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PREFACE 

Using skin surface measurements of skeletal muscles electrical activity (surface 

electromyography or sEMG) as a human-machine interface (HMI) input, has found its way in 

a variety of robotic systems. It is also known as myocontrol. The control methods are based 

on mapping of sEMG input into robot kinematics output. Recent methods based on machine 

learning regression allow intuitive control of several degrees-of-freedom (DoFs) 

simultaneously. However, there is still no solution for robust control.  

The aim of this thesis is to develop an optimal sEMG non-linear regression method for multiple 

DoF robotic system motion estimation using multilayer perceptron (MLP) neural network.  

sEMG signal was acquired from one subject performing a series of virtual myocontrol tasks 

with high-density electrode grid. The signal was pre-processed and fed into an MLP model. 

The model performance was evaluated with cross-validation. The influence of following sEMG 

processing aspects on motion estimation accuracy were evaluated: 1) extracted features, 2) 

number of channels, 3) segmentation window size. 

This work has designed an sEMG non-linear regression method for human motion intention 

estimation for multiple degrees-of-freedom robotic control applications. The designed method 

performance corresponds to state-of-the art control techniques. The highest performance was 

provided by using a set of root mean square (RMS), waveform length (WL), zero crossings 

(ZC), slope sign changes (SSC) features; 187 sEMG channels; and 64 samples segmentation 

window. 

These results show that the designed motion estimation model and identified optimal signal 

processing parameters have potential to be used in HMI systems for intuitive robot control.  

Keywords: human-machine interface, robotics, surface electromyography, artificial neural 

networks, master thesis 
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1. INTRODUCTION 

Contemporary society relies on various types of machines in every field of human endeavor 

from household activities to spaceflight. The machines are defined as “any mechanical or 

electrical device that transmits or modifies energy to perform or assist in the performance of 

human tasks” [1]. A user operates a machine by means of human-machine interface (HMI).  

HMI enables a person to profoundly interact with a device, machine or a system [2]. The basic 

idea of the interface is to translate a user input into commands for a machine and to present 

the results to the user. An acknowledged example of an HMI device is a computer mouse [3]. 

In this system the user input, which is the arm displacement detected with a mouse, is 

converted to a command for a computer to change the pointers position on a monitor (which 

is another HMI device). Current HMIs take place in a huge variety of applications from 

changing a room light intensity to operating industrial processes in smart factories [1]. 

One trend of modern HMI which aims to allow contactless control, uses human 

electrophysiological signals as input [1]. These signals can be sensed from different body 

tissues such as muscles (electromyography), nerves (electroneuronography) or brain 

(electroencephalography). One advantage is that some of these signals, using corresponding 

measuring techniques, can be sensed at human skin surface. This provides a measuring 

device with wearability which makes it suitable for reliable and convenient HMI.  

Over the past decades, using skin surface measurements of skeletal muscles signal (surface 

electromyography or sEMG) as an HMI input has found its way in a vast variety of applications 

due to its intuitiveness and acquisition simplicity [4]. This approach is widely spread in 

biomedical engineering, bionics, and robotics. These fields develop HMI applications that may 

be remarkably valuable for physically challenged persons by providing them with functionality 

restoration. The applications use sEMG to control assistive devices such as wheelchairs or 

prostheses. Other use cases where such sEMG input is compelling are controlling of smart 

glasses or exoskeletons in production or military sites [1], [5]–[7].  

In recent years, substantial progress has been made in robotic systems motion control with 

sEMG signal input known as myocontrol. This control implies mapping muscle signals into 

robot actuator control signals. In contemporary systems this mapping employs machine 

learning (ML) approaches. In order to make sEMG-based control intuitive, the mapping should 
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provide output (i.e. robot kinematics) proportional to the input (i.e. muscles contraction 

intensity). The output can be position, velocity, or acceleration. It should also provide 

operation of several degrees-of-freedom (DoFs) simultaneously. Even though the studies in 

this field are being carried out for several decades, there is still no solution for robust real-

time simultaneous proportional control [8], [9]. 

State-of-the-art (SOA) solutions employ ML algorithms based on pattern classification 

methods that show performance of 95% and more. However, these systems are not popular 

with artificial limbs end users due to these robotic devices unnatural behavior. This behavior 

follows from the contradiction between these control algorithms and limbs natural 

movements. Natural movements are continuous and engage multiple physiological degrees 

of freedom (DoFs) at a time. On the other hand, SOA approaches only allow one DoF control 

at a time. Other approaches use direct control and state machines-based mapping but the 

number of functions that can be controlled is limited to three in these cases. [8]. These 

problems have been overcome by using ML regression approaches, which provide direct sEMG 

mapping into kinematics and hence, allow simultaneous and proportional control [10]. 

However, there is still no consensus on design factors that should be used in regression-based 

myocontrol systems to achieve the highest motion accuracy. 

To address this drawback, this thesis aims to develop an optimal sEMG non-linear regression 

method for multiple DoF robotic system motion estimation based on artificial neural network 

model. In order to accomplish this goal, the thesis will design neural network-based algorithm 

which uses laboratory-recorded sEMG signal as an input and outputs the controlled device 

kinematic signals. Additionally, it will identify how different signal processing parameters 

impact control signal performance. 

The scope of this thesis will be restricted to multilayer perceptron neural networks (MLP). 

Other types of neural networks (e.g. convolutional NNs, recurrent NNs) are not considered 

since they don’t show significant impact in sEMG-driven motion estimation comparing to MLPs 

[9], [11]. Moreover, this work’s scope will be limited to identifying the impact of sensors 

number on the estimation performance. Furthermore, only the impact of signal segmentation 

window size and features type on output signal performance will be evaluated. Other signal 

processing concepts are not considered. For the sake of generality, this work is not linked 

specifically to any particular kinematic quantity but uses kinematics term in general. 
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The remainder of this thesis is organized as follows. Chapter 2 presents the literature review 

of EMG-based HMI systems design. Chapter 3 describes how the system was developed. 

Chapter 4 presents the results of the system and Chapter 5 discusses them. Chapter 6 

concludes the thesis by summarizing the completed work, identifying designed method 

drawbacks, and describing the system future development. Appendices describe information 

related to data acquisition hardware, designed neural network hyper-parameters and received 

motion estimation plots. 
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2. LITERATURE OVERVIEW 

In order to achieve the thesis aim, the current situation in myocontrol field was investigated. 

This chapter presents bio-HMI systems field theoretical overview. 

2.1. Elements of electrophysiological HMI 

As was mentioned in the introduction, the designed HMI uses electrophysiological signal to 

control a robotic device. In general, electrophysiological HMI systems signal processing can 

be divided into 4 stages [4]: 

1. Data acquisition and data segmentation 

2. Feature extraction 

3. Classification 

4. Controller 

This setup is presented at Figure 2.1. 

 

Figure 2.1 bio-HMI main stages. Firstly, the signals are acquired from a human body. After that the 
raw signal is segmented into separate portions. This is followed by signal features extraction and 
dimensionality reduction. This feature vector is then proceeded into classification or regression 

algorithm. This produces the control signal which is fed into controlled device [4] 
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During the acquisition filtering is induced. This is done to reduce the undesirable effect of 

noise produced both by human body and acquisition electrical devices [12].   

Signal segments, produced after acquisition, are made up of specified number of samples 

which are used to extract signal features vector. By realizing the dimensionality reduction 

technique, unnecessary information may be excluded from the feature vector leading to its 

reduction. This reduced feature vector is then used as an input of a classifier or regressor 

which maps it into control signal by means of different mathematical algorithms. Lastly, 

control signals are transferred into controller to provide commands to a machine [4], [13]. 

2.2. EMG generation 

In order to design an HMI device relying on EMG signal as an input, it is necessary to 

understand the fundamental concepts of EMG generation.  

EMG signal generation starts at brain motor cortex where series of neural signals called 

cortical action potentials are generated [14]. These action potentials are transferred to the 

motor neurons located in spinal cord by means of nervous system fibres called axons. A motor 

neuron transfers this stimulus further to muscle fibers by means of motor neuron axon. One 

motor neuron can be connected to several muscle fibers. The combination of a motor neuron, 

its axon and muscle fibers to which the axon is connected is called the motor unit, which is 

the smallest controllable muscular unit (Figure 2.2) [15], [16], [17]. 

The action potential signal is transferred through the nervous system to the muscle fibers 

basing on the electro-chemical principles. Outside a neuron and its axon, there is a positively 

charged electrolyte containing Sodium ions. Inside of them, there is an electrolyte containing 

positively charged Potassium ions and negatively charged protein cells. These electrolytes are 

separated with the neuron membrane providing a potential difference between inner and 

external surfaces of a cell, making it polarized. 
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Figure 2.2: Motor unit illustration. Axons of motor neurons extend from the spinal cord to the muscle. 

There each axon divides into a number of axon terminals that form neuromuscular junctions with muscle 
fibers scattered throughout the muscle. Adapted from: MARIEB, ELAINE N.; HOEHN, KATJA N., HUMAN 

ANATOMY & PHYSIOLOGY, 9th, ©2013. Reprinted by permission of Pearson Education, Inc., New York, 
New York  

The cell contains “gates” at membranes which open due to different stimuli (electrical, 

chemical or mechanical). They make ions move across a membrane changing the voltage 

across it and making the cell to depolarize. When the cell is depolarization level is above the 

threshold, it causes a chain reaction: a depolarized region of the a membrane causes “gates” 

opening in further regions of axons membrane, this, in turn, causes the further gates opening 

and depolarization, making the signal to transmit through nerves and axons[18], [19], [20]. 

This process is illustrated at Figure 2.3. The plot of an action potential with its different phases 

is presented at Figure 2.4. These action potentials are further transmitted to muscle fibers, 

as was described previously. 

Transmitted to muscle fibres, action potential starts an electrochemical reaction there. These 

reactions provide muscle contractions. The contraction intensity is proportional to a motor 

neuron fire rate and number of motor units excited [21].  
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Figure 2.3: Action potential transmission via axon. (a) In response to a signal, the soma end of the axon 
becomes depolarized. (b) The depolarization spreads down the axon. Meanwhile, the first part of the 
membrane repolarizes. Because sodium channels are inactivated and additional potassium channels 

have opened, the membrane cannot depolarize again. (c) The action potential continues to travel down 
the axon. Adapted from [18] 

 

Figure 2.4: Action potential plot with phases. When activation exceeds a threshold level due to local 
potential change, the depolarization phase starts by opening sodium voltage gates. When they are 
closed, potassium gates open, starting the repolarization phase and decreasing the voltage. This voltage 

drop continues until the hyperpolarization phase when voltage gated potassium channels remain open. 
After that the potential returns to its resting level. Adapted from [18] 



17 

 

 

Surface EMG (sEMG) technique is used in order to sense the action potentials transmitted into 

muscle fibers. As far as hundreds of motor neurons are usually connected to a muscle, surface 

electrodes senses not separate action potentials illustrated at Figure 2.4 but a combination of 

them. Individual action potentials combined in sEMG signal are attenuated due to volume 

conduction issues. Body tissues located between signal source and sensor such as bones, 

muscles, fat, skin have different electrical resistance and capacitance.  Original action 

potentials change their amplitude and frequency during transmission through these tissues 

[9].  

2.3. sEMG acquisition 

In order to acquire sEMG, a special equipment, which is described in this section, should be 

used. This equipment includes sensors and signal amplifier [4]. This section also describes 

the procedure of sensor placement and experiment setup. 

Sensors used in sEMG-based applications provide non-invasive technique for detection and 

measurement of EMG signal. There are also invasive electrodes, but they are not reliable for 

convenient HMI and are mostly used for clinical studies [22].  

sEMG sensors are based on conductive measurement principle which supposes direct physical 

contact of electrodes and user skin [23]. There are sensors utilizing other measurement 

principles but they meet serious drawbacks such as low signal-to-noise ratio for capacitive 

EMG (cEMG) sensors and signal drifting for tactile myography (TMG) sensors [24], [25]. 

sEMG electrodes can be passive or active. Passive ones should be connected to external 

circuitry in order to provide muscles signal acquisition. Active electrodes contain in-house pre-

amplifier. They provide pre-conditioned signal to the rest of the circuitry [22]. 

Electrode material should ensure good skin-electrode contact, low impedance and stable 

behavior in time. The most of commercially available electrodes are manufactured of silver, 

silver chloride, gold, tin and stainless steel [23].  
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There are three types of sEMG electrode configurations: monopolar, bipolar, and multipolar. 

Monopolar implies using single skin electrode with respect to reference electrode placed on 

electrically neutral tissue such as bone. This arrangement is not recommended because it 

detects all electrical signals under the electrode surface, including muscle crosstalk, leading 

to highly noisy recordings [22], [23]. Bipolar configuration uses two EMG detecting surfaces 

and a reference electrode. It implies a differential amplifier which outputs amplified difference 

of two recorded signals. This eliminates the common noise components in two signals 

overpassing the limitations of monopolar arrangement. Multipolar configuration uses more 

than two skin surfaces to detect the muscle signals. It further increases the acquired signal 

quality [22]. These configurations are presented at Figure 2.5. 

 

Figure 2.5 sEMG acquisition configurations. (a) Monopolar configuration. Detection surface signal is 
amplified with respect to reference electrode signal. (b) Bipolar configuration. The difference of two 
detection surface electrode signals is amplified with respect to a reference. Adapted from [22] 
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H.J. Hermens et al. [23] have developed a set of recommendations for setting sEMG sensors 

in related applications basing on different criteria: the electrodes conductive area should not 

exceed 10 mm in the direction of muscle fibers; the center-to-center distance between two 

electrodes should be 20 mm or one quarter of a muscle fiber length in case of applying to a 

small muscle; using pre-gelled electrodes made of silver (Ag) or silver chloride (AgCl) is 

recommended; the mechanical design of the sensor should allow fixed inter-electrode 

distance and light weight. All electric cables should be fixed in order to avoid pulling artifacts. 

Signal amplifier is used in order to provide the signal detection and recording for further 

manipulations. The signals acquired are filtered, amplified, and digitally converted.   

A typical sEMG representation in time and frequency domains is presented at Figure 2.6. The 

bandpass frequency for the sEMG signal ranges from 10 and 20 Hz (high-pass filtering) to 

between 500 and 1000 Hz (low-pass filtering) [12], [26]. High-pass filtering is necessary to 

reduce the effect of motion artifacts which are usually comprised of low-frequency 

components (less than 10 Hz). Low pass filtering is required to remove high-frequency 

components to avoid signal aliasing. To avoid the effect of power lines noise (50 or 60 Hz), a 

sharp notch filter should be used [26]. The described filters are recommended to be of the 

2nd order to provide adequate data [12], [22]. 

Amplification is necessary to optimize the resolution of the recording or digitizing equipment. 

High-quality amplifiers have adjustable gains of magnitudes between 100 and 10000 to 

maximize sEMG signal-to-noise ratio. This range provides sufficient amplification of the whole 

sEMG dynamic range which is 50 µV – 5 mV [26].  

A 16-bit digitizing system is recommended to be used for sEMG signal processing [27]. 

Additionally, a convention recommends using sampling rate of 800 – 1000 Hz [28], however 

several researches claim that sampling rates should be at least 3 times higher than the 

maximum signal component frequency [29], [30].  
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Figure 2.6: sEMG in different domains. (a) Time domain. Raw surface EMG recording for three successive 
contractions of m. rectus femoris. Adapted from [31]. (b) Frequency domain. A typical single-sided 

spectrum of sEMG signal. Adapted from [32] 

 

Sensor placement procedure for experimental data acquisition consists of next steps [23]: 

1. Selection of sEMG sensors. 2. Skin preparation. 3. Positioning of a patient. 4. Determination 

of sensor location. 5. Sensors placement and fixation 6.Connection test. 
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2.4. sEMG segmentation and features extraction 

The raw sEMG signal contains valuable information in a particularly useless form. In order to 

extract this information, the data is divided into representative segments. These segments 

represent some number of the recorded data samples. The number of data samples in each 

segment is known as “window length” [33]. 

There are different techniques of sEMG signal segmentation techniques shown in Table 2.1.  

Table 2.1 sEMG Data segmentation techniques [4] 

No Segmentation technique Short description 

1 Disjoint segmentation 
Separate data segments with pre-defined window length 

are used 

2 Overlapped segmentation 
Segments have a predefined fixed length. A new segment 

slides over the current segment. 

3 
Window with constant length and 

maximum value and mean 
absolute value of the EMG signal 

A certain threshold is calculated based on maximum 
value and the mean absolute value of the whole EMG 

signal. Peaks over the defined threshold are considered 
as the candidate segments 

4 
Sliding time window and mean 

slope 

If the mean slope of a signal exceeds a certain threshold, 

the beginning of a segment is detected. The end of the 

segment is detected when the total variation of a signal 
falls below another threshold 

 

It was shown that disjoint segmentation and overlapped segmentation allow real-time 

applications due to reasonable response time and high performance during sEMG classification 

[4]. The overlapped technique has advantages comparing to disjoint segmentation because 

it shortens the response time and provides nearly the same accuracy [4].  

There are three types of features that are used in EMG control applications [4], [34]: time 

domain, frequency domain, and time-frequency domain features. 

Time-domain features provide a measure of waveform amplitude, frequency and duration. 

Frequency domain features are based on signal’s estimated power spectrum density (PSD). 

Comparing to time domain feature, they require more computational time. Time-frequency 

domain features can utilize signal power in both time and frequency providing a more accurate 
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description on physical phenomena, however, as like as frequency features, they are 

computationally heavy due to required transformations. The vast of them is presented further 

[4]. 

Integrated EMG (IEMG): 

 𝐼𝐸𝑀𝐺𝑘 =∑|𝑥𝑖|

𝑁

𝑖=1

, (2.1) 

where 𝑥𝑖 - the value of each part of the segment 𝑘, 

𝑁 - the length of a segment (i.e. window length). 

 

Mean absolute value (MAV): 

 𝑀𝐴𝑉𝑘 =
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

  (2.2) 

 

Modified mean absolute value 1 (MMAV1): 

 𝑀𝑀𝐴𝑉1𝑘 =
1

𝑁
∑𝑤𝑖|𝑥𝑖|

𝑁

𝑖=1

,  (2.3) 

𝑤𝑖 = {
1,   0.25 𝑁 ≤ 𝑖 ≤ 0.75 𝑁

0.5,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Modified mean absolute value 2 (MMAV2): 

 𝑀𝑀𝐴𝑉2𝑘 =
1

𝑁
∑𝑤𝑖|𝑥𝑖|

𝑁

𝑖=1

,  (2.4) 

 𝑤𝑖 = 

{
 
 

 
 
1,   0.25 𝑁 ≤ 𝑖 ≤ 0.75 𝑁

4𝑖

𝑁
,   0.25 𝑁 > 𝑖

4(𝑖 − 𝑁)

𝑁
,   0.75 𝑁 < 𝑖
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Mean absolute value slope (MAVS): 

 𝑀𝐴𝑉𝑆𝑘 = 𝑀𝐴𝑉𝑘+1 −𝑀𝐴𝑉𝑘 (2.5) 

Variance (VAR): 

 𝑉𝐴𝑅𝑘 =
1

𝑁
∑(𝑥𝑖 − �̅�)

2

𝑁

𝑖=1

  (2.6) 

where �̅� - mean value of the segment 𝑘. 

 

Waveform length (WL): 

 𝑊𝐿𝑘 = ∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖=1

 (2.7) 

Root mean square (RMS): 

 𝑅𝑀𝑆𝑘 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 (2.8) 

 

Zero crossings (ZC):  

 

𝑍𝐶 = 𝑍𝐶 + 1, 

if (𝑥𝑖 > 0 and 𝑥𝑖+1 < 0) 

or (𝑥𝑖 < 0 and 𝑥𝑖+1 > 0) 

and |𝑥𝑖 − 𝑥𝑖+1| ≥ ϵ 

or |𝑥𝑖 − 𝑥𝑖−1| ≥ ϵ, 

(2.9) 

 

where ϵ - a threshold, 
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Slope sign changes (SSC): 

 

𝑆𝑆𝐶 = 𝑆𝑆𝐶 + 1, 

if (𝑥𝑖 > 𝑥𝑖−1 and 𝑥𝑖 > 𝑥𝑖+1) 

or (𝑥𝑖 < 𝑥𝑖−1 and 𝑥𝑖 < 𝑥𝑖+1) 

and |𝑥𝑖 − 𝑥𝑖+1| ≥ ϵ 

or |𝑥𝑖 − 𝑥𝑖−1| ≥ ϵ 

(2.10) 

 

 

Willison amplitude (WAMP): 

 𝑊𝐴𝑀𝑃𝑘 = ∑ 𝑓(|𝑥𝑖+1 − 𝑥𝑖|)

𝑁−1

𝑖=1

, (2.11) 

𝑓(𝑥) = {
1,   𝑥 > 𝜖

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

Simple square integral (SSI): 

 𝑆𝑆𝐼𝑘 = ∑|𝑥𝑖
2|

𝑁

𝑖=1

, (2.12) 

 

Once the feature vector is obtained it is necessary to exclude the redundant data from it and 

reduce its dimensionality. There are two main ways of dimensionality reduction [4]. First one 

is feature projection. The idea of this strategy is to specify the best original features 

combinations to form a new feature set. It can be achieved by using principal component 

analysis (PCA) which produces an uncorrelated feature set by projecting the data onto the 

eigenvectors of the covariance matrix. The second is feature selection. This strategy is based 

on choosing the best subset of the original features vector according to some criteria. Usually, 

researchers use class separability criteria. 
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2.5. Classification and regression approaches in myocontrol 

Myocontrol systems use sEMG features as input to machine learning models [4]. These models 

map those inputs into robotic system kinematics. The mapping implies individual robot 

degree-of-freedom activations correspondingly to sensed input [35]. The input varies basing 

on different human motions as they provide different muscle contractions and hence different 

sEMG recordings [10], [36].  

Currently, the mostly used models involve classification and regression techniques [4], [10], 

[37]. Classification associates inputs to unique labeled categories (classes) of outputs [38]: 

 𝑦𝑐 = 𝑓𝑐(𝒙, 𝜽𝑐),   𝑦𝑐 ∈ Ζ, (2.13) 

where 𝒙 – new observation as a feature vector, 

𝑦𝑐 – the category that the new observation belongs to, 

𝑓𝑐(⋅) - trained classification function, 

𝜽𝒄 – classification function parameter set, 

Ζ – the set of class labels. 

 

In case of myocontrol, these classes may represent unique kinematic quantities or actions of 

controlled device degrees-of-freedom (DoFs) [34]. Discrete output makes classification 

models unsuitable for multiple DoFs robots simultaneous and proportional control [8]. The 

most commonly used sEMG classifiers are discussed at Table 2.2 [4] 

Table 2.2 sEMG classifiers and their description 

No Classifier Short description 

1 Artificial neural 

networks 

ANNs are able to represent both linear and non-linear relationships and 

learn them directly from data being modeled. This type of classification 
also meets the real-time constraints which is extremely important in 

control devices [4]. 

2 Linear 
discriminant 

analysis 

It is used when a vast variety of features are used as a classifier input. Its 
advantage is reduction of computational complexity due to input 

dimensionality reduction [4] 

3 Bayesian 
classifier 

BC is based on applying the Bayes theorem with strong independence 
assumptions between the features [4]. 
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Table 2.3 sEMG classifiers and their description continued 

4 Fuzzy logic FL classifiers are used for sEMG signals due to these signals unrepeatability. 
Fuzzy approaches employ tolerance of imprecision, uncertainty and partial 
truth which provides an opportunity to design a reliable control system [4] 

5 Support vector 
machine 

SVM is a kernel-based approach which is used in machine learning tasks 
demanding classification. It is also used in regression applications [4] 

6 Hidden Markov 

model 

HMM is a statistical model in which the system being modeled is assumed to 

be a Markov process with unobserved states [4] 

7 K-nearest 
neighborhood 

KNN is an algorithm that stores all available cases and classifies new cases 
based on a similarity measure [4] 

 

In contrast to classification, regression models provide continuous outputs [38]: 

 𝑦𝑟 = 𝑓𝑟(𝒙, 𝜽𝑟),   𝑦𝑟 ∈ 𝑅, (2.14) 

where 𝒙 – new observation as a feature vector, 

𝑦𝑟 – the output, 

𝑓𝑟(⋅) - trained regression function, 

𝜽𝑟 – regression function parameter set. 

 

The major difference to classification is that a regressor does not decide for a certain class 

but instead estimates a continuous output value for each DoF. This continuity feature of 

regression models makes them significant in myocontrol applications for multiple DoFs robotic 

systems [39]. It provides them with proportional and simultaneous control [10], [11], [40]. 

Several linear and non-linear regression models are usually used in sEMG-based HMI systems 

[10], [11], [39]. They are described at Table 2.4 sEMG regressors and their description 

 

 

 



27 

 

Table 2.4 sEMG regressors and their description 

No Regressor Short description 

1 Linear regression 
(LR) 

Provides a linear a relationship between dependent variables (kinematics 
estimation in case of sEMG-based robotics control) and independent 

variables (sEMG signal) [39]. 

2 Mixture of linear 
experts 

An extension of LR that provides non-linear relationship between 
dependent and independent variables. It is more physiologically 

corresponding to human natural motion [39]. 

3 Kernel ridge 
regression 

Another extension of LR. Provides solving non-linear dependencies with 
linear methods by making space transformations [39]. 

4 Artificial neural 
networks 

ANNs can represent both linear and non-linear relationships. Similar to 
classification, they are reliable for real-time applications [10], [39]. 

5 Non-negative 
matrix 

factorization 

This method decomposes a non-negative input matrix into two low-rank 
matrices that are also non-negative. This decomposition makes this 

approach valuable for real-time control applications [35] 

 

Data used for ML algorithms implementation is generally divided into two sets – training and 

test ones. Training dataset is used to fit model parameters during model learning and test set 

is used to assess the performance of fitted model [41].  

Both these datasets consist of inputs and desired outputs, known as targets. As was 

mentioned earlier, in case of myocontrol the input data is sEMG features vector and the target 

data contains desired robot kinematic control signals [10], [25]. 

2.6. Multilayer perceptron (MLP) neural networks  

A multilayer perceptron is a feedforward artificial neural network model that maps a set of 

input data into a set of appropriate outputs [42]. An MLP consists of at least three layers with 

each layer connected to the next one. A layer consists of units (also known as neurons or 

nodes). Each neuron in one layer connects to every neuron in the following layer with a certain 

weight 𝑤. Units perform a biased weighted sum of their inputs and pass this activation level 

through a transfer function (or activation function) to produce their outputs [43], [44].  

The number of NN layers and neurons in them defines neural network architecture. The typical 

architecture of an MLP is presented at Figure 2.7. 
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Figure 2.7 General MLP neural network architecture [45]. The network consists of neurons divided into 
four layers – one input layer, two hidden layer and one output layer 

 

A neuron activation function should be differentiable in order to guarantee NN proper 

learning [43]. An equation of a neuron output is next [44]: 

 𝑎𝑗
𝑙 = 𝑓 (∑𝑤𝑗𝑘

𝑙

𝑘

⋅ 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙), (2.15) 

where 𝑎𝑗
𝑙 – activation of the j-th neuron in the l-th layer, 

𝑓(⋅) – neurons activation function, 

 𝑤𝑗𝑘
𝑙  – synaptic weight of connection between j-th neuron in l-th layer and k-th 

neuron in (l-1)-th layer, 

𝑎𝑘
𝑙−1 – activation of the k-th neuron in the (l-1)-th layer, 

𝑏𝑗
𝑙 – bias of the j-th neuron in the l-th layer. 

 

A supervised training is the process of providing a network with input data and relating this 

data with desired network output. Back propagation algorithm is used to train MLPs. The 

training consists of two phases [45]: 

1. Forward phase includes propagation of the input signal in the network layer-by-layer 

until it reaches the output. During this propagation, the synaptic weights and biases 

values are fixed. 
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2. Backward phase produces the error signal by comparing the desired output of the 

network (target) with the actual output. This error signal propagates in the network 

layer-by-layer in the backward direction. During this phase, the values of weights and 

biases (also known as network parameters) are adjusted corresponding to the error 

signal. 

A cost function (also known as performance function) is an equation which is used to 

quantify how close the NN output to its target [44]. It is used in backpropagation to compute 

the output layer error signal [46]. A cost function is of the form 

 𝐶(𝑊, 𝐵, 𝑥, 𝑡),  (2.16) 

where 𝑊 – network’s weights, 

𝐵 – network’s biases, 

𝑥 – input of a single training sample, 

𝑡 – desired output of that training sample. 

 

In order to be used in backpropagation, a cost function must follow 2 requirements [44]:  

1. It must be able to be written as an average over cost functions for individual training 

samples: 

 𝐶 =
1

𝑛
∑𝐶𝑥
𝑥

,  (2.17) 

where 𝐶𝑥 – cost function for individual training sample, 

𝑛 – total number of training samples. 

 

2. It must not be dependent on any activation values of a neural network besides the 

output layer values 𝑎𝐿. 

Optimization algorithms (or training functions) are used in order to adjust NN weights and 

biases during backward phase of back propagation algorithm. These functions are iterative 

optimization techniques that minimize NN cost function [44]. The optimization problem which 

is being solved with backpropagation algorithm is formulated next way [47]: 
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 �̂� =  arg min
𝑣
𝐶(𝑣),  (2.18) 

where �̂� – networks parameters estimated value that minimizes cost function 𝐶(⋅), 

 𝑣 – network’s parameters (weights and biases) 

 

Gradient descent method is an instance of an optimization technique. Given some cost 

function and its initial parameters gradient descent calculates the updated values of its 

parameters with next equation [48]: 

 
𝑣′ = 𝑣 − 𝜂 ⋅ ∇𝐶(𝑣), (2.19) 

where 𝑣′ - value of parameters on current iteration, 

𝑣 – value of parameters on previous iteration, 

𝜂 – learning rate, 

∇𝐶(⋅) – cost function gradient. 

Generally, backpropagation algorithm iterates until the limit number of iterations (also called 

epochs) is reached. There are other criteria of algorithm termination which are listed in 

Section 3.8. 
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3. MATERIALS AND METHODS 

This chapter describes the procedure of designing an MLP-based regression method used to 

map high-density sEMG signal into four robot degrees-of-freedom control signals.  

3.1. Experimental hardware 

Sensors. As far as this work aims to evaluate how the number of data channels influences 

motion estimation performance, a high-density sEMG sensors grid was used. High-density 

sEMG sensors also provide flexibility in recording by reducing influence of different factors 

which can render individual signals unreliable [36], [35]. 

In this work three ELSCH064NM3 8-by-8 electrode matrices (OT Bioelettronica, Italy) were 

used. Each matrix has 64 electrodes (8 columns and 8 rows), ending up with 192 sEMG data 

channels in total. The inter-electrode distance is 10 mm. An electrode matrix is presented at 

Figure A1.1 . These electrode matrices were placed around subject’s forearm. 

The signal amplifier used for data acquisition during the experiment is a commercial 

biosignal amplifier Quattrocento (OT Bioelettronica, Italy). Its layout is presented at Figure 

A1.2. During the experiment it was connected to a PC. Computer-amplifier setup scheme is 

presented at Figure A1.3. The amplifier was set to the following properties [49]: 

• Fixed gain: 150 V/V; 

• Maximum input range: 33 mVPP; 

• Noise level referred to input: less than 4 µVRMS; 

• Input resistance: 1011 Ω; 

• Common-mode rejection ratio: 95 dB; 

• Output range: 0-5 V; 

• Insulation voltage: 4000 VDC. 

• High pass filter frequency: 10 Hz; 

• Low pass filter frequency: 900 Hz; 

• A/D conversion resolution: 16 bits; 

• Sampling frequency: 2048 Hz; 
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Channel adapters AD1x64 (OT Bioelettronica, Italy) were used to connect sEMG electrode 

grids to signal amplifier inputs. They include instrumental pre-amplifier for each channel. The 

pre-amplifiers positive inputs receive signal from the electrode and negative signal is received 

from the reference signal [49].  

To provide a signal grounding, two reference electrodes were also attached to subject’s wrist 

by means of attachable strips. One of them grounds channel adapter pre-amplifiers and 

another was used for the rest of electrical circuitry grounding. The purpose of having a 

separate reference for adapter pre-amplifiers is to provide them with similar common mode 

signal of sEMG electrodes [49]. 

3.2. Experimental software 

In order to correlate subject muscle contractions sEMG signals with controlled degrees-of-

freedom (DoFs) target kinematics, a special software developed in MATLABTM (MathWorks, 

USA, ver. 2019b) was used during sEMG acquisition. It provided the subject with visual cue 

when it was necessary to articulate any motion. An example of a prompt is presented at 

Figure 3.1. The software was used to link user wrist motions and control signals of DoFs listed 

at Table 3.1. This kind of software allowed obtaining of target data without recording of real 

robot kinematics. 
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Figure 3.1 Visual prompt used to acquire data. Red line moved along a trajectory with two ramps 
prompting a subject to increase or decrease their muscles contraction intensity. Black line represented 

target kinematic control signals for individual degrees of freedom. Control signals varied in direction. 
Opposite control signal directions corresponded to antagonist user movements (see Table 3.1)  

3.3. Experimental procedure 

One able bodied male participant (23 years old, dominant left side) was seated comfortably 

in a chair, one meter in front of a PC monitor. Pre-sanitized and pre-gelled electrode matrices 

described in Section 3.1 were applied to subject’s dominant forearm at a distance of one-third 

of a forearm length from an elbow. The hand was extended and pointed down at a side. 

Reference straps were also attached to patient forearms closer to a wrist. After that electrodes 

were connected to the signal amplifier by means of adapters. Then the experimental software 

described at Section 3.2 was run providing subject with visual cues when perform muscle 

contractions. One degree of freedom motion was articulated at a time. In total, four degrees 

of freedom control signals were extracted. The types of motions performed by user, their 

sequence, relations with controlled DoFs and number of trials are described at Table 3.1. 

sEMG and targets data related to each DoF control were divided into separate datasets in 

order to be used later during signal processing.  
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Table 3.1 User movements and corresponding controlled DoFs  

No User movement 
Controlled degree-

of-freedom 
Number of attempts 

1 
Wrist flexion 

DoF 1 12 
Wrist extension 

2 
Radial deviation 

DoF 2 13 
Ulnar deviation 

3 
Pronation 

DoF 3 13 
Supination 

4 

Fist closing 

DoF 4 12 Fist opening 

 

This data acquisition procedure resulted in obtaining four sets of synchronized input and target 

data. Each set was related to individual DoF. These data sets are described at Figure 3.2. 

Each user motion activated forearm muscles differently. Figure 3.3 presents those activation 

levels. They represent RMS values (2.8) calculated for the ranges of samples related to 

separate contractions which user executed during the experiment. These values were 

calculated for each of 192 channels of the electrode grid.  
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Figure 3.2 Collected data description. (a) General collected data array consists of four DoF-wise 
separated subsets. Each subset contains 192 sEMG signal vectors and 1 targets vector. (b) Plots of 

vectors contained in DoF 1 subset. Input vectors of muscle contractions activity are synchronized with 
target output vector 
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 Figure 3.3 DoF-wise activation maps. Each channel activation value was normalized with respect to 
the most active channel in the array during each contraction, the maximum value in each array was 1. 
The spatial location of each channel can be specified according to forearm anatomical notations, e.g. 
“Dist” arrow points to fingers, “Prox” points to torso; tangential channel location can also be estimated 
by corresponding notations (“ulnar bone”, “radial bone” etc.) 
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3.4. Signal filtering 

As was discussed in Section 2.3, besides the signal originated in muscles, sEMG recording 

also contains noise components which should be eliminated. They foul the signal and may 

lead to its wrong interpretation [12].  

Signal power spectrum was obtained to estimate the presence of noise components and to 

design appropriate digital filters. The spectrum was calculated with Fast Fourier Transform 

using sEMG recording from the first electrode data channel. The spectrum is shown at Figure 

3.4. 

 

Figure 3.4 sEMG signal single-sided power spectrum. The signal has dominant noise components at 
frequencies below 20 Hz. A highlighted peak in amplitude when frequency is 50 Hz occurs due to line 
noise component 

Basing on the obtained spectrum and on the fact that the most significant information included 

into sEMG signal presents in a frequency range of 20 to 350 Hz [12], digital filters were 

designed. The filters parameters are presented at Table 3.2. 

Band-pass filter used in this work has a range of frequencies of 25-350 Hz. It is the 6th 

order infinite impulse response (IIR) Butterworth filter. Its magnitude response is presented 

at Figure 3.5.  
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Figure 3.5 Passband filter magnitude response. The signal component amplitudes within the range of 
frequencies from 25 to 350 Hz are diminished 

Notch filter was used in this study to eliminate the effect of signal distortion occurring at 

signal 50 Hz components. It is the 2nd order Butterworth IIR filter with cut-off frequencies of 

45 and 55 Hz respectively. Notch filter magnitude response is shown at Figure 3.6. 

 

Figure 3.6 Notch filter magnitude response. The signal component amplitudes within the range of 

frequencies from 45 to 55 Hz are diminished 
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Table 3.2 Designed filters coefficients and gains 

No Filter type Section no Numerator coefficients Denominator coefficients Gain 

1 Bandpass filter Section 1 [1,00, 0,00, -1,00] [1,00, -1,93, 0,93] 0,40 

Section 2 [1,00, 0,00, -1,00] [1,00, -0,76, 0,44] 0,40 

Section 3 [1,00, 0,00, -1,00] [1,00, -1,24, 0,25] 0,35 

2 Notch filter Section 1 [1,00, -1,98, 1,00] [1,00, -1,95, 0,97] 0,95 

 

During the sEMG recording, some signals were distorted due to loosen electrode-skin contact. 

An example of such a recording is presented at Figure 3.7. It demonstrates how data acquired 

with loosen channel differs to data collected with properly connected ones.  

During the visual analysis of collected data, five channels were identified as spoiled. They 

were excluded from further signal processing.  

 

Figure 3.7 sEMG channels recordings. Electrode 161 was detached from patient skin during the 
experiment which led to inadequate data recordings. It could not be used for further processing 
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3.5. EMG Segmentation and Features Extraction 

As Sections 2.4, 2.5 discuss, sEMG signal should be segmented and its features should be 

extracted from these segments in order to be used in myocontrol applications. This section 

describes signal segmentation parameters and features used in present work. 

Overlapped segmentation was utilized in this study. It relies on two parameters: segmentation 

windows size 𝑠 and windows overlap с. As a rule of thumb, the overlap с is admitted being two 

times less than window size: 

  с(𝑠) =
𝑠

2
,  (3.1) 

where 𝑠 – segmentation window size. 

The following sEMG signal features were used throughout this work: Waveform length (2.7), 

Root mean square (2.8), Zero crossings (2.9), Slope Sign Changes (2.10). Table 3.3 describes 

them. These features were chosen since they encode different types of information about the 

signal individually[50]. 

Because they describe all the signal time-domain properties such as amplitude, power and 

frequency 

Features extraction decreases the size of initial sEMG vectors proportionally to segmentation 

windows size and their overlap, so the resulting feature vectors length 𝑙𝑓 is: 

 𝑙𝑓 =
𝑙𝐸𝑀𝐺
𝑑
,  (3.2) 

where 𝑙𝐸𝑀𝐺 – length of each sEMG data vector, 

𝑑 = 𝑠 − 𝑐. 
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Table 3.3 Description of sEMG features used in present work [34], [51]  

No Feature Description 

1 
Waveform 

length (WL) 
This feature provides a measure of signal amplitude, frequency, and 

duration. 

2 
Root mean 

square (RMS) 
This feature represents the square root of sEMG signal average power over 

segmentation window.  

3 
Zero crossings 

(ZC) 

This feature is the number of times a signal changes its sign within a 
segmentation window. The resultant value of this feature provides a 

measure of signal frequency. 

4 
Slope Sign 

Changes (SSC) 

This feature is the number of times a signal changes its slope within a 
segmentation window. The resultant value of this feature also provides a 

measure of signal frequency. 

 

Features extraction provides construction of MLP input data array. This array consists of I 

vectors: 

  𝐼 = 𝐶 ⋅ 𝐹,  (3.3) 

where 𝐶 – number of sEMG data channels, 

𝐹 – number of features that are extracted from the signal. 

3.6. Acquired data sorting and preparation 

Targets shape was changed to step-like form. Figure 3.9 illustrates this modification for a 

DoF 2 movement. This reshaping was motivated by fact that such kind of targets provides 

less computational complexity to a neural network algorithm [44]. Reshaped targets are only 

used for NN training. Original targets were used for testing purpose. This modification is 

illustrated at Figure 3.9. 

Resizing of target arrays was done to make their length equal to input data vectors. 

According to (3.2), each feature vector has length of lf . In order to equalize input and target 

sizes, only each d-th (3.2) target data sample should be considered. This modification is also 

illustrated at Figure 3.9. Original targets were not resized in order to be used for NN test. 

Movement-wise segmentation was done to provide flexibility in training and testing data 

sets construction. As described at Table 2.1, a subject performed 12 full hand movements for 
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DoF 1 control, 13 for DoF 2, 13 for DoF 3, and 12 for DoF 4. Each full movement consisted of 

two contractions implying individual DoF control in opposite directions.  

This segmentation was also applied to signal feature vectors providing motion-wise split of 

input and output data for each DoF. Separated targets datasets are illustrated at Figure 3.8. 

A motion-related inputs and modified targets arrays have length lDxm, where D relates to 

controlled degree-of-freedom (D=1…4) and m relates to motion  repetition. 

 

Figure 3.8 Movement-wise divided data sets. For every DoF, each motion data were segmented. The 

data consists of input and target sub-sets. Input data is compiled of extracted sEMG features. Target 
data consists of robot DoFs kinematics. Notations in parentheses represent user control motions 
responsible for corresponding DoF-s control: Flex – flexion, Ext – extension; Rad – radial deviation, Ul 
– ulnar deviation; Pro – pronation, Sup – supination; Clo – fist closing, Ope - fist opening 
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Figure 3.9 Segmented data instances. (a) Instance of 13th motion related input data for DoF 2 control. 
Input array consists of I feature vectors which is related to number of extracted features F and sEMG 

channels considered. (b) Instance of 13th motion related target data for DoF 2 control. Modified targets 
size differs to original ones. Their shape is also different 
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3.7. Neural network data management 

To achieve proportional simultaneous control over multiple degrees-of-freedom, previously 

segmented data provided at Figure 3.8 should be arranged into training and test sets. This 

section discusses these sets construction, which is illustrated at Figure 3.11.  

Training data set is used during an ANN learning. It is composed of sEMG feature vectors 

as inputs and different robotic DoFs modified kinematics as targets. Inputs data array has 

dimensions of I rows (3.3) and 𝐿𝑡𝑟 (3.4) columns. Targets array consists of 4 rows and 𝐿𝑡𝑟 

columns. The number of each DoF motion data involved into this array is presented at Table 

3.4. 

 𝐿𝑡𝑟 = ∑ ∑ 𝑙𝐷𝑚 𝑖

𝑀𝐷 𝑡𝑟

𝑖=1

4

𝐷=1

,  (3.4) 

where 𝐷 – number of controlled DoF, 

𝑀𝐷 𝑡𝑟 – number of motions used for training, 

𝑙𝐷𝑚 𝑖 – individual motions length.  

 

Test data set is composed of the same types of data. Its dimensions are I rows and 𝐿𝑡𝑒𝑠𝑡 

(3.5) columns for inputs and 4 rows and 𝐿𝑡𝑒𝑠𝑡 columns for targets. The number of each DoF 

motions data involved into this array is also presented at Table 3.4. 

 𝐿𝑡𝑒𝑠𝑡 = ∑ ∑ 𝑙𝐷𝑚 𝑖

𝑀𝐷 𝑡𝑒𝑠𝑡

𝑖=1

4

𝐷=1

,  (3.5) 

where 𝐷 – number of controlled DoF, 

𝑀𝐷 𝑡𝑒𝑠𝑡 – number of motions used for test, 

𝑙𝐷𝑚 𝑖 – individual motions length.  
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Table 3.4 Number of DoF motions data used for training and testing  

Degree-of-freedom 
number 

Number of training data 
𝑴𝑫 𝒕𝒓 

Number of test motions data 
𝑴𝑫 𝒕𝒆𝒔𝒕 

1 10 2 

2 11 2 

3 11 2 

4 10 2 

 

Estimation results should be resized and smoothed. Resizing is necessary as far as original 

targets were reduced correspondingly to extracted features as was described in Section 3.6. 

To return motion estimates to original targets size, each instance of NN output should be 

sequentially copied d times. It is illustrated at Figure 3.10. This procedure is necessary to 

recreate the original sensors sampling rate as far as the DoFs control is based on it. 

 

Figure 3.10 Data array resizing. Each instance of original array is reproduced d times in modified 
array. Instances original order is preserved 

After size modification, the NN outputs were also smoothed using moving average technique. 

It is described with (3.6).  

  𝑦𝑚[𝑛] =
1

𝑁
∑ 𝑦[𝑛 + 𝑖],

𝑁−1

𝑖=0

 (3.6) 

where 𝑦𝑚[𝑛] – averaged output instance result at instance 𝑛, 

𝑁 – averaging window length, 

 𝑦[𝑛 + 𝑖] – original output value at instance 𝑛 + 𝑖. 
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Besides smoother output, this kind of filtering provides control delay. In order to achieve a 

trade-off between control signal smoothness and speed, window length was set to be 300 

samples (around 150 milliseconds) which is suitable for myocontrol [10], [35].  

 

Figure 3.11 Training and test NN data sets structure. Every consists of input and target subsets. Input 
subsets contain pre-defined number of motion-related input arrays. Corresponding modified DoF 
kinematics are contained into target subset. They should be sustained with zero target vectors to 
represent the absence of any motion during other DoF-s control.                                                    

(a) Training set containment. (b) Test set contains  
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3.8. MLP neural network 

Architecture of the used network is presented at Figure 3.12. The input layer is consisted of 

I neurons, calculated with equation (3.3). Each input neuron is provided with an sEMG signal 

feature. 

Hidden layer contains 10 neurons. This value is assigned by a heuristic that 2 neurons 

estimate control signal for each DoF in positive and negative directions respectively, summing 

up as 8 neurons. Other two neurons are meant to handle the noise in the input signal.  

Output layer consists of four neurons. Each of them provides corresponding control signals 

(a1…a4) to each degree of freedom (DoF 1…DoF 4) in opposite directions. 

Cost function used for the network in this work is the mean squared normalized error (MSE) 

function (3.7). It measures the network’s performance according to the mean of squared 

errors.  

 𝐶(𝑣) =
1

𝑚
∑(ℎ𝑣(𝑥

(𝑖)) − 𝑦(𝑖))
2

𝑚

𝑖=1

,  (3.7) 

where 𝑚 – the number of training examples, 

𝑥(𝑖) – the input vector for the i-th training example, 

𝑦(𝑖) – the targets vector for the i-th training example, 

𝑣 – network parameters (weights and biases) 

ℎ𝑣(𝑥
(𝑖)) – the algorithm prediction for the i-th training example using parameters 𝑣. 

 

Optimization algorithm (or training function) used in this work is the One Step Secant 

(OSS) backpropagation algorithm. OSS algorithm is a trade-off between Broyden–Fletcher–

Goldfarb–Shanno (BFGS) and conjugate gradient descent (CGD) algorithms. It provides more 

accuracy than CGD and consumes less computation power than BFGS. It also shows better 

performance with regression problems [52]. This algorithm computes a current iteration 

minimum search direction in the field of NN parameters according to (3.8) [53], [54]. 
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Figure 3.12 Architecture of the neural network for extracting control signals for 4 degrees-of-freedom 
robotic system. Input layer consists of I neurons, each of them represents sEMG signal features. 

Hidden layer consists of 10 neurons. The output is composed of four neurons which provide control 
signals in two opposite directions to individual DoFs  

 

 𝑑𝑋 =  −𝑔𝑋 + 𝐴𝑐 ⋅ 𝑋𝑠𝑡𝑒𝑝 + 𝐵𝑐 ⋅ 𝑑𝑔𝑋, (3.8) 

where 𝑔𝑋 – the value of gradient, 

𝑋𝑠𝑡𝑒𝑝 -  the change in the weights on the previous iteration, 

𝑑𝑔𝑋 - the change in the gradient from the last iteration, 

𝐴𝑐 and 𝐵𝑐 – combinations of scalar products appearing during computations. 
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Training is stopped when any of the following conditions occur:  

• The maximum number of epochs (repetitions) is reached. 

• The maximum amount of time is exceeded. 

• Performance (cost function) is minimized to the goal. 

• The performance gradient is less than its limit value. 

• Validation performance has increased more than a limit of times since it lastly 

decreased – validation checks number. 

Activation functions used in this work are discussed further. As was described in Section 

2.7, network nodes process their inputs using activation function. In the designed MLP, hidden 

layer neurons transferred their inputs with tan-sigmoid activation function (3.9):  

  𝑎𝑗
𝑙 =

2

1 + 𝑒−2⋅𝑧𝑗
𝑙 − 1 (3.9) 

where 𝑧𝑗
𝑙 = 𝑤𝑗𝑘

𝑙 ⋅ 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙 . 

 

Output neurons used pure linear activation function (3.10): 

 𝑎𝑗
𝑙 = 𝑧𝑗

𝑙 (3.10) 

 

These functions are graphical represented at Figure 3.13. 

Other hyper-parameters used in NN design and which differ from standard ones defined in 

“feedforwardnet” function of MATLAB Deep Learning Toolbox are listed below: 

• Number of epochs: 𝑁𝑒 = 10000. 

• Number of validation checks: 𝑁𝑐 = 1000. 

• Goal performance value: 𝐶𝑔𝑜𝑎𝑙 = 0. 

• Minimum gradient value: 𝑔𝑚𝑖𝑛  = 1−10. 

These and standard hyper-parameters are presented at Appendix 2. 
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Figure 3.13 Activation functions plots. a – neuron activation output, z – neuron input. Tansig is used 
for hidden layer neurons, Purelin is used for output layer neurons. Sub- and superscripts used in the 

function equations are diminished 

3.9. Performance evaluation 

To evaluate the performance of MLP estimator numerically, R2 coefficient of determination 

was calculated for every DoF motion estimation. R2 is a common tool in sEMG control 

applications to measure the proportion of data variation between targets and outputs [10], 

[40], [55].   

 𝑅2 = 1 −
∑ (𝑥𝑖 − 𝑥�̂�)

2𝑁
𝑖=1

∑ (𝑥𝑖 − �̅�)
2𝑁

𝑖=1

, (3.11) 

where 𝑥𝑖 – a DoF activation estimation provided by NN, 

𝑥�̂� – the value of corresponding target activation, 

�̅� – mean value activation estimations, 

𝑁 – the total number of output values. 
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As can be seen from (3.11), the closer the R2 value to unity, the better the estimator 

performance.   

3.9.1 Cross-validation 

In order to evaluate the designed machine learning algorithm, a cross-validation technique 

should be performed. It also allows to ensure that the NN model is able to generalize to an 

independent input data and estimate desired output properly [56]. For these purposes, a 

repeated random sub-sampling validation was implemented. 

The randomization was completed motions-wise across each DoF. For every DoF, two random 

motions inputs and targets were put into test set. Remaining motions data were put into 

training set. This procedure was done five times providing five random NN sets such as those 

as presented at Figure 3.11. However, data sets constructed for cross-validation were 

different because DoF 4 control inputs were placed before DoF3. The same was done with 

corresponding targets.  

These data sets provided different values of motion estimation performance. These values 

were evaluated with R2 coefficient (3.11). Mean values and standard deviation of this 

coefficient for each DoF control were calculated. The resultant motion estimation plots are 

presented at Appendix 3. 

3.9.2 Variable feature sets 

As was described in Section 3.1, sEMG features vector is calculated after the signal extraction. 

In order to estimate which composition of features vector provides enhanced MLP regression-

based motion estimation, three sets of features, described at Table 3.3, were compiled. These 

sets containment is presented at Table 3.5. 

Table 3.5 Feature sets used to estimate how different features impact motion estimation performance 

Set No Set features 

1 RMS, SSC, WL, ZC 

2 RMS 

3 SSC 
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Signal processing described at Sections 3.4 – 3.10 involving these feature sets provided three 

motion estimation results for four simultaneously controlled DoFs. These results were 

evaluated using R2 coefficient (3.11). Their mean and standard deviation were also calculated. 

The resultant motion estimation plots are presented at Appendix 4. 

3.9.3 Channel reduction 

To evaluate the effect of sEMG electrodes quantity on performance of kinematics estimation, 

the electrodes were divided into five groups. These groups were composed of 187, 95, 48, 24 

and 16 sEMG data channels. Some electrodes were excluded from consideration due to loose 

skin contact during data acquisition. Channel groups layout is presented at Figure 3.14.  

Data acquired with each set were processed according to the procedure described in Sections 

3.4 – 3.10. This processing provided five motion estimations of four DoFs controlled 

simultaneously. Estimation performance was evaluated using R2 coefficient (3.11). These 

values were averaged over controlled DoFs to provide the performance mean and standard 

deviation values. The resultant motion estimation plots are presented at Appendix 5. 

 

Figure 3.14 Electrode groups. Bigger green circles are the electrodes used for sEMG data extraction. 
Smaller circles data are not considered. Red circle electrodes are nonrelevant due to skin loose contact 

during data acquisition. Black circle electrodes are not considered to facilitate evaluation method.           
(a) group of 187 channels, (b) group of 95 channels, (c) group of 48 channels, (d) group of 24 channels, 
(e) group of 16 channels 
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3.9.4 Variable segmentation window size 

In order to evaluate how kinematics estimation performance correlates with overlapped 

segmentation parameters, seven values of window size were introduced to process sEMG 

signal as Sections 3.4 – 3.10 describe. These values were 16, 32, 64, 128, 256, 512 and 1024 

samples. According to (3.3), windows overlaps were 8, 16, 32, 64, 128, 256 and 512 

correspondingly. This signal processing resulted in seven MLP regression-based motions 

estimations for four simultaneously controlled DoFs. R2 coefficient of determination (3.11) 

evaluated these results performance. These values were averaged over controlled DoFs to 

provide the performance mean and standard deviation values. The resultant motion 

estimation plots are presented at Appendix 6. 
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4. RESULTS  

An example of motion estimation results with corresponding targets and R2 coefficients are 

shown at Figure 4.1. It presents kinematics estimation for each of 4 controlled DoF. 

 
Figure 4.1 Kinematics estimation results for each DoF with its R2 performance coefficient. Red line 

demonstrates target kinematic control signals, blue line is the NN estimation results. Notations in 

parentheses represent user control motions responsible for corresponding DoF-s control: Flex – 
flexion, Ext – extension; Rad – radial deviation, Ul – ulnar deviation; Pro – pronation, Sup – 
supination; Clo – fist closing, Ope - fist opening 

 

Ctoss-validation results are presented at Figure 4.2. It demonstrates the mean 

performance coefficient values sustained with their standard deviations calculated for each 

DoF. As can be seen from the figure, the best control is achieved with wrist flexion/extension 

(DoF 1). The mean R2 value for it over 5 randomly composed test subsets is 0,92 with 

standard deviation of 0,02. Pronation/supination (DoF 3) provides close value of performance 

– 0,90, but its standard deviation is greater (0,04). DoF 2 mean control performance with 

radial and ulnar deviation value is 0.87 with standard deviation of 0,03, which is smaller than 

one for DoF 3. The lowest motion estimation of around 0,75 R2 value is shown when DoF 4 is 

controlled with fist closing and opening. The standard deviation of this DoF control is also the 

highest among all the other (0,08). Plots of estimation results used in cross-validation are 

presented at figures A3.1 – A3.5 
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Figure 4.2 Performance plot for random validation setup. Mean values and standard deviations of each 

DoF control performance coefficient R2. Text in the parentheses describes which user motions 
controlled either DoF 

 

Motion estimation with variable feature sets is shown at Figure 4.3. It presents values 

of R2 coefficient between MLP test targets and its motion estimations for four controlled 

degrees of freedom when signal feature sets 1 (RMS, WL, ZC, SSC), 2 (RMS) and 3 (SSC) 

described in Section 3.9.2 were used. Figures A4.1, A4.2, A4.3 give specific plots of NN-based 

motion estimation together with NN targets used to calculate the coefficient. 

It can be seen from Figure 4.3 that in case of controlling the DoF 1 with wrist 

flexion/extension, using features set 1 leads to performance coefficient value of 0,85, set 2 

provides value of 0,87 and set 3 leads to R2 value of 0,72.  

As for DoF 2, controlled with ulnar and radial deviations, it can be observed that using feature 

sets 1 and 3 provides performance values similar to ones obtained for DoF 1 which are 0,85 

and 0,72 correspondingly. However, in case of using set 2, the performance of DoF 2 control 

decreases down to 0,82.  
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In case of controlling DoF 3 with pronation and supination, usage both of sEMG features, 

corresponding to previously defined set 1 and set 2, to create the NN estimator input data, 

leads to R2 coefficient of determination value of 0,85. Set 3 provides performance weight 

value of 0,69. 

DoF 4 control using features set 1 shows the performance coefficient R2 value of 0,79 and set 

2 provides this coefficient value of 0,78. Using set 3 drops the performance down to the value 

of 0,61. 

The figure also demonstrates that the mean value of the coefficient of determination over all 

DOFs between MLP targets and MLP outputs in case of using signal feature sets 1 and 2 equals 

0.84. However, the standard deviation of the results when using set 1 (0,03) is smaller 

comparing to using set 2 (0,04), as clearly illustrated in Figure 4.3. From it, it can also be 

observed that the mean performance coefficient value of kinematics estimation over all 

degrees of freedom when features set 3 is used, equals 0,69 with standard deviation of 0,05. 

 

Figure 4.3 Performance plot for variable features setup. Performance coefficient R2 of motion estimation 
is evaluated for 4 controlled degrees-of-freedom when 3 different sets of input signal features were used 
to calculate the estimator input. Mean performance values over those DoFs with standard deviations are 
also presented 
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Channel reduction effect on motion estimation is shown at Figure 4.4. It presents the 

dependency of motion estimation performance on the number of sEMG signal channels. It 

shows that for every DoF, the average performance of kinematics estimation has the lowest 

value of 0,77 with standard deviation of 0,02 when only 16 channels are used. The 

performance mean value increased to 0,82 when 24 electrodes data are considered, but 

corresponding standard deviation increases to 0,05 likewise. This augmentation of mean 

continues with increasing the channels number until 95 channels are involved into 

measurement. With this number of electrodes, the performance trend reaches its plateau of 

0,83 while standard deviation value decreases (0,04 for 48 and 95 channels). It can also be 

observed there are some disagreements of individual DoF-s performance plots with the 

common trend, especially in cases of DoF 1 and DoF 4. DoF 1 decreases its performance from 

0,86 to 0,85 and DoF 4 increases it from 0,77 to 0,79 when 187 channels are used providing 

standard deviation of 0,03. Specific plots of motion estimation results obtained using different 

channels number are shown at Figures A5.1 - A5.5. 

 

Figure 4.4 Performance plot for channels reduction setup. Each DoF motion estimation performance 
coefficient R2 depended on number of input data channels and mean of these values are presented. 

Mean performance standard deviations for 16, 24, 48, 95 and 187 channels are also shown     
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Segmentation window size impact on motion estimation is presented Figure 4.5. It 

presents the dependency of kinematics performance on segmentation window size. The figure 

demonstrates that, generally, the performance value increases significantly from 0,22 ±0.07 

to 0,90 ±0.01  when segmentation window size increase from 16 to 64 samples. For window 

size values in range from 64 to 256 the performance value doesn’t change notably, besides a 

small drop to 0,85 with standard deviation of 0,03   for 128 samples window length. When 

more than 256 samples are used, the performance decreases. It is also important to mention 

that DoF 1 disagrees with this trend providing increasing to deviation of motion estimation 

model. Specific plots of motion estimation results obtained using different channels number 

are shown at Figures A6.1 – A6.7. 

 

Figure 4.5 Performance plot for variable segmentation window size setup. Each DoF control performance 

parameter R2 changing with the segmentation window size is shown. The performance mean over all 

DoFs and standard deviations for window sizes of 16, 32, 64, 128, 256, 512 and 1024 are also presented 
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5. DISCUSSION 

Cross-validation. As was stated in Chapter 4, DoF 1, DoF 2 and DoF 3, motion estimation 

mean performance values resulted 0,92, 0,87, 0,90 correspondingly during cross-validation. 

 Figure 3.3 shows that this is likely due to different channel coactivations during contractions. 

Groups of channels activated when the user executes movements responsible for these DoFs 

(flexion/extension, ulnar/radial deviation, pronation/supination), differ significantly. This 

input data variation provides a good performance of MLP-based estimation, which is common 

for neural networks [44].  

On the contrary, DoF 4 control performance mean value is low (0.75) in comparison to other 

degrees-of-freedom. Figure 3.3 also shows that this is likely due to channel coactivations. As 

can be seen from the figure, fist closing and opening activates a lot of forearm muscles under 

the sEMG sensors. Plenty of them are activated during other contractions. These coactivations 

may lead to low mean and high standard deviation values of DoF 4 kinematics estimation 

performance. 

Variable feature sets. As was stated in Chapter 4, sets 1 (RMS, WL, ZC, SSC) and 2 (RMS) 

provide similar performance values of estimation. This can be explained by the fact that the 

RMS feature includes information of the signal’s amplitude and frequency in it. However, even 

though using those sets provides close mean performance results, set 1 is more stable 

comparing to set 2 due to its smaller standard deviation (0,03 vs 0,04). This could be due to 

increased rigidness of input-output relations in the designed MLP when more input signal 

features are used whereas more features provide more input layer neurons as described by 

(3.3). 

On contrast, using set 3 results in a lower performance. This may be due to the fact that SSC 

lacks the information needed for high-accuracy motion estimation. According to a study [2], 

SSC contains only signal frequency-related information but not amplitude-related. 

The best value of motion estimation performance was achieved by using sEMG features set 1 

consisting of RMS, SSC, ZC and WL. The averaged value of it over all DoFs is 0,85 with 

standard deviation of 0,03. 



60 

 

 

Channel reduction. As was also stated at Chapter 4, on average, the estimation performance 

value is smallest when 16 channels are used. This is due to the lack of input data for MLP 

estimator. The performance increases significantly when 24 channels are involved into 

estimation. This may be the result of choosing more spatially separated electrodes that 

provide more variable and hence valuable data to MLP. Moreover, 24 channels provided 32 

more input neurons to the network which also could increase its performance [44]. Further 

increasing the number of input channels to 48 slightly increased the average performance 

which was the same as in case of using maximum number of channels available. This means 

that closely-spaced sensors may provide the MLP with identic data which doesn’t provide 

estimation accuracy.  

However, increasing of data channels number decreases the deviation of movement 

estimation among all DoF-s. It is due to the fact that DoF 1 and DoF 4 do not follow the 

average trend, that clearly demonstrated at Figure 4.4. This may be due to more channel co-

activations during forearm muscles contractions. These co-activations could lead to DoF 1 

performance drop. On the other hand, they could provide more distinguished NN input for 

better DoF 4 control performance.  

The best average estimation performance was achieved with 187 channels. It’s value is 0,84 

with standard deviation of 0,03. 

Variable segmentation window size. As was documented in Chapter 4, the average 

performance value increases significantly when segmentation window size increases from 16 

to 64 samples. This demonstrates that small sized segmentation window does not provide 

enough data samples to extract important sEMG features information. 

There is no change in average performance value until window size is greater than 256. 

Starting from 512 samples size of segmentation window, the performance value decreases. 

This is due to the fact that windows overlapping parameter approaches and excesses the 

value of 300 samples which is the moving average filter window. This reduces the output 

smoothness, hence reduces the output performance.  
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Figure 4.5 also presents a small drop in performance when segmentation window of 128 

samples is used for every DoF. This might be due to ineffectual initial combination of neural 

network weights and biases provided by backpropagation algorithm [44]. 

DoF 1 control performance disagrees with the average trend. When segmentation window 

size is greater than 256 it still increases. Its activation channels singularuty may be the reason 

of this behavior. 

The best estimation performance was achieved with segmentation window of 64 samples. It 

provides R2 value of 0,90 on average with standard deviation of 0,01. 
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6. CONCLUSION 

This thesis has successfully designed an sEMG non-linear regression method for human 

motion intention estimation for multiple degrees-of-freedom robotic control applications. 

Moreover, it evaluated, in an offline way, the influence of signal processing parameters on 

the estimation performance.  

The method was realized with MLP artificial neural network model. The model accepted 

processed sEMG signal and produced signals for four DoFs simultaneous proportional control.   

The model performance was evaluated with cross-validation procedure. The performance was 

measured with R2 coefficient of determination. The performance is in R2 range from 0,75 to 

0,92 for different DoFs control which corresponds to state-of-the art sEMG-based control 

techniques reported in the litertature [4], [57]. Additionally, three sEMG signal processing 

parameters influence on motion estimation were evaluated: extracted feature types, channels 

number, segmentation windows size. The highest performance was provided by using a set 

of RMS, WL, ZC, SSC features; 187 sEMG channels, however 24 channels are enough to obtain 

prominent performance; and 64 samples segmentation window.  

The designed motion estimation model has potential to be used in HMI system for intuitive 

robot control. However, the sensors used in it do not provide it with convenient using due to 

demanding skin preparation[58], [59]. Furthermore, the experimental procedure was 

completed with only one subject. Thus, it is hard to provide definitive statement on method’s 

generalization ability. 

Future work should be concentrated on experiments with actual robotic systems to proof the 

designed concept with online validation. Additionally, extending of controlled degrees-of-

freedom number should be studied. Furthermore, research should be dedicated to involving 

different types of sensors to increase the system accessibility [25], [60], [61]. Besides that, 

work should be devoted to extending motion dataset variability. The data should be collected 

from several subjects. Together with that, the data acquisition should be elaborated with 

different testing conditions which may influence myocontrol performance [62]. These include 

changing arm positions [63], electrode shifts [64], verbal encouragement [65], multiple 

experimental sessions [35]. 



63 

 

KOKKUVÕTE 

See lõputöö on edukalt kavandanud sEMG mittelineaarse regressioonimeetodi inimese 

liikumise tahte hindamiseks mitme vabadusastme robotjuhtimisrakenduse jaoks. Veelgi 

enam, see hindas võrguühenduseta viisil signaalitöötluse parameetrite mõju hinnangute 

jõudlusele. 

Meetod realiseeriti MLP tehisnärvivõrgu mudeli abil. Mudel aktsepteeris töödeldud sEMG-

signaali ja andis signaale nelja DoF samaaegse proportsionaalse juhtimise jaoks. 

Mudeli jõudlust hinnati ristvalideerimise protseduuriga. Toimivust mõõdeti R2 

määramiskoefitsiendiga. Erinevate DoF juhtimiste korral on jõudlus R2 vahemikus 0,75–0,92, 

mis vastab kõige tipptasemel SEMG-põhistele juhtimismeetoditele, mida kirjeldatakse 

kirjanduses. Lisaks hinnati kolme SEMG-signaali töötlemise parameetrit, mis mõjutavad 

liikumise prognoosimist: ekstraheeritud funktsiooni tüübid, kanalite arv, segmenteerimisakna 

suurus. Suurima jõudluse andis RMS, WL, ZC, SSC funktsioonide komplekt; 187 sEMG-kanalit, 

kuid silmapaistva jõudluse saavutamiseks piisab 24 kanalist; ja 64 proovi segmenteerimise 

aken. 

Projekteeritud liikumise prognoosimise mudelit saab potentsiaalselt kasutada HMI süsteemis 

roboti intuitiivseks juhtimiseks. Siiski ei võimalda selles kasutatavad andurid seda nõudliku 

naha ettevalmistamise tõttu mugavaks kasutamiseks. Lisaks viidi eksperimentaalne 

protseduur läbi ainult ühe katsealusega. Seega on meetodi üldistamisvõime kohta raske 

täpset väidet anda. 

Edasine töö peaks keskenduma eksperimentidele tegelike robotisüsteemidega, et tõestada 

kavandatud kontseptsiooni veebipõhise valideerimisega. Lisaks tuleks uurida kontrollitud 

vabadusastmete arvu laiendamist. Lisaks sellele tuleks uurimistööle pühendada eri tüüpi 

andurite kaasamine, et parandada süsteemi juurdepääsetavust. Lisaks tuleks teha tööd 

liikumisandmete varieeruvuse laiendamiseks. Andmeid tuleks koguda mitmelt isikult. Koos 

sellega tuleks andmete kogumist töötada välja erinevate katsetingimustega, mis võivad 

mõjutada müokontrolli jõudlust. Nende hulka kuuluvad käeasendite muutmine, elektroodide 

nihutamine, verbaalne julgustamine, mitmed katsesessioonid. 
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APPENDICES 

Appendix 1 Data acquisition equipment used 

 

Figure A1.1 ELSCH064NM3 matrix of 64 sEMG channels. Inner-electrode distance is 10 mm. 3 of them 

were attached to subject forearm during data acquisition. Adapted from [49] 
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Figure A1.2 Signal amplifier used during data acquisition. Adapted from [49] 

 

 

Figure A1.3 Amplifier-computer interface during data acquisition. Adapted from [49] 
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Appendix 2 Neural network hyper-parameters 

 

Table A2.1 Neural network hyper-parameters 

No Parameter Value 

1 Maximum Epochs 10000 

2 Maximum Training Time ∞ 

3 Performance Goal 0 

4 Minimum Gradient 1-10 

5 Maximum Validation Checks 1000 

6 Line search function 'srchbac' 

7 Scale Tolerance 20 

8 Alpha 0.001 

9 Beta 0.1 

10 Delta 0.01 

11 Gamma 0.1 

12 Lower Limit 0.1 

13 Upper Limit 0.5 

14 Maximum Step 100 

15 Minimum Step 1-6 

16 BMax 26 
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Appendix 3 Motion estimation results for cross-validation 

 

Figure A3.1 Motions estimation results and its performance values for each DoF for the first randomly 
compiled NN dataset. Text in the boxes represents which movement data were chosen for testing of 
DoFs kinematics estimation. This network used next separate movements data: DoF 1 – movement 6 
(m6), movement 12 (m12); DoF 2 – movement 6 (m6), movement 12 (m12); DoF 3 – movement 8 

(m8), movement 10 (m10); DoF 4 – movement 3 (m3), movement 11 (m11) 

 

Figure A3.2 Motion estimation results and its performance values for each DoF for the second randomly 
compiled NN dataset. Text in the boxes represents which movement data were chosen for testing of 
DoFs kinematics estimation. This network used next separate movements data: DoF 1 – movement 6 
(m6), movement 11 (m11); DoF 2 – movement 1 (m1), movement 4 (m4); DoF 3 – movement 6 (m6), 

movement 11 (m11); DoF 4 – movement 3 (m3), movement 8 (m8) 
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Figure A3.3 Motion estimation results and its performance values for each DoF for the third randomly 
compiled NN dataset. Text in the boxes represents which movement data were chosen for testing of 
DoFs kinematics estimation. This network used next separate movements data: DoF 1 – movement 3 
(m3), movement 8 (m8); DoF 2 – movement 2 (m2), movement 12 (m12); DoF 3 – movement 3 (m3), 

movement 5 (m5); DoF 4 – movement 6 (m6), movement 12 (m12) 

 

Figure A3.4 Motion estimation results and its performance values for each DoF for the fourth randomly 
compiled NN dataset. Text in the boxes represents which movement data were chosen for testing of 
DoFs kinematics estimation. This network used next separate movements data: DoF 1 – movement 5 

(m5), movement 11 (m11); DoF 2 – movement 1 (m1), movement 5 (m5); DoF 3 – movement 10 
(m10), movement 13 (m13); DoF 4 – movement 7 (m7), movement 9 (m9) 
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Figure A3.5 Motion estimation results and its performance values for each DoF for the fifth randomly 
compiled NN dataset. Text in the boxes represents which movement data were chosen for testing of 
DoFs kinematics estimation. This network used next separate movements data: DoF 1 – movement 2 

(m2), movement 3 (m3); DoF 2 – movement 1 (m1), movement 9 (m9); DoF 3 – movement 1 (m1), 
movement 4 (m4); DoF 4 – movement 2 (m2), movement 4 (m4) 
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Appendix 4 Motion estimation results for variable feature sets  

 

Figure A4.1 Estimation results for using features set 1. Each DoF motion estimation is presented together 
with its performance coefficient 

 

 

Figure A4.2 Estimation results for using features set 2. Each DoF motion estimation is presented together 
with its performance coefficient 
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Figure A4.3 Estimation results for using features set 3. Each DoF motion estimation is presented together 
with its performance coefficient 
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Appendix 5 Motion estimation results for channel reduction 

  

 

Figure A5.1 Estimation results for using features 187 sEMG channels. Each DoF motion estimation is 
presented together with its performance coefficient 

 

Figure A5.2 Estimation results when using 95 sEMG channels. Each DoF motion estimation is presented 
together with its performance coefficient 
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Figure A5.3 Estimation results when using 48 sEMG channels. Each DoF motion estimation is presented 
together with its performance coefficient 

 

 

Figure A5.4 Estimation results when using 24 sEMG channels. Each DoF motion estimation is 
presented together with its performance coefficient 
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Figure A5.5 Estimation results when using 16 sEMG channels. Each DoF motion estimation is presented 
together with its performance coefficient 
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Appendix 6 Motion estimation results for variable segmentation window size 

 

 

Figure A6.1 Estimation results when using 16 samples segmentation windows. Each DoF motion 
estimation is presented together with its performance coefficient 

 

Figure A6.2 Estimation results when using 32 samples segmentation windows. Each DoF motion 
estimation is presented together with its performance coefficient 
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Figure A6.3 Estimation results when using 64 samples segmentation windows. Each DoF motion 
estimation is presented together with its performance coefficient 

 

Figure A6.4 Estimation results when using 128 samples segmentation windows. Each DoF motion 
estimation is presented together with its performance coefficient 
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Figure A6.5 Estimation results when using 256 samples segmentation windows. Each DoF motion 
estimation is presented together with its performance coefficient 

 

 

Figure A6.6 Estimation results when using 512 samples segmentation windows. Each DoF motion 
estimation is presented together with its performance coefficient 
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Figure A6.7 Estimation results when using 1024 samples segmentation windows. Each DoF motion 
estimation is presented together with its performance coefficient 

 

 


