ A → idIdem {A} , id∈class E;
HMap = idemMorLift;
fid = idemMorEq refl;
fcomp = idemMorEq refl}

Since InclSplitCat is basically identity on morphisms, it is easy to show
that it is a full and faithful functor.

FullInclSplitCat : {E : IdemClass} → Full (InclSplitCat E)
FullInclSplitCat {f = f} = imap f , idemMorEq refl

FaithfulInclSplitCat : {E : IdemClass}
→ Faithful (InclSplitCat E)

FaithfulInclSplitCat refl = refl

117

Moreover, the category SplitCat E is a restriction category, if the origi-
nal category X is a restriction category. So let X be a restriction category and
Xcat its underlying category. We describe formally the restriction operation
on SplitCat E. Given a morphism f : IdemMor i i’ in SplitCat E, the
restriction of f has comp (rest (imap f)) (e i) as underlying morphism
in Xcat (this corresponds to the ‘hat’ operation described in Lemma 2).

restIdemMor : {i i’ : Idem} → IdemMor i i’ → IdemMor i i
restIdemMor {i} f = record{

imap = comp (rest (imap f)) (e i);
imapLaw =

proof
comp (e i) (comp (comp (rest (imap f)) (e i)) (e i))
∼=〈 cong (comp (e i)) ass 〉
comp (e i) (comp (rest (imap f)) (comp (e i) (e i)))
∼=〈 cong (comp (e i) ◦ comp (rest (imap f))) (idemLaw i) 〉
comp (e i) (comp (rest (imap f)) (e i))
∼=〈 cong (comp (e i)) R4 〉
comp (e i) (comp (e i) (rest (comp (imap f) (e i))))
∼=〈 sym ass 〉
comp (comp (e i) (e i)) (rest (comp (imap f) (e i)))
∼=〈 cong (λ y → comp y (rest (comp (imap f) (e i))))

(idemLaw i) 〉
comp (e i) (rest (comp (imap f) (e i)))
∼=〈 sym R4 〉
comp (rest (imap f)) (e i)
�}

The restriction category axioms are easily provable. For example, R1 is
a direct consequence of X being a restriction category and the property
idemMorPrecomp. Remember that two parallel morphisms in SplitCat E
are equal, if their underlying maps in Xcat are equal (a property we named
idemMorEq).

R1Split : {E : IdemClass}{ip jq : Σ Idem (∈class E)}
→ {f : IdemMor (proj1 ip) (proj1 jq)}
→ compIdemMor f (restIdemMor f) ∼= f

R1Split {ip = i , p}{f = f} =
idemMorEq

(proof
comp (imap f) (comp (rest (imap f)) (e i))
∼=〈 sym ass 〉
comp (comp (imap f) (rest (imap f))) (e i)
∼=〈 cong (λ y → comp y (e i)) R1 〉

118

comp (imap f) (e i)
∼=〈 idemMorPrecomp 〉
imap f
�)

Proofs for R2, R3 and R4 are performed in a similar way.

RestSplitCat : (E : IdemClass) → RestCat
RestSplitCat E = record{

cat = SplitCat E;
rest = restIdemMor;
R1 = R1Split;
R2 = ?;
R3 = ?;
R4 = ?}

Lemma 2 can now be proved. Any restriction category X embeds fully in
the restriction category RestSplitCat E for any class of idempotents E.

InclRestSplitCat : (E : IdemClass)
→ RestFun X (RestSplitCat E)

InclRestSplitCat E = record{
fun = InclSplitCat E;
frest = idemMorEq idr}

A.8 Restriction idempotents

We fix a restriction category X with underlying category Xcat. We define
a predicate isRestIdem stating that an idempotent is a restriction idem-
potent. An idempotent is a restriction idempotent, if it is equal to its
restriction.

isRestIdem : Idem → Set
isRestIdem i = e i ∼= rest (e i)

Restriction idempotents define a class of idempotents restIdemClass. Iden-
tity maps belong to the class, since they are monic (idMono) and monic maps
are total (lem1).

restIdemClass : IdemClass
restIdemClass = record{
∈class = isRestIdem;
id∈class = sym (lem1 idMono)}

A splitting of an idempotent i on an object E is a record consisting of
an object B, a section from B to E, a retraction from E to B and proofs of
two equations.

119

record Split (i : Idem) : Set where
field

B : Obj
sec : Hom B (E i)
retr : Hom (E i) B
splitLaw1 : comp sec retr ∼= e i
splitLaw2 : comp retr sec ∼= iden {B}

A restriction category where all restriction idempotents are split is called a
split restriction category.

record SplitRestCat : Set where
field

rcat : RestCat
restIdemSplit : (i : Idem (cat rcat))
→ isRestIdem rcat i → Split (cat rcat) i

Lemma 3 states that the restriction category RestSplitCat restIdemClass
(built from a restriction category X) is a split restriction category. For read-
ability and simplicity reasons, we do not show the proof that every restric-
tion idempotent is split.

SplitRestSplitCat : SplitRestCat
SplitRestSplitCat = record{

rcat = RestSplitCat restIdemClass;
restIdemSplit = ?}

A.9 Completeness

In order to state the completeness theorem (Theorem 4.2), we construct the
stable system of monics SectionsOfRestIdem given by the sections of the
restriction idempotents of a particular split restriction category. We fix a
split restriction category X with underlying restriction category Xrcat and
underlying category Xcat. First, we define a record SectionOfRestIdem
parametrized by a total map s. The proposition SectionOfRestIdem s
holds if and only if hom s is a section of a restriction idempotent.

record SectionOfRestIdem {B E} (s : Tot B E) : Set where
field

e : Hom E E
restIdem : e ∼= rest e
r : Hom E B
splitLaw1 : comp (hom s) r ∼= e
splitLaw2 : comp r (hom s) ∼= iden {B}

120

The predicate SectionOfRestIdem defines a stable system of monics in
the subcategory of total maps in rcat. We show that every isomorphism
is a section of a restriction idempotent. We do not show the proof that
every map in the system is monic and the proofs that the system is closed
under composition and pullback. Note that identity maps are restriction
idempotents and every isomorphism is the section of an identity map.

iso∈sysSectionOfRestIdem : ∀{B E}{s : Tot B E} → Iso s
→ SectionOfRestIdem s

iso∈sysSectionOfRestIdem i = record{
e = iden;
restIdem = sym (lem1 (idMono cat));
r = hom (inv i);
splitLaw1 = cong hom (rinv i);
splitLaw2 = cong hom (linv i)}

SectionOfRestIdemSys : StableSys Total
SectionOfRestIdemSys = record{
∈sys = SectionOfRestIdem;
mono∈sys = ?;
iso∈sys = iso∈sysSectionOfRestIdem;
comp∈sys = ?;
pul∈sys = ?}

We now move to the formalization of the completeness theorem (Theo-
rem 4.2) for a particular split restriction category X with underlying restric-
tion category Xrcat and underlying category Xcat. Let Par be the partial
map category over the category of total maps Total and stable system of
monics SectionsOfRestIdemSys, and RestPar the restriction category on
top of Par given by soundness. We show the construction of the functors
Funct : Fun Xcat Par and Funct2 : Fun Par Xcat. These functors can
be lifted to restriction functors RFunct and RFunct2 and they are each other
inverses in the category of restriction categories and restriction functors,
therefore showing that Xrcat and RestPar are isomorphic in this category.

The functor Funct is identity on objects. The mapping of maps of the
functor Funct takes a map f : Hom A C in Xcat and returns a map in
Par, i.e., an element of QSpan A C. We first define a function HMap1 that
constructs a span between A and C. The mapping of maps of Funct will
be abs ◦ HMap1. The map rest f is a an idempotent (lem2), moreover a
restriction idempotent (lem3), therefore it splits.

restIdemIdemGen : ∀{A C}(f : Hom A C) → Idem
restIdemIdemGen {A} f = record{

E = A;

121

e = rest f;
idemLaw = lem2}

restIdemSplitGen : ∀{A C}(f : Hom A C)
→ Split (restIdemIdemGen f)

restIdemSplitGen f =
restIdemSplit (restIdemIdemGen f) (sym lem3)

For the left leg of the span, we take the section sec (restIdemSplitGen f),
which is total. For the right leg, we take the map
comp f (sec (restIdemSplitGen f)), which is also total.

leftLeg : ∀{A C}(f : Hom A C)
→ Tot (B (restIdemSplitGen f)) A

leftLeg f = record{
hom = sec (restIdemSplitGen f);
totProp = ?}

rightLeg : ∀{A C}(f : Hom A C)
→ Tot (B (restIdemSplitGen f)) C

rightLeg f = record{
hom = comp f (sec (restIdemSplitGen f));
totProp = ?}

This concludes the definition of the functor Funct. The total map leftLeg f
is the section of a restriction idempotent, i.e., there exists an element of type
SectionOfRestIdem (leftLeg f).

HMap1 : ∀{A C}(f : Hom A C) → Span A C
HMap1 f = record{

A’ = B (restIdemSplitGen f);
mhom = leftLeg f;
fhom = rightLeg f;
m∈sys = ?}

HMap1 is required to preserve identities and composition. Here we show
that it preserves composition up to _∼Span∼_. Let f : Hom A C and
g : Hom C D. We prove that the span HMap1 (comp g f) is related to
compSpan (HMap1 g) (HMap1 f) by _∼Span∼_. Since the restriction idem-

122

potents split, in particular we have the three following diagrams.

A

f

��

r1

B1N n

s1~~
A

C

g

��

r2

B2N n

s2~~
C

A

g◦f

��

r3

B3N n

s3~~
A

The span HMap1 (comp g f) is

B3nN
s3

~~

g◦f◦s3

A D

while the span compSpan (HMap1 g) (HMap1 f) is

WnN
h

}}

k

!!
B1nN

s1

~~

f◦s1

!!

B2nNs2

}}

g◦s2

A C D

Notice that the map h is in the stable system of monics, i.e. it is the
section of a restriction idempotent. This is true because h is the pullback
of s2, which is in the stable system of monics. In particular, there exists
a restriction idempotent w : Hom W W and a map r : Hom B1 W such that
the following triangle commutes.

B1

w

��

r

!! !!
WN n

h}}
B1

Our goal is to find an isomorphism u : Hom B3 W that makes the two gen-
erated triangles commute. It is not difficult to show that the composite
map

u = B3
s3 // A

r1 // B1
r //W

does the job. As usual, we refer to the Agda formalization for more details.
We obtain a functor Funct between the categories Xcat and Par.

123

Funct : Fun Xcat Par
Funct = record{

OMap = id;
HMap = abs ◦ HMap1;
fid = ?;
fcomp = ?}

The functor Funct also preserves the restriction operation. Therefore it is
a restriction functor.

RFunct : RestFun Xrcat RestPar
RFunct = record{

fun = Funct;
frest = ?}

The functor Funct2 is also identity on objects. The mapping of maps
of the functor Funct2 takes an element of QSpan A C into a map between
A and C. We first define a function HMap2 from Span A C into Hom A C. We
fix a span mf. Let A’ the object, m and f be the left and right legs of mf
(which are total maps), and m∈ be the proof that m is in the stable system
of monics, i.e., m∈ states that the total map m is the section of a restriction
idempotent. The morphisms hom f : Hom A’ C and r m∈ : Hom A A’ are
composable, and their composition defines HMap2.

HMap2 : ∀{A C} → Span A C → Hom A C
HMap2 mf = comp (hom (fhom mf)) (r (m∈sys mf))

HMap2 is compatible with the equivalence relation ∼Span∼ on Span A C.
So it can be lifted to a function qHMap2 on the quotient QSpan A C. This
concludes the description of the functor Funct2.

qHMap2 : ∀{A C} → QSpan A C → Hom A C
qHMap2 {A}{C} = lift {A}{C} HMap2 ?

The function qHMap2 is propositionally equal to HMap2 mf, when applied to
a term abs nm.

liftβqHMap2 : ∀{A C}{mf : Span A C}
→ qHMap2 (abs mf) ∼= HMap2 mf

liftβqHMap2 = liftβ _ HMap2 ? _

It is not difficult to see that qHMap2 preserves identities and composition.
We obtain a functor Funct2 between Par and Xcat.

Funct2 : Fun Par Xcat
Funct2 = record{

OMap = id;

124

HMap = qHMap2;
fid = ?;
fcomp = ?}

The functor Funct2 preserves the restriction operation. Therefore it is a
restriction functor.

RFunct2 : RestFun RestPar Xrcat
RFunct2 = record{

fun = Funct2;
frest = ?}

The functors RFunct and RFunct2 are each other inverses. First, con-
sider mf : Span A C. We show that HMap1 (HMap2 mf) ~Span~ mf. Let
m : Hom A1 A be the left leg of mf and f : Hom A1 C the right leg. The
map m is the section of a restriction idempotent. It is possible to prove that
it is the section of rest r1, where r1 is the retraction of the splitting. In
particular, the following diagram commutes.

A

r1

��

r1

A1N n

m
~~

A

Let n : Hom A2 A be the left leg of HMap1 (HMap2 mf), the right leg is
comp (comp f r1) n by construction. The map n is the section of the re-
striction idempotent rest (comp f r1), and the latter is equal to rest r1

because f is total. In particular, there exists a map r2 : Hom A A2 making
the following diagram commute.

A

r1

��

r2

A2N n

n
~~

A

It is not difficult to prove that the map comp r1 n : Hom A2 A1 is an iso-
morphism between the spans HMap1 (HMap2 mf) and mf. This construction
lifts straightforwardly to the quotient QSpan A C.

HIso1 : ∀{A C}(mf : QSpan A C) → abs (HMap1 (qHMap2 mf)) ∼= mf
HIso1 mf = ?

125

On the other hand, consider a map f : Hom A C. The map HMap2 (HMap1 f)
is given by comp (comp f s) r, where s and r are the section and the re-
traction of the splitting of rest f.

HIso2 : ∀{A C}(f : Hom A C) → qHMap2 (abs (HMap1 f)) ∼= f
HIso2 f =

let open Split (restIdemSplitGen f)
in

proof
qHMap2 (abs (HMap1 f))
∼=〈 qHMap2liftβ 〉
comp (comp f s) r
∼=〈 ass 〉
comp f (comp s r)
∼=〈 cong (comp f) splitLaw1 〉
comp f (rest f)
∼=〈 R1 〉
f
�

This completes the proof of Theorem 4.2: every split restriction category is
isomorphic to a partial map category in the category of restriction categories
and restriction functors.

126

Acknowledgements

My sincere gratitude goes to my supervisors Tarmo Uustalu and James
Chapman. They have been a great source of inspiration for me. My personal
approach towards research was heavily shaped by our numerous discussions.
Their enthusiasm has always been a strong driving power.

Big thanks go to my girlfriend Maria, especially for her extraordinary pa-
tience and optimism. She single-handedly revolutionized my life in Estonia,
and this had a huge impact on my work and on this thesis in particular.

Very special thanks go to my daughter Anita. Her curiosity made me
more curious, her joyfulness made me more joyful and her getting up at an
ungodly hour made my days longer and more productive.

Huge thanks go to my parents Barbara and Nicola, for their uncondi-
tional support and encouragement.

Many thanks also go to my colleagues at the Institute of Cybernetics,
in particular the other members of the Logic and Semantics group: Silvio,
Wolfgang and Hendrik. Special thanks go to Denis for the many discussions
and suggestions.

I would also like to thank Martin Escardó for suggesting the idea of
constructing the quotiented delay monad using the axiom of propositional
choice.

My research was supported by the ERDF funded national centre of
excellence EXCS (3.2.0101.08-0013) and national ICT programme project
Coinduction (3.2.1201.13-0029), the Estonian Ministry of Education and
Research institutional research grant no. IUT33-13 and the Estonian Re-
search Council personal research grant no. PUT763. In addition, I received
support from the Estonian Science Foundation project grant no. 9398, the
ESF funded ICT doctoral school (1.2.0401.09-0081) and the Estonian IT
Academy programme.

127

Abstract

In this thesis, we continue the study of Capretta’s coinductive delay monad
in Martin-Löf type theory. The delay monad constitutes a viable construc-
tive alternative to the maybe monad and allows the implementation of
possibly non-terminating computations. Its applications range from the
representation of general recursive functions to the formalization of domain
theory, from the operational semantics for While languages to normalization
by evaluation.

In all these applications, one is only interested in the terminating/non-
terminating behavior of a computation, and not in its rate of convergence.
This is equivalent to working with the delay datatype quotiented by weak
bisimilarity. Our first main result is the discovery that the delay datatype
quotiented by weak bisimilarity does not inherit the monad structure imme-
diately. This has to do with the coinductive nature of the delay datatype
and the bad interaction between inductive-like quotients in the style of
Hofmann and infinitary types such as non-wellfounded trees. In order to
construct a monad structure on the delay type, we need to postulate ad-
ditional classical or semi-classical principles, such as the limited principle
of omniscience or a certain weak version of the axiom of countable choice.
These principles are also necessary for proving that the quotiented delay
monad delivers free ω-complete pointed partial orders.

We can say that the quotiented delay monad is an useful tool for modeling
partiality as an effect in type theory. Our second main result is to make
the latter statement rigorous. We introduce a class of monads for encoding
non-termination as an effect. A monad in this class is named a ω-complete
pointed classifying monad, which formally is a monad whose Kleisli category
is a restriction category à la Cockett and Lack, which moreover is ωCPPO-
enriched with respect to the restriction order and in which pure maps are
total. We show that the quotiented delay monad is the initial ω-complete
pointed classifying monad in type theory. This universal property singles it
out from among other examples of such monads, for examples from other
partial map classifiers specified in terms of countably-complete dominances.

From a more general point of view, we ask ourselves whether type-
theoretical approaches to partiality could possibly benefit from category-
theoretical ones. Although we do not have a complete answer to this ques-

129

tion yet, we present the first steps in this direction. Our last main result
consists of an Agda formalization of the first chapters of the theory of Cock-
ett and Lack’s restriction categories. Notably, it includes the proof of their
completeness with respect to partial map categories, the latter being the
standard generalization of sets and partial functions to more general cat-
egories. We hope that our development can become the cornerstone of a
flexible framework for partiality in dependently typed programming lan-
guages, allowing one to program and reason about partial functions on
different levels of abstraction.

130

Resümee

Käesolevas doktoritöös uurime Capretta koinduktiivset hilistusmonaadi
Martin-Löfi tüübiteoorias. Hilistusmonaad on optsioonimonaadi konstruk-
tiivne alternatiiv, mis lubab tüübiteoorias väljendada mittetermineeruvaid
arvutusi. Hilistusmonaadi rakendused ulatuvad üldrekursiivsete funktsioo-
nide esitamisest domeeniteooria formaliseerimiseni, While’i laadsete keete
operatsioonsemantikast normaliseerimiseni väärtustamise kaudu.

Kõigile neile rakendustele on iseloomulik, et huvi tuntakse ainult arvu-
tuse termineeruvuse või mittetermineeruvuse vastu, termineeruvuse kiirus
ei ole oluline. See vastab hilistusmonaadi faktoriseerimisele nõrga bisimi-
laarsuse suhtes. Meie esimeseks tulemuseks on avastus, et nõrga bisimilaar-
suse suhtes faktoriseeritud hilistusfunktor ei päri vahetult selle monaadi-
list struktuuri. See on tingitud hilistusfunktori koinduktiivsest loomust ja
asjaolust, et Hofmanni stiilis faktortüübid ning infinitaarsed andmetüübid
nagu fundeerimata puude tüübid ei tööta koos hästi. Selleks, et faktorisee-
ritud hilistusfunktoril rekonstrueerida monaadi struktuur, peame postulee-
rima klassikalisi või poolklassikalisi printsiipe nagu piiratud kõigeteadmise
printsiip või nõrk loenduva valiku aksioom. Ilma neid printsiipe eeldamata ei
saa ka tõestada, et faktoriseeritud hilistusmonaad tagastab vabu ω-täielikke
punkteeritud osalisi järjestusi.

Hilistusmonaad on niisiis sobiv tööriist mittetermineeruvuse või osalisu-
se tüübiteoreetiliseks modelleerimiseks efektina. Meie teine tulemus annab
sellele sobilikkusele täpse karakterisatsiooni. Me toome sisse klassi monaade
mittetermineeruvuse kodeerimiseks efektina, nn. ω-täielikud punkteeritud
klassifitseerivad monaadid. Need on monaadid, mille Kleisli kategooria on
Cocketti ja Lacki mõttes kitsenduste kategooria, mis on ωCPPO-rikastatud
kitsendusjärjestuse suhtes ja milles puhtad morfismid on totaalsed. Me näi-
tame, et faktoriseeritud hilistusmonaad on initsiaalne ω-täielik punkteeri-
tud klassifitseeriv monaad tüübiteoorias. See universaalomadus eristab teda
muudest sarnastest monaadidest, nt teistest loenduvalt täielike domineerin-
gute kaudu defineeritavatest osaliste morfismide klassifikaatoritest.

Võib küsida, millist praktilist kasu võivad mittetermineeruvuse kategoo-
riateoreetilised käsitlused tüübiteooria jaoks pakkuda. Kuigi meil pole selle-
le küsimusele täielikku vastust, esitleme esimesi samme selle suunas. Meie
viimaseks tulemuseks on Cocketti ja Lacki kitsenduste kategooriate teooria

131

esimeste peatükkide formalisatsioon interaktiivse tõestusassistendiga Agda.
Olulise komponendina sisaldab see arendus kitsenduste kategooriate täielik-
kuse teoreemi osaliste morfismide kategooriate suhtes. Viimased kujutavad
endast hulkade ja osaliste funktsioonide kategooria konstruktsiooni stan-
dardset üldistust üldistele kategooriatele. Me loodame, et sellest formali-
satsioonist kasvab välja paindlik raamistik mittetermineeruvuse modelleeri-
miseks sõltuvalt tüübitud programmeerimiskeeltes, milles mittetermineeru-
vust saab programmeerida ja selle üle arutleda eri abstraktsioonitasemetel.

132

Curriculum Vitae

1. Personal data
Name Niccolò Veltri
Date and place of birth 26 August 1988, Firenze, Italy
Citizenship Italian
E-mail address niccolo@cs.ioc.ee

2. Education
Educational institution Period Degree
Tallinn University of
Technology

2012–2017 PhD studies

University of Florence 2010–2012 Master of Science
University of Florence 2007–2010 Bachelor of Science

3. Language skills
Language Level
Italian native
English fluent

4. Special courses
Period Event
5–10 Mar. 2017 22nd Estonian Winter School in Computer

Science
28 Feb.–4 Mar. 2016 21st Estonian Winter School in Computer

Science
15–27 June 2015 Oregon Programming Languages Summer

School
1–6 Mar. 2015 20th Estonian Winter School in Computer

Science
20–25 July 2014 “Proof, Truth, Computation” Summer

School
2–7 Mar. 2014 19th Estonian Winter School in Computer

Science
8–12 Apr. 2013 Midlands Graduate School 2013
3–8 Mar. 2013 18th Estonian Winter School in Computer

Science

133

5. Professional employment

Period Organisation Position
2012–... Inst. of Cybernetics at TUT junior researcher

6. Research activity

Type theory, constructive mathematics, formalization of mathematics,
category theory.

7. Publications

1. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay
monad by weak bisimilarity. In: Leucker, M., Rueda, C., Va-
lencia, F. D. (eds.) Proc. of 12th Int. Coll. on Theoretical
Aspects of Computing, ICTAC 2015, Lect. Notes in Comput.
Sci., v. 9399, pp. 110–125, Springer (2015)

2. Veltri, N.: Two set-based implementations of quotients in type
theory. In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.)
Proc. of 14th Symposium on Programming Languages and Soft-
ware Tools, SPLST 2015, CEUR Workshop Proceedings, v. 1525,
pp. 194–205, CEUR-WS.org (2015)

3. Firsov, D., Uustalu, T., Veltri, N.: Variations on Noetherianness.
In: Atkey, R., Krishnaswami, N. (eds.) Proc. of 6th Wksh.
on Mathematically Structured Functional Programming, MSFP
2016, Electron. Proc. in Theor. Comput. Sci., v. 207, pp. 76–88,
Open Publishing Assoc. (2016)

4. Chapman, J., Uustalu, T., Veltri, N.: Formalizing restriction
categories. J. Formalized Reasoning, 10(1), 1–36 (2017)

5. Uustalu, T., Veltri, N.: Finiteness and rational sequences, con-
structively. J. Funct. Program., 27, article e13 (2017)

134

Elulookirjeldus

1. Isikuandmed
Ees- ja perekonnanimi Niccolò Veltri
Sünniaeg ja -koht 26.08.1988, Firenze, Itaalia
Kodakondsus Itaalia
E-posti aadress niccolo@cs.ioc.ee

2. Hariduskäik
Õppeasutus Õppimise aeg Haridus
Tallinna Tehnikaülikool 2012–2017 Doktoriõpe
Firenze Ülikool 2010–2012 Magistrikraad
Firenze Ülikool 2007–2010 Bakalaureusekraad

3. Keelteoskus
Keel Tase
Itaalia keel emakeel
Inglise keel kõrgtase

4. Täiendusõpe

Õppimise aeg Täiendusõppe korraldaja nimetus
5.–10.03.17 22nd Estonian Winter School in Computer

Science
28.02.–4.03.16 21st Estonian Winter School in Computer

Science
15.–27.06-15 Oregon Programming Languages Summer

School
1.–6.03.15 20th Estonian Winter School in Computer

Science
20.–25.07.14 “Proof, Truth, Computation” Summer

School
2.–7.03.14 19th Estonian Winter School in Computer

Science
8.–12.04.13 Midlands Graduate School 2013
3.–8.03.13 18th Estonian Winter School in Computer

Science

135

5. Teenistuskäik
Töötamise aeg Tööandja nimetus Ametikoht
2012–... TTÜ Küberneetika Instituut nooremteadur

6. Teadustegevus

Tüübiteooria, konstruktiivne matemaatika, matemaatika formalisee-
rimine, kategooriateooria.

7. Publikatsioonid

1. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay
monad by weak bisimilarity. In: Leucker, M., Rueda, C., Va-
lencia, F. D. (eds.) Proc. of 12th Int. Coll. on Theoretical
Aspects of Computing, ICTAC 2015, Lect. Notes in Comput.
Sci., v. 9399, pp. 110–125, Springer (2015)

2. Veltri, N.: Two set-based implementations of quotients in type
theory. In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.)
Proc. of 14th Symposium on Programming Languages and Soft-
ware Tools, SPLST 2015, CEUR Workshop Proceedings, v. 1525,
pp. 194–205, CEUR-WS.org (2015)

3. Firsov, D., Uustalu, T., Veltri, N.: Variations on Noetherianness.
In: Atkey, R., Krishnaswami, N. (eds.) Proc. of 6th Wksh.
on Mathematically Structured Functional Programming, MSFP
2016, Electron. Proc. in Theor. Comput. Sci., v. 207, pp. 76–88,
Open Publishing Assoc. (2016)

4. Chapman, J., Uustalu, T., Veltri, N.: Formalizing restriction
categories. J. Formalized Reasoning, 10(1), 1–36 (2017)

5. Uustalu, T., Veltri, N.: Finiteness and rational sequences, con-
structively. J. Funct. Program., 27, article e13 (2017)

136

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital
Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом и
изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management Systems
as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and
Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information
Processing Methods: Case Studies of Estonian Islands Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance Spectroscopy
of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method.
2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application to
University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and Visual
Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic Surgery
and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in High-
Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood of
Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation Factors
of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing of
Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

117. Sergei Astatpov. Distributed Signal Processing for Situation Assessment in
Cyber-Physical Systems. 2016.

118. Erkki Moorits. Embedded Software Solutions for Development of Marine
Navigation Light Systems. 2016.

119. Andres Ojamaa. Software Technology for Cyber Security Simulations. 2016.

120. Gert Toming. Fluid Body Interaction of Biomimetic Underwater Robots.
2016.

121. Kadri Umbleja. Competence Based Learning – Framework, Implementation,
Analysis and Management of Learning Process. 2017.

122. Andres Hunt. Application-Oriented Performance Characterization of the Ionic
Polymer Transducers (IPTs). 2017.

	List of publications
	Author's contribution to the publications
	Accompanying code
	Introduction
	Motivation
	Problem statement
	Contribution of the thesis
	Outline of the thesis

	Background
	Partiality in category theory
	Partiality in type theory
	Categorical approaches to iteration

	Type theory
	Martin-Löf type theory
	Additional principles

	Quotient types
	Setoids
	Inductive-like quotients

	Choice principles
	Axiom of choice
	Axiom of countable choice
	Axiom of weak countable choice
	Axiom of propositional choice

	Summary

	Delay monad
	Delay and weak bisimilarity
	Quotiented delay datatype
	A solution using LPO
	A solution using weak countable choice
	A solution using propositional choice

	A monad or an arrow?
	Quotiented delay delivers free cppos
	Free cppo structure up to
	Lifting the construction to DX

	Partiality in homotopy type theory
	Summary

	-complete pointed classifying monads
	The mathematics of partiality
	Partial map categories
	Restriction categories
	Idempotents, splitting idempotents
	Completeness

	-complete pointed classifying monads
	Classifying monads
	-joins
	Uniform iteration

	Classifying monad structure on D
	D is the initial -complete pointed classifying monad
	Other monads of non-termination
	Dominances and partial map classifiers
	Countable powerset monad
	State monad transformer

	Summary

	Conclusions
	Future work
	Quotiented delay datatype in general categories
	Partiality in homotopy type theory
	Formalizing restriction categories, continued
	Initial complete Elgot monad

	References
	Appendices
	Formalizing restriction categories
	Quotients
	Categories
	Monics, isomorphisms and pullbacks
	Monic maps
	Isomorphisms
	Pullbacks

	Partial map categories
	Restriction categories
	Soundness
	Idempotents
	Restriction idempotents
	Completeness

	Acknowledgements
	Abstract
	Resümee
	Curriculum Vitae
	Elulookirjeldus

