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Introduction

The world is moving more and more to the sustainable energy usage and development
of the products and technology, which support the sustainable energy use in transport,
heating and power systems (Benda and Cerna, 2020). Renewable energy sources like
solar, wind, hydroelectric power and geothermal energy are generally more sustainable
than traditional fossil fuel sources. Together with the growth of development of the new
sustainable energy technologies and products, it is crucial to focus on the energy storage
and conversion; energy efficiency and distribution; and policy and economics topics and
tasks (Ritchie and Roser, 2020). One of the products which support sustainable energy
usage in heating and electricity manufacturing are Photovoltaic modules. Volumes of the
Photovoltaic (PV) modules manufacturing and installations are rapidly growing not only
in the service and manufacturing sector, but also household and private sector (see
Figure 1).
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Figure 1. Globally cumulative installed PV power (a) and annually cumulative installed PV power (b)

[2].

The Photovoltaic modules are utilizing the PV effect, which generates the flow of the
electrons inside the materials, which are exposed to the light. Due to the high efficiency,
low manufacturing price and good manufacturability the most popular way to
manufacture the PV modules are using the silicon-based solar cells. For manufacturing
the PV modules in a lower price level and higher productivity, it is needed to get the real
time feedback from the manufacturing processes to be able to act the system changes
quickly, because of that the production monitoring system implementation and usage is
needed.

This thesis is focused on application of the real time measurement of temperature,
pressure and duration, during the PV module lamination process, representing those
parameters in a graphical view with possibility to analyze lamination conditions in
accordance with further cross-linking results of Ethylene/Vinyl-Acetate (EVA) for
developing a module lamination quality prediction algorithm and visualize the overview
of the process in real time.

Ensuring quality of the encapsulant is a challenging due to lack of the possibilities to
assess and evaluate the quality of lamination on chemical composition level just after the
lamination cycle is done. In order to define the crosslinking level laboratory tests are
needed. The production monitoring system for the manufacturing process of photovoltaic



modules is proposed (Herranen, 2013). In the current problem there is a number of
inputs having impact on the quality of the lamination process: temperature, duration,
pressure/vacuum time, which are examined in the thesis.

The experimental evaluation of the gel content (degree of cross-linking) of EVA
material is time consuming process [4]. In order to reduce the number of experiments
needed for evaluation of the value of gel content the response surface between the gel
content and its two main impact factors (duration of the process and temperature) is
developed. Two advanced mathematical modelling techniques are implemented for
composing response model. First, the feedforward artificial neural network model (ANN)
is developed. Due to its hierarchical structure, the feedforward ANN model used is
powerful tool for function approximation. However, in the case of limited dataset,
available in the current study, this stochastic approach does not provide stable results.
The Haar wavelet-based function approximation technique is introduced as alternate
recent and deterministic approach (preferred in the case of limited dataset).

The two mathematical models developed are found to be in good agreement. Utilizing
the response surface composed provide fast evaluation the value of gel content in desired
points and form basis for further design optimization.
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1 The review of the literature

Manufacturers are trying to improve production by applying different monitoring
systems and using the Key Performance Indicators (KPIs). KPIs are showing the level of
performance compared with the existing systems or in the field generally through
measurable attributes, like the amount of material, energy, or time consumed in the
process. With the high amount of the Internet of Things (loT) and the increasing
availability of data (from the product parameters and process parameters) in real time,
manufacturers have availability to calculate a broad range of KPIs and their usage in
certain processes and product specific parameters.

1.1 Background

Current trends in smart manufacturing show the direction to stay competitive on the
market and to deliver the maximum return on assets for production related companies.
To achieve this, companies have to continuously search for innovative ways to improve
their production and quality control processes, to optimize manufacturing processes
using new 14.0 based technologies and perform work in a faster and better way (Sell
et al., 2008; Kuts et al., 2018). Production processes should be effectively monitored and
controlled to avoid malfunction and unplanned downtime.

Quality is becoming an increasingly important function for the company due to the
increased customer demands and product quality requirements. Manufacturing
companies apply modern quality control techniques to improve the production line and
its processes quality. A range of techniques are available to control product or process
quality (Judi et al., 2011). These include seven statistical process control (SPC) tools,
acceptance sampling, quality function deployment (QFD), failure mode and effects
analysis (FMEA), six sigma, and design of experiments (DoE). Quality Control (QC) and
Quality Assurance (QA) can be defined as fulfilling specification or customer requirements,
without any defect. A product is said to be high in quality if it is functioning as expected
and is reliable. Quality control refers to activities to ensure that produced items are
fulfilling the highest possible quality.

The smart factory concept is closely tied to decentralized decision-making; that is,
the system itself adapts, optimizes, evolves and makes changes independently and
automatically. This is where the use of Artificial Intelligence comes in and it enables entire
CFS to make decisions entirely without human intervention. The companies are in different
level with implementing the different possibilities of Industry 4.0. The companies also have
different processes and different production with the needs for quality QC, QA and QM.

For fulfilling different functions of QC, QA or QM different methods, tools and systems
are needed depending on the needs of current company (with its production system,
processes and products). For developing these instruments, one is clear. These must be
intelligent, cognitive, equipped with different sensors and having the possibilities for
monitoring and control functions in the production lines, gathering different data from
the production and making validation and decision-making procedures. The objective is
to achieve the comprehensive quality control with zero defect manufacturing possibilities.

In each company the main objective is to guarantee the required quality of the
product (product specification), which is achieved by the technology and used
equipment. There for having product we need the production process (production line)
in which there is certain number of workplaces, where are quality control according to
the technology.
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Volumes of PV modules installations are rapidly growing annually. Global Compound
Annual Growth Rate of cumulative photovoltaic installations during period from year
2010to 2019 was as much as 35% [4]. Photovoltaic modules are utilizing the Photovoltaic
effect that generates flow of electrons inside the materials which are exposed to the
light. There are different materials that are possible to use for achieving photoelectric
effect. At the moment the most popular way of manufacturing (due to efficiency, price
and manufacturability) PV modules is using the silicon-based solar cells. According to
(Fraunhofer Institute for Solar Energy Systems, 2020) 95% of manufactured modules are
built on silicon-based solar cells. The simplified cross-section of solar cell and the PV
principle are represented in Figure 2.

Monocrystalline Polycrystalline
silicon solar cell silicon solar cell

Front contact

. Textured surface
Anti-reflection /

coating
n* Region —__ [

p-Type siIi_c_on

Back surface
ptfield — |

Back contact

Figure 2. Schematic cross-section of c-Si silicon solar cell.

The main goal of the study is to develop the concept of the real time monitoring
system for manufacturing processes of PV modules. Driven by reduced costs of the solar
power generation, which is growing rapidly and the number of the photovoltaic modules
being delivered to the customer increases. Automatic and earlier detection of
defects/shortcomings will reduce the production cost and increases the productivity.
One of the topics in this study is to detect main issues, influencing the performance of
the manufacturing process of PV and determining the quality of the product produced.
There will be proposed and analyzed the key parameters to be monitored in order to
eliminate the faults and optimize the manufacturing processes.

The photovoltaic module is composed of different layers of different materials such
as glass, encapsulant, photovoltaic cells, back-sheet laminated together. In this study
encapsulant used is Ethylene/Vinyl-Acetate as this is the material mainly used by the PV
manufacturer (and the one mainly used in the industry) who helped with the research.
Other encapsulant possibilities are not in the focus of the study.

12



This thesis is considered to be further development of study started by authors in
(TSukrejev et al., 2019). Initial study focused on examining the possibility and need in
measuring temperatures of lamination process by external sensors, need for further
research with employing laboratory cross-linking test was defined.

There are several factors that are both, impacting the final quality of the photovoltaic
module and could be tuned during manufacturing process. According to (TSukrejev et al.,
2019) these factors are considered as input/design parameters:

e lamination temperature of the module;
e pressure and vacuum time during the process;
e duration of the process (time).

Same factors are influencing the level of cross-linking of the EVA after it has been
cured. These are the main parameters to follow and tune in order to achieve a desired
gel content level of the encapsulant. At the same time, it is challenging to manufacturer
to balance between duration time of the process, temperature and getting to the
acceptable level of gel content. Every tuning of the process recipe can bring additional
issues as appearing of trapped bubbles of EVA fumes or EVA gel content percentage
exceeding desired levels.

All factors considered separately and as well as their combination plays role.
The considered parameters have impact to the gel content (degree of cross-linking) of
Ethylene/Vinyl-Acetate. This is something that is complicated to monitor in real time as
there is need to define it during laboratory tests. There are several of different
procedures for defining gel content, but those do not vary a lot. Determining of the fact
that the gel content is a time-consuming process (Jaunich et al., 2016), this study uses
cross-linking measurement by dissolving encapsulant samples in toluene solution for
24 hours. The gel content percentage is important to the further performance of the
module during operation. The good cross-linking of encapsulant material is one of the
key points to ensure structural health of the module. It is found that encapsulant and
back-sheet failures are responsible for nearly 22 % of PV modules returns (Hasselbrink,
etal., 2013). This thesis focuses on application of real time measurement of temperature,
pressure and duration, during the lamination process, representing those parameters in
a graphical view with possibility to analyze lamination conditions in accordance with
further cross-linking results of EVA for developing a module lamination quality prediction
algorithm and visualize the overview of the process in real time.

(b)

Figure 3. PV module cells layout and electrical circuit is ready (a) and finished PV module.
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To build a PV module, there are also other materials used in order to ensure
maximization of light gathering, structural health as well as electric and climate
insulation. The structure of PV module considered includes (Amrani et al., 2007):

e Front-sheet — usually glass or other transparent material for light transparency as
well as climate and mechanical protection;
Photovoltaic cells — for electrical current generation;
Ribbon connections — for electrical circuit;
Back-sheet — for electrical and climate insulation;
Encapsulant — for laminating everything all together, protection from moisture
and air as well as being transparent for light.

On Figure 3 the view of single PV module during the manufacturing stage is shown (a)
with one of the EVA sheets laid onto the glass and solar cells soldered together into the
electrical circuit on top of the EVA. The finalized ready and framed module represented
on Figure 3 (b).

During lamination process due to thermal activation the polymer chains inside the
encapsulant are being linked together. Cross linking level is having impact on different
material properties and can define reliability and performance of the material during
service time. In order to define the degree of cross linking inside EVA encapsulant the gel
content parameter is used. Lower degree of gel content referring to the lower level of
cross linking which brings the mechanical properties of the encapsulant to insufficient
level. Also the higher level of gel content refers to the higher level of cross linking which
can cause mechanical properties to be over necessary levels.

Current study aims to gather the experimental data and based on these data, to build
mathematical model(s) for prediction the quality of the encapsulant gel content.
The obtained results will allow manufacturers to predict the crosslinking level instantly
at place on the basis of real-measured parameters. The response surfaces, built on
mathematical models, allow to predict unknown values of the functions. In the current
study are employed two recent techniques.

First is utilized artificial neural network technique — one of the most widely used
modelling technique in engineering covering various engineering problems (Fathi et al.,
2021; Montesinos et al., 2021; Kazi et al., 2022; Teharia et al., 2022; Zarringol et al., 2020;
Kumar et al., 2022; Sada et al., 2021; Mondal et al., 2020; Hein et al., 2019). In (Fathi
et al., 2021) the intelligent maximum power point tracking for photovoltaic panels is
developed using a novel fuzzy logic and artificial neural networks. In (Montesinos et al.,
2021) the ANN model is developed to estimate atmospheric horizontal extinction in
central solar tower power plants. In (Kazi et al., 2022) the crashworthiness performance
of composite rectangular tubes is studied to achieve the given values of the load carrying
capacity and energy absorption. In (Teharia et al., 2022) is performed optimization of
additive manufacturing process for producing PLA based tensile specimen. In (Kumar
et al,, 2022) and (Zarringol et al., 2020) the ANN models are developed for predicting
micro-hardness during electric discharge machining of cryogenically treated titanium
alloys and the ultimate strength of rectangular and circular concrete-filled steel tubular
columns, respectively. In (Sada et al., 2021) the modeling ability of the ANN and adaptive
neuro-fuzzy inference system in the prediction of AlISI 1050 steel machining performance
are evaluated. In (Mondal et al., 2020) the ANN model is utilized for optimization of
drilling burr. In (Jaanuska et al., 2019) the ANNs and the random forests are applied to
predict the location and severity of a crack in Euler—Bernoulli cantilever beam. In (Hein
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et al.,, 2019) the parameter identification is performed in vibrating nano-beams as a
classification problem using different machine learning methods.

The development of ANN based prediction models and combining ANN models, etc.
Al tools with gradient based and evolutionary optimization algorithms are subjects of the
study of the workgroup during several decades covering optimal material orientation
problems (Majak et al., 2010) design of car frontal protection systems, 2008, 2012);
technology route planning of large composite parts (Karjust et al., 2010), modelling
reprocessing of the glass fiber reinforced plastic (GFRP) scrap (Aruniit et al., 2011),
prioritization of key performance indicators (Kaganski et al.,, 2017, 2018), design of
composite laminates with structural health monitoring capabilities (Herranen et al.,
2013, 2018), development of production monitoring system with predictive functionality
(Eiskop et al., 2017, 2018, Snatkin et al., 2015). The accuracy and configuration of the
ANN is studied in (Gnana Sheela et al., 2013) and (Hecht-Nielsen, 1989).

The second recent mathematical modelling approach used herein is based on Haar
wavelet expansion. The Haar wavelet-based techniques for function approximation is
used over decade. According to commonly used approach the functions are expanded
directly into Haar wavelet series (Babolian et al., 2009; Lepik and Hein, 2014). It has been
proved by (Babolian et al., 2009) that in latter case the rate of convergence with respect
to mesh is equal to one. The obtained convergence rate value is obviously poor for wide
use in engineering design. The higher order Haar wavelet-based function approximation
has been introduced in (Majak et al., 2018). According to (Majak et al., 2018) the
derivatives of the function are expanded into Haar wavelets. The order(s) of derivative(s)
are considered as method parameter(s), which can be adopted for particular problems.
Latter method provides principal increase of the accuracy and the rate of convergence in
comparison with widely used Haar wavelet expansion-based approach keeping the
increase of the computational and implementation complexity reasonable (Majak et al.,
2021; Tsukrejev et al., 2021; Haavajoe et al., 2019).

1.2 Objectives and activities of the research

The main objective of the research is to improve the manufacturing processes of
photovoltaic modules by developing real time monitoring system concept and prototype,
performing measurements of key parameters and composing mathematical models for
prediction of quality characteristics. This thesis is focused on detecting main issues,
influencing the performance of manufacturing process of photovoltaic modules and
considering key parameters in modelling the quality of encapsulant.

The main activities of the research are:
e Development of Photovoltaic Module Production Monitoring System Concept;
e Prototype development and real time testing;
e Mathematical modelling of the quality of encapsulant.

1.2.1 Scope and limitations of the research

The scope of the particular research is to define the most important parameters that are
influencing the quality of the PV module and to compose mathematical models allowing
to predict the behavior of quality characteristics. To develop the procedure for tracking
those parameters in real time as well as the concept of the tool which would process the
gathered data and bring suggestions regarding the quality of the module. Limitations are
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coming from the limitations of the manufacturing facility of the company, which is the
partner of particular study. Limiting factors are as follows:

e  Existing machinery;

e  Existing materials used in production process;

e  Existing module structure.

In order to understand better practical manufacturing process, the theoretical
development and numerical modeling is implemented on basis of particular manufacturer
(monitoring system built, gathered data, etc.). However, the research results and findings
can be utilized also by other PV modules producers as the challenges faced by
manufacturers who are using the same or similar materials are very alike. Cross-linking
level determination process and principles used by different manufacturers is the same.
The main difference is that some of the companies can use their in-house laboratory
capabilities and the others have to seek for an outsourced laboratory service. Topic of
optimization of the PV module design is studied by Chen et. Al, 2015, hence it is not
mainstream research.

The research was applied mainly to the standard 60-cell PV module with the Low-iron
structured 3,2 mm thick glass, two layers of EVA and a backsheet. Dimensions of the
laminate are 981x1618 mm. As a final step laminate is framed with aluminium frame and
junction box installed. This type of module is the main product and takes share of 90% of
production output of the manufacturer.

1.2.2 The research questions

The encapsulant cross-linking level is essential to the photovoltaic module’s structural
health and performance during operation in the future as well as it is one of the major
parameters for the quality assessment of the module. The fact that it is not possible to
perform such kind of tests in real time without destructing the product makes it highly
complicated to assess this parameter on a module level. The tests are performed for
different batches of EVA. At the same time there could be a difference inside one batch
caused by different settings of the machinery or different performance of the machinery.
Considering that there is a need to develop a prediction tool which would use existing
real-time measurable parameters to evaluate the quality of encapsulant and give a
suggestion regarding product quality during the production run.

The research questions can be formulated as:

Ql. What are the basic functionalities and features of the real-time production
monitoring system featured for manufacturing of photovoltaic module’s?

Q2. Which key performance characteristics are important for the quality assessment of
the module?

Q3. How can mathematical modelling help to evaluate performance characteristics?
What kind of advanced prediction tools can be utilized?

Q4. What is the practical outcome? How the results obtained can be applied?

16



2 Theoretical Concepts

In the following the theoretical concepts of manufacturing and quality evaluation of the
photovoltaic modules are discussed. Two mathematical models are introduced for
response surface modelling.

2.1 General Structure and Manufacturing Process of the Photovoltaic
Modules

Burning fossil fuels is in charge for the big part of atmosphere pollution and the greenhouse
effect in general (Graus et al., 2009). According to Clover et al., 2018 in Europe (including
Turkey) countries newly installed photovoltaic systems capacity was of 28% growth in
2017 in yearly comparison. The main technology for manufacturing solar modules, with
market share over 90%, is the silicon-based photovoltaic cells (Fraunhofer Institute for
Solar Energy Systems, 2020; Silvestre et al., 2018). Fraunhofer ISE report notes that the
efficiency of the silicon cells hitting the laboratory efficiency of 26.7% and 22.3% depending
on technology used: respectively monocrystalline or polycrystalline. The efficiency of cells
available in the market is about 21.5% and growing on annual basis. Additionally, to the
traditional silicon-based solar cells, there are different perspective materials used. One
example is to use Perovskite instead of crystalline silicon inside the solar cells, as it is
considered to be cheaper material reaching the efficiency of 22.1% (Shi et al., 2018).
Another example of future material to use as a solar cell is to be the “black silicon”, which
have the significant laboratory efficiency of over 90% (Juntunen et al., 2016). The solar
modules with silicon cells are consisting of different layers, composing a sandwich
structure (Amrani et al., 2007): shown in Figure 4.

e Anodized aluminum frame

y— ———— Highly transparent tempered glass

p T Encapsulant material - EVA

Photovoltaic solar cells

Encapsulant material - EVA

\ Insulating back sheet

e Junction box

Figure 4. Layers of solar module.

This paper addresses the manufacturing process of photovoltaic modules with silicon-
based cells and focuses on the lamination part of it. The lamination step is essential to
the manufacturing process and placed in the middle of it, after lamination nothing can
be changed as the whole module is already encapsulated.
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2.2 Photovoltaic module manufacturing process

The production process in the particular facility is not having any special differences with
generic widely known Si-c PV modules manufacturing process. The work of automated
machines (cell stringer, laminator) as well as manual labor of skilled operators is used.
To ensure the working condition of module, electrical parameters to be in accordance
with specifications as well as cosmetic appearance of the product the quality control
station (Workstation 4) is integrated into the process. Special flash-light and
measurement equipment setup is used in this workstation. Manufacturing process
consists of the number of steps:
e  Workstation 1
o Preparation of the glass
o Soldering of the solar cells into the cell strings
o Layering the encapsulant cell strings onto the glass
e  Workstation 2
o Soldering the cells and ribbon connectors into the electrical circuit
e  Workstation 3
o Lamination process
o Cooling down process
o Module cleaning and visual inspection
e  Workstation 4
o  Flash testing
e  Workstation 5
o Final assembly of the module
o Packing

Production technological steps mentioned above can be found also on the Figure 5 (a).
Figure represents the physical layout of the workstations and machines as well as staffing
and the way of workflow. Figure 5 (b) represents the main processes taking place during
the manufacturing cycle.

18
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Figure 5. Layout of production line and technological steps of the manufacturing process (a) and
workflow detailed description (b).
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Particular thesis focuses on the lamination process. The flow chart of the lamination
steps is represented on the Figure 6, showing the sequence of operations. Lamination
process consists of diferent steps and starts when the PV module is ready to be laminated
(meaning that all layers are placed to the glass and connections are soldered into proper
electrical circuit). Laminator machine operates in semi-automatic mode, as feeding of
the modules and taking those from the machine is manual work. All other steps: taking
into the chamber, lamination and going out of the chamber are automated and
happening according to the recipe.

During the lamination process the module is fed into the lamination chamber. After
the laminator lid is closed the chamber is sealed and no air can go inside there. The
module is curing under certain temperature inside the chamber in accordance with the
recipe. At the same time as a first lamination step the under pressure is applied and air
is being pumped out of the chamber. Lamination chamber consists of two sections
separated by silicone membrane, the pressure can be different in the chamber sections.
The one with the module inside usually is being under pressurized to ensure no air or
EVA fumes will be left in between the material layers of PV module and no bubbles will
be appearing. The other section “behind” the membrane can be over pressurized
(depending on the recipe) in order to apply pressure to the PV module being cured. This
is in order to glue all of the layers together as well as helps to extract leftovers of air or
fumes.

Temp /
Chamber pressure . Pressure to
2 Lamination End process
closes reaching to normal

recipe

Module Module

ready for goes to
lamination chamber

Figure 6. Flow chart of lamination process.

2.3 Main Issues in Photovoltaic Modules Manufacturing Processes

As noted in (Meyer et al.,, 2017; Zhu et al., 2012), the major faults of solar modules
because of the wrong design or troubles during production could be brought as follows:

e air bubbles inside modules;

e broken cells;

e  microcracks;

e hot spots;

e potential induced degradation (PID);

e snail trails.

The photovoltaic modules production issues are analyzed and the results are brought
out in Table 1. It is explained how those types of issues and faults appear inside module
and what are the reasons. Certain suggestions, how it is possible to overcome these
issues, are proposed in last column of Table 1.

20



Table 1 Different issues in PV modules.
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In understanding the nature of those faults brought out in Table 1, it is possible to
follow the set of selected parameters in order to prevent the issues listed above. Most
of the issues in photovoltaic modules appear during lamination process. This process is
very important to the success of module but very complicated to be tuned. Settings
depends on used materials. Laminator has to perform the whole cycle (up to 25 minutes)
in order to produce a module. During lamination the chamber is closed and it is not
possible to see if something going wrong there. After every smallest change in program
there is need to wait for whole cycle. In case of wrong settings modules will be scrapped.

There are different steps in lamination process with different temperatures and
pressures. The encapsulant material EVA is becoming liquidous during lamination, which
makes possible for cells to float inside and is causing undesirable displacements.

EVA is a mildly transparent thermoplastic, soft, easily can be deformed, melting range
for EVA is in the range of 60—70 degrees C. EVA is a copolymer of ethylene and vinyl
acetate. The percentage of vinyl acetate for PV use is usually in the range of 28-33%. In
order to fulfill the encapsulation requirements EVA needs to go through thermally
activated crosslinking which is possible with a help of radical reaction of peroxide or
peroxycarboxylic acid as an initiator (crosslinker). This crosslinker is cleaved into two
radical species, by the creation of a chemical bond between the polymer chains, the
initial thermoplastic EVA is transformed into a “cured” three-dimensionally crosslinked
elastomer. During the lamination at temperatures around 150 °C. The rate of crosslinking
is modulated mainly by the temperature and duration of the lamination process (Hirschl
etal., 2013).

2.3.1 Measurable Parameters

The manufacturing process is often highly automated by the various IT/software systems

and production lines with combination of robots. The production is planned and

scheduled by a Production Planning and scheduling System (P&S). The efficiency and

effectiveness of the resources in the production plant can be estimated through KPIs.
The study of lamination process allows selecting of the parameters that need to be

tracked:

Table 2 Process parameters relationships between input and output parameters.

Parameter Explanation
Pressure Input essential during lamination process (impact on
the cross-linking level of encapsulant and
appearing of air bubbles)
Temperature Input main parameter for photovoltaic module
lamination. Impacting the cross-linking level of
encapsulant

Duration Input lamination time. Influences EVA cross-linking
level and appearing of bubbles inside of the
laminate

Displacements Output essential to understand if module’s structure is

right. By finding displacements that are not
seen by eye and understanding when those
happened it is possible to improve modules
overall

22



EVA gel content Output important parameter to be followed, but it is

(degree of hard to track by sensors in real time, as it is

crosslinking) determined during chemical processes.
Highly dependent on process duration time and
temperature

Cracks Output finding different types of cracks before
laminating process allows to replace the cell

Measured Output the temperature data gathered from

temperature additionally installed sensors could be
considered as an output as it could be used
further in making decisions according how to
measure temperature in a right way

In order to track those parameters (please see Table 2), the main idea is to embed a
sensor inside the photovoltaic module body on the production stage and by this track
parameters noted.

As it is marked in Table 2 all three of considered inputs are having an impact on the
quality of encapsulant through the cross-linking level of EVA.

2.4 Experimental Evaluation of the Quality of Encapsulant

Quality of lamination is a general focus of the series of papers and emerging problem for
solar companies. Encapsulant under study is Ethylene/Vinyl-Acetate (EVA), as it is mainly
used by the partner PV manufacturer of this study. In terms of particular research
assessment of lamination success could be divided into two main branches, represented
in Figure :

1. Visual component (aspect) — all possible visual fault that leading to bigger issues

in the future;
2. Quality of encapsulant (crosslinking level) — Gel content of the EVA material,
should be defined during time consuming process (Jaunich et al., 2016).

Color of encapsulant Crosslinking level
Air/fume bubbles
Insufficient adhesion between
components (delamination)

Visual component (defined Encapsulant quality (defined
instantly) in laboratory)

Foreign objects inside

Figure 7. Quality assessment of cured Ethylene/Vinyl-Acetate.
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Ensuring quality of the encapsulant is a challenging due to lack of possibilities to assess
and evaluate quality of lamination on chemical composition level just after the lamination
cycle is done. In order to define the crosslinking level laboratory tests are needed. Good
cross-linking level is considered to be 65% (Eiskop et al., 2017). Supplier of EVA
suggesting target value for PV modules to be between 70% and 80%. Sample gathering
is something that is making a PV module not usable anymore.

The production monitoring system design and implementation issues are discussed in
(Eiskop et al., 2018; Shiva Prasad et al., 2016; Kaganski et al., 2017; Kaganski et al., 2018;
Sell et al., 2008; Kumar et al.,, 2021; Sada et al., 2021). Particularly, the production
monitoring system for manufacturing process of photovoltaic modules is proposed in
(Eiskop et al., 2018).. In the case of current problem, here is a number of inputs having
impact on quality of the lamination process: temperature, duration, pressure/vacuum
time (Meyer et al., 2018). As temperature and duration of the process are considered by
the authors to make the biggest impact on the quality of encapsulation it was decided to
measure the temperature from the edge of the module during the real manufacturing
lamination cycle. Previous experience showed that measuring from the surface of the
module is damaging back sheet and module is becoming visually defected and not usable.

2.5 Mathematical modelling of the quality of encapsulant

In general, the mathematical model will be developed with an aim to predict the values
of the function in points, where experimental data or numerical analysis data are not
present with an aim to save/reduce expenses for experiments and/or computing time.

In engineering design one of the recent and most popular modelling technique used
is artificial neural network (Kazi et al., 2022; Teharia et al., 2022; Zarringol et al., 2020;
Kumal et al., 2022; Sada et al., 2021; Mondal et al., 2020). Main application areas of the
ANN in engineering design can be listed as

e function approximation;
e  pattern recognition;
e classification, etc.

The response modelling allows to save time and other resources in engineering
applications. Especially can be pointed out stochastic optimization algorithms, which
need commonly huge number of evaluations of the objective functions. The workgroup
has long time experience with development and adaption of ANN and artificial
intelligence tools for wide range of engineering design problems like modelling car
frontal protection system, optimal material orientation problems, design of composite
laminates with structural health monitoring capabilities, prioritization of key
performance indicators, design of sandwich panels, modelling reprocessing of the glass
fiber reinforced plastic (GFRP) scrap, etc. (Majak et al., 2008, 2010, 2012; Karjust et al.,
2010, Aruniit et al., 2011, Kaganski et al., 2017, 2018; Herranen et al., 2018; Eiskop et al.,
2017, 2018).

2.5.1 Artificial Neural Network model

The general structure of the feedforward ANN employed in the current study is shown in
Figure 8. It has been shown by several authors that in the case of function approximation
the feedforward artificial neural network (ANN) model with one hidden layer can
approximate any continuous function accurately on a compact space (closed real
interval) (Gnana et al., 2013; Hecht-Nielsen 1989). For that reason, only one hidden layer
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is considered. In the case of feedforward artificial neural network, the information is
moving in one direction from input to output without loops. The general working
principle of the feedforward ANN is the following. The random weights are generated for
input and hidden layers. The input parameters temperature and final time are multiplied
with random weights, next is added bias and applied the transfer function of the hidden
layer. The outputs of the hidden layer are multiplied with weights and the bias is added.
Finally, the transfer function of the output layer is applied and output value is obtained.
The weights and bias are updated by utilizing to Levenberg-Marquardt training algorithm.
The iterations are repeated until the required accuracy is achieved or maximum number
of iterations is reached.

Input layer Hidden layer Output layer

e

Figure 8. Scheme of employed artificial neural network.

The mean square error (MSE) was utilized for evaluation of the ANN model developed.
As common for stochastic processes the ANN need certain tuning. More precisely, the
development of final ANN architecture is stochastic process, after the training is
completed, the ANN can be utilized as deterministic method. The architecture of the
considered simple backpropagation ANN includes specifying the number of layers,
number of neurons in each layer and transfer functions in each layer.

Based on literature and above remarks, the ANN with one hidden layer, two neurons
in input layer (determined by number of input variables) and one neuron in output layer
(determined by number of outputs) was developed. The initial value of the neurons in
hidden layer is computed as (Gnana Sheela et al., 2013)

Ny = (Nip +/Nir)/L, (2.1)
In (2.1) L denotes a number of hidden layers (in the current study L = 1), N is a

training data capacity, N, and N;, stand for a number of neurons in hidden and input
layers, respectively. The transfer functions used in hidden and output layers are sigmoid
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and linear functions, respectively. In one layer is used the same function for all neurons.
During tuning process of ANN, the number of neurons in hidden layers is increased by
one until the mean square error decrease.

The dataset available for modelling the quality of encapsulant is limited at current
time. The ANN model includes uncertainty and its results may vary, if the dataset
available is too small. Thus, an alternate approach, based on the Haar wavelet expansion,
is developed for modelling the quality of encapsulant.

2.5.2 Haar wavelet-based model

The Haar wavlet based approach for function approximation is new, may said in
development (Lepik et al., 2014; Majak et al., 2021; TSukrejev et al., 2021). The Haar
wavelet expansion-based approach can be introduced for 2D function as (Haavajoe,
2019; Tsukrejev et al., 2021)

f,y) = X8 23 a;h () h;(y) (2.2)

In (2.2) the function f(x, y) is a function needed approximate (herein the gel content),
x and y stand for the temperature and processing time, respectively. The Haar functions
are given as

L for xe[§@.60)
hx)=1-1  for  xe[5).50))

0 elsewhere (2.3)

where

& (i) = A+2kuAx, &) = A+ @k +Duar, &) = A+2(k+1)uAx,
w=M/m, Ax=(B—A)/2M), M =2’ (2.4)

In (2.3)-(2.4) m = 27 is describes the resolution (M = 2/ corresponds to maximal
resolution), the translation parameter k indicates the location of the particular square
wave and i = m + k + 1. The unknown coefficients a;; in (2.2) can be determined by
satisfying the relation (2.2) in given collocation points. In the case of uniform mesh the
collocation points can be calculated as

x=(1-05)/@M),y, =22 Lr =12, 2M. (2.5)

In the case of experimental input data, the measuring points may have nonuniform
distribution. However, the coefficients a;; can still be determined from relation (2.2), but
the widely used Haar matrices for uniform mesh cannot be implemented. In practical
applications, the boundary area is often more critical for changes of the function.

The function approximation approach given by (2.2) is deterministic, but its accuracy
is rather low in the case of small mesh. For this reason, the workgroup has introduced
more general Haar wavelet based function approximation approach as

an+mf

aamoym 5 ¥) = L X35 ayhi ()l (y)- (2.6)

26



This approach, is based on higher order Haar wavelet method introduced in 2018 in
(Majak et al., 2018). According to latter approach instead of the function its n + m -th
order derivative is expanded into Haar wavelets. In (2.6) n,m = 1,2,.. are model
parameters. The function f(x, y) can be determined by integrating the relation (2.6) n +
m -times. Obviously, such integration produces n + m integration constants/functions,
which can be determined by satisfying function f (x, ¥) in points where its value is known
(experimental or numerical data provided). In engineering applications, it is often
suitable to use boundary points for this aim, since in boundary the function value if often
known (may not need extra experiments).

In order to get understanding about accuracy of the approach (2.6) in the case of
different model parameters n and m values, the approximation of the simple 2D
exponent function f(x,y) = e**¥ is explored. This allow to select most suitable model
parameters values in the case of practical applications where the number of experiments
is limited. The obtained results are given in Table 3 (n =m = 0), Table 4 (n =m = 1)
and Table 5 (n = m = 2), respectively.

Table 3. Function approximation results for test function f(x,y) = e**Y in the case of n = m = 0

Fn value at point

Grid size X=0.25,y =025 Abs. error Converg. rate
4 2.11700 4.68e-01

8 1.86824 2.20e-01  1.0930

16 1.75505 1.06e-01  1.0458

32 1.70105 5.23e-02  1.0227

64 1.67468 2.60e-02 1.0113

Table 4. Function approximation results for test function f(x,y) = e*tY in the case ofn=m =1

Fn value at point

Grid size X=0.25,y =0.25 Abs. error Converg. rate
4 1.63896 9.76e-03

8 1.64840 3.14e-04 4.9561

16 1.64864 7.87e-05 1.9972

32 1.64870 1.97e-05 1.9993

64 1.64871 4.92e-06  1.9998

Table 5. Function approximation results for test function f(x,y) = e**Y in the case of n = m = 2

Fn value at point

Grid size X=0.25,y =025 Abs. error Converg. rate
4 1.648734254 1.30e-05

8 1.648721966 6.96e-07 4.2222

16 1.648721315 4.45e-08 3.9660

32 1.648721273 2.78e-09  3.9987

64 1.648721270 1.74e-010 9.9999
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In the first column of the Tables 3-5 is given grid size, here the value 4 correspond to
the 4 units in directions of the both coordinates i.e. actual mesh is 4x4. Thus, in each next
row the mesh is doubled and the function value (given in column 2) is computed in the
same selected point (x = 0.25,y = 0.25) in order to compare the accuracy achieved for
different grid density. In the third and fourth columns of the Tables 3-5 are given the
absolute error and the convergence rate, respectively. The values of the absolute error
and the convergence rate are computed as

Abserror(N) = |Function(N) — Function_Exact| (2.7)
ConvergenceRate = log (Abserror(N)/Abserror(2 = N))/log(2) (2.8)

In (2.7)—(2.8) Function_Exact is the exact value of the function at given point
(x = 0.25,y = 0.25). The formula (2.8) for computing the rate of convergence is valid in
the cases, where the mesh is doubled. The computed numerical rate of convergence
tends to one in Table 3, to two in Table 4 and to four in Table 5. The rate of convergence
characterizes how fast the absolute error decrease in the case of increasing mesh.
Obviously, the accuracy of the simplified model where n = m = 0 is low (see absolute
error in Table 2), it achieves reasonable value when N = 64, but in 2D case it means
64 x 64 = 4096 mesh points and is unrealistic for experimental study. It can be seen from
Table 4, that in the case of model where n = m = 1, improved accuracy is achieved
already with meshes N = 4 and N = 8 (due to measuring errors extra high accuracy of
the model is not required). It follows from Table 5, and Table 3, that in the case of the
model where n = m = 2, the accuracy achieved with minimal mesh N = 4 is significantly
higher than that of the model where n = m = 0 with maximum mesh (N = 64).

Latter approaches with (n = m = 1) and (n = m = 2) are based on higher order
Haar wavelet method introduced recently by workgroup and provide higher
accuracy/convergence rate (Majak et al., 2018), but require extra test points for
determining complementary integration terms. With further increasing the orders of
derivatives n and m in model (2.6), the accuracy and the rates of convergence can be
improved, but the implementation of the solution will be more complex. The results of
numerical analysis of the accuracy are in good agreement with theoretical convergence
results (Babolian, 2009; Majak et al., 2015).

The ANN and Haar wavelet expansion-based models are found suitable for response
modelling. Furthermore, the response surface developed can be utilized for further
design optimization of the gel content value. For preliminary limited dataset the wavelet-
based approximation can be preferred. In the case of small dataset, the results obtained
in repetitive runs by using ANN may vary since the output value of the ANN is a statistical
random variable that exhibits uncertainty. With increasing dataset, the results obtained
in repetitive runs converge as rule. In the Haar wavelet approximations most commonly
the uniform or uniformly changing mesh is used. However, in the case of experimental
results, the measuring points are often uneven, depending on different limitations. In
latter case, the Haar matrices and its integrals derived for uniform mesh are not applicable,
but the formulas (2.2)—(2.4) are valid and applicable. Detailed implementation of the both
models introduced (ANN and Haar wavelet based), is described in next chapter.
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3 Development of Photovoltaic Module Production
Monitoring System

The real-life production monitoring stands for continuous checking of parameters from
the manufacturing object and its manufacturing processes (Eiskop et al., 2018; Shiva
Prasad et al., 2016). It is an important tool for measuring needed parameters of the
product and understanding how efficiently different manufacturing processes are
working. Generally, are analyzed different Key Performance Indicators (KPI) depending
on the: a) product parameters like surface roughness, accuracy, surface strength etc. and
b) manufacturing process dependent KPI’s like Overall Equipment Efficiency (OEE) in %,
manufacturing speed in pcs per min or pcs per hour, Total Effective Equipment
Performance (TEEP) in %, Cycle time in s, etc. Each KPI depend on the actual product and
manufacturing process, because of that it is important to analyze the main KPI before
the actual real-time monitoring and analyze process. There is need to identify the
important parameters to be monitored during production in the other words there is
need to define the KPI, using Enterprise Analyses Model (EAM) (Sell et al., 2008; Kumar
et al., 2021; Zhou et al., 2007).

The KPIs should be related to the two main fields: jobs (labor) and resources
(materials) and cover different areas like equipment, materials, processes, employees,
workplace, facility, products, production order, etc.

3.1 Concept Development for Production Monitoring System of PV
Module Manufacturing

There are number of approaches and requirements to the production monitoring
systems, but it is important that the system should be integrated with the existing
systems and be able to measure and visualize the most important parameters of the
product and its particular manufacturing process, because of that let’s proceed with the
further development of the basic concept of production monitoring system developed
by workgroup in TalTech (TSukrejev et al., 2008) and shown in Figure 9.
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Figure 9. Developed concept of the production monitoring system.

This concept is developed on the basis of the concept proposed in previous papers of
the workgroup. The concept on Figure 9. Is proposed for particular case study with
additional measurable parameters like: pressure, temperature, duration and this system
can be adapted with some minor changes to the manufacturing process of photovoltaic
modules. The concept proposed for production monitoring system integrates the
following main modules like Data Collection (process and product data); Analysis of
collected data; Visualization dependent of the process and product; Data Storage;
Data Security and Confidentiality. The sensor system is collecting different data from
workstations (pressure, duration, displacements, electroluminescence). There is possibility
to use different types of sensors, which could be embedded inside the photovoltaic
module, such as RFID sensors (Majak et al., 2010).

The storing, computations and analysis is made on the server or cloud side and
integration between the monitoring system and Enterprise Resource Planning System
(ERP) is developed.

The real time monitoring system is detecting, measuring, and monitoring the variables,
events and situations, which affect the performance and reliability of manufacturing and
quality control systems in production line (see Figure 9 and 10). Efficient, real-time feed
of information for production control and monitoring includes data acquisition about
state of equipment, process, production orders, flow of materials, quality of products,
process data and other necessary data which are used for making the proper and
optimized decisions, regarding manufacturing planning, improved use of available
resources and planning of equipment maintenance.

The web based Graphical User Interface (GUI) is developed with the support of JSON
(JavaScript Object Notation) and AJAX (Asynchronous JavaScript and XML) technology to
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reduce the load on the server and the clients, as it allows specific objects to be updated
in the GUI based on the specified interval and exchange data with a server
asynchronously.

The Web-based approach allows the use of a wide range of devices with graphical
interface support. Proposed GUI may be presented as a three-level structure:

View 1 — Operator mode;

View 2 — Production manager mode;

View 3 — Management mode.

Operator mode shows workplace KPIs, produced items, quality inputs, system condition
monitoring and machinery or production line utilization. Production manager mode —
combined department/workshop view, extended reports (performance comparison),
reporting and statistics module, system administration. Management mode — production
statistics, overall workshop performance, forecasts.

The collected information is sent to the ERP system where it is integrated with the
production data and warehouse data including product Bill of Material (BOM).

(b)

Figure 10. Production Monitoring System installed into workplace and integrated into the company
system (a) and operator’s control panel of lamination machine (b).

3.2 Real-time Measurement of PV module and lamination process

The PV module and lamination process, as one of the bottleneck processes in the
manufacturing line requires to measure product and process sensitive parameters like
temperature in °C (impacting the quality of encapsulant), pressure in Pa (impact on the
quality of encapsulant and appearing of air bubbles), duration in s (influence EVA gel
content and appearing of bubbles inside laminate).

The lamination machine used in the manufacturing facility is the Ecoprogetti Ecolam
05. The Ecolam 05 is automatic laminator, which is capable to laminate different sizes of
PV modules and types of glasses. Laminator uses vacuum pump and a booster pump for
creating an under pressure.

3.2.1 Tests for Temperature Measurement

Lamination temperature is important component of right lamination process as it
influences the quality of encapsulation. In order to validate the concept of measuring
parameters from inside the laminating chamber the temperature measurement was
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performed. The thermometer TES 1312A with two wired temperature sensors were
employed. Sensors were installed on the back of solar module attached to the back
sheet. Schematic placing of thermic sensors is brought out in Figure 11.

1618 mm

Outlet to
junction box

Laminate,
backsheet up

\
\

T2 thermic
sensor

T1 thermic
sensor

approx 1/2 of width

mm—
981 mm

approx 1/3 of length
approx 2/3 of length

(a) ' (b)

Figure 11. Schematic representation of experimental setup (a) and measurement parameters
control (b).

There were three tests performed: the usual lamination program with temperature of
144 °C, with increased temperature of 150 °C and program with reduced temperature of
130 °C. The results of tests and gathered temperature data are represented in Table 6 and
on Figure 12. The two measured values of temperature (Temp. 1 and Temp. 2 on Figure 12)
can be considered as an output from particular temperature test. The temperature was
checked and registered with time stamp and values of measured temperature. The set
value of the temperature is known from laminator recipe and is given in the Table 6 as
well. “Machine values” are the values that are either set by recipe or measured by
machine, not by experimental setup.

The gathered results show that there is a difference in set and real temperatures
present. The reason is in fact that the machine heating element with temperature sensor
is located underneath the heating plate. The module is located on the heating plate and
the thermic sensor used in the test was set on the top of module, so there is whole
module structure in between two sensors. The fact that by the end of the program run
the temperature on the top of the module did not reach the recipe set value in all tests.
One important remark is that in used experimental set up were employed wired sensors
and wires have left traces on the surface of back sheet. This means that actually
particular module was defined as nonconformance and was scrapped. In order not to
damage a module and further scrap it employment of wireless tracking solution should
be considered.
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Table 6. Results of the tests.

Machine values Measured
Time from start,
Measurement Uninctes Set LB Set Measured
# ‘ Temp Temp. pressure, | pressure Temp. | Temp.
seconds) *| value, ’ "11,(°0 (20
(°0) (0 (mbar) (mbar)
1.1 2min47s 144 143 -1000 -1024 | 60.3| 68.7
1.2 6min42s 143 142 -300 -303| 95.6| 99.3
1.3 10 min4s 143 143 -300 -293(117.8 | 119.1
1.4 14 min 22 s 143 143 -300 -289 | 130.3 | 130.7
1.5 14 min 54 s 144 143 0 -21131.1(130.9
2.1 2mind4s 150 149 -1000 -1006 | 51.7| 575
2.2 6min16s 150 148 -300 -310| 809 | 87.2
2.3 10 min1ls 150 150 -300 -300(117.4|118.1
2.4 14 min 31s 150 150 -300 -307 | 134.5|134.4
2.5 15 min 00 s 150 150 0 711344 135.8
3.1 2min34s 130 130 -1000 -1013| 36.0| 32.9
3.2 6min01s 130 129 -300 -361| 71.4| 74.7
3.3 10 min5s 130 130 -300 -320(100.2 | 103.3
3.4 14 min35s 130 130 -300 -300 | 118.7 | 120.5
3.5 15min 00 s 150 150 0 71134.4| 135.8
Performed tests
150
130
&)
°_ 110 Temp. 1.1
o
= Temp. 1.2
© 90
2 —@—Temp. 2.1
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Figure 12. Temperature test results in different positions and input data.
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On Figure 12 temperature measurement results from Table 6 are represented
according to performed test number (the first number) and sensor position (second
number). Measurements were performed five times. With measurements taken at the
same time in process for all the samples. As time recording was done manually during
the process, it was hard to ensure exact time of recording, this is why there are deviations
in time stamps shown in Table 6. Manufacturer ensured that out of their practice those
deviations are not critical. Error bars are representing maximum allowed deviation of
+/- 5 degrees C (as stated by manufacturer). After laminator machine reaches desired
under pressure the first-time parameters are recorded then recording had happened
with a step of 4 minutes in accordance with a technological process. Last recording refers
to the end of the process:

e 2 min 40 sec — vacuum reached. 6 min 40 sec — pressure change, new pressure
reached. 10 min — according to the previous pressure change step. 14 min —
finishing process. 15 min — pressures down, end process

3.2.2 Test for pressure measurement
Lamination machine is using two chambers which can be underpressurized depending
on the recipe of the particular process
e The first chamber is the one where photovoltaic module is placed. In Figure 10 (b)
it is referred as “Lower Pressure” with pressures gap in between 0 (atmospheric
pressure) up to -1000 (vacuum). The main reason for that is pumping out the air
and fumes from the PV module in order to ensure that air bubbles will not be
trapped inside liquidous EVA;
e The second chamber is separated from the actual module with elastic membrane.
In Figure 10 (b) it is referred as ,,Upper Pressure “with pressure gap in between 0
(atmospheric pressure) up to -1000 (vacuum) By under-pressuring the first
chamber the membrane can apply pressure to the PV module in order to have
proper adhesion between layers of the module.

Measurement of pressure is executed by the sensors inside the machine and
presented on the operators control screen. Sensors are reset and calibrated according to
the atmospheric pressure once a day prior to startup the machine.

It is complicated to measure pressure in real time with external equipment since
chambers are closed and sealed during cycle run. At the same time there is no reason to
doubt the accuracy of machine pressure data.

Table 6 represents the Vacuum time and Pressure time durations. Vacuum time refers
to the duration of how long module is being in under pressured condition. Pressure time
refers to how long module is being under applied pressure by membrane.

3.2.3 Test for duration measurement

The duration is considered as a processing time. It is being set according to the recipe.
Time is being measured by machine’s own equipment. Sampling by stopwatch showed
that there is no major difference in time measurement neither by machine nor by
stopwatch. Time sampling had been performed during gel content experiment’s (see
Table 6) first five cycles, results are represented in Table 7.
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Table 7. Duration measurement test results.

# Sample nr. Time (sec), total | Time measured (sec) | Difference %
1 1 870 871 0,11
2 2 420 420 0,00
3 3 870 870 0,00
4 5 420 418 -0,48
5 6 870 870 0,00

3.3 Experimental evaluation of the quality of encapsulant

External equipment was employed in order to measure the temperature in real time with
the possibility to trace everything via online cloud-based graphical user interface. During
the experimental phase of measuring temperature by external equipment research
group had faced the fact that there is a difference in real measured temperature from
module and the temperature shown by lamination machine which is represented in
Figure 13, error bars are representing deviation of +/- 5 degrees C. Also, there is
dependence of temperature difference from the time lamination occurred: first
laminations after startup, continuous numerous laminations or lamination after long
pause. This is the point of interest to the PV manufacturer as the need for tune the
recipes used in production appeared. The first three samples were laminated after
machine startup. Finding shows that even though the laminator reports that heating up
is finished and set temperatures are achieved it can be easily seen from Figure 13
samples 1-3, that actual measured temperature is highly different from the one that
machine reports. Investigation showed that machine measures temperature directly
from the heating element which is placed under the massive metal plate under the
lamination chamber. During the first runs lamination chamber was still not achieving the
desired temperature levels due to the heat was not yet transferred through metal to the
chamber and the module’s actual curing temperature is up to 65% lower than preset
level by recipe (refer to Figure 13, sample 3). In addition, modules fed into the laminator
are not preheated due to technological reasons. Module reaching the lamination
chamber and being sealed absorbs some of the heat therefore actual temperature is
dropping in the very beginning of the cycle.
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The temperature by external sensor and the processing time are considered as main
factors having impact on Gel content. The results of the test are given in Table 8.

Table 8. Gel content and experimental data.

Temperature by Processing time, (sec) Gel content (%)

external sensor (°C)
130 870 57.6
130 1025 58.4
130 1172 59.2
130 1320 59.9
137 870 56.4
137 1025 61.6
137 1172 62.7
137 1320 63.9
144 870 55.2
144 1025 64.8
144 1172 66.3
144 1320 67.9
150 870 70.7
150 1025 81.1
150 1172 81.8
150 1320 82.5

It can be noted that the experiments resulting the gel content percentage less than
50% were not considered. In order to gather data for prediction model of EVA gel content
samples were made for defining it. The tests were prepared and performed in
cooperation with PV manufacturer. It was decided to follow lamination programs as it is
stated in Table 9. The samples were prepared in accordance with the EVA supplier
requirements/procedures: EVA samples were cut out from real size laminated module,
sample consists of two laminated together cured EVA sheets, size is 10 by 10 cm.

Temperature. The main lamination temperature for the process is 144 °C. It was
decided to use also 150 °C, which is considered by manufacturer as upper limit and
130 °C, considered by manufacturer as lower limit.

Vacuum and Pressure Times. It was decided to use critical values such as no extra
pressure at all or all the time vacuum. Additionally, some middle values were used in
order to ensure that most of the wide variety of possibilities are covered.

Gel Content (degree of cross-linking). After preparing samples those were studied
and measured in the laboratory, the result given in Table 8 are computed as average
values of is repetitive measurements. In is worth to note that in the case of first 7 samples
the measured percentage of gel content was lower than 50% and those results are not
acceptable in manufacturing. Here, the testing process for measuring the gel content %
need further evaluation and possible refinement. However, the results obtained are still
useful in regard to get more detailed and realistic picture on behavior of the temperature
measured by machine and real time external sensor (discussed below).
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Table 9. Settings for parameters and gel content results of the experiment.

o % g v S
) ) o % g o g =
a 2 £ 22 59 g 0T §
£ g 5w 58 X =8 £
n o £ o g o S o o

g~ E £ = 3 & T

s Lo o G}
1 144 97 870 870 0 <50
2 144 115 420 420 0 <50
3 150 85 870 870 0 <50
4 130 125 420 420 0 <50
5 130 122 870 310 560 <50
6 130 117 870 870 0 <50
7 130 122 1320 310 1010 <50
8 144 135 1320 310 1010 67.90
9 144 135 870 310 560 74.90
10 150 140 870 310 560 62.20
11 150 140 1320 310 1010 82.50

The main working recipe is marked in bold and is referring to sample number 9, other
recipes were developed on the basis of original one. Such parameter’s values as duration
(time) and vacuum are taken from the machine measured values as there is no reason
not to trust those values.

The temperature’s value is measured by both machine sensors and by additional
equipment installed on to the machine. This piece of equipment allows to measure
temperature by thermocouple sensor inside the lamination chamber directly from the
edge of surface of module only from one spot (due to the specification of equipment
used) and send gathered data with a time tag to the cloud. The graphical user interface
is developed. The graphs are drawn in real time and also saved for further analysis.
Figure 14 represents how web-based temperature graph is looking like.

It can be observed that according to measurements real temperature inside the
lamination chamber is always less than temperature measured by machine’s sensors.
This aspect could lead to the situation when PV producer is getting quality results which
differ from predicted ones (theoretical).

It is stated that EVA is considered to be well cured if cross-linking level is reaching 65%
(Eiskop et al., 2017). Supplier of encapsulant material proposed the target value for gel
content of EVA in PV modules to fit 70 — 80 % in order to ensure quality of encapsulation
and further structural health of the module. If this interval is reached, the lamination can
be considered succeeded and the module quality is assumed to be sufficient. While all
other values of the gel content cannot ensure the quality of cured encapsulant and
overall module.
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Figure 14. The partial view of graphical user interface of tool for real-time temperature measuring
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Analyzing the result of laboratory tested gel content it can be concluded that
conditions of last four tests (samples 8—11) are good enough to deliver sufficient quality
of module. Especially tests number 9 and 11 are showing very good results. Figure 15
represents the gel content of encapsulant depending on temperature considering that

other parameters were also changed.
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Figure 15. Gel content percentage of samples 8-11.
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As noted above, the test results of samples 1-7 are insufficient for securing quality of
the module. The testing process need evaluation and possible refinement, utilizing at
least five repetitive tests. Further experimental study is required in order to develop an
accurate mathematical model and perform design optimization (the testing process for
measuring gel content need evaluation and improvement). Based on workgroup long
time experience in area of mathematical modelling and design optimization [48-51]
(Majak et al., 2003; Kaganski et al., 2017; Snatkin et al., 2015; Paavel et al., 2017),
the development of back-propagation artificial neural network model and evolutionary
algorithms for determining optimal configuration of the design parameters for providing
maximum quality has been foreseen.

3.4 Mathematical modelling

The two mathematical models, introduced in section 2.4 are utilized for describing
relation between the gel content and its impact factors — the processing time and the
temperature measured by external sensor.

3.4.1 Artificial neural network based model

Development of artificial intelligence (Al) based solutions in engineering is exponentially
growing in wide range of areas. Herein the main focus is paid on function approximation
and the feedforward artificial neural network (ANN) model is utilized. As already pointed
out in section 2.5.1 the feedforward ANN with one hidden layer is satisfactory for
modelling any continuous function on a closed interval (Gnana Sheela et al., 2013).
Proceeding from data given in Table 8 (Gel content) the tuning of the ANN has been
performed by applying Levenberg-Marquardt training algorithm. In hidden layer the
nonlinear tansig transfer function is applied. In outer layer the linear purelin transfer
functions is employed. The initial number of neurons in hidden layer N, was calculated
based on formula (2.1) as

Ny =——=6. (3.1)

The further increase of the number of neurons in hidden layer does not improve the
accuracy of the model. Thus, the optimal number of neurons was fixed as six. The response
surface of the Gel content, obtained by employing the ANN model developed, is depicted
on Fig. 16.
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Figure 16.
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The response surface for Gel content built on ANN based model.

The ANN model given in Fig. 16 is obtained by using 101x101 model points, providing
smooth surface. In Fig. 17 is presented the mean squared error of the ANN model
proposed.
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The mean squared error of the ANN model.
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The accuracy achieved is satisfactory, since the test data include measuring error.
Here still exists problem — different runs of ANN model generate little different results.
Latter issue is caused due to fact that in ANN model the initial weights are generated by
random and in the case where the dataset is not big enough, the final models, also their
accuracy may differ. Thus, preliminary results are obtained, but ANN model need
improved dataset.

3.4.2 Haar wavelet based model

Based on analysis of the two wavelet models performed in chapter 2.4, in the following
the Haar wavelet- based model (2.6) with n = m = 2 is employed i.e. the fourth order
derivative of the function (second order derivative with respect to both variables) is
expanded into Haar functions

64
6x26fy2 (x,y) =X Z?ill aih; () (). (3.2)

By integrating equation (3.2) two times with respect x and two times with respect to
y one obtains the formula for computing the values of the gel content function f(x,y)
(omitted herein for conciseness sake).

It can be observed that the surface corresponding to the Haar wavelet (HW) model is
smoother than that ANN based model, since in HW based model in each element is used
simple second order polynomial with respect to both variables (Fig. 16 and 18). In ANN
model is used hierarchical structure with nonlinear tansig function in hidden layer and
linear in outer layer. The accuracy of the ANN based model is higher in general. However,
as mentioned above, in the case of limited dataset, the ANN model has some drawbacks
(repetitive runs may give too different results). Thus, in the case of preliminary, limited
dataset the deterministic HW based model is preferred in the current study. The ANN
remains for future use with completed dataset. In Fig. 18, using model (3.2) the function
value is computed in 101 x 101 grid points (correspond to 100x100 elements).
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Figure 18. The response surface for Gel content built on Haar wavelet based model (2.6)n = m = 2.

Note, that the test dataset introduced in Table 8 (Gel content) correspond to
non-uniform grid. In the case of non-uniform grid, the widely used Haar matrices, derived
for uniform grid, are not applicable. In latter case the Haar functions can be evaluated
using formula (2.3).

Based on practical considerations from production process, here is not available one
fixed target value for gel content. However, the desired value of the Gel content is in the
range 70—-80%. One possible approach for further optimization is to use midpoint value
of the interval [70-80%)] as the target value for the gel content. Both, traditional gradient
based and global optimization methods are applicable for solving such an optimal design
problem.
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4 Conclusions

Current thesis focuses on identifying the common faults of PV module which can occur
during production cycle and leading to the further issues with module structural health
and efficiency, developing the algorithms for processing the gathered information.
The key parameters are identified and utilized for improvement of the quality of module.

The research proved the possibility to use external equipment to measure the
parameters from inside the lamination chamber of laminator machine without damaging
or destroying the photovoltaic module. As well as it proved the possibility to use the
same set up embedded into the production line and reading the parameters from every
single module without disrupting the manufacturing process or operator’s work.

The research questions formulated are covered by the results obtained:

Q1. Basic concept of production monitoring system featured for manufacturing of
photovoltaic module’s is developed. The real time monitoring system is detecting,
measuring, and monitoring the variables, events and situations, which affect the
performance and reliability of manufacturing and quality control systems in
production line. The Data Collection (process and product data), Analysis,
Visualization, Storage functionalities are developed.

Q2. Based on methodology proposed for development of monitoring system, the Gel
content was considered as key performance characteristic for the quality
assessment of the module, the temperature and processing time are identified as
design variables.

Q3. Mathematical models provide fast evaluation of the key performance characteristic
using simple analytical formulas. The recent techniques based prediction tool(s) are
developed for modelling Gel content. The deterministic Haar wavelet based model
can be utilized in the case of existing limited dataset. The stochastic feedforward
artificial neural network based model can be utilized in the case of improved/larger
dataset.

Q4. Some findings of the thesis are applied directly in practice. For example, based on
study performed it was found that the temperature set to machine and measured
by sensors, installed on the back of solar module attached to the back sheet are
different. Thus, the value of temperature can be evaluated more accurately using
proposed measurement setup. The real time monitoring system developed
is implemented in practice can be used.

As a conclusion it is possible to state that particular research has found the way for
manufacturer to conduct a non-destructive way of assessing the quality of the
photovoltaic module while the production cycle is running without disrupting the
production operations and gives a tool for predicting the structural health and future
performance of the product.
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Abstract

Photovoltaic Modules, Design and Manufacturing

Photovoltaic modules are considered one of the main factors in reducing environmental
impact and turning from fossil fuel power production to a clean and green power
generation. Rapid growth of number of installations during last decade is driven by cost
reduction of PV module manufacturing process as well as improved efficiency of raw
materials used in modules manufacturing.

A PV module consists of different materials with different properties. The production
process of the modules changes both physical and chemical structure of materials used.
During the manufacturing process different parameters are considered: such as duration
of the process, pressure, temperature. It is essential to adjust the production process in
a way that all those parameters will work together and will be delivering a long lasting
and efficient product. Some of quality assessment can be conducted with destructive
testing in laboratory, taking time. In the current study the predictive model is developed
in order to provide manufacturer the possibility of deciding on the quality of module
during the process of manufacturing without destructing the product and waiting for
laboratory answer.

Current study is focused on improvement of the quality of PV module. The monitoring
system was developed for PV module manufacturing process. This system allows to
gather and process real time data. Based on data analysis performed main characteristics
and the key parameters are determined. The Gel content was found as main
characteristic influencing the quality, the temperature and total processing time are
detected as key parameters.

For response modelling of the Gel content two advanced mathematical models are
developed. First model is based on feedforward artificial neural network and is more
suitable for use with completed bigger dataset. Second model is based on Haar wavelet
expansion and is applicable also in the case of preliminary limited dataset. Novelty of the
study is that herein is employed higher order Haar wavelet expansion, introduced by
workgroup in 2018 is applied for function approximation first in 2021. This new approach
provides principal improvement of the accuracy and convergence rate in comparison
with widely used Haar wavelet approximation. Furthermore, the proposed approach
includes model parameters, which can be evaluated according to accuracy needs of the
particular problem considered. With taking use higher order approach the increase of
computational and implementation complexities is not significant. As result, the models
developed allow to predict the values of the Gel content for required input data affecting
the quality of the PV module.

Main findings/novelty of the study can be outlined as

Theoretical:
1. The real time monitoring system based on improved concept model is
developed.

2. Two advanced mathematical models are developed (Haar wavelet and
artificial neural network based).

Practical:

1. The real time monitoring system developed is implemented in practice i.e.
tested.

2. Improved setup and procedure are proposed for accurate measuring of
temperature.
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The work done form base for further design optimization of Gel Content. Here unique
optimal value is not defined, practical interest is rather that the value of the Gel content
remains in given limits. Thus, there are several problem formulations available: to select
middle point of the interval of acceptable values as a target, to consider interval as a
target, etc.

52



Luhikokkuvote

Fotoelektrilised moodulid, disain ja tootmine

Fotoelektrilisi mooduleid peetakse (iheks peamiseks teguriks keskkonnamdgjude
vdahendamisel ja fossiilkiituste tootmiselt puhta ja keskkonnasaastliku energia tootmisele
Gleminekul. Paigalduste arvu kiire kasv viimasel kiimnendil on tingitud PV-mooduli
tootmisprotsessi kulude vdhendamisest ning moodulite valmistamisel kasutatavate
toorainete kvaliteedi ja omaduste paranemisest.

Kuna PV-moodul koosneb erinevatest erinevate omadustega materjalidest ning
tootmisprotsess muudab osa materjalidest nii materjalide fiilsikalist kui ka keemilist
struktuuri, arvestatakse tootmisprotsessis erinevaid parameetreid nagu protsessi kestus,
rohk, temperatuur. Oluline on kohandada tootmisprotsessi nii, et kdik need parameetrid
tootaksid koos ning tagaksid kauakestva ja tGhusa toote. Osa kvaliteedi hindamisest saab
Iabi viia destruktiivse testimisega laboris, mis vGtab aega. Antud t66 keskendub
ennustava mudeli védljatéotamisele, et anda tootjale véimalus otsustada mooduli
kvaliteedi Ule tootmisprotsessi kaigus ilma toodet rikkumata ja laboratoorset vastust
ootamata.

Kdesolev uurimisto6 on fokuseeritud fotoelektrilise mooduli kvaliteedi
parandamisele/tagamisele. PV mooduli tootmisprotsessi jaoks on antud t66s arendatud
jalgimissiisteem, mis voimaldab koguda ja tdddelda andmeid reaalajas. Kogutud
andmete pohjal teostatud anallils vGimaldas selgitada védlja peamise
karakteristiku/kriteeriumi ja v&tmeparameetrid. Gel-i sisaldus identifitseeriti kui
peamine karakteristik, mis mdjutab PV paneeni kvaliteeti, temperatuur ja protsessi
kestus kui vétmeparameetrid.

Gel-sisalduse jaoks vastavuse pinna loomiseks arendati kaks matemaatilist mudelit.
Esimene mudel pdhineb parilevi (tsikliteta) tehisnarvivérkude kasutamisel ja sobib
paremini suurema/tdiendatud andmehulga korral. Teine mudel p&hineb Haari lainikute
kasutamisel ja on sobiv ka vdiksema olemasoleva andmehulga korral. Antud juhul on
tegemist uudse lahenemisega kuna rakendatakse 2018a. t66grupi poolt valjatdotatud
kdorgemat jarku Haari lainikute arendust, mida on rakendatud funktsioonide
lahendamiseks esmakordselt 2021. Kasutatud lahenemise tagab olulise tdpsuse ja
koonduvuskiiruse kasvu vorreldes siiani kasutusel oleva Haari lainikute meetodiga. Uus
meetod sisaldab mudeli parameetreid, mille vdartused saab valida vastavalt konkreetse
llesande jaoks, tagades vajaliku tdpsuse. Kérgemat jarku meetodi rakendamisel
algoritmi ajaline ja implementastiooni keerukus kasvavad, kuid see kasv jadb mé6dukaks.
LGpptulemusena vdimaldavad arendatud mudelid vdimaldavad arendatud mudelid
hinnata Gel-i sisaldust etteantud sisendparameetrite korral.

Antud t66 uudsuse voib valja tuua jargmiselt

Teoreetiline arendus:

1. Arendatud on tdiendatud kontseptsioonil pGhinev reaalajas PV mooduli
jalgimisstisteem.

2. Koostatud on kaks kaasaegset matemaatilist mudelit (Haari lainikutel ja parilevi
tehisnarvivérkudel. pohinev).

Praktiline:

1. Arendatud PV  mooduli jilgimissisteem on  rakendatud/testitud
tootmisprotsessis.
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2. Arendatud on tdiustatud seadistus ja protseduur temperatuuri tdpsemaks
modtmiseks.

Teostatud uurimistd6 on baasiks edasiseks Gel-i sisalduse optimeerimiseks. Siinkohal
pole olemas Uhest sihifunktsiooni optimaalset vadartust, praktikas on pigem huvi et Gel
sisalduse vaartus jadks etteantud piiridesse. Seetdttu on vGimalikud mitmed erinevad
optimeerimisiilesande formulatsioonid: valida lubatud vaartustega maaratud IGigu
keskpunkt soovitud vaartuseks, defineerida I5ik kui soovitud vaartus, jne.

54



Appendix

Publication |

TSukrejev, P.; Karjust, K.; Majak, J. (2021). Experimental evaluation and numerical
modelling of the quality of photovoltaic modules. Proceedings of the Estonian Academy
of Sciences, 70 (4), 477-483.

55






Proceedings of the Estonian Academy of Sciences,

2021, 70, 4, 477483
https://doi.org/10.3176/proc.2021.4.15 MANUFACTURING

Available online at www.eap.ee/proceedings ENGINEERING

Experimental evaluation and numerical modelling of the quality of
photovoltaic modules

Pavel Tsukrejev®, Kristo Karjust and Jiiri Majak

Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia
Received 2 July 2021, accepted 20 July 2021, available online 9 November 2021

© 2021 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. All over the world a rapid increase in demand for photovoltaic system installations has generated an outstanding growth
in production numbers in the manufacturing facilities of photovoltaic (PV) systems. Production companies are facing challenges in
providing the best quality along with rising manufacturing quantities. Due to the underlying technology not all the quality decisions
can be made in real time. This research is focused on the development of experimental study and mathematical modelling of the
quality control parameters for PV modules, which could only be tested during chemical processes and not be monitored constantly
by operators at the production line.

Key words: production monitoring, photovoltaic modules, Haar wavelets, artificial neural network.

INTRODUCTION

Smart manufacturing shows the direction for production companies to stay competitive on the market and to
deliver the maximum return on assets. The companies have to continuously search for innovative ways to
improve their production and quality control processes, to optimize manufacturing processes using new 14.0
based technologies and perform work in a faster and better way [1,2]. Production processes should be
effectively monitored and controlled to avoid malfunction and unplanned downtime.

Product quality is becoming an increasingly important function for the company due to the increased
customer demands and product quality requirements. The manufacturing company has to deal with the
increasing number of data and alternatives to be decided during on-time or off-time process, as well as with
product quality control. As regards the latter, usually the fully dedicated data experts and expensive
information technology solutions are not readily available, making it very hard to track the important and
process related information which should be gathered and used for optimization. Manufacturing companies
apply modern quality control techniques to improve the production line and the quality of its processes, and
through that also the final end product quality [3]. A range of techniques are available to control product or
process quality. These include seven statistical process control (SPC) tools, acceptance sampling, quality
function deployment (QFD), failure mode and effects analysis (FMEA), six sigma, and design of experiments
(DoE). Quality control (QC) and quality assurance (QA) can be defined as meeting the specification or
customer requirements without any defect. A product is said to be high in quality if it is functioning as
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Fig. 1. Schematic cross section of ¢-Si solar cell [5].

expected and is reliable. Quality control refers to activities ensuring that produced items meet the highest
possible quality level.

The volumes of installations of photovoltaic (PV) modules are rapidly growing annually. The global
compound annual growth rate of cumulative photovoltaic installations during the period from 2010 to 2019
was as high as 35% [4]. Photovoltaic modules utilize the photovoltaic effect that generates flow of electrons
inside the materials which are exposed to light. Different materials can be used for achieving the photoelectric
effect. Currently the most popular way of manufacturing (due to efficiency, price and manufacturability) PV
modules is by using the silicon-based solar cells. According to [4], 95% of manufactured modules are built
on silicon-based solar cells. The simplified cross section of a solar cell and the PV principle are presented in
Fig. 1.

Different materials are employed to build a PV module, in order to ensure maximization of light gathering,
structural health as well as electric and climate insulation. The structure of a PV module includes several
components [6]:

e Front sheet — glass or some other transparent material for light transparency as well as for climate and
mechanical protection;

Photovoltaic cells — for current generation;

Ribbon connections — for electrical circuit;

Back sheet — for electrical and climate insulation;

Encapsulant — for laminating everything together, protection from moisture and air as well as being
transparent for light.

The current work collects the experimental data in real time, and based on these data builds mathematical
model(s) for prediction of the quality of encapsulant gel content. The obtained results will allow manufacturers
to predict the crosslinking level instantly on site on the basis of real measured parameters and increase the
feedback of the final end product quality.

EXPERIMENTAL EVALUATION OF THE QUALITY OF ENCAPSULANT

Quality of lamination is a general focus of a series of papers and an emerging problem for solar companies.
The encapsulant under study is ethylene/vinyl acetate (EVA), as it is mainly used by the partner PV
manufacturer of this study.
For particular research assessment, lamination success could be divided into two main categories, as
presented in Fig. 2:
1. Visual component — all possible visual faults that lead to bigger issues in the future.
2. Quality of encapsulant (crosslinking level) — gel content of the EVA material, should be defined during
the time-consuming process [7].
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Fig. 2. Quality assessment of cured ethylene/vinyl acetate.

Crosslinking level

Ensuring the quality of encapsulant is challenging due to the lack of possibilities to assess and evaluate
the quality of lamination on the chemical composition level right after the lamination cycle is completed. In
order to define the crosslinking level, laboratory tests are needed. A good cross-linking level is considered to
be 65% [8]. The supplier of EVA suggests the target value for PV modules to be between 70% and 80%.
Sample gathering is a process that makes a PV module non-usable later.

There are a number of inputs that impact the quality of the lamination process [9]: temperature, duration,
pressure/vacuum time. As according to us, temperature and duration of the process have the greatest impact
on the quality of encapsulation, we decided to measure the temperature from the edge of the module during
the real manufacturing lamination cycle. Previous experience has shown that measuring from the surface of
the module is damaging to the back sheet and the module becomes visually defected and non-usable.

External equipment was employed in order to measure the temperature in real time with the possibility to
trace everything via online cloud-based graphical user interface. During the experimental phase of measuring
temperature by external equipment, the research group faced the fact that there was a difference between the
real measured temperature from the module and the temperature shown by the lamination machine, which is
demonstrated in Fig. 3. Also, there was dependence on temperature difference related to the time the
lamination occurred: first laminations after the startup, numerous continuous laminations or lamination after
a long pause. This is a point of interest to the PV manufacturer as the need has arisen to tune the receipts
used in production.

The dataset used includes 16 different values, 2-3 repetitive tests were performed for each value (see
Table 1). It should be mentioned that the mesh-points have non-uniform distribution.
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Fig. 3. Difference between machine measured temperature against real measurement from the module edge.
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Table 1. Gel content dependence on temperature and processing time

No. Temperature, C | Total processing time (s) | Gel content, %
1 130 870 57.6
2 130 1025 58.4
3 130 1172 59.2
4 130 1320 59.9
5 137 870 56.4
6 137 1025 61.6
7 137 1172 62.7
8 137 1320 63.9
9 144 870 552
10 144 1025 64.8
11 144 1172 66.3
12 144 1320 67.9
13 150 870 70.7
14 150 1025 81.1
15 150 1172 81.8
16 150 1320 82.5

Only test data with the gel content value over 50% are considered.

NUMERICAL MODELS

The following two numerical models are presented for describing the dependence of the gel content on the
processing time and the temperature measured by external sensor.

Artificial neural network-based model

In engineering design, the emerging growth in the use of artificial intelligence (Al) tools and methods can
be observed [10,11]. In the current study, the artificial neural network (ANN) model was utilized. It is well
known that in the case of a limited dataset available (see Table 1), the feedforward ANN with one hidden
layer is satisfactory. The tuning of the ANN was performed on the dataset provided in Table 1. The
Levenberg—Marquardt training algorithm was applied. The nonlinear tansig and linear purelin transfer
functions were utilized in hidden and output layers, respectively. The optimal configuration of the ANN was
found with only four neurons in the hidden layer. The mean squared error of the developed ANN model is
given in Fig. 4.

The accuracy achieved is satisfactory, since the test data still include the measuring error. Nevertheless,
a problem exists that different runs of the ANN model generate slightly different results. This issue is caused
by the fact that in the ANN model the initial weights were generated at random and if the dataset is not
sufficiently big, the final models and their accuracy may differ. Thus, the preliminary results were obtained,
but the ANN model needs an improved dataset.

Haar wavelet-based model

The following provides an alternative approach using the existing dataset. More generally, the n-th order
derivative of the function can be expanded into Haar wavelets as
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Herein the gel content function f(x, y) is expanded directly into Haar wavelets as

floy) =22 B a;hi(Oh; (), @

i.e. the simplest case, where n = 0 is used. In the case of n > 1, the accuracy of the Haar wavelet model will
increase with the increasing n value, but extra test data is required for determining the integrating constants
(functions).

In (1)~(2) a,; are unknown coefficients, x and y are design variables. The Haar functions are defined as

L for xe[60).50)
W@ =1=1 for  xel&0.40) 3)

0 elsewhere ,

where i = m + k + 1, m = 2/ is the maximum number of square waves deployed in interval [A,B] and the
parameter k indicates the location of the particular square wave,

E (i) = A+ 2k A, &,(i) = A+ 2k + v, & (1) = A+ 2k + 1) uAx, =M /m, Ax=(B—A)/2M), M =27, (4)

where j=0.1,...,Jand k=0.1, ..., m— 1 stand for dilatation and translations parameters, respectively. Note
that equations (1) and (2) correspond to the higher order method and the widely used Haar wavelet method,
respectively [12].

As pointed out above, in the case of limited dataset, the ANN model has some drawbacks and the Haar
wavelet-based deterministic model can be preferred. In most applications the Haar wavelet method is used
with a uniform mesh. However, the test data given in Table 1 correspond to a non-uniform mesh. In the latter
case the Haar matrices derived for a uniform mesh are not applicable. Instead, the Haar functions can be
evaluated by using formula (3). The accuracy achieved utilizing a Haar wavelet-based model relies on the
same range as that of the ANN. Here, the gel content does not have one fixed target value but its desired
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value is in the range of 70—80%. Further optimization of the gel content can be performed by taking the target
value of 75% and employing the traditional gradient based and global optimization methods [13—-18].

CONCLUSIONS

The external measurement equipment has been elaborated for measuring temperature in real time.
Furthermore, it has been observed that the real measured temperature from the module and the temperature
shown by the lamination machine differ. The temperature and process duration are considered for the
modelling quality of the gel content. The two mathematical models, feedforward ANN and Haar wavelet
models, have been developed. For the given dataset the accuracy of both models lies in the same range.
However, the deterministic Haar wavelet method can be preferred since the ANN model varies in different
runs. Implementation of the higher order Haar wavelet method requires extra design experiment with the
required test points within the boundary of the design domain.

In further study it is planned to measure the pressure/vacuum conditions directly from the lamination
chamber without relying on machine data, embedding a wireless sensor inside the PV module.
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Piikesepaneeli moodulite kvaliteedi eksperimentaalne hindamine ja numbriline
modelleerimine

Pavel TSukrejev, Kristo Karjust ja Jiiri Majak

Paikesepaneeli mooduli temperatuuri tépsemaks modtmiseks reaalajas on vilja tootatud riistvara- ja tarkvaralahendus.
Modtmistulemuste analiiis nditas, et véljatootatud seadme abil mdddetud temperatuur moodulis erineb mdnevorra
lamineerimismasina mdddetud temperatuurist. T6os uuriti etiileen-viniiiilatsetaadi kihi geelisisaldust mojutavaid
parameetreid ja valiti vdlja kaks olulisemat mdjutegurit: temperatuur ja lamineerimisprotsessi aeg. Geeli sisalduse
kirjeldamiseks koostati kaks matemaatilist mudelit: tehisndrvivorkude ja Haari lainikute kasutamisel pohinevad mudelid.
Modlemaid mudeleid on lihtne kasutada, kuid tehisnarvivorkude mudel sdltub juhuslikkusest ja andmehulga viiksuse
tottu olid eri kiivitustel saadud tulemused erinevad. Seega antud andmehulga korral voib eelistada Haari lainikute
kasutusel pohinevat mudelit. Korgemat jarku lainikute meetodi rakendamine eeldab selleks kohandatud katsete
planeerimist. Edasistes uuringutes on kavas integreerida juhtmeta andur pdikesepaneeli moodulisse ja mdota
rohu/vaakumi tingimusi otse lamineerimiskambrist.
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Abstract. Over the world rapid growth of demand for photovoltaic systems installations
brings forward magnificent increase in production numbers in manufacturing facilities
of PV systems. Production companies are facing challenges in providing the best quality
simultaneously with rising manufacturing quantities. Due to technology behind not all
the quality decisions can be done in real time. This study is focused on the development
of experimental study and mathematical modelling of the PV modules quality control
parameters, which could only be tested during chemical processes and could not be
monitored constantly by operators at the production line.

1. Introduction

Current trends in smart manufacturing show the direction to stay competitive on the market and to
deliver the maximum return on assets for production related companies. To achieve this, companies
have to continuously search for innovative ways to improve their production and quality control
processes, to optimize manufacturing processes using new 14.0 based technologies and perform work in
a faster and better way [1-2]. Production processes should be effectively monitored and controlled to
avoid malfunction and unplanned downtime.

Quality is becoming an increasingly important function for the company due to the increased
customer demands and product quality requirements. Manufacturing companies apply modern quality
control techniques to improve the production line and its processes quality. A range of techniques are
available to control product or process quality [3]. These include seven statistical process control (SPC)
tools, acceptance sampling, quality function deployment (QFD), failure mode and effects analysis
(FMEA), six sigma, and design of experiments (DoE). Quality Control (QC) and Quality Assurance
(QA) can be defined as fulfilling specification or customer requirements, without any defect. A product
is said to be high in quality if it is functioning as expected and is reliable. Quality control refers to
activities to ensure that produced items are fulfilling the highest possible quality.

Photovoltaic (PV) modules installations are growing annually, global Compound Annual Growth
Rate of cumulative photovoltaic installations between years 2010 and 2019 was as much as 35% [4].
Photovoltaic modules are utilizing the effect that generates flow of electrons inside the materials under
the light. There are different possibilities for the materials to be used. According to [4] 95% of
production based on silicon-based solar cells which is presented in Figure 1.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
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Figure 1. c-Si silicon solar cell and its schematic cross-section [5].

To build a PV module there are also other materials used in order to ensure maximization of light
gathering, structural health as well as electric and climate insulation. The structure of PV module
considered includes [6]:

e Frontsheet — usually glass or some other transparent material for light transparency and climate
and mechanical protection;
Photovoltaic cells — for current generation;
Ribbon connections — for electrical circuit;
Backsheet — for electrical and climate insulation;
Encapsulant — for laminating everything all together, protection from moisture and air as well as
being transparent for light.

Current study aims to gather experimental data and based on these data to build mathematical
model(s) for prediction the quality of the encapsulant gel content. The obtained results will allow
manufacturers to predict the crosslinking level instantly at place on the basis of real-measured
parameters.

2. Experimental evaluation of the quality of encapsulant

Quality of lamination is a general focus of the series of papers and emerging problem for solar
companies. Encapsulant under study is Ethylene/Vinyl-Acetate (EVA), as it is mainly used by the
partner PV manufacturer of this study.
In terms of particular research assessment of lamination success could be divided into two main

branches, represented in Figure 2:

1. Visual component — all possible visual fault that leading to bigger issues in the future;

2. Quality of encapsulant (crosslinking level) — Gel content of the EVA material, should be defined

during time consuming process [7].
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Figure 2. Quality assessment of cured Ethylene/Vinyl-Acetate.

Ensuring quality of encapsulant is a challenging due to lack of possibilities to assess and evaluate
quality of lamination on chemical composition level just after the lamination cycle is done. In order to
define the crosslinking level laboratory tests are needed. Good cross-linking level is considered to be
65% [8]. Supplier of EVA suggesting target value for PV modules to be between 70% and 80%. Sample
gathering is something that is making a PV module not usable anymore.

There are number of inputs that are impacting the quality of the lamination process [9]: temperature,
duration, pressure/vacuum time. As temperature and duration of the process are considered by the
authors to make the biggest impact on the quality of encapsulation it was decided to measure the
temperature from the edge of the module during the real manufacturing lamination cycle. Previous
experience showed that measuring from the surface of the module is damaging backsheet and module
is becoming visually defected and not usable.

External equipment was employed in order to measure the temperature in real time with the
possibility to trace everything via online cloud-based graphical user interface. During the experimental
phase of measuring temperature by external equipment research group had faced the fact that there is a
difference in real measured temperature from module and the temperature shown by lamination machine
which is represented in Figure 3. Also, there is dependence of temperature difference from the time
lamination occurred: first laminations after startup, continuous numerous laminations or lamination after
long pause. This is the point of interest to the PV manufacturer as the need for tune the receipts used in
production appeared.

Difference in temperatures of machine settings and real measurement

160 150 150

144 1aa 150 144 144 20 20
13q,5 130 130 130 35 35
5 122 R VY
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85
0
1 2 3 4 5 7

e
o N b
o o o

Temperature, C
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o
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40
20
Sangple m Macfine settiRgs m R measutdment
Figure 3. Difference between machine measured temperature against real measurement from module
edge.

Total of 11 samples were sent to the laboratory testing. Unfortunately, only four of those are having
trustworthy results (see Table 1).
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Table 1. Gel content. Experimental data

Temperature by external sensor (°C) | 135 135 140 140
Processing time, (sec) 1320 | 870 870 | 1320
Gel content (%) 67,9 74,9 62,2 82,5

Other experiments cannot be considered due to the fact that gel content percentage was too low (less
than 50%). Obviously, additional gel content tests are needed.

3. Mathematical modelling of the quality of encapsulant

The workgroup has long time experience on adaption of Al tools for wide class of engineering problems
[10-11]. Herein, the feedforward artificial neural network (ANN) model with one hidden layer was
adapted for modelling gel content. Such an approach provides required accuracy if dataset is trustable
and big enough. However, due to limited trustable dataset available from experiments at current time,
the final tuning of the ANN is not yet performed (determining optimal number of neurons in hidden
layer, adjusting weights). ANN has hierarchical structures and is powerful tool for modelling various
problems. However, due to fact that it is based on random generation of initial weights, its application
is complicated in the case of limited dataset available. The full factorial design of experiment is
performed using at least four levels for both variables. Corresponding test are planned, but trustworthy
results not guaranteed, due to complex measurements required.

For this reason, the authors introduce also one new and interesting alternate mathematical model —
Haar wavelet based approximation [12]. This model is deterministic, does not include uncertainty and
can be utilized in the case of limited dataset. The Haar wavelet expansion based 2D mathematical model
is introduced as

fCoy) =X Y3 aiihi (0)h; () )]

where the function f(x,y) stand for the gel content, x and y for the temperature and processing time,
respectively. The a;; are unknown coefficients, h; (also h;) are the Haar functions defined as

1L for xe[50).50)
h(x)=4-1  for  xel50).5)
0 elsewhere )

where [ =m+k+1 , m= 2’is the maximum number of square waves deployed in interval [A’ B] and
the parameter k indicates the location of the particular square wave,

E(i) = A+2kpAx, &) = A+ k + 1) pAx, & (i) = A+2(k +1) uAx, =M /m, Ax=(B—A)/[2M), M =27 (3)

In (3) j=0,1,...,J and k= 0,1,....m—1 stand for dilatation and translations parameters, respectively.
According to higher order Haar wavelet method in (1), the function f(x,y) is replaced with its n-th
order derivative, where n=1,2... Latter approach is based on higher order Haar wavelet method
introduced recently by workgroup and provide higher accuracy/convergence rate [12], but require extra
n test points for determining complementary integration constants.

Both mathematical models, described above, can be utilized for prediction as well as further
optimization of the gel content value utilizing traditional gradient based and global optimization
methods [13-18]. In the case of limited dataset the wavelet based approximation can be preferred since
ANN approach uses random and may lead to different results in different runs is dataset is not
satisfactory. The Haar wavelet approximations are commonly treated for uniform mesh. In the case of
experimental study not all results may be available for applying uniform mesh. This means that widely
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used Haar matrices and its integrals derived for uniform mesh cannot by utilized. However, the Haar
functions can be evaluated in any points based on simple formula (2). Thus, the increase of complexity
is not significant.

4. Summary

The external measurement equipment has been elaborated for measuring temperature in real time.
Furthermore, it has been observed that real measured temperature from module and the temperature
shown by lamination machine differs. The temperature and process duration are considered for
modelling quality of the gel content. The two mathematical models, feedforward ANN and higher order
Haar wavelet model, are developed. In order to refine and validate these models, an additional test data
should be acquired.

In further study it is planned to measure the pressure/vacuum conditions directly from the lamination
chamber with no relying on machine data, to embed a wireless sensor inside the PV module [16].
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Abstract. One of the most important steps during manufacturing of solar modules is lamination. This
paper focuses on monitoring of behavior of used encapsulant Ethylene/Vinyl-Acetate (EVA) and
impact on overall quality of module during lamination. Monitoring is performed by employing
external thermocouple sensor inside the lamination chamber as well as by. Real-time analysis of the
results helps to predict the quality of final product in terms of ensuring lamination quality in real time
and provides possibility to tune the process during manufacturing cycle to achieve the best result of
encapsulant cross-linking.

Introduction

Photovoltaic module is composed of different materials such as glass, encapsulat, photovoltaic
cells, backsheet laminated together. In this study encapsulant used is Ethylene/Vinyl-Acetate as this
1s the material mainly used by the PV manufacturer who helped with the research. Other encapsulant
possibilities are not in the focus of the study.

This paper is considered to be further development of study started by authors in [1]. Initial study
focused on examining the possibility and need in measuring temperatures of lamination process by
external sensors, need for further research with employing laboratory cross-linking test was defined.
There are several factors that are both, impacting the final quality of the photovoltaic module and
could be tuned during manufacturing process. According to [1] these factors are considered as
input/design parameters:

e lamination temperature of the module;
e pressure and vacuum time during process;
e duration of the process (time).

All factors considered separately and as well as their combination plays role. The considered
parameters have impact on the cross-linking (gel content) of Ethylene/Vinyl-Acetate. This is
something that is complicated to track in real time as there is need to define it during laboratory tests.
There are several of different procedures for defining gel content, but those do not vary a lot.
Determining of gel content is a time consuming process [2]. This study uses cross-linking
measurement by dissolving encapsulant samples in toluene solution for 24 hours. The gel content
percentage is important to the further performance of the module during operation. The good cross-
linking of encapsulant material is one of the points to ensure structural health of the module. It is
found that encapsulant and backsheet failures are responsible for nearly 22 % of PV modules returns
[3]. This paper to be focused on application of real time measurement of temperature during
lamination, representing it in a graphical view with possibility to analyze lamination conditions in
accordance with further cross-linking results of EVA for developing a module lamination quality
prediction algorithm in future studies.

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
Tech Publications Ltd, www.scientific.net. (#554984173-22/03/21,11:46:28)
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Results of Cross-Linking Measurement

In order to gather data for prediction model of EVA gel content samples were made for defining
it. The tests were prepared and performed in cooperation with PV manufacturer. It was decided to
follow lamination programs as it is stated in Table 1. The samples were prepared in accordance with
the EVA supplier requirements/procedures: EVA samples were cut out from real size laminated
module, sample consists of two laminated together cured EVA sheets, size is 10 by 10 [em].

Temperature. The main working temperature in the production facility is 144 °C. It was decided to
use also 150 °C, which is considered by manufacturer as upper limit and 130 °C, considered by
manufacturer as lower limit.

Vacuum and Pressure Times. It was decided to use critical values such as no pressure at all or all
the time vacuum. Additionally, some middle values were used in order to ensure that most of the wide
variety of possibilities are covered.

Gel Content. After preparing samples those were studied and measured in the laboratory, the result
given in Table 1 are computed as average values of is repetitive measurements. In is worth to note
that in the case of first 7 samples the measured percentage of gel content was lower than 50 % and
those results are not acceptable in manufacturing. Here, the testing process for measuring the gel
content % need further evaluation and possible refinement. However, the results obtained are still
useful in regard to get more detailed and realistic picture on behavior of the temperature measured by
machine and real time external sensor (discussed below).

Table 1. Settings for parameters and gel content results of the experiment

Sample Temperature [°C] Temperature [°C] Total time Vacuum time Pressure  Gel content

(machine) (external sensor) [s] [s] time [s] [%]
1 144 97 870 870 0 <50
2 144 115 420 420 0 <50
3 150 85 870 870 0 <50
4 130 125 420 420 0 <50
5 130 122 870 310 560 <50
6 130 117 870 870 0 <50
7 130 122 1320 310 1010 <50
8 144 135 1320 310 1010 67.90
9 144 135 870 310 560 74.90
10 150 140 870 310 560 62.20
11 150 140 1320 310 1010 82.50

The main working receipt is marked in bold and is referring to sample number 9, other receipts
were developed on the basis of original one.

Such parameter’s values as duration (time) and vacuum are taken from the machine measured
values as there is no reason not to trust those values.

The temperature’s value is measured by both machine sensors and by additional equipment
installed on to the machine. This piece of equipment allows to measure temperature by thermocouple
sensor inside the lamination chamber directly from the edge of surface of module only from one spot
(due to the specification of equipment used) and send gathered data with a time tag to the cloud. The
graphical user interface is developed. The graphs are drawn in real time and also saved for further
analysis. Fig. 1 represents how web-based temperature graph is looking like.
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It can be observed that according to measurements real temperature inside the lamination chamber
is always less than temperature measured by machine’s sensors. This aspect could lead to the situation
when PV producer is getting quality results which differ from predicted ones (theoretical).

It is stated that EVA is considered to be well cured if cross-linking level is reaching 65 % [4].
Supplier of encapsulant material proposed the target value for gel content of EVA in PV modules to
fit 70 — 80 % in order to ensure quality of encapsulation and further structural health of the module.
If this interval is reached, the lamination can be considered succeeded and the module quality is

assumed to be sufficient. While all other values of the gel content cannot ensure the quality of cured
encapsulant and overall module.
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Fig. 1. The partial view of graphical user interface of tool for

real-time temperature measuring and recording

Analysing the result of laboratory tested gel content it can be concluded that conditions of last four
tests (samples 8 — 11) are good enough to deliver sufficient quality of module. Especially tests number

9 and 11 are showing very good results. Fig. 2 represents the gel content of encapsulant depending
on temperature considering that other parameters were also changed.
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As noted above, the test results of samples 1 — 7 are insufficient for securing quality of the module.
The testing process need evaluation and possible refinement, utilizing at least five repetitive tests.
Further experimental study is required in order to develop an accurate mathematical model and
perform design optimization (the testing process for measuring gel content need evaluation and
improvement). Based on workgroup long time experience in area of mathematical modelling and
design optimization [5-8], the development of back-propagation artificial neural network model and
evolutionary algorithms for determining optimal configuration of the design parameters for providing
maximum quality has been foreseen.

Summary

The real-time temperature measurement system with graphical user interface has been developed.
The experimental study performed show, that the real temperature inside the lamination chamber is
always less than temperature measured by machine’s sensors. Thus, it can be concluded that using
the external equipment in order to get temperature result from inside the lamination process makes
sense in manufacturing process, but there is a need to measure temperature from more points in order
to get more trustworthy results. The main profit is that measurement goes in real time from the
particular module being laminated, not from heating element as machine measures it.

Investigation for EVA cross-linking of photovoltaic (PV) modules has been performed. The
input/design parameters considered were temperature, vacuum time and pressure time. An analysis
of the results has been performed and the effect the temperature on gel content percentage appears
most significant.

The obtained results confirm that the values of the design parameters used currently in
manufacturing process are satisfactory but can be improved further by applying design optimization.
Based on this research further study will be focused on developing the algorithm for defining cross-
linking based on measured values.
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Abstract. The main goal of the study is to develop the concept of the real time monitoring system for manufacturing processes of
photovoltaic modules. Driven by reduced costs the solar power generation is growing rapidly and increases the number of
photovoltaic modules being delivered to the customers. Automatic and early detection of defects/shortcomings reduces production
costs and increases productivity. This paper is focused on detecting main issues, influencing performance of the manufacturing
process of photovoltaic modules. Parameters that need to be monitored will be proposed in order to eliminate the faults. The main

impact factors are analysed.
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1. INTRODUCTION

The current study focuses on finding possibilities of
monitoring the processes inside the photovoltaic modules
during manufacturing process to see how changing
some parameters can influence the quality of modules
and how to use this information to make further pre-
dictions. The biggest challenges were real-time measure-
ments of different parameters inside the module without
destroying it.

2. GENERAL STRUCTURE AND
MANUFACTURING PROCESS OF
PHOTOVOLTAIC MODULES

The burning of fossil fuels has caused big part of
atmospheric pollution and the greenhouse effect in
general [1]. According to [2], the growth of photovoltaic

’ Corresponding author, pavel.tsukrejev@taltech.ee

(PV) capacity of the European countries (including
Turkey) in 2017 was 28% higher compared to the year
2016. The main technology for manufacturing solar
modules, with market share over 90%, is the silicon-
based photovoltaic cells [3,4]. Fraunhofer ISE report
notes that the efficiency of the silicon cells influences
the laboratory efficiency depending on the used tech-
nology. Efficiency increases in case of monocrystalline
or polycrystalline silicone 26.7% and 22.3%, re-
spectively. The market efficiency is about 21.5%.
Additionally, there are also other different perspective
materials that can be used. One option is to use
perovskite instead of crystalline silicon inside the solar
cells, as it is considered to be cheaper material reaching
the efficiency of 22.1% [5]. Another example of the
future material that can be used as a solar cell is the
black silicon, which has significant quantum efficiency
(QE) over 90% [6]. The solar modules with silicon cells
are consisting of different layers, composing a sandwich
structure [7] shown in Fig. 1.
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Fig. 1. Layers of solar module [8].

This paper addresses the manufacturing process
of photovoltaic modules with silicon-based cells and
focuses on the lamination part of it. The lamination
step is essential for the manufacturing process. After
lamination nothing can be changed as the whole module
is already encapsulated.
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3. MAIN ISSUES IN PHOTOVOLTAIC
MODULES MANUFACTURING PROCESSES

As noted in [9,10], the major faults in solar modules are
caused by wrong design or troubles during production.
Main faults are as follows: air bubbles inside the modules;
broken cells; micro cracks; hot spots; potential induced
degradation (PID); snail trails. The photovoltaic modules
production issues are analysed and the results are
brought out in Table 1. It is explained how those types
of issues and faults appear inside the module and what
are the reasons. Certain suggestions, how it is possible
to overcome these issues, are proposed in the last column
of Table 1.

Understanding the nature of those faults helps to
follow the set of selected parameters in order to prevent
the issues listed above. Most of the issues in photo-
voltaic modules appear during lamination process. This
process is very important for successful production
of modules but very complicated to be tuned. Setting
depends on used materials. Laminator has to perform

Table 1. Different issues in photovoltaic modules

Issue | How does it look like in Why is it bad? What is causing it? How to avoid it?
the product

3 Bubbles are laminated Bubbles can cause 1. Trapped air. Fine tuning of lamination
:% inside the module — in delamination. 2. Fumes of EVA (ethylene- cycle is the only
2 different spots. Impossible to repair. vinyl acetate). possibility to avoid
i 3. Cooling process [9]. bubbles.
P Cells are broken inside Can impact power 1. Micro cracks in cells. Ensuring that handling
] the laminated module. performance. 2. Transportation issues. during manufacturing and
5 Either there is a crack Cannot be repaired. 3. Production handling. processing would not
5 or a whole piece of 4. Issues in production process damage cells.
o cell is apart. itself.
2 Not visible to the eye. Can impact 1. Transportation issues. Making electroluminescent
2 The crack does not performance of cell. 2. Supplier ships faulty cells. picture of every single cell
E penetrate the whole Risk of a real crack. 3. Wrong handling during that is going to be used in
5 cell (ca 200 Growing due to the production. production.
s micrometers). weather influence.
” The burnt spot under the ~ Spots that become Issues in soldering the ribbon Ensuring the quality of
é glass on the surface of warmer inside the to cell. soldering interconnectors.
‘; cell. module, leading to Structural defects of cell.
= short circuit.

Cannot be visually Accelerated aging of ~ Potential difference between Improving design of the
A determined. modules. Solar solar module and the module and the choice of
= modules could lose carthing. materials used.

performance.

2 “Browning” of contact Appearance of Moisture penetrating the Avoiding different types of
g fingers of cell in a module. Can cause module causing oxidation of cracks in cells.
= form of trails. Appears loss in power the components of cells on
3 after some years. output. the trails of micro cracks.
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the whole cycle (up to 25 minutes) in order to produce a
module. During lamination the chamber is closed and it
is not possible to see if something is going wrong there.
After every change in the program it is important to wait
the whole cycle. In case of wrong settings modules will
be scrapped.

There are different steps in lamination process with
different temperatures and pressures. The encapsulant
material EVA becomes liquid during lamination. This
may influence cells to float inside and cause undesirable
displacements. During the lamination EVA transforms
and forms a polymeric connection inside itself.

3.1. Measurable parameters

The study of lamination process allows selecting the

parameters that need to be tracked:

e pressure (input) — essential during lamination process
(impact on the quality of encapsulant and appearing
of air bubbles);

e temperature (input) — main parameter for photo-
voltaic module lamination. Impacting the quality of
encapsulant;

e duration (input) — lamination time. Influences the
content of EVA gel and bubbles inside the laminate;

o displacements (output) — is essential to understand if
module’s structure is right. Finding displacements
which are not visible to the eye and understanding
why they occurred helps to improve modules in
general;

e content of EVA gel (output) — important parameter
to be followed but hard to be tracked by sensors
in real time, as it is determined during chemical
processes;

e cracks (output) — finding different types of cracks
before laminating process allows to replace the cell;

e measured temperature (temporary output) — instal-
lation of additional sensors to collect data about the
temperature should be considered as it could help
making decisions how to measure temperature in a
right way. Figure 3 shows the experimental setup of
photovoltaic module with thermal sensors installed
on the top of the module.

In order to track those parameters, the main idea is
to embed a sensor inside the photovoltaic module body
in the stage of production. Embedded sensors inside the
composite materials was studied by Herranen et al., in
[12] and the optimal shape for sensor’s protective housing
was proposed. The optimization procedure based on
combining hybrid genetic algorithm (HGA), artificial
neural networks (ANN) and reduced-order models
(ROMs) [13—17], was adapted for optimal design of
housing of the electronic component.

4. DEVELOPING THE CONCEPT OF
MONITORING METHOD FOR PRODUCTION
OF PHOTOVOLTAIC MODULES

The real-life production monitoring stands for con-
tinuous checking of parameters from the manufacturing
object [18, 19]. This could be a powerful tool for
measuring necessary parameters and understanding what
is happening inside the product during the manufacturing
process. There is possibility to use different types of
sensors, which could be embedded inside the photo-
voltaic module, e.g., RFID (radio-frequency identifi-
cation) sensors [11].

Before monitoring the manufacturing process of
photovoltaic modules, it is necessary to identify important
parameters that need to be monitored during production
process. In other words, key performance indicators
(KPIs) will have to be defined for using enterprise
analyses model (EAM) [20-24].

The KPIs should be related to two main fields: jobs
and courses and cover different areas like machinery,
materials, processes, employees, facility, products, pro-
duction order, etc.

4.1. Basic concept of monitoring system for
photovoltaic modules

There is a number of approaches and requirements for
the production monitoring systems. Let us proceed with
the basic concept of production monitoring system
developed by the workgroup in [18] and shown in
Fig. 2.

This concept is proposed for particular case study
with additional measurable parameters like pressure,
temperature, and duration. This system can be adapted
to the manufacturing process of photovoltaic modules
with some changes. The concept proposed for production
monitoring system integrates the following five main
modules: data collection, analysis, visualization, storage,
and security. The sensor system is collecting different
data (ambient temperature, pressure, duration, displace-
ments, and electroluminescence) from workstations.
The storing, computations and analyses are made in
the server or cloud side; and integration between the
monitoring system and enterprise resource planning
(ERP) system is developed. The collected information is
sent to the ERP system where it is visualized.

4.2. Tests of temperature measurement
As noted above the lamination temperature has impact

on quality of encapsulant and can be considered as key
factor in lamination process. In order to validate the
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Fig. 2. Concept of the production monitoring system [18].

concept of measuring parameters inside the laminating
chamber the temperature measurement was performed.
The thermometer TES 1312A with two wired tem-
perature sensors was employed. Sensors were installed
on the back of solar module attached to the backsheet.
Placing of thermal sensors can be seen in Fig. 3.

There were three tests performed: (1) usual lamination
program with temperature of 144 °C; (2) program with
increased temperature of 150 °C; (3) program with
reduced temperature of 130 °C. The results of tests and
gathered temperature data are represented in Table 2
and Fig. 4. Two measured values of temperature (Temp. 1
and Temp. 2 in Table 2) can be considered as an output
from particular temperature test. The temperature was
checked and registered with time stamp and values of

1618 mm
Laminate, Outlet to
g backsheet up junction box
3
fh
(=]
o
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-
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= sensor sensor
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Fig. 3. Schematic representation of experimental setup.

measured temperatures. The set value of the temperature
is known from laminator receipt and is given also
in Table 2. “Machine values” are the values that are
either set by receipt or measured by machine, not by
experimental setup.

Gathered results show that there is a difference in set
and real temperatures. The reason is the fact that heating
element of the machine with temperature sensor is
located underneath the heating plate. The module is
located on the heating plate and the thermal sensor used
in the test was set on the top of the module, so the
whole structure of the module is between two sensors.
Surface temperature of the module never reached program
receipt value by the end of lamination cycle in any of
tests. One important remark is that wired sensors were
used in experimental set-up and wires had left traces on
the surface of the backsheet. This means that particular
module was defined faulty and was scrapped. Wireless
solution or other type of wires should be used.

In Fig. 4, temperature measurement results from
Table 2 are presented according to performed test
number (the first number) and sensor position (decimal
number). Measurements were performed five times.

5. CONCLUSIONS

It is essential to understand, what is happening inside
the modules during production as well as to react fast to
aoid faults in products. This kind of data gathering and
reacting to the results of analysis will help to improve
overall quality of products as well as understand what
is happening inside the modules during different stages
of production.
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Table 2. Results of the tests
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Measure- Time from start Machine values Measured
ment Set temp., Measured Set pressure, Meaured Temp. 1, | Temp. 2,
°C temp. value, mbar pressure, °C °C
°C mbar

1.1 2 min 47 s 144 143 —1000 -1024 60.3 68.7
1.2 6 min 42 s 143 142 -300 -303 95.6 99.3
1.3 10 min 4 s 143 143 -300 -293 117.8 119.1
1.4 14 min 22 s 143 143 -300 —289 130.3 130.7
1.5 14 min 54 s 144 143 0 -2 131.1 130.9
2.1 2 min 44 s 150 149 —1000 —1006 51.7 57.5
2.2 6min 16 s 150 148 =300 =310 80.9 87.2
2.3 10min1s 150 150 =300 =300 117.4 118.1
2.4 14 min 31 s 150 150 -300 =307 134.5 134.4
2.5 15 min 00 s 150 150 0 7 1344 135.8
3.1 2min 34 s 130 130 —1000 -1013 36.0 329
32 6 min 01 s 130 129 -300 -361 71.4 74.7
33 10 min 5s 130 130 =300 -320 100.2 103.3
34 14 min 35 s 130 130 =300 -300 118.7 120.5
35 15 min 00 s 150 150 0 7 134.4 135.8

Performed tests —o—Temp. 1.1

‘l; Temp. 1.2

>

E 80 —@—Temp. 2.1

qé. —@—Temp. 2.2

s 30 —@—Temp. 3.1

1 3 4 5 —@—Temp. 3.2

Measurement

In the current paper, the main issues and their

Fig. 4. Temperature test results in different positions and input data.
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Tootmise seiresiisteemi arendamine fotoelektriliste moodulite tootmisprotsesside jaoks

Pavel TSukrejev, Kaarel Kruuser ja Kristo Karjust

Fotoelektriliste moodulite tootmise seiresiisteemi viljaarendamiseks on 14bi viidud uuring pdhilistest kvaliteedi-
probleemidest, mis vgivad tekkida moodulite valmistamise kdigus. Uuringust selgus, et enamik probleeme tekib
lamineerimise etapi jooksul. Tehti kindlaks pShjused, mis viivad kvaliteediprobleemide tekkimiseni. PShjuste alusel
on koostatud loend parameetritest ja mdjufaktoritest, mida on vaja lamineerimisel jilgida. Uldine t66pdhiméote
seiresiisteemi arendamisel on integreerida moodulisse andurid, teha mddtmised ja edastada tulemused serverisse.
Saadud andmete pdhjal saab teostada analiiiisi, prognoosi ja visualiseerimist.
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