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Abstract

A  new  approach  to  testability  analysis  and  evaluation  of  digital  circuits  using

structurally synthesized binary decision diagrams (SSBDD) is proposed. It focuses on

calculating  the probabilistic  controllability  measures  in  terms of signal  probabilities.

Different methods of calculating probabilistic controllability measures in terms of signal

probabilities of digital circuits are examined and a new method is elaborated. Also, as an

added value of the newly developed algorithm of SSBDD processing, a novel method is

proposed  for  identifying  the  redundancy  of  faults  in  digital  circuits.  The  proposed

methods are based on true path tracing of Structurally  Synthesized Binary Decision

Diagrams.  It  is  shown  in  the  thesis  that  the  known  methods  of  calculating  signal

probabilities,  are either inaccurate,  due to neglecting signal correlations,  or they will

have exponential complexity if taking the correlations into account, and hence, are not

practical. The novelty of the proposed method stands in the new idea of SSBDD-based

elimination of signal correlations, which allowed the elaboration of a new algorithm to

speed-up the  calculation  procedure  and achieving  exact  values  of  probabilities.  The

feasibility  and  efficiency  of  the  method  were  demonstrated  by  programming  the

algorithm and by carrying out the related experiments with different benchmark circuits.

The experimental  results demonstrated the advantage of the proposed SSBDD-based

approach compared to the classical gate-level approach. The results of this research are

submitted as a research paper to the conference of IEEE EUROMICRO Digital System

Design: L.Jürimägi, A. Adekoya, R.Ubar, MJenihhin. True Path Tracing in Structurally

Synthesized BDDs for Controllability Analysis of Digital Circuits.
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Annotatsioon

Digitaalskeemide Testitavuse Analüüs Struktuurselt Sünteesitud

Otsustusdiagrammide Abil

On  välja  töötatud  uus  struktuursetel  binaarotsustusdiagrammidel  (SSBDD)  põhinev

lähenemisviis  digitaalskeemide  testitavuse  analüüsiks  ja  hindamiseks.  Uue  meetodi

fookuseks on signaalide juhitavuse mõõtmine signaalitõenäosuse terminites.  Töös on

uuritud erinevaid seniseid meetodeid signaalide tõenäosusliku juhitavuse mõõtmiseks

digitaalskeemides  ja  on  arendatud  välja  uus  meetod.  Uue  meetodi  realiseerimiseks

töötati  välja  algupärane  SSBDD-mudelit  skaneeriv  algoritm,  mille  täiendavaks

lisaväärtuseks sai töös väljapakutud veel üks uudne meetod liiaste (mitteoluliste) rikete

identifitseerimiseks.  Väljatöötatud  meetodid  põhinevad  tõeste  signaaliteede

läbitrasseerimisel  SSBDD-graafides.  Töös  on  näidatud,  et  senised  teada  olevad

signaalide  tõenäosuste  arvutamise  meetodid  on  kas  ebatäpsed,  kuna  ei  võta  arvesse

signaalide korrelatsiooni, või on korrelatsiooni arvesse võttes liiga keerulised ja seetõttu

ebapraktilised.  Käesoleva uurimistöö tulemuste uudsus seisneb selles,  et  töötati  välja

uus  graafiline  signaalide  korrelatsiooni  elimineerimise  meetod,  mis  võimaldas

saavutada  nii  suuremat  arvutuskiirust  kui  ka  tagada  arvutatud  tõenäosuste  täpsust.

Meetodi  realiseeritavust  ja  efektiivsust  on  tõestatud  selle  programmeerimise  ja

eksperimentide  läbiviimisega  erinevatel  katseskeemidel.  Eksperimentaaltulemused

näitasid  SSBDD-põhise  meetodi  paremust  võrreldes  klassikalise  loogikaelementide

tasemel  läbiviidavate  arvutustega.  Magistritöö  tulemused  on  esitatud  artiklina

rahvusvahelisele konverentsile IEEE EUROMICRO Digital System Design: L.Jürimägi,

A. Adekoya, R.Ubar, MJenihhin. True Path Tracing in Structurally Synthesized BDDs

for Controllability Analysis of Digital Circuits.
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1 Introduction

This  thesis  work  focuses  on improving testability  of  combinational  circuits  through

calculation of exact signal probabilities, a measure of probabilistic controllability, using

true path tracing of Structurally Synthesized Binary Decision Diagrams (SSBDDs).

The rest of this chapter discusses the importance of testability and the efficiency of the

methods used in testability analysis. 
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1.1 Importance of Testability

We live  in  a  world  that  depends  a  lot  on  digitally  controlled  systems for  everyday

activities from business to pleasure. Digital systems also make up the backbone of most

critical systems. These systems must be highly reliable and retain their reliability as they

evolve without incurring prohibitive costs [1]. This is because a failure in these systems

could result in loss of lives, properties, and sensitive data or cause severe damage. 

In  order  to  prevent  or  minimize  such failures,  developers  of  these  systems have  to

follow a series of standard procedures such as:  validating and verifying designs and

implementing fault-tolerant techniques. However, these alone are not enough to make

sure that the system is fail-proof. Testing is also done to ensure that the entire system is

functioning correctly and no fault is present in the final product. 

Testing is the process of performing a set of experiments on a system to analyze its

response to determine whether or not it behaves correctly  [2]. During testing, a set of

test patterns are applied to the circuit under test (CUT) and the output is compared with

the expected response [3].

Interestingly,  following  Moore’s law, the  number  of  transistors  in  integrated  circuit

doubles in less than two years [3],  [4], [5] which has proved accurate for about half a

century  and  is  evident  in  the  accelerated  technological  advancements  we  have

experienced. Many complex digital systems are now being embedded on single chips

with the gain of reducing size and power consumption. This has greatly increased the

complexity and testing cost of such chips.

Consequently, special design techniques have to be used to make a chip fully testable

[6]. Testability refers to the property of a circuit that allows the application of logical

test inputs and the ability to observe the internal states from its output. A fault is testable

if  a  well-specified  procedure  exists  to  expose  it,  which  is  implementable  with  a

reasonable cost using current technologies [7]. 
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Testability may come at the cost of performance degradation, area overhead, and I/O pin

demand, and it helps to improve the reliability of systems, manufacturing process, and

increase yield.

Although the value of testing and testability cannot be overemphasized, it could pose a

serious problem. Test pattern generation algorithms are time costly and this time cost

could increase when trying to cover unrecognized redundant faults.

The efficiency of test pattern generation algorithms is an important issue as it plays a

significant  role  in design for testability  and built-in self-testing  [2],  [8],  [9] and the

results of testability analysis can be used to speed up the process or introduce design

changes to improve testability.
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1.2 Efficiency of testability analysis methods

Most methods used for analyzing the testability of digital circuits use the controllability

and  observability  properties  of  the  internal  nodes  to  evaluate  its  testability.

Controllability refers to the ease with which a node can be set to a logical value while

observability  refers  to  the  ease  with  which  the  value  of  a  node  can  be  known by

inspecting the output of the circuit.

Several methods have been proposed for estimating testability measures like SCOAP,

CAMELOT, VICTOR [10], [11], [12] where all signals are assumed to be independent.

The  accuracy  of  these  methods  is  generally  limited  due  to  the  ignorance  of  signal

correlations.  Hence, the use of probabilistic measures to define testability  [13],  [14],

[15], in  [13], an exact method was proposed for calculating signal probabilities at the

primary outputs of the circuit given the signal probabilities at the primary inputs. 

However, to overcome the computational complexity, a cutting algorithm was proposed

for estimating lower and higher bounds of probabilities [14]. The re-convergent fan-outs

problem was addressed using conditional probabilities approach in [15]. These methods

are  developed  for  gate-level  descriptions  and  suffer  from  the  high  complexity  of

calculations.  Also,  the exact method proposed in  [13] loses its exactness for circuits

with redundancies.

Binary  decision  diagrams  (BDDs)  have  become  state-of-the-art  data  structure  for

representing and manipulating Boolean functions  [16],  [17]. Traditional BDDs do not

represent  structural  information  about  circuits  and  may  quickly  explode  in  size.

SSBDDs,  however,  present  the  possibility  of  a  one-to-one  mapping  between  signal

paths and the nodes of the BDDs [18], [19], [20]. The possibility of direct mapping of

the nodes to signal paths allows for probabilistic analysis.

This thesis explores the use of SSBDDs for calculating exact signal probabilities for

both non-redundant and redundant circuits.
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1.3 Thesis Structure

The rest of this thesis is organized as follows. In Chapter two, an overview of testability

measures is given and the problem of correlation is discussed. Thereafter, the concepts

of SSBDDs and how digital circuits are represented as SSBDDs are introduced. Chapter

three introduces the approach of true path tracing and its application to the calculation

of signal probabilities and the identification of redundant faults. Chapter four covers the

implementation of the path tracing algorithm, function for proving redundant faults, and

calculation of probabilities. In chapter five, the experimental results are presented and

chapter six concludes the thesis.
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2 Overview Of Testability Measures

This  chapter  gives  an  overview  of  the  testability  measures.  It  begins  with  a  brief

description of the Heuristic measures of controllability, observability, and testability.

Afterward, the various probabilistic measures are discussed and compared in terms of

accuracy  and  complexity.  Finally,  we  present  the  modeling  of  digital  circuits  as

SSBDDs which will be used in the next chapter to optimize the calculation of signal

probabilities.

2.1 Heuristic Measures

In this section, we discuss certain heuristics used to analyze the testability of a digital

circuit.  Several  existing  methods  provide  quantitative  measures  of  the  difficulty  of

controlling and observing the logical values of internal nodes [10]. Generally, the higher

the number, the greater the difficulty.

2.1.1 Controllability

The measure of the difficulty or ease of controlling a node in a circuit depends on the

logical value to be set on the node. Consider the AND and OR gate in figure 1.

The difficulty of setting a circuit line, Y to a logic 0 or 1 can also be interpreted as the

minimum number of nodes that must be set to produce a logic 0 or 1.

Let  C0,  C1 be the difficulty of setting a logic 0 and logic 1 respectively. Therefore the

controllability of Y for the AND gate can be given as:

17
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C1(Y )=C1(A)+C1(B)+C1(C )+1
C0(Y )=min {C0(A) ,C0(B) ,C 0(C) }+1

(1)

To get a logic 1 at Y for the AND gate, A, B, C must be set to logic 1, and in order to get

a logic 0, at least one of the three inputs must be set to logic 0.

Likewise, the controllability of Y for the OR gate can be given as:

C1(Y )=min {C1(A) ,C1(B) ,C1(C )}+1
C0(Y )=C0(A)+C0(B)+C0(C )+1

(2)

To get a logic 1 at  Y for the OR gate, at least one of the three inputs must be set to a

logic 1, and to get a logic 0, A, B, C must be set to a logic 1.

The result is incremented by 1 to reflect the distance to the primary inputs [7].

Using equation (1), C0(Xk) for the circuit given in figure 2 can be calculated as: 

C0(X k )=min {C0(X i) ,C0(X j)}+1  

= min {23,11}+1  = 12

18

Figure 2. Controllability measure of AND gate.



The controllability of other internal nodes are calculated recursively from the inputs. 

Since the input values can be applied easily, it is assumed that C0, C1 for all inputs is 

taken as 1.

2.1.2 Observability

This is a measure of the number of nodes which must be set for propagating the value of

a node. This quantifies how difficult propagating a fault to the observable output will

be. To observe a gate input, the output of the gate must be observable, and the other

input(s) of the gate must be non-controlling.

Consider the AND and OR gate in the figure 3. 

To observe the input A at Y for the AND gate, B must be set to the non-controlling value

1. Therefore, the observability of A in the AND gate is a measure of the observability of

Y and the controllability of making B a logic 1. See equation (3).

O(A)=O(Y )+C1(B)+1 (3)

Likewise,  to  observe  the  input  A at  Y for  the  OR gate,  B must  be  set  to  the  non-

controlling value of 0. Therefore, the observability of A in the OR gate is a measure of

the observability of Y and the controllability of making B a logic 0. See equation (4).

O(A)=O(Y )+C 0(B)+1 (4)

The observability of internal nodes is calculated backward recursively from the primary

outputs. Since the primary output is easily observable, O(Y) is taken as 1.

19
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2.1.3 Testability using heuristic measures

Using  the  discussed  heuristic  measures,  testability  can  be  quantified.  Given  the

controllability  and  the  observability,  the  testability  can  be  taken  as  a  measure  of

controllability and observability. To check the testability for a signal x stuck-at 0 and  x

stuck-at 1, this can be given as:

T ( x≡0)=C1(x)+O(x)
T (x≡1)=C0(x )+0(x )

Summary

In this section, we discussed two heuristics measures for testability: controllability and

observability. Controllability is a measure of how difficult it is to control the value of a

node/gate.  It  examines  the  circuit  from the  input  to  the  nodes  and  determines  the

minimum number of nodes that must be set to produce logic 0 (denoted as C0) or a logic

1 (denoted as C1). Observability is a measure of how difficult it is to observe the value

of a signal at the primary output. It examines the circuit from the output back to the

nodes and determines the minimum number of nodes which must be set to propagate the

value of a node to the primary output. 

These measures are combined to determine how testable a circuit is and can be used to

guide the design for testability and test generation.

2.2 Probabilistic Measures

In this section, we present some of the methods of calculating signal probabilities as

seen in  [13],  [14],  [15] using gate-level implementations.  Signal probabilities give a

probabilistic measure of how testable a node is. Given the input probabilities, the output

probability can be computed and can be used for fault detection and test generation. 

For example, given that all input probabilities is 0.5, if the output probability of a two-

input AND gate is computed as 0.25, which is the probability of getting an output of 1,

then a test length of 4 can be assumed to test the stuck-at 0 fault at the output of the

AND gate. Also, the test generator can be improved to reduce the test length.
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The  following  definition  and  expressions  are  used  to  calculate  logic  and  signal

probabilities.

Definition  2.2.1. The  probability  of  a  (logic)  signal,  expressed  as  a=P(A=1) for

signal  A, is a real number on the interval [0, 1] which expresses the probability that

signal A equals 1 [13].

Definition  2.2.2. The  probability  that  signal  A  =  0 is  given  as

P(A=0)=1−P(A=1)=1−a  [13]

Consequently, the following formulas were derived [13]:

P(AB)=P (A )P(B)

P(A∨B)=1−(1−P(A))(1−P(B))

Given a circuit depicted by figure 4a we have

py=∏
i=1

n

pxi (5)

and for figure 4b we have 

py=1−∏
i=1

n

(1−pxi) (6)

These definitions are applied in the following methods.

21
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2.2.1 Gate-by-Gate Calculation

According to the first method in [13], the output probability is computed gate by gate,

for each gate the related formula of the probability calculation is used. The result for

each gate is then propagated to the next gate or final output.

Figure 5. Combinational circuit with redundancy

Given the circuit in figure  5, the probability  Py that the output of the circuit  will be

y=1 , assuming that for  all inputs Pk=1/2 , can be calculated as follows:

Since y is the output of the OR gate which has three inputs, using equation (6), Py can be

computed as

py=1−(1−pa)(1−pb)(1−pc)

however, the inputs a, b, c are outputs of the AND gates as well and therefore should be

computed using equation (5) in order to calculate the value for Py

pa=p1 p2,  pb=p2 p3 , pc=p1 p3

These values of Pa, Pb, Pc  are then substituted

py=1−(1−
1
4
)(1−

1
4
)(1−

1
4
)=

37
64

=0.58

This  result,  however,  is  not  exact,  because  the  correlations  of  signals  due  to  re-

convergent fan-outs are not taken into account.
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2.2.2 Parker-McCluskey Method

According to the second method in [13], the probability expressions are expanded in the

symbolic form with the input probabilities as arguments of the function. 

py=1−(1−p1 p2)(1−p2 p3)(1−p1 p3)

1−(1−p3+ p2 p3−p1 p2+ p1 p2 p3−p1 p2
2 p3−p1 p3

2
−p1 p2 p3

2
+ p1

2 p2 p3−p1
2 p2 p3

2
+ p1

2 p2
2 p3

2
)

thereafter, all the exponents are removed as a method of addressing the correlations of

signals.

1−(1−p3+ p2 p3−p1 p2+ p1 p2 p3−p1 p2 p3−p1 p3−p1 p2 p3
2
+ p1 p2 p3−p1 p2 p3+ p1 p2 p3)

27
64

=0.42

This is an improvement over the gate-by-gate calculation as it takes into account the

correlation of signals. As the circuits  grow, the calculations  will  explode due to the

opening  of  the  embedded  parentheses.  Although  this  method  has  the  advantage  of

providing exact probabilities, it is only valid for circuits without redundancies.

For example, the two functions

y1=x1 x2∨x1  and y2=x2∨x1

are  equivalent,  but  the  signal  probabilities  for  these  functions  are  different  when

calculated:

P y 1=1−(1−(1−p1) p2)(1−p1)

P y 2=1−(1− p2)(1− p1)

P y 1≠P y 2

2.2.3 Problem of correlations

One major problem of calculating signal probabilities is the presence of re-convergent

fan-outs  which  introduce  functional  dependencies  as  well  as  statistical  correlations
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among the signals in the network [21], [22]. A simple example is given in the circuit in

figure 6.

Using the gate-by-gate calculation, py is calculated as:

P y=1−(1−pa)(1−pb)  = 1−0.75∗0.75=0.44

Since the gate-by-gate method does not take signal correlations into account, the result

is not exact. The exact result is 0.5.

2.2.4 Cutting Method

The cutting algorithm was proposed to reduce the computational complexity of exact

probabilities. Its objective is to turn the combinational network into a tree by cutting re-

convergent fan-out branches and inserting equivalent bounds at the cut points, which

will guarantee that all the signal probability bounds computed on this tree will enclose

the true values [14].
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Figure 6. Signal correlations.
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A signal probability range of [0, 1] is assigned to all the cut points except one. The

bounds  are  propagated  to  the  circuits  other  lines.  The  line  not  cut  receives  the

probability of its immediate ancestor [14].

Consider the circuit in figure  7, assuming that for all inputs  Pk=1/2 .  71 and  72  cut

points  are  assigned the probability  range [0,  1].  The output  probability  of  gates  are

calculated and propagated like in the gate-by-gate method but for the cut points, both

values in the range are used to calculate a new range.

Take the signal a, for example, its probability pa, can be calculated as:

pa=1−p2 p7
1

if  p7
1
=1  then pa=1/2 , likewise if p7

1
=0  then pa=1  therefore

pa=[1 /2,1]

The disadvantage of this method is that it does not give an exact value result.

2.2.5 Method of Conditional Probabilities

The  conditional  probability  method  was  proposed  to  tackle  the  problem  of  re-

convergent fan-outs [15]. 

This method calculates two probabilities along each of the fan out paths. For example,

p(y) in  figure  8 is  calculated  with  the  condition  p(x)  =  0  and  p(y)  =  1.  Signal
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correlations are avoided since there are no longer re-convergent fan-outs on the paths.

Unlike the cutting method though, the final result is not a range.

p( y )= ∑
i∈(0,1)

p( y /(x=i)) p (x=i) (7)

The probability of y is given in equation (7), where x   set of conditions {0, 1}.

From figure 8, the probabilty of y, p(y) is given as:

p( y )=p( y / x=0) p( y )+ p ( y / x=1) p(x )

For the circuit  in depicted in figure  7, the probabilty of  y,  p(y)  can be calculated as

follows:

py=p( y /x7=0)(1− p7)+ p ( y / x7=1) p7  = (1/2∗1/ 4)+(11 /16∗3 /4)=41/64

Summary

In this section, various probabilistic measure and their limitations were described. The

problem of signal correlation as it affects the gate-by-gate method is discussed. This is

addressed in the Parker-McCluskey method, although calculations tend to increase in

complexity  quickly. The cutting  method attempts  to  reduce the complexity  in  exact

probability calculations by computing a range for probabilities. Finally, the conditional

probability approach is presented to tackle the problem of re-convergent fan-outs.

2.3 Modelling of Digital Circuits With SSBDDs

SSBDD is a planar, acyclic  BDD generated by superpositioning of logic gates  [23],

[24]. The main difference between SSBDD and traditional BDDs is in their generation.

While  traditional  BDDs  are  generated  from  Shannon’s  expansion,  SSBDDs  are

generated from by superpositioning.

SSBDD functionalities are set apart from other BDDs by their approach of extractions

with the use of fan-out-free regions (FFR) to separate each component of the digital
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circuit  as a separate entity  thereby generating a structural decision diagram for each

element [25], [26].

When BDDs were introduced, they were proposed for logic simulation  [27] but were

later adapted for test generation [28]. Reduced Ordered BDD (ROBDD) was introduced

several  years  later  and  it  helped  to  simplified  the  structure  of  BDDs.  It,  however,

struggled with large designs as it tends to explode when synthesizing digital circuits

with  exponential  data;  these  problems  were  never  adequately  addressed  despite  the

modifications  [29].  SSBDD  was  proposed  to  take  care  of  the  memory  explosion

problem presented by ROBDD in large designs. In the worst case, SSBDDs are linear in

size with respect to the number of gates while traditional BDDs are exponential [30].

Figure 9 shows the BDD generated from the boolean expression F = a ¬c + a ¬ b ¬c +

b ¬ c  while figure  10 shows the ROBDD counterpart.  The ROBDD model removes

repetitive nodes communicated in the BDD model.

Figure 9. Binary Decision Diagram

                              

27Figure 10. Reduced Order Binary Decision Diagram.

a) b)



SSBDDs are formed from fan-out-free regions (FFR) of a combinational circuit using a

superposition procedure. Each logic gate is represented with its equivalent elementary

BDD recursively until the primary inputs or fan-out branches are reached [30]. 

Figure  11 shows the elementary BDDs for the AND, OR and NOR gate. Using this

elementary BDDs, the SSBDD for a larger circuit can be constructed.

2.3.1 Representing digital circuits as SSBDDs

Consider the combinational circuit shown in figure 12. This can be converted to SSBDD

in several steps of the superpositioning procedure illustrated in figures (13 -  17)  [31].

The procedure involves working backward from the immediate logic gate preceding the

output to the inputs. Input signals that are output signals from predecessor gates are

replaced with a variable to simplify the construction and then replaced.

Figure 11. Elementary BDDs for logic gates.
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Figure 12. Combinational Circuit before SSBDD representation.

In step one, the immediate logic gate preceding the output y is considered as a simple

OR gate with two inputs, X9, and f, where f is the second input signal. 

Figure 13. Superposition procedure (Step 1) .

Step two repeats the same step after substituting f with the value of the preceding the f

signal. The substituted value also uses the same simplification step as in step one. Here,

the two non-direct inputs are replaced with variables d and c.
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Figure 14.  Superposition procedure (Step 2).

In step three, the input signal d is substituted in the same manner introducing the input

X1 and two new signal variable signals a and b. 

Figure 15. Superposition procedure (Step 3).

Step four follows the same process, substituting the variable signals a and b with their

respective elementary BDDs and inputs X2, X3 and X4, X5 respectively. 
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Figure 16. Superposition procedure (Step 4).

In step five, the final variable signal, c is substituted with its elementary BDD. Here the

final input set, X7 and X8 are introduced and the SSBDD construction is complete.

Figure 17. Superposition procedure (Step5).
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To demonstrate how SSBDDs handle circuits with fan-outs, two circuits are considered.

One  circuit  with  internal  fan-out  (figure  18)  and  another  with  no  internal  fan-outs

(figure 21).

Figure 18. Combinational circuit with internal fan-out.

The circuit  in  figure  18 has  two FFRs,  since SSBDDs are formed from FFRs, two

SSBDD graphs are generated as shown in figure 19 and 20

Figure 19. SSBDD for FFR1 in figure 18.
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Figure 20. SSBDD for FFR2 in figure 18.

Figure 21. Combinational Circuit with no internal fan-out.

Figure 21 depicts a circuit with no internal fan-outs but with  a fan-out branch x2 with

two  fan-out  stems.  Each  stem  is  differentiated  from  the  stem  variable  In  order  to

differentiate them, a suffix is added to the branch variable to give x21 and x22 as shown in

figure 21. The resulting representation is shown in figure 22. 
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Figure 22. SSBDD representation of the circuit in figure 21

2.3.2 Traversing SSBDDs

Definition  2.3.1. Consider an SSBDD as a directed acyclic  graph  Gy =  (M,Γ,X) for

representing a Boolean expression  y =  F(X),  where  X – is the set  of literals  of the

expression, M – is the set of nodes in the graph and Γ – represents a mapping: Γ(m)  M⊂

denotes the set of successors of m, and Γ1(m)  ⊂ M denotes the set of predecessors of m.

The graph has a single root node m0  M, were Γ∈ -1(m0)  = ∅, and two terminal nodes mT

 M∈ T ={#0,  #1},  labeled  by Boolean constants.  The nonterminal  nodes  m  M∈  are

labeled by literals x(m)  X∈ , and have exactly two successors me  Γ(m), e ∈ ∈{0,1} [32].

If  there  exists  an  assignment  x(m)  =  e then  we say that  the  edge (m,  me)  in  Gy is

activated. Activated edges connecting nodes mi and mj form an activated path l(mi, mj).

An activated  path  l(m0,  mT)  is  called  full  activated  path.  In  Gy,  for  all  the  possible

vectors Xt  {0,1}n there is a path l(m0, mT) activated in Gy so that y=f(Xt) = e(mT) [32].

This implies that if  e  = 1, then we go in the right direction, and if  e  = 0, then we go

downwards. Therefore, given an input pattern, the output signal can be simulated.
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This is a useful property of SSBDDs as it can be used to simulate faults and generate

test patterns for stuck-at faults [31]. For example, given the input pattern in table 1 for

the SSBDD in figure 22

Table 1: Test pattern for SSBDD

x1 x2 x3 x4 x5 x6 x7 x8 y

0 1 1 0 - - 0 1 1

By traversing the SSBDD, the output y is calculated. This can be done simply by using

the node value from the entry point and following the direction until a terminal 0 or 1 is

reached.

Using the input pattern, we have x1→x22→ x3→ x7→ x81→  #1. Therefore y = 1.

Also, the following nodes have been tested x22  stuck-at 0, x3 stuck-at 0, x7 stuck-at 1, x81

stuck-at 0 because if any of  the nodes is stuck, then given the input pattern  y would

have ended up at terminal 0.

Summary

The concept of representing digital circuits as SSBDDs was presented in this section.

The major differences between SSBDDs and traditional BDDs were described. While

BDDs only represent functional information, SSBDDs represent structural information

because  they  are  formed  by  superpositioning.  Also,  the  problem  of  exponential

complexity of BDD is presented while SSBDD has linear complexity.

The steps of creating an SSBDD was explained for circuits with and without internal

fan-out. It is expressed that SSBBDs are formed from fan-out free regions. Lastly, the

traversing  of  SSBDDs is  explained,  and its  value  for  testing  and test  generation  is

already realized.
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2.4 Conclusion

This chapter discussed several approaches to testability. Firstly, the use of heuristics

such as controllabilty and observability of nodes was presented and how they can be

used to  derive a  quantitative  measure for  testability  and aid in  redesign to  improve

testability.

Secondly,  the  concept  of  signal  probabilities  and  how  it  can  benefit   testability  is

presented. Futhermore, various proposed probabilistics measures and their limitations

are described. The problem of signal correlation and re-convergent fan-out is described

and the work around provided by newer methods.

Finally, the procedure for modeling of digital circuits as SSBDD is discussed and how

they differ from traditional BDDs. It is shown that the SSBDD model is advantageous

for  its  linearity  in  complexity  and  its  ability  to  represent  structural  information  of

circuits. Also, the potential for using SSBDD for fault simulation and generating test

patterns is described.
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3 SSBDD-Based Method For Measuring Probabilistic 

Testability of Digital Circuits

In this chapter, the method of calculating signal probabilities and identifying redundant

faults  using  SSBDDs  is  proposed.  The  methods  are  based  on  true  path  tracing  of

SSBDD.  True  path tracing  reduces  complexity  in  calculation  by only  dealing  with

nodes that result in a logic 1. Also, it is shown that redundancies do not affect the results

of probabilities.

The  first  section  presents  the  method  of  true  path  tracing  and  how  it  is  used  for

calculating output probabilities using a proposed algorithm.

The application of the proposed algorithm for calculating probabilities of internal nodes

of the circuit is discussed in the second section of this chapter.

In the third section, a method for the identification of redundant faults in digital circuits

is proposed. 

3.1 True Path Tracing For Calculating Output Probabilities

SSBDDs presents a way to identify signal paths or nodes in a circuit and their direction

(which represent their logical value) necessary to attain a specific output. Therefore, to

calculate the probability that the output signal equals 1, the required nodes and their

direction can be identified and used to compute the probability.

The following procedure describes the steps for the method:

Procedure 1.

1. Trace all possible true paths in SSBDD in 1-direction, entering the terminal 1.

Denote the set of all these paths as L.
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2. Build for each path l  L∈  a subset of nodes M(l)  M⊂ , so that each variable x  X∈

were represented in this set once.

3. Partition for all l  L∈  the sets M(l) into two disjoint subsets M(l) = M(l0)  M(l∪ 1 )

where M(l0) will consist of only 0-nodes, and M(l1) of only 1-nodes.

4. Calculate the probability py using the formula:

5. py=∑
l L

[∏
ml0

pm∏
ml1

(1−pm)]

Tracing the possible true paths involves trying the different possible patterns that can

produce an output of 1. However, using the SSBDD representation of the circuit, the

process is simplified. It involves traversing the graph to arrive at terminal 1. Consider

the SSBDD representation in figure 23. To get to terminal 1, set a value of 1 to x11. This

leads to the node x21, which we can also be set to 1 and arrive at terminal 1. Now the

direction of x21 can be toggled to see if an alternative true path can be found. This leads

to node  x31. Toggling node  x31 leads to one true path and one false path. Figure  23b

shows the completely traced SSBDD.

It is important to note that the nodes are individual signal lines from inputs, therefore

only the first occurrence of a node with a set input is present in the true path. See figure

25b. This is evident in the second step of procedure 1.

The correlations of signals is taken into account in step 2 by leaving out of the set M(l)

all the repeated nodes, which correspond to the re-convergent fan-outs. The values  pm

correspond to the probabilities p(x(m) = 1).
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Figure 23. a) SSBDD for the circuit fig. 5    b) Traced SSBDD

The figure 23a shows the SSBDD representation of the circuit in figure 5 and the true

path tracing according to step 1 of procedure 1. Figure 23b illustrates the traced paths

which will be used for calculation of the probabilities according to step 5. It shows that

there are only three paths to #1.

Using step 5 of procedure 1, the output probability py can be calculated as follows:

py=p1+ p2+ p3  =

p1 p2+ p1(1−p2) p3+(1−p1)(1−p2) p3=0.5

The result  0.5 differs  from 0.58 and 0.42 as calculated  by the previous  methods in

chapter two. This can be attributed to the redundancy in the circuit. The lower AND gate

can be removed, and the logic function of the circuit remains the same. The circuit in

figure 5 represents a multiplexer, where the lower redundant gate is introduced to avoid

hazards on the output  y during the transition 1 → 0 on the input  x2 in case the other

values on the inputs are x1 = x3= 1.

The procedure detects and discards the redundancies by excluding from the calculation

all  the  paths  which  are  not  true  due  to  inconsistency. This  is  possible  because  the

algorithm takes into account both the probability functions and the logic circuitry.
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3.2 True Path Tracing For Calculating Internal Probabilities

The proposed method in  3.1 which  is  aimed at  calculating  only the  circuit’s output

signal  probability  contains  the  inherent  possibility  of  calculating  also  the  signal

probabilities of internal nodes in the circuit which is not possible for traditional BDDs

as they do not represent the structure of circuits. This section describes the possibility.

Each path l  L∈  in SSBDD, extracted in Step 1 of procedure 1, represent a set of nodes

m, where the node variables  x(m) have the values  x(m) = 1. Hence, the probability of

controlling the signal x(m) = 1 is equal to the probability of controlling the output signal

y = 1 along this particular path l  L∈ . From that it follows, according to procedure 1, that

the controllability of  x(m) = 1, can be calculated as the sum of the probabilities of all

paths l  L∈  ending in the terminal 1, and which contain the node m in condition of x(m)

= 1.

As an example of figure 23b, we have

px 11=p1+ p2=p1 p2+ p1(1− p2) p3

which is the by-product of calculating the value of py with procedure 1.

Since node 1 with node variable x11 in the SSBDD in figure 23b represents the path from

the input x11 to the output y in the circuit in figure 5, the probability px11 represents the

probabilistic  controllability  of  activation  of  this  path,  and  also  the  probabilistic

controllability of all the signals on this path, consistent with the value x1 = 1.

3.3 Identification of Redundant Faults and Hard-to-detect Faults

The first step of the procedure which performs the tracing of all consistent true paths in

a digital circuit can also be used to for identification of redundant faults in circuits.

Consider a boolean function y = F(X) represented in figure 24a as an SSBDD which is

the same as the SSBDD in figure 23a.
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Figure 24. Correct, faulty and inverted faulty SSBDDs

In this circuit, there are three faults x12 stuck-at 0, x32 stuck-at 0, and c stuck-at 0, which

are all redundant. Figure 24b depicts the SSBDD with one of the faults x12 stuck-at 0. 

The faulty graph is created by using the original graph and the specified stuck-at fault.

The general idea is to point both destinations of the faulty node to its stuck-at value. In

this case, x12 is stuck-at 0; therefore the direction of x12 goes downwards in both cases.

To further simplify the graph as seen in the diagram shown in figure 24b, the node x12

is removed as it has become irrelevant because any node pointing to it will end up in the

terminal 0.

An inverted faulty graph is also created using the faulty graph. Each node is simply

inverted. This inversion causes a change in destinations to occur as seen in figure 24c. 

To prove that the fault  x12   stuck-at 0 is redundant, we have to prove that the correct

function y = F(X) and the faulty function, denoted as yF are equivalent. Equivalence can

be proven by showing that y  ⊕ yF = 0 or in another form 

y yF
∨ y yF

=0 (8)
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The equation (8) is depicted by figure 24a and after substituting  yF  and yF  the full

SSBDD is shown in figure 25a. 

Figure 25. Proof of the redundancy of the fault x12 stuck-at 0

By applying the first  step of procedure 1 to the SSBDD in figure  25a,  all  possible

consistent true paths in the SSBDD are traced. Figure 25b shows the traced paths. The

nodes with red numbers in figure 25b are those where the node variable is met for the

first time on the current path. The black numbers on the edges in figure 25b denote the

nodes which are forced to pass due to the value of the node variable, that was fixed

earlier on the current path under trace.

Figure 25b shows that the result of tracing all end at the terminal 0, which indicates that

the equation (8) is valid and correct function, y = F(X) and the faulty function, yF, are

equivalent. Hence the fault in x12 stuck-at 0 has been proven to be redundant.

Likewise, the path tracing method can be used to generate tests for hard-to-test faults,

for example, those which are resistant to detection by pseudorandom test sequences.

Using  the  path  tracing  method  in  section  3.2 which  finds  all  true  paths  ending  at

terminal 1, each path will correspond to a test pattern that can be used to detect the

given fault.
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3.4 Conclusion

The proposed methods for calculating probabilities and identifying redundant faults are

presented in this chapter. These methods rely heavily on true path tracing of SSBDD.

The procedure for true path tracing is described and used as the first step in calculating

signal probabilities. 

The method for calculating output probabilities  uses true path tracing to identify all

possible nodes and path that can give an output of logic 1. The probability of these paths

is then calculated and summed up to give the final output probability.  In essence, all

unnecessary nodes to get an output value of logic 1 are discarded hence simplifying the

complexity.

While calculating output probability, internal node probability paths are inadvertently

computed.  Since  the  probability  of  an  internal  node  measures  the  probability  of

controlling that node and the probability of propagating the value of the node to the

output,  consequently,  all  true  paths  with  that  node  present  constitute  the  measure

required. Hence, the method presented sums up the probability for these paths to derive

internal probabilities.

Lastly, a method for identifying redundant fault is proposed. The method uses a simple

boolean equivalence check y  ⊕ yF = 0, to deduce that the original circuit function y is

equivalent to the function with the fault present, yF. Therefore, an SSBDD constructed

with the function y  ⊕ yF should have no true paths.
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4 Implementation

Following the proposed approaches in section  3, the algorithms in figures  26,  27,  28

were created. The input of the algorithms is a computer-aided diagram (CAD) generated

SSBDD model  of a given circuit.  For identifying redundant  faults,  the implemented

program takes in a fault assignment input and uses the fault assignment to generate a

new SSBDD like figure 25a.

The following defined notations are used in the algorithms.

Notations

• m – number of the node

• Z(m) – node variable

• m1 – neighbor of m if Z(m)  ⊕ I(m) = 1

• m0 – neighbour of m if Z(m)  ⊕ I(m) = 0

• c – value popped from the stack

• I(m) – inversion mark for Z(m). (I(m) = 1 if Z(m) is inverted)

• #0, #1 – terminal nodes

• P – Output probability

• pp – Path probability

The main principle of the algorithms is the true path tracing in step 1 of the procedure. It

is  emphasized  in  the  figures  using a  light  blue color  shade.  The algorithms,  simply

extend this path tracing algorithm.
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Figure 26. Algorithm for true path tracing in SSBDD.
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Figure 27. Algorithm for output probability calculation.
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Using the  SSBDD circuit  given in  figure  23,  the algorithm for  path  tracing  can be

explained as follows.

The tracing begins at  m  := 1 as shown in the first step of the algorithm depicted by

figure 26. At the second step, it checks if Z(m) has been assigned a value. This gives the

“no value assigned” response and the algorithm proceeds to assign a logic value of 1

which will activate the path toward the #1 and put m in a stack. Since the rightward path

was activated in the previous step, the next node is will be node 2. The next step checks

if the next node is a terminal. Since this is not the case we move to the next node. Table

2, shows the values for each iteration.

Table 2. Algorithm workflow

a) Algorithm iteration

# m Z(m) m1 m0 value next c

1 1 - 2 3 1 2 -

2 2 - #1 3 1 #1 2

3 2 1 → 0 0 3 2

4 4 - #1 5 1 #1 4

5 4 1 → 0 0 5 4

6 1 1 → 0 0 3 1

7 3 - 4 5 0 4 1

8 4 - 1 #1 4

9 4 1 → 0 0 5 4

10 3 0 → 1 1 5 3

b) Stack content and Path

# Stack Content Path Stack

1 1 1

2 1, 2 1, 2

3 1 1, 2

4 1, 4 1, 2, 4

5 1 1, 2, 4

6 - 1, 2, 4

7 3 1, 3

8 3, 4 1, 3, 4

9 3 1, 3, 4

10 - 1, 3

At iteration 3, the value of m is already assigned, as a result, the downward path from

node 2 is activated. Once the direction is changed, it is important to note that the top of

the path stack is changed to the node that initiated the direction change, and only nodes

in the path stack have assigned values. Also, there is a skip in the iteration for the value

of m. This is because, node 2 and 3 are branches and since node 2 already has the value

0, then the rightward path is automatically activated for node 3 to node 4. Similar cases

are also skipped in the table since they do not affect the stack content and path stack.

The true paths traced are highlighted in green on table 2b.
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Conclusion

Two algorithms were developed and implemented as software prototypes: 1) Algorithm

for  calculation  of  signal  probabilities  as  controllability  measures  for  a  circuit  on

SSBDDs and 2) Algorithm for proving the redundancy of a given fault by showing the

non-existence of a true path for the given SSBDD-based Boolean equation.

For using the second algorithm, the methods proposed in section 3.3, how to translate

the given SSBDD to a faulty SSBDD and an inverted faulty SSBDD were used.
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5 Experimental Results

The goals of the experimental research were to investigate  the difference between the

accuracy  of  calculating  signal  probabilities,  and  the  speed  of  calculations  for

combinational circuits represented at two different levels. At the lower level as gate

networks, and at higher level as networks of FFR-modules. Experiments were carried

out with Intel Core i5 3570 Quad Core 3.4 GHz, 8 GB RAM.

Table 3. Comparison of speed and accuracy of signal probability calculation in a macro (FFR) and gate
level SSBDDs

Circuit Time cost, μs Probabilities

No # Nodes Gate [13] Proposed
Macro

Gain
times

Gate [13] Proposed
Macro

Differ %

1 34 108 31 3.5 0.68 0.77 13.3

2 32 146 95 1.5 0.90 0.92 2.9

3 32 150 82 1.8 0.50 0.61 21.4

4 35 231 72 3.2 0.24 0.23 -2.1

5 33 208 70 3.0 0.63 0.70 11.4

6 29 168 59 2.8 0.53 0.53 -0.4

7 34 234 82 2.9 0.60 0.66 9.2

8 38 264 103 2.6 0.51 0.59 16.3

9 36 174 36 4.8 0.71 0.81 13.7

10 33 248 80 3.1 0.28 0.25 -9.5

In table 3, the results for a set of 10 simple benchmark circuits, represented by SSBDDs

as a single FFR were compared with SSBDDs represented as a network of gates. The

first  method  [13] of gate-by-gate probability  calculation was used for the gate  level

circuits,  where  the  signal  correlations  were  not  taken  into  account.  There  was  no
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experiment carried out with the second method [13] due to its high complexity. Instead,

the experiments were carried out with exact probability calculation method developed in

the thesis.

The numbers of nodes in the SSBDDs were from 29 to 38, and the benchmark circuits

are characterized through different configurations of re-convergent fan-outs. The gain in

the time cost of calculating signal probabilities was in the range of 1.5 – 4.8 and the

difference in the probability values spanned in the range of -9.5 – 21.4, i.e. with nearly

30%  difference  in  the  worst  case.  This  high  percentage  dispersion  underlines  the

importance of the need for a more accurate method of probability calculation.
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In figure 7, the time cost of calculating signal probabilities for circuits represented as

single SSBDDs (macros) and as networks of gates.

In this  thesis, procedure 1 was implemented for the case of single SSBDD. For the

general case, if a circuit is not represented as a single SSBDD, but as a network of many

SSBDDs, the procedure should be extended as future work.

However, to investigate the practical use of the procedure for the general case, when a

circuit consists of a network of FFRs, the experiments were carried out with gate-by-

gate method with the extension to a general case where the components of the network

can be both gates of FFRs.

The difference  of  both approaches  is  the number  of  correlations  taken into  account

during the probability calculation.  In the case of gate-by-gate probability  calculation

[13],  no  correlations  are  considered,  whereas,  in  the  proposed  new  method,  all

correlations of signals inside the FFRs are taken into account and removed.

To compare the accuracy of the new macro-level approach against the traditional gate-

level  approach,   the data  controllabilities  calculated by the simulation-based Monte-

Carlo method [14] was taken as reference.

52

Figure 29.  Comparison of the time cost of the calculation of signal probabilities at
macro and gate level models.



For experimental research, the standard ISCAS’85 benchmark circuits [33] were used to

estimate  the  feasibility  and  efficiency  of  the  method  proposed.  In  table  4,  the

characteristic data of the SSBDD models for the ISCAS’85 family of circuits in terms

of the numbers of nodes (nodes), numbers of variables (var), and numbers of SSBDDs

(graphs) are depicted.

Table 4:  Benchmark circuits ISCAS’85

Circuit
Macro-level Gate-level

nodes var graphs nodes var graphs

C432 308 132 96 487 311 275

C499 601 228 187 1097 724 683

C880 497 211 151 775 489 429

C1908 866 281 248 1394 809 776

C2670 1313 663 430 2075 1425 1192

C3540 1648 428 378 2784 1564 1514

C5314 2712 811 633 4319 2418 2240

C6288 3872 1520 1488 4864 2512 2480

C7552 3552 1127 920 5795 3370 3163

Since the re-convergence of fan-outs on the macro-level component network, and hence

the related signal correlations are still neglected in the proposed method, the following

hypothesis was set: due to removing signal correlations inside all FFR-macros in the

circuit, the remaining amount of high-level correlations between macros should be less

than the amount of all gate-level signal correlations. As a result, if this hypothesis would

be correct, the proposed method in average should work more precisely on the macro-

level. Experimental results confirmed this assumption.
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Figure 30. Comparison of the proposed method of controllability
calculation for digital circuits at macro and gate levels with Monte-Carlo

method

Figure  30 shows that  the  percentages  of  the  circuit  nodes  in  9 Benchmark circuits,

where the macro-based method of controllability calculation is used, is more exact than

using the gate-level calculation. For example, for the circuit C7552 in 93.5% cases, the

macro-level approach works better than the gate-level method (Table  5). On average,

the overall benchmarks of the macro-level approach is five times more accurate than the

gate level approach.

Note that the accuracy of the macro-approach may be increased by extracting bigger

macros and representing them as single SSBDDs, which will  result  in an additional

reduction of the fan-out re-convergence (and signal correlations), i.e., in the less number

of “sources of inaccuracies.” However, since this effect can be achieved by increasing

the time cost of calculations, the finding of trade-offs could be interesting for future

research.
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Table 5: Comparison of the Macro and Gate approaches

Circuit C432 C499 c880 C1908 C2670

Macro % 87.5 67.1 86.2 85.8 66.0

Gate % 12.5 32.9 13.8 14.2 34.0

Circuit C3540 C5315 c6288 C7552 Average

Macro % 83.3 77.0 65.1 93.6 79.1

Gate % 16.7 23.0 34.9 6.4 20.9

Conclusion

This  chapter  presents  the  experimental  results  and most  importantly  shows that  the

signal probabilities for the nodes of digital circuits can be calculated exactly for circuits

which may contain  redundancy. 

Also unlike traditionally BDDs, the probabilistic controllability can be calculated not

only for the output signals of circuits represented by BDDs but also for all nodes in the

related  circuit  during the same procedure of true paths  tracing on the SSBDD. The

reason for the latter possibility is the exact mapping between the SSBDD nodes and the

signal paths in the circuit. 
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6 Conclusion

This thesis aimed to propose a method for exact calculation of signal probabilities as a

controllability  measure  for  combinational  circuits  represented  by  structurally

synthesized  binary  decision  diagrams  (SSBDD) as  well  as  present  an  identification

technique for redundant faults.

Chapter one emphasized the importance of testability and discussed the efficiency of

various  testability  analysis  approach.  In  chapter  two,  an  overview  of  some  known

testability measures and their limitation was given. Chapter three covers in detail the

proposed approach. Chapters four and five cover the implementation and experimental

results, respectively.

The proposed method represents a circuit as a set of macros, which is a hierarchical

network of fan-out free regions (FFR) or SSBDDs instead of gates.

Experimental results showed that the proposed method is capable of computing exact

signal probabilities faster with SSBDDs than the gate level. Additionally, it was shown

that taking into account signal correlations increases the accuracy of signal probabilities

by, an average, four times compared to gate-level results.

The algorithm for calculation of signal probabilities as controllability measures for a

circuit  on  SSBDDs and  the  algorithm for  proving  the  redundancy  of  a  given  fault

algorithms were developed and implemented as software prototypes.
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Appendix 1 – Program Description and Manual

The program is a linux terminal application. The following instructions will assist in

running the program. 

1. Open the terminal and navigate to where the program is located.

2. Run the program as shown below and pass the agm file path as the argument.

3. The results are displayed as shown depending on the program mode .
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Figure 31. Running the program

Figure 32. Probability calculation result
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Figure 33. Fault redundany result



Appendix 2 – Source

/*

 * Created by: Adeniyi Adekoya

 *

*/

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include "checker.h"

#include "mystack.h"

#include "nodemem.h"

/**

 * Prints the message specified and terminates the program.

 * @param message

 */

void exception(char* message)

{

    printf("%s", message);

    exit(EXIT_FAILURE);

}

/**

 * Creates an array of faults at specified nodes.

 */

void injectFault(fault_t* faults, int n, int node, unsigned 
stuckValue)

{

    faults[n].nodeIndex = node;

    faults[n].stuckAt = stuckValue;

}

int isOutputGraph(int graphIndex)

{

    /** outputBound: graphs with index >= this bound are output graphs
*/

    int outputBound = GrpCount - OutCount;

    return (graphIndex >= outputBound) ? 1 : 0;
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}

/**

 * Uses the fault array to create a faulty graph. Then it attaches the
faulty graph

 * at the #0 terminal and the inverse faulty graph at the #1 terminal 
creating

 * an xor of the original graph and the faulty graph

 */

void attachFaultyGraph(fault_t* faults, int noOfFaults)

{

    // attach faulty graph

    int outputBound = GrpCount - OutCount;

    // change terminal #0 to new node

    for (int g = outputBound; g < GrpCount; ++g) {

        unsigned graphBegin = GBEG(g);

        unsigned graphLength = GLEN(g);

        int current = 0;

        // since we are adding two new graphs

        unsigned addedLength = graphLength * 2;

        // change zero terminal nodes to new node

        while (current < graphLength) {

            int nodeIndex = graphBegin + current;

            if (!NDST(nodeIndex, 0)) { // if terminal #0 link to 
faulty graph

                NDST(nodeIndex, 0) = graphLength;

            }

            if (!NDST(nodeIndex, 1)) { // if terminal #1 link to 
inverse faulty graph

                NDST(nodeIndex, 1) = addedLength;

            }

            ++current;

        }

        /* Re-allocate memory for new nodes */

        if(!(Nods = (node_t*) realloc(Nods, NSIZ * (NodCount + 
addedLength)))) {

            exception("Out of memory: cannot reallocate nodes");

        }

        /* Re-allocate memory for new node names */

        if(!(NodNames = (char**) realloc(NodNames, sizeof(char*) * 
(NodCount + addedLength)))) {

            exception("Out of memory: cannot reallocate node names");

        }
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        // update count variables

        NodCount += addedLength;

        GLEN(g) += addedLength;

        // set current to new node

        current = graphLength;

        unsigned faultyGraphBound = GLEN(g) - graphLength;

        // add faulty graph

        while (current < faultyGraphBound) {

            int nodeIndex = graphBegin + current;

            int previousIndex = nodeIndex - graphLength;

            // copy previous graph node

            NFLG(nodeIndex) = NFLG(previousIndex);

            NDST(nodeIndex, 0) = NDST(previousIndex, 0);

            NDST(nodeIndex, 1) = NDST(previousIndex, 1);

            NVAR(nodeIndex) = NVAR(previousIndex);

            NNAM(nodeIndex) = NNAM(previousIndex);

            // check if node is faulty and update graph node

            for (int i = 0; i < noOfFaults; ++i) {

                if (faults[i].nodeIndex == previousIndex) {

                    // determine stuck path

                    int stuckDestination;

                    if (faults[i].stuckAt) { // stuck at 1

                        stuckDestination = INV(nodeIndex) ? 0 : 1;

                    } else { // stuck at 0

                        stuckDestination = INV(nodeIndex) ? 1 : 0;

                    }

                    // set the other branch also to stuck path

                    NDST(nodeIndex, 1 - stuckDestination) = 
NDST(nodeIndex, stuckDestination);

                }

            }

            // update node destination with new index

            NDST(nodeIndex, 0) = graphLength + NDST(nodeIndex, 0);

            if (NDST(nodeIndex, 0) == faultyGraphBound || 
NDST(nodeIndex, 0) == GLEN(g)) { // set new terminal node

                NDST(nodeIndex, 0) = 0;

            }

            // since we are attaching at terminal #0 we must go to 
terminal from right

            NDST(nodeIndex, 1) = graphLength + NDST(nodeIndex, 1);
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            if (NDST(nodeIndex, 1) == GLEN(g) || NDST(nodeIndex, 1) ==
faultyGraphBound) {

                NDST(nodeIndex, 1) = 0;

            }

            // move to next node

            ++current;

        }

        // set current node to new node

        current = faultyGraphBound;

        // add inverted faulty graph

        while (current < GLEN(g)) {

            int nodeIndex = graphBegin + current;

            int faultyGraphIndex = nodeIndex - graphLength;

            // copy previous graph node

            NFLG(nodeIndex) = NFLG(faultyGraphIndex);

            NDST(nodeIndex, 0) = NDST(faultyGraphIndex, 0);

            NDST(nodeIndex, 1) = NDST(faultyGraphIndex, 1);

            NVAR(nodeIndex) = NVAR(faultyGraphIndex);

            NNAM(nodeIndex) = NNAM(faultyGraphIndex);

            // invert nodes and destinations

            NFLG(nodeIndex) = 1 - NFLG(nodeIndex);

            unsigned temp = NDST(nodeIndex, 0);

            NDST(nodeIndex, 0) = NDST(nodeIndex, 1);

            NDST(nodeIndex, 1) = temp;

            // skip updating terminal nodes

            NDST(nodeIndex, 0) = graphLength + NDST(nodeIndex, 0);

            if (NDST(nodeIndex, 0) == graphLength) { // set new 
terminal node

                NDST(nodeIndex, 0) = 0;

            }

            NDST(nodeIndex, 1) = graphLength + NDST(nodeIndex, 1);

            if (NDST(nodeIndex, 1) == graphLength) {

                NDST(nodeIndex, 1) = 0;

            }

            // move to next node

            ++current;

        }

    }

}

/**
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 * Scans all output paths to see if terminal #1 can be reached. It 
returns 1 if

 * not output path terminates at #1 and 0 otherwise.

 * Effectively proving that Y xor YF = 0

 */

int isRedundantFault()

{

    // allocate a control register for all nodes

    int* controlReg;

    if (!(controlReg = (int*) malloc(VarCount * sizeof(int)))) {

        exception("Out of memory: cannot allocate int*");

    }

    int result = 1;

    // holds the value retrieved from the stack so we can invert it

    int changeNodeDirection = -1;

    stack_t* stack = createStack(VarCount);

    /** outputBound: graphs with index >= this bound are output graphs
*/

    int outputBound = GrpCount - OutCount;

    // transverse each graph

    for (int g = outputBound; g < GrpCount; g++) {

        if (!result) {

            break;

        }

        int graphBegin = GBEG(g);

        int current = 0;

        scan_path scanPath = createScanPath(NodCount);

        int scanPathCount = 0;

        char str[1000];

        // node transverse

        while (1) {

            int nodeIndex = graphBegin + current;

            int controlVariable = NVAR(nodeIndex);

            int destination, next;

            int assignedValue;

            /*printf("Before: "); printScanPath(&scanPath); 
printf("\n");

            printf("Cur Index: %i, Value: %i, Fixed: %i, Toggle: 
%i\n\n", nodeIndex,

                   VVALUE(controlVariable), 
isControlVariableFixed(&scanPath, controlVariable), 
VTOGGLE(controlVariable) );*/
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            // if no value is assigned to the node control variable

            if (!isControlVariableFixed(&scanPath, controlVariable)) {

                // assign 0 if inverted and 1 if not (0 xor 1/1 xor 0)

                assignedValue = 1 - INV(nodeIndex);

                controlReg[controlVariable] = assignedValue;

                push(stack, current);

                // since we forced the value, next destination will be
to the right

                destination = 1;

                // add node index to path node

                path_node pathNode;

                pathNode.nodeIndex = nodeIndex;

                pathNode.isInverted = 1 - assignedValue;

                pathNode.controlVariable = controlVariable;

                // add path node to scan path

                scanPath.top = scanPathCount;

                scanPath.pathNodes[scanPathCount++] = pathNode;

            } else {

                // check if current node was just retrieved from stack
then we have to invert it

                if (current == changeNodeDirection) {

                    int currentValue = controlReg[controlVariable];

                    controlReg[controlVariable] = 1 - currentValue;

                    // since node changed direction, we should set 
invert signal

                    int pathIndex = getPathIndex(&scanPath, 
nodeIndex);

                    // if current value is 1 then a change indicates 
it was inverted

                    scanPath.pathNodes[pathIndex].isInverted = 
currentValue;

                }

                // determine destination node

                if (controlReg[controlVariable]) { // variable value 
is 1

                    destination = INV(nodeIndex) ? 0 : 1;

                } else { // variable value is 0

                    destination = INV(nodeIndex) ? 1 : 0;

                }

            }

            next = NDST(nodeIndex, destination);

            //printf("current: %i\n", graphBegin + current);
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            //printf("Stack: ");

            /*peep(stack);

            sprintf(str, "%i | %i | %i", controlVariable, 
VVALUE(controlVariable), VFIXED(controlVariable));

            printf("%s\n", str);

            printf("%i --> %i\n\n", nodeIndex, graphBegin + next);

            printf("After: Cur Index: %i, Value: %i, Fixed: %i, 
Toggle: %i\n\n", nodeIndex,

                   VVALUE(controlVariable), 
isControlVariableFixed(&scanPath, controlVariable), 
VTOGGLE(controlVariable) );*/

            if (!next) { // terminal reached

                if (debug) {

                    printScanPath(&scanPath, destination);

                    printf("\n");

                }

                if (destination) { // terminal node is 1

                    result = 0;

                    break;

                }

                if (!isEmpty(stack)) {

                    // set current as value from stack then we can 
change direction

                    current = changeNodeDirection = pop(stack);

                    // node where the change in direction was done

                    int nodeIndexChanged = graphBegin + current;

                    int pathIndex = getPathIndex(&scanPath, 
nodeIndexChanged);

                    // set flipped node as new top.

                    scanPath.top = pathIndex;

                    // so next path node will begin from one after the
changed index

                    scanPathCount = pathIndex + 1;

                } else {

                    break;

                }

            } else { // move to next node

                current = next;

            }

        }

        // free scan path memory

        free(scanPath.pathNodes);
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    }

    // free memory

    free(controlReg);

    free(stack);

    return result;

}
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