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Abstract 

 
 
Future integrated systems will contain billions of transistors, composing tens to 
hundred of IP cores which are capable of delivering rich multimedia and networking 
services. As the number of devices in the integrated circuit increases, the limitations 
of traditional bus architectures are exposed. Networks on Chips (NoC) have emerged 
as the new backbone for chip integration. Due to their particular topology on one 
hand, and their scale on the other hand, it is crucial to develop a methodology that 
could handle testing of such new kind of architectures.  
 
In this thesis we discuss an external test method which achieves high fault coverage. 
In addition to that the test method is scalable, and has a low overhead area. Secondly 
we propose the use of the functional test configurations with a goal to locate faults in 
individual links of the switches. Collapsing of link faults based on equivalent 
configurations was also proposed. Using this, a method was proposed that is capable 
of unambiguously diagnose a link fault in the network in a very short test application 
time. Experiments showed that, although working at higher abstraction levels, the 
method has a very high coverage for logic-level structural faults. The test 
configurations were modified to get a much shorter test time. 
 
In addition, the work proposed a set of Design-for-Testability (DfT) techniques for 
application of test patterns from the external boundary of a Network-on-a-Chip 
(NoC). The work presented in this thesis has been published in a journal and 
presented in several international conferences. 
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Annotatsioon 
 
 
Tuleviku elektroonikasüsteemid saavad koosnema miljarditest transistoritest ning 
sadadest tuumadest, mis võimaldavad rikkalike multimeedia ja võrguteenuseid. Samas 
süveneb integraalskeemide keerukuse tõusust tulenevalt traditsiooniliste siini-
arhitektuuride piiratus. Kiipvõrgud on saamas uueks ühendusviisiks keerukate kiipide 
integreerimisel. Tulenevalt nende regulaarsest struktuurist, kuid samas suurest 
keerukusest, on äärmiselt oluline töötada välja spetsiaalne metodoloogia kiipvõrkude 
testimiseks. 
 
Käesolevas dissertatsioonis  esitame me valise testi metodoloogia, mis saavutab kõrge 
rikete katte. Meetod on skaleeruv ning ei nõua oluliselt täiendavaid riistvara-ressursse. 
Teiseks pakume me kasutada välja töötatud testikonfiguratsioone rikete 
lokaliseerimiseks kiibiühendustes. Dissertatsioonis pakutakse välja ka meetod 
vastavate rikete hulga kollapseerimiseks, kasutades rikete ekvivalentsusklasse. 
Nimetatud meetod on võimaline kiirelt ja üheselt lokaliseerima rikkeid kiipvõrgu 
ühendustes. Katsetulemused näitavad, et kuigi meetod töötab kõrgel 
abstraktsioonitasemel, saavutab ta väga kõrge struktuursete rikete katte. Töös 
pakutakse välja ka parendatud testikonfiguratsioonid testimise aja minimiseerimiseks.  
 
Lisaks esitatakse testitava projekteerimise tehnikad testvektorite edastamiseks 
kiipvõrgu väliste servade kaudu. Käesolevas dissertatsioonis esitatud töö on avaldatud 
teadusajakirjas ning mitmetel konverentsidel. 
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Chapter 1  
Introduction 
 
Microelectronics is the area of technology associated with and applied to the 
realization of electronic systems made of extremely small electronic parts or elements. 
Steady advances in technology have resulted in devices with hundreds of millions of 
transistors and subsequent scaling of chips. The reduction in size feature increases the 
probability that a manufacturing defect occurs in the chip. It takes only one faulty 
transistor to make the entire chip fail to function properly. Therefore it is necessary to 
test components at various stages during the manufacturing process. The cost of 
testing has become a major component of the design and manufacturing costs of new 
products. 
 
1.1 Networks on Chips 
 
According to the International Technology Roadmap for Semiconductors, we will 
soon be entering the era of a billion transistors on a single chip [1]. It is being stated 
that soon we will have a chip 50-100 nm comprising around 4 billion transistors 
operating at a frequency of 10 GHz [1]. Such a development means that in the near 
future we will probably be having devices with such complex functions from mere 
mobile phones to mobile devices controlling satellite functions. But developing such 
kind of chips is not an easy task as the number of transistors increases on-chip and so 
does the complexity of integrating them. System on Chip (SoCs) use shared or 
dedicated buses to interconnect the communicating on-chip resources. However these 
buses are not scalable beyond a certain limit. In this case the current interconnect 
infrastructure will become a bottleneck for the development of billion transistor chips. 
The design of such complex systems includes several challenges. One challenge is 
designing-on-chip interconnection networks that efficiently connect IP cores. Another 
challenge is application mapping that makes efficient use of available hardware 
resources. An architecture that is able to accommodate such a high number of cores, 
satisfying the need for communication and data transfers is the networks on chip 
architecture. 
 
Around 1999 several research groups started to investigate systematic approaches to 
the design of communication part of SoCs [2]. It soon turned out that the problem has 
to be addressed at all levels from the physical to architectural to the operating system 
and application level. Hence, the term Network on Chip (NoC) is today used mostly 
in a very broad meaning, encompassing the hardware communication infrastructure, 
the middleware and operating system communication services and design 
methodology and tools to map applications onto a NoC. 
 
The NoC–based Soc design utilizes two major concepts, different from those of the 
usual bus–based SoC architecture. First, it is a packet transaction rather than circuit 
transaction, and, secondly it is a distributed network structure, rather than a 
conventionally globally shared bus or a centralized matrix. Each of its functional 
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modules should be designed latency insensitive to support packet transactions. The 
benefits gained from packet transaction are improvements in operational speed, 
reliability of the interconnection links, and efficient utilization of links. Another 
advantage is that the electrical parameters of the existing NoC are not affected by 
addition of other NoC modules because of the structured characteristic of the NoC. 
The other benefits from a NoC based approach are the possibility to reuse the 
communication network. The switches, interconnects and the lower communication 
protocols can be designed, optimized, verified and implemented once and reused in a 
larger number of products. There is in fact a long list of services that would be 
benefiting many applications but can impossibly be developed from scratch for each 
new product. Examples are 
 

• the detection, monitoring and management of faults in the network; 
• the allocation and management of network resources and possibly task 

migration for load balancing and power optimization; 
• the management of global and shred memory; 
• the provision of sophisticated communication services such as channels with 

guaranteed bandwidth and quality of service, multi-cast and broadcast 
communication, etc; 

 
 

The industry has initiated different NoC based designs such as AEthereal NoC from 
Philips, the STNOC from STMicroelectronics, and an 80 core NoC from Intel. The 
key design challenges of emerging NoC designs are the communication infrastructure, 
communication paradigm selection and application mapping optimization. 
NoC is emerging as a revolutionary methodology to integrate numerous blocks in a 
single chip. It is the digital communications backbone that interconnects the 
components on a multicore SoC. It is well know that with shrinking geometries NoCs 
will be increasingly exposed to permanent and transient sources of errors that could 
degrade manufacturability, signal integrity and system reliability. 

 
1.2 Test Issues in NoCs  
 
Traditionally, correct fabrication of integrated circuits is verified by post 
manufacturing testing using different techniques ranging from scan-based techniques 
to delay and current-based tests [1]. Due to their particular nature, NoCs are exposed 
to a range of faults that can escape classic test procedures. Such faults include 
crosstalk, faults in the buffers of the NoC routers, and higher-level faults such as 
packet misrouting and data scrambling [3]. These faults add to the classic faults that 
must be tested post fabrication for all integrated circuits (stuck-at, opens, shorts, 
memory faults, etc.). Consequently, the test time of NoC based systems increases 
considerably due to these new faults.  
 
Test time is an important component of the test cost and, implicitly, of the total 
fabrication cost of a chip. For large volume production, the total time that a chip 
requires for testing must be reduced as much as possible to keep the total cost low. 
The total test time of an IC is governed by the amount of test data that must be applied 
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and the amount of controllability/observability that the Design-for-Testability (DfT) 
techniques chosen by designers can provide. The test data increases with the 
complexity of the chip and size, so the option the DfT engineers are left with is to 
improve the controllability/ observability. Traditionally, this is achieved by increasing 
the number of test inputs/ outputs, but this has the same effect of increasing the total 
cost of an IC. DfT techniques, such as scan-based tests, improve the controllability 
and observability of IC internal components by serializing the test I/O data and 
feeding/extracting it to/from the IC through a reduced number of test pins. The trade-
off is the increase in test time and test frequency, which makes at-speed test using 
scan-based techniques difficult. Although scan based solutions are useful, their 
limitations in the particular case of NoC systems demand the development of new test 
data generation and transportation mechanism that reduces the total test time and at 
the same time do not require an increased number of test I/0 pins.  
 
An effective and efficient test procedure is, however, not sufficient to guarantee the 
correct operation of NoC data transport infrastructures during the lifetime of the IC. 
Defects may appear later in the life of an IC, due to causes like electro migration, 
thermal effects, material aging, etc. These effects will become more important with 
continuous dimension downscaling of the devices beyond 65nm and moving towards 
the nanoscale domain. The technology projections for the next generations of 
nanoelectronic devices show that defect rates will be in the order of one to ten percent 
and defect–tolerant techniques will have to be included in the early stages of design 
flow of digital systems [1]. Even with defect rates indicated by the International 
Technology Roadmap for Semiconductors (IRTS) for upcoming CMOS processes, it 
is clear that correct fabrication is becoming more and more difficult to guarantee. An 
issue of concern in the case of the communication-intensive platforms such as NoC is 
the integrity of the communication infrastructure.  
 
The challenges of NoC testing lie in achieving sufficient fault coverage under a set of 
fault models relevant to NoC characteristics, under constraints such as test time, test 
power dissipation, low area overhead and test complexity. A fine balance must be 
achieved between test quality and test resources. To accomplish these goals, NoCs are 
augmented with design-for-test features that allow efficient test data transport, built–
in test generation and comparison and post manufacturing yield tuning. 
 
1.3 Motivation 
 
Testing of NoCs is a new challenge to be overcome by the research community. Over 
the years, a number of NoC test approaches have been proposed. Vast majority of 
them are based on implementing design-for-testability structures (i.e. wrappers, scan-
paths, built-in test pattern generators and compactors).  
 
In [4], Aktouf proposes the use of boundary scan wrapper for NoC testing routers. 
However, Amory et al. [41] point out that the use of standard DfT solutions for 
networks-on-a-chip results in a prohibitively large area overhead. The authors of [5, 
6] present a new scalable DfT method for NoC switches with only 8 % of overhead. 
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However, the test application times even for the smallest networks are measured in 
tens of thousands of clock cycles and the test pattern generation time does not scale: 
ten hours (!) is needed to test a 5x5 network. The obvious drawbacks of all of the 
above methods are the required silicon area for test structures and lack of support for 
at-speed and functional system testing. In [7], Petersen et al. introduce an idea of near-
constant-time testable (C-testable) built-in self-test based test configuration. However, 
this idea has never been implemented, the required overhead area is prohibitively 
large and there is no reference of the test quality achieved. 
 
What has been missing previously is a scalable external test approach relying mainly 
on the NoC network’s own high-throughput infrastructure for test access. Test 
configurations to handle switch matrixes of reconfigurable hardware devices have 
been developed (e.g. [8]). However, despite apparent similarities, the ideas cannot be 
implemented for packet-switched routers. The main difficulty is that test 
configurations in NoCs are dependent on routing algorithms and thus it is not possible 
to activate arbitrary test paths similar to configuring FPGA switches. 
 
1.4 Thesis Contribution 
 

The main contributions of the thesis are outlined below 
 

 A generic parametrizable VHDL description of a deflecting NoC switch 
was implemented and a benchmark family of 8 switches representing 
different possible a architecture configurations was synthesized 

 
 A 3*3 network was synthesized. The data width of the Switches in the 

Network could be either 128 or 512 bit. 
 

 An external functional test method for NoC switching networks is 
developed. The proposed algorithm allows to cover nearly all of the single 
stuck-at faults in the switching networks and also transition faults, opens 
and shorts at the interconnect lines. 

 
 This method was modified to make it scalable with the size of the network 

and produce a test set whose volume grows linearly with the rank of the 
network. 

 
 The impact of crossbar multiplexer implementation on fault coverage was 

analyzed. Some implementations of crossbar achieved fault coverage of 
100% and the average fault coverage was 97.1% 

 
 A method was developed that is capable of unambiguously diagnose a link 

fault in the network in a very short test application time. 
 

 In order to implement the test algorithm in a NoC network, various DfT 
structures were devised. These include resource loopback for testing the 
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crossbar multiplexer of the resource connection, a modification to the 
control part to force YX routing, a compact logic BIST for the control unit 
and dedicated test logic for covering the enable signals of switch buffers. 

 
1.5 Organization of the Thesis 
 
      The thesis is organized into six chapters: 

• Chapter 1- Introduction 
• Chapter 2- Fundamentals of Networks on Chip 
• Chapter 3- Testing and Diagnosis of Digital Systems 
• Chapter 4- Networks on Chips Testing Methods 
• Chapter 5- External Test Approach for NoC Switches 
• Chapter 6- Experimental Results and Conclusions. 

 
Chapter 1 provides the necessary background for the concepts used in the paper. The 
chapter discusses the scaling of chips and evolution of Networks on chips briefly. 
Then a brief introduction to the necessity of NoC testing is given. This is followed by 
the motivation for the thesis. 
Chapter 2 looks into the fundamentals of Networks-on-chips, outlines the benefits of 
NoC layered approach over bus technology and gives examples of industrial 
implementation of NoC. 
Chapter 3 provides an overview of various aspects of VLSI testing. 
Chapter 4 describes in detail various NoC testing approaches. 
Chapter 5 explains the contribution of the thesis and explains the external test pattern 
application method, DfT structures, diagnosis. 
Chapter 6 elaborates experimental results and the conclusions are summarized. 
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Chapter 2 
Fundamentals of Networks-on-Chip 
       
About this Chapter 
 
Networks-on-chip is the latest development in VLSI integration. Increasing levels of 
integration resulted in systems with different types of applications, each having its 
own I/O traffic characteristics. Since the early days of VLSI, communication within 
the chip dominated the die area and dictated clock speed and power consumption. 
Using buses is becoming less desirable especially with the ever growing complexity 
of single-die multiprocessor systems. As a consequence, the main feature of NoC is 
the use of networking technology to establish data exchange within the chip. This 
chapter looks into the fundamentals of Networks-on-chips. The reason why the 
concept of networking is suitable for chips is examined first, followed, by trends in 
communication architectures. 
 
The third subsection discusses the limitations of bus based architectures, followed by 
the advantages of using the NoC layered approach. The next two subsections deal 
with network architectures topologies, protocols respectively. The following 
subsections deal with queuing schemes, flow control and routing algorithms.  The last 
two subsections describe an industrial and an academic NoC chip implementation. 
 
2.1 Why On-Chip Networking? 
 
SoCs require design methodologies that have commonalities with other types of large 
scale systems. The design methodologies in SoCs can be compared to the internet. 
The latter is capable of taming the system complexity and of providing reliable 
service in presence of local malfunctions .Thus the networking technology has been 
able to provide us with quality of service (QoS),despite the heterogeneity and the 
variability of the internet nodes and links. It is then obvious that networking 
technology can be instrumental for the bettering of VLSI circuit design technology. 
 
On the other hand the challenges in merging the network and VLSI technologies are 
in leveraging the essential features of networking that are crucial to obtaining fast and 
reliable on-chip communication. However this does not mean using Network 
protocols like TCP/IP. This is not feasible due to the high latency related to the 
complexity of TCP/IP. On-chip communication should be fast so networking 
techniques must be simple and effective. Bandwidth, latency and energy consumption 
for communication must be traded off in search of the best solution. 
 
VLSI chips have wide availability of wires on many layers which can be used to carry 
data and control information. Wide data busses realize the parallel transport of 
information. Moreover, data and control do not need to be transported by the same 
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means, as in networked computers. Local proximity of computational and storage unit 
on chip makes transport extremely fast. Overall, the wire-oriented nature of VLSI 
chips make on-chip networking both an opportunity and a challenge. 
 
In summary, the main motivation for using on-chip networking is to achieve 
performance using a system perspective of communication. This reason is 
corroborated by the fact that simple on-chip communication solutions do not scale up 
when the number of processing and storage arrays on chip increases. For example, on-
chip buses can serve a limited number of units and beyond that, performances 
degrades due to the bus parasitic capacitance and the complexity of arbitration. 
Indeed, it is the trend to larger scale on-chip multiprocessing that demands on-chip 
networking solutions. 
 

2.2 Trends  
Busses have successfully been implemented in virtually all complex System on Chip 
(SoC) Silicon designs. Busses have typically been handcrafted around either a specific 
set of features relevant to a narrow target market, or support for a specific processor. 

Several trends have forced evolutions of systems architectures, in turn driving 
evolutions of required busses [9]. These trends are: 

• Application convergence: The mixing of various traffic types in the same SoC 
design (Video, Communication, Computing and etc.). These traffic types, 
although very different in nature, for example from the Quality of Service 
point of view, must now share resources that were assumed to be “private” and 
handcrafted to the particular traffic in previous designs. 

• Moore’s law is driving the integration of many IP Blocks in a single chip. This 
is an enabler to application convergence, but also allows entirely new 
approaches (parallel processing on a chip using many small processors) or 
simply allows SoCs to process more data streams (such as communication 
channels) 

• Consequences of silicon process evolutions between generations: Gates cost 
relatively less than wires, both from an area and performance perspective, than 
a few years ago. 

• Time-To-Market pressures are driving most designs to make heavy use of 
synthesizable RTL rather than manual layout, in turn restricting the choice of 
available implementation solutions to fit bus architecture into a design flow. 

These trends have driven of the evolution of many new bus architectures. These 
include the introduction of split and retry techniques, removal of tri-state buffers and 
multi-phase-clocks, introduction of pipelining, and various attempts to define standard 
communication sockets. 
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However, history has shown that there are conflicting tradeoffs between compatibility 
requirements, driven by IP blocks reuse strategies, and the introduction of the 
necessary bus evolutions driven by technology changes : In many cases, introducing 
new features has required many changes in the bus implementation, but more 
importantly in the bus interfaces (for example, the evolution from AMBA ASB to 
AHB2.0, then AMBA AHB-Lite, then AMBA AXI), with major impacts on IP 
reusability and new IP design. Busses do not decouple the activities generally 
classified as transaction, transport and physical layer behaviors. This is the key reason 
they cannot adapt to changes in the system architecture or take advantage of the rapid 
advances in silicon process technology. Consequently, changes to bus physical 
implementation can have serious ripple effects upon the implementations of higher-
level bus behaviors. Replacing tri-state techniques with multiplexers has had little 
effect upon the transaction levels. Conversely, the introduction of flexible pipelining 
to ease timing closure has massive effects on all bus architectures up through the 
transaction level. Similarly, system architecture changes may require new transaction 
types or transaction characteristics. Recently, such new transaction types as exclusive 
accesses have been introduced near simultaneously within OCP2.0 [10] and AMBA 
AXI [11] socket standards. Out-of-order response capability is another example. 
Unfortunately, such evolutions typically impact the intended bus architectures down 
to the physical layer, if only by addition of new wires or op-codes. Thus, the bus 
implementation must be redesigned. As a consequence, bus architectures can not 
closely follow process evolution, or system architecture evolution. The bus architects 
must always make compromises between the various driving forces, and resist change 
as much as possible.  

In the data communications space, LANs & WANs have successfully dealt with 
similar problems by employing a layered architecture. By relying on the OSI model, 
upper and lower layer protocols have independently evolved in response to advancing 
transmission technology and transaction level services. The decoupling of 
communication layers using the OSI model has successfully driven commercial 
network architectures, and enabled networks to follow very closely both physical 
layer evolutions (from the Ethernet multi-master coaxial cable to twisted pairs, ADSL, 
fiber optics, wireless..) and transaction level evolutions (TCP, UDP, streaming 
voice/video data). This has produced incredible flexibility at the application level 
(web browsing, peer-to-peer, secure web commerce, instant messaging, etc.), while 
maintaining upward compatibility (old-style 10Mb/s or even 1Mb/s Ethernet devices 
are still commonly connected to LANs). Following the same trends, networks have 
started to replace busses in much smaller systems: PCI-Express is a network-on-a 
board, replacing the PCI board-level bus. Replacement of SoC busses by NoCs will 
follow the same path, when the economics prove that the NoC either: 

• Reduces SoC manufacturing cost 
• Increases SoC performance 
• Reduces SoC time to market and/or NRE 
• Reduces SoC time to volume 
• Reduces SoC design risk 
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2.3 Limitations of Bus Based Architectures  
 
Limitations of traditional bus based-architectures start to become apparent when 
numerous processing elements compete for communication resources [12]. A typical 
bus-based architecture will require the processing elements to wait, while other data 
transfers are being carried out. Waiting in turn increases energy consumption due to 
leakage currents and decreases performance. Increasing the speed of the bus does 
improve the performance, but in the chips of the future, with more increased number 
of processing elements switch technology is needed to provide a balanced system. Bus 
systems don't meet next-generation requirements for converged data, voice, or video 
networks. 
The disadvantages of busses can be summarized as following 
• It is not scalable. As nodes are added, performance degrades due to capacitance 

and parasitics. There is a practical limit to the number of components in a system 
using a bus as its communication scheme and this limit is not high. 

• It is not very testable. In a bus there are many possible states for the interface 
between nodes and medium. A full test of the structure is almost impossible for a 
nigh number of nodes and high coverage. 

• There could be important degradation of access time due to contention and 
arbitration. The low priority components may suffer severe delays. The whole bus 
must be designed for the worst case which may lead to inefficiencies. 

• Another problem is the lack of modularity. This causes poor fault tolerance  
 
Thus a new communication paradigm is a prerequisite in multi-processor SOC (MP-
SoC) as well as VLSI circuits with a huge number of transistors. 
 

2.4 NoC Layered Approach Benefits  
A summary of the benefits of the NoC layered approach are listed below [9]: 

• Separate optimizations of transaction and physical layers. The transaction 
layer is mostly influenced by application requirements, while the physical 
layer is mostly influenced by Silicon process characteristics. Thus the layered 
architecture enables independent optimization on both sides. A typical 
physical optimization used within NoC is the transport of various types of 
cells (header and data) over shared wires, thereby minimizing the number of 
wires and gates. 

• Scalability. Since the switch fabric deals only with packet transport, it can 
handle an unlimited number of simultaneous outstanding transactions (e.g., 
requests awaiting responses). Conversely, Network Interface Unit [NIU] deals 
with transactions, their outstanding transaction capacity must fit the 
performance requirements of the IP Block or subsystems that they service. 
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However, this is a local performance adjustment in each NIU that has no 
influence on the setup and performance of the switch fabric. 

• Aggregate throughput. Throughput can be increased on a particular path by 
choosing the appropriate physical transport, up to even allocating several 
physical links for a logical path.  

• Quality of Service. Transport rules allow traffic with specific real-time 
requirements to be isolated from best-effort traffic. It also allows large data 
packets to be interrupted by higher priority packets transparently to the 
transaction layer. 

• Timing convergence. Transaction and Transport layers have no notion of a 
clock: the clocking scheme is an implementation choice of the physical layer. 
NoC units are implemented in traditional synchronous design style (a unit 
being for example a switch or an NIU); sets of units can either share a 
common clock or have independent clocks. In the latter case, special links 
between clock domains provide clock resynchronization at the physical layer, 
without impacting transport or transaction layers. This approach enables the 
NoC to span a SoC containing many IP Blocks or groups of blocks with 
completely independent clock domains, reducing the timing convergence 
constraints during back-end physical design steps. 

• Easier verification. Layering fits naturally into a divide-and-conquer design & 
verification strategy. For example, major portions of the verification effort 
need only concern itself with transport level rules since most switch fabric 
behavior may be verified independent of transaction states. Complex, state-
rich verification problems are simplified to the verification of single NIUs ; 
the layered protocol ensures interoperability between the NIUs and transport 
units. 

• Customizability. User-specific information can be easily added to packets and 
transported between NIUs. Custom-designed NoC units may make use of such 
information, for example “firewalls” can be designed that make use of 
predefined and/or user added information to shield specific targets from 
unauthorized transactions. In this case, and many others, such application-
specific design would only interact with the transport level and not even 
require the custom module designer to understand the transaction level.  
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2.5 Network Architectures  
 
The network architecture specifies the topology and physical organization on the 
interconnection network. The elements of network architecture are the processing and 
storage units, called the nodes, the switches and the physical links. Nodes are 
computational elements and storage arrays. Nodes can incorporate switches; often 
called routers. Physical links are wires which can be interrupted by repeaters that have 
the task to amplify the signal and to steepen its edges. 
Network architectures can be classified into four groups according to their topology 
[13]. 
• Shared-medium networks have the least complex interconnect structure in which 

the transmission medium is shared by all the communicating devices. In such 
networks only one device is allowed to use the network at a time. An important 
issue here is the arbitration strategy that determines the mastership of the shared-
medium network to resolve network access conflicts. Their limited bandwidth 
restricts their use in multiprocessors. 

• Direct networks or point-to- point network is a popular network architecture that 
scales well to a large number of processors. It consists of a set of nodes, each one 
being directly connected to a subset of other nodes in the network. Each of these 
nodes may be different computational elements. A common component of these 
nodes is router, which handles message communication among nodes. Direct 
networks have been a popular interconnection architecture for constructing large-
scale parallel computers. 

• Indirect networks use switches to carry out communication between any two 
nodes. Each switch can have a set of ports. Each port consists of one input and one 
output link. A set of ports in each switch is either connected to processors or left 
open, whereas the remaining ports are connected to ports of other switches to 
provide connectivity between the processors. The interconnection of these 
switches defines various network topologies. 

• Hybrid networks combine mechanism of the above three networks. Therefore, 
they increase bandwidth with respect to shared-medium networks and reduce the 
distance between nodes with respect to direct and indirect networks. However, for 
systems requiring very high performance, direct and indirect networks achieve 
better scalability than hybrid networks because point-to-point links are simpler 
and faster than shared-medium buses. 

All modern day on-chip networks are buffered, i.e., the routers contain storage for 
buffering messages when they are unable to obtain an outgoing link. 
An interconnection network can be defined by four parameters  

• Topology 
• Routing algorithm 
• Message switching protocol 
• Router micro-architecture 
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2.6 Networks on Chips 
 
The Networks-on-Chips (NoC) architecture, as outlined in figure 1 provides the 
communication infrastructure for the resources .In this way it is possible to develop 
the hardware of resources independently as stand-alone blocks and create the NoC by 
connecting blocks as elements in the network Moreover, scalable and configurable 
network is a flexible platform that can be adapted to the needs of different workloads, 
while maintaining the generality of application development methods and practices. 
 
A two dimensional mesh interconnection topology is the simplest from a layout 
perspective [2] and the local interconnection between resources and switches are 
independent of the size of the network. Moreover, routing in a two-dimensional mesh 
is easy resulting in potentially small switches, high bandwidth, short clock cycle, and 
overall scalability. A NoC consists of resources and switches that are directly 
connected such that resources are able to communicate with each other by sending 
messages. A resource is a computation or storage unit. Switches route and buffer 
messages between resources. Each switch is connected to four neighboring switches 
through input and output channels. A channel consists of two one–directional point-
to-point buses between two switches or a resource and a switch. Switches may have 
internal queues to handle congestion. 
 

Network Tile Links 

       
 

                Figure 1: Network on chip architecture 
 
 
 

 
 
 
       IP CORE 

 
Router 

Resource 
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Figure 2 illustrates an overall architecture of a NoC, and basic design issues are 
pointed out. First appropriate topology and protocol should be selected when NoC 
design begins. In the case of NoC topology, it can be configured with regular 
topologies such as Mesh, Torus or Star. Secondly protocols including packet format, 
end-to-end services, and flow control should be implemented in the network interface 
(NI) module. The packet switching scheme is the next factor to the determined. It is 
necessary that an appropriate switching scheme is chosen considering the target 
application and the silicon budget. Once the basic topology, protocol and routing 
method are determined, operation of the crossbar switch is as follows. When the input 
packets arrive at the input port, the crossbar switch scheduler gets the destination 
information from the input packets. If every packet arrives at a different input port and 
wants to leave from another output port, there are no input output conflicts. Then the 
scheduler connects the cross junctions so as to connect the packets at the input ports to 
their output ports. If conflicts occur, the scheduler should resolve them by predefined 
algorithm. Buffers are important to store packet data temporarily for congestion 
control. 
 

 
                          Figure 2: Basic design parameters of NoC 
 
2.7 Network Topology  
 
Network topology is the study of the arrangement or mapping of the elements (links, 
nodes). Topology is composed by an arbitrary number of instances of three basic kind 
of functional blocks [13]. 

• Network Interfaces 
 

• Switches or Routers 
 

• Links 
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Network Interfaces(NI) connect all the IP (Intellectual Property) cores to the 
network, mapping the bus type transitions coming from the IPs into packets that can 
be propagated inside the Network on chip and on the opposite side, building the bus 
transactions that correspond to packets that need to exit the NoC. The interface is just 
a wrapper that provides the computational unit a view of the network consistent with 
its I/O protocols. In other words the NI is a protocol converter that maps the 
processing node I/O protocol into the protocol used within the NoC. A reason for the 
need of this conversion is that NoCs use streamlined protocol for the sake of 
efficiency. 
 
Switches (Routers) carry out the task of dispatching packets inside the network, 
depending on the particular routing scheme chosen. The number of ports depends on 
the topology of the network. Usually they have buffers or registers inside for storing 
information tokens, in order to minimize the risk of losing data due to congestion 
problems. 
 
Links connect switches with network interfaces or with other switches. Links can be 
latency insensitive and can also contain buffering resources if needed by a particular 
application 
 
The topology can be tailored and optimized for an application. More specifically, 
network topologies determine the number of hops and the wire length involved in 
each data transmission, both critically influencing the energy cost per transmission, 
performance and area. These factors are evaluated below. 

• The silicon area of A NoC depends directly on the topology. The area of 
Network interfaces and routers sums up to the area cost of the links. 

• The power dissipation of a NoC depends on the number of NoC components 
that are active, independently of data in the network and the power dissipation 
due to data in the NoC itself. Topologies with short routes and short links 
score well.  

• Topologies with a high performance measure (e.g. small diameter) tend to 
have a high area cost (number of routers and links). Cost and performance 
must be traded off against one another. 

 
NoCs differ from general networks because the router placement is limited to the two 
dimensional plane of the integrated circuit. Moreover links between the routers can 
travel only in X or Y direction. 
 
Based on the network architecture the topologies can be divided as following 

 Direct Networks 
◦ 1D: Linear, Ring  
◦ 2D: Mesh, Tree 
◦ 3D: Cube 
 

 Indirect Networks 
◦ Crossbar, 
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◦ Benes 
◦ Perfect shuffle  
◦ Omega 

 Hybrid Network 
◦ Mesh star  

Early NoCs used mesh and torus topologies for the sake of simplicity. A few of the 
common topologies are described below. 

Ring topology is a network topology in which each node connects to exactly two 
other nodes, forming a single continuous pathway for signals through each node - a 
ring. Data travels from node to node, with each node along the way handling every 
packet. 

Advantages of ring topology 

• Very orderly network where every device has access to the token and the 
opportunity to transmit 

• Performs better than a star topology under heavy network load. 

Disadvantages of ring topology 

• Since all the nodes are not directly connected, messages will have to hop 
along     the intermediate nodes until they arrive at the final destination. 
This causes the network to saturate at a lower network throughput for most 
traffic patterns. 

Processing 
Core

 
                                             Figure 3: Ring topology 

Switch 

                                 
Star topology in its simplest form consists of one central router, which acts as a 
conduit to transmit data. Thus, the switch, nodes, and the transmission lines between 
them, form a graph with the topology of a star. 
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                                 Figure 4: Star topology    

 

Advantages of star topology 

• Better performance: Passing of Data Packet through unnecessary nodes is 
prevented by this topology. At most 3 resources and 2 links are involved in 
any communication between any two resources which are part of this 
topology. This topology induces a huge overhead on the central router, 
however if the central router has adequate capacity, then very high network 
utilization by one device in the network does not affect the other resources in 
the network. 

• Isolation of devices: Each device is inherently isolated by the link that 
connects it to the router. This makes the isolation of the individual devices 
fairly straightforward, and amounts to disconnecting the device from the 
router. This isolated nature also prevents any non-centralized failure from 
affecting the network. 

• Benefits from centralization: As the central hub is the bottleneck, increasing 
capacity of the central router or adding additional devices to the star, can help 
scale the network very easily. The central nature also allows the inspection 
traffic through the network. This can help analyze all the traffic in the network 
and determine suspicious behavior. 

• Simplicity: The topology is easy to understand, establish, and navigate. The 
simple topology obviates the need for complex routing or message passing 
protocols. 

Disadvantages of Star topology 

The primary disadvantage of a star topology is the high dependence of the system on 
the functioning of the central router. While the failure of an individual link only 
results in the isolation of a single node, the failure of the central router renders the 
network inoperable, immediately isolating all nodes. The performance and scalability 
of the network also depend on the capabilities of the router. Network size is limited by 
the number of connections that can be made to the router, and performance for the 
entire network is capped by its throughput.  
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2D Mesh Topology consists of switches in which each switch is connected to one 
resource and to four other switches. 

Advantages of 2D mesh 

• Although the resources may be of different size, the regularity of the mesh 
or fine control of physical parameters, predictability of 

performance, power and sophisticated, efficient clocking schemes. 

Disadv

• The area of mesh grows linearly with the number of nodes. 

 

 

 

 

 

 

                                 Figure 5: Mesh topology 

Tree topology is a network topology in which a central 'root' node (the top level of 
r nodes that are one level lower in the 

hierarchy. 

structure allows f

antage of 2D mesh 

the hierarchy) is connected to one or more othe
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                         Figure 6: Tree topology 

Advantages of tree topology 

• A Tree topology is supported by many network vendors ad even hardware 
vendors.  

• A point to point connection is possible with Tree Networks.  
• All the computers have access to the larger and their immediate networks.  
• Best topology for branched out networks.  

Disadvantages of tree topology 

• In a Network Topology the length of the network depends on the type of cable 
that is being used.  

• The Tree Topology network is entirely dependant on the trunk which is the 
main backbone of the network. If that has to fail then the entire network would 
fail.  

• Since the Tree Topology network is big it is difficult to configure and can get 
complicated after a certain point.  

Other topologies include crossbar, hypercube, 2D torus, Spin, Octagon and 
hybrids of the above mentioned topologies. 

 
2.8 Switching Schemes  
 
Once the topology of a NoC has been decided on, the switching technique or how data 
flows through the routers must be determined. This involves defining the granularity 
of data transfer, and the switching technique. 
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Data is transferred on a link, which has a fixed width, measured in bits. The unit of 
data transferred in a single cycle on a link is called the phit (physical unit). Two 
routers synchronize each data transfer, to ensure that buffers do not overflow, for 
example. The unit of synchronization is called flit (flow control unit), and it s at least 
as large as a phit. Finally, multiple flits make up a packet, several of which may make 
up messages that modules connected to the NoC send to each other. There are two 
basic modes of transporting flits: circuit switching and packet switching. 
 
Circuit vs. packet switching: In circuit switching a physical path from the source to 
the destination is reserved prior to transmission of the data. While in packet switching 
the data is partitioned and transmitted as fixed-length packets. The first few bytes of 
the packet contain routing and control information and are referred to as packet 
header. Each packet is individually routed from source to destination. 
 
Packets are transferred to their destination through multiple routers along the routing 
path in a hop-by-hop manner. Each router keeps forwarding an incoming packet to the 
next router until the packet reaches its final destination. 
 
While circuit switching reduces the network latency, it is done so at the expense of 
network throughput. Packet switching improves channel utilization and extends 
network throughput. There are three basic packet switching schemes [14]. 
 
1) Store-and-forward (SAF) Switching: Every packet is split into transfer units 
called flits .A single flit is sent from an output port of a router at each time unit. Once 
a router receives a header flit, the body flits of the packet arrive every time unit. To 
avoid input channel buffer overflow, the input buffer must be larger than the 
maximum packet size. The header flit is forwarded to the neighboring router after it 
receives the tail flit. The advantage of this technique is the simple needed control 
mechanism between routers due to the packet based operation. Its main drawback is 
the large needed channel buffer size that increases the hardware amount of the router. 
Moreover, SAF suffers from a large latency compared with other switching 
techniques, because a router in every hop must wait to receive the entire packet before 
forwarding the header flit. Thus, SAF switching does not fit well with the 
requirements of the NoCs. 
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          Figure 7: Store-and-forward switching 
 
2) Wormhole (WH) Switching: Taking advantage of the short link length on a chip, 
an inter-router hardware control mechanism that stores only fractions of a single 
packet (flits).could be constructed with small buffers. Theoretically, the channel 
buffer at every router can be as small as a single flit. In wormholes (WH) switching, a 
header flit can routed and transferred to the next hop before the next flit arrives. Since 
each router can forward flits of a packet before receiving the entire packet, these flits 
are often stored in multiple routers along the routing path. WH switching reduces hop 
latency because the header flit processed before arrival of the next flits. Wormholes 
switching is better than SAF switching in terms of both buffer size and (unloaded) 
latency. The main drawback of WH switching is the performance degradation due to a 
chain of packet blocks. Since fractions of a packet can be stored across different 
routers along the routing path in WH switching, a single packet often keeps occupying 
buffers in multiple routers along the path, when the header of the packet cannot 
progress due to conflicts. Such a situation is referred to as a head-of –line (HOL) 
blocking. Buffers occupied by HOL blocking block other packets that want to go 
through the same lines, resulting in performance degradation. 

 
                     Figure 8: Wormhole switching 
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3) Virtual Cut-Through (VCT) Switching: To mitigate the HOL blocking that 
frequently occurs in WH switching, each router should be equipped with enough 
channel buffers to store a whole packet. This technique is called virtual cut-through 
(VCT), and can forward the header flit before the next flit of the packet arrives. VCT 
switching has the advantage of both low latency and less HOL blocking. 
 
A variation called asynchronous wormhole (AWH) switching uses channel buffers 
smaller than the maximum used packet size (but larger than the packet header size). 
When a header is blocked by another packet at a router, the router stores the flits. Flits 
of the same packet could be stored at different routers. Another variation of VCT 
switching customized to NoC purposes is based on a cell structure using a fixed single 
flit packet. 
 
2.8.1 Virtual Channels  
 
 The preceding switching techniques were described assuming that messages or parts 
of messages were buffered at the input and output of each physical channel. Buffers 
are commonly operated as FIFO queues. Therefore, once am message occupies a 
buffer for a channel, no other message can access the physical channel, even if the 
message is blocked, alternatively, physical channel may support several logic or vital 
channels multiplexed across the physical channel. Each unidirectional virtual channel 
is realized by independently managed pair of message buffers. Consider wormhole 
switching with a message in each virtual channel [14], each message can share the 
physical channel on a flit-by-flit basis. The physical channel protocol must be able to 
distinguish between the virtual channels using the physical channel. Logically each 
virtual channel operates as if each were using a distinct physical channel operating at 
the half the speed. Virtual channels can be used to improve message latency and 
network throughput. 
 

 
             Figure 9: Virtual channels 
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2.9 Networks-on-Chip Protocols  
 
A protocol is a set of conventions that governs the communication between two or 
more entities for interaction. The term entities stand for anything that is capable of 
transmitting or receiving information. For two or more entities to communicate with 
each other they must speak in a common language or, at least have appropriate 
translators; in addition, they must have proper rules to start, stop, and maintain 
communication. 
The protocols used in the NoC strongly affect the performance, hardware amount and 
power consumption of on-chip interconnection networks [15]. High-quality 
communication that never loses data within the network is required for on-chip 
communication, because delayed packets of inter process communication may 
degrade the overall performance of the target application. 
As the level of system of integration in SoCs began to rise, system designers faced the 
need to reuse to pre-designed and pre-verified computation units across different 
platforms and with different communication architectures. Therefore, the need for 
effective plug-and-play design styles pushed the development of standard interface 
sockets, allowing decoupling the development of computational units from that of 
communication architectures. 
The open core protocol (OCP) is an openly licensed, core-centric protocol intended to 
ease contemporary system level integration challenges. The objectives of this standard 
are to enable processor core creation independently of network design, while 
sustaining   parametrizeable design and high performance. Even though OCP is not 
meant to be a NoC protocol, it standardizes that design of Network Interfaces (NIs), 
as they do not need to be processing–core specific but just translators between OCP 
and the NoC protocol. 
 
2.10 Queuing Schemes  
 
There are three queuing schemes distinguished by location of the buffers inside the 
router [16]. 
1) Input queuing: Every incoming link has a single input queue so that N queues are 
necessary for N*N switches. Input queuing suffers from the head-of-line blocking 
problem; i.e., the switch utilization gets saturated at 58.6% load. 
2) Output queuing: The queues are placed at the output port of the link, but N output 
queues for every outgoing link are required to resolve the output conflict, resulting in 
N2 queues. Due to the excessive number of buffers and their complex wiring, in spite 
of its optimal performance, output queuing is not used. 
3) Virtual output queuing: The advantages of the input queuing and output queuing 
are combined. A separate input queue is placed at each input port for each output 
requiring N2 buffers. The head of-line blocking problem occurring in input queuing is 
resolved by scheduling. Complicated scheduling algorithms are required for this 
scheme. 
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2.11 Flow Control  
 
There are several solutions for preventing packets from causing output conflict and 
buffer overflow [16]. 
1) Packet discarding: Once the buffer overflows, the packets coming again are 
simply dropped off. 
2) Credit-based flow control: A back pressure scheme uses separate wires for the 
receiver to inform the transmitter of buffer congestion so as to prevent packet loss. 
The propagation delay time between transmitter and receiver should be considered 
carefully to avoid packet transmission while the wait signal is coming on the wire. 
3) Rate-bases flow control: The sender gradually adjusts packet transmission 
according to the control flow messages from the receiver. 
 
2.12 NoC Routing  
 
Routing algorithms establish the path followed by each packet between source and the 
target switch. They must prevent deadlock, livelock and starvation situations [14]. 
Deadlock may be defined as a cyclic dependency among nodes requiring access to a 
set of resources, so that no forward progress can be made, no matter what sequence of 
events happens. Livelock refers to packets circulating the network without ever 
making any progress towards their destination. Starvation happens when a packet in a 
buffer requests an output channel, being blocked because the output channel is always 
allocated to another packet. Unlike traditional communication or interconnection 
networks, NoCs need not follow rigid networking standards. 
 
2.12.1 Taxonomy of routing algorithms  
Routing algorithms can be classified according to the three different criteria [14]:  
(1) Where the routing decisions are taken: According to where routing decisions 
are taken, it is possible to classify the routing in source and distributed routing. In 
source routing, the whole path is decided at the source switch, while in distributed 
routing each switch receives a packet and defines the direction to send it. In source 
routing, the header of the packet has to carry all the routing information, increasing 
the packet size. In distributed routing, the path can be chosen as a function of the 
network instantaneous traffic conditions. Distributed routing can also take into 
account faulty paths, resulting in fault tolerant algorithms. 
(2) How a path is defined: Depending how a path is defined, routing can be 
classified as deterministic (oblivious) or adaptive.  
 
In deterministic routing, the path is completely specified from the relative position of 
source and target addresses. This routing scheme does not take into account the 
current load of the network links and routers when making routing decisions. It is 
simpler to implement in terms of router logic and interaction between routers and is 
more appropriate when traffic requirements are steady and known ahead of time. 

23 



 
 In adaptive routing, the path is a function of the network instantaneous traffic. 
Adaptive routing increases the number of possible paths usable by a packet to arrive 
to its destination. This routing may use alternative paths when certain directions 
become congested and therefore have the potential of supporting more traffic using 
the same network topology. 
(3) The path length: Regarding the path length criterion, routing can be minimal or 
nonminimal. Minimal routing algorithms guarantee shortest paths between source and 
target addresses. In nonminimal routing, the packet can follow any available path 
between sources and target Nonminimal routing offers great flexibility in terms of 
possible paths, but can lead to livelock situations and increase the latency to deliver 
the pack. 
 
2.12.2 Virtual networks  
 
A useful concept to design routing algorithms consists of splitting the network into 
several virtual networks [13]. A virtual network is a subset of channels that are used 
to route packets towards a particular set of destinations. The channel sets 
corresponding to the different virtual networks are disjoint. Depending on the 
destination, each packet is injected into a particular virtual network, where it is routed 
until it arrives at its destination. Virtual networks can be implemented using disjoint 
sets of virtual channels for each virtual network and mapping those channels over the 
same set of physical channels. Of course it is also possible to implement virtual 
networks by using separate sets of physical channels. 
 
2.12.3 NoC dynamic routing schemes  
 
Dynamic routing is an efficient alternative to balance the traffic load over a given 
NoC where the NoC traffic is unpredictable or changes with time [15]. The simplest 
method of dynamic routing is termed deflection routing or hot-potato routing. In this 
scheme, when a packet enters a router it will be sent toward a preferred output port 
according to a routing table or a routing function. However, if the preferred port is 
busy an alternative port will be selected. Here the router has no additional buffers in 
which to store the packets before they are moved, and each packet is constantly 
transferred until it reaches its final destination. The packet is bounced around like a 
hot potato sometimes moving further away from the destination because it has to keep 
moving through the network. 
 
Deadlocks cannot happen in deflection routing when the number of input and output 
ports of a switch are identical and new local packets are not allowed in when all the 
inputs are busy. Livelocks may happen in deflection routing and simple priority rules 
can resolve it. 
 
 
2.12.4 Deadlocks and livelocks of packet transfer  
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At the routing protocol layer of a computer network, packet may be dropped to allow 
forwarding another blocked packet. The figure 10 shows a situation where every 
packet is blocked by another one, and they cannot be permanently forwarded. Such a 
dependency is called a deadlock [14]. Once a deadlock occurs, at least a single packet 
within a network must be killed and resent. To avoid deadlocks, deadlock-free routing 
algorithms that can never cause deadlocks on path have widely been researched. 
 
Besides the deadlock-free property a routing protocol must have the livelock-free 
property to stop packets from being discarded needlessly. Packets would not arrive at 
their destinations if they were to take nonminimal paths that go away from destination 
nodes. If this is the case, they would be permanently forwarded within NoCs. This 
situation is called livelock.  

 
 
 
                           Figure 10: Deadlocks in routing protocols 
 
The deadlock and livelock free properties are not strictly required in routing 
algorithms in cases of traditional LANs and WANs. This is because the Ethernet 
usually employs a spanning tree protocol that limits the topology to that of a tree 
whose structure does not cause deadlocks of paths; moreover the Internet Protocol 
allows packets to have a time-to-live field that limits the maximum number of file 
transfers. However, NoC routing protocols cannot simply borrow the techniques used 
by commodity LANs and WANs. Therefore new research fields dedicated to NoCs 
have developed, similar to those in parallel computers. 
 
 
2.13 Real Chip Implementation of NoC 
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Silicon chip implementation trials for NoC based SoCs can be grouped into two 
categories: academic research and industrial approaches. Academic research shows 
complete chip implementations and demonstrations for specific applications. In the 
other hand, industrial approaches are mainly regarding the new protocol 
specifications, EDA tool chain and IP library support for the NoC developers. In the 
following subsections an industrial NoC and an academic implementation of NoC will 
be discussed respectively. 
 
2.13.1 Tera-Flop 80-core NoC 
 
Intel Corporation launched a terascale computing research program a few years ago to 
handle tomorrow’s advanced applications, which would need a thousand times more 
computing capability than is available in today’s giga-scale devices. For example 
there is real-time data mining across the teraflops of data, artificial intelligence for 
smarter cars and appliances; virtual reality  for modeling, visualization, physics 
simulation and medical training. 
 
The Tera-Flop NoC [17] consists of 80 processing cores that are connected through a 
2D mesh packet switched on chip network. It performs up to 1 teraflop (1012 floating 
point operations) at 4GHz clock speed and consumes less than 100w. 
 
Key enablers for Tera-Flop on a chip are listed below 

• 80 Processing elements (PE), 160 single-precision floating point units (FPUs) 
designed for 4GHz operation 

• Fast single-cycle accumulate loop 
• Sustained FPU  throughput: 2 FLOPS/cycle 
• 80 Gbps router, operating at 4 GHz 
• Shared and double pumped-crossbar switch 
• 2-D mesh topology, 256 Gbps bisection bandwidth 
• A 15 F04 (fan-out-of-4) balanced core and router pipeline 
• Robust, scalable mesochronous clock distribution 
• 65 nm eight-metal CMOS 

 
2.13.1.1 NoC architecture overview 
 
The NoC architecture contains 80 tiles arranged as 10*8 2-D mesh network and 
operating at 4 GHz. Each tile consists of a PE connected to a 5-port router with 
mesochronous interfaces, which forwards packets between tiles. The 80 tile On Chip 
Network (OCN) enables a bisection bandwidth of 256 Gbps. The PE contains two 
independent fully pipelined, single-precision, floating-point multiply-accumulator 
(FMAC) units with 3 KB single-cycle instruction memory (IMEM) and 2 BK data 
memory (DMEM). A 96-bit VLIW (Very long instruction word) encodes up to eight 
operations per cycle. With a 10 port (6-read, 4 –write) register file, the architecture 
allows scheduling to FMACs, simultaneous DMEM load and stores, packet 
send/receive from mesh network, program control, and dynamic sleep instructions. A 
router interface block (RIB) handles packet encapsulation between PE and router. The 
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fully symmetric architecture allows any PE to send (receive) instruction and data 
packets to (from) any other tile. 
 
The 4 GHz 5-port wormhole-switched router uses two logical lanes: virtual channels 
for deadlock-free routing, and a fully non-blocking crossbar switch with a total 
bandwidth 80Gbps. Each lane has 16 FLIT queue, arbiter, and flow control logic. The 
router uses a five-stage pipeline with a two-stage round robin arbitration scheme that 
first binds an input port to an output port in each lane and then selects a pending FLIT 
from one of the two lanes. 
 

 
 
                                      Figure 11: Intel Teraflop architecture 
 
Each NoC packet is subdivided into multiple FLITS. Each packet has minimum two 
FLITs, and there is no maximum size limit. Each FLIT consists of a 6-bit control field 
and a 32-bit data field. The control field includes two flow control bits for each lane, a 
valid indication bit for the FLIT, and packet header/tail indication bits. There are three 
kinds of FLITs - header FLIT, PE control FLIT, and data FLIT. The header FLIT has 
3 –bit destination ID (DID), which represents the out-port direction on each switching 
hop. Due to the data field size limit; the maximum hop count is limited to 10. 
However, a chained header seems to support larger hop counts. The PE control FLIT 
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includes address field and PE control information such as PE power management 
signals. 
 
2.13.2 FAUST (Flexible Architecture of Unified System for 
Telecom) 
 
Eleven European industrial research institutes and universities launched a joint project 
named “4-MORE-4G Multicarrier CDMA multiple antenna System ON Chip for 
Radio Enhancements”. Recently, their architecture has been published for the 
application of multicarrier OFDM (Orthogonal Frequency-Division Multiplexing) 
based processing, such as 802.11n. They proposed the asynchronous Network on Chip 
(ANOC) with GALS (Globally Asynchronous Locally Synchronous) [18]. The 
ANOC architecture uses virtual channels to provide low latency and QoS (Quality of 
Service), which is implemented in quasi delay-insensitive (QDI) asynchronous logic. 
 
The FAUST [19] chip integrates 20 asynchronous NoC routers, 23 synchronous units 
including ARM946 core, embedded memories, various IP blocks, reconfigurable 
datapath engines, and one clock management unit to generate 24 distinct unit clocks. 
 
To integrate any synchronous IP within ANOC architecture, the dedicated NI 
performs two main tasks, it synchronizes the synchronous ands asynchronous logic 
domains using as hoc decoupling FIFOs, and provides all facilities to access the NoC 
communication infrastructure such as network routing path programming, network 
data packet generation, and IP core configuration. 
 
The whole chip integrates more than 3 million gates and 3.5 Mb of embedded RAM. 
The maximum NoC throughput measured between two adjacent nodes or between and 
IP and its connected node are 5.12 Gbps per link. 
Features of the FAUST Chip are listed below 

• 2D-Mesh including 20 nodes 
• Packet switching and wormhole routing 
• Credit based flow control technique 
• 32 bits word size 
• 2 virtual Channels 
• Asynchronous logic 
• IP count -23 units connected to the NoC 
• ARM94ES Processor core 
• 24 on chip clocks 
• NoC area is 15% of the global area 
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2.14 Summary 
 
The challenge for chip designers is to come up with new architectures that achieve 
both a fast clock rate and high concurrency, despite slow wires. Shared bus networks 
are well understood and widely used in SoCs, but have serious scalability issues as 
more devices compete for the bus bandwidth. To mitigate this problem a new 
structured scalable on-chip communication fabrics, called networks–on-chip (NoC), 
has emerged for used in SoC designs. The basic concept is to replace the shared buses 
with on-chip packet-switched interconnection networks. NoC is emerging as a 
revolutionary methodology to integrate numerous blocks in a single chip. 
 
In section 2.13 we considered two real –world examples of NoC implementations. 
While these examples of NoC implementations are more advanced than the switch 
benchmarks developed by us (see section 5.1) in terms of including queues, queue 
control and synchronizers. The test configurations presented in this thesis are still 
applicable to testing the crossbars of these NoC architectures. 
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Chapter 3  
Test and Diagnosis of Digital Systems 
 
About this Chapter 
 
The introduction of integrated circuits (ICs), commonly referred to as microchip, was 
accompanied by the need to test these devices. Small-scale integration (SSI) devices, 
with tens of transistors in the early 1960s, and medium-scale integration (MSI) 
devices, with hundreds of transistors in the late 1960s were relatively simple to test 
.However, in the 1970s, large-scale integration (LSI) devices, with thousands and tens 
of thousands of transistors, created a number of challenges in testing these devices. In 
the early 1980s, very-large-scale integration (VLSI) devices with hundreds of 
thousand of transistors were introduced. Steady advances in VLSI technology have 
resulted in devices with hundreds of millions of transistors and many new testing 
challenges. This chapter provides an overview of various aspects of VLSI testing. 
Firstly the importance of testing, overview of faults and their classification is 
discussed. Then different types of fault model and the concept of fault coverage is 
discussed. This is followed by the distinguishing different testing methods. Then test 
generation method of combinational circuits, problems with test pattern generation for 
sequential circuits and taxonomy of test pattern generation for sequential respectively 
are discussed. The chapter ends with discussion of “Design for testability” and 
diagnosis. 
 
3.1 Importance of Testing  
 
Following the Moore’s law, the scale of ICs has doubled every 18 months.  The 
steady decreasing dimensions referred to as feature size, of the transistors and 
interconnecting wires from tens of microns to tens of nanometers, has made it 
possible to pack in more transistors in an IC, increasing operating frequency and 
clocks speeds. The reduction in feature size increases the probability that a 
manufacturing defect in the IC will result in a faulty chip [20]. A very small defect 
can easily result in a faulty transistor or interconnecting wire when the feature size is 
less than 100nm. Furthermore, it takes one faulty transistor or wire to make the entire 
chip fail to function properly or at the required frequency. Yet defects created during 
manufacturing process are unavoidable, and, as a result some number of ICs is 
expected to be faulty; therefore testing is required to guarantee fault free products. 
Testing of a device can be defined as an experiment in which the device is exercised 
and its resulting response is analyzed to ascertain whether it behaved correctly. 
Testing is not only used to find fault-free devices but also to improve production yield 
at various stages of manufacturing by analyzing the cause of defects when faults are 
encountered. Testing is performed at various stages in the lifecycle of a VLSI device, 
including during the VLSI development process, the electronic system manufacturing 
process and, in some cases, system level operation. 

30 



3.2 Failures, Errors and Faults 
 
A failure is a deviation in the performance of a circuit or system from its specified 
behavior and represents an irreversible state of a component such that it must be 
repaired in order for it to provide intended design function. A failure is caused by an 
error. 
 
There is an error in the system when its state differs from the state in which it should 
be in order to deliver the specified service. An error is caused by a fault. A fault is 
present in the system when there is a physical difference between “good“ or “correct“ 
system and the current system 
 
3.3 Fault manifestation 
 
According to the way faults manifest themselves in time; two types of faults can be 
distinguished: permanent and non-permanent faults. 
Permanent faults: refers to the presence of a fault that affects the functional 
behavior of a system (chip, array or board) permanently. Examples of permanent 
faults are: 

• Incorrect connections between ICs 
• Incorrect IC masks 
• Functional design error 
 

Non-permanent faults: refers to faults that are present only part of the time; they 
occur at random moments and affect the system functional behavior for finite, but 
unknown periods of time. Non-permanent faults can be divided into two groups with 
different origins: transient and intermittent faults. 
Transient faults are caused by environmental conditions such as cosmic rays, 
pollution, humidity, temperature, vibration etc. 
Intermittent faults are caused by non-environmental factors such as loose 
connections, deteriorating or ageing components, resistance and capacitance 
variations, physical irregularities, and noise. 

 
3.4 Fault Models 
 
Due to the diversity of VLSI defects, it is difficult to generate tests for real defects. 
Fault models are necessary for generating and evaluating a set of test vectors. 
Generally, a good fault model should satisfy two conditions (1) it should accurately 
reflect the behavior of defects. (2) It should be computationally efficient in terms of 
fault simulation and test pattern generation. However, the sheer number of defects that 
one may have to deal with under a fault model at this level may be overwhelming. To 
reduce the number of faults and hence the testing burden, one can go up the design 
hierarchy, and develop faults models which are perhaps less accurate, but more 
practical. No single fault model accurately reflects the behavior of all possible defects 
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that can occur. As a result, a combination of different fault models is often used in the 
generation and evaluation of test vectors and testing approaches developed for VLSI 
devices. 
 
A good strategy is to first derive tests for the fault models at a higher level of 
abstraction, and then determine what percentage of faults  at lower level are covered 
by the tests. Since a fault at higher level models many faults at a lower level, such a 
test set should cover a high percentage of faults at a lower level. However, due to 
imperfect modeling, many lower-level faults may remain undetected by this higher-
level test set. Such faults can be specifically targeted at a lower level of design 
hierarchy. 
 
Fault models have been developed at each level of abstraction, i.e. behavioral, 
functional, structural, switch-level and geometric. 
 
3.4.1 Behavioral fault models  
 
They are defined at the highest level of abstraction. They are based on the behavioral 
specification of the system. If the digital system described in a hardware description 
language, one could inject various types of faults in this description. The exact type of 
faults included in the behavioral model depends on the ease with which they allow 
detection of realistic faults at lower levels of abstraction. The importance of these 
models comes from the increasing desire among designers to start the synthesis 
process from a behavioral specification. Test sets derived from these fault models 
have been found to detect a high percentage (85 %)[21] of faults belonging to lower 
level of abstractions, such as-stuck at faults. 
 
3.4.2 Functional fault models  
 
Functional fault models are defined at the functional block level. They are usually ad 
hoc and geared towards making sure the functions of the functional block are 
executed correctly. 
Consider a multiplexer .One can derive the following functional model for it. 
 

• A 0 and 1 cannot be selected on each input line. 
• When and input is being selected, another input gets selected instead of or in 

addition to the correct input 
 
Another type of functional fault model assumes that the truth table of the functional 
block can change in an arbitrary way. 
 
Efficient functional fault models have been developed for sequential circuit testing, 
memory testing and microprocessor testing [21]. 
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3.4.3 Structural fault models 
 
They assume that the structure of the circuit is known .Faults under these fault models 
affect the interconnections in this structure. The most well-known fault model under 
this category is the single stuck-at fault model. This is the most widely used fault 
model in the industry. The test patterns generated according to this fault models have 
an efficiency of up to 80-85 % [21]. However, the current trend is towards 
augmenting this fault models which allow detection of defects that stuck-at fault 
model is unable to cover. 
 
3.4.4 Switch-level fault models  
 
These kinds of fault models are defined at the transistor level. The most prominent 
fault models in this category are the stuck-open and stuck-on faults. If a transistor is 
permanently non-conducting due to a fault, it is considered to be stuck-open. 
Similarly, if transistor is permanently conducting, it is considered to be stuck-on. This 
fault model is specially suited for the CMOS technology. 
 
3.4.5 Geometric fault models  
 
These kinds of fault models assume that the layout of the chip is known. For example, 
knowledge of line widths, inter-line and inter-component distances and device 
geometrics are used to develop this fault model. At this level, one deals with opens 
and shorts. With shrinking geometries of VLSI chips, this fault model will become 
increasingly important. 
 
3.5 Delay Fault Models 
 
Instead of affecting the logical behavior of the circuit, a fault may affect its temporal 
behavior only; such faults are called delay faults. They adversely affect the 
propagation delays of signal in the circuit so the incorrect logic value may be latched 
at the output. 
With the increasing emphasis on designing circuits for very high performance, delay 
faults are gaining wide acceptance.  
  
3.6 Fault Coverage 
 
The effectiveness of the test sets is usually measured by fault coverage. This is the 
percentage of detectable faults in the circuit under test (CUT) that are detected by the 
test set. The set is complete if its fault coverage is 100%.This level is desirable but 
rarely attainable in most practical circuits [22]. Moreover, 100% fault coverage does 
not guarantee that the circuit is fault-free [22]. The test checks only for failures than 
can be represented by the model used, such as a stuck-at/fault model. Other failures 
are not necessarily detected. The fault coverage is calculated using a fault simulator. 
This a logic simulator in which faults are injected at the appropriate nets of the 
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circuits, usually one at a time. The response of the circuits to test pattern applications 
is compared with good response of the circuit. The fault is considered detected if at 
least one the test patterns have a response different from the good circuit response. 
 
 
3.7 Types of Testing 
 
We can distinguish between various types of tests according to the test generation 
method. 
 
3.7.1 Functional testing 
 
Functional testing is used to verify that the model or logic behaves as it was 
intended. This is may also be called “Design validation test”. If the design function 
represents an adder, then tests will be written to see whether the logic commits the 
necessary add functions and nothing more. Functional testing is measured by the logic 
comparing the known expected response to the applied stimulus. This kind of testing 
may also include timing or power consumption as part of the functional standard. In 
case of timing a second dimension is added to the behavior of the circuit: 1) that it 
conducts the correct behavior; 2) that it conducts this behavior to a timing standard. If 
a general purpose adder is placed within a chip design and it must be able to add two 
hexadecimal numbers with one clock cycle, the goal is to provide an additional set of 
tests that verifies that the slowest operation conducted by the adder is still faster than 
the target cycle time of the device. In case of power consumption, some defined 
operations must occur and the device can consume no more power than the specified 
power budget. 
 
3.7.2 Structural testing 
 
Structural testing is used to verify the topology of the manufactured chip. Given a 
good circuit before manufacturing process, structural testing can be used to verify that 
all connections are intact , and that all gate –level truth table are correct after the 
manufacturing process[21]. This type of testing can be done with reliance on static 
stuck-at fault model. Tests are developed by applying values to the inputs that toggle 
the suspected defective node to its opposite value and then applying values at the 
inputs that would allow the good value to propagate to a detect point. If the value at 
the detect point differs from the expected good value, then a fault has been detected. 
A delay fault model can be applied similarly to assess timing structure, and a current-
based fault model can be used to assess power consumption. 
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3.7.3 Combinational exhaustive and pseudo-exhaustive testing  
 
Combinational exhaustive testing is used to verify how the combinational portion of 
the model or logic behaves when every possible set of values is applied to the input 
ports, even if some of the vectors applied have no functional significance.  Pseudo-
exhaustive testing is the application of some portion of all possible logic values. Both 
these kinds of testing are done when a piece of logic is being characterized (timing or 
logic operation ); when one type of model is being compared to another ;or when 
vectors will be applied in some manner without an understanding of the circuit. These 
tests are measured by the logic producing the correct logical or Boolean response to 
the applied stimulus and comparing the response to known ideal response or expected 
response. 
 
3.7.4 Full exhaustive testing  
 
It is the same as combinational exhaustive except that there are sequential elements 
that hold state embedded within the model or circuit. Merely applying every possible 
combinational value to the input pins is not enough to characterize a sequential 
design. There is the added complication of the applied sequence of all possible values 
of stimulus. A state machine with M elements requires 2m tests to test all sequences. 

To fully test a combinational circuit with 2n applied values, and to also consider all 
possible sequences, the combinational 2n input values must be multiplied with 2m state 
sequences resulting in 2(m+n) tests. Again, this type of testing may be applied for 
characterization purpose, or when vectors are applied without an understanding of the 
circuit. 
 
3.8 Test Pattern Generation for Combinational 
Circuits 
 
Test pattern generation in the design process of generating appropriate inputs vectors 
to test a given digital design. Since exhaustive testing is usually prohibitively long 
unless steps are taken to partition the circuit or system into smaller parts, in which 
case exhaustive testing of each partition may become acceptable. However assuming 
that this cannot be or is not done, then some method of generating a reduced test 
(nonexhaustive) set has to be undertaken. 
The generation of an acceptable reduced set of test vectors may be done in the 
following ways: 

• Manual generation; 
• Automated Test Pattern Generation 
 
 

3.8.1 Manual test pattern generation is a method which the original 
circuit designer may adopt, knowing in detail the functionality of the circuit or system 
involved .The test patterns may be specified by considering a range of functional 
conditions, and listing the input test vectors and healthy output responses involved in 
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these situations. Alternatively the input vectors that will cause all the gates to switch 
at least once maybe considered. 
 
This strategy of relying upon the circuit designer to propose some minimum set of test 
vectors can be a reasonable procedure to undertake for circuits containing say, a 
thousand but not tens of thousands of gates. It is a procedure which has been and still 
widely used in custom microelectronics (ASICs), where the IC vendor is 
manufacturing a specific circuit to meet the OEM’s (Original Equipment 
Manufacturer) requirements. The vendor will take the OEM’s suggested test vectors, 
and check that they are acceptable to both parties by performing some CAD 
simulation; this may take the form of checking how many of the internal nodes of the 
circuit are toggled by the suggested test vectors rather than considering the 
functionality of the tests. If this toggle coverage is considered inadequate (or 
incomplete), additional test vectors will be requested from the OEM to remedy the 
shortfall. It should be appreciated that the computer processing time for this procedure 
is relatively small, when compared to the excessive times which can build up when 
automatic test pattern generation is attempted. 
 
3.8.2 Automated test pattern generation usually abbreviated to ATPG, 
becomes increasingly necessary as the gate count in the circuit increases to the 
thousands upwards. ATPG programs normally use a gate-level representation of the 
circuit, with all nodes or paths enumerated. In the semiconductor design and test 
support marketplace, many different tools are in use for vector generation. There are 
differences in the tools in their abilities and levels of support. Some tools are 
combinational-only and some tools are fully or partially sequential. ATPG tools also 
differ in the type of faults they support. The more common fault models are the stuck-
at, transition delay, and path delay fault models for logic analysis , and pseudo-stuck –
at and toggle for leakage analysis. 
 
A complete and comprehensive automated vector generation process is made of 
several sub-processes, not just the ATPG tool. A good ATPG tool, however, may 
include several of these sub-processes as related features. The sub-processes can be 
broken down into two basic categories: 

• Pre-ATPG 
• ATPG 
 

Pre-ATPG section includes the tasks of creating ATPG tool’s library of standard 
cells, conditioning the design description so that the ATPG tool can operate on the 
provided format, and establishing the goals and constraints of the test process. 
 
As an example, if an ATPG tool will operate on the EDIF (or Verilog or VHDL, or 
Proprietary format) description of a gate-level netlist, then a library must be made that 
describes the gates used in the EDIF format (e.g., flip-flops, AND-gates, OR-GATES 
etc.) in terms of the ATPG tool primitives. If constructs in the EDIF  netlist can’t be 
modeled or supported with the ATPG tool library, then the EDIF netlist itself must be 
modified (for example , areas comprised of raw transistors, or analog logic must 
somehow be represented by gate-level devices). All representations, in the library or 
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in the design description, must have identical Boolean behavior or else the created 
vectors may mismatch when simulated against other design formats [22]. 
 
 Finally, before an ATPG tool can be used, the test process must be mapped onto the 
ATPG tool so that the vectors created will match the operation of the test platform. 
This step requires understanding the specific restrictions placed on the design by the 
tester, and by the design’s own architecture. In most cases, this is a sequence file that 
describes the sequence and pin values required to place in test mode, and describes 
which signals or pin must have certain logic values applied during the sequence. This 
type of file is generally referred to as a “procedure” or a “constraint” file. Also 
required is a file containing the description of the legal observe points so that the test 
coverage metric is based on the observation made by the tester and not by “ virtual 
test points” in a simulator. 
 
ATPG process is the actual operation of the tool against the design description to 
generate vectors. This process may occur several times during the design process as a 
prototyping step to determine budget compliance (e.g., number of vectors, fault 
coverage), or the process may be applied several times against the final design 
description to generate the various individual vector sets needed to provide all the 
pattern sets for various test modes and constraints. All ATPG programs based upon 
fault models assume that a single fault is present when determining the test vectors. 
The usual fault model is stuck at fault model, which in practice covers a considerable 
number of other types of faults, but not all. The results of an ATPG program cannot, 
therefore, guarantee a defect-free circuit. 
 
 3.8.2.1 Algorithmic test pattern generation 
 
A basic requirement in test pattern generation is to propagate a fault at a given node in 
the circuit to an observable output, such that the output is the opposite value in the 
presence of the fault compared with the fault-free output under the same input vector. 
This procedure may be termed path sensitising or forward driving. A second 
requirement is that the test input vector shall establish a logic value on the node in 
question which is opposite to the stuck-at condition under consideration.  
 
Most test pattern generation algorithms but not all have as their underlying basis the 
following procedures, namely: 

 Choose a faulty node in the circuit; 
 Propagate the signal on this node to an observable output; 
 Backward trace to the primary inputs in order to determine the logic signals on 

the primary inputs which correctly propagate this fault signal to the observable 
output 

 
Here we consider two methods which have been used for test pattern generation, the 
first of which does not in fact use the above signal propagation procedure, and the 
second which uses this procedure. 

I. Boolean difference method: is one test pattern generation technique which 
does not rely upon path sensitisation, but instead is functionally based using 
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Boolean algebraic relationships to determine the test vectors. The method is 
based upon the principle of using two Boolean expressions for the 
combinational network, one of which represents the fault-free behavior of the 
circuit, and the other the behavior under a single complementary fault condition. 
If these two functions are then exclusive-ORed together and the result is not a 
logic zero this fault can be detected; if the result is a logic zero, which means 
that the two functions are identical under this fault condition, then this fault 
cannot be detected. 

II. Roth’s D-algorithm: In contrast to the educationally-interesting Boolean 
difference method, Roth’s D-algorithm [23] forms the underlying concept of 
many practical ATPG programs. It sensitises all paths from the site of a chosen 
fault to an observable output, and therefore inherently caters for reconvergent 
fan-out situations. It does, however, operate at the individual gate level, and 
requires knowledge of all the gates and their interconnection topology which 
functionally-based ATPG programs do not necessarily need. 

The D-algorithm involves five logic states, namely  
0= normal logic zero 
1= normal logic one 
D= a fault–sensitive state of a line or node, where D= 1 under fault-free 
conditions but is 0 under the   particular fault condition being considered. 
Ď = a fault –sensitive state of a line or node, where Ď = 0 under fault-free 
conditions but is 1 under the particular fault condition being considered. 
X = an unassigned logic value, which can take any value 0, 1, D or Ď. 
Using these five logic states, the primitive D-cubes of failure for any type of 
logic gate may be defined. 

III. Other Algorithms: Following the D-algorithm other methods have been 
developed. A few are listed here. PODEM [24] (the branch and bound search 
algorithm) which a heuristic successor of D-algorithm and FAN [25] (fan-out-
oriented algorithm), many other techniques and heuristics have been developed, 
improving and speeding up the existing TPG systems. They are e.g. 
SOCRATES (using static and dynamic learning procedures) [26]. 

 
3.8.2.3 Pseudorandom test pattern generation 
 
 The ATPG algorithms previously discussed are deterministic, being based upon the 
choice and detection of a single stuck-at fault by an appropriate input test vector. 
Although each test considers one fault as the starting point for the determination of a 
test vector, each test vector covers more than one stuck-at node, and a final 
consolidation to the minimum number of test vectors to cover the complete stuck-at 
fault list can be implemented. 
 
Deterministic ATPG algorithms provide the smallest possible test set to cover the 
given fault list. The disadvantage is the complexity and cost of generating this 
minimum test set. On the other hand a fully exhaustive test set will incur no ATPG 
costs, but will usually be too long to employ for large circuits. There is, however, an 
intermediate possibility which has been used. It is intuitively obvious that fault 
coverage increases with the number of input test patterns which are applied, up to the 
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full fault coverage; a single randomly chosen input test vector is also likely to be a test 
for several faults in a complex circuit .Hence if a sequence of random or 
pseudorandom input test vectors is used, it is probable that a number of circuit faults 
will be covered without incurring any ATPG cost. A truly random sequence of test 
vectors, which includes the possibility of the same vector occurring twice within a 
short sequence, is difficult to generate. Hence it is more practical to consider the use 
of pseudorandom patterns, which are very easy to generate. For a n-bit vector there 
can be a maximum of 2n -1 sequences before the sequence repeats with each bit in the 
sequence having the same number of changes between 0 and 1.Hence 0s and 1s are 
equally probable on each bit. 
 
Therefore, for a circuit with n primary inputs, it is appropriate to take a very small 
subset of the 2n -1 pseudorandom sequence to use as the random test set. The number 
of faults that are covered by this test is determined by normal simulation, leaving the 
small percentage of faults which have not been detected to be covered by using some 
deterministic ATPG procedure. 
 
3.9 Test Pattern Generation for Sequential Circuits 
 
Combinational circuits can be flattened to gate level with stuck-at conditions 
considered at every node. In general, the latch and flip-flop elements of a sequential 
network cannot be broken down to individual gate level without breaking all the 
inherent feedback connections - if they could then the test pattern generation problem 
would become purely combinational with perhaps limited controllability and 
observability - and therefore we have to consider the possible states of the circuit as 
well as the combinational aspects [27]. The classic model for any sequential network 
is shown in figure 12. If the present primary outputs z1 to zm are a function of the 
present secondary inputs y1 to ys (the memory states) and present primary inputs x1 to 
xn, then the model is a Mealy model, if the outputs are a function of y1 to ys then the 
model is a Moore model. In both cases it is not possible to define the fault-free 
outputs resulting form a primary input test vector without knowledge of the internal 
states of the memory. 
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Figure 12: Model for sequential logic networks where combinational logic gates 

and memory elements are separated into two halves 
 
The basic difficulty with testing the circuit model of the figure 12 is that the logic 
values y1 to ys    are generally unknown. If they were observable then the testing of the 
top half of the circuit would be entirely combinational, and testing of the bottom half 
would be by monitoring y1 to ys    during an appropriate set of primary input test 
vectors. However, assuming y1 to ys     are inaccessible, developments as follows must 
be considered. 
The first problem is to initialize the memory elements to a known state before any 
meaningful test procedure can .This may be done in the following ways: 

i. Apply for a synchronizing input sequence to the primary inputs which force a 
fault-free circuit to one specific state irrespective of its initial starting state. 
This is only possible in special cases where the states always home to a given 
state and remain there in the presence of a certain input vector- a counter 
which free runs but is stopped when it reaches 1111… by a certain input 
vector is an example. 

ii. Apply a homing input sequence to the primary inputs which finally gives a 
recognizable output sequence from a fault-free circuit irrespective of its initial 
starting state. Depending upon which output sequence is recognized, the final 
state of the circuit is known 

iii. A special case of the homing input sequence is the distinguishing input 
sequence, where the circuit output response is different from every possible 
starting state. If this is possible, then both the initial and final states of the 
circuit are known. Most sequential circuits, however, do not have a 
distinguishing input sequence, although all do have one or more homing input 
sequences. 

iv. Finally, a separate asynchronous reset may be applied to all internal latches 
and flip-flops to reset them to the 000…00 state ,or they may all be reset or set 
on the application of a specific input test vector which the circuit designer has 
built into the specific circuit. 
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With the circuit initialized to a known starting state the primary outputs maybe 
checked for correctness with appropriate primary test input vectors if necessary. If this 
test faults, the circuit is faulty and no further testing need be continued unless some 
diagnostic information is also sought. It also has been suggested that the successful 
completion of homing sequence, particularly if a long sequence, is itself a good test 
for the complete circuit, any deviation indicating some failure in the combinational or 
sequential elements. However, it is difficult to determine the fault cover that a homing 
test provides, and additional testing from the starting point of the initialized circuit is 
usually required. 
 
In spite of research and development activities it here that viable ATPG programs are 
not available, use of stuck-at model becoming difficult because of feedback 
complexities. Some efforts have been made to partition the sequential circuit into an 
interactive cascade of one-state circuits, effectively spreading out the synchronous 
machine linearly in time instead of going around the one circuit model on each clock 
pulse, but unfortunately this introduces the equally difficult problem of having to 
model multiple stuck-at combinational faults. 
 
In short Sequential automatic test pattern generation is a difficult problem. The many 
challenges we face in this area include reduction in the time and memory required to 
generate the tests, reduction in the number of cycles need to apply the tests to the 
circuit, and obtaining a high fault coverage. Adding to the complexity of this problem 
is that, unlike a combinational circuit where an untestable fault is also redundant, an 
untestable fault is not necessarily redundant in a sequential circuit. 
 
 
3.9.1 Classification of test generation techniques for sequential  
Circuits  
 
The taxonomy of various sequential test generation approaches is given in the figure 
13[28]. Most of the approaches are limited to test generation for synchronous 
sequential circuits which may have some asynchronous reset /clear circuitry. 
However, some advances have also been made in test generation for asynchronous 
sequential circuits. Under the synchronous category, the three main approaches are 
based on the state table, gate-level circuits, and both register–transfer level (RTL) and 
gate-level circuits. The state table based approach is only useful for pure controllers 
for which a state is either available or easily extractable from its lower-level 
description. The gate-level approach can itself be divided up into topological analysis 
based, simulation based, and hybrid. The topological analysis based approach uses an 
iterative array model of the sequential circuit. Most methods in this category assume 
that the initial state of the sequential circuit is unknown, while a few others assume 
that the initial state is known to avoid the problem of initializing the memory 
elements. The topological analysis based approach assuming an unknown initial state 
is by far the most common approach among all sequential test generation approaches. 
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              Figure 13: Taxonomy of sequential test generation 
 
The simulation based approach uses an enhanced logic or fault simulator. The hybrid 
approach combines the topological analysis based and simulation based approaches. 
When the RTL description of the circuit is available in addition to its gate-level one, 
test generation can be significantly sped up since it becomes easier to justify a state 
and propagate the error to an observable output. 
 
For asynchronous circuits, the two main approaches are simulation-based and 
topological analysis based. In the first approach, a potential test sequence is first 
derived by ignoring the circuit delays, and then simulated using the appropriate delay 
models to make sure it does not get invalidated by races, hazards and oscillations. If 
invalidation does occur, another potential test sequence is derived and the process is 
repeated. In the second approach, synchronous topological analysis based test 
generation is adapted to asynchronous circuits by only allowing the use of state tables. 
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3.10 Design for Testability  
 
Design for testability (DFT) can loosely be defined as changes to a given circuit 
design that help decrease the overall difficulty of testing. The changes to the design 
typically involve addition or modification of circuitry such that one or more new 
modes of circuit operation are provided. Each new mode is called a test mode in 
which the circuit is configured only for testing. During the normal use, the circuit is 
configured on the normal mode and has identical input-output logic behavior as the 
original circuit design. However, the timing of the circuit may be affected by the 
presence of the DFT circuitry. 
 
The key objective of DFT is to reduce the difficulty of testing. ATPG techniques for 
sequential circuits are expensive and often fail to achieve high fault coverage. The 
main difficulty arises from the fact that the state inputs and sate outputs cannot be 
directly controlled and observed, respectively. Controllability is measure of how 
easily a node in a circuit can be set to logic 0 and logic 1 by signals applied to the 
accessible (primary) input. Observability is a measure how easily the state of a given 
node (logic 0 or logic 1) can be determined from the logic signals at the accessible 
outputs. In such cases, a circuit may be modified using the scan design methodology, 
which creates one or more modes of operation which can be used to control and 
observe the values at some or all flip-flops. 
 
This can help reduce the cost of test development. In fact, in many cases use of some 
scan is the only way by which the desired fault coverage target may be achieved. 
However, in most cases, the use of scan can increase the test application time and 
hence the test application cost. In a slightly different scenario, DFT circuitry maybe 
used to control and observe values at selected lines within the circuit using test points 
so as to reduce the number of test vectors required. In such a scenario, use of DFT 
may help reduce the test application cost. 
 
3.10.1 Trade-offs  
 
Most DFT techniques deal with either the resynthesis of an existing design or the 
addition of extra hardware to the design. Most approaches require circuit 
modifications and affect such factors as area, I/O pins and circuit delay. The values of 
these attributes usually increase when DFT techniques are employed. Hence, a critical 
balance exits between the amount of DFT to use and the gain achieved [29]. Test 
engineers and design engineers usually disagree about the amount of DFT hardware to 
include in a design. 
 
Increasing area or logic complexity in a VLSI chip will result in increased power 
consumption and decreased yield. Since testing deals with identifying faulty chips, 
and decreasing yield leads to an increase in number of faulty chips produced, a careful 
balance must be reached between adding logic for DFT and yield. Normally yield 
decreases linearly as chip area increases. If additional hardware required to support 
DFT does not lead to an appreciable increase on fault coverage, then the defect level 

43 



will increase. In general, DFT is used to reduce test generation costs, enhance the 
quality of tests, and hence reduce defect levels. It can also affect test length, tester 
memory, and test application time. By employing structured DFT techniques test 
development time can be reduced. Without DFT, tests may have to be generated 
manually; with DFT they can be generated automatically. For design engineering 
organizations and individual the perception of DFT is generally negative: 

• It adds work  complication to the design methodology, adds tasks and risks to 
design schedule 

• It negatively impacts design budgets as  
- power 
- area 
- timing 
- package pin requirements 

 
However, for test professionals, the perceptions of DFT are usually positive and 
include such items as: 

• having the ability to measure the quality level deterministically 
• making it easier to generate the necessary vectors 
• making  it possible to support all test environments easily  

- wafer probe 
- manufacturing test 
- burn-in 
- life-cycle 
- board-level integration 
- engineering debug 
- customer return debug 
- process characterization 
- yield enhancement  and failure analysis 

• allowing the cost-of-test to be reduced in all environments 
- reduce tester complexity and cost 
- reduce tester time 
- reduce tester requirements (pins, memory depth, pin timing) 

 
3.10.2 Classification of DFT techniques 
 
DFT techniques normally fall into three categories, namely: 

i. ad hoc design methods; 
ii. structured design methods; 

iii. self test 
 

The first two of these methods usually require the use of some external 
comprehensive test facility, but the third method usually minimizes to a considerable 
extent the use of external test resources. 
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3.10.2.1 Ad-hoc methods  
 
Ad-hoc methods target difficult-to-test parts of the Design under test (DUT) in order 
to improve controllability and observability of such a circuitry. Gate inputs and 
outputs, which are normally out of control or out of observation, are made accessible 
by adding a test point .Improving the controllability of internal nodes is mostly 
arranged by gate-based test points – the internal signal is enabled or disabled by 
control wire. These cells are not the only additional hardware, which is added to the 
original design (Figure 14).  
 

Module 1 Module 2 

 
 

 
Module 3           Degate 

 
       Control1 
        Control2 

                         Figure 14: Module degating  
 
The ad-hoc methods can be used on critical timing paths only very carefully to 
eliminate performance penalties caused for an example by test point insertion, 
because every gate causes some time delay. Ad-hoc solutions applied on case-by-case 
basis can yield significant increase of fault coverage, along with reductions in test 
time. The down side of an ad-hoc DFT method is the number of additional I/O pins 
required for the test mode control and the fact that we determine the best place to 
insert test point on case-by-case basis. There are several CAD tools which are able to 
assist in test point insertion, but ad-hoc DFT process is usually of manual test point 
insertion and can take considerable time. This process consists usually of manual test 
point insertion, developing test patterns, running fault simulations, evaluating fault 
coverage and repeating these steps until acceptable fault coverage is obtained. Typical 
targets for test point insertion are feedback loops, large counters, embedded core 
logic, asynchronous logic embedded clock generators, memory initialization inputs, 
intentional redundant logic, etc. 
 
The ad-hoc DFT methods are based on good design practices learned from 
experience; some of them are summarized below [29]: 

• Reset dependency during scan must be avoided, reset must be fast and easy , 
the reset circuitry must also be testable ; reset wire must be accessible directly 
from the chip pin and it is not recommended to gate this signal with some 
internal, nondeterministic logic; 
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• Long counters should be broken for the testing, also state machines with many 
states should be avoided or split to a group of smaller state machines; to test a 
long counter in all of the states takes a lot of clock cycles. Parallel test of 
separated parts takes a small fraction of this time; 

• Do not use non-gate-level logic, or strictly separate the parts with different 
logic , or separate analog and digital parts; most ATPG tools are based on 
gate-level logic, such a circuitry may cause loss of controllability or slows 
down the ATPG processing; 

• Do not use either data as clock or clock as data, there is a big possibility of 
skew effect or of some delay faults for example in a long ripple-counter or 
similar circuitry; 

• Avoid gates with large number of an-in signals; a big set of test pattern is 
needed for full-scan; 

• Provide test control for difficult-to-control signals; 
• Do not use both edges of a clock signal; 
• Do not use internal nodes that support other logic than 1/0; it is hard to decide 

whether the response is correct or no; 
• There should not be any dynamic logic inside the DUT (pull-up, pre-charge 

….); such logic is expected only on pins. If an analog circuitry is used then it 
must be isolated from other parts; 

• Do not use any logic to select the test mode; test mode signal may be 
generated only by an external logic, i.e. through a chip pin. The Built-In Self 
Test is an exception to this rules; 

• Floating state in 3-state buffers should be disabled during testing to evaluate 
the responses correctly we need pure logic values; 

• Avoid the redundant logic; 
• Hold the distance from the technology limits; using the chip on these limits 

(frequency, voltage etc.) is dangerous, this increases the risk of damaging the 
chip. 

• Never build in logical redundancy unless it is specifically required ; by 
definition such redundancy  can never be directly checked from the normal I/O 
pins; 

• Make a list of key nodes during the design phase, and check that they can be 
easily accessed; 

• If possible use level sensitive flip-flops in preference to edge-triggered types, 
since the behavior of circuits using the former is more secure than circuits 
using the latter. 

• At all cost avoid the use of on-chip monostable circuits; these must be off-chip 
if really necessary. On-chip use some form of clocked counter-timer circuit; 

• If at all possible avoid the use of asynchronously operating macros; make all 
sequential circuits operate under rigid clock control  unless absolutely 
impossible; 

• Ensure that all storage elements, not only in counters but in PLAs and random-
access memory can be initialized before test; this also applies to any internal 
cross-coupled NANDS and NORs which act as local latches; 
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• Limit the fan-out from individual gates as far as possible so as not to degrade 
performance and to ease the task of manual or automatic test pattern 
generation; 

• Provide all means to break all feedback connections from one partition of a 
circuit to another partition (global feedback)so that each partition may be 
independently tested; 

• Consider the advantage of using separate test clocks to ease certain sequential 
checks; 

• Avoid designing clever combinational modules which perform different duties 
under different circumstance ; in general design a module as simply as 
possible to do on job; 

• Keep analogue and digital circuits on chip physically as far apart as possible , 
with completely separate or very decoupled d.c supply connection; 

• When designing a complex VLSI custom IC ensure that the vendor can supply 
details of appropriate vectors for test of larges macros  such as PLAs, memory, 
etc; 

• Consider adding some online parity or other check bits if fault detection or 
fault correction would bee advantageous; 

• Remember that a vendor’s 100% toggle test on internal nodes of a custom IC 
does not guarantee a fully fault-free circuit; 

• Some commercial IC testers may not cater for don’t care conditions and may 
require to know whether the actual design should give a logic 0 or a logic 1  
under test conditions; 

 
The major DFT guidelines may be summarized as follows: 

• Maximize the controllability and observability of all parts of the circuit or 
system by partitioning or other means; 

• Provide means of initializing all internal latches and flip-flops at the 
beginning of any test; 

• Keep analogues and digital circuits physically and electrically as separate 
as possible; 

• Avoid asynchronous working and redundancy if at all possible; 
 
 3.10.2.2 Scan design techniques  
 
Scan testing is defined as the process of using scan architecture to conduct testing. 
Scan is known as a structured methodology, because it can be standardized, is 
repeatable, and is easily automatable (both in insertion and in vector generation).A 
scan architecture allows a data state to be placed within the chip by using scan shift 
registers, and also allows the data state of a chip to be observed by using those same 
scan shift registers. Scan architecture also allows algorithmic software tools to verify 
the test design’s correctness and to create or generate the necessary structural test 
vectors required to verify that the rest of the chip has passed “defect free” through the 
manufacturing process. Multiple scan shift registers, or scan chains, help to optimize 
the vector depth required by the tester. Overall, a scan testing methodology can 
enhance the ability to achieve a high-quality metric, reduce the cost-of-test, reduce the 
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time it takes to get the vectors to the tester – and therefore, to get the chip into volume 
production. The testing procedure for the circuit is as follows [27]: 

i. The circuit is switched from its normal mode to scan mode, which converts 
the storage elements into scan-path shift register; 

ii. The switching and storage action of this shift register is first checked by 
clocking through a pattern of 0s and 1s under the control of the test clock; 

iii. If this primary initial test is all correct, an input test vector is applied to the 
primary inputs, and a chosen pattern of 0s and 1s is serially loaded in to the 
shift register under the control of the test clock, the latter becoming the 
secondary inputs to the combinational logic, 

iv. The circuit is switched back to its normal mode, and the clock operated once 
so as to latch the resultant secondary outputs from the combinational logic 
back into the shift register; 

v. ‘The circuit is switched back to its test mode, and the test clock operated so 
as to scan out the latched data from the shift register to the scan-out I/O for 
checking; 
Steps 3, 4, 5 are repeated as many times as necessary in order to test all the 
combinational logic circuits. 

 
3.10.2.2.1 Scan cell designs  
 
The fundamental cell in scan design is a scan –cell. This cell is an independently 
accessible unit of scan circuitry serving as a control point and observation point for 
ATPG. There are three widely used scan cell designs [20]: 

i. Muxed-D Scan cell 
The D storage element is one of the most widely used storage elements in logic 
design. Its basic function is to pass a logic value from its input to its output when a 
clock is applied. A D flip-flop is an edge-triggered D storage element, and a D latch is 
a level-sensitive D storage element. The most widely used scan cell replacement for 
the D storage element is the muxed-D scan cell. Figure 15 shows an edge-triggered 
muxed-D scan cell design. This scan cell is composed of a D flip-flop and a 
multiplexer. The multiplexer uses a scan enable (SE) input to select between data 
input (DI) and the scan input (SI). 
 
In normal/capture mode, SE is set to 0.The value present at the data input DI is 
captured into the internal D flip-flop when a rising clock edge is applied. In shift 
mode, SE is set to 1. The SI is now used to shift new data to D flip-flop while the 
content of the D flip-flop is being shifted out. 
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                  Figure 15: Edge triggered muxed D scan cell 
 
 

Major advantages of using a muxed-D scan cells are their compatibility to modern 
designs using single-clock D flip-flops, and the comprehensive support provided by 
existing design automation tools. The disadvantage is that each muxed-D scan cell 
adds a multiplexer delay to the functional path. 

ii. Clocked-Scan Cell 
An edge-triggered clocked scan-cell can also be used to replace a D flip-flop in a scan 
design. Similar to a muxed-D scan cell, a clocked-scan cell also has data input DI and 
a scan input SI; however, in clocked-scan cell, input selection is conducted using two 
independent clocks, data clock DCK and shift clock SCK as shown in figure 16. In 
normal/capture mode, the data clock DCK is used to capture the value present at the 
data input DI into the clocked scan-cell. In shift mode, the shift clock SCK is used to 
shift new data from the scan input SI into the clocked–scan cell, while the current 
content of the clocked scan cell is shifted out.  

 
 
          Figure 16: Clocked scan cell 

The major advantage of using this structure is that it results in no performance 
degradation on the data input.The major disadvantage however, is that it requires 
additional shift clock routing. 

              DCK                             SCK 

 
 
 
 
 
      DI 
 
      SI 

 
 
 
 
 
 
 
 
Q/SO 

D           Q 
   

0 
Q/SO   

  
 1 
SI 

          SE                                                   CK 

49 



 
iii. LSSD Scan cell 

While muxed-D scan cells and clocked-scan cells are generally used for edge 
triggered, flip-flop-based designs, an LSSD scan cell is used for level-sensitive, latch-
based designs. The scan cell contains two latches, a master two-port D latch and a 
slave D latch. Three clocks are used to select between the data input and scan input to 
drive the latches. Either of the two latches can be used to drive the combinational 
logic of the design. In order to guarantee race-free operation, the three clocks are 
applied in a non overlapping manner.  
 
The major advantage of using an LSSD scan cell is that it allows us to insert scan into 
a latch-based design. In addition, designs using LSSD are guaranteed to be race-free. 
The major disadvantage, however, is that the technique requires routing for the 
additional clocks, which increases routing complexity. 

 
3.10.2.2.2 Scan architectures 

 
In this section we describe the three popular scan architectures. 

i. Full-Scan Design  
In full-scan design, all the storage elements are replaced with scan cells, which 
are then configured as one or more shift registers (also called scan chains) 
during the shift operation. As a result, all the inputs to the combinational logic, 
including those driven by scan cells, can be controlled and all outputs from the 
combinational logic, including those driving scan cells, can be observed. The 
main advantage of full-scan design is that it converts the difficult problem of 
sequential ATPG into the simpler problem of combinational ATPG. 

ii. Partial-Scan Design  
Unlike full-scan design where all storage elements in a circuit are replaced 
with scan cells, partial-scan design only requires that a subset of storage 
elements be replaced with scan cells and connected into scan chains. Partial-
scan design was used in the industry long before full-scan design became the 
dominant scan architecture. In order to reduce the test generation complexity, 
many approaches have been proposed for determining the subset of storage 
elements for scan cell replacement. Scan cell selection can be conducted by 
using a functional partitioning approach (partitioning data portion and control 
portion), feed-forward partial scan design (storage elements to be replaced by 
scan cells are selected to make the sequential circuit feedback free so that test 
generation complexity is reduced and silicon overhead area is low). 

iii. Random-Access Scan Design 
Full-scan design and partial-scan design can be classified as serial scan design, 
as test pattern application and test response acquisition are both conducted 
serially through scan chains. The major advantage of serial scan design is its 
low routing overhead, as scan data is shifted through adjacent scan cells .Its 
major disadvantage, however, is that individual scan cells cannot be controlled 
or observed without affecting values of other scan cells within the same scan 
chain. High switching activities at scan cells can cause excessive test power 
dissipation resulting in circuit damage, low reliability or even test-induced 
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yield loss. Random-access scan attempts to alleviate these problems by 
making each scan cell randomly and uniquely addressable, similar to storage 
cells in random-access memory. 
 

 
3.10.2.3 Boundary scan  

Boundary scan is a method for testing interconnects (wire lines) on printed circuit 
boards or sub-blocks inside an integrated circuit. Boundary scan is also widely used as 
a debugging method to watch integrated circuit pin states, measure voltage, or analyze 
sub-blocks inside an integrated circuit [29]. 

The Joint Test Action Group (JTAG) developed a specification for boundary scan 
testing that was standardized in 1990 as the IEEE Std. 1149.1-1990. In 1994, a 
supplement that contains a description of the Boundary Scan Description Language 
(BSDL) was added which describes the boundary-scan logic content of IEEE Std 
1149.1 compliant devices. Since then, this standard has been adopted by electronic 
device companies all over the world. Boundary scan is nowadays mostly synonymous 
with JTAG. The boundary scan architecture provides a means to test interconnects 
and clusters of logic, memories etc. without using physical test probe. It adds one or 
more so called 'test cells' connected to each pin of the device that can selectively 
override the functionality of that pin. These cells can be programmed via the JTAG 
scan chain to drive a signal onto a pin and across an individual trace on the board. The 
cell at the destination of the board trace can then be programmed to read the value at 
the pin, verifying the board trace properly connects the two pins. If the trace is shorted 
to another signal or if the trace has been cut, the correct signal value will not show up 
at the destination pin, and the board will be known to have a fault. When performing 
boundary scan inside integrated circuits, cells are added between logical design blocks 
in order to be able to control them in the same manner as if they were physically 
independent circuits. For normal operation, the added boundary scan latch cells are set 
so that they have no effect on the circuit, and are therefore effectively invisible. 
However, when the circuit is set into a test mode, the latches enable a data stream to 
be passed from one latch to the next. Once the complete data word has been passed 
into the circuit under test, it can be latched into place. As the cells can be used to force 
data into the board, they can set up test conditions. The relevant states can then be fed 
back into the test system by clocking the data word back so that it can be analyzed. By 
adopting this technique, it is possible for a test system to gain test access to a board. 
As most of today’s boards are very densely populated with components and tracks, it 
is very difficult for test systems to access the relevant areas of the board to enable 
them to test the board. Boundary scan makes this possible.    

3.10.2.3 Built-in self test  
 

With recent advances in semiconductor manufacturing technology, the production and 
using of VLSI circuits has run into a variety of testing challenges during wafer probe, 
wafer sort, pre-shipping screening, incoming test of chips and boards, test of 
assembled boards, system test, periodic maintenance ,repair test, etc. Traditional 
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techniques that use to ATPG software to target single faults for digital circuit testing 
have become quite expensive and can no longer provide sufficiently high fault 
coverage for deep submicron or nanometer designs from the chip level to the board 
and system levels. 
 
One method to alleviate these testing problems is to incorporate built-in self-test 
(BIST) features into a digital circuit at the design stage. With BIST, circuits that 
generate test patterns and analyze the output response of the functional circuitry are 
embedded in the chip or elsewhere on the same board where the chip resides. 
The important advantages of BIST are [29]: 

• Easy access to circuit under test (CUT) even in highly complex VLSI circuits 
where number of external pins is limited; 

• No necessity to store the input and output test patterns; 
• Reducing test development time; 
• At-speed testing; 
• Reduced manufacturing test time, reduced time to market 
• Since BIST implements most of the test functions on-chip ,the origin of errors 

can be easily traced back to the chip; 
The disadvantages are: 

• Increased overhead and performance penalties 
• Additional design effort 
• Additional risk to project (BIST could cause yield loss to its circuitry ) 

 
There are two general categories of BIST technique for testing random logic :(1) 
online BIST and (2) offline BIST. 
 
Online BIST is performed when the functional circuitry is in normal operational 
mode. It can be done either concurrently or nonconcurrently. In concurrent online 
BIST, testing is conducted simultaneously during normal functional operation. The 
functional circuitry is usually implemented with coding techniques or with duplication 
and comparison. When an intermittent or transient error is detected, the system will 
correct the error on the spot, rollback to its previously stored system states, and repeat 
the operation, or generate an interrupt signal for repeated failures. In nonconcurrent 
online BIST, testing is performed when the functional circuitry is in idle mode. This is 
often accomplished by executing diagnosis software routines (macrocode) or 
diagnosis firmware routines (microcode). The test process can be interrupted at any 
time so that normal operation can resume. 
 
Offline BIST is performed when the functional circuitry is not in normal mode. This 
technique does not detect any real-time errors but is widely used in the industry for 
testing the functional circuitry at the system, board, or chip level to ensure product 
quality. 
 
Functional offline BIST performs a test based on the functional specification of the 
functional circuitry and often employs a functional or high-level fault model. 
Normally such a test is implemented as diagnostic software of firmware. 
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Structural offline BIST performs a test based on the structures of the functional 
circuitry. There are two general classes of structural offline BEST techniques: (1) 
external BIST, in which test pattern generation and output response analysis is done 
by circuitry that is separate from the functional circuitry being tested, and (2) internal 
BIST, in which the functional storage elements are converted into test pattern 
generators and output response analyzers. Some external BIST schemes test 
sequential logic directly by applying test patterns at the input s and analyzing the 
responses at its outputs. Such techniques are often used for board-level and system-
level self-test. 
 
Figure 17 shows a typical BIST system using the structural offline BIST technique. 
The test pattern generator (TPG) automatically generates test patterns for application 
to the inputs of the circuit under test (CUT).  
 

 
 

Test Pattern Generator

Logic 
 
BIST 
 Circuit Under Test 
Controller 
 

O/P Response Analyzer 

 
Figure 17: A typical logic BIST System 
 
 
The output response analyzer (ORA) automatically compacts the output responses of 
the CUT into a signature. Specific BIST timing control signals, including scan enable 
signals and clocks, are generated by the BIST controller for coordinating the BIST 
operation among the TPG, CUT, and ORA. The BIST controller provides a pass/fail 
indication once the BIST operation is complete. It includes comparison logic to 
compare the final signature with an embedded golden signature, and often comprises 
diagnostic logic for fault diagnosis. As compaction is commonly used for output 
response analysis, it is required that all storage elements in the TPG, CUT, and ORA 
are initialized to known states prior to self-test, and no unknown values be allowed to 
propagate from the CUT to the ORA. 
 
 3.10.2.4.1 Test pattern generation using LFSR in BIST 
 
Several types of test pattern generators are used in BIST. The most important 
generator used in BIST is Linear Feedback Shift Register (LFSR). It is more area 
efficient than a binary counter, requires less combinational logic per flip-flop, can 
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usually work at higher clock frequency, and the LFSR output sequence can be 
considered to be pseudorandom. Let us suppose that we have an n bit LFSR. It is not 
possible to generate all the 2n different patterns after seeding with one seed only. This 
can be considered to be a disadvantage of using an LFSR .The LFSR without external 
input is sometimes called autonomous LFSR (ALFSR) and is suitable for test pattern 
generation. 
 
Two basic types are used in practical applications: internal feedback (Type 1, Figure 
18) and external feedback (Type 2, Figure 19) .Both implementations require the 
same amount of logic in terms of exclusive-OR gates. 
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                              Figure 18: Internal feedback LFSR 
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             Figure 19: External feedback LFSR 
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The XOR gates are connected according to the characteristic polynomial f(x). This 
polynomial can be described as: 
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Where hi is the feedback tap coefficient. If hi =1, feedback tap exists, for hi =0 no 
feedback exists. An n bit LFSR has the coefficients hn and h0 equal to 1 as they 
guarantee concatenation of the main loop. The number of XOR gates in the ALFSR is 
equal to the number of non-zero coefficients of the code generating polynomial 
deducted by 2. On the other hand, type 1 LFSR has, at most, one XOR gate in any 
path between flip-flops. Both types of the LFSR perform a division of the input 
polynomial by the characteristic polynomial in the binary Galois field (finite field). 
The quotient can be read at the LFSR output. The remainder of the division can be 
found in the internal feedback LFSR flip-flops. If a LFSR is supposed to run in 
autonomous mode only, then the input XOR gate is not needed. The relationship 
between the register state at a present time and the register state after the clock cycle 
can be described by a matrix equation Q` = AQ, where Q is the current state, Q` is a 
resulting state and A is the transformation matrix, The transformation matrix  
coefficients represents the LFSR tap topology. 
 
An autonomous LFSR generates the code words of cyclic linear codes on all flip-flop 
outputs. The code words can be characterized by the code word length p and by the 
number of the information bit n. The number of LFSR flip-flops is equal to n. If the 
LFSR output is concatenated with a (p-n) bit shift register, then 2n   different code 
words can be generated. Each code has n information bits (stored in the LFSR) and 
(p-n ) check bits (stored in the shift register). The information bits can define the code 
words unambiguously. As the code is cyclic a new word must be obtained by cyclic 
shifting of a code word. From this fact it follows that automation formed by the LFSR 
and the shift register could be replaced by a p bit shift register with a feedback tap 
from the last to the first flip-flop and if seeded with a code word the generated code 
word is the same as that obtained by the LFSR with a shift register. 
 
The characteristic LFSR polynomial corresponds to the parity check polynomial of 
the generated code, which means that if we create the product of a code polynomial 
and the check polynomial we obtain a zero polynomial. The code is also characterized 
by the generator polynomial of the degree n .The generator polynomial is unique 
within the code polynomials and each code polynomial is a product of it and some 
other polynomial .The relationship between the generator polynomial and the parity 
check polynomial is then given by the equation :  

=)()( xgxh Xp-1 
The generator polynomial maybe: 

o Irreducible –it is not possible to factorize the polynomial; 
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o Reducible – it can be factored into a product of simpler irreducible 
polynomials; 

o Primitive – this polynomial must be irreducible and it divides the polynomial 
      x2exp(n)-1 -1 and it doe not divide any polynomial of a lower degree; 

It is computationally difficult to decide whether a polynomial is primitive but the 
primitive polynomials are tabulated for all n up to sufficiently high values. 
 
It is possible to use the generator polynomial as a characteristic LFSR polynomial in 
which case the LFSR generates code words called dual code. 
The internal states of both types of the LFSR are periodically repeated when the 
LFSR runs in the autonomous mode. The length of the longest possible sequence of 
unique patterns for any kind of an n bit LFSR is equal to 2n -1.The longest sequence 
can be obtained when connecting the LFSR feedback according to a characteristic 
polynomial that is a primitive generator polynomial of the dual code. To obtain the 
periodical LFSR behavior the LFSR has to be seeded with a non-all-zero state. Any 
LFSR initialized to the all 0s state remains in this state; the sequence length is equal to 
1. In some situations it is not desirable to use primitive generator polynomials. 
Irreducible or reducible polynomials with high code distance of the dual code are used 
which results in better quality pseudoexhaustive test set. In this case the length of the 
obtained sequence is a fraction of the maximum sequence length and the LFSR has to 
be reseeded several times. It is possible to modify the LFSR in order to produce the all 
zero pattern within the primitive polynomial sequence. To do this we have to add a 
decoding logic to the LFSR, which selects one LFSR state and forces the LFSR to 
reach the all-zero state in the next clock cycle. This way of completing LFSR 
sequence is not advantageous because of the additional hardware overhead and worse 
dynamical parameters of the LFSR .If we want to prolong the LFSR period, it is more 
advantageous to use a LFSR with one more flip-flop. 
 
3.10.2.4.2 Output response analysis 
 
Storage of fault dictionary (all test inputs with correct output responses on chip 
requires too much memory to be a practical technique). The simplest practical method 
for analyzing the output response is to match the outputs of two identical circuits. 
Identical circuits may be available either because the function being designed 
naturally leads to replicated sub functions or because the functional circuitry is 
duplicated redundantly for concurrent checking. If identical outputs are not available 
it is necessary to resort to some technique for compaction of the test response. 
Techniques for reducing the volume of the output data were originally developed in 
connection with portable testers. Their use is usually called compact testing, but this 
technique is sometimes also called response compression. In compact testing, the 
output response pattern is passed through a circuit, called a compactor that has fewer 
output bits than input bits. The output of the compacter is called the signature of the 
test response. The aim is to reduce the number of bits that must be examined to 
determine whether the circuit under test in faulty. 
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The choice of compaction technique is influenced mainly by two factors: (1) the 
amount of circuitry required to implement the technique, and (2) the loss of effective 
fault coverage. In general a fault will go undetected if none of the input test patterns 
produces an incorrect circuit output in the presence of the fault. With output response 
compaction it is also possible for a fault to fail to be detected even though the output 
response differs from the fault-free response. This will happen whenever the output 
response from a faulty circuit produces a signature that is identical to the signature of 
a fault-free circuit. This phenomenon is called aliasing. 
 
 Signature analysis 
 
 The most popular BIST compaction circuit is an LFSR with its input equal to the 
output response of the circuit under test. This circuit was called a cyclic code checker 
when it was first proposed. This method of output response compaction is most often 
called signature analysis. The term “signature” describes the LFSR contents after 
shifting in the response pattern of the circuit being tested. 
 
The usefulness of signature analysis depends on the fact that the final values of the 
LFSR flip-flops, the signature, depend on the bit pattern that is applied at the input. If 
a fault causes the output bit sequence to change; this will usually result in a different 
signature in the LFSR. However aliasing can occur. It is possible for a fault to cause 
an output bit sequence that produces the same final LFSR contents as the fault-free 
circuit. In this case the fault will be undetected. The output sequences that have this 
property depend on the structure of the LFSR used .They are characterized in terms of 
division of the Galois field polynomial representation of the LFSR and the output 
response sequences. Any compaction technique can cause some loss of effective fault 
coverage due to aliasing. 
 
There are two methods for signature analysis for a multi-output circuit under test. One 
of them, the serial signature analyzer, uses a multiplexer to direct each of the outputs 
to the LFSR in turn. A circuit for this is shown in figure 20. 
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Figure 20: Serial signature analysis using a multiplexer 
 
 
 
With this scheme the input test patterns would have to be applied to the network m 
times for an m-network. 
 
The other technique, the parallel signature analyzer, compacts K network outputs 
in parallel using a K-bit parallel code checker figure 21.  
 
 
 

 
 
        Figure 21: Parallel signature analysis 
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The parallel technique requires each test pattern to be applied only m/K times. In 
the parallel technique, network outputs are connected to the LFSR through XOR 
gates added to the shift lines between stages as well as connecting a network 
output to the first LFSR stage. 
 
In general, the parallel signature analyzer is faster but requires more added 
circuitry than the serial signature analyzer. The parallel signature analyzer has an 
additional alias source. An error in the output Zj at the time ti followed by an error 
in output Z j+1 at time ti+1 will have no effect on the signature. More generally, an 
error in output Zj at time ti followed by an error in output Zj+h at time ti+h will have 
no effect on the signatures. 
 
3.10.2.4.3 BIST architectures  
 
There are typically two basic BIST execution options: 1) Test-per-clock (Parallel 
BIST) and 2) Test-per-scan (Serial BIST)[30]. In Parallel BIST, test patterns are 
applied to the CUT by the test generator. The response analyzer captures the 
responses every clock cycle .In Serial BIST, test patterns are shifted into a serial 
scan path or multiple scan paths to test the CUT. The test responses are 
subsequently captured by the scan flip-flops and shifted out to the response 
analyzer while new patterns are being shifted in. 
Serial BIST architectures 
In this sub section some Serial BIST architectures are discussed. They are 
 

i. LOCST : The Level sensitive scan design on-chip self-test (LOCST) 
architecture features two boundary scan registers used to buffer 
primary inputs and outputs. These registers are serially connected with 
the internal scan path, as well as with a test generator and a test-
response compactor. The last two blocks are implemented by means of 
the LFSRs. The design includes an on-chip monitor acting as a BIST 
controller and an error detection circuitry employed to compare the 
final value in the compactor with a good signature. The BIST circuitry 
operates in such a way that the input vectors produced by the LFSRs 
are applied serially to the primary inputs and the internal nodes of the 
CUT through boundary scan and the internal scan flip-flops. Responses 
are captured by the internal scan and the second boundary scan 
register, and are subsequently shifted serially to the LFSR performing 
output data compaction. The content of the scan path can also be 
shifted out of the chip using an output lines and an input line is used to 
initialize the test generator. 

 
ii. CEBS: The architecture of the Centralized and Embedded BIST with 

boundary scan (CEBS) is similar to that of LOCST.  The only 
difference is in the location of the test generator and the test-response 
compactor. In contrast to the LOCST, these modules are implemented 
by means of first bits of the input scan register, and the last bits of the 
output scan register, respectively. Thus certain inputs of the CUT are 
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stimulated in parallel, while other are loaded serially. Also for some 
outputs, the test –response compactor is as a multiple input signature 
register (MISR), and for the remaining ones, it acts as an LFSR. 
Consequently, the scheme saves some silicon area and applies test 
vectors slightly faster than LOCST. 

 
iii. STUMPS: The application of LOCST or CEBS requires a large 

number of clock cycles due to the inherent limitations of single scan 
chains. An attempt to overcome this constraint has been made in the 
Self-testing using MISR and parallel shift register sequence generator 
(STUMPS) architecture. In this approach the LFSR   used as a test 
generator feeds a multiplicity of scan paths, while the serial outputs of 
the scan paths drive the MISR inputs. The use of multiple scan chains 
can significantly reduce the test application time. Since the scan paths 
may be of different lengths, every time a pattern is to be produced, the 
generator is run for c clock cycles, where c is the size of the longest 
scan chain. The resultant fault coverage is the stumps architecture may 
not be satisfactory due to the structure of the test generator. If the scan 
paths are fed directly from adjacent bits of the LFSR, then this close 
proximity will cause the neighboring scan chains to contain test pattern 
which are highly correlated. This phenomenon can adversely affect 
fault coverage, as patterns seen by the CUT will not be pseudo-
random. Furthermore, the quality of the test can be deteriorated by the 
presence of linear dependencies in LFSR-generated sequences. In fact, 
the inability to produce some bit combinations may affect all LFSR –
based applications of BIST, such as different test generation scenarios, 
reseeding of LFSRS, and others. In order to alleviate this problem, 
phase shifter are used when designing two-dimensional generators, and 
extra precautions have to be taken in selecting feedback polynomials 
.A typical phase shifter consists of XOR trees placed between the 
LFSR and the CUT in order to avoid shifted versions of the same data 
in various scan paths. Moreover, a preference should be given to 
feedback polynomials with a bigger number of feedback taps, since 
only these polynomials guarantee a probability of having linearly 
dependent bit positions in short test sequences at acceptable levels. 

 
 

Parallel BIST Architectures  
 
They can be classified as following [30]: 

i. BEST: One of the first parallel BIST architectures proposed was the 
built-in evaluation and self-test (BEST) scheme. It essentially 
resembles a scheme used for board testing. The CUT inputs are driven 
by the generator of pseudo-random patterns, and the test responses are 
directed to a MISR. An additional external maintenance system has to 
supply the BEST scheme with a seed for the test generator, test length, 
and the expected signature. The extra four pins are used to facilitate 
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proper execution of BIST session. They include the following lines: test 
clock enable, test strobe, test data in, and test data out. The scheme 
requires extensive fault simulation to assess resultant fault coverage and 
might be ineffective for some categories of circuits. 

ii. BILBO:  The built-in logic block observer (BILBO) is one of the 
earliest structures designed specifically for test-per-clock BIST 
schemes .It combines the function of a register, shift register, LFSR, 
and MISR built around one set of latches. Therefore, each BILBO 
module can act as either generator or compactor, although in a given 
test session two of these blocks are required to test a module of the 
CUT, one assuming the role of generator, the other acting as a 
compactor. In the next test session these roles can be exchanged, and 
the content of a BILBO acting formerly as a compactor can be treated 
as a seed in a test generation mode. This scenario assumes, 
pessimistically, that the content of MISR cannot be considered as 
valuable pseudo-random vectors, but it has been proven that the MISR 
performing test response compaction can simultaneously act as a source 
of random patterns. This allows a designer to reduce the number of test 
phases, as the same BILBO module can be employed to observe as well 
as to simulate two different blocks of the CUT, or even, under special 
circumstances, a single BILBO can capture responses which are 
subsequently used as tests for the same CUT. 

iii. CSTP: The circular self-test path (CSTP) BIST architecture converts 
some of the circuit flip-flops into self-test cells rather than using 
conventional LFSRs and MISRs. The cells are grouped into registers 
forming a circular shift register that simultaneously performs vector 
generation and response-data compaction. In the test mode, after 
placing all registers into a known state, the circuit operates for a 
number of clock cycles (registers that are not involved in the circular 
path work in the normal mode), and ,next, the entire signature, or its 
part left in the circular path, is scanned out for evaluation. Clearly this 
approach speeds up test application, as test responses do not have to be 
shifted out before the new vector is applied. The entire CUT can be 
treated as an FSM-based test generator with a nonlinear feedback 
function provided by the CUT itself. 

iv. Other Parallel BIST architectures: Various other parallel BIST have 
been proposed. An approach similar to the CSTP is known as 
automated BIST. It selectively replaces memory elements of the CUT 
with a special BIST flip-flops and interconnects them in order to obtain 
a circular chain. 
Self-test storage cells have also been used in the simultaneous self-test 
(SST) where a modified scan chain is employed to produce test vectors 
and collect test responses. 
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3.11 Fault Diagnosis  
 

Diagnosis is the process of locating the faults in a structural model of the Unit under 
test (UUT). Diagnosis consists of locating the physical faults in a structural model of 
the Unit under test [31]. For some digital systems, each fabricated copy is diagnosed 
to identify the faults so as to make decisions about repair. This is the case for a system 
such as a printed circuit board, where pins identified as being fault can be replaced 
and the opens at or shorts between pins of a chip may be repaired via re-soldering. In 
such cases, diagnosis must be performed on each faulty copy of the system; hence, the 
cost of diagnosis should be low. 
 
Digital VLSI chips are, by and large, un-repairable and faulty chips must be 
discarded. However, diagnosis is still performed on a sample of faulty chips, 
especially whenever chip yield is low or the performance of a large proportion of 
fabricated chips is unacceptable. In such a scenario, the objective of diagnosis is to 
identify the root cause behind the common failures or performance problems to 
provide insights on how to improve the chip yield and/or performance. The insights 
provided are used in variety of ways: (a) to change the design of the chip, (b) to 
change one or more design rules, (c) to change one or more steps of the design 
methodology, such as extraction, simulation, validation, and test generation, (d) to 
change the fabrication process, and so on. Relatively larger amounts of effort and 
resources may be expended on diagnosis in this scenario, since the accrued costs can 
be amortized over a large volume of chips produced. The ability to perform diagnosis 
on a sample of failing chip allows the cost of diagnosis to be viewed as fixed. This is 
unlike the other diagnosis scenario were each faulty copy of the system must be 
diagnosed to make decisions about repair.  
 
A fabricated copy of the circuit can be diagnosed by applying tests to the inputs of the 
circuit, capturing the response at its outputs, and analyzing the captured response. 
This type of diagnosis is called logic diagnosis. Logic diagnosis is typically 
supplemented by more invasive physical diagnosis. If the CUT is already packaged, 
then the packaging is removed. In addition, layers of material may be removed at 
specific areas of the chip. VLSI features may then be examined using microscopes. 
Probes, such as electron-beam probes, may also be used to make measurements at 
internal circuit lines. 
 
Physical diagnosis is expensive and destructive. Hence, logical diagnosis is typically 
used to first identify the likely faults. Physical diagnosis is then used to verify the 
results of logic diagnosis , a process that is sometimes called root-cause analysis .A 
CUT is said to be accurately diagnosed if the set of faults identified by logic diagnosis 
as the possible causes of CUT ‘s failure includes the real cause of failure. Diagnostic 
accuracy is defined by the proportion of all CUTs that are diagnosed accurately. 
Diagnostic resolution can be defined as the average number of faults that are 
identified by logic diagnosis as possible causes of CUT failure. The degree of the 
accuracy to which faults can be located is called diagnostic resolution. Functionally 
equivalent faults (FEF) cannot be distinguished. The partition of all faults into distinct 
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subsets of FEF defines maximal fault resolution .A test that achieves maximal fault 
resolution said to be a complete fault location test.  

3.11.1 Combinational fault diagnosis methods  

This approach does most of the work before the testing experiment. It uses fault 
simulation to determine the possible responses to a given test in the presence of faults. 
The database constructed in this step is called a fault table or a fault dictionary. To 
locate faults, one tries to match the actual results of test experiments with one of the 
pre computed expected results stored in the database. The result of the test experiment 
represents a combination of effects of the fault to each test pattern. That's why we call 
this approach combinational fault diagnosis method. If this look-up process is 
successful, the fault table (dictionary) indicates the corresponding fault(s). 

3.11.2 Fault table  

In general, a fault table is a matrix FT =|aij| where columns Fj represent faults, rows Ti 
represent test patterns, and aij = 1 if the test pattern Ti detects the fault Fj, otherwise if 
the test pattern Ti does not detect the fault Fj, aij = 0. Denote the actual result of a 
given test pattern by 1 if it differs from the pre computed expected one, otherwise 
denote it by 0. The result of a test experiment is represented by a vector E =|ei| where 
ei = 1 if the actual result of the test patterns does not match with the expected result, 
otherwise ei = 0. Each column vector fj corresponding to a fault Fj represents a 
possible result of the test experiment in the case of the fault Fj. Three cases are now 
possible depending on the quality of the test patterns used for carrying out the test 
experiment [29]: 

1. The test result E matches with a single column vector fj in FT. This result 
corresponds to the case where a single fault Fj has been located. In other 
words, the maximum diagnostic resolution has been obtained. 

2. The test result E matches with a subset of column vectors {fi, fj … fk} in FT. 
This result corresponds to the case where a subset of indistinguishable faults 
{Fi, Fj … Fk} has been located.  

3. No match for E with column vectors in FT is obtained. This result corresponds 
to the case where the given set of vectors does not allow carrying out fault 
diagnosis. The set of faults described in the fault table must be incomplete (in 
other words, the real existing fault is missing in the fault list considered in F. 
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Example: 

 

 
In the example the results of three test experiments E1, E2, E3 are demonstrated. E1 
corresponds to the first case where a single fault is located, E2 corresponds to the 
second case where a subset of two indistinguishable faults is located, and E3 
corresponds to the third case where no fault can be located because of the mismatch of 
E3 with the column vectors in the fault table.  

3.11.2 Fault dictionary 

Fault dictionaries (FD) contain the same data as the fault tables with the difference 
that the data is reorganized. In FD a mapping between the potential results of test 
experiments and the faults is represented in a more compressed and ordered form. For 
example, the column bit vectors can be represented by ordered decimal codes (see the 
example) or by some kind of compressed signature. An example is shown below  

 

3.11.3 Fault location by structural analysis 

Assume a single fault in the circuit. Then a path should exist from the site of the fault 
to each of the outputs where errors have been detected. Hence the fault site should 
belong to the intersection of cones of all failing outputs. A simple structural analysis 
can help to find faults that can explain all the observed errors. 

3.11.4. Sequential fault diagnosis methods 

In sequential fault diagnosis the process of fault location is carried out step by step, 
where each step depends on the result of the diagnostic experiment at the previous 
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step. Such a test experiment is called adaptive testing. Sequential experiments can be 
carried out either by observing only output responses of the UUT or by pinpointing by 
a special probe also internal control points of the UUT (guided probing). Sequential 
diagnosis procedure can be graphically represented as diagnostic tree. 

3.11.5. Fault location by edge-pin testing 

In fault diagnosis test patterns are applied to the UUT step by step. In each step, only 
output signals at edge-pins of the UUT are observed and their values are compared to 
the expected ones. The next test pattern to be applied in adaptive testing depends on 
the result of the previous step. The diagnostic tree of this process consists of the fault 
nodes FN (rectangles) and test nodes TN (circles). A FN is labeled by a set of not yet 
distinguished faults. The starting fault node is labeled by the set of all faults. To each 
FN k a TN is linked labeled by a test pattern Tk to be applied as the next. Every test 
pattern distinguishes between the faults it detects and the ones it does not. The task of 
the test pattern Tk is to divide the faults in FN k into two groups - detected and not 
detected by Tk faults. Each test node has two outgoing edges corresponding to the 
results of the experiment of this test pattern. The results are indicated as passed (P) or 
failed (F). The set of faults shown in a current fault node (rectangle) are equivalent 
(not distinguished) under the currently applied test set. 

Example: 

The diagnostic tree [29] in the Figure below corresponds to the example considered in 
3.11.2 we can see that most of the faults are uniquely identified; two faults F1, F4 
remain indistinguishable. Not all test patterns used in the fault table are needed. 
Different faults need for identifying test sequences with different lengths. The shortest 
test contains two patterns the longest four patterns. 
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F1, F2, F3, F4, F5, 
F6,F7,Ø 

 

                               Figure 22: Diagnostic tree 

 

Rather than applying the entire test sequence in a fixed order as in combinational fault 
diagnosis, adaptive testing determines the next vector to be applied based on the 
results obtained by the preceding vectors. In our example, if T1 fails, the possible 
faults are {F2, F3}. At this point applying T2 would be wasteful, because T2 does not 
distinguish among these faults. The use of adaptive testing may substantially decrease 
the average number of tests required to locate a fault. 

3.11.6. Generating tests to distinguish faults 

To improve the fault resolution of a given test set T, it is necessary to generate tests to 
distinguish among faults equivalent under T. 

Consider the problem of generating a test to distinguish between faults F1 and F2. 
Such a test must detect one of these faults but not the other, or vice versa. The 
following cases are possible. 

1. F1 and F2 do not influence the same set of outputs. Let OUT (Fk) be the set of 
outputs influenced by the fault Fk. A test should be generated for F1 using 
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only the circuit feeding the outputs OUT (F1), or for F2 using only the circuit 
feeding the outputs OUT (F2). 

2. F1 and F2 influence the same set of outputs. A test should be generated for F1 
without activating F2, or vice versa, for F2 without activating F1. 

Three possibilities can be mentioned to keep a fault F2: xk e not activated, where xk 
denotes a line in the circuit, and e {0,1}: 

1. The value e should be assigned to the line xk. 
2. If this is not possible then the activated path from F2 should be blocked, so 

that the fault F2 could not propagate and influence the activated path from F1. 
3. If the 2nd case is also not possible then the values propagated from the sites F1 

and F2 and reaching the same gate G should be opposite on the inputs of G. 

 

Example: 

 

1. There are two faults in the circuit: F1: x3,1 0, and F2: x4 1. The fault F1 may 
influence both outputs; the fault F2 may influence only the output x8. A test 
pattern 0010 activates F1 up to the both outputs and F2 only to x8. If both 
outputs will be wrong, F1 is present, and if only the output x8 will be wrong, 
F2 is present. 

2. There are two faults in the circuit: F1: x3,2 0, and F2: x5,2 1. Both of them 
influence the same output of the circuit. A test pattern 0100 activates the fault 
F2. The fault F1 is not activated, because the line x3,2 has the same value as it 
would have had if F1 were present. 

3. There are the same two faults in the circuit: F1: x3,2 0, and F2: x5,2 1. Both 
of them influence the same output of the circuit. A test pattern 0110 activates 
the fault F2. The fault F1 is activated at its site but not propagated through the 
AND gate, because of the value x4 = 0 at its input. 

4. There are two faults in the circuit: F1: x3,1 1, and F2: x3,2 1. A test pattern 
1001 consists the value x1 1 which creates the condition where both of the 
faults may influence only the same output x8. On the other hand, the test 
pattern 1001 activates both of the faults to the same OR gate (i.e. none of them 
is blocked). However, the faults produce different values at the inputs of the 
gate, hence they are distinguished. If the output value on x8 will be 0, F1 is 
present. Otherwise, if the output value on x8 will be 1, either F2 is present or 
none of the faults F1 and F2 are present.  
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3.11.7 Guided-Probe Testing 

Guided-probe testing extends edge-pin testing process by monitoring internal signals 
in the UUT via a probe which is moved (usually by an operator) following the 
guidance provided by the test equipment [31]. The principle of guided-probe testing is 
to back trace an error from the primary output where it has been observed during 
edge-pin testing to its physical location in the UUT. Probing is carried out step-by-
step. In each step an internal signal is probed and compared to the expected value. The 
next probing depends on the result of the previous step. A diagnostic tree can be 
created for the given test pattern to control the process of probing. The tree consists of 
internal nodes (circles) to mark the internal lines to be probed, and of terminal nodes 
(rectangles) to show the possible result of diagnosis. The results of probing are 
indicated as passed (P) or failed (F). Typical faults located are opens and defective 
components. An open between two points A and B in a connection line is identified 
by a mismatch between the error observed at B and the correct value measured at A. 
A faulty device is identified by detecting an error at one of its outputs, while only 
correct values are measured at its inputs. The most time-consuming part of guided-
probe testing is moving the probe. To speed-up the fault location process, we need to 
reduce the number of probed lines. A lot of methods to minimize the number of 
probing are available. 

Example: 

 

Let have a test pattern 1010 applied to the inputs of the circuit. The diagnostic tree 
created for this particular test pattern is shown in Figure 23. On the output x8, instead 
of the expected value 0, an erroneous signal 1 is detected. By back tracing (indicated 
by bold arrows in the diagnostic tree) the faulty component NOR- x5 is located. 

68 



 

                               Figure 23: Diagnostic tree 

 
Diagnostic tree allows carrying out optimization of the fault location procedure, for 
example to generate a procedure with minimum average number of probes. 
 
3.11.8 Fault location by UUT reduction 

Initially the UUT is the entire circuit and the process starts when its test fails. While 
the failing UUT can be partitioned, half of the UUT is disabled and the remaining half 
is tested. If the test passes, the fault must be in the disabled part, which then becomes 
the UUT. If the test fails, the tested part becomes the UUT. 

3.12 Summary 
 
In this chapter we discuss the general test strategies and diagnostic techniques used in 
digital circuits. The next chapter deals specifically with Networks on Chips testing. 
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Chapter 4 
Networks on Chips Testing Methods 
 
About this Chapter 
 
It is well know with shrinking geometries, NoCs will be increasingly exposed to 
permanent and transient sources of error that could degrade manufacturability, signal 
integrity and system reliability. This chapter deals specifically with NoC testing. The 
first two subsections deal with general test methods and fault models for NoC. This is 
followed by description of test data transport, test scheduling, test access mechanism, 
test interface and test output evaluation. The last subsection describes in brief a test 
method for NoC routers as proposed by a researcher. 

 
4.1 Test Issues in NoCs  
 
Traditionally, correct fabrication of integrated circuits is verified by post 
manufacturing testing using different techniques ranging from scan-based techniques 
to delay and current-based tests. Due to their particular nature, NoCs are exposed to a 
range of faults that can escape classic test procedures [15]. Such faults include 
crosstalk, faults in the buffers of the NoC routers, and higher-level faults such as 
packet misrouting and data scrambling. These faults add to the classic faults that must 
be tested post fabrication for all integrated circuits (stuck-at, opens, shorts, memory 
faults, etc.). Consequently, the test time of NoC based systems increases considerably 
due to these new faults.  
 
Test time is an important component of the test cost and, implicitly, of the total 
fabrication cost of a chip. For large volume production, the total time that a chip 
requires for testing must be reduced as much as possible to keep the total cost low. 
The total test time of an IC is governed by the amount of test data that must be applied 
and the amount of controllability/observability that the DFT techniques chosen by 
designers can provide. The test data increases with the complexity of the chip and 
size, so the option the DfT engineers are left with is to improve the controllability 
/observability. Traditionally, this is achieved by increasing the number of test inputs/ 
outputs, but this has the same effect of increasing the total cost of an IC. DfT 
techniques, such as scan-based tests, improve the controllability and observability of 
IC internal components by serializing the test I/O data and feeding/extracting it to/ 
from the IC through a reduced number of test pins. The trade-off is the increase in test 
time and test frequency, which makes it at-speed test using scan-based techniques 
difficult. Although scan based solutions are useful, their limitations in the particular 
case of NoC systems demand the development of new test data generation and 
transportation mechanism that reduces the total test time and at the same time do not 
require an increased number of test I/0 pins.  
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An effective and efficient test procedure is, however, not sufficient to guarantee the 
correct operation of NoC data transport infrastructures during the lifetime of the IC 
[15]. Defects may appear later in the life of an IC, due to causes like electro 
migration, thermal effects, material aging, etc. These effects will become more 
important with continuous dimension downscaling of the devices beyond 65nm and 
moving towards the nanoscale domain. The technology projections for the next 
generations of nanoelectronic devices show that defect rates will be in the order of 
one to ten percent and defect–tolerant techniques will have to be included in the early 
stages of design flow of digital systems. Even with defect rates indicated by the 
International Technology Roadmap for Semiconductors (IRTS) [1] for upcoming 
CMOS processes, it is clear that correct fabrication is becoming more and more 
difficult to guarantee. An issue of concern in the case of the communication-intensive 
platforms such as NoC is the integrity of the communication infrastructure.  
 
4.2 Test methods for NoC Fabrics 
 
The main concern for NoC/SoC test is the design of efficient test access mechanisms 
(TAM) for delivering the test data to the individual cores under constraints such as 
test time, test power, and temperature. Among the different TAMs, TestRail [32] was 
one of the first to address core-based test of SoCs. Recently, a number of different 
research groups suggested the reuse of the communication infrastructure such as 
TAM. Vermuelen et al. [33] assumed the NoC fabric as fault-free, and subsequently 
used it to transport test data to the functional blocks, however for large systems, this 
assumption can be unrealistic, considering the complexity of the design and 
communication protocols. 
 
NoCs are built using a structured design approach, where a set of functional cores 
(processing elements, memory blocks, etc) are interconnected through a data 
communication infrastructure that consists of switches and links, These core can be 
organized either as regular or irregular topologies. The test strategies of NoC-based 
interconnect infrastructures must address three problems: (1) testing of the switch 
blocks (2) testing of the interswitch wire segments and (3) testing of the functional 
NoC cores. Test of both routers and links must be integrated in a streamlined fashion. 
First, the already tested NoC components can be used to transport the test data toward 
the components under test in recursive manner. Second, the inherent parallelism of 
NoC structures allows propagating the test data simultaneously to multiple NoC 
elements under test .Test scheduling algorithms guarantee a minimal test time for 
arbitrary NoC topologies. 
 
4.3 Fault Models for NoC Infrastructure  
 
When developing a test methodology for NoC fabrics, we need to start from a set of 
models that can realistically represent the faults specific to the nature of NoC as a data 
transport mechanism [15]. As stated previously, a NoC infrastructure is built from two 
basic types of components: switches and interswitch links. For each type of 
component we must construct test patterns that exercise its characteristics faults. 
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4.3.1 Fault models for NoC interswitch links 
One of the proposed fault models for the global interconnects of deep submicron 
SoCs, accounting for crosstalk effects between a set of aggressor lines and victims 
lines, is referred to as Maximum Aggressor fault (MAF) [34]. 
 
This fault occurs when the signal transition on a single interconnect line (called the 
victim line) is affected through crosstalk by transitions on all the other interconnect 
lines (called the aggressors) due to the presence of the crosstalk effect. In this model, 
all the aggressor lines switch in the same direction simultaneously. The MAF model is 
an abstract representation of the set of all defects that can lead to any one of following 
the six crosstalk errors: rising/falling delay, positive/negative glitch and rising/falling 
speedup. 
 
4.3.2 Fault models for FIFO buffers in NoC Switches 
NoC switches generally consist of a combinational block in charge of functions such 
as arbitration, routing and error control and FIFO memory blocks that serve as 
communication buffers. Figure 24 shows the generic architecture of a NoC switch. As 
information arrives at each of the ports, it is stored in FIFO buffers and then routed to 
the target destination by the routing logic block (RLB).  
 
 
 

Routing 
logic block 

FIFO 

 
 
                                Figure 24: Four port switch generic architecture 
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The FIFO communication buffers for NoC fabrics can be implemented as registers 
banks or dedicated SRAM arrays. In both cases, functional test is referable due to 
reduced time duration, good coverage, and simplicity. The block diagram of a NoC 
FIFO is show in figure 25. From a test point of view, the NoC–specific FIFOs fall 
under the category of restricted two-port memories. Due to the unidirectional nature 
of the NoC communication links, they have one write only port and one read only 
port. Under these restrictions, the FIFO function can be divided in three ways: the 
memory cells array, addressing mechanism, and the FIFO-specific functionality. 

                   Write  Port 

 
                                  Figure 25: Dual port NoC FIFO 
 
Memory array faults can be stuck-at, transition, data retention, or bridging faults. 
Addressing faults on the RD/WD lines are also of importance as that may prevent 
cells from being read / written. In addition, functionality faults on the empty and full 
flags (EF and FF, respectively) are included in the set of fault models. 
 
4.4 Structural Postmanufacturing Test 
 
Once a set of fault models is selected, test data must be organized and applied to the 
building modules of the NoC infrastructure. In the classic SoC test, this is 
accomplished by using dedicated Test Access Mechanisms (TAM) such as Test Rail. 
Since the NoC infrastructures are designed as specialized data transport mechanism, it 
is very efficient to reuse them as TAMs for transporting test data to functional cores. 
The potential advantages when reusing NoC infrastructures as TAMS are the low-cost 
overhead and reduced test time due to their high degree of parallelism, which allows 
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testing of multiple cores concurrently. The challenges of testing the NoC 
infrastructure are its distributed nature and the types of faults that must be considered. 
A straight forward approach is to consider the NoC fabric as an individual core of the 
NoC based system, wrap it with an IEEE 1500 test wrapper and then use any of the 
core based test approaches. More refined methods can be used to exploit the particular 
characteristics of NoC architectures. 
 
A test delivery mechanism that propagates the test data through the NoC 
progressively, reusing the previously tested NoC components, was proposed by [35]. 
The principle is to organize test vectors as data packets and provide, for each router a 
simple BIST block that identifies the type of packets (test data) and extract/applies the 
test vectors. Test packets are organized similarly to regular data packets, the 
difference being a flag in the packet header that identifies the packet as carrying a test 
sequence. Test specific control information is also embedded into the test packets, 
followed by the set of test vectors. Figure 26 shows contents of a test packet. 
 

 
 
 Figure 26: Test packet structure 
 
4.5 Test Data Transport 
 
A system wide test implementation has to satisfy the specific requirements of the NoC 
fabric and exploit its highly parallel and distributed nature for an efficient realization. 
In fact, it is advantageous to combine the testing of the NoC interswitch links with 
that of the other NoC components (i.e., the router blocks) to reduce the total silicon 
area overhead. However, special hardware maybe required to complement parallel 
testing features. Each NoC switch is assigned a binary address so that the test packets 
can be directed to particular switches. In the case of direct connected networks, this 
address is identical to the address of the IP core connected to the respective switch. In 
the case of indirect networks not all switches are connected to IP cores, so switches 
must be assigned specific addresses to be targeted by their corresponding test packets. 
Considering the degree of concurrency of the packers being transported through the 
NoC, we can distinguish two cases, described below. 
(1) Unicast Mode: The packets have a single destination. This is the most common 
situation and it is representative for the normal operation of an on-chip 
communication fabric, such as processor cores executing read/write operations 
from/into memory cores, or micro-engines transferring data in a pipeline. As shown in 
figure 27, packets arriving at a switch input port are decoded and directed to a unique 
output port according to the routing information stored in the header of the packet. 
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         Figure 27: Unicast data transport in a NoC 
 
(2) Multicast mode: The packets have multiple destinations. In packets with 
multicast routing information is decoded at the switch input ports and then replicated 
identically at the switch outputs indicated by the multicast decoder .Multicast packets 
can reach their destinations in a more efficient and faster manner than in the case 
when repeated unicast is employed to send identical data to multiple destinations. 
Figure 28 shows a multicast transport instance, where the data is injected at the switch 
source (S), replicated and retransmitted by intermediate switches in both multicast and 
unicast modes, and received by multiple destination switches (D). The multicast mode 
is especially used for test data transport purposes, when identical blocks need to be 
tested as fast as possible. Several NoC platform developed by research groups in 
industry and academia, feature the multicast capability for functional operation [36, 
37]. In these cases, no modification of NoC switches hardware or addressing 
protocols is required to perform multicast test data transport. 
 

 
 
           Figure 28: Multicast data transport in a NoC 
 
 
 
If the NoC does not possess multicast capability, this can be implemented in a 
simplified version that only services the test packets and is transparent for the normal 
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operation mode. As shown in figure 29, the generic NoC structure presented in figure 
24 is modified by adding a multicast wrapper unit (MWU) who functionality is 
explained below. It contains additional demultiplexors and multiplexors relative to the 
generic switch architecture. The MWU monitors the type of incoming packets and 
recognizes the packets that carry test data. An additional field in the header of the test 
packets identifies that they are intended for multicast distribution. 
 
 For NoCs supporting multicast for functional data transport, the routing /arbitration 
logic block (RLB) is responsible for identifying the multicast packets, processing the 
multicast control information, and directing them to the corresponding output ports of 
the switch. The multicast routing blocks can be relative complex and hardware-
intensive. For multicast test data transport only, the RLB of the switch is completely 
bypassed by the MWU and does not interfere with the multicast test data flow, as 
illustrated in figure 29. The hardware implementation of the MWU is greatly 
simplified by the fact that the test scheduling is done off-line, that is, the path and 
injection time of each test packet is computed prior to performing the rest operation, 
Therefore, for each NoC switch, the subset of input and output ports that will be 
involved in multicast test data transport is known a priori, an the implementation of 
this feature can be restricted to these specific subsets. 

 
Figure 29: Four port NoC switch with multicast wrapper unit (MWU) for test 
data transport. 
 
For instance, in the multicast step shown in figure 28, only three switches must 
possess the multicast feature. By exploring the entire necessary multicast steps to 
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reach all destinations, we can identify the switches and ports that are involved in the 
multicast transport, and subsequently implement the MWU for the required 
switches/ports. The header of a multi destination message must carry the destination 
node address. To route a multi destination message, a switch must be equipped with a 
method for determining the output ports towards which the packet must be directed. 
When designing multicast hardware and protocols with limited purpose such as test 
data transport, a set of simplifying assumptions can be made to reduce the complexity 
if the multicast mechanism. This set of assumptions can be summarized as follows: 
 
1. The test data is fully deterministic. 
2. Test traffic is scheduled off-line, prior to test application. 
3. For each test packet, the multicast route can be determined exactly at all times 

(i.e., routing of test packets is static). 
4. For each switch, the set of I/O ports involved in multicast test data transport is 

known and ma be a subset of all I/O ports of the switch (i.e.., for each switch ,only 
a subset of I/O ports may be required to support multicast). 

These assumptions help in reducing the hardware complexity of the multicast 
mechanism by implementing the required hardware only for these switch ports that 
must support multicast. For instance in the example of figure 29, if the multicast 
feature must be implemented exclusively from input port 1 to the output ports 2,3,4, 
then only one demultiplexor and three multiplexors are required. 
 
Since the test data is fully deterministic and scheduled off-line, the test packets can be 
ordered such that the situation where two (or more) incoming packets compete for the 
same output port of the a switch can be avoided .There fore, no arbitration mechanism 
is required for multicast test packets, Also, by using this simple addressing mode, no 
routing tables or complex hardware is required. 
 
The lack of I/O arbitration for the multicast test data has a positive impact on the 
transport latency of the packets. A test-only multicast implementation has lower 
transport latency than the functional multicast, because the only task performed by the 
MWU block is routing. The direct benefit is a reduced test time compared to the use 
of fully functional multicast, proportional to the number of processes that are 
eliminated. The advantages of using the simplified multicasting scheme are reduced 
complexity, lower silicon area required by MWU, and shorter transport latency for the 
test data packets. 
 
4.6 Test Scheduling  
 
Test scheduling is one of the major problems in the embedded core testing. A general 
from S of this problem can be formulated as follows: for an NoC-based system N, a 
maximal number P of input/output ports, a set T of test sets (each core may have 
multiple test sets, either deterministic or random, or functional test for the processor 
cores), a set C of constraints, and a set R of test resources (dedicated TAM, BIST 
engines, etc.) determine a selection of input/output ports, an assignment of test 
resources to cores , and a schedule of test sets such that the optimization objectives 
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are minimized and all the constraints are met. Note the objective can be any cost 
factor such as test time and hardware overhead. A basic subset of this problem S is 
problem S0 where only core tests are optimized under some constraints. it was proved as 
N P complete in[38]. S and other subsets of S can also be similarly proved as NP 
complete. 
 
In a NoC based system, test scheduling can be done in a manner of either preemptive 
or nonpreeemptive. As in general SOC, an optimized schedule should maximize the 
test data parallelism. In an NOC –base system, this is done through the exploration of 
network parallelism so that all available communication resources (channels, routers 
and interfaces) are used in parallel to transmit test data. In preemptive test scheduling, 
test data are transformed in test packets, which are transmitted through the network in 
a such a way that the test packet contains one test vector or one test response, Since 
each test vector or test response can be scheduled individually, the network 
parallelism has privilege over the core test pipeline, and the test of the core can be 
interrupted. As a result, the pipeline of the core’s scan-in and scan-out operations 
cannot be maintained. 
 
Preemptive testing is not always desirable in practice especially for BIST and 
sequential circuit testing. In addition, it is always desirable that the test pipeline of a 
core is not interrupted – that is the nth test vector will be shifted into the scan chains as 
the (n-1) th test response is shifted out, such that the test time is minimized. However, 
in the case of preemption, the test pipeline has to be halted if either the test vector or 
test response packet cannot be scheduled because of the unavailability of test 
resources i.e. channels and input/output ports. This will not only increase the 
complexity of wrapper control but also cause potential increase in test time. 
 
A nonpreeemptive schedule maintains the test pipeline so that the wrapper can remain 
unchanged and the test time can be potentially reduced. In this approach, the 
scheduler will assign each core a routing path, including an input port, an output port, 
and the corresponding channels that transport test vectors from the input to the core 
and test responses from the core to the output in the form of packets. Once the core is 
scheduled on this path, all the resources (input/output, channels) on the path will be 
reserved for the test of this core until the entire test is completed. Test vectors will be 
routed to the core and test responses to the output in a pipelined fashion. Therefore, in 
this nonpreeemptive schedule, the test core is identical to a normal test and the flow 
control becomes similar to circuit switching. It has been shown that usually 
nonpreeemptive scheduling can yield shorter test time compared to preemptive 
scheduling [38]. This is because the test pipeline can be maintained, scan-in and scan-
out can be overlapped, and hence, test time is reduced, it can also avoid the possibility 
of resource conflict. The complexity of nonpreeemptive scheduling algorithm is much 
lower than of a preemptive scheduling algorithm, because the minimum manageable 
unit in scheduling is a set of test packets n the former, instead of a single packet in the 
latter. 
In practice, it is more realistic to have both preemptive and nonpreeemptive test 
configurations in testing as system. It is also necessary to consider various constraints 
such as power, precedence, and multiple test sets such as external test and BIST.       
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A preemptive schedule can be useful can be useful under these requirements. For 
instance, excessive power dissipation and inadequate heat convection/conduction can 
cause some cores to be significantly hotter than other, so called hot spots. Applying 
the entire test suite continuously can lead to dangerous temperature on these cores. In 
this case, the test suite can be split into several test sessions (or even single test vector 
in extreme cases) that can be scheduled individually in a preemptive manner. 
Sufficient time can be allowed between test sessions for hot spots to be cooled down. 
 
4.7 Test Access Methods and Test Interface 
 
Test access and test interface design in an NOC-based system need techniques 
different from those in conventional SoCs. A typical instance is the multiprocessor 
system discussed in [39]. Each node is such an NOC-based system can contain a 
processor core and the corresponding router or switch buffers, etc. Testing of a 
processor –based system usually mandates both deterministic test and functional test. 
Most functional test approaches such as software based BIST [40] can be applied. 
However all test patterns and test responses must be organized into sets of packets and 
all necessary network interfaces need to be added. For deterministic tests, nodes can 
be organized into groups, and each group can be tested using a conventional boundary 
scan approach. Figures 30 and 31 shows the test configuration in this scheme when 
nodes are organized into 1*1 and 2*2 groups, respectively. Nodes in the same group 
share the test infrastructure for boundary scan (test access port [TAP] controller, I/O 
cells, etc.) and are tested in parallel. Since the nodes are identical, each bit of test data 
is broadcasted to all nodes in the group. Test responses from all nodes in the group 
can be processed on-chip by feeding to a comparator as shown in figure 31. 

   Boundary        scan        registers 

Node Node 

      Comparator 

 
       TAP        TAP 

 
   Figure 30: Testing identical nodes in NoC using boundary scan in group of 1*1 
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   Figure 31: Testing identical nodes in NoC using boundary scan in group of 2*2 
 
To reuse the network to transport test data, a test interface has to be established to 
handle both functional protocol from network and test application to the core. A 
wrapper is therefore needed for each core as an interface. Since the core and network 
may use different protocols, the wrapper must be extended to incorporate the standard 
IEEE 1500 test modes. This includes modification on the test wires, wrapper cells, 
and test control logic. The TAM port in the 1500 wrapper should be replaced by a port 
connecting to the network. The control logic should include the process of network 
protocols. Further, wrapper cell should be correspondingly modified to implement the 
protocol. An instance of such a wrapper cell is shown in figure 32, as well as a 
standard wrapper cell is shown in figure 33 [41].Note that both the cells need 
functional/scan input/output terminals and a few control terminals for the Muxes. 
When compared with the traditional 1500 wrapper cell, the modified cell has an 
additional mux, Terminal prot_in receive the required values fro protocol operation 
from the control logic. In test mode t, the terminal prot_mode is asserted to 1 to 
ensure that test signal does not interfere with the functional protocol; the actual 
protocol is implemented in the control logic. Other modes in the 1500 wrapper can be 
maintained. 
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                Figure 32: Modified wrapper cell for NoC based system 
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           Figure 33: Standard 1500 wrapper cell 
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4.8 Test Output Evaluation  
 
In classical core-based testing, test data is injected from a test data is injected from a 
test source, transported and applied to the core under test, and then the test output is 
extracted and transported to the test sink for comparison with the expected response. 
A more effective solution was first proposed by Grecu et al. [35], where the expected 
data is sent together with the input test data, and the comparison is performed locally 
at each component under test. A clear advantage of this approach is that, because 
there is no need to extract the test output and to transport it to a test sink, the total test 
time on the NoC infrastructure can be significantly reduced. Moreover, the test 
protocol is also simplified, because this approach eliminates the need for a flow 
control of test output data (in terms of routing and addressing). The trade-off is a 
small increase in hardware overhead due to additional control and comparison 
circuitry, and increased size of the test packets (which now contain the expected 
output of each test vector, interleaved with test input data).The test packets are 

81 



processed by test controller (TC) blocks that direct their content towards the I/Os of 
the component under test (CUT) and perform the synchronization of test output and 
expected data. This data is compared individually for each output pin and, in case of a 
mismatch; the component is marked as faulty by raising the pass/fail flag. The value 
of this flag is subsequently stored in pass/fail flip-flop, which is a part of a shift 
register that connects pass/fail flops of all switches. The content of this register is 
serially dumped off-chip at the end of the test procedure. 
 
 
4.9 Functional Test of NoCs  
 
The architectural and technological complexity of NoC communication infrastructure 
demands the application of higher level tests for increasing the level of confidence in 
their correct functionality. High-level fault models for NoC infrastructures are 
developed taking into account the operation of NoC components (routers) and the 
services that a NoC must provide in terms of data delivery. From a functional point of 
view, the services that a NoC provides can be categorized as follows: 

• Routing services. These include forwarding data from an input port of a router 
to an output port according to the routing information embedded in the data 
packets 

• Guaranteed /best effort services. Data must not only be routed correctly but 
also performance requirements specified according to the QoS parameters in 
terms of throughput/latency must be satisfied for a NoC to operate correctly. 

• Network interfacing. A NoC must be able to inject/eject data correctly at its 
interfaces (NIs, network interfaces), where the functional cores (processing 
elements, memory blocks, and other functional units) is plugged into the NoC 
platform. NIs also has a role in providing QoS guarantees by reserving a route 
from a source NI to a destination NI in case of GT (guaranteed throughput) 
data. 

 
Three high-level fault types can be defined according to the functionality described 
above: 

1. Routing faults: Their effect is misrouting of data from an input port to an 
output port of the same router. 

2. Router QoS faults: Their effects consist of QoS violations by a router or 
set of routers. 

3. NI faults: Model faults at interaction between the functional cores and the 
NoC data transport fabric. These faults can be 
packetization/depacketization faults or QoS faults. 

NoC test based on functional fault models has several advantages compared to 
structural test, the most important ones being lower hardware overhead and shorter 
test time mainly due to a reduced set of test data that has to be applied. For a 
satisfactory fault coverage and yield, both structural and functional tests are required 
for NoC platforms. 
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4.10 Testing of Routers 
 
Routers are used to implement the functions of flow control, routing, switching, and 
buffering of packets for an on-chip network. Figure 34 shows a typical structure of a 
NoC–based design [41]. As shown in the figure 34 router testing can be considered 
the same away as testing a sequential circuit. However, special property of an on chip 
network is its regularity. In [41], an efficient test method has been developed based on 
partial scan and IEEE 1500-compliant test wrapper by taking advantage of the NoC 
regularity. In [41], router testing has been dealt with in three parts; the testing of each 
router, the testing of all routers (without considering network interfaces and 
interconnects), and the testing of wrapper design. Testing of a router consists of 
testing the control logic (routing arbitration, and flow control modules) and input 
FIFOs [42]. 
Control logic testing can be done using traditional circuit testing methods such as 
scan, A smart way to test each FIFO is to configure the first register of the FIFO as 
part of a scan chain, and other registers can be tested through this scan chain. Since 
FIFOs are generally not deep, this method proves to be very efficient. Since routers 
are identical, all of them can be tested in parallel by test pattern broadcasting as 
shown in figure 35, Comparator implemented by XOR gates can be used to evaluate 
the output response. The comparator logic also supports diagnosis.  
 

 
 

Interface 
SoC

NoC

Core 
Router 

                     Figure 34: A NoC based system 
 
 
To support the proposed test strategy, an IEEE-1500 compliant test wrapper is 
designed to support test pattern broadcasting and test response comparison as shown 
in figure 36. For example, all SC1 scan chains of these routers share the same set of 
test patterns. Similarly, all Din [0] (i.e., Din-R0 [0],… Din-Rn [0] data inputs of these 
routers share the same set of test patterns. As figure 36 shows these wrappers also 
supports test response comparison for scan chains and data outputs. Finally, the 
diagnosis control block can activate diagnosis. Simulation results demonstrate that the 
proposed router test method achieves the goals of small hardware overhead (about 
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8.5% relative to router hardware), small number of test patterns (several hundreds) 
because of test pattern broadcasting, and small amount of test application time  
(several tens of thousands of test cycles) using multiple balanced scan chains and test 
pattern broadcasting. 

 
           Figure 35: Testing multiple identical routers 
 

 
Figure 36: Test wrapper design 

 
4.11 Related Work 
 
In [7] the authors suggest a NoC test strategy which accomplishes a test time that is 
more or less constant independent of the number of nodes in the 2D-mesh NoC 
equipped with switches of type Nostrum [44]. The overall BIST strategy is to use the 
NIs for test of the NoC and also for test of the resources. They are used as a test 
wrapper around the NoC and as an EATE (Embedded Automated Test 
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Equipment).With this approach the Resources and the NoC are totally isolated from 
each other during testing. 
 
All the BIST logic needed to test the NoC is embedded in the NIs. The NIs can be 
reused as individual eATEs also when testing the resources, if the BIST logic need for 
that is also placed in the NIs. Each eATE applies test stimuli and collects test results. 
The collected test results are analyzed after the test has been carried out. 
 
During test of the NoC the switches are used in two different modes. A switch is 
either the device under test (DUT) or a test wrapper during test of the neighboring 
switches. With this approach the test of the NoC is divided into two similar test steps. 
For a 3*3 NoC this means that in the first step: Five switches are in DUT mode and 
the remaining four switches are in a test wrapper mode .In the second step, the five 
switches that earlier were in DUT mode now has changed been changed to be in test 
wrapper mode and the four switches that earlier were in test wrapper mode now is 
changed to DUT mode. The switches that are used as test wrappers also can carry out 
some internal tests of the switch at the same time as being used as a test wrapper. 
 
The only test logic inserted into each switch is a number of 2-to-1 multiplexor. They 
are inserted to be able to divide the total test of the DUT into a number of smaller 
stand-alone tests. Double layer of multiplexors are inserted to either enable to carry 
out different sub-test concurrently or to assure that all parts of the NoC are executed 
in functional mode somewhere during the test. 
 
One of the main drawbacks of this method may be that the test time is prolonged 
when applied to switches that the one used by Nostrum, since they probably are more 
complex designs. 
 
4.12 Summary 
 
NoC has become a promising design paradigm for future SoC design, and cost 
efficient test methodologies are imminently needed. Research on NoC test is still 
premature when compared to industrial needs because of the limited support for 
various network topologies, routing strategies, and other factors. Future research and 
development are need to provide an integrated platform and set methodologies that 
are suitable for various networks such that the design and test cost of the overall NoC 
based system (both cores and network) can be reduced. The next chapter deals with a 
NoC router test methodology proposed by the author, which achieves high fault 
coverage. 
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Chapter 5 
External Test Approach for NoC Switches 
 
About this Chapter 
 
This chapter describes in details the testing, DfT and diagnosis approach adopted by 
us. The first section of this chapter describes the motivation for the work while the 
subsequent section elaborates the synthesized switch architecture. The next sections 
deal with introducing the concept of fault model and gets into the details of our 
external test pattern application method. The subsequent section elaborates the Design 
for testability (DfT) structures used to inject the test patterns. The final section 
describes the diagnosis of faulty links in the switch. 
 
5.1 Motivation 
 
Network-on-a-Chip (NoC)  has emerged as a new design paradigm to replace 
traditional bus architectures of microelectronic chips. The main motivator for 
adopting the NoC approach in designing System-on-a-Chips lies in high bandwidth, 
low latency and a scalable communication infrastructure. Due to the regularity of NoC 
architectures and the high degree of parallelism in communication it is intuitive that 
external test configurations, diagnosis and graceful degradation methods should be 
applicable. The goal of the thesis is to propose a method  for targeting manufacturing 
faults in the switches (i.e. routers) of NoCs based on test configurations to be applied 
from the boundaries of the network.  
 
Furthermore, the parallel infrastructure introduces a sort of routing redundancy to the 
system in the sense that broken connections can be avoided and packets can be routed 
via alternative paths. Thus, a very natural scheme for graceful degradation in NoCs 
would be to reconfigure the routers in the network by switching off the faulty links. 
This can be done either after the post-manufacturing test, on the field or on-line, 
during the normal operation of the chip. This particular aspect will be considered in 
the thesis by proposing diagnosis of faulty links in the NoC routing network. 
 
The thesis targets regular two-dimensional mesh-like NoCs. As will be shown in this 
study it is not possible to achieve high fault coverage without supporting test 
application by dedicated Design-for-Testability (DfT) circuitry. Furthermore, it  will 
be shown that the fault coverage in switches in such networks is highly dependent on 
the exact logic implementation of its building blocks: crossbar and the input/output 
buffers. 
 
Testing of NoCs is a new challenge to be overcome by the research community. Over 
the years, a number of NoC test approaches have been proposed. Vast majority of 
them are based on implementing design-for-testability structures (i.e. wrappers, scan-
paths, built-in test pattern generators and compactors).  
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In [4], Aktouf proposes the use of boundary scan wrapper for NoC testing routers. 
However, Amory et al. [41] point out that the use of standard DfT solutions for 
networks-on-a-chip results in a prohibitively large area overhead. The obvious 
drawbacks of all of the above methods are the required silicon area for test structures 
and lack of support for at-speed and functional system testing. In [7], Petersen et al. 
introduce an idea of near-constant-time testable (C-testable) built-in self-test based 
test configuration. However, this idea has never been implemented, the required 
overhead area is prohibitively large and there is no reference of the test quality 
achieved. 
 
What has been missing previously is a scalable external test approach relying mainly 
on the NoC network’s own high-throughput infrastructure for test access. Test 
configurations to handle switch matrixes of reconfigurable hardware devices have 
been developed (e.g. [8]). However, despite apparent similarities, the ideas cannot be 
implemented for packet-switched routers. The main difficulty is that test 
configurations in NoCs are dependent on routing algorithms and thus it is not possible 
to activate arbitrary test paths similar to configuring FPGA switches. 
 
In the field of diagnosing NoC faults, there have been several works that take 
advantage of on-line checkers. Nurmi et al. [51] developed a fault-diagnosis-and-
repair (FDAR) system built in to the network. The method is based on system-level 
fault models accompanied with parity checking. However, its implementation requires 
20 % of area overhead. Grecu, Ivanov et al. [52] propose the use of code-disjoint 
switches for error detection in NoC communication fabrics. Hosseinabady et al. [53] 
propose a concurrent testing method for NoC switches requiring on-chip signature 
analysis, a dedicated test-bus to reach test vectors and collect their responses, and 
wrappers for test application. A different approach has been introduced by Bhojvani 
and Mahapatra who propose integration of test infrastructure IPs into the network in 
order to provide on-line test functionality [54]. 
 
The main shortcoming of the above-mentioned approaches is that they are either 
based on Design-for-Testability (DfT) structures requiring large area overhead or they 
rely on traditional scan-based methods. Due to the fact that modern SoCs contain 
several clock domains, it might be difficult or even impossible to test them at full 
operation speed with scan-based test approach. Functional-level testing usually 
improves the quality of testing because it allows testing with true test cases at full 
operation speed [55]. 
 
5.2 Targeted NoC Architecture 
 
We can view the general case of a NoC as a set of cores (resources) communicating 
over a packet-switched network. The network consists of routers (switches) connected 
by interconnect lines. Resources have access to the network via a dedicated bus 
interface called the Resource Network Interface (RNI). A broad variety of NoC switch 
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architectures has been proposed in the past (e.g. [17, 33, 43, 44]) and there exist 
different network topologies, switch architectures and routing algorithms.  

 
The switch can connect to five directions: N (north), E (east), R (resource), S (south) 
and W (west). We consider a concept known as deflective routing, where the packet 
traffic does not have to be queued into input/output FIFOs. In such networks, packets 
may arrive at the destination in a different order than they were sent and they are 
subsequently stored and reordered at the RNI. The flits of transmitted packets are 
buffered using output registers. Input buffering is optional. Similar concept has been 
implemented e.g. in NOSTRUM [44] and INTEL [17] switches. 
Deflecting switches can be categorized into bouncing and non-bouncing ones 
depending of whether feedback routing is allowed. Routing decisions are performed 
locally at the switch and are guided by the routing logic, which can be of arbitrary 
complexity. The deflecting switch architecture described above is presented in figure 
37.  

                                      * - feedback routing and input registers optional 
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                      Figure 37: The general architecture of the switch  

 
The architecture of the control box is given in Figure 38. The control box is a purely 
combinational circuit. It consists of three subsequent stages. First, the addresses of 
packages are decoded in five address decoders (one for each input direction plus the 
resource). Then, priority sorter resolves any possible conflicts calculates the actual 
output directions of the packages to be sent and also finds Buffer_ready and 
Write_request values to be signaled to the neighboring switches. Finally, control 
signals (register enables, mux selects) are decoded from the direction codes. 
The following notation is used in Fig. 38: 
              *XI  – X address In 

*YI  – Y address In 
*WI  – Write In 
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*RI  – Read In 
*XO  – X address Out 
*YO  – Y address Out 
*DIR – Output Direction       
*BR  – Buffer Ready 
*WR  – Write Request 
*OF  – Output Final direction 

 
 
 
 
 

N Address 
Decoder

 
 
 
 
 
 
 
 
 
 
 
 

NXI    NYI  NWI   NRI 

                             
                                                          Priority Sorter 

 NDIR 
NXO   NYO 

       Control Signal  Decoder 

WBR NBR 
To input FSM 

(To datapath) 

W Address 
Decoder

WXI    WYI  WWI   WRI 

 WDIR 
WXO   WYO 

S Address 
Decoder

SXI    SYI  SWI   SRI

 SDIR 
SXO   SYO 

E Address 
Decoder

EXI    EYI  EWI   ERI 

 EDIR 
EXO   EYO RXO   RYO 

SBR    EBR   RBR WWNW   SWR  EWR RWR 
To output 
FSM 

Register Enable Signals, MUX Select Signals (To Datapath) 

R Address 
Decoder

RXI    RYI  RWI   RRI

 RDIR 

                       Figure 38: Architecture of the switch control box  
 
Figure 39 presents the data transmission through the NoC switch. Data is fed into an 
input register and based on its address fields forwarded to corresponding mux and 
output register. The data transmission is controlled by the control box, which 
generates the datapath control signals (i.e. register enables (Enable) and mux selects 
(Sel)). In addition, the control box handles the conflicts that occur when data from 
different inputs are to be sent to the same output direction. Handshaking between 
neighboring switches is organized via Ready and Write signals. The control box 
generates Buffer_ready and Write_request signals, which are fed to D-flip-flops to 
provide the Ready_out and Write_out signals, respectively. These signals are 
transmitted to the neighboring switches. 
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                          Figure 39: Data transmission scheme for the NoC switch             
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For the purpose of evaluating the functional diagnosis approach proposed, a generic 
parametrizeable VHDL description of the deflecting NoC switch has been created. It 
is possible to set data width, and the number of address bits in the address fields. (In 
our experiments we selected 128-bit wide data buses). In addition, the following 
architectural options could be selected: bouncing and non-bouncing switches, binary 
and one-hot multiplexers and buffering of input data to registers. Total eight types of 
switches were synthesized. A family of 8 switches representing different possible 
architecture configurations was synthesized as shown in the table 1 below. 
 
Table 1: Eight variants of switch implementations 
 
 with input 

registers 
w/o input 
registers 

and-or 
MUX 

bouncing 
     non-bouncing 

bouncing 
    non-bouncing 

one-hot 
MUX 

bouncing 
    non-bouncing 

bouncing 
    non-bouncing 

 
 
Table 2: Area requirement for a 128-bit switch in equivalent gate counts 
Circuit Combinational 

Area 
Non-combinational 
Area 

Total Area 

5 Ready_out DFFs 0 5x9=45 45 
5 Write_out DFFs 0 5x9=45 45 
5 Address decoders 5x104=420 0 420 
Priority sorter 213 0 213 
Contr. signal decoder 150 0 150 
Switch datapath 8435 11520 19955 
Total area: 9318 11610 20928 

The total size of the synthesized NoC switch in logic gate equivalents is about 21 k 
gates. More than 95 % of the total area is consumed by the switch datapath, i.e. 
input/output registers and muxes. The following Section presents a functional model 
and an external test approach targeting the datapath parts of deflective switches 
embedded into a mesh- like network. The area requirement for a 128 bit switch is 
shown in the table 2. 
 
5.3 Functional Fault Model for Crossbar Switches 
 
In this Section we will explain the functional fault model that is applied to 
multiplexers and registers in the switch datapath. Similar concept has been 
successfully implemented in register-transfer level automated test pattern generation 
(e.g. [45]). Note that minimal tests for different stand-alone MUX implementations 
were given by Makar and McCluskey in [46]. However, the situation in NoCs is 
different due to the fact that switches are embedded into the network. Thus, dedicated 
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test configurations have to be implemented similar e.g. to FPGA interconnect testing 
approaches [47]. Differently from the latter in the external test approach presented in 
this paper the test configurations are based on the routing algorithm implemented in 
the switches. For the current case it is the deterministic, or XY routing.  
 
The method presented in the paper is based on a functional fault model aimed at 
covering the structural faults in the datapath of the switch. The datapath is essentially 
a crossbar switch. For the crossbar multiplexers, an approach shown in Figure 40 is 
used, where the value at selected input is distinguished from the values at other inputs 
of the MUX (in current method T1 is the inverted value of T2).  In order to fully cover 
the structural faults in the multiplexer, tests for each address value have to be 
performed. An additional constraint is that all bit values in the selected data input 
must be covered. 
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Figure 40: Functional fault model for muxes 
The functional fault model used in current paper is based on the following: 
 
1. A functional approach is used to target the multiplexers in the switch, where the 
value at the selected mux input is distinguished from the values at other inputs. For 
example, if the test sequence given to the selected mux input is T1 then sequence T2 
has to be applied to the other inputs of the mux. 
 
2. Different test configurations are applied to cover all the switching modes (i.e. all 
the address select values) of the muxes. Pipelining of test sequences transmitted to 
subsequent switch stages helps to keep the overall test length minimal. 
 
 
5.4 Test Configurations for Mesh-Like NoCs 
 
In this Section we introduce an external test approach implementing the required test 
configurations in order to apply the functional fault model presented in previous 
section to the switches embedded into a two-dimensional mesh network. By external 
test we consider the case where test patterns are applied at the border I/Os of the 
network, as opposed to using scan paths and wrappers for test access. We will show 
that testing of switches in the network has a complexity, which grows only linearly 
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with the number of switches in the NoC. Thus, external testing of packet-switched 
networks is a viable alternative to the popular design-for-testability based approaches. 
The experiments presented in the next chapter prove that, in fact, higher fault 
coverage with shorter test application times will be achieved by functional testing. 
 
The paper proposes a scalable test method, which pose the following two 
requirements for the network under test: 
1. Network topology must be a two-dimensional mesh. 
2. The routing algorithm must have support for deterministic XY routing.  
 
In current work it is assumed that the switch includes support for deterministic XY 
routing. Other, more complex routing schemes, may be additionally implemented 
alongside the XY. Alternatively, if XY is not among the available routing schemes of 
the switch then a design-for-testability structure similar to the one forcing YX routing 
presented in this paper may be introduced . The additional overhead area incurred is 
0.4 % of the entire circuit. 
 
5.5 Preliminaries 
 
As it was mentioned before, the external testing method presented in the paper is based 
on a functional fault model aimed at covering the structural faults in the multiplexers 
and registers of the switch. Test data transmitted to the switch input buses is composed 
of checkerboard patterns and their complements (i.e. bit vectors 01010...1 and 
10101...0, respectively). 
 
The network under test is an n×n mesh of switches. Let the interconnect bus between 
switches be k bits wide. We define the following test vector values for the NoC 
busses: 

x = {01}k/2, i.e a checkerboard pattern of interleaved 0s and 1s; 

¬x = {10}k/2, a complement of x; 

e = {1}k, a vector with all-ones; 

z = {0}k, a vector with all-zeros; 

u = {-}k, a vector with don't-care values. 

Let X be a test sequence consisting of three test vectors X=(x, ¬x,  x) and ¬X be the 
complement of X (i.e. ¬X=(¬x,  x, ¬x)). 
 
The main rationale behind the test method proposed in this paper is based on the 
following: 

1. A functional approach is used to target the multiplexers in the switch, where the 
value at the selected mux input is distinguished from the values at other inputs. For 
example, if the test sequence given to the selected mux input is X then sequence ¬X 
has to be applied to the other inputs of the mux. 
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2. Different test configurations are applied to cover all the switching modes (i.e. all 
the address select values) of the muxes. Pipelining of test sequences transmitted to 
subsequent switch stages helps to keep the overall test length minimal. 

 
 
5.6 Targeted Fault Models 
 
The functional test approach proposed in this paper is targeting the logic-level stuck-
at fault coverage. However, it allows coverage for other important fault models. Note, 
that since the topological layout of the routing wires between NoC switches is usually 
regular and may be backannotated from the physical implementation data, the 
Wagner’s logarithmic algorithm [48] is not needed to cover all the opens and shorts in 
adjacent interconnect lines. We don’t have to consider the general case of wiring 
because in NoCs we are dealing with regular layout structures, where interconnect 
lines connecting two switches are normally laid out as straight wires ordered in the 
same way as bit positions of the logical bus. In fact, a checkerboard pattern followed 
by its complement will be enough to guarantee testing of all possible opens and shorts 
between adjacent wires connecting the switches. An additional checkerboard pattern 
(i.e. test sequence the test sequence X or ¬X) would provide for, both, rising and 
falling edge transitions at each bit position and, thus, already for the full coverage of 
delay faults at the inter-switch wires. 

Let us denote the length of the interconnect test sequence for one path by t. For test 
sequence X =(x, ¬x,  x) the test length t=3. However, if we consider only stuck-at 
tests then both transitions (rising and falling) are not needed and test sequence (x, ¬x) 
of length t=2 would be sufficient. 

In conclusion, by applying the test sequence X (or ¬X), we cover all stuck-at and 
delay faults at the interconnects and also opens/shorts between adjacent interconnect 
lines. Furthermore, the respective fault models in the data paths of the crossbar and 
buffers of the switch are also fully covered. We admit that we do not have information 
yet how thoroughly the respective fault models in the control part, mux address 
signals and register control signals are handled by the proposed approach. 
 
5.7 Overview of Test Configurations 
 
Note, that the biggest challenge in testing the switches embedded into NoC lies in the 
fact that the network can be accessed only from its external boundaries. The 
Subsections below explain the method in further detail.  
 
The approach presented in this thesis is based on applying three test configurations to 
cover the entire switching network. In our previous paper [49] we have shown that by 
applying them we will achieve near 100 % fault coverage for the crossbar switch and 
the I/O registers. The configurations are shown in Fig. 41 and they include (a) straight 
paths, (b) turning paths and (c) resource connections, respectively. A configuration is 
set up by adjusting the corresponding destination address fields of the transmitted 
packets to the last row (column) of the network matrix. 
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Figure 41: Test configurations for mesh-like NoCs 
 
Configuration a will be set up by letting the packets pass straight through the network. 
This will cover the faults in the straight links of the network. A constraint is that each 
bit in the data bus must be traversed with a 0 and a 1 (i.e. toggle coverage must be 
100%). Additionally, vertical and horizontally sent data must be distinguished from 
each other. This is necessary in order to cover faults in multiplexer addressing of the 
crossbar switch (See the previous subsection!). It takes d⋅n+1 test patterns to cover 
this configuration in meshes containing n×n switches, where d is the delay in the 
switch. For switches including both, input and output registers d is equal to 2. Note, 
that configuration a for bouncing switches takes 4(d⋅n+1) clock cycles because here, 
each direction has to be distinguished from the remaining three. 
 
In configuration b we are taking advantage of the deterministic XY routing 
implemented in the switches under test. The packets will be sent by the X axis of the 
mesh and will meet at a diagonal of the switch. Here, the diagonal will be shifted over 
the entire network matrix until all the switches have been covered. The main issue 
behind testing the turning paths is that YX paths are normally not supported by the 
basic routing scheme and thus, a special test mode input and modification of switches 
control part has to be introduced in order to run configuration b for turns from Y to X 
axis. Configuration c is needed to cover the links to resources. In order to run this 
configuration a loopback in RNI has to be provided. In the following the three 
configurations are described in more detail.  
 

Please note that in thesis we do not consider the issue of handling synchronizers, 
which are normally present in the NoC networks. A possible solution would be to 
repeat some of the test patterns in the test sequences multiple times to allow required 
test data sent from different directions be present at the switches under test 
simultaneously. More sophisticated solutions should take into account the exact layout 
of the synchronizers inside the network. 
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5.7.1 Testing straight paths: configuration a 
 
As mentioned above, the testing of multiplexers in the switching network of NoCs is 
based on a functional fault model, where an adress value is selected and value at the 
input corresponding to it  is distinguished from all the remaining mux input values. In 
order to test the multiplexer, tests for each address value has to be performed. 
Furthermore, due to the fact that switches are embedded into the NoC’s network, 
dedicated test configurations have to be implemented similar e.g. to FPGA 
interconnect testing approaches [47]. However, differently from the latter in the 
external test approach presented in this thesis the test configurations are based on the 
routing algorithm implemented in the switches. For the current case it is the 
deterministic, or XY routing.   
 
Let us at first take a look at the functional testing of straight paths in the NoC 
(configuration a). Fig. 42 explains that case. In the Figure, a network of n×n switches 
is presented. Arrows show transmission of data packets through the network. The 
following notation is used: black lines correspond to test pattern x (i.e. {01}k/2) and 
grey lines correspond to pattern ¬x ({01}k/2), respectively, where k is the width of the 
interconnect bus in the network. 
 
In the case of non-bouncing switches it is sufficient to distinguish horizontal paths 
from the vertical ones (See Fig. 42.a). Here, test sequence X is transmitted from all 
the odd-numbered columns of the network and  ¬X is sent from the even-numbered 
columns. For horizontal paths, we start transmitting ¬X via the odd-numbered rows 
and X via the even-numbered rows, respectively (Fig. 42.a). 
 
The test configuration is organized by setting the destination address fields of the 
transmitted packets to the last row (column) of the network matrix.  It takes n clock 
cycles for the test data to reach the last switch (n+1 for switches with input registers!) 
and additional t-1 clock cycles to apply the remaining patterns of the test sequence. 
Thus, n + 2 clock cycles are required in order to test all the straight paths in a NoC 
consisting of non-bouncing switches. 
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Fig. 42: Testing straight paths a) in non-bouncing switches, b) bouncing switches 
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In the case of bouncing switches a direction is distinguished from all other three. Fig. 
42b shows the case where traffic from North to South is distinguished from the other 
input paths. There are four directions, thus, 4(n+t-1) clock cycles would be needed to 
perform full input value distinguishing for the network under test. 
 
5.7.2 Testing direction changes in routing: configuration b 
5.7.2.1 Deterministic routing (XY routing). The next configuration in the 
functional test is to cover changing points in the deterministic routing. Deterministic 
routing (or XY routing) is a strategy where packets are sent at first along the X axis of 
the network and then along the Y axis. In other words, only turns from X to Y axis are 
possible, not vice versa. Fig. 43 explains test configurations for such turning points in 
routing along the main diagonal of the network matrix. In order to cover all the 
routing direction changes in each diagonal has to be tested separately. The diagonal is 
shifted up with one configuration (W→N, E→S shown in Fig. 43a) and down with 
the remaining one (E→N, W→S in Fig. 43b).  
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a) b) 

Figure 43: Testing direction changes in routing 
 
 
 
Similar to testing straight paths explained in the previous subsection the configuration 
is set up by adjusting the destination address fields of the transmitted packets.  

 
5.7.2.2 Inverse deterministic routing (YX routing). Note, that there is a 
problem as deterministic routing does not consider paths entering from Y axis and 
exiting to X axis. However, such routing scheme might be selected in case of 
conflicting packages inside the switch. Thus, in order to entirely cover the structural 
faults in the switch multiplexers, a dedicated test mode input for the switch can be 
added, which would temporarily enable inverse deterministic routing (YX instead of 
XY). 
 
The test for the inverse deterministic routing is dual to the configuration explained in 
Subsection 5.7.2.1 (See also Fig. 43). 
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5.7.3 Testing resource connections 
 
The next stage of the external test is sending test data to and from the resources and 
distinguishing it from data at the input directions N, W, E, S. This test configuration 
can be organized as follows (See Fig. 44). Let us assume that we start sending test 
data from N to R and from R to S. We pick rows with resources to be addressed. At 
first we distinguish data sent to resource from the other inputs.  Then the data 
transmitted from the resource is distinguished. We show an example for sending 
packets from North to Resource and from Resource to South in Figure 44a and 44b 
respectively. In this example, packets whose test data values are different from the 
resource test data are sent from W and E. The row with targeted resources is then 
gradually shifted downwards.  
 
The main concern with testing the resource interfaces is the question how a resource 
can initiate test sequences and how the test data sent to resources can be observed. 
This problem can be solved simply by implementing loopback of test data and 
readressing of test packets inside the Resource Network Interface (RNI) during the 
test mode. This will be explained in detail in Section 5.9. 
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  a)             b) 
 
Figure 44: Testing traffic: a) coming from resources, b) entering resources 
 
 
5.8 Improved Test Configurations 
 
The test configurations described above provide for a very high fault coverage and 
require low silicon area overhead. However, configurations presented in Fig. 41b and 
41c introduce a square time complexity. This is because of the fact that the main 
diagonal in these configurations  hav to be shifted during the test. Therefore, as 
experiments shown in Section 6 indicate, test application becomes prohibitively slow 
for larger NoC networks. As an example, 100x100 mesh would require more than 
hundred thousand clock-cycles to run. 
 

97 



In this paper, we propose replacing the configuration discussed in section 5.7.2 by a 
different configuration, where test packets are forwarded along the mesh diagonals 
and forced to make turns at each switch. In addition, we improve configuration 
discussed in section 5.7.3 by allowing all the resource connections be tested in a 
single run. This adds a one cycle delay at each row of the mesh but avoids the square 
complexity incurred because of the need to shift the row of resource connections to be 
tested. As experiments show, this allows reducing the test length up to two orders of 
magnitude without any sacrifices to area overhead and fault coverage. 
   
5.8.1 Testing direction changes in routing 

 
The role of the test configuration b is to cover changing points in the deterministic 
routing. Deterministic routing (or XY routing) is a strategy, where packets are sent at 
first along the X axis of the network and then along the Y axis. In other words, only 
turns from X to Y axis are possible, not vice versa.  
 
The limitation of the XY routing from the testing perspective is that it does not 
consider paths entering from Y axis and exiting to X axis. However, such routing 
scheme might be selected in case of conflicting packages inside the switch. Thus, in 
order to entirely cover the structural faults in the switch multiplexers, a dedicated test 
mode input for the switch can be added, which would temporarily enable inverse 
deterministic routing (YX instead of XY). 
In [17], an approach was implemented, where routing changes were tested along the 
diagonals of the network matrix. In order to cover all the routing direction changes 
each diagonal has to be tested separately. The diagonal is shifted with the 
configuration (See Fig. 43a  and Fig 43b). However, shifting of the diagonal causes 
the O(n2) complexity for test application time. It requires 8dn2+16n clock-cycles to 
carry out configuration discussed in section 5.6.2.  

 
 

...     ...    ...    ...

...     

...     
 

... 

 
 
 
 
 
 
 
 
 

Figure 45: Testing direction changes in modified method 
 
In this modification we propose a new configuration, which is similar to [17] relies on 
the possibility to switch the NoC routers into the inversed (i.e. YX) routing mode for 
testing. However, only half of the routers are switched toYX mode, while the others 
remain in normal mode. A checkerboard pattern is used here, as shown in Fig 45. 
Only the striped switches in Fig 45 are in YX mode.  
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This does not require any additional test hardware with respect to [17]. However, the 
test time complexity will be only 8dn+8, because of the fact that all the switches can 
be tested in a single run. 
 
5.8.2 Testing resource connections 
 
An additional stage of the external test is sending test data to and from the resources 
and distinguishing it from data at the input directions N, W, E, S. This test 
configuration can be organized as follows. Let us assume that we start sending test 
data from N to R and from R to S. We pick rows with resources to be addressed. At 
first we distinguish data sent to resource from the other inputs.  Then the data 
transmitted from the resource is distinguished. We showed an example for sending 
packets from North to Resource and from Resource to South in Figure 41c. In this 
example, packets whose test data values are different from the resource test data are 
sent from W and E. In [11] an approach was used where the row with targeted 
resources (the first row of the network in Fig 41c) is gradually shifted downwards. In 
this paper, we improve the configuration by allowing all the resource connections be 
tested in a single run. This adds a one cycle delay at each row of the mesh but avoids 
the square complexity incurred because of the need to shift the row of resource 
connections to be tested. As a result, only 4(dn+1) clock-cycles are needed for the 
configuration as opposed to 4(d(n2+n)+1) cycles in [17]. 
The main concern with testing the resource interfaces is the question how a resource 
can initiate test sequences and how the test data sent to resources can be observed. 
This problem can be solved simply by implementing loopback of test data and 
readressing of test packets inside the Resource Network Interface (RNI) during the 
test mode. This will be explained in detail in Section 6. 
 
5.9 DfT Structures for External Tests 
 
In order to implement the test algorithm in a NoC network, various DfT structures 
were devised. These include resource loopback for testing the crossbar multiplexer of 
the resource connection, a modification to the control part to force YX routing, a 
compact logic BIST for the control unit and dedicated test logic for covering the 
enable signals of switch buffers. The DfT structures are briefly summarized below. 
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Figure 46: Loopback between RNI and the switch 
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5.9.1 Resource loopback 

 
To carry out configuration c (See Fig. 41c), a loopback structure is needed for 
forwarding the test data back to the network in order to be observed. It consists of 2 
multiplexers and an inverter array to allow distinguishing of the reflected test data. 
See Fig. 46 for the loopback of a k-bit total bus width including an m-bit address bus. 
The loopback is activated only in the test mode (TM signal high). In the functional 
mode the data is sent normally to and from the Resource Network Interface (RNI). 
Using a multiplexer we can choose from four address constants CN, CW, CS, CE, 
which are needed to submit packets to North, West, South and East directions, 
respectively. So all that is required for applying configuration c is to specify the value 
of select and switch the circuit to test mode. The total area overhead of the loopback is 
0.9% of the switch. 

 
5.9.2 DfT support for YX routing 
 
In order to propagate the test patterns to cover all the paths in the NoC address 
decoder of the control path was modified to YX routing in the test mode. (XY routing 
may be covered in functional mode). The overheard area incurred is 0.4 % of the 
entire circuit. 
 
5.9.3 Logic BIST for the control unit of the switch 
 
The size of a 128-bit switch is 20 k NAND-gate equivalents. The control unit takes 10 
% of the total switch area [6]. However, the test coverage of the controller is generally 
low in functional and/or pseudorandom testing (around 50 %). We have implemented 
logic BIST structures detecting 99.15 % of the single stuck-at faults in the control 
unit. The BIST was simulated using the freeware Turbo Tester system [50]. 
The area overhead compared to the size of the control unit is relatively large. The unit 
has 96 input/output pins. These pins are connected to flip-flops of registers, which can 
be reconfigured to linear feedback shift-registers. The resulting area overhead is 
around 500 gates, which makes as much as 25 % of the control unit area but only 2.5 
% of the entire switch area.  
Thus, the total area overhead required by the DfT structures is: 0.9 (loopback) + 0.4 
(YX routing) + 2.5 (BIST) = 3.8 %. 
 
5.10 Diagnostic Capabilities of the Test Configurations 

5.10.1 Concept of switch links 

Diagnosis is the process of locating the faults in a structural model of the Unit under 
test (UUT).This subsection discusses how we pinpoint the location of the faults in the 
switches. 
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In this thesis, we utilize a high-level functional approach to link faults. However, as 
experiments show, the fault model has very good correspondence with low-level 
structural faults. Let us introduce the concept of links and link faults in a NoC switch. 
Definition 1. By link we understand a physical path between two I/O ports of the 
switch for sending packets through it. 
Definition 2. If a packet enters a switch, but either faulty data or no data will be 
transferred to the addressed output port then we say the corresponding link is faulty, 
i.e. a link fault has occurred.  
  
Note, that in the current approach we do not consider cases where the packet is not 
sent to the predicted output because of packet congestion. The configurations 
presented here are conflict-free. Furthermore, for the sake of simplicity we assume 
that only a single link in a system may be faulty at a time. Figure 47 presents the ten 
I/O ports of the switch and a link from North to East, shown by a dotted arrow, which 
we denote by N→E.  

N

W

S R

E

 
Figure 47: I/O ports of NoC switch and link N→E 

 
There are five input and five output ports (directions). Thus there are 20 different 
links for the non-bouncing switches. (Note that bouncing switches are not considered 
in current diagnosis algorithm.) Let us assume that our NoC under test is a mesh-like 
network of n×m switches, i.e. we have column positions for the switch at the X-axis: 
1≤ i≤n and row positions at the Y-axis 1≤ j≤n. In the following we use a notation, 
where we denote by E→Wi,j a link fault at a connection from East to West inside a 
switch whose position at the X-axis is i and at the at the Y-axis is j. 

5.10.2 Collapsing of link faults 

In order to simplify the algorithm description but without any loss of generality the 
links to be considered in the diagnosis method are reduced to five equivalence classes 
shown in the table below 
 
Table 3 Equivalence classes of NoC link faults 
 
fault:  equivalent faults: reference:      conf.: 
E→W  W→E, S→N, N→S vert.&horiz. links a 
E→S W→N, E→N,W→S XY turns      b XY 
N→W S→E, N→E, S→W YX turns      b YX 
N→R E→R, S→R, W→R resource inputs     res. in 
R→S R→W, R→N, R→E resource outputs   res. out 
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In the leftmost column we present the link faults that are used as representative faults 
in the diagnosis method described below. The second column shows the faults 
equivalent to the chosen representatives. The third column gives the names of the link 
types and the final column shows the test configuration for targeting the link fault 
(See Fig. 41). 
 
In the first three classes of link fault types the corresponding equivalent faults are dual 
to representative faults in a sense that they are detected by the same test 
configurations and can be regarded as mirrored cases of the tests for their 
representatives. In the two last rows we consider links to and from resources that can 
be managed by four configurations which are equivalent but differ in direction. This 
reduction in the fault classes represents the fault collapsing for link faults.  
 
In the following we will consider locating the representative faults by utilizing the test 
configurations given in Fig. 41. 

5.10.3 Diagnosis of link faults 

The diagnosis method is explained basing on the diagnostic tree presented in Fig. 48. 
The diagnosis process proceeds as follows. First, we apply test configuration a for 
horizontal and vertical links in the network. The representative fault for these links is 
E→W. If the test fails then we know that there is a fault at the row address j, but it is 
not clear what is the failing column i. However, if we apply configuration b for XY 
routing then by moving the main diagonal of the routing turns we can accurately point 
out the location of the faulty horizontal link. There are two possible outcomes. First, if 
the test fails until the diagonal shifts to a turning column position k then the fault is 
located at E→Wk-1,j, otherwise, if configuration b passes then the fault is locatd at the 
last last column position, i.e. E→Wn,j. 
 
Let us now consider the case when configuration a passes. If then configuration bXY  

fails then we can easily locate the exact position of the XY turn fault, whose 
representative is E→Ni,j. This is because configuration b consists of XY turns and 
horizontal/vertical links but the latter class has been excluded from consideration by 
passed configuration a. If configuration bXY passes then as a next step we diagnose 
faults in YX turns, which is handled similarly to XY turns. 
 
Resource input links and output links are diagnosed by two separate configurations. 
Furthermore, four different directions per configuration must be handled because of 
the four input/output directions respectively. Nevertheless, this guarantees exact 
location of the respective link faults based on exactly similar properties as in testing 
the XY turns. In other words, the resource connections consist of horizontal/vertical 
links and resource input/output links. The first class is assumed to be fault-free at this 
point. By moving the row (column) with resource connections we are able to pinpoint 
the failing switch and link. 
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Figure 48: Diagnostic tree for n×m network 
 
5.11 Summary 
 
In this chapter we describe the orignal external test application method and a modified 
version which achieves a lower test application time as compared to the former along 
with  the same high fault coverage.The next section covers the experimental results 
and conclusions. 
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Chapter 6 
Experimental Results and Conclusions 
 
About this Chapter 
 
The experimental results and conclusions are discussed in this chapter. The first 
subsection elaborates experimental results in relation switch implementation results; 
this is followed by the fault coverage achieved by the external test method on 8 
variants of the switch. The subsequent subsection deals with the modified version of 
test configurations which achieves a shorter test application time The next 2 
subsections illustrate the fault coverage of the cross bars and the impact of DfT 
structures on the fault coverage. The final section elaborates the conclusion from the 
work. 
 
6.1 Experimental Results 
6.1.1 Switch Implementation Results 
 
In order to evaluate the approach developed in this thesis a generic synthesizable 
VHDL description of a switch was created. In this description it is possible to select 
the width of the busses connecting the switches k and the type of the switch. For bus 
width k=128 was selected relying on the example of NOSTRUM switches [44]. The 
following implementation options could be selected: bouncing and non-bouncing 
switches, and-or and one-hot multiplexers and buffering of input data to registers. 
Total eight types of switches were synthesized. The area requirements of different 
components of the synthesized switch are shown in table 4.  

 
Table 4: Area requirements of the switch 

 
*-Control path components 

 
     
 
 

 

Circuit Total 
Area 

*5 Ready_out DFFs 45 
*5 Write_out DFFs 45 
*5 Address decoders 420 
*Priority sorter 213 
Contr. signal decoder 150 
Switch datapath 19955 
Total area: 20928 
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6.1.2 Fault Coverage of Switches 
 
The fault coverage was measured by a fault simulator belonging to the Turbo Tester 
system [50]. The results of the experiments are presented in Table 5. The first three 
colums of the Table specify the configuration of the switch (i.e. bouncing/non-
bouncing, including/excluding input registers, and-or/one-hot encoded multipexers). 
The fourth and the fifth columns present the single stuck-at fault coverage numbers 
for the test configurations excluding and including test for inverse deterministic 
routing (YX routing) respectively. As it can be seen, forcing YX routing during 
configuration b increases the fault coverage by 7-9 per cent. 
Experiments on these eight examples show that the fault coverage is higher than what 
can be achieved by a recently published DfT-based approach [41]. Furthermore, the 
test volume of the current approach is orders of magnitude lower than shown in [41]. 
An additional benefit of the method is that it supports at-speed test of delays and 
defects in the NoC network. The fault coverage of eight different versions of the 
switch is show in table 5. 
 
Table 5: Experimental results on a family of 8 switches 
 

 Functional  test 
configurations with 
YX routing 

Switch type Functional  test 
configurations w/o 
YX routing 

bounce 
 

input 
reg. 

one-hot fault coverage, % fault coverage, % 

N N N 90.63 99.83 
N Y N 92.38 99.86 
Y N N 91.79 99.78 
Y Y N 93.15 99.81 
N N Y 90.10 99.26 
N Y Y 91.90 99.37 
Y N Y 91.18 99.09 
Y Y Y 92.67 99.32 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
6.1.3 Impact of fault coverage on different crossbar            
implementations 
 
In addition, the impact of crossbar multiplexer implementation was analyzed by 
experiments. Table 6 presents the analysis of stuck-at fault coverage measured in 
different types of switch crossbar implementations. Column 1 lists the switch type, 
which can be bouncing (“feedback”) or non-bouncing (“no fb.”). The alternative 
muxes used in the crossbar include binary encoded (“binary”) and one-hot encoded 
(“1-hot”) types. For the latter, two versions were synthesized: “structural” and 
“behavioral”.  “Structural” was described as a two level logic gate implementation, 
while “behavioral” was synthesized from the “case” statement adding a small decoder 
to the logic.  
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Table 6: Results on different crossbar implementations 
 

Crossbar 
implementation 

# of faults # of tested Fault 
coverage, % 

binary, no feedback 11640 11640 100.00 
binary, feedback 14240 14106 99.06 
1-hot, no fb. behav. 11790 11685 99.15 
1-hot, fb. Behavior. 14460 14106 98.21 
1-hot, no fb, struct. 11560 11560 100.00 
1-hot, fb. structural 14130 12205 86.37 

As it can be seen, the test approach allows 100 % stuck-at fault coverage for non-
bouncing switches, whose crossbar has been implemented with binary encoded 
muxes. For one-hot encoded implementation the logic level solution guarantees full 
coverage. Although, the proposed configurations did not explicitly target the feedback 
links of the bouncing switches we did measure the coverage for them. As a result, 
99.06 % coverage was achieved for binary encoding and a coverage 98.21 % was 
achieved for one-hot (behavioral) implementation of feedback switches. 
 
6.1.4 Impact of modified configurations on test application time 

 
The results of the test application time measurements are presented in Table 7. Note, 
that the table shows four, not eight types of switches because the implementation 
details of the muxes do not affect the test time. As we can see, there is not much 
difference between the two methods for smaller networks. However, for 100x100 
meshes the test application time is two orders of magnitude shorter as in [5,49]. 

 
Table 7: Test application time in clock cycles     
 

 3x3 
network 

10x10 
network 

100x100 
network Switch type 

[11] new [11] new [11] new 
Non-bounce/ 
Not buffered 176 52 1415 143 122105 1313 
Non-bounce/ 
Input buffer 299 91 2665 273 242605 2613 
Bouncing/ 
Not buffered 188 64 1448 176 122408 1616 
Bouncing/ 
Input buffer 320 112 2728 336 243208 3216 
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6.1.5 Effect of DfT structures 
 
A network of 3x3 switches has been implemented in order to evaluate the effect of 
DfT structures proposed. Table 8 presents the fault coverage results and circuit area in 
the 128-bit and 512-bit versions of the NoC network. Area is shown for a single 
switch in the 3x3 network and measured in nand-gate equivalents. The coverage 
values represent single stuck-at fault coverage as measured by Turbo Tester sequential 
fault simulator [50]. This information includes the DfT structures, except for rows 
denoted by the astrix (*) character, which do not include the logic BIST of the control 
part. Rows ‘Reg_in’, ‘Reg_out’ and ‘Mux’ correspond to input buffers, output buffers 
and crossbar multiplexers of the switch datapath, respectively. Rows ‘Sorter’, 
‘Address decoder’ and ‘Output decoder’ show the fault coverage and area 
requirements of the control unit blocks: priority sorter, address decoder and control 
signal decoder, respectively. Rows ‘CP no BIST’ and ‘CP w BIST’ show the fault 
coverage and area of the control part without and with logic BIST structures, 
respectively.  
 
Table 9 shows the impact of implementing the DfT structures for external testing. The 
results can be inferred as following. The usage of resource feedback structure 
improved the fault coverage by 3 and 5 % for the 128 and 512 bit networks, 
respectively. The control part was tested using a BIST simulated by the freely 
available Turbo Tester software [50]. This improved the coverage by further 5 % and 
2 %, respectively. The overall stuck-at fault coverage obtained for the 128 bit version 
was 97.54 % and that of the 512 bit version was 99.33 %. 
 
 
Table 8: Experimental results without control part BIST     
 
*Coverage before application of BIST 

 

Block F.C. (128), 
% 

F.C. (512), 
% 

Area (128), 
gates 

Area (512), 
gates 

Reg_In 97.3 99.3 6050 25605 
Reg_Out 97.9 99.9 6050 25605 
Mux 97.1 99.2 3230 12830 
Sorter* 32.8 34.7 635 635 
Address 
decoder* 

50.7 50.7 565 565 

Output 
decoder* 

64.1 53.6 1075 1075 

CP, no BIST* 48.32 50.22 2175 2175 
CP, w BIST 99.14 99.14 2700 2700 
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           Table 9: Impact of the DfT structures     

DfT structure Fault coverage (128), 
% 

Fault coverage (512), 
% 

No DfT  89.70 92.68 
Resource loopback 92.19 97.93 
Resource lb. + 
BIST 

97.54 99.33 

 
 
As it was mentioned above, the proposed approach has linear test time requirements 
with respect to the size of the NoC network. Note, that when relying on the test 
configurations we are testing multiple switches in parallel. Furthermore, we are not 
concerned about test access and excessive amount of test data as in the case of 
traditional scan-based approaches. Our method consumes 320 clock-cycles for the 3x3 
network, which are about two orders of magnitude less than the scan-based 
approaches from the literature [41]. Similar to the scan approach, the test length grows 
linearly with the size of the circuit.  
 
6.2 Conclusions 
 
The work defines a scalable functional test method for NoC switching networks. The 
proposed algorithm allows to cover nearly all of the single stuck-at faults in the 
switching networks, transition faults, opens and shorts at the interconnect lines. A 
generic parametrizable VHDL description of a deflecting NoC switch was 
implemented and a benchmark family of 8 switches representing different possible 
architecture configurations was synthesized. 
 
The test patterns are applied externally from the boundaries of the switch as opposed 
to using scan paths and wrappers for test access. A 3*3 network was synthesized and 
the data width of the Switches in the Network could be either 128 or 512.Various test 
configurations were used to cover the entire switching network. The initial method 
produces a test set whose volume has a square complexity with respect to the rank of 
the network matrix.  
 
The thesis also defines a functional fault model for testing crossbars in deflecting 
switches. The fault model was organized into test configurations that allowed 
targeting of switches embedded into regular mesh-like networks. The impact of 
crossbar multiplexor on fault coverage was analyzed. The highest coverage was 
100%, while the lowest being 86, the average overall coverage being 97.1 %.  
 
A new high-level concept of faulty links (directions) in NoC switches was introduced. 
One of the novelties of the thesis is to propose the use of the functional test 
configurations with a goal to locate faults in individual links of the switches. 
Collapsing of link faults based on equivalent configurations was also proposed. As a 

108 



result, a method was proposed that is capable of unambiguously diagnose a link fault 
in the network in a very short test application time. Experiments showed that, 
although working at higher abstraction levels, the method has very high coverage for 
logic-level structural faults. The test configurations were modified to get a much 
shorter test time. Test time requirements are square root of the number of switches 
and the supporting testability structures occupy only up to 4 per cent of overhead 
silicon area. Experiments on different NoC setups showed that the new method is well 
applicable for large networks.  
 
In addition, the work proposed a set of Design-for-Testability (DfT) techniques for 
application of test patterns from the external boundary of a Network-on-a-Chip 
(NoC). In previous papers we have proven that such external test configurations 
provide for a high-fault coverage, diagnostic resolution and scalability in testing 
mesh-like NoCs. We have implemented a parametrizable switching network and 
developed a set of DfT structures to support testing of network switches using 
external test configurations. The proposed DfT structures include resource loopback 
for testing the crossbar multiplexer of the resource connection, a modification to the 
control part to force YX routing and a compact logic BIST for the control unit.  
 
The main novel contribution of the approach presented in the thesis is to combine the 
test configurations for NoC developed by the authors in [6] and the new method for 
locating faults in the NoC interconnection infrastructure [5] by area efficient DfT 
structures promoting the quality of test for NoC networks. Experiments show that the 
proposed structures allow near-100-percent test coverage at the expense of less than 4 
% of extra switch area. 
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