
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Pavel Grubeljas 206504IAIB

TRANSFORMER-BASED MODEL FOR PREDICTING

HOSPITAL READMISSIONS

Bachelor’s Thesis

Supervisor: Sadok Ben Yahia
PhD

Co-supervisor: Nzamba Bignoumba
MSc

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Pavel Grubeljas 206504IAIB

HAIGLASSE TAGASIPÖÖRDUMISTE ENNUSTAMISEKS

PÕHINEV TRANSFORMER MUDEL

Bakalaureusetöö

Juhendaja: Sadok Ben Yahia
PhD

Kaasjuhendaja: Nzamba Bignoumba
MSc

Tallinn 2024

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Pavel Grubeljas

27.05.2024

1

Abstract

The landscape of predictive analytics in healthcare has been significantly transformed
by the advent of deep learning methodologies. This study introduces a Transformer-
based model, specifically designed to predict hospital readmissions, and compares its
performance against other state-of-the-art algorithms. The Transformer model leverages
the textual data prevalent in clinical notes to capture nuanced patient information indicative
of readmission risks. By utilizing self-attention mechanisms, the model comprehensively
assimilates context from long sequences of clinical narratives, enabling more informed
predictions. The time information is handled by a time decay factor, emphasizing the
most recent admissions, which is a significant aspect of the model, hence the name
Transformer+Decay. The model’s architecture facilitates the encoding of temporal patient
information, addressing the complexity of patient trajectories.

We benchmarked the Transformer model against widely-used algorithms such as LSTM
and LR. Our comparative analysis was conducted on a dataset comprising diverse patient
encounters, evaluated using metrics such as AUC and AUPRC. The Transformer model
demonstrated superior performance, indicating its potential as a robust tool for assisting
healthcare providers in early intervention efforts. This study not only underscores the
efficacy of Transformer models in a clinical setting but also highlights the importance of
integrating narrative clinical data for enhancing predictive accuracy.

The goal of the work has been achieved. Transformer+Decay showed the best result in
AUPRC compared to other models. For improving AUC, further research is needed.

The thesis is written in English and is 32 pages long, including 4 chapters, 3 figures and 5
tables.

2

Annotatsioon

Ennustavate analüütikate maastik tervishoius on süvaõppemeetodite kasutuselevõtuga
märkimisväärselt muutunud. Käesolev uurimus tutvustab haigla taashospidaliseerimise
ennustamiseks spetsiaalselt välja töötatud transformer-mudelit ja võrdleb selle jõudlust
teiste tipptasemel algoritmidega. Transformer-mudel kasutab kliinilistes märkmetes lei-
duvaid tekstilisi andmeid, et tabada taashospidaliseerimise riski näitavaid nüansirikkaid
patsiendiandmeid. Enese tähelepanu mehhanismide abil koondab mudel põhjalikult kon-
teksti pikkadest kliiniliste narratiivide järjestustest, võimaldades teadlikumaid ennustusi.
Aja teavet käsitletakse ajakulu teguriga, rõhutades kõige hiljutisemaid hospitaliseerimisi,
mis on mudeli oluline aspekt ja seetõttu nimetatakse seda Transformer+Decay. Mudeli
arhitektuur võimaldab kodeerida ajalisi patsiendiandmeid, käsitledes patsiendi trajektooride
keerukust.

Võrdlesime transformer-mudelit laialdaselt kasutatavate algoritmidega nagu LSTM ja LR.
Meie võrdlev analüüs viidi läbi andmekogumi põhjal, mis sisaldas mitmekesiseid patsien-
tide kohtumisi ja mida hinnati selliste mõõdikute abil nagu AUC ja AUPRC. Transformer-
mudel näitas paremat jõudlust, mis viitab selle potentsiaalile olla usaldusväärne tööriist
tervishoiuteenuste osutajatele varajase sekkumise jõupingutuste toetamisel. See uurimus
rõhutab mitte ainult transformer-mudelite tõhusust kliinilises keskkonnas, vaid ka narrati-
ivsete kliiniliste andmete integreerimise tähtsust ennustustäpsuse suurendamisel.

Töö eesmärk on saavutatud. Transformer+Decay näitas teiste mudelitega võrreldes parimat
tulemust AUPRC-s. AUC parandamiseks on vaja edasisi uuringuid.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 32 leheküljel, 4 peatükki, 3 joonist,
5 tabelit.

3

List of Abbreviations and Terms

NLP Natural Language Procssing
EHR Electronic Health Record
MIMIC Medical Information Mart for Intensive Care
ICU Intensive Care Unit
FNN Feedforward Neural Networks
GRU Gated Recurrent Unit
CNN Convolutional Neural Networks
ROC Receiver Operating Characteristic Curve

AUC Area Under the Receiver Operating Characteristic curve
LSTM Long Short-Term Memory
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
TPR True Positive Rate
FPR False Positive Rate
ReLU Rectified Linear Function

4

Table of Contents

1 Introduction . 9
1.1 Goals . 9
1.2 Related Works . 10

2 Method . 13
2.1 K-fold cross-validation . 13
2.2 Classifier . 14
2.3 Evaluation Metrics . 14

2.3.1 Area under the ROC Curve (AUC) 15
2.3.2 Area under Precision-Recall Curve (AUPRC) 15

2.4 Embedding layer . 16
2.5 Decay factor layer . 16
2.6 Transformer encoder . 16

2.6.1 Self-Attention . 17
2.6.2 Residual/Normalization . 17
2.6.3 Linear layer . 18

3 Implementation . 19
3.1 Datasets . 19
3.2 Environment . 20
3.3 Setup configuration . 21
3.4 Hyperparameters . 21
3.5 Proof of Concept Models . 22

3.5.1 Baselines . 22
3.6 Transformer . 23

3.6.1 Embedding layer . 23
3.6.2 Decay factor layer . 24
3.6.3 Transformer block. 24
3.6.4 Integration . 25

3.7 Results and analysis . 25
3.8 Advantages and limitations . 26

4 Summary . 28

References . 29

5

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 31

Appendix 2 – Certificate . 32

6

List of Figures

1 Model architecture. 13

2 Database architecture. 20

3 Certificate of completing Data or Specimens Only Research Course. . . . 32

7

List of Tables

1 Statistics of database. 19
2 System configuration. 21
3 Model hyperparameters. 22
4 Transformer layers. 23
5 AUC and AUPRC scores overs 5-fold cross validation of comptetiting

models vs ours . 25

8

1. Introduction

Hospital readmission is the process by which patients return to the hospital for further
treatment or care within a specific time frame after their initial discharge. Hospital
readmissions are a major challenge for healthcare systems worldwide, as they can result in
increased costs, reduced patient outcomes, and a strain on hospital resources [1].

In addition to the financial burden, readmissions can also have a significant impact on
patient health and quality of life, as they may indicate that the initial care provided was
inadequate or that the patient has underlying health issues that need to be addressed.
Hospital readmission prediction has garnered significant attention due to its implications
for managing emergency department overcrowding [1]. Various studies have explored this
critical area using deep learning techniques, leveraging diverse datasets and models to
enhance predictive accuracy.

Predicting which patients are at high risk of readmission can help healthcare providers
to intervene early and prevent unnecessary readmissions. EHRs contain a wealth of
information that can be used to build predictive models for readmission risk. EHRs
typically include data on patients’ demographics, medical history, medication usage, and
diagnostic codes, among other things. However, the complexity and variability of this data
require sophisticated machine learning techniques to extract meaningful patterns and make
accurate predictions.

1.1 Goals

This thesis aims to advance the field of medical informatics by exploring the application
of transformer-based models for hospital readmission prediction and comparing their
performance with classical machine learning architectures. Our transformer-based model
is a variant of the original one proposed in [2]. Indeed, the original Transformer was
designed for a NLP task. Therefore, to adapt it to medical tasks where time plays an
important role, we added a layer called the decay factor layer dedicated to encoding the
irregular time elapsed between sequences of medical events. The goal can be segmented
into the following subtasks:

■ Preparing and parsing the dataset, which includes heterogeneous data (clinical codes
and patient demographics);

9

■ Design a decay factor layer dedicated to modelling time between visits;
■ Performing end-to-end training of the decay factor layer with the transformer for

mutual optimization of parameters;
■ Comparison of our model with classical machine learning models designed for

sequential modelling using the MIMIC-3 database;
■ Carrying out an analysis of the results.

1.2 Related Works

Across the literature, a consistent focus emerges on predicting readmissions within a
30-day time frame [1-7]. Noteworthy contributions include the utilization of various
predictive models and datasets tailored to specific medical conditions. For instance, in
one study [3], a diverse set of machine learning models versus a deep learning model
namely multi layer perceptron (MLP) were applied to predict readmissions in patients
with Chronic Obstructive Pulmonary Disease (COPD), using a larger dataset comprising
111,992 medical records. They concluded throughout extensive empirical experiments
that the Gradient Boosting Decision Trees (GBDT) yields optimal results compared to
MLP, which is more sophisticated. Another study, in [4], also compared various machine
learning models to MLP on unplanned readmission for ICU patients with heart failure.
In contrast to [3], this study shown that MLP outperform machine learning models. As
medical data is often organized longitudinally, several studies have leveraged the RNN and
its variants, calling LSTM and GRU), to enhance the prediction of unplanned readmissions.

In the study [5], the LSTM model was employed to predict readmissions in patients with
heart attack failure, using a relatively modest dataset of 7500 medical records. Remarkably,
this study achieved a commendable AUC of 0.83, demonstrating the efficacy of the LSTM
model in this context. The authors, in [6], also trained an RNN, GRU, and LSTM with
an attention mechanism to predict unplanned ICU readmission from patient physiological
time series. Thanks to the attention mechanism, they were able to provide accurate and
explainable results. Similar work combining LSTM and attention mechanism was also
carried out in [7] to exclusively predict readmission of breast cancer patients. Another study
[8] focused on predicting unplanned readmission of heart failure patients and employed
a combination of contextual embedding and RNN models. Despite utilising a smaller
dataset, this study achieved functional results.

Various non- or partially RNN models were also applied to the readmission prediction task.
For instance, the authors in [9] utilised CNN model to predict readmissions among diabetic
patients, leveraging a substantial dataset of 100,000 medical records. They achieved
remarkable performance that could be attributed to the complexity and richness inherent

10

in diabetic patient data, which may contain diverse and informative features conducive
to accurate prediction. In [10], in order to improve the accuracy of the ICU readmission
prediction task, the authors used biomedical ontologies to develop knowledge graphs aimed
at improving the semantic extraction of clinical features and obtaining better encoding of
their relationship. Another investigation, in [11], adopted a hierarchical vectoriser (HVec)
deep learning model to predict readmissions and mortality, utilizing a substantial dataset of
256,589 readmission records. Notably, despite not focusing on a specific medical condition,
this study achieved impressive performance, highlighting the effectiveness of the chosen
modelling approach.

In a different approach, a study [12] employed the BERT model on a medium-sized dataset
of 58,976 admissions, without specific focus on a particular medical condition. Despite
the moderate dataset size, this study achieved a respectable AUC of 0.714, showcasing
the efficacy of the transformer-based model in healthcare prediction tasks. In a pioneering
effort, researchers in a recent study [13] utilized a modern language model, specifically an
attention-based Transformer with BERT architecture, for readmission prediction. By har-
nessing the power of advanced language processing techniques, the study achieved notable
success in accurately predicting hospital readmissions. Another notable endeavor [14]
utilized a modified version of the transformer model, namely the Multimodal Spatiotempo-
ral Graph-Transformer. This model integrated diverse data inputs, including EHR, X-ray
images, and medical notes. Despite the complexity of integrating multimodal data sources,
the study reported promising results, demonstrating the efficacy of transformer-based
models in handling heterogeneous healthcare data. Similarly, researchers in another study
[15] employed a multimodal transformer architecture for mortality prediction tasks. This
approach involved incorporating clinical notes and time series information into the model,
enabling a comprehensive analysis of patient data. Despite the additional complexity
introduced by multimodal data integration, the study yielded encouraging results, further
highlighting the versatility of transformer-based models in healthcare analytics.

In summary, the majority of researchers in the field of hospital readmission prediction
have focused on developing predictive models tailored to specific medical conditions—a
practice that, while valuable for understanding condition-specific risk factors, may limit
the broader applicability of the models. Consequently, there is a growing need for the
development of a universal readmission prediction model capable of accurately predicting
readmission risk across diverse patient populations and medical conditions. To build upon
these findings, our study aim is to conduct a comparative analysis, pitting a customized
Transformer against various neural networks. By including benchmark models, such as
LSTMs and FFNs, we seek to discern the strengths and weaknesses of each approach in
the specific challenge of hospital readmission prediction. We will prioritize AUC as the

11

primary metric for evaluating model performance, while ensuring that the dataset size is
comparable to the medium. Another key feature of our model will be a time decay layer to
enhance the relevance of admissions in the predictive model.

12

2. Method

In this section will be discussed elements of transformer-decay model and how it works.

Figure 1. Model architecture.

2.1 K-fold cross-validation

K-fold cross-validation is a robust statistical method used in machine learning and data
science to evaluate the performance of a predictive model. The dataset is randomly divided
into k equally (or nearly equally) sized subsets or "folds". The model is trained k times,
each time using a different fold as the validation set and the remaining k − 1 folds as the
training set. This means that each fold gets a chance to be the validation set exactly once.
After each of the k iterations, the performance metric (e.g., accuracy, precision, recall, F1
score) is calculated and recorded. The final performance metric is obtained by averaging
the k recorded performance metrics. This provides a more reliable estimate of the model’s

13

performance compared to a single train-test split, as it reduces the variability associated
with the particular division of the dataset.

By using multiple training and validation sets, k-fold cross-validation helps ensure the
model’s performance is not overly dependent on the specific partitioning of the data. All
data points are used for both training and validation, maximizing the use of the available
data. The average performance metric is generally more stable and less biased than metrics
obtained from a single train-test split.

2.2 Classifier

The construction of a neural network for the prediction of patient readmissions necessitates
a discerning approach to the selection of an activation function for the output layer, which
acts as a binary classifier. The sigmoid function is employed for this purpose due to its
pertinent properties for binary classification tasks.

Mathematically, the sigmoid function is defined as:

σ(x) =
1

1 + e−x

where e is the mathematical constant, and x signifies the input to the function. This logistic
function efficiently maps input values to a probabilistic range between 0 and 1.

2.3 Evaluation Metrics

In this section, we will discuss the main evaluation metrics that will be employed to
describe the results of neural network models. For the explanation of metrics are used
terms for classification model. Here is what each term represents:

1. True Positives (TP): The number of instances correctly predicted as positive.
2. True Negatives (TN): The number of instances correctly predicted as negative.
3. False Positives (FP): The number of instances incorrectly predicted as positive (also

known as Type I error).
4. False Negatives (FN): The number of instances incorrectly predicted as negative

(also known as Type II error).

14

2.3.1 Area under the ROC Curve (AUC)

The AUC is a performance metric for classification models at various threshold settings.
The ROC curve is a graphical representation that plots the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold levels. The AUROC provides a single
numerical metric that summarizes the model’s ability to discriminate between the positive
and negative classes over all possible thresholds. A higher AUROC indicates better model
performance, with a value of 1 representing perfect classification and 0.5 denoting no
discriminative power, equivalent to random guessing.

2.3.2 Area under Precision-Recall Curve (AUPRC)

The Area Under the Precision-Recall Curve is a metric used to evaluate the performance
of a classification model, particularly in scenarios where there is a significant imbalance
between classes. For better understanding it is better to explain what precision and recall
are.

Precision

Precision is a metric used to measure a model’s accuracy in predicting positive instances.
It is calculated as the ratio of true positive predictions to the sum of positive predictions
made (both true positives and false positives). High precision indicates that when the
model predicts an instance as positive, it is likely correct.

Precision =
TP

TP + FP

Recall

Recall is a metric used to measure the proportion of actual positive cases that a model
correctly identifies. It is calculated as the ratio of true positives to the sum of true positives
and false negatives. High recall indicates that the model is effective at capturing most of
the relevant instances. The formula of recall can be stated as follows:

Recall =
TP

TP + FN

The Precision-Recall Curve is a graph that plots Precision against Recall, at various
threshold levels. The AUPRC provides a single value summarizing the trade-off between
Precision and Recall across different thresholds. A higher AUPRC indicates a model that is

15

both accurate and sensitive, which is particularly valuable in cases where positive instances
are rare or when the costs of False Negatives are high. Unlike the ROC curve which is
affected by the large number of True Negatives in imbalanced datasets, the Precision-Recall
Curve focuses on the minority class, making AUPRC a more appropriate metric in these
situations.

2.4 Embedding layer

The embedding layer serves as a crucial component that translates both input and output
tokens into vectors of a predetermined size, known as dmodel [12]. This layer essentially
functions as a sophisticated mapping tool, transforming each token into a dense vector that
encapsulates its semantic significance and contextual relevance within the sequence. A
distinctive feature of this setup is the sharing of the embedding layer between the model’s
input and output segments. This means that the same weight matrix is utilized not only for
the embedding layer but also for the pre-softmax linear transformation that occurs later in
the process. Additionally, it’s important to note that within these embedding layers, the
weights undergo scaling by the square root of dmodel to maintain a balance in the magnitude
of the input vectors. This approach ensures a more effective and nuanced representation
of the tokens, which is vital for the model’s performance in various language processing
tasks.

2.5 Decay factor layer

The decay factor layer aims to map the time elapsed between two consecutive visits in
a continuous vector. This vector will reduce the magnitude of clinical code embeddings
that belong to a visit that took place a long time ago. Meanwhile, for those belonging to
the most recent visits, their magnitude will remain almost unchanged. The underlying
intuition is to avoid the model relying too heavily on historical and medical events that
happened a long time ago, and to focus more on more recent medical events.

2.6 Transformer encoder

The Transformer encoder is a key component of the Transformer network architecture,
which is used for sequence transduction tasks such as machine translation. The encoder
is composed of a stack of N identical layers, each of which has two sub-layers. The first
sub-layer is a multi-head self-attention mechanism, which allows each position in the
sequence to attend to all other positions in the same sequence. The second sub-layer is a
point-wise, fully connected FNN. Both sub-layers are followed by a residual connection

16

and layer normalization. The output of each layer is fed into the next layer, allowing
the model to capture increasingly complex dependencies between the input tokens. The
encoder is responsible for mapping an input sequence of symbol representations to a
sequence of continuous representations, which are then used by the decoder to generate an
output sequence of symbols.

2.6.1 Self-Attention

Self-attention is an attention mechanism that relates different positions of a single sequence
in order to compute a representation of the sequence [2]. In the context of the Transformer
network architecture, self-attention allows the model to weigh the significance of different
words in a sentence when encoding or decoding the sequence. This mechanism computes
the importance of each word in the sequence with respect to the other words in the same
sequence, allowing the model to focus on different parts of the input when processing each
word. This capability is crucial for capturing long-range dependencies and understanding
the context of each word within the sequence. The attention mechanism is defined by the
following formula:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

where Q, K, V and d are the query, key, value matrices and their dimensionality respectively.
The softmax function is applied to the scaled dot-product of the query and key matrices,
which produces a set of weights that indicate the importance of each key with respect to
the query. The value matrix is then weighted by these weights and summed to produce the
output of the attention mechanism.

2.6.2 Residual/Normalization

Residual connections, also known as skip connections, are used to address the vanishing
gradient problem in deep neural networks [2]. They allow the output of a layer to bypass
one or more layers and be added to the output of the deeper layer. This helps in preserving
gradient flow during backpropagation and enables the network to learn more effectively,
especially in the case of very deep networks.

Layer normalization is a technique used to normalize the inputs to a layer in a neural
network. It operates on the principle of normalizing the activations of each layer across
the feature dimension, which helps in stabilizing the training process and improving the

17

generalization performance of the model. By reducing the internal covariate shift, layer
normalization can lead to faster convergence during training and better overall performance.

2.6.3 Linear layer

In the Transformer architecture, FFN is a component of each encoder and decoder layer
[2]. Its role is to apply a non-linear transformation to the output of the self-attention
sub-layer, which helps in capturing more complex relationships between the input and
output sequences.

The FFN consists of two linear transformations with a ReLU activation function in between.
Mathematically, the operation performed by the FFN can be expressed as:

FFN(x) = max(0, xW1 + b1)W2 + b2

In this equation, x is the input to the FFN, W1 and W2 are the weight matrices of the two
linear transformations, b1 and b2 are the bias vectors, and ReLU is the activation function.

18

3. Implementation

In this section will be discussed elements of transformer-decay model and how it works.

3.1 Datasets

For the purpose of training and evaluating our predictive models, we will utilize the
MIMIC-III database, a comprehensive repository of anonymized health data sourced from
critical care units at the Beth Israel Deaconess Medical Center between 2001 and 2012 [16].
This extensive dataset encompasses records from over forty thousand patients and includes
a wide spectrum of clinical information, ranging from patient demographics to vital sign
measurements, lab test results, medical procedures, prescriptions, healthcare provider
observations, radiology reports, and mortality data, both within the hospital setting and
following discharge.

It is worth mentioning that the predictions we perform are for patients in ICU. Indeed,
MIMIC-III exclusively contains data on ICU patients. Predicting ICU readmissions is
a specific case of hospital readmissions prediction. The significance of the MIMIC-
III database lies in several key aspects: its accessibility to researchers worldwide, its
representation of a diverse patient population admitted to intensive care units, and its
meticulous documentation of patient-related data, facilitating comprehensive analyses
encompassing vital statistics, laboratory findings, and medication records.

Table 1. Statistics of database.

Parameter Numeric value

of patients 14753
Gender distribution (female:male) 6691 : 8062
Average age at the time of visits 67
Average days per visit 10 days
of unique medical codes 8993
of unique ICD-9 diagnosis codes 6984
of unique ICD-9 procedure codes 2009
of unique prescription codes 2947

To make sure the relevance of our predictive modeling efforts, positive affected person
cohorts could be excluded from consideration. Specifically, newborns and deceased
sufferers will be excluded from the analysis, as readmission styles might not be relevant

19

Figure 2. Database architecture.

in such cases. Additionally, we exclude patients under 18 years of age and restrict our
analysis to patients with at least two admissions, as the predictive price of readmission
likelihood will become greater significant in instances with repeated sanatorium encounters.
Following this exclusion process, our dataset includes 14, 753 patients.

Additionally, we can restrict our analysis to patients with at least two admissions, as the
predictive price of readmission likelihood will become greater significant in instances with
repeated sanatorium encounters. Following this exclusion process, our dataset includes
14753 patients.

The structure of the dataset used for model training is depicted in Figure 2. Diagnoses and
medical procedures, sharing a common structure, are amalgamated into a unified datatype
for ease of analysis. Table 1 provides an overview of the statistical characteristics of the
processed dataset, offering insights into its composition and distribution of key variables.

3.2 Environment

In this section will be discused the technologies were used during the research.

20

1. Python - programming language was used for scripting and algorithm implemen-
tation. It has become the de-facto language for training deep neural networks,
coupling a large suite of scientific. computing libraries with efficient libraries for
tensor computation [17].

2. PyCharm - IDE designed for Python programming with intuitive interface for code
development, debugging, and organization.

3. Pandas and NumPy - Python’s libraries used for data handling and manipulation [18,
19].

4. TensorFlow - a library for developing a machine learning applications, particularly
excelling in deep learning and neural network implementations [20].

3.3 Setup configuration

For a better understanding of the experimental setup, we provide the details of the system
configuration where the models were compiled and trained. The hardware and software
specifications are important for reproducing the results and ensuring the model’s perfor-
mance consistency. The system configuration is shown in Table 2.

Table 2. System configuration.

Component Specification

Processor Intel Core i5-12400F
CPU Cores 6
RAM 32 GB
Operating System Windows 10
Python 3.10
TensorFlow 2.15.0

3.4 Hyperparameters

This chapter outlines the chosen hyperparameters for our predictive models, focusing on
their relevance and justification for optimizing model performance. The table 3 below
summarizes the key hyperparameters used in our study.

We selected 100 epochs to allow sufficient training iterations. This balances underfitting,
where the model might learn too little, and overfitting, where it might memorize noise in
the data. This number of epochs ensures the model has ample opportunity to refine its
weights and learn complex patterns.

21

Table 3. Model hyperparameters.

Parameter N

Epochs 55
Batch patch 100
K-fold 5
Head attention 1
Optimizer Adam
Learning rate 0.001
Transformer dropout rate 0.005

A single attention head was used in transformer-decay model to simplify the architecture.
Preliminary experiments indicated that one attention head provides adequate performance
without introducing unnecessary computational overhead, maintaining model interpretabil-
ity.

Thirty linear units were included in the fully connected layers to capture complex relation-
ships in the data while avoiding overfitting. This number was determined empirically and
is supported by similar studies, providing a good trade-off between model capacity and
complexity.

The selected hyperparameters are designed to optimize the model’s performance efficiently.
These choices balance complexity, computational efficiency, and the ability to generalize,
aiming to build a robust model for predicting hospital readmissions.

3.5 Proof of Concept Models

In this chapter, we describe the proof of concept neural network model that will be applied
to our dataset. The aim is to develop initial models that can establish a baseline for
performance and provide insights into further improvements. It is important to note that
the length of the input for one patient after the embedding will be 146, so the initial layer
for every model will have 146 neurons.

3.5.1 Baselines

We compare our custom transformer-decay model with the following baseline models:

■ GRU-Decay[21] is a GRU variant with an exponential decay function applied on
the hidden layers;

22

■ LR is a statistical method used for binary classification tasks, where the goal is to
predict one of two possible outcomes. It models the probability of a given input
belonging to a particular class by fitting data to a logistic function, which outputs
values between 0 and 1.

■ Retain[22] is an RNN-based model that integrates two attention mechanisms to
capture the most relevant visits and clinical codes in the patient’s longitudinal EHR;

■ Timeline[23] is an RNN-based model that integrates an attention mechanism that
calculates a new representation of a clinical code based on the visit context. Then,
it calculates the effect of each diagnosis over time based on their initial influence
value and their corresponding time decay factor;

■ LSTM is an RNN-based model that uses memory cells to manage the flow of
medical data, selectively retaining or discarding information as necessary.

3.6 Transformer

In this chapter, we describe the implementation of a Transformer-decay model. The
following details outline the steps and considerations involved in the model development.
Table 4 represents each layer of the model and its configuration. Every part of model has
a ’get_config()’ method to save trained model for following usage. We will separate and
describe every significant step of the model.

Table 4. Transformer layers.

Layer N

Embedding layer 8984 vocabulary size
Decay factor layer 80 dimensions
Transformer Block 80 dimensions
Demographic dense layer 15 neurons
Classifier 1 neuron

3.6.1 Embedding layer

We utilized TensorFlow’s Embedding layer, specifying several key parameters to tailor its
functionality to our needs. The input_dim parameter is set to the size of the vocabulary,
which indicates the number of unique tokens the model can handle. This ensures that each
unique token in our dataset is assigned a specific dense vector representation.

To handle sequences of different lengths effectively, we enabled the mask_zero parameter.
By setting mask_zero=True, the embedding layer is instructed to ignore padding tokens,
typically represented by zeros. This is particularly useful for managing input sequences of

23

varying lengths without introducing noise from the padding tokens.

Furthermore, we applied L2 regularization to the embedding weights using the embed-
dings_regularizer parameter. Regularization is a technique used to prevent overfitting by
adding a penalty for large weights. In our implementation, L2 regularization is set with a
factor of 0.02. This choice ensures that the model remains generalizable by discouraging
excessively large weights, thereby promoting better performance on unseen data.

3.6.2 Decay factor layer

The layer is initialized with an output_dim parameter which specifies the dimensions of
the output space. This dimension determines the shape of weights the decay factor will
have. The layer is built with two matrices: weights and biases. The weight matrix, shaped
(1, output_dim), is initialized using the Glorot uniform initializer. The bias vector, shaped
(time_input.shape, 1), is initialized to zeros and adds a constant term to the computation.

When the layer is called, the time information is multiplied by the weight matrix and
added to the bias vector. The result is passed through a ReLU activation function to
ensure non-negative values. An exponential function is then applied to model the decay,
exponentially decreasing the influence of admissions as they age, effectively capturing the
essence of the time decay factor.

Then, result the decay factor layer is tiled to match the shape of the clinical code embed-
dings. The decay factor is concatenated with a tensor of ones that has the same shape as
the decay factor. This step prepares the decay factor for integration with the clinical code
embeddings. The ones ensure that the embeddings are not scaled down for any padding
or zero entries in the clinical code sequence. Finally, the clinical code embeddings are
element-wise multiplied by the decay factor. This step effectively adjusts the embed-
dings based on the time decay, reducing the influence of older admissions and thereby
emphasizing more recent visits.

3.6.3 Transformer block.

The TransformerBlock class defines a custom layer for the Transformer model, incorporat-
ing multi-head attention, layer normalization, and dropout.

First, the MultiHeadAttention layer processes the input tensor twice (with query and key
based on clinical code embeddings and decay factor vectors), generating an attention output.

24

This output represents the weighted sum of values, where the weights are determined by the
query-key pairs. The attention output is then passed through the Dropout layer, which helps
prevent overfitting by randomly setting a fraction of input units to zero during training.
Finally, the combination of the initial input and the attention output is normalized using
the LayerNormalization layer, stabilizing and speeding up the training process.

3.6.4 Integration

This section of the code integrates all the data and transforms it for the classifier. Initially,
the model reduces the clinical code embeddings tensor along the first dimension (index
1), effectively summing the embeddings of clinical codes for each visit. If the clinical
code embeddings originally have the shape (batch_size, num_visits, embedding_dim),
after this operation, they will have the shape (batch_size, embedding_dim). This reduction
is essential for condensing information from multiple visits into a single embedding
vector per patient. A Dropout layer is then applied to these clinical code embeddings.
The demographic data is processed through a dense layer, which likely transforms the
demographic features. The resulting demographic tensor is concatenated with the clinical
code embeddings tensor along the last dimension, merging the clinical and demographic
information into a single tensor. Finally, this concatenated tensor is passed through an
output layer with a sigmoid activation function, which outputs the probability of the target
class (e.g., readmission risk).

3.7 Results and analysis

We dedicate this section to evaluating and comparing our model against the baselines listed
in the previous section. We trained all models over 5-fold cross-validation and reported the
average AUC and AUPRC scores in Table 5.

Table 5. AUC and AUPRC scores overs 5-fold cross validation of comptetiting models vs
ours

Models AUC AUPRC

GRU-Decay 0.710± 0.011 0.345± 0.028
LR 0.664± 0.005 0.316± 0.016
Retain 0.682± 0.016 0.340± 0.013
Timeline 0.715± 0.007 0.355± 0.022
LSTM 0.699± 0.006 0.341± 0.014
Transformer-decay 0.699± 0.013 0.365± 0.020

± Standard deviation.

25

Although our model does not achieve the highest AUC score, it outperforms all competing
models in terms of AUPRC. This indicates its effectiveness in accurately identifying pa-
tients who will be readmitted. The AUC score measures the model’s ability to correctly
classify the negative class (patients who will not be readmitted), while the AUPRC re-
flects the model’s capability to correctly classify the positive class (patients who will be
readmitted). Given the context, the AUPRC score is arguably the more critical metric
because we aim to minimize the rate of false negatives (patients who should be readmitted
but are misclassified as not needing readmission), as these errors could lead to severe
consequences, such as death.

For practical applications, evaluating the scalability of these models in real-world scenarios
is crucial. This includes assessing their performance on larger datasets, their ability to
integrate with existing healthcare systems, and the feasibility of deploying them in a
production environment.

It is important to note that the database used for this study turns out to be small for
such a complicated task. Given the scale, the results are satisfying but it is necessary to
repeat the research with a larger and more recent database to ensure the robustness and
generalizability of the findings.

3.8 Advantages and limitations

The application of transformer-decay models for readmission prediction offers several
significant advantages. This model addresses numerous issues within hospital settings.
By predicting readmissions accurately, it helps in the proactive management of patient
care, potentially reducing the number of unexpected readmissions. By reducing the rate of
readmissions, hospitals can lower healthcare costs for both patients and institutions. Better
prediction of readmissions allows for more effective management of hospital resources,
ensuring that beds, medical staff, and equipment are utilized optimally. Accurate read-
mission predictions can lead to timely interventions, reducing patient mortality rates and
enhancing the overall quality of life for patients by ensuring they receive the necessary care
when needed. By preventing unnecessary readmissions, the model helps in decongesting
hospitals, which is particularly beneficial during peak times or pandemics when hospital
resources are stretched thin. The transformer-decay model excels in handling complex text
data, such as medical procedures and diagnoses, making it particularly suitable for medical
applications where patient records and clinical notes are pivotal. The inclusion of a time
decay factor ensures that the model emphasizes the most recent admissions, which are
more reflective of current medical practices and treatments. This approach helps maintain
the relevance and accuracy of predictions.

26

Despite these advantages, there are several limitations to the current work. The model
did not achieve the best results in terms of AUC compared to some other models. This
indicates a need for further refinement and improvement in its ability to distinguish between
patients who will and will not be readmitted. The training data used for this study was
relatively small for such a complex task. A larger and more recent dataset is necessary
to improve the robustness and generalizability of the findings. This limitation highlights
the need for additional data collection and validation on more extensive datasets. Given
the small size of the training dataset, there is a risk of overfitting, where the model learns
the specifics of the training data too well but fails to generalize to new, unseen data. The
transformer-decay model, while effective, requires substantial computational resources
and longer training times. This can be an obstacle to its practical implementation in
resource-limited settings. The complexity of the transformer model can make it difficult to
interpret and explain its predictions. Enhancing the interpretability of the model is crucial
for gaining insights into the factors contributing to readmissions and for fostering trust
among healthcare professionals. The performance of the model might vary across different
hospital settings and patient populations. It is important to validate the model across
diverse clinical environments to ensure its widespread applicability and effectiveness.

27

4. Summary

The primary objective of this thesis was to implement the transformer-decay model and
compare its performance with classical machine learning architectures. To achieve this,
the database was parsed and preprocessed to ensure it was suitable for model training and
comprehension. All implementation was carried out in Python, utilizing TensorFlow as the
main framework for developing neural network models.

We started by implementing simple proof-of-concept models based on related works. The
transformer model, incorporating a time decay layer, was successfully implemented. The
data was divided into 5 folds for training and testing to ensure robust evaluation.

Appropriate metrics were selected to assess the performance of the models. The
transformer-decay model demonstrated a high result in AUPRC, indicating its effec-
tiveness in handling imbalanced datasets, such as those encountered in medical prediction
where positive cases are rare. However, its performance on AUC was mediocre, suggesting
room for improvement in distinguishing between classes.

In conclusion, the goal of this work has been achieved. The implemented transformer-
decay model shows significant potential for future development. Future researchers are
encouraged to utilize larger and more recent databases to further enhance the model’s
accuracy and applicability.

28

References

[1] Clare Allison Parker et al. “Predicting hospital admission at the emergency depart-
ment triage: A novel prediction model”. In: The American Journal of Emergency

Medicine 37.8 (2019), pp. 1498–1504.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. “Attention is All you Need”. In:
Advances in Neural Information Processing Systems 30 (2017).

[3] Xu Min, Bin Yu, and Fei Wang. “Predictive Modeling of the Hospital Readmission
Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD”.
In: Scientific Reports 9.1 (Feb. 2019).

[4] M. Pishgar et al. “Prediction of unplanned 30-day readmission for ICU patients with
heart failure”. In: BMC Medical Informatics and Decision Making 22.1 (May 2022).

[5] Awais Ashfaq et al. “Readmission prediction using deep learning on electronic
health records”. In: Journal of Biomedical Informatics 97 (2019), p. 103256.

[6] Yuhan Deng et al. “Explainable time-series deep learning models for the prediction
of mortality, prolonged length of stay and 30-day readmission in intensive care
patients”. In: Frontiers in Medicine 9 (Sept. 2022).

[7] Tian Bai et al. “Interpretable Representation Learning for Healthcare via Capturing
Disease Progression through Time”. In: Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, 2018.

[8] Cao Xiao et al. “Readmission prediction via deep contextual embedding of clinical
concepts”. In: PLOS ONE 13.4 (2018), e0195024.

[9] Ahmad Hammoudeh et al. “Predicting Hospital Readmission among Diabetics using
Deep Learning”. In: Procedia Computer Science 141 (2018), pp. 484–489.

[10] Ricardo M. S. Carvalho, Daniela Oliveira, and Catia Pesquita. “Knowledge Graph
Embeddings for ICU readmission prediction”. In: BMC Medical Informatics and

Decision Making 23.1 (Jan. 2023).

[11] Chien-Yu Chi et al. “Predicting the Mortality and Readmission of In-Hospital
Cardiac Arrest Patients With Electronic Health Records: A Machine Learning
Approach”. In: Journal of Medical Internet Research 23.9 (2021), e27798.

[12] Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. “ClinicalBERT: Modeling
Clinical Notes and Predicting Hospital Readmission”. In: (2019).

[13] Chuhong Lahlou et al. “Explainable Health Risk Predictor with Transformer-based
Medicare Claim Encoder”. In: (2021).

29

[14] Yan Miao and Lequan Yu. “MuST: Multimodal Spatiotemporal Graph-Transformer
for Hospital Readmission Prediction”. In: (2023). URL: http://arxiv.org/
pdf/2311.07608.

[15] Weimin Lyu et al. “A Multimodal Transformer: Fusing Clinical Notes with Struc-
tured EHR Data for Interpretable In-Hospital Mortality Prediction”. In: AMIA

Annual Symposium Proceedings 2022 ().

[16] MIMIC-III Clinical Database v1.4. https://physionet.org/content/
mimiciii/1.4/. 2016.

[17] Zachary DeVito, Jason Ansel, Will Constable, et al. “Using Python for Model
Inference in Deep Learning”. In: (2021).

[18] Aritra Pain. Pandas Library in Data Science: Harnessing the Power of Data Ma-

nipulation. https://www.linkedin.com/pulse/pandas-library-
data-science-harnessing-power-aritra-pain/. 2023.

[19] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. “The NumPy Array:
A Structure for Efficient Numerical Computation”. In: Computing in Science &

Engineering 13.2 (2011), pp. 22–30.

[20] Nidhin Mahesh. Understanding a TensorFlow program in simple steps. | Towards

Data Science. https://towardsdatascience.com/understanding-
fundamentals - of - tensorflow - program - and - why - it - is -

necessary-94cf5b60e255. 2017.

[21] Zhengping Che et al. “Recurrent Neural Networks for Multivariate Time Series with
Missing Values”. In: Scientific Reports 8.1 (Apr. 2018).

[22] Edward Choi et al. “Retain: An interpretable predictive model for healthcare using
reverse time attention mechanism”. In: Advances in neural information processing

systems 29 (2016).

[23] Tian Bai et al. “Interpretable Representation Learning for Healthcare via Capturing
Disease Progression through Time”. In: Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery amp; Data Mining. ACM, July
2018.

30

http://arxiv.org/pdf/2311.07608
http://arxiv.org/pdf/2311.07608
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://www.linkedin.com/pulse/pandas-library-data-science-harnessing-power-aritra-pain/
https://www.linkedin.com/pulse/pandas-library-data-science-harnessing-power-aritra-pain/
https://towardsdatascience.com/understanding-fundamentals-of-tensorflow-program-and-why-it-is-necessary-94cf5b60e255
https://towardsdatascience.com/understanding-fundamentals-of-tensorflow-program-and-why-it-is-necessary-94cf5b60e255
https://towardsdatascience.com/understanding-fundamentals-of-tensorflow-program-and-why-it-is-necessary-94cf5b60e255

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Pavel Grubeljas

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Transformer-based model for predicting hospital readmissions”, supervised
by Sadok Ben Yahia and Nzamba Bignoumba
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

27.05.2024

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

31

Appendix 2 - Certificate

Figure 3. Certificate of completing Data or Specimens Only Research Course.

32

	Introduction
	Goals
	Related Works

	Method
	K-fold cross-validation
	Classifier
	Evaluation Metrics
	Area under the ROC Curve (AUC)
	Area under Precision-Recall Curve (AUPRC)

	Embedding layer
	Decay factor layer
	Transformer encoder
	Self-Attention
	Residual/Normalization
	Linear layer

	Implementation
	Datasets
	Environment
	Setup configuration
	Hyperparameters
	Proof of Concept Models
	Baselines

	Transformer
	Embedding layer
	Decay factor layer
	Transformer block.
	Integration

	Results and analysis
	Advantages and limitations

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Certificate

