
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Pavel Volkov 180464IADB

IQUERYABLE INTERFACE

IMPLEMENTATION FOR WINDOWS

MANAGEMENT INSTRUMENTATION

USAGE

Bachelor’s thesis

Supervisor: Jaanus Pöial

 PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Pavel Volkov 180464IADB

IQUERYABLE LIIDESE REALISATSIOON

WINDOWS MANAGEMENT

INSTRUMENTATION KASUTAMISEKS

Bakalaureusetöö

Juhendaja: Jaanus Pöial

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Pavel Volkov

29.04.2020

4

Abstract

The aim of the current thesis is to develop a framework by implementing .NET LINQ [1]

(Language integrated query) IQueryable [2] interface for Windows Management

Instrumentation that helps developers make WQL (Windows Query Language) queries

by using of LINQ fluent API [3] (Application Programming Interface) and get mapped

.NET object with all the properties and methods WMI (Windows Management

Instrumentation) class provides.

Development includes creation of framework that allows making WQL queries both ways

locally and remotely. Framework will help to query, create, update and delete WMI

objects and use methods they provide.

Development process outcome is working framework prototype available for developers

in GitHub and Nuget.org [4] package repository.

This thesis is written in English and is 54 pages long, including 6 chapters, 13 figures and

18 tables.

5

Annotatsioon

IQUERYABLE LIIDESE REALISATSIOON WINDOWS MANAGEMENT

INSTRUMENTATION KASUTAMISEKS

Käesoleva bakalaureusetöö eesmärk on Windows Management Instrumentations´i jaoks

tarkvara raamistiku arendamine, mis realiseeritakse .NET LINQ IQueryable liidese kaudu.

Arendusprotsessi käigus luuakse raamistik, mis võimaldab teha WQL päringuid nii

lokaalselt kui ka võrgu kaudu. Raamistik aitab pärida, luua, muuta ning kustutada WMI

objekte ning kasutada kõik meetodeid mis antud objekt pakkub.

Arendusprotsessi tulemus on töötava raamistiku prototüüp mis on kättesaadav GitHub’i

ning Nuget.org [4] paketihoidla kaudu.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 54 leheküljel, 6 peatükki, 13

joonist, 18 tabelit.

6

List of abbreviations and terms

API Application Programming Interface

CRUD Create Read Update Delete

DBMS Database Management System

DCOM Distributed Component Object Model

DMTF Distributed Management Task Force

IDE Integrated Development Environment

LINQ Language Integrated Query

SQL Structured Query Language

WinRM Widows Remote Management

WMI Windows Management Instrumentation

WQL Windows Query Language

XML eXtensible Markup Language

7

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon ... 5

List of abbreviations and terms .. 6

Table of contents .. 7

List of figures ... 9

List of tables ... 10

1 Introduction ... 11

1.1 Background ... 11

1.2 Goal .. 11

1.3 Methodology ... 12

2 Problem description ... 13

2.1 Existing solutions ... 13

2.1.1 ORMi ... 13

2.2 Scope of WMI Queryable framework solution .. 14

3 Solution analysis .. 15

3.1 Researched material .. 15

3.1.1 Article series “LINQ: BUILDING AN IQUERYABLE PROVIDER

SERIES” ... 15

3.1.2 Microsoft Entity Framework ... 15

3.1.3 Book “Design Patterns: Elements of Reusable Object-Oriented Software” . 15

3.1.4 Online Course “Design Patterns in C# and .NET” .. 15

3.1.5 Microsoft documentation for “IQueryable Interface” 16

3.1.6 Microsoft article “Connecting to WMI Remotely with C#” 16

3.2 Technology selection for problem solution .. 16

3.2.1 Framework selection ... 16

3.2.2 Language Selection ... 17

3.2.3 Approach selection .. 18

3.3 Developer tools selection.. 18

8

3.4 Source control management solution ... 19

3.5 Solution architecture ... 20

3.6 Analysis summary .. 22

4 Description of solution .. 23

4.1 “VNetDev.WmiQueryableCore” library .. 23

4.1.1 Project creation .. 24

4.1.2 WMI Context class .. 25

4.1.3 WmiContext object instantiation using Dependency Injection. 27

4.1.4 WmiClassSet collection class .. 29

4.1.5 IWmiConnection interface .. 30

4.1.6 WMI Queryable specific attributes. .. 30

4.2 “VNetDev.WmiQueryableCore.WqlTranslator” library 31

4.2.1 WqlTranslator class ... 32

4.2.2 WqlQuery object ... 33

4.2.3 WqlAttribute helper class .. 34

4.2.4 ToString methods .. 36

4.2.5 Extension methods ... 36

4.3 “VNetDev.WmiQueryableCore.WqlTranslator.Abstraction” library 37

4.4 “VNetDev.WmiQueryableCore.Cim” library .. 39

4.4.1 CimConnection object instantiation .. 39

4.4.2 Object reader ... 43

4.5 “VNetDev.WmiQueryableCore.DCom” library... 43

4.6 “VNetDev.WmiQueryableCore.CIMv2” library .. 44

5 Created solution analysis ... 45

5.1 Comparison of old and new ways of working .. 45

5.2 Possibilities for further improvements ... 47

5.3 Unexpected statistics .. 47

5.4 Further development ... 48

6 Summary .. 49

References .. 51

9

List of figures

Figure 1 .NET Standard Class Library project creation in Visual Studio 24

Figure 2 .NET Framework version configuration in project .. 25

Figure 3 WmiContext object constructor with 1 argument. ... 25

Figure 4 WmiContext Configure method ... 26

Figure 5 CreateClassSets method ... 27

Figure 6 Usage of AddWmiContext extension method for IServiceCollection 28

Figure 7 AddWmiContext extension method ... 29

Figure 8 WmiClassSet usage example ... 29

Figure 9 TranslateQuery method .. 31

Figure 10 Alias provider region.. 32

Figure 11 Example of old way of working. .. 46

Figure 12 Example of new way of working ... 47

Figure 13 Nuget.org packages download statistics .. 47

10

List of tables

Table 1 .NET Framework implementations comparison.. 17

Table 2 .NET Programming Languages comparison [27] .. 18

Table 3 IDEs Comparison .. 19

Table 4 Source control systems .. 20

Table 5 SOLID Principles [12] ... 21

Table 6 WMI Context configuration classes .. 23

Table 7 AddWmiContext extension method arguments .. 28

Table 8 IWmiConnection interface members ... 30

Table 9 Attributes for WMI classes and its elements ... 31

Table 10 Translator private fields ... 32

Table 11 WQL query elements ... 33

Table 12 Attribute Get method, and its overloads .. 35

Table 13 WqlQuery collection elements extension methods ... 36

Table 14 IWqlTranslator interfaces description ... 38

Table 15 CimConnection instantiation options .. 40

Table 16 CimConnection methods for IQueryProvider implementation 41

Table 17 CreateObjectInstances method arguments .. 42

Table 18 InvokeCimMethod arguments ... 42

11

1 Introduction

1.1 Background

This thesis includes creation of Framework that helps developers making WMI [5]

queries, all CRUD (Create Read Update Delete) operations with WMI objects and using

all methods they provide.

The problem is that there are no good tools in both .NET Framework and .NET Core [6]

that allows to make WQL [7] queries by using convenient interface, no common tools to

use any way or protocol to connect to WMI and get all needed objects or information.

There are many ways to make these queries manually but all of them are different and

require development additional functions, composing of queries manually with all the

needed checks.

During the last several years I was searching for similar tools for my projects but did not

find anything that could cover all my needs. Instead of that, I found a lot of questions on

forums from people who were looking for the same thing.

To eliminate the above problem as main topic of this thesis new framework prototype

will be developed that will help developers making all needed queries by using .NET

LINQ [1] fluent API [8] [3], that will replace big code blocks by just 1-2 lines of code.

1.2 Goal

Take .NET LINQ [1] IQueryable [2] interface and implement it for Windows Management

Instrumentation [5], create a context for WMI namespace and use Visitor pattern [9] to

translate LINQ Expressions to WQL queries and map response to appropriate .NET class

properties and delegate methods.

12

This library will allow:

• Usage of WMI [5] as a context of classes available

• Filter objects using .NET LINQ fluent API [8] [3]

• Using different protocols to connect to WMI namespaces using same approach

Also, create a context implementation for Windows default namespace – “root\CIMV2”.

1.3 Methodology

Analysis of the current situation, choosing the core needs of developers to be satisfied,

implementing corresponding developer tools and measuring the effect of usage of these

tools.

Goal reaching will be done via creation of several libraries:

1. Library that will have context class as a main interface to work with and all

required attribute classes to configure classes and their properties.

2. WQL [7] query translator library that will be used by all the drivers.

3. Driver library that is adding support to connect to WMI namespace by using

WinRM [10] (Widows Remote Management).

4. Driver library that is adding support to connect to WMI namespace by using

DCOM [11] (Distributed Component Object Model), this driver supports

extended WQL.

5. Context containing library, that represents default windows namespace

“root\CIMV2” with all its classes.

The functionality is divided to several libraries to make this framework more flexible and

is providing possibility to extend it by adding new classes, contexts and connection

drivers without modification of main library. Also, this approach supports Open-Closed

Principle [12].

13

2 Problem description

2.1 Existing solutions

It is a quite common when application due to its needs require to gather some information

about computer hardware or from some software that uses WMI [5] namespaces and

classes as an API [13], or application could even control some things using same

technology.

This can be achieved using different ways and protocols. For example, it can be done via

WinRM [10] or DCOM [11] protocols, it is possible to use existing libraries in framework

or some command line utilities. All these approaches are suitable. They are different and

requires a lot of manual work that could be automated and implemented more standard

way.

Currently existing solution in .NET is to use one of 2 available protocols and create all

required objects manually. First of all connection needs to be created that providing all

the configuration and then it is needed to compose WQL [7] queries manually, it means

that self-developed class libraries needs to be created each time to meet business logic

needs. This approach is not the best one because each implementation is different, and

everything needs to be done manually and if there is a need to switch connection protocol

completely new library needs to be developed because approaches used with different

protocols are different.

There are other solutions in GitHub [14] that provides helper classes for working with

WMI but they are limited with one connection method only and they are limiting

functionality of WMI [5].

2.1.1 ORMi

This is the example of WMI helper that helps to map query results to .NET class and use

all the CRUD operation on received object. Also, there is possibility to add methods to

own classes and use them with WMI objects.

14

ORMi is using DCOM protocol only and does not have possibility to extend its

functionality by adding different connection drivers.

This solution still requires composing WQL queries manually in case of filtering need

and does not support extended WQL [15]. Also, each method invocation creates separate

connection that should to be avoided.

2.2 Scope of WMI Queryable framework solution

The scope is to develop WMI Queryable framework prototype by using .NET LINQ [1].

This solution will provide single context object where it is possible to have any of the

WMI object that can be enumerated or filtered by using fluent API [3] and get the result

in required format.

Object mapper will map all the properties and declared delegate methods automatically

so that there will not be needed to create any method body.

Framework supports dependency injection container available in ASP.NET Core [16]

[17] so the connection can be easily created and added to the dependency injection

container.

All the classes will be available via the collection object that implements .NET LINQ

IQueryable interface, so it provides all the benefits it has. All the LINQ fluent API [8] [3]

expressions will be translated to WQL queries in the background automatically and will

provide all the required objects. Quite lengthy code blocks can be replaced with just one-

liners.

This framework provides common approach for all the WMI related activities and

eliminates almost all human errors because it is strongly typed.

Framework will make development process a lot easier when WMI interface needs to be

used.

It will be supported by all languages supporting any of .NET implementations including

scripting language PowerShell and its cross-platform implementation PowerShell Core.

15

3 Solution analysis

3.1 Researched material

3.1.1 Article series “LINQ: BUILDING AN IQUERYABLE PROVIDER SERIES”

This is very good article series [18] describes basics of implementation of LINQ

IQueryable and IQueryProvider interfaces on simplified example of its implementation

for SQL [19] (Structured Query Language). Unfortunately, this article series has been

removed, but still accessible via the “Way Back Machine”.

These articles helped to understand the basics of LINQ IQueryable interface

implementation principles and its benefits.

3.1.2 Microsoft Entity Framework

Microsoft has developed great framework called Entity Framework [20], this framework

main idea is implementation of LINQ IQueryable interface for SQL [19] server backends

by using different drivers for different DBMS (Database Management System) and

mapping results to appropriate objects.

This approach is very standardized, has common methods to work with any of the data

bases and different object models.

The Entity Framework example gave very good idea to use similar approach for working

with WMI objects and methods.

3.1.3 Book “Design Patterns: Elements of Reusable Object-Oriented Software”

This is a great collection of design patters that are used widely and verified during many

years of programming. This book [21] explains a lot about the patterns and the best

practices of using them. It helps to implement algorithms in correct and more efficient

way.

3.1.4 Online Course “Design Patterns in C# and .NET”

This online course [22], created by Dmitri Nesteruk, is amazing, it describes all the design

patterns from book “Design Patterns: Elements of Reusable Object-Oriented Software”,

how to use them in the best way in C# programming language.

16

This book helps developer to understand design patterns using a lot of example exercises.

3.1.5 Microsoft documentation for “IQueryable Interface”

This material [2] helps to check all the methods, possibilities and structure of .NET

IQueryable interface that is required in current development.

3.1.6 Microsoft article “Connecting to WMI Remotely with C#”

This article [23] explains how to make queries and get date from the WMI, comparison

of two approaches that are used in drivers for the framework. These approaches are low

level and require doing everything manually.

3.2 Technology selection for problem solution

The goal of this thesis defines quite narrow choice of technologies as the goal is to provide

convenience for developers who use .NET environment. Nowadays .NET has several

.NET framework implementations that support different languages.

3.2.1 Framework selection

As the framework is designed to improve development process in .NET environment it

must be developed in one of the implementations of the .NET Framework.

The choice is following:

17

Table 1 .NET Framework implementations comparison

.NET Implementation Description

.NET Framework [24] This is the first implementation of .NET Framework developed by

Microsoft in year 2002 and nowadays has become obsolete as

Microsoft has stopped development of this product.

This is Windows-based framework that can be used only for

Windows applications.

The latest version was released in July 2019.

.NET Core [25] Is the new and cross-platform implementation of the framework

that .NET Foundation released first time in year 2016 and the latest

stable version was released in February 2020.

This framework is actively being developed and updated.

.NET Standard [26] Special implementation that is designed for creation of Class

Library projects that could be used in any implementation of .NET

implementation, Xamarin, Unity, Mono, etc…

This framework is actively being developed and updated.

Referring to the Table 1 the best .NET framework implementation for library

development is .NET Standard.

The latest version of .NET Standard is 2.1 that is not supported by obsolete Windows-

based .NET Framework implementation anymore. As WMI Queryable Framework must

be usable in all implementations including obsolete .NET Framework, as it is still widely

used and Windows PowerShell is working in .NET Framework environment, the WMI

Query Framework will be using .NET Standard version 2.0 as it is supported by all

implementations of .NET frameworks.

3.2.2 Language Selection

The selected .NET framework implementation supports several languages to be used.

18

Table 2 .NET Programming Languages comparison [27]

Language Experience Description

C# Very Good C# (pronounced "C sharp") is a simple, modern, object-

oriented, and type-safe programming language.

Its roots in the C family of languages makes C#

immediately familiar to C, C++, Java, and JavaScript

programmers.

Visual Basic Good Visual Basic is an approachable language with a simple

syntax for building type-safe, object-oriented apps.

F# Weak F# (pronounced "F sharp") is a cross-platform, open-

source, functional programming language for .NET. It also

includes object-oriented and imperative programming.

As per described in Table 2 the best and more convenient language to develop WMI

Queryable Framework is C#, as author has more experience with it and this is more

modern and suitable language for such project.

3.2.3 Approach selection

The .NET frameworks have many options for implementation different libraries.

One of the options is helper classes that can contain set of static methods, but in this case,

it will be set of independent functions that will implement functionality. This approach

will not provide us complete solution.

Another approach is object based with its method. This solution is better that the one

above but will not provide us such flexibility and fluent API [3] to work with sets of

objects.

The best and more suitable option is to implement .NET LINQ IQueryable interface that

provides us convenient set of extension methods that could be used for filtering, joining,

selection of objects by using of fluent API [3].

3.3 Developer tools selection

There are a lot of IDEs (Integrated Development Environment) [28] available nowadays,

here are some more popular.

19

Table 3 IDEs Comparison

IDE Description

Visual Studio [29] +

JetBrains ReSharper [30]

plugin

This IDE is developed by Microsoft and fully supports all

implementations of .NET frameworks. It has all needed tools

for debugging and testing of the code.

JetBrains ReSharper is providing convenience during the

development process by adding a lot of automatic code

generation features.

Visual Studio Code [29] This is open source IDE [28] that is more lightweight

comparing to Visual Studio and supports extensions.

It is possible to configure Visual Studio Code for almost all

needs with the use of extensions.

But this IDE requires much configuration.

JetBrains Rider [31] JetBrains Rider is cross-platform IDE for development in

.NET environment. This has all the functionality that

ReSharper has and all the debugging and testing required

tools.

As mentioned in Table 3 there are different tools suitable for the development in .NET,

but as WMI Queryable framework is mostly oriented for Windows systems Visual Studio

with ReSharper plugin was selected.

3.4 Source control management solution

There are several source code control management solutions available that are suitable

for the project needs.

20

Table 4 Source control systems

Source control system Description

GitHub GitHub, Inc. is a United States-based global company that

provides hosting for software development version control using

Git.

As of January 2020, GitHub reports having over 40 million users

and more than 100 million repositories (including at least 28

million public repositories) [32].

This solution is mainly used for keeping source code for the

Nuget.org [4] packages.

Bitbucket Bitbucket is a web-based version control repository hosting

service owned by Atlassian, for source code and development

projects that use either Mercurial or Git revision control systems

[33].

GitLab GitLab is a web-based DevOps lifecycle tool that provides a Git-

repository manager providing wiki, issue-tracking and continuous

integration/continuous deployment pipeline features, using an

open-source license, developed by GitLab Inc [34].

As per Table 4 all described source control management solutions are suitable but as

GitHub is the default source control management solution for Nuget.org [4] packages and

one of the goals is to have a WMI Queryable framework available as the Nuget.org

package the GitHub is the best suitable option.

3.5 Solution architecture

The WMI Queryable framework architecture is designed according to clean architecture

principles, and according to SOLID [12] principles mentioned in Table 5.

21

Table 5 SOLID Principles [12]

Name Description

Single Responsibility Principle A class should only have a single responsibility, that

is, only changes to one part of the software's

specification should be able to affect the specification

of the class.

Open–closed principle Software entities should be open for extension but

closed for modification.

Liskov substitution principle Objects in a program should be replaceable with

instances of their subtypes without altering the

correctness of that program.

Interface segregation principle Many client-specific interfaces are better than one

general-purpose interface.

Dependency inversion principle One should “depend upon abstractions, [not]

concretions.”

The WMI Queryable framework is divided into several separate projects:

• VNetDev.WmiQueryableCore – The project represents main WMI Queryable

library that provides base WMI context object, attributes, exception classes and

interfaces.

• VNetDev.WmiQueryableCore.WqlTranslator – The projects provide WMI

translation functionality.

• VNetDev.WmiQueryableCore.WqlTranslator.Abstraction – This project contains

a set of interfaces represent WqlTranslator object and its elements.

• VNetDev.WmiQueryableCore.Cim – The WMI Queryable driver provides

communication over WinRM [10] protocol.

• VNetDev.WmiQueryableCore.DCom - The WMI Queryable driver provides

communication over DOM [11] protocol.

• VNetDev.WmiQueryableCore.CIMv2 – The project that extends Base WMI

context class by implementing all the classes provided in Windows default WMI

namespace “root\CIMV2”.

22

As all the depended classes are used via interfaces WMI Queryable framework

provides possibility to add new drivers and context classes very easily.

3.6 Analysis summary

The analysis has covered suitable options of .NET implementations, languages and IDEs

and as the result of analysis best options have been selected to develop WMI Queryable

framework in better and the most efficient way.

The technology chosen provides possibility to use this framework not only in

programming languages but also in the scripts as the .NET Standard implementation

supports all the .NET framework implementations.

Design allows WMI Queryable framework to be extended very easily that also

implements OCP (Open-Closed principle) [12].

As the development language chosen C# development process will be easier because

author has quite good experience in that language.

23

4 Description of solution

The WMI Queryable framework is divided into several sub-projects, each project has its

own goal.

4.1 “VNetDev.WmiQueryableCore” library

This library has the main WmiContext class that must be inherited in order to create own

WMI context that will represent set of classes or complete WMI Namespace.

This project, in addition to base WMI context class, contains several supportive classes

listed in Table 6.

Table 6 WMI Context configuration classes

Class name Description

WmiContextOptions and

WmiContextOptions<TWmiContext>

Options class and its generic variant is needed

for WMI Context to get connection and other

initialization related options.

WmiContextOptionsBuilder and

WmiContextOptionsBuilder<TWmiContext>

This class is helping to build

WmiContextOpetion by using convenient

fluent interface [3] and it is designed also for

extension methods provided with connection

drivers.

It is generic implementation needed to specify

type of the WMI Context class that needs to be

configured.

This class is implementing Builder design

pattern [35].

WmiClassSet<TWmiClass> The class that implements IQueryable [2] and

IListSource [36] interfaces and represents

collection of WMI Class object instances.

This class needs to be used to add properties

to WMI Context objects with class that

represents WMI class as generic argument.

As this class implements IQueryable [2]

interface it is automatically providing

possibility to use all the LINQ extension

methods and providing and fluent interface

[3].

24

In order to make initialization of WMI Context class instance more convenient, especially

in ASP.NET Core [16] projects, this project has a class with extension method for

Microsoft Dependency Injection service collection interface “IServiceCollection”.

Also, this project has set of Attribute classes to annotate things, exception classes and

interface “IWmiConnection” that must be implemented in case of connection-specific

driver development.

4.1.1 Project creation

As during analysis phase it was decided to use .NET Standard implementation of .NET

framework and Visual Studio IDE [29] [28], it is needed to create “.NET Standard Class

Library project” for development in C# language as shown on Figure 1.

Figure 1 .NET Standard Class Library project creation in Visual Studio

After successful project creation it is needed to check correct version of .NET Standard

framework implementation in project’s csproj [37] XML-formatted [38] (eXtensible

Markup Language) file as shown on Figure 2, the “TargetFramework” tag must be set to

“netstandard2.0”.

25

Figure 2 .NET Framework version configuration in project

4.1.2 WMI Context class

The main goal of this class is to provide WMI Class sets as collections with connection

to the WMI [5]. This is the main interface that provides access to all added WMI Class

repositories (WmiClassSets). This class implements Unit of Work design pattern [39] and

WmiClassSet<TWmiCLass> implements Repository accordingly.

There are two ways to instantiate WMI Context class. First possible way is to instantiate

it with providing of WmiContextOptions class instance using appropriate constructor that

takes one argument of WmiContextOptions or its derived type, constructor show on

Figure 3. This constructor will save the options into private property, will provide itself

as a connection context. Once this is done private CreateClassSets method will be called

to instantiate all the ClassSets as described in section 4.1.2.1.

public WmiContext(WmiContextOptions options)
{
 _options = options ??
 throw new InvalidOperationException(

"WmiContext options cannot be null!");
 _options.Connection?.SetContext(this);
 CreateClassSets();
}

Figure 3 WmiContext object constructor with 1 argument.

The second possible way is to instantiate WmiContext using parameterless constructor

that does nothing. In this case it is possible to call Configure method later by providing

configuration action for TWmiContextOptionsBuilder generic argument that represents

WmiContextOptionsBuilder or its derived type. Configure method could be called only

on non-configured non-disposed instance of WmiContext or its derived type object. This

26

method will create WmiContextOptionsBuilder or its derived type object instance, type

should be mentioned as generic parameter for Configure method. Once

WmiContextOptionsBuilder instance created, provided action will be called to configure

its options. Then built WmiContextOptions object will be assigned to WmiContext as

shown on Figure 4. Once WmiContextOptions is configured private CreateClassSets

method will be called to instantiate all the ClassSets as described in section 4.1.2.1.

public void Configure<TWmiContextOptionsBuilder>(
 Action<TWmiContextOptionsBuilder> optionsAction)
 where TWmiContextOptionsBuilder : WmiContextOptionsBuilder, new()
{
 if (_disposed || IsConfigured)
 {
 throw new InvalidOperationException(
 "This context cannot be configured anymore.");
 }

 var builder = new TWmiContextOptionsBuilder();
 if (_options != null)
 {
 builder.Options = _options;
 }

 optionsAction?.Invoke(builder);
 _options = builder.Options;
 _options.Connection?.SetContext(this);
 CreateClassSets();
}

Figure 4 WmiContext Configure method

4.1.2.1 CreateClassSets method.

This method goal is to instantiate all the properties of WmiClassSet<> type available in

current WmiContext or its derived type instance. This method is using reflection method

GetProperties() on type of current WmiContext object instance to get all available public

properties, then filtering them by generic type of WmiClassSet<>, creating appropriate

object instances by using Activator.CreateInstance method and assigning values to

properties it requires. CreateClassSets method in shown on Figure 5.

27

private void CreateClassSets()
{
 foreach (var propertyInfo in GetType()
 .GetProperties()
 .Where(t => t.PropertyType.IsGenericType &&

 t.PropertyType.GetGenericTypeDefinition() ==
typeof(WmiClassSet<>)))

 {
 propertyInfo.SetValue(
 this,
 Activator.CreateInstance(
 propertyInfo.PropertyType,
 this));
 }
}

Figure 5 CreateClassSets method

4.1.3 WmiContext object instantiation using Dependency Injection.

One more possible way to get WmiContext or its derived type class to be instantiated is

to use special IServiceCollection extension method AddWmiContext provided in static

class WmiQueryableServiceCollectionExtension. This method is registering WmiClass

to dependency injection container. This is the generic method that requires WmiContext

type to be specified. The AddWmiContext method takes 0 to 3 arguments described in

Table 7.

28

Table 7 AddWmiContext extension method arguments

Argument Type Description

optionsAction Action<WmiContextOptionsBuilder> This optional argument is

action method that helps

WmiContextOptionsBuilder

to configure

WmiContextOptions that will

be used by instance of

WmiContext or its derived

type.

contextLifetime Enum ServiceLifetime This optional argument

specifies WmiContext object

instance lifetime to

dependency injection

container.

optionsLifetime Enum ServiceLifetime This optional argument

specifies

WmiContextOptions object

instance lifetime to

dependency injection

container.

The benefit of it is usage inversion of control design pattern implemented in Dependency

Injection container that is used widely, for example in ASP.NET Core [16]. This method

allows specifying of WmiContext lifetime so that its instances will be created and kept

using certain rules. Usage of this method is shown on Figure 6.

services.AddWmiContext<SmsWmiContext>(o =>
 o.UseCim());

Figure 6 Usage of AddWmiContext extension method for IServiceCollection

First, AddWmiContext extension method is using WmiContextOptionBuilder to create

and configure WmiContextOptions instance and adding this configuration to Dependency

Injection container with lifetime configuration provided by optionsLifetime parameter as

it is required for WmiContext to be configured. Then WmiContainer or its derived type

is added to Dependency injection container with lifetime configuration provided by

contextLifetime parameter. The way how WmiContext class being registered in

Dependency Injection container is represented on Figure 7

29

 public static IServiceCollection AddWmiContext<TContext>(
 this IServiceCollection serviceCollection,
 Action<WmiContextOptionsBuilder> optionsAction = null,
 ServiceLifetime contextLifetime = ServiceLifetime.Scoped,
 ServiceLifetime optionsLifetime = ServiceLifetime.Scoped)
 where TContext : WmiContext
 {
 serviceCollection.TryAdd(new ServiceDescriptor(
 typeof(WmiContextOptions<TContext>),
 p =>
 {
 var builder = new WmiContextOptionsBuilder<TContext>(
 new WmiContextOptions<TContext>());
 optionsAction?.Invoke(builder);
 return builder.Options;
 },
 optionsLifetime));
 serviceCollection.Add(new ServiceDescriptor(
 typeof(WmiContextOptions),
 p => p.GetRequiredService<WmiContextOptions<TContext>>(),
 optionsLifetime));

 serviceCollection.TryAdd(new ServiceDescriptor(
 typeof(TContext), typeof(TContext), contextLifetime));
 return serviceCollection;
 }

Figure 7 AddWmiContext extension method

4.1.4 WmiClassSet collection class

The WmiClassSet class is one of the core elements of the systems as this class implements

IQueryable<> interface and provides all the convenient functionality of it. Instance of this

class requires reference to the WmiContext class instance to have a connection that is

required for data querying and modification. The main querying behaviour WmiClassSet

has is collecting expression tree elements provided by .NET LINQ extension methods

and acting as Enumerator to get all WMI object instances constructed from WMI

repository. The example of its usage shown on Figure 8.

foreach (var volume in context.Win32Volume
 .Where(v => v.DriveLetter != null))
 Console.WriteLine(

 $"The drive {volume.DriveLetter} has capacity of
{volume.Capacity} bytes.");

Figure 8 WmiClassSet usage example

30

This example shows how to request data about all the available volumes in system that

have DriveLetter assigned and print them out with capacity they have.

To get WMI objects constructed IQueryable requires Provider property of type

implements IQueryProvider interface that provides Execute method. Execute method

takes .NET LINQ Expression tree and executes it using connection driver we provide in

WmiContextOptions class instance.

4.1.5 IWmiConnection interface

For WMI Queryable framework operations connectivity driver is required. This driver

must to implement a set of methods declared in IWmiConnection interface. Methods are

described in Table 8.

Table 8 IWmiConnection interface members

Method Description

void Close() Method that closing connection.

bool TestConnection() Synchronous method that checks connection

existence and activity. If connection exists and

active it returns true, otherwise false.

Task<bool> TestConnectionAsync() Asynchronous method that checks connection

existence and activity. If connection exists and

active it returns true, otherwise false.

void Delete(object wmiCLass) Synchronous method that takes WMI class

object instance and deletes it in backend.

Task DeleteAsync(object wmiCLass) Asynchronous method that takes WMI class

object instance and deletes it in backend.

void SetContext(WmiContext context) This method takes WmiContext object

instance to work with.

bool HasContext() Method that returns true if WMI context

object instance is registered and false if not.

Also, this interface inherits .NET LINQ [1] IQueryProvider interface.

4.1.6 WMI Queryable specific attributes.

WMI Queryable Framework has several attributes that are needed to configure WMI

classes to be used in WmiContext. These attributes are required to configure WMI class

elements. Attributes are described in Table 9.

31

Table 9 Attributes for WMI classes and its elements

Name Description

WmiClassAttribute This attribute is required for explicit specification of WMI

class name in WMI namespace.

This attribute is very useful as naming standards in

different environments are not the same.

For example, C# language uses Title case for class naming

when WMI environment uses underscores for prefix

separation. In order to keep naming of elements according

to standards of any language this attribute is very useful.

WmiIgnorePropertyAttribute This attribute is needed when some of the attributes need

to be ignored during mapping process.

WmiMethodAttribute This attribute can be used to set a real method name when

C# class method name is different from appropriate

method of class in WMI environment.

WmiPropertyAttribute This attribute can be used to set a real property name when

C# class property name is different from appropriate

property of class in WMI environment.

4.2 “VNetDev.WmiQueryableCore.WqlTranslator” library

This library provides translation functionality for connection driver of WmiContext.

Project creation can be done same way as described in section 4.1.1.

The entry point is static class WqlFactory that has one public and two internal methods

providing object instances. These three methods implement factory design pattern.

First and the only public method is TranslateQuery. This method takes one argument of

type Expression which represents ExpressionTree to be translated and returns an object

of interface type IWqlQuery described in section 4.3. This method is just a way to create

an instance of WqlTranslator internal class object and to call Translate method that

implements fluent interface [3] and as the result returns object of type IWqlQuery. The

method TranslateQuery is shown on Figure 9.

public IWqlQuery TranslateQuery(Expression expression) =>
 new WqlTranslator()
 .Translate(expression);

Figure 9 TranslateQuery method

32

Two other factory methods are internal use only and they are providing instances of

WqlPredicate and WqlValue described below.

4.2.1 WqlTranslator class

The WqlTranslator class has the main functionality of this library. This class extends

.NET LINQ abstract class ExpressionVisitor [40] and overrides all the needed methods

for expression tree translation.

This class has several private fields described in Table 10.

Table 10 Translator private fields

Name Type Description

_query WqlQuery This is the WMI Query representation

object that will be returned as the

translation result.

_objectStack Stack<IWqlObject> This is a stack of WQL [7] elements used

for recursive translation of expression

tree elements.

_lambdaParameterLinks Dictionary<string,

Func<string, (string,

string)>>

This dictionary is used when Alias map

needs to be recreated.

The alias provider region [41] of this class has one private field of type ushort and private

method that provides next alias in format of “a#” as shown on Figure 10.

#region Alias provider

private ushort _nextAliasIndex;
private string GetNextAlias() => $"a{_nextAliasIndex++}";

#endregion

Figure 10 Alias provider region

Aliases and alias map are required only when join operations are used in extended queries

[7] and allows to aggregate several classes into one query. Aliases are used to have unique

alias for each class, as in some queries same class could be used several times. Map is

needed to get required objects from the result, as the result of query with join operation

is object of key-value pairs where key is assigned alias.

33

4.2.2 WqlQuery object

This object needs to construct WQL [7] query, keep all the joins, alias map and select

functions.

All the WqlQuery elements are described in Table 11.

Table 11 WQL query elements

Object type name Interfaces implements Description

WqlQuery IWqlQuery

IWqlClassObject

IWqlObject

This is the WMI Query representational

object that will be returned as the

translation result.

WqlValue IWqlObject This is value wrap element

WqlJoin IWqlClassObject

IWqlObject

This element represents WQL join

statement to add one more class to query

on condition.

WqlPredicate IWqlPredicate

IWqlObject

This object represents filtering conditions

for joins and query itself.

WqlSelectDelegate IWqlObject This element represents output

modification requested by using .NET

LINQ extension method Select [42].

The main entry method is Translate, this method takes expression tree as an argument,

simplifying it using available in helper Evaluator class internal method PartialEval. This

helper simplifying tree elements that could be simplified, Expression type element has

property that defines can it be simplified or not. For example, if expression tree will have

some constants with operators like ToUpper that changing the case of string or substring

that takes part of the constant string provided these things can be evaluated before

translation. This method was taken from the article [43] series that was mentioned in

section 3.1.1 and modified as version of the C# language has been changed and language

itself improved, so that this method is written now according to C# version 7.3 that is

latest version supported by .NET Standard 2.0 framework implementation.

Once expression tree is simplified it is passed to expression visitor for translation and as

the result returns instance of the internal class WqlQuery casted to interface IWqlQuery

that it is implementing.

34

The ExpressionVisitor [40] class helps us to implement Visitor design pattern [9] and

make a translation of expression tree in more correct and structured way. As the

expression visit methods require tree node to be returned as the result, _objectStack static

field is used, the field is described in Error! Reference source not found..

4.2.3 WqlAttribute helper class

WqlAttribute is static class that helps to get required attribute from class, type or object

instance. There are four overloads of method Get described in Table 12.

35

Table 12 Attribute Get method, and its overloads

Nr Method overload Description

1 TAttribute Get<TAttribute>(object obj) This method takes one generic

argument specifies type of

attribute required to be returned

and one parameter that is source

object instance.

This method is getting type out

of the object instance, by using

reflection method GetType and

using overload number 3 to get

and return required attribute

2 TAttribute Get<TAttribute, TObject>() This method is taking two

generic arguments. First is

attribute required to be returned

and second is the source class

name.

This method is taking type from

second generic parameter by

using typeof method and then

using overload number 3 to get

and return required attribute

3 TAttribute Get<TAttribute>(Type objectType) This method takes one generic

argument specifies type of

attribute required to be returned

and one parameter of type that

specifies the source type where

required attribute needs to be

found. This method is taking

type of the attribute class and

using overload number 4 by

providing 2 Type parameters and

returning its result casting it to

required attribute type.

4 Attribute Get(Type attributeType, Type objectType) This is non-generic method that

takes 2 Type parameters. First is

type of the required attribute and

second is type of source class

where this attribute needs to be

found. This method uses static

GetCustomAttribute method

from Attribute class and

returning its result.

36

4.2.4 ToString methods

Each object that represents part of query has override ToString method that translates

itself into part of WQL [7]. All child elements’ ToString methods are used by ToString

method of main WqlQuery element so that in case of ToString usage WQL Query will be

generated and returned as string.

As all the joins and predicates are kept in ICollection (List) object they needs to be

aggregated into single string, this is done using extension methods described in section

4.2.5.

4.2.5 Extension methods

There are two static classes providing extension methods. First is WqlObjectExtensions.

This class provides extension methods for WqlQuery sub elements that kept in

ICollection (List) object, methods described in Table 13.

Table 13 WqlQuery collection elements extension methods

Method Description

public static string

AggregateString(this

IEnumerable<IWqlPredicate>

predicateEnumerable)

This method using LINQ [1] method Aggregate [44] that

helps to create new list of strings, than add each predicate

by using its ToString method and then join this list into a

single string using string.Join static method and “ AND ”

separator. The joining operation result is returned as the

result of Aggregate string method.

public static string

AggregateString(this

IEnumerable<IWqlClassObject>

joinEnumerable)

This method using LINQ [1] method Aggregate [44] that

helps to create new list of strings, than add each join

statement by using its ToString method and then join this

list into a single string using string.Join static method and

Envoriment.NewLine constant as a separator. The joining

operation result is returned as the result of Aggregate string

method.

The second class DateTimeExtension provides one extension method for

System.DateTime type objects that helps to translate it to DMTF (Distributed

Management Task Force) date time string format. This method is modified version of

existing method in System.Management class [45].

37

4.3 “VNetDev.WmiQueryableCore.WqlTranslator.Abstraction”

library

This library has all the required interfaces to represent all the translator objects and its

elements.

Project creation can be done same way as described in section 4.1.1.

All interfaces described in Table 14.

38

Table 14 IWqlTranslator interfaces description

Interface name Inherited interfaces Description

IWqlFactory none This interface has one method declaration

that must provide IWqlQuery object by

providing Expression type argument that

represents expression tree.

IWqlObject none This interface has one method declaration

that allows to set object value or values by

taking object array params [46].

IWqlPredicate IWqlObject This interface is adding three method

declarations to existing in IWqlObject

interface. As this method represents

predicate it requires implementation of the

following methods:

• SetLeft – to set first object to be

compared, this method requires

IWqlObject as an argument.

• SetRight – to set second object to be

compared, this method requires

IWqlObject as an argument.

• SetOperator – to set comparison

operator. This takes operator as

string.

IWqlClassObject IWqlObject This interface is adding two methods

declaration to existing in IWqlObject

interface. Interface represents one WMI

class that could be used as a main

IWqlObject or any joined class. This

interface requires implementation of

AddPredicate method that takes one

IWqlPredicate argument and returns

IWqlClassObject to fulfil Fluent interface

[3] requirement.

IWqlQuery IWqlClassObject This interface is adding one method and one

read-only property declaration to existing in

IWqlClassObject interface. Interface

represents WqlQuery object. It requires one

property of type that specifies the

appropriate type of query output. Also, it

requires implementation of

ProceedDelegates method that applies all

the delegates provided by Select [42]

extension method and will transform query

result into awaited format.

39

4.4 “VNetDev.WmiQueryableCore.Cim” library

The WMI Queryable driver provides communication over WinRM [10] protocol.

Project creation can be done same way as described in section 4.1.1.

This library can be called WMI [7] Queryable framework driver. The goal of this library

is to provide connectivity to WMI by using Microsoft.Management.Infrastructure [47]

package, take translation object IWqlQuery, send its WQL statement to WMI backend

and map the result into appropriate objects.

The main and most important class in this library is CimConnection. As any WMI

Queryable framework driver, it needs to implement IWmiConnection interface described

in section IWmiConnection interface.

As IWmiConnection interface inherit IQuery Provider LINQ [1] interface as well

CimConnection class must implement both.

4.4.1 CimConnection object instantiation

First CimConnection class needs to be instantiated and for that purpose it has four

constructor methods described in Table 15.

40

Table 15 CimConnection instantiation options

N

r

Constructor signature Description

1 CimConnection(CimSession

connection, string nameSpace =

@"root\CIMv2")

This constructor provides possibility to use already

pre-existing Microsoft.Management.Infrastructure

[47] CimSession instance. In addition, it could take

one more argument to specify namespace, this can

be skipped as there is default Windows namespace

specified as default argument value.

2 CimConnection(string

computerName = "localhost",

string nameSpace =

@"root\CIMv2")

This constructor takes two string arguments that

allow specification of hostname or ip address of the

target system and WMI namespace to connect. Both

arguments are optional, and default values are local

computer and default Windows namespace

“root\CIMv2”. This constructor uses current user

credentials for connection.

3 CimConnection(string

computerName, string

nameSpace, CimCredential

credential)

This constructor takes three arguments, first two are

same as described in constructor number 2. Third

argument takes pre-existing

Microsoft.Management.Infrastructure [47]

CimCredential objects with preconfigured settings.

4 CimConnection(string

computerName, string

nameSpace,

PasswordAuthenticationMechanis

m authenticationMechanism,

string domain, string userName,

string password)

This constructor allows to specify everything

manually, it takes six parameters:

1. computerName – ip address or hostname of

the target system

2. namespace – WMI namespace

3. authenticationMechanism –

PasswordAuthenticationMechanism enum

value that specifies the way of

authentication. This enum is available in

Microsoft.Management.Infrastructure.Opti

ons namespace and required for

Microsoft.Management.Infrastructure [47]

CimCredential objects creation.

4. domain – domain name to authenticate.

5. username – username to authenticate.

6. password – user password for

authentication.

All constructor parameters are mandatory.

4.4.1.1 IQueryProvider interface implementation

Instances of type CimConnection must implement generic and non-generic CreateQuery

and Execute methods that described in Table 16.

41

Table 16 CimConnection methods for IQueryProvider implementation

Nr Method Description

1 IQueryable CreateQuery(Expression expression) Method creates an instance

of WmiClassSet<object>

providing WmiContext and

expression and returns it as

an IQueryable.

2 IQueryable<TElement>

CreateQuery<TElement>(Expression expression)

Method creates an instance

of

WmiClassSet<TElement>

providing WmiContext and

expression and returns it as

an IQueryable<TElement>.

3 object Execute(Expression expression) First method is getting

IWqlQuery object by usage

of WqlFactory

TranslateQuery method

with providing of the

expression tree.

Then method is checking

expression trees last

element to detect the result

object format. If it is one

object instance or single

value-type, then it is

checking for all the

requirements and getting

just one instance of the

object or just result count.

If list of object is awaited

then it is using

CreateObjectInstances

method, that is described in

section 0, to get

IEnumerable [48] of

objects required and result

is returned.

4 TResult Execute<TResult>(Expression expression) This method uses method

number 3 to get the result,

then cast it to appropriate

type and return the result.

42

4.4.1.2 CreateObjectInstances method

Main goal of CreateObjectInstances method is to provide enumerable object of required

object instances. This method create ObjectReader<> object instance using

Activator.CreateInstance [49] method. ObjectReader class is described in section 4.4.2.

CreateObjectInstances method takes three mandatory arguments that are described in

Table 17.

Table 17 CreateObjectInstances method arguments

Argument Type Description

type Type This argument is required to create

ObjectReader instance, as this object

requires generic argument to be specified.

queryObject IWqlQuery The IWqlQuery object that is the result of

translation, this is required for object reader

to understand WMI result object structure by

using its type and alias map and then the

result should be transformed, if Select

method was used, to return objects in

appropriate format.

instances IEnumerable<CimInstance> WMI object instances that are received from

WMI backend.

4.4.1.3 InvokeCimMethod internal method

This is helper method that executes WMI methods using three arguments described in

Table 18 and one generic argument T for result casting.

Table 18 InvokeCimMethod arguments

Argument Type Description

wmiClass object WMI object instance that represents

source of the method that needs to be

executed.

methodName string Method name that needs to be executed.

methodParameters IDictionary<string, object> Dictionary of parameters needs to be

passed to method in order to be

executed.

This method CimParameterCollection object needed with the parameters we have in

Dictionary methodParameters, checking that we have requested object instance and

43

passing them with methodName paraneter to InvokeMethod [50] method using

connection we have. The result of InvokeMethod execution is translated to generic type

T and rreturned as the result.

4.4.2 Object reader

ObjectReader class in needed to instantiate C# classes based on received WMI result

instance and register them. This class implements IEnumerable<T> [48] that allows this

object to be enumerated later.

It is creating Activator.CreateInstance [49] method to create object of IWqlQuery output

type and then map all values for properties that exists in the result object instance.

Then if class has delegate methods needs to be assigned object reader will create lambda

expressions that in turn uses InvokeCimMethod method in CimConnection described in

section 0, compile it and assign as a value to appropriate delegate method in created object

instance.

As the ObjectReader class implements IEnumerable interface it is creating object

instances one by one during its further enumeration, so if object will not be used or just

one or several result objects will be taken then only required objects will be created and

mapped.

All the created object instances are registered in CimConnection object cache dictionary

to be tracked. This cache is used when object needs any modification or needs to be used

for method execution.

4.5 “VNetDev.WmiQueryableCore.DCom” library

The WMI Queryable driver provides communication over DOM [11] protocol.

Project creation can be done same way as described in section 4.1.1.

The principle of this library is very similar to driver for working over WinRM that is

described in section 4.4, but the difference is that this library is using

System.Management package to create a connection to WMI backend.

44

This is quite old way to connect to WMI and can be used only on Windows. Also, this

protocol required a lot of ports to be used as DCom is using dynamic ports for connection

establishment. But the biggest benefit of this approach is extended WQL [15] that is

supported by some systems like Microsoft Endpoint Configuration Manager [51].

4.6 “VNetDev.WmiQueryableCore.CIMv2” library

The project that extends Base WMI context class by implementing all the classes provided

in Windows default WMI namespace “root\CIMV2”.

Project creation can be done same way as described in section 4.1.1.

This project contains CIMv2WmiContext class that extends WmiContext, described in

section 4.1.2. This class represents Windows default WMI namespace “root\CIMV2” that

has several hundred WMI classes.

This project contains all the needed classes with all properties and method declarations.

All these classes are added to the CIMv2WmiContext class via the WmiClassSet, that is

described in section 4.1.4.

There are 776 classes that represent different WMI classes of the “root\CIMV2” WMI

namespace, all these classes were generated by PowerShell script that is gathering all the

classes from the namespace, then, by using .NET StringBuilder [52], recursively

generating C# class files for each WMI class available in namespace.

45

5 Created solution analysis

As the result WMI Queryable framework can make developers live easier as it is making

work with WMI backends a lot easier and safer as it is strongly typed and will not allow

making of many mistakes that is standard weakly typed approach can be made quite often.

5.1 Comparison of old and new ways of working

With help of new WMI Queryable framework code can be shorter and more readable than

with old ways of working that is still standard way of doing WMI Queries. The difference

between code blocks is represented on Figure 11 and Figure 12.

46

var computer = "Computer_B";
var domain = "domain.local";
var username = "AdminUserName";
var password = "Password123";

SecureString securePassword = new SecureString();

foreach (var c in password)
{
 securePassword.AppendChar(c);
}

var credentials = new CimCredential(
 PasswordAuthenticationMechanism.Default,
 domain,
 username,
 securePassword);

var sessionOptions = new WSManSessionOptions();

sessionOptions.AddDestinationCredentials(credentials);

var session = CimSession.Create(
 computer, sessionOptions);

var allVolumes = session
 .QueryInstances(
 @"root\cimv2",
 "WQL",
 "SELECT * FROM Win32_Volume WHERE DriveLetter <> NULL");

foreach (var oneVolume in allVolumes)
{
 Console.WriteLine(
 "Volume '{0}' has {1} bytes total, {2} bytes available",
 oneVolume.CimInstanceProperties["DriveLetter"],
 oneVolume.CimInstanceProperties["Size"],
 oneVolume.CimInstanceProperties["SizeRemaining"]);
}

Figure 11 Example of old way of working.

47

var context = new CIMv2WmiContext();
context.Configure(x => x.UseCim(
 "Computer_B", "root\\CIMV2", PasswordAuthenticationMechanism.Default,
 "domain.local", "AdminUserName", "Password123"));

foreach (var volume in context.Win32Volume
 .Where(x => x.DriveLetter != null))
 Console.WriteLine(
 $"Volume '{volume.DriveLetter}' has {volume.Capacity}" +
 " bytes total, {volume.FreeSpace} bytes available");

Figure 12 Example of new way of working

5.2 Possibilities for further improvements

There is some room for improvement of this WMI Queryable framework available.

Currently it does not support asynchronous querying, this for sure will be very beneficial

thing to implement.

DCom driver could be improved to support Linux OS as well as Windows. This could be

done using command line tools available for WMI on Linux.

5.3 Unexpected statistics

During development process author has released test alpha version of the WMI Queryable

frameworks and published them to Nuget.org [4] package repository for its own use.

During three days’ time period there already were several hundred downloads, statistics

shown on Figure 13.

Figure 13 Nuget.org packages download statistics

48

5.4 Further development

Next actions will be finalizing and testing of the created solution. Solution will be

uploaded to appropriate GitHub repository and new versions of WMI Queryable interface

will be created and pushed to Nuget.org package repository.

Packages will be available in “Package Manager Console” in Microsoft Visual Studio or

JetBrains Rider IDE. Also, these packages can be downloaded from the nuget.org

website.

List of packages available:

1. VNetDev.WmiQueryableCore

2. VNetDev.WmiQueryableCore.WqlTranslator

3. VNetDev.WmiQueryableCore.WqlTranslator.Abstraction

4. VNetDev.WmiQueryableCore.Cim

5. VNetDev.WmiQueryableCore.DCom

6. VNetDev.WmiQueryableCore.CIMv2

GitHub repository available at the following URL:

https://github.com/epavvol/WmiQueryableCore

https://github.com/epavvol/WmiQueryableCore

49

6 Summary

This thesis deals with inconvenience in interaction with Windows Management

Instrumentation [5] in .NET [6] environment. As described in chapter 1 there are no good

tools in any of the .NET framework implementations that help developers to interact with

WMI in convenient, safe and readable way. All approaches that allows interaction with

WMI require a lot of effort to prepare required mechanism and objects. This way of

development has a lot of drawbacks and places of potential mistakes that will pop up only

in runtime and this makes development and debugging processes a lot more difficult and

as the result code is less readable, that makes further improvements a lot more

problematic.

In the chapter 2 author pointed out that there are still no good solutions that could solve

all the issues with WMI interaction in .NET environment, on the contrary, there are a lot

of forum topics that prove the relevance of the problem, where other developers are

looking for the solution of the same problem.

In the same chapter author is suggesting possible way of solving these issues by

standardizing principles of working with WMI in .NET environment. The idea is to make

possibility of working in single WMI context object with classes that have strongly typed

properties. This approach makes development process safer and eliminates a lot of

potential mistakes, as biggest part of logical mistakes become syntax errors and, as the

result, compiler will force developer to fix them.

Chapter 3 describes analysis part of the current thesis. In this chapter the author explores

the possibilities that are best suited to solve the problem in the best way. After long

research the author concludes that the best suitable technology, which is available in .NET

environment, is LINQ [1] IQueryable [2] interface, that provides very convenient fluent

interface [3].

Same chapter describes several available .NET framework implementations and the

decision that author considers more suitable is to use .NET Standard framework version

50

2.0 as this version is supported almost in all .NET implementations and .NET based

languages [27].

In the chapter 4 author describes solution implementation process in more detailed level.

This chapter shows all the techniques used during development process and describes all

implemented design patterns and principles. In this section author is explaining all the

objects, their purposes and relationships between them.

The 5th chapter shows the analysis of the solution created. The comparison that the author

cites in his work proves that code blocks are reduced a lot and now they are written in

more readable and safe way than without usage of WMI Queryable framework.

In the same chapter the author shared his thoughts on further development.

In author's opinion the prototype of WMI Queryable is successful and will be very useful

in .NET development of applications that require interaction with Windows Management

Instrumentation. The framework created will be improved in future and supported in case

of demand.

51

References

[1] “Language Integrated Query (LINQ),” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-

guide/concepts/linq/. [Accessed 25 11 2019].

[2] “IQueryable Interface,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/api/system.linq.iqueryable?view=netstandard-2.0. [Accessed 25 11

2019].

[3] “Fluent interface,” [Online]. Available:

https://en.wikipedia.org/wiki/Fluent_interface. [Accessed 17 11 2019].

[4] “NuGet,” [Online]. Available: https://www.nuget.org/. [Accessed 10 10 2019].

[5] “Windows Management Instrumentation,” Microsoft, 31 05 2018. [Online].

Available: https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-

page. [Accessed 15 11 2019].

[6] “.NET documentation,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/. [Accessed 15 12 2019].

[7] “WQL (SQL for WMI),” Microsoft, 31 05 2018. [Online]. Available:

https://docs.microsoft.com/en-us/windows/win32/wmisdk/wql-sql-for-wmi.

[Accessed 05 11 2019].

[8] “Query Syntax and Method Syntax in LINQ (C#),” Microsoft, [Online].

Available: https://docs.microsoft.com/en-us/dotnet/csharp/programming-

guide/concepts/linq/query-syntax-and-method-syntax-in-linq. [Accessed 25 11

2019].

[9] “Visitor pattern,” 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Visitor_pattern. [Accessed 07 01 2020].

[10] “Windows Remote Management,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-us/windows/win32/winrm/portal. [Accessed 05 11

2019].

[11] “[MS-DCOM]: Distributed Component Object Model (DCOM) Remote

Protocol,” Microsoft, [Online]. Available: https://docs.microsoft.com/en-

us/openspecs/windows_protocols/ms-dcom/4a893f3d-bd29-48cd-9f43-

d9777a4415b0. [Accessed 15 02 2020].

[12] “SOLID,” [Online]. Available: https://en.wikipedia.org/wiki/SOLID. [Accessed

20 11 2019].

[13] “Application programming interface,” [Online]. Available:

https://en.wikipedia.org/wiki/Application_programming_interface. [Accessed 15

02 2020].

[14] “GitHub,” [Online]. Available: https://github.com/. [Accessed 25 10 2019].

[15] “Configuration Manager Extended WMI Query Language,” Microsoft, 20 09

2016. [Online]. Available: https://docs.microsoft.com/en-

52

us/mem/configmgr/develop/core/understand/extended-wmi-query-language.

[Accessed 25 11 2019].

[16] “ASP.NET Core,” Microsoft, [Online]. Available: https://docs.microsoft.com/en-

us/aspnet/core/?view=aspnetcore-3.1. [Accessed 15 12 2019].

[17] “Dependency injection in ASP.NET Core,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-

injection?view=aspnetcore-3.1. [Accessed 20 12 2019].

[18] “LINQ: BUILDING AN IQUERYABLE PROVIDER SERIES,” [Online].

Available:

https://web.archive.org/web/20090210162932/http://blogs.msdn.com/mattwar/pa

ges/linq-links.aspx. [Accessed 25 11 2019].

[19] “SQL,” [Online]. Available: https://en.wikipedia.org/wiki/SQL. [Accessed 05 11

2019].

[20] “Entity Framework documentation,” [Online]. Available:

https://docs.microsoft.com/en-us/ef/. [Accessed 10 11 2019].

[21] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns,” in Design

Patterns: Elements of Reusable Object-Oriented Software, Pearson Education,

1994, p. 395.

[22] D. Nesteruk, “Design Patterns in C# and .NET,” Udemy, 04 2020. [Online].

Available: https://www.udemy.com/course/design-patterns-csharp-dotnet/.

[Accessed 15 04 2020].

[23] “Connecting to WMI Remotely with C#”,” [Online]. Available:

https://docs.microsoft.com/en-us/windows/win32/wmisdk/connecting-to-wmi-

remotely-with-c-. [Accessed 25 10 2019].

[24] “.NET Framework,” [Online]. Available:

https://en.wikipedia.org/wiki/.NET_Framework. [Accessed 15 12 2019].

[25] “.NET Core,” [Online]. Available: https://en.wikipedia.org/wiki/.NET_Core.

[Accessed 01 02 2020].

[26] “.NET Standard,” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/standard/net-standard. [Accessed 25 11 2019].

[27] “.NET Programming Languages,” Microsoft, [Online]. Available:

https://dotnet.microsoft.com/languages. [Accessed 25 11 2019].

[28] “Integrated development environment,” [Online]. Available:

https://en.wikipedia.org/wiki/Integrated_development_environment. [Accessed

20 10 2019].

[29] “Visual Studio,” Microsoft, [Online]. Available:

https://visualstudio.microsoft.com/. [Accessed 05 10 2019].

[30] “ReSharper,” JetBrains, [Online]. Available:

https://www.jetbrains.com/resharper/. [Accessed 01 10 2019].

[31] “Rider,” JetBrains, [Online]. Available: https://www.jetbrains.com/rider/.

[Accessed 01 10 2019].

[32] “GitHub,” [Online]. Available: https://en.wikipedia.org/wiki/GitHub. [Accessed

25 10 2019].

[33] “Bitbucket,” Atlassian, [Online]. Available:

https://en.wikipedia.org/wiki/Bitbucket. [Accessed 19 12 2019].

53

[34] “GitLab,” [Online]. Available: https://en.wikipedia.org/wiki/GitLab. [Accessed

25 10 2019].

[35] “Builder pattern,” [Online]. Available:

https://en.wikipedia.org/wiki/Builder_pattern. [Accessed 20 01 2020].

[36] “IListSource Interface,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/api/system.componentmodel.ilistsource?view=netstandard-2.0.

[Accessed 05 11 2019].

[37] “CSPROJ File Format,” [Online]. Available:

https://wiki.fileformat.com/programming/csproj/. [Accessed 20 02 2020].

[38] “XML,” [Online]. Available: https://en.wikipedia.org/wiki/XML. [Accessed 20

11 2019].

[39] “Repository and Unit of Work Pattern,” 09 01 2018. [Online]. Available:

https://www.programmingwithwolfgang.com/repository-and-unit-of-work-

pattern/. [Accessed 19 01 2020].

[40] “ExpressionVisitor Class,” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/api/system.linq.expressions.expressionvisitor?view=netcore-3.1.

[Accessed 20 12 2019].

[41] “#region (C# Reference),” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-region.

[Accessed 05 01 2020].

[42] “Queryable.Select Method,” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/api/system.linq.queryable.select?view=netcore-3.1. [Accessed 25 11

2019].

[43] “Partial Expression Evaluator,” [Online]. Available:

https://web.archive.org/web/20090221134246/http://blogs.msdn.com/mattwar/arc

hive/2007/08/01/linq-building-an-iqueryable-provider-part-iii.aspx. [Accessed 25

11 2019].

[44] “Enumerable.Aggregate Method,” [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/api/system.linq.enumerable.aggregate?view=netcore-3.1. [Accessed 20

01 2020].

[45] “System.Management source,” [Online]. Available:

https://github.com/dotnet/runtime/blob/ccf6aedb63c37ea8e10e4f5b5d9d23a69bd

d9489/src/libraries/System.Management/src/System/Management/ManagementD

ateTime.cs. [Accessed 25 11 2019].

[46] “params (C# Reference),” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/csharp/language-reference/keywords/params. [Accessed 15 01 2020].

[47] “Microsoft.Management.Infrastructure,” [Online]. Available:

https://github.com/PowerShell/MMI. [Accessed 25 11 2019].

[48] “IEnumerable Interface,” [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/api/system.collections.ienumerable?view=netcore-3.1. [Accessed 05 11

2019].

[49] “Activator.CreateInstance Method,” [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/api/system.activator.createinstance?view=netcore-3.1. [Accessed 05 03

2020].

54

[50] “CimSession.InvokeMethod Method,” [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/api/microsoft.management.infrastructure.cimsession.invokemethod?vie

w=pscore-6.2.0. [Accessed 15 02 2020].

[51] “Microsoft Endpoint Configuration Manager,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-us/mem/configmgr/. [Accessed 10 01 2020].

[52] “StringBuilder Class,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/api/system.text.stringbuilder?view=netcore-3.1. [Accessed 10 12 2019].

