
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Oleg Kartašov 155248IAPB

Andres Pajuste 155219IAPB

Web Application for Graduation Project

Management

Bachelor's thesis

Supervisor: Ago Luberg

 MSc

2

Author’s declaration of originality

We hereby certify that we are the sole authors of this thesis. All the used materials,

references to the literature and the work of others have been referred to. This thesis has

not been presented for examination anywhere else.

Author: Oleg Kartašov, Andres Pajuste

25.05.2021

3

Abstract

The purpose of the current bachelor’s thesis is to create a service for automation and

simplification of proposing, searching, choosing and confirming projects. The service is

partially public and as a public service provides a list of schools and departments with a

list of proposed projects. The service supports different types of users with different

functionality. For the supervisors, the service allows to quickly create, modify or delete

projects to propose, allows to see a list of applications to the project created by students

and allows to confirm or reject it. For the students, the service allows to check a list of

proposed projects, find a proper project and apply to it. For the admin, the service allows

to see a list of all existing users and track whether a student has a confirmed project or

not. The service provides one scenario of project confirmation with two-level

confirmation by supervisor and student side.

This project is built following a Client-Server architecture and divided into two parts:

back-end as a REST API and front-end as a Web application.

This work consists of analysis with requirements to the service, development with project

design, development process and project functionality and next steps of development with

existing issues.

This thesis is written in English and is 62 pages long, including 7 chapters, 12 figures.

4

Annotatsioon

Lõputöö projektide haldamise veebirakendus

Käesoleva bakalaureusetöö eesmärgiks on luua veebirakendus, mis automatiseerib ja

lihtsustab projektide esitamise, otsimise, valimise ja kinnitamise protsesse.

Veebirakendus on osaliselt avalik ja kuvab teaduskonnad koos kättesaadavate

projektidega. Veebirakendus toetab erinevat tüüpi kasutajaid erineva funktsionaalsusega.

Õppejõu jaoks võimaldab veebirakendus projekti lisada, moodustada, eemaldada ja

esitada tudengitele, võimaldab vaadata projektidele esitatud avaldusi tudengitelt ja

võimaldab neid kinnitada või tagasi lükata. Tudengi jaoks võimaldab veebirakendus

vaadata pakutatud projekte, leida sobivat projekti ja kandideerida projektis osalemiseks.

Administraatori jaoks võimaldab veebirakendus vaadata kasutajate nimekirja ja jälgida,

kas tudengitel on kinnitatud projekt või mitte. Veebirakendus toetab projekti

kahetasemelise kinnitamise stsenaariumi õppejõu ja tudengi poolt.

Veebirakendus on loodud klient-server arhitektuuri baasil ja jagatud kaheks osaks:

serverirakendus kui REST API teenus ja kasutajaliides kui veebirakendus.

Lõputöö sisaldab analüüsi, kus kirjeldatakse ära nõuded, arendusprotsessi koos projekti

disainiga, veebirakenduse funktsionaalsust ja edasise arenduse samme koos kirjeldatud

probleemidega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 62 leheküljel, 7 peatükki, 12

joonist.

5

List of abbreviations and terms

API Application Programming Interface

CD Continuous Deployment

CI Continuous Integration

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

JDBC Java Database Connectivity

JSON JavaScript object Notation, data-interchange format

JWT JSON Web Token

REST Representational State Transfer, software architectural style

SASS Syntactically Awesome Stylesheets

SPA Single Page Application

UI User Interface

URL Uniform Resource Locator

UX User Experience

6

Table of contents

Author’s declaration of originality ... 2

Abstract ... 3

Annotatsioon Lõputöö projektide haldamise veebirakendus.. 4

List of abbreviations and terms .. 5

Table of contents .. 6

List of figures.. 10

1 Introduction ... 11

1.1 Background ... 11

1.2 Purpose ... 11

1.3 Requirements .. 12

1.3.1 User story ... 12

1.3.2 Support requirements ... 14

1.3.3 Architecture requirements ... 15

1.3.4 UX/UI requirements .. 15

2 Project Design.. 16

2.1 Database.. 16

2.1.1 PostgreSQL .. 20

2.1.2 H2 .. 21

2.2 REST service .. 21

2.2.1 Spring... 22

2.2.2 Maven .. 22

2.2.3 JWT Token .. 22

2.2.4 BCryptPasswordEncoder ... 22

2.2.5 Log4j2 .. 22

2.2.6 Authentication ... 23

2.2.7 Authorization ... 23

2.2.8 Swagger ... 24

2.3 Web application - SPA ... 24

2.3.1 Vue CLI ... 25

7

2.3.2 Vuetify ... 25

2.3.3 Markdown .. 25

2.4 REST API and Web application communication ... 25

3 Development process ... 26

3.1 GitLab CI/CD ... 26

3.2 DB setup ... 26

3.3 REST service setup ... 27

3.4 Web Application Setup ... 27

3.4.1 Connection with REST API service .. 27

3.4.2 Remote Server ... 27

3.5 Testing .. 27

3.5.1 REST service testing ... 27

3.5.2 Web application testing ... 27

4 Project description ... 28

4.1 Roles ... 28

4.1.1 Supervisor .. 28

4.1.2 Student ... 29

4.1.3 Administrator ... 29

4.2 UX/UI ... 29

5 Service functionality .. 30

5.1 Navigation .. 30

5.2 Roles switching... 30

5.3 User management ... 31

5.4 Profile ... 31

5.5 Projects ... 32

5.5.1 Project addition .. 33

5.5.2 Project editing and deleting ... 34

5.5.3 Project displaying .. 34

5.6 Teams.. 35

5.6.1 Team management ... 36

5.6.2 Team participation ... 37

5.7 Project confirmation process .. 37

5.7.1 Application creation .. 38

5.7.2 Application deleting .. 39

8

5.7.3 Application displaying ... 39

5.7.4 Application tracking and confirmation .. 40

5.7.5 Workflow diagram ... 43

5.8 Searching .. 43

6 Validation .. 45

6.1 REST service validation ... 45

6.1.1 Login(Authentication) validation .. 45

6.1.2 User controller and service validation ... 46

6.1.3 Project controller and service validation ... 47

6.1.4 Group controller and service validation .. 47

6.1.5 Tag controller and service validation .. 48

6.1.6 Team controller and service validation ... 48

6.1.7 Team member controller and service validation ... 48

6.1.8 Application controller and service validation .. 49

6.2 Web application validation ... 49

6.2.1 Access validation ... 50

6.2.2 Forms validation .. 50

7 Summary .. 51

7.1 Issues .. 51

7.1.1 Functional issues.. 51

7.1.2 Architectural issues.. 52

7.1.3 UX/UI issues.. 53

7.2 Comments ... 54

7.3 Future development steps ... 54

7.3.1 Project completion ... 54

7.3.2 Finished student ... 54

7.3.3 Multiple scenario ... 55

7.3.4 Projects grouping ... 55

7.3.5 Users grouping and projects access ... 55

7.3.6 UniId authentication .. 56

7.4 Potential functionality... 56

7.4.1 Project export ... 56

7.4.2 Confirmed project management .. 57

7.4.3 Third-party companies ... 57

9

7.4.4 Student graduation topic proposals for supervisors 57

References .. 58

Appendix 1 – Database diagram ... 59

Appendix 2 – Gitlab CI/CD Pipeline config for front-end ... 60

Appendix 3 – Gitlab CI/CD Pipeline config for back-end ... 61

Appendix 4 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 62

10

List of figures

Figure 1. Rest API service. [15] ... 21

Figure 2. Authentication based on JWT token. [16]... 24

Figure 3. Navigation menu with role switching. .. 31

Figure 4. Authenticated user profile. .. 32

Figure 5. Supervisor projects list page. .. 33

Figure 6.Department with list of offered projects. ... 35

Figure 7. Team view by team owner. ... 37

Figure 8. Application creation. ... 38

Figure 9. List of student applications to the projects. ... 40

Figure 10. In progress project detailed view. ... 42

Figure 11. Project confirmation process. .. 43

Figure 12. Database table diagram. .. 59

11

1 Introduction

1.1 Background

At that moment, finding a graduation topic with a supervisor is a very inconvenient and

time-consuming process for a student at the School of IT of the Tallinn University of

Technology. A list of potential supervisors with their graduation topics proposals are

posted on the TalTech webpage as static data. Each student can go to a webpage and look

at a list of graduation topics proposals, but to choose a topic, students need to contact each

potential supervisor separately. This is not a very convenient process for both the student

and the member of academic staff. On the one hand students need to spend a lot of time

dealing with each potential supervisor separately. On the other hand, the

supervisor receives proposals from students by letter or verbal agreement. When it comes

to a large number of applications, it becomes difficult to manipulate requests from

students, because each student waits for an answer, but there is a chance that the

supervisor will accidentally miss the letter, due to the high amount of them. In addition,

it is necessary each time to manually delete the topic from the page to let other students

know that the topic is already not available. In addition, the supervisor does not know

exactly how much student attention proposed topics could draw. Also, for the supervisor

there are not many ways to manipulate own project, adding new ones, changing existing

ones. To do this, the supervisor needs to change the data on the TalTech web page which

is not very convenient and also a time-consuming process. As a result, the current

graduation topic selection process requires a lot of manual work and consumes a lot of

time as well.

1.2 Purpose

The main purpose of the current project is to create separate applications for automating

and simplifying the selection, confirmation and managing of projects with subsequent

adding of finished graduation thesis documents to Digikogu library. Service must support

at least two scenarios: scenario with bachelor and master graduation level.

Service must allow supervisors to create and manage projects for students with different

scenarios by graduation levels. A student is given the opportunity to conveniently search

for and choose a project to apply and wait for confirmation from the potential supervisor.

12

A supervisor may confirm or refuse an application of a student or a group of students if

it is a group application.

The student is also given the opportunity to create teams and apply as a group if the

graduation topic proposal is allowed to do so.

Service can be fully managed by an administrator. Administrators must have ability for

flexible configuration of service: manage groups, departments, users, roles and projects.

1.3 Requirements

1.3.1 User story

The following functional requirements are in user story format and reflect expected

functionality for specific types of users. Three types of authenticated users can be

identified in this project: Admin, Supervisor, Student.

The following functions are required for each type of user

 each user can see supervisor profile with list of available projects

 each user can be able to search projects by author, tags or title under specified

department

Authenticated user

 As an Authenticated user, I want to be able to see and edit own profile information

Admin

 As an Admin, I want to be able to see the list of users sorted by roles

• list of supervisors

• list of students with selected project if it selected

 As an Admin, I want to be able to manage users

• add a new user

13

• change existed user information

• change user status

• change user roles

 As an Admin, I want to be able to change project status

 As an Admin, I want to be able to create groups for grouping projects and users

by requirement

Supervisor

 As a Supervisor, I want to be able to manage each of my projects

• add a new project

• delete a project

• edit existing project

• open detailed view of a specified project

• see the list of my projects sorted by status

 As a Supervisor, I want to be able to manage student applications to choose

projects

• see the list of applications to my projects sorted by status

• accept an application

• deny an application

Student

 As a Student, I want to be able to see Supervisor profile with his/her available

projects list

 As a Student, I want to be able to create a new team, for doing the group project

14

 As a Student, I want to be able to manage the created team

• delete a team member

• add a new team member

• delete the team

 As a Student, I want to accept or decline the team participation

 As a Student, I want to be able to see the list of available projects with authors

 As a Student, I want to be able to see detailed view of a specific project

 As a Student, I want to be able to apply to a project

• create a single application

• create a group application

 As a Student, I want to see a list of confirmed/declined applications from a

supervisor

 As a Student, I want to be able to see the detailed view of a confirmed project

1.3.2 Support requirements

 The service must support multiple roles for one user. Scenario, when the

supervisor can be also admin or student.

 Projects can have multiple supervisors and are proposed for multiple

departments.

 Service must have Markdown support for more comfortable project

description

 Authentication and authorization process must be available via uniId for

supervisors and students.

15

1.3.3 Architecture requirements

 Service must support different types of scenarios such as bachelor and master

graduation levels.

 Service must allow to group projects and users

1.3.4 UX/UI requirements

 The service must be partially accessible for viewing. That means that a non-

authenticated user has the opportunity to visit a web application to view proposed

projects according to department or view supervisor profile with available

projects.

 UI must support multiple languages. UI must be available on Estonian and English

languages.

 UI must be a multi-platform web application. That means that service must have

a responsive UI and be available on different types of devices.

16

2 Project Design

This project is built with as Client-Server architecture, which allowed splitting the service

into three independent parts: database, REST service as a business logic and SPA web

application as a user interface. Separation of Business logic and Web application allows

for greater flexibility and independence of one part from another.

2.1 Database

Database table diagram. (Figure 12)

Database tables description

 user - table for user entities

• id - database unique identifier

• user_id - randomly generated unique identifier of numbers and letters

• first_name - first name of the user

• last_name - last name of the user

• email - email of the user

• encrypted_password - encrypted password by bCryptPasswordEncoder

[12]

• graduation_level - graduation level of user (master, bachelor)

• status - status of user (active, not active)

• starterTeamId - this field is set by team_id of the team that is

automatically generated with user creation to apply for solo projects

• confirmedProjectId - when the application is confirmed by student

and supervisor, this field is set by confirmed project_id

• role_id - role of the user (admin, student, supervisor)

17

 role - table for role entities

• id - database unique identifier

• role_name - name of the role

 authority - table for authority entities

• id - database unique identifier

• authority_name - name of the authority

 roles_authorities - table for many-to-many relationship between role table

and authority table

• role_id - database id of the role

• authority_id - database id of the authority

 group - table for group entities

• id - database unique identifier

• group_id - randomly generated unique identifier of numbers and letters

• group_class - class of the group (for example School, Department, etc)

• group_name - name of the group (for example IAIB, IAPB, etc)

• parent_group - parent of this group

 user_group_role - table for relationships between users, groups and roles to

understand what role each user in each group has.

• id - database unique identifier

• user_id - database id of the user

• role_id - database id of the role

• group_id - database id of the group

18

 user_group - table for many-to-many relationship between user and group

tables (redundant table which logic must be fully transferred to

user_group_role table)

• user_id - database id of the user

• group_id - database id of the group

 project - table for project entities

• id - database unique identifier

• project_id - randomly generated unique identifier of numbers and

letters

• status - status of the project (available, not available)

• creating_time - date and time when project is created

• accpeting_time - date and time when project is accepted by team

• language - project language

• title - project title

• description - project description

• student amount - how many students should do this project

• degree - project degree (bachelor, master)

• user_id - project author

• team_id - when project is accepted by team and supervisor this field is

set by team_id of the team

 groups_projects - table for many-to-many relationship between group and

project tables

• group_id - database id of the group

19

• project_id - database id of the project

 projects_cosupervisors - table for many-to-many relationship between user

and project table

• project_id - database id of the project

• user_id - database id of the user

 tag - table for tag entities

• id - database unique identifier

• tag_id - randomly generated unique identifier of numbers and letters

• tag_name - tag name

 projects_tags - table for many-to-many relationship between project and tag

tables

• project_id - database project id

• tag_id - database tag id

 team - table for team entities

• id - database unique identifier

• team_id - randomly generated unique identifier of numbers and letters

• team_name - name of the team

• status - status of the team

• author_id - id of the team creator

• project_id - this field is set when the project is accepted by team and

supervisor

 team_member - table for team member entities

20

• id - database unique identifier

• team_member_id - randomly generated unique identifier of numbers and

letters

• team_id - team, where this team member is working

• user_id - what user belongs to this team member

• role - role in the team (student, supervisor, co supervisor)

• status - team member status (active, not active)

 application - table for application entities

• id - database unique identifier

• application_id - randomly generated unique identifier of numbers and

letters

• status - application status

• work_type - type of the work (team, solo)

• creating_time - date and time when application is created

• message - application message

• team_id - what team create this application

• project_id - to what project this application was sent

2.1.1 PostgreSQL

For our service as a database, we are using PostgreSQL. PostgreSQL is a free and open-

source object-relational database system. [17]

PostgreSQL is running in a docker container on the development server. Service is

connected to the database using JDBC.

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software

21

2.1.2 H2

For local testing we are using H2 in-memory database. H2 is very comfortable for

developing stage, because this database is built-in in spring and only one dependency

needed to start working with it. H2 has ddl-auto: create-drop, so every time when the

application is stopping the database deletes all the data.

2.2 REST service

REST service that provides API for the web application from client side. RESTful API

service is built using Java 11 with Spring Boot framework. All HTTP requests are sent to

Spring REST controllers. After that, data from requests go to the service layer where

Spring Data JPA repositories are autowired. Depending on the request and operation

type, Hibernate generates SQL queries to the database to retrieve data. This data is

converted from entity to DTO (data transfer object) type and is sent back as a response to

client side. Security is provided by Spring Security. (Figure 1)

Figure 1. Rest API service. [15]

22

2.2.1 Spring

Spring is the most popular application framework for Java platform [9][10]. Because of

the built-in frameworks like dependency injection and inversion control, Spring has a

wide range of functionality and features. Spring is an easy, fast and secure Java

framework with high performance, which is perfectly suitable for developing web

applications like our service.

2.2.2 Maven

For building application and lifecycle control our REST API is using Maven. Maven is

one of the available and popular tools for building Java projects. The POM file contains

all the dependencies, which are needed for proper work of REST API. Maven allows

users to put in the project root script files, which can be run by application or by CI/CD

tools.

2.2.3 JWT Token

For the authorization process we decided to choose JWT Token. JWT token is necessary

so that REST API understands whether it is the user who pretends to be. JWT token

consists of header, payload and signature and every time when an authenticated user

attempts to send the HTTP request to the REST API, the system takes the token from the

request header and checks if it is signed with the right token secret value and if this token

has not expired yet.

2.2.4 BCryptPasswordEncoder

For user password encoding and decoding our REST API is using

bCryptPasswordEncoder. BCryptPasswordEncoder is a very secure password encoder.

[12] With the help of this encoder, all users' passwords could be safely presented in the

database without the possibility of being revealed. When the admin creates a new account

and puts some value in the password parameter field, this value is automatically encoded

and only after that is put in the database.

2.2.5 Log4j2

Our REST API service API supporting logging by Log4j2 framework. [14] With the help

of that framework all errors and warnings are written into a separate file. The

configuration file log4j2.xml is located in the root directory of the project. After the

23

project starting, the folder "logs" with "application.log" file are created and all logs are

going into that file. It helps to track down bugs and errors while application is running.

2.2.6 Authentication

At this stage of development authentication is realized with a built-in spring filter

UsernamePasswordAuthenticationFilter. When an authentication attempt is made, the

service reads the data from the request body of login input and first of all tries to find

email in the database. If the email is existing, the service take password from request body

and compares it with the decoded database password value. If the attempt is successful,

the service generates a JWT token and adds it to the response header with userId of

authorized user.

2.2.7 Authorization

When the HTTP request is sent to the REST API, the service checks if authorization is

needed to process this type of request. If the authorization is obligatory, service verifies

the JWT token and checks that this token is not expired and if it is signed with the proper

token secret value, which is located in application.properties file. After that Spring

Security @PreAuthorize annotation checks if the user has the proper role to make this

HTTP request. (Figure 2)

24

Figure 2. Authentication based on JWT token. [16]

2.2.8 Swagger

Our REST API is supported with Swagger configuration. Swagger is an Interface

Description Language for describing RESTful APIs expressed using JSON [11]. Swagger

has the UI for sending HTTP requests to REST controllers and showing the full response.

It can be used for testing API service without client side or for interactive documentation.

2.3 Web application - SPA

The User interface was realized as a SPA using Vue CLI. SPA is a web application or

website that interacts with the user by dynamically rewriting the current web page with

new data from the web server, instead of the default method of a web browser loading

entire new pages [1].

25

2.3.1 Vue CLI

CLI is a standard tooling for Vue.js. Vue CLI is a full system for rapid Vue.js

development based on Node.js provides pre-made development configurations to create

comfortable frontend development ecosystem. [2]

This Web application includes some dependencies for more comfortable development

such as ESLint [19] for JavaScript code analyzing and finding problems and SASS [20]

as a CSS extension for better organization of styles. The whole list of included

dependencies can be found in the package.json file.

2.3.2 Vuetify

The Vuetify UI framework was included for an easy and more rapid development. The

framework provides a rich list of components, tools and configurations. Vuetify takes a

mobile first approach to design exactly according to Material Design specification [3].

2.3.3 Markdown

Markdown is a language for creating formatted text. In the current project Markdown is

used for decoration of description of graduation topic proposals. Project description data

is held in the database in Markdown format and rendered to the HTML for displaying on

the client side in web applications [8].

2.4 REST API and Web application communication

REST service communicates with the SPA web application via HTTP protocol. REST

service provides API for SPA web application. Data exchange in requests and responses

is done in JSON format. For consuming data from REST API a HTTP client called Axios

[5] was added.

Axios is a Node library that provides a promise-based HTTP client. Axios provides a

simple way for configuration of requests to the API [5].

26

3 Development process

All development is done in the GitLab environment [13]. Due to the fact that the project

consists of independent parts, it was decided to divide the development into two

repositories. One repository includes the back-end (or REST service), another repo

includes the web application. Development process takes place in two environments:

locally and on a remote test server. Development was organized through the Continuous

Integration and Continuous Delivery for both repositories. For organization of CI and CD

processes a GitLab tool called GitLab runner was used.

3.1 GitLab CI/CD

GitLab runner is a tool built into GitLab for development through Continuous Integration

and Continuous Delivery. In our project this tool helps us to update the project version to

the final stage of development in our test environment. Needed configuration file was

added to organize CI/CD processes according to GitLab documentation. This

configuration file is called .gitlab-ci.yml and located in both repositories. These files

create pipelines with running processes when code in the master branch was changed.

Files contain predefined jobs that run in parallel, and perform all necessary actions to

build, test and update applications on the remote production server (Appendix 2)

(Appendix 3).

3.2 DB setup

Our database is running in a docker container on our production server and the database

properties are located in the application.properties file in the root folder of the

service. Now, there are three different database settings. In the first commented section

there are properties for PostgreSQL database, which is used on the production server. In

the second commented section there are properties for PostgreSQL database too, but

which are used for local testing.

The third section is the section for H2 database, which is used for local testing as well.

27

3.3 REST service setup

The REST API service is a Java application, which is using Spring framework. To run

this application locally the Java 11 must be installed on the computer. When the project

is opened in the IDE, the service's main class should be executed to start the application.

3.4 Web Application Setup

Web application is based on Node.js, as previously stated, so it needs Node installed on

the development environment. Installation process is described in the README.md file that

holds the project repositorium.

3.4.1 Connection with REST API service

For connection with REST API the correct path to this service needs to be specified. Path

to the API service is specified as a variable axios.defaults.baseURL in main.js file,

located in the Web application repository under the src folder.

3.4.2 Remote Server

To run the web application in the remove test server, a simple web server based on Node.js

[6] and pm2 daemon process manager was added to keep the application online [7].

3.5 Testing

3.5.1 REST service testing

At this stage of the development integration and unit tests are not configured and all

functionality is tested manually. However, our service supported by REST Assured

framework [15] and this framework will be used for integration tests.

3.5.2 Web application testing

At this stage of the development automated testing is not configured for the web

application. All functionality is tested manually.

28

4 Project description

The basic functionality of this service is a simple and easy way for a student to find,

choose and confirm projects offered by potential supervisors. This Service is a partially

public web application. That means that each guest user can go to the web application

page. For non-authenticated users, the application looks only as a directory with a

proposed projects list. A similar structure has been created in the service with the TalTech

web site, when the supervisors with their offers are sorted by schools and departments.

Absolutely any non-authenticated guest user can open any school and department and get

acquainted with the proposed projects, choose one of them, open it to get more detailed

information about the expected project. Also, non-authenticated users are able to open the

supervisor profile and see the list of his projects. The main functionality of the service

such as project management, application creation and confirmation are only available for

authenticated users.

At this stage of development, the service supports only one scenario regardless of

graduation level. Short description of the process: supervisor adds a project, student

chooses and applies to it, supervisor and students confirm it. More detailed functionality

divided by roles described are below.

4.1 Roles

The service supports three different types of roles: Administrator, Supervisor, Student.

The main functions available for authorized users according to the role is listed below.

Service also supports multiple roles for one user. Scenario, when the supervisor can be

admin or student.

4.1.1 Supervisor

Available main features for supervisors, at this stage of development, are:

 ability to create and manage projects for students with different graduation levels.

 ability to receive requests on a particular project from students. A supervisor may

confirm or refuse an application from a student or a group of students, if it is a

group application.

29

 ability to see detailed information of the confirmed project such as project

description, project team members.

 ability to open his own profile.

Also, the supervisor can specify co-authors for each project and specify in what groups

the projects could be presented. In this case only the authors can manage projects.

4.1.2 Student

Available main features for students, at this stage of development, are:

 to conveniently search for and choose a project to apply and wait for confirmation

from the potential supervisor.

 to create teams and apply as a team if the proposed project is suitable for

teamwork.

 ability to see detailed information of the confirmed project such as project

description, project team members.

 ability to open his own profile.

4.1.3 Administrator

As intended, users with administrator roles are able to perform any actions available to

users with other roles, manage projects, tags, teams, users, schools and departments. At

the time of development, the focus was on basic functionality for supervisor and students,

so intended functionality was not fully implemented. The only available feature for

administrators, at this stage of development, is to view user lists.

4.2 UX/UI

This service has a responsive user interface and is available on different types of devices.

Also, service has a Markdown support that makes it possible to write simple styled

descriptions for projects.

30

5 Service functionality

5.1 Navigation

On the homepage service presents a list of schools with departments. Under each

department there is a list of graduation topic proposals. These pages are public and

available for each guest user. For authenticated user two menus appear:

 a sidebar with navigation menu. Display a list of available functions for each type

of authenticated users

 a navigation bar user menu. Located on the top of the page, and gives functionality

related with the authenticated user

5.2 Roles switching

This service supports multiple roles for a single user. Suggested combinations of roles

within the system is:

 Supervisor with an admin role

 Supervisor with a student role

The system does not support access to all roles for the authenticated user at the same time.

If the user has multiple roles, he must choose one of them at the login process. After that,

if an authenticated user requires functionality with another role, he can switch roles in the

navigation bar menu. Role switching can be seen in Figure 3.

31

Figure 3. Navigation menu with role switching.

5.3 User management

As intended, only users with administrator roles are able to manage users. This stage of

development only supports displaying users divided by roles: a list of students and a list

of supervisors separately.

As an administrator, user can see lists of:

 all existing supervisors in the service. The administrator can select one of the

supervisors and open a profile with an additional information about the supervisor

and a list of all his projects.

 all existing students in the service. In this student list, the administrator is able to

see which student has a confirmed graduation topic and which one does not. If the

student has a confirmed project, the administrator has the opportunity to open the

project and look at the details of this project.

5.4 Profile

The profile display is divided into two types:

32

 authenticated user's own profile. In their own profile, an authenticated user can

see his own name and email and also his own roles and departments in which he

is. Authenticated user profile can be seen in Figure 4.

 profile of supervisor. Each user, authenticated and non-authenticated, is able to

open a supervisor profile. At this moment, the only way to open a supervisor

profile is via department and available projects. Supervisor profile for other users

contains the name and email address of the supervisor, and also a list of his own

projects.

Figure 4. Authenticated user profile.

5.5 Projects

At this stage of development, the only person who can manage the projects is the

supervisor. Supervisor can add, delete, edit his own projects. Supervisor sees a list of own

projects sorted by status. Each existing project has two main statuses:

project_available and project_not_available but, at this moment, only

project_available projects are displayed. In addition to individual projects, a

supervisor may have projects where he is a co-supervisor. These projects are displayed in

a separate list. Also, supervisors have additional sorting features, such as:

 searching a project through available projects by project title.

33

 sorting available projects list by title, date, graduation level and language.

 searching a project through co-supervising projects by project title or author.

Supervisor project list displaying can be seen in Figure 5.

Figure 5. Supervisor projects list page.

5.5.1 Project addition

Each supervisor has access to his own project creation. Project contains such parameters

as:

 project title

 description. Added Markdown support for a more beautiful and convenient

display of the project description

 list of tags. There is an option to find and add existing tags or create a new one.

 English or Estonian language

 bachelor or master graduation level

 students amount. At that moment students limit for one project is 3 persons.

34

 list of departments for which the project will be available.

 co-authors list

All parameters listed above are mandatory except for co-authors and tags. Each newly

created project gets available project status and becomes visible under the specified

departments automatically. Also, this project is added to the specified co-authors.

5.5.2 Project editing and deleting

Project edition includes the ability to change all project values except for departments and

co-authors values. At this stage of development, there is no necessary logic on the back-

end to change departments and co-authors list. Project edition and deletion is only

available for projects with a status project_available. Also, only project authors and

admins can manipulate the project, co-authors are denied this opportunity at this stage of

development.

5.5.3 Project displaying

A list of available projects is displayed separately under each department. Each user can

open a selected department, and see a list of available projects, then choose an available

one and open it in a separate view with detailed description. If an authenticated user is a

student, who has the department which project includes, he is able to see only a sorted list

of graduation topic proposals by graduation level. To see all available projects with any

graduation level, a supervisor profile has to be opened. Students can also check the list of

available graduation projects regardless of the graduation level for other departments.

Department page with a list of offered projects for applying can be seen in Figure 6.

35

Figure 6. Department with list of offered projects.

Students with confirmed projects have a separate link to the project in the sidebar menu.

5.6 Teams

In this service, the team is a list of users with different roles for each confirmed project.

It includes a list of students, supervisors and co-supervisors related to the project. We can

mark two scopes for the teams:

 team for application creation

 team after project confirmation

In the scope of the project choosing and application creation, the team is a group of

students which would like to find and apply to the group project. Each student can create

a team or be invited to the team. The list of teams is sorted by authorship and displayed

separately for each student:

 a list of teams, where author is authenticated user

 a list of teams where user was invited

In the scope of the confirmed project, which is in progress, the team contains a list of

users related to this project. Each confirmed project has its own team, whether a group of

students applied to the project or whether it is an application from a single user. From the

36

point of user interface, an application with a single user does not contain a team, but from

the point of the system, even a single application has a team with one student. When a

project is confirmed, all users associated with the current project are added to the team

automatically. In summary, this team contains project authors and co-authors, students or

groups of students, all with correct team roles.

5.6.1 Team management

This feature is only available for students. Each student can create a team. To create a

team, the student must specify a team name and invite another student or students. List of

available students for invitation sorted by graduation level, so the team can only consist

of students with the same graduation level.

At this stage of development, only team owners can manage teams. Team owner can:

 delete team

 add new team members

 delete team members

 create a group application to the project. Only team owners can apply to the

project, but each team member sees a newly created application and can track it.

Team owner view can be seen in Figure 7.

37

Figure 7. Team view by team owner.

5.6.2 Team participation

Newly created teams automatically get status not_active, and all invited students of the

team can see a list of teams, where they were invited, under a separate tab. Each invited

student can accept or deny their own participation in a specified team. When all students,

who are invited to the team, answer about the participation, the team automatically

changes status to active and becomes available for application to the projects. If one of

the team participants leaves the team, for some reason, the team automatically changes

the status to not active.

5.7 Project confirmation process

The main functionality of this service is submission of a project application followed by

confirmation. At this stage of development, application confirmation is realized with two

steps. Applications need supervisor confirmation and students need to confirm the same

application right after. After successful two-sided confirmation, the project is confirmed

and become unavailable for other students.

Application has different statuses such as:

 Wait for an answer from the supervisor. Application created by student and sent

to supervisor.

38

 application confirmed by supervisor and sent back to student

 application declined by supervisor and not active any more

 application confirmed by the student and project is confirmed.

 application declined by student and not active any more

5.7.1 Application creation

The student has rights to apply only for a specific project. Students and projects must

conform the department and graduation level. If a student planned to create a group

application, the student's amount should not exceed the specified max amount in the

project.

Students can choose between a single or group application. If a student has available

teams with status active, that means all invited students of the team accept or decline

participation, he can create a group application, or choose a single application. For a group

application, any member of the team may apply to the project. Also, in application form,

students can add some notes for the supervisor. Application creation example will be seen

in Figure 8.

Figure 8. Application creation.

Application to the project can be created only once. At this stage of development

students could not create single and group applications to the one project. Need to

39

decide and choose only one type. Each newly created application gets automatically

status application_sent.

5.7.2 Application deleting

Students can call off newly created applications until the supervisor reacts to it and the

status of the application changes. In this case the application will be remove and the

supervisor does not get an application. After the supervisor 's reaction, the application

cannot be deleted and can only change status according to student or supervisor

manipulation.

5.7.3 Application displaying

Both supervisor and student have a separate page where they see the whole list of

applications. Students see their own single or group applications and supervisors see a list

of applications to their own projects. Sorting and displaying the application list for

supervisors and students is the same and divided into relevant tabs, such as:

 not accepted - list of newly created applications

 accepted by supervisor

 declined by supervisor

 declined by student

For the student the list of applications is also sorted by type. Single applications and group

applications displayed separate under each tab of applications. Sorting of application lists

is identical but display of each application related information is different. For student

view each application contain such parameters, as:

 project name with projects supervisors

 team name if it is a group application

 creating date

For supervisor view each application contain such parameters, as:

 project name

40

 type of application. This value tells supervisors does it is single application or

group application

 student name. If it is group application, in this field displayed name of team leader,

who created this team

 creation date

 message from student

 information about the team, if it is a group application. Display team name, list of

team members with their names and emails and also mark who is team leader.

Supervisor view with student applications to the projects can be seen in Figure 9.

Figure 9. List of student applications to the projects.

5.7.4 Application tracking and confirmation

Absolutely each user related to the application can track its status. The steps of project

confirmation will be listed below.

1. Students create single or group applications. After application creation, students

can see it in the list of applications. If a student created a group application, the

team member will also see it in the list of applications. Students can call off

41

applications in this stage and therefore delete it. In this stage an application is

available and was sent to the supervisor.

2. Supervisor gets applications from students. He decided to accept or decline the

application. After acceptance, the application changes status and returns back to

receive confirmation from the student. If a supervisor declines an application, it

changes status and becomes inactive for both student and supervisor. Regardless

of the choice of the supervisor, the student sees the changed status of the project

under the relevant tab. If a project contains multiple supervisors, only the author

can manage applications related to this project.

3. Student gets a confirmed application from the supervisor. He decided to accept or

decline a confirmed application. If a student declines an application, it changes

status and becomes inactive for both student and supervisor. If student accept

confirmed by supervisor application, next steps will take place:

 application change status to application_confirmed

 project change status from project_available to

project_not_available. That means that the project becomes

unavailable for other student’s applications. For supervisor, project

transfer from the main list of available projects to another list of projects

in progress.

 the team consisting of students and supervisors is automatically created.

 The link to the confirmed project for student appears in the sidebar menu.

By opening a confirmed project, both supervisor and student can see

detailed project description and also project team members, separately

supervisors and students.

 automatically deleted other student applications and teams.

In progress project displaying can be seen in Figure 10.

42

Figure 10. In progress project detailed view.

As was said above, service provides two-level confirmation for application. It was

released to avoid situations when students, for example, create a lot of applications, and

more than one supervisor confirms it. In the end, students choose and confirm one of the

projects, confirmed by the supervisor. Also, two-level confirmation makes application

tracking more comfortable for the supervisor. Supervisor can see that the student declined

his confirmed application.

43

5.7.5 Workflow diagram

The process described above is presented as a workflow diagram in Figure 11.

Figure 11. Project confirmation process.

5.8 Searching

At this stage of development searching was realized in several places such as:

 project creation form. Supervisor can search tags, co-authors and departments

during project creation.

 team creation form. Student can search students during team creation or team

members addition.

 list of projects for supervisor view. Supervisor can search projects by title in the

available projects list or by title and author in co-supervising projects list.

44

 list of projects under the department. Each user can go to one of the departments

pages and start searching projects by title, tags or supervisor name. Searching is

limited by data. That means that search only takes place inside the department

based on the data that was uploaded from the back-end.

45

6 Validation

The server uses multi-level validation for different tasks due to separate REST and client

services.

6.1 REST service validation

REST service has many different layers of validation which are supported by different

tools and dependencies. The global and method-level validation is backed by Spring

Security, so most of the controller endpoints are secured and authorization is needed to

send HTTP requests to them. There are some temporary endpoints which can be

proceeded without authorization. It is H2 console endpoint for accessing in-memory

database for testing and swagger endpoint to send HTTP requests to the service through

user interface. In the production stage GET HTTP method for /group, /project, /user

endpoints will be open and will not need authorization, because in our service all types

of users, even without logging in, can search for groups with available projects and can

watch supervisor profiles with suggested projects. All other endpoints need valid JWT

token with correct token secret signature and expiration date. Some of the endpoints in

addition have method-level security that only users with the proper role can have access

to them. This is supported by Spring Security annotation @PreAuthorize above the

controller method. All input data which are coming in the request body have their own

validation supported by spring-boot-starter-validation dependency. At the data model

service layer all methods have their own validation and if this validation fails, it throws

service exception with user friendly description.

Each controller validation is described below.

6.1.1 Login(Authentication) validation

Now for authentication our service is using Spring built-in login endpoint and validation

(in the issue module is described how we will change it in future). Login can be proceeded

without authorization. Client sends HTTP request with request body containing username

and password to REST service. Using @NotNull annotation in UserLoginRequestModel

class, spring checks that all input fields are not null and @Email annotation above email

parameter checks that email input field meets standards. After that, authentication filter

46

make authentication attempt, where service try to find input email in database and if there

is a match, service take password from request body and compare the value with database

decoded password value. Then if the attempt is successful, the service generates a JWT

token and adds it to the response header with user id value.

6.1.2 User controller and service validation

Without authentication and authorization, clients can access only GET HTTP /user

endpoints. Service does not have validation for these endpoints because every user, even

without logging in could get information about other registered users. At the user service

layer methods getUserByUserId and getUserByEmail have validation that if a user is

not found in the database, service throws a service exception. For sending HTTP POST

requests to /user endpoint (user creation attempt), users must be authorized (present

valid JWT token with correct signature and expiration date) and have admin role. Because

now, only admins can create new users. This means that beside global security, this

endpoint has method-level security annotation @PreAutorize(“hasRole(‘ADMIN’)”).

This annotation is executed before method execution and controls that authorized user

have admin role. Then all request body fields are controlled by @NotNull annotations and

input email parameter field have @Email annotation as well. At the user service layer

there is a verification that this email is new and has not already been put in the database

and verification that all groups id which are sent in the request body are existing in the

database.

For sending HTTP PUT requests to /user endpoint (update user), user must be authorized

and besides that have admin rights or this authorized user must be a profile owner. This

means that with a help of @PreAuthorize(“hasRole(‘ADMIN’) or #userId ==

prinicipal.userId”) annotation spring checks that user id of authorized user is the

same as id that was put in the request. Request body is validated by @NotNull annotations

and at the user service layer there is a verification that this user profile is existing in the

database.

HTTP DELETE requests to /user endpoint can be executed only by authorized users

with admin rights. At the user service layer there is a verification that this user profile is

existing in the database.

47

6.1.3 Project controller and service validation

The same as with users, all GET HTTP requests to /project endpoints have access

without authentication and authorization, so that every user could get acquainted with the

suggested projects and their descriptions. Project service layer methods

getProjectByProjectId and getProjectsByUserId are protected by “not found”

service exceptions.

To send HTTP POST requests (create project), users must be authorized and have an

admin and/or a teacher role. @PreAuthorize annotation supports multiple roles. Only

students have no access to create projects. In the request body list of groups, supervisors

and tags are sent as well, so at the project service layer there are verifications that all

groups and co supervisors which are sent in the request are presented in the database. For

tags, create project method checks if the name of the tag is existing in the database, if not

the project service creates a new tag and adds it to the project. If the name exists, the

existing tag is added to the project

For HTTP PUT requests (update project), spring checks that the user is authorized and

has an admin role or/and checks that the authorized user is the project author. At the

project service layer there is verification that a project which must be updated is presented

in the database.

For HTTP DELETE requests (delete project) the same strategy is used. User must have

an admin role or/and this user must be a project author. At the project service layer there

is verification that a project which must be deleted is presented in the database.

6.1.4 Group controller and service validation

All types of users can send HTTP GET requests to /group endpoints, without

authentication and authorization. At the group service layer getGroupById is checked if

the group is in the database and in methods getGroupWithStudents and

getGroupWithSupervisor besides group existing verification, is present role

verification of users in group.

To send HTTP POST and HTTP DELETE requests to /group (create/delete group)

endpoints, users must be authorized and must have admin rights, because in our service

only admin could create and delete groups.

48

6.1.5 Tag controller and service validation

HTTP GET requests to /tag endpoints could be sent only by authorized users.

HTTP POST and DELETE requests (create and delete tag) could be sent only by a user

with an admin role. If the admin would like to create a tag, there is a verification that this

tag name has not already been presented in the database.

6.1.6 Team controller and service validation

For teams, only authorized users could send HTTP GET requests to /team endpoints for

retrieving team data.

In our application only authorized users with admin and/or student roles could send HTTP

POST requests to /team endpoint (create team). In request body users must pass a list of

users id (team members). At the service layer there is a verification that all users in the

list and team creator are presented in the database

Only authorized users with admin rights or a team creator could delete the team if the

team is presented in the database.

6.1.7 Team member controller and service validation

To get a team member by team member id user must be authorized and this team member

which user is looking for must be in the database.

There are three HTTP POST requests endpoints in the team controller.

 addMemberToTeam - authorized user with admin or/and students rights. It can be

done if the team and user (which must be added to the team) are presented in the

database and if this user has not already been in the team.

 acceptMembership - authorized user with admin rights or/and an owner of user

account, which is added to the team. It can be done if the team and user (which

must accept membership) are presented in the database and if membership has not

already been accepted.

 declineMembership - authorized users with admin or student role rights. It can

be done if the team and user (which must decline membership) are presented in

the database and if membership has not already been accepted.

49

6.1.8 Application controller and service validation

All authorized users could send HTTP GET requests to /application endpoints and get

the application data, if this data is presented in the database.

There are five HTTP POST request endpoints in the application controller.

 createApplication - authorized user with admin or/student role. The

application could be created only if the project (to which the application was sent)

and the team were presented in the database. Besides that, this team must have

correct status(active), the project must have correct status(project_available)

and this application is sent to this project for the first time (to escape duplicates).

 acceptApplicationBySupervisor/declineApplicationBySupervisor -

authorized user with admin rights or an owner of the project, to which the

application was sent. The application could be accepted/declined by the

supervisor if the application and the supervisor are presented in the database and

if this application has not already been accepted or declined.

 acceptApplicationByStudent/declineApplicationByStudent - authorized

user with admin rights or an owner of the team, which has sent the application.

The application could be accepted/declined by the student if the application and

the team are presented in the database and if this application has not already been

accepted or declined.

Only authorized users with admin rights or a user, which team create the application could

send HTTP DELETE requests to the /application endpoint (delete application), if this

application is presented in the database.

6.2 Web application validation

The main part of validation in web applications is needed to verify access to one or the

other function. After successful authentication, records some authenticated user

parameters to the local storage for subsequent access verification such as:

 JWT token that needs for securely requesting to the REST service

 Role of authenticated user for displaying relevant functionality

50

 Department ID for student to specify available department for application creation

6.2.1 Access validation

Each user has access to only certain pages and functionality, according to the role. At the

page render stage, a role check is performed and only then the navigation menu is

displayed. It can be said, for example, that a student does not have the ability to open a

page intended for an administrator or supervisor using a user interface. If, for some

reason, a student tries to open a project page for a supervisor directly via URL, he will

not be accessed to the page and will be redirected to the web application homepage. In

general, when a user tries to enter directly with a URL to a page that is not available to

them, a redirect is happening. This control applies to all users regardless of the role. If a

guest user tries to open some page intended for an authenticated user, redirect to the login

page.

The service also limits a student's ability to apply to the project. The student has the right

to apply only for a suitable project. As has been said before, students and projects must

conform in department and graduation level. If a student planned to create a group

application, the student's amount should be no more than the specified max amount in the

project.

6.2.2 Forms validation

For all forms on the pages of the web application organized a simple field validation.

Login form has simple validation to check valid format for email and password length

and could not be empty. The same applies to the form of the project. When creating a

project, the supervisor must specify absolutely all values, otherwise the project will not

be created. Also validate team creation form and application creation forms.

51

7 Summary

The main global purpose of this project was to create applications for automating and

simplifying the selection, confirmation and managing of projects. The main task was

accomplished, each supervisor has the ability to create a project and offer it to students.

Students can view the list of proposed projects and choose one of them and apply for the

project. The application is then validated and if the confirmation is successful the project

changes status to application_confirmed and is recorded for the student and the

teacher. Not all was completed as required, as there were difficulties in the development

process which will be discussed further.

7.1 Issues

7.1.1 Functional issues

1. At this moment completely missing the intended functionality for the

Administrator. At this stage of development we only show a list of users. At least

need to add the functions described in the requirements to the project. The

administrator needs to be able at least modify user data such as roles and

departments and create new users. Also, an important function is changing the

status of inactive users or removing it from the system. It would also be nice to

show and be able to manage schools and departments as an administrator.

However all back-end REST API endpoints have been already configure for

admin usage.

2. Need to add ability to specify project type. At this moment all existing projects

have one type.

3. Support list of available languages in project description. At that moment, the

supervisor can specify only one language for the project. Also, at that moment the

project description displayed only in English language. At the future planning user

52

interface on Estonian. Main difficulty is how to record and hold project

descriptions in both languages.

4. Support functionality that project could have both bachelor and master’s degree.

5. Need to disable or delete functions for students such as application creation and

team creation after project confirmation.

6. Ability to edit profile information is missing at that moment. Authenticated users

can only open it and see their own name, email, list of roles and departments.

7. At this stage of development, searching works as a sorting of results by some

parameter. Searching is realized on the front-end level and makes it possible to

search only through loaded and displayed data from the back-end. It is necessary

to develop searching with a query to the back-end. There is also a lack of search

for project applications.

8. Need to display a list of co-supervising projects in the supervisor profile. At this

stage of development, only supervisors' own projects are displayed.

9. Need to prevent the ability to invite a student to a team that has a confirmed

project.

10. Need to cover up all functionality with tests and configure a test plan for each

pipeline.

11. While project editing, need to give supervisor opportunity to change groups and

co-supervisors.

7.1.2 Architectural issues

 At this stage of development, a lot of logic responsible for the correct display of

data to the other user is implemented at the front-end level by JavaScript. It is not

the best solution. For example, we display a list of graduation topics proposals

sorted by graduation level for the student. Sorting is organized during page

rendering, but in fact students get a whole list of graduation topic proposals from

the back-end regardless of graduation level. As a result, we can sort it on the

53

service side and return a sorted list to web-application. It is not a critical issue, but

nice to fix it.

 Need to finalize logic of what happens when the team confirms the project. Now

after confirmation all other teams of confirmed team author are deleted with all

applications. Perfectly, when a project is confirmed all teams of confirmed team

members are deleted but in applications are changed only statuses.

 Now declineMebership method can decline membership of the team member

and delete team member as well. Is needed to separate this functionality to provide

additional validation for both methods.

 At the beginning of development, service have many to many relationship

between users and groups, that users can have many groups and vice versa.

However, later we understand that this is not enough, because besides that service

needs to understand what role the user in every group has to provide additional

functionality and sorting. So, for this needs UserRoleGroup entity was built. This

entity must be created with user by admin who have rights to give roles. This

makes users_groups database table redundant, but there is needed more time to

transfer business logic to UserGroupRole entity.

7.1.3 UX/UI issues

1. Update date if project or application was changed. At this moment we display the

creation date for the project and application. It would be nice to display the date

of change status for application or display date of last project modifying.

2. Add notification support. Currently, the supervisor does not receive any

notification if an application has been sent to one of his projects. He should

manually check in the appropriate tab whether there are any changes. This applies

to the whole process of changing the application status. The same goes for an

invitation to the team, when one student, who creates a team, invites other users.

Other users need to check manually all team invitations. Need to add a notification

system for both situations.

3. Show loaders after request to the back-end and before data rendering on the page.

54

7.2 Comments

The main difficulty in the development process was to understand the entire application

design and scope with required functionalities to make the application more flexible for

the future development and functionality modernization. In some functionality

development processes we got some new conditions and needed requirements that needed

to integrate to the system. For this purpose, it was necessary to continuously modify and

change application architecture. As a result, it took a lot of time not so much to build the

architecture, but to update code for new needs and architecture.

Also, during development, we put emphasis on creating as much functionality as possible,

to make architecture as wide as possible. As a result of the ever-changing architecture,

we neglected testing. So, for the most part the functionality was tested only by manual.

7.3 Future development steps

For the next development iteration must be included all issues, described above. In

addition, the following are described as more important development steps.

7.3.1 Project completion

Currently no scenario available after confirmation of project. Needs ability to change

project status after completion. The easiest solution is to add a button into a project with

status in_progress, that changes project status. Function must be available to both

project owner and administrator. After project status changes it displays in a separate list

of completed projects for the supervisor and for a student as a finished project.

Need to develop a scenario where the project has been confirmed, but not finished for

some reason. The project should be available again for other students and all

dependencies associated with the previous student needs to remove. It would be better to

have an action history as well. For example, if a project was confirmed at once, but for

some reason not finished and reopened for other students, it would be convenient to know

the history of the project for the admin and project author.

7.3.2 Finished student

Necessary to decide what to do with students after successful completion. Students who

successfully get graduation need to be either removed from the database or change status

55

to disable. One of the decisions is to disable all functionality for the finished student

besides being able to view the project that he did.

7.3.3 Multiple scenario

Need to develop different scenarios of projects depending on graduation level. At this

stage of development, the supervisor can choose the graduation level for the project, but

it only affects sorting for students. Regardless of graduation level, the project

confirmation process is similar. Overall, the system supports only one scenario, when a

supervisor adds a project, students apply to the project and follow the submission process.

7.3.4 Projects grouping

At this stage of development, all projects are grouped only by department with a simple

notation of graduation level. This is sufficient to display projects for students but need

more complex project grouping and access configuration. As was described above,

service supports only one scenario, regardless of graduation level, but in fact, that

bachelor and master graduation levels have different scenarios. To solve this problem, we

need to add the ability to group projects by some parameter. In this case we need to group

projects by different graduation levels to provide different scenarios. For example,

administrators create two groups: bachelor graduation topics and master graduation

topics. In addition, projects can be grouped by semester, for example. That means that the

project can be contained in several groups at the same time. From an architectural point

of view, in such a case, the project should contain a list of the groups in which it is located.

Or the second variant is a sublist of groups, when one group is contained in another and

one of them contains projects. For example, semester groups that contain department

groups that contain groups by graduation levels with included projects. Also, can be

developed grouping by tags or topic. Ideally, the administrator should be able to create

new groups and adjust the group inheritance.

7.3.5 Users grouping and projects access

Currently, each student has access to projects according to the department. It would be

better to be able to group users. It would be easier to set permissions and available

functions for users. For example, group all bachelors students connect with a group of

bachelor graduation topics. From an architectural point of view, the administrator could

56

create an abstract group that contains groups of projects and groups of students. It would

make it easier to manage permissions and available areas for students.

7.3.6 UniId authentication

Authentication via UniId. This development needs a lot of time for investigation and

consist of several problems:

 Login process itself. Complexity of integration Microsoft login is that the

developed service consists of two independent systems and for both need to hold

Microsoft account sessions. It is a solvable issue, but will take a lot of time, so we

decided to postpone it to the end.

 User registration into the service. The problem is that within the service each user

has certain parameters necessary for proper operation. For example, graduation

level or department id for students. We see two solutions to this problem.

1. User login to the service for the first time and after successful login,

display form requesting necessary parameters. So, each new user sets its

parameters itself. But in this case the user can set wrong parameters, which

will lead to further errors.

2. Administrators add new users and set necessary parameters for each user.

More flexible solution, that is able to change user parameters in future, if

it is needed.

3. It is possible to use the Active Directory groups to check if the user should

have a student or staff role or both.

7.4 Potential functionality

Possible functions to complement the existing service are described below.

7.4.1 Project export

Option of export completed graduation projects for administrator or supervisor. Need to

configure the connection between the service and TalTech library archive for automatic

export. When the project is completed, it is possible to export it as a separate file with all

the necessary data into Digikogu.

57

7.4.2 Confirmed project management

Working with a confirmed project. One potential option to allow the authenticated user

related with the project to input new information related to the project during

development. For example, ability to add final documentation, ability for supervisor to

add some general notes for students or mention links to repositorium.

7.4.3 Third-party companies

Develop an analogical existing functionality for third-party companies. Enable customers

to also add and offer graduation topic proposals to students as well. Or enable

administrators to add graduation topic proposals from third-party companies.

7.4.4 Student graduation topic proposals for supervisors

Give the student an opportunity to propose the topic to the supervisor. Students choose a

supervisor and offer their own graduation topic proposal. Another scenario, when

students offer some topic under department and all supervisors can see it and take it.

58

References

[1] “Single-page application”, 19.05.2021 [Online] Available:

https://en.wikipedia.org/wiki/Single-page_application [Used 10.05.2021]

[2] “Vue CLI”, 10.07.2019 [Online] Available: https://cli.vuejs.org/guide/ [Used

10.05.2021]

[3] “Vuetify”, 08.5.2021 [Online] Available: https://vuetifyjs.com/en/introduction/why-

vuetify/ [Used 10.05.2021]

[4] “Introduction to JSON Web Tokens”, [Online] Available: https://jwt.io/introduction

[Used 10.05.2021]

[5] “Axios”, [Online] Available: https://axios-http.com [Used 10.05.2021]

[6] “Simple Web Server in Node.js”, [Online] Available:

https://gist.github.com/aolde/8104861 [Used 20.03.2021]

[7] “PM2”, [Online] Available: https://pm2.keymetrics.io/docs/usage/quick-start/ [Used

10.05.2021]

[8] “Markdown Cheatsheet”, 29.05.2017 [Online] Available: https://github.com/adam-

p/markdown-here/wiki/Markdown-Cheatsheet [Used 10.05.2021]

[9] “Spring”, [Online] Available: https://spring.io [Used 10.05.2021]

[10] “10 Best Java Frameworks to Use in 2021”, 23.02.2021 [Online] Available:

https://hackr.io/blog/java-frameworks [Used 10.05.2021]

[11] “Swagger”, [Online] Available: https://swagger.io [Used 10.05.2021]

[12] “Class BCryptPasswordEncoder”, [Online] Available: https://docs.spring.io/spring-

security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCryptPassw

ordEncoder.html [Used 10.05.2021]

[13] “Gitlab”, [Online] Available: https://about.gitlab.com [Used 10.05.2021]

[14] “Log4j2”, [Online] Available: https://logging.apache.org/log4j/2.x/ [Used 14.05.2021]

[15] “Rest assured”, [Online] Available: https://rest-assured.io [Used 12.05.2021]

[16] “Authentication based on JWT token”, [Online] Available: https://laptrinhx.com/json-

web-token-based-authentication-in-django-2407621164/ [Used 20.05.2021]

[17] “PostgreSQL”, [Online] Available: https://www.postgresql.org [Used 20.05.2021]

[18] “RESTful API”, [Online] Available: https://www.seobility.net/en/wiki/REST_API

[Used 20.05.2021]

[19] “ESLint”, [Online] Available: https://eslint.org [Used 20.05.2021]

[20] “SASS”, [Online] Available: https://sass-lang.com [Used 20.05.2021]

https://en.wikipedia.org/wiki/Single-page_application
https://vuetifyjs.com/en/introduction/why-vuetify/
https://vuetifyjs.com/en/introduction/why-vuetify/
https://jwt.io/introduction
https://axios-http.com/
https://gist.github.com/aolde/8104861
https://pm2.keymetrics.io/docs/usage/quick-start/
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://spring.io/
https://hackr.io/blog/java-frameworks
https://swagger.io/
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://about.gitlab.com/
https://logging.apache.org/log4j/2.x/
https://rest-assured.io/
https://laptrinhx.com/json-web-token-based-authentication-in-django-2407621164/
https://laptrinhx.com/json-web-token-based-authentication-in-django-2407621164/
https://www.postgresql.org/
https://www.seobility.net/en/wiki/REST_API
https://eslint.org/
https://sass-lang.com/

59

Appendix 1 – Database diagram

Figure 12. Database table diagram.

60

Appendix 2 – Gitlab CI/CD Pipeline config for front-end

stages:
 - build
 - deploy

build graduation-theses-management-service-front-end:
 stage: build
 image: node:latest
 cache:
 paths:
 - node_modules/
 artifacts:
 paths:
 - dist
 variables:
 api: localhost/api
 script:
 - npm ci
 - npm run build

deploy graduation-theses-management-service-front-end:
 stage: deploy
 only:
 refs:
 - master
 script:
 - mkdir -p ~/front-deployment/services/graduation
 - rm -rf ~/front-deployment/services/graduation/*
 - cp -r dist/. ~/front-deployment/services/graduation

61

Appendix 3 – Gitlab CI/CD Pipeline config for back-end

stages:
 - build
 - deploy

build ProjectManagementServiceBackEnd:
 image: maven:maven:3.6.3-jdk-11
 stage: build
 only:
 refs:
 - master
 script: "mvn install -B"
 artifacts:
 paths:
 - target/*.jar

deploy ProjectManagementServiceBackEnd:
 stage: deploy
 only:
 refs:
 - master
 script:
 - mkdir -p ~/api-deployment
 - rm -rf ~/api-deployment/*
 - cp -r target/*.jar ~/api-deployment
 - sudo service project_management restart

62

Appendix 4 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

We Oleg Kartašov, Andres Pajuste

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for our

thesis “Web Application for Graduation Project Management”, supervised by Ago

Luberg

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. We are aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. We confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

25.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

	Author’s declaration of originality
	Abstract
	Annotatsioon Lõputöö projektide haldamise veebirakendus
	List of abbreviations and terms
	Table of contents
	List of figures
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Requirements
	1.3.1 User story
	1.3.2 Support requirements
	1.3.3 Architecture requirements
	1.3.4 UX/UI requirements

	2 Project Design
	2.1 Database
	2.1.1 PostgreSQL
	2.1.2 H2

	2.2 REST service
	2.2.1 Spring
	2.2.2 Maven
	2.2.3 JWT Token
	2.2.4 BCryptPasswordEncoder
	2.2.5 Log4j2
	2.2.6 Authentication
	2.2.7 Authorization
	2.2.8 Swagger

	2.3 Web application - SPA
	2.3.1 Vue CLI
	2.3.2 Vuetify
	2.3.3 Markdown

	2.4 REST API and Web application communication

	3 Development process
	3.1 GitLab CI/CD
	3.2 DB setup
	3.3 REST service setup
	3.4 Web Application Setup
	3.4.1 Connection with REST API service
	3.4.2 Remote Server

	3.5 Testing
	3.5.1 REST service testing
	3.5.2 Web application testing

	4 Project description
	4.1 Roles
	4.1.1 Supervisor
	4.1.2 Student
	4.1.3 Administrator

	4.2 UX/UI

	5 Service functionality
	5.1 Navigation
	5.2 Roles switching
	5.3 User management
	5.4 Profile
	5.5 Projects
	5.5.1 Project addition
	5.5.2 Project editing and deleting
	5.5.3 Project displaying

	5.6 Teams
	5.6.1 Team management
	5.6.2 Team participation

	5.7 Project confirmation process
	5.7.1 Application creation
	5.7.2 Application deleting
	5.7.3 Application displaying
	5.7.4 Application tracking and confirmation
	5.7.5 Workflow diagram

	5.8 Searching

	6 Validation
	6.1 REST service validation
	6.1.1 Login(Authentication) validation
	6.1.2 User controller and service validation
	6.1.3 Project controller and service validation
	6.1.4 Group controller and service validation
	6.1.5 Tag controller and service validation
	6.1.6 Team controller and service validation
	6.1.7 Team member controller and service validation
	6.1.8 Application controller and service validation

	6.2 Web application validation
	6.2.1 Access validation
	6.2.2 Forms validation

	7 Summary
	7.1 Issues
	7.1.1 Functional issues
	7.1.2 Architectural issues
	7.1.3 UX/UI issues

	7.2 Comments
	7.3 Future development steps
	7.3.1 Project completion
	7.3.2 Finished student
	7.3.3 Multiple scenario
	7.3.4 Projects grouping
	7.3.5 Users grouping and projects access
	7.3.6 UniId authentication

	7.4 Potential functionality
	7.4.1 Project export
	7.4.2 Confirmed project management
	7.4.3 Third-party companies
	7.4.4 Student graduation topic proposals for supervisors

	References
	Appendix 1 – Database diagram
	Appendix 2 – Gitlab CI/CD Pipeline config for front-end
	Appendix 3 – Gitlab CI/CD Pipeline config for back-end
	Appendix 4 – Non-exclusive licence for reproduction and publication of a graduation thesis

