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Abstract

Autonomous self-driving vehicles crash because there is a lack of rigorous testing of their
systems and autonomous cognition. Threats from cyber attacks, which have been proven
on legacy vehicle architectures, present a fundamental challenge to the safety and secu-
rity of autonomous self-driving vehicles, their passengers and pedestrians in the driving
environment. There is lack of testing for cybersecurity of autonomous self-driving ve-
hicles. Existing processes support testing in simulators which are unrealistic and scope-
limited and real-world operational vehicles which are costly and resource intensive. For
autonomous self-driving vehicles to operate in real-world traffic they need to ensure to the
public, safety and security from cyber threats. To resolve this problem, this thesis develops
a low-cost, small-factor autonomous self-driving vehicle test bed for cybersecurity testing.
Evaluation of the test bed is conducted through applied practical experiments using real-
world cyber threat test cases contributed by experts from autonomous system designers,
operators and component providers. The results of the evaluation demonstrated that
a low-cost, small-factor test bed can support cybersecurity testing of real-world threats
against sensors and perception, communication channels and hardware and compute.
These findings can be used to improve the defensive mechanisms of autonomous vehi-
cles in areas such as the Robotic Operating System (ROS) communication, network in-
trusion detection and monitoring and the resiliency of autonomous cognition. However,
limitations in the small-factor test bed design were identified in the lack of computational
resources to support on-board training and processing of neural networks and inability to
include the diverse profile of vehicular electronic components. This thesis emphasises the
need for autonomous self-driving vehicle operators to utilise small-factor test beds that
can emulate the systems and functionality of their operational vehicles to improve cyber-

security testing and ensure the public of safe and secure autonomous transportation.

This thesis is written in English and is 110 pages long, including 5 chapters, 78 figures and
4 tables.



Annotatsioon

Isesoitvad autod satuvad liiklusénnetustesse, sest nende siisteeme ja isemotlemist ei testita
piisavalt. On toestatud, et kiiberriinded ohustavad ka tava-autode slisteeme, seetdttu on
pohiline valjakutse, mida on vaja lletada, isesbitvate autode, nendega reisijate, jalakai-
jate ning Gldise liikluskeskkonna ohutuse tagamine. Autonoomsete isesobitvate autode
kiiberturbetestimist ei tehta piisavalt. Hetkel sooritatakse antud teste kasutades kas sim-
ulaatoreid, mille tulemused on ebarealistlikud voi mille testimise mastaap on limiteeri-
tud, voi kasutades reaalseid autosid, mis aga on kallis ning ressursimahukas. Isesditva
auto igapaevases liikluses kasutamiseks peab (hiskond olema kaitstud autot mojutavate
kiiberohtude eest. Selle saavutamiseks on antud magistritoos valja to6tatud odava mak-
sumusega ning vaikesemootmeline katsekeskkond kiiberturbe testide labiviimiseks. Keskkonna
valjaté6tamisel on sooritatud mitmeid katseid, kasutades reaalelulisi kiiberriinnakuid vas-
tavalt isesoitvate autode ekspertide, siisteemidisanerite, operaatorite ning komponentide
tootjate poolsele sisendile. Testimise tulemused naitavad, et odava maksumusega vaike-
semootmeline katsekeskkond on piisav selleks, et testida reaalelulisi kiiberriinnakuid, mis
on sooritatud sensorite taju, sidekanalite, riist- ning tarkvara vastu. Neid tulemusi ka-
sutades on voimalik parandada isesoitvate autode kaitsevoimet eri valdkondades: robo-
tiarendusplatvormi kommunikatsioonis, vorgu sissetungituvastuses ja monitooringus ning
autonoomse taju vastupidavuses. Piiravateks asjaoludeks vaikesemootmelise katsekeskkonna
korral olid iseséitva auto arvutusressursi puudus, mis oli vajalik pardal toimuvaks neu-
rovorkude t66tlemiseks ja valjadpetamiseks, ning voimetus kaasata auto elektroonikakom-
ponentide laia valikut. Kaesolev magistrité6 rohutab iseséitvate autode tootjate poolse
vaikesemootmeliste katsekeskkondade, mis suudavad jiljendada tootavate autode siis-
teeme ja funktsionaalsust, kasutamise vajadust, et parandada kiiberturbe testimist ja tagada

avalikkusele turvaline ja ohutu autonoomne transport.

Magistritdo on kirjutatud inglise keeles, on 110 lehekiilge pikk, koosneb 5 peatikist, sisaldab
78 joonist ning 4 tabelit.
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1 Introduction

Autonomous self-driving vehicles represent the future of transportation for modern tech-
nologically enhanced cities. The benefits of automation of driving include lower fatality
rates from the elimination of human-driver error caused by drink-driving, poor decision
making and medical emergencies. The importance of autonomous transportation has
been reinforced by the recent occurrence of the COVID-19 pandemic which requires so-
cial distancing in passenger transportation and contactless logistics. Ensuring autonomous
vehicles are designed with safety and security is of fundamental importance for societal
adoption. Cyber resiliency and survivability are key components of safety and security
of autonomous vehicles. To ensure the development of autonomous vehicles in real-
life traffic scenarios and adoption by society, testing and certification for cybersecurity
is essential[2].

1.1 Real-World Problems of Autonomous Transportation Platforms

The last five years has seen an increase in accidents of semi-autonomous and autonomous
transportation platforms. The transformation of vehicles from human control to control
by algorithms and advanced sensor and perception technology has increased the com-

plexity for autonomous system designers and road traffic authorities [3].

On May 7, 2016, in Florida, a Tesla Model S travelling at 74 mph collided with the the trailer
of a truck turning in the opposite direction. The Tesla drove underneath the trailer, tearing
the roof off and killing the driver instantly. The Tesla was using a semi-autonomous soft-
ware mode, "auto-pilot", to assume the driving functions, whilst, allowing manual human
intervention. Post-incident analysis by Tesla identified that the object detection algorithm
had failed to identify the trailer as an obstacle due the similar colour of the side-panel of
the trailer with the lane markings, coloured white. The failure of the automation logic
to correctly interpret the images from the sensors affected the object and event detec-
tion response (OEDR) and neither the autonomous electronic braking (AEB) or forward

collision warning (FCW) were activated[4].

On March 19, 2018, in Tempe, Arizona, a Volvo XC90 sports utility vehicle fitted with a
sensing kit and operating in autonomous mode, struck and killed a pedestrian. The vehi-
cle was travelling at 43 miles per hour when it struck the pedestrian, who was crossing
with a bicycle at an unmarked crossing. The U.S National Transportation Safety Board
(NTSB) investigation found that the radar detected the pedestrian 6 seconds before im-
pact followed by the laser-ranging lidar sensor. The autonomous cognition, however, did
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not have capability to classify an object as a pedestrian, unless, they were near a cross-
walk. As the vehicle approached the pedestrian it’s classification of the object switched
between a vehicle, bicycle and unknown object. It made a prediction that the object, as
a vehicle or bicycle, would move faster than the capability of the pedestrian and as an
unknown object it interpreted the pedestrians movement as static. Eventually the harm
minimisation of the autonomous cognition reverted control back to the human in the ve-
hicle. The driver was not focused on the driving environment as they inherently trusted
in the autonomy to navigate safely. The distracted state of the driver resulted in a delay
in regaining situational awareness which resulted in the brakes being applied only after

impact[5].

In 2015, cybersecurity researchers, Chris Valasek and Dr. Charlie Miller demonstrated
that the internal-vehicle network, controller area network (CAN), of a 2014 Jeep Chero-
kee could be remotely exploited and used by a malicious cyber adversary to stop or alter
the course of the vehicle[6]. This event led to the establishment of test beds for cyberse-
curity testing of automotive networks, centered on the CAN bus protocol. Autonomous
self-driving vehicles offer a more diverse profile of cyber threats as their use of artificial
intelligence (Al) with sensor and perception technologies open new attack surfaces and
enable new methods for adversarial activity. As with the epoch of automotive test beds of
CAN bus, autonomous vehicle test beds which are accessible to smaller vehicle developers

and researchers are required for testing and research.

1.2 Research Problem

The FinEst twins project aims to connect the cities of Tallinn and Helsinki through estab-
lishment of a shared urban digital architecture. Autonomous self-driving vehicles are a
salient part of this aim [7, p.2]. To ensure safety and security of autonomous self-driving
vehicles on the roads of Tallinn and Helsinki, the autonomous cognition, the algorithms
and sensors that assume the human driving action must be rigorously tested for vulner-
ability to cyber attacks. Currently, there is limited testing for cybersecurity due to the
costs associated with potential damage to an operational vehicle and resources required

to supervise the testing and repair systems and components[8].

Test beds such as the Massachusetts Institute of Technology (MIT) Computer Science and
Artificial Intelligence Laboratory (CSAIL), DuckieTown, provide a low-cost, small-factor en-
vironment accessible to autonomous self-driving vehicle developers and quality assurance
testers. These environments, which utilise the same software and network interfaces as

vehicles in the FinEst project have the potential to be used for cybersecurity testing and
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research. [9, p.3]. The research problem this thesis investigates is;

Is it possible for a low-cost, small-factor, autonomous self-driving vehicle test bed to sup-

port realistic scenarios for cybersecurity testing?

1.3 Research Questions

The research question this thesis answers is: How can a low-cost, small-factor, autonomous
self-driving test bed be used for cybersecurity testing?

The thesis also provides insight and answers to several questions:

1. How can a low-cost, small-factor autonomous self-driving vehicle and driving envi-

ronment be designed?

2. How can cybersecurity testing of a small-factor autonomous self-driving vehicle test

bed used to improve cybersecurity of the FinEst autonomous self-driving vehicles.

3. What are the limitations of test beds for autonomous self-driving vehicle cyberse-

curity testing?

4. Can automation and sensor failures caused by cyber attacks be identified using an

experimental test bed?

1.4 Purpose

This thesis seeks to improve the effectiveness of cybersecurity testing of autonomous
self-driving vehicles. It seeks to provide a basis for the use of low-cost, small-factor au-
tonomous self-driving vehicle test beds in cybersecurity testing. The wider purpose is to

increase safety and security of the autonomous self-driving vehicles.

1.5 Objectives
The primary objectives of this thesis are:

e Development of a low-cost, small-factor test bed for cybersecurity testing of au-

tonomous self-driving systems

e Evaluation of the test bed to understand if it can support cybersecurity test cases

from the FinEst project and industry.
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The secondary objective is to identify enhancements for test bed environments for secu-

rity research for autonomous systems.

1.6 Novelty

This thesis provides the first evaluation of a low-cost, small-factor security test bed for
autonomous self-driving vehicles. Whilst this thesis was being written, Zelle et al. [8]
released a study which detailed a design of a small-factor security test bed for autonomous
vehicles. Their paper did not include in the scope, the evaluation of the test bed, the
design of the driving environment or an analysis of the autonomous cognition utilised in
the test bed. This thesis investigates a solution to a pressing real-world issue, the safety

and security of autonomous self-driving vehicles to cyber attacks.

The novelty of this thesis resides in the design of low-cost, small-factor, experimental
test bed for cybersecurity testing of autonomous self-driving vehicles and the evaluation
using real-world test cases. This is the first evaluation of a small-factor test bed for
cybersecurity using applied methods

1.7 Contribution

This research contribution can be defined as a combination of basic science and applied
research, as termed by Louis Pasteur, Use-inspired basic research. Figure 1 presents Pas-
teur Quadrant, it defines use-inspired basic research as research that uses basic scientific
research methods, such as that typified by Niels Bohr, with the contribution of producing
a tangible artifact, such as those produced by Thomas Edison[10, p.104]. The scientific
contribution of this thesis is the applied experimental method for security analysis and
evaluation testing of autonomous self-driving vehicles. The primary practical contribu-
tion of this thesis is the establishment of a test bed for self-driving vehicle cybersecurity
testing that can be applied to the Tallinn to Helsinki smart connected cities [11] and organ-

isations that exist in this ecosystem such as; Starship Technologies and TalTech IseAuto.
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1.8 Scope

Two autonomous self-driving vehicles and an autonomous driving city are developed and
designed as the test bed. As the objective is to create a low-cost, small-factor test bed, the
cost of the robotic components required for the design is less than €1000 and small-factor
is defined as able to be fit within a small classroom or laboratory environment.

The focus of the test bed is the ability to replicate autonomous driving cognition, systems
and networks of real-world operation autonomous vehicles. The scope of the test bed
does not include replicating vehicular components such as an engine or electronics.Also,

back-end corporate systems such as customer databases are not included in the scope.

The evaluation of test bed is conducted through security test cases. Test Cases is limited
to realistic test cases and methods provided by real-world autonomous driving organisa-
tions. A Threat and Risk Assessment (TARA) is not part of the scope of this project, rather,
threats are identified and prioritised based on expert opinion. A method for generating

test cases for cybersecurity testing of real-world scenarios is included as part of this work.

Evaluation of the test bed is conducted through applied experiments. All experiments

were conducted in a controlled environment in TalTech Robotics Laboratory.

1.9 Methodology

This thesis is problem centered. autonomous self-driving vehicles need protection from
cyber attacks and there is a lack of cybersecurity testing due to cost, time and resources. To

investigate this problem, this thesis designs and develops an artifact, a test bed, and evalu-
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ates the ability of the artifact to support the problem definition. The optimal methodology
to achieve this is the Design Science Research Methodology (DSRM) as defined by Peffers
et al. [13].Figure 2 presents the DSRM as it is applied to this thesis.

Process lteration

Mgty Probled and HD”“'"QSDHR“VE”' aHeslgn and Deve\npmer\H Demonstration H Evaluation H Communication }

Lack ol foctmg for Create an experimental g
I:dyr:Jvel::eacﬂ‘rg‘rjmf:‘:‘;ilz _g Realistic cybersecurity
q s '!5 test cases from Industry
£

Knowledge e

test bed that can support
vehicles leading to

accidents

Problem Centered
Approach

Figure 2 - Design Science Research Methodology - Cybersecurity Evaluation Test Bed

[13, Figure 2]
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How to

Knowledue
Disdiplinary
Knowledge

The knowledge base which supports each phase of the DSRM is as below:

1. ldentification of Problem, Objectives and Design of Test bed
Related Work: The related work reviews the existing knowledge of cybersecurity of

autonomous self-driving vehicles, standards and test beds.

2. Demonstration
Scientific communication: Demonstration of the testbed environment in workshops
and presentations using YouTube and in real-life in the Tallinn University of Technol-

ogy Robotics Laboratory.

3. Evaluation
Expert Interviews: Interviews with real-world autonomous vehicles operators: Star-
ship Technologies, TalTech IseAuto and ZF. Expert opinion was provided for identi-
fication and prioritisation of real-world cybersecurity threats and feedback on the

results of the experiment tests.

Applied experimental methods: Applied experimental testing is conducted on the

test bed using cybersecurity test cases.

Behavioural Observation: Analysis of the applied experiments is conducted using
behavioural observation. As the focus of the cybersecurity testing is the autonomous
cognition, behavioural observation is a primary method to derive how the vehicle

behaviour changed to manipulation by cyber attack.

4. Communication
Scientific communication: Publication of MSc thesis and workshops.
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1.10 Limitations

e Experiments were conducted in a controlled environment due to the limitations of
supervising resources and length of the process for seeking permission for testing

in an outdoor environment with pedestrians.

¢ The design and development of the small-factor autonomous vehicles were limited
due supply chain issues arising from the COVID-19 emergency. Delayed delivery of

equipment reduced the in-scope vehicles from 3 to 2.

1.1 Ethics

The related work section contains the ethical considerations for autonomous self-driving
vehicles. As applicable to this thesis, the test bed is a controlled environment and testing is
able to be controlled to the extent of removing variables that might raise ethical concerns

such as collection of personally identifiable information by vehicle sensor and cameras.

This thesis includes security testing. It is possible during the course of the testing to find
vulnerabilities in systems used in real-world operational vehicles. This thesis utilised a
vulnerability disclosure process, if vulnerabilities of software or systems are found, they

will be disclosed to the product owner first.

1.12 Thesis Organisation

The thesis has been organised in the structure of the design science research methodol-
ogy. There are 5 chapters. Chapter 1is the introduction which identifies the problem and
motivation. Chapter 2 presents the related work. Chapter 3 details the design and devel-
opment of the autonomous self-driving vehicle test bed and it’s demonstration. Chapter 4
presents the evaluation of the testbed using cybersecurity test cases. Chapter 5 contains
the conclusions drawn from this research and direction for future research.
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2 Related Work

The related work is categorised into three sections:

1. State-of-the-art for cyber attacks on autonomous self-driving vehicles
2. Standards for cybersecurity testing and certification

3. Legal, ethical and social environment for autonomous self-driving vehicles

2.1 State-of-the-art for cyber attacks on autonomous self-driving vehicles

Scientific Literature Reviews:

¢ Petit and Shladoverused practical evaluation of a real-world autonomous self-driving
vehicle to analyse and prioritise attack surfaces. The highest priority attack surfaces
are identified as: GPS spoofing and jamming and camera blinding by infra-red LEDs

and lasers [14]. The full list of potential attack surfaces are presented in Appendix 1.

o Affia et al. conducted a systematic literature review of scientific papers relating to
security risk management in cooperative intelligent transportation systems. The
study found a gap in the conduct of analysis of security risks to ITS platforms. The
study advocates for approaches to risk management in ITS that considers the con-
nected nature of ITS systems, were, for example, a perception layer attack can in-
hibit application processes. The study also finds a lack of studies for application

security for ITS platforms in contrast to perception and network layer[15].

e Parkinson et al. conducted a literature survey with the purpose of presenting a
paper-based evaluation of knowledge gaps to autonomous and connected vehicle
cybersecurity. The study identified the following high profile cyber challenges:

GPS integrity

Sensor (IMU, ECU) data integrity

Resiliency of LiDAR and camera sensor to cyber manipulation and environ-

mental impacts such as sunlight

Human aspects; privacy and ownership of data.

The study concludes with a list of future research questions that are directed at ex-
ploring defensive mechanisms against cyber attacks. These include defence against

adversary automation of offensive tools and developing mechanisms for intrusion
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detection to trigger vehicle processes such as passing control back to the human

driver on detection of cyber attack [16].

Checkoway et al [17] investigate attack surfaces for remote exploitation of vehicles.
The study argues, existing threat modelling of automotive cyber threats are incom-
plete as they presuppose access to in-vehicular networks has already achieved. The

remote attack surfaces identified in the study are:

Direct Access: On-board diagnostics port

Indirect Access: Telematics unit

Short-range wireless: Bluetooth

Long-range wireless: WiFi, Cellular

The threat model in the study is practically evaluated using test case scenarios. The
study concluded, in threat modelling, the importance of connected, end-to-end at-
tacks, for instance; A CD with a malicious firmware is uploaded into the vehicular

telematics unit which provides remote access to an in-vehicular network.

Thing & Wu propose a taxonomy of cyber attacks and defences against autonomous
vehicles. The proposed taxonomy, derived from literature review, categorises cyber
attacks against autonomous vehicles as being either physical attacks (side-channels,
code modification, code injection) or remote attacks (signal spoofing, jamming).
Defensive mechanisms are categorised as passive detection of attack, response to
attack such as isolation of systems and active defence which includes security mon-
itoring. The study also proposes that adaptive security such as cyber deception

(honeypots), will become a prevalent option for autonomous vehicles [18].

Meryem & Mazri categorises cyber attacks against autonomous self-driving vehicles
as either attacks which impact the control of the vehicle or passive attacks. Their
classification model prioritises spoofing and jamming attacks against the vehicular
sensors, LIDAR and camera, as the highest risk. The study also identifies low-level
sensors and loT devices in the smart city environment as a feasible attack surface for
spoofing, blinding attacks as well potential entry points for network communication
attacks[19].

Ren et al. [20] provide a systematic study of security threats to autonomous ve-
hicles. The study categorises two threat profiles; existing threats and new threats.

Existing threats are denoted as:
- Sensor attacks: Jamming and spoofing
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- Passive keyless entry and ignition manipulation: Jamming, relay, replay and

cryptographic analysis.
- Voice controllable systems: manipulation using machine learning.

- Vehicular networks: Spoofing, DDoS.

New threats are categorised in the study as threats to the deep neural network
(DNN) from adversarial machine learning(ML), leakage of ML training models and
manipulation of ML compute components such as an edge Tensor Processing Unit
(TPU). The study proposes defensive mechanisms such as multi-sensor fusion, sen-
sor redundancy and implementation of cryptographic protocols for secure commu-

nication.

Grey Literature Review Survey:

e ENISA published a guide for security of smart cars. They used a methodology of
expert interviews and literature review to determine the state-of-the-art for cyber
attacks and requirements for defence-by-design of automotive systems[21]. The

highest rated attacks based on severity are listed as:
- Communication attacks which block or manipulate in-vehicular network traffic
used to send messages to ECUs for vehicular control.

- Manipulation of open-source maps which support construction of LIDAR maps

for navigation.
- Data leakage from back-end systems such as databases and remote servers.
- Attacks on mobile applications, especially in car share and rental applications.
- Rogue Firmware updates and exploiting software over-the-air(OTA) updates[21,

p.191.

ENISA propose over 50 defensive controls to implement to mitigate the risk of cyber
attack. These include; cryptography, multi-sensor redundancy, implementing best
practice technical standards such as OWASP and 1SO27001 for risk management.
The smart cars attack scenarios are presented in Appendix 2.

Whilst each reviewed work had different conclusions, the adversarial cyber threats to au-

tonomous vehicles that were omnipresent in all were categorised as threats to:

1. Sensors and Perception: LiDAR, Camera, Radar, Sonar, Neural Networks.
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2. Hardware & Compute: Operating system, Vehicle Code, On-board control PC, Em-
bedded components.

3. Connected Vehicle: Vehicle-to-Vehicle (v2v), Vehicle-to-Infrastructure (v2i), Vehicle-
to-Everything (v2x), WiFi, In-vehicular networks, 1oT networks, Back-end Infrastruc-

ture.

Sensors and Perception

Attacks on sensors and perception aim to manipulate the object event detection response
(OEDR) and simultaneous localisation and mapping (SLAM) to alter the behaviour of the
autonomous vehicle to take an action not expected by the passenger or according to the
traffic laws. Adversarial machine learning attacks exploit the reliance that autonomous
systems have on machine vision and neural networks[22] [23][24]. As part of traditional
model of information security, adversarial machine learning and sensor perturbation im-
pact the integrity of the machine learning training model and sensor data to induce the

neural network to alter the driving state of the vehicle.

Eykholt et al. developed an adversarial attack algorithm, Robust Physical Perturbations
(RP2), against DNN to generate robust physical adversarial perturbations [22, p.1]. They
used a real-world case study of a stop sign to demonstrate that a DNN could be manip-
ulated by their perturbed stop sign to incorrectly classify the object and cause an au-
tonomous vehicle to advance through the stop sign. The results of their laboratory testing
were 100 percent success rate for incorrect classification and the field test in a real-world
environment generated 84 percent success. The test case used variables of distance, noise

and angle to test the perception of the sensor and the DNN[22, p.6-10].

Figure 3 - Physical perturbation of Stop Signs
(22, p.2]

The study is considered a seminal work in adversarial machine learning for autonomous

transportation as it demonstrated a low-cost and easy to produce physical attack could
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manipulate a control system in a more efficient manner than a software or communication
attack. The findings of the study motivated algorithm designers to improve the robustness
of methods such as object detection using filtering and probabilistic methods[22, p.6-10].

The study also contributes an evaluation methodology which consists of selecting a test
case and then experimenting, firstly in a laboratory simulation environment and secondly

in a real-world environment[22, p.1].

Sato et al. developed an attack on deep neural DNN based lane-keeping assistance systems
(LKAS). The study proposes that an attacker can reverse engineer the logic of a neural
network and use the knowledge to design a malicious road patch. Reverse-engineering
the driving logic involves gaining an understanding of the driving path, the camera angle
and inputs and the predictive behaviour of the vehicle[25].

Malicious road patch pretending to be benign but dirty

Car Motion Model based Input Generation

Generated camera input

Rotated 5°to left Shifted 1m to right

Figure 4 - LKAS Attack
[25, p.3]

Original camera input

The intent of the attacker is to manipulate the logic of the DNN to drive the vehicle off
the road or involve the vehicle with a collision with another vehicle. The authors demon-
strated the success of the attack on simulators; OpenPilot and LGSVL-1. Figure 4 shows
the use of a discreet, perturbed, adversarial road patch that caused the simulated vehicle
to drive out of the road lanes. The study is limited as only one test case for LKAS spoofing
was evaluated and no real world tests were conducted[25].The study is also limited to the

Tesla vehicle which do not use LiDAR for sensing of the driving environment.

Nassi et al. demonstrated that an attacker could use a projector to project an image on the
road that would be recognised by the vehicles camera’s as a real object (Figure 5). In their
experiment, the Mobile 630 Pro camera and Tesla Model X with Hardware 2.5 detected
and perceived the projected image as a physical object and took driving actions such as
swerving, braking and accelerating. The study also demonstrated mobility use-cases by
engineering a drone to carry a projector to project images on the road. The control vari-

ables for the experiment were that the projection needed to occur at nighttime and and
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the projector needed to be within close proximity of the projection surface. Lighting of
the environment and attenuation of the projection image impact the success of the attack
[23].

Figure 5 - Spoofed/Phantom Image Attack
[23, p.5]

The experiments were limited to Tesla vehicles and in some experimental test cases the
radar, rather than the camera, detected the projection image as an obstacle. The study
contributed a machine-learning solution to detect projection images as spoofs, however,
as the attack was only trialled on Tesla, which use a customised object detection algo-
rithm, it is left to conjecture whether this attack would work on other object detection

algorithms[23].

Attackers can mount remote attacks on LiDAR and camera sensors using blindsiding, shield-
ing and jamming techniques with infra-red lasers and other noise generating tools. The
success of these attacks relies on the attacker understanding the machine learning model
and sensory technology in order to exploit their limitations. For different LIDAR models
the viewing angle, distance and horizontal angle of the laser beam required for successful
manipulation will differ as will the sequence of laser beam flashes. A machine learning
model may be trained to ignore messages received from a steady laser beam, however, a
dot point laser may successfully inject false sensory data. [24].

Cao et al. evaluated blinding and shielding of LiDAR sensors using laser pointing devices.
The experiments used the Apollo Baidu autonomous driving simulator to evaluate adver-
sarial test cases. Real-World autonomous driving data was inputted into the simulator
and the laser attack was simulated by inputting LiDAR sensor data in form expected of the
laser manipulation. The first test case, an attacker points a laser at the LiDAR sensor to
manipulate it to perceiving it as a obstacle, failed. This was due to the angle of the laser
and the speed of the vehicle. The speed of the vehicle didn’t allow the laser point enough
receiving time to be interpreted by the LiDAR sensor nor did the angle of the adversary

laser manage to focus on one of the laser points of the LIDAR sensor[24].
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Figure 6 - Overview of the Adversarial-LiDAR methodology.
[24, p.5]

The study developed a successful attack based on creating a spoof 3D point cloud map that
is generated by the LiDAR sensor. However, this attack relies on access to the data of the

vehicle sensor and understanding of the machine learning model for object detection[24].

Davidson et al. evaluated a sensor input spoofing attack against unmanned aerial vehicles
(UAVs). Projectors and lasers are used to spoof the UAVs sensors to input incorrect data
in the optical flow to alter the flight path of the UAV. The experiment conducted in the
paper, uses a test bed of small factor UAVs operating in diverse environmental conditions;
tiles, carpet, concrete and grass. The study found a lack of robustness in the existing
optical flow algorithm, the Lukas-Kanade method, which averages flow over all detected
images. The vulnerability of the method which Davidson et al. successfully exploits is that
Lukas-Kanade method assumes the difference between two consecutive image frames is
small and approximately constant within the range. The study develops a new optical
flow method, RANSAC, which works by forming a hypothesis of each image, developing a
ground truth and assessing each image based on the ground truth [26].

Quinonez et al. [27] propose a new architecture for securing against robust physical invari-
ants caused by attacks such as laser, projector attacks. The study investigates the use of
physics-based anomaly detection (PBAD) in control system environments (water, energy,
autonomous systems) were cyber attacks impact the physical processes. PBAD works by
baselining expected correlations between sensors and actuators and triggering alerts on

observation of unexpected behaviour.

The problem this study seeks to solve is stealthy attacks which manipulate the behaviour
of control systems below the threshold of detection. The study’s contribution is SAVIOR,
a PBAD based on the extended kalman filter. The premise of SAVIOR is to train a anomaly
detection system with pre-processed sensor data and use an algorithm, extended kalman

filter to make predictions of the expected state of the next sensor observation.

To validate the success of their architecture the authors conducted experiments using test
cases on a small-factor autonomous self-driving vehicle and drone. The threat model used

for the test cases assumed the attackers had full access to the systems in the vehicle and
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the attack was conducted by uploading sensor data which contained the physical manipu-
lation. The contribution demonstrates the usefulness of physics based anomaly detection
for cyber attacks, however, the SAVIOR solution is limited as it will show false positives for

environmental impacts to sensors such as wind gushes and rain.

Hardware & Compute
Autonomous self-driving vehicles contain a diverse array of hardware and compute com-
ponents. This extends from operating systems, middleware, computational hardware and

the code base used for operation of the vehicle.

Choi et al investigated vulnerabilities of the robotic operating system (ROS) middleware on
a personal robotic system. ROS is used ubiquitously in autonomous systems and robotic
platforms including autonomous self-driving vehicles. The vulnerabilities discovered in
the study exploited the lack of authentication in the ROS architecture. A robotic platform
must execute a number of simultaneous processes in order to achieve a task. To man-
age these diverse processes the ROS master acts as a central management point. In ROS
there is no secure communication. Choi et al demonstrates a variety of exploits including;
ROS Master spoofing, intercepting and replaying ROS log files and insertion of malicious
robotic processes. The ease of the success of the attacks is assisted by the architecture of
ROS having no cryptography and messages are passed in plain-text. The novelty of this re-
search for autonomous self-driving vehicles is that many research development projects
such as the Tallinn University of Technology, ISEAUTO also use ROS and so this attack is
relevant to the security of those vehicles[28].

Weiss et al. created a model for the characterisation of automotive ransomware. The
study conducted a literature review and analysis of automotive ransomware samples to
derive common characteristics. The study validated the model using practical methods,
implementing a proof-of-concept ransomware in a real car. The properties of automotive

ransomware characterised in the study are;

o Self-distribution mechanism to spread through network

Download functionality

Infects automotive components

Impacts vehicle processes

Persistence

Encryption of data
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e Request of payment

More advanced malware functionality include the ability to protect itself against reverse
engineering and countermeasures and controlled infection, which means, if a victim has
paid for the decryption, the malware will no longer exist in that system[29, p.6-7] .

The study implemented a ransomware malware on a real vehicle. The initial infection was
achieved through manipulation of a firmware update file and the malware was successful
in encrypting the data on the real-time operating system of an electronic control unit (ECU)
used for vehicle control [29, p.8-9]. The studies relevance to cybersecurity testing is that
it demonstrates that malware attacks can be achieved easily and can have severe impact
to the operational processes of the vehicle.

Connected Vehicle

Rouf et al. assessed the privacy and security of external network communication inter-
faces of vehicles. The research problem the study investigated was whether the integra-
tion of wireless network connectivity in vehicles had made vehicles more vulnerable to
remote exploitation. To investigate this, the authors performed an attack using a soft-
ware radio platform on a real cars tire pressure monitoring system (TPMS). The attack
consisted of monitoring the vehicles networks, capturing it’s traffic and then reverse en-
gineering the message id of the protocol used by the TPMS. The outcome of the study
was that an attacker, with a software radio attack platform from 40m away from a vehi-
cle, could capture traffic and inject malicious packets causing TPMS update alarms[30].The
importance of this study to testing of autonomous self-driving vehicles is that the same

scenario can easily translate to a vehicle which utilises more communication interfaces.

Thatou et al. [31] profiled attacks on communication channels of connected vehicles. The
study analysed the attack surfaces of connected vehicles and found a lack of encryption
and authentication mechanisms for external communication interfaces. The study rec-
ommends the increased use of cryptography to secure internal and external networks of

connected vehicles.

2.2 Standards for cybersecurity testing and certification

There are numerous international and national standards for cybersecurity of autonomous
vehicles and supporting critical infrastructure. Table 1 lists applicable standards collected

in the literature search.
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Standards for cybersecurity in Vehicles

Standardisation Country Standard Code Standard

Body/Authority

ISO International PAS 21448:2019 Road vehicles — Safety of the in-
tended functionality [32]

ISO International 26262 Road Vehicles -  Functional
Safety (Superseded by ISO/PAS
21448:2019) [33]

ISO/SAE International DIS 21434 Road vehicles — Cybersecurity en-
gineering [34]

ISO/IEC International | 15408-1:2009 Information technology — Security
techniques — Evaluation criteria
for IT security (Common Criteria)
[35]

SAE International | J3101 Hardware Protected Security for
Ground Vehicles [36]

SAE International | J3061 Cybersecurity ~ Guidebook  for
Cyber-Physical Vehicle Systems [37]

ETSI International TS 102 940 - 102 943 | Intelligent Transport Systems; Secu-
rity [38]

VDA-QMC Germany AK ACSMS Automotive Cybersecurity Man-
agement System Audit [39]

BSI United King- | PAS 1885:2018 The fundamental principles of au-

dom tomotive cybersecurity [40]

BSI United King- | PAS 11281:2018 Connected automotive ecosys-

dom tems. Impact of security on safety.

Code of practice [41]

Table 1 - Standards for cybersecurity in Vehicles

From review of each of the standards, automotive cybersecurity is consistently divided

into three layers of responsibility;

¢ Ensuring the protection of the vehicle

e Ensuring secure design, engineering, testing and governance standards of the au-

tomaker and automotive suppliers (embedded device manufacturers etc.)

e Ensuring security of service providers such as car service providers (Uber, Bolt).

Automotive cybersecurity standards provide guidance on models, methods and require-

ments that can be implemented to manage cyber risk. Automakers often combine stan-

dards to optimise processes for cybersecurity risk management. Forster et al. provide a

new model for including in TARA, inputs from Hazard and Risk Assessment (HARA), using
a combination of 1S015408-1:2009 (Common Criteria) standard, EVITA (E-safety vehicle
intrusion protected applications) standard and ASIL (Automotive Safety Integrity Level).
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This approach recognises the interdependent relationship of security and safety. A cyber-
security incident can affect the safety of the vehicle, whilst, a safety incident can impact
the cybersecurity of a vehicle [42].

The interrelationship between standards is visualised in Figure 7 which maps the Forster
et al. method.

TOE Description
Technical
[ Description ll o I Assumptions
Damage
Haozards Steasios [Secudthssets H Safety Goals ]

Confidentiality
Integrity

Safety: Severity/ Availability

Cantroliability (Fulfiliment)

from HARA

Privacy Security Goals
Flhencs and Threats
Operational

Time
Expertise
Knowledge
Access
Equipment

Consequence Attack Trees with
Values Attack Potential

Figure 7 - Forster et al. TARA methodology with integrated safety elements
[42, p.80]

EVITA was an EU project dedicated to establish secure on-board architecture of vehicles
through use of hardware and software countermeasures. The project delivered a threat
assessment model and hardware security module design which is widely used in industry
by ECU designers and on-board hardware and software vendors. As part of the threat
assessment model, attack trees are used to visualise security threats and guide security
testers on testing efficiency[43].

Vasenov et al. [44] developed a security and privacy threat analysis method for OTA up-
datesin vehicles (Figure 8). The method is novel as it includes the popularly used Microsoft
security threat model, STRIDE, with the new, proposed, certification scheme for cyberse-
curity management systems in vehicles, United Nations Economic Commission for Europe
(UNECE) Work Package 29.
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The study evaluated the utility of the model in a security assessment of an OTA update of a
real car. The found good synergy between the STRIDE threats and the threat catalogue of
the UNECE WP29. However, the study noted the limited nature of the security assessment

scenario and that further practical evaluation is required to draw more conclusive findings

The EU SECREDAS (Product Security for Cross Domain Reliable Dependable Automated
Systems) project conducted a report of the state-of-the-art for safety, security and privacy

analysis and applicability of standards. One of the key products of the report is a survey of



the EU automotive industry which details the assessment methodologies in use. Figure 9
demonstrates that the most widely used standards by the automotive industry for security
assessment are STRIDE and Common Criteria. OWASP and 1SO27009 are also popular due
to existing knowledge and expertise of 1SO standards and the popular OWASP top 10 for

software vulnerabilities[45].

Employment of 5/S/P assessment methodologies

4
3
.
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v

FMEA HARA Common 150 27009 EBIOS AHARA HEAVENS STRIDE

PRisk NIST PRAM  LINDDUN AMASS

Safety assessement methodology Security assessement methodology Privacy assessement Coml

Figure 9 - Usage of Assessment Methodologies - SECREDAS
[45, p.25]

Experimental test beds

Axelsson et al. created a vehicle test bed for security evaluation of cyber physical system.
The test bed was based on a small-factor mobile vehicle which was customised to support
AUTOSAR, the automotive software standard. The vehicle test bed, developed in 2014,
demonstrated that a small-factor device could provide a solution to emulate the protocols
and features of a full-factor real-life vehicle. The test bed was not autonomous and relied

on remote control by human operator[46].

MIT CSAIL built a low-cost, small-factor autonomous self-driving vehicle for research and
development and education. The goal of the MIT CSAIL DuckieBoT vehicle was to build a
low-cost option for researchers to evaluate autonomous driving algorithms and explore
corner cases. [9].Figure 10 details the features contained in the DuckieBot.
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Figure 10 - DuckieBot Features

[9,p.9]

As the aim of the MIT DuckieBot is to provide tangible research contributions to improving
autonomy of real-world vehicles, the features and architecture is designed to achieve as
close a comparison of real-world autonomous vehicles as possible. This includes the use
of ROS which is central to many of the real-world autonomous vehicular architectures.
The MIT DuckieBot has never been assessed for cybersecurity testing and research[9].

Tian developed a low-cost autonomous vehicle for research of neural networks. Tian cre-
ated a code base for a line following car in a low-noise, controlled, test environment. The
car was programmed to only follow blue lines and there was no support for curved lane
markings. The autonomous vehicle did provide an innovative design in that it overcame
the computational resource challenges of the small-factor environment consisting of an
onboard computer comprising only a Raspberry pi. Tian’s design utilised a Google Coral
edge tensor processing unit for accelerated machine learning processing for the object-
detection[47].

Zelle et al. built a security test platform for autonomous driving using small-factor au-
tonomous vehicles. The methods used in designing the platform comprised eliciting an
attack model of cybersecurity attacks against autonomous vehicles. Based on this attack
model the test bed was designed. The test bed is innovative, it includes most of the di-
verse range of sensors used for perception as well as in-vehicular networks and infotain-
ment systems. Zelle et al. contribution is closest to this work and their paper was released
after the development of the test bed contributed in this work. The main differentiation is

that this study provides insight into the design of autonomous cognition, evaluation of the
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test bed for cybersecurity and the driving environment which it is capable of testing[8].

Bhadani et al. created a Cognitive and Autonomous Test (CAT) Vehicle test bed to evaluate
autonomous driving. The research problem highlighted in the study was the cost, time and
risks of real-world testing and the problems translating test cases from simulators to real-
world environments. The study designs and builds a hybrid virtual-physical test bed that
incorporates the body physics of a real world vehicle with virtualised sensors and software
platforms. ROS is used as the middleware platform. The evaluation of the platform was
conducted through an educational program where students used extracted data from the
CAT vehicle to improve object detection and tracking[48].

Santos & Schoop developed a framework for cybersecurity testing of autonomous vehicles
and evaluated its efficiency through investigation of the survivability of autonomous vehi-
cles after a cyber attack to the vehicles sensors. Their framework consisted of developing
test cases and a tool to auto-generate test cases. Their practical evaluation involved the
security testing of two sensors; camera and LiDAR. An open-source autonomous driving
simulator, CARLA, was used as the experimental testing environment. The authors tool for
automatic test case generation only supports CARLA. Their study acknowledges the lim-
itations of this approach, the attack to the sensors was delivered by manual scripts and
assumed the attackers could manipulate the sensors perfectly each time. The findings
are limited to the CARLA environment and the simulation environment testing couldn’t

replicate a real-world physical attack or the operational driving domain of the vehicle[49].

2.3 Legal, Ethical and Social Environment for autonomous self-driving Ve-
hicles

The foundations for current nation-state regulation of vehicles is based on the Vienna
Convention on Road Traffic 1968. Article 8 of the convention establishes: "every moving
vehicle or combination of vehicles shall have a driver"[50, p.11]. A driver is defined as:
"Driver" means any person who drives a motor vehicle or other vehicle (including a cycle),
or who guides cattle, singly or in herds, or flocks, or draught, pack or saddle animals on a
road"[50, p.6]. The driver is responsible for control of the vehicle and obeying the 'rules
of the road’. The rules of the road are defined as the regulation of behaviour for actions
such as: position on the carriage way (Article 10), Overtaking and movement of traffic
in lines (Article 11), Passing of oncoming traffic (Article 12), Speed and distance between
vehicles (Article 13)[50, p.7-15]. The convention contains 55 Articles and 5 Chapters which
comprehensively detail every aspect from the positioning of flocks and herds on the road

to rules for international driver permits[50].
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Estonia acceded to the Convention on Road Traffic on 24 August 1992. The Estonian na-
tional legislation for the regulation of vehicles is the Traffic Act [51]. The Traffic Act has
undergone numerous updates to accommodate the introduction of connected and au-
tonomous vehicles for logistics and research and development projects. Within the defi-
nitions contained in the 4 July 2017 amendments, a self-driving delivery robot must have
a user and a controller that is subject to the same regulations as a driver of a traditional
vehicle(section 151, sub-section 2)[51]. This ensures continuity of existing laws where full li-
ability for vehicular crashes is assumed by the "human" driver. This important designation
of liability also allows semi-autonomous systems such as the Tesla autopilot to operate in

Estonian traffic.

The Traffic Act demonstrates an incremental approach to implementation of autonomous
systems into real-life traffic environment. Self-driving delivery robots are limited in speed
to 6 km/ph and pedestrians and other vehicles are limited to 20 km/ph in their pres-
ence and must take special care and observation to not obfuscate their perception and
movements[51]. To test self-driving technologies an operator must obtain registration
from the Estonian Road Authority. To obtain registration to operate a self-driving vehi-
cle on Estonian roads an operator must demonstrate performance in a series of tests in

closed area and traffic scenarios that include:

1. how the driver is able to control the vehicle manually
2. how a person is enabled to take control of the vehicle from automated mode

3. how the vehicle is able to operate autonomously

These tests are consistent with Estonia’s perspective of legal challenges of Al. Estonia’s Na-
tional Artificial Intelligence Strategy 2019-21 expresses that Estonia views Al as performing
tasks defined by humans and to the express intention of humans[52]. They will not oper-
ate independently and therefore the liability still resides with the human operator. This
definition of autonomy is consistent with the EU Guidelines for Trustworthy Al which em-
phasises human supervised and controlled AlI[53].

Autonomous self-driving vehicles rely on sensory and perception technologies to create
a 3D map of the environment in order to navigate safely and efficiently. They also rely on
the imagery captured by high-definition cameras. The recording and storage of this infor-
mation will include the physical profiles and activities of pedestrians and other drivers, as

well as images of private homes and offices[54].

In Europe, autonomous vehicular architectures need to be designed to process and collect

data in accordance with the EU General Data Protection Regulation (GDPR). Autonomous
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vehicle manufacturers need to ensure data subjects have control of the data that is being
collected to allow them to exercise their data subject rights. The challenges for manufac-
turers is building architectures that allow these data subject rights such as the deletion
of data, where, in connected and autonomous vehicles, data is shared over multiple plat-
forms and used to inform safer driving decisions. Innovative solutions to this problem
include the CarData portal by BMW which allows BMW customers to view the telematics-
data which is stored from their vehicle. Blurring of faces and licences plates captured by
the high-definition camera would also provide greater privacy protections for pedestrians

and other road users[54].

The UN Economic Commission for Europe (UNECE) has a working party on autonomous
and connected vehicles. This working party is focused on Work Package 29, Harmonisation
of Vehicle Regulations. Work Package 29 aims to update the existing regulatory frame-
works to incorporate the technological transformation of vehicular autonomy and Al. Key
priorities include: cybersecurity, Event data recorder(EDR)/Data storage for automated
driving (DSAD), Validation method for automated driving, advanced driver assistance sys-
tems (ADAS) and dynamics(AEB, FCW)[55].

The working group has produced a draft regulation for the UN for implementation of a
certification scheme for cybersecurity and cybersecurity management systems for vehi-
cles. The document acknowledges the crucial role of the manufacturer in providing safe
and secure systems which are heavily relied on by self-driving and driver-assisted vehi-
cles. The proposed regulations also acknowledge the increasing amount of personally
identifiable information (PIl) which is retained in modern vehicles. The draft regulations
require a vehicle manufacturer to demonstrate that their cybersecurity management sys-
tem applies to: development, production and post-production phases. The requirements
for certification encompass people, process and technology. A vehicle manufacturer must
demonstrate to a certification authority the use of cybersecurity controls such as: crypto-
graphic protocols, intrusion detection systems, forensic logging and monitoring systems,
penetration testing and threat and risk documentation. The UNECE WP29 also provides
a catalogue of threats to vehicles. This catalogue forms the basis for future certification

schemes[55]. The threat catalogue is presented in Appendix 3.

Ethics

Ethics and morality are central to human decision-making and therefore inherent in the
design of autonomous systems [56]. From review of the related works, the predominant
areas of research for ethics in autonomous driving are identified as:

e Dilemma situations
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e Human responsibility for Al

e Privacy of personal information

Ethical engineering approaches use philosophical thought experiments termed; dilemma
situations. First introduced in 1967, by Foot, the trolley dilemma consists of a scenario in
which a person controlling the lever of a trolley must decide whether to stay on a track
which would result in the death of five workmen who cannot escape the path of the trolley,
or, change to a side-track which would result in the death of one workman [57].

Wachter et. al conducted an experiment on human decision making using the trolley
dilemma in driving scenarios. A select group of people from different age ranges were
chosen to confront dilemma situations in a driving simulator. The researchers used be-
havioural observation and data analysis from the simulator for their research conclusions.
The results of the experiment found that the majority of participants would; quantita-
tively minimise harm, adjust decisions based on age of pedestrian, drive on the sidewalk
if it minimised harm, and self-sacrifice themselves to avoid pedestrian fatalities. The con-
clusions of the study established the difficulty in designing an autonomous system for a
subjective area such as ethics. For this reason, the design of autonomous systems should
require input from ethics experts[57].

Lin’s study of autonomous vehicle ethics conformed to the same themes of ethical debate
as Wichter et. al. Lin's study reviews the existing literature and theorises questions still
left for debate. One question posed by the study; Is programming an autonomous system,
in the example of the trolley dilemma, to hit a pedestrian as a calculation of most ethical
action, an ethical and legal conflict for countries whose laws promote the right to life and
human dignity? Lin also reflects that crash-optimisation, choosing the least cost of human
life, can be interpreted as a form of targeting. The conclusion of the study is that the ethics
of autonomous systems are imperfect and open for challenge. Societal expectations need
to be based on the reality of the limitations of autonomous systems to improve on human
decisions and ethical judgement [58].

Ethical design approaches to autonomous driving include Gerdes & Thornton [56] who
translated and applied Asimov’s three laws of robotics to autonomous systems:

1. An automated vehicle should not collide with a pedestrian or cyclist.

2. An automated vehicle should not collide with another vehicle, except where avoid-

ing such a collision would conflict with the First Law.

3. An automated vehicle should not collide with any other object in the environment,
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except where avoiding such a collision would conflict with the First or Second Law.

4. Anautomated vehicle must obey traffic laws, except where obeying such laws would
conflict with the first three laws.[56, p.95].

What do we value? For Gerdes & Thornton this is a fundamental question for ethics in
autonomous systems. The design of algorithms relies on assigning priorities or cost to
everything that exists in the driving environment. For instance, in a dilemma situation, if
the autonomous vehicle has to chose between impacting a motorcyclist with helmet or
without one, do we choose the motorcyclist with the helmet because they have a better
chance of surviving or the motorcyclist without a helmet, as they broke the road rules,

had been given safety warnings and were negligent?

Gerdes & Thornton also explored the ethical question of hybrid control between human
and autonomous system. If an autonomous system is ethically engineered why should a
human be able to override the decision making? The conclusion of the study is that with
the growing use of autonomous systems we will learn to gain trust in the cognition of

machines and adjust our expectations.

The EU high-level expert group on Al defined three essential elements of trustworthy Al:

1. lawful - respect for all applicable laws and regulations
2. ethical - respect for ethical principles and values

3. robust - the technical solution should take into account the social environment[53,
p.2].

The German Federal Department of Transport and Digital Infrastructure (BMVI) Ethics
Commission on Automated and Connected Driving recommended 20 ethical rules. These
rules aimed to resolve dilemma situations by embedding adaptive Al solutions in the city
infrastructure and in as many points of the driving environment as possible. Applying
the logic of German Ethics Commission to the perspective of the trolley dilemma, the im-
portance of the decision-making of the trolley would be mitigated by decisions made by
smart infrastructure on the road, road side-units and mobile devices. The responsibility
and accountability for ethical decision-making also shifts from the motorist or person at
the trolley lever to the manufacturers and operators of smart city technologies and policy
makers[59].

Social

Autonomous Self-Driving vehicles must also confront the ethical concern of privacy. A
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study by Bloom et al. conducted a survey, in five states in the United States, to quantify
comfort levels of the public for autonomous vehicle technology. The survey results con-
cluded that the public had the highest level of discomfort for vehicle technologies that
can capture and store images of individuals and track and identify individuals and vehi-
cles. Surveyed members of the public were inclined to accept the use of vehicular tech-
nologies for these purposes only if it improved safety or to assist in the investigation of a
vehicular incident. The survey results found discomfort from members of the public with
being in close proximity to autonomous vehicle sensors, such as walking near them or bi-
cycling near them in traffic. The study recommended engagement between commercial

autonomous vehicle companies, regulatory authorities and the public [60].

Reig et al. conducted a survey of 32 pedestrians who have interacted with Uber au-
tonomous vehicles. The survey consisted of structured questions about the pedestrians
experience of autonomous vehicles. The results of the survey found that pedestrians had
little understanding of autonomous vehicular technology and trust was associated with
the branding of the autonomous vehicle manufacturer. Pedestrians, when in the pres-
ence of an autonomous vehicle with no human driver, felt that they couldn’t understand
what decisions the vehicle was making in regards to their presence. The study recom-
mended rectification of this issue through utlising audio or visual alerts to indicate the

intent of the autonomous vehicle[61].

2.4 Discussion

From the related work [46][8][22][23][24][62][14],several key factors emerged for the choice
of test beds used for cybersecurity testing:

e Cost comprises the implementation cost of the test bed, both components and

labour.

e Complexity is defined as the complexity in designing, engineering and maintaining
the test bed.

e Reliability is the accuracy of the results to the real-world operational vehicles.

Table 2 show the comparison of each test bed.
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Simulation Small Factor Test Bed Real-World
Cost low low High
Complexity low medium High
Reliability low unevaluated High

Table 2 - Factors influencing choice of test bed

The review of the cyber attacks in the literature concluded that simulators provided un-

reliable and inaccurate results compared to real-world testing[22]. Table 3 presents the

comparison of each test bed. As the small-factor test bed was only used in Quinonez et

al. [27] study and as such they are unevaluated for security test cases, an informed opin-

ion is made based on the analysis of the designs of Zelle et al. [8], Axelsson et al. [46],

MIT DuckieBot[9] and DeepPi car[47].

cybersecurity Test Case Simulation Small Factor Test Bed Real-World
Hardware & Compute Attacks Yes Yes Yes
Connected Vehicle Attacks Yes Yes Yes
Sensor and Perception Attacks Yes Yes Yes
Physical Access No Yes Yes
Damage Incurring No Yes No
Environmental Perturbations No Yes Yes
Full list of Sensors and Systems No Yes Yes
Real-World Driving Environment No No Yes

Table 3 - Comparison of autonomous self-driving test beds for cybersecurity testing

The review of the cybersecurity testing methodologies established the importance of in-

corporating the UNECE WP29 threat catalogue with an established security threat model

such as STRIDE.UNECE WP29 represents the future for certification of vehicular systems

for cybersecurity risk management.
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3 Design and Development

3.1 Test Bed Concept

The design and development of the small-factor test bed artifact is a key phase of the
DSRM. The research entry-point is the problem-centered approach. The research problem
this test bed is focused on solving is; is it possible for a low-cost, small-factor, autonomous

self-driving vehicle test bed to support realistic scenarios for cybersecurity testing?

The predominant elements required in the test bed artifact to resolve this problem are:

1. Emulation of the features of a real-world operational vehicle within a low-cost,

small-factor design.

2. Support for realistic cybersecurity test cases.

3.2 Feasibility of Design

The feasibility analysis of design of a low-cost, small-factor test bed consisted of reviewing
the TalTech ISEAUTO and the related works for the state-of-the-art for cybersecurity of au-
tonomous self-driving vehicles. The ISEAUTO is a relevant vehicle as it used in the FINEST
project and is the target system for realising the benefits of improved cybersecurity. Fig-
ure 11 presents the ISEAUTO hardware diagram which lists the sensors and perception

technologies, hardware and compute systems and connected vehicle interfaces.
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Figure 11 - ISEAUTO Hardware Diagram
[63]
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The first consideration for design and development is whether to build from scratch or
develop an existing low-cost, small-factor autonomous self-driving vehicle. Based on the
related works, the MIT DuckieBot and DeepPi car were chosen to develop as a test bed.
The justification for this decision are the comparison of key systems of the ISEAUTO with
the MIT DuckieBot and DeepPi car:

e Emulation of key systems:

- ROS
- Camera sensor

On-board Control PC

Network interfaces

Actuation (Pulse Width Modulation (PWM))

Remote control station PC
e Cost of components under €1000

o Efficient usage of limited computational resources available.

The second consideration is support for realistic scenarios for cybersecurity testing. Based
on the related work, Figure 12 lists the cybersecurity testing and research applications the

low-cost, small-factor test bed can support.
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Security Research MIT DuckieBot DeepPi Car
Application
Vulnerability Research Camera Sensor Camera Sensor
Computer Vision + Image Object Detection
Processing Python3
ROS Kinetic WiFi
Network Interfaces Applications
Applications

Impact Analysis

Closed Loop Control Process
PID Controller

Closed Loop Control Process
PID Controller

Mitigation Research

Secure Middleware

Physics Based Anomaly
Detection

Network Anomaly Detection
Application Security

Physics Based Anomaly
Detection

Network Anomaly Detection
Application Security

Metrics

Recovery Time Objectives
Recovery Point Objectives
Situational Awareness

Recovery Time Objectives
Recovery Point Objectives
Situational Awareness

Data and Models
Development

Security Test Case
Evaluation Methods

Security Test Case
Evaluation Methods

Security Validation

Test Case Evaluation

Test Case Evaluation

Interoperability

Sensor and Autonomous
Drive Cognition

Network and Autonomous
Drive Platform

Sensor and Autonomous
Drive Cognition

Network and Autonomous
Drive Platform

Digital Forensics

ROS Logs (ROSbags)
Video Logs

Video Logs

Operator Training

Remote Operator Console

Remote Operator Console

Figure 12 - Research and testing applications of low-cost, small-factor test bed

[64]

3.3 Low-cost, small-factor test bed for cybersecurity evaluation

3.3.1 Experimental Test Bed Smart City Environment

Duckietown is a man-made environment for autonomous self-driving vehicles created by
MIT CSAIL. The Duckietown smart city emulates real-word structures of smart cities by
using machine readable road side units (RSU) and road markings. The smart city environ-

ment is constructed of two layers; Floor Layer, Signal Layer.

The Floor Layer is where the road markings exist and the road network is mapped. The
floor layer is a modular construction consisting of tiles which can be customised to suit
different road maps. For the construction of the experimental test bed used in this thesis,
9 tiles were assembled in a 3 x 3 configuration. In the DuckieTown smart city there are

three line colours which have their own rules, as per traffic laws; white, yellow, red.

The solid white lines symbolise the road boundaries for which the autonomous self-driving
vehicle must remain within. The yellow dashed lines represent the road lanes. Each yellow

line piece must be 5cm in length with 2.5cm space between each piece. Red lines are used
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Figure 13 - DuckieTown in TUT Robotics Lab Figure 14 - DuckieTown in TUT Robotics Lab

for stopping a autonomous self-driving vehicle at an intersection.

Figure 15 - Floor Tile - DuckieTown

The Signal Layer comprises all of the signals that the autonomous self-driving vehicle re-
quire for navigation. In the experimental test bed used in this thesis the signals are repre-
sented by machine readable RSUs. The RSUs are constructed with a pictorial representa-
tion of aroad marker used by the image processing of the autonomous self-driving vehicle

and a fiducial marker for greater perception.

46



Figure 16 - Traffic Light (Top-Pictoral,
Bottom-Fiducial Marker Figure 17 - Traffic Light - April Tag ID

Wireless networks are used for communication whilst driving in the DuckieTown environ-

ment.

3.3.2 Experimental Test Bed Autonomous Self-Driving Vehicles

MIT Duckiebot

The Duckiebot (Figure 18, Figure 19) is a small factor autonomous self-driving vehicle de-
veloped by MIT in 2016. The intent of the design of Duckiebot was to create an afford-
able self-driving platform that researchers and educators could use to teach autonomous
systems and evaluate deep learning algorithms for autonomous driving. The cost of the
components needed to build the Duckiebot is approximately €250.

Figure 18 - MIT Duckie Bot - Side View

Figure 19 - MIT Duckiebot - Front View

The DuckieBot architecture uses a 5mp pixel raspberry pi camera for sensing. The hard-

47



ware for the Al and Drive Algorithm is built on Raspberry Pl Model 3B hardware. Debian

Linux 9 is used for the OS as the Raspberry Pl utilises an ARM processor. The software

platform is built upon Docker utilising ROS Kinetic. An 32Gb SD is used for local on-board

storage and a 100Gb USB drive can be inserted in the Raspberry PI to allow more storage

for logging. A 5v, 10400 mAh, battery is used to power the DuckieBot. Actuation is per-

formed by the motor driver which connects to servo motors. The DuckieBot steers in a

radial circuit and there is a steel bell underneath that maintains balance.

DuckieBot Hardware Diagram
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Figure 20 - Duckiebot Hardware Diagram
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The code base for autonomous vehicles is highly complex and a commercial autonomous
vehicle with a full-sensor profile can reach over 10 millions of lines of code. Autonomous
vehicles require numerous operations to be executed in parallel, in the DuckieBot, the
lights (led_emitter), autonomous control(joy_node), camera (camera_node), LKAS (line_detector_node)
need to all be in simultaneous operation for driving. ROS allows developers to work on
code for individual components and operations of the vehicle and centrally manage the
execution. Without a centrally managed system it is difficult to troubleshoot, maintain
and develop the code base of the autonomous vehicle. In ROS, the ROS Master centrally
manages communication between ROS nodes and tracks the messages they are exchang-

ing.The benefits of ROS is efficient code organisation and hardware abstraction.

Figure 21 lists the ROS nodes active during a simple operation, camera footage of the
Duckiebot. The rosbridge allows communication of the information from the ROS nodes to
be visualised in a dashboard web interface, which in the Duckiebot, is the mission control
platform. Figure 22 provides the architecture of the ROS nodes as it would look for another

simple operation, stopping the DuckieBot.
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Figure 21 - ROS Nodes for Camera Footage - DuckieBot
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Figure 22 - ROS Architecture for Stopping Operation - DuckieBot

There are two ROS communication types: Topics and Services. A ROS topic is a named
communication bus which nodes exchange messages. A node can be a publisher or a
subscriber. A publisher shares information with another node, a subscriber receives infor-
mation from a node. The relationship between nodes is many-to-many and a publisher
shares a topic without knowing which node will subscribe to it. Similarly a subscriber will
subscribe to a topic without knowing which node published it. Figure 23 presents the ROS
topics in a stopping operation on the duckiebot. In this communication, the joy_node is
conducting a message exchange with the wheels_driver_node, the topic emergency_stop

will initiate an operation of the servo motor to stop the duckiebot.

root@andrew-LIFEBOOK-E734: /home/software# rostopic list
J/andrewttu/camera_node/camera_info
/andrewttu/camera_node/framerate_high_switch
Jandrewttu/camera_node/image/compressed
Jandrewttu/coordinator_node/change color_pattern
/andrewttu/joy

/andrewttu/led _emitter_node/current_led_state
/andrewttu/led_emitter_node/switch
J/andrewttu/wheels_driver_node/emergency_stop
/andrewttu/wheels_driver_node/radius_limit
Jandrewttu/wheels driver node/wheels cmd
Jandrewttu/wheels_driver_node/wheels cmd_executed
Jclient_count

Jconnected_clients

/diagnostics

/rosout

/rosout agg

Figure 23 - ROS Topics - DuckieBot

ROS services are like topics, except they support one-to-one communication between
nodes. A service is a request-response type remote procedure call (RPC). In a service com-

munication a node requests from another node a service and the providing node replies
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back. Services also have unique named communication like topics. Listed below are some

of the services for which the colour filter node is communicating to the other nodes.

/andrewttu/vehicle_filter_node/get_loggers
/andrewttu/ground_projection/get_image_coordinate
/andrewttu/camera_node/get_loggers
/andrewttu/lane_pose_visualizer_node/set_logger_level
/andrewttu/image_transformer_node/get_loggers
/andrewttu/joy_node/get_loggers
/andrewttu_to_map/get_loggers
/andrewttu/decoder_node/get_loggers
/andrewttu/ground_projection/set_logger_level
/andrewttu/vehicle_avoidance_control_node/set_logger_level
/rosapi/get_param_names

/rosapi/service_host
/andrewttu/led_emitter_node/get_loggers

/andrewttu/inverse_kinematics_node/set_baseline

ROS uses rosbags for logging. Figure 24 shows a rosbag logging session. The rosbags col-
lect the publisher and subscriber information, the nodes and the topics being exchanged.
This information is valuable for forensics, fault diagnostics and cyber adversaries as it de-
picts the operations of the vehicle.

andrew@andrew-LIFEBOOK-... * | dts duckiebot keyboard_con... * | andrew@andrew-LIFEBOOK-... * | root@andrew-LIFEBOOKET73... x | root@andrew-LIFEBOOKET3...
oot@andrew- LIFEBOOK-E734:/bagriles# rosbag record
INFO] [1595780942.390389812]: Recording te 2020-07-26-16-29-82.bag.
INFO] [1595780942.426097493]: Sub: to /andrewttu/logic_gate node/intersection_done_and_deep_lane_on
INFO] [1595780942.563628996 to /andrewttu/vehi etection_node/circlepattern_image
INFO] [1595780942.699048450 ibing to /andrewttu/coordinator_node/switch
INFO] [1595780942.870532706]: ibing to /andrewttu/vehicle_detection_node/detection_time
INFO] [1595780943.015254671]: ibing to /andrewttu/camera_node/framerate_high_switch
INFO] [1595780943. 6 ibing to /andrewttu/fsm_node/mode
INFO] [1595780943.323606 ibing to /andrewttu/vehicle filter_node/switch
INFO] [1595780943. 6 ibi to /andrewttu/wheels_driver_node/wheels_cmd_executed
INFO] [1595780943.741105987]: ibing to /andrewttu/lane_controller_node/switch
INFO] [1595780944.120420612]: ibing to /andrewttu/joy_mapper_node/parallel_autonomy
INFO] [1595780944.708110180]: ibing to /andrewttu/led_emitter_node/current led_state
INFO] [1595780945.573598614]: to /andrewttu/lane_controller_node/car_cnd
INFO] [1595780945.928478984 to /andrewttu/car_cmd_switch_node/cmd
INFO] [1595780946.680338567 ibing to /andrewttu/auto_calibration_calculation_node/switch
INFO] [1595780947.212089751]: ibing to /andrewttu/intersection_localizer_node/switch
INFO] [1595780947.717344733]: ibing to /tf
INFO] [1595780948.249364782]: ibing to /andrewttu/logic_gate_node/at_stop_line_and_charging_exit
INFO] [1595780948. 6 ibing to /andrewttu/camera_node/camera_info
INFO] [1595780948. ibing to /andrewttu/cont_anti_instagram_node/mask
INFO] [1595780950.357443944]: ibing to /andrewttu/led_detector_node/switch
INFO] [1595780950.814370105]: ibing to /andrewttu/lane_filter_node/entropy
INFO] [1595780952.305641092]: ibing to /andrewttu/logic_gate node/at_stop_line_and_parking_off
INFO] [1595780954.326292648]: ibing to /andrewttu/vehicle avoidance control_node/car_cnd
INFO] [1595780956.082222879 ibing to /andrewttu/lane_pc isualizer_node/lane_pose markers
INFO] [1595780957.917481512 ibing to /andrewttu/co nstagram_node/geonImage
INFO] [1595780959.616336365]: ibing to /andrewttu/line_detector_node/switch
INFO] [1595780960.562168761]: ibing to /andrewttu/logic_gate_node/intersection_done_and_deep_lane_off
INFO] [1595780962.660915935]: ibing to /andrewttu/camera_node/image/compressed
INFO] [1595780964.430736409 ibing to /andrewttu/lane_filter_node/belief_img
INFO] [1595780965.764367559 ibing to /andrewttu/parking_path_planning/switch
INFO] [1595780967.097120317]: ibing to /andrewttu/logic_gate node/at_stop_line_and_parking_on
INFO] [1595780969.133033554]: ibing to /andrewttu/cont_anti_instagram_node/health
INFO] [1595780971.264574867]: ibing to /andrewttu/joy
INFO] [1595780973.958431801]: Subscribing to /andrewttu/cont_anti_instagram_node/transform
N oS 7800 86008 2 ibi apdrey ipe dote pode <e e

Figure 24 - ROSBAG - Logging Publisher information

Docker is used to manage the DuckieBot environment. As DuckieBot is constantly evolving

duetoit’s use as an educational and research product, Docker provides an efficient means
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to implement new images/programs and enhance the use of the limited resources of the

Raspberry Pi based system. Figure 25 show the list of running containers in docker.
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Figure 25 - Docker- Containers

Autonomous Driving Cognition
Duckiebot uses computer vision and image processing for autonomous driving decisions.
There are two key aspects to ensure accurate driving of the duckiebot: integrity of the

camera sensor, accuracy of the algorithms used for image processing.

Firstly, the camera sensor requires calibration to ensure integrity of the computer vision
to enable algorithms to be applied. The DuckieBot camera is calibrated using a specially
designed checkerboard panel comprised of black and white squares, each 31mm (Figure
26). This is intrinsic calibration, it’s purpose is to resolve discrepancies that can come
with camera’s parameters straight from the manufacturer. The checkerboard acts as a

predetermined patter.
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Figure 26 - Intrinsic Camera Calibration

Secondly, the extrinsic calibration aims to use the data of the pictures correctly without
error. One object is confirmed in different pictures so that equal pixels can be found.
Extrinsic calibration establishes the orientation between the camera and object that the
picture is taken from (Figure 27).
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Figure 27 - Extrinsic Camera Calibration

The aim of image processing for autonomous vehicles is to detect road markings (lanes,
boundaries) within the driving environment and to filter out disturbances or potential
manipulation. The driving environment, from a computer vision perspective, is noisy. The
DuckieBot uses colour recognition to find the yellow lane lines, white boundary lines and

red stop lines.

As depicted in the image in Figure 29, the environment can generate noise which can be
interpreted incorrectly based on the colour. To ensure this doesn’t happen the Duckiebot

applies two image processing algorithms; Canny edge detection and the Hough transform.
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Figure 28 - DuckieBot - Camera Filter Figure 29 - DuckieBot - Colour Recognition Filter

The intended aim of these techniques is to apply an edge filter and reduce noise by ap-
plying a Gaussian blur to isolate the shape of the yellow lane marking and white border
lines and make a hypothesis of the best lane position of the DuckieBot. The code for the
DuckieBot image processing is provided in Appendix 4.

Figure 30 - DuckieBot - Edge Filter

Figure 31 - DuckieBot - Line Detector

Remote Control Operations

Duckiebot mission control platform is a graphical user interface that allows a human op-
erator control of the Duckiebot. The human operator is able to visualise the speed of the
vehicle, steering angle of the vehicle and the on-board camera vision. The operator is
able to toggle between autonomous mode and manual control. The operator GUI relies

on network connection to the same network of the DuckieBot, this is configured in Docker.
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Figure 32 - DuckieBot Mission Control Platform

3.3.3 DeepPi Car

The DeepPiCar is a reference architecture for simulation of autonomous self-driving vehi-

cles developed by David Tian, a software-engineer at Google.

Figure 33 - DeepPi Car - Side View

Figure 34 - DeepPi Car - Front View

The DeepPi car uses a Raspberry Pi model 4 for the on-board computer. The operating
system is Raspbian buster, an operating system made for arm processors. There is a 32 Gb
SD card for internal storage. Sensing is performed by a camera sensor, originally a 2mp
camera, later upgraded to 5 mp. Connection with the remote control terminal is via the
wireless network interface. Actuation is performed by the motor driver which connects
to servo motors. The DeepPi car, unlike DuckieBot, uses mechanical steering, the body
physics is more representative of a real-world vehicle. Power is provided by 2 x 18650

3.7v lithium ion batteries.
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Figure 35 - DeepPi Car Hardware Diagram

Python3 is used for the code base. Unlike DuckieBot, the DeepPi doesn’t use ROS and
the operation of the car is executed by a main module which makes calls to other python
modules. Figure 36 shows the python modules in the DeepPi car. Similar to the ROS
packages, each module is program for either a hardware or software component of the
vehicle.

andrew@andrew-LIFEBOOK-E734 ~/DeepPicar-v2 [10:43:34
B 1s [tmaster v
actuator-adafruit_hat.py LICENSE scripts

local_common.py sync-video.py

maxperf.sh
actuator-mc33926.py model-3conv_1pool.py
actuator-null.py model-5conv_3fc.py test-model2.py

camera-null.py model-5conv_4fc.py test-model3.py

camera-webcam.py model.py test-modeld.py

create-epoch.sh params.py test-model.py

data_ordered.py picar-mini-kbd-common.py train.py

data_shuffled.py preprocess.py view-video.py
README . md visualize.py
run.py

Figure 36 - DeepPi Car Python Modules

Autonomous Driving Cognition

The camera sensor and OpenCV (Computer Vision) is for image processing. Google Tensor-
flow is used for machine learning. Due to the restricted computing resources available in
the raspberry pi, a Google Coral edge tensor processing unit (TPU) is used for high-speed
machine learning inferencing. The Coral TPU allows for 4 trillion operations (inferences)

to be performed per second using 2w of power.

The process for training the deep learning of the DeepPi Car involved the following:

¢ Installation of OpenCV for computer vision and image processing.

¢ Installation of Tensorflow and test object detection capability. To do this the COCO
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(Common Object in COntext) object detection model was run.

e Build LKAS into the detection model by training lane detection

Without accurate training of the object detection, the results can be inaccurate and lead

to over detection or inaccurate detection.

il

Figure 37 - COCO Object Detection Figure 38 - COCO Object Detection Misclassification

Like the DuckieBot, Canny Edge Detection and the Hough transform was used to build the
LKAS.

Figure 40 - Line Keeping Assistance System Calibration

Figure 39 - HSV and Canny Edge Detection

The original code base was written by David Tian for blue lines and as a line follower not

a LKAS. For this thesis, the author rewrote the code as a LKAS for yellow lines. The code is

available onthislink: https://gitlab.com/Self-DrivingRoberts/experimental-testbed-auton
-/tree/master/public.

In the development of the DeepPi car problems were encountered due to the limited
compute resources of the Raspberry Pi, the sensitivity of the mechanical components
and the lack of centralised efficient code management due to not using ROS. Early in the
development the object detection was encountering issues due to the poor definition of
the 2mp camera. The camera was upgraded to 5mp, however, the increased size impacted
the mechanical movement brackets. The camera was stripped and reconfigured on the

DeepPi car, which enabled correct maneuvering. The LKAS was shown to have worked,
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however, due to the increased computational resources required, the frame rate of the
camera is not consistent and therefore the DeepPi car loses sensing of the road after 30

seconds.

Remote Control Operations

The DeepPi remote control operations has limited functionality. The operator can login
to a server which provides access to a GUI that allows functionality such as viewing the
on-board camera and manual control of the vehicle. The operator is unable to toggle be-
tween autonomous mode and human control. When human manual override is initiated

autonomy is lost until the vehicle is rebooted.

£

ater Raspberry Pi
IP Address and Port

192.168.43.104 § 8000

v Rememberme  Log in

Figure 41 - Remote Control Figure 42 - Remote Control Server

3.4 Demonstration

The autonomous self-driving vehicle test bed has been demonstrated to Starship robotics,
ISEAUTO and ZF. The test bed is also available for viewing on a YouTube channel: https://
www.youtube. com/channel/UC7cXBIDSGEBUCQAYHw4vkrSQ/videos. The videos on this

YouTube channel were created by the author.

The test bed is also available to be used as an open source lab. Each of the vehicles support
remote connection. A researcher interested in conducting security tests can remote into
the vehicle using VNC or SSH and run their tests.

58



4 Evaluation

4.1 Method

Test cases are used to evaluate the autonomous self-driving vehicle test bed. The practical
security threat analysis method by Vasenev et al. [44] was customised to generate the test
cases to evaluate the test bed. The method established by Vasenev et al. is for internal
security testing and assumes privileged information access such as data flow diagrams.
A customised method was used in this thesis as it is tailored for an adversarial approach
with no prior knowledge of the autonomous vehicle.

Tool/Model
Analysis Method STRIDE
Input Observation of the test bed
UNECE WP29 Matrix
Output Prioritised Security Threats

Table 4 - Analysis Method

Table 4 details that STRIDE is used as the security analysis method as it is the most widely
used for automotive[45]. The inputs to the STRIDE analysis come from expert opinion.
Firstly, experts observe the driving behaviour and on-board systems of the Duckiebot and
Deep Pi.Based on their observational analysis they provide their opinion as to what they
think are realistic threats to the vehicle based on their experience and testing processes
in their organisations. Secondly, these identified threats are compared to those listed in
the UNECE WP29 threat matrix. The reasoning for this is the cybersecurity certification
scheme from UNECE WP29 represents the future for automotive cybersecurity certifica-
tion and the inclusion of UNECE WP29 provides real-world relevance to the testing. The
consolidated list from the UNECE WP29 analysis is then presented to the experts for con-
sideration of what threats should be prioritised for testing. The output of the STRIDE

analysis are prioritised threats threats.

Expert opinion is used for the identification of security threats for the STRIDE analysis and
as the means to select the prioritised security threats. Figure 43 shows the analysis flow to
generate test case for experimental testing. The analysis flow recommended by Vasenev

et al. has been tailored to include their contributions.
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Figure 43 - Flow of Test Case Generation

4.2 Expert Interviews

of the expert panel.

The method for inclusion of expert opinion followed the Technological Delphi method
as outlined by Bayona-Ore et al[65]. The Technological Delphi method consists of four

characteristics of what required for the inclusion of expert opinion in research:

. Use of experts who are in a specific field or have technical knowledge and are part

. Iterative process to allow experts to provide more than one opportunity to provide

. Opportunity for feedback should feedback at the end of the experiment.

. Each interviewee should not know each others answers to ensure the integrity of

the opinion and avoid biases

The Technological Delphi method utilises technological means for facilitation of an expert
opinion feedback loop. Technology used for communication of the test bed and feedback

with experts comprised of email, Skype, YouTube and workshops in the TTU Robotics lab-
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Expert interviews were conducted with ISEAUTO, Starship Robotics, and ZF. The intervie-
wees met the criterion of experts as their roles consisted of; autonomous driving security
engineer, senior security engineer, director for safe driving, autonomous driving algorithm
designer and security architect. Each of their companies are considered leaders in the au-

tomotive industry, autonomous logistics, and autonomous vehicle education research.

Each interviewee, as per the method in figure 43, observed the test bed. Starship and
ISEAUTO viewed the test bed at the TTU Robotics Laboratory and ZF viewed the test bed
on the YouTube channel. The experts contributed threats based on their understanding of
real-world scenarios and how they test in their own organisations. The consolidated list of
threats, which combined all three expert opinions and those identified in the UNECE WP
29 Matrix, were reviewed by the experts and they prioritised the threats to evaluate the

test bed, based on real-world cyber threats experienced by their autonomous vehicles.
The experts provided feedback on the results of the test case experiments.

To ensure this work is published in an open forum and to protect each interviewee from
revealing the tactics, techniques and procedures used in cybersecurity testing in their or-
ganisation, their opinions have been summarised to allow inclusion in this thesis. Their
names, roles and discussion with this author will not be published.
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4.3 Security Test Cases

4.3.1 STRIDE Analysis

STRIDE THREAT ANALYSIS
Threat Property Threat Definition
Violated

S | Spoofing Authenticity T1 - A malicious attacker spoofs the roadside units to manipulate the drive logic to veer the vehicle
off the road
T2 — A malicious attacker spoofs the road markings to manipulate the drive logic to veer the vehicle
off the road

T | Tampering Integrity T3 — A malicious attacker tampers with the road markings to manipulate the drive logic to veer the

vehicle off the road

T4 — A malicious attacker tampers with the camera sensor using a laser pointer to blind or shield its
perception to manipulate the drive logic to veer the vehicle off the road

T5 — An innocent maintenance engineer executes a malicious cryptocurrency or ransomware
malware hiding as a firmware update for a vehicle system created by an angry mechanic/insider

T6 — An angry mechanic/insider inserts malicious ROS package to execute processes to alter the
vehicle driving behaviour

R | Repudiation

Non-Repudiation

T7 — An angry mechanic/insider changes the access credentials to the vehicle control and logs so
the vehicle controller cannot access data about their vehicle

I Information Disclosure

Confidentiality

T8 — A malicious attacker eavesdrops on the ROS vehicular messaging system for information
gathering.

T9 — An angry mechanic/insider unauthorised accesses the autonomous vehicle logs to extract data
to sell to the competition

D | Denial of Service

Availability

T10 — A malicious attacker conducts a denial of service of the short-range wireless network of the
autonomous self-driving vehicle

E Elevation of Privilege

Authorisation

T11 - An angry mechanic/insider elevates their privileges to super user to be able to change in-
vehicle messages

Figure 44 - STRIDE Threat Analysis
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4.3.2 UNECE WP 29 Matrix

STRIDE | High level and sub-level descriptions of vulnerability Attack Method
REF threat
T6T11 4.3.1 Threats regarding 1 | Back-end servers used as a means to 1.1 | Abuse of privileges by staff (insider attack)
Ti1 back-end servers attack a vehicle or extract data 1.2 | Unauthorised internet access to the server (enabled for example by backdoors, unpatched
system software vulnerabilities, SOL attacks or other means)
T9 1.3 | Unauthorised physical access to the server (conducted by for example USB sticks or other
media connecting to the server)
17 2 | Services from back-end server being 2.1 | Attack on back-end server stops it functioning, for example it prevents it from interacting
disrupted, affecting the operation of a with vehicles and providing services they rely on
vehicle
T1T2 4 | Spoofing of messages or data received by | 4.1 | Spoofing of messages by impersonation (e.g. 802.11p V2X during platooning, GNSS
the vehicle messages, etc.)
T4 4.3.2 Threats to vehicles | 5 | Communication channels used to conduct | 5.5 | Communications channels permit manipulation of vehicle held data/code
regarding their unauthorized manipulation, deletion or
communication channels other amendments to vehicle held
code/data
T3 6 | Communication channels permit 6.1 | Accepting information from an unreliable or untrusted source
untrusted/unreliable messages to be
accepted or are vulnerable to session
hijacking/replay attacks
T8 7 | Information can be readily disclosed. For | 7.1 | Interception of information / interfering radiations / monitoring communications
example through eavesdropping on
communications or through allowing
unauthorized access to sensitive files or
folders
15 4.3.4 Threats to vehicles | 15 | Legitimate actors are able to take actions | 15.1 | Innocent victim (e.g. owner, operator or maintenance engineer) being tricked into taking
regarding unintended that would unwittingly facilitate a an action to unintentionally load malware or enable an attack
human actions cyberattack
T10 4.3.5 Threats to vehicles | 16 | Manipulation of the connectivity of 16.3 | Interference with short range wireless systems or sensors
regarding their external vehicle functions enables a cyberattack,
connectivity and this can include telematics; systems that
connections permit remote operations; and systems
using short range wireless
communications

Figure 45 - UNECE WP29 Consolidated Matrix




4.3.3 Expert Analysis

Threats to the vehicle communication channels, their sensors and perception were rated
as high priority by a majority of expert opinion. The justification for this is that it offers a
low-cost, low-skill attack that can be as successful as a complex software or network at-
tack. Experts expected adversarial machine learning attacks, sensor spoofing and blinding
and manipulation of the variables in the driving environment to be a realistic and common
attack surface that will be seen on the streets of Tallinn and Helsinki. One expert thought
the inclusion of environmental perturbations of sensors such as fog, rain, smoke would be
interesting to replicate in the small-factor environment as this forms part of the combined
process for security and safety testing of their autonomous vehicle.

Threats to vehicle systems from malware was another highly rated concern. Realistic sce-
narios include an angry mechanic or engineer manipulating an update script to install a
malicious ransomware or cryptocurrency malware. The experts saw insider threats as
one of the more likely scenarios as internal knowledge about update procedures and in-
vehicular components and networks were crucial for a successful attack. They opined the
likelihood of success of external adversarial attacks were reduced due to technical controls

such as code signing and secure communication between components.

A majority of expert opinion accentuated the importance of threats to the external con-
nectivity and connections. The justification for prioritising network attacks is that, in their
opinion, most urban mobility transport operators operate multiple autonomous vehicles
and a cyber attack that impacts the availability of the network or the confidentiality of the
network could lead to multiple vehicles being taken control of by the attacker or taken of-

fline from the remote operator console.
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4.3.4 Prioritised Security Threats

Test Case Threat Definition

Test Case 1 A malicious attacker spoofs the road markings to manipulate the drive logic to veer the vehicle off the road

Test Case 2 A malicious attacker tampers with the road markings to manipulate the drive logic to veer the vehicle off the road

Test Case 3 A malicious attacker tampers with the camera sensor using a laser pointer to blind or shield its perception to manipulate
the drive logic to veer the vehicle off the road

Test Case 4 A malicious attacker spoofs the roadside units to manipulate the drive logic to veer the vehicle off the road

Test Case 5 An innocent maintenance engineer executes a malicious cryptocurrency or ransomware malware hiding as a firmware
update for a vehicle system created by an angry mechanic/insider

Test Case 6 A malicious attacker eavesdrops on the ROS vehicular messaging system for information gathering.

Test Case 7 A malicious attacker conducts a denial of service of the short-range wireless network of the autonomous self-driving
vehicle

Test Case 8 Smoke from fire obscures the driving environment causing vehicle to take adverse driving behaviour.**

** Test Case 8 was conducted on the express wish of one of the experts. They combine safety and security testing in their processes and they
wanted to see the capacity of the small-factor vehicle to conduct this experiment.

Figure 46 - STRIDE Threat Analysis




4.4 Security Test Case Evaluation

4.4.1 Sensor and Perception Security Test Cases

Test Case 1: A malicious attacker spoofs the road markings to manipulate the drive logic

to veer the vehicle off the road.

Experiment Setup: The autonomous self-driving vehicle is set on autonomous mode for

5 minutes allowing the vehicle to navigate traffic.
1. Attacker observes the autonomous self-driving vehicle to understand how the au-
tonomous drive cognition makes decisions.

2. Attacker crafts an image for projection on the driving environment. Figure 47 and

48 demonstrate images chosen for projection.

3. Attacker positions the projector in proximity to the vehicle and uses a remote con-
trol to initiate the projection attack.

Figure 47 - Malicious Projec-
tion Image

Figure 48 - Malicious Projection Image

Experiment Recording: https://www.youtube.com/watch?v=TYszVeblKEo Experi-
ment Results:The phantom attacks were unable to alter the driving actions of the duck-
iebot. Figure 49 shows the faint image of the phantom spoofed yellow line which is barely
visible due to the bright profile of the driving environment. Figure 50 visibly shows the
phantom spoofed line, due to a larger spoofed image being projected by the attacker. The
figure 50 image, from the Duckiebot camera shows that the autonomous drive cognition
is detecting the edges and texture of the yellow lines and white boundaries but is not de-
tecting the phantom image. This is due to the lack of edges, texture and geometry of the

phantom image.
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Figure 49 - Projector Attack 1 Figure 50 - Projector Attack 2

For Attack 4 (51) and 5 (52), the attacker uses larger and greater definition spoofed images
and includes yellow and white lines in order to spoof both lane markings and boundaries.
The attack is still unsuccessful as the autonomous drive cognition does not detect any
edges, texture or geometry of the phantom image. The attacker, pictured in figure 52, is
only 20 cm away from the road surface. To provide a clear phantom image the projector

had to be close to the target surface.
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Figure 51 - Projector Attack 4 Figure 52 - Projector Attack 5

All of the variables in the Nassi et al. experiments were recreated with the Duckiebot.
The Phantom images were left projecting on the road surface for 10 minutes, the size of
the images were increased, the definition of the images increased, projection on different
sections of the floor and different environmental light. The DuckieBot was resilient to the
phantom attack and the autonomous drive cognition was not spoofed by the phantom

images.

Conclusion: Whilst a spoofing attack using projection is a novel and interesting method
to manipulate an autonomous vehicle it is unlikely or has low probability of success. The

projection must contend with natural light, which means the attack must be undertaken

67



at night and it is not too difficult to update the object detection algorithm to filter out
these attacks.
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Test Case 2: A malicious attacker tampers with the road markings to manipulate the drive

logic to veer the vehicle off the road.

Experiment Setup: The autonomous self-driving vehicle is set on autonomous mode for

5 minutes allowing the vehicle to navigate traffic.

1. Attacker observes the autonomous self-driving vehicle to understand how the au-

tonomous driving cognition makes decisions.

2. Attacker, using the understanding of the drive control algorithm, perturbs the road
markings in the duckietown environment. The attacker can choose a discreet or
noisy attack. The discreet attack will be harder for the human operator with the

remote control pc to see the perturbation of the road marking.

Figure 53 - Tile manipulation - discreet

Figure 54 - Tile manipulation - noisy

Experiment Recording: https://www.youtube.com/channel /UC7cXBIDSGEUCQAYHw4vkrSQ/

videos

Experiment Results: The experiments used five attacks, LKAS1to 5. The Results confirmed
the findings of Sato et al. . Perturbation of a road marking can manipulate the drive al-
gorithm to cause the autonomous self-driving vehicle to veer off the intended path of
travel.

In LKAS Attack 1, the attacker tampered with the yellow lane markers to manipulate the
autonomous self-driving vehicle to drive off the road. The curve road part was changed
to a straight trajectory and the angle of the lane borders (white lines) were reduced to
lessen the width of the road. As Figure 56 demonstrates, the change to the road markings
is demonstrable in the DuckieBot camera sensor footage, from the expected road mark-

ings exhibited in Figure 55. LKAS 1 was successful in manipulating the autonomous drive
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cognition of the DuckieBot, however, the DuckieBot's autonomy is programmed to firstly
respect the lane boundaries. The DuckieBot followed the tampered yellow line until it
detected the lane boundary and then adjusted it’s travel path to the correct route.

Figure 55 - Normal Traffic Lane Markings Figure 56 - Spoofed Lane Markings - Discrete

In LKAS 2 and 3 the attacker extended the yellow lane markings further into the lane
boundaries. The DuckieBot still respected the boundaries and corrected the path of travel.

LKAS 4 the attacker removed the lane boundaries and extended the yellow lane mark-
ings, as shown in Figure 57 . The attack was successful and the DuckieBot veered off the

DuckieTown environment and was unable to recover.

Figure 57 - LKAS5 - Successful Manipulation of Duckiebot

In LKAS 5, a more noisy profile of manipulated lane markings was used by the attacker.
The DuckieBot experienced limited manipulation of driving due to the DuckieBot sensing

yellow markings in the distance and calculated an accurate route of travel.
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Figure 58 - Spoofed Lane Markings - Noisy

Conclusion: Although this threat seems simplistic in the experimental test bed environ-
ment, the implications for a real-world operational vehicle are stark. As Sato et al. demon-
strated, an attacker can use a 3D printer to print a tampered road patch and place it on the
road markings of a highway. If this test had occurred on an autonomous vehicle travelling
at 40 mph the results of the impact analysis would show the extent of damage to which

sensor and perception attacks can cause.
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Test Case 3: A malicious attacker tampers with the camera sensor using a laser pointer to

blind or shield its perception to manipulate the drive logic to veer the vehicle off the road.

Experiment Setup: The autonomous self-driving vehicle is set on autonomous mode for

5 minutes allowing the vehicle to navigate traffic.

1. Attacker observes the autonomous self-driving vehicle to understand how the drive

control makes decisions.

2. Attacker, using the understanding of the drive control algorithm, sets up a bosch

industrial laser at the side of the road.

3. Attacker turns on the laser to beam a red line across the road surface, spoofing the

red stop line programmed into the autonomous self-driving vehicle.

L

Figure 59 - Bosch Laser spoof attack Figure 60 - Bosch Laser spoof attack

Experiment Recording:https://www.youtube. com/channel/UC7cXBIDSGEUCQAYHw4vkrSQ/

videos

Experiment Results: The results of the experiment were that the laser was successful in
tampering with the camera sensor which resulted in the autonomous driving cognition

altering the course of the vehicle to proceed off the road.

The laser must be held steady and focused on the camera lens long enough to disturb
the computer vision. Figure 61 demonstrates the DuckieBot veering off the road from the

laser perturbation.
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Figure 61 - Laser Attack - Crash 3

A concerning aspect of the attack was the lack of detection of the laser from the camera.
Figure 62 shows a laser perturbation from a spot laser beam. The only recognition of the
computer vision is the solid green line at the top left of the screen. This is the autonomous
driving cognition mistaking the red, of the laser beam, with the pre-programmed rules of

a red line for the stop condition.

Figure 62 - Laser Attack - Crash 7

The laser attack test case was conducted over 10 times. Only on three occasions was it

successful due to the requirement for correct placement on the camera lens.

Conclusion: The laser attack presents a real-world threat to operational autonomous self-
driving vehicles. The attack is inexpensive and can be conducted by an unskilled attacker.
The camera sensors of a real-world vehicle are much larger and present an easier target
for adversaries. Defensive mechanism that can be implemented to mitigate against this

attack include improving the algorithm to filter out disturbances from lasers.
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Test Case 4: A malicious attacker spoofs the roadside units to manipulate the drive logic

to veer the vehicle off the road.

Experiment Setup: The DuckieBot is set on autonomous mode for 5 minutes allowing the

DuckieBot to navigate traffic.

1. Attacker observes the autonomous self-driving vehicle to understand the how the

drive control algorithm makes decisions.

2. Attacker, using the understanding of the drive control algorithm, tampers with the
stop sign . The attacker uses yellow dashed lines and white border lines to cover
the stop sign with the intent of getting the DuckieBot to proceed through the stop

sign.

Experiment Results: Due to the problems encountered with the object detection the ex-
periment was unable to be conducted. The object detection in the both the DuckieBot
and the DeepPi is unable to function correctly as there is too much delay in the frame
rate of the camera. Due to this the vehicles cannot detect objects in the environment
consistently whilst driving. Using the object detection whilst the DuckieBot is static the
manipulated road sign is inaccurately detected as a lane marker. It can be seen that this

attack would be successful in manipulating the object detection of a working vehicle.

Figure 63 - Correct Stop Sign Figure 64 - Adversarial Machine Learning Rogue Sign
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4.4.2 Hardware & Compute Test Cases

Test Case 5: An innocent maintenance engineer executes a malicious cryptocurrency or
ransomware malware hiding as a firmware update for a vehicle system created by an angry

mechanic/insider.

Experiment Setup:

1. Angry Mechanic uploads malware script (Linux.MulDrop.14) from dark web
2. Malware script is packaged as a bash script that is labelled "update".

3. Maintenance engineer initiate "update" script with intention update vehicle firmware.

Experiment Results: The "update" firmware (Figure 65) was executed by the innocent

maintenance engineer working on the DeepPi car.

Downloads Blvioespberyoi~  [llpi@respbenypi imed.. ol @ malvare 016728603, Vel = 1509
Downloads o

Sitems Free space: 14.6 GIB (Total: 26,5 GiF)

Figure 65 - Update File

The update firmware contained the Linux.MulDrop.14 script.Linux.MulDrop.14 is a bash

script containing a cryptomining program. Once infected on a host computer the Linux.MulDrop.14
installs several libraries and processes for it’s operation and then tries to install zmap (net-

work scanner) and ssh pass (utility for establishing ssh connections). It uses zmap, in an

infinite loop, to discover the network and find raspberry pi’s and other embedded devices

with port 22 (ssh) open. If these are found, it connects to the device using ssh with default
passwords.It then changes the configuration settings of the device to allow a connection

to a command and control node used for cryptomining.

On the DeepPi car, the malware installed it’s libraries and zmap and ssh pass and began
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a zmap scan of the network. The DeepPi was on a private 4G network that also had the
DuckieBot connected. As these devices do not use default passwords it was unable to
establish a connection to them. The DuckieBot is also managed through docker environ-
ment which adds another layer of protection. The zmap scans only marginally impacted
the performance of the network of the DeepPi car. As figure 66 shows the zmap scan was

sending 50,000 packets to the target device, but these are only looking for open port 22.

) pi Downloads Blvi@raspberypi: ~/Do.. Ellpi@raspberrypi: /med il @ malware/016728eb3

Figure 66 - ZMAP Scan

An interesting event happened during the experiment. The 4G cellular private network
lost connection during the malware execution and the DeepPi Car switched over to the
TalTech wireless network. The zmap process then started to scan the TalTech network for
open Raspberry pi and embedded devices.TalTech IT Security incident response team saw
the DDoS traffic and removed the DeepPi car from the TalTech Wireless network within

10 minutes.

Conclusion: The implant of the malware on the DeepPi on-board computer was easy and
required low-skill. The experiment demonstrated the importance of basic IT security con-
trols in vehicles such as not using default passwords and regular patching. The malware
leakage to the TalTech network provided an interesting observation: an autonomous ve-
hicle could lose access to a secure network and instead connect to a more vulnerable

network which would allow malware to propagate more extensively. This highlights the
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importance security controls on the car and on the edge servers which the autonomous

car sends and receives data from.
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Test Case 6: A malicious attacker eavesdrops on the ROS vehicular messaging system for

information gathering.

Experiment Setup: For this attack, the attacker needs to be on the same network as the

vehicle.

1. Attacker scans the network and identifies the vehicle

2. Attacker eavesdrops on the ROS communication by spoofing the ROS Master

Experiment Results: Figure 67 shows the commands required for spoofing the ROS Master
in the attacker environment. Port 11311 is the default port for the ROS Master.

root@andrew-LIFEBOOK-E734: fhome/software# ROS MASTER_URI=http://192.168.43.240:11311/
root@andrew-LIFEBOOK-E734: fhome /software# ROS HOSTNAME=andrewttu

-:)c)t@andrew -LIFEBOOK-E734: fhome/software# rqt_graph

Figure 67 - ROS Eavesdropping

The attacker proceeds to use the rqt_graph command to print the ROS node and topic

activity of the operational vehicle.

T ——
P P —— |

—_ -_-‘1 rceamtoric gate modajorsic overide ot and geep ane on

BAdretNog Gt PESNAL_Shop I S0 Chargng Rt

Figure 68 - ROS Graph

Figure 68 shows communications of the ROS Master that the attacker is eavesdropping.
The attacker can use this to learn of the operations of the vehicle and then use the same
spoofing of the ROS Master to then initiate malicious processes or stop critical safety pro-

cesses.

Conclusion: ROS is highly insecure. The version that the DuckieBot is running is the same

as the vehicles used in the FinEst project. There is no authentication and secure commu-
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nication of the ROS Master. The ROS Master also uses HTTP so it is vulnerable to a number

of other malicious web application attacks.
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4.4.3 Connected Vehicle Security Test Cases

Test Case 7: A malicious attacker conducts a denial of service of the short-range wireless

network of the autonomous self-driving vehicle.

Experiment Setup: The autonomous self-driving vehicle is set on autonomous mode for

5 minutes allowing the vehicle to navigate traffic.

1. Attacker scans wireless and cellular networks of the vehicle using WiFi Pineapple or

a PC with network scanning software such as nmap or airmagnet.

2. Attacker finds the WiFi access point connecting to the human operator console and

autonomous self-driving vehicle.

3. Attacker De-authenticates the devices connected to the WiFi access point.

Experiment Recording: https://www.youtube.com/watch?v=YWg_tpIIpPO

Experiment Results: A scan of all wireless networks was conducted using the Hak5 WiFi
pineapple device. The WiFi pineapple can be considered a malicious access point that
acts as a man-in-the-middle between the wireless network and the client device. It can
scan, capture traffic and execute a number of attacks such as capturing passwords of in-
secure network protocols. Figure 69 presents the outcomes of the wireless network scan.
The HUAWEI Y5 2018 network is identified as the vehicle network from analysing the sig-
nal strength and capturing the traffic. Figure ?? demonstrates the attacker selected the
network to conduct the deauthentication attack.

<« C @ Notsecure | 172.1642.1:1471/it/modules/SiteSurvey o % B @ :
eduroam + weaz COMRTKIP  802.1x 3 2422Ghz  71dBm  56% Deaun
eduroam - weAz COMP,TKP  802.1x 4 2427Ghz  G2dBm 0% Deaun
eduroam WeA2 CCMP,TKIP  802.1x 7 244260z 37dBm 100% Deautn
eduroam ~ weAz GOMP,TKIP  802.1x 11 2462Ghz G0 dBm  71% Deaun
eduroam weAz COMRTKIP  802.1x 13 24726z G6dBM  63% Dot
eduroam WeA2 CCMP,TKIP  802.1x 36 s18Ghz  TidBm  56% Deautn
eduroam weA2 COMP,TKIP  B02.1x 44 522Ghz  77dBm  47% Deaun
eduroam WeAz COMP,TKIP  802.1x 44 5226hz  48dBm  8%% Deaun
eduroam Wea2 COMP,TKIP  802.1x 52 526Ghz  88dBm  31% Deaun
eduroam ~ weAz COMR,TKIP  802.1x 60 53Ghz  790Bm  44% Deaun
eduroam + weaz COMR,TKIP  802.1x 116 558Ghz  7dBm  3%% Deaun
HUAWEI Y5 2018 Wea2 comp PSK 1 241200 73cem 5% [EE) Deaun
HUAWELB535-9C7C WeA2 comp PSK 10 2457Ghz B0dBm  43% Deaun
Msi[~ Mixed WPAWPA2  GCMP PSK 3 24226h  72dBm 4% . Deaun
sl - Mixed WPAWPAZ  CCMP PSK 116 558Ghz  -67dBm  33% Deauth
NVRI « Mixed WPAWPAZ  TKIP.COMP  PSK & 2437Ghz  B5dBm  36% . Deaun
Sarghava - wrnsETAtons| <) WPAZ COMRTKIP  PSK 4 2427Ghz -B6dBm  34% . Deauth
sarghaua - asracFToFFEo| - WPA2 CCMP,TKP  PSK 7 2442Ghz  40dBm  100% Deaun
sarghaua - serasFTerFTS [« WPA2 COMRTKIP  PSK T 2442Ghz  B5dBm  36% sptre Deaun

Figure 69 - Scan of Wireless Networks
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HUAWEI Y5 2018
BA:94:36:80:21:B8

Capture Wireless Handshake

‘1 Stop Capture | Deauth

Figure 70 - De-Authentication of Vehicle WiFi Network

Figure 71 shows the workflow of the deauthentication attack. The attacker connects to
the vehicle network, monitors the traffic and then deauthenticates the client, which in
this case is the DuckieBot.

Client Attacker AP

Authentication ;Request

.
H
H

AssociationiResponse

H

i _ Deauthentication

i Deauthentication

.

Figure 71 - Deauthentication workflow

[66, p.108]

The deauthentication attack was attempted twice. Both attempts were successful. Figure
72 shows the human remote operator console after it loses access to the network con-
nection with the DuckieBoT and the DuckieBot accelerates off the road. Figure 73 shows
the DuckieBot impacting the wall when it loses connectivity. The DuckieBot continues to
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accelerate on hitting the wall.

o -o
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ﬂ Figure 73 - WiFi Crash

Figure 72 - Human Remote Operator Console View - WiFi
Crash

Conclusion: The DDoS attack had the most impact due to lost of control of the human
operator to safely stop the vehicle. Only with manual intervention to turn off the battery
at the DuckieBot was the vehicle stopped. This demonstrates the catastrophic scenario,
in a hybrid control mode, if the human control is lost, there is little that can be done to

ensure the safety of the vehicle and it's occupants.

82



4.4.4 Environmental Perturbations

Test Case 8: Smoke from fire obscures the driving environment causing vehicle to take

adverse driving behaviour.

Experiment Setup:
1. A 400w smoke machine is placed next to the environment. The smoke machine is
filled with special liquid and then activated using the command controller. Smoke

envelops the driving environment.

Note: This experiment was conducted with a fire extinguisher close by in case of fire.

e 0

Figure 74 - Environmental Setup - Smoke Machine and DuckieTown

Experiment Recording: https://www.youtube. com/watch?v=yLjuV5sMnwo

Experiment Results: The experiments were conducted under three different lighting con-
ditions: controlled lights, natural light, controlled dark lighting. In all lighting conditions
the smoke was able to perturb the camera sensor to alter the driving path of the Duck-

ieBot to crash out of the road environment.

The initial experimental tests, which were unsuccessful in altering the DuckieBot path,
showed that the most important variables were the denseness of the smoke and the abil-
ity of the smoke to linger in the air to envelop the camera. The first three smoke experi-
mental tests demonstrated the autonomous driving cognition being lost due to the smoke
hazard, however, as the smoke stream was momentary, the detection of the lane mark-
ings were recovered in time to navigate accurately. Figure 75 shows the smoke perturbing
the object detection of the lane markings and figure 76 displays how the object detection

was recovered.
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Figure 75 - Smoke - Test 5 External View Figure 76 - Smoke - Test 5 DuckieBot Object Detection

Figure 77 and figure 78 shows the smoke affecting the autonomous driving cognition to

the point were the DuckieBot is unable to recognise the lane markings.

[@image View D® -o
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Figure 77 - Smoke - Test 5 External View Figure 78 - Smoke - Test 5 DuckieBot Computer vision

Conclusion: The test case demonstrated the utility of the small-factor test environment
in being able to simulate diverse environment conditions. Based on the results of the test

case it may be possible to include safety testing in the scope of the test bed.
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4.5 Test Case Feedback

The expert interviewees commented that the small-factor autonomous test bed was an
innovative and creative solution for cybersecurity testing. The feedback of the DuckieBoT
and DeepPi were that they were useful for test cases involving ROS and the drive algorithm
and discovering edge cases for cybersecurity testing. To increase relevance of the small-
factor test bed for operational vehicles, the small-factor concept needs to be extended to
include embedded components such as ECUs and in-vehicular networks. Also, the multi-
sensor fusion framework should be included in the architecture of the vehicle so sensor
redundancy can be evaluated. Limitations of the small-factor test bed identified by the
experts were the limited ability to simulate real-world environmental conditions such as

snow storms and the speed of a real-world operational vehicle.

4.6 Discussion

4.6.1 How can a low-cost, small-factor, autonomous self-driving test bed be used for

cybersecurity testing?

The test bed supported test cases provided by expert opinion and generated from a STRIDE
analysis which included threats from the UNECE WP 29 threat catalogue. The test cases
demonstrated that the test bed can allow for cybersecurity testing of the sensors and

perception, computer & hardware and connected vehicle.

The small-factor test bed demonstrated it’s use in validating the viability of proof-of-concept
attacks such as that of the projector attack. Based on the results of the testing, it was able
to be shown that the projector attack was very difficult to accomplish and had a low prob-
ability of success in the real-world.

The WiFi test case provided insights into possibilities for interoperability and human oper-
ator research. The vulnerabilities of the network interface, exploited in the cybersecurity

test case, impacted the vehicle behaviour and human control.

4.6.2 How can a low-cost, small-factor autonomous self-driving vehicle and driving en-

vironment be designed?

Two autonomous self-driving vehicle were created for less than €300. The characteristics
they shared with real world operational vehicles included the software systems, network
interfaces and algorithmic control of driving behaviour. Small-factor autonomous self-

driving vehicles.
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In the design of small-factor vehicles physical properties are an important consideration.
The DeepPi car’s mechanical steering mechanism provides a more realistic comparison
to real-world vehicles, whilst, the DuckieBot is able to use it's LEDs to drive in dark and

low-lighting environments.

Adding additional hardware in the small-factor vehicle requires multiple upgrades to the
architecture, such as; batteries, re-wiring, re-assembly of parts, cooling systems, data stor-
age and memory. During the design, the configuration of the DuckieBot had to be changed
as the components melted due to excessive heat. During the course of the design and ex-
periments it took weeks of effort to reconfigure the DuckieBot and DeepPi car to replace
components with upgraded versions. This effort, however, pales in comparison to the

required effort to upgrade or change the design of a real-world operational vehicle.

4.6.3 How can cybersecurity testing of a small-factor autonomous self-driving vehicle
test bed used to improve cybersecurity of the FinEst autonomous self-driving ve-
hicles?

Control of the small-factor environment allowed greater diversity of cybersecurity test-
ing with lower cost and less resources required. A fundamental proof of this is the test
LKAS manipulation. In a real-world environment this would require repainting a road, the
vehicle must be clear of obstacles and pedestrians and any damage to the vehicle would
end the experiment. In the small-factor environment the experiment could be executed
as many times as possible and the effort to achieve the setup of the testing scenario and

repair any damage was minimal.

The modular nature of the small-factor environment allows features to be added as de-
signs and technology of autonomous vehicles change. This is also true of the software
systems. For autonomous vehicular projects of a research and development nature such
as those used in the FinEst project, the small-factor test bed allows for agility in testing

system design changes.

4.6.4 What are the limitations of test beds for autonomous self-driving vehicle cyber-

security testing?

The small-factor testbed cannot exactly replicate the architecture of a full-factor autonomous
vehicle. Key differences are the diversity of embedded components and the limited com-
putational resources of the small-factor vehicles. In the architecture of a full-factor au-
tonomous vehicle the neural network will use resources locally, such as the NVIDIA Drive

platform will be on-board the vehicle. This is opposed to the small-factor environment,
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which, due to it's limited computation resources must access resources in a cloud envi-

ronment such as Google Colab.

4.6.5 Can automation and sensor failures caused by cyber attacks be identified using
an experimental test bed?

As aforementioned, there is an increase in accidents of autonomous self-driving vehicle
due to failures of object-detection and sensor and perception technology. The related
work demonstrated how a cyber adversary could construct the same manipulations using
adversarial tactics. One of the fundamental values of the small-factor environment for
security testing demonstrated in the test case evaluationis that it can evaluate sensors and
perception against a wide range of adversarial cyber threats and include damage incurring
test cases.
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5 Conclusion

5.1 Conclusion

This thesis sought to solve the problem of whether small-factor test beds could provide
a viable option for the testing for cybersecurity of real-world operational autonomous
vehicles such as those used on the streets of Tallinn to Helsinki. This was successfully
proven with the development and evaluation of a test bed consisting of two small-factor
autonomous self-driving vehicles and a driving environment. The design established that a
small-factor autonomous self-driving test bed could be created, at low-cost, under €300,
and resemble systems used on operational vehicles such as; ROS, network interfaces and

drive control functionality.

The evaluation of the test bed using realistic test cases provided by experts proved that cy-
bersecurity testing in the small-factor environment was viable and valuable in performing
a variety of tests on sensors and perception, communication channels and hardware and
compute. The results of the test cases demonstrated that vulnerabilities could be found
in the small-factor environment that had relevance to the real-world environment. These
findings can be used to improve the security of the vehicle to cyber attacks by implemen-
tation of defensive controls as well as increasing the awareness of automotive engineers

and algorithm designers of the vulnerabilities of their systems.

Limitations of the test bed environment were that it couldn’t fully replicate the diversity
of electrical components, speed and environmental conditions of a real-world operational
vehicle. Another major limitation in the use of small-factor autonomous vehicles is the
limited computational resources available on-board. For robust, trained object-detection,
the small-factor autonomous vehicle needs to utilise resources from the cloud for oper-
ation of the object-detection algorithm, storing of training data and to alleviate resource
usage locally on the small-factor vehicle. As this is one of the first such studies into small-
factor test beds, the development and innovation of small-factor autonomous vehicles

may bridge this gap.

As identified in the case of the Tesla crash in Florida and the Uber crash in Arizona, in-
tegrity of sensors and the autonomous driving algorithm is of predominant importance
for safety and security of the autonomous vehicle and it’s passengers. The evaluation of
the test bed demonstrated that cyber attacks that impact the sensors and perception of an
autonomous vehicle could be replicated in a small-factor environment. The contribution
of the small-factor test bed artifact and the methods outlined in the test cases provide a

tangible contribution that autonomous system designers can use to validate vulnerabili-
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ties in sensors and perception to prevent events such as the aforementioned occurring in

real-world traffic.

The code for the DeepPi vehicle has been published under an open source license and can

be found in the following link: https://gitlab.com/Self-DrivingRoberts/experimental-testbed
-/tree/master/public/DeepPiCar. The video demonstrations for the cybersecurity

test cases is publically demonstrated on YouTube and can be found in the following link:
https://www.youtube.com/channel/UC7cXBIDSG6UCQAYHwAvkrSQ/videos

5.2 Future Work

As the contribution of this thesis had a practical objective of improving the cybersecurity
of vehicles in the FINEST Twins Center of Excellence project, the next phase of this work
will be to build a small-factor version of the TalTech ISEAUTO autonomous vehicle. The
next phase will attempt to emulate the full sensor profile of the ISEAUTO, in-vehicular
networks such as CAN and embedded components. The new small-factor test bed envi-
ronment will also be tested to support new cybersecurity testing process methodologies
within the working of the International Alliance for Mobility Testing and Standardisation
(IAMTS) Working Group 4 - Cybersecurity.

The DuckieTown test bed environment will also be extended to include v2v, v2i and v2x
network interfaces. The aim will be to increase the functionality of the test bed and con-

duct research of; digital forensics and human operator cybersecurity awareness.
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Appendix 1 - Attack Surfaces in Autonomous Automated Vehi-

cles

TABLE 1

ATTACK SURFACES IN AUTONOMOUS AUTOMATED VEHICLE

Target Means Feasibility of | Physical | Ease of detec- | Ease of detec- | Probability of | Direct Hazard created Mitigation technique
the attack access tion by driver tion by system | success consequence(s)
Infrastructure | change sign (fake, irrele- | low w/a high low low-medium false reaction traffic harden  infrastructure  sign
sign vant) disturbance change: map databasc of sign
in-vehicle; driver reporting
alter (change speed), make | high nfa high low low-medium false/no reaction traffic harden  infrastructure  sign
it unreadable disturbance change: map database; driver
reporting
remove (e.2. stop sign) high n/a high low low-medium no reaction traffic harden  infrastructure  sign
disturbance change: map database; driver
reporting
Machine vi- | blind (only source of in- | high no medium high high degraded mode driver multiple cameras with differ-
sion formation) disturbance ent angle
blind (other source of in- | high no medium high high trn off the cam- | none n/a
formation available) era
fake  picture/emergency | low no medium low medium false reaction driver other source of data
brake light (only source disturbance
of information}
fake  picture/emergency | low no medium Tow medium false reaction driver na
brake light (other source disturbance
of information available)
GP'S spoofing high no Tow medium high wrong (raffic authentication
positioning disturbance
or crash hazard
jamming high no low medium to high | high ne accurate posi- | need to  stop | And-lam  GPS  techniques.
tioning informa- | vehicle  unless | high-quality IMU
tion available other location
info sources
available
In-vehicle inject malware medium yes for | low medium medium depends on mal- | depends on mal- | Separvation infotainment/safety
devices USB, v capability | ware’s capability ses;  Intrusion  Detection
no  for System/Anti-virus/Firewall
others
head unit attack medium yes high* medium medium display driver Protection of display of safety
unexpected disturbance status information
information
Acoustic interference  (electromag- | mediam no low to medium low low wrn off the sen- | n/a filter; spectrum analysis
SENSOr netic, loud sound, inaudi- sSOr
ble)
fake crash sound high no low 1o medium | low low false reaction traffic other source of data (e
disturbance radar)
fake ultrasonic reflection medium no low low low false positive or | traffic other source of data (e.g. lidar)
false negative ob- | disturbance
stacle detection or low-speed
crash
Radar chaff medium na medium high medium degraded mode traffic filter; other source of data
disturbance
smart material (non reflec- | low no medium low medium no detection of | collision other source of data
tive surface, invisible ob- surroundings
jamming (saturation with | high no low high medium wrn off | traffic filter; other source of data
noise) radar/degraded disturbance
mode
ghost vehicle (signal re- | high no medium* medium medium false detection traffic filter; other source of data
peater) disturbance
Lidar Jjamming high no low high medium wmn off | loss of situation | filter; other source of data
Tidar/degraded awareness by ve-
mode hicle
smart material (absorbent, no medium* medium medium false  detection | traffic filter; other source of data
reflective) (e.g fake | disturbance
delineation)
Road modify delineation Tow wa medium low low false detection traffic driver reporting
disturbance
hack smart lane LEDs Tow n/a low low Jow false detection traffic
disturbance
in-vehicle avesdropping (tire pres- | high no Tow low medium privacy leak none in-vehicle security
SCNSOIS sure, bluetooth)
eavesdropping CAN bus high yes medium low medium reverse engineer- | none in-vehicle security
ing
inject CAN messages medium yes medium high medium Talse message | driverfiraffic dis- | in-vehicle securi
from internal | turbance
SCNSOrs
Odometric magnetic attack high yes low low medium wrong posi- | traffic other source of data
Sensors tion/navigation disurbance
thermal attack of gyro- | medium yes low low Tow wrong posi- | traffic casing; other source of data
scope tion/navigation disturbance
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Electron EMP low no low high medium temporary to | disabling vehicle | EMP protection
permanent automation
damage o
electronic
components
Maps Map poisoning low no low medium medium Wrol euver traffic authentication of maps server
disturbance,
accident

[67]
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Appendix 2 - ENISA Smart Car Attack Scenarios

Table 1: Smart cars attack scenarios

ATTACK SCENARIOS SEVERITY*

1. Vulnerability exploit in a communication stack: exploitation of a vulnerability

in a communication stack of an in-vehicle network (e.g. no protection mechanism

against replay attacks, lack of authentication, etc.) can lead to severe issues such as High
critical ECU reprogramming and taking control the vehicle over the Controller Area

MNetwork {CAN bus).

2. Mobile car application*® being hacked/attacked allowing access to the car:
by hacking the mobile application, an attacker could order a car to drive him High
somewhere although he is not allowed to do so.

3. Antack on remote servers to influence car behaviours: several attack
scenarios exist regarding remote servers. For instance, an attacker could
compromise map data with the aim to affect plausibility checks, or even alter data on
traffic conditions to change the curment car itinerary resulting in an inefficient service.

High

4. Fake communication unit to compromise telematics unit and deploy rogue
firmwara: use of malicious communication unit, such as Base Transceiver Station
(BTS), Wi-Fi router, RSU, with the objective to spread a malware or just disrupting
the infrastructure communications.

High

§. Large scale deployment of rogue firmware after hacking OEM back-end
sarvers: penetration of OEM back-end servers with the aim to initiate malicious
firmware updates could lead to devastating results as this kind of attacks is highly-
scalable,

High

6. Hacking an RSU with the aim to spread wrong traffic and safety
messages: as RSUs constitute an important part of the autonomous vehicles'
ecosystem, they could be the target of hackers in order lo create traffic jams or other
kind of disruptions.

High

7. Rogue vehicle sending wrong information through V2V interfaces: vehicles
unknown from the infrastructure (e.g. countarfeit cars) that are deployad to decrease
the safety level by sending wrong information about traffic conditions and other
functionalities (i.e. fake information with the aim to update map data).
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B. Sensor fooling by adversarial perturbation: attack scenanos to disrupt the
sensors’ proper functioning by different means depending on the targeted sensor
(e.g. lash the camera, relay the light waves from the LIDAR).

9. Communication jamming: producing radio interferences to disrupt wireless
networks so the vehicles cannot emit or receive V2X messages.

10. GMNSS spoofing: by replacing GNSS signals, an attacker can fool a third-party
sarvice into thinking that the vehicle is elsewhere in either time or location. This can
lead to accident or vehicle theft.

11. Blocking critical messages at automation level 4: an attacker can block
critical messages, such as Denial of a Service (Do3) attack, and prevent the semi-
autonomous vehicle (or driver) from reacting appropriately to the situation (e.g. apply
the brakes, wamn the driver that he needs to take control of the vehicle, elc.).

(21]
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Appendix 3 - UNECE Threat Catalogue

High level and sub-level descriptions of vulnerability/

threat

Example of valnerability or attack method

4.3.1 Threats
regarding back-end
servers

Back-end servers used as a
means to attack a vehicle or
extract data

Abuse of privileges by staff (insider attack)

1.2 | Unavthorised internet access to the server (enabled
for example by backdoors, unpatched system
software vulnerabilities, SQL attacks or other means)

1.3 | Unauthorised physical access to the server

(conducted by for example USB sticks or other
media connecting to the server)
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High level and sub-level descriptions of vulnerability/

Example of valnerability or attack method

threat
Services from back-end server |2.1 | Attack on back-end server stops it functioning,
being disrupted, affecting the for example it prevents it from interacting with
operation of a vehicle vehicles and providing services they rely on
Data held on back-end servers |3.1 | Abuse of privileges by staff (insider attack)
being lost mised
{.:Ei ::e;:‘hin}mpm 32 | Loss of information in the cloud. Sensitive data
may be lost due to attacks or accidents when data is
stored by third-party cloud service providers
33 |Unauthorised internet access to the server
{enabled for example by backdoors, unpatched
system software vulnerabilities, SQL attacks or other
means )
34 | Unauthorised physical aceess to the server
{conducted for example by USB sticks or other
media connecting to the server)
335 | Information breach by unintended sharing of data
{e.g. admin errors, storing data in servers in garages)
4.3.2 Threats to Spoofing of messages or data | 4.1 | Spoofing of messages by impersonation (e.g.
vehicles regarding received by the vehicle 802.11p V2X during platooning, GNSS messages,
their communication ete.)
gy 42 | Syhil attack (in order to spoof other vehicles as if
there are many vehicles on the road)
Communication channels used 5.1 | Communications channels permit code injection, for
to conduct unauthorized example tampered software binary might be injected
manipulation, deletion or other into the communication stream
amendments to vehicle held - - — - -
ccdaiieti 52 |Communications channels permit manipulate of
vehicle held data/code
53 | Communications channels permit overwrite of
vehicle held data/code
54 | Communications channels permit erasure of vehicle
held data/code
55 |Communications channels permit introduction of
data/code to the vehicle (write data code)
Communication channels 6.1 | Accepting information from an unreliable or
permit untrusted/unreliable untrusied source
messages Lo be accepted or are T a i
Stlishithle i aikelag 6.2 | Man in the middle attsck/ session hijacking
hijacking/replay attacks 6.3 | Replay attack, for example an attack against a
communication gateway allows the attacker to
downgrade software of an ECU or firmware of the
gateway
Information can be readily 7.1 | Interception of information / interfering radiations

disclosed. For example through

/ munlturlng commumcations
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High level and sub-level deseriptions of vulnerability/

Example of vulnerahility or attack method

threat
eavesdropping on 72 |Gaining unauthorised access o files or data
communications or through
allowing unauthonzed access to
sensitive files or folders
] Denial of service attacks via 8.1 |Sending a large number of garbage data to vehicle
communication channels to information system. so that it is unable to provide
disrupt vehicle functions services in the normal manner
82 [Black hole attack, in order to disrupt
communication between vehicles the attacker is able
to block messages between the vehicles
9 An unprivileged user is able to | 9.1 | An unprivileged user is able to gain privileged
gain privileged access to aceess, for example root access
vehicle systems
10 |Viruses embedded in 10.1 | Virus embedded in communication media infects
communication media are able vehicle systems
to infect vehicle systems
11 Messages received by the 11.1 |Malicious internal {e.g. CAN) messages
rehicle (for e v
;.Eh“l :.tur oxample X2V or 11.2 |Malicious V2X messages, ¢.g. infrastructure to
iagnostic messages), or i ! 2
: P ; vehicle or vehicle-vehicle messages (e.g. CAM,
transmitted within it, contain :
i DENM})
malicious content
11.3 [Malicious diagnostic messages
11.4 | Malicious proprietary messages (e.g. those
normally sent from OEM or
component/system/ function supplier)
4.3.3, Threats to 12 Misuse or compromise of 12,1 |Compromise of over the air software update
vehicles regarding update procedures procedures, This includes fabricating svstem
their update update program or firmware
procedures 12.2 | Compromise of local/physical software update
procedures. This includes fabricating system update
program or firmware
12.3 | The software is manipulated hefore the update
process (and is therefore corrupted), although the
update process is intact
124 | Compromise of cryptographic keys of the software
provider to allow invalid update
13 |Ivis possible 1o deny legitimate | 13.1 | Denial of Service attack against update server or
updates network to prevent rollout of eritical software
updates and/or unlock of customer specific features
4.3.4 Threats to 14 | Misconfiguration of equipment | 14.1 | Misconfiguration of equipment by maintenance

vehicles regarding
unintended human

or systems by legitimate actor,
€., OWner or maintenance

community or owner during installation/repair/use
causing unintended consequence
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High level and sub-level descriptions of vulnerability/

Example of vulnerability or attack method

threat

actions coOmmunity 142 |Erroneous use or administration of devices and
systems (incl. OTA updates)

15 |Legitimate actors are able to 15.1 |Innocent victim {e.g. owner, operator or maintenance
take actions that would engineer) being tricked into taking an action to
unwittingly facilitate a cyber- unintentionally load malware or enable an attack
attack

s 15.2 | Defined security procedures are not followed

4.3.5 Threats to 16 Manipulation of the 16.1 [Manipulation of functions designed to remaotely

vehicles regarding connectivity of vehicle operate systems, such as remote key, immobiliser,

their external functions enables a cyber- and charging pile

VoS and wttaok, t.h's oais inchede [ 162 | Manipulation of vehicle telematics (e.g.

connections telematics; systems that permit ; 5

;e manipulate temperature measurement of sensitive
remote operations; and systems
e ; 5 goods, remotely unlock cargo doors)
using short range wireless
communications 16.3 | Interference with short range wireless systems or
SENSOTS

17 Hosted 3rd party software, e.g. [ 17.1 | Corrupted applications, or those with poor
entertainment applications, software security, used as a method to attack vehicle
used as a means to attack systems
vehicle systems

18  |Devices connected to external | 18.1 | External interfaces such as USB or other ports used
interfaces e.g. USB ports, OBD as a point of attack, for example through code
port, used as a means to attack injection
iicle pyatime 18.2 |Media infected with a virus connected 1o a vehicle

system

I18.3 | Dingnostic access (e.g. dongles in OBD port) used
to facilitate an attack, ¢.g. manipulate vehicle
parameters {directly or indirectly)

4.3.6 Potential 19 | Extraction of vehicle data‘code | 19.1 | Extraction of copyright or proprietary software from

targets of, or vehicle systems (product piracy)

:::E;mmm ;. 19.2 | Unauthorized access to the owner®s privacy
information such as personal identity, payment
account information, address book information,
location information, vehicle's electronic 1D, ete.

19.3 | Extraction of cryptographic keys
20 [Manipulation of vehicle 201 [Ilegal/unauthorised changes to vehicle's electronic
data/code i
20.2 | Identity fraud. For example if a user wants to
display another identity when communicating with
toll systems, manufacturer backend
203 [ Action to circumvent monitoring systems (e.g.

hacking/ tampering/ blocking of messages such as
ODR. Tracker data, or number of runs)
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High level and sub-level descriptions of vulnerahbility/

Example of vulnerability or attack method

threat

204 |Data manipulation to falsify vehicle®s driving data
{e.g. mileage. driving speed, driving directions. etc.)

205 |Unauthorised changes to system diagnostic data

21 Erasure of data/code 21.1 |Unauthorized deletion/manipulation of system event
logs
22 |Introduction of malware 222 |Introduce malicious software or malicious software
activity
23 Introduction of new software or [ 23.1 | Fabrication of software of the vehicle control
overwrite existing software system or information system
24 Disruption of systems or 241 | Denial of service, for example this may be triggered
operations on the internal network by flooding a CAN bus, or
by provoking faults on an ECU via a high rate of
messaging
25 | Manipulation of vehicle 251 |Unauthorized access of falsify the configuration
paramelers parameters of vehicle's key functions, such as
brake data, airbag deployed threshold, ete.

252 | Unauthorized access of falsify the charging
parameters. such as charging voliage, charging
power, battery temperature, etc.

4.3.7 Potential 26 |Cryptographic technologies can | 26.1 [ Combination of short enervption keys and long
vulnerabilities that be compromised or are period of validity enables attacker to break
could be exploited if insufficiently applied encryplion

not sufficiently 26.2 | Insufficient use of eryptographic algorithms to
protected or ey i

Ao protect sensitive systems

26.3 | Using already or soon to be deprecated

eryptographic algorithms
27 | Parts or supplies could be 27.1 | Hardware or software, engineered to enable an
compronised o permit attack or fails to meet design eriteria to stop an
vehicles to be attacked attack
28 | Software or hardware 28.1 |Software bugs. The presence of software bugs can
development permits be a basis for potential exploitable vulnerabilities.
vulnerabilities This is particularly true if software has not been
tested to verify that known bad code/bugs is not
present and reduce the nsk of unknown bad
code/bugs being present.

282 [Using remainders from development (e.g. debug
ports, JTAG ports, microprocessors, development
certificates, developer passwords, ... ) can permit
access o ECUs or permut attackers to gain higher
privileges

29 [Network design introduces 291 [Superfluous internet ports left open, providing

vulnerabilities

pccess o network systems
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High level and sub-level deseriptions of vulnerability/

threat

Example of vulnerability or attack method

Circumvent network separation to gain control.
Specific example is the use of unprotected gateways,
or access points (such as truck-trailer gateways), to
circumvent protections and gain access to other
network segments to perform malicious acts, such as
sending arbitrary CAN bus messages

30

Physical loss of data can oceur

30.1

Damage caused by a third party. Sensitive data may
be lost or compromised due to physical damages in
cases of traffic accident or theft

30.2

Loss from DRM (digital right management)
conflicts. User data may be deleted due to DRM

IS5UCS

303

The (integrity of) sensitive data may be lost due to
IT eomponents wear and tear, causing potential
cascading issues (in case of key alteration, for
example)

k]|

Unintended transfer of data can
occur

Information breach. Private or sensitive data may be
leaked when the car changes user (e.g. is sold or is
used as hire vehicle with new hirers)

Physical manipulation of
systems can enable an attack

Manipulation of OEM hardware, e.g. unauthorised
hardware added 1o a vehicle to enable "man-in-the-
middle” attack

(55]
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Appendix 4 - DuckieBot LKAS Code

This code was created by the DukieTown[9] project and is not a contribution of the author.

import numpy as np

import cv2

from

.line_detector_interface

import duckietown_utils as dtu

clas

s LineDetector2Dense(dtu.Configurable ,

def __init__(self, configuration):

# Images to be processed
self.bgr = np.empty(0)
self.hsv = np.empty(0)

self.edges = np.empty(0)

param_names = [

"hsv_whitel1 ',
"hsv_white2 ',
"hsv_yellow1 ',
"hsv_yellow2 ',
"hsv_red1’,
"hsv_red2 ',
"hsv_red3’,
"hsv_red4 ',

)

"dilation_kernel_size ',

"canny_thresholds ',
"sobel_threshold ’,

dtu. Configurable.__init__ (self,
def _colorFilter(self, color):
# threshold colors in HSV space

).

"white

if color
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param_names,

LineDetectorlnterface

LineDetectorinterface):

configuration)



def

bw = cv2.inRange(self.hsv, self.hsv_whitel, self.hsv_white2]
elif color == ‘yellow ':
bw = cv2.inRange(self.hsv, self.hsv_yellow1, self.hsv_yellow
elif color == ’red’:
bw1 = cv2.inRange(self.hsv, self.hsv_red1, self.hsv_red2)
bw2 = cv2.inRange(self.hsv, self.hsv_red3, self.hsv_red4)
bw = cv2.bitwise_or (bw1l, bw2)
else:

raise Exception(’'Error: Undefined color strings..."')

# binary dilation
kernel = cv2.getStructuringElement (cv2.MORPH_ELLIPSE ,(self.dilat

# refine edge for certain color

edge_color = cv2.bitwise_and(cv2.dilate (bw, kernel), self.edges)

return bw, edge_color

_lineFilter (self, bw, edge_color):

# find gradient of the bw image

grad_x = —cv2.Sobel(bw/255, cv2.CV_32F, 1, 0, ksize=5)
grad_y = —cv2.Sobel (bw/255, cv2.CV_32F, 0, 1, ksize=5)
grad_x *= (edge_color == 255)
grad_y *= (edge_color == 255)

# compute gradient and thresholding
grad = np.sqrt(grad_x**2 + grad_y**2)

roi = (grad>self.sobel_threshold)

#print np.unique(grad)
#print np.sum(roi)

# turn into a list of points and normals

roi_y, roi_x = np.nonzero(roi)

centers = np.vstack ((roi_x, roi_y)).transpose ()

normals np.vstack ((grad_x[roi], grad_y[roi])).transpose ()

normals /= np.sqrt(np.sum(normals**2, axis=1, keepdims=True))
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lines = self._synthesizelLines(centers, normals)

return lines, normals, centers

def _findEdge (self, gray):
edges = cv2.Canny(gray, self.canny_thresholds[0], self.canny_th

return edges

def _checkBounds(self, val, bound):
val[val <0]=0
val[val >=bound ]=bound —1

return val

def _synthesizelines(self, centers, normals):
lines = []

if len(centers)>0:

x1 = (centers[:,0:1] + normals[:, 1:2] * 6.).astype(’int"’)
y1 = (centers[:,1:2] — normals[:, 0:1] * 6.).astype(’int’)
x2 = (centers[:,0:1] — normals[:, 1:2] * 6.).astype(’int ')
y2 = (centers[:,1:2] + normals[:, 0:1] * 6.).astype(’int’)

x1 = self._checkBounds (x1 self.bgr.shape[1])
y1 = self._checkBounds(y1, self.bgr.shape[0O])
x2 = self._checkBounds(x2, self.bgr.shape[1])
y2 = self._checkBounds(y2, self.bgr.shape[0])
lines = np.hstack([x1, y1, x2, y2])

return lines

def detectlLines(self, color):
bw, edge_color = self._colorFilter(color)
lines, normals, centers = self._lineFilter (bw, edge_color)

return Detections(lines=lines , normals=normals, area=bw, centers

def setlmage(self, bgr):
self.bgr np.copy(bgr)
self.hsv = cv2.cvtColor(bgr, cv2.COLOR_BGR2HSV)
self.edges = self._findEdge(self.bgr)

def getlmage(self):
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return self.bgr
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