
TALLINN UNIVERSITY OF TECHNOLOGY 

School of Information Technologies 

Oleg Berezin 175107IDDR

Architectural Solution Implementation:
a Manufacturing Enterprise Case Study

Diploma thesis

Supervisor: Nadežda Furs

MBA

Tallinn 2021



TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Oleg Berezin 175107IDDR

Arhitektuurilise lahenduse väljatöötamine:
tootmisettevõtte juhtumiuuring

Diplomitöö

Juhendaja: Nadežda Furs

MBA

Tallinn 2021



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else. 

Author: Oleg Berezin

20.04.2021

3



Abstract

The aim of this thesis is to design and implement an architectural IT solution for a stone

manufacturing enterprise in order to enable the company undergo digital transformation,

optimise internal business operations and automate manual processes. Based on analysis

and case study, author elicited business and technical requirements for an architectural

solution  design.  The  implemented  solution  was  then  evaluated  against  the  original

requirements of the project.

The  solution required  the  infrastructure  design  and  the  implementation of  a  web

application to form the foundation for subsequent developments.

The server infrastructure required to ensure stable and efficient operation of services,

using  containerisation  techniques  in  the  cloud  computing  environment.  The  web

application  should  serve  as  a  practical  service  for  organising  and  displaying  stone

products and other data, both as convenient decision making tool internally and when

communicating with partners.

The project has significantly optimised internal company processes, automated manual

labour, provided a tool for communication with partners for easy projects and materials

demonstration, and helped to attract new customers.

This thesis is written in English and is 35 pages long, including 7 chapters,  10 figures

and 3 tables.

4



Annotatsioon

Arhitektuurilise lahenduse väljatöötamine:

tootmisettevõtte juhtumiuuring

Selle lõputöö eesmärk on arendada ja rakendada kivitootmisettevõttele IT-lahendus, mis

võimaldaks  ettevõttel  üle  minna  digitaalsetele  lahendustele,  optimeerida  ärilisi

toiminguid ettevõtte sees ning automatiseerida manuaalseid protsesse.

Autor on analüüsile  ja juhtumiuuringule tuginedes välja  toonud ärilised ja tehnilised

nõuded  struktuurse  IT-lahenduse  arendamiseks.  Seejäärel  on  rakendatud  lahendust

projekti esialgsete vajadustega kõrvutades hinnatud.

IT-lahenduseks oli vaja luua infrastruktuur ja veebirakendus, et rajada alus edasisteks

täiustusteks.

Serveri infrastruktuur on vajalik, et tagada teenuste stabiilne ja efektiivne osutamine,

kasutades  konteineri  tehnoloogiaid  pilvandmetöötluse  keskkonnas.  Veebirakendus

võimaldab  kivitooteid  ja  muid  andmeid  sorteeritult  kuvada,  olles  nii  kasulikuks

tööriistaks otsuste tegemisel ettevõtte sees kui ka partneritega suhtlemisel.

Projekt  on  oluliselt  optimeerinud  ettevõtte  sisemisi  protsesse,  automatiseerinud

manuaalseid  töid,  andnud vahendi  projektide  ja  materjalide  hõlpsaks  tutvustamiseks

partneritele ning toonud juurde uusi kliente.

Lõputöö  on  kirjutatud  inglise keeles  keeles  ning  sisaldab  teksti  35 leheküljel,  7

peatükki, 10 joonist, 3 tabelit. 

5



List of abbreviations and terms

API Application Programming Interface

APM Agile project management

Application server Software upon which web or desktop applications run

CDN Content Delivery Network

CLI  Command line interface

CMS Content management system

Container Registry Server side application for storing, managing and distributing 
container images

CORS Cross-origin resource sharing

CSRF Cross Site Request Forgery

Database schema A structure in formal language representing design of the database

Digitalisation The use of digital technologies to change a business model and 
provide new revenue and value-producing opportunities; it is the 
process of moving to a digital business  (Gartner Glossary)

DoS/DDoS (Distributed) Denial-of-Service

DSRM Design Science Research Methodology

ERM Enterprise Resource Management

IA Informational architecture

IaC Infrastructure as code

JSON JavaScript Object Notation

LRU Least recently used. Cache policy that discards the least recently 
used items first

MO file GNU gettext Machine Object compiled translation file for 
production use

NoSQL Non tabular databases, storing data differently than relational 
tables

PRNG Pseudorandom Number Generator

S3 Simple Storage Service, data object storage with a web service 
interface

Schema Database schema is a structure in formal language representing 
design of the database

6



SF Stone factory (in the case study of the thesis)

SME Small and medium-sized enterprise

SPA Single Page Application

SSL Secure Sockets Layer

Staging environment Staging environment is a production-like replica environment for 
testing purposes

Transpile/transcompile To compile (source code) by translating from one source 
programming language to another, producing translated source 
code in the other language

TTFB Time to first byte 

UI/UX User Interface/User experience

URI Uniform Resource Identifier

Viewport A polygon viewing region in computer graphics

VPN Virtual Private Network

VPS Virtual Private Server

WSGI Web Server Gateway Interface; a calling convention for web 
servers to forward requests to web application written in Python

7



Table of Contents

1  Introduction.................................................................................................................12

2  Problem identification and motivation........................................................................15

2.1  Enterprise background..........................................................................................15

2.2  Problem overview.................................................................................................15

2.2.1  Current state...................................................................................................16

2.2.2  Operational issues of current state.................................................................17

2.2.3  Potential conventional non-digital solutions.................................................17

2.3  Solution objectives................................................................................................17

2.4  Scope.....................................................................................................................18

2.5  Author's role..........................................................................................................19

3  Solution analysis..........................................................................................................21

3.1  Business analysis..................................................................................................21

3.1.1  Stakeholder survey........................................................................................22

3.1.2  Software development proposal....................................................................22

3.2  Quality requirements and attributes......................................................................23

3.3  Functional requirements.......................................................................................24

3.3.1  Web-application.............................................................................................24

3.3.2  Image server..................................................................................................25

3.3.3  Infrastructure.................................................................................................26

3.4  Technical analysis: architectural approach...........................................................27

3.5  Technical analysis: web-application decisions.....................................................27

3.5.1  Programming language, framework and application server..........................27

3.5.2  Database.........................................................................................................28

3.6  Technical analysis: image server..........................................................................29

3.7  Technical analysis: infrastructure and platform decisions....................................31

3.7.1  Platform.........................................................................................................31

3.7.2  Containerisation.............................................................................................31

3.7.3  CDN, load balancing and reverse proxy........................................................32

8



3.7.4  Back-up strategy............................................................................................33

3.7.5  Cloud computing providers...........................................................................34

3.8  Technical analysis: summary................................................................................34

4  Solution implementation..............................................................................................35

4.1  Web application....................................................................................................35

4.1.1  Back-end........................................................................................................35

4.1.2  Front-end.......................................................................................................41

4.1.3  Security considerations..................................................................................41

4.2  Image Server.........................................................................................................41

4.3  Server and network infrastructure.........................................................................42

5  Solution assessment.....................................................................................................43

5.1  Solution results.....................................................................................................43

5.2  Threats to solution validity...................................................................................43

5.3  Solution metrics....................................................................................................44

6  Further developments..................................................................................................45

7  Summary......................................................................................................................46

 References......................................................................................................................47

 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation 

thesis................................................................................................................................49

 Appendix 2 – Build an HMAC signed URL to image server for accessing private 

images (called only by authorised users).........................................................................50

 Appendix 3 – Private administration interface Listing stone sample materials, collapsed

and expanded view:.........................................................................................................51

 Creating new stone sample material:..............................................................................52

 Appendix 4 – Stone example marshalling/MongoDB schema.......................................53

9



List of Figures

Figure 1. libvips: Time versus memory usage for a range of image processing systems 

[17]...................................................................................................................................30

Figure 2. 3-2-1 backup strategy: 3 copies, 2 types of storage, 1 offsite [26]..................33

Figure 3. Production backup data verification via staging environment.........................33

Figure 4. High-level solution architecture overview.......................................................35

 Figure 5. Instantiate application using Flask Blueprints and utilising URL-based 

internationalisation (i18n) via Flask-Babel extension.....................................................36

 Figure 6. Flask Blueprints utilising URL-based internationalisation (i18n) GNU gettext 

via flask-babel extension.................................................................................................37

Figure 7. Modern cryptography paired with basic and reliable HTTP authentication....38

Figure 8. A simplified highlight of images processing during the object creation process

.........................................................................................................................................40

Figure 9. User image request diagram, e.g. requesting image with 720 px width..........42

Figure 10. A redacted Google PageSpeed Insights tools will hidden website link; 

desktop performance. Mobile performance is at 85 points.............................................44

10



List of Tables

Table 1. Image width/height break points (in pixels) defined for the project.................29

Table 2. Comparison of VPS instances that meet minimal requirements per service.....34

Table 3. Stone object input and output auto-generated parameters.................................39

11



1 Introduction

With the significant growth of the information technology market segment, bringing a

large  number  of  digital  goods  and  services  to  an  ever  wider  range  of  consumers,

traditional  industrial  companies  are  faced  with  the  opportunities to  facilitate  the

innovation process via digitalisation [1] .

Migration  from  traditional  to  digital  business  processes  allows  manufacturing

companies to organise information about their  own operations,  integrate  them into a

single system, and significantly  improve enterprise  resource planning.  Integration of

information about production and business processes creates the prerequisites for their

further automation [2]  .  As a result  of automation,  the productivity  of the company

increases significantly [2]  . That in turn allows the company to save time, optimises

efforts  and  resources.  Thus,  the  company  reduces  the  number  of  errors  in  making

production and management decisions.

In addition  to the production  transformation,  the digitalisation  of enterprise  services

allows the company to reach and communicate more effectively  [3]   with current and

new customers as well as partners in a digital environment, bypassing geographic, time

and linguistic  constraints.  Digital  services contribute to a better  user experience and

brand  reputation  [3]  .  Formalised  through  digitalisation,  or  even  automated,  digital

interaction with partners allows the company to gather and aggregate data for a detailed

analysis  of  user  and  partner  requirements,  as  well  as  to  analyse  the  strengths  and

weaknesses in supply chains, enabling a more efficient allocation of internal resources.

As  a  consequence  of  successful  digitalisation,  in  the  longer  term  enterprises

compensated by efficiency gains and are able to adapt more successfully [4]  to changes

in their industry landscape.

12



For small  and medium-sized industrial  enterprises (SMEs),  the digitalisation process

can be accompanied by problems. These may include:

• the complexity of planning the enterprise transformation process;

• the lack of expertise for the effective implementation of the transformation;

• the lack of the necessary budget to design, implement and support the solution.

Successful digitalisation requires an investment in expertise and technology acquisition

in order to implement an adequate and effective solution. A small  and medium-sized

industrial  enterprises from  traditional  non-technology  sectors  often  have  limited

resources  and  capabilities  for  technological  experiments  [4]  ,  hence  reluctant  of

acquiring expensive  third-party  technology  support  or  an  in-house  staff  of  software

development specialists. However, investments in digitalisation often pay off in the mid

to long term [2]  [4] , therefore industrial businesses need to have a long-term plan for

the development of an enterprise with a focus on digital technologies as the main form

of organising internal processes.

This thesis aims to develop an architectural solution for a specific factory in Estonia that

processes and creates natural and artificial stone products. The proposed solution will

allow the enterprise  to have a reliable,  affordable and easy to maintain and manage

infrastructure,  consisting of integrated network,  server, as well  as custom and third-

party software solutions. The final software solution will allow an enterprise to manage

a  database  of  its  product  objects  with  a  lot  of  static  assets  through a  custom web

application  using  an  open  source industrial-grade  image  processing  software.  This

solution is used internally within the enterprise for making management decisions, as

well as communicating with customers and partners.

The  implementation  of  this  case  study solution  covers  the  current  real-world

requirements of an operating commercial industrial enterprise. The final project expands

the functionality of the company's interaction with customers and industry partners, as

well as modernises business processes within the company and automates manual work.

The proposed solution can meet the needs of a wide range of industrial companies with

similar  universal  needs,  and  demonstrates  the  decision-making  approach  in

13



implementing the architectural solution, potentially useful in developing other software

systems.

The business stakeholders case study survey and business processes analysis were used

as methodology for designing the architectural solution. After defining the requirements

and constraints of the enterprise, a systematic literature overview as well as the personal

experience of the thesis author was applied. The result of the analysis was a technical

solution  implementation  based  on  the  collected  data  in  accordance  with  the  initial

requirements of the project. The theoretical study uses selected peer-reviewed and other

publications on the subject, as well as software engineering industry best practices and

frameworks.

The  thesis  is  organised  as  follows:  after  the  introduction,  Section  2 describes  the

problem identification and motivation.  Section  3 covers  solution  analysis.  Section  4

presents  the  implementation  solution.  Section  5 assesses  the  implemented  solution.

Section 6 discusses further developments.  Finally,  Section 7 concludes the thesis  by

highlighting key results.

14



2 Problem identification and motivation

In this section, author outlines the problem overview and motivation for the case study.

The company in the case study is a stone factory enterprise (hereafter will be referred as

SF).

2.1 Enterprise background

SF is a natural stone fabrication company producing high quality products of natural

and engineered  stone.  The manufacturing  enterprise  has  established  a  modern stone

processing  factory  in  Tallinn,  Estonia  with  advanced  highly-specialised  CNC

machinery. Factory exports  flat stone slabs from around the world  in order to supply

project-based  stone  products  to  a  wide  range  of  customers,  primarily  focusing  on

personalised solutions for hotels, villas, private apartments, restaurants and cruise ship

interiors in accordance with architects’ project design.

Factory was established in 2013 and employs approx. 20 employees, including stone

installation  specialists  within  several  European  countries.  The  size  of  the  company

corresponds to the SME classification by the European Union definitions1.

2.2 Problem overview

The SF spends a large amount of manual  work and resources for cataloguing stone

material  samples  and  portfolios  of  finished  projects.   It  also  takes  a  lot  of  time

communicating  with  customers  through  face-to-face  meetings  and  phone  calls.  The

company was planning to significantly increase the number of sales managers as an

alternative to digitalisation of the enterprise.

1 SME as defined by the European Union: https://ec.europa.eu/growth/smes/sme-definition_en

15

https://ec.europa.eu/growth/smes/sme-definition_en


2.2.1 Current state

Prior to the implementation of the solution designed and developed as a result of this

thesis, the SF used a predominantly simple static website that allowed the company's

employees to add basic information about stone samples to the database through a web

interface.

Previous web application allowed to make a  query to the database to retrieve basic

information about all stone samples, the resulting JSON object from the back-end of

web  application  was  translated  into  a  list  of  readable  items  on  the  web page.  The

website  displayed  the  products  information  as  an  extended list  on  a  web page,  not

allowing editors updating or changing data about stone objects, as well as users to finely

query data, viz. filtering categories of products, searching and sorting.

Previous web application did not allow uploading and linking photos to the items in the

database. Images for specific stone samples had to be stored separately and published on

the page manually without any entity relations.

Large images are the main content of the web application, both for the old version of the

site  and  for  the  newly  developed  architectural  solution.  The  old  website  was  not

optimised to handle a large number of heavy images. There was no functionality for

automatically scaling images either to fit different resolutions of client-side screens, nor

down-scaling images in the back-end of the web application to optimise web page load

time.

The old website was not optimised for fast  loading time with a low latency for the

regions  of  the  target  audience.  The  website  demonstrated  low  performance  on

optimisation measuring tools1.

The shared server platform hosting website had successfully managed to serve the old

web  site,  but  occasionally  got  service  quality  slowdowns  due  to,  presumably,  the

increased CPU load of neighbouring users of the shared server.

1 Google PageSpeed Insights, Gtmetrix, Pingdom and other external services were used to measure 
web-application performance

16



2.2.2 Operational issues of current state

The  company  was  in  the  process  of  deeply  changing  its  internal  business  and

operational processes. The company's management has decided to take advantage of the

transition period to perform the company's digitalisation.

Old  processes  within  the  company  did  not  scale  up,  did  not  meet  new  functional

requirements,  hindered  the  growth of  the  enterprise  and increasingly  required  more

manual labour. This led to high operating expenses of a small company with limited

resources, made it cumulatively complicated to work with partners, did not allow to find

customers and new partners online outside Estonia, and ultimately — led to reduced

abilities to effectively compete on the European market.

2.2.3 Potential conventional non-digital solutions

Partially,  the  potential  solution  of  some  problems  facing  the  enterprise  was  the

expansion of staff. According to the company's estimates, manual labour would allow to

postpone some of the above-mentioned business growth problems for some time, but

only to a small extent. 

Another potential solution would be to reorient the company towards working with a

strictly  defined  narrow circle  of  partners  and  clients,  where  all  the  interaction  and

communication work would be carried out by employees manually. But such a solution

would  not  have  solved  the  problems  of  optimising  and  automating  the  enterprise's

internal  processes,  and  would  have  dramatically  limited  the  company's  commercial

opportunities for growth.

Both  potential  solutions  were  rejected  by  SF’s  management  as  inefficient  and  sub-

optimal.

2.3 Solution objectives

There  is  no single  universally  accepted  approach to  architecture  planning,  however,

there is a general consensus that the architectural solution design should begin with an

understanding of the business objectives of the enterprise [5] .

17



A  period  of  growth  and  rapid  transformation  of  processes  within  the  company

introduces  particular  challenges  for  planning  and  accepting  a  decision  on  software

architecture, as the solution should be reliable and optimal for the wide range of tasks

and processes that the company may require in the future. As asserted by Clements et al.

[5] , early stage architecture design decisions are likely to have great impact on how the

system will meet its quality attributes.

Adopting Agile practices by non-software SMEs is observed to be complex, however

industrial  SMEs  are  able  to  successfully  integrate  selected  properties  of  APM,  as

discussed  by  Žužek  et  al  [6]  .  Due  to  the  SF's  inability  to  predict  future  business

processes in a guaranteed manner, the company uses selected properties of Agile-like

methodology as their planning and decision making strategy. The company defines a

long-term development strategy, but makes short-term plans, iterating them if they do

not produce the desired results.

It was decided to adapt the IT development workflow to the such of the manufacturing

enterprise, hence identify the projected short- and medium-term goals, take into account

the long-term ambitions  of the company — and use this  data  to rapidly,  iteratively

design and continuously deliver solutions, according to the requirements of particular

software services.  

The company needed to design a robust network infrastructure and a set of software

solutions that would provide a reliable and flexible foundation for future developments.

Since  the  SF  is  undergoing  the  period  of  rapid  growth  and  transformation,  the

architectural solution was required to be minimalist, versatile and modular. Designed in

a  such  way,  it  should  be  a  reliable  foundation  for  a  number  of  current  and  future

software services with an unknown life-time period of service work and performance

load.

2.4 Scope

This thesis  provides a  design and development  process overview of an architectural

solution for a private manufacturing enterprise. It examines only selected parts of the

whole system within the  framework of the architectural  requirements  of  the current

18



thesis. It aims to demonstrate how the development of custom software web services in

conjunction  with  the  prior  developments,  and  use  of  third-party  free  open  source

solutions – allows the SME factory to ensure the operation of the software system with

a limited technical support, with optimal performance for serving heavy static data (e.g.

images), and with minimum operating costs.

This thesis does not provide full and/or sensitive proprietary code for custom enterprise

software solutions. Does not discuss the specific commercial  amounts  of money and

other values invested by the SF enterprise on developing, maintaining or supporting the

solution.

Current  thesis  does  not  cover  factory  automation  (e.g.  IoT);  does  not  provide  the

process of testing software due to a wide variety of topics; does not provide in-depth

security  analysis  and  penetration  testing  of  the  network  infrastructure  and  software

solutions; does not provide a comparative analysis for prior software solutions within

the enterprise.

Some prior to current project technology stack solutions have to remain for backwards

compatibility and due to the professional qualifications of the  third-party contractors

involved in the development, as well as external dependencies of current system outside

the scope of current thesis (e.g. Python Flask framework and MongoDB).

As  this  thesis  focuses  primarily  on  the  practical  aspects  of  developing  a  software

architectural solution for a project, the author focuses more on the software engineering

than on the business and server infrastructure aspects.

2.5 Author's role

Author communicated and processed stakeholder’s requests. Discussed, observed and

attempted to understand the aspects of requirements (survey was performed). Built use

cases, diagrams, user personas, informational architecture diagrams and other models to

validate  objectives;  documented  and  approved  final  requirements;  developed

highlighted in the current thesis solutions, and  supervised the technical progress out of

the scope of current thesis.

19



Architectural  software  solution  presented  in  current  thesis  is  currently  operating  in

production environment.

The author assessed alternative technology stack and third-party solutions.

The author performed peer-reviewed resources analyses in order to explore similar case

studies and related problems.

The  software  solution  uses  containerisation,  follows  the  12-factor  app  as  a

methodology, has no vendor lock-in and can be easily ported between different cloud

providers.  Each  service  provides  brief  documentation  for  easy  software  application

scaffolding.  The  presented  architectural  solution  serves  as  a  foundation  for  further

software development for the future needs of the enterprise.

Author  took a  lead  software  developer  role  in  a  software  engineering  consulting

company. Author was contracted to design and implement the complete IT solution to

meet the SF’s requirements.

20



3 Solution analysis

The plethora of available methodologies and techniques for architectural analysis, as

shown by Dasanayake et al  [7]  , has not led to their widespread use among software

practitioners involved in designing IT system architectures. Software developers tend to

use their own structured approaches that share similar characteristics with some of the

systematic techniques rather than formal [7] .

The author has partly relied on his own experience and analytical approach, while in

some aspects not entirely formal, the chosen techniques and approaches were grounded

on scientific and industry standards; as well as academical integrity was sought while

performing analysis to get a holistic view of organization requirements  for designing

software architectural solution.

The process of solution analysis was divided into two subsequent stages:

• business analysis in close collaboration with the factory's stakeholders; and

• technical analysis based on the information received from the business analysis.

3.1 Business analysis

The  SF had not previously conducted a formal enterprise architecture analysis of its

business  processes  and  did  not  have  any  formalised  artefacts  applicable  to  extract

specific  system requirements.  To design  a  software solution  architecture,  the  author

applied  DSRM  approach  as  a  well  grounded  in  existing  literature  and  practical

methodology  for  information  system  research [8]  .  The  author  followed  six  steps

defined in design science process: 1. problem identification and motivation, 2. definition

of  the  objectives  for  a  solution,  3.  design  and  development,  4.  demonstration,  5.

evaluation, and 6. communication [8] .

21



Steps 1 and 2 were studied via stakeholders survey. Step 3 involved a systematic review

of the related literature, as well as the application of the author's personal engineering

experience,  where the solution had to satisfy the requirements and constraints of the

project. Steps 4, 5 and 6 were carried out in cooperation with stakeholders and iterated

as needed. At each step, the author documented intermediate results, which in turn were

validated by the stakeholders.

3.1.1 Stakeholder survey

The author used private communication and a series of surveys to identify qualitative

and functional  requirements  for  the  project.  The block of  questions  in  surveys  was

divided into categories,  where the questions  covered  various aspects  relevant  to  the

enterprise.  In  the  course  of  this  work,  the  author  and  the  stakeholders  iterated  the

surveys, modifying them so as to eliminate irrelevant and to ensure that the remaining

questions covered the project requirements as fully and precise as possible. 

The company profile survey consisted of two categories of questions: current company

state (company profile, products and services; customers and sales; competition) and

target company state (company prospective; customers and sales; competitions).  Each

category listed 3-15 questions specific to SF’s profile.

Another survey was focused on personas and user journey analysis [9] , which was later

used to design the system requirements, but also to develop the UI/UX workflow design

for the web services interfaces. This survey consisted of following categories: customer

persona, customer organization, online behaviour and preferences. Each category listed

8-18 questions specific to SF’s profile.

3.1.2 Software development proposal

The individual specific requirements of the project were provided by the stakeholders of

the enterprise in the course of personal communication via common business software

development project proposal. On the basis of these requirements, the author drafted

documentation and a diagram to agree on the final solutions.

22



3.2 Quality requirements and attributes

As a result of the surveys and provided individual specific requirements analysis, the

author  has  identified  the  following  qualitative  requirements  and  attributes for  the

project:

• The  solution  as  a  whole  must  be  reliable  and  productive.  Reliability  is

characterised by stable uptime and data integrity. Performance is measured by

the latency to render web pages, amount of time it takes to perform functional

tasks by a software, as well as by the third-party web performance measurement

tools  (e.g.  Google  Pagespeed  Insights).  The  components  of  the  proposed

solution should be well established in the industry.

• The solution should be modular.   This should ensure the functionality  of the

software  architecture  in  an  environment  of  rapidly  changing  enterprise

operational requirements, where it is difficult to predict in advance the demands

of future software solutions and the load on these components.

• The solution must not be dependent on any vendor for its operability in the long-

term, such as: the cloud infrastructure and its services or the proprietary licence

of system component. Otherwise, in the case of a vendor lock-in or other reasons

for  not  being  able  to  continue  using  a  service  or  system  component,  the

architectural solution must be suitable for quick and budget replacement with a

functional alternative.

• The  system  (components)  must  be  designed  and  documented  to  be  easily

deployable  on  developer,  staging  and  production  environments,  as  well  as

capable  of  being  easily  migrated  and  deployed  to  another  cloud  computing

environment.

• The  solution  (components)  should  be  accessible  for  onboarding  by  external

software development contractors.

• The solution must be reasonably budgeted for development  and maintenance

costs.  As noted earlier,  traditional  manufacturing SMEs do not have a lot  of

financial capacity for high-tech IT resources.

23



• The solution must be optimised for customers of the target  audience.  As the

web-application predominantly operates with large images, it is important that

customers  from different  target  regions,  using  different  devices  and network

carriers, have swift and reliable access to the SF's product catalogue and projects

list. It is also important to ensure that the system runs optimally during industrial

expositions and trade shows, when the number of customers, and therefore the

load on the system, increases.

• The solution is not critical to the high load caused by the excessive amount of

concurrent users, as the company deals with a limited number of high-margin

projects at the same time. However, this does not apply to the load concern of

serving large amounts of heavy static data (images) to each user.

3.3 Functional requirements

The  scope of  current thesis does not allow for a complete detailed list of functional

requirements for all services of the whole system operating in production. The key high-

level requirements for the selected components covered in this thesis are listed below.

3.3.1 Web-application

The  most  important  project  requirement for  the  company  is the  development  of  a

custom web application. This service  is the centrepiece of an information system that

could be used both by the  SF’s managerial  employees for work and decision-making

within the company, and as the main tool for interaction with partners and customers.

The  architectural  solution must  consider  future  prospective  developments for  the

project. The web service, amongst many others, in shortened and combined form, had

the following functional requirements:

• The public web application serves as a product (stone sample templates) and

project  (recent and  current  works  in  customer’s  premises)  catalogues.

Communicates information about the company, products and services. Accepts

contact data and/or project inquiries.

24



• The private area of the web application serves as an administration control panel

for  managing the  content  of  the  application’s  data  (stone  sample  profiles,

projects, employees data, etc.)

• The high-performance image server is integrated into web-application, which is

capable of serving large static images to the  users, according to user’s device

screen resolution.

• Web-application  is  optimised  in  terms  of  latency  and  performance  when

displaying a large number of very high-resolution images.

• Web-application provides reasonably high level of security.

• (Future prospective) The private area of the web application will be expanded to

a   full-fledged  project  calculation  and  administration  system  for  a  range  of

private  partners.  This  system  will  allow  SF’s  partners  to  compose  highly

detailed  architectural/interior  projects  with  fine  requirements,  based  on  the

resources and services currently available in the factory; keep a track of recent

project  requirements  items,  allow to duplicate  and reuse them;  export/import

data (in PDF documents, etc.)

• (Future  prospective)  Integration  of  web-application  resources  (including

partner’s private system for inquiring projects) with the  external  ERM system

via shared APIs.

3.3.2 Image server

The web application should be closely integrated with the image scaling system. This

image  server  should  have  high-performance  and  be  secure  (protection  against  DoS

attacks). The functional requirements of an image server include:

• Operate  with JPEG files of large resolution and size (up to 25 megapixel  or

5000×5000 pixels image resolution; up to 16 megabyte file size).

• Scale source images to specified by client’s browser defined screen resolution.

• Cache the scaled images to reduce CPU load.

25



• Provide high performance and security.

• Do not depend on third-party hosted services.

3.3.3 Infrastructure

The  infrastructure  needs  to  be  designed  to  meet  the  objectives  of  its  current  and

potential services and tasks. The functional requirements include:

• Operational. Enables stable operation of the web application and other services.

• Portability.  Operates  in  a  multi-cloud  environment,  allows  easily  deploying

services within different cloud environments.

• Geo-location. Cloud computing providers have to provide data centre locations

in Northern and Western European regions, close to target audiences.

• Programmable. Cloud computing providers have to provide API and CLI-based

management for the future potential infrastructure deployment automation, e.g.

integrating IaC provisioning.

• Snapshots. Cloud computing providers have to provide server disk snapshotting

service.

• Secure network.  Secure interconnection between instances within and outside

cloud computing providers.

• Back up strategy. System data backup automation and data integrity validation.

• Keep the operational costs for the information system as low as possible.

• Developers should be able to re-create application’s functionality replica on a

personal development machine and staging environment servers.

• CI/CD, container registry integrations.

• Servers performance tuning and security hardening.

• Metrics and logs aggregation.

26



3.4 Technical analysis: architectural approach

This section describes the decisions on technology stack and the rationale for selecting

specific system components to implement the solution.

The solution must be implemented within a reasonable period of time and budgetary

constrains.  The subsequent technical  support and further developments  must also be

approachable  and  easily  understandable  for  a  wide  range  of  current  and  potential

software developer contractors. Thus, the proposition of a microservice architecture was

rejected  as  inappropriate  and  sub-optimal,  since  the  individual  services  of  current

system  are  already  arranged  in  separate  modules,  where  services  are  grouped  by

domain-specific purpose (e.g. web application is coupled with application server, image

server  and  reverse  proxy of  that  group).  The  decision  was  made  to  build  the  web

application as a modular monolith architecture.

3.5 Technical analysis: web-application decisions

3.5.1 Programming language, framework and application server

As noted in Scope (Section 2.4), Python and Flask micro-framework have to be used

due to the current technology stack and professional qualifications of other developers

involved in the project.

Flask  is  a  Python  WSGI-based  lightweight  framework,  using  blocking  socket  I/O.

While blocking web frameworks are lately generally  accepted as subpar in terms of

request performance  [10]  , under the given requirements, this solution is adequate for

the  task.  This  is  due  to  the  expected  low  load  of  concurrent  users1  to  the  web

application, as SF provides services for a limited number of concurrent partners. Also,

the  web application  is  being developed as  an early  version,  a  prototype to  validate

enterprise business tasks. The Flask micro-framework, being minimalist, is a convenient

tool for an experienced development team to quickly prototype an operating solution

that provides REST API and solves functional objectives. The author has considered

1 Concurrent users (CCU) is the total amount of simultaneous connections to a service in a predefined 
period of time

27



other  options:  Django,  another  Python-based  blocking  web  framework  and  Go

programming language without frameworks.

As researched by Ghimire [11] , “Django can be best fit for large-scale projects with the

cost of the learning curve. Flask is best fit for the prototyping and small-scale projects

but not limited to it.  Flask can be learned and set up quickly, but when it comes to

managing and maintaining, it requires more work than the former”. Django, provided

with full-fledged extensions, was rejected as an option suitable for a large and long-term

solutions rather than Agile-driven rapid prototyping development.

Go is a low-level compiling programming language, suitable for non-blocking socket

I/O  web  applications,  and  typically  used  without  frameworks  — this  solution  was

considered as a most prominent choice for further developments, but at the current stage

of the project would require too much development resources for the implementation

and integration of the lower-level functionality which is being provided in the Flask

with ready-made extensions (e.g. authorisation, marshalling, i18n, forms processing and

more).

Based on the comparison of available options, it was decided to choose the Flask web

framework for developing web-application. Go programming language was chosen as a

prospective target  programming language to re-implement  web service during future

project iterations. The modular structure of the architecture should facilitate refactoring

and re-implementation of web services as required by business stakeholders.

3.5.2 Database

As  noted  in  Scope  (Section  2.4), MongoDB  database  was  used  due  to  current

dependencies on this database in other components of the system.

MongoDB is a NoSQL document-oriented database, using JSON-like documents with

optional dynamic schemas. Győrödi et al. defines MongoDB as a database that “holds  a

set  of  collections [which]  has no predefined schema like tables, and stores data as

BSON documents (binary encoded JSON like objects)”, followed by “document is a set

of fields and can be thought of as a row in a collection [which] can contain complex

structures such as lists, or  even  an  entire  document”; they conclude that “[we] can

28



choose   MongoDB   instead   of   MySQL   if   the   application is data intensive and

stores many data and queries lots of data”  [14] .

While  current  web-application  does  not  require  data  intensive  stores,  the document-

based  database  is  a  robust  and  flexible  solution  for  storing  JSON-like  schema-less

objects, which was the primary reason for choosing this database.  Another compelling

alternative  would  be  using PostgreSQL,  which  has  support  for native  support  for

JSONB data types (since version 9.4, released in Dec 2014) [15] .

3.6 Technical analysis: image server

Image server is a web software which task is to process and serve images. An image

server differs from a traditional web server that serves images by the fact that the former

is performing image processing upon request, e.g. cropping, resizing, rotating, changing

image’s size, format, shape, colour bitmap, saturation, etc.

In current context, SF’s requirement is to be able to serve very large high quality image

files, taken by professional photographers, to a wide range of visitors using different

types of devices.  In order to optimise page load,  we need to down-scale images  by

specific image width or height sizes, according to the generally popular  on the Internet

screen resolution layouts of  different devices (see Table 2).

Table 1. Image width/height break points (in pixels) defined for the project

Viewport mobile or tablet notebook desktop

Pixels 180 360 540 720 900 1080 1296 1512 1728 2048 4472

To determine break point values, developers can analyse analytical data from a 
website's visitor audience, or consult from third-party services that aggregate such data. 
It is worth considering that as technology advances, mass audiences' screen resolutions 
and interface scaling values change, and these values change accordingly.

There are several options for image processing tools or libraries are available, among

them are LibGD1, ImageMagick2 and others. The author uses libvips3 image processing

1 LibGD:  https://libgd.github.io/
2 ImageMagick: https://imagemagick.org/
3 Libvips: https://github.com/libvips/libvips/

29

https://github.com/libvips/libvips/
https://imagemagick.org/
https://libgd.github.io/


library  co-authored by Martinez and Cupitt  [16]  . This library is designed to provide

high concurrency and low memory footprint [17] , as well as good security against DoS

attacks.  As  presented  on  Figure  1,  libvips library  in  benchmarking  with  competing

solutions demonstrates good scalability and very high performance with low memory

usage.

Thus this library is being appropriately suitable for image server requirements of current

service.

Figure 1. libvips: Time versus memory usage for a range of image processing systems  [17] 

As web-application depends on libvips image processing, the author used imgproxy — a

fast  and  secure  standalone  web  server,  written  in  Go  programming  language  and

supporting Amazon S3 object storage back-end. This open-source third-party service is

utilising  libvips library, is  well regarded in industry  and actively supported  [18]  . As

this web server provides web-based API to  libvips library and is written in the non-

blocking  socket  I/O  language.  This  solution  satisfies  the  functional  requirement  of

serving a lot of heavy-weight images to the web user.

30



3.7 Technical analysis: infrastructure and platform decisions

3.7.1 Platform

Since  all  current  and  future  components  of  the  system  are  based  on  the  Linux

technology  stack,  the  author  uses  the  Linux operating  system  and  tools  as  a  base

requirement for the whole project. As such, WireGuard used as a modern, lightweight

and high performance in-kernel VPN solution to link multi-cloud servers securely. Also,

systemd  is heavily utilised to perform scheduled operational jobs, viz. backup scripts,

SSL certifications updates, etc.

3.7.2 Containerisation

The current system makes full use of containerisation for each service in the system.

The author utilises  Docker  as such solution,  which provides  reproducible  containers

with packaging code and dependencies,  and allowing to run such containers  on any

compatible platform. Docker provides interface to supply configuration options to the

application  inside  when running  the  container,  to  expose  network  ports  and  export

logging data.

As has  been researched by Fetlter  et  al.  [19]  ,  Docker  does  not  bring a  significant

overhead in I/O performance comparing to native and KVM-based workloads, except

for rare cases.

For the local development environment, Docker Compose [20]  is used as a quick and

easy solution to deploy a whole set of service components. This stack is supplied by

env-configuration  file  with  sensitive  information  (from local  machine  or  Hashicorp

Vault service  in  a  secure  manner).  As  for  staging  and  production  environment,

corresponding Docker stack configurations are used in Swarm-mode [21] . This allows

the author and other developers to utilise the 12-factor-app methodology  [22]  , which

ensures the web application solution is portable and reproducible.

The combination of asserted solutions is considered optimal as long as the project does

not yet require container orchestration1.

1 Orchestration automates the deployment, management, scaling, and networking of containers at scale

31



3.7.3 CDN, load balancing and reverse proxy

Since the web application's major objective is to serve a large number of heavy images

to the user, it is crucial task to plan how process of storing and serving image files will

be organised. As website editor creates new object (stone sample or project), they fill in

all the necessary stone properties fields in the form and attaching high-quality origin

image(s)  to upload.  Upon sending the request,  back-end processes and validates  the

form data, as well as validating and uploading images to the server. From now on there

are two strategies are available:

1. Using image server generate a whole set of pre-scaled images in advance, as

defined by viewport requirements (see Table 2) from each source image at the

time of creating a new object. Store all the generated images on disk/S3/CDN.

Link paths to the whole set of stored images in the stone/project items in the

database. As user is opening the public stone/project page, only CDN/reverse-

proxy is used to serve the static image files.

2. Store original images on the disk/S3/CDN. Link paths to original images in the

stone/project items in the database. As user is opening the public stone/project

page  with  their  specific  viewport  (see  Table  1),  CDN/reverse-proxy  checks

wether the requested image is in cache: if not, request is passed to the image

server in order to process the image with the correct scale size on the fly; if

requested image has already been served, CDN/reverse-proxy responds with the

scaled image from LRU cache.

As  discussed  (Technical  analysis:  image  server,  Section  3.6),  the  libvips  high

performance image processing  negates  potential  delays  and CPU load spikes  to  the

point where it is reasonable to use this solution for continuous image processing in the

runtime.  Pre-generating 11 presets for each source image (sometimes up to 25 high-

quality images attached to a project) massively increases the disk capacity required for

image  storage,  as  well  as  the  size  of  document  entries  in  database  —  all  of  this

complicates the data maintenance and backup processes.

Thus, the author has accepted the second strategy: saving only original images on disk,

scaling requested sizes on demand and leverage caching.

32



Nginx  [23]   web-server has been chosen as a load-balancing,  reverse-proxy and the

static files server tool, leveraging fine tuning caching policies [24] .

3.7.4 Back-up strategy

Simple but effective 3-2-1 backup strategy [25]  was chosen as easy to implement and

straightforward solution: 

Figure 2. 3-2-1 backup strategy: 3 copies,  2 types of storage, 1 offsite [26] 

The solution is to backup the data to another cloud infrastructure of another provider in

a different region. Also, a single copy of the backup is periodically saved locally to disk

in Estonia. Backups are automated via bash scripts and systemd scheduler. Backups are

periodically verified manually.  

Figure 3. Production backup data verification via staging environment

However, as part of this project, author has implemented a specialised approach that is 
only suitable for this particular case, where one of the backups (in the second cloud) is 
used to populate the data for the staging environment (see Figure 3). Thus, the 
developers have a replica of the system for testing with a relatively fresh data, and in the
meantime the integrity of the backup data is verified.

33



3.7.5 Cloud computing providers

Two cloud computing providers were chosen: Scaleway1 with instances in Amsterdam

and Hetzner Cloud2 with major computing instances in Finland. Scaleway also provides

Container Registry service for Docker images, and Object Storage (AWS S3 compliant)

service for storing static assets. Both platforms provide CLI management tools.

Table 2. Comparison of VPS instances that meet minimal requirements per service

Zone.ee 
(CloudServer

PRO SSD)

Scaleway
(DEV1-XL)

Hetzner
(CCX21)

Google Cloud
(GCE, n1-standard-4)

CPU (vCores) 4 4 4 4

RAM (GiB) 12 12 16 15

SSD (GiB) 125 120 160 $0.187/GB/month

IPv4 (pcs.) 1
(included)

1
(+1,00

EUR/month)

1
(included)

Egress $0.12/TB/month

Bandwidth (Mbits/s) ? 500 800 (?)

Traffic (TB) ~2.1 Unlimited 20 variable

Location Tallinn, EE Amsterdam, NL Helsinki, FI Helsinki, FI

Price/month (no VAT) 102,20 € ~44,20 € ~41,53 € $110~160

Both clouds are inter-connected via WireGuard VPN in order to isolate back-end 
services from the public access. However, only Scaleway cloud service provides hosted 
services such as S3 object storage and Container Registry.

3.8 Technical analysis: summary

The proposed technical solution meets all the needs of the enterprise, both current and

future. The use of a custom imaging server will save the company significant resources

on renting or supporting alternative solutions, as well as guarantee the operability of the

solution in case of unforeseen changes in third-party services.

Object  Storage is  a reliable  and production tested way of storing and serving static

assets. While MongoDB is fast and versatile database which can withhold ever growing

performance demands.

1 Scaleway: https://www.scaleway.com/en/
2 Hetzner: https://www.hetzner.com/cloud/

34

https://www.hetzner.com/cloud/
https://www.scaleway.com/en/


4 Solution implementation

This section describes the implementation aspects based on the analysis of the solution.

The  development  of  each  individual  service  of  the  system is  separated  by  relevant

chapters.

Figure 4. High-level solution architecture overview

4.1 Web application

Web application is a key part of the required solution. It consists of a front-end and

back-end sides,  it  links the back-end to the database,  manages  the access to the S3

object storage, and provides users access to the image server.

4.1.1 Back-end

Flask framework can be extended by Flask-specific extensions or just by general Python

packages. As such, author used flask-babel to implement i18n (internationalisation and

localisation)  support,  a library for a standard  GNU gettext format;  flask-httpauth  for

HTTP  authentication  (RFC  72351);  marshmallow and  webargs for  the  form  data

marshalling,  argon2-cffi  for  the  modern  cryptography  support,  and  many  other

extensions.

The  author  has  utilised  Flask  Blueprints,  “a  concept  […]  for  making  application

components  and  supporting  common  patterns  within  an  application  or  across

applications”, their purpose is to “simplify how large applications work and provide a

1 RFC 7235: https://tools.ietf.org/html/rfc7235

35

https://tools.ietf.org/html/rfc7235


central  means  for  Flask  extensions  to  register  operations  on  applications”  [12]  .

Blueprints allow to decouple separate components as if they were different Flask-based

applications,  which helps  keep the system modular  and homogeneous.  As such, the

author  has  separated  general  pages  with language code prefix,  private  image server

routes and API routes:

/app/__init__.py:
def create_app(config_name):

app = Flask(__name__)

app.config.from_object(config[config_name])

config[config_name].init_app(app)

register_extensions(app)

register_blueprints(app)

[…]

return app

def register_extensions(app):

    mongo.init_app(app)

    mail.init_app(app)

    babel.init_app(app)

def register_blueprints(app):

    """Register blueprints for language-prefixed URL pages"""

    app.register_blueprint(pages, url_defaults={"lang_code": "en"})

    app.register_blueprint(pages, url_prefix="/<lang_code>")

    app.register_blueprint(imgsrv)

    app.register_blueprint(api)

Figure 5. Instantiate application using Flask Blueprints and utilising URL-based internationalisation
(i18n) via Flask-Babel extension

The Blueprint for a general page is registered with a language code prefix. When no

prefix is supplied, e.g. “https://factory.tld/”, “en” key code for English language is being

set by default. Valid language codes are defined in the configuration file and currently

they list: “en” or none for English, “ee” for Estonian, “se” Swedish and “ru” for Russian

languages.  E.g.  “https://factory.tld/ee/”  would  open web-page  in  Estonian  language,

loading Estonian GNU gettext MO-file; while invalid language code would redirect to

404 HTTP error  page.  A general  Blueprint  with a  language prefix in  the URI, in a

simplified form, demonstrated below:

36

https://factory.tld/ee/
https://factory.tld/


/app/pages/views.py:
from ..pages import pages

@pages.url_defaults

def set_language_code(endpoint, values):

    """Set default language value to the global `g` variable"""

    values.setdefault("lang_code", g.lang_code)

@pages.url_value_preprocessor

def get_lang_code(endpoint, values):

    """Set current language to global `g.lang_code` variable"""

    g.lang_code = values.pop("lang_code", None)

@pages.before_request

def ensure_lang_support():

    """Ensure that valid language is selected, 404 if unsupported"""

    lang_code = g.get("lang_code", None)

    if lang_code not in current_app.config["LANGUAGES"].keys():

        g.lang_code = current_app.config["BABEL_DEFAULT_LOCALE"]

        return abort(404)

@pages.route(“/”)

def homepage():

    """Homepage will be rendered in the correct language"""

    return render_template(“homepage.html”)

Figure 6. Flask Blueprints utilising URL-based internationalisation (i18n) GNU gettext via flask-babel
extension

The back-end relies on storing all static long-term data in S3 object storage, provided by

Scaleway cloud platform. Python boto31 package, part of AWS SDK, is used to operate

with S3 service. All objects static files are being offloaded to the object storage, as such:

stone sample original images, project original images, website static images, as well as

some private files, logs, etc. Object storage is private by default, hence authentication is

required for accessing all kind of files, including public. For this reason, all requests in

S3 are proxied through the back-end middleware component, which is being integrated

with the authorisation system on the website and thus performs role-base access control.

1 Boto3: https://github.com/boto/boto3

37

https://github.com/boto/boto3


Authorisation also required for getting private fields from the REST API querying stone

sample objects, e.g. some price ranges are not publicly available:

@auth.verify_password

def verify_password(username, password):

    if username in users:

        return argon2.verify(password, users.get(username))

    return None

Figure 7. Modern cryptography paired with basic and reliable HTTP authentication

To invoke callable  Flask instance  object  was used  uWSGI — an HTTP application

server  written  in  C  programming  language  for  WSGI-based  Python  applications.

uWSGI is run with concurrent processes equal to the number of target VPS CPU cores

[13] .

The crucial element of the web-application is the object creation and editing interface.

As user fills in the form with product data, attaches images and clicks “Send” button —

font-end  Vue.js1 application performs initial  validation  checks for obvious errors;  as

front-end validation  succeeds,  the  FormData2 object  is  send with  POST-method  via

Axios3 client  as  multipart/form-data  to  the  back-end  REST  API

(“factory.tld/api/v1/products/”).

As marshalling and validation checks passed on the back-end, deserialised data gets

converted  and  expanded  (see  Table  3),  e.g.  “marble”  object  gets  a  “natural  stone”

category, or “300 EUR” unit gets “level 2” pricing category — this is automated to save

web site editors’ time (see Appendix 4 for schema example).

When marshalling is completed, we iterate over each attached image file as follows:

• check if images field is empty, return error if true (no stone samples and projects

are allowed without at least a single image);

• check if image’s filename is empty or incorrect,  check if file extension is in

allowed list (only JPEG/WEBP images are allowed); getting object name from

relevant  form  fields  and  construct  the  future  file  name  by  pattern:

“product_name.ext”;

1 Vue.js: https://vuejs.org/
2 FormData: https://developer.mozilla.org/en-US/docs/Web/API/FormData/Using_FormData_Objects
3 Axios: https://github.com/axios/axios

38

https://vuejs.org/
https://github.com/axios/axios
https://developer.mozilla.org/en-US/docs/Web/API/FormData/Using_FormData_Objects


• path for the file is constructed,  also unique hash to file name is  appended (in

order  to  avoid  same  file  name  collisions),  e.g.  "products/n/quatzite/african-

fusion-yB21wpFKMw.jpg", where “n” stands for “natural”;

• each image file gets uploaded to the S3 object storage by a specified above path,

thus every single object populates storage by a predictable pattern (in case of

some fatal emergency we would need to manually recover or edit images).

If every step above succeeded, image file names are rotated through the URL hashing

function for every image size breakpoint, and saved to the database. For the sake of

brevity, above is presented only a fraction of the checks and transformations with data

and images.

Table 3. Stone object input and output auto-generated parameters

Input parameters Output parameters

str product_name str
str
str
str

product_id (“product_name”)
product_slug (URL-friendly: “product-name”)
created_at (datetime timestamp)
updated_at (datetime timestamp)

str product_type str
str

product_type
product_category

str
str
str

product_origin
product_vendor
product_gallery

str
str
str

product_origin
product_vendor
product_gallery

int
int
int

product_price_12mm
product_price_20mm
product_price_30mm

decimal
decimal
decimal
int

product_price_12mm
product_price_20mm
product_price_30mm
product_price_category (1 to 5)

str
str
str
str

descr_en
descr_et
descr_sv
descr_ru

array
str
str
str
str

product_descriptions
descr_en
descr_et
descr_sv
descr_ru

data product_images (binary files) list
array
str
str
str
str
str
str
str
str
str
str
str

product_images
    0: w180 "/<hashed-url>.jpg"
        w360 "/<hashed-url>.jpg"
        w540 "/<hashed-url>.jpg"
        w720 "/<hashed-url>.jpg"
        w900 "/<hashed-url>.jpg"
        w1080 "/<hashed-url>.jpg"
        w1296 "/<hashed-url>.jpg"
        w1512 "/<hashed-url>.jpg"
        w1728 "/<hashed-url>.jpg"
        w2048 "/<hashed-url>.jpg"
        w4472 "/<hashed-url>.jpg"
    n: […]

39



Every stone object keeps the whole list of hashed URLs for all attached images for all

breakpoint sizes for each image. It allows to fetch images from the front-end, depending

on the screen resolution or size, without recalculating hashed URLs on every request.

Most popular fetched images are kept in cache and no longer require rescaling.

/app/api/products/views.py
for file in image_files:

    if file.filename == "":

        raise InvalidUsage("No image file attached", status_code=409)

    if file and allowed_file(file.filename, current_app.config["IMGPROXY_EXTENSIONS"]):

        # Construct the image filename

        filename_slug_hash = construct_image_filename(

            product_id=result["product_id"], filename_ext=Path(file.filename).suffix

        )

        # Construct the image path,

        # e.g. 'products/n/quatzite/african-fusion-yA21w7FKMw.jpg'

        file_path = Path(

            "products",

            result["product_category"][:1],

            result["product_type"],

            Path(filename_slug_hash),

        )

        # Attempt uploading image files to the S3 storage

        try:

            # Return POSIX path of uploaded object

            # e.g. "products/n/quartzite/african-fusion-yB21wpFKMw.jpg"

            object_final_uri = S3(

                _region_name=current_app.config["S3_REGION"],

                _endpoint_url=current_app.config["S3_ENDPOINT"],

                _aws_access_key_id=current_app.config["S3_ACCESS_KEY_ID"],

                _aws_secret_access_key=current_app.config["S3_SECRET_ACCESS_KEY"],

                _bucket=current_app.config["S3_BUCKET_API"],

            ).upload_object_to_s3(file, str(file_path.as_posix()))

            # Append image path

            files_list.append(str(object_final_uri))

        except IOError:

            raise InvalidUsage(

                code=406, messages={result["product_id"]: "Files upload failed"}

            )

Figure 8. A simplified highlight of images processing during the object creation process

40



4.1.2 Front-end

Front-end mostly consists of fully static HTML/CSS/JS assets, whereas some feature-

rich  pages  utilizing  Vue.js and  Axios frameworks  (e.g.  administration  panel)  for  a

dynamic content and asynchronous data requests to the back-end REST API.

Template engine Jinja2 as a  Flask extension is used for pages layout at the back-end.

CSS is being transpiled from PostCSS1 via GulpJS2. This approach defined as a hybrid

Single Page Application, where only selected pages are operating as SPA.

4.1.3 Security considerations

Wep application and infrastructure services follow the best industry practices in order to

provide high level of security. All input forms are sanitised and CSRF token protection

is used. Strong hashing algorithms with unique 32-bit hex-encoded strings for keys/salts

are used (provided by secure PRNG, e.g. /dev/urandom [29] ). Reverse proxy enforces

secure SSL certification usage and CORS policies.

Off-cloud VPS instances are routed via modern and secure WireGuard Linux in-kernel

VPN.  This  way  the  network  architecture  does  not  depend  on  Cloud  provider’s

proprietary Firewall solutions (such as Virtual Private Cloud and others).

4.2 Image Server

Libvips  image processing library was been successfully deployed by using a thin web

server imgproxy to provide APIs. Also, the author applies the technique of signing [27] 

direct URLs to the image server. 

This makes following example URL to the image server:

factory.tld/images/products/n/quartzite/african-fusion-yB21wpFKMw.jpg?
width=1080&format=jpg&aspect=fit&crop=none

1 PostCSS: https://postcss.org/
2 GulpJS: https://gulpjs.com/

41

https://gulpjs.com/
https://postcss.org/


look like:

factory.tld/images/0I6xKnG31sdk3w/fit/1080/0/no/0/L3N2sjF8Bn.jpg

URL hashing technique prevents users or attackers from changing parameters to the

image  server.  Hence  attacker  will  not  be  able  to  script  massive  amount  of  queries

replacing  URI parameter  “width=1080” (target  image’s  width size  to  scale  to)  with

some low value, e.g. “width=10”, and then repeatedly requesting some large number,

such as “width=4080”.

This  scripted  attack  would  heavily  stress  the  image  server  CPU and  memory  load

resources, since the image server would have to constantly re-scale image on demand. If

no caching or rate-limiting and security measures are in place, such service may fail due

to a (Distributed) Denial-of-Service attack. 

Figure 9. User image request diagram, e.g. requesting image with 720 px width

4.3 Server and network infrastructure

As has  been discussed  in  analysis  overview (see  Section  3.7.2),  Docker  and Linux

environment are heavily used.

For host VPS system Debian distribution is selected as a long-term and well supported

system. For Docker base images Alpine Linux is used for all  images with statically

compiled  software  (such  as  Go  language  services).  For  Python  based  applications

debian-slim  image  is used,  since  many  Python  packages  are  dependent  on  cross-

compiled cffi-based packages (e.g. cryptography and performant JSON parsers), which

in their turn are usually are dependent on glibc C library.

As Alpine Linux  uses alternative  musl C library,  occasional unpredictable errors and

performance slow-downs occur [28] .

42



5 Solution assessment

This  section  assesses and  evaluates  the  final  solution  according  to  the  initial

requirements of the project. The author also considers potential risks and weaknesses of

the proposed solution.

5.1 Solution results

The implemented architectural solution fully meets the qualitative and functional needs

of the industrial enterprise. 

This project has been implemented and works successfully in a production environment.

The  enterprise  uses  the  web  application  in  internal  processes  and  as  a  tool  and

demonstration  catalogue  of  products  and  projects  in  communication  with  partners.

Online  recognition  of  the  company  has  increased  dramatically,  potential  customers

readily use the web contact form to request price quotes for projects.

The web application and lean architecture allowed to achieve much higher performance

in basic operations that competitors' web applications based on common CMS solutions.

The  company  uses  the  system as  the  main  platform for  attracting  new clients  and

intends to develop a range of new tools on the basis of this architectural solution in the

future.  The company intends to  actively  invest  in  further  development  of  its  digital

transformation.

5.2 Threats to solution validity

The solution is expected to have weaknesses when or if a large number of  concurrent

clients  will  use  the web application.  If  this  risk occurs,  the web application will  be

rewritten to a non-blocking programming language (Go or Rust).

43



The web application has experienced two breakdowns on the side of the cloud provider.

In one case, the hypervisor that powered several key VPS instances was unavailable for

two weeks. With regard to the modular architecture, the problem has been bypassed in a

matter of hours.

5.3 Solution metrics

The implemented web application has significantly better performance than competitors'

websites based on popular, non-optimised CMSs. The solution provides fast functions

and  pages  load  speed,  low  latencies,  various  elements  of  the  system  are  highly

optimised, including image compression. The website demonstrates high scores in third-

party website performance evaluation tools.

Figure 10. A redacted Google PageSpeed Insights tools will hidden website link; desktop performance.
Mobile performance  is at  85 points.

44



6 Further developments

SF stakeholders are looking to develop the private area of the web application for a

range of private partners to allow them request fine detailed project calculations within

the private customers system.

Also,  the  enterprise  in  interested  in  integrating  web-application  resources  with  the

external ERM system.

Some  other  prospect  ideas  include  Machine  Learning  based  super-scaling  image

processor  to  allow company using lesser  quality  images  as  sources,  and also  apply

intelligent de-noise reduction filters, etc.

Full  decoupling  of  front-end  and  back-end  within  web-applications  is  currently  in

development.  Possible  re-implementation  of  key  web-services  in  non-blocking

languages is also planned.

Migration from MongoDB to PostgreSQL is considered, while not prioritised.

If  system  and  users  load  will  grow,  container  orchestration  (e.g.  Kubernetes and

derivatives) and IoC (such as Terraform and CloudFormation) will be considered.

SF is intended to continue it’s technological progresses in the way of servitization.

45



7 Summary

This thesis  demonstrates,  on  the  primer  of  a  case  study  from a  specific  industrial

factory, how the process of developing an architectural software solution takes place.

Current work  provides the  principles  of  primary  data  collection  and  analysis  from

stakeholders  to  determine  the qualitative  and functional  requirements  of  the project,

constructing  models  of  typical  users  and  their  scenarios  of  system use,  argues  the

process of choosing the technological stack of solutions for implementation, analysis of

compliance of models and selected solutions according to the primary requirements of

the project.

Based on the data collected and analysed,  a decision was made as to which system

components  needed  to  be  developed  from  scratch  and  which  could  possibly  be

integrated from third parties.

The implemented solution has significantly improved the company's business processes.

The tool is used internally and as a communication tool with partners and customers.

The solution is affordable to maintain, has high reliability and performance. Based on

the  experience  gained,  the  factory  enterprise  intends  to  continue  the  digital

transformation  of  its  enterprise  by  creating  new  software  services based  on  this

architectural solution.

46



References

[1] Nambisan, S. Wright, M. Feldman, M “The digital transformation of innovation and 
entrepreneurship: Progress, challenges and key themes” (2019); Research Policy, Volume
48, Issue 8, 103773, ISSN 0048-7333. DOI https://doi.org/10.1016/j.respol.2019.03.018

[2] Sebastian, I. Ross, J. Beath, C. Mocker, M. Moloney, K. Fonstad, N. "How big old 
companies navigate digital transformation", MIS quarterly executive, volume 16, issue 3  
(2017): p. 202; The Kelley School of Business, Indiana University. DOI https://nbn-
resolving.org/urn:nbn:de:bsz:rt2-opus4-15016

[3] Schwertner, K. "Digital transformation of business", Trakia Journal of Sciences 15, no. 1 
(2017): pp. 388–389. DOI 10.15547/tjs.2017.s.01.065

[4] Hirsch-Kreinsen, H. “Digitization of industrial work: development paths and prospects”; 
J Labour Market Res 49, pp. 3–11 (2016). DOI https://doi.org/10.1007/s12651-016-0200-
6

[5] Clements, P., Kazman R. Klein M. "Evaluating software architectures: methods and case 
studies. 2002."

[6] Žužek, T. Gosar, Ž. Kušar, J. Berlec, T. "Adopting Agile Project Management Practices 
in Non-Software SMEs: A Case Study of a Slovenian Medium-Sized Manufacturing 
Company" (2020); Sustainability, 12(21): 9245. DOI https://doi.org/10.3390/su12219245 

[7] Dasanayake, J. Markkula, S. Aaramaa, M. Oivo "Software Architecture Decision-Making
Practices and Challenges: An Industrial Case Study" (2015); M-Group, University of 
Oulu, Oulu, Finland. DOI https://doi.org/10.1109/ASWEC.2015.20

[8] Peffers, K., Tuunanen, T., Rothenberger, M.A., & Chatterjee, S. “A design science 
research methodology for information systems research” (2007). Journal of Management 
Information Systems, 24(3): pp. 45–77. DOI: https://doi.org/10.2753/MIS0742-
1222240302

[9] Nielsen L. “Personas in Use” (2019). In: “Personas - User Focused Design. Human–
Computer Interaction Series”. Springer, London. DOI https://doi.org/10.1007/978-1-
4471-7427-1_5

[10] Bilski, M. “Migration from blocking to non-blocking web frameworks” (2014), p. 43; 
Dissertation. DOI http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5932

[11] Ghimire, D. "Comparative study on Python web frameworks: Flask and Django" (2020), 
pp. 31-32; Metropolia University of Applied Sciences (Finland). DOI 
http://urn.fi/URN:NBN:fi:amk-2020052513398

[12] “Modular Applications with Blueprints” [Online]. Available: 
https://flask.palletsprojects.com/en/1.1.x/blueprints/ [accessed on 18.04.2021].

47

https://flask.palletsprojects.com/en/1.1.x/blueprints/
http://urn.fi/URN:NBN:fi:amk-2020052513398
https://doi.org/10.1007/978-1-4471-7427-1_5
https://doi.org/10.1007/978-1-4471-7427-1_5
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.3390/su12219245
https://doi.org/10.1007/s12651-016-0200-6
https://doi.org/10.1007/s12651-016-0200-6
http://dx.doi.org/10.15547/tjs.2017.s.01.065
https://nbn-resolving.org/urn:nbn:de:bsz:rt2-opus4-15016
https://nbn-resolving.org/urn:nbn:de:bsz:rt2-opus4-15016
https://doi.org/10.1016/j.respol.2019.03.018


[13] “The uWSGI project” [Online]. Available: https://uwsgi-docs.readthedocs.io/en/latest/ 
[accessed on 18.04.2021].

[14] Győrödi, C. Győrödi, R. Pecherle G. Olah, A. "A comparative study: MongoDB vs. 
MySQL" (2015), 13th International Conference on Engineering of Modern Electric 
Systems (EMES), p. 2. DOI 10.1109/EMES.2015.7158433.

[15] “PostgreSQL. E.27. Release 9.4” [Online]. Available: 
https://www.postgresql.org/docs/9.4/release-9-4.html [accessed on 21.04.2021].

[16] Martinez, K. Cupitt, J. "VIPS — a highly tuned image processing software architecture" 
(2005); IEEE Xplore. DOI https://doi.org/10.1109/ICIP.2005.1530120

[17] “libvips: Speed and memory use” [Online]; Available: 
https://github.com/libvips/libvips/wiki/Speed-and-memory-use [accessed on 24.04.2021]

[18] “imgproxy Documentation” [Online]. Available https://docs.imgproxy.net/ [accessed on 
24.04.2021]

[19] Felter, W. Ferreira, A. Rajamony, R. Rubio, J. "An updated performance comparison of 
virtual machines and Linux containers" (2015), p. 8; IBM Research, Austin, TX. DOI 
https://doi.org/10.1109/ISPASS.2015.7095802

[20] “Docker Compose” [Online]. Available: https://docs.docker.com/compose/ [accessed on 
22.04.2021].

[21] “Docker: Swarm mode overview” [Online]. Available: 
https://docs.docker.com/engine/swarm/ [accessed on 22.04.2021].

[22] “The Twelve Factor App” [Online]. Available https://12factor.net/ [accessed on 
22.04.2021].

[23] “NGINX” [Online]. Available: https://www.nginx.com [accessed on 23.04.2021]

[24] Omid H. Jader, Subhi R. M. Zeebaree, Rizgar R. Zebari "A State Of Art Survey For Web 
Server Performance Measurement And Load Balancing Mechanisms" (2019); 
International Journal of Scientific & Technology Research. 8: pp. 535-543.

[25] Magnusson, F. “Implementing a Backup-Scheme with the 3-2-1 Strategy : A Comparison 
of the Active Solution with a New Implemented 3-2-1 Backup-Scheme” (2018), pp. 16, 
38; Mid Sweden University. DOI http://miun.diva-portal.org/smash/record.jsf?
pid=diva2:1246434

[26] “The Golden 3-2-1 Backup Rule”, Acronis (2021), [Online]. Available: 
https://www.acronis.com/en-us/articles/backup-rule/ [accessed on 23.04.2021]

[27] “Signed URLs”, Google (2021), [Online]. Available: 
https://cloud.google.com/storage/docs/access-control/signed-urls [accessed on 
23.04.2021]

[28] “Using Alpine can make Python Docker builds 50× slower” [Online]. Available: 
https://pythonspeed.com/articles/alpine-docker-python/ [accessed on 23.04.2021]

[29] “Removing the Linux /dev/random blocking pool” LWN (2020) [Online]. Available: 
https://lwn.net/Articles/808575/ [accessed on 24.04.2021]

48

https://lwn.net/Articles/808575/
https://pythonspeed.com/articles/alpine-docker-python/
https://cloud.google.com/storage/docs/access-control/signed-urls
https://www.acronis.com/en-us/articles/backup-rule/
http://miun.diva-portal.org/smash/record.jsf?pid=diva2:1246434
http://miun.diva-portal.org/smash/record.jsf?pid=diva2:1246434
https://www.nginx.com/
https://12factor.net/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/compose/
https://doi.org/10.1109/ISPASS.2015.7095802
https://docs.imgproxy.net/
https://github.com/libvips/libvips/wiki/Speed-and-memory-use
https://doi.org/10.1109/ICIP.2005.1530120
https://www.postgresql.org/docs/9.4/release-9-4.html
https://doi.org/10.1109/EMES.2015.7158433
https://uwsgi-docs.readthedocs.io/en/latest/


Appendix 1 – Non-exclusive licence for reproduction and 

publication of a graduation thesis1

I Oleg Berezin

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my 

thesis “Architectural solution implementation: a manufacturing enterprise case 

study”, supervised by Nadežda Furs

1.1 to be reproduced for the purposes of preservation and electronic publication of 

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be 

entered in the digital collection of the library of Tallinn University of 

Technology until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons' 

intellectual property rights, the rights arising from the Personal Data Protection Act 

or rights arising from other legislation.

20.04.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean, 
except in case of the university's right to reproduce the thesis for preservation purposes only. If a 
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s) 
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to 
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

49



Appendix 2 – Build an HMAC signed URL to image server for

accessing private images (called only by authorised users)

/app/imgserver-middleware/views.py:

def imgproxy_s3_signed_urls_handler(error, endpoint, values):

    """

    This handler triggers when `url_for` cannot build a URL. Checking, if the endpoint  

    is pointed to "imgs_private" then invokes S3 URL builder

    """

    IMGPROXY_SRCSET = tuple(current_app.config["IMGPROXY_SRCSET"])

    IMGPROXY_WEB_HOST = current_app.config["IMGPROXY_WEB_HOST"]

    IMGPROXY_API_HOST = current_app.config["IMGPROXY_API_HOST"]

    # IMGPROXY_SRCSET = (180, 360, 540, 720, 900, 1080, 1296, 1512, 1728, 2048, 4472)

    if endpoint == "imgs_private":

        # Get IMGSRV_SRCSET; set 180px if empty; abort if invalid

        image_width = values.get("s", 180)

        path = values.get("path", None)

        if image_width not in IMGPROXY_SRCSET:

            return return_json_error(code=400, msg="Invalid image size specified")

        return IMGPROXY_WEB_HOST + get_signed_url_private_web_images(
            path, image_width, IMGPROXY_WEB_HOST

        )

    else:

        # External lookup did not have a URL.

        exception_type, exception_value, traceback = sys.exc_info()

        if exception_value is error:

            raise Exception(exception, exception_value, traceback)

        else:

            raise Exception(error)

def get_signed_url_private_web_images(path, image_width, host) -> str:

    signed_url = SignURL(

        current_app.config["IMGPROXY_KEY"], current_app.config["IMGPROXY_SALT"]

    ).generate(

        path=path, resize="fit", width=image_width, height=0, gravity="no",

        enlarge=0, extension="jpg",

    )

50



Appendix 3 – Private administration interface

Listing stone sample materials, collapsed and expanded view:

51



Creating new stone sample material:

52



Appendix 4 – Stone example marshalling/MongoDB schema

/app/api/products/schemes.py (simplified and redacted):
class ProductSchema(Schema):

    """Schema of products.

    Defines the structure and validates product fields. Generates <product_id>

    (also used as URL slug) based on sample's title, checks if <product_id>

    is unique in MongoDB.

    Returning JSON formatted errors, if <product_id> already exists.

    """

    product_type = fields.Str(required=True)

    product_name = fields.Str(

        required=True,

        validate=[

            validate.Length(

                5,

                64,

                error="Product name has incorrect length (must be 5 to 64)"

            )

        ],

    )

    product_origin = fields.Str(required=False)

    product_price_20mm = fields.Decimal(

        required=True, allow_none=False, validate=validate_req

    )

    product_price_30mm = fields.Decimal(

        required=False, allow_none=True, validate=validate_opt

    )

    product_price_category = fields.Int(allow_none=True, required=False)

    product_gallery = fields.Url(

        relative=False,

        default=None,

        missing=None,

        schemes=set(["http", "https", "ipfs"]),

        validate=validate.Length(min=4),

    )

    description = fields.Dict()

53



    product_price_category = fields.Int(allow_none=True, required=False)

    product_gallery = fields.Url(

        relative=False,

        default=None,

        missing=None,

        schemes=set(["http", "https", "ipfs"]),

        validate=validate.Length(min=4),

    )

    description = fields.Dict()

    brief_en = fields.Str(

        allow_none=False, required=True, validate=validate.Length(min=5)

    )

    brief_ru = fields.Str(

        allow_none=True, missing=None, validate=validate.Length(min=5)

    )

    brief_et = fields.Str(

        allow_none=True, missing=None, validate=validate.Length(min=5)

    )

    brief_sv = fields.Str(

        allow_none=True, missing=None, validate=validate.Length(min=5)

    )

    photo_files = fields.Raw(many=True, read_only=True)

    product_images = fields.Raw(many=True, read_only=True)

    @pre_load

    def nullify_empty_fields(self, args, **kwargs):

        """Set `Null` to empty fields from HTTP FORM-object"""

        args["product_price_30mm"] = (

            Decimal(0) if not args["product_price_30mm"] else 
args["product_price_30mm"]

        )

        args["product_vendor"] = (

            None if not args["product_vendor"] else args["product_vendor"]

        )

        args["product_gallery"] = (

            None if not args["product_gallery"] else args["product_gallery"]

        )

        args["descr_et"] = None if not args["descr_et"] else args["descr_et"]

        args["descr_sv"] = None if not args["descr_sv"] else args["descr_sv"]

        args["descr_ru"] = None if not args["descr_ru"] else args["descr_ru"]

54


	1 Introduction 12
	2 Problem identification and motivation 15
	2.1 Enterprise background 15
	2.2 Problem overview 15
	2.3 Solution objectives 17
	2.4 Scope 18
	2.5 Author's role	19

	3 Solution analysis 21
	3.1 Business analysis 21
	3.2 Quality requirements and attributes 23
	3.3 Functional requirements 24
	3.4 Technical analysis: architectural approach 27
	3.5 Technical analysis: web-application decisions 27
	3.6 Technical analysis: image server 29
	3.7 Technical analysis: infrastructure and platform decisions 31
	3.8 Technical analysis: summary 34

	4 Solution implementation 35
	4.1 Web application 35
	4.2 Image Server 41
	4.3 Server and network infrastructure 42

	5 Solution assessment 43
	5.1 Solution results 43
	5.2 Threats to solution validity 43
	5.3 Solution metrics 44

	6 Further developments 45
	7 Summary 46
	References 47
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 49
	Appendix 2 – Build an HMAC signed URL to image server for accessing private images (called only by authorised users) 50
	Appendix 3 – Private administration interface Listing stone sample materials, collapsed and expanded view: 51
	Creating new stone sample material: 52
	Appendix 4 – Stone example marshalling/MongoDB schema 53
	1 Introduction
	2 Problem identification and motivation
	2.1 Enterprise background
	2.2 Problem overview
	2.2.1 Current state
	2.2.2 Operational issues of current state
	2.2.3 Potential conventional non-digital solutions

	2.3 Solution objectives
	2.4 Scope
	2.5 Author's role

	3 Solution analysis
	3.1 Business analysis
	3.1.1 Stakeholder survey
	3.1.2 Software development proposal

	3.2 Quality requirements and attributes
	3.3 Functional requirements
	3.3.1 Web-application
	3.3.2 Image server
	3.3.3 Infrastructure

	3.4 Technical analysis: architectural approach
	3.5 Technical analysis: web-application decisions
	3.5.1 Programming language, framework and application server
	3.5.2 Database

	3.6 Technical analysis: image server
	3.7 Technical analysis: infrastructure and platform decisions
	3.7.1 Platform
	3.7.2 Containerisation
	3.7.3 CDN, load balancing and reverse proxy
	3.7.4 Back-up strategy
	3.7.5 Cloud computing providers

	3.8 Technical analysis: summary

	4 Solution implementation
	4.1 Web application
	4.1.1 Back-end
	4.1.2 Front-end
	4.1.3 Security considerations

	4.2 Image Server
	4.3 Server and network infrastructure

	5 Solution assessment
	5.1 Solution results
	5.2 Threats to solution validity
	5.3 Solution metrics

	6 Further developments
	7 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Build an HMAC signed URL to image server for accessing private images (called only by authorised users)
	Appendix 3 – Private administration interface Listing stone sample materials, collapsed and expanded view:
	Creating new stone sample material:
	Appendix 4 – Stone example marshalling/MongoDB schema

