
DOCTORAL THESIS

Monoidal Context Theory

Mario Román García

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2023

TALLINN UNIVERSITY OF TECHNOLOGY DOCTORAL THESIS
54/2023

Monoidal Context Theory

MARIO ROMÁN GARCÍA

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

The dissertation was accepted for the defence of the degree of Doctor of Philosophy (Computer Science) on the 1st October 2023
Supervisor:

Opponents:

Pawel Maria Sobocinski,
Department of Software Science, School of Information Technologies,
Tallinn University of Technology,
Tallinn, Estonia
Professor Paul-André Melliès,
Université Paris Denis Diderot,
Paris, France
Professor Guy McCusker,
University of Bath,
Bath, United Kingdom

Defence of the thesis: 16 November 2023, Tallinn
Declaration:Hereby I declare that this doctoral thesis, my original investigation and achievement, submitted for the doctoral degree at Tallinn University of Technology, has not been submitted for any academic degree elsewhere.

Mario Román García signature

Copyright: Mario Román García, 2023 ISSN 2585-6898 (publication)ISBN 978-9916-80-081-2 (publication) ISSN 2585-6901 (PDF)ISBN 978-9916-80-082-9 (PDF)
Printed by Koopia Niini & Rauam

TALLINNA TEHNIKAÜLIKOOLDOKTORITÖÖ54/2023

Monoidiliste kontekstide teooria

MARIO ROMÁN GARCÍA

Monoidal Context Theory

Mario Román

Abstract. We universally characterize the produoidal category of monoi-
dal lenses over a monoidal category. In the same way that each category
induces a cofree promonoidal category of spliced arrows, each monoidal cat-
egory induces a cofree produoidal category of monoidal spliced arrows; mo-
noidal lenses are the free normalization of the cofree produoidal category of
monoidal spliced arrows.

We apply the characterization of symmetric monoidal lenses to the
analysis of multi-party message-passing protocols. We introduce a mini-
malistic axiomatization of message passing – message theories – and we
construct combinatorially the free message theory over a set. Symmetric
monoidal lenses are the derivations of the free message theory over a sym-
metric monoidal category.

Monoidiliste Kontekstide Teooria
Kokkuvõte. Karakteriseerime monoidiliste läätsede produoidilise kategoo-
ria universaalomaduse abil. Nii nagu iga kategooria indutseerib pleissitud
noolte kovaba promonoidilise kategooria, indutseerib monoidiline kategoo-
ria monoidiliste pleissnoolte kovaba produoidilise kategooria; monoidilised
läätsed on monoidiliste pleissnoolte kovaba produoidilise kategooria vaba
normalisatsioon.

Kasutame sümmeetriliste monoidiliste läätsede karakterisatsiooni mitme
osapoole sõnumiedastusprotokollide analüüsimiseks. Toome sisse sõnumiedas-
tuse minimalistliku aksiomatisatsiooni – sõnumiteooriaid – ja konstrueerime
vaba sõnumiteooria etteantud hulgal. Sümmeetrilised monoidilised läätsed
on sümmeetrilise monoidilise kategooria vaba sõnumiteooria tuletised.

DECLARATION OF ORIGINALITY 8

Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials,
references to the literature and the work of others have been referred to. This
thesis has not been presented for examination anywhere else.

Author: Mario Román García

11th November 2023

9

Acknowledgements. I would like to thank my PhD advisor, Pawel Sobocin-
ski. Pawel has an exceptional ability to separate the scientifically promising ideas
from the noise; he gave me the support, encouragement and freedom to pursue
the research on this thesis. Pawel always said he wanted to replicate in Tallinn
the atmosphere of Bob Walters’ group in Sydney and I am particularly thankful
for the result. I am also very grateful to Nicoletta Sabadini, for her advice and for
sharing her encyclopedic knowledge of both automata and the history of Como.

Most ideas were cultivated at group meetings, and I want to thank Ed, Chad,
Clémence, Nathan, Diana, Fosco, Elina, Amar, Cole, Philipp, Ekaterina, Niccoló,
Michele, Andrea, and the rest of the Tarkvarateaduse Instituut for all the math
and time we shared. I am very grateful to Niels, for his contagious enthusiasm and
much useful feedback on this thesis. Special thanks go to Matt for his attention
to detail and mathematical elegance, great discussions and ideas, and equally
great book recommendations.

I learned and enjoyed a lot on short but productive visits to Pisa, Como,
Oxford and Paris, and I want to thank Filippo, Alessandro, Vladimir, Louis and
Davidad for many insightful discussions during this thesis. I had the privilege of
having Giovanni, James, and Dylan as coauthors and I learned a lot from each
one of them.

I thank the constant support of my parents, my brother Víctor, and my
friends; I especially thank David and Esperanza for finding the best cafés in
Granada. I thank Anna, Paolo, Enrico and Andrea for the time at the lake.
Finally, I thank Elena: for all the fun we had writing each joint paper, and for
all the happiness, math and drawings of these four years.

Contents

Declaration of Originality 8
Acknowledgements 9

Preface 16
Introduction 17

Processes and Diagrams 17
Algebra and Duoidal Algebra 18
Fundamental Structures for Message Passing 19
Global Effects 21
Monoidal Context Theory 21

Overview 22
Chapter 1: Process Theories 22
Chapter 2: Context Theory 22
Chapter 3: Monoidal Context Theory 22
Chapter 4: Monoidal Message Passing 22

Contributions 23
Publications 24

Chapter 1. Monoidal Process Theory 27
Monoidal Process Theory 27
1. Monoidal Categories 28

1.1. Strict Monoidal Categories 28
1.2. Some Words on Syntax 29
1.3. String Diagrams of Strict Monoidal Categories 30
1.4. Example: Crema di Mascarpone 33
1.5. Bibliography 33

2. Non-Strict Monoidal Categories 35
2.1. Non-Strictness 35
2.2. Coherence 36
2.3. String Diagrams of Monoidal Categories 36
2.4. Bibliography 37

3. String Diagrams of Bicategories 38
3.1. String diagrams of 2-categories 38

11

12 CONTENTS

3.2. Bicategories 39
3.3. Example: Adjunctions 39
3.4. Bibliography 40

4. Symmetric Monoidal Categories and Do-Notation 42
4.1. Commutative Monoidal Categories 42
4.2. Symmetric Monoidal Categories 42
4.3. Do-Notation 45
4.4. Symmetry in Do-notation 47
4.5. Quotienting Do-notation 48
4.6. Example: the XOR Variable Swap 51
4.7. Bibliography 52

5. Cartesianity: Determinism and Totality 54
5.1. Cartesian Monoidal Categories 54
5.2. Partial Markov Categories 56
5.3. Bibliography 59

6. Premonoidal Categories 61
6.1. Premonoidal Categories 61
6.2. Effectful and Freyd Categories 63
6.3. Bibliography 65

7. String Diagrams for Premonoidal Categories 66
7.1. Effectful Polygraphs 66
7.2. Adding Runtime 66
7.3. Example: a Theory of Global State 73
7.4. Bibliography 74

Chapter 2. Context Theory 77
Context Theory 77
1. Profunctors and Coends 78

1.1. Profunctors 78
1.2. Dinaturality and Composition 79
1.3. Coend Calculus 80
1.4. The Point of Coend Calculus 80
1.5. Promonads 82
1.6. Bibliography 83

2. Multicategories 84
2.1. Multicategories 84
2.2. The Category of Multicategories 84
2.3. Application: Shufflings 85

3. Malleable Multicategories 86
3.1. Promonoidal Categories 87
3.2. Promonoidal Categories are Malleable Multicategories 88

CONTENTS 13

3.3. Bibliography 90
4. The Splice-Contour Adjunction 91

4.1. Contour of a multicategory 91
4.2. Spliced Arrows 92
4.3. Splice-Contour Adjunction 93
4.4. Promonoidal Splice-Contour 94

Chapter 3. Monoidal Context Theory 97
Monoidal Context Theory 97
1. Duoidal categories 98

1.1. Duoidal Categories 98
1.2. Communication via Duoidals 98
1.3. Duoidals via adjoint monoids 99
1.4. Be Careful with Duoidal Coherence 101
1.5. Bibliography 103

2. Normal Duoidal Categories 104
2.1. Normalization of duoidal categories 104
2.2. Physical duoidal categories 105
2.3. Physical Lax Tensor of a Physical Duoidal Category 107
2.4. Bibliography 108

3. Produoidal Decomposition of Monoidal Categories 109
3.1. Produoidal categories 109
3.2. Monoidal Contour of a Produoidal Category 110
3.3. Produoidal Splice of a Monoidal Category 112
3.4. A Representable Parallel Structure 115
3.5. Bibliography 116

4. Interlude: Produoidal Normalization 117
4.1. Normal Produoidal Categories 117
4.2. The Normalization Monad 117
4.3. Symmetric Normalization 122
4.4. Bibliography 122

5. Monoidal Lenses 124
5.1. The Category of Monoidal Lenses 124
5.2. Symmetric Monoidal Lenses 126
5.3. Towards Message Theories 127
5.4. Bibliography 130

Chapter 4. Monoidal Message Passing 133
Monoidal Message Passing 133
1. Message Theories 134

1.1. Message Theories 134
1.2. Properties of a Message Theory 136

14 CONTENTS

1.3. Coherence for Message Theories 139
Bibliography 141

2. Physical Monoidal Multicategories, and Shufflings 142
2.1. Symmetric Multicategories 142
2.2. Monoidal Multicategories 142
2.3. Physical Monoidal Multicategories 143
2.4. Shuffling 143
2.5. Bibliography 145

3. Polarization 146
3.1. Monoidal Polarization 146
3.2. Monoidal Polarization is Not Enough 147
3.3. Polarization of a Physical Monoidal Multicategory 149
3.4. Bibliography 149

4. Polar Shuffles 151
4.1. Polar Shuffles 151
4.2. Encoding of polar shuffles 151
4.3. The Multicategory of Polar Shuffles 152
4.4. Message Theories are Algebras of Polar Shuffles 154
4.5. Bibliography 156

5. Processes versus Sessions 157
5.1. Processes of a message theory 157
5.2. Sessions of a process theory 159
5.3. Sessions versus Processes 162
5.4. Example: One-Time Pad, as a Message Session 164
5.5. Case Study: Causal versus Evidential Decision Theories 166
Bibliography 170

Chapter 5. Conclusions and Further Work 173
Conclusions 173

Monoidal Context Theory 173
Monoidal Message Passing 174
Future Work 175

Bibliography 177

Appendix A. Supplementary material 193
1. Coherence diagrams for a duoidal category 194
2. Polycategories 196

2.1. Polycategories 196
2.2. The Category of Polycategories 197
2.3. Polycategorical Contour 198
2.4. Malleable Polycategories 199

CONTENTS 15

2.5. Prostar-Autonomous Categories 200
2.6. Prostar Autonomous are Malleable Polycategories 201
2.7. Splice of a Polycategory 202
2.8. Bibliography 203

Appendix B. Publications 205
1. Span(Graph): a Canonical Feedback Algebra of Open Transition

Systems 205
2. Monoidal Streams for Dataflow Programming 255
3. Promonads and String Diagrams for Effectful Categories 292
4. The Produoidal Algebra of Process Decomposition 311
5. Open Diagrams via Coend Calculus 368
6. Collages of String Diagrams 386
7. A Canonical Algebra of Open Transition Systems 414
8. Profunctor Optics, a Categorical Update 439

Appendix C. Curriculum Vitae 485

Appendix D. Curriculum Vitae (Eesti keeles) 489

Appendix E. Non-Exclusive License for Reproduction and Publication 493

16 CONTENTS

Preface

Understanding and correctly designing intelligent and explainable systems
could be both, if we get it right, one of the most beneficial human advancements;
and, if we get it wrong, an existential risk for humanity [Ord20]. Humanity’s
need for languages and formalisms for trustworthy complex systems is now an
urge.

Mathematics may possibly be the only right tool for this; but mathematics
has not always been concerned with complex and interconnected systems. John
von Neumann, talking about the intelligent and complex system that is the human
brain, famously noted that

the outward forms of our mathematics are not absolutely rele-
vant from the point of view of evaluating what the mathemati-
cal or logical language truly used by the central nervous system
is. However, the above remarks about reliability and logical
and arithmetical depth prove that whatever the system is, it
cannot fail to differ considerably from what we consciously and
explicitly consider as mathematics.

– John Von Neumann, The Computer and The Brain [vN58].
Meanwhile, when we try to describe big interconnected networks with linear

algebra, geometry and calculus, even with all of our achievements, we seem to
miss the point: things get extremely complicated, computationally intractable,
humanly unimaginable; and we declare our defeat, we resort to vague analogies,
and we ask an impenetrable pile of linear algebra to be our oracle.

This does not need to be our strategy: mathematics and computer science
do not advance with bigger computations; they advance with new conceptual
understanding. The past century saw the rise of conceptual mathematics and
theoretical computer science – the kind of mathematics that took seriously the
most elementary notions and cultivated them to tame complex abstractions and
systems [LS09, PC07, Gro85]. Slowly but surely, the development of the concep-
tual theory of categories has brought us to a point where we can forget about
comforting but vague analogies and start talking about complex systems formally
and scientifically.

This thesis is part of the ongoing effort to find better languages and reasoning
tools for science, epistemology, causality and probability: both intuitive graphical
syntaxes for humans to reason with, and formal languages for computers, linked
by a trusted and transparent mathematical formalism.

INTRODUCTION 17

Introduction

Processes and Diagrams. Processes come intuitively to us; descriptions
of processes arose independently all across science and engineering, in the form of
diagrams, flowcharts or prose. We reason with them and we depict them all the
time, but that does not mean that we always know how to interpret them: many
diagrams in computer science and elsewhere do not have clear formal semantics,
so we relegate them to serving merely as sources of intuition and inspiration.

The notation has been found very useful in practice as it
greatly simplifies the appearance of complicated tensor or spinor
equations, the various interrelations expressed being discern-
able at a glance. Unfortunately the notation seems to be
of value mainly for private calculations because it cannot be
printed in the normal way. – Penrose and Rindler, Spinors
and Spacetime [PR84]

Diagrams deserve better: we can lift diagrams from mere intuitions to math-
ematical structures; we can defend the legitimate and exceptional conceptual
mathematics we now have to talk about processes and diagrams. This thesis
follows the framework of symmetric monoidal categories. Processes that pass
resources around and that compose sequentially and in parallel form symmetric
monoidal categories; diagrams that depict these processes are no less than a sound
and complete formal syntax for symmetric monoidal categories (e.g. Figure 1).

We will develop formal syntaxes for the compositional description of process,
in particular for – but not restricted to – probabilistic, effectful and non-classical
processes. We make use of category theory as a foundational tool: category the-
ory allows us to characterize a syntactic construction as the one generating a
universal semantics object and, at the same time, it provides a robust classifica-
tion framework for mathematical structures.

Figure 1. String-diagrammatic correctness proof for the One-time
pad protocol (Proposition 5.10, [BK22]).

18 CONTENTS

Algebra and Duoidal Algebra. The main technical idea of this thesis is
natural: in the same way that the analysis of classical algebraic theories required
the development of multicategories – and more precisely, of cartesian multicate-
gories and Lawvere theories – the analysis of process theories, which are them-
selves two-dimensional algebraic theories, requires the development of monoidal
multicategories and duoidal categories.

Multicategories, or colored operads, are mathematical structures that de-
scribe algebraic theories. In 1963, Lawvere introduced a categorical approach to
universal algebra [Law63]: a theory can be captured by the cartesian multicate-
gory containing all of its derived operations, and this notion is invariant to the
specific primitive operations we choose to present the theory. This idea opens the
field of functorial semantics: theories are categories, models are functors, and ho-
momorphisms are natural transformations. More importantly, Lawvere’s thesis
gives a robust account of classical algebra that can be modified to suit our needs:
the same framework can be employed for deductive systems [Lam69], higher-order
algebra [Lam86], relational algebra [BPS17], or partial algebra [DLLNS21].

How does it apply to process theories? Monoidal categories and multicate-
gories are not structured enough for the task of describing 2-dimensional struc-
tures themselves: we need duoidal categories and produoidal categories [Str12].
Intermediate algebraic expressions with variables are not complete expressions;
they are only contexts into which we can plug values, and context is of cen-
tral importance in computer science: we model not only processes but also the
environment in which they act. While the algebra of 1-dimensional context is
commonplace in applications like parsing [MZ22], the same concept was miss-
ing for 2-dimensional syntaxes, which are still less frequent in computer science
[UVZ18, ES22].

Figure 2. A depiction of monoidal lenses, or incomplete processes.

INTRODUCTION 19

Duoidal categories are well-known and there is a reasonable body of literature
primarily concerned with applications in pure algebra and algebraic topology
[AM10, Str12]; but the usage of duoidal categories to study processes is less
frequent: two notable examples are the treatment of commutativity in the work of
Garner and López Franco [GF16], and the study of “compositional dependencies”
in the recent work of Spivak and Shapiro [SS22]. In this text, duoidal categories
and monoidal multicategories allow us to postulate axioms for modularity and
message passing; these axioms apply to any symmetric monoidal category, or any
process theory.

Fundamental Structures for Message Passing. This main idea has an
immediate consequence that we explore in the second part of this thesis: we
can now develop an algebra for incomplete processes and their communication.
While concurrent software has been intensively studied since the early 60s, the
theoretical research landscape remains quite fragmented: we do not have a satis-
factory understanding of the underlying mathematical principles of concurrency,
and the proliferation of models has not helped us understand how they relate.
Indeed, Abramsky [Abr05] argued in 2006 that we simply do not know what the
fundamental structures of concurrency are.

A way to identify such principles and arrive at more canonical models is
to look for logical or universal properties. An example of the former is the
discovery of and work on Curry-Howard style connections between calculi for
concurrency and fragments of linear logic, which led to the development of ses-
sion types [Hon93, Dd09]. We take the latter route: departing from monoidal
categories and their theory of context, we universally characterize a minimalistic
axiomatization of message passing in process theories.

Concurrent message passing assumes two principles: interleaving and po-
larization. Polarization is a categorical technique to construct dualities; and
in message passing, it constructs the duality between sending and receiving
[CS07, Nes21, Mel21]. Interleaving is well-known in concurrency, and it mod-
els the ability of multiple processes to advance in parallel by mixing their global
effects: imagine multiple processes determined by a sequence of statements; their
concurrent execution may shuffle these statements in any possible order – the only
requirement is to preserve the relative order of statements within any single pro-
cess. We will not only propose a minimalistic axiomatization of message passing
from these two principles, but we will also characterize the universal structures
for message passing on a process theory.

Briefly, we assume polarized types, X• and X◦, that correspond to sending
and receiving ; and ordered lists of types describe sessions. Our axioms ask that
(i) a sending port can be linked to a receiving port; (ii) echoing allows us to
receive and then send; (iii) sequences of actions can be interleaved by a shuffling
τ ; and (iv) there exists a no-operation that does nothing.

20 CONTENTS

Γ, X•, X◦,∆

Γ,∆
(com)

X◦, X•
(spw)

Γ ∆

τ(Γ,∆)
(shfτ)

()
(nop)

Figure 3. Type-theoretic presentation of a message theory.

This is a naive logic of message passing, but its strength is that it can be char-
acterized mathematically using duoidal categories and, more concretely, physical
monoidal multicategories, which we introduce. This paves the way to an ad-
junction that characterizes the free message theory on top of any process theory.
The idea is simple but powerful: in order to construct message theories, we need
to add global effects for sending and receiving to our process theories [OY16];
Theorem 5.9 notices that the diagrams for resulting effectful process theories can
be wired precisely in the ways that the minimalistic logic of message passing
prescribes.

Figure 4. One-time pad protocol, split in four actors, mixed with
a shuffle.

This means that the only addition to our process are two global effects (send-
ing and receiving), that we depict using special red wires in the string diagrams.
Each party in a session will have one of these red wires, and the logic of message
passing allows us to combine them together. For instance, if the one-time pad
protocol consists of a party (say, Alice) sending a message to another party (say,

INTRODUCTION 21

Bob), with an attacker (say, Eve), sharing a Stage that only allows broadcasting
of messages; then these are four parties that connect together (Figure 4).

Global Effects. It remains then to explain the idea of global effects. Most
imperative programming languages assume that there exist a global state that
the program affects. Full parallelism is not possible when two programs need to
change this global state in a specific order: they could run into race conditions
[Huf54].

However, mathematical theories of processes often assume no global state;
processes do not interact with each other except when it is explicit that they
do. This property is called purity in some functional programming languages
[HJW+92] and that makes it easier to reason with them. The problem is that
even pure functional programming languages need some techniques to change
global state, and mathematical structures like monads [Mog91] or arrows [Hug00]
achieve precisely this – they take a pure theory and endow it with global effects.

Effects, monads and arrows create premonoidal categories [Pow02, HJ06].
These are not monoidal categories, but Alan Jeffrey [Jef97a] still introduced a
string diagrammatic calculus for them: it is similar to the string diagrammatic
calculus of monoidal categories, but it adds a red wire to control effects. This
thesis proves that the extra red wire ensures a sound and complete graphical
calculus for premonoidal categories.

Monoidal Context Theory. All these ideas align to produce a theory
of contexts, or incomplete processes, in monoidal categories. Each monoidal
category can generate a premonoidal category with the global effects of sending
and receiving. The string diagrams of this new premonoidal category can be
combined using the logic of message theories, and in fact, they form the free
message theory on top of the original process theory: we can use them to reason
and decompose multi-party processes in arbitrary process theories.

22 CONTENTS

Overview

Chapter 1: Process Theories. Chapter 1 is an introduction to monoidal
categories and their string diagrammatic syntax. Section 1 defines strict monoi-
dal categories in terms of process theories and introduces their string diagrams.
Section 4 defines their symmetric counterpart and their type theory in terms of
do-notation, while Sections 2 and 3 extend string diagrams to non-strict monoidal
categories and bicategories, variants that we will employ later.

Section 6 is an introduction to premonoidal categories and effectful categories.
Section 7 gives their string diagrammatic calculus and proves its soundness and
completeness. Finally, Section 5 studies linearity, copying and discarding in terms
of monoidal categories. This concludes a basic treatment of processes in terms of
monoidal categories.

Chapter 2: Context Theory. Chapter 2 introduces profunctors, in Sec-
tion 1, and multicategories, in Section 2, as the mathematical tools to analyze
decomposition. Profunctors provide a canonical equivalence relation, dinatural-
ity, that we use whenever we study decomposition; in fact, it brings us to consider
malleable multicategories in Section 3. Section 4 presents the splice-contour ad-
junction between a category and its malleable multicategory of incomplete terms,
or contexts.

Chapter 3: Monoidal Context Theory. Chapter 3 brings context the-
ory to the monoidal setting. Section 1 and Section 2 introduce duoidal categories
and normal duoidal categories. The duoidal counterpart of malleable multicate-
gories are produoidal categories and we introduce their splice-contour adjunction
in Section 3. The idempotent normalization monad of produoidal categories is
constructed in Section 4, and it is used in Section 5 to normalize monoidal spliced
arrows and obtain a universal characterization of monoidal lenses.

Chapter 4: Monoidal Message Passing. Chapter 4 starts defining mes-
sage theories in Section 1. Section 2 studies its categorical semantics in terms of
physical monoidal multicategories. Section 3 introduces polarization and opens
the way for Section 4 to define polar shuffles and prove that they form a free
polarized monoidal multicategory. Section 5 constructs an adjunction between
process theories and message theories.

CONTRIBUTIONS 23

Figure 5. Chapter dependencies.

Contributions

The main results of this thesis are Theorem 5.3 and Theorem 5.9. They
universally characterize, in two different ways, the produoidal structure of in-
complete diagrams: the former is used for a theory of monoidal context, the
latter is used for message passing.

The definition of message theory (Definitions 1.1 and 1.2 and proposition 1.4)
is novel. There does not seem to be literature specifically on physical monoidal
multicategories (Definition 2.4) nor on the observation that shuffles form the free
one (Proposition 2.9) – even when, admittedly, these are all variations on the idea
of physical duoidal categories and an old result by Grabowski [Gra81]. We give a
different presentation of polarization in monoidal categories (Proposition 3.4), we
discuss the problems of polarization in monoidal categories (Proposition 3.6) and
we propose a solution describing polarization in physical monoidal multicategories
(Definition 3.7). The definitions of polar shuffle (Definitions 4.1 and 4.2) and their
physical monoidal multicategory (Theorem 4.7) are new contributions, as it is its
proposed characterization as a free polarized physical monoidal multicategory
(Theorem 4.11). Our main contribution is the final adjunction between sessions
and processes (Theorem 5.9).

Duoidal categories are well-known, but we write down some observations
about coherence in Proposition 1.6 and we contribute the definition of the phys-
ical tensor (Definition 2.14). Our main contribution is not only the monoidal
splice-contour adjunction (Theorem 3.10); the adjunctions between produoidal
categories and normal produoidal categories, and between symmetric produoidal

24 CONTENTS

categories and physical produoidal categories, with the construction of an idem-
potent monad Theorems 4.6 and 4.10, are contributions to pure category the-
ory. Theorem 5.3 consitutes the first universal characterization of the whole
produoidal category of lenses.

Even when do-notation is well-known, a categorical treatment like the one in
Theorem 4.21 seemed to be missing from the literature; it is based in an exposi-
tion of string diagrams that is unusual in that it takes adjunctions as the main
construction (Theorem 2.5). The string diagrams for premonoidal categories and
effectful categories are a new formalization (Theorem 7.8) that is detailed in other
papers by this author [Rom22]. We propose a new way of seeing coend calculus
(Section 1.4) that is used briefly in this thesis but that is more extensively ex-
plained in other papers by this author [Rom20b]. The only contribution that we
claim while translating the splice-contour adjunction to promonoidal categories
is realizing their characterization as malleable multicategories (Proposition 3.10),
which is admittedly a new spin on the usual characterization as closed multicat-
egories.

Publications

The following is the list of publications authored or coauthored during the
preparation of this thesis. As is customary in mathematics, we list authors in
alphabetical order.

(1) Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz
Milewski, Emily Pillmore, and Mario Román. Profunctor optics, a cate-
gorical update. Accepted at Compositionality, preprint abs/2001.07488,
2020, [CEG+20].
The author wrote the manuscript, proved the main theorem and prepared
the literature review. The main ideas come from discussions with all the
authors during the Applied Category Theory School. Bartosz Milewski
proposed the original research problem. Jeremy Gibbons provided feed-
back and supervised previous work by this author on a similar topic.
Derek Elkins and Fosco Loregian helped improve the mathematical pre-
sentation. Emily Pillmore revised and improved the Haskell implemen-
tation. Bryce Clarke noticed an important mistake in the first version
of this work and proposed a solution.

(2) Mario Román. Open diagrams via coend calculus. Applied Category
Theory 2020. Electronic Proceedings in Theoretical Computer Science,
333:65–78, Feb 2021, [Rom20b].
The author is the single author of this manuscript. The author defined
the research question and all of the results of the paper.

PUBLICATIONS 25

(3) Guillaume Boisseau, Chad Nester, and Mario Román. Cornering op-
tics. In Applied Category Theory 2022, Preprint abs/2205.00842, 2022,
[BNR22].
The author found a problem with the initial versions of the draft and
helped resolving it. The main idea for this paper is due to Guillaume
Boisseau and Chad Nester. Chad Nester wrote the final version.

(4) Mario Román. Promonads and string diagrams for effectful categories.
In Jade Master and Martha Lewis, editors, Proceedings Fifth Interna-
tional Conference on Applied Category Theory, ACT 2022, Glasgow,
United Kingdom, 18-22 July 2022, volume 380 of EPTCS, pages 344–
361, 2022, [Rom22].
The author is the single author of this manuscript. The author defined
the research question and all of the results of the paper.

(5) Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Saba-
dini, and Pawel Sobocinski. A canonical algebra of open transition
systems. In Gwen Salaün and Anton Wijs, editors, Formal Aspects of
Component Software - 17th International Conference, FACS 2021, Vir-
tual Event, October 28-29, 2021, Proceedings, volume 13077 of Lecture
Notes in Computer Science, pages 63–81. Springer, 2021, [LGR+21].
The author proposed and proved the main theorem. The author wrote
the manuscript together with Pawel Sobocinski and Elena Di Lavore.
Nicoletta Sabadini proposed the research topic. Alessandro Gianola pro-
vided multiple examples.

(6) Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Saba-
dini, and Pawel Sobocinski. Span(graph): a canonical feedback algebra
of open transition systems. Softw. Syst. Model., 22(2):495–520, 2023
[LGR+23].
The author proposed and proved the main theorem. The author wrote
the manuscript with help from Pawel Sobocinski and Elena Di Lavore.
Nicoletta Sabadini proposed the research topic. Alessandro Gianola pro-
vided multiple examples.

(7) James Hefford and Mario Román. Optics for premonoidal categories.
Applied Category Theory 2023, abs/2305.02906, 2023 [HR23].
The author proposed the main example and helped define the main re-
sults. James Hefford wrote the final manuscript.

26 CONTENTS

(8) Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal
streams for dataflow programming. In Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, New
York, NY, USA, 2022. Association for Computing Machinery. Kleene
Award to the best student paper.
The author wrote most of the manuscript, proposed and proved the main
theorem. Elena Di Lavore provided feedback on the manuscript and
helped write appendices to the paper. Elena Di Lavore and the author
found the motivation for this paper in discussion. Giovanni de Felice
and the author proved together a result on controlled stochastic pro-
cesses.

(9) Dylan Braithwaite and Mario Román. Collages of string diagrams. Ap-
plied Category Theory 2023, preprint arXiv:2305.02675, 2023 [BR23].
The author wrote most of the manuscript, proposed and proved the main
theorem. Dylan Braithwaite had independently published a piece on a
similar topic and revised the text, proposed multiple changes and linked
the theory of collages.

(10) Elena Di Lavore and Mario Román. Evidential decision theory via par-
tial Markov categories. In Logic In Computer Science (LICS’23), pages
1–14, 2023 [LR23].
The author proposed multiple of the main results of this paper. Elena
Di Lavore and the author wrote the paper together. Elena Di Lavore
identified the research area.

(11) Matt Earnshaw, James Hefford, and Mario Román. The Produoidal
Algebra of Process Decomposition, 2023. In Peer-Review, [EHR23].
The author wrote most of this article and proposed the main theorem
and its proof. Matt Earnshaw found the link between the theory of splice-
contour adjunctions and some previous literature. James Hefford pro-
vided the link with the theory of Tambara modules.

The Produoidal Algebra of Process Decomposition is the main unpublished
work (currently in peer-review) that guides the writing of the main chapter of this
thesis. It develops the universal characterization of monoidal lenses and forms the
basis of Chapter 3 and Chapter 4. Promonads and String Diagrams for Effectful
Categories, adapted, was used as the basis of Section 6 and Section 7 of Chapter
1.

CHAPTER 1

Monoidal Process Theory

Monoidal Process Theory

This chapter gives an overview of monoidal categories, their variants and their
syntaxes. Monoidal categories are our framework of choice for process theories:
we claim that the minimalistic axioms of monoidal categories capture what a
process theory is and we assume them for the rest of the thesis.

Section 1 recalls monoidal categories and their string diagrams. Section 2
shows that the same axioms and syntax apply to non-strict monoidal categories
and Section 3 extends them to bicategories, which we will briefly use later. Sec-
tion 4 presents our definitive notion of process theory: symmetric monoidal cate-
gories. Symmetric monoidal categories have two syntaxes that are not commonly
presented together: a string diagrammatic syntax in terms of hypergraphs and a
term theoretic syntax – Hughes’ do-notation [Hug00]. We argue that these two
syntaxes further justify symmetric monoidal categories as a natural setting for
processes.

There is a final concept that has been traditionally left out of monoidal
categories: computational effects. We argue in Sections 6 and 7 that, far from
being a problem that requires an extension of monoidal categories, as usually
assumed, computational effects can still use the same diagrammatic syntax of
string diagrams. This will be crucial for the next chapters in message passing :
messages will constitute a computational effect, but our results in this chapter
allow us to model them without having to leave the syntax of monoidal categories.

27

28 1. MONOIDAL PROCESS THEORY

1. Monoidal Categories

1.1. Strict Monoidal Categories. Monoidal categories are an algebra of
processes, with minimal axioms. The definition of monoidal category – and this
thesis – follow a particular tradition of conceptual mathematics: category the-
ory. Category theory aims to extract mathematical structures in an abstract and
general form. As one such structure, monoidal categories are permissive: pro-
cess theories like quantum maps and Markov kernels form monoidal categories
[AC09, HV19, Fri20, CJ19]; and even relations among sets or the homomorphisms
of modules over a ring form monoidal categories [BSS18, Alu21]. We start by
reinterpreting MacLane’s axioms for a monoidal category [ML71] in terms of
processes.

Definition 1.1. A strict monoidal category C consists of a monoid of objects,
or resources, (Cobj ,⊗, I), and a collection of morphisms, or processes, C(X;Y),
indexed by an input X ∈ Cobj and an output Y ∈ Cobj . A strict monoidal
category is endowed with operations for the sequential and parallel composition
of processes, respectively

(#) : C(X;Y)× C(Y ;Z)→ C(X;Z),

(⊗) : C(X;Y)× C(X ′;Y ′)→ C(X ⊗X ′;Y ⊗ Y ′),

and a family of identity morphisms, idX ∈ C(X;X). Strict monoidal categories
must satisfy the following axioms.

(1) Sequencing is unital, f # idY = f and idX # f = f .
(2) Sequencing is associative, f # (g # h) = (f # g) # h.
(3) Tensoring is unital, f ⊗ idI = f and idI ⊗ f = f .
(4) Tensoring is associative, f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h.
(5) Tensoring and identities interchange, idA ⊗ idB = idA⊗B .
(6) Tensoring and sequencing interchange,

(f # g)⊗ (f ′ # g′) = (f ⊗ f ′) # (g ⊗ g′).

Remark 1.2 (Process theories). Objects are also known as types or resources
[CFS16]. If X and Y are both resources, it is reasonable to assume their joint
occurrence is also a resource, X ⊗ Y ; this joining operation, called tensor (⊗),
must be unital with the empty resource I. Morphisms represent transformations
or processes. If we have a process transforming X into Y and a process transform-
ing Y into Z, we can sequence them (#) and create a process that transforms X
into Z. The process that does nothing, the identity (id), is neutral for sequential
composition. Similarly, transforming X into Y and transforming X ′ into Y ′ gives
a way of transforming the joint object X ⊗X ′ into Y ⊗ Y ′. Whenever we accept
these basic constructions and axioms, we end up with strict monoidal categories.

1. MONOIDAL CATEGORIES 29

Once we have accepted these basic axioms, the next sections develop a syntax
for monoidal categories: string diagrams. String diagrams are an intuitive syntax
for process that is sound and complete for the previous axioms.

1.2. Some Words on Syntax. What makes a mathematical syntax prac-
tical? Different syntaxes highlight different aspects of a proof, and we consider
better those that make the more bureaucratic steps invisible. Syntaxes are an ex-
plicit construction of the free mathematical object with some algebraic structure;
what makes them efficient is how we construct them.

For instance, how to prove that, in a group, the inverse of a multiplication is
the reversed multiplication of the inverses? Usually, we simply observe that

(x · y) · (y−1 · x−1) = �x ·��y · y−1 · �x−1 = e;

that is, a simple computation checks that each letter is cancelled by its inverse.
But we could be more bureaucratic and argue that the correct proof is, actually,

(x · y) · (y−1 · x−1)
(i)
= x · (y · (y−1 · x−1))

(ii)
= x · ((y · y−1) · x−1)

(iii)
= x · (e · x−1)

(iv)
= x · x−1

(v)
= e.

This proof uses associativity (i, ii), the definition of inverse (iii, v), and unitality
(iv). What makes these two proofs different? We can argue that, implicitly, they
are using different syntaxes, constructed in different ways [Shu16].

The bureaucratic syntax implicitly assumes the tautological construction of
a free group. The free group on a set is generated by the elements of the set, the
binary multiplication (·), the unit (e), and the inverse unary operator (−1); then,
it is quotiented by associativity, unitality, and the inverse axioms. Tautological
constructions only allow bureaucratic proofs – but we can do better.

How does one construct free objects non-tautologically? The usual strategy
is to first show that some combinatorial structure possesses the desired algebraic
structure (say, it forms a group with some selected elements). This combinatorial
structure will be as simple as possible, will relegate most steps to computation,
and will use minimal quotienting. The result that makes this recipe work is
freeness: the fact that it defines an adjunction (say, there exists a unique map to
any group with some elements).

30 1. MONOIDAL PROCESS THEORY

More concretely, in our example, we know of a better classical construction of
the free group: reduced words. Reduced words are lists containing some genera-
tors and their inverses. The only condition is that they cannot contain ocurrences
of a generator followed by its inverse: they get automatically cancelled out.

Definition 1.3. Given a set A, the reduced words over it, Word(A), are lists of
polarized elements of A – that is, a or a−1 for each a ∈ A – not containing the
substrings aa−1 or a−1a for any element a ∈ A.
Definition 1.4. The multiplication of two reduced words is inductively defined:
if the first word is empty, then the multiplication is defined to be the second,
e · w2 = w2; however, if the first word consists of a letter and a word, aw1 or
a−1w1, then we consider two cases: we first compute w1 ·w2 by induction; if this
word starts by the inverse of the first letter, a−1 · w′ or a · w′, then they both
reduce and the multiplication is w′ ·w2, otherwise, we just append the first letter,
a(w1 · w2).

Remark 1.5. It is non-trivial to prove that this multiplication is associative: the
effort we put in here is the ease we get in return every time we use the syntax.
We spare the reader this proof and we focus only on showcasing the syntax.

Proposition 1.6. The inverse of a multiplication is the reversed multiplication
of the inverses.

Proof. Reduced words form a group, in fact, the free group over some
generators. In the group of reduced words, (xy)·(y−1x−1) = e holds by definition.
Because of freeness, there is a unique group homomorphism mapping this equality
to any two elements of any other group. �

The core of this argument has been to construct, combinatorially, a left ad-
joint Words : Set→ Group to the forgetful functor Forget : Group→ Set. This
thesis will use adjoints as a more compositional way to discuss syntax. Let us
start with the first of these syntaxes: string diagrams for monoidal categories.

1.3. String Diagrams of Strict Monoidal Categories. Monoidal cat-
egories have a sound and complete syntax in terms of string diagrams [JS91],
which is the one we will use during this text. We may prefer the classical axioms
of monoidal categories when proving that some category is indeed monoidal, but
proving equalities in a monoidal category is easier using deformations of string di-
agrams – we will not need to remember the formulas. Accepting string diagrams
and deformations as a criterion for equality is equivalent to accepting the axioms
of strict monoidal categories: whenever we accept one, we accept the other.

A first example of this syntax describing a process is in Figure 1 [Sob13].
String diagrams construct an adjunction between a category of polygraphs and
a category of strict monoidal categories.

1. MONOIDAL CATEGORIES 31

Figure 1. Process of preparing a Crema di Mascarpone, adapted
from Sobocinski.

Definition 1.7. A polygraph G (analogue of a multigraph [Shu16]) is given by
a set of objects, Gobj , and a set of arrows G(A0, . . . , An;B0, . . . , Bm) for any
two sequences of objects A0, . . . , An and B0, . . . , Bm. A morphism of polygraphs
f : G → H is a function between their object sets, fo : Gobj → Hobj , and a family
of functions between their corresponding morphism sets for any two sequences of
objects

f : G(A0, . . . , An;B0, . . . , Bm)→ H(foA0, . . . , foAn; foB0, . . . , foBm).

Polygraphs with polygraph homomorphisms form a category, PolyGraph.

Definition 1.8. A strict monoidal functor, F : C→ D, is a monoid homorphism
between their object sets, Fobj : Cobj → Dobj , and an assignment taking any
morphism f ∈ C(X;Y) to a morphism F (f) ∈ D(FX;FY). A functor must
preserve sequential composition, F (f # g) = F (f) # F (g); parallel composition,
F (f ⊗ g) = F (f) ⊗ F (g); and identities, F (id) = id. Strict monoidal categories
with strict monoidal functors form a category, MonCatStr.

Definition 1.9. A string diagram over a polygraph G (or progressive plane graph
in the work of Joyal and Street [JS91, Definition 1.1]) is a graph Γ embedded in
the squared interval such that

(1) the boundary of the graph touches only the top and the bottom of the
square, δΓ ⊆ {0, 1} × [0, 1];

32 1. MONOIDAL PROCESS THEORY

(2) and the second projection is injective on each component of the graph
without its vertices, Γ− Γ0; this makes it acyclic and progressive.

We call to the components of Γ− Γ0 wires, W ; we call the vertices of the graph
nodes, Γ0. Wires must be labelled by the objects of the polygraph, o : W → Gobj ,
nodes must be labelled by the generators of the polygraph, m : Γ0 → G; and each
node must be connected to wires exactly typed by the objects of its generator –
a string diagram must be well-typed.

Lemma 1.10. String diagrams over a polygraph G form a monoidal category,
which we call String(G). This determines a functor,

String : PolyGraph→MonCatStr.

Proof sketch. The objects of the category are lists of objects of the poly-
graph, which we write as [X0, . . . , Xn], for Xi ∈ Gobj . These form a (free) monoid
with concatenation and the empty list.

Morphisms [X0, . . . , Xn] → [Y 0, . . . , Ym] are string diagrams over the poly-
graph G such that (i) the ordered list of wires that touches the upper boundary
is typed by [X0, . . . , Xn], and (ii) the ordered list of wires that touches the lower
boundary is typed by [Y 0, . . . , Ym].

Figure 2. Strict monoidal category of string diagrams.

Figure 2 describes the operations of the category. The parallel composi-
tion of two diagrams α : [X0, . . . , Xn] → [Y 0, . . . , Ym] and α′ : [X ′0, . . . , X

′
n′] →

[Y ′0 , . . . , Y
′
m′] is their horizontal juxtaposition. The sequential composition of two

diagrams α : [X0, . . . , Xn] → [Y 0, . . . , Ym] and β : [Y 0, . . . , Ym] → [Z0, . . . , Zk] is
the diagram obtained by vertical juxtaposition linking the outputs of the first to
the inputs of the second. The identity on the object [X0, . . . , Xn] is given by a
diagram containing n identity wires labelled by these objects. �

Lemma 1.11. Forgetting about the sequential and parallel composition defines a
functor from monoidal categories to polygraphs,

Forget : MonCatStr → PolyGraph.

1. MONOIDAL CATEGORIES 33

Proof. Any monoidal category C can be seen as a polygraph Forget(C)
where the edges are determined by the morphisms,

Forget(C)(A0, . . . , An;B0, . . . , Bm) = C(A0 ⊗ . . .⊗An, B0 ⊗ . . .⊗Bm),

and we forget about composition and tensoring. It can be checked, by its defini-
tion, that any strict monoidal functor induces a homomorphism on the underlying
polygraphs. �

Theorem 1.12 (Joyal and Street, [JS91, Theorem 2.3]). There exists an
adjunction between polygraphs and strict monoidal categories, String a Forget.
Given a polygraph G, the free strict monoidal category String(G) is the strict
monoidal category that has as morphisms the string diagrams over the generators
of the polygraph; the underlying polygraph determines the right adjoint.

1.4. Example: Crema di Mascarpone. This first example shows how to
construct morphisms in a monoidal category. The theory for preparing crema di
mascarpone contains the following resources,

{egg,white, yolk, shell,whisked white, sugar,mascarpone, paste, thick paste, crema}.
These resources are the objects of the polygraph also containing the following
seven generators, as in Figure 3.

(1) crack: egg→ white⊗ shell⊗ yolk,
(2) beat : yolk⊗ yolk⊗ sugar→ paste,
(3) stir : paste⊗mascarpone→ thick paste,
(4) whisk: white⊗ white→ whisked whites,
(5) fold : whisked whites⊗ thick paste→ cream,
(6) swap: yolk⊗ white→ white⊗ yolk,
(7) discard: shell→ i.

All these resources form a polygraph C. Thanks to the adjunction between poly-
graphs and monoidal categories, deciding how to interpret the resources and the
generators of the polygraph in any monoidal category, C → Forget(D), is the
same as creating a strict monoidal functor that interprets string diagrams in that
category, String(C) → D. In particular, it interprets Figure 1 as a morphism in
the monoidal category D.

Usually, discarding and swapping are better understood as global structure
with which all of the objects of the category are endowed. Even better than
asking for the last generator in Figure 3, we will ask for the ability to copy or to
swap resources freely. This is done via cartesian monoidal categories or symmetric
monoidal categories, respectively.

1.5. Bibliography. Monoidal categories, together with their coherence the-
orem, were first introduced by MacLane [Mac63, Mac78], explicit equivalence the-
orems are given later by Joyal and Street [JS93]. String diagrams as progressive

34 1. MONOIDAL PROCESS THEORY

Figure 3. Polygraph for the theory of mascarpone.

graphs were introduced by Joyal [JS91]. Our presentation follows the resource
theories of Coecke, Fritz and Spekkens [CFS16].

Petri nets and process calculi are alternative mathematical approaches to
process theory; at the same time, they are arguably particular cases of monoidal
categories [Sob10]. Monoidal categories as circuits and processes are explicitly
pioneered by Sabadini, Walters, Carboni and Street [KSW97, CW87]. The string
diagrammatic recipe for “crema di mascarpone” is an adaptation of a blog post
by Sobocinski [Sob13]. We also follow the ideas of Shulman on categorical logic
[Shu16].

2. NON-STRICT MONOIDAL CATEGORIES 35

2. Non-Strict Monoidal Categories

We have just argued for the axioms of strict monoidal categories as our pro-
cess theories and string diagrams as our syntax. The bad news is that there
exists a technicality preventing many interesting examples from ever forming a
strict monoidal category; the good news is that neither the axioms of monoi-
dal categories nor our string diagrams need to change at all to accommodate this
technicality: this curious phenomenon is possible thanks to MacLane’s strictifica-
tion and coherence results [ML71]. This section introduces non-strict, or general
monoidal categories, and it immediately details how MacLane’s results ratify the
axioms of strict monoidal categories.

2.1. Non-Strictness. The axioms of strict monoidal categories are enough
to study a broader class of mathematical structures: non-strict monoidal cate-
gories.

What is a non-strict monoidal category? In a monoidal category, the tensor
(⊗) is not required to be associative or unital. Because of how we usually con-
struct our definitions, it is not always the case that X ⊗ (Y ⊗Z) = (X ⊗Y)⊗Z.
Consider the theory of sets and functions, with the cartesian product (×) as the
tensor. If we define

X × Y = {(x, y) | x ∈ X, y ∈ Y },
then, simply, X × (Y ×Z) 6= (X ×Y)×Z. However, it is still the case that there
exist two functionsX×(Y ×Z)→ (X×Y)×Z and (X×Y)×Z → X×(Y ×Z) and
that these functions are mutual inverses for sequential composition. Whenever
this happens in a category, we say these two objects are isomorphic (∼=) and
the morphisms are isomorphisms. In a monoidal category, the tensor is not
associative and unital but it is still associative and unital up to an isomorphism.
This may sound like a minor technicality, but it makes many examples fail to
form a monoidal category.

Definition 2.1. Amonoidal category, (C,⊗, I, α, λ, ρ), is a category C equipped
with a pair of functors (⊗) : C × C → C, and I ∈ C, called tensor and unit re-
spectively. and three families of isomorphisms called the coherence maps:

(1) the associator αX,Y,Z : (X ⊗ Y)⊗ Z ∼= X ⊗ (Y ⊗ Z),
(2) the left unitor λA : I ⊗A ∼= A and
(3) the right unitor ρA : A⊗ I ∼= A.

These three families of maps must be natural, meaning they commute with other
well-typed morphisms of the monoidal category. Moreover, these must be such
that every formally well-typed equation between coherence maps holds.

Proposition 2.2. A strict monoidal category is precisely a monoidal category
where α, λ, and ρ are identities.

36 1. MONOIDAL PROCESS THEORY

Proof. The naturality of the coherence maps, whenever these are identities,
is the same as the associativity and unitality of the tensor (3 and 4). Functo-
riality of the tensor is the same as the interchange axioms (5 and 6); while the
functoriality of the unit is trivially true. �

2.2. Coherence. The conditions of the definition of a non-strict monoidal
category may seem too strong: we are asking that a wide family of equations (all
the formally well-typed ones) hold. Fortunately, the coherence theorem shows
that simply checking two families of equations is enough.

Theorem 2.3 (MacLane, [ML71]). The three different families of coherence
maps (α, λ, ρ) satisfy all formally well-typed equations between them whenever
they satisfy the triangle and pentagon equations:

(1) αX,I,Y # (idX ⊗ λY) = ρX ⊗ idY , and
(2) (αX,Y,Z ⊗ id) # αX,Y⊗Z,W # (idX ⊗ αY,Z,W) = αX⊗Y,Z,W # αX,Y,Z⊗W .
Finally, the theorem that allows strict monoidal categories to talk about

non-strict monoidal categories is the strictification theorem that says that any
monoidal category is monoidally equivalent to a strict one. This does determine
an adjunction with extra structure, making it a 2-adjunction [Cam19].

Theorem 2.4 (Joyal and Street, [JS91]). Any monoidal category is equivalent
via a strong monoidal functor to a strict one. There exists a 2-adjunction between
the category of monoidal categories and strong monoidal functors and the category
of strict monoidal categories with strict monoidal functors. Moreover, the unit of
this 2-adjunction is an equivalence.

2.3. String Diagrams of Monoidal Categories. While it is true that we
can construct the free strict monoidal category on a polygraph, it is not true yet
that we know how to construct the free monoidal category (the non-strict one)
over a polygraph; in fact, this seems to be impossible. This could be misread
as saying that string diagrams are not equally sound and complete for monoidal
categories. Nothing is further from the truth: even if there are now multiple ways
of interpreting a string diagram in a monoidal category, these are essentially equal
– they define isomorphic functors.

Theorem 2.5. There is a pseudoadjunction between the locally discrete 2-
category of polygraphs and the 2-category of monoidal categories, strong monoidal
functors and monoidal natural transformations.

Proof sketch. This pseudoadjunction arises as a combination of two dif-
ferent 2-adjunctions. The first one is the adjunction between polygraphs and
strict monoidal categories we have studied before. The second one is described
in Theorem 2.4, and its unit defines an equivalence: every monoidal category is
equivalent to a strict one.

2. NON-STRICT MONOIDAL CATEGORIES 37

Figure 4. Pseudoadjunctions between polygraphs and monoidal
categories.

It is well known that each time that we have two adjunctions in this dispo-
sition we can reduce one along the other, provided that the unit of the former is
invertible (see Proposition 3.10). In this case, the unit is not exactly invertible
but merely an equivalence: as a consequence, we obtain not another 2-adjunction
but merely a pseudoadjunction. This concludes the proof. �

2.4. Bibliography. The coherence results go back to MacLane, Joyal and
Street [Mac63, JS91]; Hermida arrived at the same result via multicategories
[Her01, Had18]; and there is a more modern account by Becerra detailing the
2-adjunction between strict and non-strict monoidal categories [Bec23], which
Campbell studies for bicategories [Cam19].

38 1. MONOIDAL PROCESS THEORY

3. String Diagrams of Bicategories

Bicategories are the second extension of monoidal categories that we will
employ during the text. If monoidal categories were well-suited to reason about
process theories, bicategories, one level up, are well-suited to reason about cate-
gories themselves; however, their string diagrammatic syntaxes are very close.

String diagrams of monoidal categories can be easily extended to bicategories
if we allow ourselves to color the regions. Coloring the regions simply constrains
which objects can be tensored: this algebraic structure is a bicategory, also known
as a weak 2-category. In a bicategory, two objects must coincide along a boundary
to be tensored.

Definition 3.1. A strict 2-category B consists of a collection of objects, or 0-cells,
Bobj , and a category of morphisms or 1-cells between any two objects, B(A;B).
A strict 2-category is endowed with operations for the parallel composition of
1-cells,

(;) : B(A;B)× B(B;C)→ B(A;C),

(IA) : B(A;A),

that are associative and unital both on objects and morphisms, meaning that
(X ; Y) ; Z = X ; (Y ; Z), and IA ;X = X = X ; IB . Bicategories must satisfy
the following axioms, making parallel composition a functor:

(1) parallel composition is unital, f ; id = f , and id ; f = f ;
(2) parallel composition is associative, f ; (g ; h) = (f ; g) ; h;
(3) compositions are unital, id ; id = id;
(4) compositions interchange, (f # g) ; (f ′ # g′) = (f ; f ′) # (g ; g′).

Remark 3.2. A single-object strict 2-category is exactly a strict monoidal cat-
egory.

3.1. String diagrams of 2-categories. Let us briefly comment on how
the string diagrams of monoidal categories extend to bicategories. We repeat
the same definitions and the same theorems, just taking care of matching the
boundaries this time.

Definition 3.3. A bigraph, or 2-graph, B is given by a set of objects, Bobj ; a set
of arrows between any two objects, B(A;B); and a set of 2-arrows between any
two paths of arrows, B(X0, . . . , Xn;Y 0, . . . , Ym).

A bigraph homomorphism, f : A → B, is a function between their object
sets, fo : Aobj → Bobj ; a family of functions between their corresponding arrow
sets, f : A(A;B) → B(f(A), f(B)); and a family of functions between their cor-
responding 2-arrow sets,

f : A(X0, . . . , Xn;Y 0, . . . , Ym)→ B(fX0, . . . , fXn; fY 0, . . . , fYm).

3. STRING DIAGRAMS OF BICATEGORIES 39

Bigraphs with bigraph homomorphisms form a category, BiGraph.

Definition 3.4. A string diagram over a bigraph A is a string diagram over
the polygraph formed by arrows and 2-arrows, additionally satisfying that each
region is labelled by an object of the bigraph, and in such a way that any wire is
labelled by an arrow connecting the labels of the two regions.

Theorem 3.5. There is an adjunction between bicategorical graphs and 2-
categories with strict 2-functors between them. The left adjoint is given by colored
string diagrams over the bigraph.

3.2. Bicategories. Strict monoidal categories have a weak analogue that
still shares the same syntax – (weak, or non-strict) monoidal categories. In the
same way, strict 2-categories have a weak analogue that shares the same syntax:
weak 2-categories, sometimes called bicategories.

Definition 3.6. A bicategory (B, ;, I, α, λ, ρ) is a collection of 0-cells, Bobj , to-
gether with a category B(A;B) between any two 0-cells, A,B ∈ Bobj , and functors

(;) : B(A;B)× B(B;C)→ B(A;C), and IA : B(A;A),

that are associative and unital up to isomorphism, meaning that there exist
natural isomorphisms describing associativity αX,Y,Z : (X⊗Y)⊗Z ∼= X⊗(Y ⊗Z),
left unitality λX : IA ⊗X ∼= X and right unitality ρX : X ⊗ IB ∼= B.

Conjecture 3.7. There is a pseudoadjunction between the locally discrete 2-
category of bicategorical graphs and the 2-category of bicategories, pseudofunctors
and icons (see Campbell, Garner and Gurski’s work for the higher structure of
the strictification adjunction [Cam19, GG09]).

3.3. Example: Adjunctions. We exemplify the usage of string diagrams
for bicategories in an abstract definition of adjunctions. We then use string
diagrams to prove a theorem about adjunctions.

Definition 3.8. The theory of a duality in a bicategory contains two 0-cells A
and B; it contains two 1-cells between them, L : A → B and R : B → A, and it
contains two 2-cells, ε : L#R→ I and η : I → R#L, that satisfy (id⊗η)#(ε⊗id) = id
and (η ⊗ id) # (id⊗ ε) = id.

Remark 3.9. Adjunctions are dualities in the bicategory of categories, functors,
and natural transformations.

Proposition 3.10 (Reducing an adjunction). Let F : A→ C and H #U : C→ A
determine an adjunction (F,H # U, η, ε) and let P : B → C determine a second
adjunction (P,H, u, c) such that the unit u : I → P #H is a natural isomorphism
(as in Figure 6). Then, F #H is left adjoint to U .

40 1. MONOIDAL PROCESS THEORY

Figure 5. Theory of a duality.

Figure 6. Setting for reducing an adjunction.

Proof. We employ the string diagrammatic calculus of bicategories for the
bicategory of categories, functors and natural transformations [Mar14]. We define
the morphisms in Figure 7 to be the unit and the counit of the adjunction. We
then prove that they satisfy the snake equations in Figures 7 and 8.

Figure 7. Unit and counit of the reduced adjunction (left). First
snake equation (right).

In the first snake equation, in Figure 7, we use (i) that there is a duality
(η, ε), and (ii) that u is invertible. In the second snake equation, in Figure 8, we
use (i) that there is a duality (u, c), (ii) that u is invertible, (iii) that there is a
duality (u, c), again; and (iv) that there is a duality (η, ε). �

3.4. Bibliography. String diagrams for bicategories are usually interpreted
as the Poincaré dual of globular pasting diagrams, which were used by Bénabou

3. STRING DIAGRAMS OF BICATEGORIES 41

Figure 8. Second snake equation.

since the introduction of bicategories [Bén67]. Marsden uses string diagrams for
bicategories to study basic formal category theory [Mar14].

42 1. MONOIDAL PROCESS THEORY

4. Symmetric Monoidal Categories and Do-Notation

Setting strictness asside, an extra axiom sharpens monoidal categories for
the study of process theories: symmetry. Symmetry states that the position that
resources occupy is not important: A⊗B is worth the same as B⊗A. Assuming
symmetry simplifies process syntax drammatically – in fact, it also enables a new
syntax that mimics imperative programming – and it is arguably an axiom that
we need before we can really talk of processes.

This section introduces symmetric monoidal categories, their specialized string
diagrams in terms of hypergraphs [BGK+16], and their do-notation syntax [Hug00].

4.1. Commutative Monoidal Categories. So far, the meaning of the
tensor (⊗) in process theories has arguably been too general: so far, we have
asked A⊗B to represent the juxtaposition of resources – resources form a monoid.
Why not a commutative monoid? If we interpret objects as bags of resources, it
seems clear that a commutative monoid would be more appropriate. However,
imposing commutativity naively fails catastrophically: the individuality of each
resource disappears [MM90].

Definition 4.1. A commutative monoidal category is a strict monoidal category
(C,⊗, I) where objects form a commutative monoid, A ⊗ A′ = A′ ⊗ A for each
A,A′ ∈ Cobj , and the tensor of morphisms is also commutative, f ⊗ f ′ = f ′ ⊗ f
for any two f : A→ B and f ′ : A′ → B′.

Proposition 4.2. In a commutative monoidal category, resources do not have
individuality: it does not matter to which of them we apply a transformation, and
not even the order in which we apply them. More formally,

(f # g)⊗ id = (f ⊗ g) = id⊗ (g # f)

for each two transformations of the same resource, f : X → X and g : X → X.

This may be useful in specific applications. Indeed, it is one of the crucial
ideas behind the formalization of Petri nets as monoids in the work of Meseguer
and Montanari [MM90] – commutativity represents the “collective token philos-
ophy” of Petri nets [BGMS21]. However, for our purposes, we will need a more
refined notion that does not destroy the individuality of our resources: this notion
is given by symmetric monoidal categories.

4.2. Symmetric Monoidal Categories. Symmetric monoidal categories
do not assume that the monoid of objects is commutative; they only assume
that there is a family of processes that allow us to reorder resources, making
it commutative “up to an invertible process”. In practice, this means that even
when X ⊗ Y 6= Y ⊗ X, there exists a process σX,Y : X ⊗ Y → Y ⊗ X that is
invertible. These are our definitive notion of process theory.

4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 43

Definition 4.3. A strict symmetric monoidal category (or a permutative cat-
egory) is a strict monoidal category (C,⊗, I) endowed with a family of maps
σX,Y : X ⊗ Y → Y ⊗X that satisfy the following equations describing how to

(1) swap nothing, σI,X = idX = σX,I ;
(2) swap resources on the left, σX,Y⊗Z = (σX,Y ⊗ idZ) # (idY ⊗ σX,Z);
(3) swap resources on the right, σX⊗Y,Z = (idX ⊗ σY,Z) # (σX,Z ⊗ idY);
(4) reverse a swap with a swap, σX,Y # σY,X = idX ⊗ idY ;
(5) swap and apply transformations, σX,Y # (f ⊗ g) = (g ⊗ f) # σX′,Y ′ ;
(6) and swap in any order,

(σX,Y ⊗ id) # (id⊗ σX,Z) # (σY,Z ⊗ id) = (id⊗ σY,Z) # (σX,Z ⊗ id) # (id⊗ σX,Y).

The first three axioms are especially important for clarifying all the rest: they
say that the swapping process of any two objects in a freely generated monoidal
category is determined by the swapping process of the generators. This already
allow us to have a first string diagrammatic calculus for symmetric monoidal
categories: the swap on the generators is represented by wires crossing; the swap
on arbitrary objects is constructed from it; the rest of the axioms are better
understood in terms of string diagrams (Figure 9).

Figure 9. Theory of strict symmetric monoidal categories.

However, this is an inefficient syntax: it forces us to explicitly deal with
the axioms of the swap. A better syntax would make them transparent, and
state that the only thing that matters in a string diagram for symmetric mo-
noidal categories is where the wires are ultimately connected – that is, we only
care about the underlying hypergraph. A detailed presentation of the string dia-
grams of symmetric monoidal categories as hypergraphs is in the work of Bonchi,
Sobocinski, Zanasi, and others [BSZ14, BGK+16].

Definition 4.4. A hypergraph (V,E) consists of a set of nodes, V , and a set
of directed hyperedges E connecting lists of vertices to lists of vertices, that is,
e : [v1, . . . , vn] → [w1, . . . wm] for each e ∈ E. We say a hypergraph is acylic if
contains no loops.

Definition 4.5. A hypergraph labelled over a polygraph G, is a hypergraph (V,E)
such that each vertex v ∈ V is assigned an object of the polygraph, l(v) ∈ Gobj ,

44 1. MONOIDAL PROCESS THEORY

and each hyperedge e : [v1, . . . , vn]→ [w1, . . . wm] is assigned an edge

l(e) : l(v1), . . . , l(vn)→ l(w1), . . . , l(wm),

preserving the type of its vertices.

Definition 4.6. A symmetric string diagram from [X1, . . . , Xn] to [Y 1, . . . , Ym]
is an acyclic hypergraph (V,E) labelled by a polygraph G, such that each vertex
appears exactly once as an input and exactly once as an output, and endowed
with two distinguished unlabelled hyperedges:

the input i : []→ [x1, . . . , xn], and the output o : [y1, . . . , ym]→ [],

typed by l(x1) = X1, . . . , l(xn) = Xn and l(y1) = Y 1, . . . , l(ym) = Ym.

Proposition 4.7. Symmetric string diagrams over a polygraph G form a sym-
metric monoidal category, Stringσ(G).

Figure 10. Symmetric monoidal category of string diagrams.

Proof. A summary of the construction is in Figure 10: wires are ver-
tices and hyperedges are nodes. Let us describe the category. The objects
are lists of objects of the polygraph. Tensoring of string diagrams of type
[X1, ..., Xn] → [Y 1, ..., Ym] and [X ′1, ..., X ′n] → [Y ′1, ..., Y ′m] is defined by the dis-
joint union of the hypergraphs – merging input and output edges – into a string
diagram [X1, ..., Xn, X

′
1, ..., X ′n]→ [Y 1, ..., Ym, Y ′1, ..., Y ′m]. Composition of string

diagrams of type [X1, ..., Xn]→ [Y 1, ..., Ym] and [Y 1, ..., Ym]→ [Z1, ..., Zp] is con-
structed by glueing the vertices along the output edge of the first and the input
edge of the second, which disappear producing a string diagram [X1, . . . , Xn]→
[Z1, . . . , Zp]. Generators are included as single hyperedges labelled by them.
The identity, [X1, . . . , Xn]→ [X1, . . . , Xn], consists only of the input and output
edges, connected by a list of vertices. Symmetries are defined by twisting the
connections of the input and output edges. Finally, we can check that string
diagrams satisfy the axioms of symmetric monoidal categories. �

4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 45

Definition 4.8. A strict symmetric monoidal functor between two strict symme-
tric monoidal categories, F : C → D, is a strict monoidal functor that moreover
preserves symmetries: F (σ) : F (X) ⊗ F (Y) → F (Y) ⊗ F (X) is the symmetry
on F (X) and F (Y). Strict symmetric monoidal categories and strict symmetric
monoidal functors form a category, SymMonCatStr.

Proposition 4.9. The construction of symmetric string diagrams extends to a
functor from polygraphs to symmetric monoidal categories,

Stringσ : PolyGraph→ SymMonCatStr.

Proposition 4.10. There exists a forgetful functor from strict symmetric monoi-
dal categories to polygraphs that takes the objects as the vertices of the polygraph
and the morphisms as the edges,

Forget : SymMonCatStr → PolyGraph.

Theorem 4.11. String diagrams for symmetric monoidal categories form
the free strict symmetric monoidal category over a polygraph: there exists an
adjunction Stringσ a Forget.

Proof sketch. We have already shown that string diagrams form a sym-
metric monoidal category. It only remains to show that there exists a unique
strict symmetric monoidal functor to any strict symmetric monoidal category.
The assignment is determined by the fact that each string diagram is constructed
from the generators and the operations of a symmetric monoidal category, the
difficulty is in showing that this assignment is well-defined. We refer the reader
to the work of Bonchi and others [BGK+16]. �

The syntax of symmetric string diagrams as hypergraphs is more efficient: to
check equality, only the connectivity of the wires matters, and we no longer need
to track the specific blocks forming the diagram.

4.3. Do-Notation. There is a second practical syntax for symmetric mo-
noidal categories that links string diagrams to programming: Hughes’ arrow
do-notation [Hug00, Pat01]. It comes from functional programming, but it is
precisely a representation of imperative programming. The main idea is that, in
a string diagram, we can label the wires by variable names, and simply declare
which nodes take which inputs and outputs to reconstruct the string diagram.
In a certain sense, this is the graph encoding of a string diagram, but it closely
resembles an imperative program.

Example 4.12 (Crema di Mascarpone in Do-notation). Consider the same pro-
cess for “crema di mascarpone” that we detailed in Section 1.4. This time, we can
directly assume that we are in a symmetric monoidal category. The translation
of the string diagram of Figure 1 is the following code in Figure 11.

46 1. MONOIDAL PROCESS THEORY

Figure 11. Do-notation recipe for Crema di Mascarpone.

Let us formalize do-notation in the style of a type-theory: we will work
with variables, we consider them to be unique and we work implicitly up to α-
equivalence (or renaming of variables). Our notion of signature is again that of
a polygraph: our basic types will be the objects of the polygraph, and we will
have a rule for each one of the generators in the polygraph.

Definition 4.13. A derivation in the proof theory of do-notation over a poly-
graph is defined inductively to be either

(1) a single return statement, given by a permutation; or
(2) the application of a generator f : A0, . . . , An → B0, . . . , Bm, given by a

choice of generator and an insertion of variables, followed by a deriva-
tion.

a0:A0, . . . , an:An �τ () ` return(a0, . . . , an) : A0 ⊗ . . .⊗An
(Return)

b0:B0, . . . , bm:Bm,Γ ` t : ∆

a0:A0, . . . , an:An �τ Γ ` f(a0, . . . , an)→ b0, . . . , bm # t : ∆
(f)

Figure 12. Do-notation for symmetric monoidal categories.

Before continuing, then, it is important to understand what an insertion is.
An insertion captures how many ways we have of inserting some n new terms
into a list of m terms. The new n terms can be freely permuted, but the list of
m terms must preserve their relative order. This is the combinatorial structure
that will track how variables are used in a derivation.

Definition 4.14. We define the family of insertions of n terms into m terms,
Ins(n,m), inductively. There exists a single way of inserting zero terms into any

4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 47

list of terms, Ins(0,m) = 1; inserting n+ 1 terms into a list of m terms amounts
to choosing the position of the first among m+ 1 possible choices, and inserting
the rest of the terms,

Ins(n+ 1,m) = (m+ 1)× Ins(n,m+ 1).

As a consequence, the number of possible insertions is Ins(n,m) = (m+ n)!/m!.
We write a1, . . . , an �τ Γ to refer to the list resulting from the insertion of

the variables a1, . . . , an into the list Γ, of length m, according to the insertion
τ ∈ Ins(n,m).

Remark 4.15. Accordingly, the only information that a return statement may
carry is that of an insertion Ins(n, 0), which is equivalently a permutation of
the n elements that are being returned. The information carried by a generator
statement is not only a generator n-to-m but also an insertion Ins(n,#Γ) of n
variables on the context of the derivation.

Example 4.16. Let us provide an example of the correspondence between the
different notations: a Rosetta’s stone translating between string diagrams, terms
of do-notation, and their corresponding derivations (Figure 13).

z:Z,w:W ` return(z,w) : Z ⊗W
z:Z, b:B,w:W, y:Y ` h(b, y)→ ()#

return(z,w) : Z ⊗W
a:A, b:B,w:W, x:X, y:Y ` f(a, x)→ z #

h(b, y)→ () #
return(z,w) : Z ⊗W

x:X, y:Y ` g()→ (a, b,w) #
f(a, x)→ z #
h(b, y)→ () #
return(z, w) : Z ⊗W

Figure 13. String diagram and derivation of a term.

4.4. Symmetry in Do-notation. At this point, using insertions may seem
complicated: why not simply assume an exchange rule that allows us to permute
variables freely? The problem we would encounter is that exchanges introduce
redundancy: there would be multiple ways of writing the same term, depending
on where we place the symmetries (Shulman describes the same problem for a
different notation [Shu16]). This is not a catastrophic problem – we could still
quotient them out appropriately – but it would make the construction much more

48 1. MONOIDAL PROCESS THEORY

complicated than simply dealing with the combinatorial structure of insertions
upfront.

The better solution is to have exchange appear as a derived, admissible rule,
rather than a primitive.

Proposition 4.17. Exchange is admissible in Do-notation for symmetric monoi-
dal categories. Any derivation Γ, x, y,∆ ` t : X admits a derivation Γ, y, x,∆ `
t : X.

Proof. We proceed by structural induction. The base case is a single return
statement, written as a0, . . . , x, y, . . . , an �σ () ` return(a0, . . . , x, . . . , y, . . . an) :
X. Permuting x, y in the insertion τ gives us a new insertion τxy deriving the
same statement under a different context

a0, . . . , y, x, . . . , an �τxy () ` return(a0, . . . , x, . . . , y, . . . an) : X.

Consider now an application of a generator,

a0, . . . , an �τ Γ ` f(a0, . . . , an)→ b0, . . . , bm # term : X.

There are two possible cases here: (1) if any of x, y is among the inserted variables,
a0, . . . , an, then we may simply exchange them by changing the order in which
they are inserted; (2) if not, then Γ = Γ′, x, y,∆′, and we apply the induction
hypothesis over the derivation Γ′, x, y,∆′ ` term : X. �

Indeed, this is enough to ensure that terms do correspond to derivations: we
may simply write a term and there is a unique way it could have been extracted
from the context.

Proposition 4.18. Do-notation terms in a given context have a unique deriva-
tion.

Proof. By structural induction, a term is either a single return or an appli-
cation of some generator (f). Any single term x0, . . . , xn ` return(a0, . . . , an) has
a unique derivation: namely, the one that inserts the a’s into the x’s permuting
them in the only possible order. The insertion τ must be the only one making
τ(xi) = ai.

Consider now an application of a generator, ∆ ` f(a0, . . . , an)→ b0, . . . , bm # t :
X. We know that it must come from ∆ = (a0, . . . , an �τ Γ), and this forces
Γ = (∆ − {a0, . . . , an}) and the value of the insertion τ : it is the only one that
turns Γ into ∆. Once Γ has been determined, we apply the induction hypothesis
to get the derivation of b0, . . . , bm,Γ ` t : X. �

4.5. Quotienting Do-notation. Our logic is freely constructed, but it is
not yet a logic of monoidal categories: technically, it misses interchange. As it
stands, it is actually a logic for symmetric premonoidal categories, which we will

4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 49

study later. We shall only add the following rule – the interchange rule – in order
to convert it into a calculus of symmetric monoidal categories.

Interchange rule. Consider a derivation of the following term, where b0, . . . , bm

and c0, . . . cp are two lists of distinct variables, meaning that no bi appears in cj
– and conversely, no di appears in aj. Then, we can interchange the two first
statements of the term.

Γ ` f(a0, . . . , an)→ b0, . . . , bm #
g(c0, . . . , cp)→ d0, . . . , dp #
term : ∆

≡
Γ ` g(c0, . . . , cp)→ d0, . . . , dp #

f(a0, . . . , an)→ b0, . . . , bm #
term : ∆

Figure 14. Interchange rule.

Proposition 4.19. We show this is well defined. Whenever the left hand side
of the interchange rule is a valid term, and variables are distinct, the right hand
side is also a valid term.

Proof. First, we reason that the term on the left-hand side must have a
derivation tree of the following form.

d0, . . . , dq, b0, . . . , bm,∆ ` term : C

b0, . . . , bm, (c0, . . . , cp �ρ ∆) ` g(c0, . . . , cp)→ (d0, . . . , dq) #
term : C

a0, . . . , an �σ (c0, . . . , cp �ρ ∆) ` f(a0, . . . , an)→ (b0, . . . , bm) #
g(c0, . . . , cp)→ (d0, . . . , dq) #
term : C

We now argue for this. In the second line of the derivation we use that, because
of variables being distinct, the only possible context (c0, . . . , cp) �τ Ψ we can
use must factor as b0, . . . , bm, (c0, . . . , cp)�ρ ∆ for some ∆ and ρ. We can then
check by the form of the rules that the final context Γ must be of the form
a0, . . . , an �σ (c0, . . . , cp �ρ ∆) for some insertion σ. All this means that the
following derivation is also valid.

b0, . . . , bm, d0, . . . , dq,∆ ` term : X

d0, . . . , dq, (c0, . . . , cp � ∆) ` f(a0, . . . , an)→ b0, . . . , bm #
t : X

a0, . . . , an � (c0, . . . , cp � ∆) ` g(c0, . . . , cp)→ (d0, . . . , dq) #
f(a0, . . . , an)→ (b0, . . . , bm) #
term : X

50 1. MONOIDAL PROCESS THEORY

This derivation proves that the right side term is also valid. �

Finally, we can start proving that do-notation terms are a syntax for symme-
tric monoidal categories: they form the free strict symmetric monoidal category
over a signature.

Lemma 4.20. Do-notation terms over a polygraph G, quotiented by the inter-
change rule, define a monoidal category, Do(G). This construction induces a
functor Do : PolyGraph→ SymMonCatStr.

Proof sketch. We will describe the operations of this strict symmetric
monoidal category. Let us start by composition: consider derivations Γ `
t : B1 ⊗ . . .⊗Bm and b1:B1, . . . , bm:Bm ` s : Ψ. We will construct, by induction
over t, a derivation Γ ` comp(t, s) : Ψ, that will define their composition. If t is a
return statement, then Γ is a permutation of b1:B1, . . . , bm:Bm and, by exchange,
we obtain Γ ` s : Ψ and we define it as the composition. Whenever t consists of
a generator followed by a derivation, Γ ` t : Ψ must be of the form

(x1, . . . , xn)� Γ′ ` f(x1, . . . , xn)→ y1, . . . , ym # t′ : Ψ,

and we define comp(t, s) to mean f(x1, . . . , xn)→ y1, . . . , ym # comp(t′, s), using the
y1, . . . , ym,Γ

′ ` t′ : B1⊗ . . .⊗Bm we just obtained. Put simply, we have removed
the last return statement from one of the derivations, taking care of permutations,
and then concatenated both (see Figure 15).

Let us now define tensoring: consider derivations Γ ` t : ∆ and Γ′ ` t′ : ∆′.
We start by noticing that, if we have a derivation Γ ` t : ∆, we can construct, by
induction, a derivation Γ, z:Z ` tz : ∆⊗Z for any z:Z: the return case consists of
adding an extra variable to the permutation, the generator case is not affected by
the presence of an extra variable. Repeating this reasoning and using exchange,
we can obtain terms Γ,Γ′ ` tΓ′ : ∆ ⊗ Γ′ and ∆,Γ′ ` t′∆ : ∆ ⊗ ∆′ that we can
compose into Γ,Γ′ ` comp(tΓ′ , t

′
∆′) : ∆⊗∆′. The order of composition does not

matter because of the interchange law. Put simply, we write the two terms one
after the other, taking care not to mix the variables (see Figure 15, for a graphical
intuition).

Figure 15. Composition and tensoring in do-notation.

4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 51

Finally, we must define identities, generators and symmetries. These
are the following three terms.

a1, . . . , an ` return(a1, . . . , an)

a1, . . . , an ` f(a1, . . . , an)→ (b1, . . . , bm) # return(b1, . . . , bm)

a1, . . . , an, b1, . . . bm ` return(b1, . . . , bm, a1, . . . , an)

We can check that these operations define a category and a monoidal category.
The interchange law of monoidal categories is extracted from the interchange law
that we imposed in do-notation. �

Theorem 4.21. There is an adjunction between polygraphs and the category
of strict symmetric monoidal categories given by do-notation terms, Do a Forget.
Moreover, do-notation terms and string diagrams are naturally isomorphic.

Proof sketch. We have already proven that do-notation constructs a sym-
metric monoidal category over a polygraph. We need to show that there is a
unique map out of the category constructed by do-notation that commutes with
any assignment of the polygraph to a monoidal category.

The first part would be to prove the initiality of the syntax. We can do so
by structural induction: any term is either a return statement or a composition
of a generator with a symmetry and a term. In the first case, the symmetry
determined by the return statement must be mapped to the corresponding sym-
metry in any symmetric monoidal category; in the second case, the image of the
generator is determined, and the rest of the term is determined by structural
induction. In conclusion, the image of any do-notation term is determined in any
symmetric monoidal category over which we map the polygraph of generators.

The core of the proof is in showing that this unique possible assignment is
well-defined: the only equality imposed on do-notation is the interchange law, but
this law corresponds, under the assignment, to the interchange law of symmetric
monoidal categories.

Finally, both functors,

Do,Stringσ : PolyGraph→ SymMonCatStr

have been found to be left adjoints to the same forgetful functor. This implies
they are isomorphic functors. �

4.6. Example: the XOR Variable Swap. Let us provide an example of
the formal usage of both do-notation and string diagrams, by reasoning about a
simple process. In imperative programming languages, swapping the value of two
variables usually requires a third temporary variable. However, the XOR variable
swap algorithm uses the properties of the exclusive-or operation (XOR, ⊕) to ex-
change variables without needing a temporary variable. Let xor(x, y) = (x⊕ y, y).
The code is in Figure 16.

52 1. MONOIDAL PROCESS THEORY

Figure 16. XOR variable exchange.

The property that makes this algorithm possible is the nilpotency of the
XOR operation: x ⊕ x = 0 for any n-bit word x ∈ 2n. This means that we can
prove the correctness of the XOR variable exchange in the abstract setting of
nilpotent bialgebras. In fact, consider a polygraph X with a single object and
the generators depicted in Figure 17.

Figure 17. Signature for a bialgebra.

We now want to impose a set of equations, E ⊆ String(X) × String(X), on
top of this signature. This can also be done via the adjunction: the equations
give two maps E → Forget(String(X)), or equivalently, String(E) → String(X).
The coequalizer of the latter two describes the universal monoidal category with
some generators and satisfying some equations. Back to our example, the theory
of a nilpotent bialgebra satisfies the following equations in Figure 18.

Given any nilpotent bialgebra in any strict symmetric monoidal category,
there exists a unique monoidal functor from the string diagrams quotiented by
these equations to that signature.

Proposition 4.22. Let a nilpotent bialgebra in a symmetric monoidal category.
The XOR variable exchange algorithm is equal to the swap morphism.

Proof. In the theory of nilpotent bialgebras over a symmetric monoidal
category, the following equation in Figure 19 holds.

The left hand side represents the XOR variable exchange while the right hand
side represents swapping the contents of two variables. We have shown both are
equal. �

4.7. Bibliography. Symmetric monoidal categories and their hexagon co-
herence equations were already stated by MacLane [Mac63, ML71], Bénabou

4. SYMMETRIC MONOIDAL CATEGORIES AND DO-NOTATION 53

Figure 18. Theory of a nilpotent bialgebra.

Figure 19. XOR variable exchange.

defined commutations on a monoidal category and an abstract notion of commu-
tative monoid [Bén68]. String diagrams for symmetric monoidal categories are
already described by Joyal and Street [JS91, Sel10]; we follow the representation
in terms of hypergraphs by Bonchi, Gadducci, Kissinger, Sobocinski and Zanasi
[BGK+16]. The XOR example was known to Erbele [BE14] and Sobocinski. The
idea of using a Rosetta stone to translate between categories and logics comes
from Baez and Stay [BS10].

Do-notation comes from the Haskell programming language [HJW+92], where
it takes semantics in a strong promonad [Hug00, HJ06] (also known as an arrow
[Pat03]). We have studied here an adaptation to the monoidal setting. Our pre-
sentation of do-notation follows the style of Shulman’s categorical logic [Shu16].

54 1. MONOIDAL PROCESS THEORY

5. Cartesianity: Determinism and Totality

Our process theories are, by default, linear on resources: every variable must
be used exactly once. This may seem like a limitation, but it is a more general
case that can be particularized into the classical case when necessary: we say that
a process theory – a monoidal category – is classical or cartesian whenever it has
processes representing copying and discarding and satisfying suitable axioms.

Non-classical theories can become so in two ways: either because they do
not allow copying, or because they do not allow discarding. Theories without
copying model stochasticity and non-determinism: running a computation twice
is different from just running it once and assuming its result will be the same
next time. Theories without discarding model partiality: even if we do not care
about the result, we cannot assume anymore that any computation will succed.

5.1. Cartesian Monoidal Categories. Cartesian monoidal categories give
a universal property to their tensor: the tensor of two objects, A×B, is such that
pair of maps to A and B are in precise correspondence to single map to A× B.
This universal property, in some sense, ensures that the tensor contains nothing
more and nothing less than its two constituent parts; this is what characterizes
classical theories.

Definition 5.1. Cartesian monoidal categories are monoidal categories, (C,×, 1),
such that

(1) each tensor, A × B, is endowed with projections, π1 : A × B → A and
π2 : A×B → B, that make it a product: for each object X ∈ Cobj and
any pair of morphisms, f : X → A and g : X → B, there exists a unique
〈f, g〉 : X → A×B such that

〈f, g〉 # π1 = f and 〈f, g〉 # π2 = g;

(2) the unit, 1, is terminal: for each object X ∈ Cobj there exists a unique
morphism π : X → 1.

Fox’s theorem is a characterisation of classical theories, cartesian monoidal
categories, in terms of the existence of a uniform cocommutative comonoid struc-
ture (copy and delete) on all objects of a monoidal category.

Theorem 5.2 (Fox, [Fox76]). A symmetric monoidal category (C,⊗, I) is
cartesian monoidal if and only if every object X ∈ C has a commutative co-
monoid structure (X, εX , δX), every morphism of the category f : X → Y is a
comonoid homomorphism, and this structure is uniform across the monoidal cat-
egory, meaning that εX⊗Y = εX ⊗ εY , that εI = id, that δI = id and that
δX⊗Y = (δX ⊗ δY) # (id⊗ σX,Y ⊗ id).

Fox’s characterization has a direct translation to string diagrams: the first
conditions impose a natural commutative comonoid structure on each generator

5. CARTESIANITY: DETERMINISM AND TOTALITY 55

Figure 20. Theory of cartesian categories.

(Figure 20); the last conditions state that the structure on all the objects follows
from that of the generators.

We can add a slight improvement. Most sources ask the comonoid structure
in Fox’s theorem (Theorem 5.2) to be cocommutative [Fox76, FS19]. However,
cocommutativity and coassociativity of the comonoid structure are implied by
the fact that the structure is uniform and natural. We present an original refined
version of Fox’s theorem.

Theorem 5.3 (Refined Fox’s theorem). A symmetric monoidal category,
(C, ⊗, I), is cartesian monoidal if and only if every object X ∈ C has a counital
comagma structure (X, εX , δX), or (X, X , X), every morphism of the category
f : X → Y is a comagma homomorphism, and this structure is uniform across
the monoidal category: meaning that εX⊗Y = εX ⊗ εY , εI = id, δI = id and
δX⊗Y = (δX ⊗ δY); (id⊗ σX,Y ⊗ id).

Proof. We prove that such a comagma structure is necessarily coassociative
and cocommutative. Note that any comagma homomorphism f : A → B must
satisfy δA # (f ⊗ f) = f # δB . In particular, δX : X → X ⊗ X must itself be a
comagma homomorphism (see Figure 25), meaning that

(1) δX # (δX ⊗ δX) = δX # δX⊗X = δX # (δX ⊗ δX) # (id⊗ σX,Y ⊗ id),

where the second equality follows by uniformity.

Figure 21. Comultiplication is a comagma homomorphism.

Now, we prove cocommutativity (Figure 22): composing both sides of Equa-
tion (1) with (εX ⊗ id ⊗ id ⊗ εX) discards the two external outputs and gives
δX = δX # σX . Then, we prove coassociativity (Figure 23): composing both sides

56 1. MONOIDAL PROCESS THEORY

Figure 22. Cocommutativity

Figure 23. Coassociativity

of Equation (1) with (id⊗ εX ⊗ id⊗ id) discards one of the middle outputs and
gives δX # (id⊗ δX) = δX # (δX ⊗ id).

A coassociative and cocommutative comagma is a cocommutative comonoid.
We can then apply the classical form of Fox’s theorem (Theorem 5.2). �

5.2. Partial Markov Categories. If process theories were all cartesian,
we could use the commutative comonoid structure on every object to simplify
calculations. However, most of the theories that pose a challenge to computer
science (like stochastic processes, partial processes, or quantum maps) are not
cartesian. The rest of this thesis will not assume cartesianity: let us give a good
example and motivation for doing this.

Cartesianity in a category with copy and discard processes can be divided
in two concepts: determinism and totality. All pure functions, for instance, are
deterministic and total, but stochastic functions are not deterministic (tossing
a coin twice is different from tossing it once and copying the result twice), and
partially computable functions are not total (because even if we do not care about
the output, they could diverge and make the whole process wait).

Definition 5.4. In a symmetric monoidal category with uniform commutative
comonoids, (C,⊗, I, , , σ), a morphism f : X → Y is deterministic if it can be
copied, f # Y = X # (f ⊗ f), and it is total (or causal) if it can be discarded,
f # Y = X . Moreover, we say it is quasitotal (or quasicausal), if it can be copied
on the side and discarded, f = X # ((f # Y)⊗ f). See Figure 24.

Let us provide a single theory where these three assumptions fail: the theory
of discrete partial Markov categories [LR23], which we will use to study partial
stochastic functions. Apart from copy () : X → X⊗X and discard () : X → I,
we also consider a comparator morphism () : X ⊗X → X. Copying, discarding
and comparing interact as a partial Frobenius algebra [DLLNS21].

5. CARTESIANITY: DETERMINISM AND TOTALITY 57

Figure 24. Deterministic, total, and quasitotal morphisms.

Definition 5.5. A discrete partial Markov category is is a symmetric monoidal
category (C,⊗, I) such that every object has a partial Frobenius monoid structure
(, ,) that satisfies the axioms in Figure 25 and uniformity, meaning that

(1) ()X⊗Y = (X ⊗ Y) # (idX ⊗ σ ⊗ idY) and ()I = id;
(2) ()X⊗Y = (idX ⊗ σ ⊗ idY) # (X ⊗ Y) and ()I = id;
(3) ()X⊗Y = (X ⊗ Y) and ()I = id.

Figure 25. Theory of a partial Frobenius algebra.

Proposition 5.6. A subdistribution on a set X is a function d : X → [0, 1] that
is non-zero on a finite number of elements and that adds up to less or equal than
one, ∑

d(x)>0

d(x) ≤ 1.

Subdistributions form a monad, and the Kleisi category of the subdistribution
monad forms a discrete partial Markov category [LR23].

Proof. Let us write D≤1(X) for the set of subdistributions over a set.
We claim that this extends to a monad in the category of sets and functions
D≤1 : Set → Set. The multiplication µ : D≤1(D≤1(X)) → D≤1(X) is defined
by µ(ψ)(x) =

∑
ψ(d)>0 d(x), and the unit η : X → D≤1(X) is defined by the

58 1. MONOIDAL PROCESS THEORY

Dirac’s delta, η(x0)(x) = [x = x0], which is valued to 1 whenever x = x0 and is
valued to 0 otherwise.

The Kleisli category of this monad has morphisms the partial stochastic chan-
nels f : X → D≤1(Y). We write f(y|x) ∈ [0, 1] for the value of f(x) on the input
y ∈ Y , capturing the usual notation for conditionals in probability. Under this
notation, composition on the Kleisli category becomes

(f # g)(z|x) =
∑

y∈Y
f(y|x) · g(z|y).

While tensoring is (f ⊗ f ′)(y, y′|x, x′) = f(y|x) · f ′(y′|x′). The copy morphism
is defined by ()(x, y|z) = [x = y = z]; the discard morphism is defined by
()(|x) = 1; and the comparator is given by ()(x|y, z) = [x = y = z]. It is direct
to check that these satisfy the axioms of a partial Frobenius algebra. �

Remark 5.7 (Effect algebras). The set of partial stochastic channels between
two sets, X → D≤1(Y), forms a particular algebraic structure known as an effect
module.

An effect algebra [FB94, Jac15, vdW21] is a set E with a partial binary
operation (⊕) : E × E → E, a unary operation (•)⊥ : E → E, and a constant
0 ∈ E. We write x⊥y whenever x⊕ y is well-defined and we write 1 = 0⊥. The
effect algebra must satisfy

(1) Commutativity, x⊕ y = y ⊕ x, where x⊥y implies y⊥x.
(2) Unitality, x⊕ 0 = x = 0⊕ x, where x⊥0.
(3) Associativity, x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z, where having both y⊥z and

x⊥(y ⊕ z) implies both x⊥y and (x⊕ y)⊥z.
(4) Complementarity, x⊥ is unique such that x⊥ ⊕ x = 1 and x⊥x⊥.

An effect algebra homomorphism f : E → F must satisfy f(1) = 1, and x⊥y must
imply f(x)⊥f(y), with f(x⊕y) = f(x)⊕f(y). Effect algebras form a symmetric
monoidal category.

The unit interval, [0, 1], forms an effect algebra with the binary sum (when-
ever it is contained on the interval), the unary complement x⊥ = 1− x, and the
zero; moreover, the unit interval [0, 1] with multiplication forms a monoid in the
monoidal category of effect algebras.

Partial stochastic channels also form an effect algebra, with the same point-
wise operations, but moreover, we can multiply them by a ‘scalar’ from the unit
interval [0, 1]: they form a module in the monoidal category of effect algebras.
The structure of effect module interplays well with composition and tensoring of
partial stochastic channels; so we will employ it later in Section 5.5.

Remark 5.8 (Bayesian inversions). The Bayesian inversion of a stochastic chan-
nel g : X → Y with respect to a distribution f : I → X is the stochastic channel

5. CARTESIANITY: DETERMINISM AND TOTALITY 59

g†
f : Y → X classically defined by

g†
f (x|y) =

g(y|x) · f(x)∑
x•∈X g(y|x•) · f(x•)

.

Bayesian inversions can be defined synthetically in any partial Markov category
[CJ19]. The Bayesian inversion of a morphism g : X → Y with respect to f : I →
X is a morphism g†

f : Y → X satisfying the equation in Figure 26, which translates
to the above when the partial Markov category is that of subdistributions.

Figure 26. Bayesian inversion.

The definition of a partial Markov category includes asking a quasitotal
Bayesian inversion for every morphism, with respect to any other morphism:
this is the notion of quasitotal conditional [LR23], which we will not need in this
thesis.

Finally, let us justify that this process theory is enough to capture many
of the features of classical probability theory. We will prove a synthetic version
of Bayes theorem using the syntax of discrete partial Markov categories. The
classical Bayes theorem prescribes that, after observing the output of a prior
distribution through a channel, we should update our posterior distribution to
be the Bayesian inversion of the channel with respect to the prior distribution,
evaluated on the observation.

Theorem 5.9 (Synthetic Bayes’ Theorem). In a discrete partial Markov cat-
egory, observing a deterministic x : I → X from a prior distribution f : I → A
through a channel g : A→ X is the same, up to scalar, as the Bayesian inversion
evaluated on the observation, g†

f (x) : I → A.

Proof. We employ string diagrams (Figure 27). Equalities follow from (i)
the definition of Bayesian inversion, (ii) the partial Frobenius axioms, and (iii)
determinism of y. �

5.3. Bibliography. Fox’s theorem, in its original formulation, is the con-
struction of a right adjoint to the forgetful functor from cartesian monoidal cat-
egories to Monoidal categories. This right adjoint is given by the category of

60 1. MONOIDAL PROCESS THEORY

Figure 27. Bayes theorem.

cocommutative comonoids over a monoidal category [Fox76]. The version here
presented is esentially equivalent; in fact, it is called “Fox’s theorem” in the work
of Bonchi, Seeber and Sobocinski [BSS18].

The categorical approach to probability theory based on Markov categories
is due to Fritz [Fri20] and prior work of Cho and Jacobs [CJ19]. Multiple results
of classical probability theory have been adapted to the framework of Markov
categories by multiple authors [FR20, FPR21, FP19, FGP21]. Markov categories
have been further applied for formalising Bayes networks and other kinds of
probabilistic and causal reasoning in categorical terms [Fon13, JZ20, JKZ21].
Their partial counterpart and the application to decision theory was introduced
in joint work with Di Lavore [LR23]. Effect algebras are due to Foulis and Bennett
[FB94]; Jacobs employed them for a probabilistic categorical logic [Jac15]; van
de Wetering [vdW21] characterized the unit interval in terms of effect algebras.

6. PREMONOIDAL CATEGORIES 61

6. Premonoidal Categories

It might seem that monoidal categories are limited to pure imperative pro-
gramming without effects. After all, the interchange law seems to imply that the
order in which two independent are executed does not matter. This is true, but
again, category theory has a solution for us: premonoidal categories.

Category theory has two successful applications that are rarely combined:
monoidal string diagrams [JS91] and programming semantics [Mog91]. We use
string diagrams to talk about quantum transformations [AC09], relational queries
[BSS18], and even computability [Pav13]; at the same time, proof nets and the
geometry of interaction [Gir89, BCST96] have been widely applied in computer
science [AHS02, HMH14]. On the other hand, we traditionally use monads and
comonads, Kleisli categories and premonoidal categories to explain effectful func-
tional programming [Hug00, JHH09, Mog91, PT99, UV08]. Even if we tradition-
ally employ Freyd categories with a cartesian base [Pow02], we can also consider
non-cartesian Freyd categories [SL13], which we call effectful categories.

This section introduces premonoidal categories and effectful categories. The
next section will study their string diagrams in terms of monoidal categories,
reducing them to a particular consideration on top of the theory of monoidal
categories.

6.1. Premonoidal Categories. Premonoidal categories are monoidal cat-
egories without the interchange law, (f ⊗ id) # (id ⊗ g) 6= (id ⊗ g) # (f ⊗ id).
This means that we cannot tensor any two arbitrary morphisms, (f ⊗ g), with-
out explicitly stating which one is to be composed first, (f ⊗ id) # (id ⊗ g) or
(id⊗ g) # (f ⊗ id), and the two compositions are not equivalent (Figure 28).

Figure 28. The interchange law does not hold in a premonoidal
category.

In technical terms, the tensor of a premonoidal category (⊗) : C× C→ C is
not a functor, but only what is called a sesquifunctor : independently functorial
in each variable. Tensoring with any identity is itself a functor (• ⊗ id) : C→ C,
but there is no functor (• ⊗ •) : C× C→ C.

A practical motivation for dropping the interchange law can be found when
describing transformations that affect a global state. These effectful processes
should not interchange in general, because the order in which we modify the

62 1. MONOIDAL PROCESS THEORY

global state is meaningful. For instance, in the Kleisli category of the writer
monad, (Σ∗ × •) : Set → Set for some alphabet Σ ∈ Set, we can consider
the function print : Σ∗ → Σ∗ × 1. The order in which we “print” does matter
(Figure 29).

Figure 29. Writing does not interchange.

Not surprisingly, the paradigmatic examples of premonoidal categories are
the Kleisli categories of Set-based monads T : Set → Set (more generally, of
strong monads), which fail to be monoidal unless the monad itself is commutative
[Gui80, PR97, PT99, Hed19]. Intuitively, the morphisms are “effectful”, and these
effects do not always commute.

However, we may still want to allow some morphisms to interchange. For in-
stance, apart from asking the same associators and unitors of monoidal categories
to exist, we ask them to be central : which means that they interchange with any
other morphism. This notion of centrality forces us to write the definition of
premonoidal category in two different steps: first, we introduce the minimal set-
ting in which centrality can be considered (binoidal categories [PT99]) and then
we use that setting to bootstrap the full definition of premonoidal category with
central coherence morphisms.

Definition 6.1 (Binoidal category). A binoidal category is a category C endowed
with an object I ∈ C and an object A⊗B for each A ∈ C and B ∈ C. There are
functors (A ⊗ •) : C → C, and (• ⊗ B) : C → C that coincide on (A ⊗ B). Note
that (• ⊗ •) is not being defined as a functor.

Again, this means that we can tensor with identities (whiskering), functori-
ally; but we cannot tensor two arbitrary morphisms: the interchange law stops
being true in general. The centre, Z(C), is the wide subcategory of morphisms
that do satisfy the interchange law with any other morphism. That is, f : A→ B
is central if, for each g : A′ → B′,

(f ⊗ idA′) # (idB ⊗ g) = (idA ⊗ g) # (f ⊗ idB′), and
(idA′ ⊗ f) # (g ⊗ idB) = (g ⊗ idA) # (idB′ ⊗ f).

Definition 6.2. A premonoidal category is a noidal category (C,⊗, I) together
with the following coherence isomorphisms αA,B,C : A⊗ (B⊗C)→ (A⊗B)⊗C,

6. PREMONOIDAL CATEGORIES 63

ρA : A⊗ I → A and λA : I ⊗A→ A which are central, natural separately at each
given component, and satisfy the pentagon and triangle equations.

A premonoidal category is strict when these coherence morphisms are iden-
tities. A premonoidal category is moreover symmetric when it is endowed with a
coherence isomorphism σA,B : A⊗B → B⊗A that is central and natural at each
given component and satisfies the symmetry condition and hexagon equations.

Remark 6.3. The coherence theorem of monoidal categories still holds for pre-
monoidal categories: every premonoidal is equivalent to a strict one. We will
construct the free strict premonoidal category using string diagrams. However,
the usual string diagrams for monoidal categories need to be restricted: in pre-
monoidal categories, we cannot consider two morphisms in parallel unless any of
the two is central.

6.2. Effectful and Freyd Categories. Premonoidal categories immedi-
ately present a problem: what are the premonoidal functors? If we want them
to compose, they should preserve the centrality of the coherence morphisms (so
that the central coherence morphisms of F #G are these of F after applying G),
but naively asking them to preserve all central morphisms rules out important
examples [SL13]. The solution is to explicitly choose some central morphisms
that represent “pure” computations. These do not need to form the whole centre:
it could be that some morphisms considered effectful just “happen” to fall in the
centre of the category, while we do not ask our functors to preserve them. This
is the well-studied notion of a non-cartesian Freyd category, which we shorten to
effectful monoidal category or effectful category.

Effectful categories are premonoidal categories endowed with a chosen family
of central morphisms. These central morphisms are called pure morphisms, con-
trasting with the general, non-central, morphisms that fall outside this family,
which we call effectful.

Definition 6.4. An effectful category is an identity-on-objects functor V → C
from a monoidal category V (the pure morphisms, or “values”) to a premonoidal
category C (the effectful morphisms, or “computations”), that strictly preserves
all of the premonoidal structure and whose image is central. It is strict when both
are. A Freyd category [Lev22] is an effectful category where the pure morphisms
form a cartesian monoidal category.

Effectful categories solve the problem of defining premonoidal functors: a
functor between effectful categories needs to preserve only the pure morphisms.
We are not losing expressivity: premonoidal categories are effectful with their
centre, Z(C)→ C. From now on, we study effectful categories.

Definition 6.5 (Effectful functor). Let V → C and W → D be effectful cat-
egories. An effectful functor is a quadruple (F, F0, ε, µ) consisting of a functor

64 1. MONOIDAL PROCESS THEORY

F : C → D and a functor F0 : V → W making the square commute, and two
natural and pure isomorphisms ε : I ′ ∼= F (I) and µ : F (A ⊗ B) ∼= F (A) ⊗ F (B)
such that they make F0 a monoidal functor. It is strict if these are identities.

When drawing string diagrams in an effectful category, we shall use two
different colours to declare if we are depicting either a value or a computation
(Figure 30).

Figure 30. “Hello world” is not “world hello”.

Here, the values “hello” and “world” satisfy the interchange law as in an
ordinary monoidal category. However, the effectful computation “print” does not
need to satisfy the interchange law. String diagrams like these can be found in the
work of Alan Jeffrey [Jef97b]. Jeffrey presents a clever mechanism to graphically
depict the failure of interchange: all effectful morphisms need to have a control
wire as an input and output. This control wire needs to be passed around to all
the computations in order, and it prevents them from interchanging.

Figure 31. An extra wire prevents interchange.

Our interpretation of monoidal categories is as theories of resources. We can
interpret premonoidal categories as monoidal categories with an extra resource –
the “runtime” – that needs to be passed to all computations. The next section
promotes Jeffrey’s observation into a theorem.

Remark 6.6. After the next section, which reduces premonoidal categories to
monoidal categories, the rest of this thesis deals mostly with monoidal categories.
Why not study premonoidal categories instead of just monoidal categories? Pre-
monoidal categories should be more general: they do not assume the interchange

6. PREMONOIDAL CATEGORIES 65

law, which is false in stateful systems. However, we give an argument for study-
ing only monoidal categories in the next section: any premonoidal category can
be reinterpreted as a monoidal category carrying an extra resource (an extra
wire) representing the global state. We do not need to write a new theory of
premonoidal categories: premonoidal categories are already monoidal categories,
in which one wire is hidden. The following section makes this idea formal.

6.3. Bibliography. This chapter follows closely the first part of “Promon-
ads and String Diagrams for Effectful Categories”, by this author [Rom22].

Effectful categories are the monoidal counterpart of a well-known notion:
that of “Freyd categories”. The name “Freyd category” sometimes assumes carte-
sianity of the pure morphisms, but it is also used for the general case; choosing
to call “effectful categories” to the general case and reserving the name “Freyd
categories” for the cartesian ones avoids this clash of nomenclature. There exists
also the more fine-grained notion of “Cartesian effect category” [DDR11], which
generalizes Freyd categories and may further justify calling “effectful category”
to the general case.

66 1. MONOIDAL PROCESS THEORY

7. String Diagrams for Premonoidal Categories

Premonoidal categories give us a generalization of monoidal categories ac-
counting for effectful computation but, at the same time, they do not need us
to change our syntax yet. String diagrams for premonoidal categories can be
reduced to string diagrams for monoidal categories: they rely on the fact that
the morphisms of the monoidal category freely generated over a polygraph of
generators are string diagrams on these generators, quotiented by topological
deformations, as we saw in Section 1.3.

7.1. Effectful Polygraphs. We justify string diagrams for premonoidal
categories by proving that the freely generated effectful category over a pair of
polygraphs (for pure and effectful generators, respectively) can be constructed as
the freely generated monoidal category over a particular polygraph that includes
an extra wire. In the same sense that polygraphs are signatures for generating
free monoidal categories, effectful polygraphs are signatures for generating free
effectful categories.

Definition 7.1. An effectful polygraph is a pair of polygraphs (V,G) sharing the
same objects, Vobj = Gobj. A morphism of effectful polygraphs (u, f) : (V,G) →
(W,H) is a pair of morphisms of polygraphs, u : V → W and f : G → H, such
that they coincide on objects, fobj = uobj.

7.2. Adding Runtime. Recall from Section 1.3 that there exists an adjunc-
tion between polygraphs and strict monoidal categories. Any monoidal category
C can be seen as a polygraph, Forget(C), where the edges are morphisms

Forget(C)(A0, . . . , An;B0, . . . , Bm) = C(A0 ⊗ . . .⊗An;B0 ⊗ . . .⊗Bm),

and we forget about composition and tensoring. Given a polygraph G, the free
strict monoidal category, which we will now write as Mon(G) = String(G), is
the strict monoidal category that has as morphisms the string diagrams over the
generators of the polygraph.

We will construct a similar adjunction between effectful polygraphs and ef-
fectful categories. Let us start by formally adding the runtime to a free monoidal
category.

Definition 7.2 (Runtime monoidal category). Let (V,G) be an effectful poly-
graph. Its runtime monoidal category, MonRun(V,G), is the monoidal category
freely generated from adding an extra object – the runtime, R – to the input and
output of every effectful generator in G (but not to those in V), and letting that
extra object be braided with respect to every other object of the category.

In other words, it is the monoidal category freely generated by the follow-
ing polygraph, Run(V,G), (Figure 32), assuming A0, . . . , An and B0, . . . , Bm are
distinct from R

7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 67

• Run(V,G)obj = Gobj + {R} = Vobj + {R},
• Run(V,G)(R,A0, . . . , An;R,B0, . . . , Bn) = G(A0, . . . , An;B0, . . . , Bn),
• Run(V,G)(A0, . . . , An;B0, . . . , Bn) = V(A0, . . . , An;B0, . . . , Bn),
• Run(V,G)(R,A0;A0, R) = Run(V,G)(A0, R;R,A0) = {σ},

with Run(V,G) empty in any other case, and quotiented by the braiding axioms
for R (Figure 33).

Figure 32. Generators for the runtime monoidal category.

Figure 33. Axioms for the runtime monoidal category.

Somehow, we are asking the runtime R to be in the Drinfeld centre [DGNO10]
of the monoidal category. The extra wire that R provides is only used to prevent
interchange, and so it does not really matter where it is placed in the input and
the output. We can choose to always place it on the left, for instance – and
indeed we will be able to do so – but a better solution is to just consider objects
“up to some runtime braidings”. This is formalized by the notion of braid clique.

Definition 7.3 (Braid clique). Given any list of objects A0, . . . , An in Vobj =
Gobj, we construct a clique [Tod10, Shu18] in the category MonRun(V,G): we
consider the objects, A0⊗ . . .⊗R(i)⊗ . . .⊗An, created by inserting the runtime
R in all of the possible 0 ≤ i ≤ n + 1 positions; and we consider the family of
commuting isomorphisms constructed by braiding the runtime,

σi,j : A0 ⊗ . . .⊗R(i) ⊗ . . .⊗An → A0 ⊗ . . .⊗R(j) ⊗ . . .⊗An.
We call this the braid clique, BraidR(A0, . . . , An), on that list.

Definition 7.4. A braid clique morphism,

f : BraidR(A0, . . . , An)→ BraidR(B0, . . . , Bm),

68 1. MONOIDAL PROCESS THEORY

is a family of morphisms in the runtime monoidal category, MonRun(V,G), from
each of the objects of first clique to each of the objects of the second clique,

fik : A0 ⊗ . . .⊗R(i) ⊗ . . .⊗An → B0 ⊗ . . .⊗R(k) ⊗ . . .⊗Bm,
that moreover commutes with all braiding isomorphisms, fij # σjk = σil # f.

A braid clique morphism f : BraidR(A0, . . . , An) → BraidR(B0, . . . , Bm) is
fully determined by any of its components, by pre/post-composing it with braid-
ings. In particular, a braid clique morphism is always fully determined by its
leftmost component f00 : R⊗A0 ⊗ . . .⊗An → R⊗B0 ⊗ . . .⊗Bm.

Lemma 7.5. Let (V,G) be an effectful polygraph. There exists a premonoidal
category, Eff(V,G), that has objects the braid cliques, BraidR(A0, . . . , An), in
MonRun(V,G), and as morphisms the braid clique morphisms between them. See
Appendix.

Proof. First, let us give Eff(V,G) the structure of a category. The identity
on BraidR(A0, . . . , An) is the identity on R⊗A. The composition of a morphism
R⊗A→ R⊗B with a morphism R⊗B → R⊗ C is their plain composition in
MonRun(V,G).

Let us now check that it is moreover a premonoidal category. Tensoring
of cliques is given by concatenation of lists, which coincides with the tensor in
MonRun(V,G). However, it is interesting to note that the tensor of morphisms
cannot be defined in this way: a morphism R ⊗ A→ R ⊗ B cannot be tensored
with a morphism R⊗A′ → R⊗B′ to obtain a morphism R⊗A⊗A′ → R⊗B⊗B′.

Whiskering of a morphism f : R ⊗ A → R ⊗ B is defined with braidings in
the left case, R⊗C ⊗A→ R⊗C ⊗B, and by plain whiskering in the right case,
R⊗ A⊗ C → R⊗B ⊗ C, as depicted in Figure 34. Finally, the associators and

Figure 34. Whiskering in the runtime premonoidal category.

unitors are identities, which are always natural and central. �

Lemma 7.6. Let (V,G) be an effectful polygraph. There exists an identity-on-
objects functor Mon(V)→ Eff(V,G) that strictly preserves the premonoidal struc-
ture and whose image is central.

7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 69

Proof. A morphism v ∈ Mon(V)(A,B) induces a morphism (idR ⊗ v) ∈
MonRun(V,G)(R⊗A,R⊗B), which can be read as a morphism of cliques (idR⊗
v) ∈ Eff(V,G)(A,B). This is tensoring with an identity, which is indeed functo-
rial.

Let us now show that this functor strictly preserves the premonoidal struc-
ture. The fact that it preserves right whiskerings is immediate. The fact that it
preserves left whiskerings follows from the axioms of symmetry (Figure 35, left).
Associators and unitors are identities, which are preserved by tensoring with an
identity. Finally, we can check by string diagrams that the image of this functor

Figure 35. Preservation of whiskerings, and centrality.

is central, interchanging with any given x : R ⊗ C → R ⊗ D (Figure 35, center
and right). �
Lemma 7.7. Let (V,G) be an effectful polygraph and consider the effectful cate-
gory determined by Mon(V)→ Eff(V,G). Let V→ C be a strict effectful category
endowed with an effectful polygraph morphism F : (V,G) → U(V,C). There ex-
ists a unique strict effectful functor from (Mon(V) → Eff(V,G)) to (V → C)
commuting with F as an effectful polygraph morphism.

Proof. By freeness, there already exists a unique strict monoidal functor
H0 : Mon(V)→ V that sends any object A ∈ Vobj to Fobj(A). We will show there
is a unique way to extend this functor together with the hypergraph assignment
G → C into a functor H : Eff(V,G)→ C. Giving such a functor amounts to give
some mapping of morphisms containing the runtime R in some position in their
input and output,

f : A0 ⊗ . . .⊗R⊗ . . .⊗An → B0 ⊗ . . .⊗R⊗ . . .⊗Bm
to morphisms H(f) : FA0 ⊗ . . .⊗ FAn → FB0 ⊗ . . .⊗ FBn in C, in a way that
preserves composition, whiskerings, inclusions from Mon(V), and that is invariant
to composition with braidings. In order to define this mapping, we will perform
structural induction over the monoidal terms of the runtime monoidal category
of the form MonRun(V,G)(A0⊗ . . .⊗R(i)⊗ . . .⊗An, R⊗B0⊗ . . .⊗R(j)⊗ . . .⊗Bm)
and show that it is the only mapping with these properties (Figure 36).

Monoidal terms in a strict, freely presented, monoidal category are formed
by identities (id), composition (#), tensoring (⊗), and some generators (in this

70 1. MONOIDAL PROCESS THEORY

case, in Figure 32). Monoidal terms are subject to (i) functoriality of the tensor,
id⊗ id = id and (f # g)⊗ (h # k) = (f ⊗h) # (g⊗ k); (ii) associativity and unitality
of the tensor, f ⊗ idI = f and f ⊗ (g⊗ h) = (f ⊗ g)⊗ h; (iii) the usual unitality,
f # id = f and id # f = f and associativity f # (g # h) = (f # g) # h; (iv) the axioms
of our presentation (in this case, in Figure 33).

Figure 36. Assignment on morphisms, defined by structural in-
duction on terms.

• If the term is an identity, it can be (i) an identity on an object A ∈ (V,G)obj, in
which case it must be mapped to the same identity by functoriality, H(idA) =
idA; (ii) an identity on the runtime, in which case it must be mapped to the
identity on the unit object, H(idR) = idI ; or (iii) an identity on the unit object,
in which case it must be mapped to the identity on the unit, H(idI) = idI .

• If the term is a composition, (f # g) : A0⊗ . . .⊗R⊗ . . .⊗An → C0⊗ . . .⊗R⊗
. . . ⊗ Ck, it must be along a boundary of the form B0 ⊗ . . . ⊗ R ⊗ . . . ⊗ Bm:
this is because every generator leaves the number of runtimes, R, invariant.
Thus, each one of the components determines itself a braid clique morphism.
We must preserve composition of braid clique morphisms, so we must map
H(f # g) = H(f) #H(g).

• If the term is a tensor of two terms, (x ⊗ u) : A0 ⊗ . . . ⊗ R ⊗ . . . ⊗ An →
B0 ⊗ . . .⊗R⊗ . . .⊗Bm, then only one of them was a term taking R as input
and output (without loss of generality, assume it to be the first one) and the
other was not: again, by construction, there are no morphisms taking one
R as input and producing none, or viceversa. We split this morphism into
x : A0⊗ . . .⊗R⊗ . . .⊗Ai−1 → B0⊗ . . .⊗R⊗ . . .⊗Bj−1 and u : Ai⊗ . . .⊗An →
Bj ⊗ . . .⊗Bm.

Again by structural induction, this time over terms u : Ai ⊗ . . . ⊗ An →
Bj ⊗ . . . ⊗ Bm, we know that the morphism must be either a generator in
V(Ai, . . . , An;Bj , . . . , Bn) or a composition and tensoring of them. That is, u

7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 71

is a morphism in the image of Mon(V), and it must be mapped according to
the functor H0 : Mon(V)→ V.

By induction hypothesis, we know how to map the morphism x : A0⊗ . . .⊗
R ⊗ . . . ⊗ Ai−1 → B0 ⊗ . . . ⊗ R ⊗ . . . ⊗ Bj−1. This means that, given any
tensoring x ⊗ u, we must map it to H(x ⊗ u) = (H(x) ⊗ id) # (id ⊗H0(u)) =
(id⊗H0(u)) # (H(x)⊗ id), where H0(u) is central.

• If the string diagram consists of a single generator, f : R⊗A→ R⊗B, it can
only come from a generator f ∈ Run(V,G)(R,A0, . . . , An;R,B0, . . . , Bm) =
G(A0, . . . , An;B0, . . . , Bm), which must be mapped to H(f) = F (f) ∈ C(A0 ⊗
. . . ⊗ An, B0 ⊗ . . . ⊗ Bm). If the string diagram consists of a single braiding,
it must be mapped to the identity, because the want the assignment to be
invariant to braidings.

Now, we need to prove that this assignment is well-defined with respect to
the axioms of these monoidal terms. Our reasoning follows Figure 37.

• The tensor is functorial. We know that H(id⊗ id) = H(id), both are identities
and that can be formally proven by induction on the number of wires. Now, for
the interchange law, consider a quartet of morphisms that can be composed or
tensored first and such that, without loss of generality, we assume the runtime
to be on the left side. Then, we can use centrality to argue that

H((x⊗ u) # (y ⊗ v)) = (H(x)⊗ id) # (id⊗H0(u)) # (H(y)⊗ id) # (id⊗H0(v))

= ((H(x) #H(y))⊗ id) # (id⊗ (H0(u) #H0(v)))

= H((x # y)⊗ (u # v)).

• The tensor is monoidal. We know that H(x ⊗ idI) = (H(x) ⊗ idI) # (id ⊗
idI) = H(x). Now, for associativity, consider a triple of morphisms that can
be tensored in two ways and such that, without loss of generality, we assume
the runtime to be on the left side. Then, we can use centrality to argue that

H((x⊗ u)⊗ v) = (((H(x)⊗ id) # (id⊗H0(u)))⊗ id) # id⊗H0(v)

= (H(x)⊗ id) # (id⊗H0(u)⊗H0(v))

= H(x⊗ (u⊗ v))

• The terms form a category. And indeed, it is true by construction that H(x #
(y # z)) = H((x # y) # z) and also that H(x # id) = H(x) because H preserves
composition.

• The runtime category enforces some axioms. The composition of two braidings
is mapped to the identity by the fact that H preserves composition and sends
both to the identity. Both sides of the braid naturality over a morphism v
are mapped to H0(v); with the multiple braidings being mapped again to the
identity.

72 1. MONOIDAL PROCESS THEORY

Figure 37. The assignment is well defined.

7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 73

Thus, H is well-defined and it defines the only possible assignment and the only
possible strict premonoidal functor. �

Theorem 7.8 (Runtime as a resource). The free strict effectful category over
an effectful polygraph (V,G) is Mon(V) → Eff(V,G). Its morphisms A → B are
in bijection with the morphisms R⊗A→ R⊗B of the runtime monoidal category,

Eff(V,G)(A,B) ∼= MonRun(V,G)(R⊗A,R⊗B).

Proof. Wemust first show that Mon(V)→ Eff(V,G) is an effectful category.
The first step is to see that Eff(V,G) forms a premonoidal category (Lemma 7.5).
We already know that Mon(V) is a monoidal category: a strict, freely generated
one. There exists an identity on objects functor, Mon(V) → Eff(V,G), that
strictly preserves the premonoidal structure and centrality (Lemma 7.6).

Let us now show that it is the free one over the effectful polygraph (V,G).
Let V→ C be an effectful category, with an effectful polygraph map F : (V,G)→
U(V,C). We can construct a unique effectful functor from (Mon(V)→ Eff(V,G))
to (V→ C) giving its universal property (Lemma 7.7). �

Corollary 7.9 (String diagrams for effectful categories). We can use string dia-
grams for effectful categories, quotiented under the same isotopy as for monoidal
categories, provided that we do represent the runtime as an extra wire that needs
to be the input and output of every effectful morphism.

7.3. Example: a Theory of Global State. Let us provide an example
of reasoning using the string diagrams for premonoidal categories. Imperative
programs are characterized by the presence of a global state that can be mutated.
Reading or writing to this global state constitutes an effectful computation: the
order of operations that affect some global state cannot be changed. Let us
propose a simple theory of global state and let us show that it is enough to
capture the phenomenon of race conditions.

Definition 7.10. The theory of global state is given by a single object X; two
pure generators, () : X → X ⊗X and () : X → I, allowing copy and discard;
and two effectful generators, put : X → I and get : I → X, quotiented by the
equations in Figure 39.

Figure 38. Generators of the theory of global state.

74 1. MONOIDAL PROCESS THEORY

These two put and get generators, without extra axioms, are enough for
capturing what happens when a process can send or receive resources; in further
sections, we will develop this theory. Right now, we are only concerned with the
theory of a single global state, accessed by a single process: we can impose some
axioms that assert that the memory was not changed by anyone but this single
process.

Figure 39. Axioms of the theory of global state.

The equations in Figure 39 say that: (i) reading the global state twice gets us
the same result, (ii) reading the global state and discarding the result is the same
as doing nothing, (iii) writing something to the global state and then reading it
is the same as keeping a copy of it, (iv) writing twice to the global state keeps
only the last thing that was written, (v) copying and discarding a copy is doing
nothing, and (vi) reading something and immediately writing it to the global
state is the same as doing nothing.

Proposition 7.11 (Race conditions). Concurrently mixing two processes that
share a global state, f and g, can produce four possible results: (i) only the result
of the first one is preserved, (ii) only the result of the second one is preserved, or
(iii,iv) the composition of both is preserved, in any order, f # g or g # f .

Proof. We work in the theory of global state adding two processes, f : X →
X and g : X → X, that can moreover be discarded, meaning f # ε = g # ε = ε. We
employ the string diagrams of premonoidal categories. The first three diagrams
in Figure 40 correspond to the first three cases, the last one is analogous to the
third one. �

7.4. Bibliography. Alan Jeffrey pioneered a string diagrammatic represen-
tation of programs using an extra wire to represent runtime [Jef97a], all the credit
for this idea should go there. Staton and Møgelberg [MS14] already showed how

7. STRING DIAGRAMS FOR PREMONOIDAL CATEGORIES 75

Figure 40. Race conditions in the theory of global state.

any premonoidal category could be reinterpreted as the Kleisli category of a state
promonad.

We take these ideas a step further, showing that a particular syntax for mo-
noidal categories can be used to talk about premonoidal categories as well. Our
study may demystify premonoidal categories, or at least make them more accessi-
ble to a category theorist already interested in monoidal categories: premonoidal
categories are simply monoidal categories with a hidden state object.

CHAPTER 2

Context Theory

Context Theory

Our goal in this thesis is to study how processes compose from their con-
stituent parts while keeping for each one of these incomplete parts (each context)
a meaning of its own: the meaning – the semantics – of the whole process is then
determined by the semantics of each one of its parts, and how they compose.
This is the principle of compositionality.

In the categorical framework, the structures that govern composition and
decomposition are Lambek’s multicategories: categories where morphisms have
multiple inputs that get composed into a single output. We will decompose
multicategories and compare them to monoidal categories using profunctors and
dinaturality, which we claim to be the right mathematical tools to talk about
abstract process composition in Section 1.

We give a short exposition of multicategories in Section 2, and then introduce
a type of multicategory with the particular property that every transformation
can be decomposed into smaller ones: malleable multicategories, which we prove
equivalent to promonoidal categories in Section 3. Our main result in this section
is a characterization of the multicategory that governs how morphisms compose in
a category – the malleable multicategory of spliced arrows – as cofreely generated
by the category, Section 4. This result is a variant on a recent result by Melliés
and Zeilberger [MZ22]; and Chapter 3 will extend this theory for the first time
to the setting of monoidal categories.

77

78 2. CONTEXT THEORY

1. Profunctors and Coends

1.1. Profunctors. A profunctor from a category A to a category B is a
functor P : Aop × B → Set [Bén00]. Profunctors describe families of processes
indexed functorially by the objects of two different categories. The canonical
example of a profunctor is the one that returns the set of morphisms between
two objects of the same category, A(•; •) : Aop×A→ Set. Profunctors, however,
do not need to be restricted to a single category: this makes them useful to study
the relation between processes of different categories.

Categorically, profunctors can be seen as a categorification of the concept of
relations, functions A × B → 2. Under this analogy, existential quantifiers cor-
respond to coends. This section will first introduce profunctors (Definition 1.1),
then a naturality relation for them (Definition 1.4) and, finally, their composi-
tion using coends (Sections 1.3 and 1.4). We connect them explicitly to process
theories in Section 1.5.

Definition 1.1. A profunctor (P,≺,�) between two categories, A and B, is a
family of sets, P (A,B), indexed by objects A ∈ Aobj and B ∈ Bobj , and endowed
with jointly functorial left and right actions of the morphisms of the two categories
A and B, respectively.

Explicitly, types of these actions are

(�) : A(A′;A)× P (A′;B)→ P (A;B)

(≺) : P (A;B)× B(B;B′)→ P (A;B′)

These two actions must be compatible, (f � p) ≺ g = f � (p ≺ g), they must
preserve identities, id�p = p, and p≺id = p, and they must preserve composition
(p≺ f)≺ g = p≺ (f # g) and f � (g � p) = (f # g)� p.

More succinctly, a profunctor P : A → B is the same as a functor P : Aop ×
B→ Set. When presented as a family of sets with a pair of actions, profunctors
have been sometimes called bimodules.

Definition 1.2 (Parallel composition). Two profunctors P : Aop1 ×B1 → Set and
Q : Aop2 × B2 → Set compose in parallel into a profunctor P × Q : Aop1 × Aop2 ×
B1 × B2 → Set defined by

(P ×Q)(A,A′;B,B′) = P (A;B)×Q(A′;B′).

Remark 1.3. We will consider profunctors between product categories explicitly:
a profunctor P : A0 × ...× An → B0 × ...× Bm is a functor

P : Aop0 ...× Aopn × B0 × ...× Bm → Set.

For our purposes, a profunctor P (A0, ..., An;B0, ..., Bm) is a family of processes
indexed by contravariant inputs A0, ..., An and covariant outputs B0, ..., Bm.
The profunctor is endowed with jointly functorial left (�0, ...,�n) and right

1. PROFUNCTORS AND COENDS 79

(≺0, ...,≺m) actions of the morphisms of A0, ...,An and B0, ...,Bm, respectively
[Bén00, Lor21]. We will simply use (≺/�) without any subscript whenever the
input/output is unique.

Composing profunctors sequentially is subtle: the same processes could arise
as the composite of different pairs of processes, so we need to impose an equiva-
lence relation. Imagine we try to connect two different processes:

p ∈ P (A0, ..., An;B0, . . . , Bm), and q ∈ Q(C0, ..., Ck;D0, . . . , Dh);

and we have some morphism f : Bi → Cj that translates the i-th output port of p
to the j-th input port of q. Let us write (i|j) for this connection operation. Note
that we could connect them in two different ways: we could

(1) change the output of the first process p≺if before connecting both, thus
obtaining (p≺ if) i|j q;

(2) or change the input of the second process f �j q before connecting both,
thus obtaining p i|j (f �j q).

These are different descriptions, made up of two different components. How-
ever, they essentially describe the same process: they are dinaturally equal.
Indeed, profunctors are canonically endowed with this notion of equivalence
[Bén00, Lor21], precisely equating these two descriptions. Profunctors, and their
elements, are thus composed up to dinatural equivalence.

1.2. Dinaturality and Composition. Dinaturality is a canonical notion
of equivalence for profunctors: it arises naturally from the construction of the
bicategory of profunctors, but it also has a good interpretation in terms of pro-
cesess.

Definition 1.4 (Dinatural equivalence). For any functor P : Cop × C → Set,
consider the set

SP =
∑

M∈C
P (M ;M).

Dinatural equivalence, (∼), on the set SP is the smallest equivalence relation
satisfying (r � p) ∼ (p≺ r) for each p ∈ P (M ;N) and each r ∈ C(N ;M).

Coproducts quotiented by dinatural equivalence construct a particular form
of colimit called a coend. Under the process interpretation of profunctors, taking
a coend means plugging an output to an input of the same type.

Definition 1.5 (Coend). Let P : Cop × C → Set be a functor. Its coend is the
coproduct of P (M,M) indexed by M ∈ C, quotiented by dinatural equivalence.

∫ M∈C
P (M ;M) :=

(∑

M∈C
P (M ;M)

/
∼
)
.

80 2. CONTEXT THEORY

That is, the coend is the colimit of the diagram containing a cospan P (M ;M)←
P (M ;N)→ P (N ;N) for each f : N →M .

Definition 1.6 (Sequential composition). Two profunctors P : Aop × B → Set
and Q : Bop×C→ Set compose sequentially into a profunctor P �Q : Aop×C→
Set defined by

(P �Q)(A;C) =

∫ B∈B
P (A;B)×Q(B;C).

The hom-profunctor hom: Aop ×A→ Set that returns the set of morphisms be-
tween two objects is the unit for sequential composition. Sequential composition
is associative up to isomorphism.

1.3. Coend Calculus. Coend calculus is the name given to the algebraic
manipulations of coends that prove isomorphisms or construct natural transfor-
mations between profunctors using the behaviour of coends. MacLane [ML71]
and Loregian [Lor21] give presentations of coend calculus.

Proposition 1.7 (Yoneda reduction). Let C be any category and let F : C→ Set
be a functor; the following isomorphism holds for any given object A ∈ Cobj.

∫ X∈C
C(X;A)× FX ∼= FA.

Following the analogy with classical analysis, the hom profunctor works as a
Dirac’s delta.

Proposition 1.8 (Fubini rule). Coends commute between them; that is, there
exists a natural isomorphism
∫ X1∈C ∫ X2∈C

P (X1, X2;X1, X2) ∼=
∫ X2∈C ∫ X1∈C

P (X1, X2;X1, X2).

In fact, they are both isomorphic to the coend over the product category,
∫ (X1,X2)∈C×C

P (X1, X2;X1, X2).

Following the analogy with classical analysis, coends follow the Fubini rule for
integrals.

1.4. The Point of Coend Calculus. In the same way that regular logic
links relations, a coend calculus expression is a list of profunctors linked by some
objects that are bound to a coend. Usually, the isomorphisms that we construct
are never made explicit, and it is difficult for the reader to compute the precise
map we constructed.

Fortunately, this has a straightforward solution. We propose to point the
coends: to write an profunctorial expression, P , together with the generic element

1. PROFUNCTORS AND COENDS 81

it computes, Pp. An expression of pointed coend calculus is a coend bounding
some objects and a series of pointed profunctors. For instance, we may write

∫M,N
P (A;M,N)f ×Q(M ;B)g × C(N ;C)h, instead of just

∫M,N
P (A;M,N)×Q(M ;B)× C(N ;C).

Coends quotient expressions by dinaturality, meaning that any left action on
the covariant occurrence of a bounded variable can be equivalently written as a
right action on its contravariant occurrence. In terms of pointed profunctors, this
means that

∫ N

P (A;N)(f≺h) ×Q(N ;B)g =

∫ M

P (A;M)f ×Q(M ;B)(h�g).

Proposition 1.9. Let C be a category and let F : Cop → Set and G : C→ Set be
a presheaf and a copresheaf, respectively. The following are natural isomorphisms
of pointed profunctors,

∫ X

C(X;A)f × F (X)h ∼= F (A)(f�h);

∫ X

C(A;X)f ×G(X)h ∼= G(A)(h≺f).

We call these isomorphisms the “pointed” Yoneda reductions.

Remark 1.10. Using pointed coends, any derivation does also include the com-
putation of the isomorphism it induces. As an example, compare the following
with the usual coend derivation of a cartesian lens [CEG+20],

Proposition 1.11. In a cartesian monoidal category, the pairs of morphisms
C(A;M ×X) and C(M × Y ;B), quotiented by dinaturality, are in bijective cor-
respondence with the pairs of morphisms C(A;M) and C(M × Y ;B).

Proof. A function is explicitly constructed by the following derivation.
∫ M

C(A;M ×X)f × C(M × Y ;B)g

∼= (by the adjunction ∆ a ×)
∫ M

C(A;M)(f#π1) × C(A;X)(f#π2) × C(M × Y ;B)g

∼= (by pointed Yoneda lemma)

C(A;X)(f#π2) × C(X × Y ;B)((f#π1)⊗id)#g.

The function mapping an equivalence class [f, g] to (f # π2; (f # π1) ⊗ id) is a
bijection because it has been constructed from composing bijections.

82 2. CONTEXT THEORY

Indeed, in the first step, we have used that the adjunction (∆a×) is given by
postcomposition with projections and; in the second step, we use that the action
on the last profunctor is defined as h � g = (h ⊗ id) # g. The bijection has been
explicitly constructed as sending the pair (f ; g) to (f # π2; ((f # π1)⊗ id) # g). �

1.5. Promonads. Promonads are to profunctors what monads are to func-
tors: to quip, a promonad is just a monoid in the category of endoprofunc-
tors. It may be then surprising to see that so little attention has been devoted
to them, relative to their functorial counterparts. The main source of exam-
ples and focus of attention has been the semantics of programming languages
[Hug00, Pat01, JHH09]. Strong monads are commonly used to give categori-
cal semantics of effectful programs [Mog91], and the so-called arrows (or strong
promonads) strictly generalize them: they coincide with our previous definition
of effectful category [HJ06].

Part of the reason behind the relative unimportance given to promonads
elsewhere may stem from precisely from that fact: promonads over a category can
be shown in an elementary way to be equivalent to identity-on-objects functors
from that category [Lor21]. The explicit proof is, however, difficult to find in the
literature, and so we include it here (Theorem 1.14).

Under this interpretation, promonads are new morphisms for an old category.
We can reinterpret the old morphisms into the new ones in a functorial way. The
paradigmatic example is again that of Kleisli or cokleisli categories of strong
monads and comonads. This structure is richer than it may sound, and we will
explore it further during the rest of this text.

Definition 1.12. A promonad (P, ?, ◦) over a category C is a profunctor P : Cop×
C→ Set together with natural transformations for inclusion (◦)X,Y : C(X;Y)→
P (X;Y) and multiplication (?)X,Y : P (X;Y) × P (Y ;Z) → P (X;Z), and such
that

i. the right action is premultiplication, f◦ ? p = f � p;
ii. the left action is postmultiplication, p ? f◦ = p≺ f ;
iii. multiplication is dinatural, p ? (f � q) = (p≺ f) ? q;
iv. and multiplication is associative, (p1 ? p2) ? p3 = p1 ? (p2 ? p3).

Equivalently, promonads are promonoids in the double category of categories,
where the dinatural multiplication represents a transformation from the compo-
sition of the profunctor P with itself.

Lemma 1.13 (Kleisli category of a promonad). Every promonad (P, ?, ◦) induces
a category with the same objects as its base category, but with hom-sets given by
P (•, •), composition given by (?) and identities given by (id◦). This is called its
Kleisli category, Kleisli(P). Moreover, there exists an identity-on-objects functor
C→ Kleisli(P), defined on morphisms by the unit of the promonad.

1. PROFUNCTORS AND COENDS 83

The converse is also true: every category C with an identity-on-objects func-
tor from some base category V arises as the Kleisli category of a promonad.

Theorem 1.14. Promonads over a category C correspond to identity-on-
objects functors from the category C. Given any identity-on-objects functor i : C→
D there exists a unique promonad over C having D as its Kleisli category: the
promonad given by the profunctor homD(i(•), i(•)).

1.6. Bibliography. Coends, the Yoneda lemma, and their calculus, were
introduced in MacLane’s monograph [ML71]. A more modern presentation of
coend calculus and its applications is in the work of Loregian [Lor21]. This author
has also written on the importance of pointed profunctors for open diagrams
[Rom20b] and collages [BR23].

84 2. CONTEXT THEORY

2. Multicategories

2.1. Multicategories. Multicategories will provide an algebra for compos-
ing multiple pieces into one. A multicategory is like a category where every
morphism has a list of inputs instead of a single one. A multicategory, M, con-
tains a set of objects, Mobj , as a category does; but instead of a set of morphisms,
M(X;Y), for every pair of objects X,Y ∈ Mobj , it will have a set of multimor-
phisms,

M(X1, . . . , Xn;Y), for each list of objects X1, . . . , Xn, Y ∈Mobj .

As in sequent logic, it is easier to denote lists of objects by metavariables. For
instance, we will use Γ = X1, . . . , Xn and write M(Γ;Y) for the set of multimor-
phisms M(X1, . . . , Xn;Y).

Definition 2.1. A multicategory, M, is a collection of objects, Mobj , together
with a collection of multimorphisms,M(Γ;Y), for each list of objects Γ = X0, . . . , Xn ∈
Mobj and each object Y ∈Mobj .

For each objectX, there must be an identity multimorphism, idX ∈M(X;X).
For each three lists of objects Γ,Γ1,Γ2 and each two objects Y and Z, there must
exist a composition operation (we omit superscripts when clear from the context),

(#)Γ1,Γ2

i : M(Γ;Y i)×M(Γ1, Y i,Γ2;Z)→M(Γ1,Γ,Γ2;Z).

Composition must be unital, meaning that idX #X f = f and f # idY = f
every time that the equation is fomally well-typed. Composition must be also
associative, meaning that (h#Xg)#Y f = h#X (g#Y f); and g#Y (h#Xf) = h#X (g#Y f)
must hold whenever they are formally well-typed, see Figure 1.

Figure 1. Associativity for a multicategory.

2.2. The Category of Multicategories. In the same way categories are
the first step towards the theory of functors and natural transformations, multi-
categories are the first step towards the theory of multifunctors and multinatural
transformations. In the same way the formal theory of categories is synthetised by

2. MULTICATEGORIES 85

the 2-category Cat of categories, functors and natural transformations; the study
of multicategories is synthetised by the 2-category MultiCat of multicategories,
multifunctors and multinatural transformations.

Definition 2.2. A multifunctor between two multicategories, F : M → N, con-
sists of an assignment on objects Fobj : M→ N and an assignment on multimor-
phisms of any arity,

Fn : M(X1, . . . , Xn;Y)→ N(FobjX1, . . . , FobjXn;FobjY),

that preserves identities, F 1(idX) = idFobj(X), and composition of multimor-
phisms, Fn+m−1(f #Y g) = Fn(f) #Fobj(Y) Fm(g).

Definition 2.3. A multinatural transformation θ : F → G between two multi-
functors F,G : M→ N is given by a family of multimorphisms θX ∈ N(FX;GX)
such that, for each multimorphism f ∈M(X1, . . . , Xn;Y), the following natural-
ity condition holds

θX1
#1 . . . #n−1 θXn

#G(f) = F (f) # θY .
Proposition 2.4. Multicategories with multifunctors between them form a cate-
gory, Mult.

2.3. Application: Shufflings. Let us exemplify multicategories with an
example that will become increasingly relevant in this thesis. Shufflings are per-
mutations that preserve the relative ordering of some blocks. We can always
count shufflings combinatorially, but multicategories provide the extra structure
that allows us to track how different shufflings compose.

Example 2.5. A shuffling is a permutation of the elements of multiple blocks
that preserves their relative ordering. The multicategory of shufflings has objects
the natural numbers and morphisms the shufflings, σ ∈ Shuf(p0, . . . , pn; q) that
reorganize p0, . . . , pn elements into q = p0+· · ·+pn without altering their internal
ordering.

Figure 2. Example of a 1,2,3-shuffling.

More explicitly, the number of shufflings Shuf(p0, . . . , pn; q) is given by a
multinomial coefficient whenever q = p0 + · · ·+ pn,

#Shuf(p0, . . . , pn; p0 + · · ·+ pn) =
(p0 + · · ·+ pn)!

p0! · · · · · pn!
,

86 2. CONTEXT THEORY

and it is zero in any other case.
Shufflings exhibit a particular property that motivates our next section: mal-

leability. Any shuffling of p0, p1 and p2 can be factored uniquely in two different
forms: we can first shuffle p0 and p1 and then shuffle the result, p0 + p1, with
p2; or we can first shuffle p1 and p2, and then shuffle p0 with the result, p1 + p2.
For instance, any 1, 2, 3-shuffling splits uniquely into a 2, 3-shuffling followed by
a 1, 5-shuffling, but also uniquely into a 1, 2-shuffling followed by a 3, 3-shuffling.

Figure 3. Two factorizations of the previous shuffling.

This is a global property: any shuffling can be uniquely factored into smallest
shufflings, in whichever arrangement we pick. Any morphism of the multicategory
Shuf can be factored into any possible shape, uniquely. We say that the mul-
ticategories that satisfy this property are “malleable multicategories”: shufflings
form a malleable multicategory.

3. Malleable Multicategories

A malleable multicategory is a multicategory where each morphism can be
morphed uniquely into any possible shape. This means that there exist unique
factorizations of each morphism into each one of the possible shapes. Formally,
we will define malleable multicategories to have an invertible composition, up to
the morphisms of some underlying category.

Definition 3.1. The unary morphisms of a multicategory form a category [Shu16].
In other words, given a multicategory M, the underlying category, Mu, has the
same objects as the multicategory, Mu

obj = Mobj , and morphisms defined from
the unary multimorphisms of the multicategory, Mu(X;Y) = M(X;Y). Compo-
sition and identities are exactly those of the multicategory.

Remark 3.2. The multimorphisms of a multicategory determine profunctors
over the underlying category of the multicategory. The underlying category acts
on the multimorphisms by composition,

(�) : Mu(X;X ′)×M(Γ1, X
′,Γ2;Y)→M(Γ1, X,Γ2;Y),

(≺) : M(Γ;Y)×Mu(Y ;Y ′)→M(Γ;Y ′).

3. MALLEABLE MULTICATEGORIES 87

In any multicategory, composition of multimorphisms is dinatural with respect to
the underlying category. This follows from the associativity for multicategories,

(f ≺ h) #Xi
g = (f #Xi

h) #X′i g = f #Xi
(h #X′i g) = f #Xi

(h� g).

As a consequence, composition is well-defined under dinaturality. We define
dinatural composition to be composition lifted to the equivalence classes of the
dinaturality equivalence relation, which are written as a coend,

(#) :
(∫ Y ∈M M(Γ;Y)×M(Γ0, Y,Γ1;Z)

)
→M(Γ0,Γ,Γ1;Z).

Definition 3.3. A malleable multicategory is a multicategory where dinatural
composition is invertible.

Proposition 3.4. Malleable multicategories with multifunctors between them
form a category, mMult. This is a wide subcategory of the category of mul-
ticategories.

Remark 3.5. If a multicategory is malleable, we can reconstruct it up to iso-
morphism from its binary and nullary maps. When defining a malleable multi-
category, it is usually easier to provide its binary, unary and nullary maps, and
deduce from those the rest of the structure. The situation is similar in monoi-
dal categories: we do not need to provide the n-ary tensor in order to define a
monoidal category, we only provide the binary and unary tensors.

This suggests that we will really work with a biased version of malleable
multicategories, one that privileges the binary and nullary tensors over the others.
Biased malleable multicategories are better known as promonoidal categories.

3.1. Promonoidal Categories. In the same sense that multicategories
provide an algebra for the composition of multiple pieces into one, promonoidal
categories provide an algebra for the coherent composition of multiple pieces into
one. A category C contains sets of morphisms, C(X;Y). In the same way, a pro-
monoidal category V contains sets of joints, V(X0CX1;Y), morphisms, V(X;Y),
and units, V(N ;X), where N is the virtual tensor unit. Joints, V(X0 CX1;Y),
represent a way of joining objects of type X0 and X1 into an objects of type Y .
Morphisms, V(X;Y), as in any category, are transformations of X into Y . Units,
V(N ;Y), are the atomic pieces of type Y .

These compositions must now be coherent. For instance, imagine we want
to join X0, X1 and X2 into Y . Joining X0 and X1 into something (•), and then
joining that something (•) and X2 into Y , should be doable in essentially the
same ways as joining X1 and X2 into something (•), and then joining X0 and
that something (•) into Y . Formally, we are saying that,
∫ U

V(X0 / X1;U)× V(U / X2;Y) ∼=
∫ V

V(X1 / X2;V)× V(X0 / V ;Y),

88 2. CONTEXT THEORY

and, in fact, we usually just write V(X0 /X1 /X2;Y) for the set of such decom-
positions, even when it is only defined up to isomorphism.

Definition 3.6. Promonoidal categories are the 2-monoids of the monoidal bi-
category of profunctors, which is equivalent to the following definition. A pro-
monoidal category is a category V(•; •) endowed with two profunctors

V(• / •; •) : V× V→ V, and V(N; •) : 1→ V.
Equivalently, these are functors

V(• / •; •) : Vop × V× V→ Set, and V(N; •) : Vop → Set.

Moreover, promonoidal categories must be endowed with the following natural
isomorphisms,

V(X0 / X1; •) � V(• / X2;Y) ∼= V(X1 / X2; •) � V(X0 / •;Y);

V(N; •) � V(• / X;Y) ∼= V(X;Y);

V(N; •) � V(X / •;Y) ∼= V(X;Y);

called α, λ, ρ, respectively, and asked to satisfy the pentagon and triangle coher-
ence equations, α # α = (α � id) # α # (id � α), and (ρ � id) = α # (λ � id).

Definition 3.7 (Promonoidal functor). Let V and W be two promonoidal cate-
gories. A promonoidal functor F : V→W is a functor between the two categories
together with natural transformations

F/ : V(X0 / X1;Y)→W(FX0 / FX1;FY), and FN : V(N;X)→W(N;Y),

that satisfy λ#Fmap = (FC×FN)#λ, ρ#Fmap = (FC×FN)#ρ, and α#(FC×FC)#i =
(FC × FC) # i # α.
Proposition 3.8. Promonoidal categories with promonoidal functors between
them form a category, Prom.

3.2. Promonoidal Categories are Malleable Multicategories. In this
section, we show that the category of promonoidal categories is equivalent to that
of malleable multicategories. In this sense, the study of malleable multicategories
is the study of promonoidal categories.

Definition 3.9 (Underlying malleable multicategory). Let V be a promonoidal
category. There is a malleable multicategory, Vm, that has the same objects
but multimorphisms defined by the elements of the promonoidal category. By
induction, we define

Vm(X0, X1,Γ;Y) =
∫ V V(X0 / X1;V)× Vm(V,Γ;Y),

Vm(X;Y) = V(X;Y),

Vm(;Y) = V(N;Y).

3. MALLEABLE MULTICATEGORIES 89

In other words, the multimorphisms are elements of the left-biased tree reductions
of the promonoidal category, seen as a 2-monoid. Dinatural composition is then
defined to be the unique map relating two tree expressions in a 2-monoid, which
exists uniquely by coherence,

(coh) :
(∫X∈VV(Γ;X)× Vm(Γ0, X,Γ1;Y)

)
→ Vm(Γ0,Γ,Γ1;X).

Coherence maps are isomorphisms, and so dinatural composition is invertible,
making the multicategory coherent. By coherence for pseudomonoids, composi-
tion must satisfy associativity and unitality.

Proposition 3.10. The category of promonoidal categories and the category of
malleable multicategories are equivalent with the functor (•)m : Prom→mMult
induced by the construction of the underlying malleable multicategory of a pro-
monoidal category. See a polycategorical analogue at Proposition 2.16.

Proof. First, let us show that a promonoidal functor, F : V → W, induces
a multifunctor, Fm : Vm → Wm between the underlying multicategories. On
objects, we define it to be the same, Fmobj = Fobj . On multimorphisms, we define
the binary, unary and nullary cases using the promonoidal transformations:

Fu0 = FN , with Fu1 = Fmap and Fu2 = F/.

Then, we extend this definition to the n-ary case by induction, using Fun =
F/×Fun−1. We now verify that this assignment is functorial: the only remarkable
case is that of checking that the inductive case preserves composition.

(F #G)un
(i)
= (F #G)/ × (F #G)un−1

(ii)
= (F/ #G/)× (Fun−1 #Gun−1)

(iii)
= (F/ × Fun−1)× (G/ ×Gun−1)

(iv)
= Fun #Gun.

This equation holds because (i) of the inductive definition, (ii) the composition
of promonoidal functors and the inductive hypothesis, (iii) the interchange law
for functions, (iv) and the inductive definition.

We will now show that this is a fully faithful functor. It is hopefully clear that
it is faithful because Fu = Gu directly implies Fobj = Gobj , F/ = G/, FN = GN
and Fmap = Gmap. Let us show that it is also full. Let G : Vu → Wu be a
multifunctor between malleable multicategories. We will construct a promonoidal
functor G? such that G?u = G. We start by defining that G?N = G0, that
G?map = G1 and that G?/ = G2. Now, we need to prove that (G?u)n = Gn.
This is definitionally true for binary, unary and nullary multimorphisms; then,
by induction,

Gn
(i)
= decomp # (G2 ×Gn)

(ii)
= decomp # (G?u2 ×G?un)

(iii)
= G?un .

90 2. CONTEXT THEORY

Here, we use (i) malleability, (ii) the induction hypothesis, and (iii) the definition
of the underlying multifunctor. We have shown that we have a fully faithful
functor.

Finally, we will show that U : Prom → mMult is essentially surjective.
Given any malleable multicategory M, we can define M [to be the promonoidal
category with the same objects and only binary, unary and nullary morphisms.
We now note that there is an isomorphism, M ∼= M[u, that is the identity on
objects. It is defined to use the invertible dinatural composition that exists by
malleability,

Mu
[(X1, . . . , Xn;Y) =

∫ UM(X0, X1;U)×M(U,X2, . . . , Xn;Y)

∼= M(X1, . . . , Xn;Y).

This makes the functor fully faithful and essentially surjective, defining an equiv-
alence of categories. �

3.3. Bibliography. What makes monoidal tensors universal? Products
and coproducts have a universal property, but that is the exception and not
the rule. Hermida’s work [Her00] explains that tensors are universal because
they represent a relevant multimap structure, a multicategory. For instance, the
monoidal category of vector spaces with their tensor product represents functions
linear in each variable: a linear function A⊗B → C is the same as a multilinear
function A,B → C. Indeed, Lambek [Lam69] first introduced multicategories as
the underlying structure that unified Gentzen’s sequents and multilinear maps.

4. THE SPLICE-CONTOUR ADJUNCTION 91

4. The Splice-Contour Adjunction

4.1. Contour of a multicategory. This last section characterizes the cofree
malleable multicategory of spliced arrows, which governs how incomplete mor-
phisms can be nested. Any multicategory freely generates another category, its
contour [MZ22]. This can be interpreted as the category that tracks the pro-
cesses of decomposition that the multicategory describes. The construction is
particularly pleasant from the geometric point of view: it takes its name from
the fact that it can be constructed by following the contour of the shape of the
decomposition (Figure 4).

Figure 4. Contour of a multimorphism.

Definition 4.1. Let M be a multicategory. Its contour, Contour(M), is the
category presented by two polarized objects, X◦ and X•, for each object X ∈
Mobj ;

(1) for each multimorphism f ∈ M(X1, . . . , Xn;Y), the following genera-
tors,

f0 : Y ◦ → X◦1; f1 : X•1 → X◦2; . . . ; fn−1 : X•n−1 → X◦n; fn : X•n → Y •;

with only an f0 : Y ◦ → Y • for the case n = 0;
(2) requiring contour to preserve identities, (idX)0 = idX◦ and (idX)1 =

idX• ;
(3) and requiring contour to preserve compositions, meaning that for each

f ∈ M(X1, . . . , Xn;Y i) and each g ∈ M(Y 1, . . . , Ym;Z), the contour of
their composition is defined by the following five cases

(f #Xi
g)j =

gj when j < i,
gi # f0 when j = i,
fj−i when i < j < i+ n,
fn # gi+1 when j = i+ n,
gj−n+1 when i+ n < j < n+m,

with the special case (f #Xi
g)i = gi # f0 # gi+1 whenever n = 0.

92 2. CONTEXT THEORY

A recent article by Melliès and Zeilberger [MZ22] develops the notion of a
context-free grammar over a category as a multicategorical functor to the mul-
ticategory of spliced arrows. The multicategory of spliced arrows is a universal
construction over a category that produces a multicategory of “contexts” over the
category.

4.2. Spliced Arrows. The multicatgeory of spliced arrows is formed by
arrows containing blanks or holes that could be filled to constuct a morphism.
This multicategory gives an algebraic theory of context for the category.

Definition 4.2 (Spliced arrows). Let C be a category. The multicategory of
spliced arrows has objects pairs of objects in C, and the multimorphisms are
given by sequences of arrows in C separated by n gaps

SpliceC
(
X1
Y 1
, . . . ,Xn

Yn
;XY
)

= C(X;X1)×
n−1∏

k=1

C(Yk, Xk+1)× C(Yn;Y);

which we write as f0 # � # . . . # � # fn. That is, the sequence goes from X to Y ,
with holes typed by {Xi → Y i}0<i≤n. Composition is defined by substitution

(f0 #� # . . . #� # fn)�i (g0 #� # . . . #� # gm) =

(g0 #� # . . . # gi # f0 #� # . . . #� # fn # gi+1 # . . . #� # gm),

and the identity morphism in (XY) is idX #� # idY .
Proposition 4.3. The multicategory of spliced arrows is a malleable multicate-
gory.

Proof. We will show that dinatural composition is invertible by exhibiting
an inverse to the composition operation, up to dinaturality. Consider a spliced
arrow h0 # � · · ·� # hn+m−1 with (n + m + 1) holes; we can decompose n of its
holes at position i with the following operation.

decompni (h0 #� · · ·� # hn+m−1)

= (h0 #� · · ·hi #� # hi+n · · ·� # hn+m−1) | (id #� # hi+1 · · ·hi+n−1 #� # id)

= (h0 #� · · · id #� # id · · ·� # hn+m−1) | (hi #� # hi+1 · · ·hi+n−1 #� # hi+n).

This operation is an inverse to dinatural composition. It follows by construction
that (�)i # decompi = id, and we now check that decompi #(�)i is an identity up
to dinaturality. Let f0 #� · · ·� # fn and g0 #� · · ·� # gm be two spliced arrows,

decompni ((f0 #� . . .� # fn)�i (g0 #� . . .� # gm))

= decompni (g0 #� . . . # gi # f0 #� # . . .� # fn # gi+1 #� · · ·� # gm))

= (g0 # . . . # gi # f0 #� # fn # gi+1 # . . . # gm) | (id #� # f1 # . . . # fn−1 #� # id)

= (g0 # . . . # gi #� # gi+1 # . . . # gm) | (f0 #� # f1 # . . . # fn−1 #� # fn).

We have shown that dinatural composition is invertible. �

4. THE SPLICE-CONTOUR ADJUNCTION 93

4.3. Splice-Contour Adjunction. A first explicit account of splice-contour
adjunction is due to Melliès and Zeilberger [MZ22]. In later joint work with Earn-
shaw and Hefford [EHR23], we showed that this adjunction produced not only
multicategories but malleable multicategories.

Theorem 4.4. Splice is right adjoint to contour.

Proof. Let M be a multicategory. We will show that any multifunctor to
a spliced arrow multicategory, F : M → Splice(C), factors through a canonical
multifunctor T : M → Splice(Contour(M)) that is followed by a unique functor
F] : Contour(M) → C. First, we construct T : M → Splice(Contour(M)), the
multifunctor that sends any object X to the pair of polarized objects

(
X◦
X•
)
; and

that sends any multimap f ∈M(X0, . . . , Xn;Y) to the spliced arrow

f0 #� # . . . #� # fn ∈ Splice(C)
(
X◦0
X•0
, . . . ,

X◦n
X•n

;
Y ◦

Y •

)
.

We check now that T is indeed a multifunctor: by construction, it sends T (f #Xi

g) = f �i g and it sends T (idX) = (idX◦ #� # idX•).
We will now show that there exists a unique functor F] : Contour(M) → C

factoring the multifunctor F , such that F = T # Splice(F]). The contour is a
category presented by some generators and equations: to define a functor from
it, it suffices to define it on the generators and show that it preserves the equations
of the presentation. We do so next. Consider the objects, for each X ∈ Mobj ,
assume F (X) = (AB). We must have that

Splice(F])(T (X)) = Splice(F])
(
X◦
X•
)

=
(
F]X◦

F]X•

)
= (AB) ,

which forces F](X◦) = A and F](X•) = B. Consider now the morphisms, for
each f ∈M(X0, . . . , Xn;Y). We must have that

Splice(F])(T (f)) = Splice(F])(f0 # . . . # fn) = F]f0 #� # . . . #� # F]fn,
which forces F](fi) = F (f)i. This uniquely determines the value of F] in all of
the morphisms of the contour. We must finally check that that F] satisfies the
equations. We first notice that, by functoriality of F , we have

F]((f #Xi
g)j) = F (f #Xi

g)j = (F (f) #FXi
F (g))j ,

and, using this and the previous F](fi) = F (f)i, we simply check the five cases
of contour composition,

F]((f #Xi
g)j) =

F (g)j
F (g)i # F (f)0

F (f)j−i
F (f)n # F (g)i+1

F (gj−n+1)

=

F](gj)
F](gi) # F](f0)
F](f)j−i
F](f)n # F](g)i+1

F](g)j−n+1

.

94 2. CONTEXT THEORY

This proves the existence of F], but it also proves that it is the unique possible
functor such that F = T # Splice(F]). �

4.4. Promonoidal Splice-Contour. We have commented on how any mal-
leable multicategory induces a promonoidal category. The malleable multicate-
gory of spliced arrows induces a promonoidal category of spliced arrows. This
promonoidal category is precisely the one that arises from the adjunction between
any category and its opposite category in the monoidal bicategory of profunctors.

Remark 4.5. The promonoidal splice could be seen as a particular case of the
more general multicategorical splice. However, we will see that it is usually better
behaved: technically, it is the 2-monoid arising from the 2-duality of a category
with its opposite category, CaCop, in the monoidal bicategory of profunctors. We
will not use this particular fact too much, but it will inspire its generalization. In
the next chapter, we repeat a monoidal version of the splice-contour adjunction
that, by default, uses only the malleable version.

Proposition 4.6 (Promonoidal spliced arrows). Let C be a category. The pro-
monoidal category of spliced arrows, SpliceC, has as objects pairs of objects of
C. It uses the following profunctors to define morphisms, splits and units.

(1) Splice(C) (XY ; AB) = C(A;X)× C(Y,B);

(2) Splice(C)(XY C X′
Y ′ ;

A
B) = C(A;X)× C(Y ;X ′)× C(Y ′;B);

(3) Splice(C)(N ; AB) = C(A;B).

In other words, morphisms are pairs of arrows f : A → X and g : Y → B.
Splits are triples of arrows f : A → X, g : Y → X ′ and h : Y ′ → B. Units are
simply arrows f : A→ B. We use the following notation for

(1) morphisms, (f #� # g) : (XY)→ (AB);
(2) joins, (f #� # g #� # h) : (XY) /

(
X′
Y ′
)
→ (AB);

(3) and units, f : N→ (AB).

Definition 4.7. The contour of a promonoidal category P is the category Contour(P)
presented by two polarized objects, X◦ and X•, for each object X ∈ Pobj ; and
generated by the arrows that arise from contouring the decompositions of the
promonoidal category.

Figure 5. Contour of a promonoidal category.

4. THE SPLICE-CONTOUR ADJUNCTION 95

Specifically, the contour is the category presented by the following generators,
as depicted in Figure 5:

(1) a0 : Y ◦ → X◦ and a1 : X• → Y •, for each morphism a ∈ P(X;Y);
(2) b0 : X◦ → X•, for each unit b ∈ P(N ;X);
(3) a triple of generators, c0 : Z◦ → X◦, c1 : X• → Y ◦ and c2 : Y • → Z•,

for each split c ∈ P(X / Y ;Z).
We impose several equations over these generators, all depicted in Figure 6. The
equations come from the decomposition of categories and they form the theory
of contour.

Figure 6. Theory of contour.

CHAPTER 3

Monoidal Context Theory

Monoidal Context Theory

This section develops a theory of context, or incomplete parts, for arbitrary
monoidal categories. In the same way that the theory of context for categories re-
quired malleable multicategories or promonoidal categories; the theory of context
for monoidal categories will require duoidal categories and produoidal categories.

Duoidal categories combine a sequential tensor (/) with a parallel tensor
(⊗); and it is well known that they can be used for process description [GF16,
SS22]. However, lifting context theory to monoidal categories will come with a
few technical surprises that we develop; the most important one is a normalization
monad in the category of produoidal categories: this becomes a crucial step in
creating a theory of monoidal context that allows incomplete morphisms to take
any shape. The morphisms of the produoidal category of contexts have been
called lenses and combs in the literature, and we characterize them by a universal
property.

We revisit the literature on duoidal categories and normalization in Sections 1
and 2. Produoidal categories and their splice-contour adjunction are introduced
in Section 3. We take a technical aside in Section 4 to construct the normalization
monad, and we immediately use it in Section 5.

97

98 3. MONOIDAL CONTEXT THEORY

1. Duoidal categories

1.1. Duoidal Categories. Duoidal categories result from the interaction of
two monoidal categories. By the Eckmann-Hilton argument, each time we have
two monoids (∗, ◦) such that one is a monoid homomorphism over the other,
(a ◦ b) ∗ (c ◦ d) = (a ∗ c) ◦ (b ∗ d), we know that both monoids coincide in a single
commutative monoid.

However, an extra dimension helps us side-step the Eckmann-Hilton argu-
ment. If, instead of equalities or isomorphisms, we use directed morphisms, both
monoids (which now may become 2-monoids) do not necessarily coincide, and
the resulting structure is that of a duoidal category.

Definition 1.1 (Duoidal category). A duoidal category [AM10] is a category C
with two monoidal structures, (C,⊗, I, α, λ, ρ) and (C,C, N, β, κ, ν) such that the
latter distribute over the former. In other words, it is endowed with a duoidal
tensor, (C) : C× C→ C, together with natural distributors

ψ2 : (X C Z)⊗ (Y CW)→ (X ⊗ Y)C (Z ⊗W),

ψ0 : I → I C I,
ϕ2 : N ⊗N → N, and
ϕ0 : I → N,

satisfying the following coherence equations (Appendix 1, Figures 1 to 5). A
duoidal category is strict when both of its monoidal structures are.

Remark 1.2. In other words, the duoidal tensor and unit are lax monoidal
functors for the first monoidal structure, which means that the laxators must
satisfy the following equations.

(1) (ψ2 ⊗ id) # ψ2 # (αC α) = α # (id⊗ ψ2) # ψ2, for the associator;
(2) (ψ0 ⊗ id) # ψ2 # (λC λ) = λ, for the left unitor; and
(3) (id⊗ ψ0) # ψ2 # (ρC ρ) = ρ, for the right unitor;
(4) α # (id⊗ ϕ2) # ϕ2 = (ϕ2 ⊗ id) # ϕ2, for the associator;
(5) (ϕ0 ⊗ id) # ϕ2 = λ, for the left unitor; and
(6) (id⊗ ϕ0) # ϕ2 = ρ, for the right unitor.

1.2. Communication via Duoidals. The operations of a posetal duoidal
structure can be interpreted as speaking about the communication of processes
[SS22]. Let (⊗, i) and (/, n) form a duoidal structure on a poset. We read the
elements of this poset as being processes and we interpret

(1) x⊗ y as “x and y happen together, in parallel and independently”;
(2) x / y as “y happens after x, and may depend on it”;
(3) i as a process that “interrupts communication”;
(4) n as a process that “does nothing”;
(5) x→ y as “channels of x are included in channels of y”.

1. DUOIDAL CATEGORIES 99

Under this interpretation, the rules of a duoidal category say that
(1) (x / y)⊗ (z / w)→ (x⊗ z) / (y⊗w), adds intermediate communication;
(2) i→ i / i, allows to interrupt an interrupted process;
(3) n⊗ n→ n, simplifies parallelism that does nothing; and
(4) i→ n, allows new communications.

We can already picture this interpretation in terms of communication diagrams.
Processes are boxes, and wires represent the information flow: a path from a
process to another one means that the first can communicate to the second (Fig-
ure 1).

Figure 1. Communication diagrams.

The axioms of a duoidal category impose the following transformations of
communication diagrams (Figure 2).

We can take these diagrams seriously: they are string diagrams of a monoidal
bicategory where processes are endocells. The only structure that we ask of the
single object generator is that of an adjoint monoid.

Figure 2. Communication diagram axioms.

1.3. Duoidals via adjoint monoids. Let (C,⊗, I) be a monoidal category;
let (A, ,) be a monoid and let (B, ,) be a comonoid. The set of morphisms
C(A;B) forms a monoid with the operation of convolution, f ∗ g = # (f ⊗ g) #
and the biunit, e = # , as in Figure 3.

Convolution and composition interact duoidally whenever the monoid and
the comonoid are adjoint to each other. This is the notion of an adjoint monoid.

100 3. MONOIDAL CONTEXT THEORY

Figure 3. Convolution monoid.

Definition 1.3. An adjoint monoid, in a monoidal bicategory B, is an object
endowed with both 2-monoid and 2-comonoid structure (A, , , ,), such that
the multiplication is adjoint to the comultiplication (a) and the unit is adjoint
to the counit (a).

Figure 4. Adjoint monoid.

This means that there exist 2-cells, ε⊗ : # → id and η⊗ : id → # ,
witnessing the adjunction (a); and that there exist 2-cells, εI : # → id and
ηI : id→ # witnessing the adjunction (a), as in Figure 4.

Theorem 1.4 (Garner, López Franco [GF16]). The endocells of an adjoint
2-monoid form a duoidal category with convolution and composition.

Proof. Let (A, , , ,) be an adjoint monoid, and let X,Y ∈ B(A;A) be
endocells. We define the sequential tensor as the composition, X / Y = X ; Y ,
with the unit being the identity, N = I. We define the parallel tensor as the
convolution, X ⊗ Y = # (X � Y) # , with the unit being the pair of monoid
units, I = # . The duoidal interchangers are constructed out of the 2-cells of the
adjoint monoid, taking Figure 2 seriously as the string diagrams of a monoidal
bicategory.

(1) The first interchanger, (X / W) ⊗ (Y / Z) → (X ⊗ Y) / (W ⊗ Z), is
constructed from the tensor adjunction unit, η⊗ : id→ # ;

(2) the second interchanger, I → I / I, is constructed from the unit of the
unit adjunction, ηI : id→ # ;

(3) the third interchanger, I → N , is constructed from the counit of the
unit adjunction, εI : # → id; and

(4) the fourth interchanger, N ⊗ N → N , is constructed from the tensor
adjunction counit, ε⊗ : # → id.

1. DUOIDAL CATEGORIES 101

Finally, we need to check that all of the structure diagrams commute. This
is usually left to the reader [GF16]; we can visualize the equations as surface
diagrams. �

Remark 1.5 (Day convolution). A particular case is the convolution of two
parallel profunctors P,Q : C → D between monoidal categories. A monoidal
category determines an adjoint monoid in the monoidal bicategory of profunctors.
Convolution is the operation that constructs a profunctor P ∗Q : C→ D defined
by

(P ∗Q)(A,B) =
∫X,X′,Y,Y ′C(A,X ⊗ Y)×P (X,X ′)×Q(Y, Y ′)×D(X ′ ⊗ Y ′, B).

Whenever we particularize to presheaves over a monoidal category C, we recover
Day convolution of presheaves.

(F ∗G)(A) =
∫X,Y C(A,X ⊗ Y)× F (X)×G(Y).

In particular, the endoprofunctors over any monoidal category form a duoidal
category, this is the duoidal category that we study in Section 3.

1.4. Be Careful with Duoidal Coherence. Monoidal categories possess
a coherence theorem that determines that any two parallel morphisms constructed
out of structure isomorphisms commute. In contrast, duoidal categories do not
satisfy that same statement. This causes some confusion around coherence for
duoidal categories. I bring an example of how this confusion may arise, hop-
ing that it will help the interested reader and that it may further justify the
importance of expository category theory.

We could be tempted to provide an alternative definition of duoidal categories
that avoids asking for a bunch of commutative diagrams by simply asking that
any formal such diagram commutes. In fact, this may possible for the physical
duoidal categories studied by Spivak and Shapiro [SS22], who comment that

alternatively, duoidal categories can be defined by the two mo-
noidal structures along with the generating structure maps [...]
(4) natural in a, b, c, d which satisfy equations guaranteeing
that any two structure maps built from those in (4) between
the same two expressions in y⊗, y/,⊗, / are equal.

One of the first, most complete and comprehensive accounts of duoidal cat-
egories is the monograph by Aguiar and Mahajan [AM10]. It includes a passing
comment that could suggest that this version can be proven correct. It says that

“[...] if two morphisms A→ B are constructed out of the struc-
ture maps in C (including the structure constraints of the mo-
noidal categories (C, �, I) and (C, ?, J)), then they coincide.”

102 3. MONOIDAL CONTEXT THEORY

However, intepreted literally and strictly, this turns out to not be true. Two
parallel morphisms constructed out of the structure maps of a duoidal category
do not need to coincide.

Proposition 1.6. There exist two different maps of type I / I → I constructed
out of the structure maps of a duoidal category.

Proof. We can consider two maps of type I / I → I, depending on which of
the two parallel units we decide to convert to a sequential unit using the laxators.
Explicitly, we are saying that (I / ϕ0) # ρ/ and (ϕ0 / I) # λ/ do not coincide; and
the more intuitive string diagrams for bicategories for adjoint monoids confirm
this (Figure 5). We will construct an explicit example of this phenomenon.

Figure 5. Bicategorical string diagrams for the two coherence maps.

Consider the duoidal category of endoprofunctors over a monoidal category.
This is one of the first examples of duoidal category described by Street [Str12];
it is also described by Garner and López Franco [GF16], even when the axioms
are not explicitly checked in print. In this category of endoprofunctors over C,
parallel tensor is the profunctor I(X;Y) = C(X; I) × C(I;Y), and sequencing
two of them gives

(I / I)(X;Y) = hom(X; I)× hom(I; I)× hom(I;Y).

In this case, the two maps send the triple (f, a, g) to (f # a, g) and (f, a # g),
respectively. However, these two pairs do not need to be equal if a ∈ hom(I; I)
is a non-identity morphism. �

Example 1.7 (Graded spaces). We look for a more classical source of examples
in the theory of graded spaces. Let (V,⊗, I) be a monoidal category with coprod-
ucts that are preserved by the tensor; let (G,+, 0) be a commutative monoid.
We say that the functor category [G,V] is the category of G-graded V-spaces.
This category has a rich structure; we highlight two of its tensor products: the
pointwise or Hadamard tensor product

(V ⊗W)n = Vn ⊗Wn, for each n ∈ G, with unit In = I;

1. DUOIDAL CATEGORIES 103

and the convolution or Cauchy tensor product

(V •W)n =
∑

k+m=n
V k ⊗Wm, with unit 1n = 0 except for 10 = I.

These two tensors interact in a duoidal category with a laxator as follows; see for
instance the work of López Franco and Vasilakopoulou [FV20].
∑

k+m=n

V k⊗W k⊗Um⊗Zm →
(∑

k1+m1=n1

Vk1 ⊗ Um1

)
⊗
(∑

k2+m2=n2

Wk2 ⊗ Zm2

)
.

Proposition 1.8. Dually, there exist two different maps of type J → J ⊗ J
constructed out of the structure maps of a duoidal category.

Proof. This follows from the previous Proposition 1.6, by considering the
opposite duoidal category. However, let us comment a second example [AM].
Consider the duoidal category of graded spaces over a monoid G. The two maps,
I → I ⊗ 1 → I ⊗ I and I → 1 ⊗ I → I ⊗ I, correspond to inclusions of the vector
space graded by g ∈ G into the summand indexed by (g, 0) or (0, g), respectively;
these are different in general. �

In fact, the stronger statement of coherence does not seem to be used explic-
itly in any of these two texts, and the definition of duoidal categories as com-
pletely coherent strucutres is not usually found in the literature. Most authors,
like Aguiar and Mahajan [AM10], and Garner and López Franco [GF16], revert
to the definition of duoidal category as a 2-monoid in the monoidal bicategory of
monoidal categories.

Aguiar and Mahajan [AM10] do actually point out that the expected coher-
ence theorem should follow from the coherence theorem for lax monoidal functors.
The confusion can arise if we do not realize that this coherence theorem does not
actually prove that any two parallel maps coincide: in particular, coherence for
lax monoidal functors does not prove that the two maps F (I) ⊗ F (I) → F (I)
coincide. In this case, however, the problem is better known – it is mentioned by
Malkiewich and Ponto [MP21], who cite a short mention in the original proof by
Lewis [Lew06] and Kelly and Laplaza [KL80].

1.5. Bibliography. I thank Marcelo Aguiar and Swapneel Mahajan [AM]
for their generosity, helping me confirm the problem and specially for providing
the second counterexample; I thank Brandon Shapiro and David Spivak for help-
ing me follow this same idea on their work. I thank Matt Earnshaw for sharing
his knowledge of the literature on duoidal categories.

104 3. MONOIDAL CONTEXT THEORY

2. Normal Duoidal Categories

Duoidal categories seem to contain too much structure: of course, we want
to split things in two different ways, sequentially (C) and in parallel (⊗); but
that does not necessarily mean that we want to keep track of two different types
of units, parallel (I) and sequential (N). The atomic components of our decom-
position algebra could be the same, without having to care if they are atomic for
sequential composition or atomic for parallel composition; when this is the case,
we talk of normal duoidal categories.
Definition 2.1. A normal duoidal category is a duoidal category in which the
map ϕ0 : I → N is an isomorphism.

While duoidal categories are useful to track communication between pro-
cesses; symmetric normal duoidal categories track dependencies – whether a pro-
cess’ input depends on the output of another – structuring a dependency poset.
This idea is explored by Garner and López Franco [GF16] and Spivak and Shapiro
[SS22], and it has a formal counterpart in Theorem 2.9.

Most duoidal categories we have seen so far – and particularly those arising
from adjoint monoids – have two different units. There exists a well-known
abstract procedure that, starting from some duoidal category, constructs a new
duoidal category that is normal: both units are identified. This procedure is
known as normalization, and it can only be applied to duoidal categories with
certain coequalizers preserved by the tensor.

2.1. Normalization of duoidal categories. Garner and López Franco
construct the normalization of a well-behaved duoidal category, using a new
duoidal category of bimodules [GF16].
Remark 2.2. Let M be a bimonoid in the duoidal category (V,⊗, I,C, N),
with maps e : I → M and m : M ⊗M → M ; and with maps u : M → N and
d : M → M CM . Consider now the category of M⊗-bimodules. This category
has a monoidal structure lifted from (V,C, N):

(1) the unit, N , has a bimodule structure with

M ⊗N ⊗M u⊗id⊗u−→ N ⊗N ⊗N −→ N ;

(2) the sequencing of two M⊗-bimodules is a M⊗-bimodule with
M ⊗ (ACB)⊗M
→ (M CM)⊗ (ACB)⊗ (M CM)

→ (M ⊗A⊗M)C (M ⊗B ⊗M)→ ACB.
Moreover, whenever V admits reflexive coequalizers preserved by (⊗), the cate-
gory of M⊗-bimodules is monoidal with the tensor of bimodules: the coequalizer

A⊗M ⊗B ⇒ A⊗B � A⊗M B.

2. NORMAL DUOIDAL CATEGORIES 105

In this case (Bimod⊗M ,⊗M ,M,C, N) is a duoidal category.

Theorem 2.3 (Normalization of a duoidal, [GF16]). Let (V,⊗, I,C, N) be
a duoidal category with reflexive coequalizers preserved by (⊗). The category of
N -bimodules is then a normal duoidal category,

N (V) = (Bimod⊗N ,⊗N , N,C, N).

We call this category the normalization of the duoidal category V.

2.2. Physical duoidal categories. The interaction of dependent and in-
dependent composition of normal duoidal categories is a recurrent idea in physical
models: categorical models of spacetime exhibit this structure [HK22, SS22]; but
it is also exhibited by parallel and sequentially composing programs [HS23]; or
more simply, by the category of partially ordered sets.

In most of these cases, the normal duoidal category has an extra property:
the parallel tensor (⊗) is symmetric. This is what motivates the name physical
duoidal category for the ⊗-symmetric normal duoidal categories.

Definition 2.4. A physical duoidal category is a normal duoidal category en-
dowed with a symmetric monoidal category structure for its parallel tensor.

Posets are a canonical example of a physical duoidal category: in fact, it is
known that a subcategory of the category of posets and poset inclusions forms
the free physical duoidal category over a generator. In that precise sense, duoidal
expressions are dependency tracking posets.

Definition 2.5. The category of poset shapes, PosetSh, is the skeleton of the
category of finite posets with bijective-on-objects monotone functions. Objects
are isomorphism classes of finite posets, and morphisms are inclusions.

Proposition 2.6. Poset shapes form a physical duoidal category.

Proof. The sequential tensor is constructed by sequentially joining the
posets. Let (P,≤P) and (Q,≤Q) be two posets; their sequentiation, P / Q,
is a poset that contains a copy of P , a copy of Q, and an edge pi ≤ qj for each
pi ∈ P and qj ∈ Q; that is,

P / Q = (P +Q,≤P + ≤Q +{pi ≤ qj | pi ∈ P, qj ∈ Q}).
The parallel tensor, P ⊗Q, is defined to be the disjoint union of posets, P ⊗Q =
(P + Q,≤P + ≤Q), which defines a symmetric monoidal structure. The empty
poset is the unit for both sequential and parallel tensoring, making PosetSh a
physical duoidal category. �

The category of poset shapes is not posetal: there are, for instance, two
possible inclusions of the discrete two-element poset into itself. This prompts

106 3. MONOIDAL CONTEXT THEORY

Figure 6. Poset inclusion.

us to label the nodes to indicate inclusions, as in Figure 6, but we work up to
relabelling, or α-equivalence.

What makes this physical duoidal category particularly relevant is that it
contains the free physical duoidal category over a generator. Every formal normal
duoidal expression constructs a poset: we simply substitute each variable by
the singleton poset and we interpret the expression in the duoidal category of
poset shapes. Every formal structure map between normal duoidal expressions
corresponds to an inclusion; for instance, Figure 6 documents the structure map
(p / q)⊗ (r / s)→ (p⊗ r) / (q ⊗ s).

Formalizing this result needs a bit of care, though: while all formal physical
duoidal expressions correspond to posets, not every poset shape corresponds to a
physical duoidal expression. The poset shapes that arise from applying duoidal
operations to the singleton poset are called expressible, and we have a character-
ization result for them.

Definition 2.7. Expressible poset shapes are those inductively constructed from
(1) the empty poset, N;
(2) the singleton poset, {A};
(3) the union of posets, P ⊗Q = (P +Q,≤P + ≤Q); and
(4) the sequencing of posets,

P / Q = (P +Q,≤P + ≤Q +{pi ≤ qj | pi ∈ P, qj ∈ Q}).
Expressible poset shapes form a full duoidal subcategory of the physical duoidal
category of poset shapes, ExprSh.

Proposition 2.8 (Grabowski, [Gra81]). Not every poset shape is expressible. In
fact, a poset shape is not expressible if and only if it admits an inclusion of the
Z-poset shape defined by Figure 7.

Figure 7. The Z poset shape.

2. NORMAL DUOIDAL CATEGORIES 107

Theorem 2.9 (Shapiro and Spivak, [SS22]). The physical duoidal category
ExprSh of expressible poset shapes is the free physical duoidal category on a
single object. There exists exactly one structure map between any two objects of
the free physical duoidal category for each inclusion of their associated expressible
posets.

Remark 2.10 (Coherence for normal duoidal categories). Coherence for duoidal
categories needs some care: not any two morphisms between distinctly-typed
expressions in the free duoidal category are equal (Proposition 1.6). However,
the previous theorem implies that the same statement is true for normal duoidal
categories.

Corollary 2.11. Any two morphisms between distinctly typed expressions in the
free duoidal category over a set of objects are equal.

2.3. Physical Lax Tensor of a Physical Duoidal Category. Let us
recap our interpretation of physical duoidal categories: they track an underlying
poset of dependencies. The sequential tensor, X / Y , says that X occurs before
Y , but Y /X says that Y occurs before X; consequently, it is not symmetric. The
parallel tensor, X⊗Y , states that both X and Y occur independently. This final
section of our introduction to physical duoidal categories shows what happens
when we want to consider both X and Y but we do not know at all how they
interact: the tensor that tracks this case is a derived operation, the physical
tensor, X � Y .

The physical tensor simply says that both occur at some point: it does not
impose independence, but it does not impose any particular dependency either.
The physical tensor X � Y says that X may occur before Y , or Y before X, or
both in parallel and in that case it does not matter how we regard the dependency.
This is a tool that we will employ later to discuss a version of monoidal context
that does not track dependency: wiring diagrams ([Spi13], Conjecture 5.11).

Remark 2.12. The binary physical tensor, X � Y , is easy to define: it is the
pushout of the two structure maps X⊗Y → X/Y and X⊗Y → Y /X. However,
unlike most tensors, its n-ary version cannot be deduced from its binary and
nullary versions; the physical tensor is only a lax tensor.

Definition 2.13 (Leinster [Lei04]). A lax monoidal category is a category C
endowed with a family of lax tensor n-fold tensor functors (�) : Cn → C – written
as X1 � . . . � Xn, with the 0-ary case E – and a family of associator natural
transformations that unbias the application of the lax tensor,

α : �ni=0

(
�kij=0X

i
j

)
→ X1

1 � . . .�X1
k1 � . . .�X

n
1 � . . .�Xn

kn ,

such that all formally well-typed equations hold.

108 3. MONOIDAL CONTEXT THEORY

Definition 2.14. Let (C,⊗, I, /,N) be a physical duoidal category. The physical
tensor, (�), is an additional lax monoidal tensor, defined as the glueing of the
sequential tensor (/) along the parallel tensor (⊗); that is, it is the pushout on
the following family of structure maps, indexed by permutations

lσ : X1 ⊗ . . .⊗Xn → Xσ1 / . . . / Xσn, for σ ∈ P (n).

Remark 2.15. This only forms a lax tensor for a good reason. Consider the
simpler case of three elements, X � Y � Z. This expression allows all of the
possible six permutations to occur: (i) X /Y /Z; (ii) X /Z / Y ; (iii) Y /X /Z;
(iv) Y / Z / X; (v) Z / X / Y ; and (vi) Z / Y / X. However, when we consider
(X � Y) � Z, we are only allowing a certain subset of these cases to occur.
Namely, only those where Z does not happen between X and Y : (i) X / Y / Z;
(ii) Y / X / Z; (iii) Z / X / Y ; and (iv) Z / Y / X. This is why the physical
tensor is only lax. We have two inclusions: (X � Y) � Z → X � Y � Z and
X � (Y � Z)→ X � Y � Z, but these are not isomorphisms.

Proposition 2.16. The physical tensor defines a lax monoidal structure. Given
any physical duoidal category (C,⊗, /,N), the physical tensor defines a lax mo-
noidal category (C,�, N).

Proof. The definition of the laxator follows from the universal property of
the pushout; the coherence equations hold by uniqueness of the maps constructed
out of this universal property. �

2.4. Bibliography. The original monograph on duoidal categories is due
to Aguiar and Mahajan [AM10] – duoidal categories were originally known as
“2-monoidal categories”; Street first described multiple examples that we recall
[Str12], and Garner and López Franco mention for the first time the connection
to adjoint monoids [GF16]. The reason duoidal categories do not have a corre-
spondence in lower dimensional algebra is the Eckmann-Hilton argument [EH61,
Theorem 1.12].

Physical duoidal categories follow the definition and nomenclature of Spivak
and Shapiro [SS22]; their work makes the case for interpreting them as expressing
dependencies between processes and argues initiality of the category of express-
ible posets. It seems originally due to Grabowski [Gra81] that expressible posets
are precisely those not containing a Z, and Gischer recognized the lax interchange
of normal duoidal categories as subsumption of posets [Gis88]. Even if the phys-
ical lax tensor does not seem to appear in the related literature, its definition
and its consideration as a lax tensor follow the work of Leinster [Lei04] and the
abstraction of commutativity by Garner and López Franco [GF16]. I thank Matt
Earnshaw for multiple pointers to the literature.

3. PRODUOIDAL DECOMPOSITION OF MONOIDAL CATEGORIES 109

3. Produoidal Decomposition of Monoidal Categories

3.1. Produoidal categories. Produoidal categories, first defined by Booker
and Street [BS13], provide an algebraic structure for the interaction of sequential
and parallel decomposition. A produoidal category V not only contains mor-
phisms, V(X;Y), as in a category, but also sequential joints, V(X0 C X1;Y),
and sequential units, V(N ;X), provided by a promonoidal structure; and parallel
joints, V(X0 ⊗ X1;Y) and parallel units, V(I;X), provided by another promo-
noidal structure.

These splits must be coherent. For instance, imagine we want to join X0,
X1 and X2 (sequentially) into Y . Joining X0 and X1 into something (•), and
then joining that something with X2 to produce Y should be doable in essentially
the same ways as joining X1 and X2 into something (•), and then joining that
something with X0 to produce Y . Formally, we are saying that

V(X0 / X1; •) � V(• / X2;Y) ∼= V(X1 / X2; •) � V(X0 / •;Y),

and, in fact, we just write V(X0CX1CX2;Y) for the set of such transformations.
This is precisely what we ask for in a promonoidal structure.

Definition 3.1 (Produoidal category). A produoidal category is a category V
endowed with two promonoidal structures,

V(• ⊗ •; •) : V× V→ V, and V(I; •) : 1→ V,
V(•C •; •) : V× V→ V, and V(N ; •) : 1→ V,

such that one laxly distributes over the other. This is to say that it is endowed
with the following natural lax interchangers:

(1) ψ2 : V((X C Y)⊗ (Z CW); •)→ V((X ⊗ Z)C (Y ⊗W); •),
(2) ψ0 : V(I; •)→ V(I C I; •),
(3) ϕ2 : V(N ⊗N ; •)→ V(N ; •), and
(4) ϕ0 : V(I; •)→ V(N ; •).

Interchangers, together with unitors and associators, must satisfy coherence con-
ditions (see Appendix 1). We denote by ProDuo the category of produoidal
categories and produoidal functors.

Proposition 3.2. Let V be a produoidal category, then its category of copreshea-
ves, [V,Set], is a duoidal category.

Remark 3.3 (Nesting profunctorial structures). Notation for nesting functorial
structures, say (C) and (⊗), is straightforward: we use expressions like (X1 ⊗
Y1)C (X2⊗Y2) without a second thought. Nesting the profunctorial (or virtual)
structures (/) and (⊗) is more subtle: defining V(X ⊗ Y ; •) and V(X C Y ; •)
for each pair of objects X and Y does not itself define what something like
V((X1⊗Y1)C(X2⊗Y2); •) means. Recall that, in the profunctorial case, X1CY1

110 3. MONOIDAL CONTEXT THEORY

and X1 ⊗ Y1 are not objects themselves: they are just names for the profunctors
V(X1 C Y1; •) and V(X1 ⊗ Y1; •), which are not representable.

Instead, when we write V((X1 ⊗ Y1) C (X2 ⊗ Y2); •), we formally mean the
composition of profunctors V(X1 ⊗ Y1; •1) � V(X2 ⊗ Y2; •2) � V(•1 C •2; •). By
convention, nesting profunctorial structures means profunctor composition in this
text.

Remark 3.4. Should we reverse the direction of the interchangers? Depending
on the author, promonoidal categories and produoidal categories are reversed.
It seems that both conventions have their advantages. The one we follow here
[DPS05] makes intuitive sense: it follows the multicategorical and operadic point
of view – multiple ingredients produce a result. The opposite one [EHR23] gets
the interchangers to be those of a duoidal category and it becomes clear that there
is a correspondence between produoidal categories and closed duoidal categories
on preshaves.

3.2. Monoidal Contour of a Produoidal Category. Any produoidal
category freely generates a monoidal category, its monoidal contour. Contours
form a monoidal category of paths around the decomposition trees of the pro-
duoidal category. Contours follow a pleasant geometric pattern where we follow
the shape of the decomposition, both in the parallel and sequential dimensions,
to construct both sequential and parallel compositions for a monoidal category.

Definition 3.5 (Monoidal contour). The contour of a produoidal category B is
the monoidal category mContour(B) presented by two polarized objects, X◦ and
X•, for each object X ∈ Bobj; and generated by arrows that arise from contouring
both sequential and parallel decompositions of the promonoidal category.

Figure 8. Generators of the monoidal category of contours.

Specifically, monoidal contour is the monoidal category presented by the
following generators in Figure 8:

(1) a0 : Y ◦ → X◦ and a1 : X• → Y •, for each morphism a : X → Y ;
(2) b0 : X◦ → X•, for each sequential unit, b : N→ X;
(3) c0 : X◦ → I and c1 : I → X•, for each parallel unit, c : I → X;

3. PRODUOIDAL DECOMPOSITION OF MONOIDAL CATEGORIES 111

(4) a triple of generators d0 : Z◦ → X◦, d1 : X• → Y ◦ and d2 : Y • → Z•,
for each sequential join d : X / Y → Z; and

(5) a pair of generators e0 : Z◦ → X◦⊗Y ◦ and e1 : X•⊗Y • → Z• for each
parallel join, e : X ⊗ Y → Z.

We impose all the equations of the theory of contour. Additionally, we also
impose all of the equations depicted in Figure 9. Together, these form the the-
ory of monoidal contour, which adds to the theory of sequential contour a new
monoidal dimension.

Figure 9. Extra equations for the theory of monoidal contour.

112 3. MONOIDAL CONTEXT THEORY

Proposition 3.6. Monoidal contour extends to a functor

mContour : ProDuo→MonCat.

Proof. Definition 3.5 defines how the functor acts on objects. We define
the action on produoidal functors, the morphisms of the category of produoidal
categories. Given a produoidal functor, F : V → W, let us define the strict
monoidal functor mContour(F) : mContour(V)→ mContour(W) by the following
morphism of generators:

(1) objects X◦ and X• are mapped to F (X)◦ and F (X)•;
(2) for each a : X → Y , the morphisms a0 : X◦ → X◦, a1 : X• → Y • are

mapped to F (a)0 and F (a)1;
(3) for each b : I → X, both b0 : X◦ → I and b1 : I → X• are mapped to

FI(b)0 and FI(b)1;
(4) for each c : N→ X, the morphism c0 : X◦ → X• is mapped to FN(c)0;
(5) for each d : X / Y → Z, the morphisms d0 : Z◦ → X◦, d1 : X• → Y ◦

and d2 : Y • → Z• are mapped to FC(d)0, FC(d)1 and FC(d)2;
(6) for each e : X / Y → Z, the morphisms e0 : Z◦ → X◦ ⊗ Y ◦, and

e1 : X• ⊗ Y • → Z• are mapped to F/(e)0, and FC(e)1.
To show that this defines a morphism of presentations, we need to prove that
the assignment of generators preserves the equations of the theory of contour, in
Definition 4.1. Because F : V → W is a produoidal functor, the images of the
generators do satisfy all of the contour equations of the target category. As a
consequence, this assignment extends to a strict monoidal functor.

Finally, when idV : V→ V is an identity, the resulting functor is an identity
because it is the identity on generators. Let G : U → V be another produoidal
functor, then mContour(G # F) = mContour(G) # mContour(F) follows from the
composition of produoidal functors. �

3.3. Produoidal Splice of a Monoidal Category. We want to go the
other way around: given a monoidal category, what is the produoidal category
that tracks the decomposition of arrows in that monoidal category? This subsec-
tion finds a right adjoint to the monoidal contour construction: the produoidal
category of spliced monoidal arrows.

Definition 3.7. Let (C,⊗, I) be a monoidal category. Its produoidal category of
spliced monoidal arrows, mSplice(C), has objects formed by pairs, mSplice(C)obj =
(Cop × C)obj , and is defined by the following profunctors, depicted in Figure 10.

(1) mSplice(C) (XY ; AB) = C(A;X)× C(Y,B),
(2) mSplice(C)(XY C X′

Y ′ ;
A
B) = C(A;X)× C(Y ;X ′)× C(Y ′;B);

(3) mSplice(C)(XY ⊗ X′
Y ′ ;

A
B) = C(A;X ⊗X ′)× C(Y ⊗ Y ′;B);

(4) mSplice(C)(N; AB;) = C(A;B);
(5) mSplice(C)(I; AB) = C(A; I)× C(I;B).

3. PRODUOIDAL DECOMPOSITION OF MONOIDAL CATEGORIES 113

Figure 10. Spliced monoidal arrows.

Proposition 3.8. Spliced monoidal arrows indeed form a produoidal category.

Proof sketch. The complete proof constructs all of the necessary natural
isomorphisms using coend calculus. We refer to joint work of this author with
Earnshaw and Hefford, where the equations are proven in full detail [EHR23]. �

Remark 3.9. The produoidal algebra of spliced arrows is a natural construction:
abstractly, we know that there exists a duoidal structure on the endomodules of
any monoidal category [Day70, Str12] – monoidal spliced arrows form its explicitly
constructed produoidal counterpart. What may be more surprising is that spliced
arrows have themselves a universal property as part of an adjunction.

Theorem 3.10. Spliced monoidal arrows form a produoidal category with
their sequential and parallel splits, units, and suitable coherence morphisms and
laxators. Spliced monoidal arrows extend to a functor mSplice : MonCat →
ProDuo. The monoidal contour and the produoidal splice are left and right
adjoints to each other, respectively.

Proof. Monoidal contour mContour(B) is presented by generators and equa-
tions: to specify a strict monoidal functor mContour(B) → M, it is enough to
specify images of the generators and then prove that they satisfy the equations.

Let (M,⊗M , IM) be a monoidal category. Then a strict monoidal functor
mContour(B) → M amounts to the following data satisfying some extra condi-
tions.

(1) For each object X ∈ Bobj, a pair of objects X◦, X• ∈Mobj;
(2) for each element f : N→ X, a morphism f0 : X◦ → X•;
(3) for each unit f : I → X, a choice of f0 : X◦ → I and f1 : I → X•;
(4) for each morphism f : X → Y , a choice of f0 : Y ◦ → X◦ and f1 : X• →

Y •;
(5) for each sequential split f : X/Y → Z, a choice of morphisms f0 : Z◦ →

X◦, plus f1 : X• → Y ◦ and f2 : Y • → Z•;

114 3. MONOIDAL CONTEXT THEORY

(6) for each parallel split f : X ⊗ Y → Z, a choice of morphisms f0 : Z◦ →
X◦ ⊗ Y ◦ and f1 : X• ⊗ Y • → Z•.

In order to construct a well-defined strict monoidal functor, the previous
assignments must satisfy the following conditions for each one of the two promo-
noidal categories:

(1) α(a #1 b) = (c #2 d) in the promonoidal category implies a0 # (b0 ⊗ id) =
c0 # (id⊗ d0) and (b1 ⊗ id) # a1 = (id⊗ d1) # c1 in the monoidal category;

(2) λ(a#1b) = c = ρ(d#2e) in the promonoidal category implies a0#(b0⊗id) =
c0 = d0 # (id⊗ e0) and (b1⊗ id) # a1 = c1 = (id⊗ e1) # d1 in the monoidal
category;

Moreover, they must also satisfy the following conditions for the produoidal cat-
egory.

(1) ψ2(a | b | c) = (d | e | f) in the promonoidal category implies a0 # (b0 ⊗
c0) = d0 # e0, b1 ⊗ c1 = e1 # d1 # f0 and (b2 ⊗ c2) # a1 = f1 # d2 in the
monoidal category;

(2) ψ0(a) = (b | c | d) in the promonoidal category implies a0 = b0 # c0,
id = c1 # b1 # d0, and a1 = d1 # b2 in the monoidal category;

(3) ϕ2(a | b | c) = d in the promonoidal category implies a0#(b0⊗c0)#a1 = d0

in the monoidal category;
(4) ϕ0(a) = b in the promonoidal category implies a0 # a1 = b0 in the

monoidal category.
On the other hand, a produoidal functor B → mSplice(M), also amounts to

the following data. We will state it in multiple points and finally confirm that
each one of these points has a correspondence on the first part of the proof,
finishing the definition.

(1) For each object X ∈ Bobj, an object (X◦, X•) ∈ mSplice(M)obj;
(2) for each element f : N→ X, a morphism f0 : N→

(
X◦
X•
)

;

(3) for each unit, f : I → X, a unit 〈f0 ‖ f1〉 : I →
(
X◦
X•
)
;

(4) for each morphism f : X → Y , a splice 〈f0 #� # f1〉 :
(
X◦
X•
)
→
(
Y ◦
Y •
)
;

(5) for each seq. join f : X / Y → Z, a spliced arrow

〈f0 #� # f1 #� # f2〉 :
(
X◦
X•
)
/
(
Y ◦
Y •
)
→
(
Z◦
Z•
)

;

(6) for each par. join f : X ⊗ Y → Z, a spliced arrow

〈f0 #�⊗� # f1〉 :
(
X◦
X•
)
⊗
(
Y ◦
Y •
)
→
(
Z◦
Z•
)
.

The following conditions must hold for each one of the promonoidal cate-
gories. These correspond definitionally to the conditions for the two promonoidal
structures we imposed before.

(1) α(a | b) = (c | d) in the produoidal category implies α(Fa | Fb) = (Fc |
Fd) for the spliced arrows;

3. PRODUOIDAL DECOMPOSITION OF MONOIDAL CATEGORIES 115

(2) λ(a | b) = c = ρ(d | e) in the produoidal category implies λ(Fa | Fb) =
Fc = ρ(Fd | Fe) for the spliced arrows.

Finally, all the following conditions must also hold for the produoidal cate-
gory. These are definitionally equal to the conditions for the produoidal category
we imposed before.

(1) ψ2(a | b | c) = (d | e | f) in the produoidal category implies

ψ2(Fa | Fb | Fc) = (Fd | Fe | Ff);

(2) ψ0(a) = (b | c | d) in the produoidal category implies

ψ0(Fa) = (Fa | Fc | Fd);

(3) ϕ2(a | b | c) = d in the produoidal category implies

ϕ2(Fa | Fb | Fc) = Fd;

(4) ϕ0(a) = b in the produoidal category implies ϕ0(Fa) = Fb.
Each of these points is exactly equal by definition to the relative point in the

first part of the proof: this establishes the desired adjunction. In other words,
the definition of monoidal splice is precisely the one that makes this proof hold
definitionally – even when we gave multiple different characterizations of it. �

3.4. A Representable Parallel Structure. A produoidal category has
two tensors, and neither is, in principle, representable. However, the cofree pro-
duoidal category over a category we have just constructed happens also to have
a representable tensor, (⊗): spliced monoidal arrows form a monoidal category.

Remark 3.11. This means mSplice(C) has the structure of a virtual duoidal
category [Shu17] or monoidal multicategory, defined by Aguiar, Haim and López
Franco [AHLF18] as a pseudomonoid in the cartesian monoidal 2-category of
multicategories.

Proposition 3.12. Parallel joins and parallel units of spliced monoidal arrows
are representable profunctors. Explicitly,

mSplice(C)
(
X
Y ⊗ X′

Y ′ ;
A
B

) ∼= mSplice(C)
(
X⊗X′
Y⊗Y ′ ;

A
B

)
, and

mSplice(C) (I; AB) ∼= mSplice(C) (II;
A
B) .

In fact, these sets are equal by definition. However, we argue that there
is a reason to work in the full generality of produoidal categories: produoidal
categories can always be normalized.

Remark 3.13. Normalization is a procedure to mix both tensors of a duoidal
category, (⊗) and (/), but not every duoidal category has a normalization [GF16].
It is folklore that one loses nothing by regarding non-representable produoidal
structures as representable duoidal structures on presheaves, dismissing that they

116 3. MONOIDAL CONTEXT THEORY

are moreover closed [Day70]; thus, one would expect only some produoidal cate-
gories to be normalizable – after all, only some duoidal categories are. Against
folklore, we prove that every produoidal category, representable or not, has a
universal normalization, a normal produoidal category which may be again rep-
resentable or not.

3.5. Bibliography. Motivated by language theory and the representation
theorem of Chomsky and Schützenberger, Melliès and Zeilberger [MZ22] were the
first to present the multicategorical splice-contour adjunction. We are indebted to
their exposition, which we extend to the promonoidal and produoidal cases. Our
contribution is to show how monoidal contexts arise from an extended produoidal
splice-contour adjunction; unifying these two threads.

Street already noted that the endoprofunctors of a monoidal category had a
duoidal structure [Str12]; Pastro and Street described a promonoidal structure
on lenses [PS07] and Garner and López-Franco contributed a partial normaliza-
tion procedure for duoidal categories [GF16]. We build on top of this literature,
putting it together, spelling out existence proofs, popularizing its produoidal
counterpart and providing multiple new results and constructions that were pre-
viously missing (e.g. Theorems 3.10, 4.6 and 5.3).

This section takes its main ideas from joint work of this author with Matt
Earnshaw and James Hefford [EHR23]. Earnshaw and Sobociński [ES22] have
described a syntactic congruence on formal languages of string diagrams using
monoidal contexts.

4. INTERLUDE: PRODUOIDAL NORMALIZATION 117

4. Interlude: Produoidal Normalization

4.1. Normal Produoidal Categories. Produoidal categories seem to con-
tain too much structure: of course, we want to split things in two different ways,
sequentially (C) and in parallel (⊗); but that does not necessarily mean that
we want to keep track of two different types of units, parallel (I) and sequential
(N). The atomic components of our decomposition algebra should be the same,
without having to care if they are atomic for sequential composition or atomic
for parallel composition.

Remark 4.1. The monoidal spliced arrows we just introduced are a perfect
example: if we simply want a hole in a string diagram, the type it may take
depends on the wires we want to leave to each side (see Figure 35). We would
prefer to construct a new category – a Kleisli category on top of this one – where
the bureaucracy of the units was already handled for us.

Figure 11. Multiple units complicate types.

4.2. The Normalization Monad. Fortunately, there exists an abstract
procedure that, starting from any produoidal category, constructs a new pro-
duoidal category where both units are identified. This procedure is known as
normalization, and the resulting produoidal categories are called normal.

Definition 4.2 (Normal produoidal category). A normal produoidal category is
a produoidal category where the unit interchanger n : V(I; •) → V(N; •) is an
isomorphism.

Normal produoidal categories form a category with produoidal functors be-
tween them, nProDuo. As a consequence, it is endowed with a fully faithful
forgetful functor U : nProDuo→ ProDuo.

Theorem 4.3. Let V⊗,I,C,N be a produoidal category. The profunctor

Nor(V)(•; •) = V(N⊗ • ⊗ N; •)
forms a promonad. Moreover, the Kleisli category of this promonad is a normal
produoidal category with the following profunctors.

118 3. MONOIDAL CONTEXT THEORY

(1) Nor(V)(X ⊗N Y ;Z) = V(N⊗X ⊗ N⊗ Y ⊗ N;Z);
(2) Nor(V)(X /N Y ;Z) = V((N⊗X ⊗ N) / (N⊗ Y ⊗ N);Z); and
(3) Nor(V)(IN;X) = Nor(V)(NN;X) = V(N;X).

Proof. Let us prove that Nor(V) is a promonad. We now define the multipli-
cation and unit for the promonad, Nor(V). They are constructed out of laxators
of the produoidal category V and Yoneda isomorphisms; thus, they must be as-
sociative and unital by coherence. The unit is defined by (i) unitality of V, (ii)
the laxator of V, and (iii) by definition of Nor(V).

V(X;Y) ∼= V(I ⊗X ⊗ I;Y)→ V(N⊗X ⊗ N;Y) ∼= Nor(V)(X;Y).

Multiplication is constructed as follows, using (i) the definition of Nor(V), (ii)
Yoneda reduction, (iii) the laxators of V, and (iv) the definition of Nor(V).
∫ Y ∈V

Nor(V)(X;Y)× Nor(V)(Y ;Z) =
∫ Y ∈VV(N⊗X ⊗ N;Y)× V(N⊗ Y ⊗ N;Z)

∼= V(N⊗ N⊗X ⊗ N⊗ N;Y)→ V(N⊗ Y ⊗ N;Z) = Nor(V)(X;Z).

Associativity and unitality follow from those of the produoidal category.
The second part of this proof will show that Nor(V) is indeed a produoidal

category: we will construct its associators, unitors and laxators from those of
V and Yoneda isomorphisms. The right unitor is constructed as follows; the
left unitor is constructed in a similar way: (i) by definition of Nor(V), (ii) by
associativity, (iii) by definition, (iv) by Yoneda reduction, (v) by definition, and
(vi) by unitality.
∫M∈Nor(V)

Nor(V)(N;M)× Nor(V)(X ⊗N M ;Y) =
∫M∈Nor(V)

Nor(V)(N;M)× V(N⊗X ⊗ N⊗M ⊗ N;Y) ∼=
∫M∈Nor(V),P∈V

Nor(V)(N;M)× V(N⊗M ⊗ N;P)× V(N⊗X ⊗ P ;Y) =
∫M∈Nor(V),P∈V

Nor(V)(N;M)× Nor(V)(M ;P)× V(N⊗X ⊗ P ;Y) ∼=
∫ P∈V

Nor(V)(N;P)× V(N⊗X ⊗ P ;Y) =
∫ P∈VV(N;P)× V(N⊗X ⊗ P ;Y) ∼=
V(N⊗X ⊗ N;Y).

Let us now construct the associator in two steps: we will show that both sides of
the following equation

∫ P∈Nor(V)
Nor(V)(Y ⊗N Z;P)× Nor(V)(X ⊗N P ;A) ∼=

∫M∈Nor(V)
Nor(V)(X ⊗N Y ;M)× Nor(V)(M ⊗N Z;A)

are isomorphic to V(N⊗X ⊗N⊗Y ⊗N⊗Z ⊗N;A). The first side is isomorphic
by (i) definition of Nor(V), (ii) associativity of V, (iii) definition of Nor(V), (iv)

4. INTERLUDE: PRODUOIDAL NORMALIZATION 119

Yoneda reduction, (v) definition of Nor(V), and (vi) associativity. The second
side is analogous.
∫M∈Nor(V)

Nor(V)(Y ⊗N Z;M)× Nor(V)(X ⊗N M ;A) =
∫M∈Nor(V)

Nor(V)(Y ⊗N Z;M)× V(N⊗X ⊗ N⊗M ⊗ N;A) ∼=
∫M∈Nor(V),P∈V

Nor(V)(Y ⊗N Z;M)× V(N⊗M ⊗ N;P)× V(N⊗X ⊗ P ;A) =
∫M∈Nor(V),P∈V

Nor(V)(Y ⊗N Z;M)× Nor(V)(M ;P)× V(N⊗X ⊗ P ;A) ∼=
∫ P∈V

Nor(V)(Y ⊗N Z;P)× V(N⊗X ⊗ P ;A)× =
∫ P∈VV(N⊗ Y ⊗ N⊗ Z ⊗ N;P)× V(N⊗X ⊗ P ;A) ∼=
V(N⊗X ⊗ N⊗ Y ⊗ N⊗ Z ⊗ N;A).

Finally, let us construct the four interchangers that define the produoidal cat-
egory. Three of them are immediate: they are either identities or unitors:
Nor(V)(IN, A) ∼= Nor(V)(IN / IN;A) is the first, Nor(V)(N⊗N;A) ∼= Nor(V)(N;A)
is the second, and Nor(V)(IN;A) ∼= Nor(V)(NN;A) is the last one. We note here
that this produoidal category is natural because of these isomorphisms. Thus, we
only need to construct the first interchanger morphism of a produoidal category,

Nor(V)((X1 / Y 1)⊗ (X2 / Y 2);A) −→ Nor(V)((X1 ⊗X2)C (Y 1 ⊗ Y 2);A),

which is defined by the following reasoning. Here, we abbreviate N ⊗X ⊗ N by
X⊗N, and we apply (i) the definition of the tensors of Nor(V), (ii) the interchanger
of V, (iii) unitality in V, and (iv) the definition of tensors of Nor(V).

Nor(V)((X1 /N Y 1)⊗N (X2 /N Y 2);A) =

V(N⊗ (X⊗N1 / Y ⊗N1)⊗ N⊗ (X⊗N2 / Y ⊗N2)⊗ N;A) →
V((N⊗X⊗N1 ⊗ N⊗ Y ⊗N1 ⊗ N) / (N⊗X⊗N2 ⊗ N⊗ Y ⊗N2 ⊗ N);A) →
V((N⊗X1 ⊗ N⊗ Y1 ⊗ N)⊗N / (N⊗X2 ⊗ N⊗ Y2 ⊗ N)⊗N;A) →
Nor(V)((X1 ⊗N Y1) /N (X2 ⊗N Y2);A).

The structure equations of the laxators follow from those of the base category V.
This finishes the construction of a produoidal category on the Kleisli category of
the promonad. �

Lemma 4.4. Normalization extends to an idempotent monad.

Proof. The first part of the proof will show that Nor(V) is the free normal
produoidal category over V by constructing the a monad structure on top of
the functor Nor : nProDuo → nProDuo. Let us construct the unit and the
multiplication of the monad. The unit ηV : V→ Nor(V) is defined as the identity-
on-objects functor associated to the promonad; it and acts on morphisms by

120 3. MONOIDAL CONTEXT THEORY

the unit of the promonad. Let us show that this is a produoidal functor by
constructing the following components; all of them use the map I → N from the
base produoidal category,

(1) η⊗ : V(X⊗Y ;A)→ V(I⊗X⊗I⊗Y ⊗I;A)→ V(N⊗X⊗N⊗Y ⊗N;A);
(2) ηI : V(I;A)→ V(N;A);
(3) η/ : V(X / Y ;A)→ V((I ⊗X ⊗ I) / (I ⊗ Y ⊗ I);A)→ V((N⊗X ⊗N) /

(N⊗ Y ⊗ N);A);
(4) ηN : V(N;A)→ V(N;A) is simply an identity.

these preserve laxators and coherence maps since they are constructed only from
laxators and coherence maps.

Let us construct now the multiplication of the monad, µV : Nor(Nor(V)) →
Nor(V), and show that it is an isomorphism, making it an idempotent monad.
The underlying functor is identity on objects, and it acts on morphisms by the
normality of the already normalized produoidal category,

Nor(Nor(V))(X;Y) = Nor(V)(N⊗N X ⊗N N;Y) ∼= Nor(V)(X;Y).

The following components make this functor a produoidal functor, they are con-
structed again from the normality of the already normalized produoidal category:

(1) µ⊗ : Nor(Nor(V))(X⊗NN Y ;A) = Nor(V)(N⊗NX⊗N N⊗N Y ⊗N N;A) ∼=
Nor(V)(X ⊗N Y ;A);

(2) µ/ : Nor(Nor(V))(X /NN Y ;A) = Nor(V)((N⊗N X ⊗N N) /N (N⊗N Y ⊗N

N);A) ∼= Nor(V)(X /N Y ;A);
(3) µI : Nor(Nor(V))(N;A) = Nor(V)(N;A);
(4) µN : Nor(Nor(V))(N;A) = Nor(V)(N;A),

Finally we verify the monad laws. ηNV # µV is an identity-on-objects; on mor-
phisms, it applies left and right unitors followed by their inverses; as a conse-
quence, its underlying functor is the identity. The components of the natural
transformations are also identities, since the interchanger I → N is an identity
for the normalized produoidal category Nor(V); they are otherwise composed of
unitors followed by their inverses. The last step is to check the associativity of the
monad, µNor(V) #µV and Nor(µV) #µV; this is simply the identity on objects, so we
simply apply left and right unitors twice on morphisms and their components. �

Lemma 4.5. A produoidal category V has exactly one algebra structure for the
normalization monad when it is normal, and none otherwise.

Proof. Let (F, F⊗, FI , FN, FN) : Nor(V) → V be an algebra. This means
that the following commutative diagrams with the unit and multiplication of the
normalization monad must commute.

4. INTERLUDE: PRODUOIDAL NORMALIZATION 121

V Nor(V) Nor(Nor(V)) Nor(V)

V Nor(V) V

η

id
F

µ

Nor(F) F

F

Now, consider how the interchanger ψ0 : V(I; •)→ V(N; •) is transported by these
maps.

V(N; •)

V(I; •) V(N; •) V(I; •)

V(N; •) V(N; •)

FI
id

ηI

ψ0

id
FN

ψ0
id

id

We conclude that ηI = ψ0, but also that FN = id. As a consequence, ψ0 is invert-
ible and FI must be its inverse. We have shown that any produoidal category
that is an algebra for the normalization monad must be normal.

We will now show that this already determines all of the functor F . We know
that η⊗, ηC, η are isomorphisms because they are constructed from the unitors,
associators, and the laxator ψ0, which is an isomorphism in this case. This
determines that F⊗, F/, F must be their inverses. By construction, these satisfy
all structure equations. �

Theorem 4.6 (Free normal produoidal). Normalization determines an ad-
junction between produoidal categories and normal produoidal categories,

Nor : ProDuo
 nProDuo : Forget.

That is, Nor(V) is the free normal produoidal category over V.

Proof. We know that the algebras for the normalization monad are exactly
the normal produoidal categories (Lemma 4.5). We also know that the normaliza-
tion monad is idempotent (Theorem 4.6). This implies that the forgetful functor
from its category of algebras is fully faithful, and thus, the algebra morphisms
are exactly the produoidal functors. As a consequence, the canonical adjunction
to the category of algebras of the monad is exactly an adjunction to the category
of normal produoidal categories. �

Remark 4.7. Garner and López Franco [GF16] introduced a partial normal-
ization procedure for duoidal categories. We contribute a general normalization
procedure for produoidal categories and we characterize it universally. Produoidal

122 3. MONOIDAL CONTEXT THEORY

normalization behaves slightly better than duoidal normalization: it always suc-
ceeds, and we prove that it forms an idempotent monad (Theorem 4.6). The
technical reason for this improvement is that the original duoidal normalization
required the existence of certain coequalizers in V; produoidal normalization uses
coequalizers in Set.

In the previous Section 3.3, we constructed the produoidal category of spliced
monoidal arrows, which distinguishes between morphisms and morphisms with a
hole in the monoidal unit. This is because the latter hole splits the morphism
in two parts. Normalization equates both; it sews these two parts. In Section 5,
we explicitly construct monoidal contexts, the normalization of spliced monoidal
arrows. Before that, let us also introduce the symmetric version of normalization.

4.3. Symmetric Normalization. Normalization is a generic procedure
that applies to any produoidal category, it does not matter if the parallel join
(⊗) is symmetric or not. However, when ⊗ happens to be symmetric, we can also
apply a more specialized normalization procedure: symmetric normalization.

Definition 4.8 (Symmetric produoidal category). A symmetric produoidal cat-
egory is a produoidal category VC,N,⊗,I endowed with a natural isomorphism
σ : V(X ⊗ Y ;Z) ∼= V(Y ⊗X;Z) satisfying the symmetry and hexagon equations.

Theorem 4.9. Let V be a symmetric produoidal category. The profunctor

sNor(V)(•; •) = V(N ⊗ •; •)
forms a promonad. Moreover, the Kleisli category of this promonad is a normal
symmetric produoidal category with the following profunctors.

(1) sNor(V)(X ⊗N Y ;Z) = V(N ⊗X ⊗ Y ;Z);
(2) sNor(V)(X /N Y ;Z) = V((N ⊗X)C (N ⊗ Y);Z); and
(3) sNor(V)(IN;X) = sNor(V)(NN;X) = V(N;X).

Theorem 4.10. Normalization determines an adjunction between symmetric
produoidal and normal symmetric produoidal categories,

sNor : symProDuo
 nSymProDuo : U .
That is, sNor(V) is the free normal symmetric produoidal category over V.

4.4. Bibliography. Garner and López-Franco contributed a partial nor-
malization procedure for duoidal categories [GF16], all of the credit for this ele-
gant idea goes there.

We contribute its produoidal counterpart. The reader could think that this
is an automatic process: extending an argument by Day [Day70], produoidal cat-
egories could be understood as closed duoidal categories in some sense. However,
we show that there are some technical differences that make this case impor-
tant: in the work of Garner and López-Franco, not every duoidal category has a

4. INTERLUDE: PRODUOIDAL NORMALIZATION 123

normalization, and this prevents us from constructing a monad. We prove that
produoidal normalization is always possible and defines an idempotent monad.

124 3. MONOIDAL CONTEXT THEORY

5. Monoidal Lenses

Monoidal lenses – the name we give to monoidal contexts [PGW17, Ril18,
CEG+20] – formalize the notion of an incomplete morphism in a monoidal cat-
egory. The category of monoidal lenses will have a rich algebraic structure: we
shall be able to still compose contexts sequentially and in parallel and, at the
same time, we shall be able to fill a context using another monoidal context.
Perhaps surprisingly, then, the category of monoidal lenses is not even monoidal.

We justify this apparent contradiction in terms of profunctorial structure:
the category is not monoidal, but it does have two promonoidal structures that
precisely represent sequential and parallel composition. These structures form a
normal produoidal category. In fact, we show it to be the normalization of the
produoidal category of spliced monoidal arrows. This section constructs explicitly
this normal produoidal category of monoidal lenses.

5.1. The Category of Monoidal Lenses. A monoidal lens – an element
of type (XY) → (AB) – represents a process from A to B with a hole admitting
a process from X to Y . In this sense, monoidal lenses are similar to spliced
monoidal arrows. The difference with spliced monoidal arrows is that monoidal
lenses allow for communication to happen to the left and to the right of this hole.

Definition 5.1 (Monoidal lens). Let (C,⊗, I) be a monoidal category. Monoidal
lenses are the elements of the profunctor

mLens (XY ; AB) =

∫ M1,M2

C(A;M1 ⊗X ⊗M2)× C(M1 ⊗ Y ⊗M2;B).

In other words, a monoidal lens from A to B, with a hole from X to Y , is
an equivalence class consisting of a pair of objects M,N ∈ Cobj and a pair of
morphisms f ∈ C(A;M ⊗ X ⊗ N) and g ∈ C(M ⊗ Y ⊗ N ;B), quotiented by
dinaturality of M and N .

Definition 5.2. Let (C,⊗, I) be a monoidal category. Its normal produoidal cat-
egory of monoidal lenses, mLens(C), has objects formed by pairs, mLens(C)obj =
(Cop × C)obj , and is defined by the following profunctors.

(1) Morphisms are diagrams with a single typed hole.

mLensC (XY ; AB) =

∫ M1,M2

C(A;M1 ⊗X ⊗M2)× C(M1 ⊗ Y ⊗M2;B),

(2) Sequential joins are diagrams with a pair of sequential holes.

mLensC(XY /
X′
Y ′ ;

A
B;) =

∫ M1,M2

C(A;M1 ⊗X ⊗M2)× C(M1 ⊗ Y ⊗M2;

M3 ⊗X ′ ⊗M4)× C(M3 ⊗ Y ′ ⊗M4;B);

5. MONOIDAL LENSES 125

(3) Parallel joins are diagrams with a pair of parallel holes.

mLens(C)(XY ⊗ X′
Y ′ ;

A
B) =

∫ M1,M2,M3

C(A;M1 ⊗X ⊗M2 ⊗X ′ ⊗M3)×

C(M1 ⊗ Y ⊗M2 ⊗ Y ′ ⊗M3;B)

(4) Units are complete diagrams with no holes, mLens(C)(N;XY) = C(X;Y).

Reading the profunctorial notation can be unenlightening. We provide the in-
complete string diagrams for these profunctors in Figure 12 [Rom20b].

Figure 12. Monoidal lenses.

Theorem 5.3. The category of monoidal lenses forms a normal produoidal
category with its units, sequential and parallel joins. Monoidal lenses are the free
normalization of the cofree produoidal category over a category. In other words,
monoidal lenses are the normalization of spliced monoidal arrows,

mLens(C) ∼= Nor(mSplice(C)).

Proof. The core of this result is in Theorem 4.6, which says that the normal-
ization procedure yields the free normalization over a produoidal category. It is
only left to check that this produoidal category of monoidal lenses that we have
explicitly constructed in this section is precisely the normalization of the pro-
duoidal category of spliced arrows. We do so for morphisms, the rest of the proof
is similar; the proof shows that mSplice(C) (N⊗ X

Y ⊗ N; AB), the normalization of
spliced monoidal arrows, is isomorphic to monoidal lenses, mLens(C) (AB;XY). We
employ the Yoneda lemma on both V and V ′.
∫ U,V,U ′,V ′∈C

C(A;U ⊗X ⊗ U ′)× C(V ⊗ Y ⊗ V ′;B)× C (U ;V)× C (U ′;V ′) ∼=
∫ U,U ′∈C

C (A;U ⊗X ⊗ U ′)× C(U ⊗ Y ⊗ U ′;B)

126 3. MONOIDAL CONTEXT THEORY

The rest of the profunctors follow a similar reasoning. �
5.2. Symmetric Monoidal Lenses. A symmetric monoidal lens of type

smLens(C)(XY ; AB) represents a process in a symmetric monoidal category with a
hole admitting a process from X to Y .

Symmetric monoidal lenses are monoidal lenses, but we stop caring where the
hole is. Again, the category of symmetric monoidal lenses has a rich algebraic
structure; and again, most of this structure exists only virtually in terms of
profunctors. In this case, though, the monoidal tensor does indeed exist: contrary
to monoidal lenses, symmetric monoidal lenses form also a monoidal category.
This is perhaps why applications of monoidal lenses have grown popular in recent
years [Ril18], with applications in decision theory [GHWZ18], supervised learning
[CGG+22, FJ19] and most notably in functional data accessing [Kme12, PGW17,
BG18, CEG+20]. The promonoidal structure of optics was ignored, even when,
after now identifying for the first time its relation to the monoidal structure of
optics, we argue that it could be potentially useful in these applications: e.g. in
multi-stage decision problems, or in multi-stage data accessors.

This section explicitly constructs the normal symmetric produoidal category
of symmetric monoidal lenses. We describe it for the first time by a universal
property: it is the free symmetric normalization of the cofree produoidal category.

Definition 5.4. Let (C,⊗, I) be a symmetric monoidal category. Symmetric
monoidal lenses are the elements of the profunctor

smLensC (XY ; AB) =

∫ M

C(A;M ⊗X)× C(M ⊗ Y ;B).

In other words, a symmetric monoidal lens from A to B, with a hole from X to
Y , is an equivalence class consisting of a pair of objects M ∈ Cobj and a pair of
morphisms f ∈ C(A;M ⊗X) and g ∈ C(M ⊗ Y ;B), quotiented by dinaturality
of M .

Definition 5.5. Let (C,⊗, I) be a symmetric monoidal category. Its normal
symmetric produoidal category of symmetric monoidal lenses, smLens(C), has
objects formed by pairs, smLens(C)obj = (Cop × C)obj , and is defined by the
following profunctors.

(1) Morphisms are diagrams with a single typed hole.

smLens(C) (XY ; AB) =

∫ M

C(A;M ⊗X)× C(M ⊗ Y ;B),

(2) Sequential joins are diagrams with a pair of sequential holes.

smLens(C)(XY /
X′
Y ′ ;

A
B) =

∫ M1,M2

C(A;M1 ⊗X)× C(M1 ⊗ Y ;

M2 ⊗X ′)× C(M2 ⊗ Y ′;B);

5. MONOIDAL LENSES 127

(3) Parallel joins are diagrams with a hole encompassing parallel wires.

smLens(C)(XY ⊗ X′
Y ′ ;

A
B) =

∫ M

C(A;M ⊗X ⊗X ′)× C(M ⊗ Y ⊗ Y ′;B).

(4) Units are complete diagrams with no holes, smLens(C)(N; AB) = C(A;B).

Reading the profunctorial notation can be unenlightening. We provide the in-
complete string diagrams for these profunctors in Figure 12 [Rom20b]. The only
substantial difference with monoidal lenses is that we do not need to keep track
of where the hole is placed.

Figure 13. Symmetric monoidal lenses.

The term “monoidal lenses” has usually been reserved for the morphisms of
this category; in the literature, the sequential splits – the lenses with multiple
holes – get a name from their distinctive shape: these are combs or quantum
combs [CFS16].

5.3. Towards Message Theories. Lenses, or combs, can be interpreted as
incomplete morphisms, but also as morphisms that send and receive resources.
The next chapter will exploit this intuition.

Remark 5.6 (Session notation for combs). We will write A◦ = (AI) and B• =
(IB) for the objects of the symmetric produoidal category of lenses that have a
monoidal unit as one of its objects. Thanks to A◦ ⊗B• = (AB), these are enough
to express all objects.

Proposition 5.7. Let (C,⊗, I) be a symmetric monoidal category. There exist
monoidal functors

(◦) : C→ smLens(C), and (•) : Cop → smLens(C).

Moreover, they satisfy the following properties definitionally: C(A• / B•; •) ∼=
C(A•⊗B•; •); (A⊗B)

◦
= A◦⊗B◦; C(A◦ /B◦; •) ∼= C(A◦⊗B◦; •); (A⊗B)

•
=

A• ⊗B•; and C(A◦ / B•; •) ∼= C(A◦ ⊗B•; •).

128 3. MONOIDAL CONTEXT THEORY

Proof. We define f◦ = (f # � # idI) and g• = (idI # � # g), and then check
that compositions and tensoring of morphisms are compatible with composition
and tensoring of monoidal lenses, this is straightforward. Moreover, we can see
that, by definition,

(A⊗B)
◦

=
(
A⊗B
I

)
= (AI)⊗ (BI) = A◦ ⊗B◦, and

(A⊗B)
•

=
(

I
A⊗B

)
= (IA)⊗ (IB) = A• ⊗B•.

This proof appears with a different language in the work of Riley [Ril18,
Proposition 2.0.14]. In fact, there, the combined identity-on-objects functor (◦×
•) : C× Cop → smLens(C) is shown to be monoidal. �

Example 5.8. Let us give a first example of how to employ combs for the
description of concurrent protocols. Broadbent and Karvonen [BK22] propose a
formalization of the one-time pad encryption protocol in a symmetric monoidal
category endowed with a Hopf algebra with an integral.

Figure 14. Theory of a Hopf algebra with an integral.

Definition 5.9. A Hopf algebra with an integral, (X, , , , , i, d), is a commu-
tative bialgebra endowed with an antipode map i : X → X, representing inversion;
and endowed with an integral map, d : I → X, representing a non-determined
value, or pure noise. These must satisfy the equations in Figure 14.

5. MONOIDAL LENSES 129

The one-time pad is a mathematically secure encryption technique. It works
as follows: (i) the two parties communicating – say, Alice and Bob – start by
preparing some random bits and sharing them; (ii) when the message is ready,
Alice applies bitwise XOR with the random bits to encrypt the message, and then
broadcasts the encrypted message – a potential attacker, Eve, will receive this
encrypted message; (iii) finally, Bob receives the encrypted message and applies
again bitwise XOR with the random bits to decrypt the message (Figure 15).

Figure 15. Description of the one-time pad.

Proposition 5.10. The one-time pad is secure, meaning that it is equal to the
process that sends a message from Alice to Bob and outputs random noise through
the attacker’s channel.

Proof. We repeat the proof from Broadbent and Karvonen [BK22]. We
employ string diagrams of symmetric monoidal categories, in Figure 16, to show
that the morphism is equal to an identity tensored by the integral of the Hopf
algebra. �

Figure 16. Correctness of the one-time pad.

The interesting part comes when we want to split the morphism into its
different constituents: there should be a stage where the three actors play; Alice
does not control the fact that the encrypted message will be broadcast; Eve, the
attacker, can only attack at the end; Bob will need to keep a bit in memory. These

130 3. MONOIDAL CONTEXT THEORY

considerations are part of the problem statement the one-time pad is solving. It
is easy to come up with a morphism that connects an input to an output: the
problem the one-time pad is solving is to do so on a stage that has been preset.

The components of the one time pad are not simply morphisms of a monoi-
dal category (Figure 17). They must be understood as monoidal lenses. After
this section, we can declare that a possible typing for these components is the
following:

(1) Alice : N→
(
X⊗X
X

)
;

(2) Bob : X• / X◦ → (IX);
(3) Eve : N→ (XX);
(4) Stage : X◦ / X• / X• / X◦ / X• / X• / X◦ / X◦ →

(
X

X⊗X
)
;

Figure 17. Components of the one-time pad.

Still, at this stage it is not easy to talk about message passing with this
syntax. It is true that the new produoidal types can track all the exchanges that
happen along a boundary; but these types are tedious – see, for instance, the long
type of Stage – and it is not clear how to compose them. What we are missing
is a combinatorial description of the different ways we can combine elements of
this produoidal algebra.

This is what the next chapter will solve: we will propose a combinatorial
algebra of message passing and show that lenses, the normalized cofree produoidal
algebra over a symmetric monoidal category have a second universal property –
they also constitute the free message theory.

5.4. Bibliography. Lenses [FGM+07] are a notion of bidirectional trans-
formation that can be cast in arbitrary monoidal categories. The first mention
of monoidal lenses separate from their classical database counterparts [JRW12]
is due to Pastro and Street [PS07], who identify them as an example of a promo-
noidal category. However, it was with a different monoidal structure [Ril18] that
they became popular in recent years, spawning applications not only in bidirec-
tional transformations [FGM+07] but also in functional programming [PGW17,

5. MONOIDAL LENSES 131

CEG+20], open games [GHWZ18], polynomial functors [NS22] and quantum
combs [HC22]. Relating this monoidal category of lenses with the previous pro-
monoidal category of lenses was an open problem; and the promonoidal structure
was mostly ignored in applications. We solve this problem, proving that lenses
are a universal normal symmetric produoidal category (the symmetric monoidal
lenses), which endows them with a novel algebra and a novel universal property.
This also extends work on the relation between incomplete diagrams, comb-shaped
diagrams, and lenses [Rom20a, Rom20b].

Lenses themselves have been applied to protocol specification [VC22]. Spivak
[Spi13] also discusses the multicategory of wiring diagrams, later used for incom-
plete diagrams [PSV21] and related to lenses [SSV20]; we conjecture that this
multicategory of wiring diagrams is precisely the produoidal category of lenses,
once we stop tracking dependencies explicitly.

Conjecture 5.11. Each physical produoidal category induces a multicategory
given by its physical lax tensor (Section 2.3). The multicategory of wiring dia-
grams [Spi13] of symmetric monoidal categories is the multicategory induced by
the produoidal category of monoidal lenses.

The promonoidal categories we use can be seen as multicategories with an
extra coherence property. In this sense, we contribute the missing algebraic
structure of the universal multicategory of wiring diagrams relative to a monoidal
category.

CHAPTER 4

Monoidal Message Passing

Monoidal Message Passing

This chapter develops message passing in monoidal categories following the
theory of context we just constructed. We have already defined what incomplete
morphisms in monoidal categories are: we will now study the structure of all
their possible compositions. This includes not only the obvious operations of
composition but any possible wiring of a diagram that could combine them while
respecting the acyclicity of string diagrams.

Studying seriously the combinatorial structure of string diagram composition
arrives at the same conclusion as axiomatizing a naive theory of message passing:
message theories. Indeed, we prove that the polarized shufflings that describe
string diagram composition have as algebras precisely the message theories.

Section 1 introduces our minimalistic theory of message passing, with axioms
that should hopefully be acceptable to any reader. Section 2 starts developing
the categorical semantics for message theories, based on physical monoidal multi-
categories (a variant of duoidal categories); it then shows that shufflings from the
free physical monoidal multicategory. Section 3 provides the second ingredient
for this categorical semantics: polarization. We then combine both ingredients
in Section 4: polar shuffles form the combinatorial structure that combines in-
complete string diagrams; message theories are precisely the algebras of physical
monoidal multicategory of polar shuffles. This chapter ends with an adjunction
between message theories and symmetric monoidal categories, which ensures that
we can construct a free message theory on top of any symmetric monoidal cate-
gory.

133

134 4. MONOIDAL MESSAGE PASSING

1. Message Theories

1.1. Message Theories. Message passing requires the interplay of at least
two mathematical structures: the ability to interleave events in time and the
ability to connect a sender and a receiver. Let us propose a minimally axiomatized
algebra of interleaving and sending/receiving: interleaving will correspond to a
normal duoidal algebra, and sending/receiving will correspond to polarization.

Definition 1.1. A message theory M consists of a set of types, Mobj with extra
structure: a send/receive session type is a polarized list of types; for each session
type, we have a collection of sessions with that type,

M(X•◦11 , . . . , X
•◦n
n), for each X1, . . . , Xn ∈Mobj , and each polarization •◦i ∈ {◦, •}.

A message theory must contain operations for (i) binary shuffling, (ii) and nullary
shuffling, (iii) linking a sent message to immediately receive it, and (iv) spawning
a channel that receives a message and sends it immediately.

(1) shfσ : M(Γ)×M(∆)→M(σ(Γ,∆)), shuffling two processes;
(2) nop : M(), a no-operation, doing nothing;
(3) lnkΓ;∆

x : M(Γ, X•, X◦,∆)→M(Γ,∆), linking send to receive;
(4) spwΓ;∆

x : M(Γ,∆)→M(Γ, X◦, X•,∆), a receive to send channel.
Message theories may be better understood in the notation of a logic, as in
Figure 1. Types form a free polarized monoid; each term describes a possible
communication protocol.

Γ ∆

[Γ,∆]σ
(shfσ)

Γ, X•, X◦,∆

Γ,∆
(lnk)

Γ,∆

Γ, X◦, X•,∆
(spw)

ε
(nop)

Figure 1. Type-theoretic presentation of a message theory.

A message theory must satisfy the following axioms: (i) shuffles compose
as in their symmetric malleable multicategory, where we write (σ # 1τ) to be the
same by associativity as (τ ′ #2σ

′), we write (∗) for the trivial shuffle, and we write
σ̃ for the symmetric counterpart of σ; (ii) linking is natural with respect to the
shuffles; (iii) spawning is natural with respect to the shuffles; (iv) linking is dual
to spawning; and (v) independent linkings and spawnings commute.

(1a) shfτ (shfσ(m1m2),m3) = shfσ′(m1, shfτ ′(m2,m3));
(1b) shf∗(m,nop) = m;
(1c) shfσ(m1,m2) = shfσ̃(m2,m1);
(2a) shfσ,τ (lnkΓ1,Γ2

x (m1),m2) = lnkΓ1,∆1;Γ2,∆2
x (shfσ,x,τ (m1,m2));

(2b) shfσ,τ (m1, lnk∆1,∆2
x (m2)) = lnkΓ1,∆1;Γ2,∆2

x (shfσ,x,τ (m1,m2));
(3a) shfσ,τ (spwΓ1,Γ2

x (m1),m2) = spwΓ1,∆1;Γ2,∆2
x (shfσ,τ (m1,m2));

1. MESSAGE THEORIES 135

(3b) shfσ,τ (m1, spw∆1,∆2
x (m2)) = spwΓ1,∆1;Γ2,∆2

x (shfσ,τ (m1,m2));
(4a) lnkΓ,X◦;∆

x (spwΓ;X◦,∆
x (m)) = m;

(4b) lnkΓ;X•,∆
x (spwΓ,X•;∆

x (m)) = m;
(5a) lnkΓ1;Γ2Y Γ3

x (spwΓ1XΓ2;Γ3
y (m)) = spwΓ1Γ2;Γ3

y (lnkΓ1;Γ2Γ3
x (m));

(5b) lnkΓ1XΓ2;Γ3
y (spwΓ1;Γ2Y Γ3

x (m)) = spwΓ1;Γ2Γ3
x (lnkΓ1XΓ2;Γ3

y (m));
(5c) spwΓ1;Γ2Y Γ3

x (spwΓ1Γ2;Γ3
y (m)) = spwΓ1XΓ2;Γ3

y (spwΓ1;Γ2Γ3
x (m));

(5d) lnkΓ1;Γ2Γ3
x (lnkΓ1XΓ2;Γ3

y (m)) = lnkΓ1Γ2;Γ3
y (lnkΓ1;Γ2Y Γ3

x (m)).
These axioms are again better understood in logic notation, as equations between
derivations, see Figure 2.

Figure 2. Axioms of a message theory.

Definition 1.2. A message functor F : M → N between two message theories,
M and N, is a function on objects Fobj : Mobj → Nobj that extends to a family of
functions on session sets,

F : M(X•◦1 , . . . , X
•◦
n)→ N(FX•◦1 , . . . , FX

•◦
n).

This function must (i) preserve shuffling, F (shfσ(f, g)) = shfσ(Ff, Fg); (ii) pre-
serve spawning, F (spwx) = spwFx; (iii) connecting, F (lnkx(f)) = lnkx(Ff);

136 4. MONOIDAL MESSAGE PASSING

and (iv) the no-operation, F (nop) = nop. Message theories form a category
Msg with message functors between them.

1.2. Properties of a Message Theory. Our goal is to prove a coherence
theorem for message theories. Building up to this result, let us reason with
message theories to understand the basic properties that can be derived from the
axioms.

Proposition 1.3. Message theories have a derived operation for each shuffling;
moreover, these operations compose as in the multicategory of shufflings.

shufΓ1,...,Γn
σ : M(Γ1)× . . .×M(Γn)→M([Γ1, . . . ,Γn]σ)

Proof. We have defined an operation for binary and nullary shufflings, and
we have defined them to compose exactly as shufflings do. Because shufflings
form a malleable multicategory, each n-ary shuffling can be recovered uniquely
from the binary and nullary shufflings. �

Proposition 1.4. A session can always send later and receive sooner, but it
cannot send sooner nor receive later. Formally, there exist derived operations

waitΓ,∆,Ψ
X : M(Γ, X•,∆,Ψ)→M(Γ,∆, X•,Ψ),

rushΓ,∆,Ψ
X : M(Γ,∆, X◦,Ψ)→M(Γ, X◦,∆,Ψ).

Proof. We can construct the derivation trees of both operations. They both
spawn a new channel, shuffle its ends to the origin and target position, and they
connect the channel.

Γ, X•,∆,Ψ X◦, X•
(spw)

Γ, X•, X◦,∆, X•,Ψ

Γ,∆, X•,Ψ
(com)

(shf)
Γ,∆, X◦,Ψ X◦, X•

(spw)

Γ, X◦,∆, X◦, X•,Ψ

Γ, X◦,∆,Ψ
(com)

(shf)

Figure 3. Derivation of wait and rush.

The explicit construction is in Figure 3. Note how, thanks to polarization,
it is not possible to use the same technique to send sooner nor receive later.
In fact, we can reason by contradiction that sending sooner, M(Γ,∆, X•,Ψ) →
M(Γ, X•,∆,Ψ), is impossible: the only possible operations we can apply in an
arbitrary message theory to an arbitrary session are shufflings with a spawned
channel and connections; we require at least a connection to eliminate theX•, but
because the X◦ must come from shuffling a spawned channel, the corresponding
X• must be placed strictly after it. �

1. MESSAGE THEORIES 137

Proposition 1.5. In particular, we can always swap the order of objects with
the same polarity,

swapΓ;X;Y ;∆
◦ : M(Γ, X◦, Y ◦,∆)→M(Γ, Y ◦, X◦,∆),

swapΓ;X;Y ;∆
• : M(Γ, X•, Y •,∆)→M(Γ, Y •, X•,∆).

These are self-inverses, forming not only braidings but symmetries in the under-
lying monoidal category of positively or negatively polarized objects.

Proof. Swaps are constructed from rushing and waiting (Proposition 1.4);
explicitly,

swapΓ;X;Y ;∆
◦ = rushΓ,X◦,Ψ

Y , and swapΓ;X;Y ;∆
• = waitΓ,Y •,Ψ

Y .

Figure 4. Swaps are self-inverses.

Let us prove that they are self-inverses; we do so with the negatively-polarized
one (Figure 4), the other case is analogous. We reason using naturality of linking,
(i,iv), that shuffles compose as shuffles (ii,iii) (Proposition 1.3), the interaction
between shuffling and spawning (v), and the duality between spawning and linking
(vi). �

Proposition 1.6. We can link sooner or later without changing the result. For-
mally, the equations in Figure 5 hold.

138 4. MONOIDAL MESSAGE PASSING

Figure 5. Linking sooner or later does not change the restult.

Proof. We will prove the first one (Figure 6), the second one follows anal-
ogously. We reason using (i) the definition of wait; (ii,iii) that shuffles compose
as shuffles (Proposition 1.3); (iv) naturality of linking; and (v) that swaps are
self-inverses (Proposition 1.5). �

Figure 6. Proof of Proposition 1.6.

1. MESSAGE THEORIES 139

Proposition 1.7. Any spawning factors as the spawning of a single channel
followed by a shuffling. Formally,

spwΓ,∆
X (m) = shfΓ,X◦,X•,∆(m, spw;

X(nop)).

Proof. This is a direct consequence of Axioms (3a,3b). �

Theoretically, it would be possible to reason with message theories at the
level of derivations. However, as we have done through this text, we will try
to find better categorical semantics and a better combinatorial expression of the
free message theory. We will be most interested in the categorical semantics of
message theories and how do they interplay with process theories, in the sense
of monoidal categories. We introduce specialized semantics in terms of physical
monoidal multicategories, which are another instance of the idea of partially
representing a physical duoidal category. For all of this, we will need a coherence
theorem.

1.3. Coherence for Message Theories. Symmetric monoidal categories
are not perfectly coherent : easily, we can find that there are two formally well-
typed structure maps A ⊗ A → A ⊗ A, the identity and the swap. However,
what is indeed true is that any two distinctly typed structure maps in the free
symmetric monoidal category are equal. “Distinct typing” is a notion that only
makes sense in the free symmetric monoidal category over some generators; it
means that the generators comprising the lists that are our objects appear only
once with each variance: arrows A ⊗ B ⊗ C → B ⊗ C ⊗ A are distinctly typed,
but arrows A⊗A→ A⊗A are not, because A appears twice with each variance.

Shufflings satisfy a similar form of coherence: there is a unique way of shuf-
fling two words into a third one if these words are distinctly typed. This section
proves that message theories satisfy the same form of coherence. It is not true
that any two parallel formal arrows are equal in any message theory: for instance,
there are two ways of deriving X◦, X◦ from X◦ and X◦. It is true, however, that
there is a unique arrow for any distinctly typed domains and codomain.

Theorem 1.8. Message theories are coherent. In the free message theory
over a set of objects, there is at most a single derivation between any distinctly
typed premises and conclusion.

Proof. Consider distinctly typed premises and conclusion. There must be
three different classes of types in this derivation: (1) those that appear twice
on the conclusions with different polarity, (2) those that appear twice on the
premises with different polarity, and (3) those that appear once in the premises
and once in the conclusions with the same polarity.

We will construct a non-unique normal form for derivations in a message
theory, taking into account each one of these cases.

140 4. MONOIDAL MESSAGE PASSING

(1) In the first case, the types must have been created by spawning a chan-
nel. Using naturality of spawning (Axioms 3a, 3b, 5c), we can move
these spawning operations to be shuffled at the end of the derivation.
Note that it is not true that we can move all spawning to the end of
the derivation, but if the types appear only in the conclusions, then we
can always do so.

(2) In the second case, these variables must get linked to each other. We can
always move the linkings to the end of the derivation (before spawning
new objects) using again the naturality of the linkings (Axioms 2a, 2b,
5a).

(3) For the third case, only a shuffling, rushing and waiting can be involved
(any linking or spawning that does not involve rushing or waiting has
already been moved to the end). Rushing and waiting can be moved to
the beginning of the derivation because of naturality of spawning and
linking (Axioms 2a, 2b, 3a, 3b).

All of this argues that we can always factor a derivation in a message theory as
(i) rushing and waiting, (ii) a shuffle, (iii) linkings, (iv) spawnings and shufflings
of new variables; but we have not yet shown that this derivation is unique.

Imagine that we know the premises (Γ1, . . . ,Γn) and the conclusion (∆) of
a derivation in a message theory. Let us argue that there is at most a unique
derivation between these two.

(1) Removing the objects that appear twice in the conclusion (∆), we obtain
a new conclusion (∆1); there is, at most, a unique way of getting from
(∆1) to (∆) using spawnings and shufflings: spawning all the possible
variables in any order and employing the only possible shuffle (using
Proposition 1.3, axioms 1a, 1b, 1c); the order of spawning does not
matter because shuffles are symmetric (Axioms 1c, 5c).

(2) Adding all of the objects that get linked and appear twice with differ-
ent polarities on the premises, in any order, we obtain a new conclusion
(∆2). There is a unique way of getting from (∆2) to (∆1) because of the
interchanging axioms of linking (Axioms 5b and 5d). The only obstruc-
tion to uniqueness here is that we could choose different conclusions
(∆2) depending on where they place the variables that will be linked;
however, we have already shown that all possible choices lead to the
same result (Proposition 1.6).

(3) We are left with a shuffle and some rushings and waitings. From the
conclusion (∆2) we obtain now a sequence of premises (Γ′1, . . . ,Γ

′
n) that

are the same as the original premises (Γ1, . . . ,Γn) with the only differ-
ence that the objects appear ordered as in the conclusion (∆2). There
is a unique possible shuffling from (Γ′1, . . . ,Γ

′
n) to (∆2).

1. MESSAGE THEORIES 141

(4) Finally, for each premise, there will be rushings and waitings. Rushings
and waitings interchange (Proposition 1.5), and so there is a unique way
of going from the original premise Γi to the new premise Γ′i.

A summary of the proof can be found in Figure 7: ∆1 is determined from ∆; ∆2

is not, but all the possible choices lead to the same result (Figure 5); Γ′1, . . . ,Γ
′
n

are determined from ∆2 and Γ1, . . . ,Γn; we have argued that in each one of the
steps of the proof there is a single possible derivation. �

Figure 7. Schema for the proof of uniqueness.

Bibliography. Honda pioneered binary session types in the 90s [Hon93];
and further work with Yoshida and Carbone extended them to the multi-party
case [HYC08]. Session types [Hon93, HYC08] are the mainstay type formalism
for communication protocols, and they have been extensively applied to the π-
calculus [SW01]. Our approach is not set up to capture all of the features of
a fully-fledged session type theory [KPT96]. Explicitly, our framework of mes-
sage theories can be compared to asynchronous session types without choice.
Arguably, this makes it more general: it always provides a universal way of
implementing send (A◦) and receive (A•) operations in an arbitrary process the-
ory represented by a monoidal category. For instance, recursion and the inter-
nal/external choice duality [GH99, PS93] are not discussed, although they could
be considered as extensions in the same way they are to monoidal categories: via
trace [Has97] and linear distributivity [CS97b].

142 4. MONOIDAL MESSAGE PASSING

2. Physical Monoidal Multicategories, and Shufflings

Physical monoidal multicategories are physical duoidal categories [Spi13]
where the parallel tensor (⊗) is not representable. They follow the same idea
of produoidal categories, but they will be a better framework for message pass-
ing. The theory of physical monoidal multicategories will need of three ingredi-
ents: (i) symmetric multicategories, which correspond to the symmetry of the
parallel tensor (⊗); (ii) monoidal multicategories, which correspond to the half-
representable sequential tensor (/); and (iii) normality, which we will need to
reinterpret in this setting.

2.1. Symmetric Multicategories. Symmetric multicategories [BD98, CS09,
Shu16] are to multicategories what symmetric monoidal categories are to monoi-
dal categories. Let us write σ ∈ S(n) for an element of the permutation group
on n points. Let us write σ1 + σ2 ∈ S(n+m) for the disjoint union of two per-
mutations, σ1 ∈ S(n) and σ2 ∈ S(m). Let us write as σ o (k1, . . . , kn) : kσ1 + . . .+
kσn → k1 + . . .+ kn the thickening of a permutation σ ∈ S(n) to a permutation
S(k1 + · · ·+ kn) that applies it considering each block of kn elements separately.

Definition 2.1. A symmetric multicategory is a multicategory M together with
the following family of functions

σ∗ : M(Xσ1, . . . , Xσn;Y)→M(X1, . . . , Xn;Y), for each σ ∈ S(n),

that moreover satisfy the following axioms: (i) functoriality, (τ #σ)∗(f) = τ∗(σ∗(f))
and id∗(f) = f ; (ii) preservation of disjoint unions, σ∗1(f1) #1 . . . #n−1σ

∗
n(fn) #n g =

(σ1 + . . .+σn)(f1 #1 . . . #n−1 fn #n g); and (iii) naturality, f1 #1 . . . #n−1 fn #nσ∗(g) =
(σ o (k1, . . . , kn))∗(fσ1 #1 . . . #n−1 fσn #n g), for any fn having arity kn.

In physical monoidal multicategories, symmetry appears with the non rep-
resentable parallel tensor (⊗); while the sequential tensor will still form a repre-
sentable monoidal category, this is the notion of monoidal multicategory.

2.2. Monoidal Multicategories. Multicategories helped us describe typed
algebras: the objects of the multicategory were the types, and the multimor-
phisms were the operations we were allowed to use in that algebra. As we saw
with produoidal categories, we need a second dimension if we want to study par-
allelism: what happens when the types themselves form a monoid? Monoidal
multicategories are the monoidal version of algebra.

A monoidal category was a 2-monoid on the 2-category of categories, functors
and natural transformations. Analogously, a monoidal multicategory, sometimes
called a virtual duoidal category [Shu17] or monoidal operad, is a 2-monoid of the
2-category Mult of multicategories, multifunctors, and multinatural transforma-
tions.

2. PHYSICAL MONOIDAL MULTICATEGORIES, AND SHUFFLINGS 143

Definition 2.2. A monoidal multicategory (M, /,N,m, i, #) is a multicategory
(M, #) with a tensor and a unit both on objects (/) : Mobj ×Mobj → Mobj and
N : Mobj , and a tensor and unit on multimorphisms,

mn : M(X1, ..., Xn;Y)×M(X ′1, ..., X
′
n;Y)→M(X1 / X

′
1, ..., Xn / X

′
n;Y / Y ′),

nn : 1→M(N, n. . ., N ;N).

These are associative and unital up to multinatural transformations αX,Y,Z ∈
M(X / (Y /Z); (X /Y) /Z), λX ∈M(I /X;X) and ρX ∈M(X /I;X), satisfying
the pentagon and triangle equations.

Remark 2.3. Any monoidal multicategory has an underlying monoidal category.
Multifunctors between representable multicategories are lax monoidal functors,
and multinatural transformations are lax monoidal transformations. This implies
that a representable monoidal multicategory is exactly a duoidal category [Shu17].

2.3. Physical Monoidal Multicategories. Bringing the notion of nor-
mality to the context of monoidal multicategories is not completely trivial: here,
there is no map between the two units I → N . Instead, what we will have
is a map between the hom-sets, given by the precomposition of the multimap
n0 ∈M(;N) that we have because of the monoidality of the unit.

Definition 2.4. A physical monoidal multicategory is a symmetric multicategory
(M, #, id) that is moreover monoidal forming a virtual duoidal category (M, /,N)
and that contains an invertible composition with the unit map. That is, the
following composition is an isomorphism,

(n0 # •)−1 : M(X0, n. . ., Xn;Y)→M(X0, . . . , N, . . . ,Xn;Y).

Remark 2.5. We know the structure we need, but we will need to be able
to compute with it. A better combinatorial description of physical monoidal
multicategories will be possible once we characterize the free ones. The next
section shows that the physical monoidal multicategory of shufflings is the free
normal symmetric monoidal multicategory over a set of objects.

2.4. Shuffling. Shuffling events is the principle on which we have based our
definition of message theories. The first step towards endowing them with cate-
gorical semantics is to show that shuffling arises naturally in a categorical setting:
if physical duoidal categories represented inclusions of posets, physical monoidal
multicategories will represent inclusions of linear posets, which correspond to
shuffling.

Definition 2.6. Let A be an alphabet. The monoidal multicategory of shuffling
words, wShufA, has as objects the set A∗ of words on the alphabet A. The
multimorphisms wShufA(w1, . . . , wn;w) are precisely the shufflings of the letters
of the words w1, . . . , wn that result into the word w. The monoidal tensor is
given by concatenation of words.

144 4. MONOIDAL MESSAGE PASSING

Remark 2.7. This multicategory is not posetal: for instance, there exist two
multimaps wShufA(a, a; aa) for any letter a ∈ A. More generally, the number of
shuffles of a repeated letter is given by the binomial coefficients,

#wShuf(an1 , . . . , ank ; an1+...+nk) =
(n1 + . . .+ nk)!

n1! . . . nk!
.

However, it is true that, if each letter appears at most once on the component
words, then the shuffle, if it exists, must be unique. For instance, there exists a
unique shuffle wShuf(xy,wz;xwyz), and so we can refer to it without explicitly
specifying it. In other words, there exists at most one morphism between formal
distinctly-typed expressions; shuffles are coherent.

Remark 2.8. This monoidal multicategory is symmetric and normal. In other
words, it is a physical monoidal multicategory.

Proposition 2.9. Shuffling words are the free physical monoidal multicategory
on a set of objects.

Proof. We have already shown how they form a physical monoidal multi-
category; we need to show that it is the free one. Let V be any physical duoidal
category, for each map A → Vobj there must exist a unique physical monoidal
multifunctor wShufA → V that factors on objects through the former map.

First, we argue that the physical monoidal multifunctor is forced. Any shuffle
can be reconstructed from the operations of a physical monoidal multicategory,
and so any shuffle must be mapped accordingly. For instance, if we want to
reconstruct the shuffle V(xy, z;xzy), we multiply together: first V(x, i;x), then
V(i, z; z), and finally V(y, i; y).

Let us do this in general. Assume a shuffle wShuf(w1, . . . , wn;w), where the
words are wj = aj,1 . . . aj,kj . We position each one of the letters in their posi-
tion: for instance, if aj,i appears in the jth-word, we can use the normalization
isomorphism

V(aj,i; aj,i) ∼= V(I, . . . , a
(j)
j,i , . . . , I; aj,i)

to position it in the jth input, via the identity multimorphism. Then, we can
multiply all of the letters forming the shuffle, using monoidality, and obtain the
desired shuffle in any physical monoidal multicategory,

∏

aj,i∈w
V(I, . . . , a

(j)
j,i , . . . , I; aj,i)→ V(w0, . . . , wn;w).

We have used exactly one factor for each letter of the resulting word.
Finally, we need to prove that this assignment is well-defined and that it

defines a physical monoidal multifunctor. These will be both a consequence of
the same fact: there exists at most a unique shuffle between words with different
letters and there exists at most a unique formally distinctly typed map between

2. PHYSICAL MONOIDAL MULTICATEGORIES, AND SHUFFLINGS 145

any poset shapes. To prove this, we use the characterization of the free duoidal
category as poset shapes: there is a single formally well-typed map between
any two poset shapes, so there is a single formally well-typed map between any
two duoidal expressions; in particular, there exists at most one multimorphism
between any words with distinct letters in a physical monoidal multicategory.
This renders the map well-defined: there is at most one way of constructing any
shuffle, and we have shown that it is possible. On the other hand, this also makes
the map a physical monoidal multifunctor: all the equations are formal and thus
they hold automatically. �

Shuffling takes care of the first and most important aspect of message theo-
ries: message theories are algebras for the shuffling words physical monoidal mul-
ticategory of their objects. However, message theories do have an extra structure:
each object is a left dual, naturally with respect to these shufflings – the second
ingredient for message theories is polarization.

2.5. Bibliography. This formulation of symmetric multicategories is a par-
ticular case of Shulman’s definition of multicategory over a faithful cartesian club
[Shu16, §2]. The theory of symmetric multicategories is less developed than the
theory of cartesian multicategories, which are well-known to correspond to Law-
vere theories. Monoidal multicategories are also not particularly explored, but
Shulman has a note relating them directly to duoidal categories and proposing
the name virtual duoidal category for them [Shu17].

146 4. MONOIDAL MESSAGE PASSING

3. Polarization

Polarization is not a property of our structures, but more of a particular
way of constructing free structures. This is, we do not say that a monoid is
“polarized”; but we have constructed free polarized monoids when talking about
message theories. Saying that a monoid is polarized would seem to imply that
all of its elements have a sign, which is not what happens in the free polarized
monoid: generators do appear with a sign, but the words on the monoid are
combinations without a particular sign.

Remark 3.1 (Polarization of a monoid). Given any monoid M , we can consider
its polarization, Polar(M), to be the monoid generated by two copies of each
element of M , denoted a• ∈ Polar(M) and a◦ ∈ Polar(M), and quotiented by the
equations a•b• = (ab)• and a◦b◦ = (ab)◦.

Taking seriously this idea, we will not regard polarization as part of an al-
gebraic structure (as it happens with monoidal categories). Instead, polarization
will arise as a left adjoint. To quip, polarization is left adjoint to taking left ad-
joints. Let us see first how this works in the context of monoidal categories; we
will later extend it to physical monoidal multicategories.

3.1. Monoidal Polarization. Every monoidal category has a notion of
duality inside it. It does not suffice to say that some objects have duals: a duality
is not only a property. Instead, we need to specify the maps that constitute the
duality. Dualities in a monoidal category form a monoidal category themselves.
Polarization is the left adjoint to taking this category of dualities.

Definition 3.2 (Category of dualities). Let (C,⊗, I) be a monoidal category. We
define the category of left duals, Duals(C) to have objects the dualities (LaR, ε, η)
of the monoidal category and morphisms

(fL, fR) : (L aR, ε, η)→ (L′ aR′, ε′, η′)
to be pairs of morphisms fL : L → L′ and fR : R′ → R such that the equations
in Figure 8 hold.

Figure 8. Morphism of adjunctions.

3. POLARIZATION 147

The category of left duals is a monoidal category where the tensor of two
dualities, (L aR, ε, η) and (L′ aR′, ε′, η′), is defined to be

(L⊗ L′ aR′ ⊗R, (id⊗ ε⊗ id) # ε′, η # (id⊗ η ⊗ id)).

Taking the left duals extends to an endofunctor Duals : MonCat→MonCat.
This endofunctor has a right adjoint Polar : MonCat→MonCat.

Definition 3.3 (Polarization). Let (C,⊗, I) be a strict monoidal category. Its
polarization, Polar(C), is a monoidal category presented by the following data. It
contains two objects, A• and A◦, for each object of the original category A ∈ Cobj ,
and quotiented by equalities (A⊗B)• = A• ⊗B• and (A⊗B)◦ = B◦ ⊗A◦.

It contains two morphisms, f• : A• → B• and f◦ : A◦ → B◦, for each mor-
phism f : A → B; it also contains a pair of morphisms εA : A• ⊗ A◦ → I and
ηA : I → A◦ ⊗ A•. These are quotiented by equations explicitly asking for func-
toriality: f• # g• = (f # g)• and id• = id, and also f◦ # g◦ = (g # f)◦ and id◦ = id.
Moreover, they are quotiented by equations asking for a duality A• a A◦: that
is, εA # ηA = id and ηA # εA = id, with the duality being monoidal, and satisfying
both εA⊗B = εA # εB and ηA⊗B = ηB # ηA, and moreover εI = ηI = idI .

Proposition 3.4. Polarization is left dual to taking left duals.

Proof. We already know that Duals : MonCat → MonCat is a functor;
we only need to construct a universal arrow ηM : M → Duals(Polar(M)). The
universal arrow will be given by η(X) = (X◦ aX•, ε, η), which uses the fact that
X◦ a X• determines an adjunction. This assignment extends to a functor that
sends a morphism f : X → Y to a morphism of dualities (f, f∗) : (X◦aX•, ε, η)→
(Y ◦ a Y •, ε, η), where f∗ : Y • → X• is the dual of f : X◦ → Y ◦. This constructs
the candidate universal arrow.

Let us show that it is indeed universal. Consider a functor H : M→ Duals(N)
and pick an object X ∈ Mobj that is sent to H(X) = (A a A′, εA, ηA). We will
show that there is a unique H∗ : Polar(M) → N such that H = ηM # Duals(H∗).
To make this equation hold, it is necessary that H∗(X◦) = A and H∗(X•) = B.
Moreover, this forces H∗(f◦) = H(f), but also H∗(εX) = εA and H∗(ηX) = ηA.
Because (A a A′, εA, ηA) forms a duality, this assignment satisfies all necessary
equations. This determines the value of H∗ on all of the generating maps while
satisfying all of the equations of Polar(M). �

3.2. Monoidal Polarization is Not Enough. An important insight of
some works into the categorical semantics of message passing is the importance
of polarization. Given this, one could expect that the polarization of a process
theory is its corresponding message theory. Indeed, this chapter will claim that
the polarization of a symmetric monoidal category exhibits the necessary struc-
ture to discuss message passing; however, at the same time, it will claim that

148 4. MONOIDAL MESSAGE PASSING

the algebraic structure that allows it to do so is not that of a polarized monoidal
category: it is that of a message theory.

Remark 3.5. Some simpler interleavings of events can be expressed using du-
alities in a monoidal category. For instance, let us consider the polarization of
a symmetric monoidal category: wires with the same sign can be swapped, but
wires with different sign cannot. We can interleave two maps f : I → X◦/Y ◦/Z•

and g : I → U◦/V • to produce a map h : I → X◦/U◦/V •/Y ◦/Z• as in Figure 9
– note how we use the adjunction to contort the wires and allow wires to pass
over wires with different polarization.

Figure 9. A shuffling, using polarization.

In general, thanks to the dualities, a receiving resource can be used later,
X◦ / A→ A /X◦, and a sending resource can be sent sooner, A /X• → X• / A,
but not the other way around. These two laws govern which wires can pass over
other wires. A natural question, then, is to ask if all possible interleavings can
be expressed in the same way: polarizing objects, and using dualities.

Proposition 3.6. It is not the case that every shuffling of events can be expressed
in a category with polarized objects and dualities.

Proof. Consider two cells as in Figure 10, with types

f : I → X• / Y ◦ / Z• / W ◦, and g : I → A• / B◦ / C◦ / D• / E• / F ◦

and imagine we want to interleave them into A• / B◦ / X• / Y ◦ / C◦ / D• / Z• /
W ◦ /E• / F ◦ using only the dualities. There are two possible cases: (i) we place
f before g and we try to position the wires of f correctly; or (ii) we place g before
f and we try to do the same.

In the first case, we will find that we can pass the wire X◦ over A• / B◦ –
but the same cannot be done with the wire Y •. Therefore, we are forced to pass
the wire Y • over C◦ /D• /E• /F ◦, using the dualities; but then there will be no
way of moving the wire Z• to its place.

In the second case, the first two wires, A• / B◦, are automatically correctly
placed. The third, C◦, must pass over Z• /W ◦ because it could not do the same
with X• / Y ◦; so D• would be forced to do the same, but it cannot. �

3. POLARIZATION 149

Figure 10. A shuffling that cannot be expressed.

Then, if this algebra is not what we are using about the polarization of a
monoidal category, what are we using exactly? It happens that the polarization of
a monoidal category posesses extra structure: its states (the morphisms without
input) can always be split into morphisms that take negative objects on the left
and produce positive objects on the right. This property is what makes it possible
to express any interleaving of events.

With this in mind, the polarization of a monoidal category seems interesting
not only because it produces a category with duals (or, in the work of Nester
[Nes21], a proarrow equipment, or a cornering), but because it constructs a full
message theory. We do not only care about the free polarization, we care about
its message theory.

3.3. Polarization of a Physical Monoidal Multicategory. Every phys-
ical monoidal multicategory has a notion of dual, inherited from that of its un-
derlying monoidal category. The next section will construct the free polarized
physical monoidal multicategory over a set of objects. Let us define here the right
adjoint: the functor that picks the set of left adjoints of a physical monoidal mul-
ticategory.

Definition 3.7. Let (M, /, I) be a physical monoidal multicategory. We define
the set of left duals, Duals(M), to have objects the dualities (L a R, ε, η) where
ε ∈ M(L / R; I) and η ∈ M(I;R / L) are 1-to-1 multimorphisms satisfying the
adjoint equations, (ε / idL) # (idR / η) = idL and (idR / ε) # (η / idR) = idR.

3.4. Bibliography. A categorical treatment of polarization appears in the
work of Cockett and Seely [CS07], which points to the connection with Abramsky-
Jagadesaan games [AJ94]. “Polarized category” takes a different meaning there:
it is a pair of categories endowed with a profunctor between them. However, we
do follow the same core idea: using walking adjunctions for sending and receiving.

Nester notices the importance of polarization for message passing [Nes21]
via a single-object proarrow equipment; and all the credit for this idea should
go there. This was later extended by Nester and Voorneveld [NV23] to include

150 4. MONOIDAL MESSAGE PASSING

iteration and choice. The reader will find a discussion of its relationship with
lenses in a joint paper of this author with Nester and Boisseau [BNR22]. The
graphical calculus of proarrow equipments was described by Myers [Mye16]; we
can reuse this calculus to explain polarization in monoidal categories. Here, we
prefer to avoid discussing polarization through proarrow equipments, noticing
that this adjunction already works at the level of monoidal categories.

4. POLAR SHUFFLES 151

4. Polar Shuffles

4.1. Polar Shuffles. Polarization in a physical monoidal multicategory leads
us to consider polar shuffles: shufflings endowed with a polarization for each one
of its elements. This section will show that polar shuffles are the free polarized
monoidal multicategory.

The objects of the category of shuffles could be seen as the finite ordinals:
finite linear posets with inclusions on each other, preserving the ordering. Simi-
larly, the objects of the category of polar shuffles are polarized finite ordinals.

Definition 4.1. A polar list over a set of types T is a list of types X ∈ T ∗

endowed with a function p : X → {◦, •}. In any polar list, we consider the
negative elements, X◦ = p−1(◦), and the positive elements, X• = p−1(•).
Definition 4.2. A polar shuffle over a set of types T , from a multiset of polar
lists X0, . . . , Xn to a single polar list Y , is a bijection

f : X•1 + . . .+X•n + Y ◦ → Y • +X◦1 + . . .+X◦n

preserving the types and such that the directed graph containing all polar lists
(as linear posets) and an edge x→ f(x) for each element in X•1 + . . .+X•n + Y ◦,
is acyclic.

For instance, an untyped polar shuffle (or typed over the singleton set) of
shape pShuf(◦ • ◦•, ◦◦ • •, ◦; ◦◦ • •◦), is given by the following acyclic graph in
Figure 11. In black, we depict the edges that come from the graph of a function.
In blue, the edges that come from the linear finite posets.

Figure 11. A polar shuffle.

4.2. Encoding of polar shuffles. Polar shuffles are ultimately graphs, and
they can be encoded as such. We propose a notation suggestive of multiparty
session calculi.

The session encoding of polar shuffles assigns a variable name to each polar
list (say, f, g, h, . . .) and to each edge of the graph outside a polar list (say,
a, b, c, x, y, z, . . .). The encoding of a polar shuffle starts by declaring the list of
edges incident to the output polar list, together with their polarization. Then,
enclosed in braces, we write the polar lists and the edges that incide on them.

For instance, the encoding of the polar shuffle in Figure 11 is in Figure 12.

152 4. MONOIDAL MESSAGE PASSING

(a?,b?,c!,d!,e?) {
f(a?,x!,y?,d!),
g(b,x?,y!,c!),
h(e?) }

Figure 12. Encoding of a polar shuffle.

Remark 4.3. Parsing this notation requires checking whether the graph is
acyclic. Checking if a graph is acyclic can be done in linear time on the sum
of vertices and edges, O(v + e). The number of vertices in a polar shuffle is the
sum of the lengths of all of the polar lists involved, e = #X1 + . . .+ #Xn + #Y,
and each vertex receives at most three edges, giving a bound e ≤ 2v. This means
that checking if a polar shuffle is valid is linear in the length of its polar lists,
O(#X1 + . . .+ #Xn + #Y).

The second implication of this encoding is that, if we label the vertices of a
polar shuffle with types, there exists at most one polar shuffle with any distinctly
typed sources and targets.

Proposition 4.4. Polar shuffles are coherent. There exists at most a single
polar shuffle between some distinctly typed polar lists: we say that a polar list
is distinctly typed if each variable (each type) appears in the premises and the
conclusion exactly twice, each time with a different variance.

Proof. In this combinatorial structure, coherence works almost by defini-
tion. Note that a polar shuffle is ultimately a bijection satisfying certain extra
properties; but the distinct typing already forces where each element must be
sent: to the only element with different variance but same type. Whether the po-
lar shuffle exists at all depends on whether it satisfies the acyclicity property. �

4.3. The Multicategory of Polar Shuffles. Polar shuffles form a multi-
category, as their shape already suggests. The composition and the rest of the
structure follow that of the category of shufflings. For instance, the composition
of polar shuffles is defined to be the substitution of the resulting polar list of a
shuffle into the input polar list of another shuffle. See Figure 13 for an example.

Proposition 4.5. The composition of two polar shuffles, s ∈ pShuf(X1, . . . , Xn;Y)
and t ∈ pShuf(Y1, . . . , Y, . . . , Ym;Z), along a polar list Y , is a polar shuffle ob-
tained by substituting the entire graph of the former into the polar list of the
latter,

s #Y t ∈ pShuf(Y1, . . . , X1, . . . , Xn, . . . , Ym;Z).

4. POLAR SHUFFLES 153

Figure 13. Composition of two polar shuffles.

Substituting a polar shuffle into the inputs of a polar shuffle forms again a polar
shuffle. That is, composition is well-defined and preserves acyclicity.

Proof. Composition happens across the resulting polar list of a polar shuf-
fle, which coincides with one of the input polar lists of another polar shuffle; we
say that this polar list is the border. The proof argues that two acyclic graphs
glued along a linear graph are again acyclic.

Let us prove this by contradiction. Imagine there was a cycle in the multicat-
egorical composition of polar shuffles. It must contain edges on both components
of the composition, simply because each component is itself acyclic. This means
that the cycle should cross the border between both components of the polar
shuffle at least twice and always an even number of times – it must take two
different directions.

Figure 14. Composition along the borders of two polar shuffles.

Because the border is a linear poset, it must split the cycle (at least) in two
parts, creating two undirected cycles to the two sides of the border. At least one
of these two is forced to be directed, thus contradicting acyclicity on that side of
the composition. �
Proposition 4.6. The tensoring of two polar shuffles of the same arity,

s ∈ pShuf(X0, . . . , Xn;Y) and t ∈ pShuf(X ′0, . . . , X
′
n;Y ′),

is a polar shuffle on the pointwise concatenation of the polar lists

(s / t) : pShuf(X0X
′
0, . . . , XnX

′
n;Y Y ′),

154 4. MONOIDAL MESSAGE PASSING

defined by the disjoint union of the two acyclic graphs determining the polar
shuffles. The tensoring of two polar shuffles is well-defined and it is again a
polar shuffle. See Figure 15 for an example.

Figure 15. Parallel composition of polar shuffles.

Proof. The graph of the tensoring is the disjoint union of two acyclic graphs,
together with the edges determined by the polar lists. The directed edges coming
from the polar lists always go from the first graph to the second; thus, they will
not create cycles and the resulting graph with be acyclic. �

Theorem 4.7. Polar shuffles over a set of types are the morphisms of a
physical monoidal multicategory, pShuf, that has the polar lists as objects.

Proof. We define the identity polar shuffle on a polar list to be the identity
bijection linking each sign to itself. The identity polar shuffle is acyclic because
the identity bijection preserves the linear ordering. We have already defined
the composition and shown that it is acyclic in Proposition 4.5. Associativity
of composition follows from associativity of glueing graphs; unitality follows by
construction. We have already defined the tensoring in Proposition 4.6, and the
tensor on objects is the concatenation of polar lists. The unit for the tensoring is
the empty polar list, and because it does not appear in a polar shuffle, it makes
the monoidal multicategory normal. �

4.4. Message Theories are Algebras of Polar Shuffles. What makes
polar shuffles relevant to the discussion of message-passing is that they promise
us a better syntax for message theories. Instead of thinking of the operations
of a message theory as generated by a few primitives satisfying equations, we
can give them a combinatorial characterization in terms of polar shuffles. This
section shows that message theories are precisely the algebras for the operations
given by polar shuffles.

Definition 4.8. An algebra over a multicategory, (M, #, id), is the assignment of
a set S(X) to each object X ∈Mob, and the assignment of a function

S(f) : S(X1)× . . .× S(Xn)→ S(Y),

4. POLAR SHUFFLES 155

for each multimorphism f ∈ S(X1, . . . , Xn;Y). The assignment must preserve
compositions, S(f #X g) = S(f) #X S(g) and identities, S(id) = id. Alternatively,
it is a multifunctor to the cartesian monoidal category of sets and functions.

Proposition 4.9. Message theories are precisely the algebras of the free polarized
physical monoidal multicategory over their respective sets of types. In other words,
the derivations of a message theory form the free polarized physical monoidal
multicategory over its set of types.

Proof. This will follow almost by definition. The definition of message
theories includes an operation for each shuffling, and these operations compose
as shufflings (Proposition 1.3 and Axioms 1a, 1b, and 1c); equivalently, this is
saying that message theories are in particular algebras of the multicategory of
shufflings, the free physical monoidal multicategory over their set of types.

The rest of the axioms of message theories are exactly asking that each object
is a left adjoint: the spawning and linking operations are describing the unit and
the counit of the adjunction; the rest of the axioms are saying that: the unit
of the adjunction is natural with respect to shufflings (Axioms 2a and 2b); the
counit of the is natural with respect to shufflings (Axioms 3a and 3b); unit and
counit satisfy the snake equations (4a and 4b); and they are natural with respect
to each other (Axioms 5a, 5b, 5c and 5d). �

Corollary 4.10. Polarized physical monoidal multicategories are coherent; there
exists at most one multimorphism between any distinctly typed objects of the free
physical monoidal multicategory over some objects.

Proof. This is now a consequence of Proposition 4.9 and Theorem 1.8.
The derivations of a message theory form the free polarized physical monoidal
multicategory, but we have already shown that they are coherent. �

Theorem 4.11. Polar shuffles form the free polarized physical monoidal mul-
ticategory over a set of types.

Proof. Polar shuffles are coherent (Proposition 4.4), and polarized physical
monoidal multicategories are coherent as well (Corollary 4.10); this simplifies
the proof because, to show that they coincide, we only need to show that a
polar shuffle between some types exists if an only if a multimorphism in the free
polarized physical monoidal multicategory exists.

If a multimorphism of a certain type exists in the free polarized physical
monoidal multicategory, then it exists in all polarized physical monoidal multi-
categories and, in particular, in polar shuffles (Theorem 4.7).

Let us prove the converse implication: if a polar shuffle between some types
does exist, then there is a multimorphism in the free polarized physical monoidal
multicategory between these types. For this, we will use that a polar shufflecan be

156 4. MONOIDAL MESSAGE PASSING

always factored (not necessarily uniquely!) in the following way: (i) we exchange
positions inside each polar list to get them to their final relative position; (ii)
we use a series of spawnings, or polar shuffles I → X◦ / X•; (iii) we use a pure,
non-polarized shuffle; and (iv) some final linkings of type X• / X◦ → I. This is
easy to verify topologically: we can always ‘pull down the linkings’ and ‘pull up’
the spawnings, and we can always factor any shuffle in two parts – a pure shuffle
and a shuffle internal to each one of the components. For instance, consider the
following example in Figure 16, adapted from Figure 15 with an extra spawning.

Figure 16. Factored polar shuffle.

Spawning, linking, shuffling, waiting and rushing are all operations on a
physical monoidal multicategory (see Section 1); so this proves that there is
at least one multimorphism in the free physical monoidal multicategory with
these types. We do not care about the specific choice of multimorphism because
polar shuffles are coherent (Proposition 4.4), and polarized physical monoidal
multicategories are coherent as well (Corollary 4.10) �
Corollary 4.12. Message theories are the algebras of the physical monoidal mul-
ticategory of polar shuffles.

Proof. We will use that polar shuffles are the free polarized physical mo-
noidal multicategory (Theorem 4.11) and that message theories are precisely the
algebras of the free polarized physical monoidal multicategory over their objects
(Proposition 4.9). �

4.5. Bibliography. The definition – and the notation – of polar shuffles
takes inspiration from a different concept: Hughes’ partial leaf functions [Hug12].
Partial leaf functions are the Int-construction – the free compact closed category
over a traced monoidal category – applied to the category of finite sets and partial
functions [AM99]; here we follow a similar idea, but we work over finite sets and
bijections, which are not traced. Not only the Int-construction, but also the idea
of shuffling two traces point back to game semantics [MS18].

5. PROCESSES VERSUS SESSIONS 157

5. Processes versus Sessions

5.1. Processes of a message theory. Inside of a message theory, we call
processes the sessions that happen in two parts: (i) first they ask for some inde-
terminate number of resources (possibly zero), X◦1, . . . X◦n and (ii) then, they give
some indeterminate number of resources (possibly zero), Y •1, . . . , Y •m. This simple
definition builds a symmetric monoidal category inside any message theory, and
we will find a left adjoint to this construction.

Proposition 5.1. Let M be a message theory. There exists a symmetric mo-
noidal category, Proc(M), whose objects are the lists of objects of the message
theory, Proc(M)obj = M∗obj, and whose morphisms are the sessions that first ask
some resources and then provide some resources,

Proc(M)(X1 ⊗ . . .⊗Xn;Y 1 ⊗ . . .⊗ Ym) = M(X?
n, . . . X

?
1 ;Y !

1 , . . . , Y
!
m).

Note how we reverse the order of inputs; this will make reasoning easier even if
it is unnecessary: the monoidal category will be symmetric in any case.

Proof. Let us define the composition and identities. Composition is given
by the polar shuffle that connects the middle outputs to inputs, see Figure 17;
because message theories are algebras of polar shuffles, such a polar shuffle defines
an operation, composition, that takes two sessions to a third one.

Figure 17. Composition of processes of a message theory.

Identities are created by spawning channels, see Figure 18. Again, because
message theories are algebras of polar shuffles, each message theory must contain
a constant given by the polar shuffle that spawns a list of channels. Composition
and identities are associative and unital: it can be checked from the definition
that we are using the duality from spawning and connecting channels.

Symmetries are given by the polar graph that spawns a channel for each one
of the objects and then shuffles them so that the inputs and the outputs are
divided in two blocks and positioned in reverse order, see Figure 23.

158 4. MONOIDAL MESSAGE PASSING

Figure 18. Identity process of a message theory.

Figure 19. Symmetries of processes in a message theory.

Tensoring is given by the polar shuffle that preserves all outputs and inputs
but passes the outputs of a process pass the inputs of the other, see Figure 20.
This operation is again associative and unital with the empty polar shuffle that
represents the monoidal unit.

Figure 20. Tensor of processes in a message theory.

It concludes the proof to check, by following the connections of the polar shuf-
fles, that tensoring behaves functorially with composition so that the interchange
law of monoidal categories holds. �

5. PROCESSES VERSUS SESSIONS 159

Proposition 5.2. The construction of the symmetric monoidal category of pro-
cesses extends to a functor

Proc : Msg→ SymMonCatStr.

Proof. We will show that any message functor F : M→ N induces a strict
symmetric monoidal functor Proc(F) : Proc(M)→ Proc(N). Because the category
of processes is freely generated on objects, it suffices to explain that the object
X ∈Mob is sent to the object FX ∈ Nob. On morphisms, we already have a map

F : M(X?
n, . . . , X

?
1, Y

!
1, . . . , Y

!
m)→ N(FX?

n, . . . , FX
?
1, FY

!
1, . . . , FY

!
m)

that gets reinterpreted as a map

Proc(M)(X1⊗. . .⊗Xn;Y 1⊗. . .⊗Ym)→ Proc(N)(F (X1⊗. . .⊗Xn);F (Y 1⊗. . .⊗Ym)).

Composition, identities and tensoring are operations constructed as polar shuffles,
and so they must be preserved by a message functor; this means that Proc(F)
becomes a strict monoidal functor. �

5.2. Sessions of a process theory. We will now construct message ses-
sions over an arbitrary process theory, and we will do so in a minimalistic theory.
Message passing consists of two effects: sending and receiving. Premonoidal cat-
egories already are a framework for effectful computation in process theories, so
we employ them here.

Definition 5.3. The effectful category of sessions over a strict symmetric mo-
noidal category C is the effectful category C→ Session(C) generated by

(1) all of the morphisms of the original monoidal category, C, quotiented
by the equations of the original monoidal category, as pure morphisms;

(2) and a pair of send and receive generators for each object X ∈ Cobj
imposing no further equations. We write these generators as (◦)X : X →
I and (•)X : I → X.

Figure 21. Session runtime generators.

This naive theory of message passing on top of a monoidal category may
remind us of the combs that we were studying before: instead of using incomplete
diagrams, we are marking the interchanges explicitly now. This intuition can be
made formal: we will now prove that combs of typeX•◦1 /. . ./X•◦n → (AB) correspond
to sessions A→ B where the events are exactly X•◦1 , . . . , X•◦n, and happen in that

160 4. MONOIDAL MESSAGE PASSING

specific order. First, note that we can define a sequence of events associated with
a particular session.

Definition 5.4. The sequence of events of a session is the list of effectful gen-
erators obtained by following only the effectful wire on the diagram. Formally,
it is defined by structural induction over the premonoidal category of sessions as
follows.

(1) It is the empty list for a pure morphism.
(2) It is invariant to whiskering.
(3) It contains a single element [X◦] for each generator (◦)X : I → X.
(4) It contains a single element [X•] for each generator (•)X : X → I.
(5) It concatenates the lists for a composition of morphisms.

It becomes straightforward to check that the sequence of events is well-defined.
We write Session(A;B)[X•◦1 , . . . , X

•◦
n] for the set of sessions A→ B with a sequence

of events X•◦1 , . . . , X•◦n.

Proposition 5.5 (Combs are sessions). Sessions from A to B with a sequence
of events X•◦1 , . . . , X•◦n are in bijective correspondence with combs with the same
events happening sequentially,

Session(A;B)[X•◦1 , . . . , X
•◦
n] ∼= mLens (X•◦1 / . . . / X

•◦
n; AB) .

Proof. We proceed by structural induction over the presentation of the
cteogry of sessions. The base case consists of a morphism that is pure: by defi-
nition, those are the combs mLens(N; AB).

The inductive case considers a morphism A → B with at least one first
occurrence of the effectful generators, (◦)X or (•)X . We assume without loss of
generality that this is (•)X : I → X, so its sequence of events is X•,Γ – the other
case is analogous. We consider it as a string diagram for a monoidal category,
quotiented by the equations of the base monoidal category C, the symmetries
and only up to interchange by isotopy. We may split the diagram into two
parts (as in Figure 22); we leave everything before the generator (•)X to one
side, f ∈ C(A;X ⊗ M), and everything after the generator to the other side
g ∈ Session(M,B)[Γ]. This procedure constructs the following comb,

∫ M∈C
C(A;M ⊗X)f × Session(A;B)[Γ]g.

Of course, the usual problem with this kind of definitions that split a string
diagram is that we need to prove that they are well-defined. We need to show
that this definition is invariant to isotopy; we do so by cases: (i) if the isotopy
interchanges two boxes before the cutting line, then there were two pure mor-
phisms and it is captured by an equation of C; (ii) if the isotopy interchanges two
boxes after the cutting line, then it is defining an equation of sessions; (iii) if the

5. PROCESSES VERSUS SESSIONS 161

Figure 22. Splitting the diagram of a session.

isotopy interchanges two morphisms across the cutting line, then it is captured
by dinaturality.

At the same time, note that these are exactly all of the equations imposed
to combs: those of the original symmetric monoidal category and dinaturality;
so the correspondence is bijective. Finally, by the induction hypothesis,

Session(A;B)[X•,Γ] ∼=
∫M∈C C(A;X ⊗M)× Session(A;B)[Γ]

∼=
∫M∈C C(A;X ⊗M)×mLens (Γ; AB)

∼= mLens (X• / Γ; AB) ,

which concludes the proof. �

The next step is to show that sessions over a process theory actually define
a message theory. For this, we will only need sessions with no inputs or outputs:
we write Session[Γ] for Session(I; I)[Γ].

Proposition 5.6. Sessions over a strict symmetric monoidal category, Session(C),
form a message theory. This construction extends to a functorial assignemnt

Session : SymMonCatStr → Msg.

Proof. We will show that sessions over a strict symmetric monoidal cate-
gory, Session(C), form an algebra for the multicategory of polar shuffles. Consider
a family of sessions, si ∈ Session(Γi); and consider a polar shuffle

p ∈ pShuf(Γ1, . . . ,Γn; ∆),

we need to construct a new session of type ∆.
The construction follows a topological intuition: consider the hypergraph

defining the string diagrams of the sessions; and consider at the same time the
acyclic graph defined by the polar shuffle. We glue the string diagram of each
si, along its runtime wire, to the inputs and outputs, Γi, of the polar shuffle,
removing these nodes on the process. The crucial step happens now: we have a
graph containing nodes of the premonoidal category of sessions, and it has been
constructed by gluing acyclic graphs along linear boundaries – it must be acyclic,
and it must be a string diagram.

162 4. MONOIDAL MESSAGE PASSING

We define the composition of the sessions si ∈ Session(Γi) along the polar
shuffle p ∈ pShuf(Γ1, . . . ,Γn; ∆), to be the session represented by the string dia-
gram here obtained. This assignment preserves the composition of polar shuffles –
which is also defined topologically by gluing – and thus it determines an algebra.

Finally, the assignment is functorial with respect to the base monoidal cat-
egory because (i) the construction of the sessions is functorial and (ii) we only
apply operations of a symmetric premonoidal category when we build a string
diagram over this premonoidal category of sessions. �
Example 5.7. Consider two morphisms, f : A → M ⊗X and g : M ⊗ Y → B,
determining a session of type [A◦, X•, Y ◦, B•]; and consider two other morphisms,
h : X⊗U → N and k : N → Y ⊗V , determining a session of type [X◦, U◦, V •, Y •].
They can compose along the polar shuffle we defined in Figure 12; the result is
in Figure 23.

Figure 23. Two sessions compose along a polar shuffle.

5.3. Sessions versus Processes. The final result of this section is to prove
that sessions over a process theory are the free message theory over a symmetric
monoidal category.

Lemma 5.8. There exists a strict symmetric monoidal functor

inProc : C→ Proc(Session(C))

that includes a monoidal category in the processes of its message theory.

Proof. The functor will act as the identity on objects. We already know
that combs are sessions (Proposition 5.5), and we can use this fact to construct
the assignment on morphisms.

Proc(Session(C)(A;B)) = Session(C)[A◦, B•] ∼= mLens(A◦, B•; II) ∼= C(A;B).

It only remains to show that this assignment defines a strict symmetric monoidal
functor: we need to show that it preserves composition, tensoring, identities and

5. PROCESSES VERSUS SESSIONS 163

symmetries. This is straightforward, as we only need to check that the operations
that we defined for the process theory of a message theory, Proc(M), correspond
to the operations of a symmetric monoidal category. Let us explicitly check
composition, inProc(f) # inProc(g) = inProc(f # g), in Figure 24, the rest follow a
similar pattern.

Figure 24. The inclusion of processes preserves composition.

Checking the rest of the cases concludes the construction. �
Theorem 5.9. Sessions and processes form an adjunction, Session a Proc;

where sessions, Session : SymMonCatStr → Msg, construct the free message
theory over a symmetric monoidal category, and where processes, Proc : Msg →
SymMonCatStr, construct the cofree symmetric monoidal category over a mes-
sage theory.

Proof. Consider a strict symmetric monoidal category, C, and a message
theory, M, endowed with a strict symmetric monoidal functor F : C→ Proc(M).
We will construct a message functor F] : mLens(C)→M and prove that it is the
unique one satisfying inProc # Proc(F]) = F .

Let us show that such a message functor, if it were to exist, would be unique.
Firstly, the image on message types is already determined to be F](A) = F (A).
Secondly, the image on sessions consisting on a single morphism, inProc(f) : [A◦, B•],
is determined, F](inProc(f)) = F (f) : [FA◦, FB•]. We will show now that
this reasoning can be extended to all sessions: we know that sessions of type
[X•◦1 , . . . , X

•◦
n] are combs (Proposition 5.5) of type

(f0| . . . |fn) : X•◦1 / . . . / X
•◦
n → (II) .

This determines their image: combs can be factored as the composition, in the
message theory of multiple sessions consisting of a single morphism (Figure 25).
Accordingly, their image, F](f0| . . . |fn), should be the composition, on the mes-
sage theory, of these pieces (Figure 25).

Let us now show that we have constructed a well-defined assignment. Our
construction should preserve the dinaturality equivalence relation imposed to
combs. This happens, indeed, and the proof simply checks that the images of
two combs,

(f0 # (id⊗ h0)|f1 # (id⊗ h1)| . . . |fn) = (f0|(id⊗ h0) # f1| . . . |(id⊗ hn−1) # fn),

are equal (Figure 26). We have constructed a well-defined assignment on sessions.

164 4. MONOIDAL MESSAGE PASSING

Figure 25. Image of a comb under the message functor.

Figure 26. The assignment of combs to sessions preserves dinaturality.

Finally, we need to check that F] is a message functor preserving all of the
operations determined by polar shuffles. In the theory of combs, applying a polar
shuffle corresponds to a rewiring into another comb; applying the polar shuffle in
M must result in the same rewiring of the pieces forming the comb – which, as
we have already shown, is precisely the image of that comb. This forces F] to
preserve the application of a polar shuffle.

We have shown that F] is indeed a message functor and that it is the only
possible one satisfying inProc # Proc(F]) = F . �

5.4. Example: One-Time Pad, as a Message Session. Let us come
back to Example 5.8, where we discussed a decomposition of the one-time pad.
We now know that there is an adjunction between symmetric monoidal categories
and message theories, let us use it to provide semantics to the decomposition of
the one-time pad example.

5. PROCESSES VERSUS SESSIONS 165

The theory for the one-time pad problem can be expressed in a message
theory O where we have a single object generator for the type of a message, X,
and a single session generator for each one of the actors.

(1) Stage : X◦ / X• / X•,
(2) Bob : X• / X◦ / X•,
(3) Alice : X◦ / X◦ / X•,
(4) Eve : X◦ / X•.

We will interpret these generators in the free message theory over the category
of finite sets and stochastic maps: thanks to the adjunction, we know that, if we
could interpret each one of the components presenting the category of finite sets
in any message theory, then we can interpret this whole example inside it.

We already gave an interpretation to each one of the components in terms of
combs. We rewrite now the example explicitly separating each one of the parts
that form it (Figure 27).

Proposition 5.10. The session describing the one-time pad protocol is equal to
a session where Alice and Bob communicate the message directly and Eve attacks
a signal representing pure noise.

Figure 27. One-time pad, complete session.

166 4. MONOIDAL MESSAGE PASSING

Proof. Evaluating the session that describes the one-time pad example us-
ing the components described before, in Example 5.8, obtains the following polar
shuffle applied to multiple combs. Evaluating the polar shuffle, as in Figure 27,
produces the desired result. �

Remark 5.11. This discussion is not restricted to the modularity of the string
diagrams: it affects the modularity of the code itself. Recall that we have a
notation for sessions and polar shuffles; we use it in Figure 28 to write the one-
time pad.

Figure 28. Notation for the one-time pad session.

At the same time, we have second a notation for sessions: sessions are ul-
timately morphisms of an effectful category, so we can use do-notation without
the interchange axiom to represent them. The sending and receiving effects can
be written as (!/?) respectively. Lenses are tuples of morphisms, and they can
be represented in do-notation using that exact characterization. The following
Figure 29 shows a modular implementation of the one-time pad that separates
each one of the actors into a different module.

Which notation should we settle for? It seems that both interplay nicely
together: the best way of writing a message session seems to be to write its
underlying polar shuffle, as in Figure 28, while the best way of writing processes
may be the usage of do-notation as in Figure 29, which is well-known and imposes
a human-readable order on the operations.

5.5. Case Study: Causal versus Evidential Decision Theories. Leib-
niz’s dream was to see philosophical debates reduced to mathematical calculation,
to have a formal language for decision theory and an algorithm to solve any dis-
pute.

"[...] if controversies were to arise, there would be no more
need of disputation between two philosophers than between
two calculators. For it would suffice for them to take their
pencils in their hands and to sit down at the abacus, and say

5. PROCESSES VERSUS SESSIONS 167

Figure 29. Do-notation for the one-time pad.

to each other (and if they so wish also to a friend called to
help): calculemus (let us calculate)."

However, our modern decision theory seems far from this dream. For in-
stance, Monty Hall’s problem caused famous controversies and confident blunders
of some experts [vS] while being relatively simple to describe. It could seem that
the passage from the statement to its formal encoding is more of an art than a
science.

Let us try to understand one of these debates: causal versus evidential deci-
sion theory on Newcomb’s problem [Noz69, Ahm14, YS17]. We will use message
theories to set up the scene and partial Markov categories to compute the solu-
tion.

Definition 5.12. Newcomb’s problem [Noz69] is a famous decision problem that
sets apart Evidential and Causal Decision Theory. An agent () is in front of
two boxes: a transparent box filled with 1e and an opaque box (). The agent
is given the choice between taking both boxes (two-boxing, T) and taking just
the opaque box (one-boxing, O). However, the opaque box is controlled by a
“perfectly accurate” predictor (). The predictor placed 1000e in the opaque
box if it predicted that the agent would one-box and left it empty otherwise. The
agent knows this. Which action should the agent choose?

At the risk of oversimplifying, most philosophers are divided in two schools
[Ahm14, YS17]. Those that follow causal decision theory would claim that no
matter what the predictor does, the lower row of the table in Figure 30 contains
strictly more utility; they prescribe two-boxing. Those that follow evidential

168 4. MONOIDAL MESSAGE PASSING

Figure 30. Newcomb’s problem: table of utilities.

decision theory claim that, because the predictor is omniscient, one-boxing is the
only way of ensuring the biggest prize is on the box.

The analysis of the problem starts by dividing it into different parties: (i) the
agent () must only make a choice on whether to one-box or two-box; (ii) the
stage () takes the choice of the agent, the prediction of the predictor, broadcasts
the choice of the agent and computes the final utility of the agent, and (iii) the
predictor () sends a prediction and, only afterwards, can see the choice of the
agent. Let us call X = {O,T} to the set containing one-boxing or two-boxing ;
we are claiming to have three elements of a message theory: the agent, () : X•;
the predictor, () : X• / X◦; and the stage, () : X◦ / X◦ / X• / X•.

Figure 31. Newcomb’s problem: components of a message theory.

The Evidential Decision Theory Solution: Let us take as an axiom that these
components are constructed out of total stochastic channels; in other words, the
message theory we use is the free message theory over the Kleisli category of the
subdistribution monad, Session(Kleisli(D≤1)).

We cannot assume anything about the agent, but because of the construc-
tion of out free message theory (Definition 5.3), it must be given by a single
stochastic channel () : I → X. Even without assuming anything about the pre-
dictor, because of the construction of the free message theory (Definition 5.3),
we know that must be constructed of two parts: the one that sends the pre-
diction, ()1 : I → M ⊗ X, and the one that receives the choice of the agent,
()2 : M⊗X → I; of the first part we know nothing, but we have postulated that
we will observe it to be perfectly accurate with the prediction, meaning that the
second part will fail if it is not. Thus, we deduce it must factor as in Figure 32.

The wiring of the components is given by the statement: agent and predictor
send choice and prediction to the stage, which answers giving back the choice to

5. PROCESSES VERSUS SESSIONS 169

Figure 32. Evidential reading of the predictor.

the predictor and computing the output (Figure 35). We then reason (i) comput-
ing the polar shuffle; (ii) we analyze the agent by cases, the agent two-boxes (T)
with probability a or one-boxes (O) with probability (1 − a); (iii) because both
cases are deterministic, they can be copied; (iv) we analyze then the predictor,
it two-boxes (T) with probability p or one-boxes (O) with probability (1− p); (v)
we compute according to Figure 30, canceling the incompatible equality checks;
and vi assuming that the first term is just an order of magnitude larger than the
second, we can bound it by p · 1000e, where we take a = 1: the agent should
one-box.

Figure 33. Newcomb’s problem: the solution from Evidential De-
cision Theory.

170 4. MONOIDAL MESSAGE PASSING

The Causal Decision Theory Solution: Let us assume the same components
(Figure 30). The only hypothesis over which we will place suspicion is that the
predictor can be “perfectly accurate” without violating causality in some way.
Causal decision theory assumes that all processes are causal, or total. That
means that, after receiving the news of what the agent has chosen, the predictor
can do nothing: there must exist a unique total morphism X ⊗X → I.

Figure 34. Causal reading of the predictor.

The wiring of the components is again the same, but the computation is now
different: (i) we compute the polar shuffle; (ii) we analyze the agent by cases, the
agent two-boxes (T) with probability a or one-boxes (O) with probability (1−a);
(iii) we analyze in the same way the predictor; (iv) we compute according to Fig-
ure 30, canceling the incompatible equality checks; and (v) we bound everything
by the case where a = 0: this time, to maximize utility, the agent must two-box.

Was this formal analysis better than a pure discussion? We can now claim
that the advantage is that the computations go from a starting diagram that
represents our reading of the problem to a utility that we can maximize. We
have turned most of the problem into a problem of computation: not only looking
at the table of utilities (Figure 30) but at the whole statement of the problem.
Of course, our formalization does not solve the debate on Newcomb’s paradox,
but at least it moves the controversy to a more fundamental point: are we fine
with using the action of the agent to reason acausally about the predictor? The
algebra of partial Markov categories provides a mathematical framework where
it makes sense to assume so; the algebra of message theories takes care of the rest
of the discussion.

Bibliography. The idea of using send/receive effects for encoding sessions
is not new. Message passing can be also seen as a core component of game seman-
tics, which has a vast literature [AJ94, AM99, Hyl97]. Game semantics has the
ambition to provide the mathematical structures that describe coordination be-
tween distributed agents, starting from a duality between the Player’s moves and

5. PROCESSES VERSUS SESSIONS 171

Figure 35. Newcomb’s problem: the solution from Causal Decision
Theory.

the Opponent’s moves; one of its achievements is to provide syntax-independent
semantics for different extensions of PCF [McC00], including one with global
state [AHM98].

Game semantics and session types [HYC08] have been called “two sides of the
same coin” [CY19]. Orchard and Yoshida [OY16] discuss two mutual embeddings
between an effectful λ-calculus (PCF) and a session π-calculus; further work
also implemented the corresponding do-notation [OY17]. In our framework, this
correspondence occurs between premonoidal categories and message theories; and
thus between do-notation and polar shuffles.

Particularly relevant is Melliès’ categorical approach to game semantics in
the form of template games [Mel19]. The crucial difference between the present
proposal and Melliès’ line of work is that it starts from labelled transition systems
as the basic notion. Melliès introduces asynchronous graphs – graphs with a set
of commuting squares – and many of the same ingredients that we use here.
Asynchronous graphs explain shuffles, polarization, and a failure of interchange
in the form of a Grey tensor product [Mel21]. We would be interested to compare
our approach to message passing with the framework of template games, and
especially the points where they diverge: we land on normal duoidal categories
while template games are based on Girard’s linear logic [Gir89].

Finally, Newcomb’s problem (or paradox) was first stated by Nozick [Noz69].
Evidential decision theory is defended in the work of Ahmad [Ahm14]; both
Everitt, Leike and Hutter [ELH15], and Yudkowsky and Soares [YS17] have for-
malized comparisons of evidential decision theory, causal decision theory, and
further variants.

CHAPTER 5

Conclusions and Further Work

Conclusions

Monoidal Context Theory. We have universally characterized the normal
produoidal category of monoidal lenses (Theorem 5.3) as a free normalization of
the cofree produoidal category on top of a monoidal category. The interpretation
of this result is relevant: the splice-contour adjunction ([MZ22], Theorem 4.4)
relates each category to its cofree promonoidal category of incomplete terms; in
the same way, we have constructed a monoidal splice-contour adjunction relating
each monoidal category to its cofree produoidal category of incomplete processes.
The category underlying this universal produoidal category is familiar: it is the
category of monoidal lenses.

Monoidal lenses have gained recent popularity in applications of category
theory, apart from their classical counterparts in database theory [JRW12]: they
have spawned applications in bidirectional transformations [FGM+07] but also in
functional programming [PGW17, CEG+20], open games [GHWZ18], polynomial
functors [NS22] and quantum combs [HC22]. Moreover, a different promonoidal
structure for lenses had been already studied in the past by Pastro and Street
[PS07]. Apart from lenses, incomplete processes have appeared implicitly multi-
ple times in recent literature. Kissinger and Uijlen [KU17] describe higher-order
quantum processes using contexts with holes in compact closed monoidal cate-
gories. Ghani, Hedges, Winschel and Zahn [GHWZ18] describe economic game
theory in terms of lenses and incomplete processes in cartesian monoidal cat-
egories. Bonchi, Piedeleu, Sobociński and Zanasi [BPSZ19] study contextual
equivalence in their monoidal category of affine signal flow graphs. Di Lavore,
de Felice and Román [DLdFR22] define monoidal streams by iterating monoidal
context coalgebraically. This situation prompted a question: why are lenses so
prevalent? why do they appear in seemingly unrelated applications? We can
now claim a conceptual answer with a mathematical justification. Lenses are
the universal algebra for decomposing morphisms in process theories. The recent
applications of lenses all describe incomplete processes.

Incomplete processes have two uses: on the one hand, they track the depen-
dencies between monoidal processes; on the other hand, they allow us to split

173

174 5. CONCLUSIONS AND FURTHER WORK

the multiple agents of a multi-party process. The former is quite useful in itself:
duoidal categories provide two different tensors – a sequential, (/), and a parallel
one (⊗) – that can track dependencies between different processes (as we saw
in Section 1.2). Signalling and non-signalling conditions are important to the
study of quantum theories, and recent work by Wilson and Chiribella [WC22]
and Hefford and Kissinger [HK22] has studied signalling using structures close to
monoidal lenses; we hope that the universal characterization of lenses as cofree
produoidal categories may help extracting the exact structure needed for these
physical frameworks. Even forgetting about dependencies explicitly, the theory
of monoidal contexts allows us to pursue branches of computer science that were
classically restricted to 1-dimensional syntaxes: the recent work of Eanrshaw and
Sobocinski [ES22] studies monoidal regular languages as the natural monoidal
analogue of the classical notion of regular language.

However, it is the second application of incomplete processes the one that
this author found more surprising: we can now separate the different agents of a
multi-party process in an arbitrary monoidal category. Message passing was not
the main goal of this thesis, but developing it has brought interesting connections
to game semantics.

Monoidal Message Passing. Symmetric monoidal categories have two op-
erations: sequential composition (#) and parallel composition (⊗). Naively, we
would think then that there are two ways of decomposing monoidal processes:
sequentially and in parallel. This is not false, and for many applications this
may be the simpler way of dealing with this; after all, glueing sequentially and
in parallel is the only thing we need to separate a string diagram in its atomic
parts. However, this misses the rich algebra of incomplete morphisms and their
compositions: monoidal lenses can be composed according to any polar shuffle,
and that is the algebra that we are implicitly using when we cut a string diagram
into pieces that do not necessarily follow the sequential and parallel divisions.
We can now argue that the algebra of message passing for process theories is
that of message theories. Message theories try to be a minimalistic axiomatiza-
tion of what it means to communicate different processes that send and receive
messages: we have argued for these axioms in Section 1, in a way that should ap-
peal any reader not familiar with the categorical framework behind them. Their
combinatorial characterization in terms of polar shuffles only makes them more
concrete.

We have developed a theory of context on top of monoidal categories and we
have used it to develop a canonical theory of message passing in monoidal cate-
gories. We have argued that this a fundamental structure for concurrency, and
we have characterized it universally; however, we could still argue that it does not
address the problem posed by Abramsky of finding the fundamental structures of
concurrency [Abr05]. The main limitation of this framework is that it does not

CONCLUSIONS 175

provide most of the features that we expect from fully-fledged session types: how
can we model choice, or synchrony [Hon93, HYC08]? how can we model itera-
tion, feedback, or other common programming constructs [McC00]? Minimalism,
however, may be a good thing to separate these concerns from the fundamental
structure: if we want to model choice, we can do so using distributive categories
[CLW93], or linear actegories [CP09]; if we want feedback and iteration, we can
recall traced categories [JSV96], categories with feedback [LGR+23], and notions
of monoidal automata [DLdFR22]. Precisely because our framework is minimal,
it seems that it is robust enough to support these additions; we will be interested
in constructing models of game semantics in further work.

Future Work. Monoidal game semantics was not the original goal of this
project but it became its most promising avenue; last section gives us a recipe to
construct a session do-notation calculus on top of any monoidal category, which
would include stochastic, non-deterministic and partial variants of a multi-party
do-notation calculus. Levy, Power and Thielecke [LPT03] discuss the correspon-
dence between premonoidal categories and call-by-value languages; we would be
interested in extending this correspondence into message passing [OY17]. Once
there, it seems plausible that we can connect this idea to the literature on game se-
mantics for fully-fledged programming semantics [McC00]. Specifically, we would
like to construct a model of probabilistic programming allowing for message pass-
ing, choice and iteration; multiple developments in categorical probability (such
as quasiborel spaces [HKS+18] or Markov categories [Fri20]) make this possible.

The existence of a vast literature on message passing in terms of linear ac-
tions [CP09] makes it particularly important to understand exactly how duoidal
categories and linear logic relate. We conjecture that physical duoidal categories
also form isomix linearly distributive categories [CS97a], and this may be a cat-
egorical justification behind this connection.

For conciseness, we have not discussed approaches to iteration in monoidal
categories. Joint work of this author with Di Lavore and de Felice [DLdFR22]
has shown that it is possible to reason coinductively with automata in monoidal
categories, using precisely monoidal lenses to describe incomplete processes. It
seems plausible then, that mixing coinduction with message passing allows us to
talk about networks of stochastic iterative processes: these have remarkable ap-
plications in scientific modelling, where we can write causal networks of stochastic
processes in which unknown components are approximated stochastically.

Bibliography

[Abr05] Samson Abramsky. What are the fundamental structures of concur-
rency?: We still don’t know! In Luca Aceto and Andrew D. Gordon,
editors, Proceedings of the Workshop "Essays on Algebraic Process
Calculi", APC 25, Bertinoro, Italy, August 1-5, 2005, volume 162
of Electronic Notes in Theoretical Computer Science, pages 37–41.
Elsevier, 2005. 19, 174

[AC09] Samson Abramsky and Bob Coecke. Categorical quantummechanics.
In Kurt Engesser, Dov M. Gabbay, and Daniel Lehmann, editors,
Handbook of Quantum Logic and Quantum Structures, pages 261–
323. Elsevier, Amsterdam, 2009. 28, 61

[AHLF18] Marcelo Aguiar, Mariana Haim, and Ignacio López Franco. Mon-
ads on higher monoidal categories. Applied Categorical Structures,
26(3):413–458, Jun 2018. 115

[AHM98] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully ab-
stract game semantics for general references. In Proceedings. Thir-
teenth Annual IEEE Symposium on Logic in Computer Science (Cat.
No. 98CB36226), pages 334–344. IEEE, 1998. 171

[Ahm14] Arif Ahmed. Evidence, Decision and Causality. Cambridge Univer-
sity Press, 2014. 167, 171

[AHS02] Samson Abramsky, Esfandiar Haghverdi, and Philip J. Scott. Geom-
etry of interaction and linear combinatory algebras. Math. Struct.
Comput. Sci., 12(5):625–665, 2002. 61

[AJ94] Samson Abramsky and Radha Jagadeesan. Games and full complete-
ness for multiplicative linear logic. The Journal of Symbolic Logic,
59(2):543–574, 1994. 149, 170

[Alu21] Paolo Aluffi. Algebra: Chapter 0, volume 104. American Mathemat-
ical Society, 2021. 28

[AM] Marcelo Aguiar and Swapneel A. Mahajan. personal communication.
103

[AM99] Samson Abramsky and Guy McCusker. Game Semantics. In Ulrich
Berger and Helmut Schwichtenberg, editors, Computational Logic,
NATO ASI Series, pages 1–55, Berlin, Heidelberg, 1999. Springer.

177

178 Bibliography

156, 170
[AM10] Marcelo Aguiar and Swapneel A. Mahajan. Monoidal functors,

species and Hopf algebras, volume 29. American Mathematical Soci-
ety Providence, RI, 2010. 19, 98, 101, 103, 108

[BCST96] Robert F. Blute, Robin B. Cockett, Robert A. G. Seely, and Todd H.
Trimble. Natural deduction and coherence for weakly distributive
categories. Journal of Pure and Applied Algebra, 113(3):229–296,
1996. 61

[BD98] John C. Baez and James Dolan. Higher-dimensional algebra III. n-
categories and the algebra of opetopes. Advances in Mathematics,
135(2):145–206, 1998. 142

[BE14] John C. Baez and Jason Erbele. Categories in control. arXiv preprint
arXiv:1405.6881, 2014. 53

[Bec23] Jorge Becerra. Strictification and non-strictification of monoidal cat-
egories. arXiv preprint arXiv:2303.16740, 2023. 37

[Bén67] Jean Bénabou. Introduction to bicategories. In Reports of the
Midwest Category Seminar, pages 1–77, Berlin, Heidelberg, 1967.
Springer Berlin Heidelberg. 41

[Bén68] Jean Bénabou. Structures algébriques dans les catégories. Cahiers
de topologie et géometrie différentielle, 10(1):1–126, 1968. 53

[Bén00] Jean Bénabou. Distributors at work. Lecture notes written by
Thomas Streicher, 11, 2000. 78, 79

[BG18] Guillaume Boisseau and Jeremy Gibbons. What you needa know
about Yoneda: Profunctor optics and the Yoneda lemma (func-
tional pearl). Proceedings of the ACM on Programming Languages,
2(ICFP):1–27, 2018. 126

[BGK+16] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński,
and Fabio Zanasi. Rewriting modulo symmetric monoidal structure.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, pages 710–719, 2016. 42, 43, 45, 53

[BGMS21] John C. Baez, Fabrizio Genovese, Jade Master, and Michael Shul-
man. Categories of nets. In 2021 36th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS), pages 1–13. IEEE, 2021.
42

[BK22] Anne Broadbent and Martti Karvonen. Categorical composable
cryptography. In Patricia Bouyer and Lutz Schröder, editors, Foun-
dations of Software Science and Computation Structures - 25th Inter-
national Conference, FOSSACS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, volume 13242 of
Lecture Notes in Computer Science, pages 161–183. Springer, 2022.

Bibliography 179

17, 128, 129
[BNR22] Guillaume Boisseau, Chad Nester, and Mario Román. Cornering

optics. In ACT 2022, volume abs/2205.00842, 2022. 25, 150
[BPS17] Filippo Bonchi, Dusko Pavlovic, and Pawel Sobocinski. Functorial

semantics for relational theories. CoRR, abs/1711.08699, 2017. 18
[BPSZ19] Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi.

Graphical affine algebra. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,
June 24-27, 2019, pages 1–12. IEEE, 2019. 173

[BR23] Dylan Braithwaite and Mario Román. Collages of string diagrams.
arXiv preprint arXiv:2305.02675, 2023. 26, 83

[BS10] John C. Baez and Mike Stay. Physics, topology, logic and computa-
tion: A Rosetta stone. In New Structures for Physics, pages 95–172.
Springer Berlin Heidelberg, 2010. 53

[BS13] Thomas Booker and Ross Street. Tannaka duality and convolu-
tion for duoidal categories. Theory and Applications of Categories,
28(6):166–205, 2013. 109

[BSS18] Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical con-
junctive queries. In Dan R. Ghica and Achim Jung, editors, 27th
EACSL Annual Conference on Computer Science Logic, CSL 2018,
September 4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages
13:1–13:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
28, 60, 61

[BSZ14] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categori-
cal semantics of signal flow graphs. In International Conference on
Concurrency Theory, pages 435–450. Springer, 2014. 43

[BZ20] Nicolas Blanco and Noam Zeilberger. Bifibrations of polycategories
and classical linear logic. In Patricia Johann, editor, Proceedings of
the 36th Conference on the Mathematical Foundations of Program-
ming Semantics, MFPS 2020, Online, October 1, 2020, volume 352
of Electronic Notes in Theoretical Computer Science, pages 29–52.
Elsevier, 2020. 203

[Cam19] Alexander Campbell. How strict is strictification? Journal of Pure
and Applied Algebra, 223(7):2948–2976, 2019. 36, 37, 39

[CEG+20] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bar-
tosz Milewski, Emily Pillmore, and Mario Román. Profunctor optics,
a categorical update. CoRR, abs/2001.07488, 2020. 24, 81, 124, 126,
131, 173

[CFS16] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical
theory of resources. Inf. Comput., 250:59–86, 2016. 28, 34, 127

180 Bibliography

[CGG+22] Geoffrey S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wil-
son, and Fabio Zanasi. Categorical foundations of gradient-based
learning. In European Symposium on Programming, pages 1–28.
Springer, Cham, 2022. 126

[CJ19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion
via String Diagrams. Mathematical Structures in Computer Science,
pages 1–34, March 2019. 28, 59, 60

[CLW93] Aurelio Carboni, Stephen Lack, and Robert F.C. Walters. Introduc-
tion to extensive and distributive categories. Journal of Pure and
Applied Algebra, 84(2):145–158, 1993. 175

[CP09] Robin B. Cockett and Craig A. Pastro. The logic of message-passing.
Sci. Comput. Program., 74(8):498–533, 2009. 175

[CS97a] Robin B. Cockett and Robert A. G. Seely. Proof theory for full
intuitionistic linear logic, bilinear logic, and mix categories. Theory
and Applications of categories, 3(5):85–131, 1997. 175, 197

[CS97b] Robin B. Cockett and Robert A. G. Seely. Weakly distributive cat-
egories. Journal of Pure and Applied Algebra, 114(2):133–173, 1997.
141, 203

[CS07] Robin B. Cockett and Robert A. G. Seely. Polarized category the-
ory, modules, and game semantics. Theory and Applications of Cat-
egories, 18(2):4–101, 2007. 19, 149

[CS09] Geoffrey S. H. Cruttwell and Michael Shulman. A unified framework
for generalized multicategories. arXiv preprint arXiv:0907.2460,
2009. 142

[CW87] Aurelio Carboni and Robert F. C. Walters. Cartesian bicategories I.
Journal of pure and applied algebra, 49(1-2):11–32, 1987. 34

[CY19] Simon Castellan and Nobuko Yoshida. Two sides of the same coin:
session types and game semantics: a synchronous side and an asyn-
chronous side. Proceedings of the ACM on Programming Languages,
3(POPL):1–29, 2019. 171

[Day70] Brian Day. On closed categories of functors. In Reports of the Mid-
west Category Seminar IV, volume 137, pages 1–38, Berlin, Heidel-
berg, 1970. Springer Berlin Heidelberg. 113, 116, 122, 200, 202

[Dd09] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and
session types: An overview. In Cosimo Laneve and Jianwen Su, edi-
tors, Web Services and Formal Methods, 6th International Workshop,
WS-FM 2009, Bologna, Italy, September 4-5, 2009, Revised Selected
Papers, volume 6194 of Lecture Notes in Computer Science, pages
1–28. Springer, 2009. 19

[DDR11] Jean-Guillaume Dumas, Dominique Duval, and Jean-Claude Rey-
naud. Cartesian effect categories are Freyd-categories. Journal of

Bibliography 181

Symbolic Computation, 46(3):272–293, 2011. 65
[DGNO10] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Os-

trik. On braided fusion categories I. Selecta Mathematica, 16(1):1–
119, 2010. 67

[DLdFR22] Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal
streams for dataflow programming. In Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’22,
New York, NY, USA, 2022. Association for Computing Machinery.
173, 175

[DLLNS21] Ivan Di Liberti, Fosco Loregian, Chad Nester, and Paweł Sobociński.
Functorial semantics for partial theories. Proceedings of the ACM on
Programming Languages, 5(POPL):1–28, 2021. 18, 56

[DPS05] Brian Day, Elango Panchadcharam, and Ross Street. On centres
and lax centres for promonoidal categories. In Colloque International
Charles Ehresmann, volume 100, 2005. 110

[DS03] Brian Day and Ross Street. Quantum categories, star autonomy, and
quantum groupoids, 2003. 200, 202, 203

[EH61] Beno Eckman and Peter Hilton. Structure maps in group theory.
Fundamenta Mathematicae, 50(2):207–221, 1961. 108

[EHR23] Matt Earnshaw, James Hefford, and Mario Román. The produoidal
algebra of process decomposition. arXiv preprint arXiv:2301.11867,
2023. 26, 93, 110, 113, 116, 202, 203

[ELH15] Tom Everitt, Jan Leike, and Marcus Hutter. Sequential extensions
of causal and evidential decision theory. In International Conference
on Algorithmic Decision Theory, pages 205–221. Springer, 2015. 171

[ES22] Matthew Earnshaw and Pawel Sobociński. Regular Monoidal Lan-
guages. In Stefan Szeider, Robert Ganian, and Alexandra Silva, edi-
tors, 47th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2022), volume 241 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 44:1–44:14, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
18, 116, 174

[FB94] David J Foulis and Mary K Bennett. Effect algebras and unsharp
quantum logics. Foundations of physics, 24:1331–1352, 1994. 58, 60

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional
tree transformations: A linguistic approach to the view-update prob-
lem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(3):17–es, 2007. 130, 173

[FGP21] Tobias Fritz, Tomáš Gonda, and Paolo Perrone. De Finetti’s theorem
in categorical probability. Journal of Stochastic Analysis, 2(4), 2021.

182 Bibliography

60
[FJ19] Brendan Fong and Michael Johnson. Lenses and learners. arXiv

preprint arXiv:1903.03671, 2019. 126
[Fon13] Brendan Fong. Causal Theories: A Categorical Perspective on

Bayesian Networks. Master’s Thesis, University of Oxford. ArXiv
preprint arXiv:1301.6201, 2013. 60

[Fox76] Thomas Fox. Coalgebras and cartesian categories. Communications
in Algebra, 4(7):665–667, 1976. 54, 55, 60

[FP19] Tobias Fritz and Paolo Perrone. A probability monad as the colimit
of spaces of finite samples. Theory and Applications of Categories,
34(7):170–220, 2019. 60

[FPR21] Tobias Fritz, Paolo Perrone, and Sharwin Rezagholi. Probability,
valuations, hyperspace: Three monads on top and the support as a
morphism. Mathematical Structures in Computer Science, 31(8):850–
897, 2021. 60

[FR20] Tobias Fritz and Eigil Fjeldgren Rischel. Infinite products and zero-
one laws in categorical probability. Compositionality, 2:3, 2020. 60

[Fri20] Tobias Fritz. A synthetic approach to Markov kernels, conditional in-
dependence and theorems on sufficient statistics. Advances in Math-
ematics, 370:107239, 2020. 28, 60, 175

[FS19] Brendan Fong and David I Spivak. Supplying bells and whistles in
symmetric monoidal categories. arXiv preprint arXiv:1908.02633,
2019. 55

[FV20] Ignacio López Franco and Christina Vasilakopoulou. Duoidal cat-
egories, measuring comonoids and enrichment. arXiv preprint
arXiv:2005.01340, 2020. 103

[GF16] Richard Garner and Ignacio López Franco. Commutativity. Journal
of Pure and Applied Algebra, 220(5):1707–1751, 2016. 19, 97, 100,
101, 102, 103, 104, 105, 108, 115, 116, 121, 122

[GG09] Richard Garner and Nick Gurski. The low-dimensional structures
formed by tricategories. In Mathematical Proceedings of the Cam-
bridge Philosophical Society, volume 146, pages 551–589. Cambridge
University Press, 2009. 39

[GH99] Simon J. Gay and Malcolm Hole. Types and subtypes for client-
server interactions. In S. Doaitse Swierstra, editor, Programming
Languages and Systems, 8th European Symposium on Program-
ming, ESOP’99, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’99, Amsterdam, The
Netherlands, 22-28 March, 1999, Proceedings, volume 1576 of Lecture
Notes in Computer Science, pages 74–90. Springer, 1999. 141

Bibliography 183

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Com-
positional game theory. In Anuj Dawar and Erich Grädel, editors,
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
472–481. ACM, 2018. 126, 131, 173

[Gir89] Jean-Yves Girard. Geometry of Interaction 1: Interpretation of Sys-
tem F. In R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo, ed-
itors, Logic Colloquium ’88, volume 127 of Studies in Logic and the
Foundations of Mathematics, pages 221–260. Elsevier, 1989. 61, 171

[Gis88] Jay L. Gischer. The equational theory of pomsets. Theoretical Com-
puter Science, 61(2-3):199–224, 1988. 108

[Gra81] Jan Grabowski. On partial languages. Fundamenta Informaticae,
4(2):427–498, 1981. 23, 106, 108

[Gro85] Alexandre Grothendieck. Récoltes et semailles: réflexions et té-
moignage sur un passé de mathématicien. Grothendieck Circle Page,
1985. 16

[Gui80] René Guitart. Tenseurs et machines. Cahiers de topologie et
géométrie différentielle catégoriques, 21(1):5–62, 1980. 62

[Had18] Amar Hadzihasanovic. Weak units, universal cells, and coherence
via universality for bicategories. arXiv preprint arXiv:1803.06086,
2018. 37

[Has97] Masahito Hasegawa. Models of sharing graphs: a categorical seman-
tics of let and letrec. PhD thesis, University of Edinburgh, UK, 1997.
141

[HC22] James Hefford and Cole Comfort. Coend optics for quantum combs.
arXiv preprint arXiv:2205.09027, 2022. 131, 173

[Hed19] Jules Hedges. Folklore: Monoidal kleisli categories, Apr 2019. 62
[Her00] Claudio Hermida. Representable multicategories. Advances in Math-

ematics, 151(2):164–225, 2000. 90
[Her01] Claudio Hermida. From coherent structures to universal properties.

Journal of Pure and Applied Algebra, 165(1):7–61, 2001. 37
[HJ06] Chris Heunen and Bart Jacobs. Arrows, like monads, are monoids.

In Stephen D. Brookes and Michael W. Mislove, editors, Proceed-
ings of the 22nd Annual Conference on Mathematical Foundations
of Programming Semantics, MFPS 2006, Genova, Italy, May 23-27,
2006, volume 158 of Electronic Notes in Theoretical Computer Sci-
ence, pages 219–236. Elsevier, 2006. 21, 53, 82

[HJW+92] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel,
Jon Fairbairn, Joseph H. Fasel, María M. Guzmán, Kevin Hammond,
John Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S.

184 Bibliography

Nikhil, Will Partain, and John Peterson. Report on the Program-
ming Language Haskell, A Non-strict, Purely Functional Language.
ACM SIGPLAN Notices, 27(5):1, 1992. 21, 53

[HK22] James Hefford and Aleks Kissinger. On the pre- and promonoidal
structure of spacetime. arXiv preprint arXiv.2206.09678, 2022. 105,
174

[HKS+18] Chris Heunen, Ohad Kammar, Sam Staton, Sean Moss, Matthijs
Vákár, Adam Ścibior, and Hongseok Yang. The semantic structure of
quasi-borel spaces. In PPS Workshop on Probabilistic Programming
Semantics, 2018. 175

[HMH14] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geom-
etry of interaction: from coalgebraic components to algebraic effects.
In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Aus-
tria, July 14 - 18, 2014, pages 52:1–52:10. ACM, 2014. 61

[Hon93] Kohei Honda. Types for dyadic interaction. In Eike Best, editor,
CONCUR ’93, 4th International Conference on Concurrency The-
ory, Hildesheim, Germany, August 23-26, 1993, Proceedings, volume
715 of Lecture Notes in Computer Science, pages 509–523. Springer,
1993. 19, 141, 175

[HR23] James Hefford and Mario Román. Optics for premonoidal categories.
CoRR, abs/2305.02906, 2023. 25

[HS23] Chris Heunen and Jesse Sigal. Duoidally enriched Freyd categories.
In International Conference on Relational and Algebraic Methods in
Computer Science, pages 241–257. Springer, 2023. 105

[Huf54] David A. Huffman. The synthesis of sequential switching circuits.
Journal of the Franklin Institute, 257(3):161–190, 1954. 21

[Hug00] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67–111, 2000. 21, 27, 42, 45, 53, 61, 82

[Hug12] Dominic Hughes. Simple free star-autonomous categories and full
coherence. Journal of Pure and Applied Algebra, 216(11):2386–2410,
2012. 156

[HV19] Chris Heunen and Jamie Vicary. Categories for Quantum Theory:
An Introduction. Oxford University Press, 2019. 28

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. In George C. Necula and Philip Wadler,
editors, Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2008, San
Francisco, California, USA, January 7-12, 2008, pages 273–284.

Bibliography 185

ACM, 2008. 141, 171, 175
[Hyl97] Martin Hyland. Game semantics. Semantics and logics of computa-

tion, 14:131, 1997. 170
[Jac15] Bart Jacobs. New directions in categorical logic, for classical, prob-

abilistic and quantum logic. Logical Methods in Computer Science,
11, 2015. 58, 60

[Jef97a] Alan Jeffrey. Premonoidal categories and a graphical view of pro-
grams. Preprint at ResearchGate, 1997. 21, 74

[Jef97b] Alan Jeffrey. Premonoidal categories and flow graphs. Electronical
Notes in Theoretical Computer Science, 10:51, 1997. 64

[JHH09] Bart Jacobs, Chris Heunen, and Ichiro Hasuo. Categorical semantics
for arrows. J. Funct. Program., 19(3-4):403–438, 2009. 61, 82

[JKZ21] Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference via
string diagram surgery: A diagrammatic approach to interventions
and counterfactuals. Mathematical Structures in Computer Science,
31(5):553–574, 2021. 60

[JRW12] Michael Johnson, Robert Rosebrugh, and Richard J. Wood. Lenses,
fibrations and universal translations. Mathematical structures in
computer science, 22(1):25–42, 2012. 130, 173

[JS91] André Joyal and Ross Street. The geometry of tensor calculus, I.
Advances in Mathematics, 88(1):55–112, 1991. 30, 31, 33, 34, 36, 37,
53, 61

[JS93] André Joyal and Ross Street. Braided tensor categories. Advances
in Mathematics, 102(1):20–78, 1993. 33

[JSV96] André Joyal, Ross Street, and Dominic Verity. Traced monoidal
categories. Mathematical Proceedings of the Cambridge Philosophical
Society, 119:447 – 468, 04 1996. 175

[JZ20] Bart Jacobs and Fabio Zanasi. The logical essentials of bayesian
reasoning. Foundations of Probabilistic Programming, pages 295–
331, 2020. 60

[KL80] Gregory Kelly and Miguel Laplaza. Coherence for compact closed
categories. Journal of pure and applied algebra, 19:193–213, 1980.
103

[Kme12] Edward Kmett. lens library, version 4.16. Hackage https://hackage.
haskell. org/package/lens-4.16, 2018, 2012. 126

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Lin-
earity and the pi-calculus. In Hans-Juergen Boehm and Guy
L. Steele Jr., editors, Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Papers Presented at the Symposium, St. Petersburg Beach,
Florida, USA, January 21-24, 1996, pages 358–371. ACM Press,

186 Bibliography

1996. 141
[KSW97] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters.

Bicategories of processes. Journal of Pure and Applied Algebra,
115(2):141–178, 1997. 34

[KU17] Aleks Kissinger and Sander Uijlen. A categorical semantics for causal
structure. In 32nd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017,
pages 1–12. IEEE Computer Society, 2017. 173

[Lam69] Joachim Lambek. Deductive systems and categories II: standard con-
structions and closed categories. Category Theory, Homology Theory
and their Applications I, 1969. 18, 90

[Lam86] Joachim Lambek. Cartesian closed categories and typed λ-calculi.
In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, edi-
tors, Combinators and Functional Programming Languages, Lecture
Notes in Computer Science, pages 136–175, Berlin, Heidelberg, 1986.
Springer. 18

[Lau05] Aaron D. Lauda. Frobenius algebras and ambidextrous adjunctions.
arXiv preprint math/0502550, 2005. 200

[Law63] F. William Lawvere. Functorial semantics of algebraic theories. Pro-
ceedings of the National Academy of Sciences, 50(5):869–872, 1963.
18

[Lei04] Tom Leinster. Higher Operads, Higher Categories. London Math-
ematical Society Lecture Note Series. Cambridge University Press,
2004. 107, 108

[Lev22] Paul Blain Levy. Call-by-push-value. ACM SIGLOG News,
9(2):7–29, may 2022. 63

[Lew06] Geoffrey Lewis. Coherence for a closed functor. In Coherence in
categories, pages 148–195. Springer, 2006. 103

[LGR+21] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Saba-
dini, and Pawel Sobocinski. A canonical algebra of open transition
systems. In Gwen Salaün and Anton Wijs, editors, Formal Aspects of
Component Software - 17th International Conference, FACS 2021,
Virtual Event, October 28-29, 2021, Proceedings, volume 13077 of
Lecture Notes in Computer Science, pages 63–81. Springer, 2021. 25

[LGR+23] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Saba-
dini, and Pawel Sobocinski. Span(Graph): a canonical feedback al-
gebra of open transition systems. Softw. Syst. Model., 22(2):495–520,
2023. 25, 175

[Lor21] Fosco Loregiàn. (Co)end Calculus. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2021. 79, 80, 82,
83

Bibliography 187

[LPT03] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling envi-
ronments in call-by-value programming languages. Information and
computation, 185(2):182–210, 2003. 175

[LR23] Elena Di Lavore and Mario Román. Evidential decision theory via
partial markov categories. In LICS, pages 1–14, 2023. 26, 56, 57, 59,
60

[LS09] F. William Lawvere and Stephen H. Schanuel. Conceptual mathemat-
ics: a first introduction to categories. Cambridge University Press,
2009. 16

[Mac63] Saunders MacLane. Natural associativity and commutativity. Rice
Institute Pamphlet-Rice University Studies, 49(4), 1963. 33, 37, 52

[Mac78] Saunders Mac Lane. Categories for the Working Mathematician.
Graduate Texts in Mathematics. Springer New York, 1978. 33

[Mar14] Daniel Marsden. Category theory using string diagrams. arXiv
preprint arXiv:1401.7220, 2014. 40, 41

[McC00] Guy McCusker. Games and full abstraction for FPC. Information
and Computation, 160(1-2):1–61, 2000. 171, 175

[Mel19] Paul-André Melliès. Template games and differential linear logic. In
34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13.
IEEE, 2019. 171

[Mel21] Paul-André Melliès. Asynchronous template games and the gray
tensor product of 2-categories. In 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–13. IEEE,
2021. 19, 171

[ML71] Saunders Mac Lane. Categories for the Working Mathematician,
volume 5 of Graduate Texts in Mathematics. Springer Verlag, 1971.
28, 35, 36, 52, 80, 83

[MM90] José Meseguer and Ugo Montanari. Petri nets are monoids. Inf.
Comput., 88(2):105–155, 1990. 42

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991. 21, 61, 82

[MP21] Cary Malkiewich and Kate Ponto. Coherence for bicategories, lax
functors, and shadows, 2021. 103

[MS14] Rasmus Ejlers Møgelberg and Sam Staton. Linear usage of state.
Log. Methods Comput. Sci., 10(1), 2014. 74

[MS18] Paul-André Melliès and Léo Stefanesco. A game semantics of con-
current separation logic. Electronic Notes in Theoretical Computer
Science, 336:241–256, 2018. 156

[Mye16] David Jaz Myers. String diagrams for double categories and equip-
ments, 2016. 150

188 Bibliography

[MZ22] Paul-André Melliès and Noam Zeilberger. Parsing as a Lifting Prob-
lem and the Chomsky-Schützenberger Representation Theorem. In
MFPS 2022-38th conference on Mathematical Foundations for Pro-
gramming Semantics, 2022. 18, 77, 91, 92, 93, 116, 173

[Nes21] Chad Nester. The structure of concurrent process histories. In Fer-
ruccio Damiani and Ornela Dardha, editors, Coordination Models
and Languages - 23rd IFIP WG 6.1 International Conference, CO-
ORDINATION 2021, Held as Part of the 16th International Fed-
erated Conference on Distributed Computing Techniques, DisCoTec
2021, Valletta, Malta, June 14-18, 2021, Proceedings, volume 12717
of Lecture Notes in Computer Science, pages 209–224. Springer, 2021.
19, 149

[Noz69] Robert Nozick. Newcomb’s Problem and Two Principles of Choice. In
Essays in honor of Carl G. Hempel, pages 114–146. Springer, 1969.
167, 171

[NS22] Nelson Niu and David I. Spivak. Polynomial functors: A general
theory of interaction. In preparation, 2022. 131, 173

[NV23] Chad Nester and Niels F. W. Voorneveld. Protocol choice and iter-
ation for the free cornering. CoRR, abs/2305.16899, 2023. 149

[Ord20] Toby Ord. The precipice: Existential risk and the future of humanity.
Hachette Books, 2020. 16

[OY16] Dominic Orchard and Nobuko Yoshida. Effects as sessions, sessions
as effects. ACM SIGPLAN Notices, 51(1):568–581, 2016. 20, 171

[OY17] Dominic Orchard and Nobuko Yoshida. Session types with linearity
in Haskell. In Simon Gay and António Ravara, editors, Behavioural
Types: from Theory to Tools, River Publishers Series in Automation,
Control and Robotics. River Publishers, 2017. 171, 175

[Pat01] Ross Paterson. A new notation for arrows. In Benjamin C. Pierce,
editor, Proceedings of the Sixth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’01), Firenze (Florence),
Italy, September 3-5, 2001, pages 229–240. ACM, 2001. 45, 82

[Pat03] Ross Paterson. Arrows and computation. The Fun of Programming,
pages 201–222, 2003. 53

[Pav13] Dusko Pavlovic. Monoidal computer I: basic computability by string
diagrams. Inf. Comput., 226:94–116, 2013. 61

[PC07] Jorge Picado and Maria Manuel Clementino. An Interview with
William F. Lawvere. Online, https://www.mat.uc.pt/~picado/la
wvere/interview.pdf., 2007. 16

[PGW17] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor
optics: Modular data accessors. Art Sci. Eng. Program., 1(2):7, 2017.
124, 126, 130, 173

https://www.mat.uc.pt/~picado/lawvere/interview.pdf
https://www.mat.uc.pt/~picado/lawvere/interview.pdf

Bibliography 189

[Pow02] John Power. Premonoidal categories as categories with algebraic
structure. Theor. Comput. Sci., 278(1-2):303–321, 2002. 21, 61

[PR84] Roger Penrose and Wolfgang Rindler. Spinors and Spacetime. Cited
by Aleks Kissinger at the Categories mailing list. Cambridge Univer-
sity Press, 1984. 17

[PR97] John Power and Edmund Robinson. Premonoidal categories and
notions of computation. Math. Struct. Comput. Sci., 7(5):453–468,
1997. 62

[PS93] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes. In Proceedings of the Eighth Annual Symposium
on Logic in Computer Science (LICS ’93), Montreal, Canada, June
19-23, 1993, pages 376–385. IEEE Computer Society, 1993. 141

[PS07] Craig Pastro and Ross Street. Doubles for Monoidal Categories.
arXiv preprint arXiv:0711.1859, 2007. 116, 130, 173

[PSV21] Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring dia-
grams as normal forms for computing in symmetric monoidal cate-
gories. Electronic Proceedings in Theoretical Computer Science, page
49–64, Feb 2021. 131

[PT99] John Power and Hayo Thielecke. Closed Freyd- and kappa-categories.
In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, ed-
itors, Automata, Languages and Programming, 26th International
Colloquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999,
Proceedings, volume 1644 of Lecture Notes in Computer Science,
pages 625–634. Springer, 1999. 61, 62

[Ril18] Mitchell Riley. Categories of Optics. arXiv preprint
arXiv:1809.00738, 2018. 124, 126, 128, 130

[Rom20a] Mario Román. Comb Diagrams for Discrete-Time Feedback. CoRR,
abs/2003.06214, 2020. 131

[Rom20b] Mario Román. Open diagrams via coend calculus. In David I. Spi-
vak and Jamie Vicary, editors, Proceedings of the 3rd Annual In-
ternational Applied Category Theory Conference 2020, ACT 2020,
Cambridge, USA, 6-10th July 2020, volume 333 of EPTCS, pages
65–78, 2020. 24, 83, 125, 127, 131

[Rom22] Mario Román. Promonads and string diagrams for effectful cate-
gories. In Jade Master and Martha Lewis, editors, Proceedings Fifth
International Conference on Applied Category Theory, ACT 2022,
Glasgow, United Kingdom, 18-22 July 2022, volume 380 of EPTCS,
pages 344–361, 2022. 24, 25, 65

[Sel10] Peter Selinger. A survey of graphical languages for monoidal cate-
gories. In New structures for physics, pages 289–355. Springer, 2010.
53

190 Bibliography

[Shu16] Michael Shulman. Categorical logic from a categorical point of view.
Available on the web, 2016. 29, 31, 34, 47, 53, 86, 142, 145

[Shu17] Michael Shulman. Duoidal category (nlab entry), section 2., 2017. ht
tps://ncatlab.org/nlab/show/duoidal+category, Last accessed
on 2022-12-14. 115, 142, 143, 145

[Shu18] Michael Shulman. The 2-Chu-Dialectica construction and
the polycategory of multivariable adjunctions. arXiv preprint
arXiv:1806.06082, 2018. 67, 197

[SL13] Sam Staton and Paul Blain Levy. Universal properties of impure
programming languages. In Roberto Giacobazzi and Radhia Cousot,
editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’13, Rome, Italy - Jan-
uary 23 - 25, 2013, pages 179–192. ACM, 2013. 61, 63

[Sob10] Paweł Sobociński. Representations of Petri net interactions. In
International Conference on Concurrency Theory, pages 554–568.
Springer, 2010. 34

[Sob13] Pawel Sobociński. Graphical linear algebra. Online, personal blog,
https://graphicallinearalgebra.net, 2013. 30, 34

[Spi13] David I. Spivak. The operad of wiring diagrams: formalizing a graph-
ical language for databases, recursion, and plug-and-play circuits.
CoRR, abs/1305.0297, 2013. 107, 131, 142

[SS22] Brandon T. Shapiro and David I. Spivak. Duoidal structures for
compositional dependence. arXiv preprint arXiv:2210.01962, 2022.
19, 97, 98, 101, 104, 105, 107, 108

[SSV20] Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou.
Dynamical systems and sheaves. Applied Categorical Structures,
28(1):1–57, 2020. 131

[Str04] Ross Street. Frobenius monads and pseudomonoids. Journal of math-
ematical physics, 45(10):3930–3948, 2004. 203

[Str12] Ross Street. Monoidal categories in, and linking, geometry and al-
gebra. Bulletin of the Belgian Mathematical Society-Simon Stevin,
19(5):769–820, 2012. 18, 19, 102, 108, 113, 116

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of
mobile processes. Cambridge University Press, 2001. 141

[Sza75] Manfred E. Szabo. Polycategories. Communications in Algebra,
3(8):663–689, 1975. 196, 203

[Tod10] Todd Trimble. Coherence theorem for monoidal categories (nlab en-
try), section 3. discussion, 2010. https://ncatlab.org/nlab/show/
coherence+theorem+for+monoidal+categories, Last accessed on
2022-05-10. 67

https://ncatlab.org/nlab/show/duoidal+category
https://ncatlab.org/nlab/show/duoidal+category
https://graphicallinearalgebra.net
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories

Bibliography 191

[UV08] Tarmo Uustalu and Varmo Vene. Comonadic notions of computa-
tion. In Jiří Adámek and Clemens Kupke, editors, Proceedings of
the Ninth Workshop on Coalgebraic Methods in Computer Science,
CMCS 2008, Budapest, Hungary, April 4-6, 2008, volume 203 of
Electronic Notes in Theoretical Computer Science, pages 263–284.
Elsevier, 2008. 61

[UVZ18] Tarmo Uustalu, Niccolò Veltri, and Noam Zeilberger. The sequent
calculus of skew monoidal categories. Electronic Notes in Theoretical
Computer Science, 341:345–370, 2018. 18

[VC22] André Videla and Matteo Capucci. Lenses for composable servers.
CoRR, abs/2203.15633, 2022. 131

[vdW21] John van de Wetering. A categorical construction of the real unit
interval. arXiv preprint arXiv:2106.10094, 2021. 58, 60

[vN58] John von Neumann. The Computer and the Brain. Yale University
Press, quoted by David Darlymple in “A New Type of Mathematics”
(2018), a Transcript from a talk at Montreal, 1958. 16

[vS] Marilyn vos Savant. Parade 16: Ask Marilyn (Archived).
https://web.archive.org/web/20130121183432/http:
//marilynvossavant.com/game-show-problem/. Accessed:
2013-01-21. 167

[WC22] Matt Wilson and Giulio Chiribella. A mathematical frame-
work for transformations of physical processes. arXiv preprint
arXiv:2204.04319, 2022. 174

[YS17] Eliezer Yudkowsky and Nate Soares. Functional Decision The-
ory: a New Theory of Instrumental Rationality. ArXiv preprint
arXiv:1710.05060, 2017. 167, 171

https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http://marilynvossavant.com/game-show-problem/

APPENDIX A

Supplementary material

193

194 A. SUPPLEMENTARY MATERIAL

1. Coherence diagrams for a duoidal category

((ACB)⊗ (C CD))⊗ (E C F) (ACB)⊗ ((C CD)⊗ (E C F))

((A⊗ C)C (B ⊗D))⊗ (E C F) (ACB)⊗ ((C ⊗ E)C (D ⊗ F))

((A⊗ C)⊗ E)C ((B ⊗D)⊗ F) (A⊗ (C ⊗ E))C (B ⊗ (D ⊗ F))

α

ψ2⊗id id⊗ψ2

ψ2 ψ2

αCα

((ACB)C C)⊗ ((D C E)C F) (AC (B C C))⊗ (D C (E C F))

((ACB)⊗ (D C E))C (C ⊗ F) (A⊗D)C ((B C C)⊗ (E C F))

((A⊗D)C (B ⊗ E))C (C ⊗ F) (A⊗D)C ((B ⊗ E)C (C ⊗ F))

β⊗β

ψ2 ψ2

ψ2⊗id id⊗ψ2

β

Figure 1. Coherence diagrams for associativity of a duoidal category.

I ⊗ (ACB) (I C I)⊗ (ACB)

ACB (I ⊗A)C (I ⊗B)

ψ0⊗id

λ ψ2

λCλ

(ACB)⊗ I (ACB)⊗ (I C I)

ACB (A⊗ I)C (B ⊗ I)

ψ0⊗id

ρ ψ2

ρCρ

Figure 2. Coherence diagrams for ⊗-unitality of a duoidal category.

N C (A⊗B) (N ⊗N)C (A⊗B)

A⊗B (N CA)⊗ (N CB)

κ

ϕ2Cid

ψ2

κ⊗κ

(A⊗B)CN (A⊗B)C (N ⊗N)

A⊗B (ACN)⊗ (B CN)

ν

idCϕ2

ψ2

ν⊗ν

Figure 3. Coherence diagrams for C-unitality of a duoidal category.

1. COHERENCE DIAGRAMS FOR A DUOIDAL CATEGORY 195

(N ⊗N)⊗N N ⊗ (N ⊗N)

N ⊗N N N ⊗N

α

ϕ2⊗id id⊗ϕ2

ϕ2 ϕ2

I C I I I C I

(I C I)C I I C (I C I)

ψ0⊗id

ψ0 ψ0

id⊗ψ0

β

Figure 4. Associativity and coassociativity for N and I in a
duoidal category.

N ⊗ I N

N ⊗N

ρ

id⊗ϕ0 ϕ2

I ⊗N N

N ⊗N

λ

ϕ0⊗id ϕ2

I CN I C I

I

id⊗ϕ0

ν
ψ0

N C I I C I

I

id⊗ϕ0

κ
ψ0

Figure 5. Unitality and counitality for N and I in a duoidal category.

196 A. SUPPLEMENTARY MATERIAL

2. Polycategories

This extra section repeats the splice-contour adjunction for polycategories.
It is a detour from the main text; and it is not necessary for its development:
this does not seem to be the direction we want to follow to study context in
categories or monoidal categories. It is, however, another proof of the resilience
of the splice-contour adjunction: the duality between a category and its opposite
induces a pseudofrobenius algebra on the monoidal bicategory of profunctors.

2.1. Polycategories. A polycategory is like a category where every mor-
phism has both a list of inputs and a list of outputs [Sza75]. This does not
mean that its inputs and outpuss start forming a monoid, as in strict monoidal
categories; morphisms really have different multiple inputs and outputs, and we
need to choose a single one to compose along it. A polycategory, P, contains
a set of objects, Pobj , as categories and multicategories; but instead of a set of
morphisms, it will have a set of polymorphisms,

P(X1, . . . , Xn;Y 1, . . . , Ym),

for each two lists of objects X1, . . . , Xn, Y 0, . . . , Ym ∈ Pobj . As in linear logic,
we denote both sides of a derivation by two metavariables, Γ = X1, . . . , Xn and
∆ = Y 0, . . . , Ym, and write P(Γ; ∆) for the set of polymorphisms.

Definition 2.1. A polycategory P is a collection of objects, Pobj , together with
a collection of polymorphisms, P(X0, . . . , Xn;Y 0, . . . , Ym), for each two lists of
objects X0, . . . , Xn ∈ P and Y 0, . . . , Ym ∈ P. For each object X ∈ Pobj , there
must be an identity, idX ∈ Pobj(X;X); and for each pair of composable maps,

f ∈ P(Γ; ∆1, X,∆2) and g ∈ P(Γ1, X,Γ2; ∆),

where either ∆1 or Γ1, and either ∆2 or Γ2, are empty,

there must be a composite polymorphism f #X g ∈ P(Γ1,Γ,Γ2; ∆1,∆,∆2). This
means that there are four possible types of composition (Figure 6), and they yield
the same polymorphism whenever they overlap.

f

g

∆1 ∆

Γ2Γ

f

g

Γ1 Γ

∆ ∆2

f

g

Γ Γ2Γ1

∆

g

f

Γ

∆1 ∆ ∆2

Figure 6. Four planar polycategorical compositions.

2. POLYCATEGORIES 197

Moreover, polycategories must satisfy the following two unitality axioms,
f #X idX = f and idX #Xf = f ; two associativity axioms, f #X (g#Y h) = (f #X g)#Y h
and f #X(g#Y h) = g#Y (f #Xh); and an interchange axiom, (f #Ag)#Bh = (f #Bh)#Ag;
whenever any of these is formally well-typed.

Remark 2.2. Asking for an identity on each object, idX ∈ P(X;X), is different
from asking for an identity on each list of objects,

idX0,...,Xn
∈ P(X0, . . . , Xn;X0, . . . , Xn).

The latter gives rise to isomix categories [CS97a] and we will not discuss it here.

Example 2.3. A polyfunctional relation, R ∈MultiFun(A1, . . . , An;B1, . . . , Bm),
is a relation R : A1 × . . .×An → B1 × . . .×Bm together with representing func-
tions that, given an element of the relation missing exactly one element, return
the element missing. Explicitly, there exist two families of functions,

f j : A1 × . . .×An ×B0 ×��Bj. . .×Bm → Bj and

gi : A1 ×��Ai. . .×An ×B0 × . . .×Bm → Ai,

such that R(a1, . . . , bm) if and only if f j(a1, . . . , bm) = bj and if and only if
gi(a1, . . . , bm) = ai for each two indices i and j. Polyfunctional relations form a
polycategory with relational composition.

A (1, 1)-polyfunctional relation is a pair of inverse functions. A (2,1) or (1,2)-
polyfunctional relation is a triple functions f0 : A1×A2 → A0, f1 : A2×A0 → A1

and f2 : A0×A1 → A2 such that f1(a1, a2) = a0 if and only if f1(a2, a0) = a1 and
if and only if f2(a0, a1) = a2. Polyfunctional relations are a decategorification of
the multivariable adjunctions in the work of Shulman [Shu18].

2.2. The Category of Polycategories. Analogously to the categorical
and multicategorical case, the theory of polyfunctors and polynatural transfor-
mations is synthetised in the 2-category PolyCat of polycategories, polyfunctors
and polynatural transformations.

Definition 2.4. A polyfunctor, F : P→ Q, between two polycategories P and Q,
is an assignment on objects, Fobj : Pobj → Qobj together with an assignment on
polymorphisms

Fn,m : P(X0, . . . , Xn;Y 0, . . . , Ym)→ Q(FobjX0, . . . , FobjXn;FobjY 0, . . . , FobjYm).

This assignment must be functorial, in that F (f #Xi
g) = F (f) #Xi

F (g) and that
F (idX) = idFX , whenever these are formally well-typed.

Definition 2.5. A polynatural transformation θ : F → G between two poly-
functors F,G : P → Q is given by a family of polymorphisms θX ∈ Q(FX;GX)

198 A. SUPPLEMENTARY MATERIAL

such that, for each polymorphism f ∈ P(X1, . . . , Xn;Y 1, . . . , Ym), the following
naturality condition holds

θX1 # . . . # θXn #G(f) = F (f) # θY 1 # . . . # θYm .

Definition 2.6. Polyfunctors between polycategories form a category, PolyCat.
This is moreover a 2-category with polynatural transformations.

Remark 2.7. In the same sense that a multifunctor from the terminal multicat-
egory picks a monoid, a polyfunctor from the terminal polycategory should pick
a polyoid – instead, we call these Frobenius monoids.

2.3. Polycategorical Contour.

Definition 2.8. Let P be a polycategory. Its contour, ContourP, is the category
presented by the following generators and equations:

• two polarized objects, X` and Xr, for each object X ∈ Pobj ;
• for each polymorphism, f ∈ P(X1, . . . , Xn;Y 1, . . . , Ym), the following genera-

tors,

fr1 : Xr
1 → X`

2, . . . , frn−1 : Xr
n−1 → X`

n, fd : Xr
n → Y rm,

f `1 : Y `2 → Y r1, . . . , f `m−1 : Y `m → Y rm−1, fu : Y `1 → X`
1,

having instead fu : Y `1 → Y rm when n = 0, having instead fd : Xr
n → X`

1 when
m = 0, and using no generators for (0, 0)-polymorphisms;

to which we impose equations requiring contour to preserve identities, (idX)u =
idX` and (idX)d = idXr ; and requiring contour to preserve compositions, meaning
that for each f ∈ P(X1, . . . , Xn;Y 1, . . . , Ym) and each g ∈ P(Z1, . . . , Zp;Q1, . . . , Qq)
such that Ym = U1, the contour of the composition along Ym = U1 is defined by
the following eight cases

(f #Xi g)u = fu; (f #Xi g)ri = fri , for i = 1, . . . , n− 1;

(f #Ym
g)rn = fd # gr1; (f #Ym

g)rj = grj−n+1, for j = n+ 1, . . . , n+ p− 2;

(f #Ym
g)d = gd; (f #Ym

g)`i = f `i , for i = 1, . . . ,m− 2;

(f #Ym
g)dm−1 = gu # f `m−1; (f #Ym

g)dj = g`j−m+1, for j = m+ 1, . . . ,m+ q − 2;

and similar conditions for the rest of the compositions. These equations are
depicted in Figure 7.

Proposition 2.9. Contouring extends to a functor from the category of polycat-
egories to the category of categories, C : PolyCat→ Cat.

2. POLYCATEGORIES 199

f

. . .
fr1

. . .

fu

f

. . .

g

. . .
. . .

. . .

; ; id id ;

frn−1

fd

f `m−1f `1

fu

fd

frn−1

f `m

Figure 7. Contour of a morphism, composition of contours, and
identity contours.

2.4. Malleable Polycategories. A malleable polycategory is a polycate-
gory where each morphism can be morphed uniquely into any possible shape.
This means that there exist unique factorizations of each morphism into each one
of the possible shapes for composition.

Definition 2.10. The (1,1)-polymorphisms of a polycategory P form an under-
lying category Pu. The polymorphisms form profunctors over the polycategory
and their composition, in its four possible forms, is dinatural with respect to
the underlying category. This means that the following four operations are well-
defined:

(#)1 :
(∫X∈Pu

P(Γ; ∆, X)× P(X,Γ′; ∆′)
)
→ P(Γ,Γ′; ∆,∆′),

(#)2 :
(∫X∈Pu

P(Γ;X,∆)× P(Γ′, X; ∆′)
)
→ P(Γ,Γ′; ∆,∆′),

(#)3 :
(∫X∈Pu

P(Γ; ∆1, X,∆2)× P(X; ∆)
)
→ P(Γ; ∆1,∆,∆2),

(#)4 :
(∫X∈Pu

P(Γ;X)× P(Γ1, X,Γ2; ∆)
)
→ P(Γ1,Γ,Γ2; ∆).

Definition 2.11. A malleable polycategory is a polycategory where dinatural
composition, in all its four forms, is invertible.

Remark 2.12. If a polycategory is malleable, we can reconstruct it up to iso-
morphism from its binary, cobinary, nullary and conullary maps. When defining
a malleable polycategory, it is usually easier to provide these binary, cobinary,
unary, nullary and conullary maps, and deduce from those the rest of the struc-
ture. The situation is now similar to that of linearly distributive categories: we
do not need to provide all n-ary tensors in order to define a linearly distributive
category, we only provide the binary (⊗,`) and unary (I, Z) tensors.

This suggests that we will really work with a biased version of malleable
polycategories, one that privileges the binary and nullary tensors over the oth-
ers. Biased malleable polycategories are what we will call prostar autonomous
categories.

200 A. SUPPLEMENTARY MATERIAL

2.5. Prostar-Autonomous Categories. Prostar-autonomous categories
provide an algebra for both coherent composition and decomposition. Apart
from the usual morphisms, V(X;Y); and the joints, V(X0 ⊗X1;Y), and units,
V(>;Y), of a promonoidal category; a prostar-autonomous category has splits,
V(X;Y 0 ` Y 1), and atoms, V(X;⊥). As in the case of multicategories, these
compositions and decompositions must be coherent, which translates into the
existence of natural isomorphisms witnessing a Frobenius rule, the Frobenius dis-
tributors

ϕl :
∫W C(A;C `W)× C(W ⊗B;D)

∼=−→ C(A⊗B;C `D), and

ϕr :
∫W C(A⊗W ;C)× C(B;W `D)

∼=−→ C(A⊗B;C `D).

In summary, after this section, we will have developed the relation between
malleability and profunctorial structures in an analogous way for both multicat-
egories and polycategories.

Multicategory Malleable Multicategory Promonoidal category
Polycategory Malleable Polycategory Prostar autonomous category

Definition 2.13. Prostar-autonomous categories are the 2-Frobenius monoids
of the monoidal bicategory of profunctors, which is equivalent to the follow-
ing definition. A prostar autonomous category is a category C endowed with
a promonoidal structure (C,⊗,>), and procomonoidal structure (C,`,⊥), that
interact as a Frobenius pseudomonoid [DS03, Lau05]. That is, it is a category
endowed with four profunctors, suggestively written C(•⊗•; •), C(>; •), C(•;⊥)
and C(•; • ` •), as if they were representable. These profunctors form two pro-
monoidal categories [Day70] with coherent associators and unitors. Further, they
are endowed with invertible Frobenius distributors,

ϕl :
∫W C(A;C `W)× C(W ⊗B;D)

∼=−→ C(A⊗B;C `D),

ϕr :
∫W C(A⊗W ;C)× C(B;W `D)

∼=−→ C(A⊗B;C `D),

such that every formal diagram formed of these distributors and promonoidal
coherences commutes.

Prostar autonomous categories have a canonical prostar given by profunctors
C(•⊗ •;⊥) and C(>; •` •). We may think of a prostar autonomous category as
a category C equipped with sets of polymorphisms C(•⊗ ...⊗•; •` ...` •). The
Frobenius isomorphisms let us decompose polymorphisms into combinations of
the pro(co)monoidal structures: this decomposition is unique up to dinaturality.
Informally, prostar autonomous categories are to polycategories what promonoi-
dal categories are to (co)multicategories.

2. POLYCATEGORIES 201

Definition 2.14. A prostar functor F : V→W is a quintuple (Fobj , F⊗, F`, F>, F⊥)
where (Fobj , F⊗, F>) and (Fobj , F`, F⊥) are promonoidal functors that together
strictly preserve the Frobenius distributors, in that ϕl #(F⊗×F`) = (F`×F⊗)#ϕ′l
and ϕr #(F⊗×F`) = (F⊗×F`)#ϕ′r. Prostar functors between prostar autonomous
categories form a category, ProStar.

2.6. Prostar Autonomous are Malleable Polycategories. In this sec-
tion, we show that the category of prostar autonomous categories is equivalent
to that of malleable polycategories. In this sense, the study of malleable polycat-
egories is the study of prostar autonomous categories.

Definition 2.15 (Polycategorical analogue of Definition 3.9). LetW be a prostar
autonomous category. There is a malleable polycategory, Wm, that has the same
objects but polymorphisms defined by the elements of the prostar autonomous
category. By induction, we define

Wm(X0, X1,Γ; ∆) =
∫ V W(X0 ⊗X1;V)×Wm(V,Γ; ∆),

Wm(; ∆) =
∫ V W(>;V)×W(V ; ∆),

Wm(X;Y 0, Y 1,∆) =
∫ V Wm(X;V,∆)×W(V ;Y 0 ` Y 1),

Wm(X;) = W(X;⊥).

In other words, the polymorphisms are elements of the left-biased tree reductions
of the promonoidal category, seen as a 2-monoid. The four forms of dinatural
composition are then defined to be the unique map relating two tree expressions
in a 2-Frobenius monoid, which exist uniquely by coherence,

(coh)1 :
(∫X∈Wm

Wm(Γ; ∆, X)×Wm(X,Γ′; ∆′)
)
→Wm(Γ,Γ′; ∆,∆′),

(coh)2 :
(∫X∈Wm

Wm(Γ;X,∆)×Wm(Γ′, X; ∆′)
)
→Wm(Γ,Γ′; ∆,∆′),

(coh)3 :
(∫X∈Wm

Wm(Γ; ∆1, X,∆2)×Wm(X; ∆)
)
→Wm(Γ; ∆1,∆,∆2),

(coh)4 :
(∫X∈Wm

Wm(Γ;X)×Wm(Γ1, X,Γ2; ∆)
)
→Wm(Γ1,Γ,Γ2; ∆).

Coherence maps are isomorphisms, and so dinatural composition is invertible,
making the polycategory malleable. By coherence for pseudomonoids, composi-
tion must satisfy associativity and unitality.

Proposition 2.16. The category of prostar autonomous categories and the cate-
gory of malleable polycategories are equivalent with the functor (•)m : ProStar→
mPoly induced by the construction of the underlying malleable polycategory of
a prostar autonomous category. This is the polycategorical analogue of Proposi-
tion 3.10.

202 A. SUPPLEMENTARY MATERIAL

Proof. First, let us show that a prostar functor, F : V→W, induces a poly-
functor, Fm : Vm → Wm, between the Underlying polycategories. On objects,
we define it to be the same, Fmobj = Fobj . On polymorphisms, we can define the
binary, nullary, cobinary, conullary and unary using the prostar functor structure,

Fm2,1 = F⊗; Fm0,1 = F>; Fm1,2 = F`; Fm1,0 = F⊥; and Fm1,1 = F.

�
2.7. Splice of a Polycategory.

Definition 2.17. Let C be a category. Its prostar autonomous category of
spliced arrows, SC, has underlying category Cop ×C. Intuitively, its profunctors
are defined by spliced circles of morphisms.

X+ X−

Z−

Z+

Y +

Y −

X+

X− Y +

Y −

Z+ Z−

X+ X−

Y + Y −

X+ X−

Y + Y −

f0

f2

f1

g1

g0 g2
h0 h1

k0

l0

Explicitly, it is defined by the following profunctors (below, left). The co-
herence isomorphisms are defined by glueing circles along the desired boundary
and composing the relevant arrows; two compositions are isomorphic if and only
if they determine the same arrows (below, right).

Remark 2.18. This structure appeared in Day & Street [DS03, Ex. 7.3], where
it was noticed that the canonical promonoidal category induced by a small cat-
egory [Day70] has an involution. As a multicategory, it was rediscovered by
Melliès & Zeilberger [?]. Monoidal spliced arrows were explicitly introduced
and characterized as an adjunction in a joint work [EHR23].

Splice(C)
(
X+

X−
; Y

+

Y −
` Z+

Z−

)
= C(Y +;X+)× C(X−;Z−)× C(Z+;Y −);

Splice(C)
(
X+

X−
⊗ Y +

Y −
; Z

+

Z−

)
= C(Z+;X+)× C(X−;Y +)× C(Y −;Z−);

Splice(C)
(
X+

X−
; Y

+

Y −

)
= C(Y +;X+)× C(X−;Y −);

Splice(C)
(
X+

X−
;⊥
)

= C(X−;X+);

Splice(C)
(
>; Y

+

Y −

)
= C(Y +;Y −).

2. POLYCATEGORIES 203

f0

f2

f1

g1

g0 g2

k0

k2

k1

h1

h0 h2

φ1∼

Figure 8. Holds if f0 = k0 # h0, f1 # g1 = h1, g2 = h2 # k1, g0 # f2 = k2.

Remark 2.19. Splice(C) has a representable prostar, given on objects by
(
X+

X−

)∗
=
(
X−

X+

)
.

Proposition 2.20. Spliced arrows extend to a functor, Splice : Cat→ ProStar.

Theorem 2.21. Contour extends to a functor Contour : PolyCat → Cat,
splice extends to a functor Splice : Cat → ProStar. Contour is left adjoint to
Splice composed with the forgetful functor, Contour a Splice # Forget; and Contour
composed with the forgetful functor is left adjoint to Splice, meaning Forget #
Contour a Splice.

Proof. The proof extends our previous one [EHR23, Theorem 3.7]. �
2.8. Bibliography. Polycategories were defined by Szabo [Sza75] in the

symmetric case; Cockett and Seely contributed the planar version we study here
[CS97b, BZ20].

Street [Str04] prove that Frobenius pseudomonoids in Prof are equivalent
to what Day & Street [DS03] call “∗-autonomous promonoidal categories”. The
minor twist we take, “prostar autonomous”, emphasizes that the canonical prostar
may not be representable. When all of the structure including the prostar is
representable, we obtain ∗-autonomous categories.

APPENDIX B

Publications

1. Span(Graph): a Canonical Feedback Algebra of Open Transition
Systems

Elena Di Lavore, Alessandro Gianola, Mario Román, Pawel Sobocinski, Nicoletta
Sabadini
Software and Systems Modeling (SOSYM)

Abstract: We show that Span(Graph)*, an algebra for open transition systems
introduced by Katis, Sabadini and Walters, satisfies a universal property. By
itself, this is a justification of the canonicity of this model of concurrency. How-
ever, the universal property is itself of interest, being a formal demonstration of
the relationship between feedback and state. Indeed, feedback categories, also
originally proposed by Katis, Sabadini and Walters, are a weakening of traced
monoidal categories, with various applications in computer science. A state boot-
strapping technique, which has appeared in several different contexts, yields free
such categories. We show that Span(Graph)* arises in this way, being the free
feedback category over Span(Set). Given that the latter can be seen as an algebra
of predicates, the algebra of open transition systems thus arises - roughly speak-
ing - as the result of bootstrapping state to that algebra. Finally, we generalize
feedback categories endowing state spaces with extra structure: this extends the
framework from mere transition systems to automata with initial and final states.

Declaration: Hereby I declare that my contribution to this manuscript was to:
provide the main theorem and its proof, provide the main idea, write most of the
paper with help from my supervisor Pawel Sobocinski and Elena Di Lavore, some
examples were provided by Nicoletta Sabadini and Alessandro Gianola.

Span(Graph): a Canonical Feedback Algebra of
Open Transition Systems ?

Elena Di Lavore1, Alessandro Gianola2, Mario Román1, Nicoletta Sabadini3,
and Pawe l Sobociński1

1 Tallinn University of Technology, Ehitajate tee 5, 12616 Tallinn, Estonia
2 Free University of Bozen-Bolzano, Piazza Domenicani, 3, 39100 Bolzano BZ, Italy

3 Università degli Studi dell’Insubria, Via Ravasi, 2, 21100 Varese VA, Italy

Abstract. We show that Span(Graph)∗, an algebra for open transition
systems introduced by Katis, Sabadini and Walters, satisfies a universal
property. By itself, this is a justification of the canonicity of this model
of concurrency. However, the universal property is itself of interest, being
a formal demonstration of the relationship between feedback and state.
Indeed, feedback categories, also originally proposed by Katis, Sabadini
and Walters, are a weakening of traced monoidal categories, with various
applications in computer science. A state bootstrapping technique, which
has appeared in several different contexts, yields free such categories.
We show that Span(Graph)∗ arises in this way, being the free feedback
category over Span(Set). Given that the latter can be seen as an algebra
of predicates, the algebra of open transition systems thus arises – roughly
speaking – as the result of bootstrapping state to that algebra.
Finally, we generalize feedback categories endowing state spaces with
extra structure: this extends the framework from mere transition systems
to automata with initial and final states.

? Di Lavore, Román and Sobociński were supported by the European Union through
the ESF funded Estonian IT Academy research measure (2014-2020.4.05.19-0001).
This work was also supported by the Estonian Research Council grant PRG1210.

ar
X

iv
:2

01
0.

10
06

9v
3

 [
m

at
h.

C
T

]
 2

4
N

ov
 2

02
2

Table of Contents

1 Introduction . 3
1.1 Related Work . 6
1.2 Synopsis . 7

2 Preliminaries: Symmetric Monoidal Categories . 7
2.1 Theories of Processes . 7
2.2 Monoidal Equivalence . 12

3 Feedback Categories . 14
3.1 Feedback Categories . 14
3.2 Traced Monoidal Categories . 16
3.3 Delay and Feedback . 18
3.4 St(•), the Free Feedback Category . 20
3.5 Examples . 22

4 Span(Graph): an Algebra of Transition Systems . 25
4.1 The Algebra of Spans . 25
4.2 The Algebra of Open Transition Systems . 27
4.3 Span(Graph) as a Feedback Category . 30
4.4 Cospan(Graph) as a Feedback Category . 35
4.5 Syntactical Presentation of Cospan(FinGraph) 37

5 Structured state spaces . 39
5.1 Structured Feedback Categories . 39
5.2 Structured St(•) Construction . 40
5.3 Categories of Automata . 41
5.4 Automata in Span(Graph) . 42

6 Conclusions and Further Work . 44
6.1 Discussion . 44
6.2 Conclusion . 45

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 3

1 Introduction

Software engineers need models. In fact, models developed in the early years of
computer science have been extremely influential on the emergence of software
engineering as a discipline. Prominent examples include flowcharts and state
machines, and a part of the reason for their impact and longevity is the fact that
they are underpinned by relevant and well-understood mathematical theories.

However, while concurrent software has been intensively studied since the
early 60s, the theoretical research landscape remains quite fragmented. Indeed,
Abramsky [1] argues that the reason for the proliferation of models, their some-
times overly locally-optimised techniques, and the difficulty of understanding
and relating their expressivity, is the fact that we still do not have a satisfactory
understanding of the underlying mathematical principles of concurrency.

A way to identify such principles and arrive at more canonical models is to
look for logical or mathematical justifications. An example is the recent discovery
and work on of Curry-Howard style connections between calculi for concurrency
and fragments of linear logic, which guided the development of session types [15].
Another possible route is to search for models that satisfy some universal prop-
erty.

The latter approach is the remit of this paper: we focus on the Span(Graph)∗
model of concurrency, introduced by Katis, Sabadini and Walters [33] as an al-
gebra of open transition systems, and show that it satisfies a universal property:
it is the free feedback category over the category of spans of functions.

The free construction is in itself interesting and can be described as a kind
of “state-bootstrapping”. We thus position our main result within the theoret-
ical context of feedback categories, their relationship with state, and the more
restrictive—yet better known—notion of traced monoidal categories. Our explo-
ration of this wider context is justified, given the panoply of related, yet partial,
accounts in the literature.

Set

Reset A

A

Fig. 1: NOR latch.

The relationship between feedback and
state is well-known by engineers. In fact, a
remarkable fact from electronic circuit design
is how data-storing components can be built
out of a combination of stateless components
and feedback. A famous example is the (set-
reset) “NOR latch”: a circuit with two stable
configurations that stores one bit.

The NOR latch is controlled by two in-
puts, Set and Reset. Activating the first sets
the output value to A = 1; activating the second makes the output value return
to A = 0. This change is permanent: even when both Set and Reset are deacti-
vated, the feedback loop maintains the last value the circuit was set to4—to wit,

4 In its original description: “the relay is designed to produce a large and permanent
change in the current flowing in an electrical circuit by means of a small electrical
stimulus received from the outside” ([17], emphasis added).

4 Di Lavore, Gianola, Román, Sabadini, Sobociński

a bit of data has been conjured out of thin air. The results of this paper allow
one to see the latch as an instance of a more abstract phenomenon.

Indeed, there is a natural weakening of the notion of traced monoidal cate-
gories called feedback categories [36]. The construction of the free feedback cate-
gory coincides with a “state-bootstrapping” construction, St(•), that appears in
several different contexts in the literature [7,29,32]. We recall this construction
and its mathematical status (Theorem 3.11), which can be summed up by the
following intuition:

Theory of Processes + Feedback = Theory of Stateful Processes.

The Span(Graph) model of concurrency, introduced in [33], is an algebra
of communicating state machines, or — equivalently — open transition systems.

Let us first explain some terminology. A span X → Y in a category C is a
pair of morphisms l : A → X and r : A → Y with a common domain (Defini-
tion 4.1). When C has enough structure, spans form a category. This is the case
for the category of graphs Graph, where objects are graphs and morphisms are,
intuitively, pairs of functions that respect the graph structure (Definition 4.6).
Summarizing the above, the morphisms of Span(Graph) are given by pairs of
graph homomorphisms, l : G → X and r : G → Y , with a common domain G.
We think of a span of graphs as a transition system, the graph G, with boundary
interfaces X and Y .

Open transition systems interact by synchronization along a common bound-
ary, producing a simultaneous change of state. This corresponds to a composition
of spans, realized by taking a pullback in Graph (see Definition 4.7). The dual
algebra of Cospan(Graph) was introduced in [35] (see Definition 4.17).

Informally, a morphism X → Y of Span(Graph) is a state machine with
states and transitions, i.e. a finite graph given by the ‘head’ of the span. The
transition system is equipped with left and right interfaces or communication
ports, X and Y , and every transition is labeled by the effect it produces in all
its interfaces. Let us focus on some concrete examples.

Let B = { 0, 1 }. We abuse notation by considering B as a single-vertex graph
with two edges, corresponding to the signals 0 and 1. Indeed, as we shall see
in examples below, it is useful to think of single-vertex graphs as alphabets of
signals available on interfaces.

In Figure 2, we depict two open transition systems as arrows of Span(Graph).
The first represents a NOR gate B × B → B. To give an arrow of this type in
Span(Graph) is to give a span of graph homomorphisms

B× B l←− N r−→ B.

The graphical rendering (Figure 2, left) is a compact representation of the com-
ponents of this span: the unlabeled graph in the bubble is N , and the labels wit-
ness the action of two homomorphisms, respectively l : N → B×B and r : N → B.
Transitions represent the valid input/output configurations of the NOR gate. For
example, the edge with label (

(
0
0

)
, 1), witnesses a transition whose behaviour on

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 5

the left boundary is
(
0
0

)
and on the right boundary 1. Note that, since the graph

N has a single vertex, gates are stateless components.
The second component is a span L = {Set,Reset, Idle} → {A,A} = R that

models a set-reset latch. The diagram below right (Figure 2), again, is a conve-
nient illustration of the span L← D → R. Latches store one bit of information,
they are stateful components; consequently, their transition graph has two states.

(
0
0

)
,1

(
0
1

)
,0

(
1
0

)
,0

(
1
1

)
,0

Set,A

Reset,A

Idle,A Reset,A

Set,A Idle,A

B

B

B L R

Fig. 2: A NOR gate and set-reset latch, in Span(Graph).

In both transition systems of Figure 2 the interfaces are stateless: indeed,
they are determined by a mere set – the self-loops of a single-vertex graph. This
is a restriction that occurs rather frequently: in fact, transition systems with in-
terfaces are the arrows of the full subcategory of Span(Graph) on objects that
are single-vertex graphs, which we denote by Span(Graph)∗. The objects of
Span(Graph)∗ represent interfaces, and a morphism X → Y encodes a transi-
tion system with left interface X and right interface Y . Analogously, the relevant
subcategory of Cospan(Graph) is Cospan(Graph)∗, the full subcategory on
sets, or graphs with an empty set of edges.

Definition. Span(Graph)∗ is the full subcategory of Span(Graph) with ob-
jects the single-vertex graphs.

The problem with Span(Graph)∗ is that it is mysterious from the cate-
gorical point of view; the morphisms are graphs, but the boundaries are sets.
Decorated and structured spans and cospans [19,3] are frameworks that capture
such phenomena, which occur frequently when composing network structures.
Nevertheless, they do not answer the question of why they arise naturally.

As stated previously, the main contribution of this paper is the characteriza-
tion of Span(Graph)∗ in terms of a universal property: it is the free feedback
category over the category of spans of functions. We now state this more formally.

Theorem. The free feedback category over Span(Set) is isomorphic to the full
subcategory of Span(Graph) given by single-vertex graphs, Span(Graph)∗.
That is, there is an isomorphism of categories

St(Span(Set)) ∼= Span(Graph)∗.

Universal constructions, such as the “state-bootstrapping” St(•) construction
that yields free categories with feedback, characterize the object of interest up
to equivalence, making it the canonical object satisfying some properties. Recall

6 Di Lavore, Gianola, Román, Sabadini, Sobociński

that Abramsky’s concern [1] is that the lack of consensus about the intrinsic
primitives of concurrency risks making the results about any particular model
of concurrency too dependent on the specific syntax employed. Characterising a
model as satisfying a universal property side-steps this concern.

Given that Span(Set), the category of spans of functions, can be considered
an algebra of predicates [4,10], the high level intuition that summarizes our main
contribution (Theorem 4.12) can be stated as:

Algebra of Predicates + Feedback = Algebra of Transition Systems.

We similarly prove (in Section 4.4) that the free feedback category over
Cospan(Set) is isomorphic to Cospan(Graph)∗, the full subcategory on dis-
crete graphs of Cospan(Graph).

Finally, Section 5 shows how the same framework of feedback categories can
be extended from transition systems to categories with a structured state space
(Theorem 5.6), such as categories of automata. As examples, we recover Mealy
deterministic finite automata (Proposition 5.10) and we introduce span automata
(Definition 5.11).

1.1 Related Work

This article is an extended version of “A Canonical Algebra of Open Transition
Systems” [39], presented at the International Conference on Formal Aspects
of Component Software (FACS) 2021. With respect to the conference version,
we significantly generalised the framework of feedback categories: Section 5 is
completely new material. At the same time, Sections 3 and 4 extend the orig-
inal manuscript adding new proofs (to propositions 4.9 and 4.10, lemma 4.11,
and theorem 4.12) and giving a more complete account of the algebra of spans
(Sections 4.1 and 4.2). In an effort to make the paper more self-contained, we also
include a new preliminary Section 2, which summarises the necessary concepts
from category theory.

Span/Cospan(Graph) has been used for the modeling of concurrent sys-
tems [9,21,22,23,33,35,49,52,53]. Similar approaches to compositional modeling
of networks have used decorated and structured cospans [19,3]. However, these
models have not previously been characterized in terms of a universal property.

In [36], the St(•) construction (under a different name) is exhibited as the
free feedback category. Feedback categories have been arguably under-appreciated
but, at the same time, the St(•) construction has made multiple appearances as
a “state bootstrapping” technique across the literature. The St(•) construction
is used to describe a string diagrammatic syntax for concurrency theory in [7]; a
variant of it had been previously applied in the setting of cartesian bicategories
in [32]; and it was again rediscovered to describe a memoryful geometry of in-
teraction in [29]. However, a coherent account of both feedback categories and
their relation with these stateful extensions has not previously appeared. This
motivates our extensive preliminaries in Sections 3.1 and 3.2.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 7

1.2 Synopsis

Section 2 consists of background material on symmetric monoidal categories
and equivalences between them. Section 3 contains preliminary discussions on
traced monoidal categories and categories with feedback; it explicitly describes
St(•), the free feedback category. It collects mainly expository material. Section 4
exhibits a universal property for the Span(Graph)∗ and Cospan(Graph)∗
models of concurrency and Section 4.5 highlights a specific application. Section 5
extends the framework of feedback categories to capture categories of automata.

2 Preliminaries: Symmetric Monoidal Categories

2.1 Theories of Processes

Resources and processes. We start by setting up an abstract framework for what
it means to describe a theory of processes. A theory of processes contains two
kinds of components: some resource types, which we name A,B,C, . . . ; and some
processes, which we name f, g, h,

Each process f has an associated input resource type (say, A); and an as-
sociated output resource type (say, B). Executing the process f will require
some inputs of type A and will produce some outputs of type B. We write this
situation as f : A→ B.

Throughout the paper, we make use of string diagrams: a formal diagram-
matic syntax for theories of processes [30,40]. In a diagram, every ocurrence of a
resource type is represented by a laballed wire; every process is represented by
a box, with input wires representing its input type on the left, and output wires
representing its output type on the right (Figure 3).

f

process

outputinput

A B

Fig. 3: String diagram for a process f : A→ B.

Operations in a theory of processes. Theories of processes allow two operations
on processes: sequential composition (#) and parallel composition (⊗). The for-
mer is depicted as horizontal concatenation of diagrams, the latter as vertical
juxtaposition.

f() # g() = f g()

f() ⊗ g() =
f()
g

8 Di Lavore, Gianola, Román, Sabadini, Sobociński

Joining resources. In a theory of processes, resources can be joined. Given a
resource type A and a resource type B, we can construct the joint resource type
A⊗B, which puts together resources of type A and type B. Resource joining may
be implemented in diverse ways, depending on the theory of processes. However,
it must satisfy some basic axioms:

• joining three process resource types together can be done in two ways; these
should coincide,

A⊗ (B ⊗ C) = (A⊗B)⊗ C, (1)

=
A

B
C

A
B

C

• there must exist a resource type representing the absence of resources, which
we call the unit resource type I; it must be neutral with respect to process
joining

A⊗ I = A = A⊗ I. (2)

A
I = = A

I

Sequential composition. In a theory of processes, we can compose processes in
two different ways. The first is sequential composition: given two processes such
that the output type of the first coincides with the input type of the second, say
f : A→ B and g : B → C, their sequential composition is the process (f #g) : A→
C that results from executing f and using its output to execute g.

Composing may mean different things in different process theories, but it
must always satisfy the following axioms:

• sequencing together three processes f : A → B, g : B → C and h : C → D
can be done in two different ways, these should coincide,

(f # g) # h = f # (g # h); (3)

f g h f g h=

• there must exist a process representing “doing nothing” with a resource A
that we write as idA – the identity transformation – which must be neutral
with respect to sequential composition,

idA # f = f = f # idB . (4)

f=f =fA BB A B A

We say that a process f : A → B is reversible if it has a reverse counterpart,
f−1 : B → A, such that executing one after the other is the same as having done
nothing, f # f−1 = idA and f−1 # f = idB . This is usually called an isomorphism.
In this situation, we say that A and B are isomorphic, and we write that as
A ∼= B.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 9

Parallel composition. The second way of composing two processes is to do so
in parallel. Given any two processes f : A → B and f ′ : A′ → B′, their parallel
composition is a process (f ⊗ f ′) : A ⊗ A′ → B ⊗ B′ that results from jointly
executing both processes over the joint input resource type, so as to produce the
joint output resource type.

The implementation of parallel composition will usually be related to the im-
plementation of resource joining in the same theory. It must satisfy the following
axioms:

• composing three processes in parallel can be done in two ways; these should
coincide,

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h; (5)

f

g

h

f

g

h

=

• doing nothing with no resources should be the unit for parallel composition;
the identity transformation on the unit resource type I must satisfy

f ⊗ idI = f = idI ⊗ f ; (6)

fA B

I I

= fA B =

fA B

I I

• executing two processes in parallel and then other two processes in parallel
must yield the same result as executing in parallel the sequential composi-
tions of both pairs,

(f ⊗ g) # (h⊗ k) = (f # h)⊗ (g # k). (7)

f

g

h

k

f

g

h

k
=

Swapping. Finally, we want to be able to route resources to each specific process.
Any theory of processes, given any two resource types A and B, must contain
a process σA,B : A ⊗ B → B ⊗ A. This process is called the swap, which only
permutes the order in which resources are organized. It must satisfy the following
axioms.

• Swapping twice is the same as swapping once with a joint type,

σA,B⊗C = (σA,B # idC) # (idB ⊗ σA,C); (8)

10 Di Lavore, Gianola, Román, Sabadini, Sobociński

σA⊗B,C = (idA # σB,C) # (σA,C ⊗ idB). (9)

=

=

• Swapping two process inputs is the same as swapping the executing place
and swapping the output.

(f ⊗ g) # σB,B′ = σA,A′ # (g ⊗ f). (10)

f

g

f

g
=

• Swapping and swapping again is the same as doing nothing.

σA,B # σB,A = idA⊗B . (11)

=

Symmetric monoidal categories. The algebraic structures that capture this no-
tion of process theory are “symmetric monoidal categories” [40]. The resource
types are usually called objects, while the processes are usually called morphisms.
Reversible processes are called isomorphisms.

Definition 2.1. A symmetric monoidal category [40] is a tuple

C = (Cobj,Cmor, (#), id, (⊗)obj, (⊗)mor, I, σ),

specifying a set of objects, or resource types, Cobj; a set of morphisms, or pro-
cesses, Cmor; a composition operation; a family of identity morphisms; a tensor
operation on objects and morphisms; a unit object and a family of swapping
morphisms; satisfying all of the axioms of this section (1-11), possibly up to
reversible coherence isomorphisms of the form,

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),

λA : I ⊗A→ A, and

ρA : A⊗ I → A.

Coherence isomorphisms must commute with all suitably typed processes and
must satisfy all possible formal equations between them. We usually denote by
C(A,B) the set of morphisms from A to B.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 11

Note that we do allow the axioms to be satisfied up to a reversible coherence
isomorphism. For an example, consider the theory of pure functions between sets
joined by the cartesian product. It is not true that, given three sets A, B and
C, the following two sets are equal, A× (B×C) ∼= (A×B)×C; they are merely
in a one-to-one correspondence. A symmetric monoidal category is strict only if
these reversible transformations are identities. It was proven by MacLane (his
Coherence Theorem, Theorem 2.8 [40]) that the axioms (1-11) are valid for both
strict and non-strict monoidal categories.

Example 2.2. The paradigmatic theory of processes uses mathematical sets as
types and functions as processes. We can check that the following functions,
with the cartesian product, satisfy the axioms (1-11), thus forming a symmetric
monoidal category.

Set = (Sets,Functions, (◦), id,×, 〈•, •〉, 1, (a, (b, c)) 7→ ((a, b), c),

(a, ∗) 7→ a, (∗, a) 7→ a, (a, b) 7→ (b, a)).

Example 2.3. The theory of linear transformations uses dimensions (natural
numbers) as types and matrices over the real numbers as processes. We can
check that matrices, with the direct sum, satisfy the axioms (1-11), thus forming
a symmetric monoidal category.

Mat = (N,Matrices, (·), (+),⊕, 0, I, I, I, I,S),

where I is the identity matrix and S is the permutation matrix,

In =

(
1 ... 0
...

. . .n
...

0 ... 1

)
; Sn,m =

0 ... 0 1 ... 0
...

. . .
...

...
. . .n

...
0 ... 0 0 ... 1
1 ... 0 0 ... 0
...

. . .m
...

...
. . .

...
0 ... 1 0 ... 0

.

Example 2.4. It can happen that two theories of processes share the same ele-
ments, but differ on how they are combined. The theory of choice in finite sets
uses again functions, but instead of the cartesian product, it uses the disjoint
union. We can check that the following functions satisfy again the axioms (1-11).

FinSet = (FinSets,Functions, (◦), id, (+), [•, •], 0, (a|(b|c)) 7→ ((a|b)|c),
(a|∅) 7→ a, (∅|a) 7→ a, (a|b) 7→ (b|a)).

When designing software, the advantage of an algebraic structure such as
monoidal categories is reusability: we can encapsulate the operations of our the-
ory of processes into a separate module, and we can abstractly work with them
without knowing the particulars of the theory of processes at hand. The axioms
(1-11) are straightforward to check for most theories of processes – even if we
will not take the time to do so in this text – but they are a powerful abstraction:
once the axioms are satisfied, we can start reasoning with string diagrams.

12 Di Lavore, Gianola, Román, Sabadini, Sobociński

2.2 Monoidal Equivalence

In this final preliminary section, we recall what it means to have a transforma-
tion between monoidal categories (symmetric strong monoidal functor, Defini-
tion 2.5), what it means to have two equivalent monoidal categories (monoidal
equivalence, Definition 2.7) and the statement of the Coherence Theorem: every
monoidal category is equivalent to a strict one (Theorem 2.8).

Monoidal functors. Every time we consider an algebraic structure, it is natural
to also consider what is a good notion of transformation between two such al-
gebraic structures. A transformation of algebraic structures should preserve the
key ingredients of the algebraic construction. In the case of symmetric monoidal
categories, these transformations are called monoidal functors, and they preserve
the operation of composition.

Definition 2.5. A symmetric strong monoidal functor between two symmetric
monoidal categories with coherence isomorphisms

C = (Cobj,Cmor, (#), id, (⊗)obj, (⊗)mor, I, α
C, λC, ρC, σC), and

D = (Dobj,Dmor, (#), id, (⊗)obj, (⊗)mor, I, α
D, λD, ρD, σD)

is a tuple F = (Fobj, Fmor, φ, ϕ), consisting of

• a function that assigns objects of the first category to objects of the second
category, Fobj : Cobj → Dobj,
• and a function that assigns morphisms of the first category to morphisms of

the second category, Fmor : Cmor → Dmor.
• a coherence isomorphism φA,B : FA⊗ FB → F (A⊗B),
• and a coherence isomorphism ϕ : J → FI.

Traditionally, functions both on objects, Fobj and morphisms, Fmor are denoted
by F . The functor must be such that every morphism f : A → B is assigned
a morphism F (f) : FA → FB, whose source and target are the images of the
original source and target. Moreover, it must satisfy the following axioms,

• compositions must be preserved, F (f # g) = F (f) # F (g),
• identities must be preserved, F (idA) = idFA,
• tensoring must be transported by the natural transformations, meaning that

F (f ⊗ g) = µ # (F (f)⊗ F (g)) # µ−1,

• associators, unitors and swaps must be transported by the natural transfor-
mations, meaning that

F (αC) = µ−1 # (µ−1⊗ id) # αD # (id⊗ µ) # µ,
F (λC) = µ−1 # (ϕ−1⊗ id) # λD,
F (ρC) = µ−1 # (id⊗ ϕ−1) # ρD,
F (σC) = µ−1 # σD # µ.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 13

Example 2.6. For instance, there is a strong monoidal functor translating from
the theory of choice in finite sets, FinSet+ (Example 2.4), to the theory of linear
transformations Mat (Example 2.3) that sends the finite sets A = {a0, . . . , an−1}
and B = {b0, . . . , bm−1} to their cardinalities, n and m; and each function
f : A → B to the matrix Fij : n → m that contains a 1 on the entry Fij when
f(ai) = bj , and contains a 0 otherwise.

Definition 2.7. A monoidal equivalence of categories is a symmetric strong
monoidal functor F : C→ D that is

1. essentially surjective on objects, meaning that for each X ∈ Dobj, there exists
A ∈ Cobj such that F (A) ∼= X;

2. essentially injective on objects, meaning that F (A) ∼= F (B) implies A ∼= B;
it can be proven that every monoidal functor is essentially injective, so this
condition, though conceptually important, is superfluous;

3. surjective on morphisms, or full, meaning that for each g : FA→ FB there
exists some f : A→ B such that F (f) = g;

4. injective on morphisms, or faithful, meaning that given any two morphisms
f : A→ B and g : A→ B such that F (f) = F (g), it holds that f = g.

In this situation, we say that C and D are equivalent, and we write that as
C ∼= D. Moreover, when the monoidal functor is injective and surjective on
objects, we say that C and D are isomorphic.

Theorem 2.8 (Coherence theorem, [40, Theorem 2.1, Chapter VII]).
Every monoidal category is monoidally equivalent to a strict monoidal category.

Let us comment further on how we use the coherence theorem. Each time we
have a morphism f : A → B in a monoidal category, we have a corresponding
morphismA→ B in its strictification. This morphism can be lifted to the original
category to uniquely produce, say, a morphism (λA # f # λB−1) : I ⊗ A→ I ⊗B.
Each time the source and the target are clearly determined, we simply write f
again for this new morphism.

The reason to avoid this explicit notation on our definitions and proofs is
that it would quickly become verbose and distractive. Equations seem concep-
tually easier to understand when written assuming the coherence theorem – and
they become even clearer when drawn as string diagrams, which implicitly hide
these bureaucratic isomorphisms. In fact, in the work of Katis, Sabadini and
Walters [36], strictness is assumed from the start for the sake of readibility, even
though—as argued above—it is not a necessary assumption.

Theorem 2.8 and Section 2.1 can be summarized by the slogan:

“Any theory of processes satisfying the axioms of symmetric monoidal
categories (1-11) can be reasoned about using string diagrams”.

14 Di Lavore, Gianola, Román, Sabadini, Sobociński

3 Feedback Categories

In this section we recall feedback categories, originally introduced in [36], and
contrast them with the stronger notion of traced monoidal categories in Sec-
tion 3.2. We discuss the relationship between feedback and delay in Section 3.3.
Next, we recall the construction of the free feedback category in Section 3.4, and
give examples in Section 3.5.

3.1 Feedback Categories

Feedback categories [36] were motivated by examples such as Elgot automata [18],
iteration theories [6] and continuous dynamical systems [34]. These categories
feature a feedback operator , fbk(•), which takes a morphism S⊗A→ S⊗B and
“feeds back” one of its outputs to one of its inputs of the same type, yielding
a morphism A → B (Figure 4, left). When using string diagrams, we depict
the action of the feedback operator as a loop with a double arrowtip (Figure 4,
right): string diagrams must be acyclic, and so the feedback operator cannot be
confused with a normal wire.

f : S ⊗A→ S ⊗B
fbkS(f) : A→ B f

A B

S

Fig. 4: Type and graphical notation for the operator fbkS(•).

Capturing a reasonable notion of feedback requires the operator to interact
coherently with the flow imposed by the structure of a symmetric monoidal
category. This interaction is expressed by a few straightforward axioms, which
we list below.

Definition 3.1. A feedback category [36] is a symmetric monoidal category C
endowed with an operator fbkS : C(S⊗A,S⊗B)→ C(A,B), which satisfies the
following axioms (A1-A5, see also Figure 5).

(A1). Tightening. Feedback must be natural in A,B ∈ C, its input and output.
This is to say that for every morphism f : S ⊗ A → S ⊗ B and every
pair of morphisms u : A′ → A and v : B → B′,

u # fbkS(f) # v = fbkS((id⊗ u) # f # (id⊗ v)).

(A2). Vanishing. Feedback on the empty tensor product, the unit, does nothing.
That is to say that, for every f : A→ B,

fbkI(f) = f.

(A3). Joining. Feedback on a monoidal pair is the same as two consecutive
applications of feedback. That is to say that, for every morphism f : S⊗
T ⊗A→ S ⊗ T ⊗B,

fbkT (fbkS(f)) = fbkS⊗T (f).

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 15

(A4). Strength. Feedback has the same result if it is taken in parallel with
another morphism. That is to say that, for every morphism f : S⊗A→
S ⊗B and every morphism g : A′ → B′,

fbkS(f)⊗ g = fbkS(f ⊗ g).

(A5). Sliding. Feedback is invariant to applying an isomorphism “just before”
or “just after” the feedback. In other words, feedback is dinatural over the
isomorphisms of the category. That is to say that for every f : T ⊗A→
S ⊗B and every isomorphism h : S → T ,

fbkT (f # (h⊗ id)) = fbkS((h⊗ id) # f).

f
A B

S

u
A′

v
B′

(A1)
= f

A B

S

u
A′

v
B′

f
A B

I

(A2)
= f

A B

f
A B

S

T

(A3)
= f

A B

S ⊗ T
f

A B

S

g
A′ B′

(A4)
=

f

A B

S

g
A′ B′

f
A B

T

h (A5)
= f

A B

S

h
(h isomorphism)

Fig. 5: Diagrammatic depiction of the axioms of feedback.

The natural notion of homomorphism between feedback categories is that of
a symmetric monoidal functor that moreover preserves the feedback structure.
These are called feedback functors.

Definition 3.2. A feedback functor F : C→ D between two feedback categories
(C, fbkC) and (D, fbkD) is a strong symmetric monoidal functor such that feed-
back is transported, that is,

F (fbkCS (f)) = fbkDF (S)(µ # Ff # µ−1),

where µA,B : F (A)⊗F (B)→ F (A⊗B) is the isomorphism of the strong monoidal
functor F . We write Feedback for the category of (small) feedback categories and
feedback functors. There is a forgetful functor U : Feedback→ SymMon.

16 Di Lavore, Gianola, Román, Sabadini, Sobociński

Remark 3.3. Thanks to the coherence theorem (Theorem 2.8), we can present
the axioms of a feedback category as in Definition 3.1, omitting associators and
unitors. In fact, to be explicit, the statement of the vanishing axiom is

fbkI(λA # f # λB−1) = f

because the feedback operator, fbkI , needs to be applied to a morphism I ⊗
A → I ⊗ B, and the only morphism whose strictification has type A → B is
(λA # f # λB−1) : I ⊗ A → I ⊗ B (see Theorem 2.8). Similarly, the joining axiom
really states that

fbkS(fbkT (f)) = fbkS⊗T (αS,T,A # f # α−1S,T,B).

Remark 3.4. Our feedback operator takes a morphism S ⊗A→ S ⊗B with the
first component S of the tensor in both the domain and the codomain being the
object “fed back”. Given that S appears in the first position in both the domain
and the codomain, we refer to this as aligned feedback.

An alternative definition is possible, and appears in the exposition of traces
by Ponto and Shulman [45]. We call this twisted feedback : here fbk(•) is an
operator that takes a morphism S ⊗ A→ B ⊗ S—note the position of S in the
codomain—and yields a morphism A→ B.

f : S ⊗A→ B ⊗ S
fbkS(f) : A→ B

The advantage of using twisted feedback is that sequential composition of pro-
cesses with feedback does not require symmetry of the underlying monoidal cat-
egory (see [32], where the authors consider a category with twisted feedback).
However, parallel composition does require symmetry. Given that we study the
monoidal category of feedback processes, and aligned feedback diagrams are
more readable, we use only aligned feedback in this paper.

f f

Fig. 6: Twisted vs. aligned feedback

3.2 Traced Monoidal Categories

Feedback categories are a weakening of traced monoidal categories, which have
found several applications in computer science. Indeed, since their conception [30]
as an abstraction of the trace of a matrix in linear algebra, they were used in
linear logic and geometry of interaction [1,24,25], programming language seman-
tics [27], semantics of recursion [2] and fixed point operators [28,5].

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 17

Between feedback categories and traced monoidal categories there is an inter-
mediate notion called right traced category [50]. Here, the sliding axiom applies
not only to isomorphisms but rather to arbitrary morphisms. This strength-
ening is already unsuitable for our purposes (see Remark 3.12). However, the
difference in the sliding axiom is not dramatic: we will generalize the notion of
feedback category to allow the choice of morphisms that can be “slid” through
the feedback loop (Section 5). For example, it is possible to require the sliding
axiom for all the morphisms, as in the case of right traced categories, or just
isomorphisms, as in the case of feedback categories. The more serious concep-
tual difference between feedback categories and traced monoidal categories is
the “yanking axiom” of traced monoidal categories (in Figure 7). The yanking
axiom is incontestably elegant from the geometrical point of view: strings are
“pulled”, and feedback (the loop with two arrowtips) disappears.

=

Fig. 7: The yanking axiom.

Strengthening the sliding axiom and adding the yanking axiom yields the
definition of traced monoidal category.

Definition 3.5. A traced monoidal category [30,50] is a feedback category that
additionally satisfies the yanking axiom fbk(σ) = id and the sliding axiom,
fbkT (f # (h⊗ id)) = fbkS((h⊗ id) # f), for an arbitrary morphism h : S → T . We
commonly denote by tr(•) the feedback operator of a traced monoidal category.

Fig. 8: Diagram for the NOR latch, modeled with a trace in Span(Graph).

There is scope for questioning the validity of the yanking axiom in many
applications that feature feedback. If feedback can disappear without leaving
any imprint, that must mean that it is instantaneous: its output necessarily
mirrors its input.5 Importantly for our purposes, this implies that a feedback
satisfying the yanking equation is “memoryless”, or “stateless”.

5 In other words, traces are used to talk about processes in equilibrium, processes that
have reached a fixed point. A theorem by Hasegawa [28] and Hyland [5] corroborates
this interpretation: a trace in a cartesian category corresponds to a fixpoint operator.

18 Di Lavore, Gianola, Román, Sabadini, Sobociński

In engineering and computer science, instantaneous feedback is actually a
rare concept; a more common notion is that of guarded feedback. Consider signal
flow graphs [51,41]: their categorical interpretation in [8] models feedback not
by the usual trace, but by a trace “guarded by a register”, that delays the signal
and violates the yanking axiom (see Remark 7.8 op.cit.).

Example 3.6. Let us return to our running example of the NOR latch from Fig-
ure 1. We have seen how to model NOR gates in Span(Graph) in Figure 2,
and the algebra of Span(Graph) does include a trace. However, imitating the
real-world behavior of the NOR latch with just a trace is unsatisfactory: the
trace of Span(Graph) is built out of stateless components, and tracing state-
less components yields a stateless component (see Figure 8, later detailed in
Section 4.2).

3.3 Delay and Feedback

As we have discussed previously, the major conceptual difference between feed-
back categories and traced monoidal categories is the rejection of the yanking
axiom. Indeed, a non-trivial delay is what sets apart feedback categories from
traced monoidal categories.

We can isolate the delay component in a feedback category. Consider the
process that only “feeds back” the input to itself and then just outputs that
“fed back” input. The process interpretation of monoidal categories (Section 2.1)
allows us to understand this process as delaying its input and returning it as
output [16]. This process, ∂A := fbkA(σA,A), is called the delay endomorphism
and is illustrated in Figure 9.

:=∂

Fig. 9: Definition of delay.

If a category has enough structure, feedback can be understood as the com-
bination of trace and delay in a formal sense. Compact closed categories are
traced monoidal categories where every object A has a dual A? and the trace is
constructed from two pieces ε : A⊗A? → I and η : I → A?⊗A. While not every
traced monoidal category is compact closed, they all embed fully faithfully into
a compact closed category.6 In a compact closed category, a feedback operator
is necessarily a trace “guarded” by a delay.

Proposition 3.7 (Feedback from delay [7]). Let C be a compact closed
category with fbkC a feedback operator that takes a morphism S⊗A→ S⊗B to
a morphism A→ B, satisfying the axioms of feedback (in Figure 5) but possibly

6 This is the Int construction from Joyal, Street and Verity [30].

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 19

∂

∂

Fig. 10: NOR latch with feedback.

failing to satisfy the yanking axiom (Figure 7) of traced monoidal categories.
Then, the feedback operator is necessarily of the form

fbkCS (f) := (η ⊗ id) # (id⊗ f) # (id⊗ ∂S ⊗ id) # (ε⊗ id)

where ∂A : A→ A is a family of endomorphisms satisfying

• ∂A ⊗ ∂B = ∂A⊗B and ∂I = id, and
• ∂A # h = h # ∂B for each isomorphism h : A ∼= B.

In fact, any family of morphisms ∂A satisfying these properties determines uniquely
a feedback operator that has ∂A as its delay endomorphisms.

f
A B

S

∂

Fig. 11: Feedback from delay.

Proof. Given a family ∂S satisfying the two properties, we can define a feedback
structure, shown in Figure 11, to be fbkCS (f) := (η⊗ id) # (id⊗f) # (id⊗∂S ⊗ id) #
(ε ⊗ id) and check that it satisfies all the axioms of feedback (Figure 5). Note
here that, as expected, the yanking equation is satisfied precisely when delay
endomorphisms are identities, ∂A = idA.

Let us now show that any feedback operator in a compact closed category is
of this form (Figure 12). Indeed,

fbkCS (f) = fbkCS ((id⊗ η ⊗ η ⊗ id) # (σ ⊗ σ ⊗ f) # (id⊗ ε⊗ ε⊗ id))

= (id⊗ η ⊗ η ⊗ id) # (fbkCS (σ)⊗ σ ⊗ f) # (id⊗ ε⊗ ε⊗ id)

= (η ⊗ id) # (id⊗ f) # (id⊗ fbkCS (σ)⊗ id) # (ε⊗ id).

Here we have used the fact that the trace is constructed by two separate
pieces: ε and η; and then the fact that the feedback operator, like trace, can be
applied “locally” (see the axioms in Figure 5).

Example 3.8. Consider again the NOR latch of Figure 1. The algebra of the
category Span(Graph) does include a feedback operator that is not a trace –
the difference is an additional stateful delay component. As we shall see, this
notion of feedback is canonical. We shall also see that the delay enables us to
capture the real-world behavior of the NOR latch (Figure 10).

20 Di Lavore, Gianola, Román, Sabadini, Sobociński

f

A B

S

AB

S

A B

f

S

f= =

A B

f

∂

= f
A B

S

∂=

Fig. 12: Feedback in a compact closed category.

The emergence of state from feedback is witnessed by the St(•) construction,
which we recall below.

3.4 St(•), the Free Feedback Category

Here we show how to obtain the free feedback category on a symmetric monoidal
category. The St(•) construction is a general way of endowing a system with
state. It appears multiple times in the literature in slightly different forms: it is
used to arrive at a stateful resource calculus in [7]; a variant is used for geometry
of interaction in [29]; it coincides with the free feedback category presented
in [36]; and yet another, slightly different formulation was given in [32].

Definition 3.9 (Category of stateful processes, [36]). Let (C,⊗, I) be a
symmetric monoidal category. We write St(C) for the category with the objects
of C but where morphisms A→ B are pairs (S | f), consisting of a state space
S ∈ C and a morphism f : S ⊗ A → S ⊗ B. We consider morphisms up to
isomorphism classes of their state space, and thus

(S | f) = (T | (h−1 ⊗ id) # f # (h⊗ id)), for any isomorphism h : S ∼= T.

When depicting a stateful process (Figure 13), we mark the state strings.

f
A

S

B

= f
A

T

B

h−1 h

Fig. 13: Equivalence of stateful processes. We depict stateful processes by mark-
ing the space state.

We define the identity stateful process on A ∈ C as (I | idI⊗A). Sequential
composition of the two stateful processes (S | f) : A→ B and (T | g) : B → C is
defined by (S | f) # (T | g) = (S ⊗ T | (σ ⊗ id) # (id⊗ f) # (σ ⊗ id) # (id⊗ g)), see
Figure 14, left. Parallel composition of the two stateful processes (S | f) : A→ B
and (S′ | f ′) : A′ → B′ is defined by (S | f)⊗ (S′ | f ′) = (S ⊗ S′ | (id⊗ σ ⊗ id) #
(f ⊗ f ′) # (id ⊗ σ ⊗ id)), see Figure 14, right. In both cases, the state spaces of
the components are tensored together.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 21

f
A B

g

C

T

S f

A

S

Bf ′

A′ B′

S′

Fig. 14: Sequential and parallel composition of stateful processes.

This defines a symmetric monoidal category. Moreover, the operator

storeT (S | f) := (S ⊗ T | f), for f : S ⊗ T ⊗A→ S ⊗ T ⊗B,

which “stores” some information into the state, makes it a feedback category,
see Figure 15.

storeT

 f

A

S

B

T

 = f

A

S

B

T

Fig. 15: The store(•) operation, diagrammatically.

Proposition 3.10. Sequential composition of stateful processes is associative.
That is, for every f : S ⊗ A → S ⊗ B, every g : T ⊗ B → T ⊗ C and every
h : R⊗ C → R⊗D,

((S | f) # (T | g)) # (R | h) = (S | f) # ((T | g) # (R | h)).

Proof. We can see both morphisms are equal by applying transformations of
string diagrams: i.e. the axioms of symmetric monoidal categories (Figure 16).

f

A B

g

C

R h

D

T

S

f

A B

g

C

R h

D

T

S

Fig. 16: Associativity of sequential composition.

22 Di Lavore, Gianola, Román, Sabadini, Sobociński

The state spaces are isomorphic thanks to the associator α : (S ⊗ T)⊗R→
S ⊗ (T ⊗R).

Unitality and monoidality of stateful processes follow a similar reasoning.
These properties yield the following result.

Theorem 3.11 ([36], Proposition 2.6). The category St(C), endowed with
the store(•) operator, is the free feedback category over a symmetric monoidal
category C.

Remark 3.12. Stateful processes are defined up to isomorphism of the state
space. This is captured by axiom (A5) of feedback categories and, as mentioned
in Section 3.2, relaxing it to allow sliding of arbitrary morphisms, would yield a
notion of equality of stateful processes that would be too strong for our purposes:
it would equate automata with a different number of states and boundary be-
havior (Example 4.14). Considering stronger notions of equivalence of processes
is possible and leads to interesting models of computation [16]. Expanding this
line of research is outside the scope of the present manuscript.

Remark 3.13 (Coherence and sliding). There are cases where we do need to be
careful about the correct use of associators and unitors. For instance, we could be
tempted to conclude that coherence implies that, for any f : ((S⊗T)⊗R)⊗A→
((S⊗T)⊗R)⊗B, the following equation holds ((S⊗T)⊗R | f) = (S⊗(T⊗R) | f)
without needing to invoke the equivalence relation of stateful processes. This
would allow us to construct the category St(•) of stateful processes without
having to quotient them by the equivalence relation. However, this equality is
only enabled by the fact that αS,T,R is an isomorphism: we have

((S ⊗ T)⊗R | f) = (S ⊗ (T ⊗R) | αS,R,T # f # α−1S,R,T),

even if we write the equation omitting the coherence maps. This is also what
will allow us to notate stateful processes diagramatically. We will mark the wires
forming the state space; the order in which they are tensored does not matter
thanks again to the equivalence relation that we are imposing.

3.5 Examples

All traced monoidal categories are feedback categories, since the axioms of feed-
back are a strict weakening of the axioms of trace. A more interesting source of
examples is the St(•) construction we just defined. We present some examples
of state constructions below.

Example 3.14 (Mealy transition systems). A Mealy deterministic transition sys-
tem with boundaries A and B, and state space S was defined [42, §2.1] to be
just a function f : S × A → S × B. It is not difficult to see that, up to isomor-
phism of the state space, they are morphisms of St(Set). They compose following
Definition 3.9, and form a feedback category Mealy := St(Set).

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 23

Definition 3.15. A Mealy transition system from A to B is a tuple M =
(S, t, o), where S is a set called the state space, t : S × A → S is a function
called the transition function, and o : S×A→ B is a function called the output
function.

Two Mealy transition systems are equal whenever their transition functions
are equal up to isomorphism of the state space. That is, two deterministic tran-
sition systems M = (S, tM , oM) and N = (T, tN , oN) are considered equal when-
ever there exists an isomorphism h : S ∼= T between their state spaces such that

h(tM (s, a)) = tN (h(s), a) and oM (s, a) = oN (s, a).

Whenever t(s0, a) = s1 and o(s0, a) = b, we write s0
a/b→ s1. We may also

write a transition and output in a single function, f(s0, a) = (t(s0, a), o(s0, a)) =
(s1, b).

The feedback of Mealy transition systems transforms input/output pairs
into states. Figure 17 is an example: a transition system with a single state
becomes a transition system with two states, {s1, s0}. We compute this feedback
by transforming each transition (si, i/so) into a transition (i/) from si to so.

fbk

0, 1/1 1, 0/0

1, 1/1

0, 0/0

=

0/ 0/ 1/

1/

Fig. 17: Feedback of a Mealy transition system. Every transition has a label i/o
indicating inputs (i) and outputs (o).

Example 3.16 (Elgot automata). Similarly, when we consider Set with the mo-
noidal structure given by the disjoint union, we recover Elgot automata [18],
which are given by a transition function S + A → S + B. These transition
systems motivate the work of Katis, Sabadini and Walters in [32,36].

Definition 3.17. An Elgot transition system with initial states in A and final
states in B is a tuple E = (S, p, d) where S is a set called the state space,
p : A → S + B is a function called initial step and d : S → S + B is a function
called iterative step.

An Elgot transition system is interpreted as follows. We start by providing
an initial state A. We then compute the initial step p(a) which can result either
in an internal state p(a) = s ∈ S or in a final state p(a) = b ∈ B. In the later
case, we are done and we return b ∈ B; in the former case, we repeatedly apply
the iterative step: d(p(a)), d(d(p(a))), . . . until we reach a final state.

Example 3.18 (Linear dynamical systems). A linear dynamical system with in-
puts in Rn, outputs in Rm and state space Rk is given by a number k, represent-

24 Di Lavore, Gianola, Román, Sabadini, Sobociński

ing the dimension of the state space, and a matrix over the real numbers [31]

(
A B
C D

)
∈Mat(k +m, k + n).

Two linear dynamical systems,

(
A B
C D

)
and

(
A′ B′

C ′ D

)
,

are considered equivalent if there is an invertible matrix H ∈ Mat(k, k) such
that A′ = H−1AH, B′ = BH, and C ′ = H−1C.

Linear dynamical systems are morphisms of a feedback category which co-
incides with St(Mat), the free feedback category over the category of matrices
Mat as defined in Example 2.3. The feedback operator is defined by

fbkl

k,

A1 A2 B1

A3 A4 B2

C1 C2 D

 =

k + l,

A1 A2 B1

A3 A4 B2

C1 C2 D

 ,

where

(
A1 A2 B1

A3 A4 B2

C1 C2 D

)
∈Mat(k + l +m, k + l + n).

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 25

4 Span(Graph): an Algebra of Transition Systems

Span(Graph) [33] is an algebra of “open transition systems”. It has appli-
cations in concurrency theory and verification [32,33,35,37,23], and has been
recently applied to biological systems [21,22]. Just as ordinary Petri nets have
an underlying (firing) semantics in terms of transition systems, Span(Graph)
is used as a semantic universe for a variant of open Petri nets, see [53,9].

An open transition system is a morphism of Span(Graph): a transition
graph endowed with two boundaries or communication ports. Each transition has
an effect on each boundary, and this data is used for synchronization. This con-
ceptual picture actually describes a subcategory, Span(Graph)∗, where bound-
aries are mere sets: the alphabets of synchronization signals. We shall recall the
details of Span(Graph)∗ and prove that it is universal, our main result:

Span(Graph)∗ is the free feedback category over Span(Set).

4.1 The Algebra of Spans

Definition 4.1. A span [4,10] from A to B, both objects of a category C, is a
pair of morphisms with a common domain,

A
f←− E g−→ B.

The object E is the “head” of the span, and the morphisms f : E → A and
g : E → B are the left and right “legs”, respectively.

When the category C has pullbacks, we can sequentially compose two spans
A ← E → B and B ← F → C obtaining A ← E ×B F → C. Here, E ×B F is
the pullback of E and F along B: for instance, in Set, E ×B F is the subset of
E × F given by pairs that have the same image in B.

Remark 4.2 (Notation for spans). We denote a span A
f← X

g→ B in C as

{f(x); g(x)}x∈X ∈ Span(A,B),

where x : U → X, for some object U of C, can be thought of as some generalized
element that we compose with the two legs: e.g. in the category of sets, when
U = 1, elements of a set X can be seen as functions x : 1→ X. Sometimes, these
generalized elements will come with conditions that must be listed with the
morphism set. For instance, in Figure 18, a composition of spans has a pullback
as its head, so any generalized element of its head is now a pair of morphisms
x : U → X and y : U → Y satisfying the extra condition g(x) = h(y):

{f(x); g(x)}x # {h(y); k(y)}y = {f(x); k(y)}g(x)=h(y)x,y .

26 Di Lavore, Gianola, Román, Sabadini, Sobociński

X ×B Y

X Y

A B C

πYπX

gf kh

Fig. 18: Composition of spans.

In other words, we are saying that the set of generalized elements of the head
of the span is {x, y | g(x) = h(y)}. The advantage of this notation is that we can
reason in any category with finite limits as we do in the category of sets: using
elements. Whenever two sets of generalized elements of the head of a span are
isomorphic, the Yoneda lemma [40] provides an isomorphism between the heads.
That isomorphism makes the two spans equivalent when it commutes with the
two legs.

Definition 4.3. Let C be a category with pullbacks. Span(C) is the category
that has the same objects as C and isomorphism classes of spans between them as
morphisms. That is, two spans are considered equal if there is an isomorphism
between their heads that commutes with both legs. Dually, if C is a category with
pushouts, Cospan(C) is the category Span(Cop).

Span(C) is a symmetric monoidal category when C has products. The par-
allel composition of {f1(x); g1(x)}x∈X ∈ Span(A1, B1) and {f2(y); g2(y)}y∈Y ∈
Span(A2, B2) is given by the componentwise product

{(f1(x), f2(y)); (g1(x), g2(y))}x∈X,y∈Y ∈ Span(A1 ×A2, B1 ×B2).

An example is again Span(Set).

Remark 4.4 (Variable change). We will be considering spans “up to isomorphism
of their head”. This means that, given any isomorphism φ : X → Y , the following
two spans are considered equal

{f(φ(x)); g(φ(x))}x∈X = {f(y); g(y)}y∈Y .

Moreover, if two spans are equal, then such a variable change does necessarily
exist.

Example 4.5. Let us now detail some useful constants of the algebra of Span(C),
which we will use to construct the NOR latch circuit from Figure 10.

The Frobenius algebra [10] (, , ,) is used for the “wiring”. The
following spans are constructed out of diagonals A→ A×A and units A→ 1.

()A = {a; (a, a)}a∈A ∈ Span(A,A×A) ()A = {a; ∗}a ∈ Span(A, 1)

()A = {(a, a); a}a∈A ∈ Span(A×A,A) ()A = {∗; a}a ∈ Span(1, A)

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 27

These induce a compact closed structure (and thus a trace), as follows:

()A = {∗; (a, a)}a∈A ∈ Span(1, A×A)

()A = {(a, a); ∗}a∈A ∈ Span(A×A, 1).

Finally, we have a braiding making the category symmetric,

() = {(a, b); (b, a)}a∈A,b∈B ∈ Span(A×B,B ×A).

In general, any function f : A → B can be lifted to a span {a; f(a)}a∈A ∈
Span(A,B) covariantly, and to a span {f(a); a}a∈A ∈ Span(B,A), contravari-
antly.

4.2 The Algebra of Open Transition Systems

Definition 4.6. The category Graph has graphs G = (s, t : E ⇒ V) as objects,
i.e. pairs of morphisms from edges to vertices returning the source and target of
each edge. A morphism of graphs (e, v) : G→ G′ is given by functions e : E → E′

and v : V → V ′ such that e # s′ = s # v and e # t′ = t # v (see Figure 19)7.

E E′

V V ′

e

ts t′s′

v

Fig. 19: Morphism of graphs.

We now focus on Span(Graph)∗, those spans of graphs that have single
vertex graphs (A⇒ 1) as the boundaries.

Definition 4.7. An open transition system is a morphism of Span(Graph)∗:
a span of sets {f(e); g(e)}e∈E ∈ Span(A,B) where the head is the set of edges
of a graph s, t : E ⇒ V , i.e. the transitions (see Figure 20). Two open transition
systems are considered equal if there is an isomorphism between their graphs
that commutes with the legs. Open transition systems whose graph E ⇒ 1 has a
single vertex are called stateless.

A E B

1 V 1

ts

f g

Fig. 20: A morphism of Span(Graph)∗.

7 Equivalently, Graph is the presheaf category on the diagram (• ⇒ •), i.e. the
category of functors (•⇒ •)→ Set and natural transformations between them.

28 Di Lavore, Gianola, Román, Sabadini, Sobociński

Sequential composition (the communicating-parallel operation of [33]) of two
open transition systems with spans

{f(e); g(e)}e∈E ∈ Span(A,B) and {h(e′); k(e′)}e′∈E′ ∈ Span(B,C)

and graphs s, t : E ⇒ S and s′, t′ : E′ ⇒ S′ yields the open transition system
with the composite span

{f(e); k(e′)}g(e)=h(e
′)

(e,e′)∈E×E′ ∈ Span(A,C)

and graph (s× s′, t× t′) : E ×B E′ ⇒ S × S′. This means that the only allowed
transitions are those that synchronize E and E′ on the common boundary B.

Parallel composition (the non communicating-parallel operation of [33]) of
two open transition systems with spans

{f(e); g(e)}e∈E ∈ Span(A,B) and {f ′(e′); g′(e′)}e′∈E′ ∈ Span(A′, B′)

and graphs s, t : E ⇒ V and s′, t′ : E′ ⇒ V ′ yields the open transition system
with span

{(f(e), f ′(e′)); (g(e), g(e′))}e,e′∈E×E′ ∈ Span(A×A′, B ×B′)

and graph (s× s′, t× t′) : E × E′ ⇒ V × V ′.

Remark 4.8 (Components of Span(Graph)∗). Any span in Span(A,B) can be
lifted to Span(Graph)∗(A,B) by making the head represent the graph E ⇒ 1.
Apart from the components lifted from Span, which we call stateless, we will
need to add a single stateful component to model all of Span(Graph)∗: the
delay in Figure 21.

1,0

0,1

0,0

1,1

B B

Fig. 21: Delay morphism over the set B := {0, 1}.

The delay (∂ A) on a given set A is given by the span {a2; a1}a1,a2∈A×A ∈
Span(A,A) together with the graph π1, π2 : A×A→ A. This is to say that the
delay receives on the left what the target of its transition (its next state) will be,
while signalling on the right what the source of its transition (its current state)
is. This is not an arbitrary choice: it is defined as the canonical delay obtained
from the feedback structure in Span(Graph)∗ (as in Section 3, ∂A = fbk(σA,A)).

(∂)A = fbk({(a1, a2); (a2, a1)}a1,a2).

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 29

We can use this delay to correctly model a stateful NOR latch from the
function NOR : B× B→ B (as we saw in Figure 2).

∂

∂

Fig. 22: Decomposing the circuit.

The NOR latch circuit of Figure 10 is the composition of two NOR gates
where the outputs of each gate have been copied and fed back as input to the
other gate. The algebraic expression, in Span(Graph)∗, of this circuit is ob-
tained by decomposing it into its components, as in Figure 22.

(id⊗ ⊗ ⊗ id) # (NOR⊗ σ ⊗ NOR) # (⊗ id⊗)

(id⊗ ∂ ⊗ id⊗ ∂ ⊗ id) # (id⊗ ⊗ ⊗ id)

The graph obtained from computing this expression, together with its tran-
sitions, is shown in Figure 23. This time, our model is indeed stateful. It has
four states: two states representing a correctly stored signal, A = (1, 0) and
A = (0, 1); and two states representing transitory configurations T1 = (0, 0) and
T2 = (1, 1).

•

•A

•A

• T2
T1

Idle

Set

Reset

Set

Unspec

Reset

Unspec

Idle

Set

Unspec

Reset

Unspec

Idle

Reset

Idle

Set

Fig. 23: Span of graphs representing the NOR latch

The left boundary can receive a set signal, Set =
(
1
0

)
; a reset signal, Reset =(

0
1

)
; none of the two, Idle =

(
0
0

)
; or both of them at the same time, Unspec =

(
1
1

)
,

which is known to cause unspecified behavior in a NOR latch. The signal on the
right boundary, on the other hand, is always equal to the state the transition goes
to and does not provide any additional information: we omit it from Figure 23.

30 Di Lavore, Gianola, Román, Sabadini, Sobociński

fbkB×B

 6= trB×B

Fig. 24: Applying fbk(•) over the circuit gives the NOR latch.

Activating the signal Set makes the latch reach the state A in (at most) two
transition steps. Activating Reset does the same for A. After any of these two
cases, deactivating all signals, Idle, keeps the last state.

Moreover, the (real-world) NOR latch has some unspecified behavior that
gets also reflected in the graph: activating both Set and Reset at the same time,
what we call Unspec, causes the circuit to enter an unstable state where it
bounces between the states T1 and T2 after an Idle signal. Our modeling has
reflected this “unspecified behavior” as expected.

Feedback and trace. In terms of feedback, the circuit of Figure 23 is equiva-
lently obtained as the result of taking feedback over the stateless morphism in
Figure 24.

But Span(Graph)∗ is also canonically traced: it is actually compact closed.
What changes in the modeling if we would have used the trace instead? As we
argued for Figure 8, we obtain a stateless transition system. The valid transitions
are

{(Unspec,T1), (Idle,A), (Idle,A), (Set,A), (Reset,A)}.
They encode important information: they are the equilibrium states of the cir-
cuit. However, unlike the previous graph, this one would not get us the correct
allowed transitions: under this modeling, our circuit could freely bounce between
(Idle,A) and (Idle,A), which is not the expected behavior of a NOR latch.

The fundamental piece making our modeling succeed the previous time was
feedback with delay. Next we show that this feedback is canonical.

4.3 Span(Graph) as a Feedback Category

This section presents our main theorem. We introduce a mapping that associates
to each stateful span of sets a corresponding span of graphs. This mapping is
well-defined and lifts to a functor St(Span(Set))→ Span(Graph). Finally, we
prove that it is an isomorphism St(Span(Set)) ∼= Span(Graph)∗.

First of all, we need to be able to explicitly compute the composition of
stateful spans, following the composition of stateful morphisms in Definition 3.9.
This is Proposition 4.9. Then, we will characterize isomorphisms in the category
of spans in Proposition 4.10.

Proposition 4.9. Let C be a category with finite limits. Consider two stateful
spans in the category St(Span(C)),

{(σ(x), f(x)); (σ′(x), g(x))}x∈X ∈ Span(S ×A,S ×B),

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 31

{(τ(y), h(y)); (τ ′(y), k(y))}y∈Y ∈ Span(T ×B, T × C).

their composition is then given by the span

{(σ(x), τ(y), f(x)); (σ′(x), τ ′(y), k(y))}g(x)=h(y)(x,y)∈X×Y ∈ Span(S×T ×A,S×T ×B),

where the head is X ×B Y , the pullback of g and h.

Proof. Using the notation for spans, we apply the definition of sequential com-
position in a category of stateful processes (Definition 3.9).

({(s, t); (t, s)}s,t ⊗ {a; a}a) # ({t; t}t ⊗ {(σ(x), f(x)); (σ′(x), g(x))}x)

({(t, s); (s, t)}s,t ⊗ {b; b}b) # ({s; s}s ⊗ {(τ(y), h(y)); (τ ′(y), k(y))}y)

= (Computing tensors)

{(s, t, a); (t, s, a)}s,t,a # {(t, σ(x), f(x)); (t, σ′(x), g(x))}t,x
{(t, s, b); (s, t, b)}s,t,b # {(s, τ(y), h(y)); (s, τ ′(y), k(y))}s,y

= (Computing compositions)

{(σ(x), t, f(x)); (t, σ′(x), g(x))}t,x # {(τ(y), s, h(y)); (s, τ ′(y), k(y))}s,y
= (Computing compositions)

{(σ(x), τ(y), f(x)); (σ′(x), τ ′(y), k(y))}g(x)=h(y)x,y .

This last formula corresponds indeed to the pullback we stated.

Proposition 4.10. Let C be a category with all finite limits. An isomorphism
A ∼= B in its category of spans, Span(C), is always of the form

{a;φ(a)}a∈A ∈ Span(C)(A,B),

where the left leg is an identity and the right leg φ : A → B is an isomorphism
in the base category C.

Proof. Let {f(x); g(x)}x∈X ∈ Span(A,B) and {h(y); k(y)}y∈Y ∈ Span(B,A)
be mutual inverses. This means that

{f(x); g(x)}x∈X # {h(y); k(y)}y∈Y = {f(x); k(y)}g(x)=h(y)x,y = {a; a}a∈A,

{h(y); k(y)}y∈Y # {f(x); g(x)}x∈X = {h(y); g(x)}k(y)=f(x)x,y = {b; b}b∈B .
In turn, this implies the existence of variable changes (αX , αY) : A → X ×B Y
and (βY , βX) : B → Y ×A X such that they are the inverses of (f, k) and (g, h)
respectively.

We can thus write the spans as having the identity on the left leg.

{f(x); g(x)}x∈X = {f(αX(a)); g(αX(a))}a∈A = {a; g(αX(a))}a∈A.

{h(y); k(y)}y∈Y = {h(βY (b)); k(βY (b))}b∈B = {b; k(βY (b))}b∈B .
Finally, composing them again, we get that (g #αX) and (k #βY) must be mutual
inverses, thus isomorphisms.

32 Di Lavore, Gianola, Román, Sabadini, Sobociński

We are now ready to prove the main result. The following Lemma 4.11 proves
that we can translate stateful spans to spans of graphs. The main Theorem 4.12
follows from it.

Lemma 4.11. Let C be a category with all finite limits. The following assign-
ment of stateful processes over Span(C) to morphisms of Span(Graph(C)) is
well-defined.

K

S

∣∣∣∣∣∣∣∣

E

S ×A S ×B

(s,f) (t,g)

 :=

A E B

1 S 1

ts

f g

Proof. We first check that two isomorphic spans are sent to isomorphic spans
of graphs. Let

{(s(e), f(e)); (t(e), g(e))}e∈E ∈ Span(S ×A,S ×B) and

{(s′(e′), f ′(e′)); (t′(e′), g′(e′))}e′∈E′ ∈ Span(S ×A,S ×B)

be two spans that are isomorphic with the variable change φ : E ∼= E′. Then,
(φ, id) is an isomorphism of spans of graphs, also making the relevant diagram
commute (Figure 25).

E

S ×A S ×B

E′

(s,f) (t,g)

φ

(s′,f ′) (t′,g′)

A E E′ B

1 S S 1

φf

ts

g

t′

f ′

s′

g′

id

Fig. 25: Isomorphic spans result in isomorphic spans of graphs.

We show now that the assignment preserves the equivalence relation of state-
ful processes. Isomorphisms in a category of spans are precisely spans whose
two legs are isomorphisms (by Proposition 4.10, or the more general result
of [44]). This means that an isomorphism in Span(Set) can be always rewritten
as {s;φ(s)}s∈S ∈ Span(S, T), where the left leg is an identity and the right
leg is φ : S → T , some isomorphism. Its inverse can be written analogously as
T ← S → S. In order to prove that the quotient relation induced by the feed-
back is preserved, we need to check that equivalent spans of sets are sent to
isomorphic spans of graphs. If two spans are equivalent with the variable change
φ : S ∼= T , then the corresponding graphs are isomorphic with the isomorphism
of graphs (id, φ), see Figure 26.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 33

· E ·

T ×A S ×A S ×B T ×B

φ×id (s,a) (t,b) φ×id

A E E B

1 S T 1

ida

ts

b

t#φ

a

s#φ
b

h

Fig. 26: Equivalent spans result in isomorphic spans of graphs.

Theorem 4.12. There exists an isomorphism of categories St(Span(Set)) ∼=
Span(Graph)∗. That is, the free feedback category over Span(Set) is isomor-

phic to the full subcategory of Span(Graph) given by single-vertex graphs.

Proof. We prove that there is a fully faithful functor K : St(Span(Set)) →
Span(Graph) defined on objects as K(A) = (A ⇒ 1) and defined on mor-

phisms as in Lemma 4.11.
We now show that K is functorial, preserving composition and identities.

The identity morphism on A in St(Span(Set)) has state space 1, so it is a span
1×A← A→ 1×A and it is sent to the identity span on the graph A⇒ 1.

Composition is also preserved. Let us consider two stateful spans

{(s(e), a(e)); (s′(e), b(e))}e∈E ∈ Span(S ×A,S ×B) and

{(t(f), b′(f)); (t′(f), c(f))}f∈F ∈ Span(S ×B,S × C)

By Proposition 4.9, their composition is given by the span

{(s(e), t(f), a(e)); (s′(e), t′(f), c(f))}b(e)=b
′(f)

(e,f)∈E×F ∈ Span(S × T ×A,S × T × C)

where the head E ×B F is the pullback of b and b′.

E ×B F

E S × T F

A S B T C

1 1 1

πE πF

a

b

πS πT
c

b′

Fig. 27: Pullback of graphs.

We have composed two stateful spans and we want to show that the graph
corresponding to their composition is the pullback of the graphs corresponding

34 Di Lavore, Gianola, Román, Sabadini, Sobociński

to them. Computing a pullback of graphs can be done separately on edges and
vertices, as graphs form a presheaf category (see Figure 27). Note how the re-
sulting graph is precisely the graph corresponding, under the assignment K, to
the stateful span computed above.

We have shown that K is a functor. The final step is to show that it is
fully-faithful. We can see that it is full: every span of single-vertex graphs given
by {f(e); g(e)}e∈E ∈ Span(A,B) and s, t : E ⇒ S is the image of some span,
namely

{s(e), f(e); t(e), g(e)}e∈E ∈ Span(S ×A,S ×B).

Let us check it is also faithful. Suppose that two morphisms in St(Span(Set)),
S × A ← E → S × B and S′ × A ← E′ → S′ × B, are sent to equivalent spans
of graphs, i.e. there exist h : E ∼= E′ and k : S′ ∼= S making the diagrams in
Figure 28 commute.

A E E′ B

1 S S′ 1

ts

ha

b

t′s′

a′

b′

k

Fig. 28: Equivalent spans of graphs.

The isomorphism k makes the following spans equivalent as stateful processes.

S ×A←E → S ×B
S′ ×A←E → S′ ×B

Moreover, the isomorphism h makes the following spans equivalent as spans,
showing faithfullness of K.

S′ ×A←E → S′ ×B
S′ ×A←E′ → S′ ×B

We have shown that there exists a fully-faithful functor from the free feedback
category over Span(Set) to the category Span(Graph) of spans of graphs.
The functor restricts to an equivalence between St(Span(Set)) and the full
subcategory of Span(Graph) on single-vertex graphs. It is moreover bijective
on objects, giving an isomorphism of categories.

Example 4.13. The characterization Span(Graph)∗ ∼= St(Span(Set)) that we
prove in Theorem 4.12 lifts the inclusion Set → Span(Set) to a feedback pre-
serving functor Mealy→ Span(Graph)∗. This inclusion embeds a determinis-
tic transition system into the graph that determines it.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 35

Example 4.14. Following from Remark 3.12, we present an example of spans of
graphs that would be equated if we assumed the sliding axiom (A5) of feedback
categories for arbitrary morphisms rather than just isomorphisms. Consider the
spans of sets α : W → V and h : V →W ×B as in Figure 29, where V = {v1, v2}
and W = {w}. Depending on where the feedback operation is applied, we obtain
two different spans of graphs, g = fbkV (h#(α⊗id)) and f = fbkW ((α⊗id)#h): the
first one contains an additional transition. If we were to impose that the sliding
axiom holds for non-isomorphisms, we could erase this additional transition, and
obtain that f = g by sliding α through the feedback loop.

g =

v1

v2

1

0

, f = w

0

, h =

v1

v2

e1

e2

(w, 0)

(w, 1) , α =

v1

v2

aw

Fig. 29: Spans of graphs that would be equated by a stronger notion of equiva-
lence: g = fbk(h # (α⊗ id)) ∼ fbk((α⊗ id) # h) = f .

4.4 Cospan(Graph) as a Feedback Category

Theorem 4.12 can be generalized to any category C with finite limits, where we
can define graphs and spans of them.

A graph in a category C is given by two objects, E and V , and two morphisms
in C, the source and the target s, t : E → V . A morphism of graphs α : G→ G′

in C is a pair of morphisms, αE : E → E′ and αV : V → V ′, in C that commute
with the sources and the targets. In categorical terms, these can be reformulated
as functors and natural transformations.

Definition 4.15. Let C be a category with finite limits. A graph in C is a
functor from the diagram (•⇒ •) to C. A morphism of graphs in C is a natural
transformation between the corresponding functors. Graphs in C form a category
Graph(C).

Categories of functors into C have all the limits that C has [40]. We can then
form the category Span(Graph(C)) and take its full subcategory on objects of
the form A⇒ 1, i.e. Span(Graph(C))∗, to obtain:

Theorem 4.16. There exists an isomorphism of categories St(Span(C)) ∼=
Span(Graph(C))∗. That is, the free feedback category over Span(C) is equiv-

alent to the full subcategory on Span(Graph(C)) given by single-vertex graphs.

Cospan(Graph)∗ is the dual algebra to Span(Graph)∗. Its morphisms rep-
resent graphs with discrete boundaries: while, in Span(Graph)∗, each transition
in the graph is assigned a boundary behavior, a morphism in Cospan(Graph)∗

36 Di Lavore, Gianola, Román, Sabadini, Sobociński

is a graph where some vertices are marked as left boundary or right bound-
ary vertices. This allows graphs to be composed by identifying these boundary
vertices.

Definition 4.17. A graph with discrete boundaries g : X → Y is given by a
graph G = (s, t : E ⇒ V) and two functions, l : X → V and r : Y → V , marking
the boundary vertices.

Example 4.18. We represent the legs of a cospan as dashed arrows pointing to
some vertices of the apex graph.

The composition of the above cospans of graphs is given by

,

where the vertices in the common boundary have been identified.

Cospan(Graph)∗ can be also characterized as a free feedback category.
We know that Cospan(Set) ∼= Span(Setop), we note that Graph(Setop) ∼=
Graphop(Set) (which has the effect of flipping edges and vertices), and we can
use Theorem 4.16 because Set has all finite colimits. The explicit assignment is
similar to the one shown in Lemma 4.11.

K

S

∣∣∣∣∣∣∣∣

S

E +A E +B

[t|a] [s|b]

 :=

A S B

0 E 0

a b

st

Corollary 4.19. There is an isomorphism

St(Cospan(Set)) ∼= Cospan(Graph)∗.

Cospan(Graph) is also compact closed and, in particular, traced. As in the
case of Span(Graph), the feedback structure given by the universal property is
different from the trace. In the case of Cospan(Graph), tracing has the effect
of identifying the output and input vertices of the graph; while feedback adds
an additional edge from the output to the input vertices.

Example 4.20. Tracing the cospan of a one-edge graph identifies the two vertices
making it into a self-loop. On the other hand, taking feedback of the same cospan
has the effect of adding another edge from the right boundary to the left one.

tr() = fbk() =

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 37

4.5 Syntactical Presentation of Cospan(FinGraph)

The observation in Proposition 3.7 has an important consequence in the case of
finite sets. We write FinGraph for Graph(FinSet). Cospan(FinSet) is the
generic special commutative Frobenius algebra [38], meaning that any morphism
written out of the operations of a special commutative Frobenius monoid and
the structure of a symmetric monoidal category is precisely a cospan of finite
sets. Figure 30 represents the generators and the axioms of the generic special
commutative Frobenius monoid.

= = =

= = =

= =

Fig. 30: Generators and axioms of the generic special commutative Frobenius
monoid.

But we also know that Cospan(FinSet), with an added generator to its
PROP structure [7] is St(Cospan(FinSet)), or, equivalently, Cospan(FinGraph).
This means that any morphism written out of the operations of a special com-
mutative Frobenius algebra plus a freely added generator of type (∂) : 1 → 1
is a morphism in Cospan(FinGraph)∗. This way, we recover one of the main
results of [48] as a direct corollary of our characterization.

Proposition 4.21 (Proposition 3.2 of [48]). Cospan(FinGraph)∗ is the
generic special commutative Frobenius monoid with an added generator.

Proof. It is known that the category Cospan(FinSet) is the generic special
commutative Frobenius algebra [38]. Adding a free generator (∂) : 1 → 1 to
its PROP structure corresponds to adding a family (∂)n : n → n with the
conditions on Proposition 3.7. Now, Proposition 3.7 implies that adding such a
generator to Cospan(FinSet) results in St(Cospan(FinSet)). Finally, we use
Theorem 4.12 to conclude that St(Cospan(FinSet)) ∼= Cospan(FinGraph)∗.

Example 4.22. The delay generator ∂ : 1 → 1 in Cospan(FinGraph)∗ can
be interpreted as a single edge. Thus, we draw it as : 1→ 1. The cospans

38 Di Lavore, Gianola, Román, Sabadini, Sobociński

of graphs in Example 4.18 are represented by the string diagrams

and .

Their composition is

.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 39

5 Structured state spaces

This section extends the framework of feedback categories from mere transition
systems to automata with initial and final states. In order to achieve this, we
generalize the feedback construction to deal with a richer structure. The key
ingredient in the generalization of feedback categories is a close examination of
the sliding axiom: deciding which processes can be “slid” determines the notion
of equality we want to apply.

5.1 Structured Feedback Categories

In order to capture automata, the state space S needs to be equipped with
“extra structure”. This is achieved by letting the state space live in a different
category S from the base category C and by having a way of “forgetting” the
extra structure it carries through a monoidal functor R : S→ C.

A structured feedback operator on C, then, takes a morphism acting on a
structured state space (Figure 31).

f : RS ⊗A→ RS ⊗B
fbkS(f) : A→ B

Fig. 31: Type of the operator fbkS(•).

Definition 5.1 (Structured feedback category). A structured feedback cat-
egory is a symmetric monoidal category (C,⊗, I, αC, λC, ρC) together with a
symmetric monoidal category, (S,�, J, αS, λS, ρS), representing structured state
spaces, and a symmetric monoidal functor (R, ε, µ) : S→ C endowed with an op-
erator fbkS : C(RS⊗A,RS⊗B)→ C(A,B), which satisfies the following axioms
(B1-B5).

(B1). Tightening. For every S ∈ S, every morphism f : RS ⊗ A → RS ⊗ B
and every pair of morphisms u : A′ → A and v : B → B′,

u # fbkS(f) # v = fbkS((id⊗ u) # f # (id⊗ v)).

(B2). Vanishing. For every f : A→ B,

fbkJ((ε−1⊗ id) # f # (ε⊗ id)) = f.

(B3). Joining. For every S, T ∈ S and every morphism f : RS ⊗ RT ⊗ A →
RS ⊗ RT ⊗B,

fbkT (fbkS(f)) = fbkS⊗T ((µ−1⊗ id) # f # (µ⊗ id)).

(B4). Strength. For every S ∈ S, every morphism f : RS ⊗A→ RS ⊗B and
every morphism g : A′ → B′,

fbkS(f)⊗ g = fbkS(f ⊗ g).

40 Di Lavore, Gianola, Román, Sabadini, Sobociński

(B5). Sliding. For every S, T ∈ S, every f : RT ⊗ A → RS ⊗ B and every
h : S → T in S,

fbkT (f # (Rh⊗ id)) = fbkS((Rh⊗ id) # f).

Remark 5.2. The sliding axiom encodes the fact that applying a transformation
to the state space h : S → T just before computing the next state should be
essentially the same as applying the same transformation to the state space just
before retrieving the current state. In the particular case where all transforma-
tions are asked to be reversible (i.e. isomorphisms)8, this sliding axiom (B5)
particularizes to the sliding axiom of plain feedback categories (A5).

Definition 5.3 (Structured feedback functor). A structured feedback func-
tor (F,G) : C → C′ between two structured feedback categories (C,S,R, fbk)
and (C′,S′,R′, fbk′) is a pair of symmetric monoidal functors, (F, ε, µ) and
(G, εG, µG), with types F : C→ C′ and G : S→ S′ such that R #F = G #R′ and

F (fbkS(f)) = fbk′GS(µ # Ff # µ−1).

We write SFeedback for the category of (small) structured feedback categories
and structured feedback functors. There is a forgetful functor U : SFeedback →
SymMon.

5.2 Structured St(•) Construction

In the same way that the free feedback category was realized by stateful pro-
cesses, the free structured feedback category is realized by stateful processes with
a structured state space S ∈ S. A functor R : S→ C forgets the extra structure
of this space.

Following the analogy, stateful processes with structured state space are pairs
(S | f) consisting of a structured state space S ∈ S and a morphism f : RS⊗A→
RS ⊗ B. We shall consider morphisms up to sliding of their state space, as in
Figure 32.

f

A

RT

B

RS

Rh
RT

= f

A

RS

B

RT

Rh
RS

Fig. 32: Equivalence of structured stateful processes. We depict structured state-
ful processes by marking the state space.

Definition 5.4 (Category of structured stateful processes). Consider a
pair of symmetric monoidal categories (C,⊗, I, αC, λC, ρC) and (S,�, J, αS, λS, ρS)
and a symmetric monoidal functor (R, ε, µ) : S → C. We write St(C,R) for the

8 Here, S is the subcategory of isomorphisms of C and R is the inclusion functor.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 41

category with the objects of C but where morphisms A → B are pairs (S | f)
consisting of a state space S ∈ S and a morphism f : RS ⊗ A → RS ⊗ B. We
consider morphisms up to equivalence of their state spaces, where the equivalence
relation is generated by

(S | (Rh⊗ id) # f) ∼S (T | f # (Rh⊗ id)) for any h : S → T.

Identities, composition, monoidal product and the feedback operator store(•) are
defined in analogous ways as for stateful processes (Definition 3.9). When de-
picting a structured stateful process (Figure 32) we mark the state strings.

Remark 5.5. In other words, structured stateful processes are elements of the fol-
lowing coproduct quotiented by the smallest equivalence relation (∼S) satisfying
sliding: ((Rh⊗ id) # f) ∼S (f # (Rh⊗ id)).

St(C,R)(X,Y) :=

(∑

S∈S
C(RS ⊗A,RS ⊗B)

)
/

(∼S).

This quotient is a particular form of colimit called a coend [40].

Repeating the proof from Katis, Sabadini and Walters [33] in this generalized
setting, we can show that structured stateful processes form the free structured
feedback category.

Theorem 5.6. The category St(C,R), endowed with the store(•) operator, is
the free structured feedback category over a symmetric monoidal category C with
a symmetric monoidal functor R : S→ C.

5.3 Categories of Automata

Let us present classical automata as an example of the construction of structured
feedback. Automata have a structured state space where a particular state is
considered the “initial state”, and a subset of states are considered “final”. We
can canonically recover a suitable category of automata as the free feedback
category over these structured spaces.

Definition 5.7. An automaton state space (S, iS , fS) is a finite set S together
with an initial state iS ∈ S and a subset of final states fS : S → 2. The product
of two automaton state spaces, (S, iS , fS) and (T, iT , fT), is the state space (S×
T, (iS , iT), fS∧fT), where the final states are pairs of final states, (fS∧fT)(s, t) =
fS(s)∧fT (t). A morphism of automaton state spaces α : (S, iS , fS)→ (T, iT , fT)
is a function α : S → T such that iS # α = iT and fS = α # fT . Automaton state
spaces form a symmetric monoidal category, AutSt.

Remark 5.8. As a consequence, an isomorphism of automata state spaces

α : (S, iS , fS) ∼= (T, iT , fT)

is an isomorphism α : S ∼= T such that iS # α = iT and fS = α # fT . These form
a subcategory Iso(AutSt) with forgetful functors UIso : Iso(AutSt)→ FinSet
and UAut : Iso(AutSt)→ Span(FinSet).

42 Di Lavore, Gianola, Román, Sabadini, Sobociński

Definition 5.9. A Mealy deterministic finite automaton (S,A,B, iS , fS , tS) is
given by a finite set of states S, a finite alphabet of input symbols A and a
finite alphabet of output symbols B, an initial state iS ∈ S, a set of final states
fS : S → 2, and a transition function tS : S × A → S × B. The product of two
deterministic finite automata,

(S,A,B, iS , fS , tS) and (S′, A′, B′, iS′ , fS′ , tS′),

is the automaton (S×T,A,C, (iS , iS′), (fS∧fS′), (tS×tS′)), where the transition
function computes a pair of independent transitions,

(tS × tS′)(s, s′, a, a′) = (tS(s, a), tS′(s
′, a′)).

The sequential synchronization of two deterministic finite automata,

(S,A,B, iS , fS , tS) and (T,B,C, iT , fT , tT),

is the automaton (S×T,A,C, (iS , iT), (fS ∧ fT), (tS ∧ tT)), where the transition
function (tS∧tT) uses the output of the first transition as the input of the second

(tS ∧ tT)(s, t, a) = (s′, t′, c) where tS(s, a) = (s′, b) and tT (t, b) = (t′, c).

We consider Mealy deterministic automata up to isomorphism of their state
space. Mealy deterministic finite automata form a symmetric monoidal category,
MealyAut, with sequential composition and product as defined above.

This construction, together with the results of Section 5.2, leads to the fol-
lowing result.

Proposition 5.10. The category of Mealy deterministic finite automata is the
free structured feedback category over the isomorphisms of automaton state spaces
UAut : Iso(AutSt)→ FinSet, that is,

MealyAut ∼= St(FinSet,UAut).

5.4 Automata in Span(Graph)

Our final construction is the canonical category of automata over the algebra
of predicates given by spans. These automata are analogous to the previous
transition systems in Span(Graph)∗, but their state space contains an initial
state and a set of final states. A similar definition has appeared previously in
the literature for the modeling of Petri nets [46].

Definition 5.11. A span automaton with left labels A and right labels B

X = (EX , SX , A,B, sX , tX , lX , rX , iX , fX)

is given by a finite set of states SX , a finite set of transitions EX with source
and target sX , tX : EX → SX and with left lX : EX → A and right rX : EX → B

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 43

labels, an initial state iX ∈ SX , and a subset of final states fX : SX → 2. The
product of two span automata

X = (EX , SX , A,B, sX , tX , lX , rX , iX , fX) and

Y = (EY , SY , A
′, B′, sY , tY , lX , rX , iY , fY),

is given by the component-wise product

X⊗Y := (EX × EY , SX × SY , A×A′, B ×B′,
sX × sY , tX × tY , lX × lY , rX × rY , iX × iY , fX ∧ fY).

The composition of two span automata

X = (EX , SX , A,B, sX , tX , lX , rX , iX , fX) and

Y = (EY , SY , B,C, sY , tY , lX , rX , iY , fY),

is given by a pullback

X # Y := (EX ×B EY , SX ×SY , A,C, sX × sY , tX × tY , lX , rY , iX × iY , fX ∧ fY),

where EX×BEY is the pullback of EX
rX→ B

lY← EY . We consider span automata
up to isomorphism of their state space. Span automata form a symmetric mo-
noidal category SpanAut with sequential composition and the monoidal product
defined above.

This construction, together with the results of Section 5.2, leads to the fol-
lowing result.

Proposition 5.12. The category of span automata is the free structured feed-
back category over the category of spans with the inclusion functor from automa-
ton state spaces, UAutSpan : Iso(AutSt)→ Span(FinSet), that is,

SpanAut ∼= St(Span(FinSet),UAutSpan).

Example 5.13. By the universal property of the St(•) construction, each Mealy
automaton in MealyAut functorially induces a span automaton in SpanAut
whose graph is the graph of the Mealy automaton.

Consider the following Mealy automaton X in Figure 33, left. It has a state
space SX = {0, 1, 2}, left labels A = {a, b} and trivial right labels B = 1, with
initial state iX = 0 and a unique final state fX(2) = true, while fX(0) =
fX(1) = false. Its transition function is given by tX(0, a) = 1, tX(0, b) = 2,
tX(1, a) = 2, tX(1, b) = 1, tX(2, a) = 1 and tX(2, b) = 1.

The corresponding span automaton sX (Figure 33, right) is not only the
transition system, but also the markings for initial and final state. Explicitly, its
set of edges – or transitions – is given by tuples

EsX = {(0, a, 1), (0, b, 0), (1, a, 1), (1, b, 2), (2, a, 1), (2, b, 0)},
its state space is again SsX = {0, 1, 2}, its left and right boundaries are again
A = {a, b} and B = 1, with initial state iX = 0 and a unique final state
fX(2) = true, while fX(0) = fX(1) = false.

44 Di Lavore, Gianola, Román, Sabadini, Sobociński

0

1

2

a

b

a

a
b

b
a

a

a

b

b

b

Fig. 33: Mealy automaton and associated span automaton.

6 Conclusions and Further Work

6.1 Discussion

We began this manuscript by pointing out the fragmented landscape of mod-
els for concurrent software. We have now formally proven that any theory of
predicates with a notion of feedback that accepts reasonable axioms (A1-A5)
must already contain a simulation of Span(Graph)∗: the algebra of open tran-
sition systems of Katis, Sabadini and Walters. This can be considered as being
surprising given the dearth of results that establish the canonicity of models
of concurrency. In this section we frame our contribution by expanding on its
relevance for the wider research landscape.

Why open transition systems? Transition systems are the mainstay of con-
currency theory: the firing semantics of a Petri net or the unfolding of the be-
haviour of a process algebra term are both important examples. In recent years
significant effort [46,20,7] has been devoted to developing the mathematical foun-
dations of compositional modelling. Roughly speaking, this means the study of
semantic foundations that include the ability to compose/decompose systems
– understood in a general sense – into more primitive components in a homo-
morphic/functorial way, so that the behaviour of the composite is determined
by that of the components. Conceptually, this is a strengthening of the founda-
tional computer science principle of modularity : our models do not merely need
modular descriptions, these descriptions have to correspond homomorphically
to a modular description of their behaviours. The Span(Graph)∗ algebra is an
application of the principle of compositionality for transition systems.

We live in an age of complexity, with enormous implications for modern
software development. Software is nowadays rarely about sandbox development
of a software product intended to be run on a single machine. Rather, software
engineering is evolving to a discipline that deals complex networks consisting
of interactions of libraries, services, APIs both locally and in the cloud. We
believe that compositional approaches, given that they are a tool to tame this
complexity, will become increasingly important in the future.

Conceptual implications From an applied point of view, our results inform
a minimal software architecture for a library that constructs and analyzes these

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 45

modular transition systems, that are canonical models of concurrency. For in-
stance, an object-oriented programmer may

• define a specific class for “theory of resources”, providing methods for the
fundamental operations of composing, tensoring, identities and swapping,
and providing subclasses for “resources” and “processes”, if necessary;

• implement an abstract method that computes the St(•) construction: this
method will take a theory of processes and instantiate the free feedback
category as a new theory of processes;

• work uniformly with multiple theories of processes and the theories of au-
tomata they generate, providing auxiliary methods (for reachability, connect-
edness, joining, . . .) that work across different theories of transition systems;

• thus, thanks to our results, obtain at the end of the day a graph – in
Span(Graph) – that can be understood as a transition system and ana-
lyzed with the same library.

A functional programmer may want to follow the architecture of the public
Haskell implementation of the ideas of this paper [47], where our running example
(Figure 1) is showcased.

The problem we solve is one of abstraction. When faced with the task of
implementing models for transition systems, we could be tempted to simply
implement each one of them separately. Our result shows that a much more
succinct choice is possible. Reducing the lines of code is important: transition
systems are usually formally analyzed to prove correctness; the less lines there
are to analyze in the core implementation, the easiest it will be to be sure of its
correctness.

Open transition systems allow us to construct transition systems from a few
building blocks; compositionality eases both implementation and verification.
Specifically, this could open an avenue to study the problem of compositional
verification, where the automatic analysis of a global system must be modularly
reduced to the analysis of its components.

6.2 Conclusion

We have characterized Span(Graph)∗, an algebra of open transition systems,
as the free feedback category over the category of spans of functions. To do so,
we have used the St(•) construction, characterized as the free feedback category
in [36]. We have given this characterization more generally, for any category C
with finite limits: the category Span(Graph(C))∗ of spans of graphs in C is the
free feedback category over the category of spans in C. Finally, we have defined
a generalization of feedback categories to capture automata with initial and final
states.

Further work will look at timed [11] and probabilistic [13,14] versions of the
Cospan/Span model to connect it with recent work on modeling probabilistic
programs with feedback categories [16]. We also plan to investigate the relation-
ship between generalized feedback categories (Section 5) to approaches based on
guarded recursion [26] and coalgebras [12,43].

46 Di Lavore, Gianola, Román, Sabadini, Sobociński

References

1. Samson Abramsky. What are the fundamental structures of concurrency? We still
don’t know! CoRR, abs/1401.4973, 2014. URL: http://arxiv.org/abs/1401.4
973, arXiv:1401.4973.

2. Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Elgot algebras. Log. Methods Comput.
Sci., 2(5), 2006. doi:10.2168/LMCS-2(5:4)2006.

3. John C. Baez and Kenny Courser. Structured cospans. CoRR, abs/1911.04630,
2019.

4. Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category
Seminar, pages 1–77. Springer, 1967.

5. Nick Benton and Martin Hyland. Traced premonoidal categories. RAIRO Theor.
Informatics Appl., 37(4):273–299, 2003. doi:10.1051/ita:2003020.

6. Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational Logic
of Iterative Processes. EATCS Monographs on Theoretical Computer Science.
Springer, 1993. doi:10.1007/978-3-642-78034-9.

7. Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawe l Sobociński, and Fabio
Zanasi. Diagrammatic algebra: from linear to concurrent systems. Proc. ACM
Program. Lang., 3(POPL):25:1–25:28, 2019. doi:10.1145/3290338.

8. Filippo Bonchi, Pawe l Sobociński, and Fabio Zanasi. The Calculus of Signal Flow
Diagrams I: Linear Relations on Streams. Information and Computation, 252:2–29,
2017. doi:10.1016/j.ic.2016.03.002.

9. Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A connector algebra for
P/T nets interactions. In Concurrency Theory (CONCUR ‘11), volume 6901 of
LNCS, pages 312–326. Springer, 2011. doi:10.1007/978-3-642-23217-6 21.

10. Aurelio Carboni and Robert F. C. Walters. Cartesian Bicategories I. Journal of
pure and applied algebra, 49(1-2):11–32, 1987.

11. Alessandra Cherubini, Nicoletta Sabadini, and Robert F. C. Walters. Timing in the
Cospan/Span model. Electronic Notes in Theoretical Computer Science, 104:81–97,
2004.

12. Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. Pro-
gramming and reasoning with guarded recursion for coinductive types. In An-
drew M. Pitts, editor, Foundations of Software Science and Computation Struc-
tures - 18th International Conference, FoSSaCS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, volume 9034 of Lecture Notes in Computer Science,
pages 407–421. Springer, 2015. doi:10.1007/978-3-662-46678-0\ 26.

13. Luisa de Francesco Albasini, Nicoletta Sabadini, and Robert F. C. Walters. The
compositional construction of Markov processes. Applied Categorical Structures,
19(1):425–437, 2011.

14. Luisa de Francesco Albasini, Nicoletta Sabadini, and Robert F. C. Walters. The
compositional construction of Markov processes II. RAIRO-Theoretical Informatics
and applications, 45(1):117–142, 2011.

15. Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and session types:
An overview. In Cosimo Laneve and Jianwen Su, editors, Web Services and Formal
Methods, 6th International Workshop, WS-FM 2009, Bologna, Italy, September
4-5, 2009, Revised Selected Papers, volume 6194 of Lecture Notes in Computer
Science, pages 1–28. Springer, 2009. doi:10.1007/978-3-642-14458-5\ 1.

16. Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal streams for
dataflow programming. In Proceedings of the 37th Annual ACM/IEEE Symposium

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 47

on Logic in Computer Science, LICS ’22, New York, NY, USA, 2022. Association
for Computing Machinery. doi:10.1145/3531130.3533365.

17. William Henry Eccles and Frank Wilfred Jordan. Improvements in ionic relays.
British patent number: GB 148582, 1918.

18. Calvin C. Elgot. Monadic computation and iterative algebraic theories. In Studies
in Logic and the Foundations of Mathematics, volume 80, pages 175–230. Elsevier,
1975.

19. Brendan Fong. Decorated cospans. Theory and Applications of Categories,
30(33):1096–1120, 2015.

20. Brendan Fong and David I Spivak. An invitation to applied category theory: seven
sketches in compositionality. Cambridge University Press, 2019.

21. Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Sabadini,
Filippo Schiavio, and Simone Tini. CospanSpan(Graph): a compositional descrip-
tion of the heart system. Fundam. Informaticae, 171(1-4):221–237, 2020.

22. Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Saba-
dini, and Simone Tini. Compositional modeling of biological systems in
CospanSpan(Graph). In Proc. of ICTCS 2020. CEUR-WS, To appear.

23. Alessandro Gianola, Stefano Kasangian, and Nicoletta Sabadini.
Cospan/Span(Graph): an Algebra for Open, Reconfigurable Automata Net-
works. In Filippo Bonchi and Barbara König, editors, 7th Conference on Algebra
and Coalgebra in Computer Science, CALCO 2017, June 12-16, 2017, Ljubljana,
Slovenia, volume 72 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.CALCO.2017.2.

24. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.101
6/0304-3975(87)90045-4.

25. Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics,
92(69-108):6, 1989.

26. Sergey Goncharov and Lutz Schröder. Guarded traced categories. In Christel
Baier and Ugo Dal Lago, editors, Foundations of Software Science and Com-
putation Structures - 21st International Conference, FOSSACS 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10803
of Lecture Notes in Computer Science, pages 313–330. Springer, 2018. doi:

10.1007/978-3-319-89366-2\ 17.
27. Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal categories

and models of cyclic lambda calculi. In Philippe de Groote, editor, Typed Lambda
Calculi and Applications, Third International Conference on Typed Lambda Calculi
and Applications, TLCA ’97, Nancy, France, April 2-4, 1997, Proceedings, volume
1210 of Lecture Notes in Computer Science, pages 196–213. Springer, 1997. doi:

10.1007/3-540-62688-3\ 37.
28. Masahito Hasegawa. The uniformity principle on traced monoidal categories. In

Richard Blute and Peter Selinger, editors, Category Theory and Computer Science,
CTCS 2002, Ottawa, Canada, August 15-17, 2002, volume 69 of Electronic Notes
in Theoretical Computer Science, pages 137–155. Elsevier, 2002. doi:10.1016/S1

571-0661(04)80563-2.
29. Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of interac-

tion: from coalgebraic components to algebraic effects. In Thomas A. Henzinger and
Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference
on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria,
July 14 - 18, 2014, pages 52:1–52:10. ACM, 2014. doi:10.1145/2603088.2603124.

48 Di Lavore, Gianola, Román, Sabadini, Sobociński

30. André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 119:447 – 468, 04 1996.
doi:10.1017/S0305004100074338.

31. Rudolf Emil Kalman, Peter L. Falb, and Michael A. Arbib. Topics in mathematical
system theory, volume 1. McGraw-Hill New York, 1969.

32. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Bicategories of
processes. Journal of Pure and Applied Algebra, 115(2):141–178, 1997.

33. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Span(Graph):
A Categorial Algebra of Transition Systems. In Michael Johnson, editor, Alge-
braic Methodology and Software Technology, 6th International Conference, AMAST
’97, Sydney, Australia, December 13-17, 1997, Proceedings, volume 1349 of Lecture
Notes in Computer Science, pages 307–321. Springer, 1997. doi:10.1007/BFb000

0479.

34. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. On the algebra of
feedback and systems with boundary. In Rendiconti del Seminario Matematico di
Palermo, 1999.

35. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. A formaliza-
tion of the IWIM model. In António Porto and Gruia-Catalin Roman, edi-
tors, Coordination Languages and Models, 4th International Conference, COOR-
DINATION 2000, Limassol, Cyprus, September 11-13, 2000, Proceedings, vol-
ume 1906 of Lecture Notes in Computer Science, pages 267–283. Springer, 2000.
doi:10.1007/3-540-45263-X\ 17.

36. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feedback, trace
and fixed-point semantics. RAIRO-Theor. Informatics Appl., 36(2):181–194, 2002.
doi:10.1051/ita:2002009.

37. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. A Process Algebra
for the Span(Graph) Model of Concurrency. arXiv preprint arXiv:0904.3964, 2009.

38. Stephen Lack. Composing PROPs. Theory and Applications of Categories,
13(9):147–163, 2004.

39. Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Pawe l
Sobociński. A Canonical Algebra of Open Transition Systems. In Gwen Salaün and
Anton Wijs, editors, Formal Aspects of Component Software - 17th International
Conference, FACS 2021, Virtual Event, October 28-29, 2021, Proceedings, volume
13077 of Lecture Notes in Computer Science, pages 63–81. Springer, 2021. doi:

10.1007/978-3-030-90636-8\ 4.

40. Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts
in Mathematics. Springer New York, 1978. doi:10.1007/978-1-4757-4721-8.

41. S. J. Mason. Feedback Theory - Some properties of signal flow graphs. Proceedings
of the Institute of Radio Engineers, 41(9):1144–1156, 1953. doi:10.1109/JRPROC

.1953.274449.

42. George H. Mealy. A method for synthesizing sequential circuits. The Bell System
Technical Journal, 34(5):1045–1079, 1955.

43. Stefan Milius and Tadeusz Litak. Guard your daggers and traces: Properties of
guarded (co-) recursion. Fundamenta Informaticae, 150(3-4):407–449, 2017.

44. Duško Pavlović. Maps I: relative to a factorisation system. Journal of Pure and
Applied Algebra, 99(1):9–34, 1995.

45. Kate Ponto and Michael Shulman. Traces in symmetric monoidal categories. Ex-
positiones Mathematicae, 32(3):248–273, 2014. URL: http://dx.doi.org/10.10
16/J.EXMATH.2013.12.003, doi:10.1016/j.exmath.2013.12.003.

Span(Graph): a Canonical Feedback Algebra of Open Transition Systems 49

46. Julian Rathke, Pawel Sobocinski, and Owen Stephens. Compositional Reachability
in Petri Nets. In Joël Ouaknine, Igor Potapov, and James Worrell, editors, Reach-
ability Problems - 8th International Workshop, RP 2014, Oxford, UK, September
22-24, 2014. Proceedings, volume 8762 of Lecture Notes in Computer Science, pages
230–243. Springer, 2014. doi:10.1007/978-3-319-11439-2\ 18.

47. Mario Román. Span graph via the state construction, 2022. URL: https://gith
ub.com/mroman42/feedback-span-graph.

48. Robert Rosebrugh, Nicoletta Sabadini, and Robert F. C. Walters. Generic com-
mutative separable algebras and cospans of graphs. Theory and applications of
categories, 15(6):164–177, 2005.

49. Nicoletta Sabadini, Filippo Schiavio, and Robert F. C. Walters. On the geometry
and algebra of networks with state. Theor. Comput. Sci., 664:144–163, 2017.

50. Peter Selinger. A survey of graphical languages for monoidal categories. In New
structures for physics, pages 289–355. Springer, 2010. doi:10.1007/978-3-642-

12821-9\ 4.
51. Claude E. Shannon. The Theory and Design of Linear Differential Equation Ma-

chines. Bell Telephone Laboratories, 1942.
52. Pawe l Sobociński. A non-interleaving process calculus for multi-party synchroni-

sation. In 2nd Interaction and Concurrency Experience: Structured Interactions,
(ICE 2009), volume 12 of EPTCS, 2009. URL: http://users.ecs.soton.ac.uk/
ps/papers/ice09.pdf, doi:10.4204/eptcs.12.6.

53. Pawe l Sobociński. Representations of Petri net interactions. In Concurrency
Theory, 21th International Conference, (CONCUR 2010), volume 6269 of Lec-
ture Notes in Computer Science, pages 554–568. Springer, 2010. doi:10.1007/97

8-3-642-15375-4 38.

2. Monoidal Streams for Dataflow Programming

Elena Di Lavore, Giovanni de Felice, Mario Román
IEEE Symposium on Logic in Computer Science (LiCS, 2023)
Distinguished paper, Kleene Award to the best student paper

Abstract: We introduce monoidal streams: a generalization of causal stream
functions to monoidal categories. In the same way that streams provide seman-
tics to dataflow programming with pure functions, monoidal streams provide
semantics to dataflow programming with theories of processes represented by a
symmetric monoidal category. At the same time, monoidal streams form a feed-
back monoidal category, which can be used to interpret signal flow graphs. As
an example, we study a stochastic dataflow language.

Declaration: Hereby I declare that my contribution to this manuscript was to:
provide the main theorem and its proof and write most of the paper. The origi-
nal idea was worked out with Elena Di Lavore, who also wrote some parts of the
paper. The theorem characterizing stochastic processes was worked out together
with Giovanni di Felice.

Monoidal Streams for Dataflow Programming
Elena Di Lavore

Giovanni de Felice
Mario Román

Abstract
We introduce monoidal streams: a generalization of causal
stream functions to monoidal categories. They have a feed-
back structure that gives semantics to signal flow graphs. In
the same way that streams provide semantics to dataflow
programming with pure functions, monoidal streams pro-
vide semantics to dataflow programming with theories of
processes represented by a symmetric monoidal category.
As an example, we study a stochastic dataflow language.

Keywords: Monoidal stream, Stream, Monoidal category,
Dataflow programming, Feedback, Signal flow graph, Coal-
gebra, Stochastic process.

1 Introduction
Dataflow languages. Dataflow (or stream-based) pro-

gramming languages, such as Lucid [35, 77], follow a para-
digm in which every declaration represents an infinite list of
values: a stream [8, 75]. The following program in a Lucid-
like language (Figure 1) computes the Fibonacci sequence,
thanks to a Fby (“followed by”) operator.

fib = 0 Fby (fib + (1 Fby Wait(fib)))

Figure 1. The Fibonacci sequence is 0 followed by the Fibonacci
sequence plus the Fibonacci sequence preceded by a 1.

The control structure of dataflow programs is inspired
by signal flow graphs [8, 57, 69]. Signal flow graphs are dia-
grammatic specifications of processes with feedback loops,
widely used in control system engineering. In a dataflow
program, feedback loops represent how the current value of
a stream may depend on its previous values. For instance,
the previous program (Figure 1) corresponds to the signal
flow graph in Figure 2.

1

+
𝑓 𝑏𝑦

0

𝑓 𝑏𝑦

𝑤𝑎𝑖𝑡
fib = fbk(copy;

𝜕(1 × wait) × id;

𝜕(fby) × id;

𝜕(+);
0 × id;

fby;

copy)

Figure 2. Fibonacci: signal flow graph and morphism.

Monoidal categories. Any theory of processes that com-
pose sequentially and in parallel, satisfying reasonable axioms,
forms a monoidal category. Examples include functions [49],
probabilistic channels [19, 30], partial maps [21], database
queries [14], linear resource theories [23] and quantum pro-
cesses [2]. Signal flow graphs are the graphical syntax for
feedback monoidal categories [15, 16, 26, 33, 46]: they are
the string diagrams for any of these theories, extended with
feedback.
Yet, semantics of dataflow languages have been mostly

restricted to theories of pure functions [8, 24, 25, 58, 76]:
what are called cartesian monoidal categories. We claim that
this restriction is actually inessential; dataflow programs
may take semantics in non-cartesian monoidal categories,
exactly as their signal flow graphs do.
The present work provides this missing semantics: we

construct monoidal streams over a symmetric monoidal cat-
egory, which form a feedback monoidal category. Monoidal
streams model the values of a monoidal dataflow language,
in the same way that streams model the values of a clas-
sical dataflow language. This opens the door to stochastic,
effectful, or quantum dataflow languages. In particular, we
give semantics and string diagrams for a stochastic dataflow
programming language, where the following code can be run.

walk = 0 Fby (Uniform(−1, 1) + walk)

Figure 3. A stochastic dataflow program. A random walk is 0
followed by the random walk plus a stochastic stream of steps
to the left (-1) or to the right (1), sampled uniformly.

+0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓
walk = fbk(
𝜕(unif) ⊗ id;

0 ⊗ 𝜕(+);
fby;

copy)

Figure 4. Random walk: signal flow graph and morphism.

1.1 Contributions
Our main novel contribution is the definition of a feedback
monoidal category of monoidal streams over a symmetric
monoidal category (Stream, Definition 5.1 and theorem 5.10).

ar
X

iv
:2

20
2.

02
06

1v
1

 [
cs

.L
O

]
 4

 F
eb

 2
02

2

Elena Di Lavore, Giovanni de Felice, and Mario Román

Monoidal streams form a final coalgebra; for sufficiently well-
behaved monoidal categories (Definition 4.9), we give an
explicit construction of this coalgebra (Definition 4.7).

In cartesian categories, the causal functions of Uustalu and
Vene [75] (see also [72]) are a particular case of our monoidal
streams (Theorems 6.1 and 6.3). In the category of stochastic
functions, our construction captures the notion of controlled
stochastic process [27, 66] (Theorem 7.2).
In order to arrive to this definition, we unify the previ-

ous literature: we characterize the cartesian “intensional
stateful sequences” of Katsumata and Sprunger with a final
coalgebra (Theorem 2.5), and then “extensional stateful se-
quences” in terms of the “feedback monoidal categories” of
Katis, Sabadini and Walters [46] (Theorem 3.8). We justify
observational equivalence with a refined fixpoint equation
that employs coends (Theorem 4.11). We strictly generalize
“stateful sequences” from the cartesian to the monoidal case.

Finally, we extend a type theory of symmetric monoidal
categories with a feedback operator (Section 8) and we use
it as a stochastic dataflow programming language.

1.2 Related work
Coalgebraic streams. Uustalu and Vene [75] provide el-

egant comonadic semantics for a (cartesian) Lucid-like pro-
gramming language. We shall prove that their exact tech-
nique cannot be possibly extended to arbitrary monoidal cat-
egories (Theorem 6.1). However, we recover their semantics
as a particular case of our monoidal streams (Theorem 6.3).

Statefulmorphism sequences. Sprunger andKatsumata
constructed the category of stateful sequences in the carte-
sian case [73]. Our work is based on an unpublished work
by Román [65] that first exteneded this definition to the
symmetric monoidal case, using coends to justify extensional
equality. Shortly after, Carette, de Visme and Perdrix [18]
rederived this construction and applied it to the case of com-
pletely positive maps between Hilbert spaces, using (a priori)
a slightly different notion of equality. We synthetise some
of this previous work, we justify it for the first time using
coalgebra and we particularize it to some cases of interest.

Feedback. Feedback monoidal categories are a weaken-
ing of traced monoidal categories. The construction of the
free such categories is originally due to Katis, Sabadini and
Walters [46]. Feedback monoidal categories and their free
construction have been repurposed and rediscovered multi-
ple times in the literature [13, 32, 38, 44]. Di Lavore et al. [26]
summarize these uses and introduce delayed feedback.

General and dependent streams. Our work concerns
synchronous streams: those where, at each point in time
𝑡 = 0, 1, . . . , the stream process takes exactly one input and
produces exactly one output. This condition is important in
certain contexts like, for instance, real-time embedded sys-
tems; but it is not always present. The study of asynchronous

stream transformers and their universal properties is con-
siderably different [1], and we refer the reader to the recent
work of Garner [31] for a discussion on non-synchronous
streams. Finally, when we are concerned with dependent
streams indexed by time steps, a possible approach, when
our base category is a topos, is to use the topos of trees [9].

Categorical dataflow programming. Category theory
is a common tool of choice for dataflow programming [32,
56, 67]. In particular, profunctors and coends are used by
Hildebrandt, Panangaden and Winskel [37] to generalise a
model of non-deterministic dataflow, which has been the
main focus [51, 54, 60] outside cartesian categories.

1.3 Synopsis
This manuscript contains three main definitions in terms
of universal properties (intensional, extensional and observa-
tional streams, Definitions 2.2, 3.7 and 4.1); and three explicit
constructions for them (intensional, extensional and observa-
tional sequences, Definitions 2.4, 2.8 and 4.7). Each definition
is refined into the next one: each construction is a quotient-
ing of the previous one.

Sections 1.4 and 2.3 contain expository material on coalge-
bra and dinaturality. Section 2 presents intensional monoidal
streams. Section 3 introduces extensional monoidal streams
in terms of feedback monoidal categories. Section 4 intro-
duces the definitive observational equivalence and defines
monoidal streams. Section 5 constructs the feedback monoi-
dal category of monoidal streams. Sections 6 and 7 present
two examples: cartesian and stochastic streams. Section 8
introduces a type theory for feedback monoidal categories.

1.4 Prelude: Coalgebra
In this preparatory section, we introduce some background
material on coalgebra [3, 41, 67]. Coalgebra is the category-
theoretic study of stateful systems and infinite data-structures,
such as streams. These structures arise as final coalgebras:
universal solutions to certain functor equations.

Let us fix an endofunctor 𝐹 : C→ C through the section.

Definition 1.1. A coalgebra (𝑌, 𝛽) is an object 𝑌 ∈ C, to-
gether with a morphism 𝛽 : 𝑌 → 𝐹𝑌 . A coalgebra morphism
𝑔 : (𝑌, 𝛽) → (𝑌 ′, 𝛽 ′) is a morphism 𝑔 : 𝑌 → 𝑌 ′ such that
𝑔; 𝛽 ′ = 𝛽; 𝐹𝑔.

Coalgebras for an endofunctor form a category with coal-
gebra morphisms between them. A final coalgebra is a final
object in this category. As such, final coalgebras are unique
up to isomorphism when they exist.

Definition 1.2. A final coalgebra is a coalgebra (𝑍,𝛾) such
that for any other coalgebra (𝑌, 𝛽) there exists a unique
coalgebra morphism 𝑔 : (𝑌, 𝛽) → (𝑍,𝛾).

Our interest in final coalgebras derives from the fact that
they are canonical fixpoints of an endofunctor. Specifically,

Monoidal Streams for Dataflow Programming

Lambek’s theorem (Theorem 1.4) states that whenever the
final coalgebra exists, it is a fixpoint.

Definition 1.3. A fixpoint is a coalgebra (𝑌, 𝛽) such that
𝛽 : 𝑌 → 𝐹𝑌 is an isomorphism. A fixpoint morphism is a
coalgebra morphism between fixpoints: fixpoints and fix-
point morphisms form a full subcategory of the category of
coalgebras. A final fixpoint is a final object in this category.

Theorem 1.4 (Lambek, [50]). Final coalgebras are fixpoints.
As a consequence, when they exist, they are final fixpoints.

The last question before continuing is how to explicitly
construct a final coalgebra. This is answered by Adamek’s
theorem (Theorem 1.5). The reader may be familiar with
Kleene’s theorem for constructing fixpoints [74]: the least
fixpoint of a monotone function 𝑓 : 𝑋 → 𝑋 in a directed-
complete partial order (𝑋, ⩽) is the supremum of the chain
⊥ ⩽ 𝑓 (⊥) ⩽ 𝑓 (𝑓 (⊥)) ⩽ . . . , where ⊥ is the least element of
the partial order, whenever this supremum is preserved by
𝑓 . This same result can be categorified into a fixpoint theo-
rem for constructing final coalgebras: the directed-complete
poset becomes a category with 𝜔-chain limits; the mono-
tone function becomes an endofunctor; and the least element
becomes the final object.

Theorem 1.5 (Adamek, [4]). Let D be a category with a final
object 1 and𝜔-shaped limits. Let 𝐹 : D→ D be an endofunctor.
We write 𝐿 = lim𝑛 𝐹

𝑛1 for the limit of the following 𝜔-chain,
which is called the terminal sequence of 𝐹 .

1
!←− 𝐹1

𝐹 !←− 𝐹𝐹1
𝐹𝐹 !←− 𝐹𝐹𝐹1

𝐹𝐹𝐹 !←− . . .

Assume that 𝐹 preserves this limit, meaning that the canonical
morphism 𝐹𝐿 → 𝐿 is an isomorphism. Then, 𝐿 is the final
𝐹 -coalgebra.

2 Intensional Monoidal Streams
This section introduces a preliminary definition of monoidal
stream in terms of a fixpoint equation (in Figure 5). In later
sections, we refine both this definition and its characteriza-
tion into the definitive notion of monoidal stream.

Let (C, ⊗, 𝐼) be a fixed symmetric monoidal category.

2.1 The fixpoint equation
Classically, type-variant streams have a neat coinductive
definition [41, 67] that says:
“A stream of type A = (𝐴0, 𝐴1, . . .) is an element of 𝐴0

together with a stream of type A+ = (𝐴1, 𝐴2, . . .)”.
Formally, streams are the final fixpoint of the equation

S(𝐴0, 𝐴1, . . .) � 𝐴0 × S(𝐴1, 𝐴2, . . .);
and this fixpoint is computed to be S(A) = ∏∞

𝑛∈N 𝐴𝑛 .
In the same vein, we want to introduce not only streams

but stream processes over a fixed theory of processes.

“A stream process fromX = (𝑋0, 𝑋1, . . .) toY = (𝑌0, 𝑌1, . . .)
is a process from 𝑋0 to 𝑌0 communicating along a chan-
nel 𝑀 with a stream process from X+ = (𝑋1, 𝑋2, . . .) to
Y+ = (𝑌1, 𝑌2, . . .).”

Streams are recovered as stream processes on an empty in-
put, so we take this more general slogan as our preliminary
definition of monoidal stream (in Definition 2.2). Formally,
they are the final fixpoint of the equation in Figure 5.

T(X,Y) �
∑︁
𝑀 ∈C

hom (𝑋0, 𝑀 ⊗ 𝑌0) × T(𝑀 · X+,Y+).

Figure 5. Fixpoint equation for intensional streams.

Remark 2.1 (Notation). Let X ∈ [N,C] be a sequence of ob-
jects (𝑋0, 𝑋1, . . .). We writeX+ for its tail (𝑋1, 𝑋2, . . .). Given
𝑀 ∈ C, we write𝑀 ·X for the sequence (𝑀 ⊗𝑋0, 𝑋1, 𝑋2, . . .);
As a consequence, we write𝑀 · X+ for (𝑀 ⊗ 𝑋1, 𝑋2, 𝑋3, . . .).
Definition 2.2. The set of intensional monoidal streams
T: [N,C]𝑜𝑝 × [N,C] → Set, depending on inputs and out-
puts, is the final fixpoint of the equation in Figure 5.

Remark 2.3 (Initial fixpoint). There exists an obvious fixpoint
for the equation in Figure 5: the constant empty set. This
solution is the initial fixpoint, a minimal solution. The final
fixpoint will be realized by the set of intensional sequences.

2.2 Intensional sequences
We now construct the set of intensional streams explicitly
(Theorem 2.5). For this purpose, we generalize the “state-
ful morphism sequences” of Katsumata and Sprunger [73]
from cartesian to arbitrary symmetric monoidal categories
(Definition 2.4). We derive a novel characterization of these
“sequences” as the desired final fixpoint (Theorem 2.5).

In the work of Katsumata and Sprunger, a stateful se-
quence is a sequence of morphisms 𝑓𝑛 : 𝑀𝑛−1×𝑋𝑛 → 𝑀𝑛×𝑌𝑛
in a cartesian monoidal category. These morphisms repre-
sent a process at each point in time 𝑛 = 0, 1, 2, At each
step 𝑛, the process takes an input 𝑋𝑛 and, together with the
stored memory𝑀𝑛−1, produces some output 𝑌𝑛 and writes
to a new memory𝑀𝑛 . The memory is initially empty, with
𝑀−1 = 1 being the final object by convention. We extend
this definition to any symmetric monoidal category.

Definition 2.4. Let X and Y be two sequences of objects
representing inputs and outputs, respectively. An intensional
sequence is a sequence of objects (𝑀0, 𝑀1, . . .) together with
a sequence of morphisms

(𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛)𝑛∈N ,

where, by convention, 𝑀−1 = 𝐼 is the unit of the monoidal
category. In other words, the set of intensional sequences is

Int(X,Y) B
∑︁

𝑀 ∈[N,C]

∞∏
𝑛=0

hom (𝑀𝑛−1 ⊗ 𝑋𝑛, 𝑀𝑛 ⊗ 𝑌𝑛).

Elena Di Lavore, Giovanni de Felice, and Mario Román

We now prove that intensional sequences are the final fix-
point of the equation in Figure 5. The following Theorem 2.5
serves two purposes: it gives an explicit final solution to this
fixpoint equation and it gives a novel universal property to
intensional sequences.

Theorem 2.5. Intensional sequences are the explicit construc-
tion of intensional streams, T � Int. In other words, they are
a fixpoint of the equation in Figure 5, and they are the final
such one.

Proof sketch. It is known that categories of functors over sets,
such as [[N,C]𝑜𝑝 × [N,C], Set], have all limits. Adamek’s
theorem (Theorem 1.5) states that, if the following limit is a
fixpoint, it is indeed the final one.

lim
𝑛∈N

∑︁
𝑀0,...,𝑀𝑛

𝑛∏
𝑡=0

hom (𝑀𝑡−1 ⊗ 𝑋𝑡 , 𝑀𝑡 ⊗ 𝑌𝑡) (1)

Connected limits commute with coproducts and the limit of
the nth-product is the infinite product. Thus, Equation (1)
is isomorphic to Int(X,Y). It only remains to show that
Int(X,Y) is a fixpoint, which means it should be isomor-
phic to the following expression.
∑︁
𝑀0

hom (𝑋0, 𝑀0⊗𝑌0)×
∑︁

𝑀 ∈[N,C]

∞∏
𝑛=1

hom (𝑀𝑛−1⊗𝑋𝑛, 𝑀𝑛⊗𝑌𝑛).

(2)
Cartesian products distribute over coproducts, so Equation (2)
is again isomorphic to Int(X,Y). □

2.3 Interlude: Dinaturality
During the rest of this text, we deal with two different defini-
tions of what it means for two processes to be equal: extensio-
nal and observational equivalence, apart from pure intensional
equality. Fortunately, when working with functors of the
form 𝑃 : C𝑜𝑝 × C → Set, the so-called endoprofunctors, we
already have a canonical notion of equivalence.
Endoprofunctors 𝑃 : C𝑜𝑝 × C → Set can be thought as

indexing families of processes 𝑃 (𝑀, 𝑁) by the types of an
input channel 𝑀 and an output channel 𝑁 . A process 𝑝 ∈
𝑃 (𝑀, 𝑁) writes to a channel of type 𝑁 and then reads from
a channel of type𝑀 .
Now, assume we also have a transformation 𝑟 : 𝑁 → 𝑀

translating from output to input types. Then, we can plug
the output to the input: the process 𝑝 writes with type 𝑁 ,
then 𝑟 translates from 𝑁 to 𝑀 , and then 𝑝 uses this same
output as its input𝑀 . This composite process can be given
two sligthly different descriptions; the process could
• translate after writing, 𝑃 (𝑀, 𝑟) (𝑝) ∈ 𝑃 (𝑀,𝑀), or
• translate before reading, 𝑃 (𝑟, 𝑁) (𝑝) ∈ 𝑃 (𝑁, 𝑁).

These two processes have different types. However, with the
output plugged to the input, it does not really matter when
to apply the translation. These two descriptions represent
the same process: they are dinaturally equivalent.

Definition 2.6 (Dinatural equivalence). For any functor
𝑃 : C𝑜𝑝 × C→ Set, consider the set

𝑆𝑃 =
∑︁
𝑀 ∈C

𝑃 (𝑀,𝑀).

Dinatural equivalence, (∼), on the set 𝑆𝑃 is the smallest equiv-
alence relation satisfying 𝑃 (𝑀, 𝑟) (𝑝) ∼ 𝑃 (𝑟, 𝑁) (𝑝) for each
𝑝 ∈ 𝑃 (𝑀, 𝑁) and each 𝑟 ∈ hom (𝑁,𝑀).

Coproducts quotiented by dinatural equivalence construct
a particular form of colimit called a coend. Under the process
interpretation of profunctors, taking a coend means plugging
an output to an input of the same type.

Definition 2.7 (Coend, [53, 55]). Let 𝑃 : C𝑜𝑝 × C→ Set be
a functor. Its coend is the coproduct of 𝑃 (𝑀,𝑀) indexed by
𝑀 ∈ C, quotiented by dinatural equivalence.∫ 𝑀 ∈C

𝑃 (𝑀,𝑀) =
(∑︁
𝑀 ∈C

𝑃 (𝑀,𝑀)
/
∼
)
.

That is, the coend is the colimit of the diagram with a cospan
𝑃 (𝑀,𝑀) ← 𝑃 (𝑀, 𝑁) → 𝑃 (𝑁, 𝑁) for each 𝑓 : 𝑁 → 𝑀 .

2.4 Towards extensional memory channels
Let us go back to intensional monoidal streams. Consider a
family of processes 𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑌𝑛 ⊗ 𝑁𝑛 reading from
memories of type 𝑀𝑛 but writing to memories of type 𝑁𝑛 .
Assume we also have processes 𝑟𝑛 : 𝑁𝑛 → 𝑀𝑛 translating
from output to input memory. Then, we can consider the
process that does 𝑓𝑛 , translates from memory 𝑁𝑛 to memory
𝑀𝑛 and then does 𝑓𝑛+1. This process is described by two
different intensional sequences,
• (𝑓𝑛; (𝑟𝑛 ⊗ id) : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛)𝑛∈N, and
• ((𝑟𝑛−1 ⊗ id); 𝑓𝑛 : 𝑁𝑛−1 ⊗ 𝑋𝑛 → 𝑁𝑛 ⊗ 𝑌𝑛)𝑛∈N.

These two intensional sequences have different types for the
memory channels. However, in some sense, they represent
the same process description. If we do not care about what
exactly it is that we save to memory, we should consider
two such processes to be equal (as in Figure 6, where “the
same process” can keep two different values in memory). In-
deed, dinaturality in the memory channels𝑀𝑛 is the smallest
equivalence relation (∼) satisfying

(𝑓𝑛; (𝑟𝑛 ⊗ id))𝑛∈N ∼ ((𝑟𝑛−1 ⊗ id); 𝑓𝑛)𝑛∈N.
This is precisely the quotienting that we perform in order to
define extensional sequences.

Definition 2.8. Extensional equivalence of intensional se-
quences, (∼), is dinatural equivalence in the memory chan-
nels 𝑀𝑛 . An extensional sequence from X to Y is an equiva-
lence class

⟨𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋 → 𝑀𝑛 ⊗ 𝑌 ⟩𝑛∈N
of intensional sequences under extensional equivalence.

Monoidal Streams for Dataflow Programming

In other words, the set of extensional sequences is the
set of intensional sequences substituting the coproduct by a
coend,

Ext(X,Y) =
∫ 𝑀 ∈[N,C] ∞∏

𝑖=0

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

+0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓

+

0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓

∼

Figure 6. Extensionally equivalent walks keeping different
memories: the current position vs. the next position.

3 Extensional Monoidal Streams
In this section, we introduce extensional monoidal streams
in terms of a universal property: extensional streams are the
morphisms of the free delayed-feedback monoidal category
(Theorem 3.8).

Feedback monoidal categories come from the work of
Katis, Sabadini and Walters [46]. They are instrumental to
our goal of describing and composing signal flow graphs:
they axiomatize a graphical calculus that extends the well-
known string diagrams for monoidal categories with feed-
back loops [26, 46]. Constructing the free feedback monoidal
category (Definition 3.4) will lead to the main result of this
section: extensional sequences are the explicit construction
of extensional streams (Theorem 3.8).

We finish the section by exploring how extensional equiv-
alence may not be enough to capture true observational
equality of processes (Example 3.10).

3.1 Feedback monoidal categories
Feedback monoidal categories are symmetric monoidal cate-
gories with a “feedback” operation that connects outputs to
inputs. They have a natural axiomatization (Definition 3.1)
that has been rediscovered independently multiple times,
with only slight variations [10, 13, 45, 46]. It is weaker than
that of traced monoidal categories [26] while still satisfying a
normalization property (Theorem 3.5). We present a novel
definition that generalizes the previous ones by allowing the
feedback operator to be guarded by a monoidal endofunctor.

Definition 3.1. A feedback monoidal category is a symme-
tric monoidal category (C, ⊗, 𝐼) endowed with a monoidal
endofunctor F: C→ C and an operation

fbk𝑆 : hom (F(𝑆) ⊗ 𝑋, 𝑆 ⊗ 𝑌) → hom (𝑋,𝑌)
for all 𝑆 , 𝑋 and 𝑌 objects of C; this operation needs to satisfy
the following axioms.

(A1). Tightening:𝑢 ; fbk𝑆 (𝑓) ;𝑣 = fbk𝑆 ((idF𝑆 ⊗𝑢) ; 𝑓 ; (id𝑆 ⊗
𝑣)).

(A2). Vanishing: fbk𝐼 (𝑓) = 𝑓 .
(A3). Joining: fbk𝑇 (fbk𝑆 (𝑓)) = fbk𝑆⊗𝑇 (𝑓)
(A4). Strength: fbk𝑆 (𝑓) ⊗ 𝑔 = fbk𝑆 (𝑓 ⊗ 𝑔).
(A5). Sliding: fbk𝑆 ((Fℎ ⊗ id𝑋) ; 𝑓) = fbk𝑇 (𝑓 ; (ℎ ⊗ id𝑌)).

𝑓

𝐹ℎ = 𝑓

ℎ

Figure 7. The sliding axiom (A5).

A feedback functor is a symmetric monoidal functor that
preserves the feedback structure (Appendix, Definition A.9).

Remark 3.2 (Wait or trace). In a feedback monoidal category
(C, fbk), we construct the morphism wait𝑋 : 𝑋 → 𝐹𝑋 as
a feedback loop over the symmetry, wait𝑋 = fbk(𝜎𝑋,𝑋). A
traced monoidal category [43] is a feedback monoidal cate-
gory guarded by the identity functor such that wait𝑋 = id𝑋 .

The “state construction”, St(•), realizes the free feedback
monoidal category. As it happens with feedback monoidal
categories, this construction has appeared in the literature
in slightly different forms. It has been used for describing a
“memoryful geometry of interaction” [38], “stateful resource
calculi” [13], and “processes with feedback” [44, 46].
The idea in all of these cases is the same: we allow the

morphisms of a monoidal category to depend on a “state
space” 𝑆 , possibly guarded by a functor. Adding a state space
is equivalent to freely adding feedback [26].

Definition 3.3. A stateful morphism is a pair (𝑆, 𝑓) consist-
ing of a “state space” 𝑆 ∈ C and a morphism 𝑓 : F𝑆 ⊗ 𝑋 →
𝑆 ⊗ 𝑌 . We say that two stateful morphisms are sliding equiv-
alent if they are related by the smallest equivalence rela-
tion satisfying (𝑆, (F𝑟 ⊗ id) ; ℎ) ∼ (𝑇,ℎ ; (𝑟 ⊗ id)) for each
ℎ : 𝑋 ⊗ F𝑇 → 𝑆 ⊗ 𝑌 and each 𝑟 : 𝑆 → 𝑇 .

In other words, sliding equivalence is dinaturality in 𝑆 .

Definition 3.4 (St(•) construction, [26, 46]). Wewrite StF (C)
for the symmetric monoidal category that has the same ob-
jects as C and whose morphisms from 𝑋 to 𝑌 are stateful
morphisms 𝑓 : F𝑆 ⊗ 𝑋 → 𝑆 ⊗ 𝑌 up to sliding.

homStF (C) (𝑋,𝑌) B
∫ 𝑆 ∈C

homC (F𝑆 ⊗ 𝑋, 𝑆 ⊗ 𝑌).

Theorem3.5 (see [46]). StF (C) is the free feedbackmonoidal
category over (C,F).

Elena Di Lavore, Giovanni de Felice, and Mario Román

3.2 Extensional monoidal streams
Monoidal streams should be, in some sense, the minimal
way of adding feedback to a theory of processes. The output
of this feedback, however, should be delayed by one unit
of time: the category [N,C] is naturally equipped with a
delay endofunctor that shifts a sequence by one. Extensional
monoidal streams form the free delayed-feedback category.

Definition 3.6 (Delay functor). Let 𝜕 : [N,C] → [N,C]
be the endofunctor defined on objects X = (𝑋0, 𝑋1, . . .), as
𝜕(X) = (𝐼 , 𝑋0, 𝑋1, . . .); and on morphisms f = (𝑓0, 𝑓1, . . .) as
𝜕(f) = (id𝐼 , 𝑓0, 𝑓1, . . .).
Definition 3.7. The set of extensional monoidal streams,
depending on inputs and outputs, R: [N,C]𝑜𝑝 × [N,C] →
Set, is the hom-set of the free feedback monoidal category
over ([N,C], 𝜕).
We characterize now extensional streams in terms of ex-

tensional sequences and the St(•)-construction.
Theorem 3.8. Extensional sequences are the explicit construc-
tion of extensional streams, R � Ext.

Proof. Note that Ext(X,Y) = St𝜕 ([N,C]) (X,Y). That is, the
extensional sequences we defined using dinaturality coin-
cide with the morphisms of St𝜕 ([N,C]), the free feedback
monoidal category over ([N,C], 𝜕) in Definition 3.4. □

As a consequence, the calculus of signal flow graphs given
by the syntax of feedback monoidal categories is sound and
complete for extensional equivalence over [N,C].

3.3 Towards observational processes
Extensional sequences were an improvement over inten-
sional sequences because they allowed us to equate process
descriptions that were essentially the same. However, we
could still have two processes that are “observationally the
same” without them being described in the same way.

Remark 3.9 (Followed by). As we saw in the Introduction,
“followed by” is a crucial operation in dataflow programming.
Any sequence can be decomposed asX � 𝑋0 ·𝜕(X+).1 We call
“followed by” to the coherence map in [N,C] that witnesses
this decomposition.

fbyX : 𝑋0 · 𝜕(X+) → X

In the case of constant sequences X = (𝑋,𝑋, . . .), we have
that X+ = X; which means that “followed by” has type
fbyX : 𝑋 · 𝜕X→ X.

Example 3.10. Consider the extensional stateful sequence, in
any cartesian monoidal category, that saves the first input to
memory without ever producing an output. Observationally,
this is no different from simply discarding the first input,
1This can also be seen as the isomorphism making “sequences” a final
coalgebra. That is, the first slogan we saw in Section 2.1.

+

0

𝑓 𝑏𝑦

𝑢𝑛𝑖 𝑓
≈

Figure 8. Observationally, a silent process does nothing.

()𝑋 : 𝑋 → 1. However, in principle, we cannot show that
these are extensionally equal, that is, fbk(fbyX) ≠ ()𝑋 .

More generally, discarding the result of any stochastic or
deterministic signal flow graph is, observationally, the same
as doing nothing (Figure 8, consequence of Theorem 7.2).

4 Observational Monoidal Streams
In this section, we introduce our definitivemonoidal streams:
observational streams (Definition 4.1). Their explicit construc-
tion is given by observational sequences: extensional se-
quences quotiented by observational equivalence.

Intuitively, two processes are observationally equal if they
are “equal up to stage 𝑛”, for any 𝑛 ∈ N. We show that, in
sufficiently well-behaved monoidal categories (which we
call productive, Definition 4.9), the set of observational se-
quences given some inputs and outputs is the final coalgebra
of a fixpoint equation (Figure 9). The name “observational
equivalence” is commonly used to denote equality on the
final coalgebra: Theorem 4.11 justifies our use of the term.

4.1 Observational streams
We saw in Section 2 that we can define intensional sequences
as a solution to a fixpoint equation. We now consider the
same equation, just substituting the coproduct for a coend.

Definition 4.1 (Observational streams). The set of observa-
tional monoidal streams, depending on inputs and outputs, is
the functor Q: [N,C]𝑜𝑝 × [N,C] → Set given by the final
fixpoint of the equation in Figure 9.

Q(X,Y) �
∫ 𝑀 ∈C

hom (𝑋0, 𝑀 ⊗ 𝑌0) ×Q(𝑀 · X+,Y+).

Figure 9. Fixpoint equation for observational streams.

The explicit construction of this final fixpoint will be given
by observational sequences (Theorem 4.11).

4.2 Observational sequences
We said that observational equivalence is “equality up to
stage 𝑛”, so our first step will be to define what it means to
truncate an extensional sequence at any given 𝑛 ∈ N.

Definition 4.2 (𝑛-Stage process). An n-stage process from
inputs X = (𝑋0, 𝑋1, . . .) to outputs Y = (𝑌0, 𝑌1, . . .) is an

Monoidal Streams for Dataflow Programming

element of the set

Stage𝑛 (X,Y) =
∫ 𝑀0,...,𝑀𝑛 𝑛∏

𝑖=0

hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑀𝑖 ⊗ 𝑌𝑖).

Remark 4.3. In other words, 𝑛-stage processes are 𝑛-tuples
(𝑓𝑖 : 𝑀𝑖−1 ⊗ 𝑋𝑖 → 𝑀𝑖 ⊗ 𝑌𝑖)𝑛𝑖=0, for some choice of 𝑀𝑖 up to
dinaturality, that we write as

⟨𝑓0 |𝑓1 | . . . |𝑓𝑛 | ∈ Stage𝑛 (X,Y).

In this notation, dinaturality means that morphisms can slide
past the bars. That is, for any 𝑟𝑖 : 𝑁𝑖 → 𝑀𝑖 and any tuple,
dinaturality says that

⟨𝑓0; (𝑟0 ⊗ id) |𝑓1; (𝑟1 ⊗ id) | . . . |𝑓𝑛; (𝑟𝑛 ⊗ id) |
= ⟨𝑓0 | (𝑟0 ⊗ id); 𝑓1 | . . . | (𝑟𝑛−1 ⊗ id); 𝑓𝑛 | .

Note that the last 𝑟𝑛 is removed by dinaturality.

Definition 4.4 (Truncation). The 𝑘-truncation of an exten-
sional sequence ⟨𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛⟩ ∈ Ext(X,Y) is
⟨𝑓0 | . . . |𝑓𝑘 | ∈ Stage𝑘 (X,Y). Truncation is well-defined under
dinatural equivalence (Remark 4.3).

For 𝑘 ⩽ 𝑛, the 𝑘-truncation of an n-stage process given by
⟨𝑓0 |𝑓1 | . . . |𝑓𝑛 | ∈ Stage𝑛 (X,Y) is ⟨𝑓0 | . . . |𝑓𝑘 | ∈ Stage𝑘 (X,Y).
This induces functions 𝜋𝑛,𝑘 : Stage𝑛 (X,Y) → Stage𝑘 (X,Y),
with the property that 𝜋𝑛,𝑚;𝜋𝑚,𝑘 = 𝜋𝑛,𝑘 .

Definition 4.5 (Observational equivalence). Two extensio-
nal stateful sequences

⟨𝑓 ⟩𝑛∈N, ⟨𝑔⟩𝑛∈N ∈
∫ 𝑀 ∈[N,C] ∞∏

𝑖=0

hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑌𝑖 ⊗ 𝑀𝑖)

are observationally equivalent when all their n-stage trunca-
tions are equal. That is, ⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 |, for each
𝑛 ∈ N. We write this as 𝑓 ≈ 𝑔.

Remark 4.6. Formally, this is to say that the sequences ⟨𝑓 ⟩𝑛∈N
and ⟨𝑔⟩𝑛∈N have the same image on the limit

lim𝑛 Stage𝑛 (X,Y),

over the chain 𝜋𝑛,𝑘 : Stage𝑛 (X,Y) → Stage𝑘 (X,Y).

Definition 4.7. An observational sequence from X to Y is
an equivalence class

[⟨𝑓𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛⟩𝑛∈N]≈
of extensional sequences under observational equivalence.
In other words, the set of observational sequences is

Obs(X,Y) �
(∫ 𝑀 ∈[N,C] ∞∏

𝑖=0

hom (𝑀𝑖−1 ⊗ 𝑋𝑖 , 𝑀𝑖 ⊗ 𝑌𝑖)
) /
≈

4.3 Productive categories
The interaction between extensional and observational equiv-
alence is of particular interest in some well-behaved cate-
gories that we call productive categories. In productive cate-
gories, observational sequences are the final fixpoint of an
equation (Theorem 4.11), analogous to that of Section 2.
An important property of programs is termination: a ter-

minating program always halts in a finite amount of time.
However, some programs (such as servers, drivers) are not
actually intended to terminate but to produce infinite output
streams. A more appropriate notion in these cases is that of
productivity: a program that outputs an infinite stream of
data is productive if each individual component of the stream
is produced in finite time. To quip, “a productive stream is a
terminating first component followed by a productive stream”.
The first component of our streams is only defined up

to some future. It is an equivalence class 𝛼 ∈ Stage1 (X,Y),
with representatives 𝛼𝑖 : 𝑋0 → 𝑀𝑖 ⊗ 𝑌0. But, if it does ter-
minate, there is a process 𝛼0 : 𝑋0 → 𝑀0 ⊗ 𝑌0 in our theory
representing the process just until 𝑌0 is output.

Definition 4.8 (Terminating component). A 1-stage pro-
cess 𝛼 ∈ Stage1 (X,Y) is terminating relative to C if there
exists 𝛼0 : 𝑋0 → 𝑀0 ⊗ 𝑌0 such that each one of its represen-
tatives, ⟨𝛼𝑖 | = 𝛼 , can be written as 𝛼𝑖 = 𝛼0; (𝑠𝑖 ⊗ id) for some
𝑠𝑖 : 𝑀0 → 𝑀𝑖 .

The morphisms 𝑠𝑖 represent what is unique to each repre-
sentative, and so we ask that, for any 𝑢 : 𝑀0 ⊗ 𝐴 → 𝑈 ⊗ 𝐵
and 𝑣 : 𝑀0 ⊗ 𝐴→ 𝑉 ⊗ 𝐵, the equality ⟨𝛼𝑖 ⊗ id𝐴;𝑢 ⊗ id𝑌0

| =
⟨𝛼 𝑗 ⊗ id𝐴; 𝑣 ⊗ id𝑌0

| implies ⟨𝑠𝑖 ⊗ id𝐴;𝑢 | = ⟨𝑠 𝑗 ⊗ id𝐴; 𝑣 |.

Definition 4.9 (Productive category). A symmetric monoi-
dal category (C, ⊗, 𝐼) is productive when every 1-stage pro-
cess is terminating relative to C.

Remark 4.10. Cartesian monoidal categories are productive
(Proposition C.1). Markov categories [30] with conditionals
and ranges are productive (Theorem A.21). Free symmetric
monoidal categories and compact closed categories are al-
ways productive.

Theorem 4.11. Observational sequences are the explicit con-
struction of observational streams when the category is produc-
tive. More precisely, in a productive category, the final fixpoint
of the equation in Figure 9 is given by the set of observational
sequences, Obs.

Proof sketch. The terminal sequence for this final coalgebra
is given by Stage𝑛 (X,Y). In productive categories, we can
prove that the limit lim𝑛 Stage𝑛 (X,Y) is a fixpoint of the
equation in Figure 9 (Lemma D.6). Finally, in productive
categories, observational sequences coincide with this limit
(Theorem D.7). □

Elena Di Lavore, Giovanni de Felice, and Mario Román

5 The Category of Monoidal Streams
We are ready to construct Stream: the feedback monoidal
category of monoidal streams. Let us recast the definitive
notion of monoidal stream (Definition 4.1) coinductively.

Definition 5.1. A monoidal stream 𝑓 ∈ Stream(X,Y) is a
triple consisting of
• 𝑀 (𝑓) ∈ Obj(C), the memory,
• now(𝑓) ∈ hom (𝑋0, 𝑀 (𝑓) ⊗ 𝑌0), the first action,
• later(𝑓) ∈ Stream(𝑀 (𝑓) ·X+,Y+), the rest of the action,

quotiented by dinaturality in𝑀 .

Explicitly, monoidal streams are quotiented by the equiv-
alence relation 𝑓 ∼ 𝑔 generated by
• the existence of 𝑟 : 𝑀 (𝑔) → 𝑀 (𝑓),
• such that now(𝑓) = now(𝑔); 𝑟 ,
• and such that 𝑟 · later(𝑓) ∼ later(𝑔).

Here, 𝑟 · later(𝑓) ∈ Stream(𝑀 (𝑔) · X+,Y+) is obtained by
precomposition of the first action of later(𝑓) with 𝑟 .
Remark 5.2. This is a coinductive definition of the functor

Stream : [N,C]𝑜𝑝 × [N,C] → Set.

In principle, arbitrary final coalgebras do not need to ex-
ist. Moreover, it is usually difficult to explicitly construct
such coalgebras [4]. However, in productive categories, this
coalgebra does exist and is constructed by observational se-
quences. From now on, we reason coinductively [48], a style
particularly suited for all the following definitions.

5.1 The symmetric monoidal category of streams
The definitions for the operations of sequential and parallel
composition are described in two steps. We first define an
operation that takes into account an extra memory channel
(Figure 10); we use this extra generality to strengthen the
coinduction hypothesis. We then define the desired operation
as a particular case of this coinductively defined one.

now(𝑓)

now(𝑔)

𝐴 𝐵 𝑋

𝑍𝑀𝑔𝑀𝑓

now(𝑓) now(𝑔)

𝑋 𝑋 ′𝐴 𝐵

𝑀𝑔𝑀𝑓 𝑌 𝑌 ′

Figure 10. String diagrams for the first action of sequential
and parallel composition with memories.

Definition 5.3 (Sequential composition). Given two streams
𝑓 ∈ Stream(𝐴 · X,Y) and 𝑔 ∈ Stream(𝐵 · Y,Z), we compute
(𝑓 𝐴 ;𝑔𝐵) ∈ Stream((𝐴 ⊗ 𝐵) ·X,Z), their sequential composi-
tion with memories 𝐴 and 𝐵, as

• 𝑀 (𝑓 𝐴 ; 𝑔𝐵) = 𝑀 (𝑓) ⊗ 𝑀 (𝑔),
• now(𝑓 𝐴 ; 𝑔𝐵) = 𝜎 ; (now(𝑓) ⊗ id) ; 𝜎 ; (now(𝑔) ⊗ id),
• later(𝑓 𝐴 ; 𝑔𝐵) = later(𝑓)𝑀 (𝑓) ; later(𝑔)𝑀 (𝑔) .

We write (𝑓 ; 𝑔) for (𝑓 𝐼 ; 𝑔𝐼) ∈ Stream(X,Z); the sequential
composition of 𝑓 ∈ Stream(X,Y) and 𝑔 ∈ Stream(Y,Z).
Definition 5.4. The identity idX ∈ Stream(X,X) is defined
by𝑀 (idX) = 𝐼 , now(idX) = id𝑋0

, and later(idX) = idX+ .

Definition 5.5 (Parallel composition). Given two streams
𝑓 ∈ Stream(𝐴 ·X,Y) and 𝑔 ∈ Stream(𝐵 ·X′,Y′), we compute
(𝑓 𝐴 ⊗𝑔𝐵) ∈ Stream((𝐴⊗𝐵) · (X⊗X′),Y⊗Y′), their parallel
composition with memories 𝐴 and 𝐵, as
• 𝑀 (𝑓 𝐴 ⊗ 𝑔𝐵) = 𝑀 (𝑓) ⊗ 𝑀 (𝑔),
• now(𝑓 𝐴 ⊗ 𝑔𝐵) = 𝜎; (now(𝑓) ⊗ now(𝑔));𝜎 ,
• later(𝑓 𝐴 ⊗ 𝑔𝐵) = later(𝑓)𝑀 (𝑓) ⊗ later(𝑔)𝑀 (𝑔) .

We write (𝑓 ⊗ 𝑔) for (𝑓 𝐼 ⊗ 𝑔𝐼) ∈ Stream(X ⊗ X′,Y ⊗ Y′);
we call it the parallel composition of 𝑓 ∈ Stream(X,Y) and
𝑔 ∈ Stream(X′,Y′).
Definition 5.6 (Memoryless and constant streams). Each se-
quence f = (𝑓0, 𝑓1, . . .), with 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛 , induces a stream
𝑓 ∈ Stream(X,Y) defined by 𝑀 (𝑓) = 𝐼 , now(𝑓) = 𝑓0, and
later(𝑓) = f+. Streams of this form are called memoryless, i.e.
their memories are given by the monoidal unit.
Moreover, each morphism 𝑓0 : 𝑋 → 𝑌 induces a constant

memoryless stream that we also call 𝑓 ∈ Stream(𝑋,𝑌), de-
fined by𝑀 (𝑓) = 𝐼 , now(𝑓) = 𝑓0, and later(𝑓) = 𝑓 .

Theorem 5.7. Monoidal streams over a productive symmetric
monoidal category (C, ⊗, 𝐼) form a symmetric monoidal cate-
gory Stream with a symmetric monoidal identity-on-objects
functor from [N,C].
Proof. Appendix, Theorem E.5. □

5.2 Delayed feedback for streams
Monoidal streams form a delayed feedback monoidal cate-
gory. Given some stream in Stream(𝜕S ⊗ X,S ⊗ Y), we can
create a new stream in Stream(X,Y) that passes the output
in S as a memory channel that gets used as the input in 𝜕S.
As a consequence, the category of monoidal streams has a
graphical calculus given by that of feedback monoidal cate-
gories. This graphical calculus is complete for extensional
equivalence (as we saw in Theorem 3.8).

Definition 5.8 (Delay functor). The functor from Defini-
tion 3.6 can be lifted to a monoidal functor 𝜕 : Stream →
Stream that acts on objects in the same way. It acts on mor-
phisms by sending a stream 𝑓 ∈ Stream(X,Y) to the stream
given by𝑀 (𝜕𝑓) = 𝐼 , now(𝜕𝑓) = id𝐼 and later(𝜕𝑓) = 𝑓 .

Definition 5.9 (Feedback operation). Given any morphism
of the form 𝑓 ∈ Stream(𝑁 · 𝜕S ⊗ X,S ⊗ Y), we define
fbk(𝑓 𝑁) ∈ Stream(𝑁 · X,Y) as
• 𝑀 (fbk(𝑓 𝑁)) = 𝑀 (𝑓) ⊗ 𝑆0,
• now(fbk(𝑓 𝑁)) = now(𝑓) and

Monoidal Streams for Dataflow Programming

• later(fbk (𝑓 𝑁)) = fbk (later(𝑓)𝑀 (𝑓) ⊗𝑆0).
We write fbk(𝑓) ∈ Stream(X,Y) for fbk(𝑓 𝐼), the feedback
of 𝑓 ∈ Stream(𝜕S ⊗ X,S ⊗ Y)
Theorem 5.10. Monoidal streams over a symmetric monoi-
dal category (C, ⊗, 𝐼) form a 𝜕-feedback monoidal category
(Stream, fbk).
Proof. Appendix, Theorem E.16. □

Corollary 5.11. There is a “semantics” identity-on-objects
feedback monoidal functor Sm : St𝜕 [N,C] → Stream from
the free 𝜕-feedback monoidal category to the category of monoi-
dal streams. Every extensional stateful sequence ⟨𝑓𝑛 : 𝑀𝑛−1 ⊗
𝑋𝑛 → 𝑌𝑛 ⊗ 𝑀𝑛⟩𝑛∈N gives a monoidal stream Sm (𝑓), which
is defined by𝑀 (Sm (𝑓)) = 𝑀0,

now(Sm (𝑓)) = 𝑓0, and later(Sm (𝑓)) = Sm (𝑓 +),
and this is well-defined. Moreover, this functor is full when C
is productive; it is not generally faithful.

Proof. We construct Sm from Theorems 3.5 and 5.10. More-
over, when C is productive, by Theorem 4.11, monoidal
streams are extensional sequences quotiented by observa-
tional equivalence, giving the fullness of the functor. □

6 Cartesian Streams
Dataflow languages such as Lucid or Lustre [35, 77] can
be thought of as using an underlying cartesian monoidal
structure: we can copy and discard variables and resources
without affecting the order of operations. These abilities
correspond exactly to cartesianity thanks to Fox’s theorem
(Theorem C.5, see [29]).

6.1 Causal stream functions
In the cartesian case, there is available literature on the cate-
gorical semantics of dataflow programming languages [8, 24,
25, 58, 76]. Uustalu and Vene [75] provide elegant comona-
dic semantics to a Lucid-like programming language using
the non-empty list comonad. In their framework, streams
with types X = (𝑋0, 𝑋1, . . .) are families of elements 1 →
𝑋𝑛 . Causal stream functions from X = (𝑋0, 𝑋1, . . .) to Y =
(𝑌0, 𝑌1, . . .) are families of functions 𝑓𝑛 : 𝑋0 × · · · ×𝑋𝑛 → 𝑌𝑛 .
Equivalently, they are, respectively, the states (1→ X) and
morphisms (X→ Y) of the cokleisli category of the comonad
List+ : [N, Set] → [N, Set] defined by

(List+ (X))𝑛 B
𝑛∏
𝑖=0

𝑋𝑖 .

This comonad can be extended to other base categories,
List+ : [N,C] → [N,C] only as long asC is cartesian. Indeed,
we can prove that the mere existence of such a comonad im-
plies cartesianity of the base category. For this, we introduce
a refined version of Fox’s theorem (Theorem C.7).

Theorem 6.1. Let (C, ⊗, 𝐼) be a symmetric monoidal cate-
gory. Let List+ : [N,C] → [N,C] be the functor defined by

List+ (𝑋)𝑛 B
𝑛⊗
𝑖=0

𝑋𝑖 .

This functor is monoidal, with oplaxators 𝜓+0 : List+ (𝐼) → 𝐼
and 𝜓𝑋,𝑌 : List+ (𝑋 ⊗ 𝑌) → List+ (𝑋) ⊗ List+ (𝑌) given by
symmetries, associators and unitors.

The monoidal functor List+ : [N,C] → [N,C] has a monoi-
dal comonad structure if and only if its base monoidal category
(C, ⊗, 𝐼) is cartesian monoidal.

Proof sketch. The cartesian structure can be shown to make
List+ an opmonoidal comonad. Conversely, the opmonoidal
comonad structure implies that every object should have a
natural and uniform counital comagma structure. By our re-
fined statement of Fox’s theorem (Theorem C.7), this implies
cartesianity. See Appendix, Theorem C.4. □

This means that we cannot directly extend Uustalu and
Vene’s approach to the monoidal case. However, we prove
in the next section that our definition of monoidal streams
particularizes to their causal stream functions [73, 75].

6.2 Cartesian monoidal streams
The main claim of this section is that, in a cartesian monoi-
dal category, monoidal streams instantiate to causal stream
functions (Theorem 6.3). Let us fix such a category, (C,×, 1).

The first observation is that the universal property of the
cartesian product simplifies the fixpoint equation that defines
monoidal streams. This is a consequence of the following
chain of isomorphisms, where we apply a Yoneda reduction
to simplify the coend.

Stream(X,Y) �∫ 𝑀
hom (𝑋0, 𝑀 × 𝑌0) × Stream(𝑀 · X+,Y) �∫ 𝑀
hom (𝑋0, 𝑀) × hom (𝑋0, 𝑌0) × Stream(𝑀 · X+,Y) �

hom (𝑋0, 𝑌0) × Stream(𝑋0 · X+,Y+).
Explicitly, the Yoneda reduction works as follows: the first
action of a stream 𝑓 ∈ Stream(X,Y) can be uniquely split
as now(𝑓) = (𝑓1, 𝑓2) for some 𝑓1 : 𝑋0 → 𝑌0 and 𝑓2 : 𝑋0 →
𝑀 (𝑓). Under the dinaturality equivalence relation, (∼), we
can always find a unique representative with 𝑀 = 𝑋0 and
𝑓2 = id𝑋0

.
The definition of monoidal streams in the cartesian case is

thus simplified (Definition 6.2). From there, the explicit con-
struction of cartesian monoidal streams is straightforward.
Definition 6.2 (Cartesian monoidal streams). The set of
cartesian monoidal streams, given inputs X and outputs Y, is
the terminal fixpoint of the equation

Stream(X,Y) � hom (𝑋0, 𝑌0) × Stream(𝑋0 · X+,Y+).
In otherwords, a cartesianmonoidal stream 𝑓 ∈ Stream(X,Y)
is a pair consisting of

Elena Di Lavore, Giovanni de Felice, and Mario Román

• fst(𝑓) ∈ hom (𝑋0, 𝑌0), the first action, and
• snd(𝑓) ∈ Stream(𝑋0 · X+,Y+), the rest of the action.

Theorem 6.3. In the cartesian case, the final fixpoint of the
equation in Figure 9 is given by the set of causal functions,

Stream(X,Y) =
∞∏

𝑛∈N
hom (𝑋0 × · · · × 𝑋𝑛, 𝑌𝑛).

That is, the category Stream of monoidal streams coincides
with the cokleisli monoidal category of the non-empty list
monoidal comonad List+ : [N,C] → [N,C].
Proof. By Adamek’s theorem (Theorem 1.5). □

Corollary 6.4. Let (C,×, 1) be a cartesian monoidal category.
The category Stream is cartesian monoidal.

6.3 Example: the Fibonacci sequence
Consider (Set,×, 1), the cartesianmonoidal category of small
sets and functions. And let us go back to the morphism
fib ∈ Stream(1,N) that we presented in the Introduction
(Figure 2). By Theorem 6.3, a morphism of this type is, equiv-
alently, a sequence of natural numbers. Using the previous
definitions in Sections 5 and 6, we can explicitly compute this
sequence to be fib = [0, 1, 1, 2, 3, 5, 8, . . .] (see the Appendix,
Example G.1).

7 Stochastic Streams
Monoidal categories are well suited for reasoning about prob-
abilistic processes. Several different categories of probabilis-
tic channels have been proposed in the literature [6, 19, 59].
They were largely unified by Fritz [30] under the name of
Markov categories. For simplicity, we work in the discrete
stochastic setting, i.e. in the Kleisli category of the finite
distribution monad, Stoch, but we will be careful to isolate
the relevant structure of Markov categories that we use.

The main result of this section is that controlled stochastic
processes [27, 66] are precisely monoidal streams over Stoch.
That is, controlled stochastic processes are the canonical
solution over Stoch of the fixpoint equation in Figure 9.

7.1 Stochastic processes
We start by recalling the notion of stochastic process from
probability theory and its “controlled” version. The latter is
used in the context of stochastic control [27, 66], where the
user has access to the parameters or optimization variables
of a probabilistic model.
A discrete stochastic process is defined as a collection of

random variables 𝑌1, . . . 𝑌𝑛 indexed by discrete time. At any
time step 𝑛, these random variables are distributed according
to some 𝑝𝑛 ∈ D(𝑌1 × · · · × 𝑌𝑛). Since the future cannot
influence the past, the marginal of 𝑝𝑛+1 over 𝑌𝑛+1 must equal
𝑝𝑛 . When this occurs, we say that the family of distributions
(𝑝𝑛)𝑛∈N is causal.

More generally, there may be some additional variables
𝑋1, . . . , 𝑋𝑛 which we have control over. In this case, a con-
trolled stochastic process is defined as a collection of controlled
random variables distributing according to 𝑓𝑛 : 𝑋1 × · · · ×
𝑋𝑛 → D(𝑌1, . . . , 𝑌𝑛). Causality ensures that the marginal of
𝑓𝑛+1 over 𝑌𝑛+1 must equal 𝑓𝑛 .

Definition 7.1. Let X and Y be sequences of sets. A con-
trolled stochastic process 𝑓 : X→ Y is a sequence of functions

𝑓𝑛 : 𝑋𝑛 × · · · × 𝑋1 → D(𝑌𝑛 × · · · × 𝑌1)
satisfying causality (the marginalisation property). That is,
such that 𝑓𝑛 coincides with the marginal distribution of 𝑓𝑛+1
on the first 𝑛 variables, making the diagram in Figure 11
commute.

𝑋0 × · · · × 𝑋𝑛+1 𝐷 (𝑌0 × · · · × 𝑌𝑛+1)

𝑋0 × · · · × 𝑋𝑛 𝐷 (𝑌0 × · · · × 𝑌𝑛)

𝑓𝑛+1

𝜋0,...,𝑛 𝐷𝜋0,...,𝑛

𝑓𝑛

Figure 11. Marginalisation for stochastic processes.

Controlled stochastic processes with componentwise com-
position, identities and tensoring, are the morphisms of a
symmetric monoidal category StochProc.

Stochastic monoidal streams and stochastic processes not
only are the same thing but they compose in the same way:
they are isomorphic as categories.

Theorem7.2. The category of stochastic processesStochProc
is monoidally isomorphic to the category Stream over Stoch.

Proof sketch. Appendix, Theorem A.29. The proof of this re-
sult is non-trivial and relies on a crucial property concerning
ranges in Stoch. The proof is moreover written in the lan-
guage of Markov categories where the property of ranges
can be formulated in full abstraction. □

We expect that the theorem above can be generalised to
interesting categories of probabilistic channels over measur-
able spaces (such as the ones covered in [19, 30, 59]).

Corollary 7.3. StochProc is a feedback monoidal category.

7.2 Examples
We have characterized in two equivalent ways the notion
of controlled stochastic process. This yields a categorical
semantics for probabilistic dataflow programming: we may
use the syntax of feedback monoidal categories to specify
simple stochastic programs and evaluate their semantics in
StochProc.

Example 7.4 (Random Walk). Recall the morphism walk ∈
Stream(1,Z) that we depicted back in Figure 4.
Here, unif ∈ Stream(1, {−1, 1}), is a uniform random gen-

erator that, at each step, outputs either 1 or (−1). The output

Monoidal Streams for Dataflow Programming

of this uniform random generator is then added to the cur-
rent position, and we declare the starting position to be 0.
Our implementation of this morphism, following the defi-
nitions from Section 5 (Example G.2) is, by Theorem 7.2, a
discrete stochastic process, and it produces samples like the
following ones.

[0, 1, 0,−1,−2,−1,−2,−3,−2,−3, . . .]
[0, 1, 2, 1, 2, 1, 2, 3, 4, 5, . . .]
[0,−1,−2,−1,−2,−1, 0,−1, 0,−1, . . .]

Example 7.5 (Ehrenfest model). The Ehrenfest model [47,
§1.4] is a simplified model of particle diffusion.

𝑚𝑜𝑣𝑒 𝑚𝑜𝑣𝑒

𝑢𝑛𝑖 𝑓𝑓 𝑏𝑦

(1..4)

𝑓 𝑏𝑦

()

ehr =
(1...4) ⊗ (); fbk(𝜎;

fby ⊗ fby ⊗ unif;
id ⊗ id ⊗ copy;𝜎;

move ⊗ move;

copy)

Figure 12. Ehrenfest model: sig. flow graph and morphism.

Assume we have two urns with 4 balls, labelled from 1
to 4. Initially, the balls are all in the first urn. We randomly
(and uniformly) pick an integer from 1 to 4, and the ball
labelled by that number is removed from its box and placed
in the other box. We iterate the procedure, with independent
uniform selections each time.

Our implementation of this morphism, following the defi-
nitions from Section 5 (Example G.3) yields samples such as
the following.
[([2, 3, 4], [1]), ([3, 4], [1, 2]), ([1, 3, 4], [2]),
([1, 4], [2, 3]), ([1], [2, 3, 4]), ([], [1, 2, 3, 4]),
([2], [1, 3, 4]), . . .]

8 A dataflow programming language
In this section, we introduce the syntax for two Lucid-like
dataflow programming languages and their semantics in
monoidal streams. The first one is deterministic and it takes
semantics in the feedback monoidal category of set-based
monoidal streams. The second one is stochastic and it takes
semantics in the feedback monoidal category of stochastic
processes, or stochastic monoidal streams.

We do so by presenting a type theory for feedback monoi-
dal categories (similar to [36, 71]). Terms of the type theory
represent programs in our language.

8.1 Type theory for monoidal categories
We start by considering a type theory for symmetric monoidal
categories over some generators forming a multigraph G.
Instead of presenting a type theory from scratch, we extend
the basic type theory for symmetric monoidal categories
described by Shulman [70]. Details are in the Appendix (Ap-
pendix F). Here, we only illustrate it with an example.

Gen
𝑓 ∈ G(𝐴1, . . . , 𝐴𝑛;𝐵) Γ1 ⊢ 𝑥1 : 𝐴1 . . . Γ𝑛 ⊢ 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, . . . , Γ𝑛) ⊢ 𝑓 (𝑥1, . . . , 𝑥𝑛) : 𝐵

Pair
Γ1 ⊢ 𝑥1 : 𝐴1 . . . Γ𝑛 ⊢ 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, ..., Γ𝑛) ⊢ [𝑥1, ..., 𝑥𝑛] : 𝐴1 ⊗ ... ⊗ 𝐴𝑛

Var

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Split
Δ ⊢𝑚 : 𝐴1 ⊗ · · · ⊗ 𝐴𝑛 Γ, 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑧 : 𝐶

Shuf (Γ,Δ) ⊢ Split𝑚 → [𝑥1, . . . , 𝑥𝑛] in 𝑧 : 𝐶

Figure 13. Type theory of symm. monoidal categories [70].
The type theory for symmetric monoidal categories is

linear [34, 52, 68] in the sense that any introduced variable
must be used exactly once. This is for a good reason: monoi-
dal categories represent linear theories of processes, where
copying and discarding may not be allowed in general.

Example 8.1. In a monoidal category, let 𝑓 : 𝑋 ⊗ 𝑈 → 𝑍 ,
𝑔 : 𝐼 → 𝑈 ⊗ 𝑉 ⊗𝑊 and ℎ : 𝑉 ⊗ 𝑌 → 𝐼 . The following is a
string diagram together with its term in the type theory.

𝑔

ℎ
𝑓

𝑋 𝑌

𝑍 𝑉

𝑈 𝑊
Split 𝑔→ [𝑢, 𝑣,𝑤] in
Split ℎ(𝑤,𝑦) → [] in
[𝑓 (𝑥,𝑢), 𝑣]

8.2 Adding feedback
We now extend the theory with delay and feedback. We
start by considering a 𝜕 operator on types, which extends
to contexts inductively as 𝜕[] = [] and 𝜕(Γ, 𝑥 :𝐴) = 𝜕Γ, (𝑥 :
𝜕𝐴). We provide formation rules for introducing delay and
feedback. These need to satisfy equalities making Delay a
functor and Fbk a feedback operator.

Delay
Γ ⊢ 𝑥 : 𝐴

𝜕Γ ⊢ 𝑥 : 𝜕𝐴

Fbk
Γ, 𝑠 : 𝜕𝑆 ⊢ 𝑥 (𝑠) : 𝑆 ⊗ 𝐴
Γ ⊢ Fbk 𝑠 . 𝑥 (𝑠) : 𝐴

As in Remark 3.2, we define Wait(𝑥) ≡ Fbk 𝑦 in [𝑥,𝑦].

Elena Di Lavore, Giovanni de Felice, and Mario Román

8.3 Adding generators
In both versions of the language (deterministic and stochas-
tic), we include “copy” and “followed by” operations, repre-
senting the corresponding monoidal streams. Copying does
not need to be natural (in the stochastic case, it will not be)
and it does not even need to form a comonoid.

Copy
Γ ⊢ 𝑥 : 𝐴

Γ ⊢ Copy(𝑥) : 𝐴 ⊗ 𝐴

Fby
Γ ⊢ 𝑥 : 𝐴 Δ ⊢ 𝑦 : 𝜕(𝐴)
Shuf (Γ,Δ) ⊢ 𝑥 Fby 𝑦 : 𝐴

In fact, recursive definitions make sense only when we
have a copy operation, that allows us to rewrite the definition
as a feedback that ends with a copy. That is,

𝑀 = 𝑥 (𝑀) means 𝑀 = Fbk𝑚 in Copy(𝑥 (𝑚)) .
Moreover, in the deterministic version of our language we
allow non-linearity: a variable can occur multiple times, im-
plicitly copying it.

8.4 Examples
Example 8.2. Recall the example from the introduction (and
Section 6.3).

fib = 0 Fby (fib + (1 Fby Wait fib))
Its desugaring, following the previous rules, is below.

fib = Fbk 𝑓 in Copy
(0 Fby
Split Copy(𝑓) → [𝑓1, 𝑓2] in
(𝑓1 + 1 Fby Wait(𝑓2)))

Example 8.3 (Ehrenfest model). The Ehrenfest model de-
scribed in Figure 12 has the following specification in the
programming language.

urns = [(1, 2, 3, 4), ()] Fby
Split urns→ [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in
[Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)]

Sampling twice from the same distribution is different from
copying a single sample, and Split allows us to express this
difference: instead of calling the Uniform distribution twice,
this program calls it once and then copies the result.

9 Conclusions
Monoidal streams are a common generalization of streams,
causal functions and stochastic processes. In the same way
that streams give semantics to dataflow programming [35,
77] with plain functions, monoidal streams give semantics to
dataflow programming with monoidal theories of processes.
Signal flow graphs are a common tool to describe control
flow in dataflow programming. Signal flow graphs are also
the natural string diagrams of feedback monoidal categories.
Monoidal streams form a feedback monoidal category, and

signal flow graphs are a formal syntax to describe and rea-
son about monoidal streams. The second syntax we present
comes from the type theory of monoidal categories, and it
is inspired by the original syntax of dataflow programming.
We have specifically studied stochastic dataflow program-
ming, but the same framework allows for linear, quantum
and effectful theories of resources.

The literature on dataflow and feedback is rich enough to
provide multiple diverging definitions and approaches. What
we can bring to this discussion are universal constructions.
Universal constructions justify some mathematical object as
the canonical object satisfying some properties. In our case,
these exact properties are extracted from three, arguably
under-appreciated, but standard category-theoretic tools: di-
naturality, feedback, and coalgebra. Dinaturality, profunctors
and coends, sometimes regarded as highly theoretical devel-
opments, are the natural language to describe how processes
communicate and compose. Feedback, sometimes eclipsed
by trace in the mathematical literature, keeps appearing in
multiple variants across computer science. Coalgebra is the
established tool to specify and reason about stateful systems.

9.1 Further work
Other theories. Many interesting examples of theories

of processes are not monoidal but just premonoidal cate-
gories [42, 62]. For instance, the kleisli categories of arbitrary
monads, where effects (e.g. reading and writing to a global
state) do not need to commute. Premonoidal streams can be
constructed by restricting dinaturality to their centres. An-
other important source of theories of processes that we have
not covered is that of linearly distributive and *-autonomous
categories [11, 12, 22, 68].
Within monoidal categories, we would like to make mo-

noidal streams explicit in the cases of partial maps [21]
for dataflow programming with different clocks [76], non-
deterministic maps [17, 51] and quantum processes [18]. A
final question we do not pursue here is expressivity: the class
of functions a monoidal stream can define.

The 2-categorical view. We describe the morphisms of a
category as a final coalgebra. However, it is also straightfor-
ward to describe the 2-endofunctor that should give rise to
this category as a final coalgebra itself.

Implementation of the type theory. Justifying that the
output of monoidal streams is the expected one requires
some computations, which we have already implemented
separately in the Haskell programming language (Appendix,
Appendix G). Agda has similar foundations and supports the
coinductive definitions of this text (Section 5). It is possible
to implement a whole interpreter for a Lucid-like stochastic
programming language with a dedicated parser, but that
requires some software engineering effort that we postpone
for further work.

Monoidal Streams for Dataflow Programming

References
[1] Martín Abadi and Michael Isard. Timely Dataflow: A Model. In

Susanne Graf and Mahesh Viswanathan, editors, Formal Techniques
for Distributed Objects, Components, and Systems - 35th IFIP WG 6.1
International Conference, FORTE 2015, Held as Part of the 10th Inter-
national Federated Conference on Distributed Computing Techniques,
DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings, volume
9039 of Lecture Notes in Computer Science, pages 131–145. Springer,
2015. doi:10.1007/978-3-319-19195-9_9.

[2] Samson Abramsky and Bob Coecke. Categorical quantum mechanics.
Handbook of quantum logic and quantum structures, 2:261–325, 2009.
arXiv:0808.1023.

[3] Jiří Adámek. Introduction to coalgebra. Theory and Applications of
Categories, 14(8):157–199, 2005.

[4] Jiří Adámek. Free algebras and automata realizations in the language
of categories. Commentationes Mathematicae Universitatis Carolinae,
015(4):589–602, 1974. URL: http://eudml.org/doc/16649.

[5] Jiří Adámek. On Terminal Coalgebras Derived from Initial Algebras.
In Markus Roggenbach and Ana Sokolova, editors, 8th Conference
on Algebra and Coalgebra in Computer Science, CALCO 2019, June
3-6, 2019, London, United Kingdom, volume 139 of LIPIcs, pages 12:1–
12:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.CALCO.2019.12.

[6] John C. Baez, Brendan Fong, and Blake S. Pollard. A Composi-
tional Framework for Markov Processes. Journal of Mathematical
Physics, 57(3):033301, March 2016. arXiv:1508.06448, doi:10.1063/
1.4941578.

[7] Jon Beck. Distributive laws. In Seminar on triples and categorical
homology theory, pages 119–140. Springer, 1969.

[8] Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nicolas Halb-
wachs. Data-flow synchronous languages. In J. W. de Bakker, Willem P.
de Roever, and Grzegorz Rozenberg, editors, A Decade of Concur-
rency, Reflections and Perspectives, REX School/Symposium, Noordwi-
jkerhout, The Netherlands, June 1-4, 1993, Proceedings, volume 803
of Lecture Notes in Computer Science, pages 1–45. Springer, 1993.
doi:10.1007/3-540-58043-3_16.

[9] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and
Kristian Støvring. First steps in synthetic guarded domain theory:
Step-indexing in the topos of trees. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada, pages 55–64. IEEE Computer Society,
2011. doi:10.1109/LICS.2011.16.

[10] Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational
Logic of Iterative Processes. EATCS Monographs on Theoretical Com-
puter Science. Springer, 1993. doi:10.1007/978-3-642-78034-9.

[11] Richard Blute. Linear logic, coherence, and dinaturality. Theor. Comput.
Sci., 115(1):3–41, 1993. doi:10.1016/0304-3975(93)90053-V.

[12] Richard F Blute, J Robin B Cockett, Robert AG Seely, and Todd H
Trimble. Natural deduction and coherence for weakly distributive
categories. Journal of Pure and Applied Algebra, 113(3):229–296, 1996.

[13] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński,
and Fabio Zanasi. Diagrammatic algebra: from linear to concurrent
systems. Proc. ACM Program. Lang., 3(POPL):25:1–25:28, 2019. doi:
10.1145/3290338.

[14] Filippo Bonchi, Jens Seeber, and Paweł Sobociński. Graphical con-
junctive queries. In Dan R. Ghica and Achim Jung, editors, 27th
EACSL Annual Conference on Computer Science Logic, CSL 2018, Sep-
tember 4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages 13:1–
13:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.CSL.2018.13.

[15] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical
semantics of signal flow graphs. In International Conference on Con-
currency Theory, pages 435–450. Springer, 2014.

[16] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Full abstraction
for signal flow graphs. ACM SIGPLAN Notices, 50(1):515–526, 2015.

[17] Manfred Broy and Gheorghe Ştefănescu. The algebra of stream pro-
cessing functions. Theoretical Computer Science, 258(1-2):99–129, 2001.

[18] Titouan Carette, Marc de Visme, and Simon Perdrix. Graphical lan-
guage with delayed trace: Picturing quantum computing with finite
memory. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE,
2021. doi:10.1109/LICS52264.2021.9470553.

[19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inver-
sion via String Diagrams. Mathematical Structures in Computer Sci-
ence, pages 1–34, March 2019. arXiv:1709.00322, doi:10.1017/
S0960129518000488.

[20] J. Robin B. Cockett, Xiuzhan Guo, and Pieter Hofstra. Range Categories
I: General theory. Theory and Applications of Categories, 26(17):412–452,
2012.

[21] J. Robin B. Cockett and Stephen Lack. Restriction categories I: cate-
gories of partial maps. Theoretical Computer Science, 270(1-2):223–259,
2002. doi:10.1016/S0304-3975(00)00382-0.

[22] J Robin B Cockett and Robert AG Seely. Weakly distributive categories.
Journal of Pure and Applied Algebra, 114(2):133–173, 1997.

[23] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical
theory of resources. Inf. Comput., 250:59–86, 2016. doi:10.1016/j.
ic.2016.02.008.

[24] Patrick Cousot. Syntactic and semantic soundness of structural data-
flow analysis. In Bor-Yuh Evan Chang, editor, Static Analysis - 26th
International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019,
Proceedings, volume 11822 of Lecture Notes in Computer Science, pages
96–117. Springer, 2019. doi:10.1007/978-3-030-32304-2_6.

[25] Antonin Delpeuch. A complete language for faceted dataflow pro-
grams. In John Baez and Bob Coecke, editors, Proceedings Applied Cat-
egory Theory 2019, ACT 2019, University of Oxford, UK, 15-19 July 2019,
volume 323 of EPTCS, pages 1–14, 2019. doi:10.4204/EPTCS.323.1.

[26] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini,
and Paweł Sobociński. A canonical algebra of open transition systems.
In Gwen Salaün and Anton Wijs, editors, Formal Aspects of Component
Software, pages 63–81, Cham, 2021. Springer International Publishing.

[27] Wendell Helms Fleming and RaymondW. Rishel. Deterministic and Sto-
chastic Optimal Control. Number vol 1 in Applications of Mathematics.
Springer-Verlag, Berlin ; New York, 1975.

[28] Brendan Fong and David I Spivak. Supplying bells and whistles in
symmetric monoidal categories. arXiv preprint arXiv:1908.02633, 2019.

[29] Thomas Fox. Coalgebras and cartesian categories. Communications in
Algebra, 4(7):665–667, 1976.

[30] Tobias Fritz. A synthetic approach to Markov kernels, conditional
independence and theorems on sufficient statistics. Advances in
Mathematics, 370:107239, 2020. URL: http://arxiv.org/abs/1908.07021,
arXiv:1908.07021.

[31] Richard Garner. Stream processors and comodels. arXiv preprint
arXiv:2106.05473, 2021.

[32] Simon J. Gay and Rajagopal Nagarajan. Intensional and extensional
semantics of dataflow programs. Formal Aspects Comput., 15(4):299–
318, 2003. doi:10.1007/s00165-003-0018-1.

[33] Dan R. Ghica, George Kaye, and David Sprunger. Full abstraction for
digital circuits, 2022. arXiv:2201.10456.

[34] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–
101, 1987.

[35] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Program-
ming and verifying real-time systems by means of the synchronous
data-flow language LUSTRE. IEEE Trans. Software Eng., 18(9):785–793,
1992. doi:10.1109/32.159839.

[36] Masahito Hasegawa. Models of sharing graphs: a categorical semantics
of let and letrec. PhD thesis, University of Edinburgh, UK, 1997. URL:
http://hdl.handle.net/1842/15001.

Elena Di Lavore, Giovanni de Felice, and Mario Román

[37] Thomas Hildebrandt, Prakash Panangaden, and GlynnWinskel. A rela-
tional model of non-deterministic dataflow. In International Conference
on Concurrency Theory, pages 613–628. Springer, 1998.

[38] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geom-
etry of interaction: from coalgebraic components to algebraic effects.
In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014, pages 52:1–52:10. ACM, 2014. doi:10.1145/2603088.2603124.

[39] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairbairn, Joseph H. Fasel, María M. Guzmán, Kevin Hammond, John
Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S. Nikhil,
Will Partain, and John Peterson. Report on the Programming Language
Haskell, A Non-strict, Purely Functional Language. ACM SIGPLAN
Notices, 27(5):1, 1992. doi:10.1145/130697.130699.

[40] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67–111, 2000. doi:10.1016/S0167-6423(99)
00023-4.

[41] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States
and Observation, volume 59 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2016. doi:10.1017/
CBO9781316823187.

[42] Alan Jeffrey. Premonoidal categories and flow graphs. Electron.
Notes Theor. Comput. Sci., 10:51, 1997. doi:10.1016/S1571-0661(05)
80688-7.

[43] André Joyal, Ross Street, and Dominic Verity. Traced monoidal cat-
egories. Mathematical Proceedings of the Cambridge Philosophical
Society, 119:447 – 468, 04 1996. doi:10.1017/S0305004100074338.

[44] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Bicate-
gories of processes. Journal of Pure andApplied Algebra, 115(2):141–178,
1997.

[45] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. On the
algebra of feedback and systems with boundary. In Rendiconti del
Seminario Matematico di Palermo, 1999.

[46] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feed-
back, trace and fixed-point semantics. RAIRO-Theor. Informatics Appl.,
36(2):181–194, 2002. doi:10.1051/ita:2002009.

[47] Frank P. Kelly. Reversibility and stochastic networks. Cambridge Uni-
versity Press, 2011.

[48] Dexter Kozen and Alexandra Silva. Practical coinduction. Mathe-
matical Structures in Computer Science, 27(7):1132–1152, 2017. doi:
10.1017/S0960129515000493.

[49] J. Lambek. Cartesian closed categories and typed 𝜆-calculi. In Guy
Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors, Com-
binators and Functional Programming Languages, Lecture Notes in
Computer Science, pages 136–175, Berlin, Heidelberg, 1986. Springer.
doi:10.1007/3-540-17184-3_44.

[50] Joachim Lambek. A fixpoint theorem for complete categories. Mathe-
matische Zeitschrift, 103(2):151–161, 1968.

[51] Edward A. Lee and Eleftherios Matsikoudis. The semantics of dataflow
with firing. From Semantics to Computer Science: Essays in Honour of
Gilles Kahn, pages 71–94, 2009.

[52] Patrick Lincoln and John C. Mitchell. Operational aspects of linear
lambda calculus. In Proceedings of the Seventh Annual Symposium
on Logic in Computer Science (LICS ’92), Santa Cruz, California, USA,
June 22-25, 1992, pages 235–246. IEEE Computer Society, 1992. doi:
10.1109/LICS.1992.185536.

[53] Fosco Loregian. (Co)end Calculus. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2021. doi:10.1017/
9781108778657.

[54] Nancy A. Lynch and Eugene W. Stark. A proof of the Kahn principle
for input/output automata. Information and Computation, 82(1):81–92,
1989.

[55] Saunders Mac Lane. Categories for the Working Mathematician. Grad-
uate Texts in Mathematics. Springer New York, 1978. doi:10.1007/
978-1-4757-4721-8.

[56] Konstantinos Mamouras. Semantic foundations for deterministic da-
taflow and stream processing. In Peter Müller, editor, Programming
Languages and Systems - 29th European Symposium on Programming,
ESOP 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings, volume 12075 of Lecture Notes in Computer Science, pages
394–427. Springer, 2020. doi:10.1007/978-3-030-44914-8_15.

[57] S. J. Mason. Feedback Theory - Some properties of signal flow graphs.
Proceedings of the Institute of Radio Engineers, 41(9):1144–1156, 1953.
doi:10.1109/JRPROC.1953.274449.

[58] José Nuno Oliveira. The formal semantics of deterministic dataflow
programs. PhD thesis, University of Manchester, UK, 1984. URL:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376586.

[59] Prakash Panangaden. The Category of Markov Kernels. Electronic
Notes in Theoretical Computer Science, 22:171–187, January 1999. doi:
10.1016/S1571-0661(05)80602-4.

[60] Prakash Panangaden and Eugene W. Stark. Computations, residuals,
and the power of indeterminacy. In International Colloquium on Au-
tomata, Languages, and Programming, pages 439–454. Springer, 1988.

[61] Ross Paterson. A newnotation for arrows. In Benjamin C. Pierce, editor,
Proceedings of the Sixth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’01), Firenze (Florence), Italy, September
3-5, 2001, pages 229–240. ACM, 2001. doi:10.1145/507635.507664.

[62] John Power. Premonoidal categories as categories with algebraic
structure. Theor. Comput. Sci., 278(1-2):303–321, 2002. doi:10.1016/
S0304-3975(00)00340-6.

[63] John Power and Hayo Thielecke. Closed freyd- and kappa-categories.
In Jirí Wiedermann, Peter van Emde Boas, andMogens Nielsen, editors,
Automata, Languages and Programming, 26th International Colloquium,
ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, volume
1644 of Lecture Notes in Computer Science, pages 625–634. Springer,
1999. doi:10.1007/3-540-48523-6_59.

[64] John Power and Hiroshi Watanabe. Distributivity for a monad and a
comonad. In Bart Jacobs and Jan J. M. M. Rutten, editors, Coalgebraic
Methods in Computer Science, CMCS 1999, Amsterdam, The Nether-
lands, March 20-21, 1999, volume 19 of Electronic Notes in Theoreti-
cal Computer Science, page 102. Elsevier, 1999. doi:10.1016/S1571-
0661(05)80271-3.

[65] Mario Román. Comb diagrams for discrete-time feedback. CoRR,
abs/2003.06214, 2020. arXiv:2003.06214.

[66] Sheldon M. Ross. Stochastic processes, volume 2. John Wiley & Sons,
1996.

[67] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. The-
oretical Computer Science, 249(1):3–80, 2000. doi:10.1016/S0304-
3975(00)00056-6.

[68] Robert A.G. Seely. Linear logic, *-autonomous categories and cofree
coalgebras. Ste. Anne de Bellevue, Quebec: CEGEP JohnAbbott College,
1987.

[69] Claude E. Shannon. The Theory and Design of Linear Differential
Equation Machines. Bell Telephone Laboratories, 1942.

[70] Michael Shulman. Categorical logic from a categorical point of view.
Available on the web, 2016. URL: https://mikeshulman.github.io/catlog/
catlog.pdf.

[71] Michael Shulman. A practical type theory for symmetric monoidal
categories, 2021. arXiv:1911.00818.

[72] David Sprunger and Bart Jacobs. The differential calculus of causal
functions. CoRR, abs/1904.10611, 2019. URL: http://arxiv.org/abs/1904.
10611, arXiv:1904.10611.

[73] David Sprunger and Shin-ya Katsumata. Differentiable causal com-
putations via delayed trace. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,

Monoidal Streams for Dataflow Programming

2019, pages 1–12. IEEE, 2019. doi:10.1109/LICS.2019.8785670.
[74] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor.

Mathematical theory of domains, volume 22 of Cambridge tracts in
theoretical computer science. Cambridge University Press, 1994.

[75] TarmoUustalu and VarmoVene. The essence of dataflow programming.
In Kwangkeun Yi, editor, Programming Languages and Systems, Third
Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages
2–18. Springer, 2005. doi:10.1007/11575467_2.

[76] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation.
In Jiří Adámek and Clemens Kupke, editors, Proceedings of the Ninth
Workshop on Coalgebraic Methods in Computer Science, CMCS 2008,
Budapest, Hungary, April 4-6, 2008, volume 203 of Electronic Notes
in Theoretical Computer Science, pages 263–284. Elsevier, 2008. doi:
10.1016/j.entcs.2008.05.029.

[77] William W Wadge, Edward A Ashcroft, et al. Lucid, the dataflow
programming language, volume 303. Academic Press London, 1985.

A Monoidal categories
Definition A.1 ([55]). A monoidal category,

(C, ⊗, 𝐼 , 𝛼, 𝜆, 𝜌),
is a category C equipped with a functor ⊗ : C × C → C, a
unit 𝐼 ∈ C, and three natural isomorphisms: the associator
𝛼𝐴,𝐵,𝐶 : (𝐴⊗𝐵)⊗𝐶 � 𝐴⊗(𝐵⊗𝐶), the left unitor 𝜆𝐴 : 𝐼⊗𝐴 � 𝐴
and the right unitor 𝜌𝐴 : 𝐴 ⊗ 𝐼 � 𝐴; such that 𝛼𝐴,𝐼,𝐵 ; (id𝐴 ⊗
𝜆𝐵) = 𝜌𝐴 ⊗ id𝐵 and (𝛼𝐴,𝐵,𝐶 ⊗ id);𝛼𝐴,𝐵⊗𝐶,𝐷 ; (id𝐴 ⊗ 𝛼𝐵,𝐶,𝐷) =
𝛼𝐴⊗𝐵,𝐶,𝐷 ;𝛼𝐴,𝐵,𝐶⊗𝐷 . A monoidal category is strict if 𝛼 , 𝜆 and
𝜌 are identities.

Definition A.2 (Monoidal functor, [55]). Let
(C, ⊗, 𝐼 , 𝛼C, 𝜆C, 𝜌C) and (D,⊠, 𝐽 , 𝛼D, 𝜆D, 𝜌D)

bemonoidal categories. Amonoidal functor (sometimes called
strong monoidal functor) is a triple (𝐹, 𝜀, 𝜇) consisting of a
functor 𝐹 : C → D and two natural isomorphisms 𝜀 : 𝐽 �
𝐹 (𝐼) and 𝜇 : 𝐹 (𝐴 ⊗ 𝐵) � 𝐹 (𝐴) ⊠ 𝐹 (𝐵); such that
• the associators satisfy

𝛼D
𝐹𝐴,𝐹𝐵,𝐹𝐶 ; (id𝐹𝐴 ⊗ 𝜇𝐵,𝐶); 𝜇𝐴,𝐵⊗𝐶

= (𝜇𝐴,𝐵 ⊗ id𝐹𝐶); 𝜇𝐴⊗𝐵,𝐶 ; 𝐹 (𝛼C
𝐴,𝐵,𝐶),

• the left unitor satisfies
(𝜀 ⊗ id𝐹𝐴); 𝜇𝐼 ,𝐴; 𝐹 (𝜆C

𝐴) = 𝜆D
𝐹𝐴

• the right unitor satisfies
(id𝐹𝐴 ⊗ 𝜀); 𝜇𝐴,𝐼 ; 𝐹 (𝜌C

𝐹𝐴) = 𝜌D
𝐹𝐴 .

Amonoidal functor is amonoidal equivalence if it is moreover
an equivalence of categories. Two monoidal categories are
monoidally equivalent if there exists a monoidal equivalence
between them.

During most of the paper, we omit all associators and uni-
tors from monoidal categories, implicitly using the coherence
theorem for monoidal categories (Remark A.4).

Theorem A.3 (Coherence theorem, [55]). Every monoidal
category is monoidally equivalent to a strict monoidal category.

Remark A.4. Let us comment further on how we use the co-
herence theorem. Each time we have a morphism 𝑓 : 𝐴→ 𝐵
in a monoidal category, we have a corresponding morphism
𝐴→ 𝐵 in its strictification. This morphism can be lifted to
the original category to uniquely produce, say, a morphism
(𝜆𝐴; 𝑓 ; 𝜆𝐵

−1) : 𝐼 ⊗ 𝐴→ 𝐼 ⊗ 𝐵. Each time the source and the
target are clearly determined, we simply write 𝑓 again for
this new morphism.

Definition A.5 (Symmetric monoidal category, [55]). A
symmetric monoidal category (C, ⊗, 𝐼 , 𝛼, 𝜆, 𝜌, 𝜎) is a monoidal
category (C, ⊗, 𝐼 , 𝛼, 𝜆, 𝜌) equipped with a braiding 𝜎𝐴,𝐵 : 𝐴 ⊗
𝐵 → 𝐵 ⊗ 𝐴, which satisfies the hexagon equation

𝛼𝐴,𝐵,𝐶 ;𝜎𝐴,𝐵⊗𝐶 ;𝛼𝐵,𝐶,𝐴 = (𝜎𝐴,𝐵 ⊗ id);𝛼𝐵,𝐴,𝐶 ; (id ⊗ 𝜎𝐴,𝐶)
and additionally satisifes 𝜎𝐴,𝐵 ;𝜎𝐵,𝐴 = id.

Elena Di Lavore, Giovanni de Felice, and Mario Román

Remark A.6 (Notation). We omit symmetries when this does
not cause confusion. We write 𝑎 for the morphism 𝑎 tensored
with some identities when these can be deduced from the
context. For instance, let 𝑓 : 𝐴 → 𝐵, let ℎ : 𝐵 → 𝐷 and
let 𝑔 : 𝐵 ⊗ 𝐷 → 𝐸. We write 𝑓 ;ℎ;𝑔 for the morphism (𝑓 ⊗
id);𝜎; (id ⊗ ℎ);𝑔, which could have been also written as
(𝑓 ⊗ id); (ℎ ⊗ id);𝜎;𝑔

Definition A.7 ([55]). A symmetric monoidal functor be-
tween two symmetricmonoidal categories (C, 𝜎C) and (D, 𝜎D)
is a monoidal functor 𝐹 : C→ D such that 𝜎D; 𝜇 = 𝜇; 𝐹 (𝜎C).
DefinitionA.8. A cartesianmonoidal category is a monoidal
category whose tensor is the categorical product and whose
unit is a terminal object.

Definition A.9. A feedback functor between two feedback
monoidal categories (C,FC, fbkC) and (D,FD, fbkD) is a sym-
metric monoidal functor𝐺 : C→ D such that𝐺 ; FD = FC;𝐺
and

𝐺 (fbkC
𝑆 (𝑓)) = fbkD

𝐺𝑆 (𝜇F𝑆,𝐴;𝐺𝑓 ; 𝜇−1𝑆,𝐵),
for each 𝑓 : F𝑆 ⊗ 𝑋 → 𝑆 ⊗ 𝑌 , where 𝜇𝐴,𝐵 : 𝐺 (𝐴) ⊗ 𝐺 (𝐵) →
𝐺 (𝐴 ⊗ 𝐵) is the structure morphism of the monoidal functor
𝐺 .

Theorem A.10 (see [46]). StF (C) is the free category with
feedback over (C,F).
Proof sketch. Let (D,FD, fbkD) be any other symmetric mo-
noidal category with an endofunctor, and let 𝐻 : C → D
be such that F;𝐻 = 𝐻 ; FD. We will prove that it can be
extended uniquely to a feedback functor 𝐻 : StF (C) → D.
It can be proven that any expression involving feedback

can be reduced applying the feedback axioms to an expres-
sion of the form fbk(𝑓) for some 𝑓 : F𝑆 ⊗ 𝑋 → 𝑆 ⊗ 𝑌 . After
this, the definition of 𝐻 in this morphism is forced to be
𝐻 (fbk 𝑓) = fbkD (D). This reduction is uniquely up to slid-
ing, and the morphisms of the St(•) construction are pre-
cisely morphisms 𝑓 : F𝑆 ⊗ 𝑋 → 𝑆 ⊗ 𝑌 quotiented by sliding
equivalence. This is the core of the proof in [46]. □

A.1 Markov categories
DefinitionA.11. The finite distribution commutativemonad
D: Set→ Set associates to each set the set of finite-support
probability distributions over it.

D(𝑋) =

𝑝 : 𝑋 → [0, 1]

������
| {𝑥 |𝑝 (𝑥)>0} |<∞∑︁

𝑝 (𝑥)>0
𝑝 (𝑥) = 1

.

We call Stoch to the symmetric monoidal kleisli category of
the finite distribution monad, kl(D).

We write 𝑓 (𝑦 |𝑥) for the probability 𝑓 (𝑥) (𝑦) ∈ [0, 1]. Com-
position, 𝑓 ;𝑔, is defined by

(𝑓 ; 𝑔) (𝑧 |𝑥) =
∑︁
𝑦∈𝑌

𝑔(𝑧 |𝑦) 𝑓 (𝑦 |𝑥).

The cartesian product (×) in Set induces a monoidal (non-
cartesian) product on kl(D). That is, kl(D) has comonoids
()𝑋 : 𝑋 → 𝑋 × 𝑋 on every object, with ()𝑋 : 𝑋 → 1 as
counit. However, contrary to what happens in Set, these
comultiplications are not natural: sampling and copying the
result is different from taking two independent samples.

Definition A.12 (Markov category, [30, Definition 2.1]). A
Markov category C is a symmetric monoidal category in
which each object 𝑋 ∈ C has a cocommutative comonoid
structure (𝑋, 𝜀 = 𝑋 : 𝑋 → 𝐼 , 𝛿 = 𝑋 : 𝑋 → 𝑋 ⊗ 𝑋) with
• uniform comultiplications, 𝑋 ⊗𝑌 = (𝑋 ⊗ 𝑌)𝜎𝑋,𝑌 ;
• uniform counits, 𝑋 ⊗𝑌 = 𝑋 ⊗ 𝑌 ; and
• natural counits, 𝑓 ; 𝑌 = 𝑋 for each 𝑓 : 𝑋 → 𝑌 .

Crucially, comultiplications do not need to be natural.

Remark A.13 ([30, Remark 2.4]). Any cartesian category is
a Markov category. However, not any Markov category is
cartesian, and the most interesting examples are those that
fail to be cartesian, such as Stoch. The failure of comulti-
plication being natural makes it impossible to apply Fox’s
theorem (Theorem C.5).

The structure of a Markov category is very basic. In most
cases, we do need extra structure to reason about probabili-
ties: this is the role of conditionals and ranges.

Remark A.14 (Notation). In a Markov category, given any
𝑓 : 𝑋0 → 𝑌0 and any 𝑔 : 𝑌0 ⊗ 𝑋0 ⊗ 𝑋1 → 𝑌1, we write
(𝑓 ⊳ 𝑔) : 𝑋0 ⊗ 𝑋1 → 𝑌0 ⊗ 𝑌1 for the morphism defined by

(𝑓 ⊳ 𝑔) = (𝐴); 𝑓 ; (𝐵);𝑔,
which is the string diagram in Figure 14.

𝑓

𝑔

𝑋0

𝑌0 𝑌1

𝑋1

Figure 14. The morphism (𝑓 ⊳ 𝑔).

Proposition A.15. Up to symmetries,

(𝑓 ⊳ 𝑔) ⊳ ℎ = 𝑓 ⊳ (𝑔 ⊳ ℎ).
We may simply write (𝑓 ⊳ 𝑔 ⊳ ℎ) for any of the two, omitting
the symmetry.

Proof. Using string diagrams (Figure 15). Note that () is
coassociative and cocommutative. □

The Markov category Stoch also has conditionals [30], a
property which we will use to prove the main result regard-
ing stochastic processes.

Monoidal Streams for Dataflow Programming

𝑓

𝑔

ℎ

𝑓

𝑔

ℎ

𝑋0 𝑋1 𝑋2

𝑌0 𝑌1 𝑌2

𝑋0 𝑋1 𝑋2

𝑌0 𝑌1 𝑌2

=

Figure 15. Associativity, up to symmetries, of the triangle
operation.

𝑓

𝑓

𝑐 𝑓

=

𝐴 𝐴

𝑋 𝑌 𝑋 𝑌

Figure 16. Condititionals in a Markov category.

Definition A.16 (Conditionals, [30, Definition 11.5]). Let
C be a Markov category. We say that C has conditionals if
for every morphism 𝑓 : 𝐴→ 𝑋 ⊗ 𝑌 , writing 𝑓𝑌 : 𝐴→ 𝑋 for
its first projection, there exists 𝑐 𝑓 : 𝑋 ⊗ 𝐴 → 𝑌 such that
𝑓 = 𝑓𝑌 ⊳ 𝑐 𝑓 (Figure 16).

Proposition A.17. The Markov category Stoch has condi-
tionals [30, Example 11.6].

Proof. Let 𝑓 : 𝐴→ 𝑋 ⊗𝑌 . If 𝑌 is empty, we are automatically
done. If not, pick some 𝑦0 ∈ 𝑌 , and define

𝑐 𝑓 (𝑦 |𝑥, 𝑎) =

𝑓 (𝑥,𝑦 |𝑎)/∑𝑥 ∈𝑋 𝑓 (𝑥,𝑦 |𝑎)
if 𝑓 (𝑥,𝑦 |𝑎) > 0 for some 𝑥 ∈ 𝑋,

(𝑦 = 𝑦0) otherwise.
It is straightforward to check that this does indeed define a
distribution, and that it factors the original 𝑓 as expected. □

Definition A.18 (Ranges). In a Markov category, a range
for a morphism 𝑓 : 𝐴→ 𝐵 is a morphism 𝑟 𝑓 : 𝐴⊗𝐵 → 𝐴⊗𝐵
that

1. does not change its output 𝑓 ⊳ id𝐴⊗𝐵 = 𝑓 ⊳ 𝑟 𝑓 ,
2. is deterministic, meaning 𝑟 𝑓 ; 𝐴⊗𝐵 = 𝐴⊗𝐵 ; (𝑟 𝑓 ⊗ 𝑟 𝑓),
3. and has the range property, 𝑓 ⊳ 𝑔 = 𝑓 ⊳ ℎ must imply

(𝑟 𝑓 ⊗ id);𝑔 = (𝑟 𝑓 ⊗ id);ℎ
for any suitably typed 𝑔 and ℎ.

𝑋

𝑀

𝛼

𝑐𝛼

𝑌

𝛼

𝑋

𝑌 𝑀

=
𝛼0

𝑐𝛼

=

𝑋

𝑌 𝑀

Figure 17. Productivity for Markov categories.

We say that a Markov category has ranges if there exists a
range for each morphism of the category.

Remark A.19. There already exists a notion of categorical
range in the literature, due to Cockett, Guo and Hofstra [20].
It arises in parallel to the notion of support in restriction
categories [21]. The definition better suited for our purposes
is different, even if it seems inspired by the same idea. The
main difference is that we are using a controlled range; that is,
the range of a morphism depends on the input to the original
morphism. We keep the name hoping that it will not cause
any confusion, as we do not deal explicitly with restriction
categories in this text.

Proposition A.20. The Markov category Stoch has ranges.

Proof. Given 𝑓 : 𝐴→ 𝐵, we know that for each 𝑎 ∈ 𝐴 there
exists some𝑏𝑎 ∈ 𝐵 such that 𝑓 (𝑏𝑎 |𝑎) > 0. We fix such𝑏𝑎 ∈ 𝐵,
and we define 𝑟 𝑓 : 𝐴 ⊗ 𝐵 → 𝐴 ⊗ 𝐵 as

𝑟 𝑓 (𝑎, 𝑏) =
{ (𝑎, 𝑏) if 𝑓 (𝑏 |𝑎) > 0,
(𝑎, 𝑏𝑎) if 𝑓 (𝑏 |𝑎) = 0.

It is straightforward to check that it satisfies all the properties
of ranges. □

Theorem A.21. Any Markov category with conditionals and
ranges is productive.

Proof. Given any ⟨𝛼 | ∈ Stage1 (X,Y), we can define

𝛼0 = 𝐴;𝛼 ; (𝑌 ⊗ 𝑀).
This is indeed well-defined because of naturality of the dis-
carding map ()𝑀 : 𝑀 → 𝐼 in any Markov category. Let
𝑐𝛼 : 𝑌 ⊗ 𝑋 → 𝑀 be a conditional of 𝛼 . This representative
can then be factored as 𝛼 = 𝛼0; 𝑐𝛼 (Figure 17).
Now assume that for two representatives ⟨𝛼𝑖 | = ⟨𝛼 𝑗 |

we have that ⟨𝛼𝑖 ;𝑢 | = ⟨𝛼 𝑗 ; 𝑣 |. By naturality of the discard-
ing, 𝛼𝑖 ; 𝜀 = 𝛼 𝑗 ; 𝜀, and let 𝑟 be a range of this map. Again
by naturality of discarding, we have 𝛼𝑖 ;𝑢; = 𝛼 𝑗 ; 𝑣 ; . Let
then 𝑐𝑖 and 𝑐 𝑗 be conditionals of 𝛼𝑖 and 𝛼 𝑗 : we have that
(𝛼0 ⊳ 𝑐𝑖);𝑢; = (𝛼0 ⊳ 𝑐 𝑗); 𝑣 ; . By the properties of ranges
(Figure 18), (𝛼0 ⊳ 𝑟 ; 𝑐𝑖);𝑢; 𝑀 (𝑢) = (𝛼0 ⊳ 𝑟 ; 𝑐 𝑗); 𝑣 ; 𝑀 (𝑣) , and
thus, 𝑟 ; 𝑐𝑖 ;𝑢; 𝑀 (𝑢) = 𝑟 ; 𝑐 𝑗 ; 𝑣 ; 𝑀 (𝑣) . We pick 𝑠𝑖 = 𝑟 ; 𝑐𝑖 and we
have proven that ⟨𝑠𝑖 ;𝑢 | = ⟨𝑠 𝑗 ; 𝑣 |. □

Elena Di Lavore, Giovanni de Felice, and Mario Román

𝑋

𝛼𝑖

𝑐𝑖

𝑟

𝑢

𝑋

𝛼 𝑗

𝑐 𝑗

𝑟

𝑣

=

𝑍

𝑌 𝑊

𝑍

𝑌 𝑊

Figure 18. Applying the properties of range.

A.2 Stochastic processes
Definition A.22 (Controlled stochastic process). Let X =
(𝑋0, 𝑋1, . . .) and Y = (𝑌0, 𝑌1, . . .) be infinite sequences of
sets. A controlled stochastic process f : X→ Y is an infinite
sequence f = (𝑓0, 𝑓1, . . .) of functions 𝑓𝑛 : 𝑋𝑛 × · · · × 𝑋1 →
D(𝑌𝑛 × · · · × 𝑌1) such that 𝑓𝑛 coincides with the marginal
distribution of 𝑓𝑛+1 on the first 𝑛 variables. In other words,
𝑓𝑛+1 ; 𝐷𝜋𝑌0,...,𝑌𝑛 = 𝜋𝑋0,...,𝑋𝑛 ; 𝑓𝑛 .

𝑋0 × · · · × 𝑋𝑛+1 𝐷 (𝑌0 × · · · × 𝑌𝑛+1)

𝑋0 × · · · × 𝑋𝑛 𝐷 (𝑌0 × · · · × 𝑌𝑛)

𝑓𝑛+1

𝜋0,...,𝑛 𝐷𝜋0,...,𝑛

𝑓𝑛

Let StochProc be the categorywith objects infinite sequences
of sets X = (𝑋0, 𝑋1, . . .) and morphisms controlled stochas-
tic processes f = (𝑓0, 𝑓1, . . .) with composition and identities
defined componentwise in Stoch.

Proposition A.23 (Factoring as conditionals). A stochastic
process 𝑓 : X→ Y can be always written as

𝑓𝑛 = 𝑐0 ⊳ 𝑐1 ⊳ · · · ⊳ 𝑐𝑛,
for some family of functions

𝑐𝑛 : 𝑌0 × · · · × 𝑌𝑛−1 × 𝑋0 × · · · × 𝑋𝑛 → 𝑌𝑛,

called the conditionals of the stochastic process.

Proof. We proceed by induction, noting first that 𝑐0 = 𝑓0.
In the general case, we apply conditionals to rewrite 𝑓𝑛+1 =
(𝑓𝑛+1; ()𝑌𝑛+1) ⊳𝑐𝑛+1. Because of the marginalization property,
we know that 𝑓𝑛+1; ()𝑌𝑛+1 = 𝑓𝑛 . So finally, 𝑓𝑛+1 = 𝑓𝑛 ⊳ 𝑐𝑛+1,
which by the induction hypothesis gives the desired result.

□

Proposition A.24. If two families of conditionals give rise to
the same stochastic process,

𝑐0 ⊳ 𝑐1 ⊳ · · · ⊳ 𝑐𝑛 = 𝑐 ′0 ⊳ 𝑐
′
1 ⊳ · · · ⊳ 𝑐 ′𝑛,

then, they also give rise to the same n-stage processes in Stoch,

⟨𝑐0 ⊳ id|𝑐1 ⊳ id| . . . |𝑐𝑛 ⊳ id| = ⟨𝑐 ′0 ⊳ id|𝑐 ′1 ⊳ id| . . . |𝑐 ′𝑛 ⊳ id| .

Proof. We start by defining a family of morphisms 𝑟𝑛 by
induction. We take 𝑟0 = id and 𝑟𝑛+1 to be a range of 𝑟𝑛; ; 𝑐𝑛 .

Let us prove now that for any 𝑛 ∈ N and 𝑖 ⩽ 𝑛,
𝑟𝑖 ; ; 𝑐𝑖 ⊳ · · · ⊳ 𝑐𝑛 = 𝑟𝑖 ; ; 𝑐 ′𝑖 ⊳ · · · ⊳ 𝑐 ′𝑛 .

We proceed by induction. Observing that 𝑐0 = 𝑐 ′0, we prove
it for 𝑛 = 0 and also for the case 𝑖 = 0 for any 𝑛 ∈ N.
Assume we have it proven for 𝑛, so in particular we know
that 𝑟𝑖 ; ; 𝑐𝑖 = 𝑟𝑖 ; ; 𝑐 ′𝑖 for any 𝑖 ⩽ 𝑛. Now, by induction on 𝑖 ,
we can use the properties of ranges to show that

𝑟𝑖 ; ; 𝑐𝑖 ⊳ · · · ⊳ 𝑐𝑛 = 𝑟𝑖 ; ; 𝑐 ′𝑖 ⊳ · · · ⊳ 𝑐 ′𝑛
(𝑟𝑖 ; ; 𝑐𝑖 ⊳ id); 𝑐𝑖+1 ⊳ · · · ⊳ 𝑐𝑛 = (𝑟𝑖 ; ; 𝑐 ′𝑖 ⊳ id); 𝑐 ′𝑖+1 ⊳ · · · ⊳ 𝑐 ′𝑛
(𝑟𝑖 ; ; 𝑐𝑖 ⊳ 𝑟𝑖+1); 𝑐𝑖+1 ⊳ · · · ⊳ 𝑐𝑛 = (𝑟𝑖 ; ; 𝑐 ′𝑖 ⊳ 𝑟𝑖+1); 𝑐 ′𝑖+1 ⊳ · · · ⊳ 𝑐 ′𝑛

𝑟𝑖+1; ; 𝑐𝑖+1 ⊳ · · · ⊳ 𝑐𝑛 = 𝑟𝑖+1; ; 𝑐 ′𝑖+1 ⊳ · · · ⊳ 𝑐 ′𝑛 .
In particular, 𝑟𝑛; ; 𝑐𝑛 = 𝑟𝑛; ; 𝑐 ′𝑛 .
Now, we claim the following for each 𝑛 ∈ N and each

𝑖 ⩽ 𝑛,
⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id| =

⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 (𝑐𝑖 ⊳ id) |𝑐𝑖+1 | . . . |𝑐𝑛 ⊳ id| .
It is clear for 𝑛 = 0 and for 𝑖 = 0. In the inductive case for 𝑖 ,

⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 (𝑐𝑖 ⊳ id) |𝑐𝑖+1 ⊳ id| . . . |𝑐𝑛 ⊳ id| =
⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 ; ; 𝑐𝑖 ⊳ id|𝑐𝑖+1 ⊳ id| . . . |𝑐𝑛 ⊳ id| =
⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 ; ; 𝑐𝑖 ⊳ 𝑟𝑖+1 |𝑐𝑖+1 ⊳ id| . . . |𝑐𝑛 ⊳ id| =

⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 ; ; 𝑐𝑖 ⊳ id|𝑟𝑖+1 (𝑐𝑖+1 ⊳ id) | . . . |𝑐𝑛 ⊳ id| =
⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑖 (𝑐𝑖 ⊳ id) |𝑟𝑖+1 (𝑐𝑖+1 ⊳ id) | . . . |𝑐𝑛 ⊳ id| .

A particular case of this claim is then that
⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id| =

⟨𝑟0 (𝑐0 ⊳ id) | . . . |𝑟𝑛 (𝑐𝑛 ⊳ id) | =
⟨𝑟0 (𝑐 ′0 ⊳ id) | . . . |𝑟𝑛 (𝑐 ′𝑛 ⊳ id) | =

⟨𝑐 ′0 ⊳ id| . . . |𝑐 ′𝑛 ⊳ id| .
This can be then proven for any 𝑛 ∈ N. □

CorollaryA.25. Any stochastic process 𝑓 ∈ StochProc(X,Y)
with a family of conditionals 𝑐𝑛 gives rise to the observational
sequence

obs(𝑓) = [⟨(𝑐𝑛 ⊳ id) : (𝑋0 × 𝑌0 × · · · × 𝑋𝑛−1 × 𝑌𝑛−1) × 𝑋𝑛 →
(𝑋0 × 𝑌0 × · · · × 𝑋𝑛 × 𝑌𝑛) × 𝑌𝑛⟩]≈,

which is independent of the chosen family of conditionals.

Proof. Any two families of conditionals for 𝑓 give rise to
the same n-stage processes in Stoch (by Proposition A.24).
Being a productive category, observational sequences are
determined by their n-stage procesess. □

Proposition A.26. An observational sequence in Stoch,

[⟨𝑔𝑛 : 𝑀𝑛−1 ⊗ 𝑋𝑛 → 𝑀𝑛 ⊗ 𝑌𝑛⟩]≈ ∈ Obs(X,Y)
gives rise to a stochastic process proc(𝑔) ∈ StochProc(X,Y)
defined by proc(𝑔)𝑛 = 𝑔0;𝑔1; . . . ;𝑔𝑛; 𝜀𝑀𝑛 .

Monoidal Streams for Dataflow Programming

Proof. The symmetric monoidal category Stoch is produc-
tive: by Lemma D.3, observational sequences are determined
by their n-stage truncations

⟨𝑔0 | . . . |𝑔𝑛 | ∈ Stage𝑛 (X,Y).
Each n-stage truncation gives rise to the n-th component
of the stochastic process, proc(𝑔)𝑛 = 𝑔0;𝑔1; . . . ;𝑔𝑛; 𝜀𝑀𝑛 , and
this is well-defined: composing the morphisms is invariant
to sliding equivalence, and the last discarding map is natural.

It only remains to show that they satisfy the marginalisa-
tion property. Indeed,

proc(𝑔)𝑛+1; 𝜀𝑛+1 = 𝑔0;𝑔1; . . . ;𝑔𝑛+1; 𝜀𝑀𝑛+1 ; 𝜀𝑌𝑛+1
= 𝑔0;𝑔1; . . . ;𝑔𝑛; 𝜀𝑀𝑛

= proc(𝑔)𝑛 .
Thus, proc(𝑔) is a stochastic process in StochProc(X,Y). □

Proposition A.27. Let 𝑓 ∈ StochProc(X,Y), we have that
proc(obs(𝑓)) = 𝑓 .

Proof. Indeed, for 𝑐𝑛 some family of conditionals,

𝑓𝑛 = 𝑐0 ⊳ · · · ⊳ 𝑐𝑛 = (𝑐0 ⊳ id); . . . ; (𝑐𝑛 ⊳ id); 𝜀𝑀𝑛 . □

Theorem A.28. Observational sequences in Stoch are in bi-
jection with stochastic processes.

Proof. The function obs is injective by Proposition A.27. We
only need to show it is also surjective.

We will prove that any n-stage process ⟨𝑔0 | . . . |𝑔𝑛 | can be
equivalently written in the form ⟨(𝑐0 ⊳ id) | . . . | (𝑐𝑛 ⊳ id) |. We
proceed by induction. Given any ⟨𝑔0 | we use conditionals
and dinaturality to rewrite it as

⟨𝑔0 | = ⟨𝑐0 ⊳ 𝑐𝑀 | = ⟨𝑐0 ⊳ id| .
Given any ⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id|𝑔𝑛+1 |, we use again condition-
als and dinaturality to rewrite it as

⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id|𝑔𝑛+1 | =
⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id|𝑐𝑛+1 ⊳ 𝑐𝑀 | =
⟨𝑐0 ⊳ id| . . . |𝑐𝑛 ⊳ id|𝑐𝑛+1 ⊳ id| .

We have shown that obs is both injective and surjective. □

Theorem A.29 (From Theorem 7.2). The category Stoch of
stochastic processes is monoidally isomorphic to the category
Stream over Stoch.

Proof. We have shown in Theorem A.28 that proc is a bijec-
tion. Let us show that it preserves compositions. Indeed,

proc(𝑔;ℎ)𝑛 = 𝑔0;ℎ0; . . . ;𝑔𝑛;ℎ𝑛; 𝜀𝑀𝑛⊗𝑁𝑛

= 𝑔0; . . . ;𝑔𝑛;ℎ0; . . . ;ℎ𝑛; (𝜀𝑀𝑛 ⊗ 𝜀𝑁𝑛)
= 𝑔0 . . . 𝑔𝑛; 𝜀𝑀𝑛 ;ℎ0 . . . ℎ𝑛; 𝜀𝑁𝑛

= proc(𝑔)𝑛; proc(ℎ)𝑛 .

It also trivially preserves the identity. It induces thus an
identity-on-objects functor which is moreover an equiva-
lence of categories. Let us finally show that it preserves
tensoring of morphisms.

proc(𝑔 ⊗ ℎ)𝑛 = (𝑔0 ⊗ ℎ0); . . . ; (𝑔𝑛 ⊗ ℎ𝑛); 𝜀𝑀𝑛⊗𝑁𝑛

= (𝑔0 ⊗ ℎ0); . . . ((𝑔𝑛𝜀𝑀𝑛) ⊗ (ℎ𝑛𝜀𝑁𝑛))
= (𝑔0 . . . 𝑔𝑛𝜀𝑀𝑛) ⊗ (ℎ0 . . . ℎ𝑛𝜀𝑁𝑛)
= proc(𝑔)𝑛 ⊗ proc(ℎ)𝑛 .

It is thus also a monoidal equivalence. □

B Coend Calculus and Profunctors
Coend calculus is the name given to the a branch of cate-
gory theory that describes the behaviour of certain colimits
called coends. MacLane [55] and Loregian [53] give complete
presentations of coend calculus.

Definition B.1. Coends are the coequalizers of the action
of morphisms on both arguments of a profunctor.

coend(𝑃) B coeq

(∐
𝑓 : 𝐵→𝐴 𝑃 (𝐴, 𝐵) ∐

𝑋 ∈C 𝑃 (𝑋,𝑋)
)
.

Coends are usually denoted with a superscripted integral,
drawing on an analogy with classical calculus.∫ 𝑋 ∈C

𝑃 (𝑋,𝑋) = coend(𝑃).

Proposition B.2 (Yoneda reduction). Let C be any category
and let 𝐹 : C→ Set be a functor; the following isomorphism
holds for any given object 𝐴 ∈ C.∫ 𝑋 ∈C

hom (𝑋,𝐴) × 𝐹𝑋 � 𝐹𝐴.

Following the analogy with classical analysis, the hom pro-
functor works as a Dirac’s delta.

Proposition B.3 (Fubini rule). Coends commute between
them; that is, there exists a natural isomorphism∫ 𝑋1∈C ∫ 𝑋2∈C

𝑃 (𝑋1, 𝑋2, 𝑋1, 𝑋2)
� ∫ 𝑋2∈C ∫ 𝑋1∈C

𝑃 (𝑋1, 𝑋2, 𝑋1, 𝑋2).

In fact, they are both isomorphic to the coend over the product
category, ∫ (𝑋1,𝑋2) ∈C×C

𝑃 (𝑋1, 𝑋2, 𝑋1, 𝑋2).
Following the analogy with classical analysis, coends follow
the Fubini rule for integrals.

A profunctor from a categoryA to a categoryB is a functor
𝑃 : A𝑜𝑝 × B → Set. They can be seen as a categorification
of the concept of relations, functions 𝐴 × 𝐵 → 2. Under this
analogy, existential quantifiers correspond to coends. The

Elena Di Lavore, Giovanni de Felice, and Mario Román

canonical example of a profunctor is, hom : A𝑜𝑝 × A→ Set,
the profunctor that returns the set of morphisms between
two objects. Many operations relating families of processes
are more easily defined in terms of profunctors: for instance,
sequential composition connects the outputs of a family of
processes to the outputs of another family.

Definition B.4 (Sequential composition). Two profunctors
𝑃 : A𝑜𝑝×B→ Set and𝑄 : B𝑜𝑝×C→ Set compose sequentially
into a profunctor 𝑃 ⋄𝑄 : A𝑜𝑝 × C→ Set defined by

(𝑃 ⋄𝑄) (𝐴,𝐶) =
∫ 𝐵∈B

𝑃 (𝐴, 𝐵) ×𝑄 (𝐵,𝐶).

The hom-profunctor hom : A𝑜𝑝 × A→ Set that returns the
set of morphisms between two objects is the unit for sequen-
tial composition. Sequential composition is associative up to
isomorphism.

Definition B.5 (Parallel composition). Two profunctors
𝑃 : A𝑜𝑝

1 × B1 → Set and 𝑄 : A𝑜𝑝
2 × B2 → Set compose in

parallel into a profunctor 𝑃 ×𝑄 : A𝑜𝑝
1 ×A𝑜𝑝

2 ×B1×B2 → Set
defined by

(𝑃 ×𝑄) (𝐴,𝐴′, 𝐵, 𝐵′) = 𝑃 (𝐴, 𝐵) ×𝑄 (𝐴′, 𝐵′).
Definition B.6 (Intensional communicating composition).
Let A,B,C be categories and let B have a monoidal structure.
Let 𝑃 : A𝑜𝑝 × B→ Set and 𝑄 : B𝑜𝑝 × CN → Set be a pair of
profunctors. Their intensional communicating composition is
the profunctor 𝑃 � 𝑄 : A𝑜𝑝 ×B𝑜𝑝 ×B × C→ Set defined as

(𝑃 � 𝑄) (𝐴, 𝐵;𝐵′,𝐶) =
∑︁
𝑀 ∈B

𝑃 (𝐴, 𝐵 ⊗ 𝑀) ×𝑄 (𝑀 ⊗ 𝐵′,𝐶).

Remark B.7. Let C be a monoidal category and let 𝑃 : C𝑜𝑝 ×
C → Set and 𝑄 : [N,C]𝑜𝑝 × [N,C] → Set be a pair of pro-
functors. Note that [N,C] � C × [N,C], and so the sec-
ond profunctor can be interpreted as having type 𝑄 : C𝑜𝑝 ×
([N,C]𝑜𝑝 × [N,C]) → Set. In this case, their intensional
communicating composition is defined by

(𝑃 � 𝑄) (X; Y) B
∑︁
𝑀 ∈C

𝑃 (𝑋0, 𝑀 ⊗ 𝑌0) ×𝑄 (𝑀 · X+,Y+).

This is the composition we use when we describe the endo-
functor (hom � •) : [[N,C]𝑜𝑝 × [N,C], Set] → [[N,C]𝑜𝑝 ×
[N,C], Set].
(hom � 𝑄) (X; Y) B

∑︁
𝑀 ∈C

hom (𝑋0, 𝑀 ⊗𝑌0) ×𝑄 (𝑀 ·X+,Y+) .

Definition B.8 (Communicating profunctor composition).
Let A,B,C be categories and let B have a monoidal structure.
Two profunctors 𝑃 : A𝑜𝑝 × B → Set and 𝑄 : B𝑜𝑝 × C →
Set compose communicating along B into the profunctor
(𝑃 ⊙ 𝑄) : A𝑜𝑝 × B × B𝑜𝑝 × C→ Set defined by

(𝑃 ⊙ 𝑄) (𝐴, 𝐵;𝐵′,𝐶) =
∫ 𝑀

𝑃 (𝐴, 𝐵 ⊗ 𝑀) ×𝑄 (𝑀 ⊗ 𝐵′,𝐶).

The profunctors hom (𝐼 , •) : B→ Set and hom (•, 𝐼) : B𝑜𝑝 →
Set are left and right units with respect to communicat-
ing composition. The communicating composition of three
profunctors 𝑃 : A𝑜𝑝 × B → Set, 𝑄 : B𝑜𝑝 × C → Set and
𝑅 : C𝑜𝑝 × D → Set is associative up to isomorphism and a
representative can be written simply by (𝑃 ⊙𝑄 ⊙ 𝑅) : A𝑜𝑝 ×
B × B𝑜𝑝 × C × C𝑜𝑝 × D → Set, where both B and C are
assumed to have a monoidal structure.

Remark B.9. This is the composition we use when we de-
scribe the endofunctor (hom ⊙ •) : [[N,C]𝑜𝑝×[N,C], Set] →
[[N,C]𝑜𝑝 × [N,C], Set].

(hom ⊙𝑄) (X; Y) B
∫ 𝑀 ∈C

hom (𝑋0, 𝑀⊗𝑌0)×𝑄 (𝑀 ·X+,Y+).

B.1 Initial algebras, final coalgebras
Definition B.10 (Algebras and coalgebras). Let C be a cate-
gory and let 𝐹 : C→ C be an endofunctor. An algebra (𝑋, 𝛼)
is an object𝑋 ∈ C, together with a morphism 𝛼 : 𝐹𝑋 → 𝑋 . A
coalgebra (𝑌, 𝛽) is an object𝑌 ∈ C, together with amorphism
𝛽 : 𝑌 → 𝐹𝑌 .

An algebra morphism 𝑓 : (𝑋, 𝛼) → (𝑋 ′, 𝛼 ′) is a morphism
𝑓 : 𝑋 → 𝑋 ′ such that the diagram on the left commutes.
A coalgebra morphism 𝑔 : (𝑌, 𝛽) → (𝑌 ′, 𝛽 ′) is a morphism
𝑓 : 𝑌 → 𝑌 ′ such that the diagram on the right commutes.

𝐹𝑋 𝐹𝑋 ′ 𝑌 𝑌 ′

𝑋 𝑋 ′ 𝐹𝑌 𝐹𝑌 ′
𝛼

𝐹 𝑓

𝛼′

𝑔

𝛽 𝛽′

𝑓 𝐹𝑔

Algebras for an endofunctor form a category with algebra
morphisms between them. The initial algebra is the initial
object in this category. Coalgebras for an endofunctor form
a category with coalgebra morphisms between them. The
final coalgebra is the terminal object in this category.

Definition B.11 (Fixpoints of an endofunctor). Let C be a
category and let 𝐹 : C → C be an endofunctor. A fixpoint
is an algebra (𝑋, 𝛼) such that 𝛼 : 𝐹𝑋 → 𝑋 is an isomor-
phism. Equivalently, a fixpoint is a coalgebra (𝑌, 𝛽) such
that 𝛽 : 𝑌 → 𝐹𝑌 is an isomorphism.
Fixpoints form a category with algebra morphisms (or,

equivalently, coalgebra morphisms) between them.

Theorem B.12 (Lambek, [50]). The final coalgebra of a func-
tor is a fixpoint. As a consequence, when it exists, it is the final
fixpoint.

Theorem B.13 (Adamek, [4]). Let D be a category with a
final object 1 and 𝜔-shaped limits. Let 𝐹 : D→ D be an endo-
functor. We write 𝐿 = lim𝑛 𝐹

𝑛1 for the limit of the following
𝜔-chain, which is called the terminal sequence.

1
!←− 𝐹1

𝐹 !←− 𝐹𝐹1
𝐹𝐹 !←− 𝐹𝐹𝐹1

𝐹𝐹𝐹 !←− . . .

Monoidal Streams for Dataflow Programming

Assume that 𝐹 preserves this limit, meaning that the canonical
morphism 𝐹𝐿 → 𝐿 is an isomorphism. Then, 𝐿 is the final
𝐹 -coalgebra.

B.2 Size concerns, limits and colimits
Remark B.14. We call Set to the category of sets and func-
tions below a certain Grothendieck universe. We do take
colimits (and coends) over this category without creating
size issues: we can be sure of their existence in our metathe-
oretic category of sets.

Proposition B.15. Terminal coalgebras exist in Set. More
generally, the category of sets below a certain regular uncount-
able cardinal is algebraically complete and cocomplete; mean-
ing that every Set-endofunctor has a terminal coalgebra and
an initial algebra. See [5, Theorem 13].

Theorem B.16 (Coproducts commute with connected lim-
its). Let 𝐼 be a set, understood as a discrete category, and let A
be a connected category with 𝐹 : 𝐼 × A→ Set a functor. The
canonical morphism∑︁

𝑖∈𝐼
lim
𝑎∈𝐴

𝐹 (𝑖, 𝑎) → lim
𝑎∈𝐴

∑︁
𝑖∈𝐼

𝐹 (𝑖, 𝑎)

is an isomorphism.
In particular, let 𝐹𝑛 : 𝐼 → Set be a family of functors indexed

by the natural numbers with a family of natural transforma-
tions 𝛼𝑛 : 𝐹𝑛+1 → 𝐹𝑛 . The canonical morphism∑︁

𝑖∈𝐼
lim
𝑛∈N

𝐹𝑛 (𝑖) → lim
𝑛∈N

∑︁
𝑖∈𝐼

𝐹𝑛 (𝑖)

is an isomorphism.

Proof. Note that there are no morphisms between any two
indices 𝑖, 𝑗 ∈ 𝐼 . Once some 𝑖 ∈ 𝐼 is chosen in any factor of
the connected limit, it forces any other factor to also choose
𝑖 ∈ 𝐼 . This makes the local choice of 𝑖 ∈ 𝐼 be equivalent to
the global choice of 𝑖 ∈ 𝐼 . □

C The List+ opmonoidal comonad and
Fox’s theorem

Proposition C.1. Cartesian monoidal categories are produc-
tive.

Proof. Let ⟨𝛼 | ∈ Stage1 (X,Y). For some given represen-
tative 𝛼 : 𝑋0 → 𝑀 ⊗ 𝑌0, we define the two projections
𝛼𝑌 = 𝛼 ; 𝑀 : 𝑋0 → 𝑌0 and 𝛼𝑀 = 𝛼 ; 𝑌 . The second projection
𝛼𝑀 depends on the specific representative 𝛼 we have chosen;
however, the first projection 𝛼𝑌 is defined independently of
the specific representative 𝛼 , as a consequence of natural-
ity of the discarding map (see Fox’s theorem for cartesian
monoidal categories Theorem C.5). We define 𝛼0 = 𝛿𝑋0

;𝛼𝑌 .
Then, we can factor any representative as 𝛼 = 𝛼0;𝛼𝑀 (see
Figure 19). Now, assume that we have two representatives
⟨𝛼𝑖 | = ⟨𝛼 𝑗 | for which ⟨𝛼𝑖 ;𝑢 | = ⟨𝛼 𝑗 ; 𝑣 |. By naturality of the
discarding map, 𝛼𝑖 ; = 𝛼 𝑗 ; , and we call this map 𝛼𝑌 . Again

𝑋

𝛼

𝑌

𝛼

𝑋

𝑌𝑀

=
𝛼0

𝑋

𝑌𝑀

𝛼
=

𝛼

𝑀

Figure 19. Productivity for cartesian categories.

by naturality of the discarding map, 𝛼𝑖 ;𝑢; = 𝛼 𝑗 ; 𝑣 ; , and
discarding the output in 𝑌 , we get that 𝛼𝑀,𝑖 ;𝑢; = 𝛼𝑀,𝑗 ; 𝑣 ; ,
which implies ⟨𝛼𝑀,𝑖 ;𝑢 | = ⟨𝛼𝑀,𝑗 ; 𝑣 |. □

Definition C.2 (Opmonoidal comonad). In a monoidal cat-
egory (C, ⊗, 𝐼), a comonad (𝑅, 𝜀, 𝛿) is an opmonoidal como-
nad when the endofunctor 𝑅 : C → C is oplax monoidal
with laxators𝜓𝑋,𝑌 : 𝑅(𝑋 ⊗ 𝑌) → 𝑅𝑋 ⊗ 𝑅𝑌 and𝜓 𝐼 : 𝑅𝐼 → 𝐼 ,
and both the counit 𝜀𝑋 : 𝑅𝑋 → 𝑋 and the comultiplication
𝛿𝑋 : 𝑅𝑋 → 𝑅𝑅𝑋 are monoidal natural transformations.

Explicitly, 𝜀𝐼 = 𝜓0, 𝜀𝑋 ⊗𝑌 = 𝜓𝑋,𝑌 ; (𝜀𝑋 ⊗ 𝜀𝑌), 𝛿𝐼 ;𝜓0;𝜓0 = 𝜓0

and 𝛿𝑋 ⊗𝑌 ;𝜓𝑋,𝑌 ;𝜓𝑅𝑋,𝑅𝑌 = 𝜓𝑋,𝑌 ; (𝛿𝑋 ⊗ 𝛿𝑌).
Alternatively, an opmonoidal comonad is a comonoid in

the bicategory MonOplax of oplax monoidal functors with
composition and monoidal natural transformations between
them.

Definition C.3. Let (C, ⊗, 𝐼) be a symetric monoidal cate-
gory. There is a functor List+ : C → C defined on objects
by

List+ (𝑋)𝑛 B
𝑛⊗
𝑖=0

𝑋𝑖 .

This functor is monoidal, with oplaxators𝜓+0 : List+ (𝐼) → 𝐼
and 𝜓𝑋,𝑌 : List+ (𝑋 ⊗ 𝑌) → List+ (𝑋) ⊗ List+ (𝑌) given by
symmetries, associators and unitors.

Theorem C.4 (From Theorem 6.1). The opmonoidal functor
List+ has an opmonoidal comonad structure if and only if its
base monoidal category (C, ⊗, 𝐼) is cartesian monoidal.

Proof. When C is cartesian, we can construct the comonad
structure using projections

∏𝑛
𝑖=0𝑋𝑖 → 𝑋𝑛 and copying to-

gether with braidings
∏𝑛

𝑖=0𝑋𝑖 →
∏𝑛

𝑖=0
∏𝑖

𝑘=0𝑋𝑘 . These are
monoidal natural transformations making List+ a monoidal
comonad.
Suppose (𝐿, 𝜀, 𝛿) is an opmonoidal comonad structure.

This means it has families of natural transformations

𝛿𝑛 :
𝑛⊗
𝑖=0

𝑋𝑖 →
𝑛⊗
𝑖=0

𝑖⊗
𝑘=0

𝑋𝑘 and 𝜀𝑛 :
𝑛⊗
𝑖=0

𝑋𝑖 → 𝑋𝑛 .

We will use these to construct a uniform counital comagma
structure on every object of the category. By a refined version
of Fox’s theorem (Theorem C.7), this will imply that C is
cartesian monoidal.

Elena Di Lavore, Giovanni de Felice, and Mario Román

Let 𝑋 ∈ C be any object. Choosing 𝑛 = 2, 𝑋0 = 𝑋 and
𝑋1 = 𝐼 ; and using coherence maps, we get 𝛿2 : 𝑋 → 𝑋 ⊗ 𝑋
and 𝜀2 : 𝑋 → 𝐼 . These are coassociative, counital, natural
and uniform because the corresponding transformations 𝛿
and 𝜀 are themselves coassociative, counital, natural and
monoidal. This induces a uniform comagma structure in
every object (𝑋, 𝛿2, 𝜀2); with this structure, every morphism
of the category is a comagma homomorphism because 𝛿2
and 𝜀2 are natural. □

Theorem C.5 (Fox’s theorem [29]). A symmetric monoi-
dal category (C, ⊗, 𝐼) is cartesian monoidal if and only if ev-
ery object 𝑋 ∈ C has a cocommutative comonoid structure
(𝑋, 𝜀𝑋 , 𝛿𝑋), every morphism of the category 𝑓 : 𝑋 → 𝑌 is a
comonoid homomorphism, and this structure is uniform across
the monoidal category: meaning that 𝜀𝑋 ⊗𝑌 = 𝜀𝑋 ⊗𝜀𝑌 , that 𝜀𝐼 =
id, that 𝛿𝐼 = id and that 𝛿𝑋 ⊗𝑌 = (𝛿𝑋 ⊗ 𝛿𝑌); (id ⊗ 𝜎𝑋,𝑌 ⊗ id).

Remark C.6. Most sources ask the comonoid structure in
Fox’s theorem (Theorem C.5) to be cocommutative [28, 29].
However, cocommutativity and coassociativity of the como-
noid structure are implied by the fact that the structure is
uniform and natural. We present an original refined version
of Fox’s theorem.

Theorem C.7 (Refined Fox’s theorem). A symmetric monoi-
dal category (C, ⊗, 𝐼) is cartesian monoidal if and only if every
object 𝑋 ∈ C has a counital comagma structure (𝑋, 𝜀𝑋 , 𝛿𝑋), or
(𝑋, 𝑋 , 𝑋), every morphism of the category 𝑓 : 𝑋 → 𝑌 is a
comagma homomorphism, and this structure is uniform across
the monoidal category: meaning that 𝜀𝑋 ⊗𝑌 = 𝜀𝑋 ⊗ 𝜀𝑌 , 𝜀𝐼 = id,
𝛿𝐼 = id and 𝛿𝑋 ⊗𝑌 = (𝛿𝑋 ⊗ 𝛿𝑌); (id ⊗ 𝜎𝑋,𝑌 ⊗ id).

Proof. We prove that such a comagma structure is necessarily
coassociative and cocommutative. Note that any comagma
homomorphism 𝑓 : 𝐴→ 𝐵 must satisfy 𝛿𝐴; (𝑓 ⊗ 𝑓) = 𝑓 ;𝛿𝐵 .
In particular, 𝛿𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 must itself be a comagma
homomorphism (see Figure 20), meaning that

𝛿𝑋 ; (𝛿𝑋 ⊗ 𝛿𝑋) = 𝛿𝑋 ;𝛿𝑋 ⊗𝑋 = 𝛿𝑋 ; (𝛿𝑋 ⊗ 𝛿𝑋); (id ⊗ 𝜎𝑋,𝑌 ⊗ id),
(3)

where the second equality follows by uniformity.

=

Figure 20. Comultiplication is a comagma homomorphism.

Now, we prove cocommutativity (Figure 21): composing
both sides of Equation (3) with (𝜖𝑋 ⊗ id ⊗ id ⊗ 𝜖𝑋) discards
the two external outputs and gives 𝛿𝑋 = 𝛿𝑋 ;𝜎𝑋 .

== =

Figure 22. Coassociativity

== =

Figure 21. Cocommutativity

Now, we prove coassociativity (Figure 22): composing both
sides of Equation (3) with (id ⊗ 𝜖𝑋 ⊗ id ⊗ id) discards one of
the middle outputs and gives 𝛿𝑋 ; (id ⊗ 𝛿𝑋) = 𝛿𝑋 ; (𝛿𝑋 ⊗ id).

A coassociative and cocommutative comagma is a cocom-
mutative comonoid. We can then apply the classical form of
Fox’s theorem (Theorem C.5). □

Distributive laws. One could hope to add effects such as
probability or non-determinism to set-based streams via the
bikleisli category arising from amonad-comonad distributive
law List+ ◦ T ⇒ T ◦ List+ [7, 64], as proposed by Uustalu
and Vene [75]. This would correspond to a lifting of the
List+ comonad to the kleisli category of some commutative
monad 𝑇 ; the arrows X→ Y of such a category would look
as follows,

𝑓𝑛 : 𝑋1 × · · · × 𝑋𝑛 → 𝑇𝑌𝑛 .

However, we have already shown that this will not result
in a monoidal comonad whenever kl(𝑇) is not cartesian. To
see explicitly what fails, we use the string diagrams to show
how composition should work for the case 𝑛 = 2 (Figure 23).
This composition is not associative or unital whenever the
kleisli category does not have natural comultiplications or
counits, respectively (Figures 24 and 25).

𝑋0

𝑓1

𝑓0

𝑔1

𝑋1

𝑌1

Figure 23. Composition in the case 𝑛 = 2.

D Productive categories
DefinitionD.1 (Truncating coherently). Let 𝑓 𝑘𝑛 : 𝑋𝑛⊗𝑀𝑛−1 →
𝑌𝑛 ⊗ 𝑀𝑛 be a family of families of morphisms of increasing
length, indexed by 𝑘 ∈ N and 𝑛 ⩽ 𝑘 . We say that this family

Monoidal Streams for Dataflow Programming

𝑋0

𝑓1

𝑓0

𝑋1

𝑌1

𝑓1≠

𝑋0 𝑋1

𝑌1

Figure 24. Failure of unitality if discarding is not natural, as
it happens, for instance, with partial functions.

𝑋0

𝑓1𝑓0

𝑔1

𝑋1

𝑌1

𝑔0

ℎ1

𝑓0

𝑔0

𝑓0 𝑓1

𝑔1

ℎ1

𝑌1

𝑋0 𝑋1

≠

Figure 25. Failure of associativity if copying is not natural,
as it happens, for instance, with stochastic functions.

truncates coherently if ⟨𝑓 𝑝0 | . . . |𝑓
𝑝
𝑛 | = ⟨𝑓 𝑞0 | . . . |𝑓

𝑞
𝑛 | for each

𝑝, 𝑞 ∈ N and each 𝑛 ⩽ min{𝑝, 𝑞}.
Lemma D.2 (Factoring a family of processes). In a produc-
tive category, let (⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑘 |)𝑘∈N be a sequence of sequences
that truncates coherently. Then, there exists a sequence ℎ𝑖 with
𝑠𝑘𝑖−1 𝑓

𝑘
𝑖 = ℎ𝑖𝑠

𝑘
𝑖 such that, for each 𝑘 ∈ N and each 𝑛 ⩽ 𝑘 ,

⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑛 | = ⟨ℎ0 | . . . |ℎ𝑛 |. Moreover, this family ℎ𝑖 is such
that ⟨ℎ0 . . . ℎ𝑛𝑠𝑝𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛𝑠𝑞𝑛𝑣 | implies ⟨𝑠𝑝𝑛𝑢 | = ⟨𝑠𝑞𝑛𝑣 |.
Proof. We construct the family by induction. In the case
𝑛 = 0, we use that the family truncates coherently to have
that ⟨𝑓 𝑝0 | = ⟨𝑓

𝑞
0 | and thus, by productivity, create an ℎ0 with

𝑓 𝑘0 = ℎ0𝑠
𝑘
0 such that ⟨ℎ0𝑠𝑝0𝑢 | = ⟨ℎ0𝑠

𝑞
0𝑣 | implies ⟨𝑠𝑝0𝑢 | = ⟨𝑠

𝑞
0𝑣 |.

In the general case, assume we already have constructed
ℎ0, . . . , ℎ𝑛−1 with 𝑠𝑘𝑖−1 𝑓 𝑘𝑖 = ℎ𝑖𝑠

𝑘
𝑖 such that, for each 𝑘 ∈ N and

⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑛−1 | = ⟨ℎ0 | . . . |ℎ𝑛−1 |. Moreover, ⟨ℎ0 . . . ℎ𝑛−1𝑠𝑝𝑛−1𝑢 | =
⟨ℎ0 . . . ℎ𝑛−1𝑠𝑞𝑛−1𝑣 | implies ⟨𝑠𝑝𝑛−1𝑢 | = ⟨𝑠

𝑞
𝑛−1𝑣 |.

In this case, we use the fact that composition “along a
bar” is dinatural: ⟨𝑓 𝑝0 | . . . |𝑓

𝑝
𝑛 | = ⟨𝑓 𝑞0 | . . . |𝑓

𝑞
𝑛 | implies that

⟨𝑓 𝑝0 . . . 𝑓
𝑝
𝑛 | = ⟨𝑓 𝑞0 . . . 𝑓

𝑞
𝑛 |. This can be then rewritten as

⟨ℎ0 . . . ℎ𝑛−1𝑠𝑝𝑛−1 𝑓
𝑝
𝑛 | = ⟨ℎ0 . . . ℎ𝑛−1𝑠𝑞𝑛−1 𝑓

𝑞
𝑛 | ,

which in turn implies ⟨𝑠𝑝𝑛−1 𝑓
𝑝
𝑛 | = ⟨𝑠𝑞𝑛−1 𝑓

𝑞
𝑛 |. By productivity,

there exists ℎ𝑛 with 𝑠𝑘𝑛−1 𝑓
𝑘
𝑛 = ℎ𝑛𝑠

𝑘
𝑛 such that ⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑛 | =

⟨ℎ0 | . . . |ℎ𝑛 |.

Finally, assume that ⟨ℎ0 . . . ℎ𝑛−1ℎ𝑛𝑠𝑝𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛−1ℎ𝑛𝑠𝑞𝑛𝑣 |.
Thus, we have ⟨ℎ0 . . . ℎ𝑛−1𝑠𝑝𝑛−1 𝑓

𝑝
𝑛 𝑢 | = ⟨ℎ0 . . . ℎ𝑛−1𝑠𝑞𝑛−1 𝑓

𝑞
𝑛 𝑣 |

and ⟨𝑠𝑝𝑛−1 𝑓
𝑝
𝑛 𝑢 | = ⟨𝑠𝑞𝑛−1 𝑓

𝑞
𝑛 𝑣 |. This can be rewritten as ⟨ℎ𝑛𝑠𝑝𝑛𝑢 | =

⟨ℎ𝑛𝑠𝑞𝑛𝑣 |, which in turn implies ⟨𝑠𝑝𝑛𝑢 | = ⟨𝑠𝑞𝑛𝑣 |. We have shown
that the ℎ𝑛 that we constructed satisfies the desired prop-
erty. □

LemmaD.3. In a productive category, the set of observational
sequencesis isomorphic to the limit of the terminal sequence
of the endofunctor (hom ⊙ •) via the canonical map between
them.

Proof. We start by noting that observational equivalence of
sequences is, by definition, the same thing as being equal
under the canonical map to the limit of the terminal sequence

lim
𝑛

∫ 𝑀0,...,𝑀𝑛 𝑛∏
𝑖=0

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

We will show that this canonical map is surjective. That
means that the domain quotiented by equality under the
map is isomorphic to the codomain, q.e.d.
Indeed, given any family 𝑓 𝑘𝑛 that truncates coherently,

we can apply Lemma D.2 to find a sequence ℎ𝑖 such that
⟨𝑓 𝑘0 | . . . |𝑓 𝑘𝑛 | = ⟨ℎ0 | . . . |ℎ𝑛 |. This means that it is the image
of the stateful sequence ℎ𝑖 . □

Lemma D.4 (Factoring two processes). In a productive cate-
gory, let ⟨𝑓0 | = ⟨𝑔0 |. Then there exists ℎ0 with 𝑓0 = ℎ0𝑠0 and
𝑔0 = ℎ0𝑡0 such that

⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 |
implies the existence of a family ℎ𝑖 together with 𝑠𝑖 and 𝑡𝑖 such
that 𝑠𝑖−1 𝑓𝑖 = ℎ𝑖𝑠𝑖 and 𝑡𝑖−1𝑔𝑖 = ℎ𝑖𝑡𝑖 ; and moreover, such that

⟨ℎ0 . . . ℎ𝑛𝑠𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛𝑡𝑛𝑣 | implies ⟨𝑠𝑛𝑢 | = ⟨𝑡𝑛𝑣 | .
Proof. By productivity, we can find such a factorization 𝑓0 =
ℎ0𝑠0 and 𝑔0 = ℎ0𝑡0.

Assume now that we have a family of morphisms such
that ⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 |. We proceed by induction on
𝑛, the size of the family. The case 𝑛 = 0 follows from the
definition of productive category.

In the general case, we will construct the relevant ℎ𝑛 . The
assumption ⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 | implies, in particular,
that ⟨𝑓0 | . . . |𝑓𝑛−1 | = ⟨𝑔0 | . . . |𝑔𝑛−1 |. Thus, by induction hy-
pothesis, there exist ℎ1, . . . , ℎ𝑛−1 together with 𝑠𝑖−1 𝑓𝑖 = ℎ𝑖𝑠𝑖
and 𝑡𝑖−1𝑔𝑖 = ℎ𝑖𝑡𝑖 , such that

⟨ℎ0 . . . ℎ𝑛𝑠𝑛−1𝑢 | = ⟨ℎ0 . . . ℎ𝑛𝑡𝑛−1𝑣 | implies ⟨𝑠𝑛−1𝑢 | = ⟨𝑡𝑛−1𝑣 | .
We know that ⟨𝑓0 . . . 𝑓𝑛 | = ⟨𝑔0 . . . 𝑔𝑛 | and thus,

⟨ℎ0 . . . ℎ𝑛−1𝑠𝑛−1 𝑓𝑛 | = ⟨ℎ0 . . . ℎ𝑛−1𝑡𝑛−1𝑔𝑛 | ,
which, by induction hypothesis, implies ⟨𝑠𝑛−1 𝑓𝑛 | = ⟨𝑡𝑛−1𝑔𝑛 |.
By productivity, there exists ℎ𝑛 with 𝑠𝑛−1 𝑓𝑛 = ℎ𝑛𝑠𝑛 and
𝑡𝑛−1𝑔𝑛 = ℎ𝑛𝑡𝑛 such that ⟨ℎ𝑛𝑠𝑛𝑢 | = ⟨ℎ𝑛𝑡𝑛𝑣 | implies ⟨𝑠𝑛𝑢 | =
⟨𝑡𝑛𝑣 |.

Elena Di Lavore, Giovanni de Felice, and Mario Román

Finally, assume that ⟨ℎ0 . . . ℎ𝑛−1ℎ𝑛𝑠𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛−1ℎ𝑛𝑡𝑛𝑣 |.
Thus, we have ⟨ℎ0 . . . ℎ𝑛−1𝑠𝑛−1 𝑓𝑛𝑢 | = ⟨ℎ0 . . . ℎ𝑛−1𝑡𝑛−1𝑔𝑛𝑣 |
and ⟨𝑠𝑛−1 𝑓𝑛𝑢 | = ⟨𝑡𝑛−1𝑔𝑛𝑣 |. This can be rewritten as ⟨ℎ𝑛𝑠𝑛𝑢 | =
⟨ℎ𝑛𝑡𝑛𝑣 |, which in turn implies ⟨𝑠𝑛𝑢 | = ⟨𝑡𝑛𝑣 |. We have shown
that the ℎ𝑛 that we constructed satisfies the desired prop-
erty. □

Lemma D.5 (Removing the first step). In a productive cate-
gory, let ⟨𝑓0 | = ⟨𝑔0 |. Then there exists ℎ with 𝑓0 = ℎ𝑠 and 𝑔0 =
ℎ𝑡 such that ⟨𝑓0 | . . . |𝑓𝑛 | = ⟨𝑔0 | . . . |𝑔𝑛 | implies ⟨𝑠 𝑓1 | . . . |𝑓𝑛 | =
⟨𝑡𝑔1 | . . . |𝑔𝑛 |.
Proof. By Lemma D.4, we obtain a factorization 𝑓0 = ℎ𝑠 and
𝑔0 = ℎ𝑡 . Moreover, each time that we have ⟨𝑓0 | . . . |𝑓𝑛 | =
⟨𝑔0 | . . . |𝑔𝑛 |, we can obtain a family ℎ𝑖 together with 𝑠𝑖 and
𝑡𝑖 such that 𝑠𝑖−1 𝑓𝑖 = ℎ𝑖𝑠𝑖 and 𝑡𝑖−1 𝑓𝑖 = ℎ𝑖𝑡𝑖 . Using the fact that
⟨ℎ𝑛𝑠𝑛 | = ⟨ℎ𝑛𝑡𝑛 |, we have that ⟨ℎ1 | . . . |ℎ𝑛𝑠𝑛 | = ⟨ℎ1 | . . . |ℎ𝑛𝑡𝑛 |,
which can be rewritten using dinaturality as ⟨𝑠0 𝑓1 | . . . |𝑓𝑛 | =
⟨𝑡0𝑔1 | . . . |𝑔𝑛 |. □

Lemma D.6. In a productive category, the final coalgebra of
the endofunctor (hom ⊙ •) does exist and it is given by the
limit of the terminal sequence

𝐿 B lim
𝑛

∫ 𝑀0,...,𝑀𝑛 𝑛∏
𝑖=0

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

Proof. Wewill apply Theorem 1.5. The endofunctor (hom ⊙ •)
acts on the category [([N,C])𝑜𝑝 × [N,C], Set], which, being
a presheaf category, has all small limits. We will show that
there is an isomorphism hom ⊙ 𝐿 � 𝐿 given by the canonical
morphism between them.

First, note that the set 𝐿(X; Y) is, explicitly,

lim
𝑛

∫ 𝑀1,...,𝑀𝑛 𝑛∏
𝑖=1

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

A generic element from this set is a sequence of sequences
of increasing length. Moreover, the sequences must truncate
coherently (Definition D.1).

Secondly, note that the set (hom ⊙ 𝐿) (X; Y) is, explicitly,∫ 𝑀0

hom (𝑋0, 𝑌0 ⊗ 𝑀0)×

lim
𝑛

∫ 𝑀1,...,𝑀𝑛 𝑛∏
𝑖=1

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖).

A generic element from this set is of the form

⟨𝑓 | (⟨𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N | ,
that is, a pair consisting on a first morphism 𝑓 : 𝑋0 → 𝑌0 ⊗
𝑀0 and a family of sequences (⟨𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |), quotiented by
dinaturality of𝑀0 and truncating coherently. The canonical
map to 𝐿(X; Y) maps this generic element to the family of
sequences (⟨𝑓0 |𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N, which truncates coherently
because the previous family did and we are precomposing
with 𝑓0, which is dinatural.

Thirdly, this map is injective. Imagine a pair of elements
⟨𝑓0 | (⟨𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N | and ⟨𝑔0 | (⟨𝑔𝑘1 | . . . |𝑔𝑘𝑘 |)𝑘∈N | that have
the same image, meaning that, for each 𝑘 ∈ N,

⟨𝑓0 |𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 | = ⟨𝑔0 |𝑔𝑘1 | . . . |𝑔𝑘𝑘 | .
By Lemma D.5, we can find ℎ with 𝑓0 = ℎ𝑠 and 𝑔0 = ℎ𝑡 such
that, for each 𝑘 ∈ N, ⟨𝑠 𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 | = ⟨𝑡𝑔𝑘1 | . . . |𝑔𝑘𝑘 |. Thus,

⟨𝑓0 | (⟨𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N | = ⟨ℎ | (⟨𝑠 𝑓 𝑘1 | . . . |𝑓 𝑘𝑘 |)𝑘∈N | =
⟨ℎ | (⟨𝑡𝑔𝑘1 | . . . |𝑔𝑘𝑘 |)𝑘∈N | = ⟨𝑔0 | (⟨𝑡𝑔𝑘1 | . . . |𝑔𝑘𝑘 |)𝑘∈N | .

Finally, this map is also surjective. From Lemma D.2, it
follows that any family that truncates coherently can be
equivalently written as ⟨ℎ0 | . . . |ℎ𝑛 |𝑛∈N, which is the image
of the element ⟨ℎ0 | ⟨ℎ1 | . . . |ℎ𝑛 |𝑛∈N |. □

Theorem D.7 (From Theorem 4.11). In a productive cate-
gory, the final coalgebra of the endofunctor (hom ⊙ •) exists
and it is given by the set of stateful sequences quotiented by
observational equivalence.(∫ 𝑀 ∈[N,C] ∞∏

𝑖=0

hom (𝑋𝑖 ⊗ 𝑀𝑖−1, 𝑌𝑖 ⊗ 𝑀𝑖)
) /
≈

Proof. By Lemma D.6, we know that the final coalgebra ex-
ists and is given by the limit of the terminal sequence. By
Lemma D.3, we know that it is isomorphic to the set of state-
ful sequences quotiented by observational equivalence. □

E Monoidal streams
Lemma E.1. Sequential composition of streams with memo-
ries (Definition 5.3) is associative. Given three streams
• 𝑓 ∈ Stream(𝐴 · X,Y),
• 𝑔 ∈ Stream(𝐵 · Y,Z),
• and ℎ ∈ Stream(𝐵 · Z,W);

we can compose them in two different ways,
• (𝑓 𝐴;𝑔𝐵);ℎ𝐶 ∈ Stream((𝐴 ⊗ 𝐵) ⊗ 𝐶 · X,W), or
• 𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶) ∈ Stream(𝐴 ⊗ (𝐵 ⊗ 𝐶) · X,W).

We claim that

((𝑓 𝐴;𝑔𝐵);ℎ𝐶) = 𝛼𝐴,𝐵,𝐶 · (𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶)) .
Proof. First, we note that both sides of the equation represent
streams with different memories.
• 𝑀 ((𝑓 𝐴;𝑔𝐵);ℎ𝐶) = (𝑀 (𝑓) ⊗ 𝑀 (𝑔)) ⊗ 𝑀 (ℎ),
• 𝑀 (𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶)) = 𝑀 (𝑓) ⊗ (𝑀 (𝑔) ⊗ 𝑀 (ℎ)).

We will prove they are related by dinaturality over the associ-
ator𝛼 .We know that now((𝑓 𝐴;𝑔𝐵);ℎ𝐶) = now(𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶))
by string diagrams (see Figure 26). Then, by coinduction, we
know that

(later(𝑓)𝑀 (𝑓) ; later(𝑔)𝑀 (𝑔)); later(ℎ)𝑀 (ℎ) =
𝛼 · (later(𝑓)𝑀 (𝑓) ; (later(𝑔)𝑀 (𝑔) ; later(ℎ)𝑀 (ℎ))),

that is, later((𝑓 𝐴;𝑔𝐵);ℎ𝐶) = 𝛼 · later(𝑓 𝐴; (𝑔𝐵 ;ℎ𝐶)). □

Monoidal Streams for Dataflow Programming

=

𝑀𝑓

𝐴 𝐵 𝐶 𝑋

𝑀𝑔 𝑀ℎ 𝑊

𝐴 𝐵 𝐶 𝑋

𝑀𝑓 𝑀𝑔 𝑀ℎ 𝑊

now(𝑓)

now(𝑔)

now(ℎ)

now(𝑓)

now(𝑔)

now(ℎ)

Figure 26. Associativity for sequential composition

LemmaE.2. Sequential composition of streams (Definition 5.3)
is associative. Given three streams
• 𝑓 ∈ Stream(X,Y),
• 𝑔 ∈ Stream(Y,Z),
• and ℎ ∈ Stream(Z,W);

we claim that ((𝑓 ;𝑔);ℎ) = (𝑓 ; (𝑔;ℎ)).
Proof. Direct consequence of Lemma E.1, after considering
the appropriate coherence morphisms. □

Lemma E.3. Parallel composition of streams with memories
is functorial with regards to sequential composition of streams
with memories. Given four streams
• 𝑓 ∈ Stream(𝐴 · X,Y),
• 𝑓 ′ ∈ Stream(𝐴′ · X′,Y′),
• 𝑔 ∈ Stream(𝐵 · Y,Z), and
• 𝑔′ ∈ Stream(𝐵′ · Y′,Z′),

we can compose them in two different ways,

• (𝑓 𝐴 ⊗ 𝑓 ′𝐴
′) (𝐴⊗𝐴

′)
; (𝑔𝐵 ⊗ 𝑔′𝐵′) (𝐵⊗𝐵

′) , and
• (𝑓 𝐴 ; 𝑔𝐵) (𝐴⊗𝐵) ⊗ (𝑓 ′𝐴′ ; 𝑔′𝐵

′) (𝐴′⊗𝐵′) ,
having slightly different types, respectively,
• Stream((𝐴 ⊗ 𝐴′) ⊗ (𝐵 ⊗ 𝐵′) · X ⊗ X′,Z ⊗ Z′), and
• Stream((𝐴 ⊗ 𝐵) ⊗ (𝐴′ ⊗ 𝐵′) · X ⊗ X′,Z ⊗ Z′).

We claim that

(𝑓 𝐴 ⊗ 𝑓 ′𝐴
′) (𝐴⊗𝐴

′)
; (𝑔𝐵 ⊗ 𝑔′𝐵′) (𝐵⊗𝐵

′)
=

𝜎𝐴′,𝐵 · (𝑓 𝐴 ; 𝑔𝐵) (𝐴⊗𝐵) ⊗ (𝑓 ′𝐴′ ; 𝑔′𝐵
′) (𝐴′⊗𝐵′) .

Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
strams with different memories.
• 𝑀 (𝐿𝐻𝑆) = (𝑀 (𝑓) ⊗ 𝑀 (𝑓 ′)) ⊗ (𝑀 (𝑔) ⊗ 𝑀 (𝑔′)),
• 𝑀 (𝑅𝐻𝑆) = (𝑀 (𝑓) ⊗ 𝑀 (𝑔)) ⊗ (𝑀 (𝑓 ′) ⊗ 𝑀 (𝑔′)).

We will prove they are related by dinaturality over the sym-
metry 𝜎 . We know that now(𝐿𝐻𝑆);𝜎 = now(𝑅𝐻𝑆) by string

𝐵

𝑀𝑓

now(𝑓) now(𝑓 ′)

now(𝑔) now(𝑔′)

𝐴 𝐴′ 𝐵′ 𝑋 𝑋 ′

𝑀 ′
𝑓
𝑀𝑔 𝑀 ′𝑔 𝑍 𝑍 ′

now(𝑓) now(𝑓 ′)

now(𝑔) now(𝑔′)

𝐴 𝐴′ 𝐵 𝐵′ 𝑋 𝑋 ′

𝑀𝑓 𝑀 ′
𝑓
𝑀𝑔 𝑀 ′𝑔 𝑍 𝑍 ′

=

Figure 27. Functoriality of parallel composition.

diagrams (see Figure 27). Then, by coinduction, we know
that later(𝐿𝐻𝑆) = 𝜎 · later(𝑅𝐻𝑆). □

Lemma E.4. Parallel composition of streams is functorial
with respect to sequential composition of streams. Given four
streams

• 𝑓 ∈ Stream(X,Y),
• 𝑓 ′ ∈ Stream(X′,Y′),
• 𝑔 ∈ Stream(Y,Z), and
• 𝑔′ ∈ Stream(Y,Z);

we claim that (𝑓 ⊗ 𝑓 ′); (𝑔 ⊗ 𝑔′) = (𝑓 ;𝑔) ⊗ (𝑓 ′;𝑔′).
Proof. Direct consequence of Lemma E.3, after considering
the appropriate coherence morphisms. □

Theorem E.5 (see [65]). Monoidal streams over a symme-
tric monoidal category (C, ⊗, 𝐼) form a symmetric monoidal
category Stream.

Proof. Sequential composition of streams (Definition 5.3) is
associative (Lemma E.2) and unital with respect to identities.
Parallel composition is bifunctorial with respect to sequen-
tial composition (Lemma E.4); this determines a bifunctor,
which is the tensor of the monoidal category. The coherence
morphisms and the symmetry can be included from sets, so
they still satisfy the pentagon and triangle equations. □

Lemma E.6. The structure (Stream, fbk) with memories sat-
isfies the tightening axiom (A1). Given three streams

• 𝑢 ∈ Stream(𝐴 · X′,X),
• 𝑓 ∈ Stream(𝐵 ⊗ 𝑇 · 𝜕S ⊗ X,S ⊗ Y), and
• 𝑣 ∈ Stream(𝐶 · Y,Y′);

we claim that

fbk𝑆 (𝑢𝐴; 𝑓 𝐵 ; 𝑣𝐶) = 𝜎 · 𝑢𝐴; fbk𝑆 (𝑓 𝐵⊗𝑇); 𝑣𝐶 .

Elena Di Lavore, Giovanni de Felice, and Mario Román

𝐶𝐴 𝐵 𝑇 𝑋 ′

now(𝑢)

now(𝑓)

now(𝑣)

𝑀𝑢 𝑀𝑓 𝑀𝑣𝑆0 𝑌 ′

𝐶𝐴 𝐵 𝑇 𝑋 ′

now(𝑢)

now(𝑓)

now(𝑣)

𝑀𝑢 𝑀𝑓 𝑆0 𝑀𝑣 𝑌 ′

=

Figure 28. The tightening axiom (A1).

Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
streams with different memories.
• 𝑀 (𝐿𝐻𝑆) = 𝐴 ⊗ 𝐵 ⊗ 𝐶 ⊗ 𝑇 ,
• 𝑀 (𝑅𝐻𝑆) = 𝐴 ⊗ 𝐵 ⊗ 𝑇 ⊗ 𝐶 .

We will prove that they are related by dinaturality over the
symmetry 𝜎 . We know that now(𝐿𝐻𝑆);𝜎 = now(𝑅𝐻𝑆) by
string diagrams (see Figure 28). Then, by coinduction, we
know that later(𝐿𝐻𝑆) = 𝜎 · later(𝑅𝐻𝑆). □

Lemma E.7. The structure (Stream, fbk) satisfies the tight-
ening axiom (A1). Given streams
• 𝑢 ∈ Stream(X′,X),
• 𝑓 ∈ Stream(𝜕S ⊗ X,S ⊗ Y), and
• 𝑣 ∈ Stream(Y,Y′);

we claim that fbk𝑆 (𝑢; 𝑓 ; 𝑣) = 𝑢; fbk𝑆 (𝑓); 𝑣 .
Proof. Consequence of Lemma E.6, after applying the neces-
sary coherence morphisms. □

Lemma E.8. The structure (Stream, fbk) with memories sat-
isfies the vanishing axiom (A2). Given a stream
• 𝑓 ∈ Stream(𝐴 · 𝜕S ⊗ X,S ⊗ Y),

we claim that fbk𝐼 (𝑓 𝐴) = 𝜌 · 𝑓 .
Proof. First, we note that both sides of the equation rep-
resent streams with different memories, 𝑀 (fbk𝐼 (𝑓 𝐴)) =
𝑀 (𝑓) ⊗ 𝐼 . We will prove that they are related by dinatural-
ity over the right unitor 𝜌 . We know that now(fbk𝐼 (𝑓 𝐴)) =
now(𝑓) by definition. Then, by coinduction, we konw that
later(fbk𝐼 (𝑓 𝐴)) = 𝜌 · later(𝑓). □

Lemma E.9. The structure (Stream, fbk) satisfies the van-
ishing axiom (A2). Given a stream 𝑓 ∈ Stream(𝜕S⊗X,S⊗Y),
we claim that fbk𝐼 (𝑓) = 𝑓 .

𝑃𝐴 𝐵 𝑋 𝑋 ′

=now(𝑓) now(𝑔) now(𝑓) now(𝑔)

𝐴 𝐵 𝑃 𝑋 𝑋 ′

𝑀𝑓 𝑀𝑔 𝑆0 𝑌 𝑌 ′ 𝑀𝑓 𝑀𝑔 𝑆0 𝑌 𝑌 ′

Figure 29. The strength axiom (A4).

Proof. Consequence of Lemma E.8, after applying the neces-
sary coherence morphisms. □

Lemma E.10. The structure (Stream, fbk) with memories
satisfies the joining axiom (A3). Given a stream
• 𝑓 ∈ Stream((𝐴 ⊗ 𝑃 ⊗ 𝑄) · 𝜕S ⊗ X,S ⊗ Y),

we claim that

fbk𝑆⊗𝑇 (𝑓 𝐴⊗(𝑃⊗𝑄)) = 𝛼 · fbk𝑇 (𝜎 · fbk𝑆 (𝜎 · 𝑓 (𝐴⊗𝑄) ⊗𝑃)) .
Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
strams with different memories.
• 𝑀 (𝐿𝐻𝑆) = 𝑀 (𝑓) ⊗ (𝑆0 ⊗ 𝑇0),
• 𝑀 (𝑅𝐻𝑆) = (𝑀 (𝑓) ⊗ 𝑆0) ⊗ 𝑇0.

We will prove that they are related by dinaturality over the
associator 𝛼 . We know that now(𝐿𝐻𝑆);𝛼 = now(𝑅𝐻𝑆) by
definition. Then, by coinduction, we know that later(𝐿𝐻𝑆) =
𝛼 · later(𝑅𝐻𝑆). □

Lemma E.11. The structure (Stream, fbk) satisfies the join-
ing axiom (A3). Given a stream
• 𝑓 ∈ Stream(𝜕S ⊗ X,S ⊗ Y),

we claim that fbk𝑆⊗𝑇 (𝑓) = fbk𝑇 (fbk𝑆 (𝑓)).
Proof. Consequence of Lemma E.10, after applying the nec-
essary coherence morphisms. □

Lemma E.12. The structure (Stream, fbk) with memories
satisfies the strength axiom (A4). Given two streams
• 𝑓 ∈ Stream((𝐴 ⊗ 𝑃) · 𝜕S ⊗ X,S ⊗ Y), and
• 𝑔 ∈ Stream(𝐵 · X′,Y′),

we claim that

𝛼 · fbk𝑆 (𝑓 𝐴 ⊗ 𝑔𝐵) = fbk𝑆 (𝑓 𝐴⊗𝑃)𝐴⊗𝑃 ⊗ 𝑔𝐵 .
Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
streams with different memories.
• 𝑀 (𝐿𝐻𝑆) = (𝑀 (𝑓) ⊗ 𝑆0) ⊗ 𝑀 (𝑔),
• 𝑀 (𝑅𝐻𝑆) = 𝑀 (𝑓) ⊗ (𝑆0 ⊗ 𝑀 (𝑔)).

We will prove that they are related by dinaturality over the
symmetry 𝛼 . We know that now(𝐿𝐻𝑆) = now(𝑅𝐻𝑆);𝛼 by
string diagrams (see Figure 29). Then, by coinduction, we
know that 𝛼 · later(𝐿𝐻𝑆) = later(𝑅𝐻𝑆). □

Monoidal Streams for Dataflow Programming

𝑀𝑓 𝑀𝑟

𝐴 𝐵 𝑄 𝑋

𝑘

now(𝑟)

now(𝑓)

𝑘

now(𝑟)

now(𝑓)

=

𝑆0 𝑌 𝑀𝑓 𝑀𝑟 𝑆0 𝑌

𝐴 𝐵 𝑄 𝑋

Figure 30. The sliding axiom (A5).

Lemma E.13. The structure (Stream, fbk) with memories
satisfies the strength axiom (A4). Given two streams
• 𝑓 ∈ Stream(S ⊗ X,S ⊗ Y), and
• 𝑔 ∈ Stream(X′,Y′),

we claim that

𝛼 · fbk𝑆 (𝑓 ⊗ 𝑔) = fbk𝑆 (𝑓) ⊗ 𝑔.
Proof. Consequence of Lemma E.12, after applying the nec-
essary coherence morphisms. □

Lemma E.14. The structure (Stream, fbk) with memories
satisfies the sliding axiom (A5). Given two streams
• 𝑓 ∈ Stream(𝐴 · 𝜕S ⊗ X,T ⊗ Y), and
• 𝑟 ∈ Stream(𝐶 · T,S)

we claim that, for each 𝑘 : 𝐵 ⊗ 𝑄 → 𝐶 ⊗ 𝑃 ,
𝑘 · fbkS (𝑓 𝐴⊗𝑃 ; (𝑟𝐶 ⊗ id)) = fbkT (𝑘 · (𝜕𝑟𝐶 ⊗ id); 𝑓 𝐴⊗𝑃).

Proof. First, we note that both sides of the equation (which,
from now on, we call 𝐿𝐻𝑆 and 𝑅𝐻𝑆 , respectively) represent
streams with different memories.
• 𝑀 (𝐿𝐻𝑆) = 𝑀 (𝑓) ⊗ 𝑀 (𝑟) ⊗ 𝑆0,
• 𝑀 (𝑅𝐻𝑆) = 𝑀 (𝑟) ⊗ 𝑀 (𝑓) ⊗ 𝑇0.

We will prove that they are related by dinaturality over the
symmetry and the first action of 𝑟 , that is, 𝜎; (now(𝑟) ⊗ id).
We know that now(𝐿𝐻𝑆) = now(𝑅𝐻𝑆); (𝜎; (id ⊗ now(𝑟)))
by string diagrams (see Figure 30). Using coinduction,
(𝜎; now(𝑟)) · later(𝐿𝐻𝑆)

=(𝜎; now(𝑟)) · fbkS (later(𝑓)𝑀 (𝑓) ⊗𝑆0 ; (later(𝑟)𝑀 (𝑟) ⊗ id))
=fbkT ((𝜎; now(𝑟)) · (𝜕 later(𝑟)𝑀 (𝑟) ⊗ id); later(𝑓)𝑀 (𝑓) ⊗𝑆0)
=fbkT (𝜎 · (later(𝜕𝑟)𝑀 (𝑟) ⊗ id); later(𝑓)𝑀 (𝑓) ⊗𝑆0)
= later(𝑅𝐻𝑆),
we show that (𝜎; now(𝑟)) · later(𝐿𝐻𝑆) = later(𝑅𝐻𝑆). □

Lemma E.15. The structure (Stream, fbk) satisfies the slid-
ing axiom (A5). Given two streams

Gen
𝑓 ∈ G(𝐴1, . . . , 𝐴𝑛;𝐵) Γ1 ⊢ 𝑥1 : 𝐴1 . . . Γ𝑛 ⊢ 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, . . . , Γ𝑛; Γ) ⊢ 𝑓 (𝑥1, . . . , 𝑥𝑛) : 𝐵

Pair
Γ1 ⊢ 𝑥1 : 𝐴1 . . . Γ𝑛 ⊢ 𝑥𝑛 : 𝐴𝑛

Shuf (Γ,Δ) ⊢ [𝑥1, . . . , 𝑥𝑛] : 𝐴1 ⊗ · · · ⊗ 𝐴𝑛

Var

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Split
Δ ⊢𝑚 : 𝐴1 ⊗ · · · ⊗ 𝐴𝑛 Γ, 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑧 : 𝐶

Shuf (Γ1, . . . , Γ𝑛) ⊢ Split𝑚 → [𝑥1, . . . , 𝑥𝑛] in 𝑧 : 𝐶

Figure 31. Type theory of symm. monoidal categories [70].
• 𝑓 ∈ Stream(𝜕S ⊗ X,T ⊗ Y), and
• 𝑟 ∈ Stream(T,S)

we claim that, fbkS (𝑓 ; (𝑟 ⊗ id)) = fbkT ((𝜕𝑟 ⊗ id); 𝑓).
Proof. Consequence of Lemma E.14, after applying the nec-
essary coherence morphisms. □

Theorem E.16 (From Theorem 5.10). Monoidal streams over
a symmetric monoidal category (C, ⊗, 𝐼) form a 𝜕-feedback
monoidal category (Stream, fbk).
Proof. We have proven that it satisfies all the feedback ax-
ioms:
• the tightening axiom by Lemma E.7,
• the vanishing axiom by Lemma E.9,
• the joining axiom by Lemma E.11,
• the strength axiom by Lemma E.13,
• and the sliding axiom by Lemma E.15.

Thus, it is a feedback structure □

F Type theory
As our base type theory, we consider the that of symmetric
monoidal categories over some generators forming a multi-
graph G, as described by Shulman [70]. Our only change
will be to consider an unbiased presentation, meaning that we
consider n-ary tensor products instead of only binary and
0-ary (the monoidal unit). This reduces the number of rules:
the binary case and the 0-ary case of the usual presentation
are taken care of by a single n-ary case.

Definition F.1 (Shuffling contexts [70]). A shuffle of contexts
Shuf (Γ1, . . . , Γ𝑛) is the result of a permutation of

⊔𝑛
𝑖=0 Γ𝑛

that leaves invariant the internal order of each Γ𝑖 . Shuffles
allow us to derive morphisms that make use of the symmetry
without introducing redundancy in our type theory.

Substitution is admissible in the type theory for symmetric
monoidal categories [70]. It can be inductively defined: we
write 𝑃 [𝑚/𝑥] for the substitution of the variable 𝑥 by a term
𝑚 inside the term 𝑝 . Using substitution, we can state a pair
of 𝛽/𝜂-reduction equalities for the terms of our type theory.

Elena Di Lavore, Giovanni de Felice, and Mario Román

• Split [𝐸1, . . . , 𝐸𝑛] → [𝑥1, . . . , 𝑥𝑛] in 𝑧 ≡ 𝑧 [𝐸1/𝑥1, . . .]
• Split [𝐸1, . . . , 𝐸𝑛] → [𝑥1, . . . , 𝑥𝑛] in𝑁 [[𝑥1, . . . , 𝑥𝑛]/𝑢]
≡ 𝑁 [[𝐸1, . . . , 𝐸𝑛]/𝑢]

F.1 Type theory for a strong monoidal endofunctor
Definition F.2 (Signature). Let𝑇 be a set of basic types. We
write

𝑇★𝜕 B {𝜕𝑛1𝑡1𝜕
𝑛2𝑡2 . . . 𝜕

𝑛𝑘 𝑡𝑘 | 𝑛1, . . . , 𝑛𝑘 ∈ N, 𝑡𝑖 ∈ 𝑇 }
for the free monoid-with-an-endomorphism 𝜕 : 𝑇★𝜕 → 𝑇★𝜕
over 𝑇 . The signature for a type theory of monoidal cat-
egories with a monoidal endofunctor is given by a pair of
functions 𝑠, 𝑡 : O ⇒ 𝑇★𝜕 , assigning source and target to every
generator from a set O.
Example F.3. We will usually include two families of genera-
tors in our theory. For each type 𝑡0 ∈ 𝑇 that can be copied,
we have a copy ∈ O generator with 𝑠 (copy) = 𝑡0 ∈ 𝑇★𝜕 and
𝑡 (copy) = 𝑡0 · 𝑡0 ∈ 𝑇★𝜕 .
Definition F.4. The type theory of symmetric monoidal
categories with a symmetric monoidal endofunctor over a
signature O ⇒ 𝑇★𝜕 is the type theory of symmetric monoidal
categories extended with an operator 𝜕 on types such that

𝜕[] = [] and 𝜕(Γ, 𝑥 :𝐴) = 𝜕Γ, 𝑥 :𝜕𝐴,

and the following Delay introduction rule.
Delay

Γ ⊢ 𝑥 : 𝐴

𝜕Γ ⊢ Delay(𝑥) : 𝜕𝐴

The delay operator is a monoid homomorphism on types,
satisfying 𝜕𝐼 ≡ 𝐼 and 𝜕(𝐴 ⊗ 𝐵) ≡ 𝜕𝐴 ⊗ 𝜕𝐵. The Delay in-
troduction rule satisfies the following conversion equalities,
that state that it acts as a functor preserving the monoidal
structure.
• Delay(𝑥) ≡ 𝑥 for 𝑥 a variable,
• [Delay(𝑒1), . . . ,Delay(𝑒𝑛)] ≡ Delay([𝑒1, . . . , 𝑒𝑛]),
• Split Delay(𝑚) → [𝑒1, . . . , 𝑒𝑛] in Delay(𝑧)

≡ Delay(Split𝑚 → [𝑒1, . . . , 𝑒𝑛] in 𝑧),
We choose not to explicitly state the delay rule when writing
terms of the type theory (as we do in Section 8.2), as it does
not cause ambiguity with the typing. However, we do write
it when typechecking.

F.2 Type Theory for Delayed Feedback
We finally augment the type theory of symmetric monoi-
dal categories with a monoidal endofunctor by adding the
following derivation rule.

Fbk
Γ, 𝑠 : 𝜕𝑆 ⊢ 𝑥 (𝑠) : 𝑆 ⊗ 𝐴
Γ ⊢ Fbk 𝑠 . 𝑥 (𝑠) : 𝐴

Following the axioms of categories with delayed feedback
and their normalization theorem, we introduce rules that fol-
low from the feedback axioms. Note that these rules simplify

multiple applications of feedback into a single application at
the head of the term.

1. 𝑔(Fbk 𝑠 in 𝑥 (𝑠)) ≡
Fbk 𝑠 in Let [𝑡, 𝑏] ← 𝑥 (𝑠) in [𝑡, 𝑔(𝑏)]

2. [Fbk 𝑠 in 𝑥 (𝑠), Fbk 𝑡 in 𝑦 (𝑡)] ≡ Fbk𝑚 in
Split𝑚 → [𝑠, 𝑡] in
Split 𝑥 (𝑠) → [𝑢, 𝑣] in
Split 𝑦 (𝑡) → [𝑢 ′, 𝑣 ′] in
[[𝑢,𝑢 ′], [𝑣, 𝑣 ′]]

3. Split𝑚 → [𝑥1, . . . , 𝑥𝑛] in Fbk 𝑠 in 𝑧 ≡
Fbk 𝑠 in Split𝑚 → [𝑥1, . . . , 𝑥𝑛] in 𝑧

4. Split (Fbk 𝑢 in 𝑧 (𝑢)) → [𝑥1, . . . , 𝑥𝑛] in𝑚 ≡
Fbk 𝑢 in Split 𝑧 (𝑢) → [𝑣, 𝑛] in
Split 𝑛 → [𝑥1, . . . , 𝑥𝑛] in [𝑣,𝑚]

5. 𝑥 ≡ Fbk 𝑖 in Split 𝑖 → [] in [𝑡, 𝑥]
6. Fbk 𝑥 in Fbk 𝑦 in𝑚(𝑥,𝑦) ≡

Fbk 𝑛 in Split 𝑛 → [𝑥,𝑦] in𝑚(𝑥,𝑦)
Finally, we introduce an equality representing the sliding

axiom (Figure 7). Having all of these rules together means
that we can always rewrite a term in the type theory with
feedback as a term of the type theory of symmetric monoidal
categories up to sliding. These are precisely the morphisms
of the St(•)-construction, the free category with feedback.

1. Fbk 𝑠 in 𝑓 (Delay(ℎ(𝑠)), 𝑥) ≡
Fbk 𝑡 in Split 𝑓 (𝑥, 𝑡) → [𝑦, 𝑠] in [𝑦,ℎ(𝑠)]

F.3 Categories with copy and syntax sugar
Definition F.5. A category with copying is a symmetric
monoidal category (C, ⊗, 𝐼) in which every object 𝐴 ∈ C has
a (non-necessarily natural) coassociative and cocommutative
comultiplication 𝛿𝐴 = ()𝐴 : 𝐴→ 𝐴 ⊗ 𝐴, called the “copy”.

Every cartesian category and every kleisli category of a
Set-based commutative monad is a category with copying.
In our type theory, this is translated into a Copy generator
acting as follows.

Copy
Γ ⊢ 𝑥 : 𝐴

Γ ⊢ Copy(𝑥) : 𝐴 ⊗ 𝐴
Definition F.6. A category with 𝜕-merging is a symmetric
monoidal category (C, ⊗, 𝐼) with a symmetric monoidal end-
ofunctor 𝜕 : C → C in which every object 𝐴 ∈ C has an
associated morphism 𝜙𝐴 : 𝐴 ⊗ 𝜕𝐴→ 𝐴.

In our type theory, this is translated by a Fby generator
acting as follows.

Fby
Γ ⊢ 𝑥 : 𝐴 Δ ⊢ 𝑦 : 𝜕(𝐴)
Shuf (Γ,Δ) ⊢ 𝑥 Fby 𝑦 : 𝐴

We allow three pieces of syntax sugar in our language,
suited only for the case of categories with copying. These

Monoidal Streams for Dataflow Programming

make the language more Lucid-like without changing its
formal description.

1. We allow multiple occurences of a variable, implicily
copying it.

2. We applyDelay rules where needed for type-checking,
without explicitly writing the rule.

3. Recursive definitions are syntax for the Fbk rule and
the Copy rule. That is,
𝑀 = 𝑥 (𝑀) means 𝑀 = Fbk𝑚 in Copy(𝑥 (𝑚)) .

4. We useWait to declare an implicit feedback loop.
Wait(𝑥) means Fbk 𝑦 in [𝑥,𝑦] .

G Implementation
We use the Haskell [39] programming language for com-
putations. We use Arrows [40] to represent monoidal cate-
gories with an identity-on-objects monoidal functor from
our base category of Haskell types and functions. Notations
for arrows [61] have been explained in terms of Freyd cate-
gories [63]. In particular, the loop notation is closely related
to feedback, as it is usually employed to capture traces.

Our definition of monoidal streams follows Definition 5.1.
type Stream c = StreamWithMemory c ()

data StreamWithMemory c n x y where
StreamWithMemory :: (Arrow c) =>

c (n , x) (m , y)
-> StreamWithMemory c m x y
-> StreamWithMemory c n x y

Their sequential and parallel composition (comp and tensor)
follow from Definitions 5.3 and 5.5. In Appendix G.2 we de-
scribe both first on the now part; and then trivially extended
by coinduction.
now(𝑓 ;𝑁𝑔) = (𝜎⊗id𝐴);(id⊗now(𝑓));(𝜎⊗id𝐵); (id⊗now(𝑔)) .
now(𝑓 ⊗𝑁 𝑔) = (id⊗𝜎⊗id); (now(𝑓)⊗now(𝑔)); (id⊗𝜎⊗id).
Example G.1 (Fibonacci example). The code for fibonacci
in Appendix G.2 follows the definition in Section 6.3. We can
execute it to obtain the first 10 numbers from the Fibonacci
sequence.

> take 10 <$> run fibonacci
Identity [0,1,1,2,3,5,8,13,21,34]

Example G.2 (Random walk example). The code for walk
in Appendix G.2 follows the definition in Example 7.4. We
can execute it multiple times to obtain different random
walks starting from 0.

> take 10 <$> run walk
[0,1,0,-1,-2,-1,-2,-3,-2,-3]
> take 10 <$> run walk
[0,1,2,1,2,1,2,3,4,5]
> take 10 <$> run walk
[0,-1,-2,-1,-2,-1,0,-1,0,-1]

Example G.3 (Ehrenfest model). The code for ehrenfest
in Appendix G.2 follows the definition in Figure 12. We can
execute it to simulate the Ehrenfest model.

> take 10 <$> run ehrenfest
[([2,3,4],[1]),([2,3],[1,4]),
([2,3,4],[1]),([2,4],[1,3]),
([2],[1,3,4]),([2,4],[1,3]),
([2],[1,3,4]),([2,3],[1,4]),
([3],[1,2,4]),([2,3],[1,4])]

Elena Di Lavore, Giovanni de Felice, and Mario Román

G.1 Term derivations
Example G.4 (Fibonacci).

⊢ 0 : N0

𝑓 : N ⊢ 𝑓 : N

𝑓 : N ⊢ Copy(𝑓) : N ⊗ N

𝑓1 : N ⊢ 𝑓1 : N

⊢ 1 : N0

𝑓2 : N ⊢ 𝑓2 : N

𝑓2 : N ⊢Wait(𝑓2) : 𝜕N

𝑓2 : N ⊢ 1 Fby Wait(𝑓2) : N

𝑓1 : N, 𝑓2 : N ⊢ 𝑓1 + 1 Fby Wait(𝑓2) : N

𝑓 : N ⊢ Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2)) : N

𝑓 : 𝜕N ⊢ Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2)) : 𝜕N

𝑓 : 𝜕N ⊢ 0 Fby Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2)) : N

𝑓 : 𝜕N ⊢ Copy(0 Fby Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2))) : N ⊗ N

⊢: Fbk 𝑓 in Copy(0 Fby Split Copy(𝑓) → [𝑓1, 𝑓2] in (𝑓1 + 1 Fby Wait(𝑓2))) : N

Example G.5 (Random walk).

⊢ 0 : N0

⊢ Uniform(−1, 1) : N 𝑤 : 𝜕N ⊢ 𝑤 : 𝜕N

𝑤 : 𝜕N ⊢ Uniform(−1, 1) +𝑤 : 𝜕N

𝑤 : 𝜕N ⊢ 0 Fby (Uniform(−1, 1) +𝑤) : N

𝑤 : 𝜕N ⊢ Copy(0 Fby (Uniform(−1, 1) +𝑤)) : N ⊗ N

⊢ Fbk𝑤 in Copy(0 Fby (Uniform(−1, 1) +𝑤)) : N

Example G.6 (Ehrenfest model).

⊢ (1, 2, 3, 4) : Urn0
⊢ () : Urn0

⊢ [(1, 2, 3, 4), ()]
: Urn0 ⊗ Urn0

𝑢 : Urn ⊗ Urn ⊢
𝑢 : Urn ⊗ Urn

⊢ Uniform : N

⊢ Copy(Uniform) : N ⊗ N

𝑛1 : N ⊢
𝑛1 : N

𝑢1 : Urn ⊢
𝑢1 : Urn

𝑛1 : N, 𝑢1 : Urn ⊢
Move(𝑛1, 𝑢1) : Urn

𝑛2 : N ⊢
𝑛2 : N

𝑢2 : Urn ⊢
𝑢2 : Urn

𝑛2 : N, 𝑢2 : Urn ⊢
Move(𝑛2, 𝑢2) : Urn

𝑛1 : N, 𝑛2 : N, 𝑢1 : Urn, 𝑢2 : Urn ⊢
[Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : Urn ⊗ Urn

𝑢1 : Urn, 𝑢2 : Urn ⊢ Split Copy(Uniform) → [𝑛1, 𝑛2] in
[Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : Urn ⊗ Urn

𝑢 : Urn ⊗ Urn ⊢ Split 𝑢 → [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : Urn ⊗ Urn

𝑢 : 𝜕(Urn ⊗ Urn) ⊢ Split 𝑢 → [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : 𝜕(Urn ⊗ Urn)
𝑢 : 𝜕(Urn ⊗ Urn) ⊢ [(1, 2, 3, 4), ()] Fby Split 𝑢 → [𝑢1, 𝑢2] in

Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)] : Urn ⊗ Urn

𝑢 : 𝜕(Urn ⊗ Urn) ⊢ Copy([(1, 2, 3, 4), ()] Fby Split 𝑢 → [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)]) : (Urn ⊗ Urn) ⊗ (Urn ⊗ Urn)

⊢ Fbk 𝑢 in Copy([(1, 2, 3, 4), ()] Fby Split 𝑢 → [𝑢1, 𝑢2] in
Split Copy(Uniform) → [𝑛1, 𝑛2] in [Move(𝑛1, 𝑢1),Move(𝑛2, 𝑢2)]) : Urn ⊗ Urn

Monoidal Streams for Dataflow Programming

G.2 Code
The following code has been compiled under GHCi, version 8.6.5. The “random” library may need to be installed.

-- | Monoidal Streams for Dataflow Programming.

-- Anonymous.

-- The following code implements the category of monoidal streams over a
-- monoidal category with an identity-on-objects functor from the
-- (pseudo)category of Haskell types.

-- During the manuscript, we have needed to perform some computations: for
-- instance, to see that according to our definitions the Fibonacci morphism we
-- describe really computes the Fibonacci sequence. Computations of this kind
-- are difficult and tedious to write and to justify, and the reader may find
-- difficult to reproduce them. Instead of explicitly writing these
-- computations, we implement them and we provide the necessary code so that the
-- reader can verify the result from the computation.

-- Morphisms in a monoidal category are written in "Arrow" notation, using (>>>)
-- for sequential composition and (***) for parallel composition. Coherence
-- morphisms need to be written explicitly, we usually write them at the side of
-- the diagram.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}

module Main where

import Prelude hiding (id)
import Data.Functor.Identity
import Data.List
import Control.Category
import Control.Arrow
import System.Random
import System.IO.Unsafe

-- Fixpoint equation for monoidal streams. Figure 5.
type Stream c = StreamWithMemory c ()

data StreamWithMemory c n x y where
StreamWithMemory :: (Arrow c) =>

c (n , x) (m , y)
-> StreamWithMemory c m x y
-> StreamWithMemory c n x y

-- EXAMPLES --

fibonacci :: Stream (Kleisli Identity) () Int
fibonacci = fbk $ runitS

Elena Di Lavore, Giovanni de Felice, and Mario Román

>>> copy >>> lunitinvS *** id
>>> delay (k1 *** wait) *** id
>>> delay fby *** id
>>> plus >>> lunitinvS
>>> k0 *** id
>>> fby
>>> copy

walk :: Stream (Kleisli IO) (()) (Int)
walk = fbk

$ (id *** unif)
>>> plus >>> lunitinvS
>>> k0 *** id
>>> fby
>>> copy

where
unif :: Stream (Kleisli IO) () Int
unif = lift $ Kleisli (\() -> do

boolean <- randomIO
return $ if boolean then 1 else -1)

type Urn = [Int]

ehrenfest :: Stream (Kleisli IO) (()) (Urn,Urn)
ehrenfest = fbk $ runitS>>> lunitinv *** lunitinv

>>> (full *** idS) *** (empty *** idS) >>> runitinv
>>> (fby *** fby) *** unif
>>> idS *** copy >>> associnv >>> idS *** assoc
>>> idS *** (sigma *** idS) >>> idS *** associnv >>> assoc
>>> move *** move
>>> copy *** copy >>> associnv >>> idS *** assoc
>>> idS *** (sigma *** idS) >>> idS *** associnv >>> assoc
where
unif :: Stream (Kleisli IO) () Int
unif = lift $ Kleisli (\() -> randomRIO (1,4))

empty :: Stream (Kleisli IO) () Urn
empty = lift $ arr (\() -> [])

full :: Stream (Kleisli IO) () Urn
full = lift $ arr (\() -> [1,2,3,4])

move :: Stream (Kleisli IO) (Urn, Int) Urn
move = lift $ arr (\(u,i) ->
if elem i u

then (delete i u)
else (insert i u))

--- take 10 <$> run fibonacci
--- take 10 <$> run walk
--- take 10 <$> run ehrenfest

Monoidal Streams for Dataflow Programming

-- THE FEEDBACK CATEGORY --

compS :: (Arrow c) =>
StreamWithMemory c m x y ->
StreamWithMemory c n y z ->
StreamWithMemory c (m , n) x z

compS
(StreamWithMemory fnow flater)
(StreamWithMemory gnow glater) =
StreamWithMemory (sequentialComposition fnow gnow) (compS flater glater)

where

-- Definition 5.2.
-- Sequential composition, "now".
sequentialComposition :: Arrow c

=> c (m , x) (p , y)
-> c (n , y) (q , z)
-> c ((m,n),x) ((p,q),z)

sequentialComposition f g =
sigma *** id >>> associnv

>>> id *** f >>> assoc
>>> sigma *** id >>> associnv
>>> id *** g >>> assoc

comp :: (Arrow c) => Stream c x y -> Stream c y z -> Stream c x z
comp f g = lact lunitinv (compS f g)

tensorS :: (Arrow c) =>
StreamWithMemory c p x y ->
StreamWithMemory c p' x' y' ->
StreamWithMemory c (p , p') (x,x') (y,y')

tensorS
(StreamWithMemory fnow flater)
(StreamWithMemory gnow glater) =
StreamWithMemory (parallelCompTosition fnow gnow) (tensorS flater glater)

where

-- Definition 5.3. Parallel compTosition.
parallelCompTosition :: Arrow c

=> c (m,x) (p,z)
-> c (n,y) (q,w)
-> c ((m,n),(x,y)) ((p,q),(z,w))

parallelCompTosition f g =
associnv >>> id *** assoc

>>> (id *** (sigma *** id)) >>> id *** associnv >>> assoc
>>> (f *** g) >>> associnv >>> id *** assoc
>>> (id *** (sigma *** id)) >>> id *** associnv >>> assoc

tensor :: Arrow c => Stream c x y -> Stream c x' y' -> Stream c (x,x') (y,y')
tensor f g = lact lunitinv (tensorS f g)

Elena Di Lavore, Giovanni de Felice, and Mario Román

lact :: (Arrow c) => c n m -> StreamWithMemory c m x y -> StreamWithMemory c n x y
lact f (StreamWithMemory now later) = StreamWithMemory ((f *** id) >>> now) later

fbkS :: (Arrow c) =>
StreamWithMemory c m (s,x) (s,y) ->
StreamWithMemory c (m, s) x y

fbkS (StreamWithMemory now later) =
StreamWithMemory (nowFeedback now) (fbkS later)

where

-- Definition 5.7. Feedback operation.
nowFeedback :: (Arrow c) => c (m,(s,x)) (n,(t,y)) -> c ((m,s),x) ((n,t),y)
nowFeedback f = associnv >>> f >>> assoc

fbk :: (Arrow c) => Stream c (s,x) (s,y) -> Stream c x y
fbk t = lact (arr (\() -> ((),undefined))) (fbkS t)

idS :: (Arrow c) => Stream c x x
idS = StreamWithMemory (id) idS

lift :: (Arrow c) => c x y -> Stream c x y
lift f = StreamWithMemory (id *** f) (lift f)

liftarr :: (Arrow c) => (x -> y) -> Stream c x y
liftarr s = lift $ arr s

instance (Arrow c) => Category (Stream c) where
id = idS
(.) f g = comp g f

instance (Arrow c) => Arrow (Stream c) where
arr = liftarr
(***) = tensor

instance (Arrow c) => ArrowLoop (Stream c) where
loop f = fbk $ sigma >>> f >>> sigma

delay :: (Arrow c) => Stream c x y -> Stream c x y
delay f = StreamWithMemory (id *** undefined) f

-- ARROWS --

assoc :: Arrow c => c (x,(y,z)) ((x,y),z)
assoc = arr $ \(x,(y,z)) -> ((x,y),z)
assocS :: Arrow c => Stream c (x,(y,z)) ((x,y),z)

Monoidal Streams for Dataflow Programming

assocS = lift assoc

associnv :: Arrow c => c ((x,y),z) (x,(y,z))
associnv = arr $ \((x,y),z) -> (x,(y,z))
associnvS :: Arrow c => Stream c ((x,y),z) (x,(y,z))
associnvS = lift $ associnv

lunit :: Arrow c => c ((),a) a
lunit = arr $ \((),a) -> a
lunitS :: Arrow c => Stream c ((),a) a
lunitS = lift $ lunit

lunitinv :: Arrow c => c a ((),a)
lunitinv = arr $ \a -> ((),a)
lunitinvS :: Arrow c => Stream c a ((),a)
lunitinvS = lift $ lunitinv

runit :: Arrow c => c (a,()) a
runit = arr $ \(a,()) -> a
runitS :: Arrow c => Stream c (a,()) a
runitS = lift $ runit

runitinv :: Arrow c => c a (a,())
runitinv = arr $ \a -> (a,())
runitinvS :: Arrow c => Stream c a (a,())
runitinvS = lift $ runitinv

sigma :: Arrow c => c (x,y) (y,x)
sigma = arr $ \(x,y) -> (y,x)

sigmaS :: Arrow c => Stream c (x,y) (y,x)
sigmaS = lift $ sigma

-- GENERATORS --

fby :: (Monad t) => Stream (Kleisli t) (a , a) a
fby = StreamWithMemory (Kleisli $ \((),(x,y)) -> pure ((),x)) (lift (arr snd))

copy :: (Monad t) => Stream (Kleisli t) a (a,a)
copy = lift (Kleisli $ \a -> pure (a,a))

k0,k1,k2 :: (Arrow c) => Stream c () Int
k0 = lift $ arr (\() -> 0)
k1 = lift $ arr (\() -> 1)
k2 = lift $ arr (\() -> 2)

plus :: (Arrow c) => Stream c (Int,Int) Int
plus = lift $ arr (\(a,b) -> a + b)

wait :: (Arrow c) => Stream c a a

Elena Di Lavore, Giovanni de Felice, and Mario Román

wait = fbk sigmaS

-- SYSTEM --

class (Monad m) => IOMonad m where unsafeRun :: m a -> m a
instance IOMonad IO where unsafeRun = unsafeInterleaveIO
instance IOMonad Identity where unsafeRun = id

runUnsafeWithMemory :: (IOMonad t) => m -> StreamWithMemory (Kleisli t) m a b -> [a] -> t [b]
runUnsafeWithMemory m (StreamWithMemory (Kleisli now) later) (a:as) = do

(n , b)<- now (m , a)
l <- unsafeRun $ runUnsafeWithMemory n later as
pure (b : l)

runUnsafe :: (IOMonad t) => Stream (Kleisli t) a b -> [a] -> t [b]
runUnsafe = runUnsafeWithMemory ()

run :: (IOMonad t) => Stream (Kleisli t) () a -> t [a]
run s = runUnsafe s (repeat ())

--

main :: IO ()
main = return ()

3. Promonads and String Diagrams for Effectful Categories

Mario Román
Applied Category Theory (ACT, 2022)

Abstract: Premonoidal and Freyd categories are both generalized by non-cartesian
Freyd categories: effectful categories. We construct string diagrams for effectful
categories in terms of the string diagrams for a monoidal category with a freely
added object. We show that effectful categories are pseudomonoids in a monoidal
bicategory of promonads with a suitable tensor product.

Declaration: Hereby I declare that my contribution to this manuscript was to:
propose the research area, find the main theorem and proof, and write the whole
article. My supervisor, Pawel Sobocinski, provided valuable feedback.

J. Master & M. Lewis (Eds.): Fifth International
Conference on Applied Category Theory (ACT 2022).
EPTCS 380, 2023, pp. 344–361, doi:10.4204/EPTCS.380.20

© Mario Román
This work is licensed under the
Creative Commons Attribution License.

Promonads and String Diagrams for Effectful Categories

Mario Román
Tallinn University of Technology

mroman@ttu.ee

Premonoidal and Freyd categories are both generalized by non-cartesian Freyd categories: effectful
categories. We construct string diagrams for effectful categories in terms of the string diagrams for a
monoidal category with a freely added object. We show that effectful categories are pseudomonoids
in a monoidal bicategory of promonads with a suitable tensor product.

1 Introduction

Category theory has two sucessful applications that are rarely combined: monoidal string diagrams [23]
and functional programming semantics [28]. We use string diagrams to talk about quantum transfor-
mations [1], relational queries [6], and even computability [31]; at the same time, proof nets and the
geometry of interaction [13, 5] have been widely applied in computer science [2, 18]. On the other hand,
we traditionally use monads and comonads, Kleisli categories and premonoidal categories to explain
effectful functional programming [19, 20, 28, 34, 42]. Even if we traditionally employ Freyd categories
with a cartesian base [32], we can also consider non-cartesian Freyd categories [40], which we call
effectful categories.

Contributions. These applications are well-known. However, some foundational results in the in-
tersection between string diagrams, premonoidal categories and effectful categories are missing in the
literature. This manuscript contributes two such results.

• We introduce string diagrams for effectful categories. Jeffrey [22] was the first to preformally
employ string diagrams of premonoidal categories. His technique consists in introducing an ex-
tra wire – which we call the runtime – that prevents some morphisms from interchanging. We
promote this preformal technique into a result about the construction of free premonoidal, Freyd
and effectful categories: the free premonoidal category can be constructed in terms of the free
monoidal category with an extra wire.
Our slogan, which constitutes the statement of Theorem 2.14, is

“Premonoidal categories are Monoidal categories with a Runtime.”

• We prove that effectful categories are promonad pseudomonoids. Promonads are the profunctorial
counterpart of monads; they are used to encode effects in functional programming (where they are
given extra properties and called arrows [19]). We claim that, in the same way that monoidal cate-
gories are pseudomonoids in the bicategory of categories [9], premonoidal effectful categories are
pseudomonoids in a monoidal bicategory of promonads. This result justifies the role of effectful
categories as a foundational object.

1.1 Synopsis

Sections 2.1 and 2.2 contain mostly preliminary material on premonoidal, Freyd and effectful categories.
Our first original contribution is in Section 2.3; we prove that premonoidal categories are monoidal

Mario Román 345

categories with runtime (Theorem 2.14). Section 3 makes explicit the well-known theory of profunctors,
promonads and identity-on-objects functors. In Section 4, we introduce the pure tensor of promonads.
We use it in Section 5 to prove our second main contribution (Theorem 5.3).

2 Premonoidal and Effectful Categories

2.1 Premonoidal categories

Premonoidal categories are monoidal categories without the interchange law, (f ⊗ id) # (id⊗g) ̸= (id⊗
g) # (f ⊗ id). This means that we cannot tensor any two arbitrary morphisms, (f ⊗g), without explicitly
stating which one is to be composed first, (f ⊗ id)#(id⊗g) or (id⊗g)#(f ⊗ id), and the two compositions
are not equivalent (Figure 1).

Figure 1: The interchange law does not hold in a premonoidal category.

In technical terms, the tensor of a premonoidal category (⊗) : C×C→ C is not a functor, but only
what is called a sesquifunctor: independently functorial on each variable. Tensoring with any identity is
itself a functor (•⊗ id) : C→ C, but there is no functor (•⊗•) : C×C→ C.

A good motivation for dropping the interchange law can be found when describing transformations
that affect some global state. These effectful processes should not interchange in general, because the
order in which we modify the global state is meaningful. For instance, in the Kleisli category of the writer
monad, (Σ∗×•) : Set→ Set for some alphabet Σ∈ Set, we can consider the function print : Σ∗→ Σ∗×1.
The order in which we “print” does matter (Figure 2).

Figure 2: Writing does not interchange.

Not surprisingly, the paradigmatic examples of premonoidal categories are the Kleisli categories of
Set-based monads T : Set→ Set (more generally, of strong monads), which fail to be monoidal unless
the monad itself is commutative [15, 33, 34, 16]. Intuitively, the morphisms are “effectful”, and these
effects do not always commute.

However, we may still want to allow some morphisms to interchange. For instance, apart from asking
the same associators and unitors of monoidal categories to exist, we ask them to be central: that means
that they interchange with any other morphism. This notion of centrality forces us to write the definition
of premonoidal category in two different steps: first, we introduce the minimal setting in which centrality
can be considered (binoidal categories [34]) and then we use that setting to bootstrap the full definition
of premonoidal category with central coherence morphisms.
Definition 2.1 (Binoidal category). A binoidal category is a category C endowed with an object I ∈ C
and an object A⊗B for each A ∈ C and B ∈ C. There are functors (A⊗•) : C→ C, and (•⊗B) : C→ C
that coincide on (A⊗B), even if (•⊗•) is not itself a functor.

346 Promonads and String Diagrams for Effectful Categories

Again, this means that we can tensor with identities (whiskering), functorially; but we cannot tensor
two arbitrary morphisms: the interchange law stops being true in general. The centre, Z (C), is the
wide subcategory of morphisms that do satisfy the interchange law with any other morphism. That is,
f : A→ B is central if, for each g : A′→ B′,

(f ⊗ idA′) # (idB⊗g) = (idA⊗g) # (f ⊗ idB′), and (idA′⊗ f) # (g⊗ idB) = (g⊗ idA) # (idB′⊗ f).

Definition 2.2. A premonoidal category is a binoidal category (C,⊗, I) together with the following
coherence isomorphisms αA,B,C : A⊗ (B⊗C)→ (A⊗B)⊗C, ρA : A⊗ I→ A and λA : I⊗A→ A which
are central, natural separately at each given component, and satisfy the pentagon and triangle equations.

A premonoidal category is strict when these coherence morphisms are identities. A premonoidal
category is moreover symmetric when it is endowed with a coherence isomorphism σA,B : A⊗B→ B⊗A
that is central and natural at each given component, and satisfies the symmetry condition and hexagon
equations.

Remark 2.3. The coherence theorem of monoidal categories still holds for premonoidal categories: every
premonoidal is equivalent to a strict one. We will construct the free strict premonoidal category using
string diagrams. However, the usual string diagrams for monoidal categories need to be restricted: in
premonoidal categories, we cannot consider two morphisms in parallel unless any of the two is central.

2.2 Effectful and Freyd categories

Premonoidal categories immediately present a problem: what are the strong premonoidal functors? If we
want them to compose, they should preserve centrality of the coherence morphisms (so that the central
coherence morphisms of F # G are these of F after applying G), but naively asking them to preserve all
central morphisms rules out important examples [40]. The solution is to explicitly choose some central
morphisms that represent “pure” computations. These do not need to form the whole centre: it could be
that some morphisms considered effectful just “happen” to fall in the centre of the category, while we do
not ask our functors to preserve them. This is the well-studied notion of a non-cartesian Freyd category,
which we shorten to effectful monoidal category or effectful category.1

Effectful categories are premonoidal categories endowed with a chosen family of central morphisms.
These central morphisms are called pure morphisms, constrasting with the general, non-central, mor-
phisms that fall outside this family, which we call effectful.

Definition 2.4. An effectful category is an identity-on-objects functor V→ C from a monoidal category
V (the pure morphisms, or “values”) to a premonoidal category C (the effectful morphisms, or “compu-
tations”), that strictly preserves all of the premonoidal structure and whose image is central. It is strict
when both are. A Freyd category [24] is an effectful category where the pure morphisms form a cartesian
monoidal category.

Effectful categories solve the problem of defining premonoidal functors: a functor between effectful
categories needs to preserve only the pure morphisms. We are not losing expressivity: premonoidal
categories are effectful with their centre, Z (C)→ C. From now on, we study effectful categories.

1The name “Freyd category” sometimes assumes cartesianity of the pure morphisms, but it is also used for the general case.
Choosing to call “effectful categories” to the general case and reserving the name “Freyd categories” for the cartesian ones
avoids this clash of nomenclature. There exists also the more fine-grained notion of “Cartesian effect category” [12], which
generalizes Freyd categories and may further justify calling “effectful category” to the general case.

Mario Román 347

Definition 2.5 (Effectful functor). Let V→ C and W→ D be effectful categories. An effectful functor is
a quadruple (F,F0,ε,µ) consisting of a functor F : C→ D and a functor F0 : V→W making the square
commute, and two natural and pure isomorphisms ε : J ∼= F(I) and µ : F(A⊗B) ∼= F(A)⊗F(B) such
that they make F0 a monoidal functor. It is strict if these are identities.

When drawing string diagrams in an effectful category, we shall use two different colours to declare
if we are depicting either a value or a computation (Figure 3).

Figure 3: “Hello world” is not “world hello”.

Here, the values “hello” and “world” satisfy the interchange law as in an ordinary monoidal category.
However, the effectful computation “print” does not need to satisfy the interchange law. String diagrams
like these can be found in the work of Alan Jeffrey [22]. Jeffrey presents a clever mechanism to graph-
ically depict the failure of interchange: all effectful morphisms need to have a control wire as an input
and output. This control wire needs to be passed around to all the computations in order, and it prevents
them from interchanging.

Figure 4: An extra wire prevents interchange.

A common interpretation of monoidal categories is as theories of resources. We can interpret pre-
monoidal categories as monoidal categories with an extra resource – the “runtime” – that needs to be
passed to all computations. The next section promotes Jeffrey’s observation into a theorem.

2.3 Premonoidals are monoidals with runtime

String diagrams rely on the fact that the morphisms of the monoidal category freely generated over a
polygraph of generators are string diagrams on these generators, quotiented by topological deformations
[23]. We justify string diagrams for premonoidal categories by proving that the freely generated effectful
category over a pair of polygraphs (for pure and effectful generators, respectively) can be constructed as
the freely generated monoidal category over a particular polygraph that includes an extra wire.

Definition 2.6. A polygraph G (analogue of a multigraph [38]) is given by a set of objects, Gobj, and
a set of arrows G (A0, . . . ,An;B0, . . . ,Bm) for any two sequences of objects A0, . . . ,An and B0, . . . ,Bm. A
morphism of polygraphs f : G →H is a function between their object sets, fobj : Gobj →Hobj, and a
function between their corresponding morphism sets,

fA0,...,An;B0,...,Bn : G (A0, . . . ,An;B0, . . . ,Bm)→H (fobj(A0), . . . , fobj(An); fobj(B0), . . . , fobj(Bm)).

348 Promonads and String Diagrams for Effectful Categories

A polygraph couple is a pair of polygraphs (V ,G) sharing the same objects, Vobj = Gobj. A morphism
of polygraph couples (u, f) : (V ,G)→ (W ,H) is a pair of morphisms of polygraphs, u : V →W and
f : G →H , such that they coincide on objects, fobj = uobj.

Remark 2.7. There exists an adjunction between polygraphs and strict monoidal categories. Any mo-
noidal category C can be seen as a polygraph UC where the edges UC(A0, . . . ,An;B0, . . . ,Bm) are the
morphisms C(A0⊗ . . .⊗An,B0⊗ . . .⊗Bm), and we forget about composition and tensoring. Given a
polygraph G , the free strict monoidal category Mon(G) is the strict monoidal category that has as mor-
phisms the string diagrams over the generators of the polygraph.

We will construct a similar adjunction between polygraph couples and effectful categories. Let us
start by formally adding the runtime to a free monoidal category.

Definition 2.8 (Runtime monoidal category). Let (V ,G) be a polygraph couple. Its runtime monoidal
category, MonRun(V ,G), is the monoidal category freely generated from adding an extra object – the
runtime, R – to the input and output of every effectful generator in G (but not to those in V), and letting
that extra object be braided with respect to every other object of the category.

In other words, it is the monoidal category freely generated by the following polygraph, Run(V ,G),
(Figure 5), assuming A0, . . . ,An and B0, . . . ,Bm are distinct from R

• Run(V ,G)obj = Gobj +{R}= Vobj +{R},
• Run(V ,G)(R,A0, . . . ,An;R,B0, . . . ,Bn) = G (A0, . . . ,An;B0, . . . ,Bn),

• Run(V ,G)(A0, . . . ,An;B0, . . . ,Bn) = V (A0, . . . ,An;B0, . . . ,Bn),

• Run(V ,G)(R,A0;A0,R) = Run(V ,G)(A0,R;R,A0) = {σ},
with Run(V ,G) empty in any other case, and quotiented by the braiding axioms for R (Figure 6).

Figure 5: Generators for the runtime monoidal category.

Figure 6: Axioms for the runtime monoidal category.

Somehow, we are asking the runtime R to be in the Drinfeld centre [11] of the monoidal category.
The extra wire that R provides is only used to prevent interchange, and so it does not really matter where
it is placed in the input and the output. We can choose to always place it on the left, for instance – and
indeed we will be able to do so – but a better solution is to just consider objects “up to some runtime
braidings”. This is formalized by the notion of braid clique.

Definition 2.9 (Braid clique). Given any list of objects A0, . . . ,An in Vobj = Gobj, we construct a clique
[41, 39] in the category MonRun(V ,G): we consider the objects, A0⊗ . . .⊗R(i)⊗ . . .⊗An, created by

Mario Román 349

inserting the runtime R in all of the possible 0 ⩽ i ⩽ n + 1 positions; and we consider the family of
commuting isomorphisms constructed by braiding the runtime,

σi, j : A0⊗ . . .⊗R(i)⊗ . . .⊗An→ A0⊗ . . .⊗R(j)⊗ . . .⊗An.

We call this the braid clique, BraidR(A0, . . . ,An), on that list.

Definition 2.10. A braid clique morphism, f : BraidR(A0, . . . ,An)→ BraidR(B0, . . . ,Bm) is a family of
morphisms in the runtime monoidal category, MonRun(V ,G), from each of the objects of first clique to
each of the objects of the second clique,

fik : A0⊗ . . .⊗R(i)⊗ . . .⊗An→ B0⊗ . . .⊗R(k)⊗ . . .⊗Bm,

that moreover commutes with all braiding isomorphisms, fi j #σ jk = σil # f.

A braid clique morphism f : BraidR(A0, . . . ,An)→ BraidR(B0, . . . ,Bm) is fully determined by any
of its components, by pre/post-composing it with braidings. In particular, a braid clique morphism is
always fully determined by its leftmost component f00 : R⊗A0⊗ . . .⊗An→ R⊗B0⊗ . . .⊗Bm.

Lemma 2.11. Let (V ,G) be a polygraph couple. There exists a premonoidal category, Eff(V ,G), that
has objects the braid cliques, BraidR(A0, . . . ,An), in MonRun(V ,G), and as morphisms the braid clique
morphisms between them. See Appendix.

Lemma 2.12. Let (V ,G) be a polygraph couple. There exists an identity-on-objects functor Mon(V)→
Eff(V ,G) that strictly preserves the premonoidal structure and whose image is central. See Appendix.

Lemma 2.13. Let (V ,G) be a polygraph couple and consider the effectful category determined by
Mon(V)→ Eff(V ,G). Let V→ C be a strict effectful category endowed with a polygraph couple mor-
phism F : (V ,G)→U (V,C). There exists a unique strict effectful functor from (Mon(V)→ Eff(V ,G))
to (V→ C) commuting with F as a polygraph couple morphism. See Appendix.

Theorem 2.14 (Runtime as a resource). The free strict effectful category over a polygraph couple (V ,G)
is Mon(V)→ Eff(V ,G). Its morphisms A→ B are in bijection with the morphisms R⊗A→ R⊗B of
the runtime monoidal category,

Eff(V ,G)(A,B)∼= MonRun(V ,G)(R⊗A,R⊗B).

Proof. We must first show that Mon(V)→ Eff(V ,G) is an effectful category. The first step is to see
that Eff(V ,G) forms a premonoidal category (Lemma 2.11). We also know that Mon(V) is a monoidal
category: in fact, a strict, freely generated one. There exists an identity on objects functor, Mon(V)→
Eff(V ,G), that strictly preserves the premonoidal structure and centrality (Lemma 2.12).

Let us now show that it is the free one over the polygraph couple (V ,G). Let V→ C be an effectful
category, with an polygraph couple map F : (V ,G)→ U (V,C). We can construct a unique effectful
functor from (Mon(V)→ Eff(V ,G)) to (V→ C) giving its universal property (Lemma 2.13).

Corollary 2.15 (String diagrams for effectful categories). We can use string diagrams for effectful cate-
gories, quotiented under the same isotopy as for monoidal categories, provided that we do represent the
runtime as an extra wire that needs to be the input and output of every effectful morphism.

350 Promonads and String Diagrams for Effectful Categories

3 Profunctors and Promonads

We have elaborated on string diagrams for effectful categories. Let us now show that effectful categories
are fundamental objects. The profunctorial counterpart of a monad is a promonad. Promonads have
been widely used for functional programming semantics, although usually with an extra assumption of
strength and under the name of “arrows” [17, 19, 20]. Promonads over a category endow it with some
new, “effectful”, morphisms; while the base morphisms of the category are called the “pure” morphisms.
This terminology will coincide when regarding effectful categories as promonads.

In this section, we introduce profunctors and promonads. In the following sections, we show that
effectful categories are to promonads what monoidal categories are to categories: they are the pseu-
domonoids of a suitably constructed monoidal bicategory of promonads. In order to obtain this result,
we introduce the pure tensor of promonads in Section 4. The pure tensor of promonads combines the
effects of two promonads over different categories into a single one. In some sense, it does so in the
universal way that turns “purity” into “centrality” (Theorem 4.2).

3.1 Profunctors: an algebra of processes

Profunctors P : Aop×B→ Set [3, 7, 4] can be thought as indexing families of processes P(A,B) by the
types of an input channel A and an output channel B [10].

The category A has as morphisms the pure transformations f : A′→ A that we can apply to the input
of a process p ∈ P(A,B) to obtain a new process, which we call (f > p) ∈ P(A′,B). Analogously, the
category B has as morphisms the pure transformations g : B→ B′ that we can apply to the output of a
process p ∈ P(A,B) to obtain a new process, which we call (p < g) ∈ P(A,B′). The profunctor axioms
encode the compositionality of these transformations.

Definition 3.1. A profunctor (P,>,<) between two categories A and B is a family of sets P(A,B) indexed
by objects of A and B, and endowed with jointly functorial left and right actions of the morphisms of
A and B, respectively. Explicitly, types of these actions are (>) : hom(A′,A)×P(A′,B)→ P(A,B), and
(<) : hom(B,B′)×P(A,B)→ P(A,B′). They must satisfy

• compatibility, (f > p)<g = f > (p<g),

• preserve identities, id> p = p, and p< id = p,

• and composition, (p< f)<g = p< (f #g) and f > (g> p) = (f #g)> p.

More succintly, a profunctor P : A ↛ B is a functor P : Aop×B→ Set. When presented as a family of
sets with a pair of actions, profunctors are sometimes called bimodules.

A profunctor homomorphism α : P→ Q transforms processes of type P(A,B) into processes of type
Q(A,B). The homomorphism affects only the effectful processes, and not the pure transformations we
could apply in A and B. This means that α(f > p) = f >α(p) and that α(p<g) = α(p)<g.

Definition 3.2 (Profunctor homomorphism). A profunctor homomorphism from the profunctor P : A↛B
to the profunctor Q : A↛B is a family of functions αA,B : P(A,B)→Q(A,B) preserving the left and right
actions, α(f > p<g) = f >α(p)<g. Equivalently, it is a natural transformation α : P→Q between the
two functors Aop×B→ Set.

How to compose two families of processes? Assume we have a process p ∈ P(A,B1) and a process
q ∈ Q(B2,C). Moreover, assume we have a transformation f : B1 → B2 translating from the output of
the second to the input of the first. In this situation, we can plug together the processes: p ∈ P(A,B1)
writes to an output of type B1, which is translated by f to an input of type B2, then used by q ∈Q(B2,C).

Mario Román 351

There are two slightly different ways of describing this process, depending on whether we consider the
translation to be part of the first or the second process. We could translate just after finishing the first
process, (p< f ,q); or translate just before starting the second process, (p, f >q).

These are two different pairs of processes, with different types. However, if we take the process
interpretation seriously, it does not really matter when to apply the translation. These two descriptions
represent the same process. They are dinaturally equivalent [10, 25].

Definition 3.3 (Dinatural equivalence). Let P : A ↛ B and Q : B ↛ C be two profunctors. Consider the
set of matching pairs of processes, with a given input A and output C,

RP,Q(A,C) = ∑
B∈B

P(A,B)×Q(B,C).

Dinatural equivalence (∼), on the set RP,Q(A,C) is the smallest equivalence relation satisfying (p<
g,q)∼ (p,g>q). The set of matching processes RP,Q(A,C) quotiented by dinaturality (∼) is written as
(P ⋄Q)(A,C). It is a particular form of colimit over the category B, called a coend, usually denoted by
an integral sign.

(P⋄Q)(A,C) = RP,Q(A,C)/(∼) =
∫ B∈B

P(A,B)×Q(B,C).

Definition 3.4 (Profunctor composition). The composition of two profunctors P : A ↛ B and Q : B ↛ C
is the profunctor (P⋄Q) : A ↛ C has as processes the matching pairs of processes in P and Q quotiented
by dinaturality on B,

(p,g<q)∼ (p>g,q).

Its actions are the left and right actions of p and q, respectively, f > (p,q)<g = (f > p,q<g).
The identity profunctor A : A ↛ A has as processes the morphisms of the category A, it is given by

the hom-sets. Its actions are pre and post-composition, f >h<g = f #h #g.

Profunctors are better understood as providing a double categorical structure to the category of cate-
gories. A double category D contains 0-cells (or “objects”), two different types of 1-cells (the “arrows”
and the “proarrows”), and cells [37]. Arrows compose in an strictly associative and unital way, while
proarrows come equipped with natural isomorphisms representing associativity and unitality. We employ
the graphical calculus of double categories [29], with arrows going left to right and proarrows going top
to bottom.

Definition 3.5. The double category of categories, CAT, has as objects the small categories A,B, . . . , as
arrows the functors between them, F : A→ A′, as proarrows the profunctors between them, P : A ↛ B,
and as cells, the natural transformations, αA,B : P(A,B)→ Q(FA,GB).

Figure 7: Cell in the double category of categories.

Every functor has a companion and a conjoint profunctors: their representable and corepresentable
profunctors [14]. This structure makes CAT into the paradigmatic example of a proarrow equipment (or
framed bicategory [37]).

352 Promonads and String Diagrams for Effectful Categories

3.2 Promonads: new morphisms for an old category

Promonads are to profunctors what monads are to functors.2 It may be then surprising to see that so little
attention has been devoted to them, relative to their functorial counterparts. The main source of examples
and focus of attention has been the semantics of programming languages [19, 30, 20]. Strong monads
are commonly used to give categorical semantics of effectful programs [28], and the so-called arrows (or
strong promonads) strictly generalize them.

Part of the reason behind the relative unimportance given to promonads elsewhere may stem from the
fact that promonads over a category can be shown in an elementary way to be equivalent to identity-on-
objects functors from that category [25]. The explicit proof is, however, difficult to find in the literature,
and so we include it here (Theorem 3.9).

Under this interpretation, promonads are new morphisms for an old category. We can reinterpret the
old morphisms into the new ones in a functorial way. The paradigmatic example is again that of Kleisli
or cokleisli categories of strong monads and comonads. This structure is richer than it may sound, and
we will explore it further during the rest of this text.
Definition 3.6 (Monoids and promonoids). A monoid in a double category is an arrow T : A→A together
with cells m ∈ hom(M⊗M;1,1;M) and e ∈ cell(1;1,1;M), called multiplication and unit, satisfying
unitality and associativity. A promonoid in a double category is a proarrow M : A ↛ A together with
cells m ∈ cell(1;M⊗M,M,1) and e ∈ cell(1;1,M;1), called promultiplication and prounit, satisfying
unitality and associativity.

Figure 8: Data and axioms of a promonoid in a double category.

Dually, we can define comonoids and procomonoids.
A monad is a monoid in the category of categories, functors and profunctors Cat. In the same way,

a promonad is a promonoid in Cat.
Definition 3.7. A promonad (P,⋆, ◦) over a category C is a profunctor P : C ↛ C together with natural
transformations representing inclusion (◦)X ,Y : C(X ,Y)→ P(X ,Y) and multiplication (⋆)X ,Y : P(X ,Y)×
P(Y,Z)→ P(X ,Z), and such that

i. the right action is premultiplication, f ◦ ⋆ p = f > p;

ii. the left action is posmultiplication, p⋆ f ◦ = p< f ;

iii. multiplication is dinatural, p⋆ (f >q) = (p< f)⋆q;

iv. and multiplication is associative, (p1 ⋆ p2)⋆ p3 = p1 ⋆ (p2 ⋆ p3).
Equivalently, promonads are promonoids in the double category of categories, where the dinatural mul-
tiplication represents a transformation from the composition of the profunctor P with itself.
Lemma 3.8 (Kleisli category of a promonad). Every promonad (P,⋆, ◦) induces a category with the same
objects as its base category, but with hom-sets given by P(•,•), composition given by (⋆) and identities
given by (id◦). This is called its Kleisli category, kleisli(P). Moreover, there exists an identity-on-objects
functor C→ kleisli(P), defined on morphisms by the unit of the promonad. See Appendix.

2To quip, a promonad is just a monoid on the category of endoprofunctors.

Mario Román 353

The converse is also true: every category C with an identity-on-objects functor from some base
category V arises as the Kleisli category of a promonad.

Theorem 3.9. Promonads over a category C correspond to identity-on-objects functors from the category
C. Given any identity-on-objects functor i : C→ D there exists a unique promonad over C having D as
its Kleisli category: the promonad given by the profunctor homD(i(•), i(•)). See Appendix.

3.3 Homomorphisms and transformations of promonads

We have characterized promonads as identity-on-objects functors. We now characterize the homomor-
phisms and transformations of promonads as suitable pairs of functors and natural transformations.

Definition 3.10 (Promonoid homomorphism). Let (A,M,m,e) and (B,N,n,u) be promonoids in a double
category. A promonoid homomorphism is an arrow T : A→ B together with a cell t ∈ cell(F ;M,N;F)
that preserves the promonoid promultiplication and prounit.

Figure 9: Axioms for a promonoid homomorphism.

Definition 3.11 (Promonad homomorphism). Let (A,P,⋆, ◦) and (B,Q,⋆, ◦) be two promonads, possibly
over two different categories. A promonad homomorphism (F0,F) is a functor between the underlying
categories F0 : A→ B and a natural transformation FX ,Y : P(X ,Y)→Q(FX ,FY) preserving composition
and inclusions. That is, F(p1 ⋆ p2) = F(p1)⋆F(p2), and F(f ◦) = F0(f)◦.

Proposition 3.12. A promonad homomorphism between two promonads understood as identity-on-objects
functors, V→ C and W→ D, is equivalently a pair of functors (F0,F) that commute strictly with the two
identity-on-objects functors on objects F0(X) = F(X) and morphisms F0(f)◦ = F(f ◦). See Appendix.

Definition 3.13 (Promonoid modification). Let (A,M,m,e) and (B,N,n,u) be promonoids in a dou-
ble category, and let t ∈ cell(F ;M,N;F) and r ∈ cell(G;M,N;G) be promonoid homomorphisms. A
promonoid modification is a cell α ∈ cell(F ;1,1;G) such that its precomposition with t is its postcom-
position with r.

Figure 10: Axiom for a promonoid transformation.

Definition 3.14. A promonad modification between two promonad homomorphisms (F0,F) and (G0,G)
between the same promonads (A,P,⋆, ◦) and (B,Q,⋆, ◦) is a natural transformation αX : F0(X)→ G0(X)
such that αX >G(p) = F(p)<αY for each p ∈ P(X ,Y).

Proposition 3.15. A promonad modification between two promonad homomorphisms understood as
commutative squares of identity-on-objects functors F0(f)◦ = F(f ◦) and G0(f)◦ = G(f ◦) is a natural
transformation α : F0 ⇒ G0 that can be lifted via the identity-on-objects functor to a natural transfor-
mation α◦ : F ⇒ G. In other words, a pure natural transformation.

354 Promonads and String Diagrams for Effectful Categories

Figure 11: Promonad modifications are cylinder transformations.

Summarizing this section, we have shown a correspondence between promonads, their homomor-
phisms and modifications, and identity-on-objects functors, squares and cylinder transformations of
squares. The double category structure allows us to talk about homomorphisms and modifications, which
would be more difficult to address in a bicategory structure.

Promonad Identity-on-objects functor Theorem 3.9
Promonad homomorphism Commuting square Proposition 3.12

Promonad modification Cylinder transformation Proposition 3.15

4 Pure Tensor of Promonads

This section introduces the pure tensor of promonads. The pure tensor of promonads combines the effects
of two promonads, possibly over different categories, into the effects of a single promonad over the
product category. Effects do not generally interchange. However, this does not mean that no morphisms
should interchange in the pure tensor of promonads: in our interpretation of a promonad V→ C, the
morphisms coming from the inclusion are pure, they produce no effects; pure morphisms with no effects
should always interchange with effectful morphisms, even if effectful morphisms do not interchange
among themselves.

A practical way to encode and to remember all of the these restrictions is to use monoidal string
diagrams. This is another application of the idea of runtime: we introduce an extra wire so that all
the rules of interchange become ordinary interchange laws in a monoidal category. That is, we insist
again that effectful morphisms are just pure morphisms using a shared resource – the runtime. When
we compute the pure tensor of two promonads, the runtime needs to be shared between the impure
morphisms of both promonads.

4.1 Pure tensor, via runtime

Definition 4.1 (Pure tensor). Let C : V ↛ V and D : W ↛ W be two promonads. Their pure tensor,
C∗D : V×W→ V×W, is a promonad over V×W where elements of C∗D(X ,Y ;X ′,Y ′), the morphisms
X⊗R⊗Y→X ′⊗R⊗Y ′ in the freely presented monoidal category generated by the elements of Figure 12
and quotiented by the axioms of Figure 13.

Figure 12: Generators for the elements of the pure tensor of promonads.

Multiplication is defined by composition in the monoidal category, and the unit is defined by the
inclusion of pairs, as depicted in Figure 14.

Mario Román 355

Figure 13: Axioms for the elements of the pure tensor of promonads.

Figure 14: The pure tensor promonad.

In other words, the elements of the pure tensor are the morphisms the category presented by the graph
that has as objects the pairs of objects (X ,Y) with X ∈ Vobj and Y ∈Wobj, formally written as X⊗R⊗Y ;
and the morphisms generated by

• an edge fC : X⊗R⊗Y → X ′⊗R⊗Y for each arrow f ∈ C(X ,X ′) and each object Y ∈W;

• an edge gD : X⊗R⊗Y → X⊗R⊗Y ′ for each arrow g ∈ D(Y,Y ′) and each object X ∈ V;

• an edge vV : X⊗R⊗Y → X ′⊗R⊗Y for each arrow v ∈ V(X ,X ′) and each object Y ∈W;

• and an edge wW : X⊗R⊗Y → X⊗R⊗Y ′ for each arrow w ∈W(Y,Y ′) and each object X ∈ V;

quotiented by centrality of pure morphisms: fC # wW = wW # fC and gD # vV = vV # gD; by compositions
and identities of one promonad: fC # f ′C = (f ⋆ f ′)C and idC = id; by compositions and identities of the
other promonad: gD # g′D = (g ⋆ g′)D and idD = id; and by the coincidence of pure morphisms and their
effectful representatives: vV = v◦C and wW = w◦D.

Crucially in this definition, fC and gD do not interchange: they are sharing the runtime, and that
prevents the application of the interchange law. The pure tensor of promonads, C ∗D, takes its name
from the fact that, if we interpret the promonads V→ C and W→D as declaring the morphisms in V and
W as pure, then the pure morphisms of the composition interchange with all effectful morphisms. The
spirit is similar to the free product of groups with commuting subgroups [26].

4.2 Universal property of the pure tensor

There are multiple canonical ways in which one could combine the effects of two promonads, C : V ↛ V
and D : W ↛ W, into a single promonad, such as taking the product of both, C×D : V×W ↛ V×W.
Let us show that the pure tensor has a universal property: it is the universal one in which we can include
impure morphisms from each promonads, interchanging with pure morphisms from the other promonad,
so that purity is preserved.

356 Promonads and String Diagrams for Effectful Categories

Theorem 4.2. Let C : V ↛ V and D : W ↛ W be two promonads and let C∗D : V×W→ V×W be their
pure tensor. There exist a pair of promonad homomorphisms L : C×W→ C∗D and R : V×D→ C∗D.
These are universal in the sense that, for every pair of promonad homomorphisms, A : C×W→ E and
B : V×D→E, there exists a unique promonad homomorphism (A∨B) : C∗D→E that commutes strictly
with them, (A∨B) #L = A and (A∨B) #R = B. See Appendix.

5 Effectful Categories are Pseudomonoids

We will now use the pure tensor of promonads to justify effectful categories as the promonadic coun-
terpart of monoidal categories: effectful categories are pseudomonoids in the monoidal bicategory of
promonads with the pure tensor. Pseudomonoids [9, 43] are the categorification of monoids. They are
still formed by a 0-cell representing the carrier of the monoid and a pair of 1-cells representing multipli-
cation and units. However, we weaken the requirement for associativity and unitality to the existence of
invertible 2-cells, called the associator and unitor.

In the same way that monoids live in monoidal categories, pseudomonoids live in monoidal bicat-
egories. A monoidal bicategory A is a bicategory in which we can tensor objects with a pseudofunctor
(⊠) : A×A→ A and we have a tensor unit I : 1→ A, these are associative and unital up to equivalence,
and satisfy certain coherence equations up to invertible modification [36].

5.1 Pseudomonoids

Definition 5.1. In a monoidal bicategory, a pseudomonoid over a 0-cell M is a pair of 1-cells, M⊠M→M
and I→M, together with the following triple of invertible 2-cells representing associativity and unitality
(Figure 15), and satisfying the pentagon and triangle equations (see Appendix).A homomorphism of
pseudomonoids is given by a 1-cell between their underlying 0-cells and the following invertible 2-cells,
representing preservation of the multiplication and the unit (Figure 15), and satisfying compatibility with
associativity and unitality (see Appendix).

Figure 15: Data for a pseudomonoid and pseudomonoid homomorphism.

A pseudomonoid is strict when the associators and unitors are identity cells. Note that, in strict 2-
categories (sometimes called 2-categories, in contrast to bicategories), this is the same as a monoid in
the monoidal category that we obtain by ignoring the 2-cells.
Remark 5.2. A pseudomonoid in the monoidal bicategory of categories with the cartesian product of
categories, (Cat,×) is a monoidal category. A strict pseudomonoid in the same monoidal bicategory is
a strict monoidal category.

A strict pseudomonoid in the monoidal bicategory of categories with the funny tensor product of
categories (Cat,□) is a strict premonoidal category. However, it is not immediately clear how to re-
cover premonoidal categories as pseudomonoids. A naive attempt will fail: (Cat,□) is usually made
into a monoidal bicategory with non-necessarily-natural transformations, but we do want our coherence
morphisms to be natural, so we must ask at least naturality. This will not be enough: taking natural
transformations as 2-cells will give us premonoidal categories where the associators and unitors do not
need to be central. Centrality is what requires a more careful approach.

Mario Román 357

5.2 Effectful categories are promonad pseudomonoids

Promonads form a monoidal category with the pure tensor product and moreover a strict monoidal bicat-
egory with promonad modifications. Effectful categories are the pseudomonoids in this category.
Theorem 5.3. An effectful category (or monoidal Freyd category) is a pseudomonoid on the monoidal
2-category of promonads with promonad homomorphism, promonad transformations and the pure tensor
of promonads. A pseudomonoid homomorphism between effectful categories is an effectful functor.

As a consequence, preomonoidal categories with their centre are pseudomonoids. See Appendix.

6 Conclusions

Premonoidal categories are monoidal categories with runtime, and we can stil use monoidal string dia-
grams and unrestricted topological deformations to reason about them. Instead of dealing directly with
premonoidal categories, we employ the better behaved notion of non-cartesian Freyd categories, effectful
categories. There exists a more fine-grained notion of “Cartesian effect category” [12], which generalizes
Freyd categories and justifies calling “effectful category” to the general case.

Promonads have been arguably under-appreciated, possibly because of their characterization as “just”
identity-on-objects functors. However, speaking of promonads as the proarrow counterpart of mon-
ads makes many aspects of the theory of monads clearer: every monad and every comonad induce
a promonad (their Kleisli category) via the proarrow equipment, monad morphisms lift to promonad
morphisms, distributive laws of monads induce a way of composing morphisms from different kleisli
categories [8]. Justifying effectful categories in terms of promonads highlights their importance as the
monadic counterpart of monoidal categories.

Ultimately, this is a first step towards our more ambitious project of presenting the categorical struc-
ture of programming languages in a purely diagrammatic way, revisiting Alan Jeffrey’s work [22, 21, 35].
The internal language of premonoidal categories and effectful categories is given by the arrow do-
notation [30]; at the same time, we have shown that it is given by suitable string diagrams. This corre-
spondence allows us to translate between programs and string diagrams (Figure 16).

Figure 16: Premonoidal program in arrow do-notation and string diagrams.

Related work. Staton and Møgelberg [27] propose a formalization of Jeffrey’s graphical calculus for
effectful categories that arise as the Kleisli category of a strong monad. They prove that ’every strong
monad is a linear-use state monad’, that is, a state monad of the form R ⊸!(•)⊗R, where the state R, is
an object that cannot be copied nor discarded.

358 Promonads and String Diagrams for Effectful Categories

7 Acknowledgements

The author wants to thank Tarmo Uustalu, Sam Staton, Niels Voorneveld and Paweł Sobociński for many
helpful comments and discussion. The author gratefully thanks the anonymous reviewers at ACT’22
for many constructive suggestions that improved this manuscript. Mario Román was supported by the
European Union through the ESF funded Estonian IT Academy research measure (2014-2020.4.05.19-
0001); this work was also supported by the Estonian Research Council grant PRG1210.

Mario Román 359

References

[1] Samson Abramsky & Bob Coecke (2009): Categorical Quantum Mechanics. In Kurt Engesser, Dov M.
Gabbay & Daniel Lehmann, editors: Handbook of Quantum Logic and Quantum Structures, Elsevier, Ams-
terdam, pp. 261–323, doi:10.1016/B978-0-444-52869-8.50010-4.

[2] Samson Abramsky, Esfandiar Haghverdi & Philip J. Scott (2002): Geometry of Interaction and Linear Com-
binatory Algebras. Math. Struct. Comput. Sci. 12(5), pp. 625–665, doi:10.1017/S0960129502003730.

[3] Jean Bénabou (1967): Introduction to bicategories. In: Reports of the Midwest Category Seminar, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 1–77, doi:10.1007/BFb0074299.

[4] Jean Bénabou (2000): Distributors at work. Lecture notes written by Thomas Streicher 11.

[5] R.F. Blute, J.R.B. Cockett, R.A.G. Seely & T.H. Trimble (1996): Natural deduction and coherence for
weakly distributive categories. Journal of Pure and Applied Algebra 113(3), pp. 229–296, doi:10.1016/0022-
4049(95)00159-X.

[6] Filippo Bonchi, Jens Seeber & Pawel Sobocinski (2018): Graphical Conjunctive Queries. In Dan R. Ghica &
Achim Jung, editors: 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4-
7, 2018, Birmingham, UK, LIPIcs 119, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 13:1–13:23,
doi:10.4230/LIPIcs.CSL.2018.13.

[7] Francis Borceux (1994): Handbook of Categorical Algebra. Encyclopedia of Mathematics and its Applica-
tions 1, Cambridge University Press, doi:10.1017/CBO9780511525858.

[8] Eugenia Cheng (2021): Distributive Laws for Lawvere Theories (Invited Talk). In Fabio Gadducci & Alexan-
dra Silva, editors: 9th Conference on Algebra and Coalgebra in Computer Science, CALCO 2021, August
31 to September 3, 2021, Salzburg, Austria, LIPIcs 211, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
pp. 1:1–1:1, doi:10.4230/LIPIcs.CALCO.2021.1.

[9] Brian Day & Ross Street (1997): Monoidal Bicategories and Hopf Algebroids. Advances in Mathematics
129(1), pp. 99–157, doi:10.1006/aima.1997.1649.

[10] Elena Di Lavore, Giovanni de Felice & Mario Román (2022): Monoidal Streams for Dataflow Programming.
In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22,
Association for Computing Machinery, New York, NY, USA, doi:10.1145/3531130.3533365.

[11] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych & Victor Ostrik (2010): On braided fusion categories I.
Selecta Mathematica 16(1), pp. 1–119, doi:10.1007/s00029-010-0017-z.

[12] Jean-Guillaume Dumas, Dominique Duval & Jean-Claude Reynaud (2011): Cartesian effect categories are
Freyd-categories. Journal of Symbolic Computation 46(3), pp. 272–293, doi:10.1016/j.jsc.2010.09.008.

[13] Jean-Yves Girard (1989): Geometry of Interaction 1: Interpretation of System F. In R. Ferro, C. Bonotto,
S. Valentini & A. Zanardo, editors: Logic Colloquium ’88, Studies in Logic and the Foundations of Mathe-
matics 127, Elsevier, pp. 221–260, doi:10.1016/S0049-237X(08)70271-4.

[14] Marco Grandis & Robert Paré (1999): Limits in double categories. Cahiers de topologie et géométrie
différentielle catégoriques 40(3), pp. 162–220. Available at http://www.numdam.org/item/CTGDC_

1999__40_3_162_0/.

[15] René Guitart (1980): Tenseurs et machines. Cahiers de topologie et géométrie différentielle catégoriques
21(1), pp. 5–62. Available at http://www.numdam.org/item/CTGDC_1980__21_1_5_0/.

[16] Jules Hedges (2019): Folklore: Monoidal kleisli categories. Available at https://julesh.com/2019/04/
18/folklore-monoidal-kleisli-categories/.

[17] Chris Heunen & Bart Jacobs (2006): Arrows, like Monads, are Monoids. In Stephen D. Brookes &
Michael W. Mislove, editors: Proceedings of the 22nd Annual Conference on Mathematical Foundations
of Programming Semantics, MFPS 2006, Genova, Italy, May 23-27, 2006, Electronic Notes in Theoretical
Computer Science 158, Elsevier, pp. 219–236, doi:10.1016/j.entcs.2006.04.012.

360 Promonads and String Diagrams for Effectful Categories

[18] Naohiko Hoshino, Koko Muroya & Ichiro Hasuo (2014): Memoryful geometry of interaction: from coalge-
braic components to algebraic effects. In Thomas A. Henzinger & Dale Miller, editors: Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 -
18, 2014, ACM, pp. 52:1–52:10, doi:10.1145/2603088.2603124.

[19] John Hughes (2000): Generalising monads to arrows. Science of Computer Programming 37(1-3), pp. 67–
111, doi:10.1016/S0167-6423(99)00023-4.

[20] Bart Jacobs, Chris Heunen & Ichiro Hasuo (2009): Categorical semantics for arrows. J. Funct. Program.
19(3-4), pp. 403–438, doi:10.1017/S0956796809007308.

[21] Alan Jeffrey (1997): Premonoidal categories and a graphical view of programs. Preprint at Research-
Gate. Available at https://www.researchgate.net/profile/Alan-Jeffrey/publication/

228639836_Premonoidal_categories_and_a_graphical_view_of_programs/links/

00b495182cd648a874000000/Premonoidal-categories-and-a-graphical-view-of-programs.

pdf.

[22] Alan Jeffrey (1997): Premonoidal categories and flow graphs. Electron. Notes Theor. Comput. Sci. 10, p. 51,
doi:10.1016/S1571-0661(05)80688-7.

[23] André Joyal & Ross Street (1991): The geometry of tensor calculus, I. Advances in Mathematics 88(1), pp.
55–112, doi:10.1016/0001-8708(91)90003-P.

[24] Paul Blain Levy (2022): Call-by-Push-Value. ACM SIGLOG News 9(2), p. 7–29,
doi:10.1145/3537668.3537670.

[25] Fosco Loregian (2021): (Co)end Calculus. London Mathematical Society Lecture Note Series, Cambridge
University Press, doi:10.1017/9781108778657.

[26] Wilhelm Magnus, Abraham Karrass & Donald Solitar (2004): Combinatorial group theory: Presentations of
groups in terms of generators and relations. Courier Corporation.

[27] Rasmus Ejlers Møgelberg & Sam Staton (2014): Linear usage of state. Log. Methods Comput. Sci. 10(1),
doi:10.2168/LMCS-10(1:17)2014.

[28] Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55–92,
doi:10.1016/0890-5401(91)90052-4.

[29] David Jaz Myers (2016): String Diagrams For Double Categories and Equipments,
doi:10.48550/ARXIV.1612.02762.

[30] Ross Paterson (2001): A New Notation for Arrows. In Benjamin C. Pierce, editor: Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’01), Firenze (Florence), Italy,
September 3-5, 2001, ACM, pp. 229–240, doi:10.1145/507635.507664.

[31] Dusko Pavlovic (2013): Monoidal computer I: Basic computability by string diagrams. Inf. Comput. 226,
pp. 94–116, doi:10.1016/j.ic.2013.03.007.

[32] John Power (2002): Premonoidal categories as categories with algebraic structure. Theor. Comput. Sci.
278(1-2), pp. 303–321, doi:10.1016/S0304-3975(00)00340-6.

[33] John Power & Edmund Robinson (1997): Premonoidal Categories and Notions of Computation. Math.
Struct. Comput. Sci. 7(5), pp. 453–468, doi:10.1017/S0960129597002375.

[34] John Power & Hayo Thielecke (1999): Closed Freyd- and kappa-categories. In Jirı́ Wiedermann, Peter
van Emde Boas & Mogens Nielsen, editors: Automata, Languages and Programming, 26th International
Colloquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, Lecture Notes in Computer
Science 1644, Springer, pp. 625–634, doi:10.1007/3-540-48523-6 59.

[35] Mario Román (2022): Notes on Jeffrey’s A Graphical View of Programs. Available at https://www.ioc.
ee/~mroman/data/talks/premonoidalgraphicalview.pdf.

[36] Christopher J. Schommer-Pries (2011): The Classification of Two-Dimensional Extended Topological Field
Theories. arXiv:1112.1000.

Mario Román 361

[37] Michael Shulman (2008): Framed Bicategories and Monoidal Fibrations. Theory and Applications of Cate-
gories 20(18), pp. 650–738, doi:10.48550/arxiv.0706.1286.

[38] Michael Shulman (2016): Categorical logic from a categorical point of view. Personal webpage. Available
at https://mikeshulman.github.io/catlog/catlog.pdf.

[39] Michael Shulman (2018): The 2-Chu-Dialectica construction and the polycategory of multivariable adjunc-
tions. arXiv preprint arXiv:1806.06082, doi:10.48550/arxiv.1806.06082.

[40] Sam Staton & Paul Blain Levy (2013): Universal properties of impure programming languages. In Roberto
Giacobazzi & Radhia Cousot, editors: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, ACM, pp. 179–192,
doi:10.1145/2429069.2429091.

[41] Todd Trimble (2010): Coherence Theorem for Monoidal Categories (nLab entry), Section 3. Discussion.
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories, Last accessed
on 2022-05-10.

[42] Tarmo Uustalu & Varmo Vene (2008): Comonadic Notions of Computation. In Jiřı́ Adámek & Clemens
Kupke, editors: Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science, CMCS
2008, Budapest, Hungary, April 4-6, 2008, Electronic Notes in Theoretical Computer Science 203, Elsevier,
pp. 263–284, doi:10.1016/j.entcs.2008.05.029.

[43] Dominic Verdon (2017): Coherence for braided and symmetric pseudomonoids. CoRR abs/1705.09354,
doi:10.48550/arxiv.1705.09354. arXiv:1705.09354.

4. The Produoidal Algebra of Process Decomposition

Matt Earnshaw, James Hefford, Mario Román
Computer Science Logic (CSL, 2023)

Abstract: We introduce the normal produoidal category of monoidal contexts
over an arbitrary monoidal category. In the same sense that a monoidal mor-
phism represents a process, a monoidal context represents an incomplete process:
a piece of a decomposition, possibly containing missing parts. We character-
ize monoidal contexts in terms of universal properties. In particular, symmetric
monoidal contexts coincide with monoidal lenses, endowing them with a novel
universal property. We apply this algebraic structure to the analysis of multi-
party interaction protocols in arbitrary theories of processes.

Declaration: Hereby I declare that my contribution to this manuscript was to:
provide the main idea and theorem, and write most of the main text, with help
and revisions from Matt Earnshaw and feedback from James Hefford. The work
started from discussions with James Hefford and Matt Earnshaw.

The Produoidal Algebra of Process Decomposition
Matt Earnshaw, James Hefford and Mario Román

Abstract—We introduce the normal produoidal category of
monoidal contexts over an arbitrary monoidal category. In the
same sense that a monoidal morphism represents a process, a
monoidal context represents an incomplete process: a piece of
a decomposition, possibly containing missing parts. We char-
acterize monoidal contexts in terms of universal properties. In
particular, symmetric monoidal contexts coincide with monoidal
lenses, endowing them with a novel universal property. We apply
this algebraic structure to the analysis of multi-party interaction
protocols in arbitrary theories of processes.

1 Introduction
Theories of processes, such as stochastic, partial or linear

functions, are a foundational tool in computer science. They
help us model how systems interact in terms of a solid
mathematical foundation. Any theory of processes involving
operations for sequential composition and parallel composi-
tion, satisfying reasonable axioms, forms a monoidal category.

Monoidal categories are versatile: they can be used in
the description of quantum circuits [AC09], stochastic pro-
cesses [CJ19], [Fri20], relational queries [BSS18] and non-
terminating processes [CL02], among many other applications
[CFS16].

At the same time, monoidal categories have two intuitive,
sound and complete calculi: the first in terms of string
diagrams [JS91], and the second in terms of their linear
type theory [Shu16]. String diagrams are a 2-dimensional
syntax in which processes are represented by boxes, and their
inputs and outputs are connected by wires. The type theory
of symmetric monoidal categories is the basis of the more
specialized arrow do-notation used in functional programming
languages [Hug00], [Pat01], which becomes do-notation for
Kleisli categories of commutative monads [Mog91], [Gui80].
Let us showcase monoidal categories, their string diagrams
and the use of do-notation in the description of a protocol.

1.1 Protocol Description
The Transmission Control Protocol (TCP) is a connection-

based communication protocol. Every connection begins with
a three-way handshake: an exchange of messages that synchro-
nizes the state of both parties. This handshake is defined in
RFC793 to have three steps: SYN, SYN-ACK and ACK [Pos81].

The client initiates the communication by sending a syn-
chronization packet (SYN) to the server. The synchronization
packet contains a pseudorandom number associated to the
session, the Initial Sequence Number of the client (CLI).

The server acknowledges this packet and sends a message
(ACK) containing its own sequence number (SRV) together with
the client’s sequence number plus one (CLI+1). These two
form the SYN-ACK message. Finally, the client sends a final ACK
message with the server’s sequence number plus one, SRV+ 1.

When the protocol works correctly, both client and server end
up with the pair (CLI + 1, SRV + 1).

Client Server

SYN

NOISE

SYN:10

ACK:00

SYN:11

ACK:20

SYN:11

ACK:21

SYN-ACK

CLI:11

SRV:21

CLI:11

SRV:21

CLI:11

SRV:20

CLI:10

SRV:00

NOISE

NOISE

ACK

RCV

Fig. 1: TCP Three way handshake.

This protocol is traditionally described in terms of a com-
munication diagram (Figure 1). This diagram can be taken
seriously as a formal mathematical object: it is a string diagram
describing a morphism in a monoidal category.

syn :: Client ~> (Client, Syn, Ack)
syn(client) = do
client <- random
return (client, client, 0)

Fig. 2: Implementation of the SYN component.

The implementation of each component of the protocol is
traditionally written as pseudocode. This pseudocode can also
be taken seriously as the expression of a morphism in the
same monoidal category, possibly with extra structure: in this
case, a commutative Freyd category (Figure 2, see Appendix
Section A.1 [Mog91]). That is, symmetric monoidal categories
admit two different internal languages, and we can use both
to interpret formally the traditional description of a protocol
in terms of string diagrams and pseudocode.

ar
X

iv
:2

30
1.

11
86

7v
1

 [
cs

.L
O

]
 2

7
Ja

n
20

23

1.2 Types for Message Passing

The last part in formalizing a multi-party protocol in terms
of monoidal categories is to actually separate its component
parties. For instance, the three-way handshake can be split into
the client, the server and a channel. Here is where the existing
literature in monoidal categories seems to fall short: the parts
resulting from the decomposition of a monoidal morphism are
not necessarily monoidal morphisms themselves (see Figure 3
for the diagrammatic representation). We say that these are
only monoidal contexts.

Client Server

SYN

NOISE

SYN-ACK

NOISE

NOISE

ACK

RCV

Channel

Fig. 3: Parties in the TCP Three-way handshake.

Contrary to monoidal morphisms, which only need to
declare their input and output types, monoidal contexts need
behavioural types [PS93], [HLV+16] that specify the order and
type of the exchange of information along their boundary.

A monoidal context may declare intermediate send (!𝐴)
and receive (?𝐴) types, separated by a sequencing operator
(C). For instance, the channel is a monoidal morphism just
declaring that it takes an input message (Msg) and produces
another output message; but the client is a monoidal context
that transforms its memory type Client→ Client at the same
time it sends, receives and then sends a message; and the
server transforms its type Server → Server while, dually to
the client, it receives, sends and then receives a message.

∈ LC (Client
Client ; !Msg ⊳ ?Msg ⊳ !Msg

)
;

∈ LC (Server
Server ; ?Msg ⊳ !Msg ⊳ ?Msg

)
;

NOISE ∈ C (Msg; Msg) ;

Session types [HYC08], including the send (!𝐴) and receive
(?𝐴) polarized types, have been commonplace in logics of
message passing. Cockett and Pastro [CP09] already proposed
a categorical semantics for message-passing which, however,
needs to go beyond monoidal categories, into linear actegories
and polyactegories.

Our claim is that, perhaps surprisingly, monoidal categories
already have the necessary algebraic structure to define mo-
noidal contexts and their send-receive polarized types. Latent
to any monoidal category, there exists a universal category
of contexts with polarized types (!/?) and parallel/sequence
operators (⊗/C).

1.3 Reasoning with Contexts

This manuscript introduces the notion of monoidal context
and symmetric monoidal context; and it explains how dinatu-
rality allows us to reason with them. In the same way that we
reason with monoidal morphisms using string diagrams, we
can reason about monoidal contexts using incomplete string
diagrams [BDSPV15], [Rom21].

For instance, consider the following fact about the TCP
three-way handshake: the client does not need to store a
starting SRV number for the server, as it will be overwritten
as soon as the real one arrives. This fact only concerns the
actions of the client, and it is independent of the server and
the channel. We would like to reason about it preserving
this modularity, and this is what the incomplete diagrams in
Figure 4 achieve.

Client

SYN∗

ACK∗

Client

SYN

ACK∗

PRJ

=

Client

SYN

ACK∗

Client

SYN

ACK

=
PRJ

=

Fig. 4: Reasoning only with the Client.

Here, we define SYN∗ = SYN #PRJ to be the same as the SYN
process but projecting out only the client CLI number. We also
define a new ACK∗ that ignores the server SRV number, so that
ACK = PRJ#ACK∗. These two equations are enough to complete
our reasoning.

Monoidal contexts and their incomplete diagrams are de-
fined to be convenient tuples of morphisms, e.g. (SYN|ACK) in
our example; what makes them interesting is the equivalence
relation we impose on them: this equivalence relation makes
the pair (SYN # PRJ|ACK∗) equal to (SYN|PRJ # ACK∗). Dinat-
urality is the name we give to this relation, and we will see
how it arises canonically from the algebra of profunctors.

1.4 The Produoidal Algebra of Monoidal Context
Despite the relative popularity of string diagrams and

other forms of formal 2-dimensional syntax, the algebra of
incomplete monoidal morphisms has remained obscure. This
manuscript elucidates this algebra: we show that, as monoidal
morphisms together with their string diagrams form monoidal
categories, monoidal contexts together with their incomplete
string diagrams form normal produoidal categories. Normal
produoidal categories were a poorly understood categorical
structure, for which we provide examples. Let us motivate
“normal produoidal categories” by parts.

First, the “duoidal” part. Monoidal contexts can be com-
posed sequentially and in parallel, but also nested together
to fill the missing parts. Nesting is captured by categorical
composition, so we need specific tensors for both sequen-
tial (C) and parallel (⊗) composition. This is what duoidal
categories provide. Duoidal categories are categories with
two monoidal structures, e.g. (C, 𝑁) and (⊗, 𝐼). These two
monoidal structures are in principle independent but, whenever
they share the same unit (𝐼 � 𝑁), they become well-suited to
express process dependence [SS22]: they become “normal”.

Finally, the “pro-” prefix. It is not that we want to impose
this structure on top of the monoidal one, but we want to
capture the structure morphisms already form. The two tensors
(C, ⊗) do not necessarily exist in the original category; in
technical terms, they are not representable or functorial, but
virtual or profunctorial. This makes us turn to the produoidal
categories of Booker and Street [BS13].

Not only is all of this algebra present in monoidal contexts.
Monoidal contexts are the canonical such algebra; in a precise
sense given by universal properties. The slogan for the main
result of this manuscript (Theorem 6.6) is that

Monoidal contexts are the free normalization of the cofree
produoidal category over a monoidal category.

1.5 Related Work
Far from being the proposal of yet another paradigm,

monoidal contexts form a novel algebraic formalization of a
widespread paradigm. We argue that the idea of monoidal
contexts has been recurrent in the literature, just never ap-
pearing explicitly and formally. Our main contribution is to
formalize an algebra of monoidal contexts, in the form of a
normal produoidal category.

In fact, the Symposium on Logic in Computer Science
has recently seen multiple implicit applications of monoidal
contexts. Kissinger and Uĳlen [KU17] describe higher order
quantum processes using contexts with holes in compact
closed monoidal categories. Ghani, Hedges, Winschel and
Zahn [GHWZ18] describe economic game theory in terms
of lenses and incomplete processes in cartesian monoidal
categories. Bonchi, Piedeleu, Sobociński and Zanasi [BPSZ19]
study contextual equivalence in their monoidal category of
affine signal flow graphs. Di Lavore, de Felice and Román
[DLdFR22] define monoidal streams by iterating monoidal
context coalgebraically.

Language theory. Motivated by language theory and the
Chomsky-Schützenberger theorem, Melliès and Zeilberger
[MZ22] were the first to present the multicategorical splice-
contour adjunction. We are indebted to their exposition, which
we extend to the promonoidal and produoidal cases. Earnshaw
and Sobociński [ES22] described a congruence on formal lan-
guages of string diagrams using monoidal contexts. We prove
how monoidal contexts arise from an extended produoidal
splice-contour adjunction; unifying these two threads.

Session types. Session types [Hon93], [HYC08] are the
mainstay type formalism for communication protocols, and
they have been extensively applied to the 𝜋-calculus [SW01].
Our approach is not set up to capture all of the features of
a fully fledged session type theory [KPT96]. Arguably, this
makes it more general in what it does: it always provides a
universal way of implementing send (!𝐴) and receive (?𝐴)
operations in an arbitrary theory of processes represented by
a monoidal category. For instance, recursion and the inter-
nal/external choice duality [GH99], [PS93] are not discussed,
although they could be considered as extensions in the same
way they are to monoidal categories: via trace [Has97] and
linear distributivity [CS97].

Lenses and incomplete diagrams. Lenses are a notion of
bidirectional transformation [FGM+07] that can be cast in
arbitrary monoidal categories. The first mention of monoi-
dal lenses separate from their classical database counterparts
[JRW12] is due to Pastro and Street [PS07], who identify them
as an example of a promonoidal category. However, it was with
a different monoidal structure [Ril18] that they became popular
in recent years, spawning applications not only in bidirectional
transformations [FGM+07] but also in functional programming
[PGW17], [CEG+20], open games [GHWZ18], polynomial
functors [NS22] and quantum combs [HC22]. Relating this
monoidal category of lenses with the previous promonoidal
category of lenses was an open problem; and the promonoidal
structure was mostly ignored in applications.

We solve this problem, proving that lenses are a universal
normal symmetric produoidal category (the symmetric mo-
noidal contexts), which endows them with a novel algebra
and a novel universal property. This also extends work on the
relation between incomplete diagrams, comb-shaped diagrams,
and lenses [Rom20], [Rom21].

Finally, Nester et al. have recently proposed a syntax for
lenses and message-passing [Nes23], [BNR22] and lenses
themselves have been applied to protocol specification [VC22].
Spivak [Spi13] also discusses the multicategory of wiring
diagrams, later used for incomplete diagrams [PSV21] and
related to lenses [SSV20]. The promonoidal categories we
use can be seen as multicategories with an extra coherence
property. In this sense, we contribute the missing algebraic
structure of the universal multicategory of wiring diagrams
relative to a monoidal category.

1.6 Contributions
Our main contribution is the original definition of a pro-

duoidal category of monoidal contexts over a monoidal cat-

egory (Definition 6.1) and its characterization in terms of
universal properties (Theorem 6.6).

Section 2 presents expository material on profunctors, di-
naturality and promonoidal categories; the rest are novel
contributions. Section 3 constructs spliced arrows as the cofree
promonoidal over a category (Theorem 3.7). Section 4, on
top of this, constructs spliced monoidal arrows as the cofree
produoidal over a monoidal category (Theorem 4.9). Section 6
explicitly constructs a produoidal algebra of monoidal contexts
(Proposition 6.5) as a free normalization. Section 7 constructs
a symmetric produoidal algebra of monoidal lenses (Proposi-
tion 7.2), universally characterizing them (Theorem 7.3), and
an interpretation of send/receive types (!/?) (Proposition 7.6).
Section 5 introduces a novel free normalization procedure
(Theorems 5.3 and 5.4) as an idempotent monad on produoidal
categories, employed in Sections 6 and 7.

2 Profunctors and Virtual Structures
Profunctors describe families of processes indexed by the

input and output types of a category. Profunctors provide
canonical notions for composition, dinaturality and virtual
structure. These notions are not only canonical, but also easy
to reason with thanks to coend calculus [Lor21].

Definition 2.1. A profunctor 𝑃 : B0 × ...×B𝑚� A0 × ...×A𝑛
is a functor 𝑃 : A𝑜𝑝0 ...× A𝑜𝑝𝑛 × B0 × ...× B𝑚 → Set.

For our purposes, a profunctor 𝑃(𝐴0, ..., 𝐴𝑛; 𝐵0, ..., 𝐵𝑚) is a
family of processes indexed by contravariant inputs 𝐴0, ..., 𝐴𝑛
and covariant outputs 𝐵0, ..., 𝐵𝑚. The profunctor is endowed
with jointly functorial left (�0, ..., �𝑚) and right (≺0, ..., ≺𝑛)
actions of the morphisms of A0, ...,A𝑛 and B0, ...,B𝑚, respec-
tively [Bén00], [Lor21].1

2.1 Dinaturality
Composing profunctors is subtle: the same processes could

arise as the composite of different pairs of processes and so,
we need to impose a careful equivalence relation. Fortunately,
profunctors come with a canonical notion of dinatural equiv-
alence which achieves precisely this.

Imagine we try to connect two different processes: 𝑝 ∈
𝑃(𝐴0, ..., 𝐴𝑛; 𝐵0, . . . , 𝐵𝑚), and 𝑞 ∈ 𝑄(𝐶0, ..., 𝐶𝑘 ; 𝐷0, . . . , 𝐷ℎ);
and we have some morphism 𝑓 : 𝐵𝑖 → 𝐶 𝑗 that translates the
i-th output port of 𝑝 to the j-th input port of 𝑞. Let us write
(𝑖 | 𝑗) for this connection operation. Note that we could connect
them in two different ways:
• we could use 𝑓 to change the output of the first process
𝑝 ≺𝑖 𝑓 before connecting both, (𝑝 ≺ 𝑖 𝑓) 𝑖 | 𝑗 𝑞;

• and we could use 𝑓 to change the input of the second
process 𝑓 � 𝑗 𝑞 before connecting both, 𝑝 𝑖 | 𝑗 (𝑓 � 𝑗 𝑞).

These are different descriptions, made up of two different com-
ponents. However, they essentially describe the same process:
they are dinaturally equal [DLdFR22]. Indeed, profunctors are
canonically endowed with a notion of dinatural equivalence

1We simply use (≺/�) without any subscript whenever the input/output is
unique. See Appendix, Section B for more details on profunctors.

[Bén00], [Lor21], which precisely equates these two descrip-
tions. Profunctors, and their elements, are thus composed up
to dinatural equivalence.

Definition 2.2 (Dinatural equivalence). Consider two profunc-
tors 𝑃 : B0 × ...×B𝑚� A0 × ...×A𝑛 and 𝑄 : C0 × ...×C𝑘 �
D0 × ...×Dℎ such that B𝑖 = C 𝑗 ; and let S𝑖, 𝑗𝑃,𝑄 (𝐴;𝐶) be the set

∑︁
𝑋 ∈B𝑖

𝑃(𝐴0...𝐴𝑛; 𝐵0...𝑋...𝐵𝑚) ×𝑄(𝐶0...𝑋...𝐶𝑘 ; 𝐷0...𝐷ℎ).

Dinatural equivalence, (∼), on the set S𝑖, 𝑗𝑃,𝑄 (𝐴;𝐶) is the small-
est equivalence relation satisfying (𝑝≺𝑖 𝑓 𝑖 | 𝑗 𝑞) ∼ (𝑝 𝑖 | 𝑗 𝑓 � 𝑗𝑞).
The coend is defined as this coproduct quotiented by dinatu-
rality, S𝑖, 𝑗𝑃,𝑄 (𝐴;𝐶)/(∼), and written as an integral.

∫ 𝑋 ∈C
𝑃(𝐴0...𝐴𝑛; 𝐵0...𝑋...𝐵𝑚) ×𝑄(𝐶0...𝑋...𝐶𝑘 ; 𝐷0...𝐷ℎ).

Definition 2.3 (Profunctor composition). Consider two pro-
functors 𝑃 : B0×...×B𝑚� A0×...×A𝑛 and 𝑄 : C0×...×C𝑘 �
D0 × ...×Dℎ such that B𝑖 = C 𝑗 ; their composition along ports
𝑖 and 𝑗 is a profunctor; we write it marking this connection

𝑃(𝐴0...𝐴𝑛; 𝐵0...•𝑥 ...𝐵𝑛) �𝑄(𝐶0...•𝑥 ...𝐶𝑘 ; 𝐷0...𝐷ℎ),

and it is defined as the coproduct of the product of both
profunctors, indexed by the common variable, and quotiented
by dinatural equivalence,∫ 𝑋 ∈C

𝑃(𝐴0...𝐴𝑛; 𝐵0...𝑋...𝐵𝑚) ×𝑄(𝐶0...𝑋...𝐶𝑘 ; 𝐷0...𝐷ℎ).

Remark 2.4 (Representability). Every functor 𝐹 : A→ 𝐵 gives
rise to two different profunctors: its representable profunc-
tor A(𝐹•, •) : A � B, and its corepresentable profunctor
A(•, 𝐹•) : A� B. We say that a profunctor is representable
or corepresentable if it arises in this way. Under this interpreta-
tion, functors are profunctors that happen to be representable.
This suggests that we can repeat structures based on functors,
such as monoidal categories, now in terms of profunctors.

We justified in the introduction the importance of monoi-
dal categories: they are the algebra of processes composing
sequentially and in parallel, joining and splitting resources.
However, there exist some theories that can deal only with
splitting without being necessarily full theories of processes:
that is, we may be able to talk about splitting without being
able to talk about joining. Such “monoidal categories on one
side” are promonoidal categories.

The difference between monoidal categories and promonoi-
dal categories is that the tensor is no longer a functor but is
instead a profunctor.2 In other words, the tensor is no longer
representable – such a structure is called virtual, as in virtual
double and virtual duoidal categories [CS10], [Shu17].

2In more technical terms, monoidal categories are pseudomonoids in the
monoidal bicategory of categories and functors; while promonoidal categories
are pseudomonoids in the monoidal bicategory of categories and profunctors.

2.2 Promonoidal Categories
Promonoidal categories are the algebra of coherent decom-

position. A category C contains sets of morphisms, C(𝑋;𝑌).
In the same way, a promonoidal category V contains sets of
splits, V(𝑋;𝑌0C𝑌1), morphisms, V(𝑋;𝑌), and units, V(𝑋; 𝑁),
where 𝑁 is the virtual tensor unit. Splits, V(𝑋;𝑌0 C 𝑌1),
represent a way of decomposing objects of type 𝑋 into objects
of type 𝑌0 and 𝑌1. Morphisms, V(𝑋;𝑌), as in any category, are
transformations of 𝑋 into 𝑌 . Units, V(𝑋; 𝑁), are the atomic
pieces of type 𝑋 .

These decompositions must be coherent. For instance, imag-
ine we want to split 𝑋 into 𝑌0, 𝑌1 and 𝑌2. Splitting 𝑋 into
𝑌0 and something (•), and then splitting that something into
𝑌1 and 𝑌2 should be doable in essentially the same ways as
splitting 𝑋 into something (•) and 𝑌2, and then splitting that
something into 𝑌0 and 𝑌1. Formally, we are saying that,

V(𝑋;𝑌0 C •) �V(•;𝑌1 C 𝑌2) � V(𝑋; • C 𝑌2) �V(•;𝑌0 C 𝑌1),
and, in fact, we just write V(𝑋;𝑌0C𝑌1C𝑌2) for the set of such
decompositions.

Definition 2.5 (Promonoidal category). A promonoidal cate-
gory is a category V(•; •) endowed with profunctors

V(•; • C •) : V × V� V, and V(•; 𝑁) : 1� V.

Equivalently, these are functors

V(•; • C •) : Vop × V × V→ Set, and V(•; 𝑁) : Vop → Set.

Moreover, promonoidal categories must be endowed with the
following natural isomorphisms,

V(𝑋; • C 𝑌2) �V(•;𝑌0 C 𝑌1) � V(𝑋; • C 𝑌2) �V(•;𝑌0 C 𝑌1),
V(𝑋; • C 𝑌) �V(•; 𝑁) � V(𝑋;𝑌),
V(𝑋;𝑌 C •) �V(•; 𝑁) � V(𝑋;𝑌),

called 𝛼, 𝜆, 𝜌, respectively, and asked to satisfy the pentagon
and triangle coherence equations, 𝛼 # 𝛼 = (𝛼 � 1) # 𝛼 # (1 � 𝛼),
and (𝜌 � 1) = 𝛼 # (𝜆 � 1).
Definition 2.6 (Promonoidal functor). Let V and W be pro-
monoidal categories. A promonoidal functor 𝐹 : V(•, •) →
W(•, •) is a functor between the two categories, together with
natural transformations:

𝐹C : V(𝐴; 𝐵 C 𝐶) →W(𝐹𝐴; 𝐹𝐵 C 𝐹𝐶), and
𝐹𝑁 : V(𝐴; 𝑁) →W(𝐹𝐴; 𝑁),

that satisfy 𝜆 # 𝐹map = (𝐹C × 𝐹𝑁) # 𝜆, 𝜌 # 𝐹map = (𝐹C × 𝐹𝑁) # 𝜌,
and 𝛼# (𝐹C×𝐹C) #𝑖 = (𝐹C×𝐹C) #𝑖#𝛼. We denote by Promon the
category of promonoidal categories and promonoidal functors.

Remark 2.7 (Promonoidal coherence). As with monoidal cat-
egories, the pentagon and triangle equations imply that every
formal equation written out of coherence isomorphisms holds.
This means we can write V(•; • C • C •) without specifying
which one of the two sides of the associator we are describing.
Remark 2.8 (Multicategories). The reader may be more famil-
iar with the algebra of not-necessarily-coherent decomposition:

multicategories. Every promonoidal category V induces a
co-multicategory with morphisms given by elements of the
following sets V(•; • C 𝑛. . . C •). Similarly, Vop is a co-
promonoidal category and thus induces a multicategory. These
are special kinds of (co-)multicategories, they are coherent so
that every 𝑛-to-1 morphism splits, in any possible shape, as
2-to-1 and 0-to-1 morphisms; moreover, they do so uniquely
up to dinaturality. Appendix B.2 spells out this relation.

The next section studies how to coherently decompose mor-
phisms of a category. Categories are an algebraic structure for
sequential composition: they contain a “sequencing” operator
(#) and a neutral element, id. We present an algebra for
decomposing sequential compositions in terms of promonoidal
categories.

3 Sequential context
Assume a morphism factors as follows,

𝑓0 # 𝑔0 # ℎ # 𝑔1 # 𝑓1 # 𝑘 # 𝑓2.

We can say that this morphism came from the context 𝑓0 #� #
𝑓1 # � # 𝑓2, filled on its left side with the context 𝑔0 # � # 𝑔1,
then filled with ℎ, and finally completed on its right side with
the morphism 𝑘 . Figure 5 expresses this decomposition.

𝑓0 # � # 𝑓1 # � # 𝑓2
𝑓0

𝑔0 # � # 𝑔1

ℎ

𝑓1

𝑓2

ℎ

𝑔0 𝑔1 𝑘

𝑘

Fig. 5: Decomposition of 𝑓0 # 𝑔0 # ℎ # 𝑔1 # 𝑓1 # 𝑘 # 𝑓2.

Contexts compose in a tree-like structure, and their resulting
morphism is extracted by contouring that tree. This section
presents the algebra of context and decomposition. We then
prove that they are two sides of the same coin: the two sides
of an adjunction of categories.

3.1 Contour of a Promonoidal Category
Any promonoidal category freely generates another cate-

gory, its contour. This can be interpreted as the category that
tracks the processes of decomposition that the promonoidal
category describes. The construction is particularly pleasant
from the geometric point of view: it takes its name from the
fact that it can be constructed by following the contour of the
shape of the decomposition.

Definition 3.1 (Contour). The contour of a promonoidal cate-
gory V is a category CV that has two objects, 𝑋𝐿 (left-handed)
and 𝑋𝑅 (right-handed), for each object 𝑋 ∈ Vobj; and has as
arrows those that arise from contouring the decompositions of
the promonoidal category.

Specifically, it is freely presented by (i) a morphism 𝑎0 ∈
CV(𝐴𝐿; 𝐴𝑅), for each unit 𝑎 ∈ V(𝐴; 𝑁); (ii) a pair of

morphisms 𝑏0 ∈ CV(𝐵𝐿; 𝑋𝐿), 𝑏1 ∈ CV(𝑋𝑅; 𝐵𝑅), for each

𝑎

𝑎0

𝑏𝑏0 𝑏1 𝑐𝑐0

𝑐1

𝑐2

𝐴 𝐵 𝐶

𝑋 𝑌 𝑍

Fig. 6: Contour of a promonoidal.

morphism 𝑏 ∈ V(𝐵; 𝑋); and (iii) a triple of morphisms
𝑐0 ∈ CV(𝐶𝐿;𝑌 𝐿), 𝑐1 ∈ CV(𝑌𝑅; 𝑍𝐿), 𝑐2 ∈ CV(𝑍𝑅;𝐶𝑅) for
each split 𝑐 ∈ V(𝐶;𝑌 C 𝑍), see Figure 6.

For each equality 𝛼(𝑎 | 𝑏) = (𝑐 | 𝑑), we impose the equations
𝑎0 = 𝑐0 #𝑑0; 𝑎1 #𝑏0 = 𝑑1 and 𝑏1 = 𝑑2 #𝑐1; 𝑎2 #𝑏2 = 𝑐2. For each
equality 𝜌(𝑎 |𝑏) = 𝑐 = 𝜆(𝑑 | 𝑒), we impose 𝑎0 = 𝑐0 = 𝑑0 #𝑒0 #𝑑1
and 𝑎1 # 𝑏0 # 𝑎2 = 𝑐1 = 𝑑2. Graphically, these follow Figure 7.

𝑎𝑎0

𝑎1

𝑎2

𝑏𝑏0

𝑏1

𝑏2

𝑐𝑐0

𝑐1

𝑐2

𝑑𝑑0

𝑑1

𝑑2

= ;

𝑎𝑎0

𝑎1

𝑎2

𝑏0

𝑏

= 𝑐𝑐0 𝑐1

𝑑𝑑0

𝑑1

𝑑2

;=

𝑒0

𝑒

Fig. 7: Equations between contours from 𝛼, 𝜌, and 𝜆 in V.

Proposition 3.2. Contour gives a functor C : Promon→ Cat.

Proof. See Appendix, Proposition C.1. �

Remark 3.3. The contour of a multicategory was first in-
troduced by Melliès and Zeilberger [MZ22]. Definition 3.1
and the following Theorem 3.7 closely follow their work;
although the promonoidal version we introduce does involve
fewer equations due to the extra coherence (Remark 2.8).

3.2 The Promonoidal Category of Spliced Arrows
We described a category tracking the process of decompos-

ing in a given promonoidal category. However, we want to go
the other way around: given a category, what is the promonoi-
dal category describing decomposition in that category? This
subsection finds a right adjoint to the contour construction:
the spliced arrows promonoidal category. Spliced arrows have
already been used to describe context in parsing [MZ22].

Definition 3.4 (Spliced arrows). Let C be a category. The
promonoidal category of spliced arrows, SC, has as objects
pairs of objects of C. It uses the following profunctors to define
morphisms, splits and units.

SC (
𝐴
𝐵; 𝑋𝑌

)
= C(𝐴; 𝑋) × C(𝑌, 𝐵);

SC(𝐴𝐵; 𝑋𝑌 C 𝑋
′

𝑌 ′) = C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝐵);
SC(𝐴𝐵; 𝑁) = C(𝐴; 𝐵).

In other words, morphisms are pairs of arrows 𝑓 : 𝐴 → 𝑋
and 𝑔 : 𝑌 → 𝐵. Splits are triples of arrows 𝑓 : 𝐴→ 𝑋 , 𝑔 : 𝑌 →

𝑋 ′ and ℎ : 𝑌 ′ → 𝐵. Units are simply arrows 𝑓 : 𝐴 → 𝐵. We
use the following notation for

morphisms, 𝑓 # � # 𝑔 ∈ SC (
𝐴
𝐵; 𝑋𝑌

)
;

splits, 𝑓 # � # 𝑔 # � # ℎ ∈ SC (
𝐴
𝐵; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
;

and units, 𝑓 ∈ SC (
𝐴
𝐵; 𝑁

)
.

The profunctor actions, associativity and unitality of the pro-
monoidal category are defined in a straightforward way by
filling the holes. For instance,

(𝑓 # � # 𝑔 # � # ℎ) ≺1 (𝑢 # � # 𝑣) = (𝑓 # 𝑢 # � # 𝑣 # 𝑔 # � # ℎ),
(𝑓 # � # 𝑔 # � # ℎ) ≺2 (𝑢 # � # 𝑣) = (𝑓 # � # 𝑔 # 𝑢 # � # 𝑣 # ℎ).

See the Appendix, Section C for details.

Proposition 3.5. Spliced arrows form a promonoidal category
with their splits, units, and suitable coherence morphisms.

Proof. See Appendix, Proposition C.2. �

As a consequence, we can talk about spliced arrows with
an arbitrary number of holes: for instance, a three-way split
arises as a split filled by another split, in either position. For
instance,

〈 𝑓0 # � # 𝑓1 # � # 𝑓2 # � # 𝑓3〉
can be written in two different ways,

〈 𝑓0 # � # 𝑓2 # � # 𝑓3〉 ≺1 〈𝑖𝑑 # � # 𝑓1 # � # 𝑖𝑑〉 or
〈 𝑓0 # � # 𝑓1 # � # 𝑓3〉 ≺2 〈𝑖𝑑 # � # 𝑓2 # � # 𝑖𝑑〉.

Proposition 3.6. Splice gives a functor S : Cat→ Promon.

Proof. See Appendix, Proposition C.6. �

Theorem 3.7. There exists an adjunction between categories
and promonoidal categories, where the contour of a promo-
noidal is the left adjoint, and the splice category is the right
adjoint.

Proof. See Appendix, Theorem C.7. �

Spliced arrows can be computed for any category, including
monoidal categories. However, we expect the spliced arrows
of a monoidal category to have a richer algebraic structure.
This extra structure is the subject of the next section.

4 Parallel-Sequential Context
Monoidal categories are an algebraic structure for sequential

and parallel composition: they contain a “tensoring” operator
on morphisms, (⊗), apart from the usual sequencing, (#), and
identities (id).

Assume a monoidal morphism factors as follows,

𝑓0 # (𝑔 ⊗ (ℎ # (𝑘 ⊗ (𝑙0 # 𝑙1)))) # 𝑓1.

We can say that this morphism came from dividing everything
between 𝑓0 and 𝑓1 by a tensor. That is, from a context 𝑓0 # (�⊗
�) # 𝑓1. We filled the first hole of this context with a 𝑔, and
then proceeded to split the second part as ℎ # (� ⊗ �) # id.
Finally, we filled the first part with 𝑘 and the second one we
left disconnected by filling it with 𝑙0, id𝐼 , and 𝑙1.

𝑓0 # (� ⊗ �) # 𝑓1𝑓0 𝑓1

𝑔 𝑔 ℎ # (� ⊗ �) # 𝑖𝑑ℎ 𝑖𝑑

𝑘 𝑘 𝑙1𝑙0 𝑙0 ‖𝑙1

Fig. 8: Decomposition of 𝑓0 # (𝑔 ⊗ (ℎ # (𝑘 ⊗ (𝑙0 # 𝑙1)))) # 𝑓1.

This section studies decomposition of morphisms in a
monoidal category, in the same way we studied decomposition
of morphisms in a category before. We present an algebraic
structure for decomposing both sequential and parallel com-
positions: produoidal categories.

4.1 Produoidal Categories
Produoidal categories, first defined by Booker and Street

[BS13], provide an algebraic structure for the interaction of
sequential and parallel decomposition. A produoidal category
V not only contains morphisms, V(𝑋;𝑌), sequential splits,
V(𝑋;𝑌0C𝑌1), and sequential units, V(𝑋; 𝑁), as a promonoidal
category does; it also contains parallel splits, V(𝑋;𝑌0 ⊗ 𝑌1)
and parallel units, V(𝑋; 𝐼).
Remark 4.1 (Nesting virtual structures). Notation for nesting
functorial structures, say (C) and (⊗), is straightforward: we
use expressions like (𝑋1 ⊗ 𝑌1) C (𝑋2 ⊗ 𝑌2) without a second
thought. Nesting the virtual structures (C) and (⊗) is more
subtle: defining V(•; 𝑋 ⊗ 𝑌) and V(•; 𝑋 C𝑌) for each pair of
objects 𝑋 and 𝑌 does not itself define what something like
V(•; (𝑋1 ⊗ 𝑌1) C (𝑋2 ⊗ 𝑌2)) means. Recall that, in the virtual
case, 𝑋1 C𝑌1 and 𝑋1 ⊗𝑌1 are not objects themselves: they are
just names for the profunctors V(•; 𝑋1C𝑌1) and V(•; 𝑋1⊗𝑌1).

Instead, when we write V(•; (𝑋1 ⊗ 𝑌1) C (𝑋2 ⊗ 𝑌2)), we
formally mean V(•; •1 C •2) � V(•1; 𝑋1 ⊗ 𝑌1) � V(•2; 𝑋2 ⊗
𝑌2). By convention, nesting virtual structures means profunctor
composition in this text.

Definition 4.2 (Produoidal category). A produoidal category
is a category V endowed with two promonoidal structures,

V(•; • ⊗ •) : V × V� V, and V(•; 𝐼) : 1� V,

V(•; • C •) : V × V� V, and V(•; 𝑁) : 1� V,

such that one laxly distributes over the other. This is to say
that it is endowed with the following natural laxators,

𝜓2 : V(•; (𝑋 C 𝑌) ⊗ (𝑍 C𝑊)) → V(•; (𝑋 ⊗ 𝑍) C (𝑌 ⊗𝑊)),
𝜓0 : V(•; 𝐼) → V(•; 𝐼 C 𝐼),

𝜑2 : V(•; 𝑁 ⊗ 𝑁) → V(•; 𝑁),
𝜑0 : V(•; 𝐼) → V(•; 𝑁).

Laxators, together with unitors and associators, must satisfy
coherence conditions (see Appendix, Definition I.5).

Definition 4.3 (Produoidal functor). Let V⊗,𝐼 ,C,𝑁 and
W�,𝐽 ,J,𝑀 be produoidal categories. A produoidal functor 𝐹

is a functor between the two categories 𝐹 : V(•, •) →W(•, •)
together with natural transformations

𝐹⊗ : V(𝐴; 𝐵 ⊗ 𝐶) →W(𝐹𝐴; 𝐹𝐵 � 𝐹𝐶),
𝐹𝐼 : V(𝐴; 𝐼) →W(𝐹𝐴; 𝐽),
𝐹C : V(𝐴; 𝐵 C 𝐶) →W(𝐹𝐴; 𝐹𝐵 J 𝐹𝐶), and
𝐹𝑁 : V(𝐴; 𝑁) →W(𝐹𝐴; 𝑀),

preserving coherence isomorphisms for each promonoidal
structure, and the laxators. Denote by Produo the category
of produoidal categories and produoidal functors.

4.2 Monoidal Contour of a Produoidal Category
Any produoidal category freely generates a monoidal cat-

egory, its monoidal contour. Again, this is interpreted as
a monoidal category tracking the processes of parallel and
sequential decomposition described by the produoidal cate-
gory. And again, the construction follows a pleasant geometric
pattern, where we follow the shape of the decomposition, now
in both the parallel and sequential dimensions.

Definition 4.4 (Monoidal contour). The contour of a pro-
duoidal category B is the monoidal category DB that has
two objects, 𝑋𝐿 (left-handed) and 𝑋𝑅 (right-handed), for
each object 𝑋 ∈ Bobj; and has arrows those that arise from
contouring both sequential and parallel decompositions of the
promonoidal category.

𝑎𝑎𝑎0 𝑎1 𝑎𝑎0 𝑎1𝑎1𝑎0𝑎

𝑎0

𝑎𝑎0

𝑎1

𝑎2

Fig. 9: Generators of the monoidal category of contours.

Specifically, it is freely presented by (i) a pair of morphisms
𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈ DB(𝑋𝑅; 𝐴𝑅) for each morphism
𝑎 ∈ B(𝐴; 𝑋); (ii) a morphism 𝑎0 ∈ DB(𝐴𝐿; 𝐴𝑅), for each
sequential unit 𝑎 ∈ C(𝐴; 𝑁); (iii) a pair of morphisms 𝑎0 ∈
DB(𝐴𝐿; 𝐼) and 𝑎0 ∈ DB(𝐼; 𝐴𝑅), for each parallel unit 𝑎 ∈
B(𝐴; 𝐼); (iv) a triple of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈
DB(𝑋𝑅;𝑌 𝐿), 𝑎2 ∈ DB(𝑌𝑅; 𝐴𝑅) for each sequential split 𝑎 ∈
B(𝐴; 𝑋 C𝑌); and (v) a pair of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿 ⊗
𝑌 𝐿) and 𝑎1 ∈ DB(𝑋𝑅 ⊗ 𝑌𝑅; 𝐴𝑅) for each parallel split 𝑎 ∈
B(𝐴; 𝑋 ⊗ 𝑌), see Figure 9.

We impose the same equations as in the categorical contour
coming from the associator and unitor of the C structure; but
moreover, we impose the following new equations, coming
from the ⊗ structure: For each application of associativity,
𝛼(𝑎 #1 𝑏) = 𝑐 #2 𝑑, we impose the equations 𝑎0 # (𝑏0 ⊗ id) =
𝑐0 # (id ⊗ 𝑑0) and (𝑏1 ⊗ id) # 𝑎1 = (id ⊗ 𝑑1) # 𝑐1. These follow
from Figure 10.

For each application of unitality, 𝜆(𝑎 #1 𝑏) = 𝑐 = 𝜌(𝑑 #2 𝑒),
we impose the equations 𝑎0 # (𝑏0 ⊗ id) = 𝑐0 = 𝑑0 # (id ⊗ 𝑒0)
and (𝑏1 ⊗ id) # 𝑎1 = 𝑐1 = (id ⊗ 𝑒1) # 𝑑1. These follow from
Figure 11.

For each application of the laxator, 𝜓2 (𝑎 | 𝑏 | 𝑐) = (𝑑 | 𝑒 | 𝑓),
we impose the equation 𝑎0 # (𝑏0 ⊗ 𝑐0) = 𝑑0 # 𝑒0, the middle

𝑏𝑏0

𝑏1

𝑎𝑎0 𝑎1

𝑑

𝑑0 𝑑1

𝑐𝑐0 𝑐1

=

Fig. 10: Equation between contours from ⊗ associator.

𝑎𝑎0 𝑎1 𝑑𝑑0 𝑑1

=

𝑏 𝑏1𝑏0 𝑒 𝑒1𝑒0

𝑐𝑐0 𝑐1
=

Fig. 11: Equations from ⊗ unitor.

equation 𝑏1 ⊗ 𝑐1 = 𝑒1 # 𝑑1 # 𝑓0, and (𝑏2 ⊗ 𝑐2) # 𝑎1 = 𝑓1 # 𝑑2.
These follow Figure 12. We finally impose similar equations
for the rest of the laxators, see Definition D.1 for details.

𝑎𝑎0 𝑎1

𝑐

𝑐0

𝑐1

𝑐2𝑏𝑏0

𝑏1

𝑏2

𝑒𝑒0

𝑒1

𝑑𝑑0

𝑑1

𝑑2

𝑓

𝑓0

𝑓1

Fig. 12: Equations from the laxator 𝜓2.

Proposition 4.5. Monoidal contour extends to a functor D :
Produo→Mon.

Proof. See Appendix, Proposition D.2. �

4.3 Produoidal Category of Spliced Monoidal Arrows

Again, we want to go the other way around: given a
monoidal category, what is the produoidal category that tracks
decomposition of arrows in that monoidal category? This
subsection finds a right adjoint to the monoidal contour con-
struction: the produoidal category of spliced monoidal arrows.

Definition 4.6. Let (C, ⊗, 𝐼) be a monoidal category. The
produoidal category of spliced monoidal arrows, TC, has as
objects pairs of objects of C. It uses the following profunctors
to define sequential splits, parallel splits, sequential units,
parallel units and morphisms.

TC (
𝐴
𝐵; 𝑋𝑌

)
= C(𝐴; 𝑋) × C(𝑌, 𝐵);

TC(𝐴𝐵; 𝑋𝑌 C 𝑋
′

𝑌 ′) = C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝐵);
TC(𝐴𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′) = C(𝐴; 𝑋 ⊗ 𝑋 ′) × C(𝑌 ⊗ 𝑌 ′; 𝐵);

TC(𝐴𝐵; 𝑁) = C(𝐴; 𝐵);
TC(𝐴𝐵; 𝐼) = C(𝐴; 𝐼) × C(𝐼; 𝐵).

In other words, morphisms are pairs of arrows 𝑓 : 𝐴→ 𝑋 and
𝑔 : 𝑌 → 𝐵. sequential splits are triples of arrows 𝑓 : 𝐴 → 𝑋 ,
𝑔 : 𝑌 → 𝑋 ′ and ℎ : 𝑌 ′→ 𝐵. Parallel splits are pairs of arrows
𝑓 : 𝐴→ 𝑋⊗𝑋 ′ and 𝑔 : 𝑌⊗𝑌 ′→ 𝐵. Sequential units are arrows

𝑓 : 𝐴 → 𝐵. parallel units are pairs of arrows 𝑓 : 𝐴 → 𝐼 and
𝑔 : 𝐼 → 𝐵. In summary, we have

morphisms, 𝑓 # � # 𝑔 ∈ TC (
𝐴
𝐵; 𝑋𝑌

)
;

sequential splits, 𝑓 # � # 𝑔 # � # ℎ ∈ TC (
𝐴
𝐵; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
;

parallel splits, 𝑓 # (� ⊗ �) # ℎ ∈ TC (
𝐴
𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
;

sequential units, 𝑓 ∈ TC (
𝐴
𝐵; 𝑁

)
.

and parallel units, 𝑓 ‖ 𝑔 ∈ TC (
𝐴
𝐵; 𝐼

)
.

Finally, the laxators unite two different connections between
two gaps into a single one. For instance, the last laxator takes
parallel sequences of holes,

𝑓0 # ((ℎ0 # � # ℎ1 # � # ℎ2) ⊗ (𝑘0 # � # 𝑘1 # � # 𝑘2)) # 𝑓1

into sequences of parallel holes,

𝑓0 # (ℎ0 ⊗ 𝑘0) # (� ⊗ �) # (ℎ1 ⊗ 𝑘1) # (� ⊗ �) # (ℎ2 ⊗ 𝑘2) # 𝑓1.

See Appendix, Section D.2 for details.

Proposition 4.7. Spliced monoidal arrows form a produoidal
category with their sequential and parallel splits, units, and
suitable coherence morphisms and laxators.

Proof. See Appendix, Proposition D.3. �

Proposition 4.8. Spliced monoidal arrows extends to a functor
T : Mon→ Produo.

Proof. See Appendix, Proposition D.8. �

As in the categorical case, spliced monoidal arrows and
monoidal contour again form an adjunction. This adjunction
characterizes spliced monoidal arrows as a cofree construction.

Theorem 4.9. There exists an adjunction between monoidal
categories and produoidal categories, where the monoidal
contour is the left adjoint, and the produoidal splice category
is the right adjoint.

Proof. See Appendix, Theorem D.9. �

4.4 Representable Parallel Structure
A produoidal category has two tensors, and neither is,

in principle, representable. However, the cofree produoidal
category over a category we have just constructed happens also
to have a representable tensor, (⊗). Spliced monoidal arrows
form a monoidal category.

Proposition 4.10. Parallel splits and parallel units of spliced
monoidal arrows are representable profunctors. Explicitly,

TC (
𝐴
𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
� TC (

𝐴
𝐵; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′

)
, and TC (

𝐴
𝐵; 𝐼

)
� TC (

𝐴
𝐵; 𝐼𝐼

)
.

In fact, these sets are equal by definition. However, there
is a good reason to work in the full generality of produoidal
categories: every produoidal category, representable or not, has
an associated normal produoidal category, which may be again
representable or not. Normalization is a canonical procedure
to mix both tensors, (⊗) and (⊳); and it will allow us to
write monoidal contexts in Section 6, which form a produoidal
category without representable structure.

Remark 4.11. This means TC has the structure of a virtual
duoidal category [Shu17] or monoidal multicategory, defined
by Aguiar, Haim and López Franco [AHLF18] as a pseu-
domonoid in the cartesian monoidal 2-category of multicat-
egories.

5 Interlude: Normalization

Produoidal categories seem to contain too much structure:
of course, we want to split things in two different ways, se-
quentially (C) and in parallel (⊗); but that does not necessarily
mean that we want to keep track of two different types of units,
parallel (𝐼) and sequential (𝑁). The atomic components of our
decomposition algebra should be the same, without having to
care if they are atomic for sequential composition or atomic
for parallel composition.

Fortunately, there exists an abstract procedure that, starting
from any produoidal category, constructs a new produoidal
category where both units are identified. This procedure is
known as normalization, and the resulting produoidal cate-
gories are called normal.

Definition 5.1 (Normal produoidal category). A normal pro-
duoidal category is a produoidal category where the laxator
𝜑0 : V(•; 𝐼) → V(•; 𝑁) is an isomorphism.

Normal produoidal categories form a category nProduo
with produoidal functors between them and endowed with fully
faithful forgetful functor U : nProduo→ Produo.

Theorem 5.2. Let V⊗,𝐼 ,C,𝑁 be a produoidal category. The
profunctor NV(•; •) = V(•; 𝑁 ⊗ • ⊗ 𝑁) forms a promonad.
Moreover, the Kleisli category of this promonad is a normal
produoidal category with the following splits and units.

NV(𝐴; 𝐵) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁);
NV(𝐴; 𝐵 ⊗𝑁 𝐶) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁);
NV(𝐴; 𝐵 C𝑁 𝐶) = V(𝐴; (𝑁 ⊗ 𝐵 ⊗ 𝑁) C (𝑁 ⊗ 𝐶 ⊗ 𝑁));

NV(𝐴; 𝐼𝑁) = V(𝐴; 𝑁);
NV(𝐴; 𝑁𝑁) = V(𝐴; 𝑁).

Proof. See Appendix, Theorem E.1. �

A normalization procedure for duoidal categories was given
by Garner and López Franco [GF16]; our contribution is its
produoidal counterpart. This novel produoidal normalization
is better behaved than the duoidal one [GF16]: the latter
does not always exist, but we show produoidal normalization
does. Indeed, we prove that produoidal normalization forms an
idempotent monad. The technical reason for this improvement
is that the original required the existence of certain coequal-
izers in V; produoidal normalization uses coequalizers in Set.
Appendix E.3 outlines a relation between the two procedures.

Theorem 5.3. Normalization extends to an idempotent monad.

Proof. See Appendix, Theorem E.3. �

Theorem 5.4 (Free normal produoidal). Normalization de-
termines an adjunction between produoidal categories and

normal produoidal categories, N : Produo
 nProduo : U.
That is, NV is the free produoidal category over V.

Proof. See Appendix, Theorem E.5. �

In the previous Section 4, we constructed the produoidal
category of spliced monoidal arrows, which distinguishes be-
tween morphisms and morphisms with a hole in the monoidal
unit. This is because the latter hole splits the morphism in two
parts. Normalization equates both; it sews these two parts.
In Section 6, we explicitly construct monoidal contexts, the
normalization of spliced monoidal arrows.

5.1 Symmetric Normalization
Normalization is a generic procedure that applies to any

produoidal category, it does not matter if the parallel split
(⊗) is symmetric or not. However, when ⊗ happens to be
symmetric, we can also apply a more specialized normalization
procedure.

Definition 5.5 (Symmetric produoidal category). A symme-
tric produoidal category is a produoidal category VC,𝑁 ,⊗,𝐼
endowed with a natural isomorphism 𝜎 : V(𝐴; 𝐵 ⊗ 𝐶) �
V(𝐴;𝐶 ⊗ 𝐵) satisfying the symmetry and hexagon equations.

Theorem 5.6. Let V⊗,𝐼 ,C,𝑁 be a symmetric produoidal cat-
egory. The profunctor N 𝜎V(•; •) = V(•; 𝑁 ⊗ •) forms a
promonad. Moreover, the Kleisli category of this promonad
is a normal symmetric produoidal category with the following
splits and units.

N 𝜎V(𝐴; 𝐵) = V(𝐴; 𝑁 ⊗ 𝐵);
N 𝜎V(𝐴; 𝐵 ⊗𝑁 𝐶) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝐶);
N 𝜎V(𝐴; 𝐵 C𝑁 𝐶) = V(𝐴; (𝑁 ⊗ 𝐵) C (𝑁 ⊗ 𝐶));

N 𝜎V(𝐴; 𝐼𝑁) = V(𝐴; 𝑁);
N 𝜎V(𝐴; 𝑁𝑁) = V(𝐴; 𝑁).

Proof. See Appendix, Theorem E.6. �

Theorem 5.7. Normalization determines an adjunction be-
tween symmetric produoidal and normal symmetric produoidal
categories, N 𝜎 : SymProduo
 nSymProduo : U . That is,
N 𝜎V is the free symmetric produoidal category over V.

Proof. See Appendix, Theorem E.11. �

6 Monoidal Context: Mixing C and ⊗ by normalization

Monoidal contexts formalize the notion of an incomplete
morphism in a monoidal category. The category of monoidal
contexts will have a rich algebraic structure: we shall be able
to still compose contexts sequentially and in parallel and, at
the same time, we shall be able to fill a context using another
monoidal context. Perhaps surprisingly, then, the category of
monoidal contexts is not even monoidal.

We justify this apparent contradiction in terms of profunc-
torial structure: the category is not monoidal, but it does have
two promonoidal structures that precisely represent sequential
and parallel composition. These structures form a normal

produoidal category. In fact, we show it to be the normalization
of the produoidal category of spliced monoidal arrows.

This section constructs explicitly the normal produoidal
category of monoidal contexts.

6.1 The Category of Monoidal Contexts
A monoidal context,MC (

𝐴
𝐵 ; 𝑋𝑌

)
, represents a process from

𝐴 to 𝐵 with a hole admitting a process from 𝑋 to 𝑌 . In
this sense, monoidal contexts are similar to spliced monoidal
arrows. The difference with spliced monoidal arrows is that
monoidal contexts allow for communication to happen to the
left and to the right of this hole.

Definition 6.1 (Monoidal context). Let (C, ⊗, 𝐼) be a monoidal
category. Monoidal contexts are the elements of the following
profunctor,

MC (
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ •2) �C(•1 ⊗ 𝑌 ⊗ •2; 𝐵).

In other words, a monoidal context from 𝐴 to 𝐵, with a hole
from 𝑋 to 𝑌 , is an equivalence class consisting of a pair of
objects 𝑀, 𝑁 ∈ Cobj and a pair of morphisms 𝑓 ∈ C(𝐴; 𝑀 ⊗
𝑋 ⊗ 𝑁) and 𝑔 ∈ C(𝑀 ⊗ 𝑌 ⊗ 𝑁; 𝐵), quotiented by dinaturality
of 𝑀 and 𝑁 (Figure 13). We write monoidal contexts as

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ∈ MC
(
𝐴
𝐵 ; 𝑋𝑌

)
.

In this notation, dinaturality explicitly means that

(𝑓 # (𝑚 ⊗ id𝑋 ⊗ 𝑛) # (id𝑊 ⊗ � ⊗ id𝐻) # 𝑔) =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # (𝑚 ⊗ id𝑌 ⊗ 𝑛) # 𝑔).

𝑓

𝑔

=
𝑚 𝑛

𝑓

𝑔

𝑚 𝑛

Fig. 13: Dinaturality for monoidal contexts.

Proposition 6.2. Monoidal contexts form a category.

Proof. We define composition of monoidal contexts by the
following formula (illustrated in Figure 29, iii).

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (ℎ # (id𝑀 ′ ⊗ � ⊗ id𝑁 ′) # 𝑘) =

𝑓 # (id𝑀 ⊗ ℎ ⊗ id𝑁) # (id𝑀 ⊗𝑀 ′ ⊗ � ⊗ id𝑁 ⊗𝑁 ′)
(id𝑀 ⊗ 𝑘 ⊗ id𝑁) # 𝑔

For each pair of objects, we define the identity monoidal
context as id𝐴 #� # id𝐵 (illustrated in Figure 29, ii). We check
that this composition is associative and unital in the Appendix,
Proposition F.3. �

Remark 6.3. Even when we introduce (id ⊗ � ⊗ id) as a
piece of suggestive notation, we can still write (𝑔 ⊗ � ⊗ ℎ)
unambiguously, because of dinaturality,

(𝑔 ⊗ id ⊗ ℎ) # (id ⊗ � ⊗ id) = (id ⊗ � ⊗ id) # (𝑔 ⊗ id ⊗ ℎ).

;

𝑓

𝑔

;

𝑓

𝑔

ℎ

; 𝑓

𝑓

𝑔

;

Fig. 14: Morphisms, sequential and parallel splits, and units
of the splice monoidal arrow produoidal category.

6.2 The Normal Produoidal Algebra of Monoidal Contexts

Let us endow monoidal contexts with their normal pro-
duoidal structure.

Definition 6.4. The category of monoidal contexts, MC,
has as objects pairs of objects of C. We use the following
profunctors to define sequential splits, parallel splits, units and
morphisms.

MC (
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ •2) �C(•1 ⊗ 𝑌 ⊗ •2; 𝐵);

MC (
𝐴
𝐵 ; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ •2) �
C(•1 ⊗ 𝑌 ⊗ •2; •3 ⊗ 𝑋 ′ ⊗ •4) �
C(•3 ⊗ 𝑌 ′ ⊗ •4; 𝐵);

MC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ •2 ⊗ 𝑋 ′ ⊗ •3) �
C(•1 ⊗ 𝑌 ⊗ •2 ⊗ 𝑌 ′ ⊗ •3; 𝐵);

MC (
𝐴
𝐵 ; 𝑁

)
= C(𝐴; 𝐵).

In other words, sequential splits are triples of arrows
𝑓 : 𝐴 → 𝑀 ⊗ 𝑋 ⊗ 𝑁 , 𝑔 : 𝑀 ⊗ 𝑌 ⊗ 𝑁 → 𝑀 ′ ⊗ 𝑋 ′ ⊗ 𝑁 ′

and ℎ : 𝑀 ′ ⊗ 𝑌 ′ ⊗ 𝑁 ′ → 𝐵, quotiented by dinaturality of
𝑀, 𝑀 ′, 𝑁, 𝑁 ′. Parallel splits are pairs of arrows 𝑓 : 𝐴 →
𝑀 ⊗ 𝑋 ⊗ 𝑁 ⊗ 𝑋 ′ ⊗ 𝑂 and 𝑔 : 𝑀 ⊗ 𝑌 ⊗ 𝑁 ⊗ 𝑌 ′ ⊗ 𝑂 → 𝐵,
quotiented by dinaturality of 𝑀, 𝑁,𝑂. Units are simply arrows
𝑓 : 𝐴→ 𝐵. In summary, we have

morphisms, 𝑓 # (id ⊗ � ⊗ id) # 𝑔
sequential splits, 𝑓 # (id ⊗ � ⊗ id) # 𝑔 # (id ⊗ � ⊗ id) # ℎ;
parallel splits, 𝑓 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑔;
sequential units, 𝑓 .

Dinaturality for sequential splits and parallel splits is de-
picted the Appendix, Figures 30 and 31.

Proposition 6.5. The category of monoidal contexts forms
a normal produoidal category with its units, sequential and
parallel splits.

Proof. See Appendix, Proposition F.4. �

Theorem 6.6. Monoidal contexts are the free normalization
of the cofree produoidal category over a category. In other
words, monoidal contexts are the normalization of spliced
monoidal arrows, NTC �MC.

Proof. See Appendix, Theorem F.12. �

7 Monoidal Lenses

Monoidal lenses are symmetric monoidal contexts. Again,
the category of monoidal lenses has a rich algebraic structure;
and again, most of this structure exists only virtually in terms
of profunctors. In this case, though, the monoidal tensor does
indeed exist: contrary to monoidal contexts, monoidal lenses
form also a monoidal category.

This is perhaps why applications of monoidal lenses have
grown popular in recent years [Ril18], with applications in
decision theory [GHWZ18], supervised learning [CGG+22],
[FJ19] and most notably in functional data accessing [Kme12],
[PGW17], [BG18], [CEG+20]. The promonoidal structure of
optics was ignored, even when, after now identifying for the
first time its relation to the monoidal structure of optics, we
argue that it could be potentially useful in these applications:
e.g. in multi-stage decision problems, or in multi-stage data
accessors.

This section explicitly constructs the normal symmetric
produoidal category of monoidal lenses. We describe it for
the first time by a universal property: it is the free symmetric
normalization of the cofree produoidal category.

7.1 The Category of Monoidal Lenses

A monoidal lens of type LC(𝐴𝐵, 𝑋𝑌) represents a process in a
symmetric monoidal category with a hole admitting a process
from 𝑋 to 𝑌 .

𝑓

𝑔

;

𝑓

𝑔

;

𝑓

ℎ

;𝑔

Fig. 15: Generic monoidal lens, sequential and parallel split.

Definition 7.1 (Monoidal Lens). Let (C, ⊗, 𝐼) be a symmetric
monoidal category. Monoidal lenses are the elements of the
following profunctor,

LC (
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; • ⊗ 𝑋) �C(• ⊗ 𝑌 ; 𝐵).

In other words, a monoidal lens from 𝐴 to 𝐵, with a hole
from 𝑋 to 𝑌 , is an equivalence class consisting of a pair of
objects 𝑀, 𝑁 ∈ Cobj and a pair of morphisms 𝑓 ∈ C(𝐴; 𝑀⊗𝑋)
and 𝑔 ∈ C(𝑀 ⊗ 𝑌 ; 𝐵), quotiented by dinaturality of 𝑀 . We
write monoidal lenses as

𝑓 # (id𝑀 ⊗ �) # 𝑔 ∈ LC
(
𝐴
𝐵 ; 𝑋𝑌

)
.

Proposition 7.2. Monoidal lenses form a normal symmetric
produoidal category with the following morphisms, units,
sequential and parallel splits.

LC (
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; • ⊗ 𝑋) �C(• ⊗ 𝑌 ; 𝐵);

LC (
𝐴
𝐵 ; 𝑁

)
= C(𝐴; 𝐵);

LC (
𝐴
𝐵 ; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋) �
C(•1 ⊗ 𝑌 ; •2 ⊗ 𝑋 ′) �C(•2 ⊗ 𝑌 ′; 𝐵);

LC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ 𝑋 ′) �C(•1 ⊗ 𝑌 ⊗ 𝑌 ′; 𝐵).

Proof. See Appendix, Proposition G.1. �

Theorem 7.3. Monoidal lenses are the free symmetric nor-
malization of the cofree symmetric produoidal category over
a monoidal category.

Proof. See Appendix, Theorem G.9. �

Remark 7.4 (Representable parallel structure). The parallel
splitting structure of monoidal lenses is representable,

LC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= LC (

𝐴
𝐵 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′

)
.

Lenses over a symmetric monoidal category are known to be
monoidal [Ril18], [Hed17], but it remained unexplained why a
similar structure was not present in non-symmetric lenses. The
contradiction can be solved by noting that both symmetric and
non-symmetric lenses are indeed promonoidal, even if only
symmetric optics provide a representable tensor.
Remark 7.5 (Session notation for lenses). We will write !𝐴 =(
𝐴
𝐼

)
and ?𝐵 =

(
𝐼
𝐵

)
for the objects of the produoidal category of

lenses that have a monoidal unit as one of its objects. These
are enough to express all objects because !𝐴 ⊗ ?𝐵 =

(
𝐴
𝐵

)
; and,

moreover, they satisfy the following properties definitionally.

C(•; ?𝐴 ⊳ ?𝐵) � C(•; ?𝐴 ⊗ ?𝐵); !(𝐴 ⊗ 𝐵) = !𝐴 ⊗ !𝐵;
C(•; !𝐴 ⊳ !𝐵) � C(•; !𝐴 ⊗ !𝐵); ?(𝐴 ⊗ 𝐵) = ?𝐴 ⊗ ?𝐵;
C(•; !𝐴 ⊳ ?𝐵) � C(•; !𝐴 ⊗ ?𝐵).

Proposition 7.6. Let (C, ⊗, 𝐼) be a symmetric monoidal cat-
egory. There exist monoidal functors (!) : C → LC and
(?) : C𝑜𝑝 → LC.

Proof. See Appendix, Proposition G.7. �

7.2 Protocol Analysis
Let us go back to our running example (Figure 1). We can

now declare that the client and server have the following types,
representing the order in which they communicate,

∈ LC
(
Client
Client ; !Msg ⊳ ?Msg ⊳ !Msg

)
;

∈ LC
(
Server
Server ; ?Msg ⊳ !Msg ⊳ ?Msg

)
.

Moreover, we can use the duoidal algebra to compose them.
Indeed, tensoring client and server, we get the following
codomain type,

(!Msg C ?Msg C !Msg) ⊗ (?Msg C !Msg C ?Msg).

We then apply the laxators to mix inputs and outputs, obtaining

(!Msg ⊗ ?Msg) C (?Msg ⊗ !Msg) C (!Msg ⊗ ?Msg),
and we finally apply the unitors to fill the communication holes
with noisy channels.

𝜓2

(
⊗

)
≺3
𝜆 NOISE

3 ∈ LC
(
Client⊗Server
Client⊗Server

)
.

We end up obtaining the protocol as a single morphism
Client⊗Server→ Client⊗Server in whatever category we are
using to program. Assuming the category of finite stochastic
maps, this single morphism represents the distribution over the
possible outcomes of the protocol. Finally, by dinaturality, we
can reason over independent parts of the protocol.

Proposition 7.7. Let () = (SYN#(id⊗�)#ACK#(id⊗�)). The
equalities in Figure 1 are a consequence of the dinaturality of
a monoidal lens.

Proof. We recognize the diagram in Figure 1 as representing
the elements in the following equation.

SYN # (id ⊗ �) # ACK # (id ⊗ �) =

SYN∗ # (PRJ ⊗ id) # � # ACK # (id ⊗ �) =

SYN∗ # (id ⊗ �) # (PRJ ⊗ id) # ACK # (id ⊗ �) =

SYN∗ # (id ⊗ �) # ACK∗ # (id ⊗ �).
In the same way we would apply the interchange law in com-
pleted morphisms, we have applied dinaturality over PRJ. �

7.3 Cartesian Lenses
We have worked in full generality, but cartesian lenses

are particularly important to applications in game theory
[GHWZ18] and functional programming [Kme12], [PGW17].
We introduce their newly constructed produoidal structure.

Proposition 7.8 (Cartesian Lenses). Let (C, ·, 1) be a carte-
sian monoidal category. Its produoidal category of lenses is
given by the following profunctors.

LC (
𝐴
𝐵; 𝑋𝑌

)
� C(𝐴; 𝑋) × C(𝐴𝑌 ; 𝐵),

LC (
𝐴
𝐵; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
� C(𝐴; 𝑋) × C(𝐴𝑌 ; 𝑋 ′) × C(𝐴𝑌𝑌 ′; 𝐵),

LC (
𝐴
𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
� C(𝐴; 𝑋𝑋 ′) × C(𝐴𝑌𝑌 ′; 𝐵),

LC (
𝐴
𝐵

)
� C(𝐴; 𝐵).

Proof. See Appendix, Proposition G.8. �

8 Conclusions
Monoidal contexts are an algebra of incomplete processes,

commonly generalizing lenses [Ril18] and spliced arrows
[MZ22]. In the same way that the 𝜋-calculus allows in-
put/output channels of an abstract model of computation, mo-
noidal contexts allow input/output communication on arbitrary
theories of processes, such as stochastic or partial functions,
quantum processes or relational queries.

Monoidal contexts form a normal produoidal category: a
highly structured and rich categorical algebra. Moreover, they
are the universal such algebra on a monoidal category. This

is good news for applications: the literature on concurrency is
rich in frameworks; but the lack of canonicity may get us con-
fused when trying to choose, design, or compare among them,
as Abramsky [Abr05] has pointed out. Precisely characterizing
the universal property of a model addresses this concern. This
is also good news for the category theorist: not only is this an
example shedding light on a relatively obscure structure; it is
a paradigmatic such one.

We rely on two mathematical ideas: monoidal and duoidal
categories on one hand, and dinaturality and profunctorial
structures on the other. Monoidal categories, which could be
accidentally dismissed as a toy version of cartesian categories,
show that their string diagrams can bootstrap our conceptual
understanding of new fundamental process structures, while
keeping an abstraction over their implementation that cartesian
categories cannot afford. Duoidal categories are such an exam-
ple: starting to appear insistently in computer science [SS22],
[HS23], they capture the posetal structure of process depen-
dency and communication. Dinaturality, virtual structures and
profunctors, even if sometimes judged arcane, show again that
they can canonically capture a notion as concrete as process
composition.

8.1 Further Work
Dependencies. Shapiro and Spivak [SS22] prove that nor-

mal symmetric duoidal categories with certain limits addi-
tionally have the structure of dependence categories: they
can not only express dependence structures generated by (C)
and (⊗), but arbitrary poset-mediated dependence structures.
Produoidal categories are better behaved: the limits always
exist, and we only require these are preserved by the coend.

Proposition 8.1. Let V be a normal and ⊗-symmetric pro-
duoidal category with coends over V commuting with finite
connected limits. Then, [Vop, Set] is a dependence category
in the sense of Shapiro and Spivak [SS22].

Proof sketch. See Appendix, Theorem H.1. �

Weakening dependence categories in this way combines the
ideas of Shapiro and Spivak [SS22] with those of Hefford and
Kissinger [HK22], who employ virtual objects to deal with the
non-existence of tensor products in models of spacetime.

Language theory. Melliès and Zeilberger [MZ22] used
a multicategorical form of splice-contour adjunction (Re-
mark 3.3) to give a novel proof of the Chomsky-Schüt-
zenberger representation theorem, generalized to context-free
languages in categories. Our produoidal splice-contour adjunc-
tion (Section 4), combined with recent work on languages
of morphisms in monoidal categories [ES22] opens the way
for a vertical categorification of the Chomsky-Schützenberger
theorem, which we plan to elaborate in future work.

String diagrams for concurrency. Nester et al. [Nes23],
[BNR22] have recently introduced an alternative description of
lenses in terms of proarrow equipments, which have a good 2-
dimensional syntax [Mye16] we can use for send/receive types
(!/?). We have shown how this structure arises universally in

symmetric monoidal categories. It remains as further work
to determine a good 2-dimensional syntax for concurrent
programs with iteration and internal/external choice.

9 Acknowledgements

We thank Pawel Sobocinski, Fosco Loregian, Chad Nester
and David Spivak for discussion.

Matt Earnshaw and Mario Román were supported by the
European Social Fund Estonian IT Academy research measure
(project 2014-2020.4.05.19-0001). James Hefford is supported
by University College London and the EPSRC [grant number
EP/L015242/1].

References

[Abr05] Samson Abramsky. What are the fundamental structures of con-
currency?: We still don’t know! In Luca Aceto and Andrew D.
Gordon, editors, Proceedings of the Workshop "Essays on Al-
gebraic Process Calculi", APC 25, Bertinoro, Italy, August 1-5,
2005, volume 162 of Electronic Notes in Theoretical Computer
Science, pages 37–41. Elsevier, 2005.

[AC09] Samson Abramsky and Bob Coecke. Categorical quantum
mechanics. In Kurt Engesser, Dov M. Gabbay, and Daniel
Lehmann, editors, Handbook of Quantum Logic and Quantum
Structures, pages 261–323. Elsevier, Amsterdam, 2009.

[AHLF18] Marcelo Aguiar, Mariana Haim, and Ignacio López Franco.
Monads on higher monoidal categories. Applied Categorical
Structures, 26(3):413–458, Jun 2018.

[AM10] Marcelo Aguiar and Swapneel Arvind Mahajan. Monoidal
functors, species and Hopf algebras, volume 29. American
Mathematical Society Providence, RI, 2010.

[BDSPV15] Bruce Bartlett, Christopher L. Douglas, Christopher J.
Schommer-Pries, and Jamie Vicary. Modular categories as
representations of the 3-dimensional bordism 2-category, 2015.

[Bén00] Jean Bénabou. Distributors at work. Lecture notes written by
Thomas Streicher, 11, 2000.

[BG18] Guillaume Boisseau and Jeremy Gibbons. What you needa
know about yoneda: Profunctor optics and the yoneda lemma
(functional pearl). Proceedings of the ACM on Programming
Languages, 2(ICFP):1–27, 2018.

[BNR22] Guillaume Boisseau, Chad Nester, and Mario Román. Cornering
optics. volume abs/2205.00842, 2022.

[BPSZ19] Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio
Zanasi. Graphical affine algebra. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancou-
ver, BC, Canada, June 24-27, 2019, pages 1–12. IEEE, 2019.

[BS13] Thomas Booker and Ross Street. Tannaka duality and con-
volution for duoidal categories. Theory and Applications of
Categories, 28(6):166–205, 2013.

[BSS18] Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical
conjunctive queries. In Dan R. Ghica and Achim Jung, editors,
27th EACSL Annual Conference on Computer Science Logic,
CSL 2018, September 4-7, 2018, Birmingham, UK, volume
119 of LIPIcs, pages 13:1–13:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[CEG+20] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn,
Bartosz Milewski, Emily Pillmore, and Mario Román. Profunc-
tor optics, a categorical update. CoRR, abs/2001.07488, 2020.

[CFS16] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathe-
matical theory of resources. Inf. Comput., 250:59–86, 2016.

[CGG+22] Geoffrey S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul
Wilson, and Fabio Zanasi. Categorical foundations of gradient-
based learning. In European Symposium on Programming, pages
1–28. Springer, Cham, 2022.

[CJ19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian
Inversion via String Diagrams. Mathematical Structures in
Computer Science, pages 1–34, March 2019.

[CL02] J. Robin B. Cockett and Stephen Lack. Restriction categories
I: categories of partial maps. Theoretical Computer Science,
270(1-2):223–259, 2002.

[CP09] J. Robin B. Cockett and Craig A. Pastro. The logic of message-
passing. Sci. Comput. Program., 74(8):498–533, 2009.

[CS97] J. Robin B. Cockett and Robert A. G. Seely. Weakly distributive
categories. Journal of Pure and Applied Algebra, 114(2):133–
173, 1997.

[CS10] G.S.H. Cruttwell and Michael A. Shulman. A unified framework
for generalized multicategories. Theory and Applications of
Categories, 24:580–655, 2010.

[Day70a] Brian Day. Construction of Biclosed Categories. PhD thesis,
University of New South Wales, 1970.

[Day70b] Brian Day. On closed categories of functors. In Reports of the
Midwest Category Seminar IV, volume 137, pages 1–38, Berlin,
Heidelberg, 1970. Springer Berlin Heidelberg.

[DLdFR22] Elena Di Lavore, Giovanni de Felice, and Mario Román. Mo-
noidal streams for dataflow programming. In Proceedings of
the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[ES22] Matthew Earnshaw and Pawel Sobociński. Regular Monoidal
Languages. In Stefan Szeider, Robert Ganian, and Alexandra
Silva, editors, 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), volume 241
of Leibniz International Proceedings in Informatics (LIPIcs),
pages 44:1–44:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-
update problem. ACM Transactions on Programming Languages
and Systems (TOPLAS), 29(3):17–es, 2007.

[FJ19] Brendan Fong and Michael Johnson. Lenses and learners. arXiv
preprint arXiv:1903.03671, 2019.

[Fri20] Tobias Fritz. A synthetic approach to Markov kernels, condi-
tional independence and theorems on sufficient statistics. Ad-
vances in Mathematics, 370:107239, 2020.

[GF16] Richard Garner and Ignacio López Franco. Commutativity.
Journal of Pure and Applied Algebra, 220(5):1707–1751, 2016.

[GH99] Simon J. Gay and Malcolm Hole. Types and subtypes for client-
server interactions. In S. Doaitse Swierstra, editor, Programming
Languages and Systems, 8th European Symposium on Program-
ming, ESOP’99, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’99, Amsterdam,
The Netherlands, 22-28 March, 1999, Proceedings, volume 1576
of Lecture Notes in Computer Science, pages 74–90. Springer,
1999.

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn.
Compositional game theory. In Anuj Dawar and Erich Grädel,
editors, Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, pages 472–481. ACM, 2018.

[Gui80] René Guitart. Tenseurs et machines. Cahiers de topologie et
géométrie différentielle catégoriques, 21(1):5–62, 1980.

[Has97] Masahito Hasegawa. Models of sharing graphs: a categorical
semantics of let and letrec. PhD thesis, University of Edinburgh,
UK, 1997.

[HC22] James Hefford and Cole Comfort. Coend optics for quantum
combs. arXiv preprint arXiv:2205.09027, 2022.

[Hed17] Jules Hedges. Coherence for lenses and open games. arXiv
preprint arXiv:1704.02230, 2017.

[HK22] James Hefford and Aleks Kissinger. On the pre- and promo-
noidal structure of spacetime. arXiv preprint arXiv.2206.09678,
2022.

[HLV+16] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires,
Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca
Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira,
and Gianluigi Zavattaro. Foundations of session types and
behavioural contracts. ACM Comput. Surv., 49(1):3:1–3:36,
2016.

[Hon93] Kohei Honda. Types for dyadic interaction. In Eike Best, editor,
CONCUR ’93, 4th International Conference on Concurrency
Theory, Hildesheim, Germany, August 23-26, 1993, Proceed-
ings, volume 715 of Lecture Notes in Computer Science, pages
509–523. Springer, 1993.

[HS23] Chris Heunen and Jesse Sigal. Duoidally enriched Freyd
categories. arXiv preprint arXiv:2301.05162, 2023.

[Hug00] John Hughes. Generalising monads to arrows. Science of
Computer Programming, 37(1-3):67–111, 2000.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multi-
party asynchronous session types. In George C. Necula and
Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12,
2008, pages 273–284. ACM, 2008.

[JRW12] Michael Johnson, Robert Rosebrugh, and Richard J. Wood.
Lenses, fibrations and universal translations. Mathematical
structures in computer science, 22(1):25–42, 2012.

[JS91] André Joyal and Ross Street. The geometry of tensor calculus,
I. Advances in Mathematics, 88(1):55–112, 1991.

[Kme12] Edward Kmett. lens library, version 4.16. Hackage
https://hackage. haskell. org/package/lens-4.16, 2018, 2012.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner.
Linearity and the pi-calculus. In Hans-Juergen Boehm and
Guy L. Steele Jr., editors, Conference Record of POPL’96:
The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium,
St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages
358–371. ACM Press, 1996.

[KU17] Aleks Kissinger and Sander Uĳlen. A categorical semantics
for causal structure. In 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

[Lor21] Fosco Loregian. (Co)end Calculus. London Mathematical
Society Lecture Note Series. Cambridge University Press, 2021.

[Mac78] Saunders Mac Lane. Categories for the Working Mathematician.
Graduate Texts in Mathematics. Springer New York, 1978.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf.
Comput., 93(1):55–92, 1991.

[Mye16] David Jaz Myers. String diagrams for double categories and
equipments, 2016.

[MZ22] Paul-André Melliès and Noam Zeilberger. Parsing as a Lift-
ing Problem and the Chomsky-Schützenberger Representation
Theorem. In MFPS 2022-38th conference on Mathematical
Foundations for Programming Semantics, 2022.

[Nes23] Chad Nester. Concurrent Process Histories and Resource Trans-
ducers. Logical Methods in Computer Science, Volume 19, Issue
1, January 2023.

[NS22] Nelson Niu and David I. Spivak. Polynomial functors: A general
theory of interaction. In preparation, 2022.

[Pat01] Ross Paterson. A new notation for arrows. In Benjamin C.
Pierce, editor, Proceedings of the Sixth ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP ’01),
Firenze (Florence), Italy, September 3-5, 2001, pages 229–240.
ACM, 2001.

[PGW17] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunc-
tor optics: Modular data accessors. Art Sci. Eng. Program.,
1(2):7, 2017.

[Pos81] J. Postel. Transmission control protocol. RFC 793, RFC Editor,
9 1981.

[PS93] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping
for mobile processes. In Proceedings of the Eighth Annual
Symposium on Logic in Computer Science (LICS ’93), Montreal,
Canada, June 19-23, 1993, pages 376–385. IEEE Computer
Society, 1993.

[PS07] Craig Pastro and Ross Street. Doubles for Monoidal Categories.
arXiv preprint arXiv:0711.1859, 2007.

[PSV21] Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring
diagrams as normal forms for computing in symmetric monoidal
categories. Electronic Proceedings in Theoretical Computer
Science, page 49–64, Feb 2021.

[Ril18] Mitchell Riley. Categories of Optics. arXiv preprint
arXiv:1809.00738, 2018.

[Rom20] Mario Román. Comb Diagrams for Discrete-Time Feedback.
CoRR, abs/2003.06214, 2020.

[Rom21] Mario Román. Open diagrams via coend calculus. Electronic
Proceedings in Theoretical Computer Science, 333:65–78, Feb
2021.

[Rom22] Mario Román. Promonads and string diagrams for effectful
categories. In ACT ’22: Applied Category Theory, Glasgow,
United Kingdom, 18 - 22 July, 2022, volume abs/2205.07664,
2022.

[Shu16] Michael Shulman. Categorical logic from a categorical point of
view. Available on the web, 2016.

[Shu17] Michael Shulman. Duoidal category (nlab entry), section 2.,
2017. https://ncatlab.org/nlab/show/duoidal+category, Last ac-
cessed on 2022-12-14.

[Spi13] David I. Spivak. The operad of wiring diagrams: formalizing a
graphical language for databases, recursion, and plug-and-play
circuits. CoRR, abs/1305.0297, 2013.

[SS22] Brandon T. Shapiro and David I. Spivak. Duoidal structures for
compositional dependence. arXiv preprint arXiv:2210.01962,
2022.

[SSV20] Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou.
Dynamical systems and sheaves. Applied Categorical Structures,
28(1):1–57, 2020.

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory
of mobile processes. Cambridge University Press, 2001.

[VC22] André Videla and Matteo Capucci. Lenses for composable
servers. CoRR, abs/2203.15633, 2022.

Appendix A
Introduction

A.1 Three Way handshake Implementation
The following can be interpreted as pseudocode using the linear type theory of symmetric monoidal

categories [Shu16]. The type theory of symmetric monoidal categories (Section A.1) uses declarations
such as (x , y) <- f(a, b, c) to represent morphisms such as 𝑓 : 𝐴 ⊗ 𝐵 ⊗ 𝐶 → 𝑋 ⊗ 𝑌 .

Gen
𝑓 ∈ G(𝐴1, . . . , 𝐴𝑛; 𝐵) Γ1 ` 𝑥1 : 𝐴1 . . . Γ𝑛 ` 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, . . . , Γ𝑛) ` 𝑓 (𝑥1, . . . , 𝑥𝑛) : 𝐵

Pair
Γ1 ` 𝑥1 : 𝐴1 . . . Γ𝑛 ` 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, . . . , Γ𝑛) ` [𝑥1, ..., 𝑥𝑛] : 𝐴1 ⊗ ...⊗ 𝐴𝑛

Var

𝑥 : 𝐴 ` 𝑥 : 𝐴

Split
Δ ` 𝑚 : 𝐴1 ⊗ · · · ⊗ 𝐴𝑛 Γ, 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ` 𝑧 : 𝐶

Shuf (Γ,Δ) ` [𝑥1, . . . , 𝑥𝑛] ← 𝑚 ; 𝑧 : 𝐶

Fig. 16: Type theory of symmetric monoidal categories [Shu16].

We can interpret pseudocode as talking about the type theory of monoidal categories. Usually, we will
need some extra structure: such as if-then-else or explicit functions. It has been found in programming
that a good level of concreteness for monoidal categories is given by the Kleisli categories of commutative
monads, sometimes abstracted by Freyd categories [Mog91], [Hug00], see [Rom22] for a comparison with
plain monoidal categories and string diagrams. For convenience, we assume this setting in the following
code, but note that it is not strictly necessary, and that a type-theoretic implementation of monoidal
categories would work just the same.

The following code inspired by Haskell’s do-notation [Hug00] and it has been tested in the Glasgow
Haskell Compiler, version 9.2.5.

syn :: Client ~> (Client, Syn, Ack)
syn(client) = do
client <- random
return (client, client, 0)

synack :: (Syn, Ack, Server) ~> (Syn, Ack, Server)
synack(syn, ack, server) = do
server <- random
return (if syn == 0 then (0,0,0) else (server, ack+1, server))

noise :: Noise -> (Syn, Ack) ~> (Syn, Ack)
noise k (syn,ack) = do
noise <- binomial k
return (if noise then (0,0) else (syn,ack))

ack :: (Client, Syn, Ack) ~> (Client, Syn, Ack)
ack(client, syn, ack) = do
return (if client+1 /= ack then (0,0,0) else (client+1, syn+1, client))

receive :: (Syn, Ack, Server) ~> Server
receive(syn, ack, server) = do
return (if server+1 /= ack then 0 else server)

We can use the produoidal category of lenses to provide a modular description of this protocol.
The programmer will not need to know about produoidal categories: they will be able to define splits of

a process; they will be able to read the type of the split in terms of the send-receive steps of the protocol;
they will be able to combine them, and the typechecker should produce an error whenever dinaturality
is not respected. In fact, in the following code, naively combining client and server in a way that does
not preserve dinaturality will produce a type error because GHC will not be able to match the types. We
present the description of the protocol, encoding send/receive types.

protocol ::
Split (Kleisli Distribution) Client Client
(Syn, Ack) -- !
(Syn, Ack) -- ?
(Syn, Ack) -- !
() -- ?

-> Split (Kleisli Distribution) Server Server
() -- !
(Syn, Ack) -- ?
(Syn, Ack) -- !
(Syn, Ack) -- ?

-> (Client, Server) ~> (Client, Server)
protocol
(Split (Kleisli client1) (Kleisli client2) (Kleisli client3))
(Split (Kleisli server1) (Kleisli server2) (Kleisli server3))
(client , server) = do
(server, ()) <- server1(server)
(client, (s,a)) <- client1(client)
(s, a) <- noise 0.1 (s,a)
(server, (s,a)) <- server2(server, (s,a))
(s, a) <- noise 0.1 (s,a)
(client, (s,a)) <- client2(client, (s,a))
(s, a) <- noise 0.1 (s,a)
(server) <- server3(server, (s,a))
(client) <- client3(client, ())
return (client, server)

The following Figure 17 and Figure 18 show the separate Haskell code for the client and server modules.

client :: Split (Kleisli Distribution) Client Client
(Syn, Ack) -- !
(Syn, Ack) -- ?
(Syn, Ack) -- !
() -- ?

client = Split {

-- Part 1: Send a SYN message.
part1 = Kleisli $ \client -> do

client <- pure 10
return (client, (client, 0))

-- Part 2: Receive ACK, send ACK.
, part2 = Kleisli $ \(client, (syn, ack)) -> do

return (if client+1 /= syn then (0,(0,0)) else (client, (client+1, ack+1)))

-- Part 3: Close protocol.
, part3 = Kleisli $ \(client, ()) -> do

return client

}

Fig. 17: Haskell code for the client module.

server :: Split (Kleisli Distribution) Server Server
() -- send ==>
(Syn, Ack) -- receive <==
(Syn, Ack) -- send ==>
(Syn, Ack) -- receive <==

server = Split

-- Part 1: Open protocol.
{ part1 = Kleisli $ \server -> do

return (server, ())

-- Part 2: Receive SYN and send ACK.
, part2 = Kleisli $ \(server, (syn, ack)) -> do

server <- pure 20
return (if syn == 0 then (0,(0,0)) else (server, (syn+1, server)))

-- Part 3: Receive ACK.
, part3 = Kleisli $ \(server, (syn, ack)) -> do

return (if server+1 /= ack then 0 else server)
}

Fig. 18: Code for the server module.

data Split c a b x y s t where
Split :: { part1 :: c a (m , x)

, part2 :: c (m , y) (n , s)
, part3 :: c (n , t) b
} -> Split c a b x y s t

data Unit c a b where
Unit :: { unit :: c a b } -> Unit c a b

data Context c a b x y where
Context :: { partA :: c a (m , x)

, partB :: c (m , y) (m , b)
} -> Context c a b x y

type (a ~> b) = (a -> Distribution b)

Fig. 19: Code describing the profunctors of monoidal lenses.

Appendix B
Profunctors and virtual structures

Definition B.1. A profunctor (𝑃, ≺, �) between two categories A and B, written 𝑃(•; •) : A� B, is a
family of sets 𝑃(𝐵; 𝐴) indexed by objects A and B, and endowed with jointly functorial left and right
actions of the morphisms of A and B, respectively [Bén00], [Lor21].

Explicitly, the types of these actions are (�) : B(𝐵′, 𝐵) × 𝑃(𝐵, 𝐴) → 𝑃(𝐵′, 𝐴), and (≺) : 𝑃(𝐵, 𝐴) ×
A(𝐴, 𝐴′) → 𝑃(𝐵, 𝐴′). These must
• satisfy compatibility, (𝑓 � 𝑝) ≺ 𝑔 = 𝑓 � (𝑝 ≺ 𝑔),
• preserve identities, 𝑖𝑑 � 𝑝 = 𝑝, and 𝑝 ≺ 𝑖𝑑 = 𝑝,
• and preserve compositions, (𝑝 ≺ 𝑓) ≺ 𝑔 = 𝑝 ≺ (𝑓 # 𝑔) and 𝑓 � (𝑔 � 𝑝) = (𝑓 # 𝑔) � 𝑝.

Remark B.2. More succinctly, a profunctor 𝑃 : A � B is a functor 𝑃 : Bop × A → Set. Analogously, a
profunctor 𝑃 : A� B is a functor 𝑃 : Aop ×B→ Set, or a profunctor 𝑃 : B� A.3 When presented as a
family of sets with a pair of actions, profunctors are sometimes called bimodules.

Theorem B.3 (Yoneda isomorphisms). Let C be a category. There exist bĳections between the following
sets defined by coends. These are natural in the copresheaf 𝐹 : C→ Set, the presheaf 𝐺 : Cop → Set and
𝐴 ∈ C, ∫ 𝑋

C(𝑋; 𝐴) × 𝐹 (𝑋) 𝑦1
� 𝐹 (𝐴);

∫ 𝑋

C(𝐴; 𝑋) × 𝐺 (𝑋) 𝑦2
� 𝐺 (𝐴);

and they are defined by 𝑦1 (𝑓 | 𝛼) = 𝐹 (𝑓) (𝛼) and 𝑦2 (𝑔 | 𝛽) = 𝐺 (𝑔) (𝛽). These are called Yoneda
reductions or Yoneda isomorphisms, because they appear in the proof of Yoneda lemma. Moreover, any
formal diagram constructed out of these reductions, products, identities and compositions commutes.

B.1 Promonads

Definition B.4. A promonad (𝑃,★, ◦) over a category C is a profunctor 𝑃 : C � C together with two
natural transformations representing inclusion (◦) : C(𝑋;𝑌) → 𝑃(𝑋;𝑌) and multiplication (★) : 𝑃(𝑋;𝑌) ×
𝑃(𝑌 ; 𝑍) → 𝑃(𝑋; 𝑍), and such that
• the left action is premultiplication, 𝑓 ◦ ★ 𝑝 = 𝑓 � 𝑝,
• the right action is postmultiplication, 𝑝 ★ 𝑓 ◦ = 𝑝 ≺ 𝑓 ,
• multiplication is dinatural, 𝑝 ★ (𝑓 � 𝑞) = (𝑝 ≺ 𝑓) ★ 𝑞,
• and multiplication is associative, (𝑝1 ★ 𝑝2) ★ 𝑝3 = 𝑝1 ★ (𝑝2 ★ 𝑝3).
Equivalently, promonads are monoids in the category of endoprofunctors. Every promonad induces a

category, its Kleisli category, with the same objects as the original C, but with hom-sets given by the
promonad, 𝑃(•; •). [Rom22]

B.2 Multicategories

Multicategories. We can explain promonoidal categories in terms of their better-known relatives:
multicategories. Multicategories can be used to describe (non-necessarily-coherent) decomposition. They
contain multimorphisms, 𝑋 → 𝑌0, . . . , 𝑌𝑛 that represent a way of decomposing an object 𝑋 into a list of
objects 𝑌0, . . . , 𝑌𝑛.

Definition B.5 (Multicategory). A multicategory is a category C endowed with a set of multimorphisms,
C(𝑋;𝑌0, . . . , 𝑌𝑛) for each list of objects 𝑋0, . . . , 𝑋𝑛, 𝑌 in Cobj, and a composition Figure 20 operation

(#)𝑛,𝑚𝑌𝑘 : C(𝑋;𝑌0, . . . , 𝑌𝑛) × C(𝑌𝑖; 𝑍0, . . . , 𝑍𝑚) → C(𝑍;𝑌0, . . . , 𝑋0, . . . , 𝑋𝑚, . . . , 𝑌𝑚).

Composition is unital, meaning 𝑖𝑑𝑋𝑖 # 𝑓 = 𝑓 # 𝑖𝑑𝑌 for any 𝑓 making the equation formally well-typed.
Composition is also associative, meaning (ℎ #𝑔) # 𝑓 = ℎ # (𝑔 # 𝑓); and 𝑔 # (ℎ # 𝑓) = ℎ # (𝑔 # 𝑓) holds whenever
it is formally well-typed.

3Notation for profunctors conflicts in the literature. To side-step this problem, we use the symbols (�) and (�) , where ◦ marks
the contravariant (op) argument. This idea we take from Mike Shulman.

𝑓

· · · · · ·
𝑔#𝑛,𝑚𝑌𝑘

= · · · · · ·

· · ·

𝑓

𝑔

𝑋

𝑌0 𝑌𝑛

𝑌𝑘

𝑍0 𝑍𝑚

Fig. 20: Multicategorical composition.

Proposition B.6. Multicategorical composition is dinatural on the object we are composing along. This is
to say that composition, (#)𝑛,𝑚𝑘 , induces a well-defined and dinatural composition operation on the coend
the variable 𝑌𝑘 we are composing along.

(#)𝑛,𝑚•𝑘 :
(∫ 𝑌𝑘 ∈C

C(𝑋;𝑌0, . . . , 𝑌𝑛) × C(𝑌𝑘 ; 𝑍0, . . . , 𝑍𝑚)
)
→ C(𝑍;𝑌0, . . . , 𝑋0, . . . , 𝑋𝑚, . . . , 𝑌𝑚).

𝑓
𝑔#𝑛,𝑚𝑌𝑘

ℎ· · · · · ·
= 𝑓

· · · · · ·
𝑔

#𝑛,𝑚𝑌𝑘

ℎ

Fig. 21: Multicategorical composition is dinatural.

Proof. This is a direct consequence of the associativity of composition for multicategories, inducing an
isomorphism. �

Remark B.7. A promonoidal category is a multicategory where dinatural composition is invertible.
Duomulticategories describe the interaction between two kinds of decomposition: a sequential one and

a parallel one. We can mix this two ways of decomposing: for instance, we can decompose 𝑋 sequentially
and then decompose each one of its factors in parallel, finally decompose the last one of these sequentially
again.

C(𝑋; (𝑌0 · 𝑌1), (𝑌2 · (𝑌3, 𝑌4))).

Definition B.8 (Duomulticategory). A duomulticategory is a category C endowed with a set of multi-
morphisms, C(𝑋; 𝐸 (𝑌0, . . . , 𝑌𝑛)), for each list of objects 𝑌0, . . . , 𝑌𝑛 in Cobj and each expression 𝐸 on two
monoids. Moreover, it is endowed with a dinatural composition operation

(#)𝑛,𝑚𝑌𝑘 :
∫ 𝑌𝑖

C(𝑋; 𝐸1 [𝑌0, . . . , 𝑌𝑛]) × C(𝑌𝑖; 𝐸2 [𝑍0, . . . , 𝑍𝑚]) −→ C(𝑋; 𝐸1 [𝑌0, . . . , 𝐸2 [𝑋0, . . . , 𝑋𝑚], . . . , 𝑌𝑚),

and laxators relating sequential and parallel composition,

C(𝑋;𝐸1 [𝑌0, . . . , ((𝑍0, 𝑍1) · (𝑍2, 𝑍3)), . . . , 𝑌𝑛]) −→ C(𝑋; 𝐸1 [𝑌0, . . . , ((𝑍0 · 𝑍2), (𝑍1 · 𝑍3)), . . . , 𝑌𝑛]).

Remark B.9. In the same sense that a promonoidal category is a category where dinatural composition is
invertible in a specific sense, a produoidal category can be conjectured to be a duomulticategory where
dinatural composition is invertible, inducing an isomorphism.

Appendix C
Sequential Context

Proposition C.1 (From Proposition 3.2). Contour gives a functor C : Promon→ Cat.

Proof. Definition 3.1 defines the action on promonoidal categories. We define the action on promonoidal
functors. Given a promonoidal functor 𝐹 : V→ W, define the functor C𝐹 : CV→ CW by the following
morphism of presentations:

𝑋𝐿 ↦→ 𝐹 (𝑋)𝐿; 𝑋𝑅 ↦→ 𝐹 (𝑋)𝑅
for each 𝑎 ∈ V(𝐴; 𝑁), 𝑎0 : 𝐴𝐿 → 𝐴𝑅 ↦→ 𝐹𝑁 (𝑎)0
for each 𝑏 ∈ V(𝑋; 𝐵), 𝑏0 : 𝐵𝐿 → 𝑋𝐿 ↦→ 𝐹 (𝑏)0; 𝑏1 : 𝑋𝑅 → 𝐵𝑅 ↦→ 𝐹 (𝑏)1

for each 𝑐 ∈ V(𝐶;𝑌 C 𝑍), 𝑐0 : 𝐶𝐿 → 𝑌 𝐿 ↦→ 𝐹C (𝑐)0; 𝑐1 : 𝑌𝑅 → 𝑍𝐿 ↦→ 𝐹C (𝑐)1; 𝑐2 : 𝑍𝑅 → 𝐶𝑅 ↦→ 𝐹C (𝑐)2.
It follows from 𝐹 : V→W being a promonoidal functor that the contour equations of Definition 3.1 hold

between the images of generators, so this defines a functor. In particular when IdV : V→ V is an identity,
it is an identity functor. Let 𝐺 : U → V be another promonoidal functor, then C(𝐺 # 𝐹) = C(𝐺) # C(𝐹)
follows from the composition of promonoidal functors. �

Proposition C.2 (From Proposition 3.5). Spliced arrows form a promonoidal category with their sequential
splits, units, and suitable coherence morphisms.

Proof. In Lemma C.3, we construct the associator out of Yoneda isomorphisms. In Lemmas C.4 and C.5,
we construct both unitors. As they are all constructed with Yoneda isomorphisms, they must satisfy the
coherence equations. �

Lemma C.3 (Promonoidal splice associator). We can construct a natural isomorphism,

𝛼 :
∫ 𝑈

𝑉 ∈SC SC (
𝐴
𝐵; 𝑋𝑌 C

𝑈
𝑉

) × SC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

)
�

∫ 𝑈
𝑉 ∈SC SC (

𝐴
𝐵;𝑈𝑉 C 𝑋

′′
𝑌 ′′

) × SC (
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
,

exclusively from Yoneda isomorphisms. This isomorphism is defined by stating that 𝛼(〈 𝑓0 # � # 𝑓1 # � #
𝑓2〉|〈𝑔0 # � # 𝑔1 # � # 𝑔2〉) = (〈ℎ0 # � # ℎ1 # � # ℎ2〉|〈𝑘0 # � # 𝑘1 # � # 𝑘2〉) if and only if

〈 𝑓0 # 𝑔0 # � # 𝑔1 # � # 𝑔2 # 𝑓1 # � # 𝑔2〉 = 〈ℎ0 # � # ℎ1 # 𝑘0 # � # 𝑘1 # � # 𝑘2 # ℎ2〉.
Proof. We will show that both sides of the equation are isomorphic to C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) ×
C(𝑋 ′′; 𝐵); that is, the set of quadruples of morphisms 〈𝑝0 # � # 𝑝1 # � # 𝑝2 # � # 𝑝3〉 where 𝑝0 : 𝐴 → 𝑋 ,
𝑝1 : 𝑌 → 𝑋 ′, 𝑝2 : 𝑌 ′→ 𝑋 ′ and 𝑝3 : 𝑌 ′′→ 𝐵.

Indeed, the following coend calculus computation constructs an isomorphism,∫ 𝑈
𝑉 ∈SC SC (

𝐴
𝐵; 𝑋𝑌 C

𝑈
𝑉

) × SC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

)
= (by definition)

∫ 𝑈
𝑉 ∈SC

C(𝐴; 𝑋) × C(𝑌 ;𝑈) × C(𝑉 ; 𝐵) × C(𝑈; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) × C(𝑌 ′′;𝑉) = (by definition)
∫ 𝑈

𝑉 ∈SC
C(𝐴; 𝑋) × SC (

𝑌
𝐵;𝑈𝑉

) × C(𝑈; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) × C(𝑌 ′′;𝑉) � (by Yoneda reduction)

C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) × C(𝑌 ′′; 𝐵),

that sends a pair 〈 𝑓0 # � # 𝑓1 # � # 𝑓2〉|〈𝑔0 # � # 𝑔1 # � # 𝑔2〉, quotiented by the equivalence relation generated
by 〈 𝑓0 # � # 𝑓1 # 𝑛 # � # 𝑚 # 𝑓2〉|〈𝑔0 # � # 𝑔1 # � # 𝑔2〉 = 〈 𝑓0 # � # 𝑓1 # � # 𝑓2〉|〈𝑛 # 𝑔0 # � # 𝑔1 # � # 𝑚 # 𝑔2〉, to the
canonical form 〈 𝑓0 # � # 𝑓1 # 𝑔0 # � # 𝑔1 # � # 𝑔2 # 𝑓2〉.

In the same way, the following coend calculus computation constructs the second isomorphism,∫ 𝑈
𝑉 ∈SC SC (

𝐴
𝐵;𝑈𝑉 C 𝑋

′′
𝑌 ′′

) × SC (
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=

∫ 𝑈
𝑉 ∈SC

C(𝐴;𝑈) × C(𝑉 ; 𝑋 ′′) × C(𝑌 ′′; 𝐵) × C(𝑈; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′;𝑉) def
=

∫ 𝑈
𝑉 ∈SC SC (

𝐴
𝑋 ′′;

𝑈
𝑉

) × C(𝑌 ′′; 𝐵) × C(𝑈; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′;𝑉) 𝑦1
�

C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) × C(𝑌 ′′; 𝐵),

that sends a pair 〈ℎ0 # � # ℎ1 # � # ℎ2〉|〈𝑘0 # � # 𝑘1 # � # 𝑘2〉, quotiented by the equivalence relation generated
by 〈ℎ0 # 𝑛 # � # 𝑚 # ℎ1 # � # ℎ2〉|〈𝑘0 # � # 𝑘1 # � # 𝑘2〉 = 〈ℎ0 # � # ℎ1 # � # ℎ2〉|〈𝑛 # 𝑘0 # � # 𝑘1 # � # 𝑘2 # 𝑚〉, to the
canonical form 〈ℎ0 # 𝑘0 # � # 𝑘1 # � # 𝑘2 # ℎ1 # � # ℎ2〉.

In summary, we have that 𝛼(〈 𝑓0 #�# 𝑓1 #�# 𝑓2〉|〈𝑔0 #�#𝑔1 #�#𝑔2〉) = (〈ℎ0 #�#ℎ1 #�#ℎ2〉|〈𝑘0 #�#𝑘1 #�#𝑘2〉)
if and only if

〈 𝑓0 # 𝑔0 # � # 𝑔1 # � # 𝑔2 # 𝑓1 # � # 𝑔2〉 = 〈ℎ0 # � # ℎ1 # 𝑘0 # � # 𝑘1 # � # 𝑘2 # ℎ2〉,
which is what we wanted to prove. �

Lemma C.4 (Promonoidal splice left unitor). We can construct a natural isomorphism,

𝜆 :
∫ 𝑈

𝑉 ∈SC SC (
𝐴
𝐵;𝑈𝑉 C 𝑋𝑌

) × SC (
𝑈
𝑉 ; 𝑁

)
� SC (

𝐴
𝐵; 𝑋𝑌

)
,

exclusively from Yoneda isomorphisms. This isomorphism is defined by 𝜆(〈 𝑓0 # � # 𝑓1 # � # 𝑓2〉|𝑔) = 〈 𝑓0 # 𝑔 #
𝑓1 # � # 𝑓2〉.
Proof. Indeed, the following coend calculus derivation constructs the isomorphism.

∫ 𝑈
𝑉 ∈SC SC (

𝐴
𝐵;𝑈𝑉 C 𝑋𝑌

) × SC (
𝑈
𝑉 ; 𝑁

)
= (by definition)

∫ 𝑈
𝑉 ∈SC

C(𝐴;𝑈) × C(𝑉 ; 𝑋) × C(𝑌 ; 𝐵) × C(𝑈;𝑉) = (by definition)
∫ 𝑈

𝑉 ∈SC SC (
𝐴
𝑋;𝑈𝑉

) × C(𝑌 ; 𝐵) × C(𝑈;𝑉) � (by Yoneda reduction)

C(𝐴; 𝑋) × C(𝑌 ; 𝐵).

Thus, it is constructed by a Yoneda isomorphism. �

Lemma C.5 (Promonoidal splice right unitor). We can construct a natural isomorphism,

𝜌 :
∫ 𝑈

𝑉 ∈SC SC (
𝐴
𝐵; 𝑋𝑌 C

𝑈
𝑉

) × SC (
𝑈
𝑉 ; 𝑁

)
� SC (

𝐴
𝐵; 𝑋𝑌

)
,

exclusively from Yoneda isomorphisms. This isomorphism is defined by 𝜌(〈 𝑓0 #� # 𝑓1 #� # 𝑓2〉|𝑔) = 〈 𝑓0 #� #
𝑓1 # 𝑔 # 𝑓2〉.
Proof. Indeed, the following coend calculus derivation constructs the isomorphism.

∫ 𝑈
𝑉 ∈SC SC (

𝐴
𝐵; 𝑋𝑌 C

𝑈
𝑉

) × SC (
𝑈
𝑉 ; 𝑁

)
= (by definition)

∫ 𝑈
𝑉 ∈SC

C(𝐴; 𝑋) × C(𝑌 ;𝑈) × C(𝑉 ; 𝐵) × C(𝑈;𝑉) = (by definition)
∫ 𝑈

𝑉 ∈SC
C(𝐴; 𝑋) × SC (

𝑌
𝐵;𝑈𝑉

) × C(𝑈;𝑉) � (by Yoneda reduction)

C(𝐴; 𝑋) × C(𝑌 ; 𝐵).

Thus, it is constructed by a Yoneda isomorphism. �

Proposition C.6 (From Proposition 3.6). Splice gives a functor S : Cat→ Promon.

Proof. Definition 3.4 defines the action on categories. We define the action on functors. Given a functor
𝐹 : C→ D, define the promonoidal functor S𝐹 : SC→ SD by

𝐴
𝐵 ↦→ 𝐹𝐴

𝐹𝐵,

S𝐹 := 𝐹𝐴,𝑋 × 𝐹𝑌 ,𝐵 : SC(𝐴𝐵, 𝑋𝑌) → SD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌),
S𝐹C := 𝐹𝐴,𝑋 × 𝐹𝑌 ,𝑋 ′ × 𝐹𝑌 ′,𝐵 : SC(𝐴𝐵, 𝑋𝑌 C 𝑋

′
𝑌 ′) → SD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌 C 𝐹𝑋

′
𝐹𝑌 ′),

S𝐹𝑁 := 𝐹𝐴,𝐵 : SC(𝐴𝐵, 𝑁) → SD(𝐹𝐴𝐹𝐵, 𝑁).
It follows from the promonoidal structure on spliced arrows (Proposition C.2) that this preserves coherence
maps. If IdC : C→ C is an identity functor, then it defines the identity IdSC, which has underlying functor
the identity and identity natural transformations. If 𝐺 : B→ C is another functor, then S(𝐺 # 𝐹) = S𝐺 #S𝐹
follows from composition of functors. �

Theorem C.7 (From Theorem 3.7). There exists an adjunction between categories and promonoidal
categories, where the contour of a promonoidal is the left adjoint, and the splice category is the right
adjoint.

Proof. Let C be a category and let B be a promonoidal category. We will show that the promonoidal
functors B → SC are in natural correspondence with the functors CB → C. We first observe that the
category CB is freely presented; thus, a functor CB→ C amounts to a choice of some objects and some
morphisms in C satisfying some equations. Explicitly, by the definition of contour, a functor CB → C
amounts to
• for each 𝑋 ∈ Bobj, a choice of objects 𝑋𝐿 , 𝑋𝑅 ∈ Cobj;
• for each element 𝑎 ∈ B(𝑋), a choice of morphisms 𝑎0 ∈ C(𝑋𝐿 , 𝑋𝑅);
• for each morphism 𝑎 ∈ B(𝐴; 𝑋), a choice of morphisms 𝑎0 ∈ C(𝐴𝐿; 𝑋𝐿) and 𝑎1 ∈ C(𝑋𝑅; 𝐴𝑅);
• for each split 𝑎 ∈ C(𝐴; 𝑋 C 𝑌), a choice of morphisms 𝑎0 ∈ C(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈ C(𝑋𝑅;𝑌 𝐿) and
𝑎2 ∈ C(𝑌𝑅; 𝐴𝑅);

• the choice must be such that 𝛼(𝑎 | 𝑏) = (𝑐 | 𝑑) implies 𝑎0 = 𝑐0 # 𝑑0; 𝑎1 # 𝑏0 = 𝑑1 and 𝑏1 = 𝑑2 # 𝑐1;
𝑎2 # 𝑏2 = 𝑐2;

• the choice must be such that 𝜌(𝑎 |𝑏) = 𝑐 = 𝜆(𝑑 |𝑒) implies 𝑎0 = 𝑐0 = 𝑑0#𝑒0#𝑑1 and 𝑎1#𝑏0#𝑎2 = 𝑐1 = 𝑑2.
On the other hand, a promonoidal functor B→ SC, also amounts to
• for each 𝑋 ∈ Bobj, an object 𝐹𝑋 = (𝑋𝐿 , 𝑋𝑅) ∈ SCobj, which is a pair of objects of Cobj;
• for each element 𝑎 ∈ B(𝑋), a morphism 𝐹 (𝑎) = 𝑎0 ∈ SC(𝐹𝑋);
• for each element 𝑎 ∈ B(𝐴; 𝑋), a splice 𝐹 (𝑎) = 〈𝑎0 # � # 𝑎1〉 ∈ SC(𝐹𝐴; 𝐹𝑋);
• for each element 𝑎 ∈ B(𝐴; 𝑋 C 𝑌), a splice 𝐹 (𝑎) = 〈𝑎0 # � # 𝑎1 # � # 𝑎2〉 ∈ SC(𝐹𝐴; 𝐹𝑋 C 𝐹𝑌);
• preserving associativity, with 𝛼(𝑎 | 𝑏) = (𝑐 | 𝑑) implying 𝛼(𝐹 (𝑎) | 𝐹 (𝑏)) = 𝐹 (𝑐) | 𝐹 (𝑑);
• preserving unitality, with 𝜌(𝑎 | 𝑏) = 𝑐 = 𝜆(𝑑 | 𝑒) implying 𝜌(𝐹 (𝑎) | 𝐹 (𝑏)) = 𝐹 (𝑐) = 𝜆(𝐹 (𝑑) | 𝐹 (𝑒));

by the definition of splice, its associativity and unitality, the structure on each one of these points is exactly
equal. �

C.1 Spliced arrow multicategory
As a consequence of the previous discussion, the n-morphisms are the sequences of arrows in C separated

by 𝑛 gaps; the sequence of arrows goes from 𝐴 to 𝐵, with holes typed by {𝑋𝑖 , 𝑌𝑖}𝑖∈[1,...,𝑛] . In other words,

SC
(
𝐴
𝐵 ; 𝑋1

𝑌1
⊗ . . . ⊗ 𝑋𝑛

𝑌𝑛

)
= C(𝐴; 𝑋1) ×

(
𝑛−1∏
𝑘=1

C(𝑌𝑘 , 𝑋𝑘+1)
)
× C(𝑌𝑛, 𝐵).

Composition in the multicategory is defined by substitution of a spliced arrow into one of the gaps of
the second; the identity is just id𝐴 − id𝐵, the spliced arrow with a single gap typed by (𝐴, 𝐵).
Proposition C.8. The multicategory of spliced arrows, SC, is precisely the promonoidal category induced
by the duality Cop a C in the monoidal bicategory of profunctors: a promonoidal category over C × Cop.

Appendix D
Parallel-Sequential Context

D.1 Monoidal Contour
Definition D.1 (Monoidal contour, from Definition 4.4). The contour of a produoidal category B is the
monoidal category DB that has two objects, 𝑋𝐿 (left-handed) and 𝑋𝑅 (right-handed), for each object
𝑋 ∈ B𝑜𝑏 𝑗 ; and has arrows those that arise from contouring both sequential and parallel decompositions of
the promonoidal category.

𝑎𝑎𝑎0 𝑎1 𝑎𝑎0 𝑎1𝑎1𝑎0𝑎

𝑎0

𝑎𝑎0

𝑎1

𝑎2

Fig. 22: Generators of the monoidal category of contours.

Specifically, it is freely presented by (i) a pair of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈ DB(𝑋𝑅; 𝐴𝑅) for
each morphism 𝑎 ∈ B(𝐴; 𝑋); (ii) a morphism 𝑎0 ∈ DB(𝐴𝐿; 𝐴𝑅), for each sequential unit 𝑎 ∈ C(𝐴; 𝑁);
(iii) a pair of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝐼) and 𝑎0 ∈ DB(𝐼; 𝐴𝑅), for each parallel unit 𝑎 ∈ B(𝐴; 𝐼); (iv)
a triple of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈ DB(𝑋𝑅;𝑌 𝐿), 𝑎2 ∈ DB(𝑌𝑅; 𝐴𝑅) for each sequential split
𝑎 ∈ B(𝐴; 𝑋 C 𝑌); and (v) a pair of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿 ⊗ 𝑌 𝐿) and 𝑎1 ∈ DB(𝑋𝑅 ⊗ 𝑌𝑅; 𝐴𝑅) for
each parallel split 𝑎 ∈ B(𝐴; 𝑋 ⊗ 𝑌), see Figure 22.

For each equality 𝑎 #2 𝑏 = 𝑐 #1 𝑑, we impose the equations 𝑎0 = 𝑐0 # 𝑑0; 𝑎1 # 𝑏0 = 𝑑1 and 𝑏1 = 𝑑2 # 𝑐1;
𝑎2 # 𝑏2 = 𝑐2. For each equality 𝑎 #2 𝑏 = 𝑐 = 𝑑 #1 𝑒, we impose 𝑎0 = 𝑐0 = 𝑑0 # 𝑒0 # 𝑑1 and 𝑎1 # 𝑏0 #𝑎2 = 𝑐1 = 𝑑2.
These follow from Figure 7.

For each application of associativity, 𝛼(𝑎#1𝑏) = 𝑐#2𝑑, we impose the equations 𝑎0#(𝑏0⊗id) = 𝑐0#(id⊗𝑑0)
and (𝑏1 ⊗ id) # 𝑎1 = (id ⊗ 𝑑1) # 𝑐1. These follow from Figure 23.

𝑏𝑏0

𝑏1

𝑎𝑎0 𝑎1

𝑑

𝑑0 𝑑1

𝑐𝑐0 𝑐1

=

Fig. 23: Equation from associativity.

For each application of unitality, 𝜆(𝑎 #1 𝑏) = 𝑐 = 𝜌(𝑑 #2 𝑒), we impose the equations 𝑎0 # (𝑏0 ⊗ id) = 𝑐0 =
𝑑0 # (id ⊗ 𝑒0) and (𝑏1 ⊗ id) # 𝑎1 = 𝑐1 = (id ⊗ 𝑒1) # 𝑑1. These follow from Figure 24.

𝑎𝑎0 𝑎1 𝑑𝑑0 𝑑1

=

𝑏 𝑏1𝑏0 𝑒 𝑒1𝑒0

𝑐𝑐0 𝑐1
=

Fig. 24: Equations from unitality.

For each application of the laxator, 𝜓2 (𝑎 | 𝑏 | 𝑐) = (𝑑 | 𝑒 | 𝑓), we impose the equation 𝑎0 # (𝑏0⊗𝑐0) = 𝑑0 #𝑒0,
the middle equation 𝑏1 ⊗ 𝑐1 = 𝑒1 # 𝑑1 # 𝑓0, and (𝑏2 ⊗ 𝑐2) # 𝑎1 = 𝑓1 # 𝑑2. These follow Figure 25.

For each application of the laxator, 𝜓0 (𝑎) = (𝑏 |1 𝑐 |2 𝑑), we impose an equation 𝑎0 = 𝑏0 # 𝑐0, an equation
id = 𝑐1 # 𝑏1 # 𝑑0, and an equation 𝑎1 = 𝑑1 # 𝑏2. This follows Figure 26.

For each application of the laxator, 𝜑2 (𝑎 |1 𝑏 |2 𝑐) = 𝑑, we impose an equation 𝑎0 # (𝑏0 ⊗ 𝑐0) # 𝑎1 = 𝑑0.
This follows Figure 27.

For each application of the laxator, 𝜑0 (𝑎) = 𝑏, we impose an equation 𝑎0 # 𝑎1 = 𝑏0. This follows
Figure 28.

𝑎𝑎0 𝑎1

𝑐

𝑐0

𝑐1

𝑐2𝑏𝑏0

𝑏1

𝑏2

𝑒𝑒0

𝑒1

𝑑𝑑0

𝑑1

𝑑2

𝑓

𝑓0

𝑓1

Fig. 25: Equations for the first laxator.

𝑐

𝑐1
𝑐0

𝑏𝑏0

𝑏1

𝑏2

𝑑 𝑑1
𝑑0

𝑎 𝑎1𝑎0

Fig. 26: Equations for the second laxator.

𝑎𝑎0 𝑎1

𝑏

𝑏0

𝑐

𝑐0

𝑑

𝑑0

Fig. 27: Equations for the third laxator.

𝑏

𝑏0

𝑎 𝑎1𝑎0

Fig. 28: Equations for the fourth laxator.

Proposition D.2 (From Proposition 4.5). Monoidal contour gives a functor D : Produo→Mon.

Proof. Definition 4.4 defines the action on produoidal categories. We define the action on produoidal
functors. Given a produoidal functor 𝐹 : V → W, define the strict monoidal functor D𝐹 : DV → DW
by the following morphism of presentations:
• the objects 𝑋𝐿 and 𝑋𝑅 are mapped to 𝐹 (𝑋)𝐿 and 𝐹 (𝑋)𝑅;
• for each 𝑎 ∈ V(𝐴; 𝑁), the morphism 𝑎0 : 𝐴𝐿 → 𝐴 is mapped to 𝐹𝑁 (𝑎)0;
• for each 𝑏 ∈ V(𝐴; 𝐼), both 𝑏0 : 𝐴𝐿 → 𝐼 and 𝑏1 : 𝐼 → 𝐴𝑅 are mapped to 𝐹𝐼 (𝑏)0 and 𝐹𝐼 (𝑏)1;
• for each 𝑐 ∈ V(𝑋; 𝐵), the morphisms 𝑐0 : 𝐵𝐿 → 𝑋𝐿 , 𝑐1 : 𝑋𝑅 → 𝐵𝑅 are mapped to 𝐹 (𝑐)0 and 𝐹 (𝑐)1;
• for each 𝑑 ∈ V(𝐶;𝑌 ⊗ 𝑍), the morphisms 𝑑0 : 𝐶𝐿 → 𝑌 𝐿 , 𝑑1 : 𝑌𝑅 → 𝑍𝐿 and 𝑑2 : 𝑍𝑅 → 𝐶𝑅 are

mapped to 𝐹C (𝑑)0, 𝐹C (𝑑)1 and 𝐹C (𝑑)2;
• for each 𝑒 ∈ V(𝐶;𝑌 C 𝑍), the morphisms 𝑒0 : 𝐶𝐿 → 𝑌 𝐿 , 𝑒1 : 𝑌𝑅 → 𝑍𝐿 and 𝑒2 : 𝑍𝑅 → 𝐶𝑅 are

mapped to 𝐹C (𝑒)0, 𝐹C (𝑒)1 and 𝐹C (𝑒).
It follows from 𝐹 : V → W being a produoidal functor that the contour equations of Definition 3.1
hold between the images of generators, so this assignment extends freely to a strict monoidal functor. In
particular when IdV : V→ V is an identity, it is an identity functor. Let 𝐺 : U→ V be another produoidal
functor, then C(𝐺 # 𝐹) = C(𝐺) # C(𝐹) follows from the composition of produoidal functors. �

D.2 Spliced Monoidal Arrows
Proposition D.3 (From Proposition 4.7). Spliced monoidal arrows form a produoidal category with their
sequential and parallel splits, units, and suitable coherence morphisms and laxators.

Proof. We use the laxators constructed in Lemmas D.4 to D.7. Because these laxators are constructed out
of compositions and Yoneda lemma, they do satisfy all formal coherence equations. �

Lemma D.4 (Produoidal splice, first laxator). We can construct a natural transformation,

𝜓2 : TC (
𝐴
𝐵;

(
𝑋
𝑌 C

𝑋 ′
𝑌 ′

) ⊗ (
𝑈
𝑉 C

𝑈 ′
𝑉 ′

)) → TC (
𝐴
𝐵;

(
𝑋
𝑌 ⊗ 𝑈𝑉

)
C

(
𝑋 ′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

))
,

exclusively from compositions and Yoneda isomorphisms. This laxator is defined by

𝜓2 (〈 𝑓0 # � # 𝑓1〉 | 〈ℎ0 # � # ℎ1 # � # ℎ2〉 | 〈𝑘0 # � # 𝑘1 # � # 𝑘2〉) = 〈𝑔0 # � # 𝑔1 # � # 𝑔2〉|〈𝑝0 # � # 𝑝1〉|〈𝑞0 # � # 𝑞1〉
if and only if

〈 𝑓0 # (ℎ0 ⊗ 𝑘0) # � # ℎ1 ⊗ 𝑘1 # � # (ℎ2 ⊗ 𝑘2) # 𝑓1〉 = 〈𝑔0 # 𝑝0 # � # 𝑝1 # 𝑔1 # 𝑞0 # � # 𝑞1 # 𝑔2〉.
Proof. We will show that the right hand side is isomorphic to the following set. Then, we construct a map
from the left hand to this same set,

C(𝐴; 𝑋 ⊗ 𝑋 ′) × C(𝑌 ⊗ 𝑌 ′;𝑈 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑉 ′; 𝐵).
Indeed the following coend derivation constructs an isomorphism.

TC (
𝐴
𝐵;

(
𝑋
𝑌 ⊗ 𝑋

′
𝑌 ′

)
C

(
𝑈
𝑉 ⊗ 𝑈

′
𝑉 ′

)) def
=

∫ 𝑍
𝑊 , 𝑍

′
𝑊 ′∈TC TC (

𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
) × TC (

𝑍
𝑊 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) × TC (
𝑍 ′
𝑊 ′;

𝑈
𝑉 ⊗ 𝑈

′
𝑉 ′

) def
=

∫ 𝑍
𝑊 , 𝑍

′
𝑊 ′∈TC TC (

𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
) × C(𝑍; 𝑋 ⊗ 𝑋 ′) × C(𝑌 ⊗ 𝑌 ′;𝑊) × C(𝑍 ′;𝑈 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑉 ′;𝑊 ′) def

=

∫ 𝑍
𝑊 , 𝑍

′
𝑊 ′∈TC TC (

𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
) × TC(𝑍𝑊 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′) × TC(𝑍

′
𝑊 ′;

𝑈 ⊗𝑈 ′
𝑉 ⊗𝑉 ′)

𝑦1
�

TC (
𝐴
𝐵; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′ C

𝑈 ⊗𝑈 ′
𝑉 ⊗𝑉 ′

) def
=

C(𝐴; 𝑋 ⊗ 𝑋 ′) × C(𝑌 ⊗ 𝑌 ′;𝑈 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑉 ′; 𝐵).

The isomorphism sends the triple (〈𝑔0#�#𝑔1#�#𝑔2〉|〈𝑝0#�#𝑝1〉|〈𝑞0#�#𝑞1〉) to 〈𝑔0#𝑝0#�#𝑝1#𝑔1#𝑞0#�#𝑞1#𝑔2〉.
On the other hand, we define a map from the left hand side of the equation to this set, given by

〈 𝑓0 # � # 𝑓1〉 | 〈ℎ0 # � # ℎ1 # � # ℎ2〉 | 〈𝑘0 # � # 𝑘1 # � # 𝑘2〉 ↦→ 〈 𝑓0 # (ℎ0 ⊗ 𝑘0) # � # ℎ1 ⊗ 𝑘1 # � # (ℎ2 ⊗ 𝑘2) # 𝑓1〉.
In conclusion, composing both the isomorphism and the map, 𝜓2 (〈 𝑓0 # � # 𝑓1〉 | 〈ℎ0 # � # ℎ1 # � # ℎ2〉 | 〈𝑘0 #
� # 𝑘1 # � # 𝑘2〉) = 〈𝑔0 # � # 𝑔1 # � # 𝑔2〉|〈𝑝0 # � # 𝑝1〉|〈𝑞0 # � # 𝑞1〉 if and only if

〈 𝑓0 # (ℎ0 ⊗ 𝑘0) # � # (ℎ1 ⊗ 𝑘1) # � # (ℎ2 ⊗ 𝑘2) # 𝑓1〉 = 〈𝑔0 # 𝑝0 # � # 𝑝1 # 𝑔1 # 𝑞0 # � # 𝑞1 # 𝑔2〉,
which is what we wanted to prove. �

Lemma D.5 (Produoidal splice, second laxator). We can construct a natural transformation,

𝜓0 : TC (
𝐴
𝐵; 𝐼

) → TC (
𝐴
𝐵; 𝐼 C 𝐼

)
,

exclusively from compositions and Yoneda isomorphisms. This laxator is defined by 𝜓0 (〈 𝑓0 # � # 𝑓1〉 | 〈ℎ0 #
� # ℎ1 # � # ℎ2〉 | 〈𝑘0 # � # 𝑘1 # � # 𝑘2〉) = 〈𝑔0 # � # 𝑔1 # � # 𝑔2〉|〈𝑝0 # � # 𝑝1〉|〈𝑞0 # � # 𝑞1〉 if and only if

〈 𝑓0 # (ℎ0 ⊗ 𝑘0) # � # (ℎ1 ⊗ 𝑘1) # � # (ℎ2 ⊗ 𝑘2) # 𝑓1〉 = 〈𝑔0 # 𝑝0 # � # 𝑝1 # 𝑔1 # 𝑞0 # � # 𝑞1 # 𝑔2〉.
Proof. We will show that the right hand side is isomorphic to the following set. Then, we construct a map
from the left hand to this same set, C(𝐴; 𝐼) × C(𝐼; 𝐼) × C(𝐼; 𝐵). Indeed the following coend derivation
constructs an isomorphism.

TC (
𝐴
𝐵; 𝐼 C 𝐼

) def
=

∫ 𝑍
𝑊 , 𝑍

′
𝑊 ′∈TC TC (

𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
) × TC (

𝑍
𝑊 ; 𝐼

) × TC (
𝑍 ′
𝑊 ′; 𝐼

) def
=

∫ 𝑍
𝑊 , 𝑍

′
𝑊 ′∈TC TC (

𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
) × TC (

𝑍
𝑊 ; 𝐼𝐼

) × TC (
𝑍 ′
𝑊 ′;

𝐼
𝐼

) 𝑦1
�

TC (
𝐴
𝐵; 𝐼𝐼 C 𝐼𝐼

) def
=

C(𝐴; 𝐼) × C(𝐼; 𝐼) × C(𝐼; 𝐵).

This isomorphism sends the triple 〈𝑏0#�#𝑏1#�#𝑏2〉 | 〈𝑐0#�#𝑐1〉 | 〈𝑑0#�#𝑑1〉 to 〈𝑏0#𝑐0#�#𝑐1#𝑏1#𝑑0#�#𝑑1#𝑏2〉.
On the other hand, we define a map from the left hand side of the equation to this set, given by

〈𝑎0 # � # 𝑎1〉 ↦→ 〈𝑎0 # � # id𝐼 # � # 𝑎1〉.
In conclusion, composing both the isomorphism and this function, we get that 𝜓0〈𝑎0 #� #𝑎1〉 = 〈𝑏0 #� # 𝑏1 #
� # 𝑏2〉 | 〈𝑐0 #� # 𝑐1〉 | 〈𝑑0 #� # 𝑑1〉 if and only if 〈𝑎0 #� # id𝐼 #� # 𝑎1〉 = 〈𝑏0 # 𝑐0 #� # 𝑐1 # 𝑏1 # 𝑑0 #� # 𝑑1 # 𝑏2〉. �
Lemma D.6 (Produoidal splice, third laxator). We can construct a natural transformation,

𝜑2 : TC (
𝐴
𝐵; 𝑁 ⊗ 𝑁

) → TC (
𝐴
𝐵; 𝑁

)
,

exclusively from compositions and Yoneda isomorphisms. This laxator is defined by 𝜑2 (〈 𝑓0 #�# 𝑓1〉 |ℎ0 |ℎ1) =
𝑓0 # (ℎ0 ⊗ ℎ1 # 𝑓1).
Lemma D.7 (Produoidal splice, fourth laxator). We can construct a natural transformation,

𝜑0 : TC (
𝐴
𝐵; 𝐼

) → TC (
𝐴
𝐵; 𝑁

)
,

exclusively from compositions and Yoneda isomorphisms. This laxator is defined by 𝜑0〈𝑎0 #� #𝑎1〉 = 𝑎0 #𝑎1.

Proposition D.8 (From Proposition 4.8). Monoidal splice gives a functor T : Mon→ Produo.

Proof. Definition 4.6 defines the action on monoidal categories. We define the action on monoidal functors.
Given a monoidal functor 𝐹 : C→ D, define the produoidal functor T𝐹 : TC→ TD by

𝐴
𝐵 ↦→ 𝐹𝐴

𝐹𝐵

T𝐹 := 𝐹𝐴,𝑋 × 𝐹𝑌 ,𝐵 : TC(𝐴𝐵, 𝑋𝑌) → TD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌)
T𝐹C := 𝐹𝐴,𝑋 × 𝐹𝑌 ,𝑋 ′ × 𝐹𝑌 ′,𝐵 : TC(𝐴𝐵, 𝑋𝑌 C 𝑋

′
𝑌 ′) → TD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌 C 𝐹𝑋

′
𝐹𝑌 ′)

T𝐹⊗ := 𝐹𝐴,𝑋 ⊗𝑌 × 𝐹𝑋 ′⊗𝑌 ′,𝐵 : TC(𝐴𝐵, 𝑋𝑌 ⊗ 𝑋
′

𝑌 ′) → TD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌 ⊗ 𝐹𝑋
′

𝐹𝑌 ′)
T𝐹𝑁 := 𝐹𝐴,𝐵 : TC(𝐴𝐵, 𝑁) → TD(𝐹𝐴𝐹𝐵, 𝑁)
T𝐹𝐼 := 𝐹𝐴,𝐼 × 𝐹𝐼 ,𝐵 : TC(𝐴𝐵, 𝐼) → TD(𝐹𝐴𝐹𝐵, 𝐼).

It follows from the produoidal structure on spliced monoidal arrows (Proposition D.3) that this preserves
coherence maps. If IdC : C → C is an identity functor, then it defines the identity IdTC, which has
underlying functor the identity and identity natural transformations. If 𝐺 : B → C is another monoidal
functor, then S(𝐺 # 𝐹) = S𝐺 # S𝐹 follows from composition of monoidal functors. �

Theorem D.9 (From Theorem 4.9). There exists an adjunction between monoidal categories (and strict
monoidal functors) and produoidal categories (and produoidal functors), where the monoidal contour is
the left adjoint, and the produoidal splice category is the right adjoint.

Proof. As in Theorem C.7, we again have that DB is presented by generators and equations; so, to
specify a strict monoidal functor DB→ M, it is enough to specify images of the generators satisfying the
equations. Let (M, ⊗𝑀 , 𝐼𝑀) be a monoidal category. Then a strict monoidal functor DB → M amounts
to the following data.
• For each object 𝑋 ∈ Bobj, a pair of objects 𝑋𝐿 , 𝑋𝑅 ∈ Mobj;
• for each element 𝑓 ∈ B(𝑋; 𝑁), a morphism 𝑓0 ∈ M(𝑋𝐿; 𝑋𝑅);
• for each unit 𝑓 ∈ B(𝑋; 𝐼), a choice of morphisms 𝑓0 ∈ M(𝑋𝐿; 𝐼𝑀), 𝑔0 ∈ M(𝐼𝑀 ; 𝑋𝑅);
• for each morphism 𝑓 ∈ B(𝐴; 𝑋), a choice of morphisms 𝑓0 ∈ M(𝐴𝐿; 𝑋𝐿) and 𝑓1 ∈ M(𝑋𝑅; 𝐴𝑅);

• for each sequential split 𝑓 ∈ B(𝐴; 𝑋 C 𝑌), a choice of morphisms 𝑓0 ∈ M(𝐴𝐿; 𝑋𝐿), 𝑓1 ∈
M(𝑋𝐿; 𝑋𝑅), and 𝑓2 ∈ M(𝑋𝑅, 𝐴𝑅);

• for each parallel split 𝑓 ∈ B(𝐴; 𝑋 ⊗ 𝑌), a choice of morphisms 𝑓0 ∈ M(𝐴𝐿; 𝑋𝐿 ⊗ 𝑌 𝐿) and 𝑓1 ∈
M(𝑋𝑅 ⊗ 𝑌𝑅; 𝐴𝑅).

Such that for each promonoidal structure
• 𝛼(𝑎 #1 𝑏) = (𝑐 #2 𝑑) in B ⇒ 𝑎0 # (𝑏0 ⊗ id) = 𝑐0 # (id ⊗ 𝑑0) and (𝑏1 ⊗ id) # 𝑎1 = (id ⊗ 𝑑1) # 𝑐1 in M;
• 𝜆(𝑎 #1 𝑏) = 𝑐 = 𝜌(𝑑 #2 𝑒) in B⇒ 𝑎0 # (𝑏0⊗ id) = 𝑐0 = 𝑑0 # (id⊗ 𝑒0) and (𝑏1⊗ id) #𝑎1 = 𝑐1 = (id⊗ 𝑒1) #𝑑1

in M;
and such that
• 𝜓2 (𝑎 | 𝑏 | 𝑐) = (𝑑 | 𝑒 | 𝑓) in B⇒ 𝑎0 # (𝑏0⊗ 𝑐0) = 𝑑0 #𝑒0, 𝑏1⊗ 𝑐1 = 𝑒1 #𝑑1 # 𝑓0 and (𝑏2⊗ 𝑐2) #𝑎1 = 𝑓1 #𝑑2

in M;
• 𝜓0 (𝑎) = (𝑏 | 𝑐 | 𝑑) in B ⇒ 𝑎0 = 𝑏0 # 𝑐0, id = 𝑐1 # 𝑏1 # 𝑑0, and 𝑎1 = 𝑑1 # 𝑏2 in M;
• 𝜑2 (𝑎 | 𝑏 | 𝑐) = 𝑑 in B ⇒ 𝑎0 # (𝑏0 ⊗ 𝑐0) # 𝑎1 = 𝑑0 in M;
• 𝜑0 (𝑎) = 𝑏 in B ⇒ 𝑎0 # 𝑎1 = 𝑏0 in M.

On the other hand, a produoidal functor 𝐹 : B→ TM, also amounts to the following data. For each
• 𝑋 ∈ Bobj an object 𝐹 (𝑋) = (𝑋𝐿 , 𝑋𝑅) ∈ TMobj;
• 𝑓 ∈ B(𝑋; 𝑁), an element 𝐹 (𝑓) = 𝑓0 ∈ TM(𝑋𝐿

𝑋𝑅; 𝑁);
• 𝑓 ∈ B(𝑋; 𝐼), a unit 𝐹 (𝑓) = 〈 𝑓 ‖ 𝑔〉 ∈ TM(𝑋𝐿

𝑋𝑅; 𝐼𝑀)
• 𝑓 ∈ B(𝐴; 𝑋), a spliced arrow 𝐹 (𝑓) = 〈 𝑓0 # � # 𝑓1〉 ∈ TM(𝐴𝐵, 𝑋𝑌);
• 𝑓 ∈ B(𝐴; 𝑋 C 𝑌), a spliced arrow 𝐹 (𝑓) = 〈 𝑓0 # � # 𝑓1 # � # 𝑓2〉 ∈ TM(𝐴𝐿

𝐴𝑅, 𝑋
𝐿

𝑋𝑅 C 𝑌
𝐿

𝑌 𝑅);
• 𝑓 ∈ B(𝐴; 𝑋 ⊗ 𝑌), a spliced monoidal arrow 𝐹 (𝑓) = 〈 𝑓0 # � ⊗ � # 𝑓1〉 ∈ TM(𝐴𝐿

𝐴𝑅, 𝑋
𝐿

𝑋𝑅 ⊗ 𝑌 𝐿

𝑌 𝑅);
Such that for each promonoidal structure
• 𝛼(𝑎 | 𝑏) = (𝑐 | 𝑑) in B ⇒ 𝛼(𝐹𝑎 | 𝐹𝑏) = (𝐹𝑐 | 𝐹𝑑) in TM;
• 𝜆(𝑎 | 𝑏) = 𝑐 = 𝜌(𝑑 | 𝑒) in B ⇒ 𝜆(𝐹𝑎 | 𝐹𝑏) = 𝐹𝑐 = 𝜌(𝐹𝑑 | 𝐹𝑒) in TM;

and such that
• 𝜓2 (𝑎 | 𝑏 | 𝑐) = (𝑑 | 𝑒 | 𝑓) in B ⇒ 𝜓2 (𝐹𝑎 | 𝐹𝑏 | 𝐹𝑐) = (𝐹𝑑 | 𝐹𝑒 | 𝐹 𝑓) in TM;
• 𝜓0 (𝑎) = (𝑏 | 𝑐 | 𝑑) in B ⇒ 𝜓0 (𝐹𝑎) = (𝐹𝑎 | 𝐹𝑐 | 𝐹𝑑) in TM;
• 𝜑2 (𝑎 | 𝑏 | 𝑐) = 𝑑 in B ⇒ 𝜑2 (𝐹𝑎 | 𝐹𝑏 | 𝐹𝑐) = 𝐹𝑑 in TM;
• 𝜑0 (𝑎) = 𝑏 in B ⇒ 𝜑0 (𝐹𝑎) = 𝐹𝑏 in TM.

Each of these points is exactly equal by definition, which establishes the desired adjunction. �

Appendix E
Normalization

E.1 Normalization
Theorem E.1 (From Theorem 5.2). Let V⊗,𝐼 ,C,𝑁 be a produoidal category. The profunctor NV(•; •) =
V(•; 𝑁 ⊗•⊗𝑁) forms a promonad. Moreover, the Kleisli category of this promonad is a normal produoidal
category with the following sequential and parallel splits and units.

NV(𝐴; 𝐵) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁);
NV(𝐴; 𝐵 ⊗ 𝐶) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁);

NV(𝐴; 𝐵 C 𝐶) = V(𝐴; (𝑁 ⊗ 𝐵 ⊗ 𝑁) C (𝑁 ⊗ 𝐶 ⊗ 𝑁));
NV(𝐴; 𝐼) = V(𝐴; 𝑁);
NV(𝐴; 𝑁) = V(𝐴; 𝑁).

Proof. We define the following multiplication and unit for the promonad, NV. They are constructed out
of laxators of the produoidal category V and Yoneda isomorphisms; thus, they must be associative and
unital by coherence. The unit is defined by

V(𝐴; 𝐵) � (by unitality of V)
V(𝐴; 𝐼 ⊗ 𝐵 ⊗ 𝐼) → (by the laxators of V)
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁) = (by definition)
NV(𝐴; 𝐵).

The multiplication is defined by,∫ 𝐵∈V
NV(𝐴; 𝐵) × NV(𝐵;𝐶) = (by definition)∫ 𝐵∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁) × V(𝐵; 𝑁 ⊗ 𝐶 ⊗ 𝑁) � (by Yoneda reduction)

V(𝐴; 𝑁 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝑁) → (by laxators of V)

V(𝐴; 𝑁 ⊗ 𝐶 ⊗ 𝑁) = (by definition)

NV(𝐴;𝐶).

Let us now construct the unitors and the associators. Again, they are constructed out of laxators of the
produoidal category V, the associators and unitors of V, and Yoneda isomorphisms. We first consider the
right unitor.∫ 𝑋 ∈NV

NV(𝐴; 𝐵 ⊗ 𝑋) × NV(𝑋; 𝑁) = (by definition)∫ 𝑋 ∈NV
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋; 𝑁) � (by associativity of V)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × V(𝑃; 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋; 𝑁) = (by definition)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × NV(𝑃; 𝑋) × NV(𝑋; 𝑁) � (by Yoneda reduction)∫ 𝑃∈V

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × NV(𝑃; 𝑁) = (by definition)∫ 𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × V(𝑃; 𝑁) � (by unitality)∫ 𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁).

We now consider the left unitor.∫ 𝑋 ∈NV
NV(𝐴; 𝑋 ⊗ 𝐵) × NV(𝑋; 𝑁) = (by definition)∫ 𝑋 ∈NV
V(𝐴; 𝑁 ⊗ 𝑋 ⊗ 𝑁 ⊗ 𝐵 ⊗ 𝑁) × NV(𝑋; 𝑁) � (by associativity of V)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐵 ⊗ 𝑁) × V(𝑃; 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋; 𝑁) = (by definition)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐵 ⊗ 𝑁) × NV(𝑃; 𝑋) × NV(𝑋; 𝑁) � (by Yoneda reduction)∫ 𝑃∈V

V(𝐴; 𝑃 ⊗ 𝐵 ⊗ 𝑁) × NV(𝑃; 𝑁) = (by definition)∫ 𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐵 ⊗ 𝑁) × V(𝑃; 𝑁) � (by unitality)∫ 𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁).

Finally, we consider the associator. We can do so in two steps, showing that both sides of the equation∫ 𝑋 ∈NV
NV(𝐴; 𝐵 ⊗ 𝑋) × NV(𝑋;𝐶 ⊗ 𝐷) �

∫ 𝑌 ∈NV
NV(𝐴;𝑌 ⊗ 𝐷) × NV(𝑌 ; 𝐵 ⊗ 𝐶)

are isomorphic to V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁). The first side by∫ 𝑋 ∈NV
NV(𝐴; 𝐵 ⊗ 𝑋) × NV(𝑋;𝐶 ⊗ 𝐷) = (by definition)∫ 𝑋 ∈NV
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋;𝐶 ⊗ 𝐷) � (by associativity)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × V(𝑃; 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋;𝐶 ⊗ 𝐷) = (by definition)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × NV(𝑃; 𝑋) × NV(𝑋;𝐶 ⊗ 𝐷) � (by Yoneda reduction)∫ 𝑃∈V

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × NV(𝑃;𝐶 ⊗ 𝐷) = (by definition)∫ 𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × V(𝑃; 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁) � (by associativity)

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁),

and the second side by∫ 𝑌 ∈NV
NV(𝐴;𝑌 ⊗ 𝐷) × NV(𝑌 ; 𝐵 ⊗ 𝐶) = (by definition)∫ 𝑌 ∈NV
V(𝐴; 𝑁 ⊗ 𝑌 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁) × NV(𝑌 ; 𝐵 ⊗ 𝐶) � (by associativity)∫ 𝑌 ∈NV,𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐷 ⊗ 𝑁) × V(𝑃; 𝑁 ⊗ 𝑌 ⊗ 𝑁) × NV(𝑌 ; 𝐵 ⊗ 𝐶) = (by definition)∫ 𝑌 ∈NV,𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐷 ⊗ 𝑁) × NV(𝑃; 𝑋) × NV(𝑋; 𝐵 ⊗ 𝐶) � (by Yoneda reduction)∫ 𝑃∈V

V(𝐴; 𝑃 ⊗ 𝐷 ⊗ 𝑁) × NV(𝑃; 𝐵 ⊗ 𝐶) = (by definition)∫ 𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐷 ⊗ 𝑁) × V(𝑃; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁) � (by associativity)

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁).

Precisely because they are constructed out of coherence morphisms for the base produoidal category V,
we know that these satisfy the pentagon and triangle equations and define a promonoidal category. The
unitors and associators for the sequential promonoidal structure are defined similarly. Finally, we define
the laxators of NV, making it into a produoidal category.

The first laxator,

𝜓2 : NV(𝐴; (𝐵1 C 𝐶1) ⊗ (𝐵2 C 𝐶2)) −→ NV(𝐴; (𝐵1 ⊗ 𝐵2) C (𝐶1 ⊗ 𝐶2)),
is defined by the following reasoning.

NV(𝐴; (𝐵1 C 𝐶1) ⊗ (𝐵2 C 𝐶2))
= (by definition)

V(𝐴; 𝑁 ⊗ ((𝑁 ⊗ 𝐵1 ⊗ 𝑁) C (𝑁 ⊗ 𝐶1 ⊗ 𝑁)) ⊗ 𝑁 ⊗ ((𝑁 ⊗ 𝐵2 ⊗ 𝑁) C (𝑁 ⊗ 𝐶2 ⊗ 𝑁)) ⊗ 𝑁)
→ (by 𝜓2 of V)

V(𝐴; ((𝑁 ⊗ 𝑁 ⊗ 𝐵1 ⊗ 𝑁) C (𝑁 ⊗ 𝑁 ⊗ 𝐵2 ⊗ 𝑁)) ⊗ ((𝑁 ⊗ 𝑁 ⊗ 𝐵2 ⊗ 𝑁 ⊗ 𝑁) C (𝑁 ⊗ 𝐶2 ⊗ 𝑁 ⊗ 𝑁)))
→ (by 𝜓2 of V)

V(𝐴; (𝑁 ⊗ 𝑁 ⊗ 𝐵1 ⊗ 𝑁 ⊗ 𝑁 ⊗ 𝑁 ⊗ 𝐵2 ⊗ 𝑁 ⊗ 𝑁) C (𝑁 ⊗ 𝑁 ⊗ 𝐶1 ⊗ 𝑁 ⊗ 𝑁 ⊗ 𝑁 ⊗ 𝐶2 ⊗ 𝑁 ⊗ 𝑁))
→ (by 𝜑2 of V)

V(𝐴; (𝑁 ⊗ 𝑁 ⊗ 𝐵1 ⊗ 𝑁 ⊗ 𝐵2 ⊗ 𝑁 ⊗ 𝑁) C (𝑁 ⊗ 𝑁 ⊗ 𝐶1 ⊗ 𝑁 ⊗ 𝐶2 ⊗ 𝑁 ⊗ 𝑁))
= (by definition)

NV(𝐴; (𝐵1 ⊗ 𝐵2) C (𝐶1 ⊗ 𝐶2)).
The remaining laxators are isomorphisms that arise from applications of unitality or just as identities.

𝜓0 : NV(𝐴, 𝐼) �−→ NV(𝐴; 𝐼 C 𝐼)
𝜑2 : NV(𝐴; 𝑁 ⊗ 𝑁) �−→ NV(𝐴; 𝑁)
𝜑0 : NV(𝐴; 𝐼) 𝑖𝑑−→ NV(𝐴; 𝑁)

This has shown that the resulting category is also a normal produoidal category. �

Proposition E.2. Normalization extends to a endofunctor of produoidal categories N : Produo→ Produo.

Proof. Let V⊗,𝐼 ,C,𝑁 and W�,𝐽 ,J,𝑀 be produoidal categories. N sends V to its normalization NV. Let
(𝐹, 𝐹⊗, 𝐹𝐼 , 𝐹C, 𝐹𝑁) : V → W be a produoidal functor. Then N𝐹 : NV → NW has underlying functor
defined by 𝐹 on objects and on morphisms by

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁) = (by definition)∫ 𝑋,𝑌 ∈V
V(𝐴; 𝑋 ⊗ 𝐵 ⊗ 𝑌) × V(𝑋; 𝑁) × V(𝑌 ; 𝑁) → (induced by 𝐹⊗, 𝐹𝑁)∫ 𝑋,𝑌 ∈V
W(𝐹𝐴; 𝐹𝑋 � 𝐹𝐵 � 𝐹𝑌) ×W(𝐹𝑋; 𝑀) ×W(𝐹𝑌 ; 𝑀) → (inclusion, universal prop. of coend)∫ 𝑃,𝑄∈W
W(𝐹𝐴; 𝑃 � 𝐹𝐵 � 𝑄) ×W(𝑃; 𝑀) ×W(𝑄; 𝑀) = (by definition)

W(𝐹𝐴; 𝑀 � 𝐹𝐵 � 𝑀).
N𝐹⊗ and N𝐹C are defined similarly, and N𝐹𝑁 is 𝐹𝑁 . We have NIdV = IdNV, since all the data of

the left hand side is given by identity maps on NV, and if 𝐺 : U→ V is another produoidal functor, then
N(𝐺 # 𝐹) = N𝐺 #N𝐹 follows from the naturality of the components of 𝐹 and 𝐺. �

Theorem E.3 (From Theorem 5.3). The functor N : Produo → Produo from Proposition E.2 is an
idempotent monad.

Proof. Let V⊗,𝐼 ,C,𝑁 be a produoidal category and let C𝑁 , ⊗𝑁 , 𝑁 denote the sequential splits, parallel
splits, and unit in its normalization NV.

The monad has unit 𝜂 with component at V the following produoidal functor 𝜂V : V → NV. The
underlying functor is the functor induced by the promonad [Rom22, Lemma 3.8]: it is identity on objects,
and acts on morphisms by the unit of the promonad. The following components of the produoidal functor
preserve laxators and coherence maps since they are constructed only from laxators and coherence maps.

𝜂⊗ : V(𝐴; 𝐵 ⊗ 𝐶) 𝜆 , 𝜌→ V(𝐴; 𝐼 ⊗ 𝐵 ⊗ 𝐼 ⊗ 𝐶 ⊗ 𝐼) 𝜑0−−→ V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁),
𝜂𝐼 : V(𝐴; 𝐼) 𝜑0−−→ V(𝐴; 𝑁),
𝜂C : V(𝐴; 𝐵 C 𝐶) 𝜆 , 𝜌→ V(𝐴; (𝐼 ⊗ 𝐵 ⊗ 𝐼) C (𝐼 ⊗ 𝐶 ⊗ 𝐼)) 𝜑0−−→ V(𝐴; (𝑁 ⊗ 𝐵 ⊗ 𝑁) C (𝑁 ⊗ 𝐶 ⊗ 𝑁)),
𝜂𝑁 : V(𝐴; 𝑁) id−→ V(𝐴; 𝑁).

The monad has multiplication 𝜇 with component at V the following isomorphism 𝜇V : NNV � NV
of produoidal categories (witnessing that the monad is idempotent). The underlying functor is identity on
objects, and acts on morphisms by

NNV(𝐴; 𝐵) = NV(𝐴; 𝑁 ⊗𝑁 𝐵 ⊗𝑁 𝑁) 𝜆 , 𝜌� NV(𝐴; 𝐵).

The following natural transformations make this a produoidal functor:

𝜇⊗ : NNV(𝐴; 𝐵 ⊗𝑁𝑁 𝐶) = NV(𝐴; 𝑁 ⊗𝑁 𝐵 ⊗𝑁 𝑁 ⊗𝑁 𝐶 ⊗𝑁 𝑁) 𝜆 , 𝜌� NV(𝐴; 𝐵 ⊗𝑁 𝐶),
𝜇𝑁 = 𝜇𝐼 : NNV(𝐴; 𝑁) = NV(𝐴; 𝑁),
𝜇C : NNV(𝐴; 𝐵 C𝑁𝑁 𝐶) = NV(𝐴; (𝑁 ⊗𝑁 𝐵 ⊗𝑁 𝑁) C𝑁 (𝑁 ⊗𝑁 𝐶 ⊗𝑁 𝑁)) 𝜆 , 𝜌� NV(𝐴; 𝐵 C𝑁 𝐶).

.
Finally we verify the monad laws. 𝜂NV # 𝜇V is identity on objects and on morphisms applies left and

right unitors followed by their inverses, thus has underlying functor equal to the identity. The components
of the natural transformations are also identities, since the laxator 𝜑0 is an identity for NV, and they are
otherwise composed of unitors followed by their inverses, and similarly for the other unit law (using the
unitality coherence equations of Figure 36). 𝜇NV # 𝜇V and N𝜇V # 𝜇V are identity on objects and amount
to applying left and right unitors twice on morphisms, and similarly for their components. �

Lemma E.4. A produoidal category V has exactly one algebra structure for the normalization monad
when it is normal, and none otherwise.

Proof. Let (𝑓map, 𝑓⊗, 𝑓𝐼 , 𝑓C, 𝑓𝑁) : NV → V be an algebra. This means that the following commutative
diagrams with the unit and multiplication of the normalization monad must commute.

V NV NNV NV

V NV V

𝜂

id
𝑓

𝜇

N 𝑓 𝑓

𝑓

Now, consider how the laxator 𝜓0 : V(•; 𝐼) → V(•; 𝑁) is transported by these maps.

V(•; 𝑁)

V(•; 𝐼) V(•; 𝑁) V(•; 𝐼)

V(•; 𝑁) V(•; 𝑁)

𝑓𝐼
id

𝜂𝐼

𝜓0

id
𝑓𝑁

𝜓0
id

id

We conclude that 𝜂𝐼 = 𝜓0, but also that 𝑓𝑁 = id. As a consequence, 𝜓0 is invertible and 𝑓𝐼 must be its
inverse. We have shown that the produoidal category V must be normal.

We will now show that this already determines all of the functor 𝑓 . We know that 𝜂⊗, 𝜂C, 𝜂map are
isomorphisms because they are constructed from the unitors, associators, and the laxator 𝜓0, which is an
isomorphism in this case. This determines that 𝑓⊗, 𝑓C, 𝑓map must be their inverses. By construction, these
satisfy all coherence morphisms. �

Theorem E.5 (From Theorem 5.4). Normalization determines an adjunction between produoidal categories
and normal produoidal categories,

N : Produo
 nProduo : U
That is, NV is the free normal produoidal category over V.

Proof. We know that the algebras for the normalization monad are exactly the normal produoidal categories
(Lemma E.4). We also know that the normalization monad is idempotent (Theorem 5.3). This implies that
the forgetful functor from its category of algebras is fully faithful, and thus, the algebra morphisms are
exactly the produoidal functors. As a consequence, the canonical adjunction to the category of algebras of
the monad is exactly an adjunction to the category of normal produoidal categories. �

E.2 Symmetric Normalization
Theorem E.6 (From Theorem 5.6). Let V⊗,𝐼 ,C,𝑁 be a symmetric produoidal category. The profunctor
N 𝜎V(•; •) = V(•; 𝑁 ⊗ •) forms a promonad. Moreover, the Kleisli category of this promonad is a normal
symmetric produoidal category with the following sequential and parallel splits and units.

N 𝜎V(𝐴; 𝐵) = V(𝐴; 𝑁 ⊗ 𝐵);
N 𝜎V(𝐴; 𝐵 ⊗𝑁 𝐶) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝐶);
N 𝜎V(𝐴; 𝐵 C𝑁 𝐶) = V(𝐴; (𝑁 ⊗ 𝐵) C (𝑁 ⊗ 𝐶));

N 𝜎V(𝐴; 𝑁) = V(𝐴; 𝑁);
N 𝜎V(𝐴; 𝐼) = V(𝐴; 𝑁).

Proof. The unit and multiplication of the promonad are given in essentially the same way as in the proof of
Theorem E.1. Likewise the associators, unitors and laxators of N 𝜎V are given in essentially the same way,
though one must use the fact that V is symmetric. We need additionally a symmetry natural isomorphism
for N 𝜎V. Its components are defined by,

N 𝜎V(𝐴; 𝐵 ⊗ 𝐶) = (by definition)

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝐶) � (by associativity)∫ 𝑋 ∈V
V(𝐴; 𝑁 ⊗ 𝑋) × V(𝑋; 𝐵 ⊗ 𝐶) � (by symmetry of V)∫ 𝑋 ∈V
V(𝐴; 𝑁 ⊗ 𝑋) × V(𝑋;𝐶 ⊗ 𝐵) � (by associativity)

V(𝐴; 𝑁 ⊗ 𝐶 ⊗ 𝐵) = (by definition)

N 𝜎V(𝐴;𝐶 ⊗ 𝐵).

These satisfy hexagon and symmetry identities because these are satisfied by V, and we only use
symmetries and coherences of V. Thus we have a normal symmetric produoidal category N 𝜎V. �

Definition E.7 (Symmetric produoidal functor). A symmetric produoidal functor is a produoidal functor
𝐹 : V→W that moreover preserves the symmetry, in that 𝐹⊗ # 𝜎V = 𝜎W # 𝐹⊗. We denote by SymProduo
the category of symmetric produoidal categories and symmetric produoidal functors.

Proposition E.8. Symmetric normalization extends to a endofunctor of symmetric produoidal categories
N 𝜎 : SymProduo→ SymProduo.

Proof. The construction is essentially the same as in Proposition E.2. The only thing left to check is that
N 𝜎𝐹 there constructed preserves symmetries whenever 𝐹 does (see Theorem E.6). This is because the
symmetry of N 𝜎V is constructed out of associativity and symmetries of V, which N 𝜎𝐹⊗, constructed
itself out of 𝐹⊗, associativity, and symmetries of V, must preserve. �

Theorem E.9. The functor N 𝜎 : SymProduo → SymProduo from Proposition E.2 is an idempotent
monad.

Proof. The construction is again essentially the same as in Theorem E.3. It is left to check that the
unit and multiplication constructed in this way preserve the symmetries. Indeed, 𝜂𝜎 : V → N 𝜎V is
symmetric produoidal because 𝜂⊗ is constructed out of natural associators and laxators that commute with
the symmetry. �

Lemma E.10. A symmetric produoidal category V has exactly one algebra structure for the symmetric
normalization monad when it is normal, and none otherwise.

Proof. The proof essentially follows the same reasoning as Lemma E.4, replacing the construction with
the symmetric version and the previous lemmas. �

Theorem E.11 (From Theorem 5.7). Symmetric normalization determines an adjunction between symmetric
produoidal categories and normal symmetric produoidal categories,

N 𝜎 : SymProduo
 nSymProduo : U
Where we define the category of normal symmetric produoidal categories, nSymProduo, to use as functors
the symmetric produoidal functors, adquiring a full forgetful functor U.

That is, N 𝜎V is the free symmetric normal produoidal category over the symmetric produoidal category
V.

Proof. The proof essentially follows Theorem E.5, now using the previous lemmas and Lemma E.10. �

E.3 Normalization of duoidals and normalization of produoidals
We conjecture that the normalization of a produoidal category could still be seen to arise from the

normalization procedure for duoidal categories outlined by Garner and López Franco [GF16]. Every
produoidal category V induces a closed duoidal structure on its presheaf category V̂ := [Vop, Set]: indeed,
by a result of Day, any promonoidal structure induces a closed monoidal structure on the presheaf category
[Day70b], [Day70a]; furthermore, one can confirm that the two closed monoidal structures on V̂ interact
in such a way as to make the category duoidal (Theorem I.6).

Normalizing the duoidal V̂ yields the category of algebras EM(NV) for the promonad NV – or,
equivalently, the category of algebras for the cocontinuous monad induced by NV on V̂. EM(NV) is
now normal duoidal, and furthermore the closure of the tensors on V̂ carries across to make EM(NV)
also closed. Now, one notes that we have the following isomorphism EM(NV) � [NVop, Set], that is, the
category of algebras is the presheaf category of the Kleisli object NV of the promonad in Prof. Therefore,
the closed monoidal structures of EM(NV) must correspond to promonoidal structures of NV and these
interact so as to make NV produoidal.

Appendix F
Monoidal Context

𝑓

𝑔

𝑓

𝑘

ℎ

𝑔

; ;

𝑓

𝑔

≺
ℎ

𝑘

=;

(𝑖) (𝑖𝑖𝑖)(𝑖𝑖)

Fig. 29: Generic monoidal context (i), identity (ii) and composition (iii).

Remark F.1 (Algebra of monoidal contexts). We explicitly state all the operations that form the normal
produoidal algebra of monoidal contexts. We do so using 1-dimensional notation for compactness, but we
do believe the conceptual picture is clearer when they are translated into 2-dimensional string diagrams.

(Identity)
(id𝐴 # � # id𝐵)

(Composition)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (ℎ # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑘) =
(𝑓 # (id𝑀 ⊗ ℎ ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁) # (id𝑀 ⊗ 𝑘 ⊗ id𝑁) # 𝑔),

(Unit action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ ℎ = 𝑓 # (id𝑀 ⊗ ℎ ⊗ id𝑁) # 𝑔,

(Seq. split first action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺1 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁) # (id𝑀 ⊗ 𝑣 ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ,

(Seq. split second action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺2 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣) =

𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ 𝑢 ⊗ id𝐿) # (id𝐾 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝐿) # (id𝐾 ⊗ 𝑣 ⊗ id𝐿) # ℎ,

(Seq. split third action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣 # (id𝑅 ⊗ � ⊗ id𝑆) # 𝑤) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁) # (id𝑀 ⊗ 𝑣 ⊗ id𝑁) # (id𝑀 ⊗𝑅 ⊗ � ⊗ id𝑆⊗𝑁)
(id𝑀 ⊗ 𝑤 ⊗ id𝑁) # 𝑔,

(Seq. left associativity)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺𝛼1 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣 # (id𝑅 ⊗ � ⊗ id𝑆) # 𝑤) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁) # (id𝑀 ⊗ 𝑣 ⊗ id𝑁) # (id𝑀 ⊗𝑅 ⊗ � ⊗ id𝑆⊗𝑁)
(id𝑀 ⊗ 𝑤 ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ,

𝑓

𝑔

ℎ

𝑓

𝑔

ℎ

𝑚

𝑚′

𝑛

𝑛′

𝑚 𝑛

𝑚′ 𝑛′

=

Fig. 30: Dinaturality of sequential splits of monoidal contexts.

𝑓

𝑔

𝑓

𝑔

𝑚 𝑛 𝑜

𝑜𝑛𝑚
=

Fig. 31: Parallel splits for monoidal contexts.

(Seq. right associativity)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺𝛼2 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣 # (id𝑅 ⊗ � ⊗ id𝑆) # 𝑤) =

𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ 𝑢 ⊗ id𝐿) # (id𝐾 ⊗𝑃 ⊗ � ⊗ id𝑅⊗𝐿) # (id𝐾 ⊗ 𝑣 ⊗ id𝐿)
(id𝐾 ⊗𝑅 ⊗ � ⊗ id𝑆⊗𝐿) # (id𝐿 ⊗ 𝑤 ⊗ id𝐿) # ℎ,

(Seq. left unitor)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺𝜆 𝑢 =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ,

(Seq. right unitor)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺𝜌 𝑢 =

𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ 𝑢 ⊗ id𝐿) # ℎ,

(Par. split first action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺ 1 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁 ⊗𝑋 ′⊗𝑂) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁 ⊗ � ⊗ id𝑂) # (id𝑀 ⊗ 𝑣 ⊗ id𝑁 ⊗𝑌 ′⊗𝑂) # 𝑔,

(Par. split second action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺ 2 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣) =

𝑓 # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑢 ⊗ id𝑂) # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑃 ⊗ � ⊗ id𝑂⊗𝑄) # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ 𝑣 ⊗ id𝑂) # 𝑔,

(Par. split third action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅) # 𝑣) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑁) # (id𝑀 ⊗ 𝑤 ⊗ id𝑁) # 𝑔,

(Par. left associativity)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺𝛼1 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅) # 𝑣) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁 ⊗𝑋 ⊗𝑂) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑁 ⊗ � ⊗ id𝑂)
(id𝑀 ⊗ 𝑣 ⊗ id𝑁 ⊗𝑌 ⊗𝑂) # 𝑔,

(Par. right associativity)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺𝛼2 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅) # 𝑣) =

𝑓 # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑢 ⊗ id𝑂) # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑂)
(id𝑀 ⊗𝑌 ⊗𝑁 ⊗ 𝑣 ⊗ id𝑂) # 𝑔,

(Par. left unitor)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺𝜆 𝑢 =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁 ⊗𝑋 ′⊗𝑂) # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ � ⊗ id𝑂) # 𝑔 =

𝑓 # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ � ⊗ id𝑂) # (id𝑀 ⊗ 𝑢 ⊗ id𝑁 ⊗𝑋 ′⊗𝑂) # 𝑔,

(Par. right unitor)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺𝜌 𝑣 =

𝑓 # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑣 ⊗ id𝑂) # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑌 ′⊗𝑂) # 𝑔 =

𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑌 ′⊗𝑂) # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑣 ⊗ id𝑂) # 𝑔,

(Laxator, left side)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔)

≺ 𝜓1 (𝑗0 # (id𝑈 ⊗ � ⊗ id𝑉) # 𝑗1 # (id𝑈 ′ ⊗ � ⊗ id𝑉 ′) # 𝑗2)
≺ 𝜓2 (𝑘0 # (id𝑊 ⊗ � ⊗ id𝑇) # 𝑘1 # (id𝑊 ′ ⊗ � ⊗ id𝑇 ′) # 𝑘2) =

𝑓 # (id𝑀 ⊗ 𝑗0 ⊗ id𝑁 ⊗ 𝑘0 ⊗ id𝑂) # (id𝑀 ⊗𝑈 ⊗ � ⊗ id𝑉 ⊗𝑁 ⊗𝑈 ′ ⊗ � ⊗ id𝑉 ′⊗𝑂)
(id𝑀 ⊗ 𝑗1 ⊗ id𝑁 ⊗ 𝑘1 ⊗ id𝑂) # (id𝑀 ⊗𝑊 ⊗ � ⊗ id𝑇 ⊗𝑁 ⊗𝑊 ′ ⊗ � ⊗ id𝑇 ′⊗𝑂)
(id𝑀 ⊗ 𝑗2 ⊗ id𝑁 ⊗ 𝑘2 ⊗ id𝑂) # 𝑔,

(Laxator, right side)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ)

≺ 𝜓1 (𝑗0 # (id𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅) # 𝑗1)
≺ 𝜓2 (𝑘0 # (id𝑃′ ⊗ � ⊗ id𝑄′ ⊗ � ⊗ id𝑅′) # 𝑘1) =

𝑓 # (id𝑀 ⊗ 𝑗0 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑁)
(id𝑀 ⊗ 𝑗1 ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ 𝑘0 ⊗ id𝐿) # (id𝐾 ⊗𝑃′ ⊗ � ⊗ id𝑄′ ⊗ � ⊗ id𝑅′⊗𝐿)
(id𝐾 ⊗ 𝑘1 ⊗ id𝐿) # ℎ.

Remark F.2. In the following derivations, we understand that an isolated (�) actually means (id𝐼 ⊗�⊗ id𝐼).
Proposition F.3 (From Proposition 6.2). Monoidal contexts form a category. Composition of monoidal
contexts is associative and unital.

Proof. We first check that the composition of monoidal contexts is associative.

((𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (𝑓 ′ # (id𝑀 ′ ⊗ � ⊗ id𝑁 ′) # 𝑔′)) ≺ (𝑓 ′′ # (id𝑀 ′′ ⊗ � ⊗ id𝑁 ′′) # 𝑔′′) =

(𝑓 # (id𝑀 ⊗ 𝑓 ′ ⊗ id𝑁) # (id𝑀 ⊗𝑀 ′ ⊗ � ⊗ id𝑁 ′⊗𝑁) # (id𝑀 ⊗ 𝑔′ ⊗ id𝑁) # 𝑔)≺
(𝑓 ′′ # (id𝑀 ′′ ⊗ � ⊗ id𝑁 ′′) # 𝑔′′) =

𝑓 # (id𝑀 ⊗ 𝑓 ′ ⊗ id𝑁) # (id𝑀 ⊗𝑀 ′ ⊗ 𝑓 ′′ ⊗ id𝑁 ⊗𝑁 ′)
(id𝑀 ⊗𝑀 ′⊗𝑀 ′′ ⊗ � ⊗ id𝑁 ′′⊗𝑁 ′⊗𝑁) # (id𝑀 ⊗𝑀 ′ ⊗ 𝑔′′ ⊗ id𝑁 ′⊗𝑁) # (id𝑁 ⊗ 𝑔′ ⊗ id𝑁) # 𝑔 =

𝑓 # (id𝑀 ⊗ (𝑓 ′ # (id𝑀 ′ ⊗ 𝑓 ′′ ⊗ id𝑁 ′)) ⊗ id𝑁)
(id𝑀 ⊗𝑀 ′⊗𝑀 ′′ ⊗ � ⊗ id𝑁 ′′⊗𝑁 ′⊗𝑁) # (id𝑀 ⊗ ((id𝑀 ′ ⊗ 𝑔′′ ⊗ id𝑁 ′) # 𝑔′) ⊗ id𝑁) # 𝑔 =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (𝑓 ′ # (id𝑀 ′ ⊗ 𝑓 ′′ ⊗ id𝑁 ′)#
(id𝑀 ′⊗𝑀 ′′ ⊗ � ⊗ id𝑁 ′′⊗𝑁 ′) # (id𝑀 ′ ⊗ 𝑔′′ ⊗ id𝑁 ′) # 𝑔′) =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ ((𝑓 ′ # (id𝑀 ′ ⊗ � ⊗ id𝑁 ′) # 𝑔′) ≺ (𝑓 ′′ # (id𝑀 ′′ ⊗ � ⊗ id𝑁 ′′) # 𝑔′′))
We now check left unitality of the identities,

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (id𝑋 # (id𝐼 ⊗ � ⊗ id𝐼) # id𝑌) =

(𝑓 # (id𝑀 ⊗ id𝑋 ⊗ id𝑁) # (id𝑀 ⊗ � ⊗ id𝑁) # (id𝑀 ⊗ id𝑋 ⊗ id𝑁) # 𝑔) =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔),
and right unitality,

(id𝐴 # (id𝐼 ⊗ � ⊗ id𝐼) # id𝐵) ≺ (𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) =

(id𝐴 # (id𝐼 ⊗ 𝑓 ⊗ id𝐼) # (id𝑀 ⊗ � ⊗ id𝑁) # (id𝐼 ⊗ 𝑔 ⊗ id𝐼) # id𝐵) =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔).
This concludes the proof. �

Proposition F.4 (From Proposition 6.5). The category of monoidal contexts forms a normal produoidal
category with its units, sequential and parallel splits.

Proof. Lemmas F.5 to F.7 construct the associators and unitors for the sequential promonoidal structure,
and Lemmas F.8 to F.10 define the associators and unitors for the parallel promonoidal structure. As they
are all constructed with Yoneda isomorphisms, they must satisfy the coherence equations. Lemma F.11
defines the laxators, again using only Yoneda isomorphisms and composition in C. For concision, our
proofs freely elide the tensor product of objects, writing 𝑋𝑌 for 𝑋 ⊗ 𝑌 . �

Lemma F.5 (Monoidal contexts sequential associator). We construct a natural isomorphism

(≺𝛼2) :
∫ 𝑈

𝑉 ∈MCMC (
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

) ×MC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

)
�

∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑈𝑉 C 𝑋

′′
𝑌 ′′

) ×MC (
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
: (≺𝛼1),

satisfying the coherence equations of produoidal categories. This isomorphism is defined on representatives
of the equivalence class as

(𝑓0 # (id ⊗ � ⊗ id) # 𝑓1 # (id ⊗ � ⊗ id) # 𝑓2) ≺𝛼2 (𝑔0 # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # 𝑔2) =
((ℎ0 # (id ⊗ � ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2) | (𝑘0 # (id ⊗ � ⊗ id) # 𝑘1 # (id ⊗ � ⊗ id) # 𝑘2))

if and only if

𝑓0 # (id ⊗ � ⊗ id) # 𝑓1 # (id ⊗ 𝑔0 ⊗ id) # (id ⊗ � ⊗ id) # (id ⊗ 𝑔1 ⊗ id) # (id ⊗ � ⊗ id) # (id ⊗ 𝑔2 ⊗ id) # 𝑓2 =

ℎ0 # (id ⊗ 𝑘0 ⊗ id) # (id ⊗ � ⊗ id) # (id ⊗ 𝑘1 ⊗ id) # (id ⊗ � ⊗ id) # (id ⊗ 𝑘2 ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2.

Proof. Firstly, we construct an isomorphism between the left hand side and a set of quadruples of
morphisms. This isomorphism sends the pair

(𝑓0 # (id ⊗ � ⊗ id) # 𝑓1 # (id ⊗ � ⊗ id) # 𝑓2) | (𝑔0 # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # 𝑔2)
to (𝑓0 # (id ⊗ � ⊗ id) # 𝑓1 # (id ⊗ 𝑔0 ⊗ id) # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # (id ⊗ 𝑔2 ⊗ id) # 𝑓2).

The isomorphism is constructed by the following coend derivation.∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

) ×MC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

) def
=

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑁 ,𝑂,𝑃∈C
C(𝐴; 𝑀𝑋𝑁) × C(𝑀𝑌𝑁;𝑂𝑈𝑃) × C(𝑂𝑉𝑃; 𝐵) ×MC (

𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

) def
=

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑁 ,𝑂,𝑃,𝑄,𝑅∈C
C(𝐴; 𝑀𝑋𝑁) ×MC (

𝑀𝑌𝑁
𝐵 ; 𝑈𝑉

) × C(𝑈;𝑂𝑋 ′𝑃) × C(𝑂𝑌 ′𝑃;𝑄𝑋 ′′𝑅) × C(𝑄𝑌 ′′𝑅;𝑉) 𝑦2
�∫ 𝑀,𝑁 ,𝑂,𝑃,𝑄,𝑅∈C

C(𝐴; 𝑀𝑋𝑁) × C(𝑀𝑌𝑁;𝑂𝑋 ′𝑃) × C(𝑂𝑌 ′𝑃;𝑄𝑋 ′′𝑅) × C(𝑄𝑌 ′′𝑅; 𝐵).

Now we construct an isomorphism between the right hand side and the same set of quadruples of
morphisms. This isomorphism sends the pair

(ℎ0 # (id ⊗ � ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2) | (𝑘0 # (id ⊗ � ⊗ id) # 𝑘1 # (id ⊗ � ⊗ id) # 𝑘2))
to (ℎ0 # (id ⊗ 𝑘0 ⊗ id) # (id ⊗ � ⊗ id) # 𝑘1 # (id ⊗ � ⊗ id) # (id ⊗ 𝑘2 ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2).

∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑈𝑉 C 𝑋

′′
𝑌 ′′

) ×MC (
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑁 ,𝑂,𝑃∈C
C(𝐴; 𝑀𝑈𝑁) × C(𝑀𝑉𝑁;𝑂𝑋 ′′𝑃) × C(𝑂𝑌 ′′𝑃; 𝐵) ×MC (

𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑁 ,𝑂,𝑃,𝑄,𝑅∈CMC (

𝐴
𝑂𝑋 ′′𝑃 ; 𝑈𝑉

) × C(𝑂𝑌 ′′𝑃; 𝐵) × C(𝑈; 𝑀𝑋𝑁) × C(𝑀𝑌𝑁;𝑄𝑋 ′𝑅) × C(𝑄𝑌 ′𝑅;𝑉) 𝑦2
�∫ 𝑀,𝑁 ,𝑂,𝑃,𝑄,𝑅∈C

C(𝐴; 𝑀𝑋𝑁) × C(𝑀𝑌𝑁;𝑄𝑋 ′𝑅) × C(𝑄𝑌 ′𝑅;𝑂𝑋 ′′𝑃) × C(𝑂𝑌 ′′𝑃; 𝐵).

Composing both isomorphisms, we obtain the desired associator. Since it is composed exclusively from
Yoneda isomorphisms, it must satisfy the coherence equations of produoidal categories (Definition I.5). �

Lemma F.6 (Monoidal contexts sequential left unitor). We construct a natural isomorphism

(≺𝜆) :
∫ 𝑈

𝑉 ∈MCMC (
𝐴
𝐵 ; 𝑈𝑉 C 𝑋𝑌

) ×MC (
𝑈
𝑉 ; 𝑁

)
�MC (

𝐴
𝐵 ; 𝑋𝑌

)
,

satisfying the coherence equations of produoidal categories. This isomorphism is defined on representatives
of the equivalence class as

(𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑓1 # (id𝐾 ⊗ � ⊗ id𝐿) # 𝑓2) ≺𝜆 𝑔 =

𝑓0 # (id𝑀 ⊗ 𝑔 ⊗ id𝑁) # 𝑓1 # (id𝐾 ⊗ � ⊗ id𝐿) # 𝑓2.

Proof. We need to prove that this function is well-defined and does indeed induce an isomorphism after
quotienting. We show this by constructing the isomorphism using coend calculus.∫ 𝑈

𝑉 ∈MCMC (
𝐴
𝐵 ; 𝑈𝑉 C 𝑋𝑌

) ×MC (
𝑈
𝑉 ; 𝑁

) def
=

∫ 𝑈
𝑉 ∈MC,𝑃,𝑄,𝑅,𝑆∈C
C(𝐴; 𝑃𝑈𝑄) × C(𝑃𝑉𝑄; 𝑅𝑋𝑆) × C(𝑅𝑌𝑆; 𝐵) ×MC (

𝑈
𝑉 ; 𝑁

) def
=

∫ 𝑈
𝑉 ∈MC,𝑅,𝑆∈CMC (

𝐴
𝑅𝑋𝑆 ; 𝑈𝑉

) × C(𝑅𝑌𝑆; 𝐵) ×MC (
𝑈
𝑉 ; 𝑁

) 𝑦2
�∫ 𝑅,𝑆∈C

C(𝐴; 𝑅𝑋𝑆) × C(𝑅𝑌𝑆; 𝐵) def
=

MC (
𝐴
𝐵 ; 𝑋𝑌

)
.

Since it is composed exclusively from Yoneda isomorphisms, it must satisfy the coherence equations of
produoidal categories (Definition I.5). �

Lemma F.7 (Monoidal contexts sequential right unitor). We construct a natural isomorphism

(≺𝜌) :
∫ 𝑈

𝑉 ∈MCMC (
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

) ×MC (
𝑈
𝑉 ; 𝑁

)
�MC (

𝐴
𝐵 ; 𝑋𝑌

)
satisfying the coherence equations of produoidal categories. This isomorphism is defined on representatives
of the equivalence class as

(𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑓1 # (id𝐾 ⊗ � ⊗ id𝐿) # 𝑓2) ≺𝜌 𝑔 =

𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑓1 # (id𝐾 ⊗ 𝑔 ⊗ id𝐿) # 𝑓2.

Proof. As above, we do this by coend calculus:∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

) ×MC (
𝑈
𝑉 ; 𝑁

) def
=

∫ 𝑈
𝑉 ∈MC,𝑃,𝑄,𝑅,𝑆∈C
C(𝐴; 𝑃𝑋𝑄) × C(𝑃𝑌𝑄; 𝑅𝑈𝑆) × C(𝑅𝑉𝑆; 𝐵) ×MC (

𝑈
𝑉 ; 𝑁

) def
=

∫ 𝑈
𝑉 ∈MC,𝑃,𝑄,𝑅,𝑆∈C
C(𝐴; 𝑃𝑋𝑄) ×MC (

𝑃𝑌𝑄
𝐵 ; 𝑈𝑉

) ×MC (
𝑈
𝑉 ; 𝑁

) 𝑦2
�∫ 𝑅,𝑆∈C

C(𝐴; 𝑅𝑋𝑆) × C(𝑅𝑌𝑆; 𝐵) def
=

MC (
𝐴
𝐵 ; 𝑋𝑌

)
.

Since it is composed exclusively from Yoneda isomorphisms, it must satisfy the coherence equations of
produoidal categories (Definition I.5). �

Lemma F.8 (Monoidal contexts parallel associator). We construct a natural isomorphism

(≺𝛼2) :
∫ 𝑈

𝑉 ∈MCMC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

)×MC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

)
�

∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

)×MC (
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
: (≺𝛼1)

exclusively from Yoneda isomorphisms. This isomorphism is defined on representatives of the equivalence
class as

(𝑓0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑓1) ≺𝛼1 (𝑔0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑔1) =

(ℎ0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # ℎ1) | (𝑗0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑗1)
if and only if

𝑓0 # (id𝑀 ⊗ 𝑔0 ⊗ id𝑁 ⊗𝑋 ⊗𝑂) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑁 ⊗ � ⊗ id𝑂) # (id𝑀 ⊗ 𝑔1 ⊗ id𝑁 ⊗𝑌 ⊗𝑂) # 𝑓1 =

ℎ0 # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑗0 ⊗ id𝑂) # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑂) # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ 𝑗1 ⊗ id𝑂) # ℎ1,

Proof. The left hand side is isomorphic to the following set,∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

) ×MC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

) def
=

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑁 ,𝑂∈C
C(𝐴; 𝑀 ⊗ 𝑋 ⊗ 𝑁 ⊗ 𝑈 ⊗ 𝑂) × C(𝑀 ⊗ 𝑌 ⊗ 𝑁 ⊗ 𝑉 ⊗ 𝑂; 𝐵) ×MC (

𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

) 𝑦2
�

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑁 ,𝑂,𝑃,𝑄∈C
C(𝐴; 𝑀 ⊗ 𝑋 ⊗ 𝑃) × C(𝑃; 𝑁 ⊗ 𝑈 ⊗ 𝑂) × C(𝑀 ⊗ 𝑌 ⊗ 𝑄; 𝐵)

× C(𝑁 ⊗ 𝑉 ⊗ 𝑂;𝑄) ×MC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

) def
=

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑀

′,𝑁 ′,𝑂′,𝑃,𝑄∈C
C(𝐴; 𝑀 ⊗ 𝑋 ⊗ 𝑃) ×MC (

𝑃
𝑄 ; 𝑈𝑉

) × C(𝑀 ⊗ 𝑌 ⊗ 𝑄; 𝐵) × C(𝑈; 𝑀 ′ ⊗ 𝑋 ′ ⊗ 𝑁 ′ ⊗ 𝑋 ′′ ⊗ 𝑂 ′)

× C(𝑀 ′ ⊗ 𝑌 ′ ⊗ 𝑁 ′ ⊗ 𝑌 ′′ ⊗ 𝑂 ′;𝑉) 𝑦2
�∫ 𝑀,𝑀 ′,𝑁 ′,𝑂′∈C

C(𝐴; 𝑀 ⊗ 𝑋 ⊗ 𝑀 ′ ⊗ 𝑋 ′ ⊗ 𝑁 ′ ⊗ 𝑋 ′′ ⊗ 𝑂 ′) × C(𝑀 ⊗ 𝑌 ⊗ 𝑀 ′ ⊗ 𝑌 ′ ⊗ 𝑁 ′ ⊗ 𝑌 ′′ ⊗ 𝑂 ′; 𝐵).

In the same way, the right hand side is isomorphic to the following set,∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

) ×MC (
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) def
=

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑁 ,𝑂∈C
C(𝐴; 𝑀 ⊗ 𝑈 ⊗ 𝑁 ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑀 ⊗ 𝑉 ⊗ 𝑁 ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵) ×MC (

𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) 𝑦1
�

∫ 𝑈
𝑉 ∈MC,𝑀 ,𝑁 ,𝑂,𝑃,𝑄∈C
C(𝑃; 𝑀 ⊗ 𝑈 ⊗ 𝑁) × C(𝐴; 𝑃 ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑀 ⊗ 𝑉 ⊗ 𝑁;𝑄) def

=

× C(𝑄 ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵) ×MC (
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) 𝑦1
�∫ 𝑈

𝑉 ∈MC,𝑀
′,𝑁 ′,𝑂′,𝑂,𝑃,𝑄∈C

MC (
𝑃
𝑄 ; 𝑈𝑉

) × C(𝐴; 𝑃 ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑄 ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵) def
=

× C(𝑈; 𝑀 ′ ⊗ 𝑋 ⊗ 𝑁 ′ ⊗ 𝑋 ′ ⊗ 𝑂 ′) × C(𝑀 ′ ⊗ 𝑌 ⊗ 𝑁 ′ ⊗ 𝑌 ′ ⊗ 𝑂 ′;𝑉) 𝑦1
�∫ 𝑀 ′,𝑁 ′,𝑂′,𝑂,𝑃,𝑄∈C

C(𝐴; 𝑃 ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑄 ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵)

× C(𝑃; 𝑀 ′ ⊗ 𝑋 ⊗ 𝑁 ′ ⊗ 𝑋 ′ ⊗ 𝑂 ′) × C(𝑀 ′ ⊗ 𝑌 ⊗ 𝑁 ′ ⊗ 𝑌 ′ ⊗ 𝑂 ′;𝑄) 𝑦1
�∫ 𝑀 ′,𝑁 ′,𝑂′,𝑂∈C

C(𝐴; 𝑀 ′ ⊗ 𝑋 ⊗ 𝑁 ′ ⊗ 𝑋 ′ ⊗ 𝑂 ′ ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑀 ′ ⊗ 𝑌 ⊗ 𝑁 ′ ⊗ 𝑌 ′ ⊗ 𝑂 ′ ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵).

Composing both isomorphisms, we obtain the desired associator. �

Lemma F.9 (Monoidal contexts parallel left unitor). We construct a natural isomorphism

(≺𝜆) :
∫ 𝑈

𝑉 ∈MCMC (
𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋𝑌

) ×MC (
𝑈
𝑉 ; 𝑁

)
�MC (

𝐴
𝐵 ; 𝑋𝑌

)
exclusively from Yoneda isomorphisms. This isomorphism is defined by

(𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝐻) # 𝑓1) ≺𝜆 𝑔 = 𝑓0 # (id𝑀 ⊗ 𝑔 ⊗ id𝑁 ⊗𝑋 ′⊗𝑂) # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ � ⊗ id𝑂) # 𝑓1.

Proof. ∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋𝑌

) ×MC (
𝑈
𝑉 ; 𝑁

) def
=

∫ 𝑈
𝑉 ∈MC,𝑃,𝑄,𝑅∈C
C(𝐴; 𝑃 ⊗ 𝑈 ⊗ 𝑄 ⊗ 𝑋 ⊗ 𝑅) × C(𝑃 ⊗ 𝑉 ⊗ 𝑄 ⊗ 𝑌 ⊗ 𝑅; 𝐵) × C(𝑈;𝑉) 𝑦1

�

∫ 𝑈
𝑉 ∈MC,𝑃,𝑄,𝑅,𝑆,𝑇 ∈C
C(𝐴; 𝑆 ⊗ 𝑋 ⊗ 𝑅) × C(𝑆; 𝑃 ⊗ 𝑈 ⊗ 𝑄) × C(𝑃 ⊗ 𝑉 ⊗ 𝑄;𝑇)

× C(𝑇 ⊗ 𝑌 ⊗ 𝑅; 𝐵) × C(𝑈;𝑉) def
=∫ 𝑈

𝑉 ∈MC,𝑅,𝑆,𝑇 ∈C
C(𝐴; 𝑆 ⊗ 𝑋 ⊗ 𝑅) ×MC (

𝑆
𝑇 ; 𝑈𝑉

) × C(𝑇 ⊗ 𝑌 ⊗ 𝑅; 𝐵) × C(𝑈;𝑉) 𝑦1
�∫ 𝑆,𝑅∈C

C(𝐴; 𝑆 ⊗ 𝑋 ⊗ 𝑅) × C(𝑆 ⊗ 𝑌 ⊗ 𝑅; 𝐵) def
=

MC (
𝐴
𝐵 ; 𝑋𝑌

)
.

�

Lemma F.10 (Monoidal contexts parallel right unitor). We construct a natural isomorphism

(≺𝜌) :
∫ 𝑈

𝑉 ∈MCMC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

) ×MC (
𝑈
𝑉 ; 𝑁

)
�MC (

𝐴
𝐵 ; 𝑋𝑌

)
exclusively from Yoneda isomorphisms. This isomorphism is defined by

(𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝐻) # 𝑓1) ≺𝜌 𝑔 = 𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑌 ′⊗𝑂) # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑔 ⊗ id𝑂) # 𝑓1.

Proof. We construct the isomorphism by the following coend derivation,∫ 𝑈
𝑉 ∈MCMC (

𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

) ×MC (
𝑈
𝑉 ; 𝑁

) def
=

∫ 𝑈
𝑉 ∈MC,𝑃,𝑄,𝑅∈C
C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑄 ⊗ 𝑈 ⊗ 𝑅) × C(𝑃 ⊗ 𝑌 ⊗ 𝑄 ⊗ 𝑉 ⊗ 𝑅; 𝐵) × C(𝑈;𝑉) 𝑦1

�

∫ 𝑈
𝑉 ∈MC,𝑃,𝑄,𝑅,𝑆,𝑇 ∈C
C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑆) × C(𝑆;𝑄 ⊗ 𝑈 ⊗ 𝑅) × C(𝑄 ⊗ 𝑉 ⊗ 𝑅;𝑇)

× C(𝑃 ⊗ 𝑌 ⊗ 𝑇 ; 𝐵) × C(𝑈;𝑉) def
=∫ 𝑈

𝑉 ∈MC,𝑃,𝑆,𝑇 ∈C
C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑆) ×MC (

𝑆
𝑇 ; 𝑈𝑉

) × C(𝑃 ⊗ 𝑌 ⊗ 𝑇 ; 𝐵) × C(𝑈;𝑉) 𝑦1
�∫ 𝑃,𝑇 ∈C

C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑇) × C(𝑃 ⊗ 𝑌 ⊗ 𝑇 ; 𝐵) def
=

MC (
𝐴
𝐵 ; 𝑋𝑌

)
.

This concludes the proof. �

Lemma F.11 (Monoidal contexts laxators). We construct the following morphisms

𝜓2 :MC (
𝐴
𝐵 ;

(
𝑋
𝑌 C

𝑋 ′
𝑌 ′

) ⊗ (
𝑈
𝑉 C

𝑈 ′
𝑉 ′

)) →MC (
𝐴
𝐵 ;

(
𝑋
𝑌 ⊗ 𝑈𝑉

)
C

(
𝑋 ′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

))
𝜓0 :MC (

𝐴
𝐵 ; 𝐼

) →MC (
𝐴
𝐵 ; 𝐼 C 𝐼

)
𝜑2 :MC (

𝐴
𝐵 ; 𝑁 ⊗ 𝑁

) →MC (
𝐴
𝐵 ; 𝑁

)
𝜑0 :MC (

𝐴
𝐵 ; 𝐼

) →MC (
𝐴
𝐵 ; 𝑁

)
.

exclusively from composition in C and Yoneda isomorphisms. The laxator 𝜓2 is defined by stating that the
following equation holds

(𝑓0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑓1)
≺ 𝜓1 (𝑔0 # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # 𝑔2)
≺ 𝜓2 (ℎ0 # (id ⊗ � ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2) =

(𝑗0 # (id ⊗ � ⊗ id) # 𝑗1 # (id ⊗ � ⊗ id) # 𝑗2) |
(𝑘0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑘1) |
(𝑙0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑙1)

if and only if

𝑓0 # (id ⊗ 𝑔0 ⊗ id ⊗ ℎ0 ⊗ id) # (id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑔1 ⊗ id ⊗ ℎ1 ⊗ id)#
(id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑔2 ⊗ id ⊗ ℎ2 ⊗ id) # 𝑓1 =

𝑗0 # (id ⊗ 𝑘0 ⊗ id) # (id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑘1 ⊗ id) # 𝑗1 # (id ⊗ 𝑙0 ⊗ id)#
(id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑙1 ⊗ id) # 𝑗2.

Furthermore, since MC is normal, 𝜓0, 𝜑2, and 𝜑0 are isomorphisms.

Proof. Consider the right hand side of 𝜓2. It is isomorphic to the following
∫ 𝑃

𝑄,
𝑃′
𝑄′∈MCMC

(
𝐴
𝐵 ; 𝑃𝑄 C

𝑃′
𝑄′

)
×MC (

𝑃
𝑄 ; 𝑋𝑌 ⊗ 𝑈𝑉

) ×MC (
𝑃′
𝑄′ ; 𝑋

′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

)
def
=

∫ 𝑃
𝑄,
𝑃′
𝑄′∈MC,𝑀 ,𝑁 ,𝑂∈C
C(𝐴; 𝑀 ⊗ 𝑃 ⊗ 𝑁) × C(𝑀 ⊗ 𝑄 ⊗ 𝑁; 𝑀 ′ ⊗ 𝑃′ ⊗ 𝑁 ′) × C(𝑀 ′ ⊗ 𝑄 ′ ⊗ 𝑁 ′; 𝐵)

×MC (
𝑃
𝑄 ; 𝑋𝑌 ⊗ 𝑈𝑉

) ×MC (
𝑃′
𝑄′ ; 𝑋

′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

)
def
=

∫ 𝑃
𝑄,
𝑃′
𝑄′∈MC,𝑀 ,𝑁 ,𝑂∈C
C(𝐴; 𝑀 ⊗ 𝑃 ⊗ 𝑁) ×MC

(
𝑀 ⊗𝑄⊗𝑁

𝐵 ; 𝑃
′

𝑄′
)
×MC (

𝑃
𝑄 ; 𝑋𝑌 ⊗ 𝑈𝑉

) ×MC (
𝑃′
𝑄′ ; 𝑋

′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

) 𝑦1
�

∫ 𝑃
𝑄∈MC,𝑀 ,𝑁 ,𝑂,𝐶,𝐷,𝐸,𝐹 ,𝐺,𝐻 ∈C
C(𝐴; 𝑀 ⊗ 𝑃 ⊗ 𝑁) × C(𝑃;𝐶 ⊗ 𝑋 ⊗ 𝐷 ⊗ 𝑈 ⊗ 𝐸) × C(𝐶 ⊗ 𝑌 ⊗ 𝐷 ⊗ 𝑉 ⊗ 𝐸 ;𝑄)×

C(𝑀 ⊗ 𝑄 ⊗ 𝑁; 𝐹 ⊗ 𝑋 ′ ⊗ 𝐺 ⊗ 𝑈 ′ ⊗ 𝐻) × C(𝐹 ⊗ 𝑌 ′ ⊗ 𝐺 ⊗ 𝑉 ′ ⊗ 𝐻; 𝐵) def
=∫ 𝑃

𝑄,∈MC,𝐶,𝐷,𝐸,𝐹 ,𝐺,𝐻 ∈CMC (
𝐴

𝐹 ⊗𝑋 ′⊗𝐺⊗𝑈 ′′⊗𝐻 ; 𝑃𝑄
) × C(𝑃;𝐶 ⊗ 𝑋 ⊗ 𝐷 ⊗ 𝑈 ⊗ 𝐸)

× C(𝐶 ⊗ 𝑌 ⊗ 𝐷 ⊗ 𝑉 ⊗ 𝐸 ;𝑄) × C(𝐹 ⊗ 𝑌 ′ ⊗ 𝐺 ⊗ 𝑉 ′ ⊗ 𝐻; 𝐵) 𝑦1
�∫ 𝐶,𝐷,𝐸,𝐹 ,𝐺,𝐻 ∈C

C(𝐴;𝐶 ⊗ 𝑋 ⊗ 𝐷 ⊗ 𝑈 ⊗ 𝐸) × C(𝐶 ⊗ 𝑌 ⊗ 𝐷 ⊗ 𝑉 ⊗ 𝐸 ; 𝐹 ⊗ 𝑋 ′ ⊗ 𝐺 ⊗ 𝑈 ′ ⊗ 𝐻)
× C(𝐹 ⊗ 𝑌 ′ ⊗ 𝐺 ⊗ 𝑉 ′ ⊗ 𝐻; 𝐵).

This isomorphism sends an element (𝑗0 # (id⊗�⊗ id) # 𝑗1 # (id⊗�⊗ id) # 𝑗2 | 𝑘0 # (id⊗�⊗ id⊗�⊗ id) # 𝑘1 |
𝑙0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑙1) to 〈 𝑗0 # (id ⊗ 𝑘0 ⊗ id) # (id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑘1 ⊗ id) # 𝑗1 # (id ⊗ 𝑙0 ⊗ id) #
(id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑙1 ⊗ id) # 𝑗2〉. Define a map from the left hand side of 𝜓2 to this set, sending
a triple

(𝑓0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑓1 |
𝑔0 # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # 𝑔2 |
ℎ0 # (id ⊗ � ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2)

↦→
𝑓0 # (id ⊗ 𝑔0 ⊗ id ⊗ ℎ0 ⊗ id) # (id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑔1 ⊗ id ⊗ ℎ1 ⊗ id)#
(id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑔2 ⊗ id ⊗ ℎ2 ⊗ id) # 𝑓1.

Now composing this map with the isomorphism yields the desired morphism 𝜓2. The remaining laxators
𝜓0, 𝜑2, and 𝜑0 are isomorphisms that arise from applications of unitality or just as identities. �

Theorem F.12 (From Theorem 6.6). Monoidal contexts are the free normalization of the cofree produoidal
category over a category.

Proof. We already know that the normalization procedure yields the free normalization over a produoidal
category. It is only left to note that this is exactly the category we have explicitly constructed in this section.

This amounts to proving that the produoidal category of monoidal contexts is precisely the normalization
of the produoidal category of spliced arrows. We do so for morphisms, the rest of the proof is similar.

NSC (
𝐴
𝐵; 𝑋𝑌

) def
=

SC (
𝐴
𝐵; 𝑁 ⊗ 𝑋𝑌 ⊗ 𝑁

) def
=∫ 𝑈

𝑉 ,
𝑈 ′
𝑉 ;∈SC SC (

𝐴
𝐵;𝑈𝑉 ⊗ 𝑋𝑌 ⊗ 𝑈

′
𝑉 ′

) × SC (
𝑈
𝑉 ; 𝑁

) × SC (
𝑈 ′
𝑉 ′; 𝑁

) def
=

∫ 𝑈
𝑉 ,
𝑈 ′
𝑉 ′∈SC

C(𝐴;𝑈 ⊗ 𝑋 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑌 ⊗ 𝑉 ′; 𝐵) × C (𝑈;𝑉) × C (𝑈 ′;𝑉 ′) def
=

∫ 𝑈,𝑉 ,𝑈 ′,𝑉 ′∈C
C(𝐴;𝑈 ⊗ 𝑋 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑌 ⊗ 𝑉 ′; 𝐵) × C (𝑈;𝑉) × C (𝑈 ′;𝑉 ′) 𝑦1

�∫ 𝑈,𝑈 ′∈C
C (𝐴;𝑈 ⊗ 𝑋 ⊗ 𝑈 ′) × C(𝑈 ⊗ 𝑌 ⊗ 𝑈 ′; 𝐵) def

=

MC (
𝐴
𝐵; 𝑋𝑌

)
The rest of the profunctors follow a similar reasoning. �

Appendix G
Monoidal Lenses

Proposition G.1 (From Proposition 7.2). Monoidal lenses form a normal symmetric produoidal category
with the following morphisms, units, sequential and parallel splits.

LC (
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; • ⊗ 𝑋) �C(• ⊗ 𝑌 ; 𝐵);

LC (
𝐴
𝐵 ; 𝑁

)
= C(𝐴; 𝐵);

LC (
𝐴
𝐵 ; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋) �C(•1 ⊗ 𝑌 ; •2 ⊗ 𝑋 ′) �C(•2 ⊗ 𝑌 ′; 𝐵);

LC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ 𝑋 ′) �C(•1 ⊗ 𝑌 ⊗ 𝑌 ′; 𝐵).

Proof. Lemmas G.2 and G.3 construct the associators, and Lemmas G.4 and G.5 define the unitors.
Lemma G.6 constructs the symmetry. As they are all constructed with Yoneda isomorphisms and
symmetries, they must satisfy the coherence equations. Finally, the laxators are constructed in much the
same way as in Lemma F.11. �

Lemma G.2 (Monoidal lenses sequential associator). We construct a natural isomorphism

(≺𝛼2) :
∫ 𝑈

𝑉 ∈LC LC (
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

) × LC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

)
�

∫ 𝑈
𝑉 ∈MC LC (

𝐴
𝐵 ; 𝑈𝑉 C 𝑋

′′
𝑌 ′′

) × LC (
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
: (≺𝛼1)

exclusively from Yoneda isomorphisms.

Proof. Out of Yoneda reductions, we construct an isomorphism between the left hand side and a set of
quadruples of morphisms.∫ 𝑈

𝑉 ∈LCLC (
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

) × LC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

) def
=

∫ 𝑈
𝑉 ∈LC,𝑃,𝑄∈C
C(𝐴; 𝑃 ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ;𝑄 ⊗ 𝑈) × C(𝑄 ⊗ 𝑉 ; 𝐵) × LC (

𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

) def
=

∫ 𝑈
𝑉 ∈LC,𝑃,𝑄,𝑅∈C
C(𝐴; 𝑃 ⊗ 𝑋) × LC (

𝑃⊗𝑌
𝐵 ; 𝑈𝑉

) × C(𝑈;𝑄 ⊗ 𝑋 ′) × C(𝑄 ⊗ 𝑌 ′; 𝑅 ⊗ 𝑋 ′′) × C(𝑅 ⊗ 𝑌 ′′;𝑉) 𝑦2
�∫ 𝑃,𝑄,𝑅∈C

C(𝐴; 𝑃 ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ;𝑄 ⊗ 𝑋 ′) × C(𝑄 ⊗ 𝑌 ′; 𝑅 ⊗ 𝑋 ′′) × C(𝑅 ⊗ 𝑌 ′′; 𝐵).

Out of Yoneda reductions, we construct an isomorphism between the right hand side and the same set
of quadruples of morphisms.∫ 𝑈

𝑉 ∈LCLC (
𝐴
𝐵 ; 𝑈𝑉 C 𝑋

′′
𝑌 ′′

) × LC (
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=

∫ 𝑈
𝑉 ∈LC,𝑃,𝑄∈C
C(𝐴;𝑄 ⊗ 𝑈) × C(𝑄 ⊗ 𝑉 ; 𝑃 ⊗ 𝑋 ′′) × C(𝑃 ⊗ 𝑌 ′′; 𝐵) × LC (

𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=

∫ 𝑈
𝑉 ∈LC,𝑃,𝑄,𝑅∈CLC (

𝐴
𝑃⊗𝑋 ′′ ;

𝑈
𝑉

) × C(𝑃 ⊗ 𝑌 ′′; 𝐵) × C(𝑈;𝑄 ⊗ 𝑋) × C(𝑄 ⊗ 𝑌 ; 𝑅 ⊗ 𝑋 ′) × C(𝑅 ⊗ 𝑌 ′;𝑉) 𝑦2
�∫ 𝑃,𝑄,𝑅∈C

C(𝐴;𝑄 ⊗ 𝑋) × C(𝑄 ⊗ 𝑌 ; 𝑅 ⊗ 𝑋 ′) × C(𝑅 ⊗ 𝑌 ′; 𝑃 ⊗ 𝑋 ′′) × C(𝑃 ⊗ 𝑌 ′′; 𝐵).

Composing both isomorphisms, we obtain the desired associator. It gets defined by the following operations,

(𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ �) # 𝑓 2) ≺𝛼1 (𝑔0 # (id𝑃 ⊗ �) # 𝑔1 # (id𝑄 ⊗ �) # 𝑔2) =

𝑓 0 # (id𝑀 ⊗ 𝑔0) # (id𝑀 ⊗𝑃 ⊗ �) # (id𝑀 ⊗ 𝑔1) # (id𝑀 ⊗𝑄 ⊗ �) # (id𝑀 ⊗ 𝑔2) # 𝑓 1 # (id𝑁 ⊗ �) # 𝑓 2.

(𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ �) # 𝑓 2) ≺𝛼2 (ℎ0 # (id𝑃 ⊗ �) # ℎ1 # (id𝑄 ⊗ �) # ℎ2) =

𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ ℎ0) # (id𝑁 ⊗𝑃 # �) # (id𝑁 ⊗ ℎ1) # (id𝑁 ⊗𝑄 ⊗ �) # (id𝑁 ⊗ ℎ2) # 𝑓 2.

�

Lemma G.3 (Monoidal lenses parallel associator). We construct a natural isomorphism

(≺𝛼2) :
∫ 𝑈

𝑉 ∈MC LC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

) × LC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

)
�

∫ 𝑈
𝑉 ∈MC LC (

𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

) × LC (
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
: (≺𝛼1)

exclusively from Yoneda isomorphisms.

Proof. The left hand side is isomorphic to:∫ 𝑈
𝑉 ∈LC LC (

𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

) × LC (
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

)
= (by representability)

∫ 𝑈
𝑉 ∈LC LC (

𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

) × LC (
𝑈
𝑉 ; 𝑋

′⊗𝑋 ′′
𝑌 ′⊗𝑌 ′′

)
� (by Yoneda reduction)

LC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′⊗𝑋 ′′
𝑌 ′⊗𝑌 ′′

)
� (by representability)

LC (
𝐴
𝐵 ; 𝑋 ⊗𝑋

′⊗𝑋 ′′
𝑌 ⊗𝑌 ′⊗𝑌 ′′

)
,

and the right hand side is isomorphic to the same:∫ 𝑈
𝑉 ∈LC LC (

𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

) × LC (
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= (by representability)

∫ 𝑈
𝑉 ∈LC LC (

𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

) × LC (
𝑈
𝑉 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′

)
� (by Yoneda reduction)

LC (
𝐴
𝐵 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

)
� (by representability)

LC (
𝐴
𝐵 ; 𝑋 ⊗𝑋

′⊗𝑋 ′′
𝑌 ⊗𝑌 ′⊗𝑌 ′′

)
.

Composing both isomorphisms, we obtain the desired associator,

(𝑓 0 # (id𝑀 ⊗ � ⊗ �) # 𝑓 1) ≺𝛼1 (𝑔0 # (id𝑃 ⊗ � ⊗ �) # 𝑔1) =

𝑓 0 # (id𝑀 ⊗ 𝑔0 ⊗ id𝑋 ′′) # (id𝑀 ⊗𝑃 ⊗ � ⊗ � ⊗ �) # (id𝑀 ⊗ 𝑔1 ⊗ id𝑌 ′′) # 𝑓 1.

(𝑓 0 # (id𝑀 ⊗ � ⊗ �) # 𝑓 1) ≺𝛼2 (ℎ0 # (id𝑄 ⊗ � ⊗ �) # ℎ1) =

𝑓 0 # 𝜎 # (id𝑀 ⊗ ℎ0 ⊗ id𝑋) # 𝜎 # (id𝑀 ⊗𝑃 ⊗ � ⊗ � ⊗ �) # 𝜎 # (id𝑀 ⊗ ℎ1 ⊗ id𝑌) # 𝜎 # 𝑓 1.

This concludes the proof. �

Lemma G.4 (Monoidal lenses sequential right unitor). We construct a natural isomorphism

(≺𝜌) :
∫ 𝑋 ′

𝑌 ′ ∈LC LC (
𝐴
𝐵 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) × LC (
𝑋 ′
𝑌 ′ ; 𝑁

)
� LC (

𝐴
𝐵 ; 𝑋𝑌

)
exclusively from Yoneda isomorphisms.

Proof. We construct the isomorphism with the following coend calculus derivation.∫ 𝑋 ′
𝑌 ′ ∈LCLC (

𝐴
𝐵 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) × LC (
𝑋 ′
𝑌 ′ ; 𝑁

) def
=

∫ 𝑋 ′
𝑌 ′ ∈LC,𝑃,𝑄∈C
C(𝐴; 𝑃 ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ;𝑄 ⊗ 𝑋 ′) × C(𝑄 ⊗ 𝑌 ′; 𝐵) × C(𝑋 ′;𝑌 ′) def

=

∫ 𝑋 ′
𝑌 ′ ∈LC,𝑃∈C
C(𝐴; 𝑃 ⊗ 𝑋) × LC (

𝑃⊗𝑌
𝐵 ; 𝑋 ′𝑌 ′

) × C(𝑋 ′;𝑌 ′) 𝑦2
�∫ 𝑃∈C

C(𝐴; 𝑃 ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ; 𝐵).

We obtain the following right unitor.

(𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ �) # 𝑓 2) ≺𝜌 𝑔 =

𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ 𝑔) # 𝑓 2.

The left unitor is defined similarly. �

Lemma G.5 (Monoidal lenses parallel right unitor). We construct a natural isomorphism

(≺𝜌) :
∫ 𝑋 ′

𝑌 ′ ∈LC LC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) × LC (
𝑋 ′
𝑌 ′ ; 𝑁

)
� LC (

𝐴
𝐵 ; 𝑋𝑌

)
exclusively from Yoneda isomorphisms and symmetry of C.

Proof. We construct the isomorphism with the following coend calculus derivations.∫ 𝑋 ′
𝑌 ′ ∈LCLC (

𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) × LC (
𝑋 ′
𝑌 ′ ; 𝑁

)
= (by definition)∫ 𝑋 ′
𝑌 ′ ∈LC,𝑃∈C
C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑋 ′) × C(𝑃 ⊗ 𝑌 ⊗ 𝑌 ′; 𝐵) × C(𝑋 ′;𝑌 ′)

� (by symmetry of C)∫ 𝑋 ′
𝑌 ′ ∈LC,𝑃∈C
C(𝐴; 𝑃 ⊗ 𝑋 ′ ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ′ ⊗ 𝑌 ; 𝐵) × C(𝑋 ′;𝑌 ′)

� (by Yoneda reduction)∫ 𝑋 ′
𝑌 ′ ∈LC,𝑃,𝑄,𝑅∈C
C(𝐴;𝑄 ⊗ 𝑋) × C(𝑄; 𝑃 ⊗ 𝑋 ′) × C(𝑃 ⊗ 𝑌 ′; 𝑅) × C(𝑅 ⊗ 𝑌 ; 𝐵) × 𝐶 (𝑋 ′;𝑌 ′)

= (by definition)∫ 𝑋 ′
𝑌 ′ ∈LC,𝑃,𝑄,𝑅∈C
C(𝐴;𝑄 ⊗ 𝑋) × LC (

𝑄
𝑅 ; 𝑋 ′𝑌 ′

) × C(𝑅 ⊗ 𝑌 ; 𝐵) × 𝐶 (𝑋 ′;𝑌 ′)
� (by Yoneda reduction)∫ 𝑄∈C
C(𝐴;𝑄 ⊗ 𝑋) × C(𝑄 ⊗ 𝑌 ; 𝐵).

We obtain the following right unitor.

(𝑓 0 # (id𝑀 ⊗ � ⊗ �) # 𝑓 1) ≺𝜌 𝑔 =

𝑓 0 # (id𝑀 ⊗ � ⊗ �) # (id𝑀 ⊗ (𝜎 # (𝑔 ⊗ id𝑋) # 𝜎)) # 𝑓 1 =

𝑓 0 # (id𝑀 ⊗ (𝜎 # (𝑔 ⊗ id𝑋) # 𝜎)) # (id𝑀 ⊗ � ⊗ �) # 𝑓 1.

The left unitor is defined similarly. �

Lemma G.6 (Monoidal lenses symmetry). We construct the symmetries LC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
� LC (

𝐴
𝐵 ; 𝑋 ′𝑌 ′ ⊗ 𝑋𝑌

)
.

Proof. These follow from the symmetries of C and representability of ⊗ for monoidal lenses.

LC (
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
� LC (

𝐴
𝐵 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′

)
� LC (

𝐴
𝐵 ; 𝑋

′⊗𝑋
𝑌 ′⊗𝑌

)
� LC (

𝐴
𝐵 ; 𝑋 ′𝑌 ′ ⊗ 𝑋𝑌

)
.

This concludes the proof. �

Proposition G.7 (From Proposition 7.6). Let (C, ⊗, 𝐼) be a symmetric monoidal category. There exist
monoidal functors (!) : C→ LC and (?) : C𝑜𝑝 → LC.

Proof. This proof appears with a different language in the work of Riley [Ril18, Proposition 2.0.14]. In
fact, there, the combined identity-on-objects functor (!×?) : C×C𝑜𝑝 → LC is shown to be monoidal. In our
case, we can define ! 𝑓 = (𝑓 #� # id𝐼) and ?𝑔 = (id𝐼 #� #𝑔), and then check that compositions and tensoring

of morphisms are compatible with composition and tensoring of monoidal lenses, this is straightforward.
Moreover, as we comment in the text, we can see that, by definition, !(𝐴 ⊗ 𝐵) = (

𝐴⊗𝐵
𝐼

)
=

(
𝐴
𝐼

)⊗ (
𝐵
𝐼

)
= !𝐴⊗!𝐵

and ?(𝐴 ⊗ 𝐵) = (
𝐼

𝐴⊗𝐵
)
=

(
𝐼
𝐴

) ⊗ (
𝐼
𝐵

)
= ?𝐴 ⊗ ?𝐵. �

Proposition G.8 (From Proposition 7.8). Let (C,×, 1) be a cartesian monoidal category. Its produoidal
category of lenses is given by the following profunctors.

Lens
(
𝐴
𝐵; 𝑋𝑌

)
= C(𝐴; 𝑋) × C(𝐴 × 𝑌 ; 𝐵).

Lens
(
𝐴
𝐵; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
= C(𝐴; 𝑋) × C(𝐴 × 𝑌 ; 𝑋 ′) × C(𝐴 × 𝑌 × 𝑌 ′; 𝐵).

Lens
(
𝐴
𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= C(𝐴; 𝑋 × 𝑋 ′) × C(𝐴 × 𝑌 × 𝑌 ′; 𝐵).

Lens
(
𝐴
𝐵

)
= C(𝐴; 𝐵).

Proof. We employ coend calculus. The derivation of the morphisms of cartesian lenses is very well-known
[Ril18], [CEG+20]; we derive the sequential and parallel splits. Indeed, the sequential split reduces as∫ 𝑀,𝑁

C(𝐴; 𝑀 × 𝑋) × C(𝑀 × 𝑌 ; 𝑁 × 𝑋 ′) × C(𝑁 × 𝑌 ′; 𝐵)
� (Universal property of the product)∫ 𝑀,𝑁

C(𝐴; 𝑀) × C(𝐴; 𝑋) × C(𝑀 × 𝑌 ; 𝑁) × C(𝑀 × 𝑌 ; 𝑋 ′) × C(𝑁 × 𝑌 ′; 𝐵)
� (by Yoneda reduction)
C(𝐴; 𝑋) × C(𝐴 × 𝑌 ; 𝑋 ′) × C(𝐴 × 𝑌 × 𝑌 ′; 𝐵).

And the parallel split reduces as∫ 𝑀

C(𝐴; 𝑀 × 𝑋 × 𝑋 ′) × C(𝑀 × 𝑌 × 𝑌 ′; 𝐵)
� (Universal property of the product)∫ 𝑀

C(𝐴; 𝑀) × C(𝐴; 𝑋 × 𝑋 ′) × C(𝑀 × 𝑌 × 𝑌 ′; 𝐵)
� (by Yoneda reduction)
C(𝐴; 𝑋 × 𝑋 ′) × C(𝐴 × 𝑌 × 𝑌 ′; 𝐵).

The unit is just the same as in the general monoidal case. �

Theorem G.9 (From Theorem 7.3). Monoidal lenses are the free symmetric normalization of the cofree
symmetric produoidal category over a monoidal category.

Proof. We have already proven that the symmetric normalization procedure yields the free symmetric
normalization over a symmetric produoidal category (Theorem 5.7).

The rest of the proof amounts to show that the normal symmetric produoidal category of monoidal
lenses is precisely the symmetric normalization of the produoidal category of spliced arrows. We do so
for morphisms, the rest of the proof is similar.

N 𝜎SC
(
𝐴
𝐵; 𝑋𝑌

) def
=

SC (
𝐴
𝐵; 𝑁 ⊗ 𝑋𝑌

) def
=∫ 𝑈

𝑉 ∈SC SC (
𝐴
𝐵;𝑈𝑉 ⊗ 𝑋𝑌

) × SC (
𝑈
𝑉 ; 𝑁

) def
=∫ 𝑈,𝑉 ∈C

C(𝐴;𝑈 ⊗ 𝑋) × C(𝑉 ⊗ 𝑌 ; 𝐵) × C (𝑈;𝑉) 𝑦1
�∫ 𝑈 ∈C

C (𝐴;𝑈 ⊗ 𝑋) × C(𝑈 ⊗ 𝑌 ; 𝐵) def
=

LC (
𝐴
𝐵; 𝑋𝑌

)
The rest of the profunctors follow a similar reasoning. �

Appendix H
Further Work

Theorem H.1 (From Proposition 8.1). Let V be a normal and ⊗-symmetric produoidal category with
coends over V commuting with finite connected limits. Then, [Vop, Set] is a dependence category in the
sense of Shapiro and Spivak [SS22].

Proof. Whenever V is produoidal, [Vop, Set], its category of presheaves is duoidal, with the structure given
by convolution (Theorem I.6).

At the same time, [Vop, Set] is a locally cartesian closed category will all limits because it is a presheaf
category. Whenever finite connected limits are preserved by ⊗, ⊳, we obtain a dependence category [SS22,
Theorem 4.8]. This means we only need the following isomorphism,∫ 𝑈,𝑉

V(𝑋;𝑈 ⊗ 𝑉) × lim𝑖 𝑃𝑖 (𝑈) × lim 𝑗 𝑄 𝑗 (𝑉)
� (Commutation of limits)∫ 𝑈,𝑉

lim𝑖, 𝑗 V(𝑋;𝑈 ⊗ 𝑉) × 𝑃𝑖 (𝑈) ×𝑄 𝑗 (𝑉)
� (Coends commute with finite connected limits)

lim𝑖, 𝑗

∫ 𝑈,𝑉

V(𝑋;𝑈 ⊗ 𝑉) × 𝑃𝑖 (𝑈) ×𝑄 𝑗 (𝑉)

Where we use our hypothesis on the last step. We conjecture this can be extended to an arbitrary V with
minor constraints. �

Appendix I
Duoidal and Produoidal Categories

By the Eckmann-Hilton argument, each time we have two monoids (∗, ◦) such that one is a monoid
homomorphism over the other, (𝑎 ◦ 𝑏) ∗ (𝑐 ◦ 𝑑) = (𝑎 ∗ 𝑐) ◦ (𝑏 ∗ 𝑑), we know that both monoids coincide
into a single commutative monoid.

However, an extra dimension helps us side-step the Eckmann-Hilton argument. If, instead of equalities
or isomorphisms, we use directed morphisms, both monoids (which now may become 2-monoids) do not
necessarily coincide, and the resulting structure is that of a duoidal category.

Definition I.1 (Duoidal category). A duoidal category [AM10] is a category C with two monoidal
structures, (C, ⊗, 𝐼, 𝛼, 𝜆, 𝜌) and (C,C, 𝑁, 𝛽, 𝜅, 𝜈) such that the latter distribute over the former. In other
words, it is endowed with a duoidal tensor, (C) : C × C→ C, together with natural distributors

𝜓2 : (𝑋C𝑍) ⊗ (𝑌 C𝑊) → (𝑋 ⊗𝑌)C (𝑍 ⊗𝑊), 𝜓0 : 𝐼 → 𝐼C 𝐼, 𝜑2 : 𝑁 ⊗𝑁 → 𝑁, and 𝜑0 : 𝐼 → 𝑁,

satisfying the following coherence equations (Figures 32 to 36).

Remark I.2. In other words, the duoidal tensor and unit are lax monoidal functors for the first monoidal
structure, which means that the laxators must satisfy the following equations.

1) (𝜓2 ⊗ 𝑖𝑑) # 𝜓2 # (𝛼 C 𝛼) = 𝛼 # (𝑖𝑑 ⊗ 𝜓2) # 𝜓2, for the associator;
2) (𝜓0 ⊗ 𝑖𝑑) # 𝜓2 # (𝜆 C 𝜆) = 𝜆, for the left unitor; and
3) (𝑖𝑑 ⊗ 𝜓0) # 𝜓2 # (𝜌 C 𝜌) = 𝜌, for the right unitor;
4) 𝛼 # (𝑖𝑑 ⊗ 𝜑2) # 𝜑2 = (𝜑2 ⊗ 𝑖𝑑) # 𝜑2, for the associator;
5) (𝜑0 ⊗ 𝑖𝑑) # 𝜑2 = 𝜆, for the left unitor; and
6) (𝑖𝑑 ⊗ 𝜑0) # 𝜑2 = 𝜌, for the right unitor.

Theorem I.3 (Coherence, [AM10]). Any two parallel morphisms constructed out of the coherence
isomorphisms and laxators of a duoidal category coincide.

((𝐴 C 𝐵) ⊗ (𝐶 C 𝐷)) ⊗ (𝐸 C 𝐹) (𝐴 C 𝐵) ⊗ ((𝐶 C 𝐷) ⊗ (𝐸 C 𝐹))

((𝐴 ⊗ 𝐶) C (𝐵 ⊗ 𝐷)) ⊗ (𝐸 C 𝐹) (𝐴 C 𝐵) ⊗ ((𝐶 ⊗ 𝐸) C (𝐷 ⊗ 𝐹))

((𝐴 ⊗ 𝐶) ⊗ 𝐸) C ((𝐵 ⊗ 𝐷) ⊗ 𝐹) (𝐴 ⊗ (𝐶 ⊗ 𝐸)) C (𝐵 ⊗ (𝐷 ⊗ 𝐹))

𝛼

𝜓2⊗𝑖𝑑 𝑖𝑑⊗𝜓2

𝜓2 𝜓2

𝛼C𝛼

((𝐴 C 𝐵) C 𝐶) ⊗ ((𝐷 C 𝐸) C 𝐹) (𝐴 C (𝐵 C 𝐶)) ⊗ (𝐷 C (𝐸 C 𝐹))

((𝐴 C 𝐵) ⊗ (𝐷 C 𝐸)) C (𝐶 ⊗ 𝐹) (𝐴 ⊗ 𝐷) C ((𝐵 C 𝐶) ⊗ (𝐸 C 𝐹))

((𝐴 ⊗ 𝐷) C (𝐵 ⊗ 𝐸)) C (𝐶 ⊗ 𝐹) (𝐴 ⊗ 𝐷) C ((𝐵 ⊗ 𝐸) C (𝐶 ⊗ 𝐹))

𝛽⊗𝛽

𝜓2 𝜓2

𝜓2⊗𝑖𝑑 𝑖𝑑⊗𝜓2

𝛽

Fig. 32: Coherence diagrams for associativity of a duoidal category.

𝐼 ⊗ (𝐴 C 𝐵) (𝐼 C 𝐼) ⊗ (𝐴 C 𝐵)

𝐴 C 𝐵 (𝐼 ⊗ 𝐴) C (𝐼 ⊗ 𝐵)

𝜓0⊗𝑖𝑑

𝜆 𝜓2

𝜆C𝜆

(𝐴 C 𝐵) ⊗ 𝐼 (𝐴 C 𝐵) ⊗ (𝐼 C 𝐼)

𝐴 C 𝐵 (𝐴 ⊗ 𝐼) C (𝐵 ⊗ 𝐼)

𝜓0⊗𝑖𝑑

𝜌 𝜓2

𝜌C𝜌

Fig. 33: Coherence diagrams for ⊗-unitality of a duoidal category.

𝑁 C (𝐴 ⊗ 𝐵) (𝑁 ⊗ 𝑁) C (𝐴 ⊗ 𝐵)

𝐴 ⊗ 𝐵 (𝑁 C 𝐴) ⊗ (𝑁 C 𝐵)
𝜅

𝜑2C𝑖𝑑

𝜓2

𝜅⊗𝜅

(𝐴 ⊗ 𝐵) C 𝑁 (𝐴 ⊗ 𝐵) C (𝑁 ⊗ 𝑁)

𝐴 ⊗ 𝐵 (𝐴 C 𝑁) ⊗ (𝐵 C 𝑁)
𝜈

𝑖𝑑C𝜑2

𝜓2

𝜈⊗𝜈

Fig. 34: Coherence diagrams for C-unitality of a duoidal category.

(𝑁 ⊗ 𝑁) ⊗ 𝑁 𝑁 ⊗ (𝑁 ⊗ 𝑁)

𝑁 ⊗ 𝑁 𝑁 𝑁 ⊗ 𝑁

𝛼

𝜑2⊗𝑖𝑑 𝑖𝑑⊗𝜑2

𝜑2 𝜑2

𝐼 C 𝐼 𝐼 𝐼 C 𝐼

(𝐼 C 𝐼) C 𝐼 𝐼 C (𝐼 C 𝐼)
𝜓0⊗𝑖𝑑

𝜓0 𝜓0

𝑖𝑑⊗𝜓0

𝛽

Fig. 35: Associativity and coassociativity for 𝑁 and 𝐼 in a duoidal category.

𝑁 ⊗ 𝐼 𝑁

𝑁 ⊗ 𝑁

𝜌

𝑖𝑑⊗𝜑0 𝜑2

𝐼 ⊗ 𝑁 𝑁

𝑁 ⊗ 𝑁

𝜆

𝜑0⊗𝑖𝑑 𝜑2

𝐼 C 𝑁 𝐼 C 𝐼

𝐼

𝑖𝑑⊗𝜑0

𝜈
𝜓0

𝑁 C 𝐼 𝐼 C 𝐼

𝐼

𝑖𝑑⊗𝜑0

𝜅
𝜓0

Fig. 36: Unitality and counitality for 𝑁 and 𝐼 in a duoidal category.

I.1 Normalization of duoidal categories
Garner and López Franco [GF16] introduce a procedure for normalizing a sufficiently well-behaved

duoidal category, based in the construction of a new duoidal category of bimodules. In this text, we
introduce a normalization procedure for an arbitrary produoidal category. For completeness, let us recall
first the original procedure [GF16].

Let 𝑀 be a bimonoid in the duoidal category (V, ⊗, 𝐼,C, 𝑁), with maps 𝑒 : 𝐼 → 𝑀 and 𝑚 : 𝑀⊗𝑀 → 𝑀;
and with maps 𝑢 : 𝑀 → 𝑁 and 𝑑 : 𝑀 → 𝑀 C 𝑀 . Consider now the category of 𝑀 ⊗-bimodules. This
category has a monoidal structure lifted from (V,C, 𝑁):

1) the unit, 𝑁 , has a bimodule structure with

𝑀 ⊗ 𝑁 ⊗ 𝑀
𝑢⊗id⊗𝑢−→ 𝑁 ⊗ 𝑁 ⊗ 𝑁 −→ 𝑁;

2) the sequencing of two 𝑀 ⊗-bimodules is a 𝑀 ⊗-bimodule with

𝑀 ⊗ (𝐴 C 𝐵) ⊗ 𝑀

→ (𝑀 C 𝑀) ⊗ (𝐴 C 𝐵) ⊗ (𝑀 C 𝑀)
→ (𝑀 ⊗ 𝐴 ⊗ 𝑀) C (𝑀 ⊗ 𝐵 ⊗ 𝑀) → 𝐴 C 𝐵.

Moreover, whenever V admits reflexive coequalizers preserved by (⊗), the category of 𝑀 ⊗-bimodules is
monoidal with the tensor of bimodules: the coequalizer

𝐴 ⊗ 𝑀 ⊗ 𝐵 ⇒ 𝐴 ⊗ 𝐵 � 𝐴 ⊗𝑀 𝐵.

In this case (Bimod⊗𝑀 , ⊗𝑀 , 𝑀,C, 𝑁) is a duoidal category.

Theorem I.4 (Normalization of a duoidal category). Let (V, ⊗, 𝐼,C, 𝑁) be a duoidal category with reflexive
coequalizers preserved by (⊗). The category of 𝑁-bimodules is then a normal duoidal category,

N(V) = (Bimod⊗𝑁 , ⊗𝑁 , 𝑁,C, 𝑁).
We call this category the normalization [GF16] of the duoidal category V.

I.2 Produoidal Categories
Definition I.5 (Produoidal category, from Definition 4.2). A produoidal category is a category V endowed
with two promonoidal structures,

V(•; • ⊗ •) : V × V� V, and V(•; 𝐼) : 1� V,

V(•; • C •) : V × V� V, and V(•; 𝑁) : 1� V,

such that one laxly distributes over the other. This is to say that it is endowed with the following natural
laxators,

𝜓2 : V(•; (𝑋 C 𝑌) ⊗ (𝑍 C𝑊)) → V(•; (𝑋 ⊗ 𝑍) C (𝑌 ⊗𝑊)),
𝜓0 : V(•; 𝐼) → V(•; 𝐼 C 𝐼),

𝜑2 : V(•; 𝑁 ⊗ 𝑁) → V(•; 𝑁),
𝜑0 : V(•; 𝐼) → V(•; 𝑁).

Laxators, together with unitors and associators must satisfy the coherence conditions in the following
diagrams (Figures 37 to 41).

V(•, ((𝐴 C 𝐵) ⊗ (𝐶 C 𝐷)) ⊗ (𝐸 C 𝐹)) V(•, (𝐴 C 𝐵) ⊗ ((𝐶 C 𝐷) ⊗ (𝐸 C 𝐹)))

V(•, ((𝐴 ⊗ 𝐶) C (𝐵 ⊗ 𝐷)) ⊗ (𝐸 C 𝐹)) V(•, (𝐴 C 𝐵) ⊗ ((𝐶 ⊗ 𝐸) C (𝐷 ⊗ 𝐹)))

V(•, ((𝐴 ⊗ 𝐶) ⊗ 𝐸) C ((𝐵 ⊗ 𝐷) ⊗ 𝐹)) V(•, (𝐴 ⊗ (𝐶 ⊗ 𝐸)) C (𝐵 ⊗ (𝐷 ⊗ 𝐹)))

𝛼

𝜓2⊗𝑖𝑑 𝑖𝑑⊗𝜓2

𝜓2 𝜓2

𝛼C𝛼

V(•, ((𝐴 C 𝐵) C 𝐶) ⊗ ((𝐷 C 𝐸) C 𝐹)) V(•, (𝐴 C (𝐵 C 𝐶)) ⊗ (𝐷 C (𝐸 C 𝐹)))

V(•, ((𝐴 C 𝐵) ⊗ (𝐷 C 𝐸)) C (𝐶 ⊗ 𝐹)) V(•, (𝐴 ⊗ 𝐷) C ((𝐵 C 𝐶) ⊗ (𝐸 C 𝐹)))

V(•, ((𝐴 ⊗ 𝐷) C (𝐵 ⊗ 𝐸)) C (𝐶 ⊗ 𝐹)) V(•, (𝐴 ⊗ 𝐷) C ((𝐵 ⊗ 𝐸) C (𝐶 ⊗ 𝐹)))

𝛽⊗𝛽

𝜓2 𝜓2

𝜓2⊗𝑖𝑑 𝑖𝑑⊗𝜓2

𝛽

Fig. 37: Coherence diagrams for associativity of a produoidal category.

V(•, 𝐼 ⊗ (𝐴 C 𝐵)) V(•, (𝐼 C 𝐼) ⊗ (𝐴 C 𝐵))

V(•, 𝐴 C 𝐵) V(•, (𝐼 ⊗ 𝐴) C (𝐼 ⊗ 𝐵))

𝜓0⊗𝑖𝑑

𝜆 𝜓2

𝜆C𝜆

V(•, (𝐴 C 𝐵) ⊗ 𝐼) V(•, (𝐴 C 𝐵) ⊗ (𝐼 C 𝐼))

V(•, 𝐴 C 𝐵) V(•, (𝐴 ⊗ 𝐼) C (𝐵 ⊗ 𝐼))

𝜓0⊗𝑖𝑑

𝜌 𝜓2

𝜌C𝜌

Fig. 38: Coherence diagrams for ⊗-unitality of a produoidal category.

V(•, 𝑁 C (𝐴 ⊗ 𝐵)) V(•, (𝑁 ⊗ 𝑁) C (𝐴 ⊗ 𝐵))

V(•, 𝐴 ⊗ 𝐵) V(•, (𝑁 C 𝐴) ⊗ (𝑁 C 𝐵))
𝜅

𝜑2C𝑖𝑑

𝜓2

𝜅⊗𝜅

V(•, (𝐴 ⊗ 𝐵) C 𝑁) V(•, (𝐴 ⊗ 𝐵) C (𝑁 ⊗ 𝑁))

V(•, 𝐴 ⊗ 𝐵) V(•, (𝐴 C 𝑁) ⊗ (𝐵 C 𝑁))
𝜈

𝑖𝑑C𝜑2

𝜓2

𝜈⊗𝜈

Fig. 39: Coherence diagrams for C-unitality of a produoidal category.

V(•, (𝑁 ⊗ 𝑁) ⊗ 𝑁) V(•, 𝑁 ⊗ (𝑁 ⊗ 𝑁))

V(•, 𝑁 ⊗ 𝑁) V(•, 𝑁) V(•, 𝑁 ⊗ 𝑁)

𝛼

𝜑2⊗𝑖𝑑 𝑖𝑑⊗𝜑2

𝜑2 𝜑2

V(•, 𝐼 C 𝐼) V(•, 𝐼) V(•, 𝐼 C 𝐼)

V(•, (𝐼 C 𝐼) C 𝐼) V(•, 𝐼 C (𝐼 C 𝐼))
𝜓0⊗𝑖𝑑

𝜓0 𝜓0

𝑖𝑑⊗𝜓0

𝛽

Fig. 40: Associativity and coassociativity for 𝑁 and 𝐼 in a produoidal category.

V(•, 𝑁 ⊗ 𝐼) V(•, 𝑁)

V(•, 𝑁 ⊗ 𝑁)

𝜌

𝑖𝑑⊗𝜑0 𝜑2

V(•, 𝐼 ⊗ 𝑁) V(•, 𝑁)

V(•, 𝑁 ⊗ 𝑁)

𝜆

𝜑0⊗𝑖𝑑 𝜑2

V(•, 𝐼 C 𝑁) V(•, 𝐼 C 𝐼)

V(•, 𝐼)

𝑖𝑑⊗𝜑0

𝜈
𝜓0

V(•, 𝑁 C 𝐼) V(•, 𝐼 C 𝐼)

V(•, 𝐼)

𝑖𝑑⊗𝜑0

𝜅
𝜓0

Fig. 41: Unitality and counitality for 𝑁 and 𝐼 in a produoidal category.

I.3 Produoidals induce duoidals
Theorem I.6. Let V be a produoidal category, then its category of presheaves, [Vop, Set], is duoidal with
the structure given by convolution [BS13].

Proof. Let 𝑃 and 𝑄 be presheaves in V. We define the following tensor products on presheaves by
convolution of the tensor products in V.

(𝑃 ⊗ 𝑄) (𝐴) =
∫ 𝑈,𝑉

hom(𝐴,𝑈 ⊗ 𝑉) × 𝑃(𝑈) ×𝑄(𝑉),

(𝑃 C𝑄) (𝐴) =
∫ 𝑈,𝑉

hom(𝐴,𝑈 C𝑉) × 𝑃(𝑈) ×𝑄(𝑉).
These tensor products can be shown in a straightforward way to form a duoidal category, inheriting the
laxators from those of V. �

Appendix J
Tambara modules

Definition J.1 (Tambara module, [PS07]). Let (A, ⊗, 𝐼) be a strict monoidal category. A Tambara module
is a profunctor 𝑇 : Aop × A→ Set endowed with natural transformations

𝑡𝑀𝑙 : 𝑇 (𝑋;𝑌) → 𝑇 (𝑀 ⊗ 𝑋, 𝑀 ⊗ 𝑌),
𝑡𝑀𝑟 : 𝑇 (𝑋;𝑌) → 𝑇 (𝑋 ⊗ 𝑀,𝑌 ⊗ 𝑀),

that are natural in both 𝑋 and 𝑌 , but also dinatural on 𝑀 . These must moreover satisfy the following
axioms:
• 𝑡 𝐼𝑙 = 𝑖𝑑 and 𝑡 𝐼𝑟 = 𝑖𝑑, unitality;
• 𝑡𝑀𝑙 # 𝑡𝑁𝑙 = 𝑡𝑁 ⊗𝑀𝑙 and 𝑡𝑀𝑟 # 𝑡𝑁𝑟 = 𝑡𝑀 ⊗𝑁𝑙 , multiplicativity;
• 𝑡𝑀𝑙 # 𝑡𝑁𝑟 = 𝑡𝑁𝑟 # 𝑡𝑀𝑙 , and compatibility.

Tambara modules are the algebras of a monad. We start by noting that the hom profunctor is a monoid
with respect to Day convolution. This makes the following functor a monad on endoprofunctors, the so-
called Pastro-Street monad [PS07],

Φ(𝑃) = ℎ𝑜𝑚 ~ 𝑃 ~ ℎ𝑜𝑚;

where Φ : [Cop × C, Set] → [Cop × C, Set].
Theorem J.2. The algebras of the Pastro-Street monad, the Φ-algebras, are precisely Tambara modules
[PS07]. As a consequence, the free Tambara module over a profunctor 𝐻 : Cop × C→ Set is Φ(𝐻).
Example J.3. Consider the profunctor よ(𝐴; 𝐵) : Aop × A → Set that produes a hole of types 𝐴 and 𝐵.
That is, let よ(𝐴; 𝐵) = hom(•, 𝐴) × hom(𝐵, •). The free Tambara module over it is the monoidal context
with a hole of type 𝐴 and 𝐵,

Φ(よ𝐴
𝐵) =

∫ 𝑀,𝑁

hom(•, 𝑀 ⊗ 𝐴 ⊗ 𝑁) × hom(𝑀 ⊗ 𝐵 ⊗ 𝑁, •).
J.1 Normalization of profunctors

Let (C, ⊗, 𝐼) be a monoidal category. The category of endoprofunctors Cop × C → Set is then duoidal
with composition (C) and Day convolution (~).

(Cop × C, Set, ~, 𝐼,C, hom).
Moreover, we can also construct its normalization: the category of endoprofunctors, [Cop × C, Set], has
reflexive coequalisers; thus, we are in the conditions of Theorem I.4. The normal duoidal category of
hom~-bimodules has been traditionally called the category of Tambara modules.

N(Cop × C, Set, ~, 𝐼,C, hom) = (Tamb, ~hom, hom,C, hom).
Theorem J.4. The category of Tambara modules is a normal duoidal category and, in fact, it is the
normalization of the duoidal category of endoprofunctors.

Appendix K
Monoidal Categories

K.1 Monoidal categories.
Endowed with the notion of isomorphism, we can now relax our definition of theory of processes by

substituting strict equalities by isomorphism.

Definition K.1. A {symmetric} monoidal category [Mac78] (C, ⊗, 𝐼) is a tuple

(Cobj,Cmor, (#), id, (⊗)obj, (⊗)mor, 𝐼, 𝛼, 𝜆, 𝜌, {𝜎}),
specifying a set of objects, or resource types, Cobj; a set of morphisms, or processes, Cmor; a composition
operation; a family of identity morphisms; a tensor operation on objects and morphisms; a unit object and
families of associator, left unitor, right unitor {and swapping morphisms}.

The families of associator, left unitor and right unitor morphisms have the following types.

𝛼𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶),
𝜆𝐴 : 𝐼 ⊗ 𝐴→ 𝐴,

𝜌𝐴 : 𝐴 ⊗ 𝐼 → 𝐴.

They must satisfy the following non-strict versions of the axioms.

𝐴 ⊗ (𝐵 ⊗ 𝐶) � (𝐴 ⊗ 𝐵) ⊗ 𝐶, (1)
𝐴 ⊗ 𝐼 � 𝐴 � 𝐼 ⊗ 𝐴, (2)

(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ), (3)
id𝐵 # 𝑓 = 𝑓 = 𝑓 # id𝐵, (4)

(𝑓 ⊗ (𝑔 ⊗ ℎ)) # 𝛼 = 𝛼 # ((𝑓 ⊗ 𝑔) ⊗ ℎ), (5)
(𝑓 ⊗ id𝐼) # 𝜌 = 𝜌 # 𝑓 , (6)

(𝑓 ⊗ 𝑔) # (ℎ ⊗ 𝑘) = (𝑓 # ℎ) ⊗ (𝑔 # 𝑘), (7)
𝜎𝐴,𝐵⊗𝐶 # 𝛼 = 𝛼 # (𝜎𝐴,𝐵 # id𝐶) # (id𝐵 ⊗ 𝜎𝐴,𝐶), (8)
𝜎𝐴,𝐵⊗𝐶 # 𝛼 = 𝛼 # (𝜎𝐴,𝐵 # id𝐶) # (id𝐵 ⊗ 𝜎𝐴,𝐶), (9)

𝜎𝐴,𝐴′ # (𝑔 ⊗ 𝑓) = (𝑓 ⊗ 𝑔) # 𝜎𝐵,𝐵′ , (10)
𝜎𝐴,𝐵 # 𝜎𝐵,𝐴 = id𝐴⊗𝐵 . (11)

{Additionally}, they must satisfy the following axioms, whenever they are formally well-typed.

𝛼 # 𝛼 = (𝛼 ⊗ id) # 𝛼 # (id ⊗ 𝛼), (12)
𝜌 = 𝛼 # (id ⊗ 𝜆), (13)

𝛼 # 𝜎 # 𝛼 = (𝜎 ⊗ id) # 𝛼 # (id ⊗ 𝜎). (14)

String diagrams [JS91] are a sound and complete syntax for monoidal categories.

Construction K.2. Let C be a monoidal category. Its strictification, Strict(C), is a monoidal category
where
• objects are cliques: for each list of objects of C, say, [𝐴0, . . . , 𝐴𝑛] ∈ List(C), we form the clique

containing all possible parenthesizations and coherence isomorphisms between them;
• morphisms are clique morphisms: a morphism between any two components of the clique, which

determines a morphism between all of them.
The tensor product is concatenation, which makes it a strict monoidal category.

Remark K.3. There is a strong monoidal functor C → Strict(C), this makes an object 𝐴 into an object
[𝐴]; this is fully-faithful but, moreover, it is essentially surjective, giving a monoidal equivalence.

Theorem K.4. Every monoidal category is monoidally equivalent to its strictification.

5. Open Diagrams via Coend Calculus

Mario Román
Applied Category Theory (ACT, 2020)

Abstract: Morphisms in a monoidal category are usually interpreted as pro-
cesses, and graphically depicted as square boxes. In practice, we are faced with
the problem of interpreting what non-square boxes ought to represent in terms
of the monoidal category and, more importantly, how should they be composed.
Examples of this situation include lenses or learners. We propose a description
of these non-square boxes, which we call open diagrams, using the monoidal bi-
category of profunctors. A graphical coend calculus can then be used to reason
about open diagrams and their compositions.

Declaration: Hereby I declare that my contribution to this manuscript was to:
write the manuscript as a single-author, identify the research problem and con-
duct the research.

OPEN DIAGRAMS VIA COEND CALCULUS

MARIO ROMÁN

Abstract. Morphisms in a monoidal category are usually interpreted as processes, and
graphically depicted as square boxes. In practice, we are faced with the problem of
interpreting what non-square boxes ought to represent in terms of the monoidal category
and, more importantly, how should they be composed. Examples of this situation include
lenses or learners. We propose a description of these non-square boxes, which we call
open diagrams, using the monoidal bicategory of profunctors. A graphical coend calculus
can then be used to reason about open diagrams and their compositions.

1. Introduction

1.1. Open Diagrams. Morphisms in monoidal categories are interpreted as processes
with inputs and outputs and generally represented by square boxes. This interpretation,
however, raises the question of how to represent a process that does not consume all the
inputs at the same time or a process that does not produce all the outputs at the same
time. For instance, consider a process that consumes an input, produces an output, then
consumes a second input and ends producing an output. Graphically, we have a clear idea
of how this process should be represented, even if it is not a morphism in the category.

A

X Y

B

Figure 1. A process with a non-standard shape. The input A is taken
at the beginning, then the output X is produced, strictly after that, the
input Y is taken; finally, the output B is produced.

Reasoning graphically, it seems clear, for instance, that we should be able to plug a
morphism connecting the first output to the second input inside this process and get back
an actual morphism of the category.

A B

f

Figure 2. It is possible to plug a morphism f : X → Y inside the
previous process (Figure 1), and, importantly, get back a morphism
A→ B.

The particular shape depicted above has been extensively studied by [Ril18] under the
name of (monoidal) optic; it can be also called a monoidal lens; and it has applications
in bidirectional data accessing [PGW17, BG18, Kme18] or compositional game theory
[GHWZ18]. A multi-legged generalization has appeared also in quantum circuit design

Date: May 10, 2020.

1

2 MARIO ROMÁN

[CDP08] and quantum causality [KU17] as a notational convention, see [Rom20]. It can be
shown that boxes of that particular shape should correspond to elements of a suitable coend
(Figure 3, see also §1.2 and [Mil17, Ril18]). The intuition for this coend representation is
to first consider a tuple of morphisms, and then quotient out by the equivalence relation
generated by sliding morphisms along connected wires.

f gA
X Y

B ∼ f gA
X Y

B

Figure 3. A box of this shape is meant to represent a pair of morphisms
in a monoidal category quotiented out by ”sliding a morphism” over the
upper wire.

It has remained unclear, however, how this process should be carried in full generality
and if it was in solid ground. Are we being formal when we use these open or incomplete
diagrams? What happens with all the other possible shapes that one would want to
consider in a monoidal category? In principle, they are not usual squares. For instance,
the second of the shapes in Figure 4 has three inputs and two outputs, but the first input
cannot affect the last output; and the last input cannot affect the first output.1

gA X Y Bf f

g

h

Figure 4. Some other shapes for boxes in a monoidal category.

This text presents the idea that incomplete diagrams should be interpreted as valid
diagrams in the monoidal bicategory of profunctors; and that compositions of incomplete
diagrams correspond to reductions that employ the monoidal bicategory structure. At the
same time, this gives a graphical presentation of coend calculus.

1.2. Coend calculus. Coends are particular cases of colimits and coend calculus is a
practical formalism that uses Yoneda reductions to describe isomorphisms between them.
Their dual counterparts are ends, and formalisms for both interact nicely in a (Co)End
calculus [Lor19].

Definition 1.1. The coend
∫ X∈C

P (X,X) of a profunctor P : Cop × C → Set is the
coequalizer of the action of morphisms on both arguments of the profunctor.

∫ X∈C
P (X,X) ∼= coeq

(⊔
f : B→A P (A,B)

⊔
X∈C P (X,X)

)
.

An element of the coend is an equivalence class of pairs [X,x ∈ P (X,X)] under the
equivalence relation generated by [X,P (f,−)(z)] ∼ [Y, P (−, f)(z)] for each f : Y → X.

1This particular shape comes from a question by Nathaniel Virgo on categorytheory.zulipchat.com.

OPEN DIAGRAMS VIA COEND CALCULUS 3

Our main idea is to use these equivalence relations to deal with the quotienting arising
in non-square monoidal boxes.

f gA
X Y

B ∼ f gA
X Y

B

∫ M

C(A,M ⊗X)×C(M ⊗ Y,B).

Figure 5. We can go back to the previous example (Figure 3) to check
how it coincides with the quotienting arising from the dinaturality of a
coend.

1.3. Contributions. Our first contribution is a graphical calculus of shapes of open di-
agrams (§2), with semantics on the monoidal bicategory of profunctors, and with an em-
phasis on representing monoidal structures. We show how to compose and simplify shapes
(§3). Our second contribution is a graphical calculus with open diagrams, in terms of the
category of pointed profunctors, and hinting at a pseudofunctorial analogue of functor
boxes [Mel06] (§4).

As examples, we recast the multiple ways of composing monoidal lenses and other coend
constructions on the literature on optics (§2.3). We study categories with feedback (§2.4)
and learners (§8.4).

2. Shapes of Open Diagrams

In the same sense that morphisms sharing the same domain and codomain are collected
into an hom-set; open diagrams sharing the same shape will be collected into a set. Our
first step is to provide a graphical calculus for these shapes and, at the same time, an
interpretation that assigns a set to each shape (Figure 6).

A BX Y ∼=
∫ M,N

C(A,M ⊗X ⊗N)×C(M ⊗ Y ⊗N,B),

I0

I1
O1

O2
I2

∼=
∫ M,N

C(I0,M ⊗N)×C(I1 ⊗M,O1)×C(N ⊗ I2, O2).

Figure 6. The shapes of Figure 4, interpreted as sets.

2.1. Inputs, outputs, junctions and forks. Shapes will be interpreted in Prof , the
monoidal bicategory of profunctors. Its 0-cells are small categories (A,B,C, . . .); its 1-cells
from A to B are profunctors Aop ×B→ Set; and its 2-cells are natural transformations
(see [Lor19, §5]). Two profunctors P : Aop ×B → Set and Q : Bop ×C → Set compose
into a profunctor (P �Q) : Aop ×C→ Set given by

(P �Q)(A,C) :=

∫ B∈B
P (A,B)×Q(B,C).

4 MARIO ROMÁN

The monoidal product is the cartesian product of categories, two profunctors P1 : Aop
1 ×

B1 → Set and P2 : Aop
2 × B2 → Set can be joint into the profunctor (P1 ⊗ P2) : (A1 ×

A2)op × (B1 ×B2)→ Set defined by

(P1 ⊗ P2)(A1, A2, B1, B2) := P1(A1, B1)× P2(A2, B2).

The string diagrammatic calculus for monoidal bicategories has been studied by Bartlett
[Bar14] expanding on a strictification result by Schommer-Pries [SP11]. It is similar to the
graphical calculus of monoidal categories, with the caveat that deformations correspond
to invertible 2-cells instead of equalities. For instance, arrows between diagrams on this
text will denote natural transformations, which are 2-cells of the bicategorical structure
of profunctors.

Definition 2.1 (Input and output ports). Every object A ∈ C determines two profunc-
tors (A) := C(A,−) : 1op × C → Set and (A) := C(−, A) : Cop × 1 → Set via its
contravariant and covariant Yoneda embeddings.

Definition 2.2 (Junctions and forks). Every monoidal category C has a canonical pseu-
domonoid structure on the monoidal bicategory Prof given by () := C(− ⊗ −,−)
and () := C(I,−), and also a canonical pseudocomonoid structure given by () :=
C(−,−⊗−) and () := C(−, I).

Proposition 2.3. By definition, (I) ∼= () and (I) ∼= (); moreover,

A

B

∼= A⊗B
A

B

∼= A⊗B

In general, Yoneda embeddings are pseudofunctorial (see Proposition 8.3).

2.2. Copying and discarding. Shapes define sets in terms of coends, making them
less practical for direct manipulation. However, shapes can be reduced to more familiar
descriptions in some particular cases. For instance, if C is cartesian monoidal, the shape
of Figure 7 reduces to a pair of morphisms C(I0×I1, O1) and C(I0×I2, O2). This justifies
our previous intuition, back in Figure 4, that the input I1 should not be able to affect O2,
while the input I2 should not be able to affect O1.

I0

I1
O1

O2
I2

∼= I0

I1
O1

O2
I2

∼=
I0

I1
O1

O2
I2

I0

Figure 7. Simplifying a diagram.

Our second step is to justify some reductions like these in the cases of cartesian, co-
cartesian and symmetric monoidal categories. Every object of the category of profunctors
has already a canonical pseudocomonoid structure lifted from Cat which is given by
() := C(−0,−1)×C(−0,−2) and () := 1, and also a pseudomonoid structure given by
() := C(−1,−0) ×C(−2,−0), and () := 1. These two structures “copy and discard”
representable and corepresentable functors, respectively (see Proposition 8.5).

Proposition 2.4 (Cartesian and cocartesian). A monoidal category is cartesian if and
only if () ∼= () and () ∼= (), i.e. the monoidal structure coincides with the canonical
one. Dually, a monoidal category is cocartesian if and only if () ∼= () and () ∼= ().

OPEN DIAGRAMS VIA COEND CALCULUS 5

Proof. The natural isomorphism C(X,Y ⊗Z) ∼= C(X,Y)×C(X,Z) is precisely the univer-
sal property of the product; a similar reasoning holds for initial objects, terminal objects
and coproducts. �

Proposition 2.5 (Symmetric monoidal). If a monoidal category C is symmetric then its
symmetric pseudomonoid structure can be lifted from Cat to Prof . We have σ : () ∼=
() and σ∗ : () ∼= (), dual 2-cells in the bicategory Prof that commute with unitors
and associators (see also Proposition 8.4).

2.3. Example: Lenses. Profunctor optics and lenses have been extensively studied in
functional programming [Kme18, Mil17, PGW17, BG18] for bidirectional data accessing.
The theory of optics uses coend calculus both to describe how optics compose and how
to reduce them in sufficiently well-behaved cases to tuples of morphisms. Categories of
monoidal optics and the informal interpretation of optics as diagrams with holes have
been studied in depth [Ril18]. We will study lenses from the perspective of the graphical
calculus of Prof . This presents a new way of describing reductions with coend calculus
that also formalizes the intuition of lenses as diagrams with holes.

Definition 2.6. A monoidal lens [Mil17, PGW17, Ril18, “Optic” in Definition 2.0.1] from
A,B ∈ C to X,Y ∈ C is an element of the following set.

A

X Y

B =

∫ M

C(A,M ⊗X)×C(M ⊗ Y,B)

For applications [FJ19, GHWZ18], the most popular case of monoidal lenses is that of
cartesian lenses.

Proposition 2.7. In a cartesian category C, a lens (A,B)→ (X,Y) is given by a pair of
morphisms C(A,X) and C(A× Y,B). In a cocartesian category, lenses are called prisms
[Kme18] and they are given by a pair of morphisms C(S,A+ T) and C(B, T).

Proof. We write the proof for lenses, the proof for prisms is dual and can be obtained by
mirroring the diagrams. The coend derivation can be found, for instance, in [Mil17].

A

X Y

B

∫ M

C(A,M ×X)×C(M × Y,B)

∼= {() ∼= ()} ∼= {Universal property of the product}

A

X Y

B

∫ M

C(A,M)×C(A,X)×C(M × Y,B)

∼= {Copy} ∼= {Yoneda lemma}

XA

A

B

Y

C(A,X)×C(A× Y,B) �

2.4. Example: Feedback. Shapes do not need to be limited to a single category. For
instance, we can make use of the opposite category to introduce feedback, in the sense of
the categories with feedback of [KSW02]. Wires in the opposite category will be marked
with an arrow to distinguish them.

6 MARIO ROMÁN

X Y
=

∫ M∈C
C(M ⊗X,M ⊗ Y).

Figure 8. A shape with feedback, interpreted as a set.

Proposition 2.8 (see [Sta13]). Profunctors form a compact closed bicategory. The dual
of a category is its opposite category.

3. Composing and Reducing Shapes

We have been focusing on the invertible transformations between shapes, but arguably
the most interesting case is that of non-invertible transformations. Our next step is to
describe rules for composing and reducing diagrams that translate to valid coend calculus
reductions. For instance, as we saw in the introduction (Figure 2), a lens (A,B)→ (X,Y)
can be composed with a morphism X → Y to obtain a morphism A→ B.

A

X Y

B

YX

(∫ M

C(A,M ⊗X)×C(M ⊗ Y,B)

)
×C(X,Y)

∼= {Isotopy} ∼= {Continuity}

A

X Y

B

X Y

∫ M

C(A,M ⊗X)×C(X,Y)×C(M ⊗ Y,B)

→ {εX} → {Composition along X}

A

Y

B

Y

∫ M

C(A,M ⊗ Y)×C(M ⊗ Y,B)

→ {εY } → {Composition along Y }

A B

∫ M,N

C(A,M ⊗N)×C(M ⊗N,B)

→ {ε⊗} → {Composition along M ⊗N}
BA

C(A,B)

Figure 9. Composing a lens with a morphism, formalizing Figure 2.

Definition 3.1 (Joining and splitting wires). Identities and composition define natural
transformations ηA : () → (A A) and εA : (A A) → (). They determine an
adjunction, as the following transformations are identities.

(A)
η→ (A A A)

ε→ (A); (A)
ε→ (A A A)

η→ (A).

In the same vein, junctions and forks have natural transformations ε⊗ : () → ()
and η⊗ : ()→ (). They determine an adjunction, as the following transformations
are identities.

()
η→ ()

ε→ (); ()
η→ ()

ε→ ().

OPEN DIAGRAMS VIA COEND CALCULUS 7

3.1. Example: Categories of Optics. Two lenses of types (A,B) → (X,Y) and
(X,Y) → (U, V) can be composed with each other to form a category of optics [Ril18].
There is, however, another way of composing two lenses. When the base category is sym-
metric, a lens (A, Y) → (X,V) can be composed with a lens (X,B) → (U, Y) into a lens
(A,B)→ (U, Y). We will observe that, even if Prof is symmetric, the reduction explicitly
uses symmetry on the base category C.

A

X Y

B X

U V

Y A

X V

Y X

U Y

B

∼= ∼=

A

X Y

B

X

U V

Y

A

X

U

B

X Y

V

Y

→ {εX} → {εX}

A

Y

B

U V

Y

A

U

B

Y

V

Y

→ {εY } → {εY }

A B

U V

A

U

B

V

→ {α} → {α}

A B

U V

A

U

B

V

→ {ε⊗} ∼= {σ, symmetry}

A

U V

B
A

U

B

V

→ {ε⊗}

A

U V

B

Figure 10. In parallel, two possible compositions of optics.

3.2. Example: from Lenses to Dynamical Systems. In [SSV16, Definition 2.3.1],
a discrete dynamical system, a Moore machine, is characterized to have the same data
as a lens (A,A) → (X,Y). The following derivation is a conceptual justification of this
coincidence: a lens with suitable types can be made into a morphism of the free category
with feedback [KSW02], subsuming particular cases such as Moore machines.

8 MARIO ROMÁN

X Y

AA

∫ M

C(A,M ⊗X)×C(M ⊗ Y,A)

∼= {Isotopy} ∼= {Commutativity of (×)}

XY

A A

∫ M

C(M ⊗ Y,A)×C(A,M ⊗X)

→ {εA} → {Composition along A}

Y X

∫ M

C(M ⊗ Y,M ⊗X)

Figure 11. From lenses to dynamical systems.

4. Open Diagrams

Our final step is to justify how to obtain the diagrams that originally motivated this
text (open diagrams) by “looking inside” the shapes. So far, the element of a set described
by a shape could be only expressed as a derivation of the shape from the empty diagram.
In this section, we show diagrams that summarize these derivations and that represent
specific elements of the shape.

f,g→ f gA

M

X

M

Y

B
εM→ f g

X Y

A B

Figure 12. Open diagrams represent specific elements.

4.1. Open Diagrams. Open diagrams will be interpreted in Prof∗, the symmetric mo-
noidal bicategory of pointed profunctors. Its 0-cells are categories with a chosen object;
its 1-cells from (A, X) to (B, Y) are profunctors P : Aop ×B→ Set with a chosen point
p ∈ P (X,Y); and its 2-cells are natural transformations preserving that chosen point.

Proposition 4.1. Reductions on shapes can be lifted to reductions on open diagrams.

Proof. There exists a pseudofunctor U : Prof∗ → Prof that forgets about the specific
point. It holds that a ∈ A for every element (A, a) ∈ Prof∗((1, 1), (1, 1)). Natural
transformations α : P → Q can be lifted to α∗ : (P, p) → (Q,α(p)) in a unique way,
determining a discrete opfibration Prof∗(A,B)→ Prof(A,B) for every pair of categories
A and B. �
Proposition 4.2. Diagrams on the base category can be lifted to open diagrams.

Proof. Let C be a small category. There exists a pseudofunctor C→ Prof∗ sending every
object A ∈ C to the 0-cell pair (C, A) and every morphism f ∈ C(A,B) to the 1-cell
pair (homC, f). Moreover, when (C,⊗, I) is monoidal, the pseudofunctor is lax and oplax
monoidal (weak pseudofunctor in [MV18]), with oplaxators being left adjoint to laxators
(see §8.3). This can be called an op-ajax monoidal pseudofunctor, following the notion of
ajax monoidal functor from [FS18]. �

OPEN DIAGRAMS VIA COEND CALCULUS 9

The graphical calculus for open diagrams can then be interpreted as the graphical
calculus of pointed profunctors enhanced with a pseudofunctorial box, in the same vein as
the functor boxes of [Mel06]. Similar “internal diagrams” have been described before by
[BDSPV15] (and summarized in [Hu19]) as a “graphical mnemonic notation”.

4.2. Example: Categories of Optics. The lens 〈g, f〉 : (A,B)→ (X,Y) is depicted as
the following open diagram.

f g

X Y

A B ∈ A

X Y

B

The quotienting that makes 〈g, (m ⊗ idX) ◦ f〉 = 〈g ◦ (m ⊗ idY), f〉 is explicit in this
graphical calculus. The following two diagrams are equal in the category Prof∗: they
represent the same set and the same element within it.

f g

X Y

A B
m

= f g

X Y

A B
m

Note that we cannot speak of equality between open diagrams with different shapes, for
they belong to different sets. We could however speak of equality between two open
diagrams such that the shape of the first can be deformed into the shape of the second.
The deformation determines an isomorphism between the sets defined by the shapes.
Equality of elements on isomorphic sets is understood to be equality after applying the
isomorphism.

For instance, the following two elements are equal under the deformation given by
counitality of the pseudocomonoid structure.

 f ∈

{λ⊗}∼=

 f ∈

We will use open diagrams to justify that both compositions from Example 3.1 deter-
mine a category. Consider two pairs of lenses of suitable types.

f1 g1

X Y

A B f2 g2

U V

X Y ∈ A

X Y

B X

U V

Y

f ′1 g′1

X V

A Y f ′2 g′2

U Y

X B ∈ A

X V

Y X

U Y

B

We can use Proposition 4.1 to lift the two compositions in Example 3.1 to two deformations
of open diagrams that send the two pairs of lenses to the following two open diagrams,
respectively.

f1

f2

A

U

B

V

g1

g2

f ′1
f ′2

A

U

B

V

g′1
g′2

Let us show that a category can be defined from the first composition. Consider three
lenses oi for i = 1, 2, 3. We have two ways of composing them, as o1◦(o2◦o3) or (o1◦o2)◦o3,

10 MARIO ROMÁN

but they both give rise to the same final diagram, thanks to associativity of the base
monoidal category. The identity is the diagram on the right.

f1

f2

f3
A4

A1 B1

B4

g1

g2

g3

A

AA

A

For the second composition, checking associativity amounts to the following equality. The
identity is the same as in the previous case.

f ′1
f ′2

f ′3

A1

A3

B3

B1

g′3
g′2

g′1

=

f ′1
f ′2

f ′3
A3

B3

B1

A1 g′3
g′2

g′1

The graphical calculus is hiding at the same time the details of two structures. The first
is the quotient relation given by the coend in the monoidal bicategory of profunctors; the
second is the coherence of the base monoidal category inside the pseudofunctorial box.

5. Related and Further Work

The graphical calculus for profunctors can be seen as a direction in which the graphical
calculus for the cartesian bicategory of relations [BPS17, FS18] can be categorified. A
notion of cartesian bicategory generalizing relations is discussed in [CKWW08]. For a
slightly different future direction, we could try to relate this work to many of the interesting
applications of compact closed bicategories (see [Sta13]); such as resistor networks, double-
entry bookeeping [KSW08] or higher linear algebra [KV94].

Certain shapes open diagrams have been described in the literature. Specifically, finite
combs were used as notation by [CDP08, KU17, Ril18]; the relation with lenses is described
in [Rom20]. Previous graphical calculi for lenses and optics [Hed17, Boi20] have elegantly
captured some aspects of optics by working on the Kleisli or Eilenberg-Moore categories of
the Pastro-Street monoidal monad [PS08]. The present approach diverges from previous
formalisms by using the monoidal bicategory structure of profunctors. It is more general
than considering combs, as it can express arbitrary shapes in non-symmetric monoidal
categories. In any case, it enables us to reason about categories of optics themselves; the
results on optics of [CEG+20] can be greatly simplified in this calculus. We believe that
it is closer to, and it provides a formal explanation to the diagrams with holes of [Ril18,
Definition 2.0.1], which were missing from previous approaches.

Most of our first part can be repeated for arbitrary monoidal bicategories such as en-
riched profunctors or spans. Multiple approaches to open systems (decorated cospans
[Fon15], structured cospans [BC19]) could be related in this way to open diagrams, but
we have not explored this possibility yet. Another potential direction is to repeat this
reasoning for the case of double categories and obtain a “tile” version of these diagrams
(see [Mye16, HS19]).

6. Conclusions

We have presented a way to study and compose processes in monoidal categories that
do not necessarily have the usual shape of a square box without losing the benefits of the
usual language of monoidal categories. Direct applications seem to be circuit design, see

OPEN DIAGRAMS VIA COEND CALCULUS 11

[CDP08], or the theory of optics [CEG+20]. This technique is justified by the formalism
of coend calculus [Lor19] and string diagrams for monoidal bicategories [Bar14]. We also
argue that the graphical representation of coend calculus is helpful to its understand-
ing: contrasting with usual presentations of coends that are usually centered around the
Yoneda reductions, the graphical approach seems to put more weight in the non-reversible
transformations while making most applications of Yoneda lemma transparent. Regarding
open diagrams, we can think of many other applications that have not been described in
this text: we could speak of multiple categories at the same time and combine open dia-
grams of any of them using functors and adjunctions. This work has opened many paths
that we aim to further explore.

We have been working in the symmetric monoidal bicategory of profunctors for simplic-
ity, but the same results extend to the symmetric monoidal bicategory of V-profunctors for
V a Bénabou cosmos [Lor19, §5]. We can even consider arbitrary monoidal bicategories and
drop the requirements for symmetry, copying or discarding. Finally, there is an important
shortcoming to this approach that we leave as further work: the present graphical calculus
is an extremely good tool for coend calculus, but it remains to see if it is so for (co)end
calculus. In other words, ends “enter the picture” only as natural transformations (see
[Wil10]), and this can feel limiting even if, after applying Yoneda embeddings, it usually
suffices for most applications. As it happens with diagrammatic presentations of regular
logic [BPS17, FS18], the existential quantifier plays a more prominent role. Diagrammatic
approaches to obtaining the universal quantifier in a situation like this go back to Peirce
and are described by [HS20].

7. Acknowledgements

The author thanks seminars, discussion with, questions and/or comments by Pawe l
Sobociński, Edward Morehouse, Fosco Loregian, Elena Di Lavore, Jens Seeber, Jules Hedges,
Nathaniel Virgo, and the whole Compositional Systems and Methods group at Tallinn
University of Technology. Mario Román was supported by the European Union through
the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

References

[Bar14] Bruce Bartlett. Quasistrict Symmetric Monoidal 2-Categories Via Wire Diagrams, 2014.
[BC19] John C. Baez and Kenny Courser. Structured cospans, 2019.
[BDSPV15] Bruce Bartlett, Christopher L Douglas, Christopher J Schommer-Pries, and Jamie Vicary.

Modular Categories as Representations of the 3-Dimensional Bordism 2-category. arXiv
preprint arXiv:1509.06811, 2015.

[BG18] Guillaume Boisseau and Jeremy Gibbons. What You Needa Know About Yoneda: Profunctor
Optics and the Yoneda Lemma (Functional Pearl). PACMPL, 2(ICFP):84:1–84:27, 2018.

[Boi20] Guillaume Boisseau. String Diagrams for Optics. arXiv preprint arXiv:2002.11480, 2020.
[Bor94] Francis Borceux. Handbook of categorical algebra: volume 1, Basic category theory, volume 1.

Cambridge University Press, 1994.
[BPS17] Filippo Bonchi, Dusko Pavlovic, and Pawe l Sobociński. Functorial semantics for relational

theories. CoRR, abs/1711.08699, 2017.
[CDP08] G. Chiribella, G. M. D’Ariano, and P. Perinotti. Quantum Circuits Architecture. Physical

Review Letters, 101(6), Aug 2008.
[CEG+20] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily

Pillmore, and Mario Román. Profunctor optics, a categorical update. arXiv preprint
arXiv:1501.02503, 2020.

[CK17] Bob Coecke and Aleks Kissinger. Picturing quantum processes. Cambridge University Press,
2017.

[CKWW08] Aurelio Carboni, G Max Kelly, Robert FC Walters, and Richard J Wood. Cartesian bicate-
gories ii. Theory and Applications of Categories, 19(6):93–124, 2008.

[FJ19] Brendan Fong and Michael Johnson. Lenses and Learners. CoRR, abs/1903.03671, 2019.
[Fon15] Brendan Fong. Decorated Cospans, 2015.

12 MARIO ROMÁN

[FS18] Brendan Fong and David I. Spivak. Graphical regular logic. CoRR, abs/1812.05765, 2018.
[FST19] Brendan Fong, David Spivak, and Rémy Tuyéras. Backprop as Functor: A compositional

perspective on supervised learning. In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13. IEEE, 2019.

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018, pages 472–481, 2018.

[Hed17] Jules Hedges. Coherence for lenses and open games. CoRR, abs/1704.02230, 2017.
[HS19] Linde Wester Hansen and Michael Shulman. Constructing symmetric monoidal bicategories

functorially. arXiv preprint arXiv:1910.09240, 2019.
[HS20] Nathan Haydon and Pawe l Sobociński. Compositional diagrammatic first-order logic. In Peer

Review, 2020.
[Hu19] Nick Hu. External traced monoidal categories. Master’s thesis, University of Oxford, 2019.
[Kme18] Edward Kmett. lens library, version 4.16. Hackage https://hackage.haskell.org/package/

lens-4.16, 2012–2018.
[KSW02] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feedback, trace and fixed-

point semantics. ITA, 36(2):181–194, 2002.
[KSW08] Piergiulio Katis, N. Sabadini, and R. F. C. Walters. On partita doppia, 2008.
[KU17] Aleks Kissinger and Sander Uijlen. A categorical semantics for causal structure. In 2017 32nd

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE,
2017.

[KV94] M. M. Kapranov and V. A. Voevodsky. 2-categories and Zamolodchikov tetrahedra equations,
volume 56 of Proc. Sympos. Pure Math., page 177–259. Amer. Math. Soc., Providence, RI,
1994.

[Lor19] Fosco Loregian. Coend calculus. arXiv preprint arXiv:1501.02503, 2019.
[Mel06] Paul-André Melliès. Functorial boxes in string diagrams. In Computer Science Logic, 20th

International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary,
September 25-29, 2006, Proceedings, pages 1–30, 2006.

[Mil17] Bartosz Milewski. Profunctor optics: the categorical view. https://bartoszmilewski.com/
2017/07/07/profunctor-optics-the-categorical-view/, 2017.

[MV18] Joe Moeller and Christina Vasilakopoulou. Monoidal grothendieck construction. arXiv
preprint arXiv:1809.00727, 2018.

[Mye16] David Jaz Myers. String diagrams for double categories and equipments. arXiv preprint
1612.02762, 2016.

[PGW17] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor Optics: Modular Data
Accessors. Programming Journal, 1(2):7, 2017.

[PS08] Craig Pastro and Ross Street. Doubles for monoidal categories. Theory and applications of
categories, 21(4):61–75, 2008.

[Ril18] Mitchell Riley. Categories of Optics. arXiv preprint arXiv:1809.00738, 2018.
[Rom20] Mario Román. Comb Diagrams for Discrete-Time Feedback. arXiv preprint arXiv:2003.06214,

2020.
[SP11] Christopher J. Schommer-Pries. The classification of two-dimensional extended topological

field theories, 2011.
[SSV16] Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou. Dynamical Systems and

Sheaves, 2016.
[Sta13] Michael Stay. Compact closed bicategories. arXiv preprint arXiv:1301.1053, 2013.
[Wil10] Simon Willerton. Two 2-Traces. Slides from a talk, http://

www.simonwillerton.staff.shef.ac.uk/ftp/TwoTracesBeamerTalk.pdf, 2010.

OPEN DIAGRAMS VIA COEND CALCULUS 13

8. Appendix

8.1. The Monoidal Bicategory of Profunctors.

Definition 8.1. There exists a symmetric monoidal bicategory Prof having as 0-cells the
(small) categories A,B,C, . . .; as 1-cells from A to B, the profunctors Aop × B → Set;
as 2-cells, the natural transformations; and as tensor product, the cartesian product of
categories [Lor19]. Two profunctors P : Aop ×B→ Set and Q : Bop ×C→ Set compose
into the profunctor (P �Q) : Aop ×C→ Set defined by

(P �Q)(A,C) :=

∫ B∈B
P (A,B)×Q(B,C).

The unit of composition in the category A is the hom-profunctor homA : Aop×A→ Set.
Strong unitality, (P) ∼= (P) ∼= (P), is given by the Yoneda isomorphisms.

(homA �P)(A,B) :=

∫ A′∈A
homA(A,A′)× P (A′, B) ∼= P (A,B)

(P � homB)(A,B) :=

∫ B′∈B
P (A,B′)× homB(B′, B) ∼= P (A,B).

Strong associativity (P1 P2) � (P3) ∼= (P1) � (P2 P3) follows from continuity and asso-
ciativity of the cartesian product of sets. The invertible 2-cells that realise unitality and
associativity satisfy the pentagon and triangular equations.

The monoidal product of two profunctors P1 : Aop
1 ×B1 → Set and P2 : Aop

2 ×B2 → Set
is the profunctor (P1 ⊗ P2) : (A1 ×A2)op × (B1 ×B2)→ Set defined by

(P1 ⊗ P2)(A1, A2, B1, B2) := P1(A1, B1)× P2(A2, B2).

The unit of the monoidal structure is the terminal category. Unitality and associativity
follow from those on sets. In the case of profunctors, unitors and associator are not
only equivalences but isomorphisms of categories, with strictly commuting pentagons and
triangles.

An alternative approach is to construct this symmetric monoidal bicategory from the
double symmetric bicategory of profunctors, see [HS19].

Every category has a dual, its opposite category. There are profunctors (Aop×A)×1→
Set and 1op × (Aop × A)op → Set given by variations of the hom-profunctors; these
are represented by caps and cups. Profunctors circulate through the caps and cups as
expected thanks to the Yoneda lemma. See [Sta13] for the description as a compact closed
bicategory.

Definition 8.2 (Yoneda Embedding of Functors). Let F : C→ D be a functor. It can be

embedded as a profunctor (F) : Cop×D→ Set or as a profunctor (F) : Dop×C→ Set.
Moreover, every functor has an opposite, so it can also be embedded as a profunctor
(F) : (Dop)op×Cop → Set or as a profunctor (F) : (Cop)op×Dop → Set. In particular,

F a G precisely when (F) ∼= (G).

The suggestive shape of the boxes (from [CK17]) is matched by their semantics. Every
category has a dual (namely, its opposite category) and functors circulate as expected
through the cups and the caps that represent dualities.

F ∼=
F

;
F
∼= F

14 MARIO ROMÁN

Proposition 8.3. Both Yoneda embeddings are strong monoidal pseudofunctors Cat →
Prof , fully faithful on the 2-cells. Pseudofunctoriality gives (F G) ∼= (G ◦ F) and its
counterpart. Monoidality gives the following isomorphism and its mirrored counterpart.

F1

C1

F2

F1 × F2
∼=

C2

D1

D2

C1

C2

D1

D2

Proposition 8.4 (Functors are Left Adjoints). In the category of profunctors, functors

are left adjoints, in the sense that there exist morphisms ηF : () → (F F) and

εF : (F F) → () and they verify the zig-zag identities. Moreover, every natural
transformation commutes with these dualities in the sense that the following are two com-
mutative squares.2

() (F F) (F G) (F F)

(G G) (F G) (G G) ()

ηF

ηG α α

α

εF

α εG

A partial converse holds: a left adjoint profunctor is representable when its codomain is
Cauchy complete; see [Bor94].

Proposition 8.5. Every object A of the category of profunctors has already a canonical
pseudocomonoid structure lifted from Cat and given by () := A(−0,−1)×A(−0,−2) and
() := 1; but also a pseudomonoid structure given by () := A(−1,−0)×A(−2,−0), and
() := 1. These structures copy and discard representable and corepresentable functors,
respectively; but they also laxly copy and discard arbitrary profunctors.

Proof. This is a consequence of the fact the diagonal and discard functors (∆): A→ A×A
and (!) : A → 1 copy and discard functors in Cat. Pseudofunctoriality of both Yoneda
embeddings sends them to the profunctors we are describing in Prof .

On the other hand, arbitrary profunctors are laxly copied and discarded. For instance,
the following coend derivation shows that a profunctor P : Aop×B→ Set is laxly copied.
In the case of representable profunctors, this is an isomorphism.

∫ X

P (A,X)× homA(X,Y1)× homB(X,Y2)

→
P (A, Y1)× P (A, Y2)
∼=
∫ X1,X2

homA(A,X1)× homA(A,X2)× P (X1, Y1)× P (X2, Y2). �

8.2. The Monoidal Bicategory of Pointed Profunctors.

Definition 8.6. A pointed category (A, X) is a category A equipped with a chosen object
X, which can be regarded as a functor from the terminal category. There exists a symmet-
ric monoidal bicategory Prof∗ having as 0-cells pairs (A, X) where A is a (small) category
and X ∈ A is an object of that category; 1-cells from (A, X)→ (B, Y) pairs (P, p) given
by a profunctor P : Aop ×B→ Set and a point p ∈ P (X,Y); 2-cells from (P, p)→ (Q, q)

2The graphical calculus of the bicategory makes these equations much clearer. We are emphasizing the
monoidal bicategory structure here only for the sake of coherence.

OPEN DIAGRAMS VIA COEND CALCULUS 15

are natural transformations η : P → Q such that ηX,Y (p) = q. Composition of 1-cells
(P, p) : (A, X) → (B, Y) and (Q, q) : (B, Y) → (C, Z) is given by (Q � P, 〈q, p〉), where
〈q, p〉 ∈ (Q � P)(X,Z) is the equivalence class under the coend of the pair (q, p). The
identity 1-cell in (A, X) is (homA, idX) : (1, 1)→ (A, X).

Strong unitality `(P,p) : (homA �P, 〈idX , p〉) → (P, p) and %(P,p) : (P � homA, 〈p, idX〉) ∼=
(P, p) is given by the Yoneda isomorphisms.

`P :

∫ Z∈A
homA(X,Z)× P (Z, Y) ∼= P (X,Y)

%P :

∫ Z∈A
P (X,Z)× homA(Z, Y) ∼= P (X,Y)

The Yoneda isomorphisms are such that `P 〈idX , p〉 = idX ◦ p = p and %P 〈p, idY 〉 =
p ◦ idY = p. This confirms they are valid 2-cells of Prof∗.

Strong associativity a(P,p,Q,q,R,r) : ((P � Q) � R, 〈〈p, q〉 , r〉) → (P � (Q � R), 〈p, 〈q, r〉〉)
is given by the isomorphism described by continuity and associativity of the cartesian
product.

∫ V (∫ U

P (X,U)×Q(U, V)

)
×R(V, Y) ∼=

∫ U

P (X,U)×
(∫ V

Q(U, V)×R(V, Y)

)
.

It is defined by a(〈〈p, q〉 , r〉) = 〈p, 〈q, r〉〉, proving that it is a valid 2-cell of Prof∗.

We will show now it is also symmetric monoidal. There is a distinguished object (1, 1),
given by the terminal category and its only object. There is a pseudofunctor (⊗) : Prof∗×
Prof∗ → Prof∗ defined

• on 0-cells by (A, X)⊗ (B, Y) := (A×B, (X,Y));
• on 1-cells by (P, p)⊗ (Q, q) := (P ⊗Q, (p, q));
• on 2-cells by (γ ⊗ δ) : P �Q→ P ′ �Q′ the transformation that applies γ : P → P ′

and δ : Q→ Q′ to both factors of the coend,

(∫ Z

P (X,Z)×Q(Z, Y)

)
→
(∫ Z

P ′(X,Z)×Q′(Z, Y)

)
;

• natural isomorphisms ((P � Q) ⊗ (P ′ � Q′), (〈p, q〉 , 〈p′, q′〉)) ∼= ((P ⊗ P ′) � (Q ⊗
Q′), 〈(p, p′), (q, q′)〉) and (homA×B, idA×B) ∼= (homA×homB, (idA, idB)).

The symmetric monoidal structure requires the following natural transformations.

• the left unitor λ⊗P : (id1⊗P, (id∗, p))→ (P, p) and right unitor ρ⊗P : (P⊗id1, (p, id∗))→
(P, p);
• the associator α⊗P,Q,R : ((P ⊗Q)⊗R, ((p, q), r))→ (P ⊗ (Q⊗R), (p, (q, r))), given

by the associator of the cartesian category of sets;
• the braiding β : (P ⊗Q, (p, q))→ (Q⊗ P, (q, p));
• such that the two relevant squares and the relevant hexagon commute, making it

a syllepsis and a symmetry.

8.3. Pseudofunctor box.

Proposition 8.7. Let A be a small category. There exists a pseudofunctor A → Prof∗
sending every object A ∈ A to the 0-cell pair (A, A) and every morphism f ∈ homA(A,B)
to the 1-cell pair (homA, f). Moreover, when (A,⊗, I) is monoidal, the pseudofunctor is
lax and oplax monoidal (weak pseudofunctor in [MV18], with oplaxators being left adjoint
to laxators). This would be an op-ajax monoidal pseudofunctor, following the notion of
ajax monoidal functor from [FS18].

16 MARIO ROMÁN

We only sketch the construction. The invertible 2-cells witnessing pseudofunctoriality
use the fact that the Yoneda isomorphisms (unitors and associators) send pairs of points
to their composition, coinciding with the composition on the base category A.

The following natural transformations make the functor lax monoidal.

 := (hom(−,−⊗−), idA⊗B) : (A×A, (A,B))→ (A, A⊗B)

()
:= (hom(I,−), idI) : (1, ∗)→ (A, I)

The following natural transformations make the functor oplax monoidal.

 := (hom(−⊗−,−), idA⊗B) : (A, A⊗B)→ (A×A, (A,B))

()
:= (hom(−, I), idI) : (A, I)→ (1, ∗)

Composition and identities give the counits and units of the adjunctions. The fact that
identity is the unit for composition makes the following transformations be 2-cells of Prof∗.

εµ→ ηu→

ηµ→ εu→

The following morphisms follow the cups, caps, splitting and merging structure from
Prof in Prof∗. Morphisms circulate through them as expected: turning to morphisms in
the opposite category, being copied and discarded.

 := (hom(−,−), idA) : (A×Aop, (A,A))→ (1, 1),

 := (hom(−,−), idA) : (1, 1)→ (A×Aop, (A,A)),

()
:= (hom(−0,−1)× hom(−0,−2), (idA, idA)) : (A, A)→ (A×A, (A,A)),

()
:= (hom(−1,−0)× hom(−2,−0), (idA, idA)) : (A×A, (A,A))→ (A, A),

()
:= (1, ∗) : (1, 1)→ (A, A);

()
:= (1, ∗) : (A, A)→ (1, 1).

Proposition 8.8. Let A be a category. For every A ∈ A, there exist 1-cells

(homA(A,−), idA) : (1, 1)→ (A, A) and (homA(−, A), idA) : (A, A)→ (1, 1)

given by the Yoneda embeddings of A and the identity morphism. Composition and iden-
tities define an adjunction.

idA→ A A AA
◦→

OPEN DIAGRAMS VIA COEND CALCULUS 17

8.4. Example: Learners. A learner [FST19, Definition 4.1] in a cartesian category is
given by a parameters object P ∈ C, an implementation morphism i : P × A → B, and
update morphism u : P × A × B → P , and a request morphism r : P × A × B → A. A
monoidal generalization, dinatural on the parameters object, has been proposed in [Ril18,
Definition 6.4.1]; the following derivation shows how it particularizes into the cartesian
case.

A B B A

∫ P,Q

C(P ×A,Q×B)×C(Q×B,P ×A)

∼= {() ∼= ()} ∼= {Universal property of the product}

A B B A

∫ P,Q

C(P ×A,Q)×C(P ×A,B)×C(Q×B,P ×A)

∼= {() copies} ∼= {Yoneda lemma}

A
B A×B A

∫ P

C(P ×A,B)×C(P ×A×B,P ×A)

∼= {() copies} ∼= {Universal property of the product}

A
B

A×B A

A×B
∫ P

C(P ×A,B)×C(P ×A×B,A)×C(P ×A×B,P)

Figure 13. From monoidal to cartesian learners.

Proposition 8.9. A pair of lenses (U, V)→ (A,A) and (V,U)→ (B,B) define a learner.

V
B B

U

U
A A

V

∫ M,N

C(U,M⊗A)×C(M⊗A, V)×C(V,N⊗B)×C(N⊗B,U)

→ {εU , εV } → {Composition along U and V }

A B B A

∫ P

C(P ×A,B)×C(P ×A×B,A)×C(P ×A×B,P)

Figure 14. From lenses to learners.

6. Collages of String Diagrams

Dylan Braithwaite, Mario Román
Applied Category Theory (ACT, 2022)

Abstract: We introduce collages of string diagrams as a diagrammatic syntax for
glueing multiple monoidal categories. Collages of string diagrams are interpreted
as pointed bimodular profunctors. As the main examples of this technique, we
introduce string diagrams for bimodular categories, string diagrams for functor
boxes, and string diagrams for internal diagrams.

Declaration: Hereby I declare that my contribution to this manuscript was to:
write most of the manuscript, identify and prove most of the results. Both the
author and Dylan Braithwaite identified the research question independently.

Submitted to:
ACT 2023

© Braithwaite and Román
This work is licensed under the
Creative Commons Attribution License.

Collages of String Diagrams

Dylan Braithwaite
University of Strathclyde

dylan.braithwaite@strath.ac.uk

Mario Román
Tallinn University of Technology

mroman@ttu.ee

We introduce collages of string diagrams as a diagrammatic syntax for glueing multiple monoidal
categories. Collages of string diagrams are interpreted as pointed bimodular profunctors. As the main
examples of this technique, we introduce string diagrams for bimodular categories, string diagrams
for functor boxes, and string diagrams for internal diagrams.

1 Introduction

String diagrams are a convenient and intuitive, sound and complete syntax for monoidal categories [29].
Monoidal categories are algebras of processes composing in parallel and sequentially [34]; string dia-
grams formalize the process diagrams of engineering [6, 8]. Formalization is not only of conceptual
interest: it means we can sharpen our reasoning, scale our diagrams, or explain them to a computer [42].

However, the formal syntax of monoidal categories is not enough for all applications and, sometimes,
we need to extend it. Functor boxes allow us to reason about translations between theories of processes
[15, 37], ownership [39], higher-order processes [1], or programming effects [43]. Quantum combs
not only model some classes of supermaps [12, 16, 23], but they coincide with the monoidal lenses of
functional programming [5, 13, 50] and compositional game theory [22, 7]. Premonoidal categories,
which appear in Moggi’s semantics of programming effects [38, 30, 51], are now within the realm of
string diagrammatic reasoning [46]. Internal diagrams extend the syntax of monoidal categories allowing
us to draw diagrams inside tubular cobordisms and reason about topological quantum field theories [3],
but also coends [47] and traces [26].

Figure 1: Examples from the literature. From left to right: functor boxes [37], premonoidal categories
[46], internal diagrams [3], and combs or optics [12, 13, 23].

The extensions showcase the expressive power of string diagrams on surprisingly diverse application
domains. At the same time, these different ideas could be regarded as separate ad-hoc extensions: they
belong to different fields; they use different categorical formalisms. The overhead of learning and com-
bining each one of them prevents the exchange of ideas between the different domains of application:
e.g. an idea about topological quantum field diagrams does not transfer to premonoidal diagrams.

ar
X

iv
:2

30
5.

02
67

5v
1

 [
m

at
h.

C
T

]
 4

 M
ay

 2
02

3

2 Collages of String Diagrams

Collages. This manuscript claims that this division is only apparent and that all these extensions are
particular instances of the same encompassing idea: that of glueing multiple string diagrams into what
we call a collage of string diagrams. We introduce a formal notion of collage (Section 4.4) and employ
string diagrammatic syntaxes for them, based on the calculus of bicategories (Sections 2.1, 3.1 and 5).

Even when collages of string diagrams are our novel contribution, collages are not yet another new
concept to category theory. “Collage” was Bob Walters’ term for a lax colimit in a module-like category
[52]. This can be considered as a glueing of objects together along the action of a scalar. For example,
given two sets A and B, with an action of a monoid M, we can construct their tensor product A⊗M B,
where (a ·m)⊗b = a⊗ (m ·b) for any scalar m ∈M. Categorifying this idea in a possible direction we
obtain monoidal categories acting on bimodular categories. The following is the takeaway of this work.

Collages of string diagrams consist of multiple string diagrams of different monoidal categories glued
together. Collages can be interpreted as pointed bimodular profunctors between bimodular categories.

A bimodular category, sometimes referred to as a biactegory [10], is to a bimodule what a monoidal
category is to a monoid. This is, a plain category A endowed with a left action of a monoidal category
(.) : M×A→ A and a right action of another, possibly different, monoidal category (/) : A×N→ A. We
can collage two bimodular categories along a common monoidal category that acts on both. Later on
the paper, exploiting a second axis of categorification, we pass from bimodular categories to bimodular
profunctors, which are a kind of 2-dimensional bimodule, and we define their collage. This structure
facilitates glueing categories together in 2-dimensions: we can represent complexes of morphisms from
different categories and glue them together. Collages of string diagrams are the syntactic representations
of this glueing, in the same sense that ordinary string diagrams represent tensors in monoidal categories.

We observe that collages of bimodular categories embed into a tricategory of pointed bimodules.
This provides a versatile setting where we can interpret many syntaxes already present in the literature.

Contributions. We introduce string diagrams of bimodular categories and we prove they construct the
free bimodular category on a signature (Theorem 2.7). We introduce novel string diagrammatic syntax
for functor boxes and we prove it constructs the free lax monoidal functor on a suitable signature (Theo-
rem 3.4). We describe the tricategory of pointed bimodular profunctors (Definition 4.6) and, in terms of
it, we explain the semantics of functor boxes (Proposition 4.9) and internal diagrams (Theorem 5.3), for
which we also provide a novel explicit formal syntax (Definition 5.2).

2 String Diagrams of Bimodular Categories

In algebra, a bimodule is a structure that has both a left and a right action such that they are compatible.
Bimodular categories are to bimodules what monoidal categories are to monoids. This means that a
bimodular category is a category, C, acted on by two monoidal categories, M and N [53]. Bimodular
categories are also known as “biactegories” [10, 36], while the name “bimodule category” has been
reserved for actions of vector enriched categories with extra properties [19]. For our purposes, bimodular
categories, C, glue the string diagrams of their two monoidal categories, M and N.

Definition 2.1. A bimodular category (C,M,N) is a category C endowed with a left monoidal action
(.) : M×C→ C, and a right monoidal action (/) : C×N→ C. These two actions must be compatible,
meaning that there exists a natural isomorphism, γM,N,X : M.(X /N)−→ (M.X)/N, such that all formal
equations between these isomorphisms and the coherence isomorphisms of both monoidal categories and
monoidal actions hold.

Braithwaite and Román 3

A bimodular category is a strict bimodular category whenever the two monoidal categories are strict,
their two actions are strict and, moreover, the compatibility isomorphism is an identity. Every monoidal
category (C,⊗, I) is a (C,C)-bimodular category with its own tensor product defining the two actions.

Proposition 2.2. Strict bimodular categories over arbitrary strict monoidal categories form a category,
sBimod. Morphisms (F,H,K) : (C,M,N)→ (D,P,Q) consist of two strict monoidal functors H : M→ P
and K : N→ Q and a functor F : C→ D that strictly preserves monoidal actions according to H and K.

2.1 Signature of a Bimodular Category

The next sections prove that a variant of string diagrams is a sound and complete syntax for bimodular
categories. String diagrams for bimodular categories consist of two monoidal regions glued by a bi-
modular wire. We first introduce a notion of bimodular signature (Definition 2.3) and then construct an
adjunction (Theorem 2.8) using the notion of collages.

Definition 2.3. A bimodular graph (A ,M ,N) (the bimodular analogue of a multigraph [48]) is given
by three sets of objects (Aob j,Mob j,Nob j) and three different types of edges:

• the left-acting edges, a set M (M0, . . . ,Mm;P0, . . . ,Pp) for each M0, . . . ,Mm,P0, . . . ,Pp ∈Mob j; and

• the right-acting edges, a set N (N0, . . . ,Nn;Q0, . . . ,Qq) for each N0, . . . ,Nn,Q0, . . . ,Qq ∈Nob j;

• the central edges, a set of edges A (M0, . . . ,Mm,A,N0, . . . ,Nn;O0, . . . ,Pp,B,Q0, . . . ,Qq), for each
M0, . . . ,Mm,P0, . . . ,Pp ∈Mob j; each N0, . . . ,Nn,Q0, . . . ,Qq ∈Nob j and each A,B ∈Aob j.

Figure 2: Left, right, and central edges of a bimodular graph.

Proposition 2.4. Bimodular graphs form a category bmGraph. We define a morphism of bimodular
graphs (l, f ,g) : (A ,M ,N)→ (A ′,M ′,N ′) to be a triple of functions on objects, (lob j, fob j,gob j),
that extend to the morphism sets. There exists a forgetful functor U : sBimod→ bmGraph.

Proof. See Appendix, Proposition B.3.

So far we have described a syntactic presentation of strict bimodular categories. We would like to,
additionally, go the other way and construct a free model from a syntactic presentation. Our approach
is to note that the central edges in a bimodular graph can be considered as dividing the graph into two
regions: one containing the left-acting vertices and edges and one containing the right-acting vertices
and edges. Diagrams of this sort with multiple labelled regions can naturally be considered as string
diagrams for bicategories: explicitly, the diagrams of the collage of the bimodular category.

2.2 The Collage of a Bimodular Category

Each profunctor induces a collage category; in an analogous fashion, a bimodular category induces a
collage bicategory. This section proves that constructing the collage of a bimodular category is left
adjoint to considering the bimodular hom-category between any two cells of a 2-category.

4 Collages of String Diagrams

Definition 2.5. The collage of an (M,N)-bimodular category C is a bicategory, CollC. This bicategory
has two 0-cells, M and N, and it is defined by the following hom-categories. Endocells on M are given by
the monoidal category CollC(M,M) = M; likewise, endocells on N are given by the monoidal category,
CollC(N,N) = N. The 1-cells from M to N are given by the category CollC(M,N) = C; and composition
of 1-cells is given by the monoidal actions. Finally, CollC(N,M) is the empty category.

Definition 2.6. The category of strict bipointed 2-categories, 2Cat2, has objects, (A,M,N), given by a
strict 2-category A and two chosen 0-cells on it, M ∈ A and N ∈ A. A morphism of bipointed 2-categories
is a strict 2-functor preserving the two chosen 0-cells.

Theorem 2.7. There exists an adjunction between strict bimodular categories and bipointed 2-categories
given by the collage, CollC : sBimod→ 2Cat2, and picking the hom-category between the chosen 0-cells,
Chosen : 2Cat2→ sBimod. Moreover, the unit of this adjunction is a natural isomorphism.

Proof. See Appendix, Theorem B.7.

2.3 String Diagrams of Bimodular Categories, via Collages

We have the two ingredients for string diagrams of bimodular categories: string diagrams for bicate-
gories, and collages, a way of embedding a bimodular category into a bicategory. This section combines
both results to provide an adjunction from bimodular graphs to bimodular categories.

Figure 3: Summary of adjunctions for the string diagrams of bimodular categories.

Theorem 2.8. There exists an adjunction between bimodular graphs and strict bimodular categories.
The left side of this adjunction is given by finding the bimodular category whose collage is the free 2-
category on the bimodular graph, bmStr : bmGraph→ sBimod. The right side of the adjunction is the
previously mentioned forgetful functor U : sBimod→ bmGraph.

Proof. See Appendix, Theorem 2.8, the proof follows Figure 3.

Remark 2.9. The string diagrams of bimodular categories particularize into the string diagrams of pre-
monoidal and effectful categories. See the Appendix B.2 for details.

We have presented string diagrams for bimodular categories via the string diagrams of bicategories,
and we will now give an example. We take inspiration from this first result to address now other syntaxes
that depend on string diagrams of bicategories: the next section proposes string diagrams for functor
boxes.

Braithwaite and Román 5

2.4 Example: Shared State

In the same way that premonoidal categories are particularly well-suited to describe stateful computa-
tions, bimodular categories are particularly well-suited to describe shared state between two processes.
These two processes can be different and even live on different categories. As an example, consider the
generators in Figure 4. They represent two different process theories (two different monoidal categories,
A and B) that access a common state with get and put operations.

Figure 4: Signature for shared state.

In the same way that monoidal categories are a good setting where to define monoids and comonoids,
bimodular categories are a good setting where to define bimodules. In order to capture interacting shared
state, the generators of Figure 4 are quotiented by the equations of a pair of semifrobenius modules with
compatible comonoid actions and semimonoid actions (see Appendix, Figure 14, for details).

Figure 5: Race condition in bimodular string diagrams.

This setup is enough to exhibit one of the most salient features of shared state: race conditions.
Race conditions were first studied by Huffman in 1954, who used diagrams to show how the behaviour
of shared state is dependent on the relative timing of the actions of the parties [27]. We employ string
diagrams of bimodular categories to show how two different timings of the actions – the leftmost and
rightmost sides of the equation in Figure 5 – result in two different executions: even when the two
get statements are compatible (i), the two put statements interact causing the earlier of the two to be
discarded (ii,iii,iv); this causes the discrepancy with the intended protocol (v).

Figure 6: Binary semaphore in bimodular string diagrams.

Race conditions have a commonly accepted workaround: the binary semaphore [49]. Dijkstra de-
scribed general semaphores with the aid of flow diagrams [18]; we use instead string diagrams of bimod-
ular categories to implement a binary semaphore (Figure 6). We consider two different object generators
for our bimodular category (free and locked): each operation must suitably lock or unlock the semaphore.

6 Collages of String Diagrams

This renders race conditions ill-typed, and renders most of the interaction equations unnecessary (in the
Appendix, Figure 14).

3 String Diagrams of Functor Boxes

Functor boxes are a extension of the string diagrammatic notation that represents plain functors, lax,
oplax and strong monoidal functors. Functor boxes were introduced by Cockett and Seely [15] and later
studied by Melliès [37]. We introduce here a syntactic presentation of (op)lax functor boxes that has
the advantage of treating each piece of the box as a separate entity in a bicategory and apply the string
diagrammatic calculus of bicategories.

3.1 Functor box signatures

Definition 3.1. A functor box signature F = (A ,X ,F•,F •) consists of a pair of sets, Aob j and Xob j,
and four different types of edges:

• the plain edges, A (A0, . . . ,An;B0, . . . ,Bm) for any objects A0, . . . ,An,B0, . . . ,Bm ∈Aob j;

• the functor box edges, X (X0, ...,Xn;Y 0, ...,Ym) for any objects X0, . . . ,Xn,Y0, . . . ,Ym ∈Xob j;

• the in-box edges, F•(A0, ...,An;Y 0, ...,Ym) for any A0, ...,An ∈Aob j and Y 0, ...,Ym ∈Xob j

• the out-box edges, F •(X0, ...,Xn;B0, ...,Bm) for any B0, ...,Bm ∈Aob j and X0, ...,Xn ∈Xob j.

A functor box signature morphism (h,k, l) : (A ,X ,F)→ (B,Y ,G) is a pair of functions between the
object sets, hob j : Aob j→Bob j and kob j : Xob j→ Yob j, that extend to a function between the edge sets;

• h : A (A0, ...,An;B0, ...,Bm)→B(h(A0), ...,h(An);h(B0), ...,h(Bm));

• k : X (X0, ...,Xn;Y 0, ...,Ym)→ Y (k(X0), ...,k(Xn);k(Y 0), ...,k(Ym));

• l• : F•(A0, ...,An;Y 0, ...,Ym)→ G•(h(A0), ...,h(An);k(Y 0), ...,k(Ym));

• l• : F •(X0, ...,Xn;B0, ...,Bm)→ G •(k(X0), ...,k(Xn);h(B0), ...,h(Bm)).

Functor box signatures and homomorphisms form a category, Fbox.

Figure 7: Syntactic bicategory of a lax monoidal functor box signature.

Braithwaite and Román 7

Definition 3.2. The syntactic bicategory of a functor box signature F = (A ,X ,F•,F •) is the bicate-
gory freely presented by Figure 7, which we call SA ,X ,F .

In other words, the bicategory SA ,X ,F contains exactly two 0-cells, labelled A and X ; it contains
a 1-cell A : A → A for each A ∈ Aob j, a 1-cell X : X →X for each X ∈Xob j and, moreover, a pair
of adjoint 1-cells F↑ : A →X and F↓ : X → A . Finally, it contains a pair of 2-cells witnessing the
adjunction F↑ a F↓, given by n : id→ F↑ # F↓ and e : F↓ # F↑→ id which additionally satisfy the snake
equations; and it also contains

• a 2-cell, f ∈ S(A ,A)(A0 # . . . #An; B0 # . . . #Bm), for each plain edge;

• a 2-cell, g ∈ S(X ,X)(X0 # ... #Xn; Y 0 # ... #Ym), for each functor box edge;

• a 2-cell, u ∈ S(A ,A)(A0 # ... #An; F↑ #Y 0 # ... #Ym #F↓) for each in-box edge; and

• a 2-cell, v ∈ S(A ,A)(F↑ #X0 # ... #Xn #F↓; B0 # . . . #Bm) for each out-box edge.

3.2 Lax Monoidal Functor Semantics

Definition 3.3 (Lax functors category). An object of the lax functors category, Lax, is a pair of strict
monoidal categories (A,X) together with a lax monoidal functor between them, (F,ε,µ); that is, a func-
tor F : X→ A endowed with two natural transformations ε : I → FI, and µ : FX ⊗FY → F(X ⊗Y),
satisfying associativity (µ ⊗ id) # µ = (id ⊗ µ) # µ , left unitality (ε ⊗ id) # µ = id and right unitality
(id⊗ ε) # µ = id.

A morphism of the lax functors category, from (A,X,F,εF ,µF) to (B,Y,G,εG,µG) is a pair of strict
monoidal functors H : X→ A and K : A→ B such that F # K = H # G and such that K(εF) = εG and
K(µF) = µG.
Theorem 3.4. There exists an adjunction between the category of functor box signatures, Fbox, and the
category of pairs of strict monoidal categories with a lax monoidal functor between them, Lax. The free
side of this adjunction is given by the syntax of Figure 7.

Proof. See Appendix, Theorem C.3.

Collages, by themselves, explained the 2-region diagrams of bimodular categories; collages will also
explain the two-region diagrams of functor boxes in Section 4.5. However, as currently defined, collages
are only sufficient to encode the vertical boundaries. In order to additionally represent boundaries along
the horizontal axis we can make use of profunctors between bimodular categories and extend our notion
of collage to these structures (described in Appendix F). Following this thread we find that collages
embed into a tricategory of pointed bimodular profunctors, described in the next section, which we
consider a universe of interpretation for all of the graphical theories described.

4 Bimodular Profunctors

Where can we interpret all these string diagrams and provide compositional semantics for them? In this
section, we introduce a single structure where all the previous calculi take semantics.

We will need two different ingredients: coends and bimodularity. Coends and profunctors [32, 33],
far from being a obscure concept from category theory, can be seen as the right tool to glue together
morphisms from different categories [17, 47]; we follow a explicitly pointed version of coend calculus,
which keeps track of the transformation between profunctors we are constructing (Section 4.3). In a
similar sense, bimodular categories tensor together objects from different monoidal categories. Both
ideas combine into the calculus of pointed bimodular profunctors.

8 Collages of String Diagrams

4.1 Bimodular Profunctors

Consider C and D, both (M,N)-bimodular categories. A natural notion of morphism between them is a
functor C→ D which is linear in both actions. However, there is another notion of morphism between
them, which is a generalisation of a profunctor between categories to this bimodular setting. Bimodular
profunctors are a generalized reformulation of the Tambara modules of Pastro and Street [41].

Definition 4.1. Let M and N be two monoidal categories and let C and D be two (M,N)-bimodular
categories. A bimodular profunctor from C to D is a profunctor T : Cop×D→ Set with a natural family
of strengths,

tM : T (X ,Y)→ T (M .X ,M .Y), and tN : T (X ,Y)→ T (X /N,Y /N),

such that the actions are associative tM # tN = tM⊗N , unital tI = id, and compatible, tM # tN = tN # tM, up to
the coherence isomorphisms of the monoidal category. See Appendix B for details.

Proposition 4.2. For any pair of monoidal categories, M and N, there is a bicategory MModN of (M,N)-
bimodular categories, bimodular profunctors, and natural transformations between them.

These will form the hom-bicategories of the tricategory we later define. The other significant piece
of data we require is a family of tensors ⊗ : MModN×NModO→ MModO, which we now study.

4.2 Tensor of Bimodular Profunctors

The tensor of bimodular categories is similar to the tensor of modules over a monoid in classical algebra:
we consider pairs of elements and we quotient out the action of a common scalar. In this case, the
quotienting is substituted by an appropiate structural isomorphism: the equilibrator.

Definition 4.3 (Tensor of bimodular categories). Let C be a (M,N)-bimodular category and let D be a
(N,O)-bimodular category. Their tensor product, C⊗N D, is a category with the same objects as C×D:
we write them as X ⊗N Y . The category is presented by the morphisms of C×D and a free family of
natural isomorphisms, called the equilibrators,

τX ,N,Y : (X /N)⊗N Y → X⊗N (N .Y), for each N ∈ N,X ∈ C,Y ∈ D,

which are additionally quotiented by the following equations up to the structure isomorphisms of the
monoidal actions, τX ,M⊗N,Y = τX/M,N,Y # τX ,M,N.Y , and τX ,I,Y = id.

Definition 4.4. Let C and C′ be two (M,N)-bimodular categories and let D and D′ be a (N,O)-bimodular
categories. Given two bimodular profunctors, T : C→ C′ and R : D→ D′, their tensor is a bimodular
profunctor, T ⊗N R : C⊗N D→ C′⊗N D′, defined by

T ⊗N R(X⊗N Y ;X ′⊗N Y ′) = T (X ;X ′)×R(Y,Y ′)/(∼),

where (∼) is the equivalence relation generated by (tN(x),y)∼ (x, tN(y)).

4.3 Pointed Profunctors

Profunctors deal with families of morphisms, and their natural isomorphisms determine correspondences
between these families. However, when we use profunctors for the semantics of string diagrams, we most
often want to single out a particular morphism between a particular pair of objects. A simple technique
to achieve this is to use pointed profunctors instead of simply profunctors: this technique was explicitly
described by this second author [47] although it has implicit appearances in the literature [3, 26].

Braithwaite and Román 9

Definition 4.5. A pointed profunctor (P, p) : (A,X)→ (B,Y) between two pointed categories with a
chosen object X ∈ Aob j and Y ∈ Bob j is a profunctor P : A→ B together with an element p ∈ P(A,B) of
the profunctor evaluated on the chosen object of the categories.

From now on, we work using pointed profunctors instead of plain profunctors, see the Appendix
Appendix D.1 for a short reference on “pointed coend calculus”.

4.4 The Tricategory of Pointed Bimodular Profunctors

We call collages of string diagrams to the diagrams of the tricategory of pointed bimodular profunctors.

Definition 4.6. The tricategory of pointed bimodular profunctors, BmProfpt, has as 0-cells the monoidal
categories, M,N,O, The 1-cells between two monoidal categories M and N are pointed bimodular cat-
egories, (A,.,/,A), consisting of a (M,N)-bimodular category with two actions (A,.,/) and some object
of that category, A ∈ A. Pointed bimodular categories compose by the tensor of bimodular categories,

(A,.,/,A)⊗N (B,.,/,B) = (A⊗N B,.,/,A⊗N B).

The 2-cells between two pointed bimodular categories (A,.,/,A) and (B,.,/,B) are pointed bimodu-
lar profunctors (P, t, p), consisting of a profunctor P : A→ B together with a point p ∈ P(A,B) that
are moreover bimodular with compatible natural transformations tM : P(A;B)→ P(M .A;M .B), and
tN : P(A;B)→ P(A /N;B /N). These 2-cells compose by profunctor composition and by the tensor of
bimodular profunctors.

Finally, the 3-cells between two pointed bimodular profunctors (P, t, p) and (Q,r,q) are bimodular
natural transformations that preserve the point, consisting of a natural transformation α : P→ Q such
that the α(p) = q and moreover tM #α = α # rM and tN #α = α # rN .

Remark 4.7. At the moment of writing, it is unclear to the authors whether a string diagrammatic calculus
for tricategories, described by transformations of the string diagrammatic calculus of bicategories, has
been fully described and proved sound and complete. However, there seems to be consensus in that this
would be the right language for tricategories: much literature assumes it. Let us close this section by
tracking explicitly the assumptions we need to employ a diagrammatic syntax for bimodular profunctors.

Conjecture 4.8. The previous data satisfies all coherence conditions of a tricategory. Moreover, we
can reason with tricategories using the calculus of deformations of string diagrams, extending the string
diagrams for quasistrict monoidal 2-categories of Bartlett [2].

4.5 Functor Boxes via Collages of String Diagrams

The following Figure 8 details how to interpret functor boxes as collages of string diagrams. The colored
region represents the domain of the lax monoidal functor; the white region represents the codomain.
Morphisms of both categories are interpreted as elements of their respective hom-profunctors; and the
laxators are used to merge colored regions. The only element that we will explicitly detail is the bimod-
ular category that appears in the closing and opening wires of a functor box.

Proposition 4.9 (Bimodular categories of a lax monoidal functor). Let X and A be two monoidal cat-
egories and let F : X→ A be a monoidal functor between them, endowed with natural transformations
ψ0 : J→ FI and ψ2 : FX ⊗FY → F(X ⊗Y). The following profunctors, AoF X : A×X→ A×X and

10 Collages of String Diagrams

XnF A : X×A→ X×A determine two promonads, and therefore two Kleisli categories.

AoF X(A,X ;B,Y) =
∫ M∈X

A(A;B⊗FM)×X(M⊗X ;Y);

XnF A(X ,A;Y,B) =
∫ M∈X

A(A;FM⊗B)×X(M⊗A;B);

These two Kleisli categories are (A,X) and (X,A)-bimodular, respectively.

Proof. See Appendix, Proposition D.4. The construction uses the laxity of the monoidal functor.

Figure 8: Semantics for functor boxes in terms of pointed bimodular profunctors.

5 String Diagrams of Internal Diagrams

The tubular 3-dimensional cobordisms of internal diagrams are first described as a Frobenius algebra
by Bartlett, Douglas, Schommer-Pries and Vicary [3]. We are indebted to this first introduction, which
made internal diagrams into a convenient graphical notation in topological quantum field theory [3].
Internal diagrams themselves were later given a expiclit semantics in a monoidal bicategory of pointed
profunctors; this was the subject of this second author’s contribution to Applied Category Theory 2020
[45]. An important aspect of the syntax of internal diagrams is their 3-dimensional nature: the syntax
not only contains string diagrams, but also reductions between them.

We introduce here a novel syntactic presentation of internal diagrams that has the advantage of
treating each piece of an internal diagram (including the closing and opening of tubes) as a separate
entity in a tricategory. As a consequence, we are later able to introduce for the first time a more refined
semantics in terms of a tricategory of pointed bimodular profunctors.

Definition 5.1. A polygraph, G , is the signature for the string diagrams of a monoidal category. It
consists of a set of objects, Gob j, and a set of morphisms G (A0, ...,An;B0, ...,Bm) between any two lists
of objects, A0, ...,An,B0, ...,Bm ∈ Gob j.

Definition 5.2. The syntactic tricategory of internal diagrams over a polygraph G is the tricategory G
presented by the cells in Figure 9. In other words, it contains two 0-cells, I and G , in white and blue
in the figure, respectively. It contains a 1-cell A : G → G for each object A ∈ Gob j and two 1-cells,

Braithwaite and Román 11

Figure 9: Syntax for open internal diagrams.

L• : I → G and R• : G → I forming two 2-adjunctions (L•) a (R•) and (R•) a (L•) up to a 3-cell. It
contains the following 2-cells,

• two 2-cells n1 : id→ L• #R• and e1 : R• #L•→ id witnessing the 2-adjunction (L•) a (R•) and two
2-cells n2 : 1→ R• # L• and e2 : L• # R•→ id witnessing the 2-adjunction (R•) a (L•) – see Vicary
and Heunen [24] for a reference on 2-adjunctions and the swallowtail equations;

• two 2-cells, Aよ : L• #A #R•→ id and Aよ : id→ L• #A #R•, forming an adjunction Aよ a Aよ for each
object A∈Gob j; and a 2-cell, f : A0 # ...#An→B0 # ...#Bm, for each edge f ∈G (A0, ...,An;B0, ...,Bm).

Finally, it contains the following 3-cells,
• two invertible 3-cells, α1 : (1⊗ n1) # (e1⊗ 1)→ 1 and β 1 : (n1⊗ 1) # (1⊗ e1)→ 1, witnessing

the 2-adjunction (L•) a (R•) and satisfying the swallowtail equations; and two invertible 3-cells,
α ′2 : (1⊗n2)#(e2⊗1)→ 1 and β 2 : (n1⊗1)#(1⊗e1)→ 1, witnessing the 2-adjunction (R•)a (L•)
and and satisfying the swallowtail equations;

• two 3-cells, c : Aよ #Aよ→ 1 and i : 1→Aよ #Aよ, witnessing the adjunction Aよ aAよ and satisfying
the snake equations;

• two 3-cells, ui : n1 # e2→ 1 and vi : 1→ e2 #n1 witnessing an adjunction e2 a n1 and satisfying the
snake equations; two 3-cells u j : 1→ n2 # e1 and vi : e1 # n2→ 1 witnessing an adjunction n2 a e1
and satisfying the snake equations.

Theorem 5.3. There is a 3-functor from the syntactic tricategory of internal diagrams into pointed
bimodular profunctors for any interpretation of the polygraph into a monoidal category.

Proof. See Appendix, Theorem E.1.

Remark 5.4. This syntax can be exemplified by evaluating a quantum comb [12], or a monoidal lens
[44] with a morphism, in terms of internal string diagrams [26], see Figure 10. It has been used more
generally to reason about coends in monoidal categories [47] and topological quantum field theory [3].

12 Collages of String Diagrams

Figure 10: Evaluating a comb in terms of internal string diagrams.

6 Conclusions

Collages of string diagrams provide an abundant graphical calculus. Functor boxes, tensors of bimodular
categories and internal diagrams all exist in the graphical calculus of collages. Their technical undepin-
ning is complex: we characterized them as diagrams of pointed bimodular profunctors, but these arrange
themselves into a tricategory, which may be difficult to reason about.

Apart from introducing the technique of collages and formalizing multiple extensions to string dia-
grams, we would like to call the attention to the techniques we use: most of our results on soundness and
completeness of diagrams are arranged into adjunctions, which allows us to prove them by reusing the
better known results on soundness and completenss for monoidal categories and bicategories.

Related work. An important line of research revolves around module categories and fusion categories,
some specific enriched categories with actions with applications in topological quantum field theories
[19, 20, 40]. Specially relevant and recent is Hoek’s work, which constructs diagrams for a bimodule
category [25, Theorem 3.5.2]. We follow the more elementary notion of bimodular category, called
“biactegory” in the taxonomy of Capucci and Gavranović [10]. Cockett and Pastro [14] have used instead
linear actions for concurrency, and even when we take inspiration from their work, their approach is more
sophisticated and expressive than our toy example demonstrating bimodular categories (Figure 5).

Most work has been presented for some particular cases of collages: functor boxes have been ex-
tensively employed, but never reduced to string diagrams [15, 37]; internal diagrams have served both
quantum theory and category theory [3, 26, 31], and can be given semantics into pointed profunctors
[45], but again a presentation as string diagrams was missing. A convenient algebra of lenses [44], a
particular type of incomplete diagram, has been recently introduced [21], but this is still independent of
the semantics of arbitrary internal diagrams.

Finally, the first author has published a blog post that accompanies this manuscript [9].

Further work. It should be possible to “destrictify” many of the results of this paper. We have only
presented a 1-adjunction between strict bimodular categories and bipointed 2-categories; but a higher
adjunction would allow us to reuse coherence for bicategories to automatically obtain coherence for
bimodular categories. We have marked along the paper the conjectures where further work is warranted.

We conjecture pointed bimodular profunctors to also form a compact closed tricategory, with the
dual of each monoidal category being the reverse monoidal category, A⊗Rev B = B⊗A. Even when it
may be conceptually clear what a compact tricategory should be, it is technically challenging to come up
with a concrete definition for it in terms of coherence equations.

Braithwaite and Román 13

Acknowledgements

The authors want to thank David A. Dalrymple for discussion on the string diagrammatic interpretation
of functor boxes; and Matteo Capucci for several insightful conversations about notions of 2-dimensional
profunctor, that helped us understand how to tie disparate aspects of this story together.

Dylan Braithwaite was supported by an Industrial CASE studentship from the UK Engineering and
Physical Sciences Research Council (EPSRC) and the National Physical Laboratory. Mario Román
was supported by the European Union through the ESF Estonian IT Academy research measure (2014-
2020.4.05.19-0001).

References

[1] Mario Alvarez-Picallo, Dan R. Ghica, David Sprunger & Fabio Zanasi (2021): Functorial String Diagrams
for Reverse-Mode Automatic Differentiation. arXiv:2107.13433.

[2] Bruce Bartlett (2014): Quasistrict symmetric monoidal 2-categories via wire diagrams. arXiv:1409.2148.

[3] Bruce Bartlett, Christopher L. Douglas, Christopher J. Schommer-Pries & Jamie Vicary (2015): Modular
categories as representations of the 3-dimensional bordism 2-category. arXiv:1509.06811.

[4] Jean Bénabou (1967): Introduction to bicategories. In: Reports of the Midwest Category Seminar, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 1–77.

[5] Guillaume Boisseau & Jeremy Gibbons (2018): What you needa know about Yoneda: profunctor op-
tics and the Yoneda lemma (functional pearl). Proc. ACM Program. Lang. 2(ICFP), pp. 84:1–84:27,
doi:10.1145/3236779. Available at https://doi.org/10.1145/3236779.

[6] Guillaume Boisseau & Pawel Sobocinski (2021): String Diagrammatic Electrical Circuit Theory. In Kohei
Kishida, editor: Proceedings of the Fourth International Conference on Applied Category Theory, ACT 2021,
Cambridge, United Kingdom, 12-16th July 2021, EPTCS 372, pp. 178–191, doi:10.4204/EPTCS.372.13.
Available at https://doi.org/10.4204/EPTCS.372.13.

[7] Joe Bolt, Jules Hedges & Philipp Zahn (2019): Bayesian open games. CoRR abs/1910.03656.
arXiv:1910.03656.

[8] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński & Fabio Zanasi (2019): Diagram-
matic algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL), pp. 25:1–25:28,
doi:10.1145/3290338. Available at https://doi.org/10.1145/3290338.

[9] Dylan Braithwaite (2023): Diagrams for Actegories. Available at {https://dylanbraithwaite.github.
io/2023/01/31/diagrams-for-actegories.html}.

[10] Matteo Capucci & Bruno Gavranović (2022): Actegories for the working amthematician. arXiv preprint
arXiv:2203.16351.

[11] Dimitri Chikhladze (2015): Lax formal theory of monads, monoidal approach to bicategorical structures and
generalized operads. arXiv:1412.4628.

[12] Giulio Chiribella, Giacomo Mauro D’Ariano & Paolo Perinotti (2009): Theoretical framework for quantum
networks. Phys. Rev. A 80, p. 022339, doi:10.1103/PhysRevA.80.022339. Available at https://link.
aps.org/doi/10.1103/PhysRevA.80.022339.

[13] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily Pillmore & Mario
Román (2022): Profunctor Optics, a Categorical Update. arXiv:2001.07488.

[14] J. Robin B. Cockett & Craig A. Pastro (2009): The logic of message-passing. Sci. Comput. Program. 74(8),
pp. 498–533, doi:10.1016/j.scico.2007.11.005. Available at https://doi.org/10.1016/j.scico.2007.
11.005.

14 Collages of String Diagrams

[15] Robin B. Cockett & R. A. G. Seely (1999): Linearly distributive functors. Journal of Pure and Applied
Algebra 143(1-3), pp. 155–203.

[16] Bob Coecke, Tobias Fritz & Robert W. Spekkens (2016): A mathematical theory of resources. Inf. Comput.
250, pp. 59–86, doi:10.1016/j.ic.2016.02.008. Available at https://doi.org/10.1016/j.ic.2016.02.
008.

[17] Elena Di Lavore, Giovanni de Felice & Mario Román (2022): Monoidal Streams for Dataflow Programming.
In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22,
Association for Computing Machinery, New York, NY, USA, doi:10.1145/3531130.3533365.

[18] Edsger W. Dijkstra (1962): Over de sequentialiteit van procesbeschrijvingen. Unpublished. Transcribed
by Gerrit Jan Veltink for the E.W. Dijkstra Archive, Center for American History. Available at https:
//www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF.

[19] Christopher L. Douglas, Christopher Schommer-Pries & Noah Snyder (2019): The balanced tensor product
of module categories. Kyoto Journal of Mathematics 59(1), doi:10.1215/21562261-2018-0006. Available at
https://doi.org/10.1215%2F21562261-2018-0006.

[20] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych & Victor Ostrik (2010): On braided fusion categories I.
Selecta Mathematica 16(1), pp. 1–119, doi:10.1007/s00029-010-0017-z.

[21] Matt Earnshaw, James Hefford & Mario Román (2023): The Produoidal Algebra of Process Decomposition.
arXiv:2301.11867.

[22] Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional Game Theory. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, Association
for Computing Machinery, New York, NY, USA, p. 472–481, doi:10.1145/3209108.3209165. Available at
https://doi.org/10.1145/3209108.3209165.

[23] James Hefford & Cole Comfort (2022): Coend Optics for Quantum Combs. arXiv:2205.09027.

[24] Chris Heunen & Jamie Vicary (2019): Categories for Quantum Theory: an introduction. Oxford University
Press.

[25] Keeley Hoek (2019): Drinfeld centers for bimodule categories. Ph.D. thesis, MSc. thesis, The Australian
National University.

[26] Nick Hu & Jamie Vicary (2021): Traced Monoidal Categories as Algebraic Structures in Prof. In Ana
Sokolova, editor: Proceedings 37th Conference on Mathematical Foundations of Programming Semantics,
MFPS 2021, Hybrid: Salzburg, Austria and Online, 30th August - 2nd September, 2021, EPTCS 351, pp.
84–97, doi:10.4204/EPTCS.351.6. Available at https://doi.org/10.4204/EPTCS.351.6.

[27] David A Huffman (1954): The Synthesis of Sequential Switching Circuits. Journal of the Franklin Institute
257(3), pp. 161–190.

[28] Niles Johnson & Donald Yau (2020): 2-Dimensional Categories. arXiv:2002.06055.

[29] André Joyal & Ross Street (1991): The geometry of tensor calculus, I. Advances in Mathematics 88(1), pp.
55–112, doi:10.1016/0001-8708(91)90003-P. Available at https://www.sciencedirect.com/science/
article/pii/000187089190003P.

[30] Paul Blain Levy (2022): Call-by-Push-Value. ACM SIGLOG News 9(2), p. 7–29,
doi:10.1145/3537668.3537670.

[31] Leo Lobski & Fabio Zanasi (2022): String Diagrams for Layered Explanations. CoRR abs/2207.03929,
doi:10.48550/arXiv.2207.03929. arXiv:2207.03929.

[32] Fosco Loregian (2021): (Co)end Calculus. London Mathematical Society Lecture Note Series, Cambridge
University Press, doi:10.1017/9781108778657.

[33] Saunders Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics 5,
Springer Verlag, doi:10.1007/978-1-4757-4721-8.

[34] Saunders Mac Lane (1978): Categories for the Working Mathematician. Graduate Texts in Mathematics,
Springer New York, doi:10.1007/978-1-4757-4721-8.

Braithwaite and Román 15

[35] Daniel Marsden (2014): Category theory using string diagrams. arXiv preprint arXiv:1401.7220.
[36] Paddy McCrudden (2000): Categories of representations of coalgebroids. Advances in Mathematics 154(2),

pp. 299–332.
[37] Paul-André Melliès (2006): Functorial Boxes in String Diagrams. In Zoltán Ésik, editor: Computer Sci-

ence Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hun-
gary, September 25-29, 2006, Proceedings, Lecture Notes in Computer Science 4207, Springer, pp. 1–30,
doi:10.1007/11874683 1. Available at https://doi.org/10.1007/11874683_1.

[38] Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55–92,
doi:10.1016/0890-5401(91)90052-4.

[39] Chad Nester (2020): A Foundation for Ledger Structures. In Emmanuelle Anceaume, Christophe
Bisière, Matthieu Bouvard, Quentin Bramas & Catherine Casamatta, editors: 2nd International
Conference on Blockchain Economics, Security and Protocols, Tokenomics 2020, October 26-27,
2020, Toulouse, France, OASIcs 82, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 7:1–
7:13, doi:10.4230/OASIcs.Tokenomics.2020.7. Available at https://doi.org/10.4230/OASIcs.

Tokenomics.2020.7.
[40] Victor Ostrik (2003): Module categories, weak Hopf algebras and modular invariants. Transformation

groups 8, pp. 177–206.
[41] Craig Pastro & Ross Street (2007): Doubles for monoidal categories. arXiv preprint arXiv:0711.1859.
[42] Evan Patterson, David I. Spivak & Dmitry Vagner (2021): Wiring diagrams as normal forms for computing

in symmetric monoidal categories. Electronic Proceedings in Theoretical Computer Science 333, pp. 49–64,
doi:10.4204/eptcs.333.4. Available at https://doi.org/10.4204%2Feptcs.333.4.

[43] Maciej Piróg & Nicolas Wu (2016): String diagrams for free monads (functional pearl). In Jacques Gar-
rigue, Gabriele Keller & Eijiro Sumii, editors: Proceedings of the 21st ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, ACM, pp. 490–501,
doi:10.1145/2951913.2951947. Available at https://doi.org/10.1145/2951913.2951947.

[44] Mitchell Riley (2018): Categories of optics. arXiv preprint arXiv:1809.00738.
[45] Mario Román (2020): Comb Diagrams for Discrete-Time Feedback. CoRR abs/2003.06214.

arXiv:2003.06214.
[46] Mario Román (2022): Promonads and String Diagrams for Effectful Categories. CoRR abs/2205.07664,

doi:10.48550/arXiv.2205.07664. arXiv:2205.07664.
[47] Mario Román (2021): Open Diagrams via Coend Calculus. Electronic Proceedings in Theoretical Computer

Science 333, p. 65–78, doi:10.4204/eptcs.333.5. Available at http://dx.doi.org/10.4204/EPTCS.333.
5.

[48] Michael Shulman (2016): Categorical logic from a categorical point of view. Available on the web. Available
at https://mikeshulman.github.io/catlog/catlog.pdf.

[49] Abraham Silberschatz, Peter Baer Galvin & Greg Gagne (2018): Operating System Concepts, 10th Edition.
Wiley. Available at http://os-book.com/OS10/index.html.

[50] David I. Spivak (2022): Generalized Lens Categories via functors C op→ Cat. arXiv:1908.02202.
[51] Sam Staton & Paul Blain Levy (2013): Universal properties of impure programming languages. In Roberto

Giacobazzi & Radhia Cousot, editors: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, ACM, pp. 179–192,
doi:10.1145/2429069.2429091.

[52] Ross Street (1981): Cauchy characterization of enriched categories. Rendiconti del Seminario Matematico
e Fisico di Milano 51(1), pp. 217–233.

[53] Zoran Škoda (2009): Some equivariant constructions in noncommutative algebraic geometry. Georgian
Mathematical Journal 16(1), pp. 183–202. arXiv:0811.4770.

16 Collages of String Diagrams

A Preliminaries

Proposition A.1 (Reducing an adjunction). Let F : A→ C and H #U : C→ A determine an adjunction
(F,H #U,η ,ε) and let P : B→C determine a second adjunction (P,H,u,c) such that the unit u : I→P#H
is a natural isomorphism (as in Figure 11). Then, F #H is left adjoint to U.

Figure 11: Setting for reducing an adjunction.

Proof. We employ the string diagrammatic calculus of bicategories to the bicategory of categories, func-
tors and natural transformations [35]. We define the morphisms in Figure 12 to be the unit and the counit
of the adjunction. We then prove that they satisfy the snake equations in Figures 12 and 13.

Figure 12: Unit and counit of the reduced adjunction (left). First snake equation (right).

In the first snake equation, in Figure 12, we use (i) that there is a duality (η ,ε), and (ii) that u is
invertible. In the second snake equation, in Figure 13, we use (i) that there is a duality (u,c), (ii) that u is
invertible, (iii) that there is a duality (u,c), again; and (iv) that there is a duality (η ,ε).

Figure 13: Second snake equation.

Braithwaite and Román 17

Proposition A.2. Let L : C→ D and R : D→ C determine an adjunction (L,R,η ,ε). For each object
A ∈ Cob j, this induces an adjunction between the coslice categories C\A and D\LA.

Proof. The functor LA : C\A→D\LA is just an application of the functor L. The functor RA : D\LA→
C\A is defined using the unit of the adjunction as

RA

(
LA

f→ B
)

=
(

A
η→ RLA

R f→ B
)
.

Note that a morphism α : LB→C makes the first diagram in commute if and only if its adjunct, α∗ : B→
RC, makes the second diagram in commute.

LB C B RC

A A RLA

α α∗

L f
g

f

η
Rg

This is because two morphisms are equal if and only if their adjuncts are. We have that (L f # α)∗ =
f # α∗ and g∗ = η # Rg. This induces the hom-set isomorphism of the adjunction, where each morphism
is again adjunct to the same adjunct it was before.

A.1 Bicategories

In the same way that a polygraph represents the signature for a monoidal category, a 2-graph is the
signature that allows us to freely generate a 2-category.

Definition A.3. A 2-graph G is given by a set of vertices, Gob j; a set of edges between any two ver-
tices, G (X ;Y) for X ,Y ∈ Gob j; and a set of 2-edges for each pair of paths of vertices with the same
source and target. That is, there is a set of 2-edges G (X ;Y)(A0, . . . ,An;B0, . . . ,Bm), for each path
A0 ∈ G (X ;U0), . . . ,An ∈ G (Un−1;Y) and each path B0 ∈ G (X ;V 0), . . . ,Bm ∈ G (Vm−1;Y).

A homomorhpism of 2-graphs is a family of functions on vertices, edges, and 2-edges that preserve
their sources and targets; these form a category 2Graph endowed with a forgetful functor U : 2Cat→
2Graph from the category of 2-categories and 2-functors.

Correctness of string diagrams for 2-categories [4, 35] amounts the fact that free 2-category over a
2-graph is given by string diagrams. It is difficult to find a proof for this exact result in the literature, but
the widespread use of string diagrams for bicategories suggests that it is commonly accepted.

Theorem A.4 (String diagrams for bicategories). There exists an adjunction between 2-graphs and 2-
categories given by progressive string diagrams Str : 2Graph→ 2Cat and the previously mentioned
forgetful functor U : 2Cat→ 2Graph.

A.2 Profunctors

Definition A.5. A profunctor (P,<,>) between two categories A and B is a family of sets P(A,B)
indexed by objects A and B, and endowed with jointly functorial left and right actions of the morphisms
of A and B, respectively. Explicitly, types of these actions are (>) : hom(A′,A)×P(A′,B)→ P(A,B),
and (<) : hom(B,B′)×P(A,B)→ P(A,B′). These must satisfy

18 Collages of String Diagrams

• compatibility, (f > p)< g = f > (p< g),
• preserve identities, id > p = p, and p< id = p,
• and preserve composition, (p< f)< g = p< (f #g) and f > (g> p) = (f #g)> p.

More succintly, a profunctor P : A→ B is a functor P : Aop×B→ Set. When presented as a family of
sets with a pair of actions, profunctors have been sometimes called bimodules. We avoid this term, which
we reserve for the classical algebraic notion, and its categorification.

B Bimodular categories

We provide here an alternative spelled-out definition of bimodular profunctors.

Definition B.1. A bimodular profunctor from C to D, a pair of (M,N,.,/)-bimodular categories, is a
profunctor (P,<,>) : C→ D endowed with a pair of natural whiskering operators,

(m) : M(X ;X ′)×P(A;B)→ P(X .A;X ′ .B), and (l) : P(A;B)×N(Y ;Y ′)→ P(A/Y ;B/Y ′),

satisfying the following axioms up to coherence of the monoidal actions.

(mm f)< (m′ .g) = (m #m′)m (f < g), (f ln)< (g/n′) = (f < g)l (n #n′),

(m′ .g)> (mm f) = (m′ #m)m (g> f), (g/n′)> (f ln) = (g> f)l (n′ #n),

idm f = f = f l id, um (f l v) = (um f)l v,

um (vm f) = (u⊗ v)m f , (f lu)l v = f l (u⊗ v).

Remark B.2. Not only is this definition a natural extension of profunctors as category-bimodules to
bimodular categories, but the strengths of bimodular profunctors can be seen as an additional bimodule
structure in the form of an action of the monoidal categories on the profunctor.

C

M T N

D

left strength

monoidal action

functorial action

The vertical composition of bimodular profunctors is given by ordinary profunctor composition while
the strength is obtained as the cartesian product of the two constituent strengths.

M N

C

E

D
P

Q
7→ M N

C

E

P�Q

As with ordinary profunctors, this composition is not strictly associative or unital but indeed there is
additionally a natural notion of morphism between bimodular profunctors with which structure maps
can be defined. Namely these are natural transformations which commute with the strengths. This
makes bimodular categories and the profunctors between them into a bicategory.

Braithwaite and Román 19

As noted in the main text, the strength of a bimodular profunctor could alternatively be considered as
a horizontal action of a monoidal category on the profunctor. In fact such strengths are equivalent to the
data of monoid actions for the lax monoidal functors M(−,−) and N(−,−), viewed as monoid objects in
their respective functor categories. This gives a route for defining the horizontal composite of bimodular
profunctors, just as we do for bimodular categories, by quotienting out the common action.

M N O

C

C′

D

D′

T U 7→ M O

C⊗ND

C′⊗ND′

T⊗NU

As in any category of modules we would like to define the composite by quotienting out the action of the
common scalar, taking a coequaliser of the two action maps.

P(C,C′)×Q(D,D′)

∫M P(C <M,C′ <M)×Q(D,D′)+ P(C,C′)×Q(M > D,M > D′)

P⊗Q(C,C′,D,D′)

left strength right strength

The form of this diagram is slightly more complicated than the one we saw for bimodular categories.
In the form we have seen them, the strengths of a Tambara module have different codomains for the
two action maps. So to match the form of a coequaliser we embed both into their coproduct. This is
alternatively the pushout of the two action maps, but we choose to present it as is to reinforce that this is
just another instance of bimodule composition.

B.1 String Diagrams for Bimodular Categories

Proposition B.3 (From Proposition 2.4). There exists a forgetful functor U : SBimod→ Bgraph.

Proof. Given (A,M,.,N,/), we define the following bimodular graph.

A (M0, ...,Mm,A,N0, ...,Nn;P0, ...,Pp,B,Q0, ...,Qq) =

A(M0Mm .An /N0 / ... /Nn;N0Nn .B/Q0 / ... /Qq),

M (M0, ...,Mm;P0, ...,Pp) = M(M0⊗ ...⊗Mm;P0⊗ ...⊗Pp),

N (N0, ...,Nn;Q0, ...,Qq) = N(N0⊗ ...⊗Nn;Q0⊗ ...⊗Qq).

We now check that this assignment is functorial: indeed, the functors (F,H,K) induce three functions
between the edge sets of the bimodular graph.

Lemma B.4. Collages induce a functor Coll : sBimod→ 2Cat2 from strict bimodular categories to
bipointed 2-categories. Picking the hom-category between the chosen 0-cells of a bipointed 2-category
induces a functor from bipointed 2-categories to strict bimodular categories Chosen : 2Cat2→ sBimod.

Proof. See Appendix, Lemmas B.5 and B.6.

20 Collages of String Diagrams

Lemma B.5 (From Lemma B.4). Collages induce a functor Coll : sBimod→ 2Cat2 from strict bimod-
ular categories to bipointed 2-categories.

Proof. On objects, the functor is defined by the collage with its two 0-cells, Coll(C,M,N) = (CollC,M,N).
Given a morphism of bimodular categories, (F,H,K) : (C,M,N)→ (D,P,Q), the functor takes it to the
strict 2-functor defined by: sending CollC(M,M) = M to CollD(P,P) = P with H; sending CollC(N,N) =
N to CollD(Q,Q) = Q with K; sending CollC(M,N) = C to CollD(P,Q) = D with F ; and finally noticing
that both CollC(N,M) and CollD(Q,P) are empty. This assignment defines a 2-functor preserving com-
position: this is thanks to the fact that composition has been defined in CollC and CollD using the strict
monoidal actions, and the functors F , H and K do preserve the monoidal actions.

Lemma B.6 (From Lemma B.4). Picking the hom-category between the chosen 0-cells of a bipointed 2-
category induces a functor from bipointed 2-categories to strict bimodular categories Chosen : 2Cat2→
sBimod.

Proof. On objects, the functor is defined by taking a bipointed bicategory the hom-category between the
selected points, Chosen(A,M,N) = A(M,N). This hom-category is a bimodular category acted on by the
hom-categories A(M,M) and A(N,N); both of these are monoidal categories (bicategories with a single
object) with the tensor defined by composition in the bicategory. The actions are also defined by pre and
post-composition in the bicategory.

Consider now a strict 2-functor S : (A,M,N)→ (B,P,Q) that sends S(M) = P and S(N) = Q. It
must induce strict monoidal functors H = S(M,M) : A(M,M)→ B(P,P) and K = S(N,N) : A(N,N)→
B(Q,Q) and a functor F = S(M,N) : A(M,N)→ B(P,Q). All these functors must preserve composi-
tion in the original bicategory, so the triple Chosen(S) = (F,H,K) is a morphism of strict bimodular
categories.

Theorem B.7 (From Theorem 2.7). There exists an adjunction between strict bimodular categories
and bipointed 2-categories given by the collage, CollC : sBimod→ 2Cat2, and picking the hom-category
between the chosen 0-cells, Chosen : 2Cat2→ sBimod. Moreover, the unit of this adjunction is a natural
isomorphism.

Proof. We have already proven that both sides of the adjunction are indeed functors in Lemma B.4. Let
us show that CollC is the free bipointed 2-category on a bimodular category C. We start by noting that
there exists a homomorphism of bimodular categories

I : (C,M,N)→ (CollC(M,N),CollC(M,M),CollC(N,N)),

by construction of the collage; this determines the natural isomorphism of the unit of the adjunction
we are constructing. Consider now a bipointed 2-category (A,P,Q) and a homomorphism of bimodular
categories

(F,H,K) : (C,M,N)→ (A(P,Q),A(P,P),A(Q,Q));

we will now prove that there exists a unique 2-functor F : CollC → A such that I # F = (F,H,K).
Because the 2-functor is bipointed, we know that F (M) = P and that F (N) = Q, so it is determined on
0-cells. We know that its component on CollC(M,N), CollC(M,M) and CollC(N,N) must be given by F ,
H and K; while its only possible component on the empty category CollC(N,M) is trivial; this determines
it on 1-cells, but also on 2-cells, because F , H, and K are a functor and a pair of monoidal functors.

Braithwaite and Román 21

Theorem B.8 (From Theorem 2.8). There exists an adjunction between bimodular graphs and strict
bimodular categories. The left side of this adjunction is given by finding the bimodular category whose
collage is the free 2-category on the bimodular graph, bmStr : bmGraph→ sBimod. The right side of
the adjunction is the previously mentioned forgetful functor U : sBimod→ bmGraph.

Proof. String diagrams for bicategories are based on an adjunction between 2-graphs and 2-categories in
Theorem A.4, whose left adjoint is Str : 2Graph→ 2Cat. By Proposition A.2, this induces an adjunction
between bipointed 2-graphs and bipointed 2-categories, Str2 : 2Graph2→ 2Cat2. We can compose this
adjunction with the adjunction between bimodular graphs and bipointed 2-graphs; to obtain a left adjoint
bStr2 : bmGraph→ 2Cat2.

Finally, we employ the adjunction given by collages from strict bimodular categories to bipointed
2-categories in Theorem 2.7. This adjunction has an invertible unit, and thus, by a general principle
(Proposition A.1), it induces an adjunction with left adjoint bmStr : bmGraph→ sBimod.

Remark B.9 (Shared state). The equations in Figure 14 present the theory of shared state over the string
diagrams of bimodular categories. Semantics can be given in two different theories of processes shar-
ing the same state. For instance, the first category can allow for probabilistic processes, A = Stoch,
while the second can be deterministic, B = Set. The bimodular category determined by the promonad
StochStateS(A,B) = Set(S× A,Stoch(S× B)) can give semantics to both and has suitable monoidal
actions: the actions to the common wire become the get and put functions of the state promonad.

Figure 14: Theory of shared state.

22 Collages of String Diagrams

B.2 String Diagrams of Premonoidal Categories

Definition B.10. A premonoidal category is a category C endowed with an object I ∈ C and an object
A⊗B ∈ C for each A,B ∈ Cob j; and two functors (A⊗•) : C→ C and (•⊗B) : C→ C that coincide
on (A⊗B), even if (•⊗•) is not itself a functor. Finally, it is endowed with the following cohernece
isomorphisms, αA,B,C : A⊗(B⊗C)→ (A⊗B)⊗C, λA : A⊗ I→ A and ρA : I⊗A→ A, which interchange
with any other morphism, are natural at each given component and satisfy the pentagon and triangle
equations.

Definition B.11. An effectful category is an identity-on-objects functor, V→ C, from a monoidal cat-
egory V to a premonoidal category C that strictly preserves all of the premonoidal structure and whose
image is central.

Figure 15: Syntax for the string diagrams of premonoidal and effectful categories (Román, 2020 [46]).

Proposition B.12. Effectful categories V→ C are equivalent to (V,V)-bimodular categories such that
there exists an identity on objects functor that preserves the monoidal actions [30].

In this sense, the string diagrams of premonoidal categories and effectful categories are particular
cases of the string diagrams for bimodular categories. The extra wire that appears in the string dia-
grams of an effectful category V→ C is precisely the bimodular category C, with its two actions on V.
Morphisms in C need this wire as an input and as an output, while morphisms in V do not. A detailed
discussion of the string diagrams of premonoidal categories was presented to the last Applied Category
Conference by this second author [46].

C Functor Boxes

Proposition C.1. There exists a forgetful functor from the lax functors category to the category of functor
box signatures, Ulax : Lax→ Fbox.

Proof. Any lax monoidal functor induces a functor box signature Ulax(A,X,F,ε,µ) = (A ,X ,F•,F •)
defined by Aob j = Aob j, by Xob j = Xob j and taking edges to be morphisms,

• A (A0, ...,An;B0, ...,Bm) = A(A0⊗ ...⊗An;B0⊗ ...⊗Bm),

• X (X0, ...,Xn;Y 0, ...,Ym) = X(X0⊗ ...⊗Xn;Y 0⊗ ...⊗Ym),

• F•(A0, ...,An;Y 0, ...,Ym) = A(A0⊗ ...⊗An;F(Y 0⊗ ...⊗Ym)),

• F •(X0, ...,Xn;B0, ...,Bm) = A(F(X0⊗ ...⊗Xn);B0⊗ ...⊗Bm).

Braithwaite and Román 23

Consider now a homomorphism of lax monoidal functors (H,K) : (A,X,F)→ (B,Y,G). The pair of
strict monoidal functors H and K extend to all the sets of edges. For instance, because of the condition
F #K = H #G, the functor K induces a map

A(A0⊗ ...⊗An;F(Y 0⊗ ...⊗Ym))→ B(K(A0)⊗ ...⊗K(An);G(H(Y 0)⊗ ...⊗H(Ym))),

and the rest of the maps are analogous. This assignment preserves the composition and identities of the
lax monoidal functors category, which are precisely compositions and identities of functors.

Lemma C.2. The syntactic bicategory of a functor box signature (A ,X ,F) induces a lax monoidal
functor SA ,X : Fmon(X)→ S(A ,A) from the free monoidal category on X to the monoidal category
of the endocells in A . This assignment, S : Fbox→ Lax, is functorial.

Proof. We begin by defining the assignment explicitly. We first consider Fmon(X), the free strict mo-
noidal category on the polygraph X . We then consider S(A ,A), the strict monoidal category formed
by the endocells of the syntactic 2-category on A . A functor F : Fmon(X)→ S(A ,A) is defined on
objects by the composition F(X0) = F↑ #X0 #F↓, and similarly on morphisms. It becomes a lax monoidal
functor with thanks to the unit and counit maps provided by the adjunction F↑ a F↓.

We now prove that this assignment is functorial. Consider a functor box signature map determined
by (h,k) : (A ,X) → (B,Y), inducing lax monoidal functors F : Fmon(X) → SA ,X (A ,A) and
G : Fmon(Y)→ SB,Y (B,B). Because of the adjunction determining free strict monoidal categories,
the map h : X → Y determines a strict monoidal functor H : Fmon(X)→ Fmon(Y). Now, because the
syntactic bicategory of a functor box is also freely generated, we can describe a map of 2-categories
SA ,X → SB,Y induced by the functions h,k and sending the pieces determining the adjunction on one
side to the adjunction on the other side. This 2-categorical functor restricts to a strict monoidal functor
K : SA ,X (A ,A)→ SB,Y (B,B).

Finally, by construction and because the 2-categorical functor sends F↑ a F↓ to G↑ a G↓, we have
that the H and K here defined satisfy F #K = H #G and preserve the structure maps of the lax monoidal
functor.

Theorem C.3 (From Theorem 3.4). There exists an adjunction between the category of functor box
signatures, Fbox, and the category of pairs of strict monoidal categories with a lax monoidal functor
between them, Lax. The free side of this adjunction is given by the syntax of Figure 7.

Proof. Given a functor box signature (A ,X) we will prove that the lax monoidal functor induced by
its syntactic bicategory, F : Fmon(X)→ SA ,X (A ,A), is the free one.

Consider a lax monoidal functor G : B→ Y endowed with a box signature morphism (A ,X)→
(B,Y). Already by the universal property of the free strict monoidal category, we know that there exists
a unique strict monoidal functor H : Fmon(X)→Fmon(Y) that, under the forgetful functor, commutes
with the box signature morphism.

We need to show that there exists a unique strict monoidal functor K : SA ,X (A ,A)→ SB,Y (B,B)
that commutes with H and with the box signature morphism. We first define it on 1-cells. By structural
induction, a 1-cell of SA ,X (A ,A) is: (i) an object of A followed by a 1-cell; or (ii) a functor box
opening F↑, a 1-cell of Fmon(X) and a functor box closing F↓, followed by a 1-cell of SA ,X (A ,A).
In the first case, the object in A must be sent to the object determined by the box signature morphism;
in the second case, because the condition F #K = H #G must be satisfied, we must send the object F(X0)
to G(H(X0)).

24 Collages of String Diagrams

We now define it on 2-cells. The plain edges need to be mapped according to the functor box
signature homomorphism; the functor box edges are already mapped according to H; the in-box and out-
box edges are mapped according to the functor box signature homomorphism. The unit of the adjunction
must be preserved because it is a structure map of the lax monoidal functor. Finally, the unit of the
adjunction must always appear enclosed in between the cells F↑ and F↓, which means it always represents
the µF structure map of the lax monoidal functor and must be mapped accordingly to µG.

D Pointed Bimodular Profunctors

D.1 The Point of Coend Calculus

Coend calculus is the name given to the algebraic manipulations of coends that prove isomorphisms or
construct natural transformations between profunctors. In the same way that regular logic links relations,
a coend calculus expression is a list of profunctors linked by some objects that are bound to a coend.
Usually, the isomorphisms that we construct are never made explicit, and it is difficult for the reader to
compute the precise map we constructed.

Fortunately, this has a straightforward solution. We propose to point the coends: to write an expres-
sion together with the generic element it computes. An expression of pointed coend calculus is a coend
bounding some objects and a series of pointed profunctors. For instance,
∫ M,N

f ∈ P(A;M,N)×g ∈Q(M;B)×h ∈ C(N;C), instead of
∫ M,N

P(A;M,N)×Q(M;B)×C(N;C).

The coend quotients expressions by dinaturality, meaning that any action on the left of a coend can be
also written as an action on the right. In terms of pointed profunctors, this means that

∫ N
(f < h) ∈ P(A;N)×g ∈ Q(N;B) =

∫ M
f ∈ P(A;M)× (h> g) ∈ Q(M;B).

Proposition D.1. Let C be a category and let F : Cop → Set and G : C→ Set be a presheaf and a
copresheaf, respectively. The following are natural isomorphisms of pointed profunctors,
∫ X

f ∈ C(X ;A)×h ∈ F(A) ∼= (f >h) ∈ F(X);
∫ X

f ∈ C(A;X)×h ∈ G(A) ∼= (h< f) ∈ G(X).

We call these isomorphisms the “pointed” Yoneda reductions.

Remark D.2. Using pointed coends, any derivation does also include the computation of the isomorphism
it induces. As an example, compare the following with the usual coend derivation of a cartesian lens [13],

Proposition D.3. In a cartesian monoidal category, the pairs of morphisms f ∈ C(A;M×X) and g ∈
C(M×Y ;B), quotiented by dinaturality, are in bijective correspondence with the pairs of morphisms
C(A;M) and C(M×Y ;B).

∫ M
f ∈ C(A;M×X)×g ∈ C(M×Y ;B) ∼= (by the adjunction ∆ a ×)

∫ M
(f #π1) ∈ C(A;M)× (f #π2) ∈ C(A;M)×g ∈ C(M×Y ;B) ∼= (by pointed Yoneda lemma)

(f #π2) ∈ C(A;M)× ((f #π1)⊗ id) #g ∈ C(M×Y ;B).

Braithwaite and Román 25

In the first step, we have used that the adjunction (∆ a ×) is given by postcomposition with projections
and; in the second step, we use that the action on the last profunctor is defined as h > g = (h⊗ id) # g.
The bijection has been explicitly constructed as sending the pair (f ;g) to (f #π2;((f #π1)⊗ id) #g).

D.2 Semantics of Functor Boxes

Proposition D.4 (Bimodular categories of a lax monoidal functor, from Proposition 4.9). Let X and A be
two monoidal categories and let F : X→ A be a monoidal functor between them, endowed with natural
transformations ψ0 : J→ FI and ψ2 : FX ⊗FY → F(X ⊗Y). The following profunctors, AoF X : A×
X→ A×X and XnF A : X×A→ X×A determine two promonads, and therefore two Kleisli categories.

AoF X(A,X ;B,Y) =
∫ M∈X

A(A;B⊗FM)×X(M⊗X ;Y);

XnF A(X ,A;Y,B) =
∫ M∈X

A(A;FM⊗B)×X(M⊗A;B);

These two Kleisli categories are (A,X) and (X,A)-bimodular, respectively.

Proof. We prove that AoF X define a promonad and, in particular, the hom-sets of a category. We write
the elements AoF X(A,X ;B,Y) are given by pairs (f ,α) where f : A→ B⊗FM and α : M⊗X →Y for
some M ∈ Xob j.

The unit of the promonad sends a pair of morphisms u : A→ B and r : X → Y to the morphism
(u⊗ψ0,r), where u⊗ψ0 : A→ B⊗FI and, modulo coherence, r : I⊗X → Y . The multiplication of
the promonad sends (f ,α) : (A,X)→ (Y,B) and (g,β) : (Y,B)→ (Z,C), to the composite formed by
f # (g⊗ id) # (id⊗ψ2) : A→ Z⊗F(M⊗N) and (id⊗α) # β : N⊗M⊗A→ B. Finally, from the axioms
of lax monoidal functors, it follows that this composition is associative and unital.

E Internal Diagrams

Theorem E.1 (From Theorem 5.3). There is a 3-functor from the syntactic tricategory of internal dia-
grams into pointed bimodular profunctors for any interpretation of the polygraph into a monoidal cate-
gory.

Proof. The syntactic tricategory of internal diagrams has been constructed as a free tricategory, so it
suffices to determine where the generators are sent. For this, we follow Figure 16. Let the square
brackets, J•K, denote the interpretation of the polygraph into a monoidal category.

The region G is sent to the monoidal category JG K = (A,⊗, I), while the region I is sent to the
terminal monoidal category. The generator L• is sent to the pointed bimodular category (1AA, I), while
the generator R• is sent to the bimodular category (AA1, I). The generator A is sent to the pointed
bimodular category (AAA,JAK).

Let us consider the 2-cells. The 2-cells n1 and e2 are sent to the profunctors A(•⊗•;•) and A(•;•⊗
•), pointed in the identities of the monoidal unit. The 2-cells n2 and e1 are sent to the profunctors A(I;•)
and A(•; I), pointed in the identities of the monoidal unit.

The 2-cells Aよ and Aよ are sent to the representable and corepresentable profunctors of the object
JAK, which are pointed in idA, the identity on that object. Finally, any 2-cell arising from an edge
f ∈ G (A0, ...,An;B0, ...,Bm) is sent to the hom-profunctor, pointed in the relevant morphism,

J f K ∈ A(JA0K⊗ ...⊗ JAnK;JB0K⊗ ...⊗ JBmK).

26 Collages of String Diagrams

Figure 16: Semantics for open internal diagrams in terms of pointed bimodular profunctors.

It is well-known that every representable profunctor is adjoint to its corepresentable profunctor, which
gives semantics to the syntactic adjunctions. The only adjunctions missing are that between AA1 and
1AA; for these, we must note that there is a Yoneda isomorphism of the following form,

∫ M
A(I;M)×A(M⊗X ;Y)∼= A(X ;Y),

∫ M
A(X ;Y ⊗M)×A(M; I)∼= A(X ;Y),

and analogous ones swapping the position of M in the tensor product.

F The Collage of Bimodular Profunctors

To define collages in greater generality we use the notion of a bimodular pasting diagram: a composable
arrangement of bimodular categories and profunctors. For a precise definition of 2-dimensional pasting
diagrams, see the reference book by Johnson and Yau [28, Chapter 3].

Definition F.1 (Collages of Bimodular Profunctors). Let D be a bimodular pasting diagram. We define
a bicategory Coll(D) as follows:

• there is an object M for each vertex in D , labelled by a monoidal category M;

Braithwaite and Román 27

• endomorphism categories Coll(D)(M,M) are given by M with its monoidal structure;
• for each 1-edge labelled by an (M,N)-bimodular category C, and each object C ∈ C, we have a

1-cell (C,C) : M→ N;
• for each 2-edge labelled by an (M,N)-bimodular profunctor P : C→ D, and each p ∈ P(C,D) we

have a 2-cell (p,C,D) : (C,C)→ (D,D);
• compositions are given by monoidal actions, actions of morphisms on profunctors, or quotienting

maps of tensor products, where relevant.

Example F.2. In the case where the pasting diagram D is a single edge labelled by a bimodular category
C, we recover our earlier notion of collage from Definition 2.5.
Example F.3. Each of the profunctors in Figure 8 have a collage whose 2-cells describe string diagrams
for the section of functor box depicted. More complex composable arrangements of these profunctors
can be assembled giving rise to bicategories modelling whole functors boxes or arrangements of them.
Remark F.4. The definition of a bimodular pasting diagram can be seen as that of a trifunctor from the
free 2-category on a 2-graph to a tricategory of monoidal categories, bimodular categories, bimodular
profunctors, and natural transformations. We conjecture that the collage described here realises a lax
colimit of such a diagram, where the target category is enlarged to a tricategory of bicategories and
“2-profunctors” [11, 32].

Conjecture F.5. The collage of a diagram of bimodular profunctors is the lax 3-colimit of this diagram
when viewed as a functor into a tricategory of 2-profunctors between 2-categories

Coll(D) = Colimlax

(
I BmProf 2ProfD

)

Moreover the tricategory of pointed bimodular profunctors is the universal collage, given by the identity
diagram

BmProfpt = Colimlax

(
BmProf BmProf 2Prof

)
.

This perspective unifies our construction with the typical notion of a collage of profunctors [52],
which can be considered as a lax colimit of a functor into the bicategory of profunctors. Additionally,
this elucidates the relationship between the various syntactic bicategories we have constructed, and tri-
category of pointed bimodulars which we pronounced as a universe in which all such diagrams can live.
Indeed, if BmProfpt is a colimit of the terminal diagram, then we should obtain inclusions of all collages
into this tricategory. We leave the development of these notions for further work.

7. A Canonical Algebra of Open Transition Systems

Elena Di Lavore, Alessandro Gianola, Mario Román, Pawel Sobocinski, Nicoletta
Sabadini
Applied Category Theory (ACT, 2022)

Abstract: Feedback and state are closely interrelated concepts. Categories with
feedback, originally proposed by Katis, Sabadini and Walters, are a weakening of
the notion of traced monoidal categories, with several pertinent applications in
computer science. The construction of the free such categories has appeared in
several different contexts, and can be considered as state bootstrapping. We show
that a categorical algebra for open transition systems, Span(Graph)*, also due to
Katis, Sabadini and Walters, is the free category with feedback over Span(Set).
Intuitively, this algebra of transition systems is obtained by adding state to an
algebra of predicates, and therefore Span(Graph)* is, in this sense, the canonical
such algebra.
Declaration: Hereby I declare that my contribution to this manuscript was to:
provide the main theorem and its proof, provide the main idea, write most of the
paper with help from my supervisor Pawel Sobocinski and Elena Di Lavore, some
examples were provided by Nicoletta Sabadini and Alessandro Gianola. This man-
uscript is the conference version of “Span(Graph): a Canonical Feedback Algebra
of Open Transition Systems”.

A canonical algebra of open transition systems ?

Elena Di Lavore1, Alessandro Gianola2, Mario Román1, Nicoletta Sabadini3,
and Pawe l Sobociński1

1 Tallinn University of Technology, Ehitajate tee 5, 12616 Tallinn, Estonia
2 Free University of Bozen-Bolzano, Piazza Domenicani, 3, 39100 Bolzano BZ, Italy

3 Università degli Studi dell’Insubria, Via Ravasi, 2, 21100 Varese VA, Italy

Abstract. Feedback and state are closely interrelated concepts. Cate-
gories with feedback, originally proposed by Katis, Sabadini and Walters,
are a weakening of the notion of traced monoidal categories, with sev-
eral pertinent applications in computer science. The construction of the
free such categories has appeared in several different contexts, and can
be considered as state bootstrapping. We show that a categorical algebra
for open transition systems, Span(Graph)∗, also due to Katis, Sabadini
and Walters, is the free category with feedback over Span(Set). Intu-
itively, this algebra of transition systems is obtained by adding state to
an algebra of predicates, and therefore Span(Graph)∗ is, in this sense,
the canonical such algebra.

Keywords: concurrency theory· category theory· transition systems ·
feedback · state · algebra.

1 Introduction

Set

Reset A

A

Fig. 1: NOR latch.

State from feedback. A remarkable fact
from electronic circuit design is how data-
storing components can be built out of a com-
bination of stateless components and feed-
back. A famous example is the (set-reset)
“NOR latch”: a circuit with two stable con-
figurations that stores one bit of information.

The NOR latch is controlled by two in-
puts, Set and Reset. Activating the first sets the output value to A = 1; activating
the second makes the output value return to A = 0. This change is permanent:
even when both Set and Reset are deactivated, the feedback loop maintains the
last value the circuit was set to4—to wit, a bit of data has been conjured out

? Elena Di Lavore, Mario Román and Pawe l Sobociński were supported by the Euro-
pean Union through the ESF funded Estonian IT Academy research measure (project
2014-2020.4.05.19-0001).

4 In its original description: “the relay is designed to produce a large and permanent
change in the current flowing in an electrical circuit by means of a small electrical
stimulus received from the outside” ([11], emphasis added).

ar
X

iv
:2

01
0.

10
06

9v
1

 [
m

at
h.

C
T

]
 2

0
O

ct
 2

02
0

2 Di Lavore, Gianola, Román, Sabadini, Sobociński

of thin air. In this paper we show that this can be seen as an instance of a
more abstract phenomenon: the universal way of adding feedback to a theory of
processes consists of endowing each process with a state space.

Indeed, there is a natural weakening of the notion of traced monoidal cate-
gories called categories with feedback [28]. The construction of the free category
with feedback coincides with a “state-bootstrapping” construction, St(•), that
appears in several different contexts in the literature [7,21,24]. We recall this
construction and its mathematical status (Theorem 1), which can be summed
up by the following intuition:

Theory of Processes + Feedback = Theory of Stateful Processes.

The algebra of transition systems. Our primary focus is the Span(Graph)
model of concurrency, introduced in [25] as a categorical algebra of commu-
nicating state machines, or — equivalently — open transition systems. Open
transition systems do not interact by input-output message passing, but by syn-
chronization, producing a simultaneous change of state. This corresponds to a
composition of spans, realized by taking a pullback in Graph. The dual algebra
of Cospan(Graph) was introduced in [27]. It complements Span(Graph) by
adding the operation of communicating-sequential composition [16].

Informally, a component of Span(Graph) is a state machine with states
and transitions, i.e. a finite graph given by the ‘head’ of the span. The transition
system is equipped with interfaces or communication ports, and every transition
is labeled by the effect it produces in all its interfaces. We give examples below.

Stateful and stateless components. In Figure 2, we depict two open tran-
sition systems as arrows of Span(Graph). The first represents a NOR gate
B×B→ B. The diagram below left is a graphical rendering of the corresponding
span B× B← N → B, where B is considered as a single-vertex graph with two
edges, corresponding to the signals { 0, 1 }, N is the unlabeled graph depicted
within the bubble, and the labels witness the action of two homomorphisms,
respectively N → B× B and N → B. Here each transition represents one of the
valid input/output configurations of the gate. NOR gates are stateless compo-
nents, since their transition graph N has a single vertex.

The second component is a span L = {Set,Reset, Idle} → {A,A} = R that
models a set-reset latch. The diagram below right, again, is a convenient way of
denoting the relevant span L ← D → R. Latches store one bit of information,
they are stateful components; consequently, their transition graph has two states.

In both cases, the boundaries on Span/Cospan(Graph) are stateless: in-
deed, they are determined by a mere set – the self-loops of a single-vertex graph.
This is a restriction that occurs rather frequently: the important subcategory
of Span(Graph), the one that we can clearly conceptually explain as transi-
tion systems with interfaces, is the full subcategory of Span(Graph) restricted

A canonical algebra of open transition systems 3

(
0
0

)
,1

(
0
1

)
,0

(
1
0

)
,0

(
1
1

)
,0

Set,A

Reset,A

Idle,A

Idle,A

B

B

B L R

Fig. 2: A NOR gate and set-reset latch, in Span(Graph).

to objects that are single-vertex graphs, which we call Span(Graph)∗. Analo-
gously, the relevant subcategory of Cospan(Graph) is Cospan(Graph)∗, the
full subcategory on sets, or graphs with an empty set of edges.

Definition. Span(Graph)∗ is the full subcategory of Span(Graph) with ob-
jects the single-vertex graphs.

The problem with Span(Graph)∗ is that it is—at first sight—somewhat
mysterious from the categorical point of view; the morphisms are graphs, but
the boundaries are given by sets. Decorated and structured spans and cospans
[13,3] were introduced as theoretical frameworks to capture such phenomena,
which occur frequently when composing network structures. Nevertheless, they
do not quite answer the question of why such examples do arise naturally.

Canonicity and our original contribution. Universal constructions, such as
“state-bootstrapping” St(•), characterize the object of interest up to equivalence,
making it the canonical object satisfying some properties. This is the key to
avoiding the problem outlined by Abramsky [1]: because of the lack of consensus
about the intrinsic primitives of concurrency, we risk making our results too
dependent on a specific syntax. It is thus important to characterize existing
modeling formalisms for concurrent systems in terms of universal properties.

The main contribution of this paper is the characterization of Span(Graph)∗
in terms of a universal property: it is equivalent to the free category with feedback
over the category of spans of functions. We now state this more formally:

Theorem. The free category with feedback over Span(Set) is equivalent to
Span(Graph)∗, the full subcategory of Span(Graph) given by single-vertex
graphs. That is, there is an equivalence of categories

St(Span(Set)) ∼= Span(Graph)∗.

Given that Span(Set), the category of spans of functions, can be considered
an algebra of predicates [4,10], the high level intuition that summarizes our main
contribution (Theorem 2) can be given as:

Algebra of Predicates + Feedback = Algebra of Transition Systems.

We similarly prove (Section 3.4) that the free category with feedback over
Cospan(Set) is equivalent to Cospan(Graph)∗, the full subcategory on dis-
crete graphs of Cospan(Graph).

4 Di Lavore, Gianola, Román, Sabadini, Sobociński

Related Work. Span/Cospan(Graph) has been extensively used for the
modeling of concurrent systems [25,27,39,40,9,36,16,14,15]. Similar approaches
to compositional modeling of networks have used decorated and structured co-
spans [13,3]. Despite this, Span(Graph)∗ has not previously been characterized
in terms of a universal property.

In [28], the St(•) construction (under a different name) is exhibited as the
free category with feedback. Categories with feedback have been arguably under-
appreciated but, at the same time, the St(•) construction has made multiple ap-
pearances as a “state bootstrapping” technique across the literature. The St(•)
construction is used to describe a string diagrammatic syntax for concurrency
theory in [7]; a variant of it had been previously applied in the setting of carte-
sian bicategories in [24]; and it was again rediscovered to describe a memoryful
geometry of interaction in [21]. However, a coherent account of both categories
with feedback and their relation with these stateful extensions has not previously
appeared. This motivates our extensive preliminaries in Sections 2.1 and 2.2.

Synopsis. Section 2 contains preliminary discussions on traced monoidal cat-
egories and categories with feedback; it explicitly describes St(•), the free cat-
egory with feedback. It collects mainly expository material. Section 3 exhibits
a universal property for the Span(Graph)∗ and Cospan(Graph)∗ models of
concurrency and Section 3.5 discusses a specific application.

Conventions. We write composition of morphisms in diagrammatic order,
(f ; g). When describing morphisms in a symmetric monoidal category whose
input and output are known, we omit the associators and unitors, implicitly
using the coherence theorem for monoidal categories.

2 Preliminaries: categories with feedback

Categories with feedback were introduced in [28], and motivated by examples
such as Elgot automata [12], iteration theories [6] and continuous dynamical
systems [26]. We recall their definition below, contrast them with the stronger
notion of traced monoidal categories in Section 2.2, discuss the relationship be-
tween feedback and delay in Section 2.3, recall the construction of a free category
with feedback in Section 2.4 and conclude with some examples in Section 2.5.

2.1 Categories with feedback

A feedback operator , fbk(•), takes a morphism S ⊗A→ S ⊗B and “feeds back”
one of its outputs to one of its inputs of the same type, yielding a morphism
A→ B (Figure 3, left). When using string diagrams, we depict the action of the
feedback operator as a loop with a double arrowtip (Figure 3, right).

A canonical algebra of open transition systems 5

f : S ⊗A→ S ⊗B

fbkS(f) : A→ B f
A B

S

Fig. 3: Type and graphical notation for the operator fbkS(•).

Capturing a reasonable notion of feedback requires the operator to interact
nicely with the flow imposed by the structure of a symmetric monoidal category.
This interaction is expressed by a few straightforward axioms.

Definition 1. A category with feedback [28] is a symmetric monoidal category
C endowed with an operator

fbkS : C(S ⊗A,S ⊗B)→ C(A,B),

which satisfies the following axioms (A1-A5, see also Figure 4).

(A1). Tightening, u; fbkS(f); v = fbkS((id⊗ u); f ; (id⊗ v)).
(A2). Vanishing, fbkI(f) = f .
(A3). Joining, fbkT (fbkS(f)) = fbkS⊗T (f).
(A4). Strength, fbkS(f)⊗ g = fbkS(f ⊗ g).
(A5). Sliding, fbkT (f ; (h⊗id)) = fbkS((h⊗id); f), for h : S → T any isomorphism.

f
A B

S

u
A′

v
B′

= f
A B

S

u
A′

v
B′

f
A B

I

= f
A B

f
A B

S

T

= f
A B

S ⊗ T
f

A B

S

g
A′ B′

=

f

A B

S

g
A′ B′

f
A B

T

h
= f

A B

S

h
(h isomorphism)

Fig. 4: Diagrammatic depiction of the axioms of feedback.

The natural notion of homomorphism between categories with feedback is that
of a symmetric monoidal functor that moreover preserves the feedback structure.
These are called feedback functors.

Definition 2. A feedback functor F : C→ D between two categories with feed-
back (C, fbkC) and (D, fbkD) is a strong symmetric monoidal functor such that

F (fbkCS (f)) = fbkDF (S)(µ;Ff ;µ−1),

6 Di Lavore, Gianola, Román, Sabadini, Sobociński

where µA,B : F (A)⊗ F (B)→ F (A⊗B) is the structure morphism of the strong
monoidal functor F . We call Feedback to the category of (small) categories with
feedback and feedback functors between them. There exists a forgetful functor
U : Feedback→ SymMon.

2.2 Traced monoidal categories

Categories with feedback are a weakening of the well known traced monoidal
categories. Between them, there is an intermediate notion called right traced
category [37] that strengthens the sliding axiom from isomorphisms to arbitrary
morphisms. This first extension would be already too strong for our purposes
later in Section 2.4: we would be unable to define a state space up to isomorphism.
However, the more conceptual difference of traced monoidal categories is the
“yanking axiom” (in Figure 5). Indeed, strengthening the sliding axiom and
adding the yanking axiom yields the definition of traced monoidal category.

Traced monoidal categories are widely used in theoretical computer science.
Since their conception [22] as an abstraction of the trace of a matrix in linear
algebra, they have been used in linear logic and geometry of interaction [1,17,18],
programming language semantics [19], automata theory [2] and fixed point op-
erators [20,5].

=

Fig. 5: The yanking axiom.

Traces are thus undeniably important,
but it is questionable whether we really want
to always impose all of their axioms. Specif-
ically, we will be concerned with the yanking
axiom that states that tr(σ) = id. The yank-
ing axiom is incontestably elegant from the
geometrical point of view: strings are “pulled”, and feedback (depicted as a loop
with an arrowtip) disappears (Figure 5). However, if feedback can disappear
without leaving any imprint, that must mean that it is instantaneous: its output
necessarily mirrors its input.5 Importantly for our purposes, this seems to imply
that a feedback satisfying the yanking equation is “memoryless”, or “stateless”.

Fig. 6: Diagram for the NOR
latch, modeled with a trace in
Span(Graph).

Consider again the NOR latch from Fig-
ure 1. We have seen how to model NOR gates
in Span(Graph) in Figure 2, and the algebra
of Span(Graph) does include a trace (Fig-
ure 6). However, imitating the real-world be-
havior of the NOR latch with just a trace is
unsatisfactory: the trace of Span(Graph) is
built out of stateless components, and tracing
stateless components yields again a stateless
component.

In engineering and computer science, instantaneous feedback is actually a
rare concept; a more common notion is that of guarded feedback. Consider signal

5 In other words, traces are used to talk about processes in equilibrium, processes that
have reached a fixed point. A theorem by Hasegawa [20] and Hyland [5] corroborates
this interpretation: a trace in a cartesian category corresponds to a fixpoint operator.

A canonical algebra of open transition systems 7

flow graphs [38,32]: their categorical interpretation in [8] models feedback not
by the usual trace, but by a trace “guarded by a register”, that delays the signal
and violates the yanking axiom (see Remark 7.8 in loc.cit.).

The component that trace misses in such examples is a delay.

2.3 Delay and feedback

= ∂

Fig. 7: Definition of delay.

The main difference between categories with
feedback and traced monoidal categories is
the failure of the yanking axiom. Consider
the process that only “feeds back” its own
input to itself then uses the “fed back” in-
put to produce its output. We call this pro-
cess, ∂A := fbkCA(σA,A), the delay endomorphism. The yanking axiom of traced
monoidal categories states that the delay is equal to the identity, which is not
necessarily true for categories with feedback. In that sense, a non-trivial delay is
what sets apart categories with feedback from traced monoidal categories.

This interpretation of feedback as the combination of trace and delay can be
made into a theorem when the category has enough structure. Compact closed
categories are traced monoidal categories where every object A has a dual A?

and the trace is constructed from two pieces ε : A⊗A? → I and η : I → A?⊗A.
Even if not every traced monoidal category is compact closed, it is true that
every traced monoidal category embeds fully faithfully into a compact closed
category.6 In a compact closed category, a feedback operator is necessarily a
trace “guarded” by a delay.

Proposition 1 (Feedback from delay, [7]). Let C be a compact closed cat-
egory with fbkC a feedback operator that takes a morphism S ⊗A→ S ⊗B to a
morphism A → B, satisfying the axioms of feedback (that we saw in Figure 4)
but possibly failing to satisfy the yanking axiom of traced monoidal categories.
Then the feedback operator is necessarily of the form

fbkCS (f) := (ε⊗ id); (id⊗ f); (id⊗ ∂S ⊗ id); (η ⊗ id)

where ∂A : A→ A is a family of endomorphisms satisfying

– ∂A ⊗ ∂B = ∂A⊗B and ∂I = id, and

– ∂A;h = h; ∂B for each isomorphism h : A ∼= B.

In fact, any family of morphisms ∂A satisfying these properties determines uniquely
a feedback operator that has ∂A as its delay endomorphisms.

6 This is the Int construction from [22].

8 Di Lavore, Gianola, Román, Sabadini, Sobociński

f
A B

S

∂

Fig. 8: Feedback from delay.

Proof. Given a family ∂S satisfying the two
properties, we can define a feedback struc-
ture to be fbkCS (f) := (ε⊗ id); (id⊗ f); (id⊗
∂S ⊗ id); (η ⊗ id) and check that it satisfies
all the axioms of feedback (Figure 4). Note
here that, as expected, the yanking equa-
tion is satisfied precisely when delay endo-
morphisms are identities, ∂A = idA.

Let us now show that any feedback operator in a compact closed category is
of this form. Indeed,

fbkCS (f) = fbkCS ((id⊗ ε⊗ ε⊗ id); (σ ⊗ σ ⊗ f); (id⊗ η ⊗ η ⊗ id))

= (id⊗ ε⊗ ε⊗ id); (fbkCS (σ)⊗ σ ⊗ f); (id⊗ η ⊗ η ⊗ id)

= (ε⊗ id); (id⊗ f); (id⊗ fbkCS (σ)⊗ id); (η ⊗ id).

Here we have used the fact that the trace is constructed by two separate
pieces: ε and η; and then the fact that the feedback operator, like trace, can be
applied “locally” (see the axioms in Figure 4). ut

∂

∂

Fig. 9: NOR latch with feedback.

Consider one more time the NOR latch
from Figure 1. The algebra of Span(Graph)
does also include a feedback operator that is
not a trace. This feedback operator is indeed
canonical, in that it is the one that makes
Span(Graph) the canonical category with
feedback containing spans of functions. Im-
itating the real-world behavior of the NOR
latch is finally possible: one of the components that builds up this feedback (and
in fact, the only difference with the previous trace) is a stateful delay component.
The emergence of state from feedback is witnessed by the St(•) construction.

2.4 St(•), the free category with feedback

In this section, we identify the construction that yields the free category with
feedback over a symmetric monoidal category. The St(•) construction is a gen-
eral way of endowing a system with state. It appears multiple times across the
literature in slightly different forms: it constructs a stateful resource calculus in
[7]; a variant is used for geometry of interaction in [21]; it coincides with the
free category with feedback presented in [28]; and yet another, slightly different
formulation was given in [24].

Definition 3 (Category of stateful processes, [28]). Let (C,⊗, I) be a
symmetric monoidal category. We call St(C) to the category having the same
objects as C but where morphisms A→ B are pairs (S | f), consisting of a state
space S ∈ C and a morphism f : S ⊗ A → S ⊗ B. We consider morphisms up
to isomorphism classes of their state space, and thus

(S | f) = (T | (h−1 ⊗ id); f ; (h⊗ id)), for any isomorphism h : S ∼= T.

A canonical algebra of open transition systems 9

When depicting a stateful process, we explicitly mark the strings forming the
space state. That is, an equivalence class will be depicted as any of its represen-
tatives plus some strings marked.

f
A

S

B

= f
A

T

B

h−1 h

Fig. 10: We depict stateful processes by marking the space state.

We define the identity stateful process on A ∈ C as (I | idI⊗A). Sequential
composition of the two stateful processes (S | f) : A→ B and (T | g) : B → C is
defined by

(S | f); (T | g) = (S ⊗ T | (σ ⊗ id); (id⊗ f); (σ ⊗ id); (id⊗ g)).

Parallel composition of the two stateful processes (S | f) : A → B and (S′ |
f ′) : A′ → B′ is defined by

(S | f)⊗ (S′ | f ′) = (S ⊗ S′ | (id⊗ σ ⊗ id); (f ⊗ f ′); (id⊗ σ ⊗ id)).

f

A B

g

C

T

S
f

A

S

Bf ′

A′ B′

S′

Fig. 11: Sequential and parallel composition of stateful processes.

This defines a symmetric monoidal category. Moreover, it is a category with
feedback with the operator

storeT (S | f) := (S ⊗ T | f).

Theorem 1. [28] The category (St(C), store(•)) is the free category with feed-
back over a symmetric monoidal category C.

storeT

 f

A

S

B

T

 = f

A

S

B

T

Fig. 12: The store(•) operation, in diagrammatic terms.

2.5 Examples of categories with feedback

Our first source of examples is traced monoidal categories. The axioms of feed-
back are a strict weakening of the axioms of trace, and every traced category is
automatically a category with feedback. A more interesting source of examples
is the St(•) construction we just defined.

10 Di Lavore, Gianola, Román, Sabadini, Sobociński

Example 1. Consider St(Set), the free category with feedback over the monoidal
structure of sets with the cartesian product. A Mealy (or deterministic) transi-
tion system with boundaries A and B, and state space S was originally defined
[33, §2.1] to be just a function f : S×A→ S×B, which is a morphism of St(Set)
up to isomorphism of the state space. Mealy transitions compose sequentially
and in parallel following Definition 3, and they form a category with feedback
Mealy := St(Set).

fbk

0, 1/1 1, 0/0

1, 1/1

0, 0/0

=

0 0 1

1

Fig. 13: Feedback of a Mealy transition system.

The feedback operator of Mealy transitions internalizes input/output pairs
as states. Figure 13 is an example.

It is traditional to depict automata as state/transition graphs. The charac-
terization Span(Graph)∗ ∼= St(Span(Set)) that we prove in Section 3 lifts the
inclusion Set → Span(Set) to a feedback functor Mealy → Span(Graph)∗.
This inclusion embeds a deterministic transition system into the graph that de-
termines it.

Similarly, when we consider Set to be the monoidal structure of sets with the
disjoint union, the notion we recover is that of an Elgot automaton [12], given
by a transition function S +A→ S +B. These categories of transition systems
motivate the work in [24,28].

Example 2. A linear dynamical system with inputs in Rn, outputs in Rm and
state space in Rk is given by a matrix (A B

C D) ∈ MatR(k + m, k + n) [23]. Two

linear dynamical systems (A B
C D) and

(
A′ B′

C′ D

)
are considered equal whenever there

is an invertible matrix H ∈MatR(k, k) such that

A′ = H−1AH, B′ = BH, C ′ = H−1C.

Linear dynamical systems are morphisms of a category with feedback which
coincides with St(Vect⊕R). The feedback operator is defined by

fbkl(k,

(
A1 A2 B1

A3 A4 B2

C1 C2 D

)
) = (k + l,

(
A1 A2 B1

A3 A4 B2

C1 C2 D

)
)

where

(
A1 A2 B1

A3 A4 B2

C1 C2 D

)
∈MatR(k + l +m, k + l + n).

3 Span(Graph): an algebra of transition systems

Span(Graph) [25] is an algebra of “open transition systems”. It has applica-
tions in concurrency theory and verification [24,25,27,29,16], but it has also been

A canonical algebra of open transition systems 11

recently applied to biological systems [14,15]. Just as ordinary Petri nets have
an underlying (firing) semantics in terms of transition systems, Span(Graph)
is used as a semantic universe for a variant of open Petri nets, see [40,9].

An open transition system is a morphism of Span(Graph): it consists of a
graph endowed with two boundaries or communication ports; each transition of
the graph has an effect on each boundary, and this data is used to synchronize
a network of multiple transition systems. This conceptual picture actually de-
scribes a subcategory, Span(Graph)∗, where boundaries are described by mere
sets, accounting for the alphabets of signals that open transition systems syn-
chronize on. In this section we recall the details of Span(Graph)∗ and show
that it is universal in the following sense:

Span(Graph)∗ is the free category with feedback over Span(Set).

3.1 The algebra of Span(Graph).

Definition 4. A span [4,10] from A to B, both objects of a category C, is a pair
of morphisms with a common domain, A← E → B. The object E is the “head”
of the span, and the morphisms are the left and right “legs”, respectively.

When the category C has pullbacks, we can sequentially compose two spans
A← E → B and B ← F → C into a span A← E ×B F → C. Here, E ×B F is
the pullback of E and F along B: for instance, in the category Set of sets and
functions, E ×B F is the subset of E × F given by pairs whose two components
have the same image on B.

Definition 5. Let C be a category with pullbacks. Span(C) is the category that
has the same objects as C and isomorphism classes of spans between them as
morphisms. That is, two spans are considered equal if there is an isomorphism
between their heads that commutes with both legs. Dually, let C be a category
with pushouts. Cospan(C) is the category Span(Cop).

Span(C) is a symmetric monoidal category when C has products. The paral-
lel composition of A← E → B and A′ ← E′ → B′ is given by the componentwise
product A×A′ ← E × E′ → B ×B′. An example is again Span(Set).

Definition 6. The category Graph of graphs has graphs G = (s, t : E ⇒ V) as
objects. A morphism G→ G′ in this category is given by two functions e : E → E′

and v : V → V ′ such that e; s′ = s; v and e; t′ = t; v. In other words, it is the
presheaf category on the diagram (•⇒ •).

Recall, however, that we are not interested in the whole Span(Graph) but
only in Span(Graph)∗, the spans of graphs that have a graph of the form A⇒ 1
on the boundaries.

Definition 7. An open transition system, a morphism of Span(Graph)∗, is a
span of sets A← E → B where the head is the set of transitions of a graph E ⇒

12 Di Lavore, Gianola, Román, Sabadini, Sobociński

A E B

1 V 1

ts

a b

Fig. 14: A morphism of Span(Graph)∗.

V . Two open transition systems are considered equal if there is an isomorphism
between their graphs that commutes with the legs of the span.

We have been calling “stateless” to the open transition systems whose graph
E ⇒ V has a single vertex, V = 1.

Sequential composition (the communicating-parallel operation of [25]) of two
open transition systems with spans A ← E → B and B ← F → C and graphs
E ⇒ S and F ⇒ T yields the open transition system with span A← E×B F →
C and graph E×B F ⇒ S×T . This means that the only allowed transitions are
those that synchronize E and F on the common boundary B.

E ×B F

E S × T F

A S B T C

1 1 1

Fig. 15: Sequential composition in Span(Graph)∗.

Parallel composition (the non communicating-parallel operation of [25]) of
two open transition systems with spans A ← E → B and A′ ← E′ → B′

and graphs E ⇒ V and E′ ⇒ V ′ yields the open transition system with span
A×A′ ← E × E′ → B ×B′ and graph E × E′ ⇒ V × V ′.

3.2 The components of Span(Graph)

Let us now detail some useful constants of the algebra of Span(Graph). We
will illustrate how to use the algebra with an example in which we construct the
NOR latch circuit from Figure 9.

Example 3. In this example, we model the circuit in Figure 9 in Span(Graph)∗.
The connectivity of the circuit is modeled with a Frobenius algebra [10] (, ,

,). The corresponding spans are constructed out of diagonals A→ A× A
and units A→ 1.

()A = {A← A→ A×A} ()A = {A← A→ 1}

()A = {A×A← A→ A} ()A = {1← A→ A}

A canonical algebra of open transition systems 13

These already induce a compact closed structure (and, therefore, a trace), given
by the following spans.

()A = {1← A→ A×A} ()A = {A×A← A→ 1}

In general, any function f : A→ B can be lifted covariantly to a span A← A→
B and contravariantly to a span A ← B → B. Any span A ← E → B can be
lifted to Span(Graph)∗ by making the head represent the graph E ⇒ 1. We
use this to obtain the graph of the NOR gate (Figure 2). However, components
created like this have a single-vertex: they are stateless.

1,0

0,1

0,0

1,1

B B

Fig. 16: Delay morphism over the
set B := {0, 1}.

We will need a single stateful component
to model our circuit, the delay

(∂)A =

A×A

A A A

π2 π1π2π1

.

This is not an arbitrary choice. This is the
canonical delay obtained from the feedback
structure7 in Span(Graph)∗ that gives its
universal property.

∂

∂

Fig. 17: Decomposing the circuit.

The NOR latch circuit of Figure 9 is the
composition of two NOR gates where the out-
puts of each gate has been copied and fed
back as input to the other gate (Figure 17).
The algebraic expression, in Span(Graph)∗,
of this circuit is obtained by decomposing it
into its components.

(id⊗ ⊗ ⊗ id); (NOR⊗ σ ⊗ NOR); (⊗ id⊗)

; (id⊗ ∂ ⊗ id⊗ ∂ ⊗ id); (id⊗ ⊗ ⊗ id)

The graph obtained by the computation of this expression, together with its
transitions, is shown in Figure 18. This time, our model is indeed stateful. It
has four states: two states representing a correctly stored signal, A = (1, 0) and
A = (0, 1); and two states representing transitory configurations T1 = (0, 0) and
T2 = (1, 1).

We will be controlling the left boundary : it can receive a set signal, Set =
(
1
0

)
;

a reset signal, Reset =
(
0
1

)
; none of the two, Idle =

(
0
0

)
; or both of them at the

same time, Unspec =
(
1
1

)
, which is known to cause unspecified behavior in a NOR

latch. The signal on the right boundary, on the other hand, is always equal to
the state the transition goes to and does not provide any additional information.
Knowing this, we omit it from the drawing in Figure 18.

7 As in Proposition 1.

14 Di Lavore, Gianola, Román, Sabadini, Sobociński

•

•A

•A

• T2
T1

Idle

Set

Reset

Set

Unspec

Reset

Unspec

Idle

Set

Unspec

Reset

Unspec

Idle

Reset

Idle

Set

Fig. 18: Span of graphs representing the NOR latch

In normal functioning, activating the signal Set makes the latch transition
to the state A in two transition steps. Analogously, activating Reset makes the
latch transition to A again in two transition steps. After any of these two cases,
deactivating all signals, Idle, keeps the last state.

Moreover, the (real-world) NOR latch has some unspecified behavior that
gets also reflected in the graph: activating both Set and Reset at the same time,
what we call Unspec, causes the circuit to enter an unstable state where it
bounces between the states T1 and T2. Our modeling has reflected this “un-
specified behavior” as expected.

Feedback and trace. In terms of feedback, the circuit of Figure 18 is equiva-
lently obtained as the result of taking feedback over the following stateless mor-
phism in Figure 19. We know that it is stateless because it is the composition of
stateless morphisms.

fbkB×B

Fig. 19: Applying fbk(•) over the circuit gives the NOR latch.

But Span(Graph)∗ is also canonically traced: it is actually compact closed.
What changes in the modeling if, over the same morphism, we would have used
trace instead? As we argued back for Figure 6, we obtain a stateless transition
system: it is given by a graph with a single edge. The valid transitions can be
now computed explicitly to be

{(Unspec,T1), (Idle,A), (Idle,A), (Set,A), (Reset,A)}

A canonical algebra of open transition systems 15

These encode important information: they are the equilibrium states of the cir-
cuit. However, unlike the previous graph, this one would not get us the correct
allowed transitions: under this modeling, our circuit could freely bounce between
(Idle,A) and (Idle,A), which is not the expected behavior of a NOR latch.

The fundamental piece making our modeling succeed the previous time was
feedback derived from the stateful delay. The next section explains in which
sense that feedback is canonical.

3.3 Span(Graph) as a category with feedback

This section introduces our main theorem. We start by introducing the map-
ping that associates to each stateful span of sets the corresponding span of
graphs. This mapping is well-defined and lifts to a functor St(Span(Set)) →
Span(Graph). Finally, we prove that it gives an equivalence St(Span(Set)) ∼=
Span(Graph)∗.

Lemma 1. The following assignment of stateful processes over Span(Set) to
morphisms of Span(Graph) is well defined.

K

S

∣∣∣∣∣∣∣∣

E

S ×A S ×B

(s,a) (t,b)

 :=

A E B

1 S 1

ts

a b

Proof. We first check that two isomorphic spans are sent to isomorphic spans
of graphs. Let S × A ← E → S × B and S × A ← E′ → S × B be two spans
that are isomorphic with h : E ∼= E′. Then (h, id) is an isomorphism of spans of
graphs, also making the relevant diagram commute (Figure 20).

E

S ×A S ×B

E′

(s,a) (t,b)

h

(s′,a′) (t′,b′)

A E E′ B

1 S S 1

ha

ts

b

t′

a′

s′

b′

id

Fig. 20: Isomorphic spans result in isomorphic spans of graphs.

We show now that the assignment preserves the equivalence relation of state-
ful processes. Isomorphisms in a category of spans are precisely spans whose
two legs are isomorphisms (Proposition 3). This means that an isomorphism in
Span(Set) can be always rewritten as S ← S → T , where the left leg is an
identity and the right leg is h : S → T , some isomorphism. Its inverse can be
written analogously as T ← S → S. In order to prove that the quotient relation
induced by the feedback is preserved, we need to check that equivalent spans of
sets are sent to isomorphic spans of graphs. If two spans are equivalent with the
isomorphism h : S ∼= T , then the corresponding graphs are isomorphic with the
isomorphism of graphs (id, h). ut

16 Di Lavore, Gianola, Román, Sabadini, Sobociński

· E ·

T ×A S ×A S ×B T ×B

h×id (s,a) (t,b) h×id

A E E B

1 S T 1

ida

ts

b

t;h

a

s;h

b

h

Fig. 21: Equivalent spans result in isomorphic spans of graphs.

Theorem 2. There exists an equivalence of categories

St(Span(Set)) ∼= Span(Graph)∗.

The free category with feedback over Span(Set) is equivalent to the full subcat-
egory of Span(Graph) given by single-vertex graphs.

Proof. We prove that there is a fully faithful functor K : St(Span(Set)) →
Span(Graph) defined on objects as K(A) = (A ⇒ 1) and defined on mor-

phisms as in Lemma 1. We have shown there that this assignation is well-defined.
We now show that it is functorial, preserving composition and identities.

We can directly check that the identity morphism in St(Span(Set)), as a span
A ← A → A is sent to the identity span of the graph A ⇒ 1. Let us now show
that composition is also preserved. The sequential composition of two stateful
spans is computed as follows. Let the two stateful spans be given by S × A ←
E → S×B and T ×B ← F → T ×C, then the composite stateful span is given
by S × T × A ← E ×B F → S × T × C. We check that this span is sent to the
corresponding composition in Span(Graph). As Graph is a functor category,
limits are computed pointwise. Thus, the pullback of two graph morphisms is
given by taking the pullbacks of both the vertices (where the pullback on 1 is a
product) and the edges; this was shown in Figure 15.

The final step is to show that the original assignment is fully-faithful. We can
see that it is full: every span of single-vertex graphs given by A ← E → B and
E ⇒ S does arise from some span, namely S×A← E → S×B. Let us check it is
also faithful. Suppose that two morphisms in St(Span(Set)), S×A← E → S×B
and S′ × A ← E′ → S′ × B, are sent to equivalent spans of graphs, i.e. there
exist h : E ∼= E′ and k : S′ ∼= S making the following diagrams commute.

A E E′ B

1 S S′ 1

ts

ha

b

t′s′

a′

b′

k

In this case, we know that S × A ← E → S × B is equivalent to S′ × A ←
E → S′ × B because of the equivalence relation on stateful processes. Finally,
S′ ×A← E → S′ ×B is equivalent as a span to S′ ×A← E′ → S′ ×B.

A canonical algebra of open transition systems 17

We have shown that there exists a fully-faithful functor from the free cate-
gory with feedback over Span(Set) to the category Span(Graph) of spans of
graphs. The functor induces an equivalence between St(Span(Set)) and the full
subcategory of Span(Graph) on single-vertex graphs. ut

3.4 Cospan(Graph) as a category with feedback

The previous results can be generalized to any category C with all finite limits.
By taking Graph(C) to be the presheaf category of the diagram (• ⇒ •) in C
and Span(Graph(C))∗ the full subcategory on objects of the form A ⇒ 1, we
can prove the following result.

Theorem 3. There exists an equivalence of categories

St(Span(C)) ∼= Span(Graph(C)).

The free category with feedback over Span(C) is equivalent to the full subcategory
on Span(Graph(C)) given by single-vertex graphs.

Cospan(Graph)∗ can be also characterized as a free category with feedback.
We know that Cospan(Set) ∼= Span(Setop), we note that Graph(Setop) ∼=
Graph (which has the effect of flipping edges and vertices), and we can use

Theorem 3 because Set has all finite colimits. The explicit assignment is similar
to the one shown in Lemma 1.

K

S

∣∣∣∣∣∣∣∣

S

E +A E +B

[t|a] [s|b]

 :=

A S B

0 E 0

a b

st

Corollary 1. There exists an equivalence of categories St(Cospan(Set)) ∼=
Cospan(Graph)∗.

Two feedback structures on Cospan(Graph). Cospan(Graph) is also
compact closed and, in particular, traced. As in the case of Span(Graph), the
feedback structure given by the universal property is different from the trace.
While the trace identifies the vertices that are the images of the same element
on the boundaries, the feedback puts an additional edge between them.

3.5 Syntactical presentation of Cospan(FinGraph)

The observation in Proposition 1 has an important consequence in the case of
finite sets. Let us call FinGraph to Graph(FinSet). Cospan(FinSet) is the
generic special commutative Frobenius algebra [30], meaning that any morphism
written out of the operations of a special commutative Frobenius algebra and
the structure of a symmetric monoidal category is precisely a cospan of finite
sets (or, in other words, symmetric monoidal functors out of Cospan(FinSet)

18 Di Lavore, Gianola, Román, Sabadini, Sobociński

correspond to special commutative Frobenius algebras). But we also know that
Cospan(FinSet) with an added generator to its PROP structure [7] (the delay,
with the conditions given in Proposition 1) is St(Cospan(FinSet), or, equiva-
lently, Cospan(FinGraph). This means that any morphism written out of the
operations of a special commutative Frobenius algebra plus a freely added gen-
erator of type (∂) : 1 → 1 is a morphism in Cospan(FinGraph)∗. This is a
direct proof of a fact that already appeared in [35].

Proposition 2 ([35], Proposition 3.2). The category Cospan(FinGraph)∗
is the generic special commutative Frobenius monoid with an added generator.

Proof. It is known that the category Cospan(FinSet) is the generic special
commutative Frobenius algebra [30]. Adding a free generator (∂) : 1→ 1 to its
PROP structure corresponds to adding a family (∂)n : n→ n with the condi-
tions on Proposition 1. Now, Proposition 1 implies that adding such a generator
to Cospan(FinSet) results in St(Cospan(FinSet)). Finally, we can use again
Theorem 2 to conclude that St(Cospan(FinSet)) ∼= Cospan(FinGraph)∗.

ut

4 Conclusions and further work

We have characterized Span(Graph)∗, an algebra of open transition systems,
as equivalent to the free category with feedback over the category of spans of
functions. The St(•) constuction is well-known as a technique of adding state to
processes. In [28], it had been characterized as the free category with feedback
under a different name. What was missing was a coherent and explicit connection
between the two.

We have seen how the St(•) construction creates categories of transition sys-
tems out of symmetric monoidal categories. As future work, we plan to study
how to expand our investigation from mere transition systems to automata,
which have initial and accepting states. Initial states are particularly important
when providing semantics: for instance, we would like to interpret a transition
system S ×A→ S ×B as a stream transducer Stream(A)→ Stream(B), but
this is not possible without an initial state s0 ∈ S. In future work, we discuss an
elegant way of accomodating initial states by considering a more general defini-
tion of feedback. This generalized definition modifies the sliding axiom: instead
of sliding isomorphisms, we can slide arbitrary classes of morphisms under the
image of a functor. We conjecture that sliding point-preserving homomorphisms
of pointed sets recovers a well-behaved notion of initial state without modifying
the framework of categories with feedback any further.

References

1. Samson Abramsky. What are the fundamental structures of concurrency? We still
don’t know! CoRR, abs/1401.4973, 2014.

A canonical algebra of open transition systems 19

2. Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. Elgot algebras. Electronic Notes in
Theoretical Computer Science, 155:87–109, 2006.

3. John C. Baez and Kenny Courser. Structured cospans. CoRR, abs/1911.04630,
2019.

4. Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category
Seminar, pages 1–77. Springer, 1967.

5. Nick Benton and Martin Hyland. Traced premonoidal categories. RAIRO Theor.
Informatics Appl., 37(4):273–299, 2003.

6. Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational Logic
of Iterative Processes. EATCS Monographs on Theoretical Computer Science.
Springer, 1993.

7. Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawel Sobocinski, and Fabio
Zanasi. Diagrammatic algebra: from linear to concurrent systems. Proc. ACM
Program. Lang., 3(POPL):25:1–25:28, 2019.

8. Filippo Bonchi, Pawe l Sobociński, and Fabio Zanasi. The Calculus of Signal Flow
Diagrams I: Linear Relations on Streams. Information and Computation, 252:2–29,
2017.

9. Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A connector algebra for
P/T nets interactions. In Concurrency Theory (CONCUR ‘11), volume 6901 of
LNCS, pages 312–326. Springer, 2011.

10. Aurelio Carboni and Robert F. C. Walters. Cartesian Bicategories I. Journal of
pure and applied algebra, 49(1-2):11–32, 1987.

11. William Henry Eccles and Frank Wilfred Jordan. Improvements in ionic relays.
British patent number: GB, 148582:704, 1918.

12. Calvin C. Elgot. Monadic computation and iterative algebraic theories. In Studies
in Logic and the Foundations of Mathematics, volume 80, pages 175–230. Elsevier,
1975.

13. Brendan Fong. Decorated cospans. Theory and Applications of Categories,
30(33):1096–1120, 2015.

14. Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Sabadini,
Filippo Schiavio, and Simone Tini. CospanSpan(Graph): a compositional descrip-
tion of the heart system. Fundam. Informaticae, 171(1-4):221–237, 2020.

15. Alessandro Gianola, Stefano Kasangian, Desiree Manicardi, Nicoletta Saba-
dini, and Simone Tini. Compositional modeling of biological systems in
CospanSpan(Graph). In Proc. of ICTCS 2020. CEUR-WS, To appear.

16. Alessandro Gianola, Stefano Kasangian, and Nicoletta Sabadini.
Cospan/Span(Graph): an Algebra for Open, Reconfigurable Automata Net-
works. In Filippo Bonchi and Barbara König, editors, 7th Conference on Algebra
and Coalgebra in Computer Science, CALCO 2017, June 12-16, 2017, Ljubljana,
Slovenia, volume 72 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

17. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
18. Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics,

92(69-108):6, 1989.
19. Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal categories

and models of cyclic lambda calculi. pages 196–213. Springer Verlag, 1997.
20. Masahito Hasegawa. The uniformity principle on traced monoidal categories. In

Richard Blute and Peter Selinger, editors, Category Theory and Computer Science,
CTCS 2002, Ottawa, Canada, August 15-17, 2002, volume 69 of Electronic Notes
in Theoretical Computer Science, pages 137–155. Elsevier, 2002.

20 Di Lavore, Gianola, Román, Sabadini, Sobociński

21. Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of interac-
tion: from coalgebraic components to algebraic effects. In Thomas A. Henzinger and
Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Confer-
ence on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Aus-
tria, July 14 - 18, 2014, pages 52:1–52:10. ACM, 2014.

22. André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Math-
ematical Proceedings of the Cambridge Philosophical Society, 119:447 – 468, 04
1996.

23. Rudolf Emil Kalman, Peter L. Falb, and Michael A. Arbib. Topics in mathematical
system theory, volume 1. McGraw-Hill New York, 1969.

24. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Bicategories of
processes. Journal of Pure and Applied Algebra, 115(2):141–178, 1997.

25. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Span(Graph):
A Categorial Algebra of Transition Systems. In Michael Johnson, editor, Alge-
braic Methodology and Software Technology, 6th International Conference, AMAST
’97, Sydney, Australia, December 13-17, 1997, Proceedings, volume 1349 of Lecture
Notes in Computer Science, pages 307–321. Springer, 1997.

26. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. On the algebra of
feedback and systems with boundary. In Rendiconti del Seminario Matematico di
Palermo, 1999.

27. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. A formalization
of the IWIM model. In International Conference on Coordination Languages and
Models, pages 267–283. Springer, 2000.

28. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feedback, trace
and fixed-point semantics. ITA, 36(2):181–194, 2002.

29. Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. A Process Algebra
for the Span(Graph) Model of Concurrency. arXiv preprint arXiv:0904.3964, 2009.

30. Stephen Lack. Composing PROPs. Theory and Applications of Categories,
13(9):147–163, 2004.

31. Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts
in Mathematics. Springer New York, 1978.

32. S. J. Mason. Feedback theory-some properties of signal flow graphs. Proceedings
of the IRE, 41(9):1144–1156, 1953.

33. George H. Mealy. A method for synthesizing sequential circuits. The Bell System
Technical Journal, 34(5):1045–1079, 1955.

34. Kate Ponto and Michael Shulman. Traces in symmetric monoidal categories. Ex-
positiones Mathematicae, 32(3):248–273, 2014.

35. Robert Rosebrugh, Nicoletta Sabadini, and Robert F. C. Walters. Generic com-
mutative separable algebras and cospans of graphs. Theory and applications of
categories, 15(6):164–177, 2005.

36. Nicoletta Sabadini, Filippo Schiavio, and Robert F. C. Walters. On the geometry
and algebra of networks with state. Theor. Comput. Sci., 664:144–163, 2017.

37. Peter Selinger. A survey of graphical languages for monoidal categories. In New
structures for physics, pages 289–355. Springer, 2010.

38. Claude E. Shannon. The Theory and Design of Linear Differential Equation Ma-
chines. Bell Telephone Laboratories, 1942.

39. Pawe l Sobociński. A non-interleaving process calculus for multi-party synchroni-
sation. In 2nd Interaction and Concurrency Experience: Structured Interactions,
(ICE 2009), volume 12 of EPTCS, 2009.

A canonical algebra of open transition systems 21

40. Pawe l Sobociński. Representations of Petri net interactions. In Concurrency
Theory, 21th International Conference, (CONCUR 2010), number 6269 in LNCS,
pages 554–568. Springer, 2010.

22 Di Lavore, Gianola, Román, Sabadini, Sobociński

Appendix

Remarks

Remark 1. An alternative definition of feedback, fbk(•), declares it to be an
operator taking instead a morphism S ⊗ A → B ⊗ S, yielding a morphism
A→ B.

f : S ⊗A→ B ⊗ S
fbkS(f) : A→ B

Borrowing the names from the exposition of traces in [34], we will call this
twisted feedback, and contrast it with the aligned feedback we have decided to
define instead. Let us explain the rationale behind this decision. The advantage
of using twisted feedback is that we can define sequential composition of stateful
processes without ever requiring symmetry of the underlying monoidal category
(as in [24]). However, the parallel composition does require symmetry in any
case; and diagrams seem easier to draw and read when using aligned feedback.

f f

Fig. 22: Twisted vs. aligned feedback

Omitted definitions: Monoidal categories

Definition 8. A monoidal category (C,⊗, I, α, λ, ρ) is a category C equipped
with a functor ⊗ : C ×C → C, a unit I ∈ C, and three natural isomorphisms:
the associator αA,B,C : (A⊗B)⊗C ∼= A⊗(B⊗C), the left unitor λA : I⊗A ∼= A
and the right unitor ρA : A⊗I ∼= A; such that αA,I,B ; (idA⊗λB) = ρA⊗ idB and
(αA,B,C ⊗ id);αA,B⊗C,D; (idA ⊗ αB,C,D) = αA⊗B,C,D;αA,B,C⊗D. A monoidal
category is strict if α, λ and ρ are identities.

Definition 9. Let (C,⊗, I, αC, λC, ρC) and (D,�, J, αD, λD, ρD) be monoidal
categories. A monoidal functor (or strong monoidal functor) is a triple (F, ε, µ)
consisting of a functor F : C → D and two natural isomorphisms ε : J ∼= F (I)
and µ : F (A⊗B) ∼= F (A)�F (B); such that the associators satisfy αD

FA,FB,FC ; (idFA⊗
µB,C);µA,B⊗C = (µA,B⊗idFC);µA⊗B,C ;F (αC

A,B,C), the left unitor satisfies (ε⊗
idFA);µI,A;F (λCA) = λDFA and the right unitor satisfies (idFA⊗ε);µA,I ;F (ρCFA) =
ρDFA. A monoidal functor is a monoidal equivalence if it is moreover an equiva-
lence of categories. Two monoidal categories are monoidally equivalent if there
exists a monoidal equivalence between them.

Theorem 4 (Coherence theorem, [31]). Every monoidal category is monoidally
equivalent to a strict monoidal category.

Let us comment further on how we use the coherence theorem. Each time we
have a morphism f : A → B in a monoidal category, we have a corresponding

A canonical algebra of open transition systems 23

morphismA→ B in its strictification. This morphism can be lifted to the original
category to uniquely produce, say, a morphism (λA; f ;λB

−1) : I ⊗ A → I ⊗ B.
Each time the source and the target are clearly determined, we simply write f
again for this new morphism.

As an example, consider the statement of the vanishing axiom, which says
that for f : A→ B, we have fbkI(f) = f . However, the feedback operator needs
to be applied to a morphism I ⊗ A → I ⊗ B, and the only such morphism
that is mapped again to f : A→ B in the equivalent strict monoidal category is
(λA; f ;λB

−1) : I ⊗A→ I ⊗B. Thus, we are really stating that

fbkI(λA; f ;λB
−1) = f.

In the same vein, the joining axiom really states that

fbkS(fbkT (f)) = fbkS⊗T (αS,T,A; f ;α−1S,T,B).

The reason to avoid this explicit notation on our definitions and proofs is that
it would quickly become verbose and distractive. Equations seem conceptually
easier to understand when written assuming the coherence theorem. And we are
following this criterion anyway when employing string diagrams. In fact, in [28],
strictness is assumed since the beginning to facilitate the reading, even when we
have shown it is not a necessary assumption.

There are cases where we do need to be careful about the correct use of
associators and unitors. For instance, when writing stateful processes, we could
be tempted to conclude that, for any f : ((S⊗T)⊗R)⊗A→ ((S⊗T)⊗R)⊗B,
the following equation holds ((S⊗T)⊗R | f) = (S⊗(T⊗R) | f) without needing
to invoke the equivalence relation. This would allow us to construct the category
St(•) of stateful processes without having to quotient them by the equivalence
relation. However, this equality is only enabled by the fact that αS,T,R is an
isomorphism: we have

((S ⊗ T)⊗R | f) = (S ⊗ (T ⊗R) | αS,R,T ; f ;α−1S,R,T),

even if we write the equation omitting the coherence maps. This is also what
allows us to notate stateful processes diagramatically. We only mark the wires
forming the space state; the order in which they are tensored does not matter
thanks again to the equivalence relation that we are imposing.

Definition 10. A symmetric monoidal category (C,⊗, I, α, λ, ρ, σ) is a monoidal
category (C,⊗, I, α, λ, ρ) equipped with a braiding σA,B : A⊗B → B⊗A, which
satisfies the hexagon equation αA,B,C ;σA,B⊗C ;αB,C,A = (σA,B⊗id);αB,A,C ; (id⊗
σA,C) and additionally satisifes σA,B ;σB,A = id.

Definition 11. A symmetric monoidal functor F : C → D between two sym-
metric monoidal categories (C, σC) and (D, σD) is a strong monoidal functor
such that σD;ψ = ψ;F (σC).

Definition 12. A traced monoidal category [22,37] is a category with feedback
that additionally satisfies the yanking axiom fbk(σ) = id and that additionally
satisfies the sliding axiom, fbkT (f ; (h⊗ id)) = fbkS((h⊗ id); f), for an arbitrary
morphism h : S → T .

24 Di Lavore, Gianola, Román, Sabadini, Sobociński

Omitted proofs: spans

Proposition 3. Let C be a category with all finite limits. In its category of
spans, Span(C), an isomorphism A ∼= B is always of the form A ← A → B,
where the left leg is an identity and the right leg is an isomorphism in C.

Proof. Let A ← E → B and B ← E′ → A be inverses. This means that the
following pullback diagrams commute.

A

E E′

A B A

x′xid id

ba a′b′

B

E′ E

B A B

yy′id id

a′b′ ba

Fig. 23: Pullback diagrams repreesnting compositions in Span(C).

We know then that a, a′, b and b′ are split epimorphisms, whereas x, x′, y
and y′ are their corresponding split monomorphisms. Let us prove that they are
also isomorphisms.

The span E ← E → E′, given by b; y′ : E → E′ and the identity, is a cone over
the diagram E → B ← E′, because y′; b′ = idB . By the universal property of the
pullback, there exists a unique h : E → A such that h;x = idE and h;x′ = b; y′.
This proves that x is a split epimorphism and, hence, an isomorphism. The
same reasoning can be repeated for x′, y and y′. It follows that a, b, a′, b′ are
isomorphisms as well.

Once we have shown that the original A ← E → B and B ← E′ → A have
pairs of isomorphisms as legs, we can rewrite them as

A
id←− A a

−1
;b−→ B and A

a′
−1

;b′←− B
id−→ B,

where one leg is an identity and the other is an isomorphism. ut

8. Profunctor Optics, a Categorical Update

Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski,
Emily Pillmore, Mario Román
Compositionality, 2022

Abstract: Optics are bidirectional data accessors that capture data transforma-
tion patterns such as accessing subfields or iterating over containers. Profunctor
optics are a particular choice of representation supporting modularity, meaning
that we can construct accessors for complex structures by combining simpler
ones. Profunctor optics have previously been studied only in an unenriched and
non-mixed setting, in which both directions of access are modelled in the same
category. However, functional programming languages are arguably better de-
scribed by enriched categories; and we have found that some structures in the
literature are actually mixed optics, with access directions modelled in different
categories. Our work generalizes a classic result by Pastro and Street on Tambara
theory and uses it to describe mixed V-enriched profunctor optics and to endow
them with V-category structure. We provide some original families of optics and
derivations, including an elementary one for traversals. Finally, we discuss a
Haskell implementation.
Declaration: Hereby I declare that my contribution to this manuscript was to:
write most of the manuscript as main author, write the code, prove the main
results. Jeremy Gibbons was my supervisor on previous work on the same topic.
Bartosz Milewski proposed the research question. Derek Elkins identified multiple
improvements on the mathematics. Fosco Loregian aided the exposition of coend
calculus. Emily Pillmore helped preparing the Haskell code. Bryce Clarke iden-
tified multiple problems with a previous draft of the paper and helped correcting
them.

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE

BRYCE CLARKE, DEREK ELKINS, JEREMY GIBBONS, FOSCO LOREGIAN,
BARTOSZ MILEWSKI, EMILY PILLMORE, AND MARIO ROMÁN

Abstract. Optics are bidirectional data accessors that capture data
transformation patterns such as accessing subfields or iterating over con-
tainers. Profunctor optics are a particular choice of representation sup-
porting modularity, meaning that we can construct accessors for complex
structures by combining simpler ones. Profunctor optics have previously
been studied only in an unenriched and non-mixed setting, in which both
directions of access are modelled in the same category. However, func-
tional programming languages are arguably better described by enriched
categories; and we have found that some structures in the literature are
actually mixed optics, with access directions modelled in different cat-
egories. Our work generalizes a classic result by Pastro and Street on
Tambara theory and uses it to describe mixed V-enriched profunctor
optics and to endow them with V-category structure. We provide some
original families of optics and derivations, including an elementary one
for traversals. Finally, we discuss a Haskell implementation.

Keywords: lens, profunctor, Tambara module, coend calculus.

1

ar
X

iv
:2

00
1.

07
48

8v
3

 [
cs

.P
L

]
 1

5
M

ar
 2

02
2

2 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

Contents

1. Introduction 3
1.1. Optics 3
1.2. Modularity 4
1.3. Profunctor optics 5
1.4. Mixed profunctor optics 6
1.5. Coend Calculus 6
1.6. Contributions 8
1.7. Synopsis 8
1.8. Setting 8
2. Optics 9
3. Examples of optics 10
3.1. Lenses and prisms 10
3.2. Traversals 16
3.3. Grates 21
3.4. Getters, reviews and folds 22
3.5. Setters and adapters 23
3.6. Optics for (co)free 24
4. Tambara theory 25
4.1. Generalized Tambara modules 26
4.2. Pastro-Street’s “double” comonad 27
4.3. Pastro-Street’s “double” promonad 32
4.4. Profunctor representation theorem 34
5. Haskell implementation 36
5.1. Concepts of enriched category theory 36
5.2. Mixed profunctor optics 37
5.3. Combinators 38
5.4. Table of optics 39
6. Conclusions 40
6.1. Van Laarhoven encoding 40
6.2. Related work 41
6.3. Further work 42
Acknowledgements 42
References 43

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 3

1. Introduction

1.1. Optics. Optics are an abstract representation of some common pat-
terns in bidirectional data accessing. The most widely known optics are
lenses: ‘focussing’ on a subfield A of a larger data structure S through a pair
of functions view (S → A) and update (S×A→ S) that respectively retrieve
and modify the field. Lenses have been used in functional programming as
a compositional solution to the problem of accessing fields of nested data
structures [10, 40] (Figure 1).

data Address = Address
{ street' :: String
, town' :: String
, country' :: String }

viewStreet :: Address -> String
viewStreet (Address str twn ctr) = str

updateStreet :: Address -> String -> Address
updateStreet addr str = addr {street' = str}

example :: Address
example = Address

{ street' = "221b Baker Street"
, town' = "London"
, country' = "UK" }

>>> example
Address { street' = "221b Baker Street"

, town' = "London"
, country' = "UK"}

>>> viewStreet example
"221b Baker Street"

>>> updateStreet example "4 Marylebone Road"
Address { street' = "4 Marylebone Road"

, town' = "London"
, country' = "UK"}

Figure 1. Lenses are pairs of ‘view’ and ‘update’ functions
that capture the repeating pattern of accessing subfields. Here,
viewStreet extracts a field from a record, and updateStreet
updates that field.

As the understanding of these data accessors grew, different families of
optics were introduced for a variety of different types (e.g. prisms for disjoint
unions and traversals for containers), each one of them capturing a particular
data accessing pattern (Figure 2).

4 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

1.2. Modularity. It is straightforward to compose two lenses, one given by
S → A and S × A→ S and the other given by A→ X and A×X → A, in
order to access nested subfields. However, explicitly writing down this com-
position (or explaining it to a computer) can be tedious. Intercomposability
only becomes increasingly difficult as other data accessors enter the stage:
composing a lens given by S → A and S × A → S with a prism given by
A → X + A and X → A can produce a function S → X × (X → S) + S,
which is neither a lens nor a prism but a different optic known as affine
traversal. Implementing explicitly a composition like this for every possible
pair of optics would be prone to errors and result in a large codebase. How-
ever, we would like optics to behave modularly ; in the sense that, given two
optics, it should be possible to join them into a composite optic that directly
accesses the innermost subfield.

buildString :: Address -> String
buildString (Address str twn ctr) =

str ++ ", " ++ twn ++ ", " ++ ctr

verifyAddress :: String -> Either String Address
verifyAddress a = case splitOn ", " a of

[str, twn, ctr] -> Right (Address str twn ctr)
failure -> Left a

asAddress :: Prism Address String
asAddress = mkPrism verifyAddress buildString

>>> "221b Baker Street, London, UK" ?. asAddress
Just (Address

{ street' = "221b Baker Street"
, town' = "London"
, country' = "UK" })

Figure 2. A prism is given by a pair of functions match and
build that account for the possiblity that the pattern matching
does not succeed (for instance, when the string does not have the
correct format). In the figure, we verify whether a string can be
parsed as an address. The combinator (?.) returns the results
using the Maybe monad (see §5.3.1).

Perhaps surprisingly, many implementations allow the programmer to
wrap optics into a different representation and then use ordinary function
composition to construct composite optics.

How is it possible to compose two constructs, that are not functions,
using ordinary function composition? Implementations provided by popular
libraries such as lens [20], mezzolens [26] in Haskell, or profunctor-optics [12] in
Purescript, achieve this effect by using different representations of optics in
terms of polymorphic functions and the Yoneda lemma. This paper focuses
on the encoding known as profunctor representation, which is based on the
isomorphism between lenses (and optics in general) and functions that are

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 5

polymorphic over profunctors with a particular algebraic structure called a
Tambara module. Optics under this encoding are called profunctor optics.

1.3. Profunctor optics. Profunctor optics are a compositional solution to
the problem of easily combining data accessors for the fields of nested data
structures [10, 40].

Different families of profunctor optics are intercomposable. When we use
the profunctor representation of optics, composing optics of different kinds
becomes also a particular case of ordinary function composition. Together,
all families of profunctor optics form a powerful language for modular data
access. Consider the example of Figure 3, where a lens and a prism are used
in conjunction to manipulate parts of a string.

>>> let place = "221b Baker St, London, UK"

>>> place ?. asAddress . street
Just "221b Baker St"

>>> place & asAddress . street .~ "4 Marylebone Rd"
"4 Marylebone Rd, London, UK"

Figure 3. The composition of a prism (asAddress) and a lens
(street) produces a composite optic (asAddress . street).
This optic (an “affine traversal”, see §3.24) is used to parse a
string and then access and modify one of its subfields.

Moreover, optics can be used to entirely change not only the value but
the type of the focus, and propagate that change back to the original data
structure. These are called type-variant optics, in contrast with the type-
invariant optics we have introduced so far (Figure 4). In that case, the
functions defining the optic need to account for that type change (commonly,
by also introducing polymorphism), but the internal representation will work
the same. The optics we discuss in this paper are assumed to be type-variant,
with type-invariant optics being a special case.

6 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

data Timestamped a = Timestamped
{ created' :: UTCTime
, modified' :: UTCTime
, contents' :: a }

viewContents :: Timestamped a -> a
viewContents = contents'

updateContents :: Timestamped a -> b -> Timestamped b
updateContents x b = x {contents' = b}

contents :: Lens' a b (Timestamped a) (Timestamped b)
contents = mkLens' viewContents updateContents

Figure 4. A type-variant lens that targets the contents of
a value paired with creation and modification timestamps.
The lens is constructed from two functions viewContents and
updateContents.

In its profunctor representation, each optic is written as a single func-
tion that is polymorphic over profunctors with a certain algebraic structure.
For instance, lenses can be written as functions polymorphic over carte-
sian profunctors, whereas prisms can be written as functions polymorphic
over cocartesian profunctors [30, §3]. Milewski [24] identified these algebraic
structures (cartesian profunctors, cocartesian profunctors, . . .) as Tambara
modules [39] and used a result by Pastro and Street [29] to propose a unified
definition of optic. This definition has been later extended by Boisseau and
Gibbons [3] and Riley [33], both using different techniques and proposing
laws for optics.

1.4. Mixed profunctor optics. However, the original result by Pastro and
Street cannot be used directly to unify all the optics that appear in practice.
Our work generalizes this result, going beyond the previous definitions of
optic to cover mixed [33, §6.1] and enriched optics.

Our generalized profunctor representation theorem captures optics already
present in the literature and makes it possible to upgrade them to more
sophisticated definitions. For instance, many generalizations of lenses in
functional programming are shown to be particular cases of a more refined
definition that uses mixed optics (Definition 3.1). We also show derivations
for some new optics that were not present in the literature (Definitions 3.8,
3.26 and 3.31). Finally, Milewski [24] posed the problem of fitting the three
basic optics (lenses, prisms and traversals) into an elementary pattern; lenses
and prisms had been covered in his work, but traversals were missing. We
present a new description of traversals in terms of power series functors
(Proposition 3.22) whose derivation is more direct than the ones based on
traversables as studied by Jaskelioff and Rypacek [17].

1.5. Coend Calculus. Coend calculus is a branch of category theory that
describes the behaviour of ends and coends, certain universal objects as-
sociated with profunctors P : Cop × C → V. Ends can be thought of as

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 7

some form of universal quantifier, whereas coends can be thought of as their
existential counterparts.

Ends are subobjects of the product
∏
X∈C P (X,X), whereas coends result

from quotienting the coproduct
∐
X∈C P (X,X). Both take into account

the fact that P depends on two “terms”, covariantly on the second, and
contravariantly on the first. Explicitly, the end is the equalizer of the action
of morphisms on both arguments of the profunctor, whereas the coend is
dually defined as a coequalizer.

Definition 1.1 (Ends and coends).

end(P) := eq

(∏
X∈C P (X,X)

∏
f : A→B P (A,B)

)
,

coend(P) := coeq

(∐
f : B→A P (A,B)

∐
X∈C P (X,X)

)
.

Ends are usually denoted with a subscripted integral, whereas coends use
a superscripted integral.

∫

X∈C
P (X,X) := end(P),

∫ X∈C
P (X,X) := coend(P).

In both cases, X is a dummy variable, and we consider
∫
X∈C P (X,X) and∫

Y ∈C P (Y, Y) ‘equivalent modulo α-conversion’. The notation draws on an
analogy with elementary calculus. An integral

∫
f(x) dx depends “covari-

antly” on the variable x defined, say, on Rn, whereas the differential “dx” can
be regarded as an element of the dual space (Rn)∗. A more striking analogy
is that co/ends satisfy a form of ‘Fubini rule’ and a ‘Dirac delta’ integration
rule (see Proposition 1.3 and Proposition 1.2).

Theorems involving ends and coends can be proved using their universal
properties. Here, we offer a terse account of coend calculus [4, 21]. Using the
calculus based on the following rules, it is possible to construct isomorphisms
between objects of a category by means of a chain of ‘deduction steps’.

Proposition 1.2. Yoneda and coYoneda reductions.
∫

X∈C
V(C(A,X), FX) ∼= FA.

∫ X∈C
C(X,A)⊗ FX ∼= FA,

where ⊗ is the tensor product in the monoidal category V (the base of the
enrichment for C) and F : C → V is a co-presheaf (there are analogous
identities for presheaves).

Proposition 1.3. Fubini rule.∫

X1∈C

∫

X2∈C
P (X1, X2, X1, X2) ∼=

∫

X2∈C

∫

X1∈C
P (X1, X2, X1, X2).

∫ X1∈C ∫ X2∈C
P (X1, X2, X1, X2) ∼=

∫ X2∈C ∫ X1∈C
P (X1, X2, X1, X2).

Proposition 1.4. Continuity and cocontinuity.

V
(
A,

∫

X∈C
P (X,X)

)
∼=
∫

X∈C
V(A,P (X,X)).

8 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

V
(∫ X∈C

P (X,X), A

)
∼=
∫

X∈C
V(P (X,X), A).

Proposition 1.5. Natural transformations are ends.∫

X∈C
D(FX,GX) ∼= [C,D](F,G)

Finally, coend calculus expressions are commonly simplified using adjunctions
(F a G) as D(FX, Y) ∼= C(X,GY).

1.6. Contributions. Our first contribution is the derivation and partial
classification of mixed optics, covering both optics existing in the literature
and some novel ones, all following a unified definition (Definition 2.1). Our
work completes and extends the classification of (non-mixed) optics in [3, 33].

Explicitly, we present a new family of optics in Definition 3.8, that uni-
fies new examples with some optics already present in the literature, such
as achromatic lenses [2, §5.2]. We introduce an original derivation showing
that monadic lenses [1] are mixed optics in Proposition 3.6. Similarly, in
Proposition 3.4, we present a novel derivation showing that the appropiate
generalization of lenses to an arbitrary monoidal category [37, §2.2] is not an
optic but a mixed optic. We give a unified definition of lens in Definition 3.1
that for the first time can be specialized to all of these previous examples.
Finally, we present a new derivation of the optic known as traversal in Propo-
sition 3.22.

Our second contribution is the definition of the enriched category of mixed
profunctor optics. The construction requires a generalization of the Tambara
modules of [29] that had been used to define categories of profunctor optics [3,
33] to generalized Tambara modules. This is done in Section 4. As a corollary,
we extend the result that justifies the use of the profunctor representation of
optics in functional programming to the case of enriched and mixed optics
(Theorem 4.14), endowing them with V-category structure.

1.7. Synopsis. We introduce the definition of mixed optic in Section 2. Sec-
tion 3 describes some practical examples from functional programming and
shows how they are captured by the definition. Section 4 describes how the
theory of Tambara modules can be applied to obtain a profunctor repre-
sentation for optics. Section 6 contains concluding remarks. The Appendix
(Section 5) introduces the details of a full Haskell implementation.

1.8. Setting. We shall work with categories enriched over a Bénabou cosmos
(V,⊗, I); that is, a (small)-complete and cocomplete symmetric monoidal
closed category. In particular, V is enriched over itself, and we write the
internal hom-object between A,B ∈ Obj(V) as [A,B] or just V(A,B) when
it does not cause ambiguity. Our intention is to keep a close eye on the
applications in functional programming: the enriching category V should be
thought of as the category whose objects model the types of an idealized
programming language and whose morphisms model the programs. Because
of this, V will be cartesian in many of the examples. We can, however,
remain agnostic as to which specific V we are addressing.

For calculations, we make significant use of coend calculus as described,
for instance, by Loregian [21]. The proofs in this paper can be carried out

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 9

without assuming choice or excluded middle, but there is an important set-
theoretical issue: in some of the examples, we compute coends over non-
small categories. We implicitly fix a suitable Grothendieck universe and
our categories are to be considered small with respect to that universe. As
Riley [33, §2] notes, this will not be a problem in general: even if some sets
of optics are indexed by large categories and we cannot argue their existence
using the cocompleteness of Sets, we will still find them represented by
objects in the category.

2. Optics

Our first goal is to give a unified definition that captures what it means
to be an optic. We have seen so far how lenses and prisms work (Figures 1
and 2). A common pattern can be extracted from these two cases. Lenses
can be constructed when we have a function S → M × A that splits some
data structure of type S into something of the form M × A and then a
second function M × A → S recombines it back. Here, A is the type of
the field we want to focus on, and M is the type containing the remaining
information that constitutes S. From this split, we can extract the pair of
functions C(S,A)×C(S×A,S) that define a lens. Prisms can be constructed
when we have a function that can split some data structure of type S into
something of the form M +A and put the pieces together again.

The structure that is common to all optics is that they split a bigger data
structure of type S ∈ C into M L A, some focus of type A ∈ C and some
context or residual M ∈M around it. We cannot access the context directly,
but we can still use its shape to update the original data structure, replacing
the current focus by a new one, M R B. The definition will capture this
fact imposing a quotient relation on the possible contexts; this quotient is
expressed by the dinaturality condition of a coend. The category of contexts
M will be monoidal, allowing us to compose optics with contexts M and N
into an optic with contextM⊗N . Finally, as we want to capture type-variant
optics, we leave open the possibility of the new focus being of a different type
B ∈ D, possibly in a different category, which yields a new data structure
of type T ∈ D. This is summarized in Figure 5.

S L R T

A B

input

focus

residual

output

new focus

Figure 5. The common structure of an optic. Profunctors give
semantics for diagrams of this kind [36].

Multiple definitions of optics of increasing generality have been given in
[3, 24, 33]. We encompass all of them under an abstract definition in terms
of monoidal actions.

10 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

Let (M,⊗, I, a, λ, ρ) be a monoidal V-category [6]. Let it act on two
arbitrary V-categories C and D by means of strong monoidal V-functors
(L) : M→ [C,C] and (R) : M→ [D,D]; and let us write

φA : A ∼= I L A, φM,N,A : M L N L A ∼= (M ⊗N) L A,

ϕB : B ∼= I R B, ϕM,N,B : M R N R B ∼= (M ⊗N) R B,

for the structure isomorphisms of the strong monoidal actions L and R ,
which we use in infix notation.

Definition 2.1. Let S,A ∈ C and T,B ∈ D. An (L , R)-optic from (S, T)
with the focus on (A,B) is a (generalized) element of the following object
described as a coend:

Optic L , R ((A,B), (S, T)) :=

∫ M∈M
C(S,M L A)⊗D(M R B, T).

The two strong monoidal actions L and R represent the two different ways
in which the context interacts with the focus: one when the data structure is
decomposed and another one, possibly different, when it is reconstructed. By
varying these two actions we will recover many examples from the literature
and introduce some new ones, as the table in Figure 6 summarizes.

Name Description Actions Base
Adapter C(S,A)⊗D(B, T) (Opticid,id) V,⊗
Lens C(S,A)×D(S •B, T) (Optic×,•) W,×
Monoidal lens CCom(S,A)×C(US ⊗B, T) (Optic⊗,U×) W,×
Algebraic lens C(S,A)×D(ΨS •B, T) (OpticU×,U•) W,×
Monadic lens W(S,A)×W(S ×B,ΨT) (Optic×,o) W,×
Linear lens C(S, [B, T] •A) (Optic•,⊗) V,⊗
Prism C(S, T •A)×D(B, T) (Optic•,+) W,×
Coalg. prism C(S,ΘT •A)×D(B, T) (OpticU•,U+) W,×
Grate D([S,A] •B, T) (Optic{ , },•) V,⊗
Glass C(S × [[S,A], B], T) (Optic×[,],×[,]) W,×
Affine traversal C(S, T +A⊗ {B, T}) (Optic+⊗,+⊗) W,×
Traversal V(S,

∑nAn ⊗ [Bn, T]) (OpticPw,Pw) V,⊗
Kaleidoscope

∑
n V([An, B], [Sn, T]) (OpticApp,App) V,⊗

Setter V([A,B], [S, T]) (Opticev,ev) V,⊗
Fold V(S,LA) (OpticFoldable,∗) V,⊗

Figure 6. Table of optics, together with their explicit descrip-
tion and their generating monoidal actions.

The purpose of an abstract unified definition is twofold: firstly, it provides
a framework to classify existing optics and explore new ones, as we do in
Section 3; and secondly, it enables a unified profunctor representation, which
we present in Section 4.

3. Examples of optics

3.1. Lenses and prisms. Lenses are as accessors for a particular subfield
of a data structure. In its basic form, they are given by a pair of functions:

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 11

the view function that accesses the subfield; and the update function that
overwrites its contents.

The basic definition of lens [10, 27, 28] has been generalized in many
different directions. Monadic lenses [1], lenses in a symmetric monoidal
category [37, §2.2], linear lenses [33, §4.8] or achromatic lenses [2, §5.2]
are some of them. These generalizations were not meant to be mutually
compatible. They use the monoidal structure in different ways and introduce
monadic effects in different parts of the signature. Some were not presented
as optics, and a profunctor representation for them was not considered. We
present a unified description.

We provide two derivations of lenses as mixed optics that capture all of the
variants mentioned before, together with new ones, and endow them with a
unified profunctor representation (Theorem 4.14).

The first derivation is based on cartesian structure. It generalizes the
original derivation [24] and captures lenses in a symmetric monoidal category
(Definition 3.3) and monadic lenses (Definition 3.5). It is then refined to
cover achromatic lenses and describe some new variants of optics missing in
the literature. The second derivation slightly generalizes linear lenses [33,
§4.8] and uses the closed structure instead.

3.1.1. Lenses. Most variants of lenses rely on a cartesian monoidal structure.
Throughout this section, we take a cartesian closed category (W,×, 1) as our
base for enrichment. During the rest of the paper we will explicitly useW to
refer to a cartesian monoidal base of enrichment and use V to refer to a not-
necessarily-cartesian base of enrichment. A monoidal W-category (C,×, 1)
is said to be cartesian if there existW-natural isomorphisms C(Z,X×Y) ∼=
C(Z,X)×C(Z, Y) and C(X, 1) ∼= 1.

Definition 3.1. Let C be a cartesianW-category with a monoidalW-action
(•) : C×D→ D to an arbitrary W-category D. A lens is an element of

Lens((A,B), (S, T)) := C(S,A)×D(S •B, T).

Proposition 3.2. Lenses are mixed optics (as in Definition 2.1) for the
actions of the cartesian product (×) : C × C → C and the given action
(•) : C×D→ D. That is, Lens ∼= Optic(×,•).

Proof. We apply the universal property of the product, which can be sum-
marized as it being right adjoint to the diagonal functor (∆): C→ C2.

∫ C∈C
C(S,C ×A)×D(C •B, T)

∼= {Adjunction ∆ a (×)}
∫ C∈C

C(S,C)×C(S,A)×D(C •B, T)

∼= {Coyoneda}
C(S,A)×D(S •B, T). �

This definition can be specialized to the pair C(S,A)×C(S×B, T) if we
take C = D and we let (•) be the cartesian product. It is, however, more

12 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

general than that, and it captures the following examples (Definitions 3.3
and 3.5).

3.1.2. Lenses in a symmetric monoidal category.

Definition 3.3 ([37, §2.2]). Amonoidal lens in a symmetric monoidal cat-
egory C is a view and update pair where the view is a commutative comonoid
homomorphism,

MonLens⊗((A,B), (S, T)) := CCom(S,A)×C(US ⊗B, T).

Here U represents the forgetful functor U : CCom→ C.

Proposition 3.4. Monoidal lenses in a symmetric monoidal category are a
particular case of Definition 3.1.

Proof. The category of cocommutative comonoids CCom over a category C
can be given a cartesian structure in such a way that the forgetful functor
U : CCom→ C is strict monoidal (a consequence of Fox’s theorem [11]). By
Proposition 3.2, we can show MonLens⊗ ∼= Optic(⊗,•) where (•) is given
by S •A := US ⊗A in this case. �

3.1.3. Monadic lenses.

Definition 3.5. Monadic lenses [1, §2.3] allow for monadic effects in the
update function (an example is Figure 7). For Ψ: W →W a W-monad,

MndLensΨ((A,B), (S, T)) :=W(S,A)×W(S ×B,ΨT).

Proposition 3.6. Monadic lenses are a particular case of Definition 3.1.

Proof. Every W-endofunctor is strong ; thus, the W-monad Ψ comes with a
W-natural family θX,Y : X × Ψ(Y) → Ψ(X × Y). This induces a W-action
(o) : W × Kl(Ψ) → Kl(Ψ), with Kl(Ψ) the Kleisli category of the monad;
defined, on morphisms, as the composite

W(X,Y)×W(A,ΨB) W(X ×A, Y ×ΨB)

W(X ×A,Ψ(Y ×B)).

(×)

θ

Using that KlΨ(S o B, T) := W(S × B,ΨT), monadic lenses are lenses
(as in Definition 3.1), MndLensΨ

∼= Optic(×,o), where (•) is given by
(o) : W ×Kl(Ψ)→ Kl(Ψ). �

Remark 3.7. This technique is similar to the one used by Riley [33, §4.9] to
describe a non-mixed variant called effectful lenses.

3.1.4. Algebraic lenses. We can further generalize Definition 3.1 if we allow
the context over which we take the coend to be an algebra for a fixed monad.
The motivation is that lenses with a context like this appear to have direct
applications in programming; for instance, the achromatic lenses of [3] are
a particular case of this definition. These algebraic lenses should not be
confused with the previous monadic lenses in Definition 3.5.

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 13

stamp :: MonadicLens IO a b (Timestamped a) (Timestamped b)
stamp = mkMonadicLens @IO viewContents updateContentsAndStamp

where
viewContents :: Timestamped a -> a
viewContents = contents'

updateContentsAndStamp :: Timestamped a -> b -> IO (Timestamped b)
updateContentsAndStamp x b = do

currentTime <- getCurrentTime
return (x {contents' = b , modified' = currentTime})

ultimateQuestion :: IO (Timestamped String)
ultimateQuestion = do

t <- getCurrentTime
x <- pure (Timestamped t t "What is the answer?")
threadDelay (2500000) -- microseconds
x & stamp .! "42"

>> ultimateQuestion
Contents: "42",
Created: 2020-02-02 12:24:55.119075225 UTC,
Modified: 2020-02-02 12:24:57.621826372 UTC.

Figure 7. A polymorphic family of type-changing monadic
lenses for the IO monad is used to track how a data holder
(Timestamped) is accessed 2.5 seconds after creation.

Definition 3.8. Let Ψ: C → C be a W-monad in a cartesian W-category
C. Let (•) : C×D→ D be a monoidalW-action to an arbitraryW-category
D. An algebraic lens is an element of

AlgLensΨ((A,B), (S, T)) := C(S,A)×D(ΨS •B, T).

Proposition 3.9. Algebraic lenses are mixed optics for the actions of the
product by the carrier of an algebra (U×) : EMΨ×C → C and some given
tensor (U•) : EMΨ×D→ D. That is, AlgLensΨ

∼= Optic(U×,U•).

Proof. TheW-category of algebras is cartesian, making the forgetful functor
U : EMΨ → C monoidal; UC × A defines a strong monoidal action. The
forgetful U has a left adjoint FΨ such that U ◦ FΨ = Ψ.

∫ C∈EMΨ

C(S,UC ×A)×D(UC •B, T)

∼= {Adjunction (×) a ∆}
∫ C∈EMΨ

C(S,UC)×C(S,A)×D(UC •B, T)

∼= {Adjunction FΨ a U}
∫ C∈EMΨ

EMΨ(FΨS,C)×C(S,A)×D(UC •B, T)

14 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

∼= {Coyoneda}
C(S,A)×D(ΨS •B, T). �

Remark 3.10. Algebraic lenses are a new optic. When (•) is the cartesian
product, algebraic lenses are given by the usual view function that accesses
the subfield, and a variant of the update function that takes the original
source as a computation rather than a value.

Example 3.11. The algebraic lens for the list monad L : V → V is a new kind
of optic that we dub a classifying lens. This is given by two functions, the
usual view function that accesses the focus, and a classify function that
takes a list of examples together with some piece of data and produces a
new example. A classifying lens can be trained with a dataset (Figure 8) to
classify a new focus into a complete data structure. A learning algorithm (in
this case, a naive version of nearest neighbor) defines an algebraic lens that
can be used to classify foci into full data structures.

let iris =
[Iris Setosa 4.9 3.0 1.4 0.2
, Iris Setosa 4.7 3.2 1.3 0.2
, ...
, Iris Virginica 5.9 3.0 5.1 1.8]

measure :: AlgebraicLens [] Measurements Flower
measure = mkAlgebraicLens @[] measurements learn
where
distance :: Measurements -> Measurements -> Float
distance (Measurements a b c d) (Measurements x y z w) =

(sqrt . sum . fmap (**2)) [a-x,b-y,c-z,d-w]

learn :: [Flower] -> Measurements -> Flower
learn l m = Flower m (species (minimumBy

(compare `on` (distance m . measurements)) l))

>>> (iris !! 4) ^. measure
(5.0, 3.6, 1.4, 0.2)

>>> iris & measure .? Measurements 4.8 3.1 1.5 0.1
Iris Versicolor (4.8, 3.1, 1.5, 0.1)

Figure 8. Fisher’s iris dataset [8], samplying lengths and
widths of sepals and petals of three species of iris. A classifying
lens (measure) is used both for accessing the measurements of
a point in the iris dataset and to classify new measurements
(not already in the dataset) into a species (Versicolor).

Remark 3.12. The algebraic lens for the maybe monad M : V → V was stud-
ied in [2, §5.2] under the name achromatic lens. It is motivated by the fact
that, sometimes in practice, lenses come naturally equipped with a create

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 15

function [10, §3] along the usual view and update. For this implementation,
we note that

C(S,A)×C(MS ×B, T) ∼= C(S,A)×C(S ×B, T)×C(B, T).

Remark 3.13. The name achromatic lens can also refer to a different proposal
in [33, §4.10],

C(S, [B, T] + 1)×C(S,A)×C(B, T).

This is the optic for the action � : C → [C,C] defined by M � A := (M +
1) × A. It is not exactly equivalent to the achromatic lens in [2], which is
the optic for the action (×) : M-Alg → [C,C] defined by UM × A. It can
be implemented by view and create functions, this time together with a
maybeUpdate that is allowed to fail.

3.1.5. Lenses in a closed category. Linear lenses are a different generalization
of lenses which relies on a closed monoidal structure. Their advantage is that
we do not need to require our enriching category to be cartesian anymore.

Definition 3.14 (33, §4.8). Let (D,⊗, []) be a right closed V-category with
a monoidal V-action (•) : D ⊗ C → C to an arbitrary V-category C. A
linear lens is an element of

LinearLens⊗,•((A,B), (S, T)) ∼= C(S, [B, T] •A).

Proposition 3.15. Linear lenses are mixed optics (as in Definition 2.1) for
the actions of the monoidal product (⊗) : D×D→ D and (•) : D×C→ C.
That is, LinearLens⊗,• ∼= Optic•,⊗

Proof. The monoidal product has a right adjoint given by the exponential.
∫ D∈D

C(S,D •A)⊗D(D ⊗B, T)

∼= {Adjunction (−⊗B) a [B,−]}
∫ D∈D

C(S,D •A)⊗D(D, [B, T])

∼= {Coyoneda}
C(S, [B, T] •A). �

3.1.6. Prisms. Prisms pattern-match on data structures and handle a pos-
sible failure to match. They are given by a match function that tries to
access the matched structure and a build function that constructs an ab-
stract type from one of its possible matchings. Prisms happen to be lenses in
the opposite category. However, they can also be described as optics in the
original category for a different pair of actions. We will provide a derivation
of prisms that is dual to our derivation of lenses for a cartesian structure.
This derivation specializes to the pair C(S, T +A)×C(B, T).

Definition 3.16. Let D be a cocartesianW-category with a monoidalW-ac-
tion (•) : D × C → C to an arbitrary category C. A prism is an element
of

Prism((A,B), (S, T)) := C(S, T •A)×D(B, T).

16 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

In other words, a prism from (S, T) to (A,B) is a lens from (T, S) to (B,A)
in the opposite categories Dop and Cop. However, they can also be seen as
optics from (A,B) to (S, T).

Proposition 3.17. Prisms are mixed optics (as in Definition 2.1) for the
actions of the coproduct (+): D ×D → D and (•) : C ×D → D. That is,
Prism ∼= Optic(•,+).

Proof. The coproduct (+): D×D→ D is left adjoint to the diagonal functor.

∫ D∈D
C(S,D •A)×D(D +B, T)

∼= {Adjunction (+) a ∆}
∫ D∈D

C(S,D •A)×D(D,T)×D(B, T)

∼= {Coyoneda}
C(S, T •A)×D(B, T). �

Remark 3.18 (Prisms in a symmetric monoidal category). A prism in a sym-
metric monoidal category C is a match and build pair where the build is a
monoid homomorphism,

MonPrism((A,B), (S, T)) := C(S,UT ⊗A)×CMon(B, T).

Remark 3.19 (Prisms with coalgebraic context). Let Θ be a W-comonad in
a cocartesian W-category D and (•) : D×C→ C a monoidal W-action. A
coalgebraic prism is an element of

AlgPrismΘ((A,B), (S, T)) := C(S,ΘT •A)×D(B, T).

The coalgebraic variant is given by a cMatch function, that captures the
failure into a comonad, and the usual build function.

3.2. Traversals. Traversals extract the elements of a container into an or-
dered list, allowing us to iterate over the elements without altering the con-
tainer (Figure 9). Traversals are constructed from a single extract :: s
-> ([a], [b] -> t) function that both outputs the elements and takes a
new list to update them. Usually, we require the length of the input to the
function of type [b] -> t to be the same as the length of [a]. This restric-
tion can be also encoded into the type when dependent types are available.

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 17

let places =
["43 Adlington Rd, Wilmslow, United Kingdom"
, "26 Westcott Rd, Princeton, USA"
, "St James's Square, London, United Kingdom"]

each :: Traversal a [a]
each = mkTraversal (\x -> (x , id))

>>> places & each.asAddress.street %~ uppercase
["43 ADLINGTON RD, Wilmslow, United Kingdom"
, "26 WESTCOTT RD, Princeton, USA"
, "ST JAMES'S SQUARE, London, United Kingdom"
]

Figure 9. The composition of a traversal (each) with a prism
(asAddress) and a lens (street) is used to parse a collection of
strings and modify one of the resulting subfields.

Definition 3.20. Let C be a symmetric monoidal closed V-category with
countably infinite (and smaller) coproducts. A traversal is an element of

Traversal((A,B), (S, T)) := C

(
S,

∫ n∈N
An ⊗ [Bn, T]

)
.

Remark 3.21. Let (N,+) be the free strict monoidal V-category on one ob-
ject. Ends and coends indexed by N coincide with products and coproducts,
respectively. Here A(−) : N → C is the unique monoidal V-functor sending
the generator of N to A ∈ C. Each functor X : N → C induces a power
series

PwX(A) =

∫ n∈N
An ⊗Xn.

This defines an action Pw: [N,C] → [C,C] sending the indexed family to
its power series (see Remark 3.23). We propose a derivation of the traversal
as the optic for power series.

Proposition 3.22. Traversals are optics (as in Definition 2.1) for power
series. That is, Traversal ∼= OpticPw,Pw.

Proof. The derivation generalizes that of linear lenses (Definition 3.14).

18 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

∫ X∈[N,C]

C

(
S,

∫ n∈N
An ⊗Xn

)
⊗C

(∫ n∈N
Bn ⊗Xn, T

)

∼= {Continuity}
∫ X∈[N,C]

C

(
S,

∫ n∈N
An ⊗Xn

)
⊗
∫

n∈N
C (Xn ⊗Bn, T)

∼= {Adjunction (−⊗Bn) a [Bn,−]}
∫ X∈[N,C]

C

(
S,

∫ n∈N
An ⊗Xn

)
⊗
∫

n∈N
C (Xn, [B

n, T])

∼= {Natural transformation}
∫ X∈[N,C]

C

(
S,

∫ n∈N
An ⊗Xn

)
⊗ [N,C]

(
X(−), [B

(−), T]
)

∼= {Coyoneda}

C

(
S,

∫ n∈N
An ⊗ [Bn, T]

)
. �

The derivation from the general definition of optic to the concrete descrip-
tion of lenses and prisms in functional programming was first described by
[30] and [24], but finding a derivation of traversals like the one presented
here, fitting the same elementary pattern as lenses or prisms, was left as an
open problem. It should be noted, however, that derivations of the traversal
as the optic for a certain kind of functor called Traversables (which should
not be confused with traversals themselves) have been previously described
by [3, 33]. For a derivation using Yoneda, [33] recalls a parameterised adjunc-
tion that has an equational proof in the work of [16]. These two derivations
do not contradict each other: two different classes of functors can generate
the same optic; if, for instance, the adjunction describing both of them gives
rise to the same monad. This seems to be the case here: traversables are
coalgebras for a comonad and power series are the cofree coalgebras for the
same comonad [35, §4.2].

In the Sets-based case, the relation between traversable functors, applica-
tive functors [23] and these power series functors has been studied by [17].

Remark 3.23. The V-functor Pw: [N,C] → [C,C] is actually a strong mo-
noidal action thanks to the fact that two power series functors compose into
a power series functor.

∫ m∈N(∫ n∈N
An ⊗ Cn

)m
⊗Dm

∼= {Product distributes over colimits}
∫ m ∫ n1,...,nm

An1 ⊗ · · · ⊗Anm ⊗ Cn1 ⊗ · · · ⊗ Cnm ⊗Dm

∼= {Rearranging terms}
∫ k∈N

Ak ⊗

 ∑

n1+···+nm=k

Cn1 ⊗ · · · ⊗ Cnm ⊗Dm

 .

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 19

We are then considering an implicit non-symmetric monoidal structure where
the monoidal product (•) : [N,C] ⊗ [N,C] → [N,C] of Cn and Dn can be
written as follows; and the relevant copowers exist because of C having an
initial object.

∫ m ∫ n1,...,nm

N(n1 + · · ·+ nm, k) · Cn1 ⊗ · · · ⊗ Cnm ⊗Dm.

This is precisely the structure described by Kelly [19, §8] for the study of non-
symmetric operads. A similar monoidal structure is described there when
we substitute N by (P,+), the V-category of permutations defined as the
free strict symmetric monoidal category on one object. The same derivation
can be repeated with this new structure to obtain an optic similar to the
traversal, with the difference that elements are not ordered explicitly, and
given by

C

(
S,

∫ n∈P
An ⊗ [Bn, T]

)
.

3.2.1. Affine traversals. Affine traversals strictly generalize prisms and lin-
ear lenses in the non-mixed case allowing a lens-like accessing pattern to fail;
they are used to give a concrete representation of the composition between
a lens and a prism. An affine traversal is implemented by a single access
function.

Definition 3.24. Let W be cartesian closed and let C be a symmetric
monoidal closed W-category that is also cocartesian. An affine traversal
is an element of

Affine⊗ ((A,B), (S, T)) := C(S, T +A⊗ [B, T]).

Proposition 3.25. Let (Aff ,�) [33] be the monoidal structure in C2 rep-
resenting composition of affine polynomials,

(C,D)� (C ′, D′) = (C +D ⊗ C ′, D ⊗D′).
Affine traversals are optics (as in Definition 3.1) for the action (+⊗) : Aff →
[C,C] that sends C,D ∈ C to the functor C +D⊗ (−). That is, Affine⊗ ∼=
Optic(+⊗),(+⊗).

Proof. The action uses that the monoidal product, which is in this case a
left adjoint, distributes over the coproduct.

∫ C,D

C(S,C +D ⊗A)×C(C +D ⊗B, T)

∼= {Adjunction (+) a ∆}
∫ C,D

C(S,C +D ⊗A)×C(C, T)×C(D ⊗B, T)

∼= {Coyoneda} {Adjunction (−⊗B) a [B,−]}
∫ D

C(S, T +D ⊗A)×C(D, [B, T])

∼= {Coyoneda}
C(S, T +A⊗ [B, T]). �

20 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

3.2.2. Kaleidoscopes. Applicative functors are commonly used in functional
programming as they provide a convenient generalization to monads with
better properties for composition; they form the V-category App of monoids
with respect to Day convolution (∗) : [V,V]×[V,V]→ [V,V], which is defined
as

(F ∗G)(A) =

∫ X,Y ∈V
V(X ⊗ Y,A)⊗ FX ⊗GY.

Alternatively, they are lax monoidal V-functors for the cartesian structure.
It is natural to ask what is the optic associated with applicative functors.
We know from a basic result in category theory [22, §VII, Theorem 2] that,
as the category [V,V] has coproducts indexed by the natural numbers, and
Day convolution distributes over them, the free applicative functor can be
computed as the colimit (I + F + F ∗2 + F ∗3 + . . .). Having characterized
free applicative functors, computing their associated optic amounts to an
application of coend calculus.

Definition 3.26. A kaleidoscope is an element of

Kaleidoscope ((A,B), (S, T)) :=
∏

n∈N
V ([An, B], [Sn, T]) .

Proposition 3.27. Kaleidoscopes are optics for the action of applicative
functors.

Proof. Let U : App → [V,V] be the forgetful functor from the category of
applicatives.

∫ F∈App

V(S,UFA)⊗ V(UFB, T)

∼= {Yoneda}
∫ F∈App

V
(
S,

∫

C∈V

[
[A,C],UFC

])
⊗ V(UFB, T)

∼= {Continuity}
∫ F∈App ∫

C
V
(
S,
[
[A,C],UFC

])
⊗ V(UFB, T)

∼= {Adjunction ([A,C]⊗−) a
[
[A,C],−

]
}

∫ F∈App(∫

C
V ([A,C]⊗ S,UFC)

)
⊗ V(UFB, T)

∼= {Natural transformation}
∫ F∈App

[V,V] ([A,−]⊗ S,UF)⊗ V(UFB, T)

∼= {Adjunction of free applicatives}
∫ F∈App

App

(∑

n∈N
[An,−]⊗ Sn, F

)
⊗ V(UFB, T)

∼= {Coyoneda}

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 21

V
(∑

n∈N
Sn ⊗ [An, B], T

)

∼= {Continuity} {Adjunction (Sn ⊗−) a [Sn,−]}
∏

n∈N
V ([An, B], [Sn, T]) . �

Remark 3.28. The free applicative we construct here is known in Haskell
programming as the FunList applicative [41]. In the same way that traver-
sables are written in terms of lists, we can approximate Kaleidoscopes as
a single function aggregate :: ([a] -> b) -> ([s] -> t) that takes a
folding for the foci and outputs a folding for the complete data structure.
Kaleidoscopes are a new optic, and we propose to use them as accessors for
pointwise foldable data structures.

Kaleidoscopes pose a problem on the side of applications: they cannot
be composed with lenses to produce new kaleidoscopes. This is because
the constraint defining them (Applicative) is not a superclass of the con-
straint defining lenses: a functor given by a product is not applicative, in
general. However, a functor given by a product by a monoid is applicative.
This means that applicatives can be composed with lenses whose residual is
a monoid, which are precisely the newly defined classifying lenses (Defini-
tion 3.8).

representative :: Kaleidoscope Float Measurements
representative = mkKaleidoscope aggregate
where
aggregate f l = Measurements
(f (fmap sepalLe l)) (f (fmap sepalWi l))
(f (fmap petalLe l)) (f (fmap petalWi l))

iris & measure.representative >- mean
>>> Iris Versicolor; Sepal (5.843, 3.054); Petal (3.758, 1.198)

Figure 10. Following the previous Example 8, a kaleidoscope
(representative) is composed with an algebraic lens to create
a new point in the dataset by aggregating measurements with
some function (mean, maximum) and then classifying it.

3.3. Grates. Grates create a new structure when provided with a way of
creating a new focus from a view function. They are given by a single grate
function with the form of a nested continuation.

Definition 3.29. Let C be a symmetric closed V-category (as in [7]). Let
(�) : Cop ×D→ D be an arbitrary action. A grate is an element of

Grate ((A,B), (S, T)) := D([S,A]�B, T).

Proposition 3.30. Grates are mixed optics for the action of the exponential
and (�) : Cop ×D→ D. That is, Grate ∼= Optic[,],�.

22 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

Proof. We know from [7, Proposition 1.2] that the adjunction [−, A]op a
[−, A] holds in any symmetric monoidal category.

∫ C∈C
C(S, [C,A])⊗D(C �B, T)

∼= {Adjunction [−, A]op a [−, A]}
∫ C∈C

C(C, [S,A])⊗D(C �B, T)

∼= {Coyoneda}
D([S,A]�B, T) �

The description of a grate and its profunctor representation in terms of
“closed” profunctors was first reported by Deikun and O’Connor [25]; it can
be seen as a consequence of the profunctor representation theorem (Theo-
rem 4.14).

3.3.1. Glasses. Glasses are a new optic that strictly generalizes grates and
lenses for the cartesian case. In functional programming, glasses can be
implemented by a single function glass that takes a way of transforming
views into new foci and uses it to update the data structure. We propose
to use them as a concrete representation of the composition of lenses and
grates.

Definition 3.31. A glass in a cartesian closed W-category is an element of

Glass ((A,B), (S, T)) := C(S × [[S,A], B], T).

Proposition 3.32. Glasses are optics for the action (×[,]) : Cop × C →
[C,C] that sends C,D ∈ C to the W-functor D × [C,−].

Proof.
∫ C,D

C(S,C × [D,A])×C([D,B]× C, T)

∼= {Adjunction ∆ a (×)}
∫ C,D

C(S,C)×C(S, [D,A])×C([D,B]× C, T)

∼= {Coyoneda}
∫ D

C(S, [D,A])×C([D,B]× S, T)

∼= {Adjunction [−, A]op a [−, A]}
∫ D

C(D, [S,A])×C([D,B]× S, T)

∼= {Coyoneda}
C([[S,A], B]× S, T). �

3.4. Getters, reviews and folds. Some constructions, such as plain mor-
phisms, can be regarded as degenerate cases of optics. We will describe these
constructions (getters, reviews and folds [20]) as mixed optics. All of them
set one of the two base categories to be the terminal category and, contrary

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 23

to most optics, they act only unidirectionally. We will derive the usual im-
plementations of getters as s -> a, of reviews as b -> t, and of folds as
s -> [a]. Their profunctor representation can be seen as a covariant or
contravariant application of the Yoneda lemma.

Definition 3.33. Let C be an arbitrary V-category. Getters (morphisms
C(S,A)) are degenerate optics for the trivial action on the covariant side.
Reviews (morphisms C(B, T)) are degenerate optics for the trivial action on
the contravariant side. In other words, we can obtain plain morphisms as a
particular case of optic when M = 1 and D = 1 or C = 1, respectively.

The category of foldable functors is the slice category on the list functor
L : V → V, also known as the free monoid functor. Using the fact that L is
a monad, the slice category [V,V]/L can be made monoidal in such a way
that the forgetful functor [V,V]/L → [V,V] becomes strong monoidal.

Definition 3.34. Folds are optics for the action of foldable functors and the
trivial action on the contravariant side.

Fold((A, ∗), (S, ∗)) =

∫ F∈Foldable
V(S, FA) ∼= V(S,LA).

Folds admit a concrete description, V(S,LA), which can be reached from the
definition of coends as colimits. A coend from a diagram category with a
terminal object is determined by the value at the terminal object. The same
technique can be used to prove that the optic for the slice category over a
monad G : V → V has a concrete form given by C(S,GA).

3.5. Setters and adapters.

Definition 3.35. We finish our examples of optics with two extremes. A
setter [20] is an element of

Setter((A,B), (S, T)) := V([A,B], [S, T]).

Proposition 3.36. Setters are optics for identity action id : [V,V]→ [V,V].
That is, Setter ∼= Opticid,id.

Proof. The concrete derivation is described by Riley [33, §4.5.2], and his
strength requirement can be transferred directly to the enriched case.

∫ F∈[V,V]

V(S, FA)⊗ V(FB, T)

∼= {Yoneda}
∫ F∈[V,V](∫

C∈V
[V(A,C),V(S, FC)]

)
⊗ V(FB, T)

∼= {Copower}
∫ F∈[V,V](∫

C∈V
V(S ⊗ [A,C], FC)

)
⊗ V(FB, T)

∼= {Natural transformation}
∫ F∈[V,V]

[V,V](S ⊗ [A,−], F)⊗ V(FB, T)

24 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

∼= {Coyoneda}
V(S ⊗ [A,B], T)

∼= {Adjunction (S ⊗−) a [S,−]}
V([A,B], [S, T]). �

Remark 3.37. In functional programming, we implicitly restrict to the case
where V is a cartesian category, and we curry this description to obtain the
usual representation of setters as a single over function.

Definition 3.38. Adapters [20] are morphisms in Cop⊗D. They are optics
for the action Id : 1→ [C,C].

Adapter((A,B), (S, T)) := C(S,A)⊗D(B, T).

3.6. Optics for (co)free. A common pattern that appears across many
optic derivations is that of computing the optic associated with a class of
functors using an adjunction to allow for an application of the Yoneda lemma.
This observation can be generalized to a class of concrete optics.

Consider some V-endofunctor H : V → V. Any objects A,B, S, T ∈ V
can be regarded as functors from the unit V-category. The following iso-
morphisms are the consequence of the fact that left and right global Kan
extensions are left and right adjoints to precomposition, respectively.

V(S,HA) ∼= [V,V](LanAS,H),

V(HB,T) ∼= [V,V](H,RanBT).

These extensions exist in V and they are given by the formulas

LanAS ∼= [A,−]⊗ S, RanBT ∼=
[
[−, B], T

]
.

Proposition 3.39 ([35, §3.4.7]). Let the monoidal V-action U : M→ [V,V]
have a left adjoint L : [V,V] → M, or, dually, let it have a right adjoint
R : [V,V]→M. In both of these cases the optic determined by that monoidal
action has a concrete form, given by

V(UL([A,−]⊗ S)(B), T) or V(S,UR
[
[−, B], T

]
(A)),

respectively.

Proof. We prove the first case. The second one is dual.
∫ M∈M

V(S,UMA)⊗ V(UMB,T)

∼= {Kan extension}
∫ M∈M

[V,V] (LanAS,UM)⊗ V(UMB,T)

∼= {Adjunction L a U}
∫ M∈M

M (LLanAS,M)⊗ V(UMB,T)

∼= {Coyoneda}
V (ULLanAS(B), T) . �

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 25

4. Tambara theory

A fundamental feature of optics is that they can be represented as a single
polymorphic function. Optics in this form are called profunctor optics and
we say this function is their profunctor representation. Profunctor optics
can be easily composed, even if they are from different families: composi-
tion of optics as polymorphic functions becomes ordinary function compo-
sition. Figure 3 shows an example of this phenomenon. Profunctor optics
are functions polymorphic over profunctors endowed with some extra alge-
braic structure. This extra structure depends on the family of the optic they
represent. For instance, lenses are represented by functions polymorphic
over cartesian profunctors, while prisms are represented by functions poly-
morphic over cocartesian profunctors [30, §3]. Milewski [24] notes that the
algebraic structures accompanying these profunctors are precisely Tambara
modules, a particular kind of profunctor that has been used to characterize
the monoidal centre of convolution monoidal categories [39]. Because of this
correspondence, categories of lenses or prisms can be obtained as particular
cases of the “Doubles for monoidal categories” construction defined by Pas-
tro and Street [29, §6]. The double1 of an arbitrary monoidal V-category
(A,⊗, I), is a promonoidal2 V-category DA whose hom-objects are defined
as

DA((A,B), (S, T)) :=

∫ C∈A
A(S,C ⊗A)⊗A(C ⊗B, T).

In the particular case where A is cartesian or cocartesian, the V-category DA
is precisely the category of lenses or prisms over A, respectively. Moreover,
one of the main results of [29, Proposition 6.1] declares that the V-category
[DC,V] of copresheaves over these V-categories is equivalent to the V-cat-
egory of Tambara modules on C. In the case of lenses or prisms, these
Tambara modules are precisely cartesian and cocartesian profunctors, and
this correspondence justifies their profunctor representation.

We will see how the results of Pastro and Street can be directly applied to
the theory of optics, although they are not general enough for our purposes.
Milewski [24] already proposed a unified description of optics, later extended
by [3] and [33], that requires a generalization of the original result by Pastro
and Street from monoidal products to arbitrary monoidal actions. In order
to capture V-enriched mixed optics, we need to go even further and generalize
the definition of Tambara module in two directions. The monoidal category
A in their definition needs to be substituted by a pair of arbitrary categories
C and D, and the monoidal product ⊗ : A → [A,A] needs to be substituted
by a pair of arbitrary monoidal actions (L) : M⊗C→ C and (R) : M⊗D→
D, from a common monoidal category M.

1Double, as used by Pastro and Street [29], should not be confused with double in the
sense of double category.

2A promonoidal category A is a generalization of a monoidal category with functors
replaced by profunctors. For instance, the tensor product is a profunctor P : Aop⊗A⊗A →
V and the unit is a presheaf J : Aop → V.

26 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

This section can be seen both as a partial exposition of one of the main
results of the work of Pastro and Street [29, Proposition 6.1] and a general-
ization of their definitions and propositions to the setting that is most useful
for applications in functional programming.

4.1. Generalized Tambara modules. Originally, Tambara modules [39]
were conceived of as a structure on top of certain profunctors that made
them play nicely with some monoidal action in both their covariant and
contravariant components.

For our purposes, Tambara modules represent the different ways in which
we can use an optic. If a profunctor P has Tambara module structure for
the monoidal actions defining an optic, we can use that optic to lift the
profunctor applied to the foci, P (A,B), to the full structures, P (S, T). For
instance, the profunctor (−) × B → (−) can be used to lift the projection
A × B → B into the update function S × B → T . In other words, this
profunctor is a Tambara module compatible with all the families of optics
that admit an update function, such as lenses. In programming libraries,
that profunctor can be used to define a polymorphic update combinator that
works across different families of optics.

Formally, we want to prove that Tambara modules for the actions L and
R are copresheaves over the category Optic L , R . This will also justify the
profunctor representation of optics in terms of Tambara modules (Theo-
rem 4.14).

Definition 4.1. Let (M,⊗, I) be a monoidal V-category with two monoidal
actions (L) : M⊗C→ C and (R) : M⊗D→ D. A generalized Tambara
module consists of a V-profunctor P : Cop⊗D→ V endowed with a family
of morphisms

αM,A,B : P (A,B)→ P (M L A,M R B)

V-natural in A ∈ C and B ∈ D and V-dinatural in M ∈M, which addition-
ally satisfies the two equations

αI,A,B ◦ P (φA, ϕ
−1
B) = id,

αM⊗N,A,B ◦ P (φM,N,A, ϕ
−1
M,N,B) = αM,N LA,N RB ◦ αN,A,B,

for every M,N ∈ M, every A ∈ C and every B ∈ D. In other words, a
family of morphisms making the following two diagrams commute.

P (A,B) P ((M ⊗N) L A, (M ⊗N) R B)

P (N L A,N R B) P (M L N L A,M R N R B)

P (A,B) P (I L A, I R B)

P (A,B)

αM⊗N,A,B

αN,A,B P (φM,N,A,ϕ
−1
M,N,B)

αM,N LA,N RB

id

αI,A,B

P (φA,ϕ
−1
B)

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 27

When V = Sets, we can define a morphism of Tambara modules as a
natural transformation ηA,B : P (A,B)→ Q(A,B) satisfying

ηM LA,M RB ◦ αM,A,B = α′M,A,B ◦ ηA,B.
For an arbitrary V, Tambara modules are the objects of a V-category Tamb
whose hom-object from (P, α) to (Q,α′) is computed as the intersection of
the equalizers of

∫

X,Y
V(P (X,Y), Q(X,Y))

πA,B−−−−−−−−−−−−−−−−−−→ V(P (A,B), Q(A,B))

V(id,α′A,B)
−−−−−−−−−−−−−−−−−→ V(P (A,B), Q(M L A,M R B))

and ∫

X,Y
V(P (X,Y), Q(X,Y))

πM LA,M RB−−−−−−−−−−−→ V(P (M L A,M R B), Q(M L A,M R B))

V(αA,B ,id)−−−−−−−−−−→ V(P (A,B), Q(M L A,M R B))

for each A ∈ C, B ∈ D and M ∈M [29, §3.2].

Remark 4.2. Pastro and Street [29] follow the convention of omitting the
unitors and the associators of the monoidal category when defining Tambara
modules. These appear in Definition 4.1 replaced by the structure isomor-
phisms of the two monoidal actions.

4.2. Pastro-Street’s “double” comonad. Tambara modules are coalge-
bras for a particular comonad [29, §5]. That comonad has a left adjoint that
must therefore be a monad, and then Tambara modules can be equivalently
described as algebras for that monad. We will describe the V-category of
generalized Tambara modules Tamb as an Eilenberg-Moore category first
for a comonad and then for its left adjoint monad. This will be the main
lemma (Lemma 4.6) towards the profunctor representation theorem (Theo-
rem 4.14).

Definition 4.3. We start by constructing the underlying V-functor of the
comonad Θ: Prof(C,D)→ Prof(C,D). Consider first the V-functor

T : Mop ⊗M⊗Cop ⊗D⊗Prof(C,D)→ V,
given by the composition of the actions (L) and (R) with the evaluation
V-functor Cop ⊗D⊗Prof(C,D)→ V. On objects, this is given by

T (M,N,A,B, P) := P (M L A,N R B).

By the universal property of the end, this induces a V-functor Cop ⊗D ⊗
Prof(C,D)→ V given by

T (A,B, P) =

∫

M∈M
P (M L A,M R B),

28 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

which can be curried into the V-functor

ΘP (A,B) :=

∫

M∈M
P (M L A,M R B).

Proposition 4.4. The V-functor Θ can be endowed with a comonad struc-
ture. Its counit is the V-natural family of morphisms εP,A,B : ΘP (A,B) →
P (A,B) obtained by projecting on the monoidal unit and applying the uni-
tors,

ΘP (A,B) P (I L A, I R B) P (A,B).
πI P (φA,ϕ

−1
B)

Its comultiplication is given by δP,A,B : ΘP (A,B)→ ΘΘP (A,B), the V-nat-
ural family of transformations obtained as the unique morphisms factorizing

ΘP (A,B) P (M L N L A,M R N R B)
P(φM,N,A,ϕ

−1
M,N,B)◦πM⊗N

through the projection

ΘΘP (A,B) P (M L N L A,M R N R B)
πM◦πN

for every M,N ∈M.

Remark 4.5. Before the proof, let us recall the axioms for a strong monoidal
V-action � : M⊗C→ C of a monoidal V-category (M,⊗, I) with coherence
isomorphisms (a, λ, ρ) to an arbitrary category C. Let

φA : A ∼= I �A, φM,N,A : M � (N �A) ∼= (M ⊗N)�A,

be the structure V-natural isomorphisms of the strong monoidal action. Note
that the following are precisely the axioms for a strong monoidal functor
M → [C,C] written as M ⊗ C → C; they are simplified by the fact that
[C,C] is strict.

I �M �A M �A M � I �A

(I ⊗M)�A M �A (M ⊗ I)�A
φI,M,A

φM�A M�φA

id φM,I,A

λM�A ρM�A

M �N �K �A M �N �K �A

(M ⊗N)�K �A M � (N ⊗K)�A

((M ⊗N)⊗K)�A (M ⊗ (N ⊗K))�A

id

φM,N,K�A M�φN,K,A

φM⊗N,K,A φM,N⊗K,A

aM,N,K�A

Proof. In order to keep the diagrams in this proof manageable, we introduce
the notation P [M](A,B) := P (M L A,M R B). We will show that this
construction satisfies the comonad axioms.

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 29

We first prove left counitality, ΘεP ◦ δP = idΘP , which follows from the
commutativity of the following diagram.

ΘP (A,B) ΘΘP (A,B) ΘP (A,B)

ΘP [M](A,B) P [M](A,B)

P [I ⊗M](A,B) P [M][I](A,B) P [M](A,B)

δP

πI⊗M

(Θε)P

πM πM

πI

εP [M]

id

P (φI,M,A,ϕ
−1
I,M,B) P (φM LA,ϕ

−1
M RB)

The left pentagon of this diagram commutes because of the definition of
δ. The upper right square commutes because of functoriality of ends and
naturality of πM . The lower right square commutes because of the definition
of ε. By the axioms of the monoidal actions (Remark 4.5), the bottom edge
of the whole diagram can be rewritten as

P (φM LA, ϕ
−1
M RB) ◦ P (φI,M,A, ϕ

−1
I,M,B) = P (λ−1

M �A, λM �B).

Now, by the wedge condition of the end, the left-bottom side of the previous
diagram is just the projection πM .

ΘP (A,B)

P [I ⊗M](A,B) P [M](A,B)

P (I ⊗M L A,M R B)

πI⊗M πM

P (id,λM�B) P (λM�A,id)

Finally, by the universal property of the end, that implies that ΘεP ◦ δP
must coincide with the identity.

Let us now prove right counitality, εΘP ◦ δP = idΘP , which follows from
the commutativity of the following diagram.

ΘP (A,B) ΘΘP (A,B) ΘP (A,B)

ΘP [I](A,B) ΘP (A,B)

P [M ⊗ I](A,B) P [I][M](A,B) P [M](A,B)

δP

πI⊗M

εΘP

πI id

πM

ΘP (φI ,ϕ
−1
I)

πM

P (φM,I,A,ϕ
−1
M,I,B) P (φA,ϕ

−1
B)

Again, the definition of δ makes the left pentagon commute. The upper right
square commutes now because of the definition of ε, whereas the lower right
square commutes because of functoriality of ends and naturality of π. By
the axioms of the monoidal actions (Remark 4.5), the bottom edge of the
diagram can be rewritten as

P (φA, ϕ
−1
B) ◦ P (φM,I,A, ϕ

−1
M,I,B) = P (ρ−1

M �A, ρM �B).

30 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

Now, by the wedge condition of the end, the left-bottom side of the previous
diagram is just the projection πM .

ΘP (A,B)

P [I ⊗M](A,B) P [M](A,B)

P (I ⊗M L A,M R B)

πI⊗M πM

P (id,λM�B) P (λM�A,id)

Finally, by the universal property of the end, εΘP ◦ δP must coincide with
the identity.

Coassociativity, ΘδP ◦ δP = δΘP ◦ δP , follows from commutativity of the
following diagram in Figure 11.

ΘP (A,B)

ΘΘP (A,B) ΘΘP (A,B)

ΘΘΘP (A,B)

ΘΘP [K](A,B)

ΘP [K](A,B) ΘP [N ⊗K](A,B)

ΘP [K][N](A,B)

P [K][N][M](A,B)

P [K][M ⊗N](A,B) P [N ⊗K][M](A,B)

P [(M ⊗N)⊗K](A,B) P [M ⊗ (N ⊗K)](A,B)

δPδP

ΘδP

πK πN⊗K

δΘP

πK

πN

δP [K]

πM⊗N πM

ΘP (φN,K,A,ϕ
−1
N,K,B)

πM

P (φM,N,K LA,ϕ
−1
M,N,K RB)

P (φM⊗N,K,A,ϕ
−1
M⊗N,K,B)

P (φN,K,A,ϕ
−1
N,K,B)

P (φM,N⊗K,A,ϕ
−1
M,N⊗K,B)

P (a−1
M,N,K ,aM,N,K)

Figure 11. Diagram for the coassociativity axiom.

We need to show that the upper diamond commutes; by the universal
property of the ends, this amounts to showing that it commutes when fol-
lowed by πM ◦ πN ◦ πK . The lower pentagon is made of isomorphisms, and
it commutes by the axioms of the monoidal actions (Remark 4.5). The two
upper degenerate pentagons commute by definition of δ. The two trapezoids
commute by functoriality of ends and naturality of the projections.

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 31

Finally, the two outermost morphisms of the diagram correspond to two
projections from ΘP (A,B), namely π(M⊗N)⊗K and πM⊗(N⊗K). The wedge
condition for the associator aM,N,K makes the external diagram commute.

�

Lemma 4.6. Tambara modules are precisely coalgebras for this comonad.
There exists an isomorphism of V-categories Tamb ∼= EM(Θ) from the
category of Tambara modules to the Eilenberg-Moore category of Θ.

Proof. Note that the object of V-natural transformations from P to ΘP is
precisely

Prof(C,D)(P,ΘP)
∼= {Natural transformation}∫

A,B
V
(
P (A,B),

∫

M∈M
P (M L A,M R B)

)

∼= {Continuity}∫

A,B,M
V (P (A,B), P (M L A,M R B))

whose elements can be seen as a family of morphisms that is natural in both
M ∈ M and (A,B) ∈ Cop ⊗ D. The two conditions in the definition of
Tambara module can be rewritten as the axioms of the coalgebra. �

Proposition 4.7. The Θ comonad has a left V-adjoint Φ, which must there-
fore be a monad. On objects, it is given by the following formula.

ΦQ(X,Y) =

∫ M,U,V

Q(U, V)⊗C(X,M L U)⊗D(M R V, Y).

That is, there exists a V-natural isomorphism Nat(ΦQ,P) ∼= Nat(Q,ΘP).

Proof. We can explicitly construct the V-natural isomorphism using coend
calculus.∫

A,B
V
(
Q(A,B),

∫

M
P (M L A,M R B)

)

∼= {Continuity}∫

M,A,B
V(Q(A,B), P (M L A,M R B))

∼= {Yoneda}∫

M,A,B
V
(
Q(A,B),

∫

X,Y
V
(
C(X,M L A)⊗D(M R B, Y), P (X,Y)

))

∼= {Continuity}∫

M,A,B,X,Y
V
(
Q(A,B),V

(
C(X,M L A)⊗D(M R B, Y), P (X,Y)

))

∼= {Copower}∫

M,A,B,X,Y
V(Q(A,B)⊗C(X,M L A)⊗D(M R B, Y), P (X,Y))

∼= {Continuity}

32 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

∫

X,Y
V
(∫ M,A,B

Q(A,B)⊗C(X,M L A)⊗D(M R B, Y), P (X,Y)

)
.

Alternatively, the adjunction can be deduced from the definition of the
comonad Θ and the characterization of global Kan extensions as adjoints
to precomposition. �

4.3. Pastro-Street’s “double” promonad. The second part of this proof
occurs in the bicategory of V-profunctors. In this bicategory, there exists a
formal analogue of the Kleisli construction that, when applied to the Pastro-
Street monad Φ, yields a category whose morphisms are the optics from
Definition 2.1. This is the crucial step of the proof, as the universal property
of that Kleisli construction will imply that copresheaves over the category
of optics there defined are Tambara modules (Lemma 4.10). After that, the
last step will be a relatively straightforward application of the Yoneda lemma
(Lemma 4.12).

Let Prof be the bicategory of V-profunctors that has as 0-cells the V-cate-
gories C,D,E, . . .; as 1-cells P : C 9 D the V-profunctors given as P : Cop⊗
D→ V; and as 2-cells the natural transformations between them. The com-
position of two V-profunctors P : Cop ⊗D→ V and Q : Dop ⊗E→ V is the
V-profunctor Q � P : Cop ⊗E→ V defined on objects by the coend3

(Q � P)(C,E) =

∫ D∈D
P (C,D)⊗Q(D,E).

There is, however, an equivalent way of defining profunctor composition if we
interpret each V-profunctor Cop⊗D→ V as a V-functor Cop → [D,V] to the
category of copresheaves. In this case, the composition of two profunctors
P : Cop → [D,V] andQ : Dop → [E,V] is the V-functor (Q�P) : Cop → [E,V]
defined by taking a left Kan extension (Q�P) := LanyQ◦P along the Yoneda
embedding y : Dop → [D,V]. The unit profunctor for composition is precisely
the Yoneda embedding.

Dop [E,V]

Cop [D,V]

Q

y

P
LanyQ◦P

In the same way that we can construct a Kleisli category over a monad, we
will perform a Kleisli construction over the monoids of the bicategory Prof ,
which are called promonads. Promonads over the base category V that are
also Tambara modules for the product appear frequently in the literature on
functional programming languages under the name of arrows [14, 15, 34].

Definition 4.8. A promonad is given by a V-category A, an endoprofunc-
tor T : Aop⊗A→ V, and two V-natural families ηX,Y : C(X,Y)→ T (X,Y)

3Although in general the composition of two profunctors can fail to exist for size reasons
or when V lacks certain colimits, we only ever need these composites in a formal sense.
This perspective can be formalized with the notion of virtual equipment [5].

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 33

and µX,Y : (T � T)(X,Y) → T (X,Y) satisfying the following unitality and
associativity axioms.

T T � T T T � T � T T � T

T T � T T

η�id

id
µ

id�η

id
id�µ

µ�id

µ

µ

A module for the promonad is a V-profunctor P : Xop ⊗ A → V, together
with a V-natural transformation ρ : T �P → P making the following diagrams
commute.

P T � P T � T � P T � P

P T � P P

η�id

id
ρ

µ�id

id�ρ ρ

ρ

An algebra is a module structure on a V-copresheaf P : A→ V, interpreted
as a profunctor Iop ⊗A→ V from the unit V-category.
Lemma 4.9. The bicategory Prof admits the Kleisli construction [29, §6].
The Kleisli V-category Kl(T) for a promonad (T, µ, η) over A is constructed
as having the same objects as A and letting the hom-object between X,Y ∈ A
be precisely T (X,Y) ∈ V.
Proof. The multiplication of the promonad is a V-natural transformation
whose components can be taken as the definition for the composition of the
V-category Kl(T).

V
(∫ Z∈C

T (X,Z)⊗ T (Z, Y), T (X,Y)

)

∼= {Continuity}
∫

Z∈C
V (T (X,Z)⊗ T (Z, Y), T (X,Y))

Let us show now that this V-category satisfies the universal property of
the Kleisli construction. Let P : Xop⊗A→ V be a V-profunctor. A module
structure ρ : T � P → P corresponds to a way of making the profunctor P
functorial over Kl(T) in the second argument

∫

X∈X,Z∈A
V
(∫ Y ∈A

P (X,Y)⊗ T (Y,Z), P (X,Z)

)

∼= {Continuity}
∫

X,Y,Z
V(P (X,Y)⊗ T (Y, Z), P (X,Z))

∼= {Exponential}
∫

X,Y,Z
V(T (Y, Z), [P (X,Y), P (X,Z)]).

Functoriality of this family follows from the monad-algebra axioms. �

Lemma 4.10. The category of algebras for a promonad is equivalent to the
copresheaf category over its Kleisli object.

34 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

Proof. Let X be any category and Φ: Y → Y a promonad. By the universal
property of the Kleisli construction (see Lemma 4.9), Prof(X,Kl(Φ)) is
equivalent to the category of modules on X for the promonad. In particular,
V-profunctors from the unit V-category to the Kleisli object form precisely
the category EM(Φ) of algebras for the promonad; thus

[Kl(Φ),V] ∼= [Iop ⊗Kl(Φ),V] ∼= Prof(I,Kl(Φ)) ∼= EM(Φ). �
Proposition 4.11. Let T : [A,V] → [A,V] be a cocontinuous monad. The
profunctor Ť : Aop → [A,V] defined by Ť := T ◦ y can be given a promonad
structure. Moreover, algebras for T are precisely algebras for the promonad
Ť .

Proof. First, the fact that T is cocontinuous means that it preserves left Kan
extensions and thus,

LanyŤ ∼= Lany(T ◦ y) ∼= T ◦ Lany(y) ∼= T.

This means that the composition of the profunctor Ť with itself is

Ť � Ť = LanyŤ ◦ Ť ∼= LanyŤ ◦ T ◦ y ∼= T ◦ T ◦ y.
The unit and multiplication of the promonad are then obtained by whiskering
the unit and multiplication of the monad with the Yoneda embedding; that
is, (η ◦ y) : y → T ◦ y and (µ ◦ y) : T ◦ T ◦ y → T ◦ y. The diagrams
for associativity and unitality for the promonad are the whiskering by the
Yoneda embedding of the same diagrams for the monad. In fact, the same
reasoning yields that, for any P : Dop → [A,V],

Ť � P ∼= (T ◦ y) � P ∼= Lany(T ◦ y) ◦ P ∼= T ◦ P.
As a consequence of this for the case P : I→ [Aop,V], any T -algebra can be
seen as a Ť -algebra and vice versa. The axioms for the promonad structure
on Ť coincide with the axioms for the corresponding monad on T . �

In particular, the Pastro-Street monad Φ is a left adjoint. That im-
plies that it is cocontinuous and, because of Proposition 4.11, it induces a
promonad Φ̌ = Φ◦y, having Tambara modules as algebras. We can compute
by the Yoneda lemma that

Φ̌(A,B, S, T) =

∫ M

C(S,M L A)⊗D(M R B, T).

This coincides with Definition 2.1. We now define Optic to be the Kleisli
V-category for the promonad Φ̌.

4.4. Profunctor representation theorem. Let us zoom out to the big
picture again. It has been observed that optics can be composed using their
profunctor representation; that is, profunctor optics can be endowed with a
natural categorical structure. On the other hand, we have generalized the
double construction in [29] to abstractly obtain the category Optic. The
final missing piece that makes both coincide is the profunctor representation
theorem, which will justify the profunctor representation of optics and their
composition in profunctor form being the usual function composition.

The profunctor representation theorem for the case V = Sets and non-
mixed optics has been discussed in [3, Theorem 4.2]. Although our statement

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 35

is more general and the proof technique is different, the main idea is the same.
In both cases, the key insight is the following lemma, already described by
[24].

Lemma 4.12 (“Double Yoneda” from [24]). For any V-category A, the hom-
object between X and Y is V-naturally isomorphic to the object of V-natural
transformations between the functors that evaluate copresheaves in X and Y ;
that is,

A(X,Y) ∼= [[A,V],V](−(X),−(Y)).

The isomorphism is given by the canonical maps A(X,Y)→ V(FX,FY) for
each F ∈ [A,V]. Its inverse is given by computing its value on the identity
on the A(X,−) component.

Proof. In the functor V-category [A,V], we can apply the Yoneda embedding
to two representable functors A(Y,−) and A(X,−) to get

[A,V](A(Y,−),A(X,−)) ∼=
∫

F
V
(

[A(X,−), F], [A(Y,−), F]
)
.

Here reducing by Yoneda lemma on both the left hand side and the two
arguments of the right hand side, we get the desired result. �
Remark 4.13. As a very simple special case of the Double Yoneda construc-
tion, the Haskell type

forall f . Functor f => f a -> f b
is isomorphic to the simple function type a -> b [24]. It is straightforward
for a functional programmer to construct the two witnesses to the isomor-
phism: the functorial action in one direction, and instantiation to the identity
functor in the other.

Theorem 4.14 (Profunctor representation theorem).

Optic((A,B), (S, T)) ∼=
∫

P∈Tamb
V(P (A,B), P (S, T)).

Proof. We apply Double Yoneda (Lemma 4.12) to the V-category Optic and
then use that copresheaves over it are precisely Tambara modules (Proposi-
tion 4.10). �
Remark 4.15. The immediate practical application of this theorem is to jus-
tify the following profunctor representation commonly employed in Haskell
libraries.

Optic a b s t = forall p . Tambara p => p a b -> p s t
For all the optics we’ve been discussing in this paper, where the Tambara
constraint is replaced by the class of profunctors preserving the appropriate
monoidal action. For instance, the standard lens

type Lens a b s t = forall p . Cartesian p => p a b -> p s t
is defined by the class of profunctors preserving the action defined by the
cartesian product.

class Profunctor p => Cartesian p where
first' :: p a b -> p (a, c) (b, c)
second' :: p a b -> p (c, a) (c, b)

36 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

5. Haskell implementation

Let V be a cartesian closed category whose objects model the types of
our programming language and whose points 1 → X represent programs of
type X. The following is an informal translation of the concepts of enriched
category theory to a Haskell implementation where a single abstract defini-
tion of optic is used for a range of different examples. The code for this text
can be compiled under GHC 8.6, using the libraries split and delay. It
includes an implementation of optics and all the examples we have discussed
(Figures 1, 7, 8 and 9).

The complete code can be found at
https://github.com/mroman42/vitrea

5.1. Concepts of enriched category theory.

Definition 5.1 (18, §1.2, see also 42). A V-category C consists of a set
Obj(C) of objects, a hom-object C(A,B) ∈ V for each pair of objects A,B ∈
Obj(C), a composition law C(A,B) × C(B,C) → C(A,C) for each triple
of objects, and an identity element 1→ C(A,A) for each object; subject to
the usual associativity and unit axioms.

class Category objc c where
unit :: (objc x) => c x x
comp :: (objc x) => c y z -> c x y -> c x z

Here, the objects for our category are selected from Haskell types by the
constraint objc. Hom-objects are selected by the two-argument type con-
structor c.

Definition 5.2 (18, §1.2). A V-functor F : C → D consists of a function
Obj(C) → Obj(D) together with a map C(A,B) → D(FA,FB) for each
pair of objects; subject to the usual compatibility with composition and
units. V-bifunctors and V-profunctors can be defined analogously,

class (Category objc c, Category objd d, Category obje e
, forall x y . (objc x , objd y) => obje (f x y))
=> Bifunctor objc c objd d obje e f where

bimap :: (objc x1, objc x2, objd y1, objd y2)
=> c x1 x2 -> d y1 y2 -> e (f x1 y1) (f x2 y2)

class (Category objc c, Category objd d)
=> Profunctor objc c objd d p where

dimap :: (objc x1, objc x2, objd y1, objd y2)
=> c x2 x1 -> d y1 y2 -> p x1 y1 -> p x2 y2

Definition 5.3 (6). A monoidal V-category is a V-category M together
with a V-functor (⊗) : M ⊗M → M, an object I ∈ M, and V-natural
isomorphisms α : (A⊗B)⊗C ∼= A⊗(B⊗C), ρ : A⊗I ∼= A, and λ : I⊗A ∼= A,
satisfying the usual coherence axioms for a monoidal category.

class (Category obja a
, Bifunctor obja a obja a obja a o
, obja i)

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 37

=> MonoidalCategory obja a o i where
alpha :: (obja x, obja y, obja z)

=> a (x `o` (y `o` z)) ((x `o` y) `o` z)
alphainv :: (obja x, obja y, obja z)

=> a ((x `o` y) `o` z) (x `o` (y `o` z))
lambda :: (obja x) => a (x `o` i) x
lambdainv :: (obja x) => a x (x `o` i)
rho :: (obja x) => a (i `o` x) x
rhoinv :: (obja x) => a x (i `o` x)

Definition 5.4. A strong monoidal V-action F : M⊗C→ C from a monoi-
dal V-category M to an arbitrary category C is a V-functor together with two
V-natural isomorphisms F (I,X) ∼= X and F (M,F (N,X)) ∼= F ((M⊗N), X)
satisfying associativity and unitality conditions.

class (MonoidalCategory objm m o i
, Bifunctor objm m objc c objc c f
, Category objc c)
=> MonoidalAction objm m o i objc c f where

unitor :: (objc x) => c (f i x) x
unitorinv :: (objc x) => c x (f i x)
multiplicator :: (objc x, objm p, objm q)

=> c (f p (f q x)) (f (p `o` q) x)
multiplicatorinv :: (objc x, objm p, objm q)

=> c (f (p `o` q) x) (f p (f q x))

Definition 5.5. Definition 2.1 has now a direct interpretation in more gen-
erality. Note how the coend is modeled as an existential type in x using a
GADT.

data Optic objc c objd d objm m o i f g a b s t where
Optic :: (MonoidalAction objm m o i objc c f

, MonoidalAction objm m o i objd d g
, objc a, objc s , objd b, objd t , objm x)

=> c s (f x a) -> d (g x b) t
-> Optic objc c objd d objm m o i f g a b s t

5.2. Mixed profunctor optics. We can implement Tambara modules (Def-
inition 4.1) and profunctor optics using the profunctor representation theo-
rem (Theorem 4.14).
class (MonoidalAction objm m o i objc c f

, MonoidalAction objm m o i objd d g
, Profunctor objc c objd d p)
=> Tambara objc c objd d objm m o i f g p where

tambara :: (objc x, objd y, objm w)
=> p x y -> p (f w x) (g w y)

type ProfOptic objc c objd d objm m o i f g a b s t = forall p .
(Tambara objc c objd d objm m o i f g p
, MonoidalAction objm m o i objc c f
, MonoidalAction objm m o i objd d g

38 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

, objc a , objd b , objc s , objd t
) => p a b -> p s t

The isomorphism between existential and profunctor optics can be explic-
itly constructed from Lemma 4.12.

ex2prof :: forall objc c objd d objm m o i f g a b s t .
Optic objc c objd d objm m o i f g a b s t

-> ProfOptic objc c objd d objm m o i f g a b s t
ex2prof (Optic l r) =

dimap @objc @c @objd @d l r .
tambara @objc @c @objd @d @objm @m @o @i

prof2ex :: forall objc c objd d objm m o i f g a b s t .
(MonoidalAction objm m o i objc c f
, MonoidalAction objm m o i objd d g
, objc a , objc s
, objd b , objd t)
=> ProfOptic objc c objd d objm m o i f g a b s t
-> Optic objc c objd d objm m o i f g a b s t

prof2ex p = p (Optic
(unitorinv @objm @m @o @i @objc @c @f)
(unitor @objm @m @o @i @objd @d @g))

We used the TypeApplications language extension to explicitly pass type
parameters to polymorphic functions.

5.3. Combinators. After constructing optics, an implementation should
provide ways of using them. Many optics libraries, such as Kmett’s lens [20],
provide a vast range of combinators. Each of these combinators works on
some group of optics that share a common feature. For instance, we could
consider all the optics that implement a view function, and create a single
combinator that lets us view the focus inside a family of optics.

This may seem, at first glance, difficult to model. We do not know, a
priori, which of our optics will admit a given combinator. However, the fact
that Tambara modules are copresheaves over optics suggests that we can use
them to model ways of accessing optics; and in fact, we have found them to
be very satisfactory to describe combinators in their full generality.

Remark 5.6. As an example, for any fixed A and B, consider the profunctor
PA,B(S, T) := (S → A). It can be seen as modelling the view combinator
that some optics provide.

newtype Viewing a b s t = Viewing { getView :: s -> a }
instance Profunctor Any (->) Any (->) (Viewing a b) where

dimap l _ (Viewing f) = Viewing (f . l)

If we want to apply this combinator to a particular optic, we need it to
be a Tambara module for the actions describing the optic. For instance,
we can show that it is a Tambara module for the cartesian product, taking
C = D = M; this means it can be used with lenses in the cartesian case. In
other words, lenses can be used to view the focus.

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 39

instance Tambara Any (->) Any (->) Any (->) (,) ()
(,) (,) (Viewing a b) where

tambara (Viewing f) = Viewing (f . snd)
Optic combinators are usually provided as infix functions that play nicely
with the composition operator. Specifically, they have “fixity and seman-
tics such that subsequent field accesses can be performed with Prelude..
[function composition]” [20].

infixl 8 ^.
(^.) :: s -> (Viewing a b a b -> Viewing a b s t) -> a
(^.) s l = getView (l (Viewing id)) s

5.3.1. Table of combinators. The names of our combinators try to match,
where possible, the names used by Kmett’s lens library [20].

Combinators.
(^.) :: s -> (Viewing a b a b -> Viewing a b s t) -> a

View a single target.
(?.) :: s -> (Previewing a b a b

-> Previewing a b s t) -> Maybe a
Try to view a single target; this can possibly result in failure.

(.~) :: (Setting a b a b -> Setting a b s t) -> b -> s -> t
Replace a target with a given value.

(%~) :: (Replacing a b a b -> Replacing a b s t)
-> (a -> b) -> (s -> t)
Replace a target by applying a function.

(.?) :: (Monad m) => (Classifying m a b a b
-> Classifying m a b s t'') -> b -> m s -> t

Classifies the target into a complete instance.
(>-) :: (Aggregating a b a b -> Aggregating a b s t)

-> ([a] -> b) -> [s] -> t
Aggregates the whole structure by aggregating the targets.

(.!) :: (Monad m)=> (Updating m a b a b
-> Updating m a b s t)-> b -> s -> m t
Replaces the target, producing a monadic effect.

5.4. Table of optics. We can consider all of these optics in the case where
some cartesian closed W is both the enriching category and the base for the
optic. This case is of particular interest in functional programming.

Name Description Ref.
Adapter (s -> a) , (b -> t) 3.38
Lens (s -> a) , (s -> b -> t) 3.1
Algebraic lens (s -> a) , (m s -> b -> t) 3.8
Prism (s -> Either a t) , (b -> t) 3.16
Coalgebraic prism (s -> Either a (c t)) , (b -> t) 3.8
Grate ((s -> a) -> b) -> t 3.29
Glass ((s -> a) -> b) -> s -> t 3.31
Affine Traversal s -> Either t (a , b -> t) 3.24

40 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

Traversal s -> (Vec n a, Vec n b -> t) 3.20
Kaleidoscope (Vec n a -> b) -> (Vec n s -> t) 3.26
Setter (a -> b) , (s -> t) 3.35
Fold s -> [a] 3.34

6. Conclusions

We have extended a result by Pastro and Street to a setting that is useful
for optics in functional programming. Using it, we have refined some of the
optics already present in the literature to mixed optics, providing derivations
for each one of them. We have also described new optics.

Regarding functional programming, the work suggests an architecture for
a library of optics that would benefit from these results. Instead of imple-
menting each optic separately, the general definition can be instantiated in
all the particular cases. We can then just consider specific functions for
constructing the more common families of optics. Tambara modules can be
used to implement each one of the combinators of the library, ensuring that
they work for as many optics as possible. The interested reader can find the
implementation in Appendix 5.

Many of the other applications of optics may benefit from the flexibility
of enriched and mixed optics. They may be used to capture some lens-like
constructions and provide a general theory of how they should be studied;
the specifics remain as future work.

6.1. Van Laarhoven encoding. This paper has focused on the profunctor
representation of optics. A similar representation that also provides the ben-
efit of straightforward composition is the van Laarhoven encoding [40]. It
is arguably less flexible than the profunctor representation, being based on
representable profunctors, but it is more common in practice. For instance,
traversals admit a different encoding in terms of profunctors represented by
an applicative functor.

Proposition 6.1 (Van Laarhoven-style traversals).

Traversal((A,B), (S, T)) ∼=
∫

F∈App
V(A,FB)⊗ V(S, FT).

Proof.
∫

F∈App
V(A,FB)⊗ V(S, FT)

∼= {Yoneda}
∫

F∈App
[V,V](A⊗ [B,−], F)⊗ V(S, FT)

∼= {Adjunction, free applicatives}
∫

F∈App
App

(∑

n∈N
An ⊗ [Bn,−], F

)
⊗ V(S, FT)

∼= {Coyoneda}

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 41

V
(
S,
∑

n∈N
An ⊗ [Bn, T]

)
. �

Exactly the same technique yields lenses and grates [25], using arbitrary
representable or corepresentable profunctors, respectively.

Proposition 6.2 (Van Laarhoven lenses [40]).

LinearLens⊗,⊗((A,B), (S, T)) ∼=
∫

F∈[V,V]
V(A,FB)⊗ V(S, FT).

Proof.
∫

F∈[V,V]
V(A,FB)⊗ V(S, FT)

∼= {Yoneda}
∫

F∈[V,V]
[V,V](A⊗ [B,−], F)⊗ V(S, FT)

∼= {Coyoneda}
V (S,A⊗ [B, T]) . �

Proposition 6.3 (Van Laarhoven-style grates).

Grate((A,B), (S, T)) ∼=
∫

F∈[V,V]
V(FA,B)⊗ V(FS, T).

Proof.
∫

F∈[V,V]
V(FA,B)⊗ V(FS, T)

∼= {Yoneda}
∫

F∈[V,V]
[V,V](F, [[•, A], B])⊗ V(FS, T)

∼= {Coyoneda}
V ([[S,A], B], T) . �

6.2. Related work. Pastro and Street [29] first described the construction
of doubles in their study of Tambara theory. Their results can be reused
for optics thanks to the observations of [24]. The profunctor representation
theorem and its implications for functional programming have been studied
by [3]. We combine their approach with Pastro and Street’s to get a proof
of a more general version of this theorem.

The case of mixed optics was first mentioned by Riley [33, §6.1], but his
work targeted a more restricted case. Specifically, the definitions of optic
given in the literature [3, 24, 33] deal only with the particular case in which
V = Sets, the categories C and D coincide, and the two actions are the
same. Riley derives a class of optics and their laws [33, §4.4] that is closely
related to ours in Section 3.6; our proposal makes stronger assumptions
but may be more straightforward to apply in programming contexts. Riley
uses the results of [16] to propose a description of the traversal in terms of

42 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

traversable functors [33, §4.6]; our derivation simplifies this approach, which
was in principle not suitable for the enriched case.

A central aspect of Riley’s work is the extension of the concept of lawful
lens to arbitrary lawful optics [33, §3]. This extension works exactly the
same for the optics we define here, so we do not address it explicitly in this
paper. A first reasonable notion of lawfulness for the case of mixed optics
for two actions (L) : M⊗C→ C and (R) : N⊗D→ D is to use a cospan
C → E ← D of actions to push the two parts of the optic into the same
category and then consider lawfulness in E.

6.3. Further work. A categorical account of how optics of different kinds
compose into optics is left for further work. Specifically, it should be able to
explain the “lattice of optics” described in [3, 30]. Some preliminary results
have been discussed by [35], but the proposal to model the lattice is still too
ad-hoc to be satisfactory. The topic of lawfulness [33, §3] and how it relates
to composition and mixed optics is also left for further work.

The relation between power series functors and traversables is implicit
across the literature on polynomial functors and containers. It can be shown
that traversable structures over an endofunctor T correspond to certain pa-
rameterised coalgebras using the free applicative construction [17]. We be-
lieve that it is possible to refine this result to make our derivation for tra-
versals more practical for functional programming.

It can be noted that lenses are the optic for products, functors that dis-
tribute over strong functors. Traversals are the optic for traversables, func-
tors that distribute over applicative functors. Both have a van Laarhoven
representation in terms of strong and applicative functors respectively. A
generalization of this phenomenon needs a certain Kan extension to be given
a coalgebra structure [35, Lemma 4.1.3], but it does not necessarily work for
any optic.

Optics have numerous applications in the literature, including game the-
ory [13], machine learning [9] and model-driven development [38]. Beyond
functional programming, enriched optics open new paths for explorating ap-
plications of optics. Both mixed optics and enriched optics allow us to more
precisely adjust the existing definitions to match the desired applications.

Acknowledgements

This work was started in the last author’s MSc thesis [35]; development
continued at the Applied Category School 2019 at Oxford [32], and we thank
the organizers of the School for that opportunity. We also thank Paweł Sobo-
ciński, Guillaume Boisseau, Mitchell Riley, Exequiel Rivas, Sjoerd Visscher,
Christina Vasilakopoulou, Jules Hedges, Bruno Gavranović, Matteo Capucci
and multiple anonymous reviewers for helpful comments on previous versions
of this manuscript. The code for this text has been continued as a Haskell
library [31].

Bryce Clarke was supported by the Australian Government Research Train-
ing Program Scholarship. Fosco Loregian and Mario Román were supported
by the European Union through the ESF funded Estonian IT Academy re-
search measure (project 2014-2020.4.05.19-0001).

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 43

References

[1] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna,
and Perdita Stevens. Reflections on monadic lenses. In A List of Suc-
cesses That Can Change the World - Essays Dedicated to Philip Wadler
on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in
Computer Science, pages 1–31, Heidelberg, 2016. Springer. 8, 11, 12

[2] Guillaume Boisseau. Understanding profunctor optics: A representation
theorem. Master’s thesis, University of Oxford, 2017. 8, 11, 14, 15

[3] Guillaume Boisseau and Jeremy Gibbons. What you needa know about
Yoneda: Profunctor optics and the Yoneda Lemma (functional pearl).
PACMPL, 2(ICFP):84:1–84:27, 2018. 6, 8, 9, 12, 18, 25, 34, 41, 42

[4] Mario Cáccamo and Glynn Winskel. A higher-order calculus for cate-
gories. In International Conference on Theorem Proving in Higher Order
Logics, pages 136–153. Springer, 2001. 7

[5] Geoffrey S. H. Cruttwell and Michael A. Shulman. A unified framework
for generalized multicategories. Theory and Applications of Categories,
24(21):580–655, 2010. 32

[6] Brian Day. On closed categories of functors. In Reports of the Midwest
Category Seminar IV, pages 1–38, Heidelberg, 1970. Springer. 10, 36

[7] Brian J. Day and Miguel L. Laplaza. On embedding closed categories.
Bulletin of the Australian Mathematical Society, 18(3):357–371, 1978.
21, 22

[8] Ronald A. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7(2):179–188, 1936. 14

[9] Brendan Fong and Michael Johnson. Lenses and learners. CoRR,
abs/1903.03671, 2019. 42

[10] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bi-directional tree
transformations: A linguistic approach to the view update problem. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2005, Long Beach, California,
USA, January 12-14, 2005, pages 233–246, 2005. 3, 5, 11, 15

[11] Thomas Fox. Coalgebras and cartesian categories. Communications in
Algebra, 4(7):665–667, 1976. 12

[12] Phil Freeman, Brian Marick, Lukas Heidemann, et al. Purescript Pro-
functor Lenses. Github https://github.com/purescript-contrib/p
urescript-profunctor-lenses, 2015–2019. 4

[13] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Com-
positional game theory. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pages 472–481, 2018. 42

[14] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1-3):67–111, 2000. 32

[15] Bart Jacobs, Chris Heunen, and Ichiro Hasuo. Categorical semantics
for arrows. Journal of Functional Programming, 19(3-4):403–438, 2009.
32

[16] Mauro Jaskelioff and Russell O’Connor. A representation theorem for
second-order functionals. Journal of Functional Programming, 25, 2015.

44 CLARKE, ELKINS, GIBBONS, LOREGIAN, MILEWSKI, PILLMORE, AND ROMÁN

18, 41
[17] Mauro Jaskelioff and Ondrej Rypacek. An investigation of the laws of

traversals. In Proceedings Fourth Workshop on Mathematically Struc-
tured Functional Programming, MSFP@ETAPS 2012, Tallinn, Estonia,
25 March 2012., pages 40–49, 2012. 6, 18, 42

[18] G. Max Kelly. Basic concepts of enriched category theory. Reprints in
Theory and Applications of Categories, 1(10):137, 2005. Reprint of the
1982 original. Cambridge Univ. Press, Cambridge; MR0651714. 36

[19] G. Max Kelly. On the operads of J. P. May. Reprints in Theory and
Applications of Categories, 13(1), 2005. 19

[20] Edward Kmett. Lens library, version 4.16. Hackage https://hackage.
haskell.org/package/lens-4.16, 2012–2018. 4, 22, 23, 24, 38, 39

[21] Fosco Loregian. Coend calculus. arXiv preprint arXiv:1501.02503, 2019.
7, 8

[22] Saunders Mac Lane. Categories for the Working Mathematician. Grad-
uate Texts in Mathematics. Springer New York, 1978. 20

[23] Conor McBride and Ross Paterson. Applicative programming with ef-
fects. Journal of Functional Programming, 18(1):1–13, 2008. 18

[24] Bartosz Milewski. Profunctor optics: The categorical view.
https://bartoszmilewski.com/2017/07/07/profunctor-optic
s-the-categorical-view/, 2017. 6, 9, 11, 18, 25, 35, 41

[25] Russell O’Connor. Grate: A new kind of optic. https://r6research.
livejournal.com/28050.html, 2015. 22, 41

[26] Russell O’Connor. Mezzolens: Pure Profunctor Functional Lenses.
Hackage https://hackage.haskell.org/package/mezzolens, 2015. 4

[27] Frank Joseph Oles. A Category-Theoretic Approach to the Semantics
of Programming Languages. PhD thesis, Syracuse University, Syracuse,
NY, USA, 1982. AAI8301650. 11

[28] Luke Palmer. Making Haskell nicer for game programming.
https://lukepalmer.wordpress.com/2007/07/26/making-haske
ll-nicer-for-game-programming/, archived at https://web.ar
chive.org/web/20141219182332/http://lukepalmer.wordpress.c
om/2007/07/26/making-haskell-nicer-for-game-programming/,
2007. 11

[29] Craig Pastro and Ross Street. Doubles for monoidal categories. Theory
and Applications of Categories, 21(4):61–75, 2008. 6, 8, 25, 26, 27, 33,
34, 41

[30] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor op-
tics: Modular data accessors. Programming Journal, 1(2):7, 2017. 6, 18,
25, 42

[31] Emily Pillmore and Mario Román. Vitrea library, version
0.1.0.0. Hackage https://hackage.haskell.org/package/vitrea-0.
1.0.0, Github https://github.com/mroman42/vitrea, 2019–2020. 42

[32] Emily Pillmore and Mario Román. Profunctor optics: The categori-
cal view. https://golem.ph.utexas.edu/category/2020/01/profun
ctor_optics_the_categori.html, 2020. 42

[33] Mitchell Riley. Categories of optics. arXiv preprint arXiv:1809.00738,
2018. 6, 8, 9, 11, 12, 15, 18, 19, 23, 25, 41, 42

PROFUNCTOR OPTICS: A CATEGORICAL UPDATE 45

[34] Exequiel Rivas and Mauro Jaskelioff. Notions of computation as
monoids. Journal of Functional Programming, 27, 2017. 32

[35] Mario Román. Profunctor optics and traversals. Master’s thesis, Uni-
versity of Oxford, 2019. 18, 24, 42

[36] Mario Román. Open diagrams via coend calculus. Electronic Proceed-
ings in Theoretical Computer Science, 333:65–78, Feb 2021. 9

[37] David I. Spivak. Generalized categories via functors Cop → Cat. arXiv
preprint arXiv:1908.02202, 2019. 8, 11, 12

[38] Perdita Stevens. Bidirectional model transformations in QVT: semantic
issues and open questions. Software and Systems Modeling, 9(1):7–20,
2010. 42

[39] Daisuke Tambara. Distributors on a tensor category. Hokkaido mathe-
matical journal, 35(2):379–425, 2006. 6, 25, 26

[40] Twan van Laarhoven. CPS-based functional references. https://www.
twanvl.nl/blog/haskell/cps-functional-references, 2009. 3, 5,
40, 41

[41] Twan van Laarhoven. A non-regular data type challenge. https://ww
w.twanvl.nl/blog/haskell/non-regular1, 2009. 21

[42] Sjoerd Visscher. Data.Category library, version 0.10. Hackage https:
//hackage.haskell.org/package/data-category, 2010–2020. 36

APPENDIX C

Curriculum Vitae

485

CURRICULUM VITAE

MARIO ROMÁN

1. Background

Doctoral student at Tallinn University of Technology under the su-
pervision of Pawe l Sobociński. MSc. in Mathematics and Computer
Science at the University of Oxford (2019). Two simultaneous and
separate Bachelor Degrees, one in Mathematics and one in Computer
Engineering, at the University of Granada (2018).

2. Publications

1. Mario Román. “Promonads and String Diagrams for Effect-
ful Categories”. In: Applied Category Theory Conference. ACT
’22. Glasgow, United Kingdom, 2022. doi: 10.48550/arXiv.

2205.07664. arXiv: 2205.07664. url: https://doi.org/

10.48550/arXiv.2205.07664

2. Elena Di Lavore and Mario Román. “Evidential Decision
Theory via Partial Markov Categories”. In: To be presented at
the 38th Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS ’23. 2023. doi: 10.48550/arXiv.2301.12989.
arXiv: 2301.12989. url: https://doi.org/10.48550/

arXiv.2301.12989

3. Elena Di Lavore, Giovanni de Felice, and Mario Román.
“Monoidal Streams for Dataflow Programming”. In: Proceed-
ings of the 37th Annual ACM/IEEE Symposium on Logic in

1

2 MARIO ROMÁN

Computer Science. LICS ’22. Haifa, Israel: Association for
Computing Machinery, 2022. isbn: 9781450393515. doi: 10.

1145/3531130.3533365

4. Elena Di Lavore, Alessandro Gianola, Mario Román, Nico-
letta Sabadini, and Pawe l Sobociński. “Span(Graph): a Canon-
ical Feedback Algebra of Open Transition Systems”. In: Soft-
ware and Systems Modeling 22 (2023), pp. 495–520. doi: 10.

1007/s10270-023-01092-7. arXiv: 2010.10069 [math.CT]

5. Elena Di Lavore, Alessandro Gianola, Mario Román, Nico-
letta Sabadini, and Pawel Sobocinski. “A Canonical Algebra of
Open Transition Systems”. In: Formal Aspects of Component
Software - 17th International Conference, FACS 2021, Virtual
Event, October 28-29, 2021, Proceedings. Ed. by Gwen Salaün
and Anton Wijs. Vol. 13077. Lecture Notes in Computer Sci-
ence. Springer, 2021, pp. 63–81. doi: 10.1007/978-3-030-

90636-8_4. url: https://doi.org/10.1007/978-3-030-

90636-8%5C_4

6. Guillaume Boisseau, Chad Nester, and Mario Román. “Cor-
nering Optics”. In: Applied Category Theory Conference. ACT
’22. Glasgow, United Kingdom, 2022. doi: 10.48550/arXiv.

2205.00842. arXiv: 2205.00842. url: https://doi.org/

10.48550/arXiv.2205.00842

7. Mario Román. “Open Diagrams via Coend Calculus”. In:
Applied Category Theory Conference. Vol. 333. ACT ’20.
Boston, USA: Open Publishing Association, Feb. 2021, pp. 65–
78. doi: 10.4204/eptcs.333.5. url: http://dx.doi.org/

10.4204/EPTCS.333.5

8. Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn,
Bartosz Milewski, Emily Pillmore, and Mario Román. “Pro-
functor optics, a categorical update”. In: Compositionality, to
appear (2020). arXiv: 2001.07488. url: https://arxiv.

org/abs/2001.07488

CURRICULUM VITAE 3

3. Awards

Kleene Award to the Best Student Paper and Selected as Distinghised
Paper at LiCS’23 for “Monoidal Streams for Dataflow Program-
ming”, joint with Elena Di Lavore and Giovanni de Felice.

Spanish Royal Mathematical Society (RSME-UGR) prize to the best
Mathematics Bachelor Thesis at the University of Granada, 2018.
“Category Theory and Lambda Calculus”, supervised by Pedro Garćıa-
Sánchez.

Undergraduate Research Fellowship at the Department of Algebra
of the University of Granada, for the Haskell development of the
“Mikrokosmos” software.

International Mathematical Olympiad (IMO) Honorary Mention, eco-
nomic support for preparation from the Spanish Royal Mathematical
Society (RSME, 2012).

4. Community

Reviewing. Executive editor at Compositionality. Conference re-
viewer at LiCS, CONCUR, FoSSaCS, CALCO, and ACT. Journal
reviewer at LMCS and Compositionality. Program committee mem-
ber at ACT 2022 and ACT 2023.

Teaching. Teaching assistant for Functional Programming (IT0212)
and Category Theory (ITI9200). Teaching Assistant for the Applied
Category Theory Adjoint School at Glasgow, 2022.

Version for the 1st November, 2023

APPENDIX D

Curriculum Vitae (Eesti keeles)

489

CURRICULUM VITAE

MARIO ROMÁN

1. Taustaosa

Doktorant Tallinna Tehnikaülikoolis Pawe l Sobociński juhendamisel.
MSc. matemaatika ja arvutiteaduse erialal Oxfordi ülikoolis (2019).
Bakalaureusekraad matemaatikas ja arvutitehnikas, Granada ülikoolis
(2018).

2. Publikatsioonid

1. Mario Román. “Promonads and String Diagrams for Effect-
ful Categories”. In: Applied Category Theory Conference. ACT
’22. Glasgow, United Kingdom, 2022. doi: 10.48550/arXiv.

2205.07664. arXiv: 2205.07664. url: https://doi.org/

10.48550/arXiv.2205.07664

2. Elena Di Lavore and Mario Román. “Evidential Decision
Theory via Partial Markov Categories”. In: To be presented at
the 38th Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS ’23. 2023. doi: 10.48550/arXiv.2301.12989.
arXiv: 2301.12989. url: https://doi.org/10.48550/

arXiv.2301.12989

3. Elena Di Lavore, Giovanni de Felice, and Mario Román.
“Monoidal Streams for Dataflow Programming”. In: Proceed-
ings of the 37th Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’22. Haifa, Israel: Association for

1

2 MARIO ROMÁN

Computing Machinery, 2022. isbn: 9781450393515. doi: 10.

1145/3531130.3533365

4. Elena Di Lavore, Alessandro Gianola, Mario Román, Nico-
letta Sabadini, and Pawe l Sobociński. “Span(Graph): a Canon-
ical Feedback Algebra of Open Transition Systems”. In: Soft-
ware and Systems Modeling 22 (2023), pp. 495–520. doi: 10.

1007/s10270-023-01092-7. arXiv: 2010.10069 [math.CT]

5. Elena Di Lavore, Alessandro Gianola, Mario Román, Nico-
letta Sabadini, and Pawel Sobocinski. “A Canonical Algebra of
Open Transition Systems”. In: Formal Aspects of Component
Software - 17th International Conference, FACS 2021, Virtual
Event, October 28-29, 2021, Proceedings. Ed. by Gwen Salaün
and Anton Wijs. Vol. 13077. Lecture Notes in Computer Sci-
ence. Springer, 2021, pp. 63–81. doi: 10.1007/978-3-030-

90636-8_4. url: https://doi.org/10.1007/978-3-030-

90636-8%5C_4

6. Guillaume Boisseau, Chad Nester, and Mario Román. “Cor-
nering Optics”. In: Applied Category Theory Conference. ACT
’22. Glasgow, United Kingdom, 2022. doi: 10.48550/arXiv.

2205.00842. arXiv: 2205.00842. url: https://doi.org/

10.48550/arXiv.2205.00842

7. Mario Román. “Open Diagrams via Coend Calculus”. In:
Applied Category Theory Conference. Vol. 333. ACT ’20.
Boston, USA: Open Publishing Association, Feb. 2021, pp. 65–
78. doi: 10.4204/eptcs.333.5. url: http://dx.doi.org/

10.4204/EPTCS.333.5

8. Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn,
Bartosz Milewski, Emily Pillmore, and Mario Román. “Pro-
functor optics, a categorical update”. In: Compositionality, to
appear (2020). arXiv: 2001.07488. url: https://arxiv.

org/abs/2001.07488

CURRICULUM VITAE 3

3. Auhinnad

Kleene’i auhind parimale õpilastööle LiCS’23-s ’Monoidal Streams for
Dataflow Programming’ eest, koos Elena Di Lavore’i ja Giovanni de
Felice’iga.

Hispaania Kuningliku Matemaatika Seltsi (RSME-UGR) auhind pari-
male matemaatika bakalaureusetööle Granada ülikoolis, 2018. ”Kat-
egooriateooria ja lambdaarvutus”, juhendaja Pedro Garćıa-Sánchez.

Bakalaureuseõppe uurimisstipendium Granada ülikooli algebra os-
akonnas Haskelli tarkvara.

Rahvusvaheline matemaatikaolümpiaad (IMO, RSME, 2012). Au-
nimetus.

4. Teadustegevus

Retsenseerimine. Compositionality tegevtoimetaja. LiCS, CON-
CUR, FoSSaCS, CALCO ja ACT retsensent. Ajakirjade LMCS-is
ja Compositionality retsensent. ACT 2022 ja ACT 2023 program-
mikomitee liige.

Õppetöö. Funktsionaalse programmeerimise (IT0212) ja kategoori-
ateooria (ITI9200) õppeassistent. Glasgow’ rakenduskategooriateoo-
ria ühiskooli õppeassistent, 2022.

Version for the 9th November, 2023

APPENDIX E

Non-Exclusive License for Reproduction and
Publication

I, Mario Román García,
1. Grant Tallinn University of Technology free licence (non-exclusive li-

cence) for my thesis “Monoidal Context Theory”, supervised by Pawel
Maria Sobocinski
1.1. to be reproduced for the purposes of preservation and electronic

publication of the graduation thesis, incl. to be entered in the
digital collection of the library of Tallinn University of Technology
until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology,
incl. to be entered in the digital collection of the library of Tallinn
University of Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1
of the non-exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other
persons’ intellectual property rights, the rights arising from the Personal
Data Protection Act or rights arising from other legislation.

11th November 2023.

The non-exclusive licence is not valid during the validity of access restriction
indicated in the student’s application for restriction on access to the graduation
thesis that has been signed by the school’s dean, except in case of the university’s
right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the
co-author(s) has/have not granted, by the set deadline, the student defending
his/her graduation thesis consent to reproduce and publish the graduation thesis
in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-
exclusive license shall not be valid for the period.

493

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-082-9 (PDF)

	Declaration of Originality
	Preface
	Introduction
	Processes and Diagrams
	Algebra and Duoidal Algebra
	Fundamental Structures for Message Passing
	Global Effects
	Monoidal Context Theory

	Overview
	Chapter 1: Process Theories
	Chapter 2: Context Theory
	Chapter 3: Monoidal Context Theory
	Chapter 4: Monoidal Message Passing

	Contributions
	Publications
	Chapter 1. Monoidal Process Theory
	Monoidal Process Theory
	1. Monoidal Categories
	1.1. Strict Monoidal Categories
	1.2. Some Words on Syntax
	1.3. String Diagrams of Strict Monoidal Categories
	1.4. Example: Crema di Mascarpone
	1.5. Bibliography

	2. Non-Strict Monoidal Categories
	2.1. Non-Strictness
	2.2. Coherence
	2.3. String Diagrams of Monoidal Categories
	2.4. Bibliography

	3. String Diagrams of Bicategories
	3.1. String diagrams of 2-categories
	3.2. Bicategories
	3.3. Example: Adjunctions
	3.4. Bibliography

	4. Symmetric Monoidal Categories and Do-Notation
	4.1. Commutative Monoidal Categories
	4.2. Symmetric Monoidal Categories
	4.3. Do-Notation
	4.4. Symmetry in Do-notation
	4.5. Quotienting Do-notation
	4.6. Example: the XOR Variable Swap
	4.7. Bibliography

	5. Cartesianity: Determinism and Totality
	5.1. Cartesian Monoidal Categories
	5.2. Partial Markov Categories
	5.3. Bibliography

	6. Premonoidal Categories
	6.1. Premonoidal Categories
	6.2. Effectful and Freyd Categories
	6.3. Bibliography

	7. String Diagrams for Premonoidal Categories
	7.1. Effectful Polygraphs
	7.2. Adding Runtime
	7.3. Example: a Theory of Global State
	7.4. Bibliography

	Chapter 2. Context Theory
	Context Theory
	1. Profunctors and Coends
	1.1. Profunctors
	1.2. Dinaturality and Composition
	1.3. Coend Calculus
	1.4. The Point of Coend Calculus
	1.5. Promonads
	1.6. Bibliography

	2. Multicategories
	2.1. Multicategories
	2.2. The Category of Multicategories
	2.3. Application: Shufflings

	3. Malleable Multicategories
	3.1. Promonoidal Categories
	3.2. Promonoidal Categories are Malleable Multicategories
	3.3. Bibliography

	4. The Splice-Contour Adjunction
	4.1. Contour of a multicategory
	4.2. Spliced Arrows
	4.3. Splice-Contour Adjunction
	4.4. Promonoidal Splice-Contour

	Chapter 3. Monoidal Context Theory
	Monoidal Context Theory
	1. Duoidal categories
	1.1. Duoidal Categories
	1.2. Communication via Duoidals
	1.3. Duoidals via adjoint monoids
	1.4. Be Careful with Duoidal Coherence
	1.5. Bibliography

	2. Normal Duoidal Categories
	2.1. Normalization of duoidal categories
	2.2. Physical duoidal categories
	2.3. Physical Lax Tensor of a Physical Duoidal Category
	2.4. Bibliography

	3. Produoidal Decomposition of Monoidal Categories
	3.1. Produoidal categories
	3.2. Monoidal Contour of a Produoidal Category
	3.3. Produoidal Splice of a Monoidal Category
	3.4. A Representable Parallel Structure
	3.5. Bibliography

	4. Interlude: Produoidal Normalization
	4.1. Normal Produoidal Categories
	4.2. The Normalization Monad
	4.3. Symmetric Normalization
	4.4. Bibliography

	5. Monoidal Lenses
	5.1. The Category of Monoidal Lenses
	5.2. Symmetric Monoidal Lenses
	5.3. Towards Message Theories
	5.4. Bibliography

	Chapter 4. Monoidal Message Passing
	Monoidal Message Passing
	1. Message Theories
	1.1. Message Theories
	1.2. Properties of a Message Theory
	1.3. Coherence for Message Theories
	Bibliography

	2. Physical Monoidal Multicategories, and Shufflings
	2.1. Symmetric Multicategories
	2.2. Monoidal Multicategories
	2.3. Physical Monoidal Multicategories
	2.4. Shuffling
	2.5. Bibliography

	3. Polarization
	3.1. Monoidal Polarization
	3.2. Monoidal Polarization is Not Enough
	3.3. Polarization of a Physical Monoidal Multicategory
	3.4. Bibliography

	4. Polar Shuffles
	4.1. Polar Shuffles
	4.2. Encoding of polar shuffles
	4.3. The Multicategory of Polar Shuffles
	4.4. Message Theories are Algebras of Polar Shuffles
	4.5. Bibliography

	5. Processes versus Sessions
	5.1. Processes of a message theory
	5.2. Sessions of a process theory
	5.3. Sessions versus Processes
	5.4. Example: One-Time Pad, as a Message Session
	5.5. Case Study: Causal versus Evidential Decision Theories
	Bibliography

	Chapter 5. Conclusions and Further Work
	Conclusions
	Monoidal Context Theory
	Monoidal Message Passing
	Future Work

	Bibliography
	Appendix A. Supplementary material
	1. Coherence diagrams for a duoidal category
	2. Polycategories
	2.1. Polycategories
	2.2. The Category of Polycategories
	2.3. Polycategorical Contour
	2.4. Malleable Polycategories
	2.5. Prostar-Autonomous Categories
	2.6. Prostar Autonomous are Malleable Polycategories
	2.7. Splice of a Polycategory
	2.8. Bibliography

	Appendix B. Publications
	1. Span(Graph): a Canonical Feedback Algebra of Open Transition Systems
	2. Monoidal Streams for Dataflow Programming
	3. Promonads and String Diagrams for Effectful Categories
	4. The Produoidal Algebra of Process Decomposition
	5. Open Diagrams via Coend Calculus
	6. Collages of String Diagrams
	7. A Canonical Algebra of Open Transition Systems
	8. Profunctor Optics, a Categorical Update

	Appendix C. Curriculum Vitae
	Appendix D. Curriculum Vitae (Eesti keeles)
	Appendix E. Non-Exclusive License for Reproduction and Publication
	Blank Page
	Blank Page

