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Abstract

This thesis aims to address the limitations of manual image categorization on the Ajapaik
[1] platform by introducing an automated categorization algorithm. Currently, users
categorize historical images voluntarily which leads to incomplete and potentially inaccurate
categorization. A significant portion of the images lacks categories, obstructing effective
categorization-based filtering.

The second goal of the thesis is to enhance the model categorization algorithm by building an
intermediate categorization validation layer and excluding inaccurate users’ categorization
records. The thesis prioritizes quality user input for model training, aiming to enhance
long-term prediction accuracy. Emphasis is also placed on scalability, minimizing changes
to current processes and codebase. The goal is to ensure easy future maintenance and
modifications without significant effort.

As a contribution, we designed, implemented and validated a categorization engine coupled
with a Data Quality Engine layer to process user feedback before passing it next to the
model retraining cycle. This feedback is processed and subsequently incorporated into
the model retraining loop, ensuring a continuous improvement scope for the model’s
performance. The implemented solution has undergone validation and is scheduled for
production deployment in January 2024.

The thesis is written in English and contains 79 pages of text, 7 chapters, 26 figures and
13 tables.
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Annotatsioon

Antud magistritöö eesmärk on lahendada käsitsi piltide kategoriseerimise piiranguid
Ajapaik [1] platvormil, tutvustades automatiseeritud kategoriseerimisalgoritmi. Praegu
kategoriseerivad kasutajad ajaloolisi pilte vabatahtlikult, mis viib mittetäieliku ja po-
tentsiaalselt ebatäpse kategoriseerimiseni. Arvestatav osa piltidest pole kategooriatega
varustatud, takistades tõhusat kategooriapõhist filtreerimist.

Magistritöö teine eesmärk on täiustada mudeli kategoriseerimisalgoritmi, luues vahekihi
kategoriseerimise valideerimise tasandi ja välistades ebatäpsed kasutajate kategoriseerimise
kirjed. Töö keskendub kvaliteetsele kasutaja sisendile mudeli koolitamiseks, eesmärgiga
suurendada pikaajalist ennustustäpsust. Rõhk on ka suurendada skaleeritavust, min-
imeerides muudatusi praegustesse protsessidesse ja koodibaasi. Eesmärk on tagada lihtne
tulevane hooldus ja muudatused ilma märkimisväärse pingutuseta.

Panuseks kavandasime, rakendasime ja valideerisime kategoriseerimismootori koos and-
mekvaliteedi mootori kihiga (Data Quality Engine), et töödelda kasutajate tagasisidet
enne selle edastamist mudeli uuesti koolitamise tsüklisse. See tagasiside töödeldakse
ja seejärel integreeritakse mudeli uuesti koolitamise tsüklisse, tagades mudeli jõudluse
pideva täiustamise. Rakendatud lahendus on läbinud valideerimise ja on planeeritud
tootmistepärasesse kasutussevõttu jaanuaris 2024.

Magistritöö on kirjutatud inglise keeles ja sisaldab 79 lehekülge teksti, 7 peatükki, 26
joonist ja 13 tabelit.
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1 Introduction

Ajapaik [1] is an online platform based in Estonia that focuses on crowdsourcing and
curating historical photographs and images. The platform aims to collect, digitize, and
geotag historical photos, making them accessible to the public while also encouraging
individuals to contribute their own historical photographs and add valuable context to the
images. Ajapaik allows users to explore a visual representation of history, connecting past
and present by overlaying historical photos on modern-day maps.

The first goal of the thesis is to build an automated images categorization engine which
benefits user experience in their every-day Ajapaik platform usage. As of today, uploaded
historical images are categorized by users manually and voluntarily. Although current plat-
form functionality enables users to perform images categorization, users do not contribute
to the process in demanded scale and as a consequence categorization based filtering
cannot always be accurate.

Currently, Ajapaik enables the categorization of every image using two classification
categories: scene and viewpoint elevation. This implies that any image featured on the
platform can be categorized as scene (either interior or exterior) and as viewpoint elevation
(ground, raised, or aerial).

From 1 121 575 images currently available on Ajapaik platform only 43.19% have scene
category label attached and 37.16% have viewpoint elevation label present. Throughout
the time the number of images is only growing and there might be an interest in hosting
large numbers of historical images coming from museums and art galleries. Given graph
(Figure 1) illustrates the tendency of images upload and its categorisation over time:
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Figure 1. Images upload and categorization over time

The second goal of the thesis is to enhance the automated images categorization algorithm
by building an intermediate categorization validation layer and excluding inaccurate users’
categorization records. In addition to automated categorization we would still be interested
in supplying and training the prediction model with users’ input but it is crucial to only
provide the model with quality data inputs to enhance its prediction capabilities.

Throughout the course of this thesis, our focus is the future scalability of the model we are
developing. We endeavor to ensure that any adjustments to existing processes are kept to
a minimum, and that future maintenance or modifications to the model can be seamlessly
accomplished, without notable obstacles.

The thesis provides contributions in the following aspects:

■ Manually categorized images and composed ground truth data.
■ Developed image categorization model.
■ Developed Data Quality Engine algorithm.
■ Integrated model into the Ajapaik platform with UI adjustments.

The rest of the thesis is organized as follows:

■ chapter 2 provides an overview of related work, delving into literature that focuses
on enhancing the processing of low-quality and historical images, development of
tools for ensuring data quality, as well as overview of comparative datasets hosting

13



historical images.
■ chapter 3 delves into the Ajapaik platform, exploring its current image categorization

solution and explaining existing limitations within the platform.
■ chapter 4 provides an overview of Ajapaik data, user stories, and technical require-

ments. It details the solution devised to address challenges and discusses alternative
approaches, weighing their pros and cons in relation to the thesis objectives.

■ chapter 5 provides an overview of all the results and findings achieved during
the thesis. The chapter includes insights into the validation process, covering the
evaluation of the developed software system, user interface, and model accuracy.

■ chapter 6 summarizes key findings and insights derived from the research.
■ chapter 7 outlines potential areas for future exploration and development, extending

beyond the current thesis scope.
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2 Related work

In this chapter, we present an overview of the relevant literature. This body of work
is research of enhancing the processing of low-quality and/or historical images and also
addresses the development of data quality tools designed to identify and eliminate inac-
curate or faulty users’ feedback. In addition, given chapter also provides an overview of
comparative datasets hosting historical images.

2.1 Related work on historical images and low-quality
images processing

While working on the thesis, we delved into existing research on historical images and/or
images with low-quality data, summarizing our findings here.

In the growing landscape of image processing research, a diverse range of studies has been
conducted on historical images, defect identification and image categorization. Notable
contributions include a Generative Adversarial Network (GAN)-based approach for au-
tomating the reconstruction and recognition of low-quality defect images in industrial
settings [2]. Another study deals with the detection of degraded characters in historical
typewritten documents, introducing a novel clustering-labeling framework for improved
results [3]. Object detection techniques in image processing are explored in a separate work,
emphasizing the challenges of low-quality images with obstructions [4]. The automatic
digitization of historical photographs, specifically focusing on building detection using a
Bag-of-Keypoints approach, stands out as a distinctive effort [5]. In the realm of vintage
image classification, a study leverages support vector machines, providing a foundation
for easily configurable systems [6]. Preservation efforts for historical documents through
image processing techniques are evident in a separate study, emphasizing the importance
of automated digitization [7]. Urban versus landscape image classification is explored in
another work, developing a distinctive procedure for measuring feature distinctiveness [8].
An innovative approach to image labeling through incremental model learning showcases
the significance of accurate labeling in computer vision and object categorization [9]. One
more study explores challenges and solutions in automated metadata annotation across
diverse domains, focusing on use cases related to cultural heritage materials, artworks,
and research datasets [10]. The authors of the paper address issues such as insufficient
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training examples, difficulties in interpreting metaphors and symbols, inconsistent quality
across categories, and the importance of adaptability and continuous model updates in
the context of machine learning for metadata annotation. Lastly, given study explores
the application of CLIP (Contrastive Language Image Pre-training) in Digital Humanities
through three case studies, demonstrating its effectiveness in labeling unlabeled visual
data, assessing complex visual concepts, and generating labeled training data [11]. The
authors discuss challenges, including biases, and suggest that multimodal models like CLIP
may lead to a transformative turn in Digital Humanities research by facilitating scalable
analysis and integration of images and texts.

Each study contributes uniquely to the broader field, collectively shaping the landscape of
image processing and recognition taking into account low quality and resolutions of the
input dataset. In the following table (Table 1) we summarise the results of the related
work analyses more precisely described in section 2.1.

Research Focus/Topic
Low-quality
input (Y/N)

Historical
datasets
(Y/N)

Classification
focus (Y/N)

A Generative Ad-
versarial Network
Based Deep Learning
Method for Low-
Quality Defect Image
Reconstruction and
Recognition [2]

Automation of
reconstruction
and recognition
of low-quality
defect images

Y N N

New Framework for
Recognition of Heavily
Degraded Characters
in Historical Typewrit-
ten Documents Based
on Semi-Supervised
Clustering [3]

Detection of
degraded charac-
ters in historical
typewritten
documents

Y Y N

Prototype analysis of
different object recog-
nition techniques in
image processing [4]

Object detec-
tion techniques
in low-quality
images with
obstructions

Y N Y
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Detecting Build-
ings in Historical
Photographs Using
Bag-of-Keypoints [5]

Automatic
digitization
of historical
photographs,
building detec-
tion

Y Y N

Old fashioned state-of-
the-art image classifi-
cation [6]

Vintage image
classification

Y N Y

Enhancement of his-
torical documents by
image processing tech-
niques [7]

Historical
documents
automated digi-
tization

Y Y N

On image classifica-
tion: city vs. land-
scape [8]

Urban versus
landscape image
classification

N N Y

Image labeling via in-
cremental model learn-
ing [9]

Image labeling,
object catego-
rization

N N Y

Automated metadata
annotation: What is
and is not possible
with machine learning
[10]

Metadata
annotation au-
tomation across
cultural her-
itage materials,
artworks, and
research datasets

Y Y Y

A Multimodal Turn
in Digital Humanities:
Using Contrastive Ma-
chine Learning Mod-
els to Explore, Enrich,
and Analyze Digital
Visual Historical Col-
lections [11]

Labeling un-
labeled visual
historical data,
generating la-
beled training
data

Y Y Y

Table 1. Related work summary
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2.2 Related work on faulty feedback detection

Within this section, we provide an overview of potentially faulty feedback detection and
exclusion relevant to Ajapaik image categorization.

One study focuses on detecting opinion spam in online product reviews, employing a novel
method based on anomalous rating deviations [12]. Another paper explores label noise
detection and correction, introducing label noise-robust algorithms and a correction method
for classification datasets [13]. This user-friendly system, with automatic hyperparameter
selection, quantitatively assesses and qualitatively demonstrates effectiveness in identifying
mislabeled instances. A third study explores the AUM (Area Under the Margin) metric to
identify mislabeled data in machine learning, achieving high precision and recall rates [14].

These contributions collectively aim to refine machine learning models by enhancing data
quality, mitigating misleading feedback, and addressing mislabeled instances across various
applications.

2.3 Related work on model architecture

This chapter aims to present an overview of the model architecture and techniques employed
in our thesis.

2.3.1 Transfer Learning

Transfer learning (TL), an aspect of Machine Learning (ML), addresses challenges caused
by limited training data [15][16]. Traditional ML algorithms work under the assumption of
a confined data distribution and might lack their efficiency with smaller data or imagesets.
Transfer learning establishes connections between testing (validation) and training samples,
which eventually leads to more efficient and trustful outcomes. It involves transferring
knowledge from one model’s training to enhance another model’s performance on a very
similar task, proving to be beneficial when annotated data for the given task is limited.
TL overcomes data scarcity, facilitates model training and increases generalization across
different tasks. TL is recognized as a knowledge transfer approach to enhance traditional
ML. It improves task understanding by utilizing the knowledge from related tasks performed
at different time periods.

For developing our model for image category predictions, we aim to utilize transfer learning.
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2.3.2 Model architecture: MobileNetV2

MobileNetV2 is an advanced mobile architecture that significantly enhances the perfor-
mance of mobile models across a variety of tasks and benchmarks, accommodating various
model sizes [17]. Given framework introduces SSDLite [18] for efficient object detection in
mobile models and presents Mobile DeepLabv3 (a reduced form of DeepLabv3), designed
mainly for mobile semantic segmentation models. MobileNetV2 uses an inverted residual
structure with shortcut connections between thin bottleneck layers, utilizing lightweight
depthwise convolutions in the expansion layer to enhance non-linearity while preserving
representational its power. The model’s unique feature is the decoupling of input/output
domains, providing a framework for in-depth analysis.

In the context of image category predictions, we use MobileNetV2 model architecture to
develop our model.

2.3.3 Comparative datasets hosting historical images

Throughout the course of our research, we have analyzed several digital platforms that host
historical images. The following platforms are available contributors on the international
arena:

■ Library of Congress Prints and Photographs Online Catalog: Hosts thou-
sands of digitized images with catalog records from 54 historic collections [19]

■ New York Public Library/Mid-Manhattan Library Picture Collection:
Stores digitized historical images mostly created before 1923 [20]

■ Art Images for College Teaching (AICT): Stores ancient, medieval, and
Renaissance European art and architecture imagesets [21]

■ British Library in Flickr Commons: Hosts over 1,000,000 images in the public
domain scanned from 17-19th century books, including maps, geological diagrams,
illustrations, comical satire, illuminated and decorative letters, colourful illustrations,
landscapes, wall-paintings [22]

■ Wellcome Images: Stores over 100,000 images, including historical content such
as manuscripts, paintings, etchings, early photography and advertisements [23]

■ Time & Life Pictures (Getty images): Hosts over 425,000 digital files of 20th
century original prints and negatives archived [24]

■ LIFE photo archive hosted by Google: Searches for millions of photographs
from the LIFE photo archive, stretching from the 1750s to today [25]

■ Mary Evans Picture Library: Hosts collection of historic pictures. Image
collections divided into categories of art and costume, beliefs, events, portraits,
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science and medicine, trade and industry, social sciences, places and nature, politics
and law, sports and entertainment, places and nature, transport [26]

The following are Estonian-based resources that similarly host collections of historical
images:

■ Fotis: National Archives Photo Database [27]
■ Rahvusarhiiv (Flickr): National Archives of estonian historical images [27]
■ Museum of Univeristy of Tartu: Historical images of Tartu [28]

Each of these platforms mentioned above hosts considerably large volumes of historical
images. However, it is not obvious to conclude that any of them currently incorporates
any similar automated images categorization mechanism as was developed as part of this
thesis.
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3 Ajapaik platform

In this chapter, we offer a comprehensive exploration of the Ajapaik platform, current
images categorization solution and platform existing constraints.

3.1 Ajapaik platform

Ajapaik is an online platform based in Estonia that focuses on crowdsourcing and curating
historical photographs and images. The platform aims to collect, digitize, and geotag
historical photos, making them accessible to the public while also encouraging individuals
to contribute their own historical photographs and add valuable context to the images.
Ajapaik allows users to explore a visual representation of history, connecting past and
present by overlaying historical photos on modern-day maps.

Current Ajapaik functionality enables users to categorize images into two category classes:
scene and viewpoint elevation, each containing subclasses as follows:

Figure 2. Ajapaik platform available categories

It is worth to note, that subclasses are not mutually excluded explicitly meaning that each
image is expected to be categorized by two category classes: scene and viewpoint elevation.
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Example: an image can be described as exterior and aerial or interior and raised.

Where:

■ Exterior: Images taken outside of a building.
■ Interior: Images captured within the interior of a building.
■ Ground: Images taken from a viewpoint at ground level.
■ Raised: Images captured from an elevated viewpoint.
■ Aerial: Images taken from a high aerial perspective.

Figure 3. Ajapaik image 1 being exterior and aerial and image 2 being interior and ground

3.2 Ajapaik limitations

On a broader scale, one significant challenge that Ajapaik faces relates to user trust and
involvement. Within the system, each image is meticulously categorized through the
collective efforts of its users, and it is the users themselves who wield the power to shape
the final categorization of any given image.

For instance, when a user A categorizes an image with the label interior, this choice
subsequently influences what the next user sees and can search for, as they will encounter
images labeled as interior. However, if the subsequent user B, believes the image is more
accurately labeled as exterior or purposely would submit faulty feedback, this shift in
perception will, once again, have a ripple effect, causing subsequent users to encounter
and search for images specifically labeled as exterior.

Example:

Image has category labels of interior and ground:
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Figure 4. Ajapaik image having category labels interior and ground

After new user categorizes the image as exterior, the image no longer belongs to the
interior category.

Figure 5. Ajapaik image having category labels exterior and ground

Hence, the ultimate categorization effort effectively determines the image’s definitive
category, allowing it to be filtered and searched accordingly.

The existing system functionality accommodates the inclusion of potentially erroneous
categorizations, preserving them within the system and treating them as the established
ground truth.
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Furthermore, a significant number of images remain uncategorized, essentially avoiding
classification and the ability to be discovered through any search filter. In our analysis of
the Ajapaik platform, we observed that out of the 1 121 575 images currently accessible,
only 43.19% feature a scene category label, and merely 37.16% include a viewpoint elevation
label. This finding underscores the necessity for creating an automated categorization
solution. Such a solution will ensure that both existing and future image uploads are
systematically categorized, greatly enhancing the user experience by simplifying searches
and facilitating image grouping.

Total images 1,121,575
Images categorized as exterior 74,016
Images categorized as interior 410,371
Images categorized as ground 381,433
Images categorized as raised 31,137
Images categorized as aerial 3,493

Table 2. Categories presence for Ajapaik images

Despite the current availability of nearly 1.2 million images on the Ajapaik platform, with
43.19% categorized as scene and 37.16% as viewpoint elevation, it proved challenging to
determine the extent of misclassification within the entire categorized dataset. To provide
approximate estimates, we randomly selected 3 000 images for each category (interior,
exterior, ground, raised, aerial), totaling 15 000 images. We conducted a thorough manual
review to assess the accuracy of user categorization. The results are summarized below
(Table 3):

Category Incorrectly Categorized Percentage
Interior 415/3000 13.83%
Exterior 186/3000 6.20%
Ground 204/3000 6.8%
Raised 215/3000 7.17%
Aerial 275/3000 9.17%
Total 1295/15000 8.63%

Table 3. Incorrect users categorization

24



4 Analysis and realisation

In this chapter, we provide an overview of Ajapaik data (section 4.1), user stories (sec-
tion 4.3), technical requirements overview (section 4.4) and the solution devised to address
the challenge that serves as the driving force behind this thesis (section 4.6). We also
discuss alternative approaches, their pros and cons for tackling the thesis objectives
(section 4.7).

4.1 Ajapaik Data

For our thesis, we were provided with a snapshot of Ajapaik images from the platform,
consisting of a total of 11 670 images. Our task was to manually categorize these images
into five distinct subcategories, namely exterior or interior, and aerial, ground, or raised.
After the manual categorization process, the distribution of images appeared as follows:

Scene Image Count
Interior 3,056
Exterior 8,614
Viewpoint Elevation Image Count
Ground 10,670
Raised 901
Aerial 99

Table 4. Ajapaik images category distribution after manual categorization

From manual categorisation results, it could be vividly seen that distribution of categorized
images count is very different with exterior being 8614 images and aerial being only 99
images. To mitigate the issue, we took advantage of open data Ajapaik API [29] and
managed to fetch additional images where in addition users category choices were present.

Our process of acquisition involved making requests to the Ajapaik open API, filtering the
retrieved images based on user category suggestions, and reviewing them to ensure the
accuracy of user feedback. When necessary, we excluded images that did not meet the
required criteria.

This effort resulted in the acquisition of an additional 4856 images for the raised category

25



and 3759 images for the aerial category.

Categorized images play a pivotal role by serving as the ground truth, which is subsequently
employed in the initial training and validation processes of models described precisely in
chapter 5.

4.2 Planning

In our envisioned approach, we aspire to rectify the Ajapaik limitations (described in
section 3.2) by incorporating a model prediction component. This element will take on
the pivotal role of forecasting image categories and will serve as the definitive authority
in this context. Model element will ensure both existing and future images on Ajapaik
platform will be labeled with model predicted category.

In the implementation process, our focus extends beyond design planning and its imple-
mentation to emphasize continuous model improvement through periodical retraining.
This retraining involves utilizing users feedback on the model’s prior category predictions.
A comprehensive explanation of this process can be found in the details outlined in
subsection 4.6.3.

Furthermore, while we are enriching the manual predictions by users, we are committed
to safeguarding the process against potentially erroneous user feedback. This will be
accomplished through our Data Quality Engine, which will filter out any flawed user input,
ensuring that it does not progress to the subsequent stages of model retraining. Given
diagram (Figure 6) provides a high level overview of key components of interest in terms
of the thesis work.

Figure 6. Components of interest, simplified overview
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4.3 User stories

To fulfill the objectives of the thesis, we defined the intended user experience on the Ajapaik
platform. This desired behavior was conceptualized through user stories, presenting the
following:

User Story 1
As an Ajapaik platform user, I want to easily see what
category a model predicts for any image on the Ajapaik
platform.

Acceptance Criteria

1. User can view model predicted categories for all already
existing images on the Ajapaik platform.
2. User can view model predicted categories specifically for
newly uploaded images on the Ajapaik platform.
3. User can view if model’s predicted category contradicts
the category proposed by a previous user.

Table 5. User Story 1: View model predicted category

User Story 2
As an Ajapaik platform user, I want to be able to confirm
model predicted categories or propose alternative categories
for an image.

Acceptance Criteria

1. User can view model predicted categories for all already
existing images on the Ajapaik platform.
2. User is able to confirm the predicted categories by
selecting the same categories as the model suggested.
3. User is able to propose different categories by choosing
alternative categories from what the model suggested.

Table 6. User Story 2: Confirm/propose alternative categories for model categories
prediction

4.4 Requirements overview

Before the implementation part, together with the Ajapaik team we have set up technical
requirements for further software development phase.

View on model category prediction (UI):

■ Toolbox view:
– If model category result for an image is present, there exists a model icon

indicating categorisation has AI-input
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– If model category result for an image is present, but user has submitted different
categorization for an image, there exists a discrepancy icon indicating difference
in opinions.

■ Image dialogue view:
– If model category result for an image is present, there exists a model icon

on related categories indicating categorisation has AI-input. Model predicted
categories have black borders.

– If model category result for an image is present, but user has submitted different
categorization for an image, current user categories are active (colored in blue
color), model predicted categories have model icon and black borders.

– If model category result for an image is present, user is able to confirm model
predications or propose alternative categories.

Server Side:

■ The standalone model component is envisioned to be an independent entity, residing
within the ajapaik-analytics-server.

■ The model component should store its trained model state and seamlessly utilize
the saved model upon initialization.

■ Model component should be able to predict categories for both scene and viewpoint
elevation category classes.

■ Periodically, the model component should retrieve recently uploaded images on the
Ajapaik platform that lack model categorization.

■ The model component should categorize fetched images, encompassing both scene
and viewpoint elevation.

■ The model component should seamlessly integrate with the ajapaik-web component,
allowing the storage of model image predictions in the datastore.

■ The model component should conduct periodic retraining. This involves fetching
images with user feedback received during a specified time period, processing them,
and subsequently conducting model retraining.

4.5 Technologies

During the thesis Python [30] as a main development language was used for the implemen-
tation model category prediction component - ajapaik-model-training [31]. Additionally
we took advantage of some Python libraries and tools such as:

■ Django [32]- for building web application
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■ Tensorflow [33] - for building, training, and deploying machine learning and deep
learning models

■ Keras [34] - for developing and training deep learning models
■ Numpy [35] - for efficient and high-performance numerical computations
■ APScheduler [36] - for automating and managing task scheduling for image category

prediction and model retraining
■ Scikit-learn [37] - for machine learning and data analysis
■ Typing-extensions [38] - for adding advanced type hinting capabilities for the codebase
■ Pillow [39] - for opening, manipulating, and saving various image file formats
■ Plotly [40] - for creating interactive and visually appealing data visualizations and

charts
■ Pandas [41] - for data manipulation and analysis
■ Requests [42] - for managing HTTP requests

The ajapaik-web [43] project, based on Django for the backend and jQuery [44] for the
frontend, has undergone thesis-related modifications specifically to incorporate model
category predictions and gather user feedback on category assignments.

4.6 Implementations

This chapter furnishes a technical overview of the implemented solutions designed to
support the objectives and motivations of the thesis.

4.6.1 Introduction of ajapaik-model-training

To achieve the objectives of the thesis, a distinct microservice named ajapaik-model-
training1 was introduced. This component was intentionally designed as a separate entity
from main ajapaik-web2 component for a variety of compelling reasons, aligning with
the principles of Software Architecture SOLID [45]. Furthermore, considering technical
specifications essential for server performance, this developed component was designated
to reside within the ajapaik-analytics-server. In contrast to the ajapaik-prod-server, the
ajapaik-analytics-server offers enhanced capabilities in terms of GPU, CPU, and memory
resources. The rationale behind the decision to create this component as an isolated service
will be elaborated on in the forthcoming subsections.

Firstly, in terms of infrastructure, the ajapaik-model-training component is strategically
placed within the ajapaik-analytics-server to leverage its superior GPU, CPU, and memory

1https://github.com/angrun/ajapaik-model-training
2https://github.com/Ajapaik/ajapaik-web
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resources. This infrastructure choice enhances the performance of the model training
process compared to the ajapaik-prod-server, thereby optimizing the utilization of hardware
capabilities.

Secondly, from an architectural perspective, the isolation of the ajapaik-model-training
microservice promotes adherence to the SOLID principles. By segregating model train-
ing functionalities into a dedicated service, the system achieves better modularity and
maintainability.

In the following sections, these reasons will be expounded upon in detail, distinguishing
between infrastructure considerations (such as GPU utilization) and architectural consid-
erations, providing a comprehensive understanding of the rationale behind the decision to
create ajapaik-model-training as a distinct microservice.

Single Responsibility Principle [46]: ajapaik-model-training

Argument: Isolating model prediction in the ajapaik-model-prediction repository.
Benefit: Streamlined maintenance, consolidated logic, potential for further long-term
reuse.

Open-Closed Principle [46]: ajapaik-model-training

Argument: Microservice facilitates extension without modifying existing code. Extension
for additional category classes.
Benefit: Stability, potential risks mitigation and streamlined feature introduction and
enhancements.

Liskov Substitution Principle [46]: ajapaik-model-training

Argument: Microservice design aligns with Liskov Substitution Principle for easy substi-
tution.
Benefit: Simplifies integration of new models or transitions to alternative models.

Interface Segregation Principle [46]: ajapaik-model-training

Argument: Model prediction as a focused microservice adheres to Interface Segregation
Principle.
Benefit: Simplicity and focused implementation.

Dependency Inversion Principle [46]: ajapaik-model-training

Argument: Microservice design aligns with Dependency Inversion Principle for component
dependencies.
Benefit: Maintenance and modification without impacting other project components.
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Taking all of the arguments and benefits into account, ajapaik-model-training was therefore
introduced as a separate microservice residing in ajapaik-analytics-server for greater
performance capabilities.

4.6.2 ajapaik-model-training model technical specification

As an initial stride toward realizing the thesis objectives, a model for image category
prediction was created. As explained earlier (subsection 4.6.1), this model resides within a
specific entity called ajapaik-model-training.

The implemented model, used for predicting image categories, leverages a convolutional
neural network (CNN [47]) architecture, specifically MobileNetV2, to recognize and dis-
tinguish the visual characteristics of classes. The model’s goal is to determine whether a
given image portrays an interior environment or an exterior one (or alternatively ground,
raised or aerial).

The model architecture is composed of several layers, including a pre-trained MobileNetV2
base model and additional fully connected layers. The base model has learned features
from a large dataset, which can be beneficial for recognizing class-related patterns. The
fully connected layers further process these features to make a final classification decision.

The model is optimized and evaluated using the Adam [48] optimizer and cross-entropy
loss, while metrics such as accuracy and F1 score are used to assess its performance. It
undergoes 20 epochs of training, and early stopping and learning rate reduction strategies
are implemented to enhance training efficiency. Once trained, the model is cached for later
use and retraining purposes.

ajapaik-model-training model architecture

During the course of the thesis, we have conducted a series of tests (detailed precisely
in chapter 5) utilizing different implementations of deep learning models: MobileNetV2,
ResNet50 [49], and AlexNet [50] with the purpose to eventually keep the model producing
most accurate prediction for our problem. Here we aim to provide a small overview of
models and their architecture.

MobileNetV2

MobileNetV2 is a lightweight convolutional neural network (CNN ) designed for efficient use
mainly on mobile and embedded devices. It utilizes depthwise separable convolutions to
reduce computational complexity while maintaining its accuracy. This makes MobileNetV2
well-suited for applications where computational resources are limited, without degradation
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in performance.

ResNet50

ResNet50 (Residual Network) is another convolutional neural network, which introduced
an architecture with residual learning blocks. This design facilitates the training of
relatively deep neural networks by tackling the vanishing gradient problem. ResNet50
skip connections allow information to flow directly through the network. Given network
also supports training of deep models with thousands of layers.

AlexNet

AlexNet is a pioneering convolutional neural network. Its architecture consists of multiple
convolutional and fully connected layers. AlexNet played an important role in popularizing
deep learning and laid the foundation for subsequent advancements in the field. Despite
being a only decade old and having fewer parameters compared to more recent models,
AlexNet serves as a simpler baseline for comparison, providing a clear reference point for
evaluating the performance of more complex and modern architectures in the scope of the
thesis.

In the upcoming validation (chapter 5), we assess each implementation and present our
conclusive findings.

4.6.3 ajapaik-model-training model retraining

In the implementation of the model employed for predicting image categories, a deliberate
choice was made to maintain its constant accuracy and relevance by integrating a continuous
feedback mechanism. This feedback system is based on users’ responses, specifically
their evaluations of the model’s accuracy in predicting image categories. This dynamic
functionality empowers the model to consider and incorporate user feedback, integrating
it into the model retraining cycle to enhance and refine its performance over time.

4.6.4 Data Quality Engine

To ensure that the model leverages only the most reliable and accurate user feedback
for subsequent retraining, our approach involves the incorporation of a so-called filtering
layer, referred to as the Data Quality Engine. This essential layer serves as a gatekeeper,
responsible for filtering out potentially erroneous user feedback, preventing it from being
integrated into the model retraining cycle. Throughout the work of this thesis, we
implemented various iterations of the Data Quality Engine, each designed to enhance the
reliability and trustworthiness assured during the validation phase, as explained more in
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chapter 5.

This intermediate layer represents an innovative addition to the thesis work, diverging
from the initial technical specifications. The decision to incorporate an additional filtering
layer arose intuitively, driven by the desire to continuously refine the model and leverage
user feedback for learning. The introduction of this Data Quality Engine resonates with
the methodology discussed in the paper "Identifying Mislabeled Data using the Area Under
the Margin Ranking" [14].

In the following section, we provide an overview of all the distinct algorithmic versions
that were developed and tested throughout the thesis.

Data Quality Engine v1 : Most Common Verdict

The given Data Quality Engine focuses on the relatively simple “most popular category”
principle. Through all possible categorization feedback submitted by users, the given
categorization engine aims to exclude the least popular feedback per image_id, user_id,
and forward the rest to the model retraining cycle.
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Algorithm 1: Data Quality Engine v1 : Most Common Verdict
Input : Users’ feedback user_feedback

Output : Cleaned feedback cleanup_feedback, Removed feedback
removed_feedback

verdict_counts_matrix← empty matrix;

foreach feedback in user_feedback do
image_id← feedback.image_id;
verdict← feedback.verdict_scene;
verdict_counts_matrix[image_id][verdict] += 1;

most_common_verdicts← {};
foreach image_id, verdict_counts in verdict_counts_matrix do

/* findMostCommon determines the most common verdict among all
verdicts per single image. */

most_common_verdicts[image_id]← findMostCommon(verdict_counts);

cleanup_feedback ← [];
removed_feedback ← [];

foreach feedback in user_feedback do
if most_common_verdicts[feedback.image_id] == feedback.verdict_scene

then
append feedback to cleanup_feedback;

else
append feedback to removed_feedback;

return cleanup_feedback, removed_feedback;

Figure 7. Most Common Verdict algorithm data processing

Given example (Figure 7) indicates that feedback from user_id: 3 is excluded from further
processing as it does not match the majority of the responses for the given image.

Data Quality Engine v2 : anomaly detection

The given Data Quality Engine focuses on anomaly detection principle. It employs an
anomaly detection technique using Isolation Forest [51] - an anomaly detection algorithm
that isolates outliers in a dataset by constructing shallow, random decision trees to exclude
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potentially faulty user feedback. It processes user feedback data, calculates a ratio-based
feature, standardizes it, and identifies potentially faulty user feedback.

The process involves the following steps:

1. Feature Engineering: We calculate a feature for each user, which is a ratio of
verdict_view_1_count to the total count of verdict_view_point_elevation values (0, 1,
and 2) (same for scene category).

2. Anomaly Detection: The Isolation Forest is applied to these features. Users’ feedback
is considered potentially faulty if the Isolation Forest assigns a prediction score of -1 to
their feature vector. The Isolation Forest identifies data points that are far from the norm
as anomalies, and a prediction score of -1 indicates that the user’s feedback data is an
outlier.

3. Separation: Feedback entries from potentially faulty users are excluded and the
entries are considered as potentially faulty feedback.
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Algorithm 2: Data Quality Engine v2 : anomaly detection
Input : Users’ feedback feedback_data

Output : Cleaned feedback cleaned_feedback, Removed feedback faulty_feedback

user_data← {};
foreach entry in feedback_data do

user_id← entry.user_id;
if user_id not in user_data then

user_data[user_id]← {’verdict_scene_0_count’: 0, ’verdict_scene_1_count’: 0};
if entry.verdict_scene == 0 then

user_data[user_id][′verdict_scene_0_count′] += 1;
else

user_data[user_id][′verdict_scene_1_count′] += 1;
features← [];
foreach user_id, counts in user_data do

ratio← counts[′verdict_scene_1_count′]/(counts[′verdict_scene_0_count′] +
counts[′verdict_scene_1_count′]);

features.append([ratio]);

/* The standard score of a sample x is calculated using formula: z = (x -

u) / s; u - the mean of the training samples, s - the standard deviation

of the training samples. */

scaler ← StandardScaler()
scaled_features← scaler.fit_transform(features);
clf ← IsolationForest(contamination=0.05)
clf.fit(scaled_features);
faulty_users← {};
foreach i, prediction in enumerate clf.predict(scaled_features) do

if prediction == −1 then
faulty_users.add(list(user_data.keys())[i]);

cleaned_feedback ← [];
faulty_feedback ← [];
foreach entry in feedback_data do

if entry.user_id not in faulty_users then
cleaned_feedback.append(entry);

else
faulty_feedback.append(entry);

return cleaned_feedback, faulty_feedback;
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Data Quality Engine v3: model prediction involvement

Given data quality implementation takes advantage of model relatively high accuracy
achieved during model initial training. In this implementation, we prioritize the model’s
high accuracy rate as the primary decision factor for exclusion. Specifically, we retain only
the feedback entries that align with the model’s predictions, while discarding all others.
The method used closely aligns with the principles described in the paper "Identifying
Mislabeled Instances in Classification Datasets" [13].

Algorithm 3: Data Quality Engine v3: model prediction involvement
Input : Users’ feedback feedback_data

Output : Cleaned feedback cleanup_data, Removed feedback faulty_feedbacks

faulty_feedbacks← [];
cleanup_data← [];
foreach feedback in feedback_data do

model_prediction←
DataQuality.get_image_prediction(feedback.image_id);

if feedback.verdict_scene ! = model_prediction then
faulty_feedbacks.append(feedback);

else
cleanup_data.append(feedback);

return cleanup_data, faulty_feedbacks;

4.6.5 Model training component integration

Given diagram (Figure 8) provides a comprehensive overview of what was developed during
the thesis work.
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Figure 8. ajapaik-model-training integration schema

■ 1.1 - 1.3: Given flow is responsible for determining category for yet uncategorized
image

– 1.1: The ajapaik-model-training process regularly performs GET requests to the
recently introduced /object-categorization/get-uncategorized-images endpoint.
This request fetches a batch of uncategorized images. This recurring call is set
to run at intervals of every 1 minute.

– 1.2: After retrieving the images, the ajapaik-model-training component is
responsible for forwarding these uncategorized images to the model for image
category predictions. Notably, predictions for the scene and viewpoint elevation
categories occur independently, with no mutual exclusion between them.

– 1.3: Once the image categories are determined, the model predictions are saved
in a newly introduced table ajapaik_photomodelsuggestionresult, which resides
within the ajapaik-web repository. Here’s an example of what the rows in the
ajapaik_photomodelsuggestionresult table look like:

Figure 9. ajapaik_photomodelsuggestionresult table
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■ 2.1 - 2.3: The provided flow is responsible for consolidating user feedback on various
categories and facilitating subsequent model retraining.

– 2.1: In the ongoing ajapaik-model-training process, regular GET requests are
made to the newly introduced /object-categorization/aggregate-category-data
endpoint. These requests retrieve a batch of images that have received user
feedback regarding model-based image categorization. Users have the option
to either confirm the model’s category prediction or select a different category.
This recurring call is scheduled to occur at specified intervals.

– 2.2: Subsequently, the ajapaik-model-training processes the received feedback
through the Data Quality Engine (explained in subsection 4.6.4). The aim
here is to filter out potentially faulty user feedback, ensuring that it does not
influence the subsequent model retraining cycle.

– 2.3: In the final step of this stage, ajapaik-model-training provides the model
with only trustworthy feedback. The model is then retrained using the reliable
feedback.

■ 3.1: After the image category has been added to the ajapaik_photomodelsuggestionresult
table, users can view the suggested class category for a particular image as predicted
by the model.

■ 4.1: After the image categories have been added to the ajapaik_photomodelsuggestionresult
table and are now visible on the Ajapaik user interface, users have the op-
tion to confirm the suggested category or propose a different one from what
the model initially predicted. User feedback is collected and stored in the
ajapaik_photomodelsuggestionalternativecategory, which is then utilized in the
model retraining process. Here’s an example of what the rows in the
ajapaik_photomodelsuggestionalternativecategory table look like:

Figure 10. ajapaik_photomodelsuggestionalternativecategory table

39



4.6.6 Ajapaik UI modifications

As part of the development of the model training component, we have implemented relevant
user interface modifications to achieve the following objectives:

■ Display the UI verdict for image category predictions
■ Collect user feedback regarding the accuracy of model-based category predictions

Additionally, we have incorporated a feature to show the model’s predictions, taking into
account the presence or absence of user feedback. The following figures illustrate different
scenarios for icon display:

1. After an image has been uploaded and the model successfully predicts a category, but
no user feedback has been provided, only the model’s category is displayed (Figure 11).

(a) Model result icon on toolbox (b) Model result icon on confirmation view

Figure 11. Model categorization result presence icon

2. In cases where both the model and users have suggested categories for an image, but
user feedback indicates that the model’s prediction is incorrect, this is reflected in the
display with the following view (Figure 12).
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(a) Discrepancy icon on toolbox (b) Discrepancy icon on confirmation view

Figure 12. Model and user categorization discrepancy result presence icon

3. When both the model and users suggest the same category for an image, no additional
icons are displayed (Figure 13).

(a) Icon absence on toolbox (b) User and model prediction match

Figure 13. Model and user categorization match, icon absence

4.7 Alternative solutions

Given section provides a small overview of potential alternative solutions for the thesis
objections.
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4.7.1 Categorization constraint on image upload

One alternative for achieving the thesis goal and supporting image categorization would
be introducing compulsory image categorization upon image upload. Users should not be
able to upload any new image to the Ajapaik platform without proposing categories for
the uploaded image.

Implications:

■ All newly uploaded images will have categories assigned by the users. However, all
already existing images on the Ajapaik platform will remain uncategorized.

■ The current image upload functionality on Ajapaik allows users to upload one image
at a time. Considering the potential evolution of the platform, with support for
hosting images from archives and museums, the proposed implementation would
introduce constraints on how images are uploaded. In the long run, it will become
impossible to upload larger volumes of images at a time (as user would be required to
manually add categories for each uploaded image), hence damaging the user overall
platform experience.

■ While the provided alternative guarantees the assignment of categories to newly
added images, a mechanism to ensure the accuracy of categorization would still be
absent.

4.7.2 Third party integration

Instead of introducing custom trained models, alternative solution would include integration
towards third party AI solutions, such as: Google Cloud Vision API [52], Microsoft Azure
Computer Vision API [53], Amazon Rekognition [54] or IBM Watson Visual Recognition
[55]. These resources provide image analysis services, image labeling/categorization
together with pre-trained models.

Implications:

■ While these resources offer the advantage of seamless integration and accuracy in
category predictions, they also come with associated costs. The non-commercial
Ajapaik project would require additional funding to incorporate these technologies
and sustain their operation.

4.7.3 Large language models

Following the paper "A multimodal turn in Digital Humanities: Using contrastive machine
learning models to explore, enrich, and analyze digital visual historical collections" [56],
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the authors propose that multimodal models, exemplified by ChatGPT [57] and DALL-E
[58], hold significant potential for application in tasks aligned with the objectives of our
thesis.

Implications:

■ These developments surfaced during the initiation of our thesis.
■ The article emphasizes that while the results may not necessarily surpass existing

methods, it does not imply inferiority. Rather, it underscores the need for separate
prototyping and evaluation, which falls beyond the scope of the present work.

43



5 Results

In this chapter we bring up all of the results and findings achieved during the thesis.
We also look into validation process details. Our validation methodology includes an
evaluation of a developed software system, user interface, and model accuracy.

5.1 Software System Validation

During the course of the thesis, we developed a distinct component known as ajapaik-
model-training, tasked with predicting image categories and executing model retraining.
Additionally, we integrated it into the existing ajapaik-web application. A pivotal objective
of our thesis was to not only guarantee the scalability of the model but also to minimize
adjustments to the existing processes. We aimed to ensure that future maintenance or
modifications to the model could be effortlessly executed. To review the success of our
integrated solution, we systematically examine each facet. Architecture solution was
reviewed and confirmed together with the Ajapaik team.

Scalability

Given that image categories are mutually exclusive and each image is expected to be
categorized by both scene and viewpoint elevation category classes, we implemented two
distinct categorization models. Looking ahead, we can benefit from long-term scalability,
which makes adding new class category models alongside with enlarging categories within
the category classes possible. This process involves composing ground truth data, training
the model, adjusting the user interface, and ensuring seamless persistence of new category
class records in the UI.

Minimum changes

During the development of the ajapaik-model-training component and its integration into
the ajapaik-web application, a focus was placed on minimizing changes to the existing
codebase and processes. The objective was to ensure that the addition of the new
categorization models and features did not disrupt the flow of the platform. This emphasis
on minimum changes facilitates future maintenance and modifications, allowing for an
efficient and adaptable system. We have also addressed situations in which the ajapaik-web
application can maintain its operational status and preserve its state seamlessly, even

44



in instances where the ajapaik-model-training has not yet commenced or is temporarily
inactive for any reason.

5.2 Ajapaik UI validation

Throughout the process of UI modifications, in collaboration with the Ajapaik team, we
iterated on potential UI solutions. This focused on determining how the model-predicted
categories would be presented to users and how users could interact with and provide
feedback on these predictions.

5.2.1 UI modifications: version 1

The initial version took the following form:

Figure 14. Ajapaik UI version 1

Despite the fact that the provided solution explicitly reveals the suggested categories for
an image, upon analysis and feedback collaboration with the Ajapaik team, it became
apparent that the layout was overly intricate. Additionally, it was recognized that the
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inclusion of confirm/reject buttons was unnecessary, as users should not only have the
option to reject the proposed category but also suggest an alternative one. In essence,
our goal was to maintain a more minimalistic approach, incorporating any modifications
within the framework of the existing categorization input.

5.2.2 UI modifications: version 2

In the second iteration of UI modifications, our objective was to introduce changes by
leveraging the already existing categorization solution. We opted to label the model-
predicted categories with an "AI" label, indicating that this is the input from model. This
allows users to make use of the "Submit" button, enabling them to either confirm the
suggested category or propose alternative categories.

Figure 15. Ajapaik UI version 2

5.2.3 UI modifications: version 3

While the UI was nearly finalized, we chose to enhance the visual aspect slightly and
capitalize on pre-existing icons for model input. Furthermore, we introduced an additional
layer by displaying variances between model and user opinions using a distinct icon for
clarity. The Ajapaik development team reviewed and approved the final result, which is as
follows:
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(a) Model result icon (b) Model result and user result discrepancy

Figure 16. Ajapaik UI version 3

5.3 Data Quality Engine Validation

5.3.1 Ground truth usage and users feedback generation

For conduction further validation, we have utilised previously manually categorised images
(ground truth) as discussed in details in section 4.1.

To ensure a precise validation of the obtained results, we simulate user feedback specifically
for the class category scene - interior and exterior and class category viewpoint elevation -
ground, raised and aerial. We imitate users’ model categories feedback submissions for
each category class.

In the validation process, we simulate users categories submissions, as each imaginary user
was granted the opportunity to submit a single feedback entry for each category class.
The generation of user feedback was arbitrary, as our goal was to emulate the scenario
where users submit predictions for images currently accessible on the Ajapaik platform.

As a result, we utilized a dataset that encompassed 1500 feedback (for each category class)
entries for the random selection of 2038 images, which were gathered from a pool of 100
users.

Taking into account the availability of the ground truth data for image categories, we
have the capacity to simulate user feedback, encompassing both accurate and inaccurate
responses, and subsequently compare these results with the actual image categories.

47



The allocation of feedback for each test scenario has been more or less equal, adhering to
the following distribution:

Category Correct Wrong
Exterior 371 379
Interior 364 386
Ground 261 239
Raised 243 257
Aerial 288 212

Table 7. Generated users feedback allocations

Where:

■ [category]_correct: represents the count of correct feedback responses for images
categorized as [category] in reality.

■ [category]_wrong: signifies the count of incorrect feedback responses for images
categorized as [category] in reality.

■ [category]_correct denotes the count of correct feedback responses for images
categorized as [category] in reality.

■ [category]_wrong indicates the count of incorrect feedback responses for images
categorized as [category] in reality.

Following the simulation of image category feedback submissions and subsequent model
retraining with user input, we proceed to execute a range of implementations of the Data
Quality Engine layer.

We conduct an analysis to examine which feedback entries are excluded during subsequent
model retraining, assess any discernible trends, and compare the outcomes of various Data
Quality Engine implementations.

For better clarify, we asses Data Quality Engine algorithms validation by using recall
(Equation 5.1), precision (Equation 5.2) and F1 score (Equation 5.3) calculations as key
success indicators.

Recall = TP

TP + FN
(5.1)

Precision = TP

TP + FP
(5.2)
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F1 = recall · precision

recall + precision
· 2 (5.3)

Where:

■ True Positives (TP): The number of feedback marked as incorrect by the Data
Quality Engine that were also actually incorrect.

■ True Negatives (TN): The number of feedback not marked as incorrect by the
Data Quality Engine that were actually correct.

■ False Positives (FP): The number of feedback marked as incorrect by the Data
Quality Engine that were actually correct.

■ False Negatives (FN): The number of feedback not marked as incorrect by the
Data Quality Engine that were actually incorrect.

In the ensuing chapters, we delve into each implementation in meticulous detail.

5.4 Model category prediction flow validation

In the upcoming chapter, we validate the accuracy of the model’s category prediction flow,
integrated with diverse implementations of the Data Quality Engine.

To validate the model’s category prediction flow, we partitioned the composed ground
truth images into three distinct categories:

MODEL TRAINING PHASE:

Images employed for the initial model training (33.33% of the ground truth dataset).

USERS FEEDBACK AND MODEL RETRAINING PHASE:

Images designated for uploading onto the Ajapaik platform, with users subsequently
submitting category feedback (simulation of uses category feedback submissions) for a
subset of these uploaded images (33.33% of the dataset).

RETRAINED MODEL PREDICTIONS PHASE:

Images reserved for the validation of the retrained model’s predictions (33.33% of the
dataset).
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The accompanying figure (Figure 17) offers a comprehensive overview of the procedures
carried out at each of these pivotal steps:

Figure 17. Validation Schema

Where:

MODEL TRAINING PHASE:

Initialization and Training: When the model starts, it sets aside one-third of the
available images for validation.

Outcome: This crucial step marks the beginning of model training, enabling predictions
of image categories on the Ajapaik platform.

USERS FEEDBACK AND MODEL RETRAINING PHASE:
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Data Ingestion: To facilitate the validation process, one-third of the available images
is uploaded through the Ajapaik user interface. Given the current UI’s constraint of
single-image uploads, a temporary functionality has been introduced to enable high-volume
image uploads.

Categorization: Upon successful image uploads, the model takes charge, systematically
predicting categories for previously uncategorized images at defined intervals. These
categories are promptly displayed on the user interface and stored in Ajapaik datastore
ajapaik_photomodelsuggestionresult.

Simulated User Feedback: To enhance the model’s learning process, we simulate user
feedback submissions for the images uploaded in the previous step. The feedback is stored
in the ajapaik_photomodelsuggestionalternativecategory table and later retrieved during
the model retraining cycle. The precise methodology for generating user feedback is
comprehensively detailed in subsection 5.3.1.

Retraining: During the subsequent model retraining cycle, the accumulated feedback is
harnessed to refine the model’s capabilities. This step results in the model being retrained,
incorporating user feedback.

RETRAINED MODEL PREDICTIONS PHASE:

Additional Data Upload: In this phase, a last one-third of the images designated for
validation (one third of the available images) are uploaded via the Ajapaik user interface.

Recategorized Output: Following the image uploads, the model, now retrained, predicts
categories for previously uncategorized images. The categorization results are displayed
on the user interface.

Validation and Comparison: The validation process encompasses the collection of
categorization verdicts from the retrained model. These verdicts are meticulously compared
against ground truth data, and the results are visually presented. This step serves the dual
purpose of assessing the retrained model’s accuracy and comparing it with the accuracy of
the initial model.

The validation approach involves a lot of automation, making the process much smoother.
Typically, it takes approximately 15 minutes to configure and verify the results.

In the following chapter we will follow these steps and apply them for different configurations
of Ajapaik model implementation. Table 8 presents an overview of the test configurations
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executed throughout the validation process. The results summary of the validation is
outlined in subsection 5.4.10, while detailed and specific results can be found in Table 12
and Table 13.

Validation set up
Data quality
engine version

Model archi-
tecture

Image augmen-
tation

Model category prediction
flow validation: No Data
Quality Engine Involved
(subsection 5.4.1)

None MobileNetV2 Original volume

Model category prediction
flow validation: No Data
Quality Engine involved, ad-
ditional image generation
(subsection 5.4.2)

None MobileNetV2
Additional image
generation

Model category prediction
flow validation: No Data
Quality Engine Involved, im-
ages downsampling (subsec-
tion 5.4.3)

None MobileNetV2
Images downscal-
ing - even vol-
umes

Model category prediction
flow validation: No Data
Quality Engine Involved,
viewpoint elevation images
additional sourcing (subsec-
tion 5.4.4)

None MobileNetV2

Images down-
scaling and
additional
sourcing - even
volumes

Model category prediction
flow validation: Data
Quality Engine v1 (subsec-
tion 5.4.5)

v1: most com-
mon verdict

MobileNetV2

Images down-
scaling and
additional
sourcing - even
volumes

Model category prediction
flow validation: Data
Quality Engine v2 (subsec-
tion 5.4.6)

v2: anomaly de-
tection

MobileNetV2

Images down-
scaling and
additional
sourcing - even
volumes
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Model category prediction
flow validation: Data
Quality Engine v3 (subsec-
tion 5.4.7)

v3: model pre-
dictions involve-
ment

MobileNetV2

Images down-
scaling and
additional
sourcing - even
volumes

Model category prediction
flow validation: Data
Quality Engine v3 (subsec-
tion 5.4.8)

v3: model pre-
dictions involve-
ment

ResNet50

Images down-
scaling and
additional
sourcing - even
volumes

Model category prediction
flow validation: Data
Quality Engine v3 (subsec-
tion 5.4.9)

v3: model pre-
dictions involve-
ment

AlexNet

Images down-
scaling and
additional
sourcing - even
volumes

Table 8. Validation set up overview

5.4.1 Model category prediction flow validation: No Data Qual-
ity Engine Involved

The validation process outlined above focuses exclusively on assessing the model’s category
prediction flow without the integration of the Data Quality Engine layer. In this context,
our objective is to ascertain the influence of incorporating the Data Quality Engine and to
gauge the ultimate impact on the model, culminating in the final validation results.

VALIDATION CONFIGURATION:

MODEL TRAINING PHASE:

Model used: MobileNetV2

Images initially utilized during model training phase - (one third of possible amount from
composed ground truth imageset for each category):

■ scene:
– interior: 1019
– exterior: 2872

■ viewpoint elevation:
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– ground: 3557
– raised: 301
– aerial: 33

USERS FEEDBACK AND MODEL RETRAINING PHASE:

A second batch of images was uploaded, and the model’s category predictions were
displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was uploaded for validation purposes after the model had been
retrained from users feedback. The results of this validation phase are outlined as follows:

(a) Per category (b) Per category class

Figure 18. Validation results: No Data Quality Engine Involved

Conclusions

The outcomes of this experiment indicate that the initial model training process, involving
uneven number of images per category class, has a significant impact on the accuracy of
category prediction for the interior, aerial and raised classes. Furthermore, it is worth
noting a significant decrease in the model’s accuracy rate following the incorporation
of unfiltered user feedback and subsequent retraining. In this context, it is clear that
the distribution of images varies significantly, making it challenging to achieve uniform
accuracy across all category classes. To mitigate the disparities in the number of images for
different categories, our intention is to augment the image data by generating additional
samples for categories with low image count.
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5.4.2 Model category prediction flow validation: No Data Qual-
ity Engine involved, additional image generation

In light of the findings derived from the previous validation process (as visible in Fig-
ure 5.4.1), it becomes evident that there is a pressing requirement to achieve equilibrium
in the quantities of interior and exterior and ground, raised and aerial images provided to
the model during its initial training phase.

To fulfill this requirement, we have produced extra images for categories with a limited
image count, ensuring alignment with the category boasting the highest number of images
in both the scene and viewpoint elevation classes.

■ scene:
– interior: 2872 ( + 1853 generated images)
– exterior: 2872

■ viewpoint elevation:
– ground: 3557
– raised: 3557 ( + 3256 generated images)
– aerial: 3557 ( + 3524 generated images)

■ The image generation techniques employed encompass:
– Image resizing
– Image rotation
– Image horizontal flipping
– Image brightness adjustment
– Image zooming

VALIDATION CONFIGURATION:

MODEL TRAINING PHASE:

Model used: MobileNetV2

Images initially utilized during the model training phase.

USERS FEEDBACK AND MODEL RETRAINING PHASE:

A second batch of images was uploaded, and the model’s category predictions were
displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
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image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was uploaded for validation purposes after the model had been
retrained from users feedback. The results of this validation phase are outlined as follows:

(a) Per category (b) Per category class

Figure 19. Validation results: No Data Quality Engine Involved, additional image genera-
tion

Conclusions

The generation of supplementary interior, raised and aerial category images has yielded
remarkable improvements in the accuracy of the model after its initial training. It is
noteworthy, however, that this enhancement has been accompanied by a marginal decline
in the accuracy of exterior and ground image prediction. This decline can be attributed to
the generated images closely resembling the source dataset, thereby lacking the diversity
needed for robust training.

After retraining the model with the inclusion of user feedback categories, a consistent
decline in accuracy rates may become apparent. As a next step, we aim to execute a
validation where image count would be downsampled.

5.4.3 Model category prediction flow validation: No Data Qual-
ity Engine Involved, images downsampling

In this context, we have opted to conduct an additional experiment, whereby the supplied
images for the initial model training have been deliberately downsized. This downsizing
entails using a fixed count of images matching the category with the lowest image counts.
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■ scene:
– interior: 1019
– exterior: 1019 (- 1853 ground truth images)

■ viewpoint elevation:
– ground: 33 (- 3523 ground truth images)
– raised: 33 (- 268 ground truth images)
– aerial: 33

VALIDATION CONFIGURATION:

MODEL TRAINING PHASE:

Model used: MobileNetV2

Images initially utilized during the model training phase.

USERS FEEDBACK AND MODEL RETRAINING PHASE:

A second batch of images was uploaded, and the model’s category predictions were
displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was uploaded for validation purposes after the model had been
retrained from users feedback. The results of this validation phase are outlined as follows:

(a) Per category (b) Per category class

Figure 20. Validation results: No Data Quality Engine Involved, images downsampling
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Conclusions

The validation process has shown that downsampling the data has notably enhanced
the performance, particularly in the scene category class. However, when it came to the
downsampled viewpoint elevation images, their limited quantity posed a challenge. The
training process could not reach successful completion due to the scarcity of this specific
data, resulting in validation results that fell considerably short of the expected ideal.

5.4.4 Addition: Model category prediction flow validation: No
Data Quality Engine Involved, viewpoint elevation images
additional sourcing

Due to a significant shortage of images in the raised and aerial categories among the
initially provided image snapshots, we took the initiative to acquire additional images
through the Ajapaik openAPI. Additional outsourcing became vital as we have revealed the
initially provided snapshot from Ajapaik lacks diversity of images for viewpoint elevation
category class (explained in details in section 4.1)

To maintain consistency and standardize our dataset, we opted to work with a common
number of 1019 images for each category, which allowed us to proceed with our validation
process.

■ scene:
– interior: 1019
– exterior: 1019

■ viewpoint elevation:
– ground: 1019
– raised: 1019
– aerial: 1019

VALIDATION CONFIGURATION:

MODEL TRAINING PHASE:

Model used: MobileNetV2

Images initially utilized during the model training phase.

USERS FEEDBACK AND MODEL RETRAINING PHASE:
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A second batch of images was uploaded, and the model’s category predictions were
displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was uploaded for validation purposes after the model had been
retrained from users feedback. The results of this validation phase are outlined as follows:

(a) Per category (b) Per category class

Figure 21. Validation results: No Data Quality Engine Involved, viewpoint elevation
images additional sourcing

Conclusions

The validation process has shown considerable increase in accuracy for viewpoint elevation
category class. Despite that, model accuracy after the retraining cycle remains under
the desired bar. All following validation runs will therefore be executed using Data
Quality Engine implementations maintaining constant images count for each category
(1019 images).

5.4.5 Model category prediction flow validation: Data Quality
Engine v1 - most common verdict

Within the given validation process, we employ the Data Quality Engine v1 (subsec-
tion 4.6.4) algorithm to effectively exclude feedback that pertains to faulty data.

VALIDATION CONFIGURATION:

MODEL TRAINING PHASE:
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Model used: MobileNetV2

Images initially utilized during the model training phase.

USERS FEEDBACK AND MODEL RETRAINING PHASE:

A second batch of images was uploaded, and the model’s category predictions were
displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was introduced for validation purposes after the model had been
retrained based on user feedback. The results of this validation phase are outlined as
follows:

(a) Per category (b) Per category class

Figure 22. Validation results: Data Quality Engine v1- most common verdict

Conclusions

Within the given validation flow, Data Quality Engine v1 managed to exclude 195 feedback
for scene class and 135 for viewpoint elevation class (out for 1500 total feedback for each
category class). The precision, recall and F1 results are outlined in Table 9.

Category class TP TN FP FN Precision Recall F1 Score
Scene 102 575 93 730 0.52 0.12 0.2

Viewpoint elevation 75 574 60 791 0.56 0.1 0.15

Table 9. Data Quality Engine v1 : precision, recall, F1 score overview

The improvements are only marginal, with the overall accuracy rising from 44.30% to
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45.19%. As explained in subsection 4.6.4 The Data Quality Engine’s implementation
primarily emphasizes the most frequently encountered category in feedback. In light of
this, if an image is associated with a higher frequency of faulty categories or is exclusively
linked to faulty categories, it will be directed to the model and integrated into the model
retraining process resulting in the model being negatively impacted.

5.4.6 Model category prediction flow validation: Data Quality
Engine v2 - anomaly detection

Within the given validation process, we employ the Data Quality Engine v2 (subsec-
tion 4.6.4) algorithm to effectively exclude feedback that pertains to faulty data.

VALIDATION CONFIGURATION:

MODEL TRAINING PHASE:

Model used: MobileNetV2

Images initially utilized during the model training phase.

USERS FEEDBACK AND MODEL RETRAINING PHASE:

A second batch of images was uploaded, and the model’s category predictions were
displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was introduced for validation purposes after the model had been
retrained based on user feedback. The results of this validation phase are outlined as
follows:
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(a) Per category (b) Per category class

Figure 23. Validation results: Data Quality Engine v2 - anomaly detection

Conclusions

Within the given validation flow, Data Quality Engine v2 managed to exclude 99 feedback
for scene class and 105 for viewpoint elevation class (out for 1500 total feedback). The
precision, recall and F1 results are outlined in Table 10.

Category class TP TN FP FN Precision Recall F1 Score
Scene 79 679 20 722 0.8 0.1 0.18

Viewpoint elevation 69 498 36 897 0.66 0.07 0.13

Table 10. Data Quality Engine v2 : precision, recall, F1 score overview

This decline in accuracy can be attributed to the conservative filtering approach of Data
Quality Engine v2, which is thoroughly described in subsection 4.6.4. As for the model’s
performance, it is evident that it continues to be adversely affected, as only a handful
of feedback entries are being categorized as faulty and consequently not excluded from
consideration.

5.4.7 Model category prediction flow validation: Data Qual-
ity Engine v3 (MobileNetV2 model) - model predictions
involvement

Within the given validation process, we employ the Data Quality Engine v3 (subsec-
tion 4.6.4) algorithm to effectively exclude feedback that pertains to faulty data. Data
Quality Engine v3 algorithm utilizes MobileNetV2 model architecture.

VALIDATION CONFIGURATION:

62



MODEL TRAINING PHASE:

Model used: MobileNetV2

Images initially utilized during the model training phase.

USERS FEEDBACK AND MODEL RETRAINING PHASE:

A second batch of images was uploaded, and the model’s category predictions were
displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was introduced for validation purposes after the model had been
retrained based on user feedback. The results of this validation phase are outlined as
follows:

(a) Per category (b) Per category class

Figure 24. Validation results: Data Quality Engine v3 (MobileNetV2 model) - model
predictions involvement

Conclusions

Prior to forwarding user feedback for model retraining, the Data Quality Engine managed
to exclude 670 feedback for scene class and 704 for viewpoint elevation class (out for 1500
total feedback per each category). The precision, recall and F1 results are outlined in
Table 11.
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Category class TP TN FP FN Precision Recall F1 Score
Scene 601 701 69 129 0.9 0.82 0.85

Viewpoint elevation 654 567 50 229 0.93 0.74 0.82

Table 11. Data Quality Engine v3 : precision, recall, F1 score overview

The results showed a modest improvement, albeit still noticeable. With future iterations
of the retraining process, we can anticipate further enhancements in the model’s accuracy.

5.4.8 Model category prediction flow validation: Data Quality
Engine v3 (ResNet50 model) - model predictions involve-
ment

Within the given validation process, we employ the Data Quality Engine v3 (subsec-
tion 4.6.4) algorithm to effectively exclude feedback that pertains to faulty data. Data
Quality Engine v3 algorithm utilizes ResNet50 model architecture.

VALIDATION CONFIGURATION:

MODEL TRAINING PHASE:

Model used: ResNet50

Images initially utilized during the model training phase.

USERS FEEDBACK AND MODEL RETRAINING PHASE:

A second batch of images was uploaded, and the model’s category predictions were
displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was uploaded for validation purposes after the model had been
retrained from users feedback. A fresh set of images was introduced for validation purposes
after the model had been retrained based on user feedback. The results of this validation
phase are outlined as follows:
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(a) Per category (b) Per category class

Figure 25. Validation results: Data Quality Engine v3 (ResNet50 model) - model predic-
tions involvement

Conclusions

Despite its notable reliability and high performance in addressing image categorization
tasks, we observed a noticeable decline in accuracy across all categories. Despite the
unexpected nature of this outcome, we acknowledge it and proceed to the next phase,
where we aim to perform validation of AlexNet model.

5.4.9 Model category prediction flow validation: Data Quality
Engine v3 (AlexNet model) - model predictions involve-
ment

Within the given validation process, we employ the Data Quality Engine v3 (subsec-
tion 4.6.4) algorithm to effectively exclude feedback that pertains to faulty data. Data
Quality Engine v3 algorithm utilizes AlexNet model architecture.

VALIDATION CONFIGURATION:

MODEL TRAINING PHASE:

Model used: AlexNet

Images initially utilized during the model training phase.

USERS FEEDBACK AND MODEL RETRAINING PHASE:

A second batch of images was uploaded, and the model’s category predictions were
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displayed on the Ajapaik user interface. Subsequently, we simulated users feedback on
image categories, and the model underwent a retraining process.

RETRAINED MODEL PREDICTIONS PHASE:

A fresh set of images was introduced for validation purposes after the model had been
retrained based on user feedback. The results of this validation phase are outlined as
follows:

(a) Per category (b) Per category class

Figure 26. Validation results: Data Quality Engine v3 (AlexNet model) - model predictions
involvement

Conclusions

While AlexNet reached high level of model accuracy, approaching the performance achieved
by MobileNetV2, it is crucial to recognize that AlexNet is an older architecture. The
observed high accuracy of AlexNet can be attributed to its pioneering role in the field, but
over time, more modern architectures, such as MobileNetV2, have emerged, surpassing it
in terms of overall performance.

5.4.10 Validation summary

After conducting numerous validation tests with various configurations - including initial
training image volumes, model architecture, the presence of the Data Quality Engine,
and its version — we can confidently conclude that the optimal result was obtained
when utilizing Data Quality Engine version 3. In this setup, the model architecture was
MobileNetV2, and the number of input training images was balanced at 1019 for each
category (as detailed in subsection 5.4.7).
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This configuration yielded impressive performance, achieving an accuracy of 88.13% for
the scene category class and 83.35% for viewpoint elevation. Following retraining, the
model’s accuracy experienced a slight increase, reaching 88.86% for scene and 83.58% for
viewpoint elevation.

Throughout the validation process, it became evident that accuracy per category suffered
when the image volume was significantly lower than other classes. Thus, maintaining an
even number of images during the initial training of the model proved crucial. Although
initially exploring additional image generation to balance category counts, we found
that downsizing existing images and acquiring supplementary images for categories with
lower counts, without resorting to image generation, produced more promising results.
Consequently, this approach was preferred and adopted.

A surprising finding emerged regarding the accuracy of the ResNet50 model. Despite its
well-established reliability and high performance in image categorization tasks, we observed
a noticeable decline in accuracy across all categories when employing this particular model
architecture.

Table 12 and Table 13 in Appendix 7 provide a comprehensive overview of the achieved
results across various validation configuration setups.

5.5 Alternative Validation

Having conducted software, UI, and model accuracy validations, we recognize additional
potential in undertaking validation with actual users once the model is live. The prospect
of validating user feedback on image categories in a natural, non-simulated setting holds
promise. However, this type of validation would necessitate a more extended timeframe,
given the current level of activity among Ajapaik users. A more expansive monitoring
window may be essential during this validation phase.
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6 Conclusions

The first goal of the thesis was to build an automated images categorization engine which
benefits user experience in their every-day Ajapaik [1] platform usage. The second goal of
the thesis was to enhance the model categorization algorithm by building an intermediate
categorization validation layer and excluding inaccurate users’ categorization records.

For achieving all of the goals mentioned above we have designed, implemented and validated
an images categorization engine coupled with a Data Quality Engine layer to process user
feedback before passing it next to the model retraining cycle. We have validated and
developed integration with various set-up configurations and developed algorithms for Data
Quality Engine. We assessed the precision of the initially trained model by considering
the images utilized during training and their respective quantities. We also measured
the accuracy of the model after retraining with various implementations of Data Quality
Engine algorithms.

Following our thesis, we conclude that the best initial accuracy of the model was achieved
when an equal number of images (1019 images per category) were provided, without
employing additional image generation techniques. The initial accuracy for scene category
images reached 88.13%, while for viewpoint elevation category images, it reached 83.55%.
Through the utilization of the Data Quality Engine, we determined that the most effective
implementation for the algorithm is "model predictions involvement." This approach excels
in ensuring that users’ faulty feedback is filtered out before entering the retraining cycle.
Thanks to this algorithm, the model accuracy after retraining saw a slight enhancement,
reaching 88.86% for scene category images and 83.58% for viewpoint elevation. While this
improvement may appear modest, we hold the perspective that any number approaching
100% signifies a noteworthy success.

Though we believe, during the thesis we have achieved some good accuracy numbers for
initially trained model and for the model after retraining cycle, it is still not enough to
treat this result as final. We see potential in improving Data Quality Engine v3 (model
predictions involvement) by increasing involvement aka weight in users feedback and hence
not solely rely on model predictions only.
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7 Future work

Despite the impressive results achieved by the Data Quality Engine v3, which is based on
model predictions, and its contribution to model retraining, leading to enhanced accuracy,
there remains a need to further enhance the data quality engine.

Even though the initial model achieved an accuracy of nearly 90%, it is essential to
acknowledge that this still means that approximately 10 out of 100 images might be
predicted incorrectly. The current implementation would discard user feedback if it does
not align with the model’s prediction, even when users are providing accurate feedback by
trying to improve the model.

In additional, we see potential in applying and validating multimodal principles that
combine language models and computer vision, as discussed in "A multimodal turn in
Digital Humanities" paper [56].

Our developed implementation represents the first step toward a more advanced solution,
one that takes into account both the model’s predictions and user input. This approach
ensures that exclusions are not solely based on the model’s verdict.
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Implementation Accuracy %

Image count during validation INTERIOR EXTERIOR GROUND RAISED AERIAL SCENE
TOTAL

VIEW
TOTAL

No Data Quality Engine
- Interior: 3056
- Exterior: 8614

- Ground: 10 670
- Raised: 901
- Aerial: 99

Train:
30.42%

Retrain:
19.63%

Train:
97.14%

Retrain:
34.84%

Train:
98.79%

Retrain:
97.05%

Train:
7.31%

Retrain:
3.34%

Train:
15.15%

Retrain:
9.09%

Train:
79.66%

Retrain:
30.86%

Train:
91.00%

Retrain:
89.07%

No Data Quality Engine
(additional images generation)

- Interior: 8614
- Exterior: 8614

- Ground: 10 670
- Raised: 10 670
- Aerial: 10 670

Train:
71.15%

Retrain:
21.59%

Train:
92.79%

Retrain:
35.16%

Train:
79.71%

Retrain:
42.19%

Train:
64.28%

Retrain:
26.86%

Train:
54.00%

Retrain:
33.76%

Train:
81.97%

Retrain:
28.38%

Train:
66.00%

Retrain:
34.27%

No Data Quality Engine
(downsampling +

outsourcing for viewpoint
elevation

- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
82.63%

Retrain:
37.29%

Train:
93.62%

Retrain:
48.77%

Train:
90.68%

Retrain:
49.44%

Train:
77.43%

Retrain:
31.25%

Train:
81.94%

Retrain:
41.15%

Train:
88.13%

Retrain:
43.03%

Train:
83.35%

Retrain:
40.61%

Data Quality Engine v1
(most common verdict)

- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
82.63%

Retrain:
40.53%

Train:
93.62%

Retrain:
49.85%

Train:
90.68%

Retrain:
57.61%

Train:
77.43%

Retrain:
69.48%

Train:
81.94%

Retrain:
58.00%

Train:
88.13%

Retrain:
45.19%

Train:
83.35%

Retrain:
61.70%

Data Quality Engine v2
(anomaly detection)

- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
82.63%

Retrain:
44.55%

Train:
93.62%

Retrain:
37.88%

Train:
90.68%

Retrain:
50.34%

Train:
77.43%

Retrain:
42.22%

Train:
81.94%

Retrain:
24.34%

Train:
88.13%

Retrain:
41.26%

Train:
83.35%

Retrain:
38.97%

Data Quality Engine v3
(model prediction involvement)

MobileNetV2 model
- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
82.63%

Retrain:
83.91%

Train:
93.62%

Retrain:
93.82%

Train:
90.68%

Retrain:
90.72%

Train:
77.43%

Retrain:
78.01%

Train:
81.94%

Retrain:
82.01%

Train:
88.13%

Retrain:
88.86%

Train:
83.35%

Retrain:
83.58%

Data Quality Engine v3
(model prediction involvement)

ResNet50 model
- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
82.63%

Retrain:
60.15%

Train:
93.62%

Retrain:
71.33%

Train:
90.68%

Retrain:
63.04%

Train:
77.43%

Retrain:
48.13%

Train:
81.94%

Retrain:
65.10%

Train:
88.13%

Retrain:
65.74%

Train:
83.35%

Retrain:
58.76%

Data Quality Engine v3
(model prediction involvement)

AlexNet model
- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
82.63%

Retrain:
80.01%

Train:
93.62%

Retrain:
90.42%

Train:
90.68%

Retrain:
88.79%

Train:
77.43%

Retrain:
76.02%

Train:
81.94%

Retrain:
77.10%

Train:
88.13%

Retrain:
85.22%

Train:
83.35%

Retrain:
80.64%

Table 12. Validation results overview: accuracy
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Implementation F1 score

Image count during validation INTERIOR EXTERIOR GROUND RAISED AERIAL SCENE
TOTAL

VIEW
TOTAL

No Data Quality Engine
- Interior: 3056
- Exterior: 8614

- Ground: 10 670
- Raised: 901
- Aerial: 99

Train:
0.44

Retrain:
0.13

Train:
0.88

Retrain:
0.43

Train:
0.95

Retrain:
0.94

Train:
0.01

Retrain:
0.01

Train:
0.002

Retrain:
0.002

Train:
0.76

Retrain:
0.35

Train:
0.87

Retrain:
0.86

No Data Quality Engine
(additional images generation)

- Interior: 8614
- Exterior: 8614

- Ground: 10 670
- Raised: 10 670
- Aerial: 10 670

Train:
0.8

Retrain:
0.35

Train:
0.84

Retrain:
0.47

Train:
0.69

Retrain:
0.28

Train:
0.59

Retrain:
0.23

Train:
0.56

Retrain:
0.28

Train:
0.82

Retrain:
0.41

Train:
0.61

Retrain:
0.26

No Data Quality Engine
(downsampling +

outsourcing for viewpoint
elevation

- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
0.87

Retrain:
0.4

Train:
0.89

Retrain:
0.46

Train:
0.82

Retrain:
0.36

Train:
0.79

Retrain:
0.26

Train:
0.78

Retrain:
0.33

Train:
0.88

Retrain:
0.43

Train:
0.8

Retrain:
0.32

Data Quality Engine v1
(most common verdict)

- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
0.87

Retrain:
0.43

Train:
0.89

Retrain:
0.48

Train:
0.82

Retrain:
0.52

Train:
0.79

Retrain:
0.63

Train:
0.78

Retrain:
0.51

Train:
0.88

Retrain:
0.46

Train:
0.8

Retrain:
0.55

Data Quality Engine v2
(anomaly detection)

- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
0.87

Retrain:
0.43

Train:
0.89

Retrain:
0.39

Train:
0.82

Retrain:
0.35

Train:
0.79

Retrain:
0.36

Train:
0.78

Retrain:
0.2

Train:
0.88

Retrain:
0.41

Train:
0.8

Retrain:
0.3

Data Quality Engine v3
(model prediction involvement)

MobileNetV2 model
- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
0.87

Retrain:
0.88

Train:
0.89

Retrain:
0.89

Train:
0.82

Retrain:
0.82

Train:
0.79

Retrain:
0.79

Train:
0.78

Retrain:
0.78

Train:
0.88

Retrain:
0.89

Train:
0.8

Retrain:
0.82

Data Quality Engine v3
(model prediction involvement)

ResNet50 model
- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
0.87

Retrain:
0.64

Train:
0.89

Retrain:
0.68

Train:
0.82

Retrain:
0.54

Train:
0.79

Retrain:
0.47

Train:
0.78

Retrain:
0.58

Train:
0.88

Retrain:
0.66

Train:
0.8

Retrain:
0.53

Data Quality Engine v3
(model prediction involvement)

AlexNet model
- Interior: 3056
- Exterior: 3056
- Ground: 3056
- Raised: 3056
- Aerial: 3056

Train:
0.87

Retrain:
0.84

Train:
0.89

Retrain:
0.86

Train:
0.82

Retrain:
0.77

Train:
0.79

Retrain:
0.73

Train:
0.78

Retrain:
0.75

Train:
0.88

Retrain:
0.85

Train:
0.8

Retrain:
0.75

Table 13. Validation results overview: F1 score
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Appendix 3 - Repository link

ajapaik-model-training repository: https://github.com/angrun/ajapaik-model-training
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