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Abstract

Autonomous self-driving vehicles crash because there is a lack of rigorous testing of their
systems and autonomous cognition. Threats from cyber attacks, which have been proven
on legacy vehicle architectures, present a fundamental challenge to the safety and secu-
rity of autonomous self-driving vehicles, their passengers and pedestrians in the driving
environment. There is lack of testing for cybersecurity of autonomous self-driving ve-
hicles. Existing processes support testing in simulators which are unrealistic and scope-
limited and real-world operational vehicles which are costly and resource intensive. For
autonomous self-driving vehicles to operate in real-world traffic they need to ensure to the
public, safety and security fromcyber threats. To resolve this problem, this thesis develops
a low-cost, small-factor autonomous self-driving vehicle test bed for cybersecurity testing.
Evaluation of the test bed is conducted through applied practical experiments using real-
world cyber threat test cases contributed by experts from autonomous system designers,
operators and component providers. The results of the evaluation demonstrated that
a low-cost, small-factor test bed can support cybersecurity testing of real-world threats
against sensors and perception, communication channels and hardware and compute.
These findings can be used to improve the defensive mechanisms of autonomous vehi-
cles in areas such as the Robotic Operating System (ROS) communication, network in-
trusion detection and monitoring and the resiliency of autonomous cognition. However,
limitations in the small-factor test bed design were identified in the lack of computational
resources to support on-board training and processing of neural networks and inability to
include the diverse profile of vehicular electronic components. This thesis emphasises the
need for autonomous self-driving vehicle operators to utilise small-factor test beds that
can emulate the systems and functionality of their operational vehicles to improve cyber-
security testing and ensure the public of safe and secure autonomous transportation.
This thesis is written in English and is 110 pages long, including 5 chapters, 78 figures and
4 tables.
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Annotatsioon

Isesõitvad autod satuvad liiklusõnnetustesse, sest nende süsteeme ja isemõtlemist ei testita
piisavalt. On tõestatud, et küberründed ohustavad ka tava-autode süsteeme, seetõttu on
põhiline väljakutse, mida on vaja ületada, isesõitvate autode, nendega reisijate, jalakäi-
jate ning üldise liikluskeskkonna ohutuse tagamine. Autonoomsete isesõitvate autode
küberturbetestimist ei tehta piisavalt. Hetkel sooritatakse antud teste kasutades kas sim-
ulaatoreid, mille tulemused on ebarealistlikud või mille testimise mastaap on limiteeri-
tud, või kasutades reaalseid autosid, mis aga on kallis ning ressursimahukas. Isesõitva
auto igapäevases liikluses kasutamiseks peab ühiskond olema kaitstud autot mõjutavate
küberohtude eest. Selle saavutamiseks on antud magistritöös välja töötatud odava mak-
sumusega ning väikesemõõtmeline katsekeskkond küberturbe testide läbiviimiseks. Keskkonna
väljatöötamisel on sooritatudmitmeid katseid, kasutades reaalelulisi küberrünnakuid vas-
tavalt isesõitvate autode ekspertide, süsteemidisanerite, operaatorite ning komponentide
tootjate poolsele sisendile. Testimise tulemused näitavad, et odava maksumusega väike-
semõõtmeline katsekeskkond on piisav selleks, et testida reaalelulisi küberrünnakuid, mis
on sooritatud sensorite taju, sidekanalite, riist- ning tarkvara vastu. Neid tulemusi ka-
sutades on võimalik parandada isesõitvate autode kaitsevõimet eri valdkondades: robo-
tiarendusplatvormi kommunikatsioonis, võrgu sissetungituvastuses jamonitooringus ning
autonoomse taju vastupidavuses. Piiravateks asjaoludeks väikesemõõtmelise katsekeskkonna
korral olid isesõitva auto arvutusressursi puudus, mis oli vajalik pardal toimuvaks neu-
rovõrkude töötlemiseks ja väljaõpetamiseks, ning võimetus kaasata auto elektroonikakom-
ponentide laia valikut. Käesolev magistritöö rõhutab isesõitvate autode tootjate poolse
väikesemõõtmeliste katsekeskkondade, mis suudavad jäljendada töötavate autode süs-
teeme ja funktsionaalsust, kasutamise vajadust, et parandada küberturbe testimist ja tagada
avalikkusele turvaline ja ohutu autonoomne transport.
Magistritöö on kirjutatud inglise keeles, on 110 lehekülge pikk, koosneb 5peatükist, sisaldab
78 joonist ning 4 tabelit.

5



Acknowledgements

“Midagi pole võimatu, niipea kui inimene hakkab sellest kord tõsiselt mõtlema.”[1] - An-
ton Hansen Tammsaare
I would specifically like to thank Prof. Dr. Olaf Maennel for supervising my academic jour-
ney of the last 2 years. I am grateful for the opportunities he has given me, the wisdom
he has imparted and the patience and understanding he has shown.
I’d like to acknowledge Prof. Dr. Tobias Eggendorfer andHochschule Ravensburg-Weingarten
for hostingme for the Erasmus + internship and for providing access to facilities. I’d specifi-
cally like to thank Prof. Dr. Eggendorfer who was able to arrange that opportunity at short
notice and his support and understanding during the COVID-19 events. I’d like to thank
Barbara Wildenhain, International Coordination Officer of RWU, for assisting me when i
was unwell in Germany.
I’d like to thankMIT CSAIL and the DuckieTown foundation for providing hardware and Dr.
Jacopo Tani, ETH Zurich, for ensuring that I got the robotics equipment delivered during
COVID-19. I’d like to acknowledge Prof. Liam Paull, University of Montreal, for answering
my questions about DuckieTown.
I’d like to thank the ISEAUTO team of Prof. Raivo Sell, Prof. Juhan-Peep Ernits and Ehsan
Malayjerdi for providing expert opinion and supporting me with this work.
I’d like to thank the security and safe driving team at Starship Robotics team for providing
expert opinion and support. I would like to thank Jaan Priisalu for making that connection
possible.
I’d like to thank the autonomous security engineers at ZF for providing expert opinion and
always being helpful in motivating me to pursue an active research career in automotive
cybersecurity. I’d like also to acknowledge their support in hosting me at ZF in Germany,
even though the visit couldn’t occur due to COVID-19.
I’d like to thankmy fellow student Nikita Snetkov for teachingme how to use amultimeter
and providing me knowledge on robotics.
I’d like to thank the Government and people of Estonia for providingmewith a scholarship
and opportunities for education. I’d like to thank Prof. Rain Ottis for the opportunity to
study at TalTech. It is an honour and a pleasure to be the first Australian to graduate
from the Master of cybersecurity program at Tallinn University of Technology/University
of Tartu.

6



Principally, i’d like to thank Martha Jung for continually supporting me and motivating me
in my studies and life in Estonia. I doubt whether i would’ve survived my first Estonian
winter without Martha’s reassurance and helpful guidance. It’s a pleasure to work with
Martha and I am a better person for having known her.

7



List of Abbreviations and Terms

AEB Autonomous Emergency Braking
FCW Foward Collision Warning
NTSB U.S National Transportation Safety Board
CAN Controller Area Network
AI Artificial Intelligence
MIT Massachusetts Institute of Technology
CSAIL Computer Science and Artificial Intelligence Laboratory
TARA Threat and Risk Assessment
DSRM Design Science Research Methodology
LED Light Emitting Device
GPS Global Positioning System
ITS Intelligent Transportation Systems
ECU Electronic Control Unit
IoT Internet of Things
DDoS Distributed Denial of Service
DNN Deep Neural Network
ML Machine Learning
ENISA European Union Agency for Cybersecurity
TPU Tensor Processing Unit
OTA Over-the-air
OWASP The Open Web Application Security Project
OEDR Object event detection response
SLAM Simultaneous localisation and mapping
LKAS Lane-Keeping assistance systems
PBAD Physics-based anomaly detection
ROS Robotic Operating System
TPMS Tire pressure monitoring system
ISO International Standards Organisation
SAE Society of Automotive Engineers
ETSI European Telecommunications Standards Institute
SAE Society of Automotive Engineers
IEC International Electrotechnical Commission
BSI British Standards Institute

8



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Annotatsioon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Real-World Problems of Autonomous Transportation Platforms . . . . . . . . . . . . . 15
1.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.9 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.10 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.11 Ethics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.12 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1 State-of-the-art for cyber attacks on autonomous self-driving vehicles . . . . . . 22
2.2 Standards for cybersecurity testing and certification . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Legal, Ethical and Social Environment for autonomous self-driving Vehicles 36
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Design and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1 Test Bed Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Feasibility of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Low-cost, small-factor test bed for cybersecurity evaluation . . . . . . . . . . . . . . . . . 45

3.3.1 Experimental Test Bed Smart City Environment . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Experimental Test Bed Autonomous Self-Driving Vehicles . . . . . . . . . . . 47
3.3.3 DeepPi Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9



4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Expert Interviews. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Security Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 STRIDE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 UNECE WP 29 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Expert Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.4 Prioritised Security Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Security Test Case Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Sensor and Perception Security Test Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Hardware & Compute Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 Connected Vehicle Security Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.4 Environmental Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Test Case Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 Howcan a low-cost, small-factor, autonomous self-driving test bed
be used for cybersecurity testing?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.2 How can a low-cost, small-factor autonomous self-driving vehicle
and driving environment be designed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.3 How can cybersecurity testing of a small-factor autonomous self-
driving vehicle test bedused to improve cybersecurity of the FinEst
autonomous self-driving vehicles? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.4 What are the limitations of test beds for autonomous self-driving
vehicle cybersecurity testing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.5 Can automation and sensor failures caused by cyber attacks be
identified using an experimental test bed? . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10



List of Figures

1 Pasteur’s Quadrant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Design Science Research Methodology - Cybersecurity Evaluation Test Bed 20
3 Physical perturbation of Stop Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 LKAS Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Spoofed/Phantom Image Attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Overview of the Adversarial-LiDAR methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Forster et al. TARA methodology with integrated safety elements . . . . . . . . . . 32
8 Security and privacy threat analysis flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9 Usage of Assessment Methodologies - SECREDAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10 DuckieBot Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11 ISEAUTO Hardware Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12 Research and testing applications of low-cost, small-factor test bed. . . . . . . . . 45
13 DuckieTown in TUT Robotics Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
14 DuckieTown in TUT Robotics Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
15 Floor Tile - DuckieTown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
16 Traffic Light (Top-Pictoral, Bottom-Fiducial Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
17 Traffic Light - April Tag ID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
18 MIT Duckie Bot - Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
19 MIT Duckiebot - Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
20 Duckiebot Hardware Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
21 ROS Nodes for Camera Footage - DuckieBot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
22 ROS Architecture for Stopping Operation - DuckieBot . . . . . . . . . . . . . . . . . . . . . . . . 50
23 ROS Topics - DuckieBot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
24 ROSBAG - Logging Publisher information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
25 Docker- Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
26 Intrinsic Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
27 Extrinsic Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
28 DuckieBot - Camera Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
29 DuckieBot - Colour Recognition Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
30 DuckieBot - Edge Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
31 DuckieBot - Line Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
32 DuckieBot Mission Control Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
33 DeepPi Car - Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
34 DeepPi Car - Front View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
35 DeepPi Car Hardware Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
36 DeepPi Car Python Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
37 COCO Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11



38 COCO Object Detection Misclassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
39 HSV and Canny Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
40 Line Keeping Assistance System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
41 Remote Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
42 Remote Control Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
43 Flow of Test Case Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
44 STRIDE Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
45 UNECE WP29 Consolidated Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
46 STRIDE Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
47 Malicious Projection Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
48 Malicious Projection Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
49 Projector Attack 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
50 Projector Attack 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
51 Projector Attack 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
52 Projector Attack 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
53 Tile manipulation - discreet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
54 Tile manipulation - noisy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
55 Normal Traffic Lane Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
56 Spoofed Lane Markings - Discrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
57 LKAS5 - Successful Manipulation of Duckiebot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
58 Spoofed Lane Markings - Noisy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
59 Bosch Laser spoof attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
60 Bosch Laser spoof attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
61 Laser Attack - Crash 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
62 Laser Attack - Crash 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
63 Correct Stop Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
64 Adversarial Machine Learning Rogue Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
65 Update File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
66 ZMAP Scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
67 ROS Eavesdropping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
68 ROS Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
69 Scan of Wireless Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
70 De-Authentication of Vehicle WiFi Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
71 Deauthentication workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
72 Human Remote Operator Console View - WiFi Crash . . . . . . . . . . . . . . . . . . . . . . . . . 82
73 WiFi Crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
74 Environmental Setup - Smoke Machine and DuckieTown . . . . . . . . . . . . . . . . . . . . . 83
75 Smoke - Test 5 External View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

12



76 Smoke - Test 5 DuckieBot Object Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
77 Smoke - Test 5 External View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
78 Smoke - Test 5 DuckieBot Computer vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

13



List of Tables

1 Standards for cybersecurity in Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Factors influencing choice of test bed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Comparison of autonomous self-driving test beds for cybersecurity testing. 42
4 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

14



1 Introduction

Autonomous self-driving vehicles represent the future of transportation for modern tech-
nologically enhanced cities. The benefits of automation of driving include lower fatality
rates from the elimination of human-driver error caused by drink-driving, poor decision
making and medical emergencies. The importance of autonomous transportation has
been reinforced by the recent occurrence of the COVID-19 pandemic which requires so-
cial distancing in passenger transportation and contactless logistics. Ensuring autonomous
vehicles are designed with safety and security is of fundamental importance for societal
adoption. Cyber resiliency and survivability are key components of safety and security
of autonomous vehicles. To ensure the development of autonomous vehicles in real-
life traffic scenarios and adoption by society, testing and certification for cybersecurity
is essential[2].

1.1 Real-World Problems of Autonomous Transportation Platforms

The last five years has seen an increase in accidents of semi-autonomous and autonomous
transportation platforms. The transformation of vehicles from human control to control
by algorithms and advanced sensor and perception technology has increased the com-
plexity for autonomous system designers and road traffic authorities [3].
OnMay 7, 2016, in Florida, a TeslaModel S travelling at 74mph collidedwith the the trailer
of a truck turning in the opposite direction. The Tesla drove underneath the trailer, tearing
the roof off and killing the driver instantly. The Tesla was using a semi-autonomous soft-
waremode, "auto-pilot", to assume the driving functions, whilst, allowingmanual human
intervention. Post-incident analysis by Tesla identified that the object detection algorithm
had failed to identify the trailer as an obstacle due the similar colour of the side-panel of
the trailer with the lane markings, coloured white. The failure of the automation logic
to correctly interpret the images from the sensors affected the object and event detec-
tion response (OEDR) and neither the autonomous electronic braking (AEB) or forward
collision warning (FCW) were activated[4].
On March 19, 2018, in Tempe, Arizona, a Volvo XC90 sports utility vehicle fitted with a
sensing kit and operating in autonomous mode, struck and killed a pedestrian. The vehi-
cle was travelling at 43 miles per hour when it struck the pedestrian, who was crossing
with a bicycle at an unmarked crossing. The U.S National Transportation Safety Board
(NTSB) investigation found that the radar detected the pedestrian 6 seconds before im-
pact followed by the laser-ranging lidar sensor. The autonomous cognition, however, did

15



not have capability to classify an object as a pedestrian, unless, they were near a cross-
walk. As the vehicle approached the pedestrian it’s classification of the object switched
between a vehicle, bicycle and unknown object. It made a prediction that the object, as
a vehicle or bicycle, would move faster than the capability of the pedestrian and as an
unknown object it interpreted the pedestrians movement as static. Eventually the harm
minimisation of the autonomous cognition reverted control back to the human in the ve-
hicle. The driver was not focused on the driving environment as they inherently trusted
in the autonomy to navigate safely. The distracted state of the driver resulted in a delay
in regaining situational awareness which resulted in the brakes being applied only after
impact[5].
In 2015, cybersecurity researchers, Chris Valasek and Dr. Charlie Miller demonstrated
that the internal-vehicle network, controller area network (CAN), of a 2014 Jeep Chero-
kee could be remotely exploited and used by a malicious cyber adversary to stop or alter
the course of the vehicle[6]. This event led to the establishment of test beds for cyberse-
curity testing of automotive networks, centered on the CAN bus protocol. Autonomous
self-driving vehicles offer a more diverse profile of cyber threats as their use of artificial
intelligence (AI) with sensor and perception technologies open new attack surfaces and
enable newmethods for adversarial activity. As with the epoch of automotive test beds of
CANbus, autonomous vehicle test bedswhich are accessible to smaller vehicle developers
and researchers are required for testing and research.

1.2 Research Problem

The FinEst twins project aims to connect the cities of Tallinn and Helsinki through estab-
lishment of a shared urban digital architecture. Autonomous self-driving vehicles are a
salient part of this aim [7, p.2]. To ensure safety and security of autonomous self-driving
vehicles on the roads of Tallinn and Helsinki, the autonomous cognition, the algorithms
and sensors that assume the human driving action must be rigorously tested for vulner-
ability to cyber attacks. Currently, there is limited testing for cybersecurity due to the
costs associated with potential damage to an operational vehicle and resources required
to supervise the testing and repair systems and components[8].
Test beds such as the Massachusetts Institute of Technology (MIT) Computer Science and
Artificial Intelligence Laboratory (CSAIL), DuckieTown, provide a low-cost, small-factor en-
vironment accessible to autonomous self-driving vehicle developers and quality assurance
testers. These environments, which utilise the same software and network interfaces as
vehicles in the FinEst project have the potential to be used for cybersecurity testing and
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research. [9, p.3]. The research problem this thesis investigates is;
Is it possible for a low-cost, small-factor, autonomous self-driving vehicle test bed to sup-
port realistic scenarios for cybersecurity testing?

1.3 Research Questions

The research question this thesis answers is: Howcana low-cost, small-factor, autonomous
self-driving test bed be used for cybersecurity testing?

The thesis also provides insight and answers to several questions:
1. How can a low-cost, small-factor autonomous self-driving vehicle and driving envi-

ronment be designed?
2. How can cybersecurity testing of a small-factor autonomous self-driving vehicle test

bed used to improve cybersecurity of the FinEst autonomous self-driving vehicles.
3. What are the limitations of test beds for autonomous self-driving vehicle cyberse-

curity testing?
4. Can automation and sensor failures caused by cyber attacks be identified using an

experimental test bed?

1.4 Purpose

This thesis seeks to improve the effectiveness of cybersecurity testing of autonomous
self-driving vehicles. It seeks to provide a basis for the use of low-cost, small-factor au-
tonomous self-driving vehicle test beds in cybersecurity testing. The wider purpose is to
increase safety and security of the autonomous self-driving vehicles.

1.5 Objectives

The primary objectives of this thesis are:
• Development of a low-cost, small-factor test bed for cybersecurity testing of au-
tonomous self-driving systems

• Evaluation of the test bed to understand if it can support cybersecurity test cases
from the FinEst project and industry.
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The secondary objective is to identify enhancements for test bed environments for secu-
rity research for autonomous systems.

1.6 Novelty

This thesis provides the first evaluation of a low-cost, small-factor security test bed for
autonomous self-driving vehicles. Whilst this thesis was being written, Zelle et al. [8]
released a studywhich detailed a design of a small-factor security test bed for autonomous
vehicles. Their paper did not include in the scope, the evaluation of the test bed, the
design of the driving environment or an analysis of the autonomous cognition utilised in
the test bed. This thesis investigates a solution to a pressing real-world issue, the safety
and security of autonomous self-driving vehicles to cyber attacks.
The novelty of this thesis resides in the design of low-cost, small-factor, experimental
test bed for cybersecurity testing of autonomous self-driving vehicles and the evaluation
using real-world test cases. This is the first evaluation of a small-factor test bed for
cybersecurity using applied methods

1.7 Contribution

This research contribution can be defined as a combination of basic science and applied
research, as termed by Louis Pasteur, Use-inspired basic research. Figure 1 presents Pas-
teur Quadrant, it defines use-inspired basic research as research that uses basic scientific
research methods, such as that typified by Niels Bohr, with the contribution of producing
a tangible artifact, such as those produced by Thomas Edison[10, p.104]. The scientific
contribution of this thesis is the applied experimental method for security analysis and
evaluation testing of autonomous self-driving vehicles. The primary practical contribu-
tion of this thesis is the establishment of a test bed for self-driving vehicle cybersecurity
testing that can be applied to the Tallinn to Helsinki smart connected cities [11] and organ-
isations that exist in this ecosystem such as; Starship Technologies and TalTech IseAuto.
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Figure 1 – Pasteur’s Quadrant

[12]

1.8 Scope

Two autonomous self-driving vehicles and an autonomous driving city are developed and
designed as the test bed. As the objective is to create a low-cost, small-factor test bed, the
cost of the robotic components required for the design is less than€1000 and small-factor
is defined as able to be fit within a small classroom or laboratory environment.
The focus of the test bed is the ability to replicate autonomous driving cognition, systems
and networks of real-world operation autonomous vehicles. The scope of the test bed
does not include replicating vehicular components such as an engine or electronics.Also,
back-end corporate systems such as customer databases are not included in the scope.
The evaluation of test bed is conducted through security test cases. Test Cases is limited
to realistic test cases and methods provided by real-world autonomous driving organisa-
tions. A Threat and Risk Assessment (TARA) is not part of the scope of this project, rather,
threats are identified and prioritised based on expert opinion. A method for generating
test cases for cybersecurity testing of real-world scenarios is included as part of this work.
Evaluation of the test bed is conducted through applied experiments. All experiments
were conducted in a controlled environment in TalTech Robotics Laboratory.

1.9 Methodology

This thesis is problem centered. autonomous self-driving vehicles need protection from
cyber attacks and there is a lack of cybersecurity testing due to cost, time and resources. To
investigate this problem, this thesis designs and develops an artifact, a test bed, and evalu-
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ates the ability of the artifact to support the problemdefinition. The optimalmethodology
to achieve this is the Design Science Research Methodology (DSRM) as defined by Peffers
et al. [13].Figure 2 presents the DSRM as it is applied to this thesis.

Figure 2 – Design Science Research Methodology - Cybersecurity Evaluation Test Bed

[13, Figure 2]
The knowledge base which supports each phase of the DSRM is as below:

1. Identification of Problem, Objectives and Design of Test bed
Related Work: The related work reviews the existing knowledge of cybersecurity of
autonomous self-driving vehicles, standards and test beds.

2. Demonstration
Scientific communication: Demonstration of the testbed environment in workshops
and presentations using YouTube and in real-life in the Tallinn University of Technol-
ogy Robotics Laboratory.

3. Evaluation
Expert Interviews: Interviews with real-world autonomous vehicles operators: Star-
ship Technologies, TalTech IseAuto and ZF. Expert opinion was provided for identi-
fication and prioritisation of real-world cybersecurity threats and feedback on the
results of the experiment tests.
Applied experimental methods: Applied experimental testing is conducted on the
test bed using cybersecurity test cases.
Behavioural Observation: Analysis of the applied experiments is conducted using
behavioural observation. As the focus of the cybersecurity testing is the autonomous
cognition, behavioural observation is a primary method to derive how the vehicle
behaviour changed to manipulation by cyber attack.

4. Communication
Scientific communication: Publication of MSc thesis and workshops.
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1.10 Limitations

• Experiments were conducted in a controlled environment due to the limitations of
supervising resources and length of the process for seeking permission for testing
in an outdoor environment with pedestrians.

• The design and development of the small-factor autonomous vehicles were limited
due supply chain issues arising from the COVID-19 emergency. Delayed delivery of
equipment reduced the in-scope vehicles from 3 to 2.

1.11 Ethics

The related work section contains the ethical considerations for autonomous self-driving
vehicles. As applicable to this thesis, the test bed is a controlled environment and testing is
able to be controlled to the extent of removing variables that might raise ethical concerns
such as collection of personally identifiable information by vehicle sensor and cameras.
This thesis includes security testing. It is possible during the course of the testing to find
vulnerabilities in systems used in real-world operational vehicles. This thesis utilised a
vulnerability disclosure process, if vulnerabilities of software or systems are found, they
will be disclosed to the product owner first.

1.12 Thesis Organisation

The thesis has been organised in the structure of the design science research methodol-
ogy. There are 5 chapters. Chapter 1 is the introduction which identifies the problem and
motivation. Chapter 2 presents the related work. Chapter 3 details the design and devel-
opment of the autonomous self-driving vehicle test bed and it’s demonstration. Chapter 4
presents the evaluation of the testbed using cybersecurity test cases. Chapter 5 contains
the conclusions drawn from this research and direction for future research.
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2 Related Work

The related work is categorised into three sections:

1. State-of-the-art for cyber attacks on autonomous self-driving vehicles
2. Standards for cybersecurity testing and certification
3. Legal, ethical and social environment for autonomous self-driving vehicles

2.1 State-of-the-art for cyber attacks on autonomous self-driving vehicles

Scientific Literature Reviews:

• Petit and Shladoverusedpractical evaluation of a real-world autonomous self-driving
vehicle to analyse and prioritise attack surfaces. The highest priority attack surfaces
are identified as: GPS spoofing and jamming and camera blinding by infra-red LEDs
and lasers [14]. The full list of potential attack surfaces are presented in Appendix 1.

• Affia et al. conducted a systematic literature review of scientific papers relating to
security risk management in cooperative intelligent transportation systems. The
study found a gap in the conduct of analysis of security risks to ITS platforms. The
study advocates for approaches to risk management in ITS that considers the con-
nected nature of ITS systems, were, for example, a perception layer attack can in-
hibit application processes. The study also finds a lack of studies for application
security for ITS platforms in contrast to perception and network layer[15].

• Parkinson et al. conducted a literature survey with the purpose of presenting a
paper-based evaluation of knowledge gaps to autonomous and connected vehicle
cybersecurity. The study identified the following high profile cyber challenges:

– GPS integrity
– Sensor (IMU, ECU) data integrity
– Resiliency of LiDAR and camera sensor to cyber manipulation and environ-
mental impacts such as sunlight

– Human aspects; privacy and ownership of data.
The study concludes with a list of future research questions that are directed at ex-
ploring defensive mechanisms against cyber attacks. These include defence against
adversary automation of offensive tools and developing mechanisms for intrusion
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detection to trigger vehicle processes such as passing control back to the human
driver on detection of cyber attack [16].

• Checkoway et al [17] investigate attack surfaces for remote exploitation of vehicles.
The study argues, existing threat modelling of automotive cyber threats are incom-
plete as they presuppose access to in-vehicular networks has already achieved. The
remote attack surfaces identified in the study are:

– Direct Access: On-board diagnostics port
– Indirect Access: Telematics unit
– Short-range wireless: Bluetooth
– Long-range wireless: WiFi, Cellular

The threat model in the study is practically evaluated using test case scenarios. The
study concluded, in threat modelling, the importance of connected, end-to-end at-
tacks, for instance; A CD with a malicious firmware is uploaded into the vehicular
telematics unit which provides remote access to an in-vehicular network.

• Thing&Wu propose a taxonomy of cyber attacks and defences against autonomous
vehicles. The proposed taxonomy, derived from literature review, categorises cyber
attacks against autonomous vehicles as being either physical attacks (side-channels,
code modification, code injection) or remote attacks (signal spoofing, jamming).
Defensive mechanisms are categorised as passive detection of attack, response to
attack such as isolation of systems and active defence which includes security mon-
itoring. The study also proposes that adaptive security such as cyber deception
(honeypots), will become a prevalent option for autonomous vehicles [18].

• Meryem&Mazri categorises cyber attacks against autonomous self-driving vehicles
as either attacks which impact the control of the vehicle or passive attacks. Their
classification model prioritises spoofing and jamming attacks against the vehicular
sensors, LiDAR and camera, as the highest risk. The study also identifies low-level
sensors and IoT devices in the smart city environment as a feasible attack surface for
spoofing, blinding attacks as well potential entry points for network communication
attacks[19].

• Ren et al. [20] provide a systematic study of security threats to autonomous ve-
hicles. The study categorises two threat profiles; existing threats and new threats.
Existing threats are denoted as:

– Sensor attacks: Jamming and spoofing
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– Passive keyless entry and ignition manipulation: Jamming, relay, replay and
cryptographic analysis.

– Voice controllable systems: manipulation using machine learning.
– Vehicular networks: Spoofing, DDoS.

New threats are categorised in the study as threats to the deep neural network
(DNN) from adversarial machine learning(ML), leakage of ML training models and
manipulation of ML compute components such as an edge Tensor Processing Unit
(TPU). The study proposes defensive mechanisms such as multi-sensor fusion, sen-
sor redundancy and implementation of cryptographic protocols for secure commu-
nication.

Grey Literature Review Survey:

• ENISA published a guide for security of smart cars. They used a methodology of
expert interviews and literature review to determine the state-of-the-art for cyber
attacks and requirements for defence-by-design of automotive systems[21]. The
highest rated attacks based on severity are listed as:

– Communication attackswhich block ormanipulate in-vehicular network traffic
used to send messages to ECUs for vehicular control.

– Manipulation of open-sourcemapswhich support construction of LiDARmaps
for navigation.

– Data leakage from back-end systems such as databases and remote servers.
– Attacks on mobile applications, especially in car share and rental applications.
– Rogue Firmware updates and exploiting software over-the-air(OTA) updates[21,
p.19].

ENISA propose over 50 defensive controls to implement tomitigate the risk of cyber
attack. These include; cryptography, multi-sensor redundancy, implementing best
practice technical standards such as OWASP and ISO27001 for risk management.
The smart cars attack scenarios are presented in Appendix 2.

Whilst each reviewed work had different conclusions, the adversarial cyber threats to au-
tonomous vehicles that were omnipresent in all were categorised as threats to:

1. Sensors and Perception: LiDAR, Camera, Radar, Sonar, Neural Networks.
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2. Hardware & Compute: Operating system, Vehicle Code, On-board control PC, Em-
bedded components.

3. ConnectedVehicle: Vehicle-to-Vehicle (v2v), Vehicle-to-Infrastructure (v2i), Vehicle-
to-Everything (v2x), WiFi, In-vehicular networks, IoT networks, Back-end Infrastruc-
ture.

Sensors and Perception

Attacks on sensors and perception aim tomanipulate the object event detection response
(OEDR) and simultaneous localisation and mapping (SLAM) to alter the behaviour of the
autonomous vehicle to take an action not expected by the passenger or according to the
traffic laws. Adversarial machine learning attacks exploit the reliance that autonomous
systems have on machine vision and neural networks[22] [23][24]. As part of traditional
model of information security, adversarial machine learning and sensor perturbation im-
pact the integrity of the machine learning training model and sensor data to induce the
neural network to alter the driving state of the vehicle.
Eykholt et al. developed an adversarial attack algorithm, Robust Physical Perturbations
(RP2), against DNN to generate robust physical adversarial perturbations [22, p.1]. They
used a real-world case study of a stop sign to demonstrate that a DNN could be manip-
ulated by their perturbed stop sign to incorrectly classify the object and cause an au-
tonomous vehicle to advance through the stop sign. The results of their laboratory testing
were 100 percent success rate for incorrect classification and the field test in a real-world
environment generated 84 percent success. The test case used variables of distance, noise
and angle to test the perception of the sensor and the DNN[22, p.6-10].

Figure 3 – Physical perturbation of Stop Signs

[22, p.2]
The study is considered a seminal work in adversarial machine learning for autonomous
transportation as it demonstrated a low-cost and easy to produce physical attack could
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manipulate a control system in amore efficientmanner than a software or communication
attack. The findings of the studymotivated algorithmdesigners to improve the robustness
of methods such as object detection using filtering and probabilistic methods[22, p.6-10].
The study also contributes an evaluation methodology which consists of selecting a test
case and then experimenting, firstly in a laboratory simulation environment and secondly
in a real-world environment[22, p.1].
Sato et al. developed an attack on deepneural DNNbased lane-keeping assistance systems
(LKAS). The study proposes that an attacker can reverse engineer the logic of a neural
network and use the knowledge to design a malicious road patch. Reverse-engineering
the driving logic involves gaining an understanding of the driving path, the camera angle
and inputs and the predictive behaviour of the vehicle[25].

Figure 4 – LKAS Attack

[25, p.3]
The intent of the attacker is to manipulate the logic of the DNN to drive the vehicle off
the road or involve the vehicle with a collision with another vehicle. The authors demon-
strated the success of the attack on simulators; OpenPilot and LGSVL-1. Figure 4 shows
the use of a discreet, perturbed, adversarial road patch that caused the simulated vehicle
to drive out of the road lanes. The study is limited as only one test case for LKAS spoofing
was evaluated and no real world tests were conducted[25].The study is also limited to the
Tesla vehicle which do not use LiDAR for sensing of the driving environment.
Nassi et al. demonstrated that an attacker could use a projector to project an image on the
road that would be recognised by the vehicles camera’s as a real object (Figure 5). In their
experiment, the Mobile 630 Pro camera and Tesla Model X with Hardware 2.5 detected
and perceived the projected image as a physical object and took driving actions such as
swerving, braking and accelerating. The study also demonstrated mobility use-cases by
engineering a drone to carry a projector to project images on the road. The control vari-
ables for the experiment were that the projection needed to occur at nighttime and and
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the projector needed to be within close proximity of the projection surface. Lighting of
the environment and attenuation of the projection image impact the success of the attack
[23].

Figure 5 – Spoofed/Phantom Image Attack

[23, p.5]
The experiments were limited to Tesla vehicles and in some experimental test cases the
radar, rather than the camera, detected the projection image as an obstacle. The study
contributed a machine-learning solution to detect projection images as spoofs, however,
as the attack was only trialled on Tesla, which use a customised object detection algo-
rithm, it is left to conjecture whether this attack would work on other object detection
algorithms[23].
Attackers canmount remote attacks on LiDARand camera sensors using blindsiding, shield-
ing and jamming techniques with infra-red lasers and other noise generating tools. The
success of these attacks relies on the attacker understanding the machine learning model
and sensory technology in order to exploit their limitations. For different LiDAR models
the viewing angle, distance and horizontal angle of the laser beam required for successful
manipulation will differ as will the sequence of laser beam flashes. A machine learning
model may be trained to ignore messages received from a steady laser beam, however, a
dot point laser may successfully inject false sensory data. [24].
Cao et al. evaluated blinding and shielding of LiDAR sensors using laser pointing devices.
The experiments used the Apollo Baidu autonomous driving simulator to evaluate adver-
sarial test cases. Real-World autonomous driving data was inputted into the simulator
and the laser attack was simulated by inputting LiDAR sensor data in form expected of the
laser manipulation. The first test case, an attacker points a laser at the LiDAR sensor to
manipulate it to perceiving it as a obstacle, failed. This was due to the angle of the laser
and the speed of the vehicle. The speed of the vehicle didn’t allow the laser point enough
receiving time to be interpreted by the LiDAR sensor nor did the angle of the adversary
laser manage to focus on one of the laser points of the LiDAR sensor[24].
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Figure 6 – Overview of the Adversarial-LiDAR methodology.

[24, p.5]

The study developed a successful attack based on creating a spoof 3Dpoint cloudmap that
is generated by the LiDAR sensor. However, this attack relies on access to the data of the
vehicle sensor and understanding of themachine learningmodel for object detection[24].
Davidson et al. evaluated a sensor input spoofing attack against unmanned aerial vehicles
(UAVs). Projectors and lasers are used to spoof the UAVs sensors to input incorrect data
in the optical flow to alter the flight path of the UAV. The experiment conducted in the
paper, uses a test bed of small factor UAVs operating in diverse environmental conditions;
tiles, carpet, concrete and grass. The study found a lack of robustness in the existing
optical flow algorithm, the Lukas-Kanade method, which averages flow over all detected
images. The vulnerability of themethodwhich Davidson et al. successfully exploits is that
Lukas-Kanade method assumes the difference between two consecutive image frames is
small and approximately constant within the range. The study develops a new optical
flow method, RANSAC, which works by forming a hypothesis of each image, developing a
ground truth and assessing each image based on the ground truth [26].
Quinonez et al. [27] propose a new architecture for securing against robust physical invari-
ants caused by attacks such as laser, projector attacks. The study investigates the use of
physics-based anomaly detection (PBAD) in control system environments (water, energy,
autonomous systems) were cyber attacks impact the physical processes. PBAD works by
baselining expected correlations between sensors and actuators and triggering alerts on
observation of unexpected behaviour.
The problem this study seeks to solve is stealthy attacks which manipulate the behaviour
of control systems below the threshold of detection. The study’s contribution is SAVIOR,
a PBAD based on the extended kalman filter. The premise of SAVIOR is to train a anomaly
detection systemwith pre-processed sensor data and use an algorithm, extended kalman
filter to make predictions of the expected state of the next sensor observation.
To validate the success of their architecture the authors conducted experiments using test
cases on a small-factor autonomous self-driving vehicle and drone. The threatmodel used
for the test cases assumed the attackers had full access to the systems in the vehicle and
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the attack was conducted by uploading sensor data which contained the physical manipu-
lation. The contribution demonstrates the usefulness of physics based anomaly detection
for cyber attacks, however, the SAVIOR solution is limited as it will show false positives for
environmental impacts to sensors such as wind gushes and rain.

Hardware & Compute
Autonomous self-driving vehicles contain a diverse array of hardware and compute com-
ponents. This extends from operating systems, middleware, computational hardware and
the code base used for operation of the vehicle.
Choi et al investigated vulnerabilities of the robotic operating system (ROS)middleware on
a personal robotic system. ROS is used ubiquitously in autonomous systems and robotic
platforms including autonomous self-driving vehicles. The vulnerabilities discovered in
the study exploited the lack of authentication in the ROS architecture. A robotic platform
must execute a number of simultaneous processes in order to achieve a task. To man-
age these diverse processes the ROS master acts as a central management point. In ROS
there is no secure communication. Choi et al demonstrates a variety of exploits including;
ROS Master spoofing, intercepting and replaying ROS log files and insertion of malicious
robotic processes. The ease of the success of the attacks is assisted by the architecture of
ROS having no cryptography andmessages are passed in plain-text. The novelty of this re-
search for autonomous self-driving vehicles is that many research development projects
such as the Tallinn University of Technology, ISEAUTO also use ROS and so this attack is
relevant to the security of those vehicles[28].
Weiss et al. created a model for the characterisation of automotive ransomware. The
study conducted a literature review and analysis of automotive ransomware samples to
derive common characteristics. The study validated the model using practical methods,
implementing a proof-of-concept ransomware in a real car. The properties of automotive
ransomware characterised in the study are;

• Self-distribution mechanism to spread through network
• Download functionality
• Infects automotive components
• Impacts vehicle processes
• Persistence
• Encryption of data
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• Request of payment

More advanced malware functionality include the ability to protect itself against reverse
engineering and countermeasures and controlled infection, which means, if a victim has
paid for the decryption, the malware will no longer exist in that system[29, p.6-7] .
The study implemented a ransomwaremalware on a real vehicle. The initial infection was
achieved through manipulation of a firmware update file and the malware was successful
in encrypting the data on the real-timeoperating systemof an electronic control unit (ECU)
used for vehicle control [29, p.8-9]. The studies relevance to cybersecurity testing is that
it demonstrates that malware attacks can be achieved easily and can have severe impact
to the operational processes of the vehicle.
Connected Vehicle
Rouf et al. assessed the privacy and security of external network communication inter-
faces of vehicles. The research problem the study investigated was whether the integra-
tion of wireless network connectivity in vehicles had made vehicles more vulnerable to
remote exploitation. To investigate this, the authors performed an attack using a soft-
ware radio platform on a real cars tire pressure monitoring system (TPMS). The attack
consisted of monitoring the vehicles networks, capturing it’s traffic and then reverse en-
gineering the message id of the protocol used by the TPMS. The outcome of the study
was that an attacker, with a software radio attack platform from 40m away from a vehi-
cle, could capture traffic and injectmalicious packets causing TPMSupdate alarms[30].The
importance of this study to testing of autonomous self-driving vehicles is that the same
scenario can easily translate to a vehicle which utilises more communication interfaces.
Tbatou et al. [31] profiled attacks on communication channels of connected vehicles. The
study analysed the attack surfaces of connected vehicles and found a lack of encryption
and authentication mechanisms for external communication interfaces. The study rec-
ommends the increased use of cryptography to secure internal and external networks of
connected vehicles.

2.2 Standards for cybersecurity testing and certification

There are numerous international andnational standards for cybersecurity of autonomous
vehicles and supporting critical infrastructure. Table 1 lists applicable standards collected
in the literature search.
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Standards for cybersecurity in Vehicles
Standardisation
Body/Authority

Country Standard Code Standard

ISO International PAS 21448:2019 Road vehicles — Safety of the in-tended functionality [32]ISO International 26262 Road Vehicles - FunctionalSafety (Superseded by ISO/PAS21448:2019) [33]ISO/SAE International DIS 21434 Road vehicles — Cybersecurity en-gineering [34]ISO/IEC International 15408-1:2009 Information technology — Securitytechniques — Evaluation criteriafor IT security (Common Criteria)[35]SAE International J3101 Hardware Protected Security forGround Vehicles [36]SAE International J3061 Cybersecurity Guidebook forCyber-Physical Vehicle Systems [37]ETSI International TS 102 940 - 102 943 Intelligent Transport Systems; Secu-rity [38]VDA-QMC Germany AK ACSMS Automotive Cybersecurity Man-agement System Audit [39]BSI United King-dom PAS 1885:2018 The fundamental principles of au-tomotive cybersecurity [40]BSI United King-dom PAS 11281:2018 Connected automotive ecosys-tems. Impact of security on safety.Code of practice [41]
Table 1 – Standards for cybersecurity in Vehicles

From review of each of the standards, automotive cybersecurity is consistently divided
into three layers of responsibility;

• Ensuring the protection of the vehicle
• Ensuring secure design, engineering, testing and governance standards of the au-
tomaker and automotive suppliers (embedded device manufacturers etc.)

• Ensuring security of service providers such as car service providers (Uber, Bolt).
Automotive cybersecurity standards provide guidance on models, methods and require-
ments that can be implemented to manage cyber risk. Automakers often combine stan-
dards to optimise processes for cybersecurity risk management. Forster et al. provide a
new model for including in TARA, inputs from Hazard and Risk Assessment (HARA), using
a combination of ISO15408-1:2009 (Common Criteria) standard, EVITA (E-safety vehicle
intrusion protected applications) standard and ASIL (Automotive Safety Integrity Level).
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This approach recognises the interdependent relationship of security and safety. A cyber-
security incident can affect the safety of the vehicle, whilst, a safety incident can impact
the cybersecurity of a vehicle [42].
The interrelationship between standards is visualised in Figure 7 which maps the Forster
et al. method.

Figure 7 – Forster et al. TARA methodology with integrated safety elements

[42, p.80]
EVITA was an EU project dedicated to establish secure on-board architecture of vehicles
through use of hardware and software countermeasures. The project delivered a threat
assessment model and hardware security module design which is widely used in industry
by ECU designers and on-board hardware and software vendors. As part of the threat
assessment model, attack trees are used to visualise security threats and guide security
testers on testing efficiency[43].
Vasenov et al. [44] developed a security and privacy threat analysis method for OTA up-
dates in vehicles (Figure 8). Themethod is novel as it includes the popularly usedMicrosoft
security threat model, STRIDE, with the new, proposed, certification scheme for cyberse-
curity management systems in vehicles, United Nations Economic Commission for Europe
(UNECE) Work Package 29.
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Figure 8 – Security and privacy threat analysis flow

[44, p.3]

The study evaluated the utility of themodel in a security assessment of anOTA update of a
real car. The found good synergy between the STRIDE threats and the threat catalogue of
the UNECEWP29. However, the study noted the limited nature of the security assessment
scenario and that further practical evaluation is required to drawmore conclusive findings
[44, p.6].
The EU SECREDAS (Product Security for Cross Domain Reliable Dependable Automated
Systems) project conducted a report of the state-of-the-art for safety, security and privacy
analysis and applicability of standards. One of the key products of the report is a survey of
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the EU automotive industry which details the assessment methodologies in use. Figure 9
demonstrates that themostwidely used standards by the automotive industry for security
assessment are STRIDE and Common Criteria. OWASP and ISO27009 are also popular due
to existing knowledge and expertise of ISO standards and the popular OWASP top 10 for
software vulnerabilities[45].

Figure 9 – Usage of Assessment Methodologies - SECREDAS

[45, p.25]
Experimental test beds
Axelsson et al. created a vehicle test bed for security evaluation of cyber physical system.
The test bed was based on a small-factor mobile vehicle which was customised to support
AUTOSAR, the automotive software standard. The vehicle test bed, developed in 2014,
demonstrated that a small-factor device could provide a solution to emulate the protocols
and features of a full-factor real-life vehicle. The test bed was not autonomous and relied
on remote control by human operator[46].
MIT CSAIL built a low-cost, small-factor autonomous self-driving vehicle for research and
development and education. The goal of the MIT CSAIL DuckieBoT vehicle was to build a
low-cost option for researchers to evaluate autonomous driving algorithms and explore
corner cases. [9].Figure 10 details the features contained in the DuckieBot.
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Figure 10 – DuckieBot Features

[9, p.9]

As the aim of theMIT DuckieBot is to provide tangible research contributions to improving
autonomy of real-world vehicles, the features and architecture is designed to achieve as
close a comparison of real-world autonomous vehicles as possible. This includes the use
of ROS which is central to many of the real-world autonomous vehicular architectures.
The MIT DuckieBot has never been assessed for cybersecurity testing and research[9].
Tian developed a low-cost autonomous vehicle for research of neural networks. Tian cre-
ated a code base for a line following car in a low-noise, controlled, test environment. The
car was programmed to only follow blue lines and there was no support for curved lane
markings. The autonomous vehicle did provide an innovative design in that it overcame
the computational resource challenges of the small-factor environment consisting of an
onboard computer comprising only a Raspberry pi. Tian’s design utilised a Google Coral
edge tensor processing unit for accelerated machine learning processing for the object-
detection[47].
Zelle et al. built a security test platform for autonomous driving using small-factor au-
tonomous vehicles. The methods used in designing the platform comprised eliciting an
attack model of cybersecurity attacks against autonomous vehicles. Based on this attack
model the test bed was designed. The test bed is innovative, it includes most of the di-
verse range of sensors used for perception as well as in-vehicular networks and infotain-
ment systems. Zelle et al. contribution is closest to this work and their paper was released
after the development of the test bed contributed in this work. Themain differentiation is
that this study provides insight into the design of autonomous cognition, evaluation of the
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test bed for cybersecurity and the driving environment which it is capable of testing[8].
Bhadani et al. created a Cognitive and Autonomous Test (CAT) Vehicle test bed to evaluate
autonomous driving. The research problemhighlighted in the studywas the cost, time and
risks of real-world testing and the problems translating test cases from simulators to real-
world environments. The study designs and builds a hybrid virtual-physical test bed that
incorporates the body physics of a real world vehicle with virtualised sensors and software
platforms. ROS is used as the middleware platform. The evaluation of the platform was
conducted through an educational programwhere students used extracted data from the
CAT vehicle to improve object detection and tracking[48].
Santos& Schoopdeveloped a framework for cybersecurity testing of autonomous vehicles
and evaluated its efficiency through investigation of the survivability of autonomous vehi-
cles after a cyber attack to the vehicles sensors. Their framework consisted of developing
test cases and a tool to auto-generate test cases. Their practical evaluation involved the
security testing of two sensors; camera and LiDAR. An open-source autonomous driving
simulator, CARLA, was used as the experimental testing environment. The authors tool for
automatic test case generation only supports CARLA. Their study acknowledges the lim-
itations of this approach, the attack to the sensors was delivered by manual scripts and
assumed the attackers could manipulate the sensors perfectly each time. The findings
are limited to the CARLA environment and the simulation environment testing couldn’t
replicate a real-world physical attack or the operational driving domain of the vehicle[49].

2.3 Legal, Ethical and Social Environment for autonomous self-drivingVe-
hicles

The foundations for current nation-state regulation of vehicles is based on the Vienna
Convention on Road Traffic 1968. Article 8 of the convention establishes: "every moving
vehicle or combination of vehicles shall have a driver"[50, p.11]. A driver is defined as:
"Driver" means any person who drives a motor vehicle or other vehicle (including a cycle),
or who guides cattle, singly or in herds, or flocks, or draught, pack or saddle animals on a
road"[50, p.6]. The driver is responsible for control of the vehicle and obeying the ’rules
of the road’. The rules of the road are defined as the regulation of behaviour for actions
such as: position on the carriage way (Article 10), Overtaking and movement of traffic
in lines (Article 11), Passing of oncoming traffic (Article 12), Speed and distance between
vehicles (Article 13)[50, p.7-15]. The convention contains 55 Articles and 5 Chapters which
comprehensively detail every aspect from the positioning of flocks and herds on the road
to rules for international driver permits[50].
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Estonia acceded to the Convention on Road Traffic on 24 August 1992. The Estonian na-
tional legislation for the regulation of vehicles is the Traffic Act [51]. The Traffic Act has
undergone numerous updates to accommodate the introduction of connected and au-
tonomous vehicles for logistics and research and development projects. Within the defi-
nitions contained in the 4 July 2017 amendments, a self-driving delivery robot must have
a user and a controller that is subject to the same regulations as a driver of a traditional
vehicle(section 151, sub-section 2)[51]. This ensures continuity of existing lawswhere full li-
ability for vehicular crashes is assumed by the "human" driver. This important designation
of liability also allows semi-autonomous systems such as the Tesla autopilot to operate in
Estonian traffic.
The Traffic Act demonstrates an incremental approach to implementation of autonomous
systems into real-life traffic environment. Self-driving delivery robots are limited in speed
to 6 km/ph and pedestrians and other vehicles are limited to 20 km/ph in their pres-
ence and must take special care and observation to not obfuscate their perception and
movements[51]. To test self-driving technologies an operator must obtain registration
from the Estonian Road Authority. To obtain registration to operate a self-driving vehi-
cle on Estonian roads an operator must demonstrate performance in a series of tests in
closed area and traffic scenarios that include:

1. how the driver is able to control the vehicle manually

2. how a person is enabled to take control of the vehicle from automated mode

3. how the vehicle is able to operate autonomously

These tests are consistent with Estonia’s perspective of legal challenges of AI. Estonia’s Na-
tional Artificial Intelligence Strategy 2019-21 expresses that Estonia views AI as performing
tasks defined by humans and to the express intention of humans[52]. They will not oper-
ate independently and therefore the liability still resides with the human operator. This
definition of autonomy is consistent with the EU Guidelines for Trustworthy AI which em-
phasises human supervised and controlled AI[53].
Autonomous self-driving vehicles rely on sensory and perception technologies to create
a 3D map of the environment in order to navigate safely and efficiently. They also rely on
the imagery captured by high-definition cameras. The recording and storage of this infor-
mation will include the physical profiles and activities of pedestrians and other drivers, as
well as images of private homes and offices[54].
In Europe, autonomous vehicular architectures need to be designed to process and collect
data in accordance with the EU General Data Protection Regulation (GDPR). Autonomous
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vehicle manufacturers need to ensure data subjects have control of the data that is being
collected to allow them to exercise their data subject rights. The challenges for manufac-
turers is building architectures that allow these data subject rights such as the deletion
of data, where, in connected and autonomous vehicles, data is shared over multiple plat-
forms and used to inform safer driving decisions. Innovative solutions to this problem
include the CarData portal by BMWwhich allows BMW customers to view the telematics-
data which is stored from their vehicle. Blurring of faces and licences plates captured by
the high-definition camera would also provide greater privacy protections for pedestrians
and other road users[54].
The UN Economic Commission for Europe (UNECE) has a working party on autonomous
and connected vehicles. Thisworking party is focused onWork Package 29, Harmonisation
of Vehicle Regulations. Work Package 29 aims to update the existing regulatory frame-
works to incorporate the technological transformation of vehicular autonomy and AI. Key
priorities include: cybersecurity, Event data recorder(EDR)/Data storage for automated
driving (DSAD), Validation method for automated driving, advanced driver assistance sys-
tems (ADAS) and dynamics(AEB, FCW)[55].
The working group has produced a draft regulation for the UN for implementation of a
certification scheme for cybersecurity and cybersecurity management systems for vehi-
cles. The document acknowledges the crucial role of the manufacturer in providing safe
and secure systems which are heavily relied on by self-driving and driver-assisted vehi-
cles. The proposed regulations also acknowledge the increasing amount of personally
identifiable information (PII) which is retained in modern vehicles. The draft regulations
require a vehicle manufacturer to demonstrate that their cybersecurity management sys-
tem applies to: development, production and post-production phases. The requirements
for certification encompass people, process and technology. A vehicle manufacturer must
demonstrate to a certification authority the use of cybersecurity controls such as: crypto-
graphic protocols, intrusion detection systems, forensic logging and monitoring systems,
penetration testing and threat and risk documentation. The UNECE WP29 also provides
a catalogue of threats to vehicles. This catalogue forms the basis for future certification
schemes[55]. The threat catalogue is presented in Appendix 3.
Ethics
Ethics and morality are central to human decision-making and therefore inherent in the
design of autonomous systems [56]. From review of the related works, the predominant
areas of research for ethics in autonomous driving are identified as:

• Dilemma situations
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• Human responsibility for AI
• Privacy of personal information

Ethical engineering approaches use philosophical thought experiments termed; dilemma
situations. First introduced in 1967, by Foot, the trolley dilemma consists of a scenario in
which a person controlling the lever of a trolley must decide whether to stay on a track
whichwould result in the death of fiveworkmenwho cannot escape the path of the trolley,
or, change to a side-track which would result in the death of one workman [57].
Wächter et. al conducted an experiment on human decision making using the trolley
dilemma in driving scenarios. A select group of people from different age ranges were
chosen to confront dilemma situations in a driving simulator. The researchers used be-
havioural observation and data analysis from the simulator for their research conclusions.
The results of the experiment found that the majority of participants would; quantita-
tively minimise harm, adjust decisions based on age of pedestrian, drive on the sidewalk
if it minimised harm, and self-sacrifice themselves to avoid pedestrian fatalities. The con-
clusions of the study established the difficulty in designing an autonomous system for a
subjective area such as ethics. For this reason, the design of autonomous systems should
require input from ethics experts[57].
Lin’s study of autonomous vehicle ethics conformed to the same themes of ethical debate
as Wächter et. al. Lin’s study reviews the existing literature and theorises questions still
left for debate. One question posed by the study; Is programming an autonomous system,
in the example of the trolley dilemma, to hit a pedestrian as a calculation of most ethical
action, an ethical and legal conflict for countries whose laws promote the right to life and
human dignity? Lin also reflects that crash-optimisation, choosing the least cost of human
life, can be interpreted as a form of targeting. The conclusion of the study is that the ethics
of autonomous systems are imperfect and open for challenge. Societal expectations need
to be based on the reality of the limitations of autonomous systems to improve on human
decisions and ethical judgement [58].
Ethical design approaches to autonomous driving include Gerdes & Thornton [56] who
translated and applied Asimov’s three laws of robotics to autonomous systems:

1. An automated vehicle should not collide with a pedestrian or cyclist.
2. An automated vehicle should not collide with another vehicle, except where avoid-

ing such a collision would conflict with the First Law.
3. An automated vehicle should not collide with any other object in the environment,
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except where avoiding such a collision would conflict with the First or Second Law.
4. An automated vehiclemust obey traffic laws, exceptwhere obeying such lawswould

conflict with the first three laws.[56, p.95].

What do we value? For Gerdes & Thornton this is a fundamental question for ethics in
autonomous systems. The design of algorithms relies on assigning priorities or cost to
everything that exists in the driving environment. For instance, in a dilemma situation, if
the autonomous vehicle has to chose between impacting a motorcyclist with helmet or
without one, do we choose the motorcyclist with the helmet because they have a better
chance of surviving or the motorcyclist without a helmet, as they broke the road rules,
had been given safety warnings and were negligent?
Gerdes & Thornton also explored the ethical question of hybrid control between human
and autonomous system. If an autonomous system is ethically engineered why should a
human be able to override the decision making? The conclusion of the study is that with
the growing use of autonomous systems we will learn to gain trust in the cognition of
machines and adjust our expectations.
The EU high-level expert group on AI defined three essential elements of trustworthy AI:

1. lawful - respect for all applicable laws and regulations
2. ethical - respect for ethical principles and values
3. robust - the technical solution should take into account the social environment[53,

p.2].

The German Federal Department of Transport and Digital Infrastructure (BMVI) Ethics
Commission on Automated and Connected Driving recommended 20 ethical rules. These
rules aimed to resolve dilemma situations by embedding adaptive AI solutions in the city
infrastructure and in as many points of the driving environment as possible. Applying
the logic of German Ethics Commission to the perspective of the trolley dilemma, the im-
portance of the decision-making of the trolley would be mitigated by decisions made by
smart infrastructure on the road, road side-units and mobile devices. The responsibility
and accountability for ethical decision-making also shifts from the motorist or person at
the trolley lever to the manufacturers and operators of smart city technologies and policy
makers[59].
Social
Autonomous Self-Driving vehicles must also confront the ethical concern of privacy. A
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study by Bloom et al. conducted a survey, in five states in the United States, to quantify
comfort levels of the public for autonomous vehicle technology. The survey results con-
cluded that the public had the highest level of discomfort for vehicle technologies that
can capture and store images of individuals and track and identify individuals and vehi-
cles. Surveyed members of the public were inclined to accept the use of vehicular tech-
nologies for these purposes only if it improved safety or to assist in the investigation of a
vehicular incident. The survey results found discomfort from members of the public with
being in close proximity to autonomous vehicle sensors, such as walking near them or bi-
cycling near them in traffic. The study recommended engagement between commercial
autonomous vehicle companies, regulatory authorities and the public [60].
Reig et al. conducted a survey of 32 pedestrians who have interacted with Uber au-
tonomous vehicles. The survey consisted of structured questions about the pedestrians
experience of autonomous vehicles. The results of the survey found that pedestrians had
little understanding of autonomous vehicular technology and trust was associated with
the branding of the autonomous vehicle manufacturer. Pedestrians, when in the pres-
ence of an autonomous vehicle with no human driver, felt that they couldn’t understand
what decisions the vehicle was making in regards to their presence. The study recom-
mended rectification of this issue through utlising audio or visual alerts to indicate the
intent of the autonomous vehicle[61].

2.4 Discussion

From the relatedwork [46][8][22][23][24][62][14],several key factors emerged for the choice
of test beds used for cybersecurity testing:

• Cost comprises the implementation cost of the test bed, both components and
labour.

• Complexity is defined as the complexity in designing, engineering and maintaining
the test bed.

• Reliability is the accuracy of the results to the real-world operational vehicles.

Table 2 show the comparison of each test bed.
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Simulation Small Factor Test Bed Real-WorldCost low low HighComplexity low medium HighReliability low unevaluated High
Table 2 – Factors influencing choice of test bed

The review of the cyber attacks in the literature concluded that simulators provided un-
reliable and inaccurate results compared to real-world testing[22]. Table 3 presents the
comparison of each test bed. As the small-factor test bed was only used in Quinonez et
al. [27] study and as such they are unevaluated for security test cases, an informed opin-
ion is made based on the analysis of the designs of Zelle et al. [8], Axelsson et al. [46],
MIT DuckieBot[9] and DeepPi car[47].
cybersecurity Test Case Simulation Small Factor Test Bed Real-WorldHardware & Compute Attacks Yes Yes YesConnected Vehicle Attacks Yes Yes YesSensor and Perception Attacks Yes Yes YesPhysical Access No Yes YesDamage Incurring No Yes NoEnvironmental Perturbations No Yes YesFull list of Sensors and Systems No Yes YesReal-World Driving Environment No No Yes

Table 3 – Comparison of autonomous self-driving test beds for cybersecurity testing

The review of the cybersecurity testing methodologies established the importance of in-
corporating the UNECE WP29 threat catalogue with an established security threat model
such as STRIDE.UNECE WP29 represents the future for certification of vehicular systems
for cybersecurity risk management.
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3 Design and Development

3.1 Test Bed Concept

The design and development of the small-factor test bed artifact is a key phase of the
DSRM. The research entry-point is the problem-centered approach. The research problem
this test bed is focused on solving is; is it possible for a low-cost, small-factor, autonomous
self-driving vehicle test bed to support realistic scenarios for cybersecurity testing?

The predominant elements required in the test bed artifact to resolve this problem are:

1. Emulation of the features of a real-world operational vehicle within a low-cost,
small-factor design.

2. Support for realistic cybersecurity test cases.

3.2 Feasibility of Design

The feasibility analysis of design of a low-cost, small-factor test bed consisted of reviewing
the TalTech ISEAUTO and the related works for the state-of-the-art for cybersecurity of au-
tonomous self-driving vehicles. The ISEAUTO is a relevant vehicle as it used in the FINEST
project and is the target system for realising the benefits of improved cybersecurity. Fig-
ure 11 presents the ISEAUTO hardware diagram which lists the sensors and perception
technologies, hardware and compute systems and connected vehicle interfaces.

Figure 11 – ISEAUTO Hardware Diagram

[63]
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The first consideration for design and development is whether to build from scratch or
develop an existing low-cost, small-factor autonomous self-driving vehicle. Based on the
related works, the MIT DuckieBot and DeepPi car were chosen to develop as a test bed.
The justification for this decision are the comparison of key systems of the ISEAUTO with
the MIT DuckieBot and DeepPi car:

• Emulation of key systems:
– ROS
– Camera sensor
– On-board Control PC
– Network interfaces
– Actuation (Pulse Width Modulation (PWM))
– Remote control station PC

• Cost of components under €1000
• Efficient usage of limited computational resources available.

The second consideration is support for realistic scenarios for cybersecurity testing. Based
on the related work, Figure 12 lists the cybersecurity testing and research applications the
low-cost, small-factor test bed can support.
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Figure 12 – Research and testing applications of low-cost, small-factor test bed

[64]

3.3 Low-cost, small-factor test bed for cybersecurity evaluation

3.3.1 Experimental Test Bed Smart City Environment

Duckietown is a man-made environment for autonomous self-driving vehicles created by
MIT CSAIL. The Duckietown smart city emulates real-word structures of smart cities by
using machine readable road side units (RSU) and road markings. The smart city environ-
ment is constructed of two layers; Floor Layer, Signal Layer.
The Floor Layer is where the road markings exist and the road network is mapped. The
floor layer is a modular construction consisting of tiles which can be customised to suit
different road maps. For the construction of the experimental test bed used in this thesis,
9 tiles were assembled in a 3 x 3 configuration. In the DuckieTown smart city there are
three line colours which have their own rules, as per traffic laws; white, yellow, red.
The solidwhite lines symbolise the road boundaries forwhich the autonomous self-driving
vehiclemust remainwithin. The yellowdashed lines represent the road lanes. Each yellow
line piecemust be 5cm in length with 2.5cm space between each piece. Red lines are used
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Figure 13 – DuckieTown in TUT Robotics Lab Figure 14 – DuckieTown in TUT Robotics Lab

for stopping a autonomous self-driving vehicle at an intersection.

Figure 15 – Floor Tile - DuckieTown

The Signal Layer comprises all of the signals that the autonomous self-driving vehicle re-
quire for navigation. In the experimental test bed used in this thesis the signals are repre-
sented by machine readable RSUs. The RSUs are constructed with a pictorial representa-
tion of a roadmarker used by the image processing of the autonomous self-driving vehicle
and a fiducial marker for greater perception.
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Figure 16 – Traffic Light (Top-Pictoral,
Bottom-Fiducial Marker Figure 17 – Traffic Light - April Tag ID

Wireless networks are used for communication whilst driving in the DuckieTown environ-
ment.

3.3.2 Experimental Test Bed Autonomous Self-Driving Vehicles

MIT Duckiebot
The Duckiebot (Figure 18, Figure 19) is a small factor autonomous self-driving vehicle de-
veloped by MIT in 2016. The intent of the design of Duckiebot was to create an afford-
able self-driving platform that researchers and educators could use to teach autonomous
systems and evaluate deep learning algorithms for autonomous driving. The cost of the
components needed to build the Duckiebot is approximately €250.

Figure 18 – MIT Duckie Bot - Side View
Figure 19 – MIT Duckiebot - Front View

The DuckieBot architecture uses a 5mp pixel raspberry pi camera for sensing. The hard-
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ware for the AI and Drive Algorithm is built on Raspberry PI Model 3B hardware. Debian
Linux 9 is used for the OS as the Raspberry PI utilises an ARM processor. The software
platform is built upon Docker utilising ROS Kinetic. An 32Gb SD is used for local on-board
storage and a 100Gb USB drive can be inserted in the Raspberry PI to allow more storage
for logging. A 5v, 10400 mAh, battery is used to power the DuckieBot. Actuation is per-
formed by the motor driver which connects to servo motors. The DuckieBot steers in a
radial circuit and there is a steel bell underneath that maintains balance.

Figure 20 – Duckiebot Hardware Diagram
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The code base for autonomous vehicles is highly complex and a commercial autonomous
vehicle with a full-sensor profile can reach over 10 millions of lines of code. Autonomous
vehicles require numerous operations to be executed in parallel, in the DuckieBot, the
lights (led_emitter), autonomous control(joy_node), camera (camera_node), LKAS (line_detector_node)
need to all be in simultaneous operation for driving. ROS allows developers to work on
code for individual components and operations of the vehicle and centrally manage the
execution. Without a centrally managed system it is difficult to troubleshoot, maintain
and develop the code base of the autonomous vehicle. In ROS, the ROS Master centrally
manages communication between ROS nodes and tracks the messages they are exchang-
ing.The benefits of ROS is efficient code organisation and hardware abstraction.
Figure 21 lists the ROS nodes active during a simple operation, camera footage of the
Duckiebot. The rosbridge allows communication of the information from theROSnodes to
be visualised in a dashboard web interface, which in the Duckiebot, is the mission control
platform. Figure 22 provides the architecture of the ROSnodes as itwould look for another
simple operation, stopping the DuckieBot.

Figure 21 – ROS Nodes for Camera Footage - DuckieBot
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Figure 22 – ROS Architecture for Stopping Operation - DuckieBot

There are two ROS communication types: Topics and Services. A ROS topic is a named
communication bus which nodes exchange messages. A node can be a publisher or a
subscriber. A publisher shares information with another node, a subscriber receives infor-
mation from a node. The relationship between nodes is many-to-many and a publisher
shares a topic without knowing which node will subscribe to it. Similarly a subscriber will
subscribe to a topic without knowing which node published it. Figure 23 presents the ROS
topics in a stopping operation on the duckiebot. In this communication, the joy_node is
conducting amessage exchange with the wheels_driver_node, the topic emergency_stop
will initiate an operation of the servo motor to stop the duckiebot.

Figure 23 – ROS Topics - DuckieBot

ROS services are like topics, except they support one-to-one communication between
nodes. A service is a request-response type remote procedure call (RPC). In a service com-
munication a node requests from another node a service and the providing node replies
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back. Services also have unique named communication like topics. Listed below are some
of the services for which the colour filter node is communicating to the other nodes.

/ andrewttu / v e h i c l e _ f i l t e r _ n o d e / g e t _ l o g g e r s
/ andrewttu / g r ound_p r o j e c t i o n / ge t_ image_coo rd i na te
/ andrewttu / camera_node / g e t _ l o g g e r s
/ andrewttu / l a n e _ po s e _ v i s u a l i z e r _ n od e / s e t _ l o g g e r _ l e v e l
/ andrewttu / image_t rans former_node / g e t _ l o g g e r s
/ andrewttu / joy_node / g e t _ l o g g e r s
/ andrewttu_to_map / g e t _ l o g g e r s
/ andrewttu / decoder_node / g e t _ l o g g e r s
/ andrewttu / g r ound_p r o j e c t i o n / s e t _ l o g g e r _ l e v e l
/ andrewttu / v eh i c l e _ a vo i d an c e_ con t r o l _ node / s e t _ l o g g e r _ l e v e l
/ r o s a p i / get_param_names
/ r o s a p i / s e r v i c e _ h o s t
/ andrewttu / l ed_emi t t e r_node / g e t _ l o g g e r s
/ andrewttu / i n v e r s e _ k i n ema t i c s _node / s e t _ b a s e l i n e

ROS uses rosbags for logging. Figure 24 shows a rosbag logging session. The rosbags col-
lect the publisher and subscriber information, the nodes and the topics being exchanged.
This information is valuable for forensics, fault diagnostics and cyber adversaries as it de-
picts the operations of the vehicle.

Figure 24 – ROSBAG - Logging Publisher information

Docker is used tomanage the DuckieBot environment. As DuckieBot is constantly evolving
due to it’s use as an educational and research product, Docker provides an efficientmeans
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to implement new images/programs and enhance the use of the limited resources of the
Raspberry Pi based system. Figure 25 show the list of running containers in docker.

Figure 25 – Docker- Containers

Autonomous Driving Cognition
Duckiebot uses computer vision and image processing for autonomous driving decisions.
There are two key aspects to ensure accurate driving of the duckiebot: integrity of the
camera sensor, accuracy of the algorithms used for image processing.
Firstly, the camera sensor requires calibration to ensure integrity of the computer vision
to enable algorithms to be applied. The DuckieBot camera is calibrated using a specially
designed checkerboard panel comprised of black and white squares, each 31mm (Figure
26). This is intrinsic calibration, it’s purpose is to resolve discrepancies that can come
with camera’s parameters straight from the manufacturer. The checkerboard acts as a
predetermined patter.
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Figure 26 – Intrinsic Camera Calibration

Secondly, the extrinsic calibration aims to use the data of the pictures correctly without
error. One object is confirmed in different pictures so that equal pixels can be found.
Extrinsic calibration establishes the orientation between the camera and object that the
picture is taken from (Figure 27).

Figure 27 – Extrinsic Camera Calibration

The aim of image processing for autonomous vehicles is to detect road markings (lanes,
boundaries) within the driving environment and to filter out disturbances or potential
manipulation. The driving environment, from a computer vision perspective, is noisy. The
DuckieBot uses colour recognition to find the yellow lane lines, white boundary lines and
red stop lines.
As depicted in the image in Figure 29, the environment can generate noise which can be
interpreted incorrectly based on the colour. To ensure this doesn’t happen the Duckiebot
applies two image processing algorithms; Canny edge detection and theHough transform.
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Figure 28 – DuckieBot - Camera Filter Figure 29 – DuckieBot - Colour Recognition Filter

The intended aim of these techniques is to apply an edge filter and reduce noise by ap-
plying a Gaussian blur to isolate the shape of the yellow lane marking and white border
lines and make a hypothesis of the best lane position of the DuckieBot. The code for the
DuckieBot image processing is provided in Appendix 4.

Figure 30 – DuckieBot - Edge Filter Figure 31 – DuckieBot - Line Detector

Remote Control Operations
Duckiebot mission control platform is a graphical user interface that allows a human op-
erator control of the Duckiebot. The human operator is able to visualise the speed of the
vehicle, steering angle of the vehicle and the on-board camera vision. The operator is
able to toggle between autonomous mode and manual control. The operator GUI relies
on network connection to the same network of the DuckieBot, this is configured in Docker.
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Figure 32 – DuckieBot Mission Control Platform

3.3.3 DeepPi Car

The DeepPiCar is a reference architecture for simulation of autonomous self-driving vehi-
cles developed by David Tian, a software-engineer at Google.

Figure 33 – DeepPi Car - Side View
Figure 34 – DeepPi Car - Front View

The DeepPi car uses a Raspberry Pi model 4 for the on-board computer. The operating
system is Raspbian buster, an operating systemmade for arm processors. There is a 32 Gb
SD card for internal storage. Sensing is performed by a camera sensor, originally a 2mp
camera, later upgraded to 5 mp. Connection with the remote control terminal is via the
wireless network interface. Actuation is performed by the motor driver which connects
to servo motors. The DeepPi car, unlike DuckieBot, uses mechanical steering, the body
physics is more representative of a real-world vehicle. Power is provided by 2 x 18650
3.7v lithium ion batteries.
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Figure 35 – DeepPi Car Hardware Diagram

Python3 is used for the code base. Unlike DuckieBot, the DeepPi doesn’t use ROS and
the operation of the car is executed by a main module which makes calls to other python
modules. Figure 36 shows the python modules in the DeepPi car. Similar to the ROS
packages, each module is program for either a hardware or software component of the
vehicle.

Figure 36 – DeepPi Car Python Modules

Autonomous Driving Cognition
The camera sensor andOpenCV (Computer Vision) is for image processing. Google Tensor-
flow is used for machine learning. Due to the restricted computing resources available in
the raspberry pi, a Google Coral edge tensor processing unit (TPU) is used for high-speed
machine learning inferencing. The Coral TPU allows for 4 trillion operations (inferences)
to be performed per second using 2w of power.
The process for training the deep learning of the DeepPi Car involved the following:

• Installation of OpenCV for computer vision and image processing.
• Installation of Tensorflow and test object detection capability. To do this the COCO
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(Common Object in COntext) object detection model was run.
• Build LKAS into the detection model by training lane detection

Without accurate training of the object detection, the results can be inaccurate and lead
to over detection or inaccurate detection.

Figure 37 – COCO Object Detection Figure 38 – COCO Object Detection Misclassification

Like the DuckieBot, Canny Edge Detection and the Hough transformwas used to build the
LKAS.

Figure 39 – HSV and Canny Edge Detection
Figure 40 – Line Keeping Assistance System Calibration

The original code base was written by David Tian for blue lines and as a line follower not
a LKAS. For this thesis, the author rewrote the code as a LKAS for yellow lines. The code is
available on this link: https://gitlab.com/Self-DrivingRoberts/experimental-testbed-autonomous-driving/
-/tree/master/public .
In the development of the DeepPi car problems were encountered due to the limited
compute resources of the Raspberry Pi, the sensitivity of the mechanical components
and the lack of centralised efficient code management due to not using ROS. Early in the
development the object detection was encountering issues due to the poor definition of
the 2mp camera. The camerawas upgraded to 5mp, however, the increased size impacted
the mechanical movement brackets. The camera was stripped and reconfigured on the
DeepPi car, which enabled correct maneuvering. The LKAS was shown to have worked,
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however, due to the increased computational resources required, the frame rate of the
camera is not consistent and therefore the DeepPi car loses sensing of the road after 30
seconds.
Remote Control Operations
The DeepPi remote control operations has limited functionality. The operator can login
to a server which provides access to a GUI that allows functionality such as viewing the
on-board camera and manual control of the vehicle. The operator is unable to toggle be-
tween autonomous mode and human control. When human manual override is initiated
autonomy is lost until the vehicle is rebooted.

Figure 41 – Remote Control Figure 42 – Remote Control Server

3.4 Demonstration

The autonomous self-driving vehicle test bed has been demonstrated to Starship robotics,
ISEAUTOand ZF. The test bed is also available for viewing on a YouTube channel: https://
www.youtube.com/channel/UC7cXB9DSG6UCQAYHw4vkrSQ/videos. The videos on this
YouTube channel were created by the author.
The test bed is also available to be used as an open source lab. Each of the vehicles support
remote connection. A researcher interested in conducting security tests can remote into
the vehicle using VNC or SSH and run their tests.
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4 Evaluation

4.1 Method

Test cases are used to evaluate the autonomous self-driving vehicle test bed. The practical
security threat analysis method by Vasenev et al. [44] was customised to generate the test
cases to evaluate the test bed. The method established by Vasenev et al. is for internal
security testing and assumes privileged information access such as data flow diagrams.
A customised method was used in this thesis as it is tailored for an adversarial approach
with no prior knowledge of the autonomous vehicle.

Tool/ModelAnalysis Method STRIDEInput Observation of the test bedUNECE WP29 MatrixOutput Prioritised Security Threats
Table 4 – Analysis Method

Table 4 details that STRIDE is used as the security analysis method as it is the most widely
used for automotive[45]. The inputs to the STRIDE analysis come from expert opinion.
Firstly, experts observe the driving behaviour and on-board systems of the Duckiebot and
Deep Pi.Based on their observational analysis they provide their opinion as to what they
think are realistic threats to the vehicle based on their experience and testing processes
in their organisations. Secondly, these identified threats are compared to those listed in
the UNECE WP29 threat matrix. The reasoning for this is the cybersecurity certification
scheme from UNECE WP29 represents the future for automotive cybersecurity certifica-
tion and the inclusion of UNECE WP29 provides real-world relevance to the testing. The
consolidated list from the UNECE WP29 analysis is then presented to the experts for con-
sideration of what threats should be prioritised for testing. The output of the STRIDE
analysis are prioritised threats threats.
Expert opinion is used for the identification of security threats for the STRIDE analysis and
as themeans to select the prioritised security threats. Figure 43 shows the analysis flow to
generate test case for experimental testing. The analysis flow recommended by Vasenev
et al. has been tailored to include their contributions.
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Figure 43 – Flow of Test Case Generation

4.2 Expert Interviews

The method for inclusion of expert opinion followed the Technological Delphi method
as outlined by Bayona-Ore et al[65]. The Technological Delphi method consists of four
characteristics of what required for the inclusion of expert opinion in research:

1. Use of experts who are in a specific field or have technical knowledge and are part
of the expert panel.

2. Iterative process to allow experts to provide more than one opportunity to provide
an opinion.

3. Opportunity for feedback should feedback at the end of the experiment.
4. Each interviewee should not know each others answers to ensure the integrity of

the opinion and avoid biases
The Technological Delphi method utilises technological means for facilitation of an expert
opinion feedback loop. Technology used for communication of the test bed and feedback
with experts comprised of email, Skype, YouTube and workshops in the TTU Robotics lab-
oratory.
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Expert interviews were conducted with ISEAUTO, Starship Robotics, and ZF. The intervie-
wees met the criterion of experts as their roles consisted of; autonomous driving security
engineer, senior security engineer, director for safe driving, autonomous driving algorithm
designer and security architect. Each of their companies are considered leaders in the au-
tomotive industry, autonomous logistics, and autonomous vehicle education research.
Each interviewee, as per the method in figure 43, observed the test bed. Starship and
ISEAUTO viewed the test bed at the TTU Robotics Laboratory and ZF viewed the test bed
on the YouTube channel. The experts contributed threats based on their understanding of
real-world scenarios and how they test in their own organisations. The consolidated list of
threats, which combined all three expert opinions and those identified in the UNECE WP
29 Matrix, were reviewed by the experts and they prioritised the threats to evaluate the
test bed, based on real-world cyber threats experienced by their autonomous vehicles.
The experts provided feedback on the results of the test case experiments.
To ensure this work is published in an open forum and to protect each interviewee from
revealing the tactics, techniques and procedures used in cybersecurity testing in their or-
ganisation, their opinions have been summarised to allow inclusion in this thesis. Their
names, roles and discussion with this author will not be published.
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4.3 Security Test Cases

4.3.1 STRIDE Analysis

Figure 44 – STRIDE Threat Analysis
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4.3.2 UNECE WP 29 Matrix

Figure 45 – UNECE WP29 Consolidated Matrix

63



4.3.3 Expert Analysis

Threats to the vehicle communication channels, their sensors and perception were rated
as high priority by a majority of expert opinion. The justification for this is that it offers a
low-cost, low-skill attack that can be as successful as a complex software or network at-
tack. Experts expected adversarial machine learning attacks, sensor spoofing and blinding
andmanipulation of the variables in the driving environment to be a realistic and common
attack surface that will be seen on the streets of Tallinn and Helsinki. One expert thought
the inclusion of environmental perturbations of sensors such as fog, rain, smoke would be
interesting to replicate in the small-factor environment as this forms part of the combined
process for security and safety testing of their autonomous vehicle.
Threats to vehicle systems frommalware was another highly rated concern. Realistic sce-
narios include an angry mechanic or engineer manipulating an update script to install a
malicious ransomware or cryptocurrency malware. The experts saw insider threats as
one of the more likely scenarios as internal knowledge about update procedures and in-
vehicular components and networks were crucial for a successful attack. They opined the
likelihood of success of external adversarial attackswere reduced due to technical controls
such as code signing and secure communication between components.
A majority of expert opinion accentuated the importance of threats to the external con-
nectivity and connections. The justification for prioritising network attacks is that, in their
opinion, most urban mobility transport operators operate multiple autonomous vehicles
and a cyber attack that impacts the availability of the network or the confidentiality of the
network could lead to multiple vehicles being taken control of by the attacker or taken of-
fline from the remote operator console.
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4.3.4 Prioritised Security Threats

Figure 46 – STRIDE Threat Analysis
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4.4 Security Test Case Evaluation

4.4.1 Sensor and Perception Security Test Cases

Test Case 1: A malicious attacker spoofs the road markings to manipulate the drive logic
to veer the vehicle off the road.
Experiment Setup: The autonomous self-driving vehicle is set on autonomous mode for
5 minutes allowing the vehicle to navigate traffic.

1. Attacker observes the autonomous self-driving vehicle to understand how the au-
tonomous drive cognition makes decisions.

2. Attacker crafts an image for projection on the driving environment. Figure 47 and
48 demonstrate images chosen for projection.

3. Attacker positions the projector in proximity to the vehicle and uses a remote con-
trol to initiate the projection attack.

Figure 47 – Malicious Projec-
tion Image Figure 48 – Malicious Projection Image

Experiment Recording: https://www.youtube.com/watch?v=TYszVeblKEo Experi-
ment Results:The phantom attacks were unable to alter the driving actions of the duck-
iebot. Figure 49 shows the faint image of the phantom spoofed yellow line which is barely
visible due to the bright profile of the driving environment. Figure 50 visibly shows the
phantom spoofed line, due to a larger spoofed image being projected by the attacker. The
figure 50 image, from the Duckiebot camera shows that the autonomous drive cognition
is detecting the edges and texture of the yellow lines and white boundaries but is not de-
tecting the phantom image. This is due to the lack of edges, texture and geometry of the
phantom image.
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Figure 49 – Projector Attack 1 Figure 50 – Projector Attack 2

For Attack 4 (51) and 5 (52), the attacker uses larger and greater definition spoofed images
and includes yellow and white lines in order to spoof both lane markings and boundaries.
The attack is still unsuccessful as the autonomous drive cognition does not detect any
edges, texture or geometry of the phantom image. The attacker, pictured in figure 52, is
only 20 cm away from the road surface. To provide a clear phantom image the projector
had to be close to the target surface.

Figure 51 – Projector Attack 4 Figure 52 – Projector Attack 5

All of the variables in the Nassi et al. experiments were recreated with the Duckiebot.
The Phantom images were left projecting on the road surface for 10 minutes, the size of
the images were increased, the definition of the images increased, projection on different
sections of the floor and different environmental light. The DuckieBot was resilient to the
phantom attack and the autonomous drive cognition was not spoofed by the phantom
images.
Conclusion: Whilst a spoofing attack using projection is a novel and interesting method
to manipulate an autonomous vehicle it is unlikely or has low probability of success. The
projection must contend with natural light, which means the attack must be undertaken
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at night and it is not too difficult to update the object detection algorithm to filter out
these attacks.
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Test Case 2: Amalicious attacker tampers with the road markings to manipulate the drive
logic to veer the vehicle off the road.
Experiment Setup: The autonomous self-driving vehicle is set on autonomous mode for
5 minutes allowing the vehicle to navigate traffic.

1. Attacker observes the autonomous self-driving vehicle to understand how the au-
tonomous driving cognition makes decisions.

2. Attacker, using the understanding of the drive control algorithm, perturbs the road
markings in the duckietown environment. The attacker can choose a discreet or
noisy attack. The discreet attack will be harder for the human operator with the
remote control pc to see the perturbation of the road marking.

Figure 53 – Tile manipulation - discreet Figure 54 – Tile manipulation - noisy

ExperimentRecording: https://www.youtube.com/channel/UC7cXB9DSG6UCQAYHw4vkrSQ/
videos

Experiment Results: The experiments used five attacks, LKAS1 to 5. The Results confirmed
the findings of Sato et al. . Perturbation of a road marking can manipulate the drive al-
gorithm to cause the autonomous self-driving vehicle to veer off the intended path of
travel.
In LKAS Attack 1, the attacker tampered with the yellow lane markers to manipulate the
autonomous self-driving vehicle to drive off the road. The curve road part was changed
to a straight trajectory and the angle of the lane borders (white lines) were reduced to
lessen the width of the road. As Figure 56 demonstrates, the change to the roadmarkings
is demonstrable in the DuckieBot camera sensor footage, from the expected road mark-
ings exhibited in Figure 55. LKAS 1 was successful in manipulating the autonomous drive
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cognition of the DuckieBot, however, the DuckieBot’s autonomy is programmed to firstly
respect the lane boundaries. The DuckieBot followed the tampered yellow line until it
detected the lane boundary and then adjusted it’s travel path to the correct route.

Figure 55 – Normal Traffic Lane Markings Figure 56 – Spoofed Lane Markings - Discrete

In LKAS 2 and 3 the attacker extended the yellow lane markings further into the lane
boundaries. TheDuckieBot still respected the boundaries and corrected the path of travel.
LKAS 4 the attacker removed the lane boundaries and extended the yellow lane mark-
ings, as shown in Figure 57 . The attack was successful and the DuckieBot veered off the
DuckieTown environment and was unable to recover.

Figure 57 – LKAS5 - Successful Manipulation of Duckiebot

In LKAS 5, a more noisy profile of manipulated lane markings was used by the attacker.
The DuckieBot experienced limited manipulation of driving due to the DuckieBot sensing
yellow markings in the distance and calculated an accurate route of travel.
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Figure 58 – Spoofed Lane Markings - Noisy

Conclusion: Although this threat seems simplistic in the experimental test bed environ-
ment, the implications for a real-world operational vehicle are stark. As Sato et al. demon-
strated, an attacker can use a 3D printer to print a tampered road patch and place it on the
road markings of a highway. If this test had occurred on an autonomous vehicle travelling
at 40 mph the results of the impact analysis would show the extent of damage to which
sensor and perception attacks can cause.
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Test Case 3: A malicious attacker tampers with the camera sensor using a laser pointer to
blind or shield its perception tomanipulate the drive logic to veer the vehicle off the road.
Experiment Setup: The autonomous self-driving vehicle is set on autonomous mode for
5 minutes allowing the vehicle to navigate traffic.

1. Attacker observes the autonomous self-driving vehicle to understand how the drive
control makes decisions.

2. Attacker, using the understanding of the drive control algorithm, sets up a bosch
industrial laser at the side of the road.

3. Attacker turns on the laser to beam a red line across the road surface, spoofing the
red stop line programmed into the autonomous self-driving vehicle.

Figure 59 – Bosch Laser spoof attack Figure 60 – Bosch Laser spoof attack

ExperimentRecording:https://www.youtube.com/channel/UC7cXB9DSG6UCQAYHw4vkrSQ/
videos

Experiment Results: The results of the experiment were that the laser was successful in
tampering with the camera sensor which resulted in the autonomous driving cognition
altering the course of the vehicle to proceed off the road.
The laser must be held steady and focused on the camera lens long enough to disturb
the computer vision. Figure 61 demonstrates the DuckieBot veering off the road from the
laser perturbation.
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Figure 61 – Laser Attack - Crash 3

A concerning aspect of the attack was the lack of detection of the laser from the camera.
Figure 62 shows a laser perturbation from a spot laser beam. The only recognition of the
computer vision is the solid green line at the top left of the screen. This is the autonomous
driving cognition mistaking the red, of the laser beam, with the pre-programmed rules of
a red line for the stop condition.

Figure 62 – Laser Attack - Crash 7

The laser attack test case was conducted over 10 times. Only on three occasions was it
successful due to the requirement for correct placement on the camera lens.
Conclusion: The laser attack presents a real-world threat to operational autonomous self-
driving vehicles. The attack is inexpensive and can be conducted by an unskilled attacker.
The camera sensors of a real-world vehicle are much larger and present an easier target
for adversaries. Defensive mechanism that can be implemented to mitigate against this
attack include improving the algorithm to filter out disturbances from lasers.
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Test Case 4: A malicious attacker spoofs the roadside units to manipulate the drive logic
to veer the vehicle off the road.
Experiment Setup: The DuckieBot is set on autonomous mode for 5 minutes allowing the
DuckieBot to navigate traffic.

1. Attacker observes the autonomous self-driving vehicle to understand the how the
drive control algorithm makes decisions.

2. Attacker, using the understanding of the drive control algorithm, tampers with the
stop sign . The attacker uses yellow dashed lines and white border lines to cover
the stop sign with the intent of getting the DuckieBot to proceed through the stop
sign.

Experiment Results: Due to the problems encountered with the object detection the ex-
periment was unable to be conducted. The object detection in the both the DuckieBot
and the DeepPi is unable to function correctly as there is too much delay in the frame
rate of the camera. Due to this the vehicles cannot detect objects in the environment
consistently whilst driving. Using the object detection whilst the DuckieBot is static the
manipulated road sign is inaccurately detected as a lane marker. It can be seen that this
attack would be successful in manipulating the object detection of a working vehicle.

Figure 63 – Correct Stop Sign Figure 64 – Adversarial Machine Learning Rogue Sign
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4.4.2 Hardware & Compute Test Cases

Test Case 5: An innocent maintenance engineer executes a malicious cryptocurrency or
ransomwaremalware hiding as a firmware update for a vehicle system created by an angry
mechanic/insider.
Experiment Setup:

1. Angry Mechanic uploads malware script (Linux.MulDrop.14) from dark web
2. Malware script is packaged as a bash script that is labelled "update".
3. Maintenance engineer initiate "update" scriptwith intention update vehicle firmware.

Experiment Results: The "update" firmware (Figure 65) was executed by the innocent
maintenance engineer working on the DeepPi car.

Figure 65 – Update File

The update firmware contained the Linux.MulDrop.14 script.Linux.MulDrop.14 is a bash
script containing a cryptomining program. Once infectedon ahost computer the Linux.MulDrop.14
installs several libraries and processes for it’s operation and then tries to install zmap (net-
work scanner) and ssh pass (utility for establishing ssh connections). It uses zmap, in an
infinite loop, to discover the network and find raspberry pi’s and other embedded devices
with port 22 (ssh) open. If these are found, it connects to the device using ssh with default
passwords.It then changes the configuration settings of the device to allow a connection
to a command and control node used for cryptomining.
On the DeepPi car, the malware installed it’s libraries and zmap and ssh pass and began
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a zmap scan of the network. The DeepPi was on a private 4G network that also had the
DuckieBot connected. As these devices do not use default passwords it was unable to
establish a connection to them. The DuckieBot is also managed through docker environ-
ment which adds another layer of protection. The zmap scans only marginally impacted
the performance of the network of the DeepPi car. As figure 66 shows the zmap scan was
sending 50,000 packets to the target device, but these are only looking for open port 22.

Figure 66 – ZMAP Scan

An interesting event happened during the experiment. The 4G cellular private network
lost connection during the malware execution and the DeepPi Car switched over to the
TalTech wireless network. The zmap process then started to scan the TalTech network for
open Raspberry pi and embedded devices.TalTech IT Security incident response team saw
the DDoS traffic and removed the DeepPi car from the TalTech Wireless network within
10 minutes.
Conclusion: The implant of the malware on the DeepPi on-board computer was easy and
required low-skill. The experiment demonstrated the importance of basic IT security con-
trols in vehicles such as not using default passwords and regular patching. The malware
leakage to the TalTech network provided an interesting observation: an autonomous ve-
hicle could lose access to a secure network and instead connect to a more vulnerable
network which would allow malware to propagate more extensively. This highlights the
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importance security controls on the car and on the edge servers which the autonomous
car sends and receives data from.
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Test Case 6: A malicious attacker eavesdrops on the ROS vehicular messaging system for
information gathering.
Experiment Setup: For this attack, the attacker needs to be on the same network as the
vehicle.

1. Attacker scans the network and identifies the vehicle
2. Attacker eavesdrops on the ROS communication by spoofing the ROS Master

Experiment Results: Figure 67 shows the commands required for spoofing the ROSMaster
in the attacker environment. Port 11311 is the default port for the ROS Master.

Figure 67 – ROS Eavesdropping

The attacker proceeds to use the rqt_graph command to print the ROS node and topic
activity of the operational vehicle.

Figure 68 – ROS Graph

Figure 68 shows communications of the ROS Master that the attacker is eavesdropping.
The attacker can use this to learn of the operations of the vehicle and then use the same
spoofing of the ROSMaster to then initiate malicious processes or stop critical safety pro-
cesses.
Conclusion: ROS is highly insecure. The version that the DuckieBot is running is the same
as the vehicles used in the FinEst project. There is no authentication and secure commu-
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nication of the ROSMaster. The ROSMaster also uses HTTP so it is vulnerable to a number
of other malicious web application attacks.
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4.4.3 Connected Vehicle Security Test Cases

Test Case 7: A malicious attacker conducts a denial of service of the short-range wireless
network of the autonomous self-driving vehicle.
Experiment Setup: The autonomous self-driving vehicle is set on autonomous mode for
5 minutes allowing the vehicle to navigate traffic.

1. Attacker scans wireless and cellular networks of the vehicle usingWiFi Pineapple or
a PC with network scanning software such as nmap or airmagnet.

2. Attacker finds theWiFi access point connecting to the human operator console and
autonomous self-driving vehicle.

3. Attacker De-authenticates the devices connected to the WiFi access point.

Experiment Recording: https://www.youtube.com/watch?v=YWg_tpIIpP0

Experiment Results: A scan of all wireless networks was conducted using the Hak5 WiFi
pineapple device. The WiFi pineapple can be considered a malicious access point that
acts as a man-in-the-middle between the wireless network and the client device. It can
scan, capture traffic and execute a number of attacks such as capturing passwords of in-
secure network protocols. Figure 69 presents the outcomes of the wireless network scan.
The HUAWEI Y5 2018 network is identified as the vehicle network from analysing the sig-
nal strength and capturing the traffic. Figure ?? demonstrates the attacker selected the
network to conduct the deauthentication attack.

Figure 69 – Scan of Wireless Networks
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Figure 70 – De-Authentication of Vehicle WiFi Network

Figure 71 shows the workflow of the deauthentication attack. The attacker connects to
the vehicle network, monitors the traffic and then deauthenticates the client, which in
this case is the DuckieBot.

Figure 71 – Deauthentication workflow

[66, p.108]
The deauthentication attack was attempted twice. Both attempts were successful. Figure
72 shows the human remote operator console after it loses access to the network con-
nection with the DuckieBoT and the DuckieBot accelerates off the road. Figure 73 shows
the DuckieBot impacting the wall when it loses connectivity. The DuckieBot continues to
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accelerate on hitting the wall.

Figure 72 – Human Remote Operator Console View - WiFi
Crash

Figure 73 – WiFi Crash

Conclusion: The DDoS attack had the most impact due to lost of control of the human
operator to safely stop the vehicle. Only with manual intervention to turn off the battery
at the DuckieBot was the vehicle stopped. This demonstrates the catastrophic scenario,
in a hybrid control mode, if the human control is lost, there is little that can be done to
ensure the safety of the vehicle and it’s occupants.
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4.4.4 Environmental Perturbations

Test Case 8: Smoke from fire obscures the driving environment causing vehicle to take
adverse driving behaviour.
Experiment Setup:

1. A 400w smoke machine is placed next to the environment. The smoke machine is
filled with special liquid and then activated using the command controller. Smoke
envelops the driving environment.

Note: This experiment was conducted with a fire extinguisher close by in case of fire.

Figure 74 – Environmental Setup - Smoke Machine and DuckieTown

Experiment Recording: https://www.youtube.com/watch?v=yLjuV5sMnwo

Experiment Results: The experiments were conducted under three different lighting con-
ditions: controlled lights, natural light, controlled dark lighting. In all lighting conditions
the smoke was able to perturb the camera sensor to alter the driving path of the Duck-
ieBot to crash out of the road environment.
The initial experimental tests, which were unsuccessful in altering the DuckieBot path,
showed that the most important variables were the denseness of the smoke and the abil-
ity of the smoke to linger in the air to envelop the camera. The first three smoke experi-
mental tests demonstrated the autonomous driving cognition being lost due to the smoke
hazard, however, as the smoke stream was momentary, the detection of the lane mark-
ings were recovered in time to navigate accurately. Figure 75 shows the smoke perturbing
the object detection of the lane markings and figure 76 displays how the object detection
was recovered.
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Figure 75 – Smoke - Test 5 External View Figure 76 – Smoke - Test 5 DuckieBot Object Detection

Figure 77 and figure 78 shows the smoke affecting the autonomous driving cognition to
the point were the DuckieBot is unable to recognise the lane markings.

Figure 77 – Smoke - Test 5 External View Figure 78 – Smoke - Test 5 DuckieBot Computer vision

Conclusion: The test case demonstrated the utility of the small-factor test environment
in being able to simulate diverse environment conditions. Based on the results of the test
case it may be possible to include safety testing in the scope of the test bed.
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4.5 Test Case Feedback

The expert interviewees commented that the small-factor autonomous test bed was an
innovative and creative solution for cybersecurity testing. The feedback of the DuckieBoT
andDeepPiwere that theywere useful for test cases involving ROS and the drive algorithm
and discovering edge cases for cybersecurity testing. To increase relevance of the small-
factor test bed for operational vehicles, the small-factor concept needs to be extended to
include embedded components such as ECUs and in-vehicular networks. Also, the multi-
sensor fusion framework should be included in the architecture of the vehicle so sensor
redundancy can be evaluated. Limitations of the small-factor test bed identified by the
experts were the limited ability to simulate real-world environmental conditions such as
snow storms and the speed of a real-world operational vehicle.

4.6 Discussion

4.6.1 How can a low-cost, small-factor, autonomous self-driving test bed be used for
cybersecurity testing?

The test bed supported test cases providedby expert opinion and generated fromaSTRIDE
analysis which included threats from the UNECE WP 29 threat catalogue. The test cases
demonstrated that the test bed can allow for cybersecurity testing of the sensors and
perception, computer & hardware and connected vehicle.
The small-factor test beddemonstrated it’s use in validating the viability of proof-of-concept
attacks such as that of the projector attack. Based on the results of the testing, it was able
to be shown that the projector attack was very difficult to accomplish and had a low prob-
ability of success in the real-world.
TheWiFi test case provided insights into possibilities for interoperability and human oper-
ator research. The vulnerabilities of the network interface, exploited in the cybersecurity
test case, impacted the vehicle behaviour and human control.

4.6.2 How can a low-cost, small-factor autonomous self-driving vehicle and driving en-
vironment be designed?

Two autonomous self-driving vehicle were created for less than €300. The characteristics
they shared with real world operational vehicles included the software systems, network
interfaces and algorithmic control of driving behaviour. Small-factor autonomous self-
driving vehicles.
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In the design of small-factor vehicles physical properties are an important consideration.
The DeepPi car’s mechanical steering mechanism provides a more realistic comparison
to real-world vehicles, whilst, the DuckieBot is able to use it’s LEDs to drive in dark and
low-lighting environments.
Adding additional hardware in the small-factor vehicle requires multiple upgrades to the
architecture, such as; batteries, re-wiring, re-assembly of parts, cooling systems, data stor-
age andmemory. During the design, the configuration of theDuckieBot had to be changed
as the components melted due to excessive heat. During the course of the design and ex-
periments it took weeks of effort to reconfigure the DuckieBot and DeepPi car to replace
components with upgraded versions. This effort, however, pales in comparison to the
required effort to upgrade or change the design of a real-world operational vehicle.

4.6.3 How can cybersecurity testing of a small-factor autonomous self-driving vehicle
test bed used to improve cybersecurity of the FinEst autonomous self-driving ve-
hicles?

Control of the small-factor environment allowed greater diversity of cybersecurity test-
ing with lower cost and less resources required. A fundamental proof of this is the test
LKAS manipulation. In a real-world environment this would require repainting a road, the
vehicle must be clear of obstacles and pedestrians and any damage to the vehicle would
end the experiment. In the small-factor environment the experiment could be executed
as many times as possible and the effort to achieve the setup of the testing scenario and
repair any damage was minimal.
The modular nature of the small-factor environment allows features to be added as de-
signs and technology of autonomous vehicles change. This is also true of the software
systems. For autonomous vehicular projects of a research and development nature such
as those used in the FinEst project, the small-factor test bed allows for agility in testing
system design changes.

4.6.4 What are the limitations of test beds for autonomous self-driving vehicle cyber-
security testing?

The small-factor testbed cannot exactly replicate the architecture of a full-factor autonomous
vehicle. Key differences are the diversity of embedded components and the limited com-
putational resources of the small-factor vehicles. In the architecture of a full-factor au-
tonomous vehicle the neural network will use resources locally, such as the NVIDIA Drive
platform will be on-board the vehicle. This is opposed to the small-factor environment,
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which, due to it’s limited computation resources must access resources in a cloud envi-
ronment such as Google Colab.

4.6.5 Can automation and sensor failures caused by cyber attacks be identified using
an experimental test bed?

As aforementioned, there is an increase in accidents of autonomous self-driving vehicle
due to failures of object-detection and sensor and perception technology. The related
work demonstrated how a cyber adversary could construct the samemanipulations using
adversarial tactics. One of the fundamental values of the small-factor environment for
security testing demonstrated in the test case evaluation is that it can evaluate sensors and
perception against a wide range of adversarial cyber threats and include damage incurring
test cases.
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5 Conclusion

5.1 Conclusion

This thesis sought to solve the problem of whether small-factor test beds could provide
a viable option for the testing for cybersecurity of real-world operational autonomous
vehicles such as those used on the streets of Tallinn to Helsinki. This was successfully
proven with the development and evaluation of a test bed consisting of two small-factor
autonomous self-driving vehicles and a driving environment. The design established that a
small-factor autonomous self-driving test bed could be created, at low-cost, under €300,
and resemble systems used on operational vehicles such as; ROS, network interfaces and
drive control functionality.
The evaluation of the test bed using realistic test cases provided by experts proved that cy-
bersecurity testing in the small-factor environment was viable and valuable in performing
a variety of tests on sensors and perception, communication channels and hardware and
compute. The results of the test cases demonstrated that vulnerabilities could be found
in the small-factor environment that had relevance to the real-world environment. These
findings can be used to improve the security of the vehicle to cyber attacks by implemen-
tation of defensive controls as well as increasing the awareness of automotive engineers
and algorithm designers of the vulnerabilities of their systems.
Limitations of the test bed environment were that it couldn’t fully replicate the diversity
of electrical components, speed and environmental conditions of a real-world operational
vehicle. Another major limitation in the use of small-factor autonomous vehicles is the
limited computational resources available on-board. For robust, trained object-detection,
the small-factor autonomous vehicle needs to utilise resources from the cloud for oper-
ation of the object-detection algorithm, storing of training data and to alleviate resource
usage locally on the small-factor vehicle. As this is one of the first such studies into small-
factor test beds, the development and innovation of small-factor autonomous vehicles
may bridge this gap.
As identified in the case of the Tesla crash in Florida and the Uber crash in Arizona, in-
tegrity of sensors and the autonomous driving algorithm is of predominant importance
for safety and security of the autonomous vehicle and it’s passengers. The evaluation of
the test bed demonstrated that cyber attacks that impact the sensors and perception of an
autonomous vehicle could be replicated in a small-factor environment. The contribution
of the small-factor test bed artifact and the methods outlined in the test cases provide a
tangible contribution that autonomous system designers can use to validate vulnerabili-
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ties in sensors and perception to prevent events such as the aforementioned occurring in
real-world traffic.
The code for the DeepPi vehicle has been published under an open source license and can
be found in the following link: https://gitlab.com/Self-DrivingRoberts/experimental-testbed-autonomous-driving/
-/tree/master/public/DeepPiCar. The video demonstrations for the cybersecurity
test cases is publically demonstrated on YouTube and can be found in the following link:
https://www.youtube.com/channel/UC7cXB9DSG6UCQAYHw4vkrSQ/videos

5.2 Future Work

As the contribution of this thesis had a practical objective of improving the cybersecurity
of vehicles in the FINEST Twins Center of Excellence project, the next phase of this work
will be to build a small-factor version of the TalTech ISEAUTO autonomous vehicle. The
next phase will attempt to emulate the full sensor profile of the ISEAUTO, in-vehicular
networks such as CAN and embedded components. The new small-factor test bed envi-
ronment will also be tested to support new cybersecurity testing process methodologies
within the working of the International Alliance for Mobility Testing and Standardisation
(IAMTS) Working Group 4 - Cybersecurity.
The DuckieTown test bed environment will also be extended to include v2v, v2i and v2x
network interfaces. The aim will be to increase the functionality of the test bed and con-
duct research of; digital forensics and human operator cybersecurity awareness.

89



References

[1] Anton Tammsaare. Tõde ja õigus. 1932.
[2] Praveena Penmetsa, Emmanuel Kofi Adanu, Dustin Wood, Teng Wang, and Steven L.

Jones. Perceptions and expectations of autonomous vehicles – a snapshot of vul-
nerable road user opinion. Technological Forecasting and Social Change, 143:9 – 13,
2019.

[3] R. Mariani. An overview of autonomous vehicles safety. In 2018 IEEE International
Reliability Physics Symposium (IRPS), pages 6A.1–1–6A.1–6, March 2018.

[4] A.Davies (2019, May.). Tesla’s Latest Autopilot Death Looks
Just Like a Prior Crash, WIRED Magazine. Accessed 20 March,
2020. [Online]. Available:https://www.wired.com/story/
teslas-latest-autopilot-death-looks-like-prior-crash/.

[5] A.Marshall (2018, Mar.). Uber’s Self-Driving Car Just Killed Somebody. Now What?,
WIRED Magazine. Accessed 20 May, 2020. [Online]. Available:https://www.
wired.com/story/uber-self-driving-car-crash-arizona-pedestrian/.

[6] C.Miller & C.Valasek (2015, Aug.). Remote Exploitation of an Unaltered Passenger
Vehicle. Accessed 20 June, 2020. [Online]. Available:http://illmatics.com/
Remote%20Car%20Hacking.pdf.

[7] Ralf-Martin Soe. Finest twins: Platform for cross-border smart city solutions. In
Proceedings of the 18th Annual International Conference on Digital Government Re-
search, dg.o ’17, page 352–357, New York, NY, USA, 2017. Association for Computing
Machinery.

[8] D. Zelle, R. Rieke, C. Plappert, C. Krauß, D. Levshun, andA. Chechulin. Sepad – security
evaluation platform for autonomous driving. In 2020 28th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP), pages 413–
420, 2020.

[9] Jacopo Tani, Liam Paull, Maria T. Zuber, Daniela Rus, Jonathan How, John Leonard,
and Andrea Censi. Duckietown: An innovative way to teach autonomy. In Dimitris
Alimisis, Michele Moro, and Emanuele Menegatti, editors, Educational Robotics in
the Makers Era, pages 104–121, Cham, 2017. Springer International Publishing.

[10] C. Herley and P. C. Van Oorschot. Sok: Science, security and the elusive goal of se-
curity as a scientific pursuit. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 99–120, 2017.

90



[11] EUHorizon 2020Research and Innovation Programme. Future Automated BusUrban
Level Operation System, (May 20, 2020). ://fabulos.eu/.

[12] S.Cantrill (2013, Jun.). Speaking Frankly: The allure of Pasteur’s
quadrant. Accessed 20 March, 2020. [Online]. Available:http:
//blogs.nature.com/thescepticalchymist/2013/06/

speaking-frankly-the-allure-of-pasteurs-quadrant.html.
[13] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatterjee. A de-

sign science research methodology for information systems research. J. Manage.
Inf. Syst., 24(3):45–77, December 2007.

[14] Jonathan Petit and Steven Shladover. Potential cyberattacks on automated vehicles.
Intelligent Transportation Systems, IEEE Transactions on, PP:1–11, 09 2014.

[15] Abasi-Amefon O. Affia, Raimundas Matulevicius, and Alexander Nolte. Security risk
management in cooperative intelligent transportation systems: A systematic litera-
ture review. In Hervé Panetto, Christophe Debruyne, Martin Hepp, Dave Lewis, Clau-
dio Agostino Ardagna, and Robert Meersman, editors, On the Move to Meaningful
Internet Systems: OTM 2019 Conferences - Confederated International Conferences:
CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, October 21-25, 2019, Proceedings, vol-
ume 11877 of Lecture Notes in Computer Science, pages 282–300. Springer, 2019.

[16] S. Parkinson, P. Ward, K. Wilson, and J. Miller. Cyber threats facing autonomous and
connected vehicles: Future challenges. IEEE Transactions on Intelligent Transporta-
tion Systems, 18(11):2898–2915, Nov 2017.

[17] Stephen Checkoway, DamonMcCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno.
Comprehensive experimental analyses of automotive attack surfaces. In Proceed-
ings of the 20th USENIX Conference on Security, SEC’11, page 6, USA, 2011. USENIX
Association.

[18] V. L. L. Thing and J. Wu. Autonomous vehicle security: A taxonomy of attacks and
defences. In 2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 164–170,
Dec 2016.

[19] Sghiri Meryem and Tomader Mazri. Security study and challenges of connected au-
tonomous vehicles. In Proceedings of the 4th International Conference on Smart City
Applications, SCA ’19, New York, NY, USA, 2019. Association for Computing Machin-
ery.

91



[20] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin. The security of autonomous driving:
Threats, defenses, and future directions. Proceedings of the IEEE, 108(2):357–372,
2020.

[21] European Union Agency for Cybersecurity (2019, November.). ENISA good practices
for security of Smart Cars. Accessed 20 March, 2020. [Online]. Available:https:
//www.enisa.europa.eu/publications/smart-cars.

[22] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Atul Prakash,
Amir Rahmati, and Dawn Song. Robust physical-world attacks on machine learning
models. 07 2017.

[23] BenNassi, Dudi Nassi, Raz Ben-Netanel, YisroelMirsky, OlegDrokin, and Yuval Elovici.
Phantom of the adas: Phantom attacks on driver-assistance systems. Cryptology
ePrint Archive, Report 2020/085, 2020. https://eprint.iacr.org/2020/085.

[24] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi,
Qi Alfred Chen, Kevin Fu, and Z. Morley Mao. Adversarial sensor attack on lidar-
based perception in autonomous driving. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page 2267–2281,
New York, NY, USA, 2019. Association for Computing Machinery.

[25] Takami Sato, Junjie Shen, Ningfei Wang, Yunhan Jia, Xue Lin, and Qi Alfred Chen.
Security of deep learning based lane keeping systemunder physical-world adversarial
attack, 03 2020.

[26] Drew Davidson, Hao Wu, Rob Jellinek, Vikas Singh, and Thomas Ristenpart. Control-
ling uavs with sensor input spoofing attacks. In 10th USENIX Workshop on Offensive
Technologies (WOOT 16), Austin, TX, August 2016. USENIX Association.

[27] SAVIOR: Securing autonomous vehicles with robust physical invariants. In 29th
USENIX Security Symposium (USENIX Security 20), Boston, MA, August 2020. USENIX
Association.

[28] Se-Yeon Jeong, I-Ju Choi, Yeong-Jin Kim, Yong-Min Shin, Jeong-Hun Han, Goo-Hong
Jung, and Kyoung-Gon Kim. A study on ros vulnerabilities and countermeasure. In
Proceedings of the Companion of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, HRI ’17, page 147–148, NewYork, NY, USA, 2017. Association
for Computing Machinery.

[29] Nils Weiss, Markus Schrötter, and Rudolf Hackenberg. On threat analysis and risk
estimation of automotive ransomware. InACMComputer Science in Cars Symposium,
CSCS ’19, New York, NY, USA, 2019. Association for Computing Machinery.

92



[30] Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho Oh, Wenyuan Xu,
Marco Gruteser, Wade Trappe, and Ivan Seskar. Security and privacy vulnerabilities
of in-car wireless networks: A tire pressure monitoring system case study. In Pro-
ceedings of the 19th USENIX Conference on Security, USENIX Security’10, page 21,
USA, 2010. USENIX Association.

[31] S. Tbatou, A. Ramrami, and Y. Tabii. Security of communications in connected cars
modeling and safety assessment. In Proceedings of the 2nd International Conference
on Big Data, Cloud and Applications, BDCA’17, New York, NY, USA, 2017. Association
for Computing Machinery.

[32] Road vehicles - Safety of the intended functionality. ISO/PAS 21448:2019. Accessed:
20 June, 2020. [Online]. Available:. https://www.iso.org/standard/70939.

html.
[33] Road Vehicles - Functional Safety. ISO 26262. Accessed: 20 June, 2020. [Online].

Available:. https://www.iso.org/standard/68383.html.
[34] Road vehicles — Cybersecurity engineering. ISO/SAE DIS 21434. Accessed: 20 June,

2020. [Online]. Available:. https://www.iso.org/standard/70918.html.
[35] Information technology — Security techniques — Evaluation criteria for IT security

(Common Criteria). ISO/IEC 15408-1:2009. Accessed: 20 June, 2020. [Online]. Avail-
able:. https://www.iso.org/standard/50341.html.

[36] Hardware Protected Security for Ground Vehicles. SAE J3061. Accessed: 20 June,
2020. [Online]. Available:. https://www.sae.org/standards/content/j3061_
201601/.

[37] Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. SAE J3061. Ac-
cessed: 20 June, 2020. [Online]. Available:. https://www.sae.org/standards/
content/j3061/.

[38] Intelligent Transport Systems; Security. ETSI TS 102 940 - 102 943. Accessed: 20 June,
2020. [Online]. Available:. https://www.etsi.org/deliver/etsi_ts/102900_
102999/102943/01.01.01_60/ts_102943v010101p.pdf.

[39] Automotive Cybersecurity Management System Audit. VDA-QMC AK ACSMS.
Accessed: 20 June, 2020. [Online]. Available:. https://vda-qmc.de/fileadmin/
redakteur/Publikationen/Gelbdrucke/VDA_Yellow_Volume_ACSMS_EN_1_

edition_2020.pdf.
[40] The fundamental principles of automotive cyber security. BSI PAS 1885:2018.

93



[41] Connected automotive ecosystems. Impact of security on safety.Code of practice. BSI
PAS 11281:2018.

[42] David Förster, Claudia Loderhose, Thomas Bruckschlögl, and Franziska Wiemer.
Safety goals in vehicle security analyses. In 17th escar Europe : embedded security
in cars (Konferenzveröffentlichung), a method to assess malicious attacks with safety
impact. 2019.

[43] Alastair Ruddle, David Ward, Benjamin Weyl, Sabir Idrees, Yves Roudier, Michael
Friedewald, Timo Leimbach, Andreas Fuchs, Sigrid Gürgens, Olaf Henniger, Roland
Rieke, Matthias Ritscher, Henrik Broberg, Ludovic Apvrille, Renaud Pacalet, and
Gabriel Pedroza. Security requirements for automotive on-board networks based
on dark-side scenarios, 01 2009.

[44] Alexandr Vasenev., Florian Stahl., Hayk Hamazaryan., Zhendong Ma., Lijun Shan.,
Joerg Kemmerich., and Claire Loiseaux. Practical security and privacy threat analysis
in the automotive domain: Long term support scenario for over-the-air updates. In
Proceedings of the 5th International Conference onVehicle Technology and Intelligent
Transport Systems - Volume 1: VEHITS,, pages 550–555. INSTICC, SciTePress, 2019.

[45] L.Shan (2019, April.). D10: State-of-the-art Analysis and Applicability of Stan-
dards”. Accessed 20 July, 2020. [Online]. Available:https://secredas-project.
eu/wp-content/uploads/2017/01/SECREDAS-D10-2.pdf.

[46] J. Axelsson, A. Kobetski, Z. Ni, S. Zhang, and E. Johansson. Moped: A mobile open
platform for experimental design of cyber-physical systems. In 2014 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applications, pages 423–
430, 2014.

[47] D.Tian (2019, April.). Deep Learning, Self Driving Robotic Car on a Shoestring Budget.
Accessed 20 March, 2020. [Online]. Available:https://towardsdatascience.
com/deeppicar-part-1-102e03c83f2c.

[48] Rahul Bhadani, Jonathan Sprinkle, and Matthew Bunting. The CAT Vehicle Testbed:
A Simulator with Hardware in the Loop for Autonomous Vehicle Applications. In Pro-
ceedings 2nd International Workshop on Safe Control of Autonomous Vehicles (SCAV
2018), Porto, Portugal, Electronic Proceedings in Theoretical Computer Science, vol-
ume 269, 04/2018 2018.

[49] Eduardo Sens dos Santos. Towards a simulationbased framework for the security
testing of autonomous vehicles. 2018.

94



[50] Convention on Road Traffic, Vienna, 8 November 1968. Available:. https://

www.unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf. Online; Ac-
cessed 02 March, 2020.

[51] Traffic Act, RTI, 07.05.2020.30. Available:. https://www.riigiteataja.ee/en/
compare_original?id=519052020004. Online; Accessed 02 July, 2020.

[52] Republic of Estonia: GCIO Office (2019, May.). Artificial Intelligence for Esto-
nia. Accessed 20 March, 2020. [Online]. Available:https://www.kratid.ee/
in-english.

[53] Independent High-Level Group on Artificial Intelligence (2019, April.).
Ethics Guidelines for Trustworthy AI. Accessed 20 March, 2020. [Online].
Available:https://ec.europa.eu/digital-single-market/en/news/
ethics-guidelines-trustworthy-ai.

[54] T.Wessing (2019, Apr.). Who is in the driver’s seat? Data protection
challenges in the connected car landscape“, lexology. Accessed 22 May,
2020. [Online]. Available:https://www.lexology.com/library/detail.aspx?
g=b77a4401-e042-4de7-b416-ab7ddd9fdc8b.

[55] Draft Recommendation on Cyber Security of the Task Force on Cyber Secu-
rity and Over-the-air issues of UNECE WP.29 GRVA, Geneva, 20 September
2018. Available:. https://www.unece.org/fileadmin/DAM/trans/doc/2018/
wp29grva/GRVA-01-17.pdf. Online; Accessed 02 May, 2020.

[56] J. Gerdes and Sarah Thornton. Implementable Ethics for Autonomous Vehicles, pages
87–102. 05 2016.

[57] Maximilian Wächter, Anja Faulhaber, Felix Blind, Silja Timm, Anke Dittmer, Leon Süt-
feld, Achim Stephan, Gordon Pipa, and Peter König. Human decisions inmoral dilem-
mas are largely described by utilitarianism: virtual car driving study provides guide-
lines for advs. Science and Engineering Ethics, 25, 06 2017.

[58] Patrick Lin. Why Ethics Matters for Autonomous Cars, pages 69–85. 05 2016.
[59] Federal Ministry of Transportation and Digital Infrastructure. " ETHICS COMMISSION

AUTOMATED AND CONNECTED DRIVING", (2017, June). https://www.bmvi.de/

SharedDocs/EN/publications/report-ethics-commission.pdf?__blob=

publicationFile. Online; Accessed 02 March, 2020.
[60] Cara Bloom, Joshua Tan, Javed Ramjohn, and Lujo Bauer. Self-driving cars and data

collection: Privacy perceptions of networked autonomous vehicles. In Thirteenth

95



SymposiumonUsable Privacy and Security (SOUPS 2017), pages 357–375, Santa Clara,
CA, July 2017. USENIX Association.

[61] Samantha Reig, Selena Norman, Cecilia G. Morales, Samadrita Das, Aaron Steinfeld,
and Jodi Forlizzi. A field study of pedestrians and autonomous vehicles. In Proceed-
ings of the 10th International Conference on Automotive User Interfaces and Inter-
active Vehicular Applications, AutomotiveUI ’18, page 198–209, New York, NY, USA,
2018. Association for Computing Machinery.

[62] Ningfei Wang Yunhan Jack Jia Xue Lin Takami Sato, Junjie Shen and Qi Alfred Chen.
Poster: Security of deep learning based lane keeping assistance system under
physical-world adversarial attack. In The Network and Distributed System Security
Symposium 2020, NDSS ’20, 2020.

[63] R.Sell. ISEAUTO Hardware Diagram V2. 2019.
[64] A. Hahn, A. Ashok, S. Sridhar, andM. Govindarasu. Cyber-physical security testbeds:

Architecture, application, and evaluation for smart grid. IEEE Transactions on Smart
Grid, 4(2):847–855, 2013.

[65] Luz Bayona-Ore, Ronald Fernández Zavala, andMaría Luyo Cruz. Expert opinion pro-
cess: Applications in education. In Proceedings of the 10th International Conference
on Education Technology and Computers, ICETC ’18, page 172–176, New York, NY, USA,
2018. Association for Computing Machinery.

[66] HaithamAmeen,Mohd Shahidan, andHaydarMohammed. An automated approach
to detect deauthentication and disassociation dos attacks on wireless 802.11 net-
works. 06 2015.

[67] Jonathan Petit and Steven Shladover. Potential cyberattacks on automated vehicles.
Intelligent Transportation Systems, IEEE Transactions on, PP:1–11, 09 2014.

96



Appendix 1 - Attack Surfaces in Autonomous Automated Vehi-
cles

97



[67]

98
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Appendix 4 - DuckieBot LKAS Code

This codewas created by the DukieTown[9] project and is not a contribution of the author.
impor t numpy as np
impor t cv2
from . l i n e _ d e t e c t o r _ i n t e r f a c e impor t De te c t i on s , L i n e D e t e c t o r I n t e r f a c e
impor t d u c k i e t own_u t i l s as dtu

c l a s s L i neDe te c to r2Dense ( dtu . Con f i g u r ab l e , L i n e D e t e c t o r I n t e r f a c e ) :
de f _ _ i n i t _ _ ( s e l f , c o n f i g u r a t i o n ) :

# Images to be proces sed
s e l f . bgr = np . empty ( 0 )
s e l f . hsv = np . empty ( 0 )
s e l f . edges = np . empty ( 0 )
param_names = [

’ h sv_wh i te 1 ’ ,
’ hsv_whi te2 ’ ,
’ h s v_ye l l ow1 ’ ,
’ h sv_ye l low2 ’ ,
’ h sv_red1 ’ ,
’ hsv_red2 ’ ,
’ hsv_red3 ’ ,
’ hsv_red4 ’ ,
’ d i l a t i o n _ k e r n e l _ s i z e ’ ,
’ c anny_ th re sho ld s ’ ,
’ s obe l _ t h r e s ho l d ’ ,

]
dtu . C o n f i g u r a b l e . _ _ i n i t _ _ ( s e l f , param_names , c o n f i g u r a t i o n )

de f _ c o l o r F i l t e r ( s e l f , c o l o r ) :
# t h r e s ho l d c o l o r s i n HSV space
i f c o l o r == ’ white ’ :

107



bw = cv2 . inRange ( s e l f . hsv , s e l f . h sv_wh i te 1 , s e l f . h sv_wh i te2 )
e l i f c o l o r == ’ ye l low ’ :

bw = cv2 . inRange ( s e l f . hsv , s e l f . h s v_ye l l ow1 , s e l f . h s v_ye l l ow2 )
e l i f c o l o r == ’ red ’ :

bw1 = cv2 . inRange ( s e l f . hsv , s e l f . h sv_ red1 , s e l f . hsv_red2 )
bw2 = cv2 . inRange ( s e l f . hsv , s e l f . hsv_red3 , s e l f . hsv_red4 )
bw = cv2 . b i tw i s e _ o r ( bw1 , bw2 )

e l s e :
r a i s e E x c ep t i on ( ’ E r r o r : Undef ined c o l o r s t r i n g s . . . ’ )

# b i n a r y d i l a t i o n
k e r n e l = cv2 . g e t S t r u c t u r i n g E l emen t ( cv2 . MORPH_ELLIPSE , ( s e l f . d i l a t i o n _ k e r n e l _ s i z e , s e l f . d i l a t i o n _ k e r n e l _ s i z e ) )
# r e f i n e edge f o r c e r t a i n c o l o r
edge_co lo r = cv2 . b i tw i s e_and ( cv2 . d i l a t e ( bw , k e r n e l ) , s e l f . edges )
r e t u r n bw , edge_co lo r

de f _ l i n e F i l t e r ( s e l f , bw , edge_co lo r ) :
# f i n d g r a d i e n t o f the bw image
grad_x = −cv2 . Sobe l ( bw/255 , cv2 . CV_32F , 1 , 0 , k s i z e =5 )
g rad_y = −cv2 . Sobe l ( bw/255 , cv2 . CV_32F , 0 , 1 , k s i z e =5 )
g rad_x *= ( edge_co lo r == 255 )
g rad_y *= ( edge_co lo r == 255 )
# compute g r a d i e n t and t h r e s h o l d i n g
grad = np . s q r t ( g rad_x **2 + grad_y **2 )
r o i = ( grad > s e l f . s o b e l _ t h r e s h o l d )
# p r i n t np . un ique ( grad )
# p r i n t np . sum ( r o i )
# tu rn i n t o a l i s t o f p o i n t s and normals
r o i _ y , r o i _ x = np . nonzero ( r o i )
c e n t e r s = np . v s t a c k ( ( r o i _ x , r o i _ y ) ) . t r an spo se ( )
normals = np . v s t a c k ( ( g rad_x [ r o i ] , g rad_y [ r o i ] ) ) . t r an spo se ( )
normals /= np . s q r t ( np . sum ( normals **2 , a x i s = 1 , keepdims = True ) )
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l i n e s = s e l f . _ s y n t h e s i z e L i n e s ( cen te r s , normals )
r e t u r n l i n e s , normals , c e n t e r s

de f _ f i ndEdge ( s e l f , g r ay ) :
edges = cv2 . Canny ( gray , s e l f . c anny_ t h r e sho l d s [ 0 ] , s e l f . c anny_ t h r e sho l d s [ 1 ] , a p e r t u r e S i z e = 3 )
r e t u r n edges

def _checkBounds ( s e l f , v a l , bound ) :
v a l [ va l <0]=0
v a l [ va l >=bound ]= bound−1
r e t u r n v a l

de f _ s y n t h e s i z e L i n e s ( s e l f , c en te r s , normals ) :
l i n e s = [ ]
i f l e n ( c e n t e r s ) >0 :

x 1 = ( c e n t e r s [ : , 0 : 1 ] + normals [ : , 1 : 2 ] * 6 . ) . a s t ype ( ’ i n t ’ )
y 1 = ( c e n t e r s [ : , 1 : 2 ] − normals [ : , 0 : 1 ] * 6 . ) . a s t ype ( ’ i n t ’ )
x2 = ( c e n t e r s [ : , 0 : 1 ] − normals [ : , 1 : 2 ] * 6 . ) . a s t ype ( ’ i n t ’ )
y2 = ( c e n t e r s [ : , 1 : 2 ] + normals [ : , 0 : 1 ] * 6 . ) . a s t ype ( ’ i n t ’ )
x 1 = s e l f . _checkBounds ( x1 , s e l f . bgr . shape [ 1 ] )
y 1 = s e l f . _checkBounds ( y1 , s e l f . bgr . shape [ 0 ] )
x2 = s e l f . _checkBounds ( x2 , s e l f . bgr . shape [ 1 ] )
y2 = s e l f . _checkBounds ( y2 , s e l f . bgr . shape [ 0 ] )
l i n e s = np . h s t a c k ( [ x1 , y1 , x2 , y2 ] )

r e t u r n l i n e s
def d e t e c t L i n e s ( s e l f , c o l o r ) :

bw , edge_co lo r = s e l f . _ c o l o r F i l t e r ( c o l o r )
l i n e s , normals , c e n t e r s = s e l f . _ l i n e F i l t e r ( bw , edge_co lo r )
r e t u r n De t e c t i o n s ( l i n e s = l i n e s , normals = normals , a rea =bw , c en t e r s = c en t e r s )

de f se t Image ( s e l f , bgr ) :
s e l f . bgr = np . copy ( bgr )
s e l f . hsv = cv2 . c v t C o l o r ( bgr , cv2 . COLOR_BGR2HSV )
s e l f . edges = s e l f . _ f i ndEdge ( s e l f . bgr )

de f get Image ( s e l f ) :
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r e t u r n s e l f . bgr
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