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Abstract

The increasing complexity of cyber threats, particularly the rise of "Living off the Land"
(LOTL) attacks, presents significant challenges to traditional detection methods. LOTL
attacks exploit legitimate tools and processes within target environments, often bypassing
conventional signature-based systems. Although machine learning models have shown
potential in identifying malicious activity through behavioral analysis, their deployment is
resource-intensive and often inaccessible to many organizations.

This research explores the potential of Large Language Models, such as GPT-4o, to detect
and classify malicious activities based on Windows Event logs, providing a novel approach
to enhancing incident response and digital forensics processes. Using the Atomic Red Team
framework, a custom dataset was developed, simulating 1064 distinct attack techniques.
This dataset includes logs from Sysmon, Security, System, PowerShell, and Application
sources, offering a comprehensive resource for experimentation.

Various prompting strategies such as zero-shot, one-shot, few-shot, Chain of Thought
(CoT), and CoT+5-shot were tested to evaluate LLM performance in two primary tasks:
detecting malicious activities and classifying them within the MITRE ATT&CK framework.
Results reveal that LLMs, when optimized with effective prompting strategies, can detect
malicious activities in Windows Event logs, reducing the burden of manual analysis.
However, challenges remain in accurately classifying these activities into predefined
categories.

This study demonstrates that LLMs have the potential to bridge the gap between large-scale
log analysis and actionable threat intelligence, offering a scalable and efficient method
for detecting evolving cyber threats. Additionally, it introduces a novel open-source
dataset and a customizable script for generating Windows attack logs, enabling further
experimentation and adaptation across diverse environments. By leveraging LLMs, this
research advances state-of-the-art log-based threat detection and contributes to making
cybersecurity practices more accessible and efficient.

The thesis is written in English and is 117 pages long, including 7 chapters, 11 figures and
45 tables.
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Annotatsioon
Küberohtude tuvastamise edendamine suurte keelemudelite põhise

turvalogi analüüsi abil

Küberohtude keerukus, eriti "Living off the Land" (LOTL) rünnakud, seab traditsioonilis-
tele tuvastusmeetoditele tõsiseid väljakutseid. LOTL-rünnakud kasutavad sihtkeskkonna
tööriistu, möödudes sageli signatuuripõhistest süsteemidest. Kuigi masinõppe mudelid
suudavad tuvastada pahatahtlikku tegevust, on nende rakendamine ressursimahukas ja
paljudele organisatsioonidele raskesti kättesaadav.

See uurimus uurib suurte keelemudelite, nagu GPT-4o, võimet tuvastada ja klassifit-
seerida pahatahtlikke tegevusi Windowsi Event logide põhjal, parandades intsidentidele
reageerimist ja kohtuekspertiisi protsesse. Atomic Red Team raamistikuga loodi 1064
rünnakutehnikat simuleeriv andmestik, mis hõlmab logisid Sysmoni, Security, Systemi,
PowerShelli ja rakenduste logidest, pakkudes ulatuslikku katseressurssi.

LLM-ide effektiivsuse hindamiseks testiti erinevaid prompt strateegiaid, sealhulgas zero-
shot, one-shot, few-shot, Chain of Thought (CoT) ja CoT+5-shot. Uuring keskendus kahele
peamisele ülesandele: pahatahtlike tegevuste tuvastamine ja nende klassifitseerimine
MITRE ATT&CK raamistikus. Tulemused näitavad, et LLM-id, kui neid optimeerida
sobivate prompt strateegiatega, suudavad tuvastada pahatahtlikke tegevusi Windowsi Event
logide põhjal, vähendades käsitsi analüüsi koormust. Siiski jäävad väljakutsed nende
tegevuste täpseks klassifitseerimiseks eelmääratud kategooriatesse.

See uuring näitab, et LLM-id suudavad tõhusalt ületada suurte logianalüüside ja prak-
tilise ohuluure vahelisi lünki, pakkudes skaleeritavat lahendust küberohtude tuvastamiseks.
Samuti tutvustab see avatud lähtekoodiga andmestikku ja skripti Windowsi ründelogide
genereerimiseks, toetades edasisi katsetusi ja kohandusi. LLM-ide rakendamine parandab
logipõhiste ohtude tuvastamist ja muudab küberjulgeoleku tõhusamaks ning kättesaadava-
maks.

Lõputöö on kirjutatud inglise keeles ja on 117 lehekülge pikk, sealhulgas 7 peatükki, 11
joonist ja 45 tabelit.
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1. Introduction

As technology continues to advance rapidly, cyber attackers are evolving alongside it,
employing increasingly sophisticated techniques to evade detection. One notable trend
is the rise of "Living off the Land" (LOTL) attacks (Crowdstrike, 2024), which leverage
legitimate tools and processes already present in a target environment. These attacks are
particularly challenging to detect, as they bypass traditional pattern- or signature-based
methods that are commonly used by security solutions. In response, leading Endpoint
Detection and Response (EDR) and antivirus vendors have adopted custom-trained machine
learning (ML) models to identify malicious activity based on behavioral patterns and
sequences of actions (Martínez Torres et al., 2019, Handa et al., 2019). However, training
such models is both time-consuming and resource-intensive, creating a significant barrier
for widespread adoption.

LOTL attacks typically rely heavily on log-based detection and investigation, which
demand considerable manual effort and technical expertise to discern subtle patterns
indicative of malicious behavior (Kaminsky, 2024). This research seeks to explore whether
LLMs, such as GPT-4o, can effectively detect and classify malicious activities within
Windows logs, potentially reducing the need for extensive manual analysis and accelerating
the investigation process.

To evaluate the capabilities of publicly available LLMs, a custom dataset was generated
using the Atomic Red Team framework, simulating 1,064 attack techniques on a target
Windows machine. These logs span various Windows Event log categories, including
Sysmon, Security, System, PowerShell, and Application logs. The dataset was analyzed
using GPT-4o with different prompting strategies: zero-shot, one-shot, 3-shot, 5-shot,
Chain of Thought (CoT), and a combination of CoT with 5-shot prompting. This study
offers insights into how LLMs can enhance the detection and classification of LOTL-style
attacks. The findings have the potential to reduce technical and resource barriers for
organizations, enabling quicker and more efficient responses to increasingly sophisticated
cyber threats.

The research was conducted in two stages: the first stage focused on detecting malicious
activities, and the second aimed at classifying these activities into their respective MITRE
ATT&CK categories.
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1.1 Research Problem

The evolving landscape of cyber threats necessitates innovative approaches in incident
response and digital forensics to effectively mitigate risks and respond to security incidents.
The first step in mitigating these risks is properly understanding them, and at this stage,
the investigative process plays a crucial role (Cichonski et al., 2012). Investigation serves
as the foundation for identifying and analyzing malicious activities, as it helps security
professionals uncover the tactics, techniques, and procedures (TTPs) used by attackers.

Traditional methods often struggle with the detection of LOTL style of attacks, as they
blend in well with regular system usage (Kaminsky, 2024). In this context, LLMs, known
for their potential to process and understand unstructured data, emerge as a promising tool.
This research endeavors to probe whether leveraging LLMs can enhance the operational
efficiency of incident response and digital forensic processes, especially through the lens of
host log analysis. By exploring the capabilities of LLMs in detecting and classifying cyber
threats, this study aims to bridge the gap between the overwhelming data volume produced
by modern systems and actionable intelligence needed for timely and accurate incident
response. Current state-of-the-art research offers minimal coverage of LLM applications in
incident response and digital forensics, particularly in the area of on-host threat detection.
There is a notable lack of data and studies exploring the potential of LLMs for this specific
use case. This thesis aims to fill this gap.

Central to this research one main research question and three sub-research questions were
identified:

Main research question [MRQ]: Can Large Language Models be used during incident
response and digital forensic processes?

The main research question was sub-divided into 3 research questions:

■ [RQ1] Can large language models be used for the detection of cyberattacks based
on forensic Windows logs?

■ [RQ2] Can large language models be used for the classification of cyberattacks
based on forensic Windows logs?

■ [RQ3] What are optimal prompting strategies to achieve most accurate results when
analyzing windows forensic logs using large language models?

In every incident response process, quick detection of malicious activity is crucial to
mitigate the impact of cyberattacks. However, manual investigation of logs is both time-
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consuming and requires significant technical expertise. Therefore, the first research
question RQ1 seeks to explore how well LLMs can detect malicious activity within
Windows logs. By leveraging the natural language processing capabilities of LLMs, this
research aims to evaluate their potential to identify indicators of compromise, indicators of
attack and other anomalies in a more efficient manner than traditional methods.

Once malicious activity is detected, the next step is to understand the intent behind
the attack, which involves classifying the activity into specific attack categories. This
classification process is critical for guiding an appropriate response. Thus, the second
research question RQ2 examines how effectively LLMs can classify malicious activities
based on available artifacts within Windows logs. This question focuses on whether
LLMs can correctly categorize various attack techniques, following the MITRE ATT&CK
framework, to facilitate a deeper understanding of the attacker’s actions and potential
further directions. Building on the findings from the first two research questions, the third
research question RQ3 aims to identify the most effective prompting strategy for detecting
and classifying malicious activities, optimizing the performance of LLMs in both tasks.

1.2 Contributions & Novelty

This research offers several contributions to the domains of cybersecurity and digital
forensics. First, this research fills a significant yet underexplored gap in the intersection
of cybersecurity and LLM technology. Despite the growing interest in LLMs across
various fields, their application in log-based anomaly detection and categorization remains
largely untapped. This study offers a novel approach, demonstrating the potential of
LLMs to enhance incident response by enabling more accurate and efficient identification
of malicious activities, thereby advancing the state of the art in log analysis and threat
intelligence.

In addition, this research presents a newly created dataset comprising 1064 distinct attack
technique logs, generated using the Atomic Red Team framework to simulate attacks
against a Windows machine. For each simulated attack, a set of Windows Event logs
commonly utilized in incident response and forensic investigations has been produced as
"attack artifacts". These artifacts include logs from Sysmon, Security, System, Application,
and PowerShell logs. The logs were made available as an open-source resource, thereby
serving as a tool for future studies and experimentation. What sets this dataset apart is
its novelty and breadth. Unlike the majority of existing host-intrusion datasets, which are
either outdated or narrowly focused on specific types of attacks (e.g., DDoS, C2 traffic, or
Data Loss Prevention), this dataset offers a comprehensive, up-to-date collection (CAIDA,
2007, Creech, 2014, Catak et al., 2021, Stratosphere, 2015). It contains 1064 unique attack
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techniques, covering 13 different MITRE ATT&CK categories, with attack complexities
ranging from basic to advanced. This diversity makes the dataset a versatile and valuable
asset for experimentation and research,

In addition to the dataset, the script that was used to generate the dataset is also being
shared with the community. This adds value by allowing users to customize the dataset
creation process. Instead of relying solely on the default Windows 10 setup, users can
replace it with their own system snapshot. This flexibility makes it possible to simulate
attacks tailored to specific research needs or organizational setups, enabling researchers
and practitioners to create scenarios that better reflect their unique environments.

1.3 Thesis Structure

This thesis is organized as follows. Chapter 2 provides background information necessary
to contextualize the research. It discusses LLMs, their architecture, and potential applica-
tions. It also introduces incident response and digital forensics concepts, along with red
teaming and adversary emulation, setting the stage for the methodology.

Chapter 3 reviews related work, focusing on the application of LLMs in cybersecurity. It
highlights existing studies and identifies gaps that this thesis seeks to address.

Chapter 4 details the methodology employed in this research. It includes dataset generation,
data pre-processing, and the development of experimental prompts. This chapter also
explains the selection of LLMs and the evaluation metrics used to assess performance.

Chapter 5 presents the results of the experiments. It discusses findings from both the binary
detection of malicious activities and the multiclass classification of cyberattacks. Various
prompting strategies, including zero-shot, few-shot, chain-of-thought (CoT), and combined
approaches, are evaluated and compared in terms of their performance.

Chapter 6 delves into a discussion of the findings, interpreting the results in the context
of the research questions. It examines the challenges and limitations encountered, while
proposing potential improvements and directions for future work.

Finally, Chapter 7 concludes the thesis, summarizing the key insights and contributions.
It also reflects on the broader implications of the research and its potential impact on the
field of incident response and digital forensics.
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2. Background information

2.1 Large Language Models

Large Language Models (LLMs) represent a significant advancement within the field of
artificial intelligence, particularly in natural language processing (NLP) (Chang et al.,
2024). These models are a product of deep learning advancements and are designed to
understand, interpret, and generate human language with an impressive level of fluency
and accuracy. LLMs, such as OpenAI’s GPT and Google’s BERT, leverage layers of neural
networks and are trained on large datasets, enabling them to capture contextual nuances
and semantic structures (OpenAI et al., 2023, Devlin et al., 2018).

The foundational architecture for LLMs, the Transformer model, was introduced by
Vaswani et al., 2017 and has since become a cornerstone for subsequent innovations.
Unlike its predecessors, the Transformer architecture leverages mechanisms such as self-
attention and feed-forward neural networks, allowing it to learn contextual relationships
between words in a sentence more efficiently. This stand-alone framework facilitated
the development of autoregressive models like GPT (Generative Pre-trained Transformer)
series by OpenAI and bidirectional models like BERT (Bidirectional Encoder Representa-
tions from Transformers) by Google, each contributing unique capabilities to the field of
language modeling (OpenAI et al., 2023, Devlin et al., 2018).

An important feature of LLMs is their capability in few-shot and zero-shot situations,
where they can perform specific tasks with minimal task-specific data (Brown et al.,
2020). This ability is derived from the pre-training phase that provides the models with
a broader understanding of language, complemented by a fine-tuning phase that adapts
the models to specific applications or domains. As a result, LLMs have demonstrated
versatility across a range of language tasks, from translation and summarization to question
answering, analysis and conversational agents (Zhao et al., 2023). In recent years, LLMs
have been applied across diverse fields, ranging from automated content creation to
personalized recommendation systems. Their ability to integrate and process large amounts
of unstructured data makes them appealing for challenging tasks such as those found in
incident response and digital forensics. Here, they offer potential advantages in anomaly
detection, log analysis, and streamlined report generation, by quickly sifting through
logs and communications to identify patterns and alert investigators to potential security
incidents.
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Despite their remarkable capabilities, LLMs pose several challenges and limitations. They
require significant computational resources for both training and deployment, leading to
concerns about sustainability and environmental impact. Additionally, issues related to
bias and ethical use have garnered attention, as LLMs can inadvertently amplify societal
biases present in their training data (Hadi et al., 2023). Another limitation is their tendency
to produce "hallucinations," where the model generates outputs that are factually incorrect
or nonsensical but appear plausible. This behavior undermines trust in their reliability,
particularly in high-stakes domains such as cybersecurity or digital forensics (Huang et al.,
2023). Thus, while LLMs stand at the forefront of AI-driven language understanding and
generation, their successful integration into more specialized fields will depend on ongoing
research and development efforts that address inherent limitations.

2.2 Incident Response and Digital Forensics

Incident response and digital forensics are two integral components of cybersecurity that
work together to mitigate the effects of cyber incidents and improve organizational re-
silience. Incident response refers to the systematic approach organizations take to manage
and mitigate the consequences of cybersecurity breaches or attacks (Cichonski et al.,
2012). This process contains the identification, containment, eradication, and recovery
from incidents to restore normal operations while minimizing damage and reducing re-
covery time and costs. Effective incident response relies on well-structured frameworks,
such as the NIST Special Publication 800-61, “Computer Security Incident Handling
Guide,” which provides organizations with a blueprint to develop and refine their incident
response capabilities (Cichonski et al., 2012). Digital forensics, on the other hand, is the
scientific discipline concerned with the identification, recovery, preservation, and analysis
of information from digital devices in a method that is legally acceptable. This area of
study has seen advancements as digital crime has grown more sophisticated (Garfinkel,
2010). Digital forensics plays a crucial role in understanding the nature of an incident,
uncovering the methods used by attackers, and providing evidence that can be used in
judicial or administrative proceedings. It involves processes and methodologies to ensure
that the integrity and chain-of-custody of digital evidence are maintained, thereby enabling
investigators to reconstruct events and derive actionable intelligence (Casey, 2009).

Together, incident response and digital forensics form a framework for cybersecurity
resilience and incident management. The synergy between these disciplines ensures effi-
cient remediation of security events and supports improvement of organizational defenses
against future threats. The increasing complexity and frequency of cyberattacks in recent
years underscore the need for continuous evolution and adaptation in both domains. With
advancements in technologies such as machine learning and artificial intelligence, there
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emerges an opportunity to incorporate new methodologies, such as LLMs, which offer the
potential to augment capabilities in both fields. These models have the potential to enhance
incident response and digital forensic efforts by improving the speed, accuracy, and depth
of data analysis, supporting improved decision-making during and after cyber incidents.

2.3 Red Teaming and Adversary Emulation

Red teaming and adversary emulation are strategies within the broader landscape of
cybersecurity that aim to proactively identify and mitigate potential vulnerabilities within an
organization’s defenses. Red teaming involves an assessment approach whereby a group of
security professionals, known as the red team, is tasked with emulating potential attackers
to uncover weaknesses within the existing security posture (NIST, 2015). This process is
usually more than a technical exercise; it also includes testing organizational readiness and
response mechanisms. The primary goal of red teaming is to provide a holistic evaluation
that encompasses both technical vulnerabilities and procedural weaknesses, simulating
realistic attack scenarios that a sophisticated adversary might employ (Cranford, 2023).

Adversary emulation, a sub-discipline of red teaming, focuses on recreating the tactics,
techniques, and procedures (TTPs) used by specific threat actors. By employing this
approach, organizations can gain a deeper understanding of the methods that adversaries
may use to target their systems (Picus, 2023). This simulation is grounded in threat
intelligence, which provides insights into real-world threat actor behaviors, thus enhancing
the authenticity and relevance of the exercise. Adversary emulation allows organizations to
test their defenses against specific threats (such as specific threat actors or groups), assess
the effectiveness of their detection and response mechanisms, and adjust their security
strategies accordingly.

Both red teaming and adversary emulation contribute significantly to an organization’s
cybersecurity strategy by exposing gaps that may not be apparent through traditional
security assessments (such as vulnerability management) or audits. These methodologies
help organizations to move from a reactive security stance to a proactive one, identifying
and addressing potential threats before they can be exploited by malicious actors. By
enhancing an understanding of the organization’s response capabilities, these exercises
play an important role in refining incident response plans and digital forensic processes.
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3. Related Work

3.1 LLMs In Cybersecurity

Cheshkov et al., 2023 in their Technical Report: Evaluation of ChatGPT Model for

Vulnerability Detection investigated ChatGPT’s competency in identifying vulnerabilities
within Java code. Utilizing a real-world dataset, their analysis centered on binary and
multi-label classification tasks involving CWE vulnerabilities. The findings indicated that
GPT-3-turbo achieved F1 scores ranging from 0.118 to 0.231 for different CWE types,
with a higher score of 0.530 for negatives. Despite being trained with extensive datasets,
the models demonstrated limited efficacy in testing scenarios, with an overall accuracy of
0.383, a macro average of 0.187, and a weighted average of 0.33. These results underscore
the need for further refinement and tuning of LLMs for effective vulnerability detection.
A similar study by Purba et al., 2023 titled Software Vulnerability Detection using Large

Language Models investigated LLMs’ ability to recognize security vulnerabilities in
executable code, specifically targeting SQL injections and buffer overflow issues. Using
datasets such as code gadgets and CVEfixes, the study revealed that while LLMs struggle
with high false positive rates, they excel at identifying common patterns associated with
vulnerabilities, particularly when fine-tuned.

In the domain of Cyber Threat Intelligence (CTI), Clairoux-Trepanier et al., 2024, explored
the application of GPT-3.5-turbo for extracting threat intelligence from cybercrime forums
in their work The Use of Large Language Models (LLM) for Cyber Threat Intelligence

(CTI) in Cybercrime Forums. The model achieved an average accuracy of 0.9623, a
precision of 0.9, and recall of 0.882. However, this approach raises privacy concerns,
especially when threat intelligence involving sensitive information is shared with external
LLMs. Furthermore, the nature of publicly accessible forums like XSS and Exploit.in
suggests that high-stakes attackers might not disclose their plans in such forums, thus
limiting the study’s applicability, yet it unveils a promising direction of AI-assisted threat
intelligence.

The work of Bayer et al., 2024 in CySecBERT: A Domain-Adapted Language Model for

the Cybersecurity Domain introduced a specialized BERT model aimed at better analyzing
cybersecurity content. CySecBERT outperformed the baseline BERT in detecting MS
Exchange threats with an F1 score of 0.8869. Although promising for enhancing regular
document analysis, its effectiveness in real-world threat detection remains uncertain.
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Song et al., 2024 presented a noteworthy Log-based threat detection system titled Audit-

LLM: Multi-Agent Collaboration for Log-based Insider Threat Detection. Their multi-
agent approach, using datasets like CERT r4.2, achieved high precision and accuracy,
with a minimal false positive rate on CERT r4.2 (precision=0.943, FP rate=0.037, accu-
racy=0.961). Despite the impressive performance, the adapting this approach to individual
organizational contexts may demand significant resources, potentially outweighing the
benefits compared to traditional methods.

The study by Ferrag et al., 2023, Revolutionizing Cyber Threat Detection with Large

Language Models: A Privacy-preserving BERT-based Lightweight Model for IoT/IIoT

Devices, developed SecurityBERT, showcasing over 0.982 accuracy against a vast array
of attack types in IoT environments. While outstanding, its focus on IoT diverges in
applicability from traditional desktop and server environments, displaying differing activity
and attack features.

Exploring LLMs in incident response procedures, Hays and White, 2024 discussed in
their work Employing LLMs for Incident Response Planning and Review, how embedding
LLMs into Incident Response Planning (IRP) can streamline the management of dynamic
response strategies. Despite not focusing on direct threat detection, the research highlights
valuable potential in efficient IR documentation creation and maintenance.

Lastly, Scanlon et al., 2023 in ChatGPT for Digital Forensic Investigation: The Good, the

Bad, and the Unknown initiated a preliminary investigation into GPT-4’s role in digital
forensic investigations. Their exploration of ChatGPT in incident analysis and artifact
detection provides a general overview without deep technical insights.

In terms of datasets, there is a wide range of options available; however, the majority tend
to be either narrowly concentrated on a single category of attacks among many or are
quite outdated. For instance, datasets such as the CAIDA DDoS 2007 include a substantial
amount of DDoS-related activities but are significantly outdated and overly specialized in
DDoS situations (CAIDA, 2007). Similarly, the Windows and Linux ADFA IDS datasets
face the same issue, having been developed in 2013, and thus lacking data that represents
more current attacker techniques (Creech, 2014).

Furthermore, datasets that concentrate on malware, such as the Windows Malware Dataset

with PE API Calls, primarily focus on analyzing malware, particularly through examining
Portable Execututable (PE) files. While this approach is relevant to examining host-based
artifacts, it fails to effectively address Living Off The Land (LOTL) style attacks (Catak
et al., 2021).
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There are numerous datasets available that focus on malware-related network traffic, such
as the one provided by the Stratosphere Laboratory. These datasets primarily emphasize
network-level data instead of artifacts found on individual hosts (Stratosphere, 2015).

Log analysis is a broad topic that encompasses the examination and interpretation of logs
generated by various systems, applications, and network devices to extract information,
identify anomalies, and support troubleshooting or security investigations. The analysis
of Windows forensic logs (i.e., Sysmon, Security, Application and other logs in the scope
of this paper) is simply a subset of this broader domain. To explore potential synergies
between state-of-the-art LLM-based log parsing techniques and threat detection use cases,
a comprehensive literature review of LLM applications in the log parsing domain was
conducted.

Ma et al., 2024 in their work LLMParser: An Exploratory Study on Using Large Language

Models for Log Parsing explored the potential of LLMs in log parsing. They introduced
LLMParser, a generative LLM-based approach that achieved a parsing accuracy (PA) of
0.96, surpassing state-of-the-art parsers like Drain and Logram. The study highlighted that
few-shot approach was more effective than in-context learning, achieving a PA of 0.96
compared to 0.46. The research also found that increasing the size of the training shot did
not always improve PA. The authors attribute this to potential sampling issues. Furthermore,
the study revealed that more complex LLMs do not necessarily yield better results, as
demonstrated by Flan-T5-base’s (250 million parameters) comparable performance to
LLaMA-7B (7 billion parameters).

In a separate study conducted by Xu et al., 2024, titled DivLog: Log Parsing with Prompt

Enhanced In-Context Learning, authors present an approach to log parsing by leveraging
the in-context learning capabilities of LLMs. The DivLog framework addresses the
limitations of existing log parsers by automating the log parsing process without requiring
human effort in feature design or hyperparameter tuning. DivLog selects diverse log
examples to build a candidate set and uses these examples to guide the LLM in generating
log templates. Evaluated on 16 public datasets from LogPAI, DivLog achieved a parsing
accuracy of 98.1%, precision template accuracy of 92.1%, and recall template accuracy of
92.9%, outperforming existing methods by significant margins.

In another research by Le and Zhang, 2023, titled Log Parsing with Prompt-based Few-

shot Learning, authors propose a technique to parse logs using prompt-based few-shot
learning. The study addresses the limitations of existing log parsers, which are known
to suffer from low accuracy and robustness due to their reliance on statistical features
and domain-specific knowledge. Authors propose LogPPT, which leverages a pre-trained
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language model (RoBERTa) to capture the semantic information of log messages, enabling
it to identify keywords and parameters with minimal labeled data. The method eliminates
the need for preprocessing and domain-specific hyperparameter adjustments, achieving
over 0.9 average Group Accuracy and Parsing Accuracy on 16 public log datasets.

Lastly, Jiang et al., 2024 in their research LILAC: Log Parsing using LLMs with Adaptive

Parsing Cache addressed the limitations of existing log parsers by leveraging LLMs for
log parsing. The authors argue that traditional syntax-based log parsers rely heavily on
crafted rules, which can lead to performance degradation when log data deviate from these
rules. Semantic-based log parsers, on the other hand, are constrained by limited labeled log
messages, often failing to understand complex log semantics. LILAC introduces a novel
framework that utilizes LLMs’ pre-trained knowledge to parse log messages without the
need for manually designed rules. The framework comprises two main components: the
ICL-enhanced parser and the adaptive parsing cache. The ICL-enhanced parser leverages
in-context learning to adapt LLMs to diverse log data, while the adaptive parsing cache
tackles inconsistent outputs and high LLM cost by refining templates and minimizing
redundant LLM queries. Evaluations on large-scale log datasets demonstrated that LILAC
outperforms state-of-the-art baselines in accuracy and efficiency, achieving a 66.8% and
69.5% improvement in F1 score for grouping and template accuracy, respectively.

The application of advancements in LLM-based log parsing methods for threat detection
tasks requires further exploration and validation. Threat detection based on forensic logs
extends beyond accurate log parsing and needs to include the identification of unusual
patterns, anomalies, or signatures that point to malicious activities. Modern approaches
increasingly leverage machine learning algorithms to improve detection efficiency and
handle the huge data volumes generated by today’s systems. For example, analyzing
historical data from a particular host or user log enables ML algorithms to improve the
accuracy of anomaly detection while reducing false positives (Khan et al., 2023). Moreover,
ensuring the robustness of LLM-based parsers in handling adversarial inputs, such as
obfuscated or deliberately misleading log entries, is crucial for practical deployment.
For example, a malicious actor could generate malicious log entries designed to mimic
"prompts", thus conducting a prompt injection attack through log poisoning. Defensive
measures are required for such cases, and a human-in-the-loop approach may be necessary
to ensure the accuracy and reliability of threat detection. Scalability and efficiency are
additional concerns, particularly in large-scale enterprise environments where log volumes
can reach terabytes per day. Issues such as LLM querying overhead (cost, network latency),
inaccuracy, and hallucinations further complicate the deployment.

The existing literature illustrates the increasingly significant role that Large Language
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Models are beginning to play within the field of cybersecurity, with each study examining
different aspects of their application (vulnerability detection, cyber threat intelligence,
etc). Although these developments are promising, a recurring theme emerges highlighting
the need for continued advancement and contextual adaptation to improve the efficacy
and reliability of LLMs in cybersecurity settings. In particular, there remains a gap in
the available literature focused on the application of LLMs in forensic tasks or practical
incident response activities, beyond documentation purposes. Similarly, although there are
numerous datasets related to host intrusion, they are often either too narrowly defined or
outdated, relying on attack techniques that are no longer relevant. There is a clear lack of
comprehensive and current datasets for host-based intrusions and attacks that cover a wide
range of tactics. This thesis aims to fill this gap.
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4. Method

This section outlines the methodology employed in this thesis to validate the hypothesis
concerning the effectiveness of LLMs in digital forensic and incident response processes. It
provides a detailed account of the dataset generation process, encompassing both malicious
and benign datasets, as well as the procedures for dataset processing, LLM model selection,
and prompt creation. Furthermore, it explains the evaluation of the collected results.
The methodology is structured to ensure reproducibility and compliance with academic
standards.

4.1 Dataset Generation

This thesis aims to evaluate the effectiveness of LLMs in processing and analyzing forensic
artifact logs gathered during digital forensic investigations and incident response activities.
To achieve this, the research framework and dataset require the incorporation of two critical
components:

1. Realistic Attack Logs & Artifacts: The attack logs and artifacts must encompass
a wide range of tactics, techniques, and procedures (TTPs) utilized by adversaries.
These logs should be diverse and realistic, mirroring the latest trends in cyberattacks
to ensure the research’s relevance and applicability. The cyberattacks and targeted
environment must accurately represent real-world scenarios.

2. Proven LLM Model: The chosen LLM should have a sufficiently large context
window to process a meaningful volume of logs and possess adequate reasoning
capabilities to facilitate effective analysis within the experimental parameters.

Regarding the second component, the approach is relatively straightforward. Recent studies
indicate that GPT-4 and its variants (such as GPT-4o and GPT-4-turbo) represent the state
of the art in majority of the benchmarks (Vellum, 2024). These models consistently rank
among the top three across various tasks, including text comprehension, which is essential
for log analysis.

For the first component, the situation is more complex. As discussed in the "Related Work"
section, a review of openly available datasets has identified a lack of publicly available
datasets that meet these specific criteria - particularly datasets focused on host-based logs
from Windows (or Linux systems) that are forensically rich and reflect current attack
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vectors. To fill this gap, a decision was made to generate a custom dataset.

4.1.1 Dataset Generation Methodology

In the context of leveraging Large Language Models for log analysis during incident
response and digital forensic processes, the generation of a robust and representative
dataset is crucial. Considering the current market share statistics of operating systems,
Windows 10 was selected as the operating system due to its widespread use in both domestic
and corporate settings at the time of the study. At the time of this study (November
2024), the operating system market share for Windows stood at 25.67%, ranking it as the
second most widely used OS globally, surpassed only by Android (46.06%) (Statcounter,
2024). This decision was made to ensure the research’s wide-ranging relevance and
applicability, thereby enhancing the impact of the findings and supporting future research
and experimental endeavors. For simulating cyberattacks, the study employed the Atomic
Red Team framework, known for its extensive range of attack simulations, user-friendliness,
and compatibility with various operating systems (R. Canary, 2024). Further details about
the Atomic Red Team Framework can be found in the 4.1.4 Attack Simulation & Log
Collection Toolchain section, where its role and methodology in creating the dataset are
discussed in depth.

Following an assessment of various cloud infrastructure providers, development frame-
works, and virtualization software, a particular methodology was selected based on its
scalability, efficiency, and reproducibility:

1. Deploy a Virtual Machine (VM) running Windows 10 as the target
2. Install Sysmon on the VM to collect additional logs and artifacts during and after

attack execution
3. Create a backup snapshot of the VM’s pre-attack state.
4. For each cyberattack simulation:

(a) Use Atomic Red Team to install any prerequisite software on the target
(b) Simulate the cyberattack on the target
(c) Automatically export Windows Logs in the native EVTX format post-attack
(d) Revert the Windows 10 VM to the backup snapshot after each attack simulation

to prevent residual artifacts from affecting the dataset’s quality

This procedure is repeated for all available cyberattack simulations using the Atomic Red
Team framework.

The subsequent section provides a detailed description of the target virtual machine’s setup,
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automation configuration, and relevant networking details.

4.1.2 Controller & Target Machine Configuration

The dataset generation setup was designed to allow for a simulation of realistic cyberattack
scenarios, enabling the generation of authentic after-attack host artifact dataset for subse-
quent analysis. The setup comprised two primary machines, each serving distinct roles
within the process:

1. The Controller (also serving as the attacker) machine
2. The Target machine

Controller machine acts as a central hub for orchestrating the attack simulation and man-
aging the dataset generation process. It is also tasked with the extraction and aggregation
of generated logs from the Target machine. The Controller machine uses Oracle VM
Virtual Box VboxManage.exe appliance to control the Target virtual machine (boot up,
shutdown, backup restoration) (Oracle, 2024). The Controller machine was equipped with
the following specifications:

■ Operating System
– Windows 10 OS

* Version: 22H2 (64-bit)

* OS Build: 19045.4894

* Experience Version: Windows Feature Experience Pack 1000.19060.1000.0

* Update Version: KB5043064
■ Powershell

– PSVersion: 5.1.19041.4894
– BuildVersion: 10.0.19041.4894
– WSManStackVersion: 3.0
– PSRemotingProtocolVersion: 2.3
– SerializationVersion: 1.1.0.1

■ Virtualization
– Oracle VM VirtualBox: Version 7.0
– Virtual Network Interface Card (NIC) Configurations:

* NAT Mode

* Bridged Mode
■ Configuration Details

– WinRM: Client & service configured to allow PSRemoting.
– Firewall Rule: Added to enable connectivity to the Target machine.
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– Windows Defender: Disabled for uninterrupted operation.

* Version: 7.0.18r162988 (Qt5.15.2)
■ Hardware

– RAM: 16 GB

The Controller machine is tasked with simulating cyberattacks against the Target ma-
chine, utilizing the Atomic Red Team framework. This framework is managed via the
Invoke-AtomicRedTeam PowerShell module, which streamlines attack simulations within
Windows environments (Canary, 2024). Given the increasing trend of Living-Off-The-Land
attacks, PowerShell Remoting was deemed an appropriate method for dataset generation.

The Target Machine is a Windows 10 virtual machine, emulated by the Controller using
Oracle VM VirtualBox. It is configured to both initiate and accept connections with the
Controller machine via PSRemoting. The primary purpose of the Target Machine is to be
subjected to cyberattacks orchestrated by the Controller, thereby producing realistic post-
attack logs. The Controller manages the Target Machine through the VBoxManage.exe
application. The main specifications and components of the Target Machine are as follows:

■ Operating System
– Windows 10 OS

* Version: 22H2 (64-bit)

* OS Build: 19045.2965

* Experience Version: Windows Feature Experience Pack 1000.19041.1000.0

* Update Version: KB5020683
■ Powershell

– PSVersion: 5.1.1.19041.2973
– BuildVersion: 10.0.19041.2673
– WSManStackVersion: 3.0
– PSRemotingProtocolVersion: 2.3
– SerializationVersion: 1.1.0.1
– Disabled PS ExecutionPolicy
– Enabled PSRemoting

■ Configuration Details
– WinRM: Client & service configured to allow PSRemoting.
– Firewall Rule: Added to allow connectivity from the attacker.
– Windows Defender: Disabled.

■ System Monitor (Sysmon)
– Version: v15.15
– Used for monitoring and generation of after-attack logs.
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■ Hardware
– RAM: 4 GB (4096 MB)
– Video Memory: 128 MB
– Virtual HDD: 50 GB

To ensure successful connection between the Controller and the Target, two prerequisites
are essential: (I) the Controller and Target machines must be located within the same virtual
network and subnet, and (II) PowerShell Remoting must be activated on both machines.
The following PowerShell commands were executed on both the Controller and Target
hosts to meet these requirements, after which a virtual backup of the Target was performed:

1 Enable-PSRemoting -SkipNetworkProfileCheck -Force

2 winrm set winrm/config/client/auth ’@{Basic="true"}’

3 winrm set winrm/config/service/auth ’@{Basic="true"}’

4 winrm set winrm/config/client ’@{AllowUnencrypted="true"}’

5 winrm set winrm/config/service ’@{AllowUnencrypted="true"}’

6 Set-NetFirewallRule -Name ’WINRM-HTTP-In-TCP’ -RemoteAddress Any

7 Set-Item WSMan:\localhost\Client\TrustedHosts -Value ’*’ -Force

The script establishes an overly permissive firewall rule, which is unsuitable for a produc-
tion environment. However, given that the primary aim of this process is to generate attack
logs, the authors of this thesis consider this configuration acceptable within a controlled,
experimental setting. This approach allows for generation of attacker activity artifacts
without the constraints of strict security policies that could otherwise hinder the generation
of relevant events and subsequently - the dataset itself. Furthermore, due to the dynamic
nature of cyberattacks and the diverse obfuscation and security solution bypass techniques
employed throughout attack cycles, it is crucial to maintain a flexible testing environment
capable of accommodating a wide array of attack vectors. This flexibility enables the
generation of a more comprehensive and diverse dataset.

If future research necessitates, the dataset can be manipulated directly to simulate a more
restricted format of collected logs. This approach would enable the study of LLM threat
detection capabilities under more restricted conditions, where log data may be incomplete
or constrained by stricter security policies, while still retaining the integrity of the original
experimental findings.

4.1.3 Network Architecture

In the context of Windows-specific attacks, adversarial activities on Windows hosts and
their associated networks generally adhere to one of two primary strategies:
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1. Conducting malicious operations directly on the compromised host, such as utilizing
PowerShell on the already infiltrated machine, a tactic commonly referred to as
"post-exploitation" activity

2. Exploiting a variety of native Windows tools for remote control and management to
execute malicious scripts on a target over the network. This involves transferring
malicious code across the network and executing it either on the machine or directly
inside its memory. This method typically leaves little to no trace of execution on the
target machine’s disk, aside from any potential on-host logging. Examples of such
tools include PSexec, WinRM, WMIC, among others

Both methodologies exploit the inherent functionalities of Windows. Consequently, an
effective network configuration for simulating both scenarios (1 and 2) in attack simulation
cycles can be relatively simple: a single target host for simulating direct attacks (scenario
1) and one attacker host for simulating remote attacks by connecting to the target host
(scenario 2). This configuration facilitates the simulation of both direct, on-host malicious
activities and remote attacks using native Windows tools during remote exploitation. It is
acknowledged that in scenario 2, a single attacker machine can target multiple machines
simultaneously (fan-out approach), and conversely, multiple attacker machines can target
a single victim host (fan-in approach). However, for the purposes of this experiment, it
is sufficient to restrict the configuration to a single attacker and a single target host. This
streamlined setup effectively captures the essential artifacts of adversarial activity without
introducing unnecessary complexity. The network architecture employed during the dataset
generation process is depicted in the diagram below:
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Figure 1. Network Diagram of The Dataset Generation Setup

The diagram above illustrates a virtualized network architecture employed to simulate
cyberattacks during the dataset generation process. Below is a detailed description of its
components:

1. Controller Machine LAN: This machine functions as the central controller for the
entire setup, utilizing an automation script to manage and configure the Target virtual
machine. It uses VBoxManage command-line tool to manage Oracle VirtualBox
Virtual Machines. Additionally, the Controller acts as the adversary, executing
simulated cyberattacks against the Target. Communication with the Target machine
is facilitated through PSRemoting (PowerShell Remoting), a Windows feature that
enables remote command execution (similar to SSH on Linux).

2. Oracle VM VirtualBox vNAT Network: This virtualized network environment
operates within Oracle VM VirtualBox, providing an isolated network for both the
Controller and Target machines.

3. Target Machine: This virtual machine serves as the recipient of the attacks. It inter-
acts with the Controller machine via PowerShell remoting, enabling the simulation
of the attack scenarios.

A detailed description of the associated hosts, specifically the Controller and Target
machines, is provided in 4.2.2 Controller & Target Machine Configuration section. Both
machines were configured with a private network connection. This setup was chosen to
simulate real-world internal networks and to streamline the dataset generation process,
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which relies on PSRemoting.

Future research or more complex scenarios could benefit from expanding the network
architecture to include multiple attacker and target hosts. This could facilitate the simula-
tion of multi-host pivoting or computer worms, thereby generating a more comprehensive
dataset. Moreover, experiments involving Large Language Models log analysis capabilities
may provide valuable insights into their application for analyzing entire networks at
a time, rather than just individual hosts during digital forensics and incident response
processes. However, this thesis concentrates on a single attacker-host and single target-host
configuration to maintain clarity in analyzing direct and remote attack methods within a
controlled environment.

4.1.4 Attack Simulation & Log Collection Toolchain

This section describes the configuration and operation of the attack simulation toolchain,
a critical element of this thesis. The toolchain is essential for generating attack artifacts
on the Target machine, thereby supporting the dataset creation. The core of the attack
simulation process is managed by the Atomic Red Team Framework. Atomic Red Team is
a comprehensive library of tests that enables security teams to evaluate security controls by
systematically and scalably emulating adversarial behavior (R. Canary, 2024). These tests
are precisely defined and formatted for integration into automation frameworks. Within the
cybersecurity industry, Atomic Red Team framework serves several purposes, including
validating organizational host visibility, assessing detection coverage, and simulating
adversarial actions. Within the scope of this thesis, Atomic Red Team is employed to
replicate adversarial behaviors on the Target host, producing forensic post-attack artifacts
and generating a dataset of event logs that mirror realistic attack scenarios.

Atomic Red team has readily-available adversary emulation scripts for Windows, Linux
& Mac. The emulation script library for Windows is most extensive, and contains a
total of 1384 different scripts that emulate various MITRE ATT&CK mapped adverserial
activities (R. Canary, 2024). Adverserial activities can be emulated either on the host
where Atomic Red Team is installed (locally) or remotely against a target machine through
the use of Powershell Remoting sessions. The exact quantity of accessible "atomics"
(individual attacks available for simulation) varies based on the operating system. For
example, certain atomics are exclusively available for emulation on Windows Servers,
since they exploit a Windows Server specific vector, while others are applicable to the
standard (non-server) versions of Windows. For this dataset generation process, the
connectivity between the attacker and the target components was established through
Powershell Remoting. Due to this, Atomic Red Team framework was provided with Target
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machine login credentials (more accurately, a Powershell session). Additionally, if any of
the emulated attacks require prerequisite software (for instance, the TeamViewer backdoor
emulation requires TeamViewer to be installed on the target machine), Atomic Red Team
can handle prerequisite installation automatically.

The fundamental logical process of attack simulation can be divided into the following
steps:

1. On the Controller machine, within the Orchestration component, sequentially select
an Atomic Red Team TTP ID (e.g., TTP1124) from the list of available "atomics"

2. On the Controller machine, within the Attacker component, establish a PowerShell
Remoting session with the Target machine

3. On the Controller machine, within the Attacker component, conduct a pre-requisite
check for the selected "atomic" on the Target via the established PowerShell session

4. (Conditional) If prerequisites are missing, install them on the Target
5. On the Controller machine, within the Attacker component, execute the Atomic Red

Team adversary emulation script against the Target
6. Return to step 1 and sequentially select the next atomic

The aforementioned attack simulation steps are cyclically repeated on the target machine.
To finalize the dataset generation process, it is necessary to incorporate steps that facilitate
the extraction of the generated attack artifacts and logs from the Target machine back to
the Controller machine. Additionally, the Target needs to be reverted to the pre-attack state
after each simulated attack. The final dataset generation process, which includes log export
and backup restoration, is as follows:

1. On the Controller machine, within the Orchestration component, sequentially select
an Atomic Red Team TTP ID (e.g., TTP1124) from the list of available "atomics"

2. On the Controller machine, within the Attacker component, establish a PowerShell
Remoting session with the Target machine

3. On the Controller machine, within the Attacker component, conduct a pre-requisite
check for the selected Atomic Red Team "atomic" on the Target via the established
PowerShell session

4. (Conditional) If prerequisites are missing, install them
5. On the Controller machine, within the Attacker component, execute the Atomic Red

Team adversary emulation script against the Target
6. On the Controller Machine, within the Orchestration component, extract logs from

the Target machine and store them locally on the Controller machine
7. On the Controller Machine, within the Orchestration component, revert the Target
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machine back to the pre-attack state
8. Return to step 1 and sequentially select the next atomic

In the process described above, the process of log and dataset generation can be horizontally
scaled. This means that we can have several hosts at the same time, on which attack
simulations take place.
To preserve the integrity of the test environment and prevent interference between logs
and artifacts from different attack simulations, it was deemed essential to implement a
mechanism for segmenting logs after each attack cycle. This approach ensures that each
attack log snippet corresponding to a simulated attack method is isolated and accurately
represents the specific Tactics, Techniques, and Procedures (TTPs) executed during that
cycle. The use of Windows OS native timestamping and metadata tagging enhances the
traceability and usability of the collected data for subsequent analysis. The decision was
made to automate the backup restoration process, where after each simulated attack and
log export, the target machine is reverted to its pre-attack state. This ensures that logs
remain distinct and do not cross-contaminate the TTPs of different simulated attacks.

Windows includes several log sources that are enabled by default. As this paper aims to
assess the effectiveness of LLMs in Incident Response and Digital Forensic processes, it
is essential that the log sources generated correspond with those commonly employed in
Digital Forensics and Incident Response (DFIR) activities. Consequently, the selection
focused on the following:

■ Application Log: This log captures events associated with software installed on a
system, offering insights into application errors, misconfigurations, and potential
malicious activities within application operations. In a forensic context, analyzing
application logs can help identify the root cause of software malfunctions or detect
anomalies indicative of a security breach. For instance, in a real-world scenario, a
sudden spike in application errors could signal a targeted attack exploiting a software
vulnerability (Microsoft, 2022).

■ System Log: This log documents events related to operating system components,
serving as a resource for identifying system errors, failures, and other system-
level activities that may indicate operational issues or security threats. Forensic
investigators typically use system logs to trace the sequence of events leading to a
system crash or to uncover evidence of tampering with system files. In practice, a
forensic analyst might examine system logs to determine if a system failure was
caused by a hardware malfunction or a deliberate act of sabotage (Microsoft, 2022).

■ Security Log: This log records security-related events as defined by the system’s
audit policy, including successful and failed authentication attempts, policy changes,
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and other incidents that may suggest unauthorized access or malicious activities. In
forensic investigations, security logs are used for reconstructing the timeline of an
intrusion and identifying compromised accounts. For example, a series of failed
login attempts followed by a successful one could indicate a brute-force attack that
warrants further investigation (Bridge, 2024).

■ Windows PowerShell Log: This log captures all PowerShell activities, such as
command execution and script usage, which are frequently employed in Living-
Off-The-Land attacks, advanced persistent threats, and other malicious activities.
Forensic analysts can analyze PowerShell logs to detect suspicious command se-
quences or scripts that may have been used to execute unauthorized actions. In a
real-world scenario, identifying unusual PowerShell activity could reveal an attacker
leveraging built-in tools to maintain persistence or exfiltrate data (Microsoft, 2024).

To enrich the dataset and simulate a realistic corporate or organizational environment,
the target machine was equipped with the Sysmon monitoring solution (markruss, 2024).
This addition serves two primary purposes: it reflects the common practice of employing
supplementary monitoring tools beyond native logs, and it offers additional context and
enrichment for analysis and research.

The Windows operating system utilizes the XML Event Log (EVTX) format for its native
log files (Metz, 2024). Following the attack simulation and log extraction methodologies
outlined earlier in this document, EVTX logs from various sources (Application, System,
Security, PowerShell, and Sysmon) were collected from the Target machine after each
simulated attack. Subsequently, these logs were securely transferred to and stored on the
Controller machine. The overall log dataset generation process is described on the diagram
below:
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Figure 2. BPMN diagram of the dataset generation process
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Following each attack simulation, the target virtual machine is restored to its pre-attack
state, ensuring the isolation of logs from each simulated attack. This method produced a
clean dataset, without log cross-contamination between different attack activities.

In practical scenarios, security analysts often face the challenge of sifting through volu-
minous log sets to isolate forensically relevant events. To mimic a scenario where logs
from a malicious attack are intermingled with regular Windows activities, the orchestration
intentionally allowed the Windows system to operate for an additional 30 seconds after
the attack before extracting the logs. This interval allows for the generation of routine
Windows logs, thereby creating a more realistic environment for simulation purposes and
consequently, a dataset that more accurately mirrors real-world conditions.

Following the simulation of all available attacks, a dataset comprising 1108 distinct
attack logs with attack artifacts was produced. Each attack was logged by previously
defined Application, System, Security, Powershell and Sysmon logs. These logs varied in
complexity and length, encompassing between 30 and 250 discrete events each. However, it
is important to note that not every executed "atomic" action yielded successful outcomes in
the attack simulation execution. This inconsistency can be attributed to the idiosyncrasies
of the Windows operating system, which, through its updates and background processes,
occasionally disrupts the stability of certain simulation scripts.

The Atomic Red Team Framework has execution monitoring capabilities, where successful
attack simulations return an exit code of "0". A regex extraction search conducted on the
execution logs revealed that 258 attack simulation scripts did not execute successfully, as
indicated by an exit code of "1" for ERROR, or by the absence of an exit code, suggesting
incomplete execution. Further analysis, however, disclosed that certain attack simulations
did indeed execute successfully but failed to log the completion accurately. This discrep-
ancy was attributed to the attack simulation scripts being outdated or incompatible with the
current Windows OS version. Given that the Atomic Red Team Framework is open-source,
allowing contributions from the public, the variability in the quality of the attack simulation
scripts is an expected outcome. In the end, the actual number of failed attack simulations
was 44, bringing the total number of successfully simulated attack tactics to 1064.

The distribution of successfully simulated tactic categories within the final dataset is as
follows:
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Figure 3. Initial Count of Simulated Tactic Categories

The disparity observed in the distribution of tactic categories, such as 1 reconnaissance
tactic compared to 367 defense evasion tactics, can be attributed to the prioritization
framework employed by Atomic Red Team, which emphasizes certain atomic tests over
others. This discrepancy likely stems from multiple factors, with the most prominent
being the variability and complexity associated with simulating certain types of attacks
in a consistent and reproducible manner. Additionally, other contributing factors might
include the perceived importance of specific tactics in real-world attack scenarios, the ease
of implementation for testing purposes, and the availability of relevant data to support
simulation efforts.

For example, defense evasion tactics often encompass a wide range of methods to bypass
security controls, such as disabling logging or obfuscating commands, which are commonly
encountered in various attack vectors. These tactics are frequently prioritized due to their
critical role in real-world attacks and their impact on the detection and mitigation process.

On the other hand, reconnaissance tactics may involve gathering information about the
target environment, which can vary significantly between organizations and scenarios. This
variability poses challenges in creating standardized and repeatable tests for such tactics,
leading to their underrepresentation in simulation frameworks like Atomic Red Team. The
author of this thesis conducted an analysis that identified a significant overlap between the
"reconnaissance" and "discovery" categories within the dataset. This overlap primarily
stemmed from the similarity in tools employed and the shared objective of mapping the
environment from within the host or network. As a result, to enhance the efficiency of
the research, the decision was made to merge these two minor categories into a unified
"Discovery" category. As a result, the final distribution looked as follows:
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Figure 4. Final Count of Simulated Tactic Categories

In summary, the compiled dataset encompassed a broad spectrum of varied attack tactics.
When these tactics were simulated, they produced a diverse collection of data that included
contemporary artifacts of attack techniques. This dataset is particularly valuable for
analysis utilizing LLMs and other methodologies.

4.1.5 Benign Dataset

After collecting the initial attack logs in EVTX format, the next step involved developing a
control dataset composed of benign logs. Two types of logs were selected for this benign
dataset: Sysmon and Application logs. To generate a Sysmon dataset reflecting normal
behavior, the author of this thesis deployed the Sysmon monitoring tool on a personal
computer over a three-month period, from August 2024 to October 2024. Concurrently,
the Application log was utilized to gather benign data from the author’s computer.

Subsequent to the extraction of both Sysmon and Application logs, the data was converted
into JSON format. A deliberate methodological approach was then applied to ensure that
both the malicious and benign logs shared a consistent underlying structure and format.

■ A total of 1064 simulated attacks were conducted.
■ Each attack was logged by five distinct log sources:

– The cumulative number of log entries across all sources and attacks amounted
to 87 916

– To determine the average number of log entries per attack, the total log entries
(87 916) were divided by the number of attacks (1064), resulting in approxi-
mately 82.62 log entries per attack

■ Benign Sysmon and Application logs spanning three months were segmented into
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1064 uniform chunks
■ Each chunk contained 83 log entries, designed to mimic the average characteristics

of the malicious dataset

As a result, the malicious and benign activity datasets shared the format and the structure
of the logs.

4.2 Data Pre-processing

Large Language Models excel in analyzing textual data. Consequently, all logs in EVTX
format were converted into JSON, a transformation validated in preliminary tests as being
more effective and suitable for LLM analysis due to the proximity of data type descriptors
to their corresponding values. Using EvtxECmd, a tool for processing Windows logs
created by Eric Zimmerman, the EVTX log files were transformed into JSON format
(Zimmerman, 2023).

During the dataset creation and attack simulation process, the Atomic Red Team Framework
generated various artifacts within the exported logs. When analyzed by a LLMs, these
artifacts provided indications of malicious activity. It was noted that LLMs, including
ChatGPT and GPT-4, demonstrated familiarity with the Atomic Red Team framework and
were capable of inferring malicious or red teaming activities from logs containing these
artifacts.
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Figure 5. ChatGPT Knowing What Is Atomic Red Team Framework

When presented with an unprocessed log snippet containing Atomic Red Team artifacts,
ChatGPT successfully inferred that the log likely signified either security testing activities
or malicious behavior:
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Figure 6. ChatGPT Identifies Atomic Red Team Artifacts, Suggesting The Likelihood Of
A Security Test In Progress

To preserve the integrity of the analysis, all keywords and artifacts related to the Atomic
Red Team were systematically removed from the dataset. Specifically, a Regex replacement
was used to replace the following set of keywords and strings from the entirety of dataset:

1. atomic
2. atomics
3. red
4. team
5. atomic-red-team
6. redcanaryco
7. canary
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8. redcanary
9. atomicredteam

10. payload
11. Red team

12. fake
13. wevtutil.exe

■ an artifact of Atomic Red Team Framework initiating connection to the target
14. conhost.exe

■ an artifact of Atomic Red Team Framework initiating connection to the target

Upon further examination of the produced dataset, it was observed that the atomic red
team often inadvertently disclosed the tactic ID during simulated attacks. This occurred
through filenames or downloaded scripts, thereby providing the LLM with indirect clues
about the nature of the activity during log analysis:

Figure 7. Example of TTP ID Being Leaked Inside A Log Due To Atomic Red Team
Execution

To preserve the integrity of the experiment, all 1604 atomic TTP identifiers (e.g.,
"T1218.008") were substituted with random five-character strings in the text. This
measure was necessary because ChatGPT can directly recognize specific TTPs, as demon-
strated on the image below:

The third category of artifacts generated from red teaming simulations using the Atomic
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Figure 8. ChatGPT Recognizing MITRE ATT&CK TTP IDs With 0 Additional Context

Red Team framework that required scrutiny was the exposure of attacker tool names. For
instance, the execution of the simulated TTP T1082-15 - WinPwnitm4nprivesc

resulted in artifacts like "S3cur3Th1sSh1t" and "WinPwn.ps1":

41



Figure 9. An Example Of Attacker Tooling Artifacts Within The Generated Dataset

These artifacts are inherently recognized by ChatGPT, which introduces a bias in detecting
malicious activities. During the manual review of the dataset, a specific set of keywords
associated with red teaming tools was identified and subsequently excluded from the
dataset:

S3cur3Th1sSh1t WinPwn hlldz Meterpreter
Empire Cobalt Strike Mimikatz PowerSploit

SharpHound BloodHound Responder Invoke-Phant0m
PowerSharpPack PowerSharp Sharpweb MzHmO

SharpUp BC-SECURITY Get-System Invoke-WMIExec
Kevin-Robertson obfuscatedps dccuac Invoke-SharpWatson

Rubeus ExternalPayloads nanodump gsecdump
uacme crackmapexec phant0m powerview

uacbypass Psiphon exfiltration dnsexfil
Invoke-DNSExfiltrator Invoke-MalDoc blackbyte netwire

ursnif bad potato juicy potato petitpotam
octopus attack golden ticket kerberoast
MalDoc NPPSpy ProcDump pypykatz

Out-Minidump createdump dumper Qakbot
adidnsdump Get-AdComputer ADSISearcher botnet

exfil PsExec Evil-WinRMv Backstab
SOAPHound ADRecon Kerbrute Snaffler

LaZagne Firepwd WebBrowserPassView SDelete

Table 1. Attacker Tool And Script Names Replaced From The Dataset
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Furthermore, log entries associated with pre-attack log clearing on the target machine
and post-attack log export artifacts were excluded from the dataset. Specifically, entries
containing the following command lines and/or Windows log Event IDs were removed:

Category Log Clearing Artifacts
Pre-attack log clearing
artifacts in Sysmon

"wevtutil.exe" cl
Microsoft-Windows-Sysmon/Operational
"wevtutil.exe" cl Application
"wevtutil.exe" cl System
"wevtutil.exe" cl Security
"wevtutil.exe" cl "Windows
PowerShell"

Pre-attack log clearing
artifacts in Security log

EventID 1102 only if it was "first event" in the log

Pre-attack log clearing
artifacts in System log

EventID 104 only if it was within first 3 events in the log

Table 2. Pre-Attack Log Clearing Artifacts

As a result of the aforementioned manipulations, a total of 4 types of datasets were
produced:

1. A dataset containing artifacts from both the Atomic Red Team framework and
associated red team tools (referred as evtx-unfiltered)

2. A dataset from which Atomic Red Team framework artifacts have been replaced, but
associated red team tool artifacts remain (referred as evtx-atomic-removed)

3. A dataset devoid of both Atomic Red Team framework artifacts and associated red
team tool artifacts (referred as evtx-atomic-and-tools-removed)

4. A benign dataset comprising of author’s Sysmon log as a control datased (referred
to as evtx-benign)

4.3 Large Language Models

This section explains the rationale for selecting the specific LLM and presents the design
of the utilized prompts.

According to latest research, smaller LLM models, which are trained on fewer parame-
ters and datasets, exhibit significant constraints relative to larger models (Narang, 2024,
Touvron et al., 2023). These constraints become apparent in areas such as language com-
prehension, generalization capabilities, and performance on specific tasks. Smaller models
frequently encounter challenges in nuanced reasoning, maintaining context over extended
sequences, and producing outputs that demonstrate human-like coherence and creativity
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(Nalpas, 2024). These limitations underscore the necessity of evaluating model selection
based on the intended application and task requirements. While smaller models are often
favored for their computational efficiency and reduced deployment costs, their restricted
capacity makes them less suitable for scenarios demanding high linguistic precision or
contextual depth.

In choosing the most suitable LLM, it is important to balance model performance against
resource constraints. For tasks that require an in-depth understanding of context and multi-
step reasoning, research shows that larger LLMs are generally preferred because of their
robustness and reliability (Narang, 2024). Similarly, smaller LLMs are more appropriate
for simpler, domain-specific tasks where efficiency and response speed are more important.
In the context of this study, where LLMs are employed to analyze Windows after-attack
forensic artifacts, a focus on robustness and reasoning capabilities has led to the preference
for a larger model.

Furthermore, preliminary validation emphasizes the greater adaptability of larger models,
which are more effective at generalizing across a wide range of datasets and unforeseen
inputs. Smaller models are less versatile and often require more extensive fine-tuning to
achieve similar results, thus limiting their applicability in dynamic or variable scenarios.
While such models may be suitable for specific tasks, such as on-premise deployment or
fine tuning for detecting specific activities like privilege escalation, this study concentrates
on exploring the model’s intrinsic, out-of-the-box capabilities.

4.3.1 Model Selection

At the time of composing this paper, one of the most recent models developed by OpenAI
is GPT-4o, a variant closely related to GPT-4 and GPT-4-turbo (OpenAI, 2024b). These
models are recognized as among the most advanced publicly available language models
globally, except for OpenAI’s latest model, o1, which is optimized for handling more
complex tasks but at a significantly higher financial cost (OpenAI, 2024c). The GPT-
4o model has been evaluated against its predecessors like GPT-4 and GPT-4-turbo on
standardized benchmarks including MMLU, GPQA, MATH, HumanEval, MGSM, DROP
(F1, 3-shot), and SimpleQA (OpenAI, 2024a). It has demonstrated performance that
is nearly on par with these models. Given its comparable performance, coupled with
significantly reduced costs (one-fourth of the input price and one-third of the output price
per 1 million tokens) GPT-4o was selected as the primary tool for this research. This
choice was driven by its advantageous pricing-to-performance ratio, which makes it highly
applicable for practical and real-world applications.
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The table below provides a summary of benchmarks alongside the pricing of the respective
models.

Model Prompt MMLU GPQA MATH HumanEval MGSM DROP (F1, 3-shot) SimpleQA Input Cost Output Cost
o1 MATH-500[6]

o1-preview n/a[7] 90.8 73.3 85.5 92.4 90.8 74.8 42.4 15.00/1M 60.00/1M
o1-mini n/a 85.2 60.0 90.0 92.4 89.9 83.9 7.6 3.00/1M 12.00/1M
o1 (work in progress) n/a 92.3 77.3 94.8 n/a n/a n/a n/a n/a n/a
GPT-4o
gpt-4o-2024-11-20 assistant 85.7 46.0 68.5 90.2 90.3 81.5 38.8 2.50/1M 10.00/1M
gpt-4o-2024-08-06 assistant[2] 88.7 53.1 75.9 90.2 90.0 79.8 40.1 2.50/1M 10.00/1M
gpt-4o-2024-05-13 assistant 87.2 49.9 76.6 91.0 89.9 83.7 39.0 5.00/1M 15.00/1M
gpt-4o-mini-2024-07-18 assistant 82.0 40.2 70.2 87.2 87.0 79.7 9.5 0.150/1M 0.600/1M
GPT-4 Turbo and GPT-4
gpt-4-turbo-2024-04-09 assistant 86.7 49.3 73.4 88.2 89.6 86.0 24.2 10.00/1M 30.00/1M
gpt-4-0125-preview assistant 85.4 41.4 64.5 86.6 85.1 81.5 n/a 10.00/1M 30.00/1M
gpt-4-1106-preview assistant 84.7 42.5 64.3 83.7 87.1 83.2 n/a 10.00/1M 30.00/1M

Table 3. Performance Comparison Of LLM Models Across Benchmarks MMLU, GPQA,
MATH, HumanEval, MGSM, DROP (F1, 3-shot), SimpleQA, And Associated Costs For
Input And Output Tokens (OpenAI, 2024a)

4.3.2 Foundational Prompts

As of the writing of this thesis, significant research is focused on finding the most optimized
and accurate prompting methodologies for large language models. Various techniques,
such as few-shot prompting, Chain of Thought (CoT), self-refinement, self-criticism,
and thought generation prompts, are being explored (Schulhoff et al., 2024). There is a
general agreement that the effectiveness of a prompting approach is often dependent on the
specific use case. However, few-shot and Chain of Thought methodologies are frequently
considered the most efficient and accurate for tasks requiring classification and detection
(Schulhoff et al., 2024, White et al., 2023). This can be attributed to the structured nature
of these methodologies, which enhances the model’s ability to reason through complex
tasks and make precise predictions.

Binary Detection Task

In this task, the objective is for the large language model to effectively differentiate
malicious activities from benign ones, ensuring accurate distinction between the two
categories. Prior to using more advanced prompting techniques for the binary detection of
malicious activities in Windows logs, it is essential to establish a baseline detection result.
This initial benchmark serves as a reference point, enabling subsequent comparisons with
the outcomes derived from more sophisticated prompting strategies, such as few-shot and
chain of thought.

The foundational prompt, also referred to as a zero-shot prompt, is used to establish
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a baseline. Additionally, the same prompt is utilized in few-shot prompting, where
supplementary examples of malicious logs are used to improve detection accuracy. In
the chain of thought prompting approach, the foundational prompt is further developed
by incorporating a detailed step-by-step reasoning process, which aids in clarifying and
improving the model’s analytical capacity in forensic investigations.

The foundational (zero-shot) prompt for binary detection is as follows:

Foundational (Zero-Shot) Binary Detection Task Prompt

As a Senior Security Analyst, you have been tasked with investigating a series of
Windows event logs. You were given these logs from a Windows machine. Your goal
is to determine whether there are any indicators of malicious activity within these
logs. Please carefully analyze the following log entries, considering any suspicious
behavior such as unusual process execution, command-line arguments, privilege
escalation, or any other signs of potential compromise.
Provide a detailed analysis of the logs, explaining:

■ Any suspicious or anomalous behavior that stands out in the logs.
■ Whether any events appear to indicate malicious activity or compromise.

Your response should include a clear assessment of the situation, any threats or risks
identified, and guidance on how to proceed. Finalize your finding into ONE of the
two resolutions:

■ BENIGN - if logs contain benign activity
■ MALICIOUS - if logs contain activity that you are 100% sure is malicious

Below are the logs for your investigation:
[INSERT LOGS HERE]

To optimize the effectiveness of the zero-shot prompt, it was constructed using several
established prompting techniques, supported by current research, to enhance the outputs
of LLMs. Since LLMs operate under the "garbage in, garbage out" principle, it is crucial
to ensure the initial prompt is of high quality. The following strategies and best practices
were used when developing the foundational prompt:

1. Role-Based Prompting
Technique: Assigning a specific role to the model.
Prompt Section: "As a Senior Security Analyst, you have been tasked with investigating a

series of Windows event logs."

Establishing the model’s role as a Security Analyst helps orient its focus towards relevant
expertise.
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2. Task Definition
Technique: Defining the task goal.
Prompt Section: "Your goal is to determine whether there are any indicators of malicious

activity within these logs."

Defining a clear objective, such as identifying malicious activity within logs, enhances the
model’s understanding of the expected outcome.

3. Focused Areas of Concern
Technique: Highlighting areas to focus on.
Prompt Section: "Please carefully analyze the following log entries, considering any

suspicious behavior such as unusual process execution, command-line arguments, privilege

escalation..."

Directing the model to concentrate on specific indicators of compromise within the logs
ensures targeted analysis.

4. Structured Output Request
Technique: Requesting a structured response.
Prompt Section: "Provide a detailed analysis of the logs, explaining: - Any suspicious or

anomalous behavior..."

Employing a structured approach guarantees that the model’s output is both comprehensive
and systematically organized.

5. Decision Framework
Technique: Clear decision-making instructions.
Prompt Section: "Finalize your finding into ONE of the two resolutions: BENIGN,

MALICIOUS."

Providing explicit categories for classification aids the model in accurately categorizing its
findings.

6. Output Clarification
Technique: Clear evaluation criteria.
Prompt Section: "if logs contain benign activity"

Clarifying what constitutes benign, or malicious activity ensures the model’s accurate
interpretation of data.

7. Encouraging Detailed Response
Technique: Requesting a detailed analysis.
Prompt Section: "Provide a detailed analysis of the logs..."

Encouraging a thorough examination fosters the model’s diligence, reducing the likelihood
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of missing critical information.

Multiclass Classification Task For the multiclass classification task, the foundational
prompt from the detection task was used and slightly altered to fit the classification task
better:

Foundational (Zero-Shot) Multiclass Classification Task Prompt

As a Senior Security Analyst, you have been tasked with investigating a series of
Windows event logs. You were given these logs from a Windows machine. Your goal
is to determine whether there are any indicators of malicious activity within these
logs. Please carefully analyze the following log entries, considering any suspicious
behavior such as unusual process execution, command-line arguments, privilege
escalation, or any other signs of potential compromise.
Provide a detailed analysis of the logs, explaining:

■ Any suspicious or anomalous behavior that stands out in the logs.
■ Whether any events appear to indicate malicious activity or compromise.

Your response should include a clear assessment of the situation, any threats or risks
identified, and guidance on how to proceed. Finalize your finding into ONE of the
categories below:

■ Collection
■ Lateral Movement
■ Command and Control
■ Discovery
■ Execution
■ Defense Evasion
■ Impact
■ Exfiltration
■ Initial Access
■ Persistence
■ Credential Access
■ Privilege Escalation
■ Benign

Below are the logs for your investigation:
[INSERT LOGS HERE]

After completing the development of the foundational prompts for binary detection and
multiclass classification tasks, the analysis of the existing dataset was conducted using the
GPT-4o model. A detailed discussion of the specific findings is presented in the Results
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section of this thesis.

4.3.3 Few-shot Prompts

Few-shot prompting demonstrates its effectiveness by providing a limited number of
examples (k-shots) to illustrate the desired task or behavior to the model. This technique
works through contextual anchoring, where task-specific examples provide the model with
contextual cues that guide its output, thereby reducing ambiguity and enhancing accuracy,
particularly in tasks requiring classification or prediction. Furthermore, few-shot prompting
replicates the structure of data encountered during training, allowing the model to utilize
knowledge (provided context via prompt) more effectively. It is adaptable across various
tasks, making it both versatile and applicable to general and domain-specific scenarios.

Figure 10. Example Of Few-Shot Prompt

In the context of this thesis, where Windows log analysis is prioritized, there are several
methodologies for implementing few-shot prompting. One approach is to provide a specific
malicious command, such as a particular PowerShell command, and explicitly label it as
malicious. Alternatively, one might provide a whole log snippet containing both benign and
malicious entries, simply indicating the presence of malicious content within the snippet.
A third strategy involves supplying logs with both benign and malicious components,
clearly explaining which parts belong to each category. However, a significant limitation of
few-shot prompting arises from the fixed context length in most mainstream large language
models available at the time of this thesis. When too many examples are provided, the
actual log intended for analysis might not fit within the prompt’s input limit, potentially
leading to truncated results and negatively impacting the accuracy of analysis outcome.

49



Therefore, the decision was made to include only malicious strings in few-shot prompting
to mitigate this issue and ensure accurate analysis results.

To determine the optimal number of examples, or "k-shots", needed for the few-shot
prompt, the initial foundational prompt was supplemented 1, 3, 5 malicious snippets
sourced from a previously generated malicious dataset. The selection procedure involved
the following steps:

1. Randomly select 5 simulated attack techniques from each category
2. Analyze the Sysmon logs for each selected attack technique, extracting relevant

malicious command lines
3. Incorporate these extracted malicious strings into the foundational prompt to build

the few-shot prompt

If one-shot prompts yield more accurate results than zero-shot, and performance continues
to enhance progressively through 3-shot and 5-shot prompts, it is logical to infer that
increasing the number of k-shot examples enhances model performance. Consequently,
the next logical step would be to test 10-shot prompts.

During the initial phase of experimentation, it was demonstrated that OpenAI’s GPT models
are capable of identifying both the Atomic Red Team framework and various artifacts
related to attacker tools. Consequently, it was decided to source malicious log sections
from the evtx-atomic-and-tools-removed dataset. This choice ensures the
inclusion of more realistic examples, given that in real-world scenarios, (although possible)
an adversary is unlikely to use an unaltered version of tools to attack an organization.
Typically, executables are renamed and tool configurations modified. For example altering
the default Metasploit reverse shell port from 4444 to a less conspicuous option like port
53, commonly associated with DNS traffic.

In the Binary Classification task, the 1,3,5-shot was supplemented with 1, 3, 5 examples of
both malicious and benign log snippets.

1. One-shot: supplemented with 1 log snippet per class
2. 3-shot: supplemented with 3 log snippets per class
3. 5-shot: supplemented with 5 log snippets per class

Overall, the prompt follows the following structure:

50



Few-shot Binary Detection Task Prompt

As a Senior Security Analyst, you have been tasked with investigating a series of
Windows event logs. You were given these logs from a Windows machine. Your goal
is to determine whether there are any indicators of malicious activity within these
logs. Please carefully analyze the following log entries, considering any suspicious
behavior such as unusual process execution, command-line arguments, privilege
escalation, or any other signs of potential compromise.
Provide a detailed analysis of the logs, explaining:

■ Any suspicious or anomalous behavior that stands out in the logs.
■ Whether any events appear to indicate malicious activity or compromise.

Your response should include a clear assessment of the situation, any threats or risks
identified, and guidance on how to proceed. Finalize your finding into ONE of the
two resolutions:

■ BENIGN - if logs contain benign activity
■ MALICIOUS - if logs contain activity that you are 100% sure is malicious

Below are examples provided with example log snippets and resolutions:
Malicious log example:

Malicious Log here

Benign log example:

Benign Log here

Below are the logs for your investigation:
[INSERT LOGS HERE]

For the classification task, the few-shot prompt showcased above is combined with the
zero-shot classification prompt.

1. One-shot: supplemented with 1 log snippet from each class

2. Three-shot: supplemented with 3 log snippets from each class

3. 5-shot: supplemented with 5 log snippets from each class
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Few-shot Multiclass Classification Task Prompt

As a Senior Security Analyst, you have been tasked with investigating a series of
Windows event logs. You were given these logs from a Windows machine. Your goal
is to determine whether there are any indicators of malicious activity within these
logs. Please carefully analyze the following log entries, considering any suspicious
behavior such as unusual process execution, command-line arguments, privilege
escalation, or any other signs of potential compromise.
Provide a detailed analysis of the logs, explaining:

■ Any suspicious or anomalous behavior that stands out in the logs.
■ Whether any events appear to indicate malicious activity or compromise.

Your response should include a clear assessment of the situation, any threats or risks
identified, and guidance on how to proceed. Finalize your finding into ONE of the
categories below:

■ Collection
■ Lateral Movement
■ Command and Control
■ Discovery
■ Execution
■ Defense Evasion
■ Impact
■ Exfiltration
■ Initial Access
■ Persistence
■ Credential Access
■ Privilege Escalation
■ Benign

Below are examples provided with example log snippets and resolutions:

EXAMPLE OF {CATEGORY}:

{LOG}

Below are the logs for your investigation:
[INSERT LOGS HERE]

The list of few-shot prompts utilized in this research is available in the Appendices section
of this document.

52



4.3.4 Chain of Thought Prompts

Chain of Thought (CoT) prompting guides the model in "thinking aloud" by deconstructing
a task into intermediate steps before arriving at a final solution. This method empowers
structured reasoning, enabling the model to process tasks incrementally, thus reducing
logical errors and mirroring human problem-solving approaches. Research indicates that
CoT prompting surpasses standard direct-answer methods, particularly in tasks requiring
arithmetic, logical reasoning, or multi-step inference. It also facilitates error identification
and correction by relying on intermediate reasoning steps, allowing both users and models
to refine errors iteratively.

Figure 11. Example Of A Chain-of-Thought Prompt

In this thesis, the primary focus is on Windows Event Log analysis, aiming for an analytical
methodology that mirrors the process of a digital forensic expert or security analyst.
Consequently, the Chain-of-Thought approach should embody a structured framework
similar to the step-by-step analytical process used by the professionals. This involves
segmenting the investigation into distinct, logical phases to optimize thoroughness and
mitigate oversight risks. Hence, the structured CoT augmented version of the Foundational
Prompt should be as follows:
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Chain-of-Thought Binary Detection Task Prompt

As a Senior Security Analyst, you have been tasked with investigating a series of Windows

event logs. You were given these logs from a Windows machine. Your goal is to determine

whether there are any indicators of malicious activity within these logs. Please carefully

analyze the following log entries, considering any suspicious behavior such as unusual

process execution, command-line arguments, privilege escalation, or any other signs of

potential compromise.

Provide a detailed analysis of the logs, explaining:

■ Any suspicious or anomalous behavior that stands out in the logs.

■ Whether any events appear to indicate malicious activity or compromise.

Follow the thinking process outlined below:

Step 1: Familiarization with the Logs
Begin by examining the logs to extract essential details such as event IDs, timestamps, user

accounts, and process names. Identify any unusual patterns, high-frequency occurrences, or

anomalies.

Step 2: Examination of High-Risk Event Categories
Identify event types typical of potential malicious activities:

– Process creation events (Event ID 4688) exhibiting irregular command-line arguments

or unfamiliar executables.

– Logon attempts (Event ID 4624, 4625) with unexpected account activity, including

failed logons or uses of administrative credentials.

– Events signaling privilege escalation or changes in permissions (Event ID 4672,

4674).

– Modifications to security groups or unauthorized access efforts.

Step 3: Contextual Correlation
Assess suspicious events within the timeline and parallel activities:

– Does the activity correspond with normal usage patterns for this system?

– Are there corroborating logs suggesting a compromise, such as anomalies in network

traffic or related security alerts?

Step 4: Evaluation of Potential Indicators of Compromise (IoCs)
Scrutinize processes running from atypical directories (e.g.,

C:\Users\Username\AppData\Roaming or Temp directories). Search for

unexpected system binaries, known exploit signatures, or unusual parent-child process

correlations. Identify persistence mechanisms like novel scheduled tasks or registry

alterations.

Step 5: Threat Categorization
Classify each observed occurrence into the following categories:

– Benign: Routine activity consistent with established behaviors within the environ-

ment.

– Malicious: Evidence of compromise, such as unusual activity, verified malware

execution or explicit indications of privilege abuse.
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Chain-of-Thought Binary Detection Task Prompt (Continued)

Step 6: Comprehensive Report Formulation
Draft a detailed account of observations, including:

– Summaries of any identified suspicious or malicious activities.

– Supporting evidence for each classification.

– Recommended actions, such as containment measures for malicious activities, addi-

tional investigation for suspicious instances, or determining that no action is required

for benign events.

Final Conclusion
Conclude with one of the following determinations:

– BENIGN: No compromise indicators; activities are normal.

– MALICIOUS: Identified potential risks ,clear evidence of malicious conduct.

Below are the logs for your investigation:

[INSERT LOGS HERE]

The prompt for classification task was slightly altered, with added description of classifica-
tion steps.
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Chain-of-Thought Multiclass Classification Task Prompt

As a Senior Security Analyst, you have been tasked with investigating a series of Windows

event logs. You were given these logs from a Windows machine. Your goal is to carefully

analyze the logs and classify each observed activity into one of the following categories:

■ Collection

■ Lateral Movement

■ Command and Control

■ Discovery

■ Execution

■ Defense Evasion

■ Impact

■ Exfiltration

■ Initial Access

■ Persistence

■ Credential Access

■ Privilege Escalation

■ Benign

Provide a detailed analysis of the logs, explaining:

■ Any behavior that stands out and aligns with the specified tactics.

■ The rationale for categorizing the observed activity into one of the specified cate-

gories.

Follow the thinking process outlined below:

Step 1: Familiarization with the Logs
Begin by examining the logs to extract essential details such as event IDs, timestamps, user

accounts, and process names. Identify any unusual patterns, high-frequency occurrences, or

anomalies.

Step 2: Examination of High-Risk Event Categories
Identify event types typical of potential security activities, focusing on:

– Process creation events (Event ID 4688) exhibiting irregular command-line arguments

or unfamiliar executables.

– Logon attempts (Event ID 4624, 4625) with unexpected account activity, including

failed logons or uses of administrative credentials.

– Events signaling privilege escalation or changes in permissions (Event ID 4672,

4674).

– Modifications to security groups or unauthorized access efforts.

– Indicators of lateral movement, data exfiltration, or system discovery.

Step 3: Contextual Correlation
Assess suspicious events within the timeline and parallel activities:

– Does the activity correspond with normal usage patterns for this system?

– Are there corroborating logs or patterns suggesting a connection to specific tactics?
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Chain-of-Thought Multiclass Classification Task Prompt (Continued)

Step 4: Categorization by Tactic
Scrutinize the logs and classify each event based on observed behaviors and the MITRE

ATT&CK framework tactics:

– Collection: Activities aimed at gathering sensitive data.

– Lateral Movement: Events suggesting access to other systems within the network.

– Command and Control: Evidence of external communication to manage compro-

mised systems.

– Discovery: Efforts to gain knowledge about the system or network environment.

– Execution: Processes indicating payload execution or script running.

– Defense Evasion: Activities to evade detection, such as disabling security tools.

– Impact: Behaviors affecting the availability or integrity of systems.

– Exfiltration: Indications of data leaving the network.

– Initial Access: The first indications of compromise or access.

– Persistence: Mechanisms ensuring continued access.

– Credential Access: Attempts to obtain user credentials.

– Privilege Escalation: Events indicative of gaining higher-level permissions.

– Benign: Routine activity consistent with established behaviors within the environ-

ment.

Step 5: Comprehensive Report Formulation
Draft a detailed account of observations, including:

– Summaries of categorized activities.

– Supporting evidence for each classification.

– Recommended actions, such as containment measures, further investigation, or no

action for benign events.

Step 6: Comprehensive Report Formulation
Draft a detailed account of observations, including:

– Summaries of any identified suspicious or malicious activities.

– Supporting evidence for each classification.

– Recommended actions, such as containment measures for malicious activities, addi-

tional investigation for suspicious instances, or determining that no action is required

for benign events.

Below are the logs for your investigation:

[INSERT LOGS HERE]

The results from the Chain-of-Thought Prompt being used in the analysis of the
evtx-atomic-and-tools-removed dataset are discussed in the Results section of
this document.
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4.4 Evaluation and Performance Metrics

The evaluation framework of this study is structured to assess the performance and depend-
ability of LLM outputs across different prompts. The selected metrics focus on qualities
of model performance, such as precision, sensitivity to prompt techniques & styles, and
the capacity to sustain consistent performance across varied scenarios. These attributes
are vital in the cybersecurity domain, where LLM outputs have the potential to directly
influence decisions in incident response and digital forensic investigations.

The table below explains how LLM classifications of "Benign" and "Malicious" correspond
to the traditional data analysis metrics of True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN):

Benign detected as Malicious detected as
Benign TN FN
Malicious FP TP

Table 4. LLM Analysis Detection Results Classification Logic

The following metrics were selected to evaluate the performance of the LLM:
Recall measures the model’s ability to identify all relevant instances within a dataset,
crucial for ensuring comprehensive detection of potential malicious activity.

Recall =
TP

TP + FN

Precision augments recall by assessing the accuracy of the LLM’s positive predictions.
A high precision score suggests that the model’s outputs are pertinent and trustworthy,
with few false positives. In incident response contexts, false positives might result in
unnecessary investigations, diverting resources from genuine threats. Evaluating precision
in conjunction with recall offers deeper insight into the model’s performance.

Precision =
TP

TP + FP

The F1-score, which is the harmonic mean of precision and recall, provides a balanced
measurement that captures both the accuracy and the comprehensiveness of the model’s
performance in detecting malicious activity. By focusing on F1-scores, the study aims
to address the potential trade-offs between precision and recall, ensuring that the large
language Models employed are not only identifying malicious activity correctly but are
also capturing as many relevant instances as possible. This metric is particularly critical
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in the context of incident response and digital forensics, where both false positives and
false negatives have consequences. Thus, the F1-score serves as an integral part of the
framework to assess the efficacy and reliability of LLMs in these applications.

F1 = 2 · Precision · Recall
Precision + Recall

To provide a broader context to gathered results, macro-averaged metrics are used since
they consider each class equally, shedding light on the model’s overall performance across
a variety of attack types. Similarly, micro-averaged metrics consolidate results based on
individual event contributions, thus emphasizing more frequent classes such as benign
logs.

The macro F1 score is calculated by the formula:

F1macro =
2 · Precisionmacro · Recallmacro

Precisionmacro + Recallmacro

Where:

Precisionmacro =
1

N

N∑
i=1

True Positivesi
True Positivesi + False Positivesi

Recallmacro =
1

N

N∑
i=1

True Positivesi
True Positivesi + False Negativesi

Since the LLM is employed for two distinct tasks: Binary Classification (Malicious vs.
Benign) and Multiclass Classification (identifying the specific attack tactic being used),
the evaluation metrics are tailored to reflect the objectives and outcomes of each task.
This differentiation ensures that the assessment captures the performance results of each
classification scenario.
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Evaluation metrics can be summarized as follows:

Binary Classification Task:

■ Per Individual Class:
– Recall

■ Per Dataset:
– Precision
– Recall
– F1

Multiclass Classification Task:

■ Per Individual Class:
– Precision
– Recall
– F1

■ Per Dataset:
– Macro Precision
– Macro Recall
– Macro F1
– Micro F1

Evaluating metrics at the class level aids in identifying biases or gaps in the large language
model’s interpretation of particular event patterns. For example, if the recall for "Command
and Control" is low while precision is high, it may suggest that the model is confident in its
detection when it does occur but struggles to identify all subtle instances. In contrast, a high
recall but low precision for "Execution" may point to an over-detection issue, where benign
activities are misclassified as malicious, suggesting a need for improved training data or
post-processing adjustments. Therefore, per-class calculations are essential to gain deeper
insights into the model’s strengths and weaknesses across different classification categories,
enabling targeted improvements to enhance performance. Beyond these standard metrics,
non-formal qualitative evaluations are conducted to examine the practical relevance of
the LLM’s outputs during the analysis of Windows Event logs. For instance, during the
analysis of LLM outputs, an analysis is performed to assess whether the responses adhere to
industry best practices. By integrating quantitative and qualitative analyses, this evaluation
framework aims to cultivate a comprehensive understanding of the LLM’s capabilities and
limitations within the realm of cybersecurity applications.
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5. Results

5.1 Dataset Comparison

As described in the method section, as a result of the dataset generation process, 3 malicious
datasets were produced:

1. evtx-unfiltered - a dataset containing artifacts from both the Atomic Red
Team framework and associated red team tools used by the framework during attack
simulation

2. evtx-atomic-removed - a dataset from which Atomic Red Team framework
artifacts have been replaced, but associated red team tool artifacts remain

3. evtx-atomic-and-tools-removed - a dataset devoid of both Atomic Red
Team framework artifacts and associated red team tool artifacts

To evaluate the influence of the Atomic Red Team Framework and attack tooling artifacts
on the dataset, we used a foundational zero-shot prompt across all three datasets with a
detection task. The zero-shot prompt for this task was defined in the 4.3.2 Foundational
Prompts section. This approach aimed to quantify the extent to which these artifacts affect
the capabilities of large language models in detecting malicious activities within the logs.
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First, the model was tasked with analyzing a dataset that had not been cleaned of
artifacts originating from the Atomic Red Team Framework and red teaming tools
(evtx-unfiltered).

Technique Category Malicious Benign Recall
Collection 28 0 1
Lateral Movement 21 0 1
Command and control 53 0 1
Discovery 181 0 1
Execution 61 0 1
Defense Evasion 367 0 1
Impact 30 0 1
Exfiltration 14 0 1
Initial Access 12 0 1
Persistence 60 0 1
Credential Access 118 0 1
Privilege Escalation 119 0 1
Average 1064 0 1

Table 5. Zero-shot Detection Task Results On evtx-unfiltered

The findings immediately demonstrated that Atomic Red Team artifacts, alongside artifacts
from red team tools, such as the direct names of these tools, led to results that were not
realistic. As outlined in the Dataset Generation Method section, GPT models exhibit a
relative proficiency in identifying both Atomic Red Team artifacts and elements from
red teaming tools. Consequently, a subsequent experiment was conducted with a similar
setup, with the key difference being that the Detection Task was performed on a dataset
evtx-atomic-removed from which Atomic Red Team artifacts had been excluded,
while the artifacts of the attacking tools were retained.

Technique Category Malicious Benign Recall
Collection 23 5 0.821428
Lateral Movement 12 9 0.571428
Command and control 39 14 0.735849
Discovery 84 97 0.464088
Execution 52 9 0.852459
Defense Evasion 290 77 0.790190
Impact 25 5 0.833333
Exfiltration 13 1 0.928571
Initial Access 12 0 1
Persistence 55 5 0.916667
Credential Access 104 14 0.881355
Privilege Escalation 107 12 0.899159
Average 816 248 0.766917

Table 6. Zero-shot Detection Task Results On evtx-atomic-removed
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We now observe outcomes that are more realistic. Though, it appears that the majority of
techniques are detected with recall that exceeds expectations for a zero-shot, untrained,
and unfinetuned large language model. This heightened performance likely stems from the
presence of red teaming tools artifacts (such as direct tool names, specific github repos of
known tools etc), which may provide the LLM with significant clues when analyzing the
logs. Consequently, our subsequent test focused on a malicious activity detection task using
a dataset from which all atomic red team artifacts and red teaming tooling artifacts had been
removed. Detailed descriptions of the evtx-atomic-and-tools-removed dataset
preparation process can be found in the "Dataset Generation" section of this document.

Technique Category Malicious Benign Recall
Collection 19 9 0.678571
Lateral Movement 14 7 0.666667
Command and control 35 18 0.660377
Discovery 81 100 0.447513
Execution 47 14 0.770491
Defense Evasion 267 100 0.72752
Impact 22 8 0.733333
Exfiltration 13 1 0.928571
Initial Access 11 1 0.916667
Persistence 53 7 0.883333
Credential Access 101 17 0.855932
Privilege Escalation 109 10 0.915966
Average 772 292 0.725563

Table 7. Zero-shot Detection Task Results On evtx-atomic-and-tools-removed

We can immediately see, that for the purpose of research and experimentation with different
prompting techniques, it is best to focus on the evtx-atomic-and-tools-removed
dataset, as it provides a more balanced and realistic environment for evaluating the capabil-
ities of large language models in detecting malicious activities. By excluding Atomic Red
Team artifacts, the dataset minimizes the influence of artificially recognizable patterns, al-
lowing the detection performance to be assessed based on intrinsic behavioral indicators of
malicious activities rather than superficial artifacts. Thus, for the remainder of this research,
the experiments will be conducted using the evtx-atomic-and-tools-removed
dataset. Centering the study on this dataset enables an investigation of prompting strategies
and the ways in which LLMs interpret context in scenarios that mirror real-world security
operations. This approach ensures that the findings are directly applicable and relevant to
the cybersecurity field, particularly in leveraging LLMs for practical event log analysis.
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5.2 Malicious Activity Binary Detection

This section focuses on the results of the LLM being used to analyze the
evtx-atomic-and-tools-removed dataset and detect malicious activity. Main
task is to classify the mixed set of logs containing malicious and benign activity into
"malicious" and "benign" categories.

5.2.1 Zero-shot

For the zero-shot prompt, the evtx-atomic-and-tools-removed dataset was used.
The prompt was described in the 4.4.2 Foundational Prompts section of the document.
In the context of the Binary Detection task, True Positives (TP) represent cases where
malicious instances are correctly classified as malicious, and benign instances are correctly
classified as benign. False Negatives (FN) occur when malicious instances are misclassified
as benign or vice versa. In the Binary detection task, given the availability of only TP and
FN, the sole metric that can be computed on a per-class basis is Recall, which measures
the proportion of correctly identified instances within a class. This metric is emphasized
throughout the Binary Detection task results because it directly reflects the model’s ability
to identify each class accurately. In contrast, metrics such as Precision and F1-score, which
require the computation of False Positives (FP) in addition to TP and FN, are aggregated
and analyzed at the dataset level. These "per-dataset" metrics provide a holistic evaluation
of the model’s performance by balancing both precision (the ability to avoid false alarms)
and recall. This distinction is further elaborated in Section 5.2.5, where the discussion
includes Recall, Precision, and F1-score as performance measures for each dataset.
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When prompted with a binary detection task, the GPT-4o model produced the following
set of results:

Technique Category Malicious Benign Recall per class
Initial Access 11 1 0.916667
Exfiltration 13 1 0.928571
Lateral Movement 14 7 0.666667
Collection 19 9 0.678571
Impact 22 8 0.733333
Command and control 35 18 0.660377
Persistence 53 7 0.883333
Execution 47 14 0.770491
Credential Access 101 17 0.855932
Privilege Escalation 109 10 0.915966
Discovery 81 100 0.447513
Defense Evasion 267 100 0.72752
Benign Activity 4 1060 0.996240

Table 8. Zero-shot Binary Detection Task Results

The findings depicted in Table 11 show the performance of the GPT-4o model in a zero-shot
binary detection task. The variability in recall rates across different technique categories
shows the LLM’s dependency on the specific type of attack technique for distinguishing
between malicious and benign activities. Notably, the model excels in identifying "Exfiltra-
tion" (recall: 0.928571) and "Initial Access" (recall: 0.916667), indicating a robust capacity
for accurately classifying activities associated with these phases of an attack lifecycle. In
contrast, the "Discovery" (recall: 0.447513) and "Defense Evasion" (recall: 0.727527)
categories demonstrate weaker performance, pointing to challenges in accurately detecting
and classifying these techniques due to potentially subtler or more contextually ambiguous
activity patterns within event logs. The relatively low recall in categories such as "Lateral
Movement" (recall: 0.666667), "Command and Control" (recall: 0.660377), "Collection"
(recall: 0.678571), and again "Discovery" suggests that the zero-shot approach might
struggle with nuanced attack patterns that depend on behavioral indicators rather than
explicit artifacts. These limitations highlight the necessity for more experimenting with
more refined prompting strategies (or further model fine-tuning with domain-specific data)
to attempt to enhance detection accuracy in real-world applications. Thus, while the results
illustrate the promise of large language models for Windows Event Log analysis, they
also expose considerable areas for improvement, especially in managing ambiguous or
stealthy attack techniques. The zero-shot prompt demonstrates remarkable proficiency in
identifying benign activities, achieving a class recall score of 0.9962.
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Malicious (actual) Benign Activity (actual)
Malicious (predicted) 772 4
Benign Activity (predicted) 292 1060

Table 9. Zero-shot Binary Detection Task Results Summary Table

From the summary table above, we can derive the following:

TP = 772 FP = 4 FN = 292 TN = 1060

Having the TP, FP, FN and TN, we can then calculate the precision and recall as follows:

Precision =
772

772 + 4
≈ 0.9948 = 99.48%

Recall =
772

772 + 292
≈ 0.7255 = 72.55%

F1 =
2 · 0.9948 · 0.7255
0.9948 + 0.7255

≈ 0.8391 ≈ 83.91%

Based on the precision and recall, we can see that the system demonstrates a high precision
of 99.48%, indicating that nearly all predictions labeled as "malicious" are indeed correct.
This highlights its reliability in minimizing false positives (FP = 4). However, the recall
of 72.55% reveals that a significant number of malicious cases (FN = 292) were missed,
suggesting limitations in identifying all malicious activities. This trade-off between
precision and recall suggests the system is optimized for accuracy in positive predictions
but at the cost of sensitivity. Such a configuration might be suitable for applications
prioritizing low false alarms but less so where capturing all potential threats is critical.
The F1 score of 83.91% shows that the system maintains a reasonable balance between
precision and recall, but there is room for improvement, especially in increasing recall
without significantly compromising precision. The lower recall underscores the need for
further refinement in the model’s ability to detect all malicious instances.

More detailed discussion and comparison of achieved results is provided in the Discussion
subsection
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5.2.2 Few-Shot

This section discusses the findings of using a few-shot prompts to analyze malicious and
benign logs. The primary objective was to distinguish between malicious activities and
benign activities within these logs. Initially, the results of a one-shot prompt are presented,
followed by those from 3-shot and 5-shot prompts. The results encompass class-specific
recall metrics, along with general precision, recall, and F1 scores for the entire data set.

One-shot Binary Detection

The prompt from the zero-shot binary classification task was enhanced by including
examples of both malicious and benign log snippets. For the one-shot prompt, each
technique category, or class, was supplemented with a single example snippet. The binary
classification results of using the one-shot prompt are presented below.

Technique Category Malicious Benign Recall per class
Initial Access 10 1 0.909090
Exfiltration 11 2 0.846153
Lateral Movement 15 5 0.75
Collection 20 7 0.740740
Impact 19 10 0.655172
Command-and-Control 34 18 0.653846
Persistence 52 7 0.881355
Execution 39 21 0.65
Credential Access 100 17 0.854700
Privilege Escalation 101 17 0.855932
Discovery 84 96 0.466667
Defense Evasion 242 124 0.661202
Benign Activity 2 1061 0.998118

Table 10. One-shot Binary Detection Task Results

Malicious (actual) Benign Activity (actual)
Malicious (predicted) 727 2
Benign Activity (predicted) 325 1061

Table 11. One-shot Binary Detection Task Results Summary Table

TP = 727 FP = 2 FN = 325 TN = 1061

Precision =
727

727 + 2
≈ 0.9972 = 99.72%
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Recall =
727

727 + 325
≈ 0.6910 = 69.10%

F1 =
2 · 0.9972 · 0.6910
0.9972 + 0.6910

≈ 0.8163 ≈ 81.63%

Contrary to the prevalent belief that increasing the number of examples, or "k-shots,"
invariably enhances outcomes, our findings suggest that one-shot prompting tends to
yield marginally lower results. Specifically, the general metrics for zero-shot prompting
(Precision=0.9948, Recall=0.7255, F1=0.8391) are slightly superior compared to those
achieved with one-shot prompting (Precision=0.9972, Recall=0.6910, F1=0.8163). We can
also see that one-shot prompt is slightly better at identifying benign activity with a class
recall score of 0.9981 (compared to zero-shot recall score of 0.9962). A further comparison
of recall rates by class between zero-shot and one-shot prompts reveals the following:

Class 0-shot 1-shot Recall Difference
Initial Access 0.9166666667 0.9090909091 -0.007575757576
Exfiltration 0.9285714286 0.8461538462 -0.08241758242
Lateral Movement 0.6666666667 0.75 0.08333333333
Collection 0.6785714286 0.7407407407 0.06216931217
Impact 0.7333333333 0.6551724138 -0.07816091954
Command and control 0.6603773585 0.6538461538 -0.006531204644
Persistence 0.8833333333 0.8813559322 -0.00197740113
Execution 0.7704918033 0.65 -0.1204918033
Credential Access 0.8559322034 0.8547008547 -0.001231348689
Privilege Escalation 0.9159663866 0.8559322034 -0.06003418316
Discovery 0.4475138122 0.4666666667 0.01915285451
Defense Evasion 0.727520436 0.6612021858 -0.06631825017
Benign Activity 0.9962406015 0.9981185325 0.001877930952
Average 0.7831681122 0.7633061876 -0.01986192459

Table 12. Comparison of Recall Scores Between Zero-shot And 1-shot Binary Detection
Prompts

We can see that 1-shot prompt performs on average slightly worse than zero-shot. The
differences in performance can be attributed to the distinct ways in which the model
processes inputs. With zero-shot prompting, the model depends entirely on its pre-trained
knowledge and comprehension of context to generate predictions, which might align
more closely with the general patterns it has internalized. In contrast, one-shot prompting
involves presenting the model with an additional example, which can unintentionally
introduce bias or limit its interpretative range, potentially diminishing performance in
certain categories.
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The variability in performance across different classes may also be influenced by the
characteristics of the data and the specific examples utilized in one-shot prompting. For
example, if the example in the one-shot prompt poorly corresponds with the patterns of
certain classes (such as Exfiltration or Impact), it might misdirect the model’s attention,
thereby decreasing its recall. On the other hand, in classes where the example closely
resembles the test data (such as Lateral Movement or Collection), one-shot prompting
could marginally improve recall.

The random selection of k-shots for each class creates a potential bias in LLMs. This is
because in our dataset, each class encompasses diverse techniques. For example gaining
initial access through Remote Desktop Protocol (RDP) versus creating a Guest account.
Limiting the model to a single example may lead it to mistakenly associate initial access
more closely with RDP activity than with Guest account creation, despite both methods
being commonly employed by adversaries. Therefore, when tasks involve classes with
varying internal features, a one-shot prompt might not be the most effective strategy.
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3-Shot Binary Detection

The prompt from the zero-shot binary classification task was enhanced by including
examples of both malicious and benign log snippets. For the 3-shot prompt, each technique
category, or class, was supplemented with 3 example snippets. The binary classification
results of using the 3-shot prompt are presented below.

Technique Category Malicious Benign Recall per class
Initial Access 8 1 0.888889
Exfiltration 11 0 1
Lateral Movement 14 4 0.777778
Collection 19 6 0.76
Impact 21 6 0.777778
Command-and-Control 34 16 0.68
Persistence 51 6 0.894736
Execution 46 12 0.793103
Credential Access 95 20 0.826086
Privilege Escalation 100 16 0.862068
Discovery 87 91 0.488764
Defense Evasion 245 119 0.673076
Benign Activity 1 1060 0.999057

Table 13. 3-shot Binary Detection Task Results

Malicious (actual) Benign Activity (actual)
Malicious (predicted) 731 1
Benign Activity (predicted) 297 1060

Table 14. 3-shot Binary Detection Task Results Summary Table

TP = 731 FP = 1 FN = 297 TN = 1060

Precision =
731

731 + 1
≈ 0.9986 = 99.86%

Recall =
731

731 + 297
≈ 0.7110 = 71.10%

F1 =
2 · 0.9986 · 0.7110
0.9986 + 0.7110

≈ 0.8306 ≈ 83.06%
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When evaluating the performance metrics for zero-shot prompt (Precision=0.9948,
Recall=0.7255, F1=0.8391) in comparison to 3-shot prompt (Precision=0.9986, Re-
call=0.7110, F1=0.8306), we observe a slight improvement in precision. However, the
recall and F1 scores remain inferior to zero-shot prompt. This discrepancy can be attributed
in part to the same factors affecting the one-shot prompt. Specifically, incorporating
multiple examples per class (k-shots) reduces the diversity available within each class.
Given the wide array of individual attack techniques employed across different classes,
this narrowing of variability results in diminished effectiveness.

Analyzing per class recall however, we can see that 3-shot prompt improves recall scores
across a number of classes:

Class 0-shot 3-shot Recall Difference
Initial Access 0.9166666667 0.8888888889 -0.02777777778
Exfiltration 0.9285714286 1 0.07142857143
Lateral Movement 0.6666666667 0.7777777778 0.1111111111
Collection 0.6785714286 0.76 0.08142857143
Impact 0.7333333333 0.7777777778 0.04444444444
Command and control 0.6603773585 0.68 0.01962264151
Persistence 0.8833333333 0.8947368421 0.01140350877
Execution 0.7704918033 0.7931034483 0.022611645
Credential Access 0.8559322034 0.8260869565 -0.02984524687
Privilege Escalation 0.9159663866 0.8620689655 -0.05389742104
Discovery 0.4475138122 0.4887640449 0.04125023279
Defense Evasion 0.727520436 0.6730769231 -0.05444351289
Benign Activity 0.9962406015 0.9990574929 0.002816891427
Average 0.7831681122 0.8016414706 0.01847335841

Table 15. Comparison Of Recall Scores Between Zero-shot And 3-shot Binary Detection
Prompts
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We can observe that the values for Initial Access, Credential Access, Privilege Escalation,
and Defense Evasion tend to be slightly lower when using a 3-shot prompt compared to a
zero-shot prompt. Specifically, Initial Access decreases by 0.0278, Credential Access by
0.0298, Privilege Escalation by 0.0539, and Defense Evasion by 0.0544. These reductions
suggest that for these classes, the inclusion of specific examples in the 3-shot prompt may
have limited the model’s ability to generalize.

However, other categories show improvement under the 3-shot prompt approach. Lateral
Movement improves by 0.1111, Collection by 0.0814, Impact by 0.0444, and Discovery by
0.0413. These gains indicate that the additional contextual examples provided in the 3-shot
prompt help the model better capture patterns for these classes, leading to higher recall.
Additionally, the overall average recall improves from 0.7832 for zero-shot to 0.8016 for
3-shot, highlighting a slight but meaningful enhancement in overall performance. The
3-shot prompt also exhibits stronger capability of being able to detect benign activity as
benign, with a recall score of 0.9991, compared to zero-shot score of 0.9962

It is crucial to highlight that when creating the 3-shot prompt, each example of a malicious
log snippet used in the prompt is excluded from the analysis pool. This precaution is
taken to avoid a scenario where a specific malicious log is simultaneously part of the
prompt as a k-shot example and subject to analysis. This would result 100% detection
accuracy for that specific attack technique, which would bias the results and overstate
the system’s actual performance. By removing these k-shot examples from the analysis,
we ensure a more accurate evaluation of the model’s ability to analyze and understand
malicious and benign instances. This exclusion results in limited available data for certain
minority classes: Initial Access has 9 logs, Exfiltration has 11 logs, Lateral Movement has
18 logs, Collection has 25 logs, and Impact has 27 logs. These classes were still decided
to be included in the overall research because they represent critical stages in the attack
lifecycle, and their inclusion ensures the evaluation covers the full spectrum of potential
malicious activities. Even though these classes have fewer examples, their importance
in understanding and mitigating threats outweighs the limitations posed by their smaller
sample sizes.

5-Shot Binary Detection

The prompt from the zero-shot binary classification task was enhanced by including
examples of both malicious and benign log snippets. For the 5-shot prompt, each technique
category, or class, was supplemented with 5 example snippets. The binary classification
results of using the 5-shot prompt are presented below.
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Technique Category Malicious Benign Recall per class
Initial Access 7 0 1
Exfiltration 9 0 1
Lateral Movement 12 4 0.75
Collection 17 6 0.7391304348
Impact 20 5 0.8
Command-and-Control 32 16 0.6666666667
Persistence 48 7 0.8727272727
Execution 42 14 0.75
Credential Access 94 19 0.8318584071
Privilege Escalation 100 14 0.8771929825
Discovery 84 92 0.4772727273
Defense Evasion 234 128 0.6464088398
Benign Activity 1 1058 0.9990557129

Table 16. 5-shot Binary Detection Task Results

Malicious (actual) Benign Activity (actual)
Malicious (predicted) 699 1
Benign Activity (predicted) 305 1058

Table 17. 5-shot Binary Detection Task Results Summary Table

TP = 699 FP = 1 FN = 305 TN = 1058

Precision =
699

699 + 1
≈ 0.9985 = 99.85%

Recall =
699

699 + 305
≈ 0.6962 = 69.62%

F1 =
2 · 0.9985 · 0.6962
0.9985 + 0.6962

≈ 0.8203 ≈ 82.03%

Examining the performance metrics reveals that, in comparison to the 5-shot prompt
(Precision=0.9985, Recall=0.6962, F1=0.8203), the zero-shot prompt exhibits slightly
lower precision (Precision=0.9948), yet surpasses it in recall (Recall=0.7255) and F1 score
(F1=0.8391). This trend mirrors the results observed with the 3-shot prompt. It is likely
that these diminishing returns can be attributed to the relatively small size of minority
classes; the examples provided for these classes decrease even further in the 5-shot prompt
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setting.

Class 0-shot 5-shot Recall Difference
Initial Access 0.9166666667 1 0.08333333333
Exfiltration 0.9285714286 1 0.07142857143
Lateral Movement 0.6666666667 0.75 0.08333333333
Collection 0.6785714286 0.7391304348 0.06055900621
Impact 0.7333333333 0.8 0.06666666667
Command and control 0.6603773585 0.6666666667 0.006289308176
Persistence 0.8833333333 0.8727272727 -0.01060606061
Execution 0.7704918033 0.75 -0.02049180328
Credential Access 0.8559322034 0.8318584071 -0.02407379631
Privilege Escalation 0.9159663866 0.8771929825 -0.0387734041
Discovery 0.4475138122 0.4772727273 0.02975891512
Defense Evasion 0.727520436 0.6464088398 -0.08111159619
Benign Activity 0.9962406015 0.9990557129 0.002815111433
Average 0.7831681122 0.8007933111 0.01762519886

Table 18. Comparison Of Recall Scores Between Zero-shot And 5-shot Binary Detection
Prompts

Average recall score for 3-shot prompt was 0.8016, while for 5-shot it is 0.8008 Average
difference of recall scores for 3-shot prompt was 0.0184 while for 5-shot it is 0.0176.
When comparing 5-shot with zero-shot, we can see that 5-shot is better at identifying
malicious cases for Initial Access, Exfitlration, Lateral Movement, Collection, Impact and
Command and Control classes, however those classes also have relatively small sample
sizes as discussed previously. We can see that 5-shot can detect benign activity rather
accurately, with a recall score of 0.9991 (very slightly better than 3-shot prompt). More
detailed discussion and comparison of achieved results is provided in the Discussion
subsection

5.2.3 Chain of Thought

In this section, the focus shifts to Chain-of-Thought prompting technique. Below is a
breakdown of binary detection results where CoT prompt was tasked with differentiating
between malicious and benign logs. Per class results are as follows:

TP = 1024 FP = 66 FN = 40 TN = 998

Having the TP, FP, FN and TN, we can then calculate the precision and recall can be
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Technique Category Malicious Benign Recall per class
Initial Access 11 1 0.916666
Exfiltration 14 0 1
Lateral Movement 18 3 0.857142
Collection 27 1 0.964285
Impact 29 1 0.966666
Command-and-Control 52 1 0.981132
Persistence 59 1 0.983333
Execution 60 1 0.983606
Credential Access 116 2 0.983050
Privilege Escalation 118 1 0.991596
Discovery 161 20 0.889502
Defense Evasion 359 8 0.978201
Benign Activity 66 998 0.937969

Table 19. Chain-of-Thought Binary Detection Task Results

Malicious (actual) Benign Activity (actual)
Malicious (predicted) 1024 66
Benign Activity (predicted) 40 998

Table 20. Chain-of-Thought Binary Detection Task Results Summary Table

calculated as follows:

Precision =
1024

1024 + 66
≈ 0.9394 = 93.94%

Recall =
1024

1024 + 40
≈ 0.9624 = 96.24%

F1 =
2 · 0.9394 · 0.9624
0.9394 + 0.9624

≈ 0.9507 ≈ 95.07%

Upon analyzing the performance metrics, it becomes evident that the CoT prompt demon-
strates better performance with a precision of 0.9394, recall of 0.9624, and an F1 score
of 0.9507, compared to zero-shot approach, which yields a precision of 0.9948, recall of
0.7255, and an F1 score of 0.8391. A more detailed analysis of recall scores for individual
classes clearly reveals enhanced performance:

The analysis shows that the CoT prompt enhances the recall metric of detection across
nearly all categories. The sole exception is the Benign Activity class, which experiences a
minor reduction in recall by 0.058. Nevertheless, on average, the CoT prompt increases
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Class 0-shot CoT Recall Difference
Initial Access 0.9166666667 0.9166666667 0
Exfiltration 0.9285714286 1 0.07142857143
Lateral Movement 0.6666666667 0.8571428571 0.1904761905
Collection 0.6785714286 0.9642857143 0.2857142857
Impact 0.7333333333 0.9666666667 0.2333333333
Command and control 0.6603773585 0.9811320755 0.320754717
Persistence 0.8833333333 0.9833333333 0.1
Execution 0.7704918033 0.9836065574 0.2131147541
Credential Access 0.8559322034 0.9830508475 0.1271186441
Privilege Escalation 0.9159663866 0.9915966387 0.0756302521
Discovery 0.4475138122 0.8895027624 0.4419889503
Defense Evasion 0.727520436 0.9782016349 0.2506811989
Benign Activity 0.9962406015 0.9379699248 -0.05827067669
Average 0.7831681122 0.9563965907 0.1732284785

Table 21. Comparison Of Recall Scores Between Zero-shot And CoT Binary Detection
prompts

recall scores by 0.1732, representing a substantial improvement, particularly when con-
trasted with the 1-shot, 3-shot, and 5-shot prompting strategies. The slight decline in recall
for the Benign Activity class can be attributed to the Chain-of-Though prompt’s intensified
emphasis on identifying patterns associated with malicious activities. This refinement
enhances the model’s capacity to identify malicious activity in most categories. However,
it may inadvertently increase sensitivity, leading to a minor increase in false positives
within the Benign Activity class. This trade-off arises because the CoT prompt encourages
in-depth reasoning, which occasionally results in the misclassification of benign patterns
as malicious, due to their resemblance to more complex malicious patterns.

Furthermore, the minor reduction in recall for the Benign Activity class might also result
from the reallocation of the model’s representational capacity. By prioritizing the detection
of malicious activities, the CoT prompt directs more attention toward identifying usually
underrepresented techniques. This reallocation may lead to a deprioritization of benign
patterns, which are generally more prevalent and simpler to classify. Despite this slight
compromise, the notable improvement in recall across malicious categories underscores
the CoT prompt’s efficacy in enhancing threat detection. In the field of cybersecurity, it is
generally preferable to encounter a false positive rather than a false negative. More detailed
discussion and comparison of achieved results is provided in the Discussion subsection
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5.2.4 Few-shot + CoT

This section focuses on the results of a prompt, where Chain-of-Thought is combined with
5-shot. The step-by-step thinking and rationalization method of CoT was supplemented
with 5 examples per class. The resulting prompt was defined in the

Technique Category Malicious Benign Recall per class
Initial Access 7 0 1
Exfiltration 9 0 1
Lateral Movement 13 3 0.8125
Collection 21 2 0.9130434783
Impact 24 1 0.96
Command-and-Control 42 6 0.875
Persistence 53 2 0.9636363636
Execution 49 7 0.875
Credential Access 109 4 0.9646017699
Privilege Escalation 110 4 0.9649122807
Discovery 135 41 0.7670454545
Defense Evasion 319 43 0.8812154696
Benign Activity 1 1058 0.9990557129

Table 22. Chain-of-Thought + 5-shot Binary Detection Task Results

Malicious (actual) Benign (actual)
Malicious (predicted) 891 1
Benign Activity (predicted) 113 1058

Table 23. Chain-of-Thought + 5-shot Binary Detection Task Results Summary Table

TP = 891 FP = 1 FN = 113 TN = 1058

Precision =
891

891 + 1
≈ 0.9988 = 99.88%

Recall =
891

891 + 113
≈ 0.8874 = 88.74%

F1 =
2 · 0.9988 · 0.8874
0.9988 + 0.8874

≈ 0.9398 ≈ 93.98%

Upon examining the performance of the CoT + 5-shot prompt, it is evident that there
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Technique Category Malicious Benign Recall Difference
Initial Access 0.9166666667 1 0.08333333333
Exfiltration 0.9285714286 1 0.07142857143
Lateral Movement 0.6666666667 0.8125 0.1458333333
Collection 0.6785714286 0.9130434783 0.2344720497
Impact 0.7333333333 0.96 0.2266666667
Command and control 0.6603773585 0.875 0.2146226415
Persistence 0.8833333333 0.9636363636 0.0803030303
Execution 0.7704918033 0.875 0.1045081967
Credential Access 0.8559322034 0.9646017699 0.1086695665
Privilege Escalation 0.9159663866 0.9649122807 0.04894589415
Discovery 0.4475138122 0.7670454545 0.3195316424
Defense Evasion 0.727520436 0.8812154696 0.1536950336
Benign Activity 0.9962406015 0.9990557129 0.002815111433
Average 0.7831681122 0.9212315792 0.138063467

Table 24. Comparison Of Recall Scores Between Zero-shot And CoT + 5-shot Binary
Detection Prompts

is a notable improvement in average recall scores across various classes. Notably, the
CoT + 5-shot approach enhances the recall of detecting all classes without outliers. For
minority classes, the limited size of the sample set likely contributes to the higher recall
rates observed. When comparing the 5-shot approach (Precision=0.9985, Recall=0.6962,
F1=0.8203) to the CoT + 5-shot (Precision=0.9988, Recall=0.8874, F1=0.9398), as well
as their respective average recall score improvement per class (5-shot with an average
recall of 0.8007 and an average improvement of 0.0176, compared to CoT + 5-shot with
an average recall of 0.9212 and an improvement of 0.1380), it becomes apparent that
CoT + 5-shot outperforms the simple 5-shot method. Interestingly, however, the CoT +
5-shot approach underperforms based on recall and F1 in comparison to the standalone
CoT method (Precision=0.9394, Recall=0.9624, F1=0.9507). More detailed discussion
and comparison of achieved results is provided in the Discussion subsection
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5.2.5 Binary Detection Discussion

This section summarizes the results from the Binary Detection task across various prompt-
ing methods, including zero-shot, one-shot, three-shot, five-shot, Chain-of-Thought (CoT),
and CoT combined with five-shot. Presented below is an overview of the Precision, Recall,
and F1 scores obtained from each prompt used in the Binary Detection task.

Prompt Precision Recall F1
0-shot 0.9948 0.7255 0.8391
1-shot 0.9972 0.6910 0.8163
3-shot 0.9986 0.7110 0.8306
5-shot 0.9985 0.6962 0.8204
CoT 0.9394 0.9624 0.9507
CoT + 5-shot 0.9988 0.8874 0.9398

Table 25. Comparison of Prompts Precision, Recall and F1 Scores in Binary Detection
Task

Reviewing the data presented in the table above, it becomes evident that the CoT + 5-
shot method achieved the highest Precision score. In contrast, the CoT approach alone
attained the highest scores in both Recall and F1 metrics. This can be explained by the
inherent trade-offs between precision and recall when combining Chain-of-Thought (CoT)
reasoning with multiple examples per class (5-shot). The CoT + 5-shot approach provides
the model with structured reasoning (via CoT) and additional context (via the 5-shot
examples), which helps refine its decision boundaries, resulting in the highest precision
score of 0.9989. However, the emphasis on precision often comes at the cost of recall,
as the model may adopt a stricter classification threshold to minimize false positives,
potentially leading to more false negatives.

On the other hand, the CoT approach alone focuses solely on enhancing reasoning without
the added contextual examples from k-shot prompting. This allows the model to generalize
more effectively across unseen instances, boosting recall to 0.9624 and achieving the
highest F1 score (0.9508). The higher recall indicates that CoT alone is better at identifying
a broader range of malicious activities, albeit with slightly reduced precision compared to
CoT + 5-shot.
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Class # per Class 0-shot 1-shot 3-shot 5-shot CoT CoT+5-shot
Initial Access 12 0.9167 0.9091 0.8889 1.0000 0.9167 1.0000
Exfiltration 14 0.9286 0.8462 1.0000 1.0000 1.0000 1.0000
Lateral Movement 21 0.6667 0.7500 0.7778 0.7500 0.8571 0.8125
Collection 28 0.6786 0.7407 0.7600 0.7391 0.9643 0.9130
Impact 30 0.7333 0.6552 0.7778 0.8000 0.9667 0.9600
Command and control 53 0.6604 0.6538 0.6800 0.6667 0.9811 0.8750
Persistence 60 0.8833 0.8814 0.8947 0.8727 0.9833 0.9636
Execution 61 0.7705 0.6500 0.7931 0.7500 0.9836 0.8750
Credential Access 118 0.8559 0.8547 0.8261 0.8319 0.9831 0.9646
Privilege Escalation 119 0.9160 0.8559 0.8621 0.8772 0.9916 0.9649
Discovery 181 0.4475 0.4667 0.4888 0.4773 0.8895 0.7670
Defense Evasion 367 0.7275 0.6612 0.6731 0.6464 0.9782 0.8812
Benign Activity 1064 0.9962 0.9981 0.9991 0.9991 0.9380 0.9991
Average 0.7832 0.7633 0.8016 0.8008 0.9564 0.9212

Table 26. Comparison Of Recall Metrics Across Different Prompts

Analyzing recall metrics per class among different prompts, we observe that minority
classes, such as Initial Access (12 examples), Exfiltration (14 examples), Lateral Movement
(21 examples), Collection (28 examples), and Impact (30 examples), demonstrate unusually
high recall scores under the 3-shot and 5-shot strategies. This phenomenon can be attributed
to the limited sample space available for these classes, which potentially leads to overfitting
when specific examples are included in the prompt. By incorporating examples directly
related to these classes, the model may rely heavily on those patterns, artificially inflating
recall scores for the limited dataset.

For instance, Exfiltration achieves perfect recall (1.000) under 3-shot, 5-shot, CoT, and
CoT+5-shot prompts, suggesting that the inclusion of a few representative examples
significantly enhances detection for this minority class. However, such improvements may
not necessarily generalize to unseen data, as the model could be leveraging prompt-specific
information rather than learning broader patterns.

In contrast, for majority classes like Benign Activity (1064 examples) or Defense Evasion
(367 examples), recall is generally lower with multi-shot prompts, as these classes possess
greater variability in their data. The model’s performance on these classes benefits more
from reasoning techniques, such as CoT, which consistently shows substantial improve-
ments in recall across diverse and complex classes, reaching 0.9782 for Defense Evasion
and 0.8895 for Discovery.

Slightly lower recall metrics are observed for Discovery (0-shot: 0.4475; CoT: 0.8895)
and Lateral Movement (0-shot: 0.6667; CoT: 0.8571). This could be, in part, due to
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the wide diversity of available malicious techniques. These classes encompass a broad
range of techniques, which increases variability in their patterns. For example, Discovery
includes various reconnaissance and enumeration activities that can appear in numerous
forms, making it challenging for the model to generalize effectively across all possible
manifestations. Similarly, Lateral Movement involves diverse strategies, such as credential
theft and exploitation, which further complicates accurate detection.

A contributing factor may be the difficulty in distinguishing malicious behaviors from
benign activities: Both Discovery and Lateral Movement often overlap with legitimate
system behaviors. For instance, administrative tasks or software updates may mimic
reconnaissance or lateral access patterns, resulting in higher false negatives as the model
struggles to differentiate between benign and malicious intent.

Techniques like Chain-of-Thought prompting, which emphasizes structured reasoning,
show promise for addressing some of these difficulties, as seen by the improvements in
recall for Discovery (from 0.4475 in 0-shot to 0.8895 in CoT). Future approaches could
also involve specialized fine-tuning for high-variance classes and leveraging auxiliary data
sources (or RAG approach) to reduce ambiguity in classification.

Overall, the CoT approach demonstrates the highest average recall (0.9564), indicating its
ability to generalize effectively across both minority and majority classes. However, the
observed recall inflation in smaller classes for 3-shot and 5-shot prompts underscores the
importance of considering data distribution and potential overfitting when evaluating the
effectiveness of prompting strategies, as well as selecting k-shots.
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5.3 Malicious Activity Multiclass Classification

This section outlines the results of a multiclass classification task. Various prompting tech-
niques were employed, including Zero-shot, One-shot, 3-shot, 5-shot, Chain-of-Thought,
and Chain-of-Thought + 5-shot, to distinguish between malicious and benign activities and
categorize them into the correct classes (such as identifying "Collection" as "Collection"
and "Lateral Movement" as "Lateral Movement" and others).

5.3.1 Zero-shot
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Collection 7 7 4
Lateral Movement 5 1 2 2 1 2
Command And Control 9 2 1 4 1 3 8 2
Discovery 10 5 8 124 10 35 1 1 1 3 19 5 16
Execution 2 4 23 27 34 124 4 6 15 25 37
Defense Evasion 1 1 2 3 5 125 10 9 1 7 75
Impact 2 1 5 3
Exfiltration 5 3 1 1 1 1 11 2 20
Initial Access 1
Persistence 1 2 2 1 34 1 20 43 3
Credential Access 2 2 7 3 8 2 1 1 2 57 6
Privilege Escalation 2 1 8 4 30 6 1 3 8 1 21 2
Benign Activity 1 2 3 941
Total 28 21 53 181 61 367 30 14 12 60 118 119 1064

Table 27. Zero-shot Classification Results Table

The table presents the zero-shot classification results for a multiclass task involving a
total of 2,128 logs, evenly distributed between 1,064 malicious logs and 1,064 benign
logs. Using a zero-shot classification prompt, where the model relied solely on pre-trained
knowledge without explicit examples in the prompt, several patterns emerged. The model
demonstrated high precision in identifying the majority class for Benign Activity, correctly
classifying 941 out of 1,064 logs. This reflects its strong capability to recognize benign
behavior in a zero-shot setting. However, performance was moderate for some malicious
classes, such as Discovery (124 correct out of 181) and Defense Evasion (125 correct
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out of 367), highlighting the model’s partial understanding of these categories but also
revealing significant misclassification into other classes, such as Execution.

Malicious classes with fewer samples, such as Lateral Movement (21 logs) and Collection
(28 logs), exhibited poor classification accuracy, with frequent misclassifications into
related or larger classes like Discovery.

A notable trend was confusion between conceptually similar classes, such as Defense
Evasion and Execution, where many Defense Evasion logs were misclassified as Execution
in 124 cases. This misclassification likely stems from the theoretical overlap between these
attack strategies, as an attacker pursuing Defense Evasion techniques often necessitates
achieving some form of Execution to bypass security mechanisms effectively. The close
relationship between these two stages of an attack cycle creates challenges for the model
in distinguishing them clearly, particularly in a zero-shot setting where contextual nuances
are not explicitly provided. Similarly, Persistence techniques were frequently misclassified
as Execution (15 occurrences) and Privilege Escalation as Persistence (43 occurrences).
These findings suggest that Zero-shot prompting alone is insufficient for nuanced multi-
class classification, as it lacks the contextual reasoning needed to effectively differentiate
overlapping classes.

Recall Precision F1-score
Collection 0.25 0.3888888889 0.3043478261
Lateral Movement 0.2380952381 0.3846153846 0.2941176471
Command And Control 0.1698113208 0.3 0.2168674699
Discovery 0.6850828729 0.5210084034 0.5918854415
Execution 0.5573770492 0.1129568106 0.1878453039
Defense Evasion 0.340599455 0.5230125523 0.4125412541
Impact 0.1666666667 0.4545454545 0.243902439
Exfiltration 0.7857142857 0.2444444444 0.3728813559
Initial Access 0 0 0
Persistence 0.3333333333 0.1869158879 0.2395209581
Credential Access 0.4830508475 0.6263736264 0.5454545455
Privilege Escalation 0.1764705882 0.2413793103 0.2038834951
Benign Activity 0.8843984962 0.9936642027 0.9358528095

Table 28. Zero-shot Recall, Precision, F1-Score Per Class
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Macro Recall = 0.3900461657
Macro Precision = 0.3829080743
Macro F1 = 0.3499308112
Micro F1 = 0.638627

The table above presents the recall, precision, and F1-score metrics for the individual
classes in the zero-shot classification task. The data reveals significant variability in
performance across different categories. For instance, the Benign Activity class exhibits
a high recall of 0.8844, precision of 0.9937, and a strong F1-score of 0.9359, indicating
that the model successfully identifies benign activity with high accuracy. In contrast,
several malicious activity classes, such as Initial Access, Impact, and Privilege Escalation,
demonstrate poor performance, with recall values near zero for Initial Access and low
F1-scores for Impact (0.2439) and Privilege Escalation (0.2039). These results further
confirm the difficulty the model faces in detecting certain types of malicious activity within
a zero-shot setup.

The confusion across certain classes, such as Collection and Lateral Movement, which
both have low recall (0.25 and 0.2381, respectively), suggests that these attack techniques
are too difficult to classify based on the limited behavioral characteristics available in
the logs, making them difficult to distinguish. Additionally, classes like Exfiltration and
Discovery show relatively higher recall values, with Exfiltration achieving 0.7857 and
Discovery 0.6850, suggesting that the model can better identify these activities within the
logs.

On average, the model’s Macro Recall (0.3900), Macro Precision (0.3829), and Macro
F1 (0.3499) reflect a relatively low performance when considering all classes equally.
This suggests that while the model excels at recognizing benign activities, its ability to
distinguish various malicious activities is inconsistent.

The micro F1 score of 0.6386, offers a more optimistic view of the model’s overall
performance. However, the significant performance disparities between individual classes
indicate the need for further optimization. Additionally, improving the classification of
harder-to-detect classes, such as Execution (F1-score of 0.1878), is crucial for achieving
detection capabilities which would be useful in real world scenarios. More detailed
discussion and comparison of achieved results is provided in the Discussion subsection.
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5.3.2 Few-Shot

One-shot Classification
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Collection 7 5 3
Lateral Movement 1 6 2 2 2 4 1
Command And Control 12 2 1 8 1 1 9 3 1
Discovery 3 3 5 117 11 25 1 1 1 27 8 2
Execution 3 1 16 13 29 98 5 2 8 11 4
Defense Evasion 4 3 2 4 6 168 11 10 2 12 17
Impact 2 9
Exfiltration 6 1 7 1 1 11 1 24 1
Initial Access 2 2 1
Persistence 5 1 26 2 26 1 44 1
Credential Access 2 1 15 2 7 1 2 60 8
Privilege Escalation 3 9 3 15 2 1 2 11 2 19 1
Benign Activity 1 1 2 13 2 14 1 1036
Total 27 20 52 180 60 366 29 13 11 59 117 118 1063

Table 29. One-shot Classification Results Table

With the one-shot classification prompt, we observe similar challenges to the zero-shot
setup, where a significant number of classes remain misclassified. However, a few classes
show stronger accuracy, notably Discovery (117 correct out of 180), Defense Evasion
(168 correct out of 366), and Benign Activity (1036 correct out of 1063). These classes
demonstrate a relatively better performance due to their clearer distinguishing features in
the data, likely aided by the single example provided in the prompt.

Despite these successes, there are recurring misclassifications. For example, Command
and Control (C2C) is often confused with Execution. This is not surprising, as C2C
activities commonly involve malicious implants listening for commands and executing
them. Therefore, the model may focus more on the execution aspect of the process, leading
to this mix-up. Similarly, Collection is frequently misclassified as Exfiltration, which
makes sense given that collection is often a precursor to the exfiltration of data. This
overlap in behavior results in the model mistakenly categorizing one as the other.
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Moreover, Privilege Escalation is often confused with Persistence, which could be at-
tributed to the similarities in the tools used by attackers in these stages. For instance, both
privilege escalation and persistence techniques often involve the modification of system
settings or use of similar tactics such as scheduled tasks, registry modifications, or process
injections. These shared characteristics might lead the language model to struggle in
accurately distinguishing between these two classes.

Overall, while the one-shot prompt offers some improvement over the zero-shot setup,
the classification issues highlighted indicate that more training examples or advanced
prompting techniques could help reduce confusion between conceptually similar attack
techniques.

Recall Precision F1-score
Collection 0.2592592593 0.4666666667 0.3333333333
Lateral Movement 0.3 0.3333333333 0.3157894737
Command And Control 0.2307692308 0.3157894737 0.2666666667
Discovery 0.65 0.5735294118 0.609375
Execution 0.4833333333 0.1526315789 0.232
Defense Evasion 0.4590163934 0.7029288703 0.5553719008
Impact 0.3103448276 0.8181818182 0.45
Exfiltration 0.8461538462 0.2075471698 0.3333333333
Initial Access 0.1818181818 0.4 0.25
Persistence 0.4406779661 0.2452830189 0.3151515152
Credential Access 0.5128205128 0.612244898 0.5581395349
Privilege Escalation 0.1610169492 0.2794117647 0.2043010753
Benign Activity 0.9746001881 0.9682242991 0.9714017815

Table 30. One-shot Recall, Precision, F1-Score Per Class

Macro Recall = 0.4469085145
Macro Precision = 0.4673671003
Macro F1 = 0.4149895088
Micro F1 = 0.7101654846

The one-shot prompting results continue to reveal significant variations in performance
across classes. Benign Activity continues to perform well with high recall (0.9746), preci-
sion (0.9682), and F1-score (0.9714), indicating accurate identification of non-malicious
activity. However, several malicious activity classes show poor performance. Initial Access
has a low recall (0.1818) and F1-score (0.25), further confirming difficulty in detecting this
class. Execution also struggles, with a recall of 0.4833 and F1-score of 0.232, likely due
to its complex and context-dependent nature, as well as the diversity of available attack
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vectors and attack techniques.

Exfiltration has a high recall (0.8462) but low precision (0.2075), indicating that while
it is frequently identified, there are many false positives. Privilege Escalation performs
poorly, with a recall of 0.1610 and F1-score of 0.2043, likely due to its overlap with other
techniques like Persistence.

Discovery performs better with a recall of 0.65, precision of 0.5735, and F1 of 0.6094,
suggesting it is easier to detect than more subtle attack behaviors. Collection, Lateral
Movement, and Command and Control are often misclassified, likely due to shared behav-
iors across classes. Overall, while one-shot prompting improves performance, challenges
remain in detecting and distinguishing complex or subtle attack techniques. The macro
metrics (recall: 0.4469, precision: 0.4674, F1: 0.415) indicate room for improvement,
particularly in balancing recall and precision across classes.

Macro Recall Macro Precision Macro F1 Micro F1
Zero-shot 0.3900461657 0.3829080743 0.3499308112 0.6386278195
One-shot 0.4469085145 0.4673671003 0.4149895088 0.7101654846
Difference 0.05686234884 0.08445902594 0.06505869761 0.07153766508

Table 31. Zero-shot vs One-shot Macro and Micro Metrics

Analyzing the micro and macro metrics, we observe a noticeable improvement in classi-
fication performance when moving from zero-shot to one-shot prompts, with the latter
outperforming in all four metrics. This indicates that simply adding one example per class
via k-shot can boost performance. More detailed discussion and comparison of achieved
results is provided in the Discussion subsection.
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3-Shot Classification
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Collection 7 6 1 5
Lateral Movement 7 1 1 5 2 2 2 1
Command And Control 12 7 3 5 1 6 1 2
Discovery 4 8 113 12 26 4 18 4 1
Execution 1 5 19 25 105 3 2 6 15 19 1
Defense Evasion 2 1 3 2 158 7 1 9 2 10 9
Impact 2 1 6 1
Exfiltration 4 2 3 14 1 2 10 1
Initial Access 1 1 2 2 1 1
Persistence 1 2 2 25 2 24 2 43
Credential Access 4 8 1 3 2 59 9
Privilege Escalation 1 8 5 16 5 1 2 12 5 25
Benign Activity 1 1 4 17 18 3 1 3 1047
Total 25 18 50 178 58 364 27 11 9 57 115 116 1061

Table 32. 3-shot Classification Results Table

With the 3-shot classification prompt, we observe similar classification trends to the zero-
shot and one-shot results. Discovery is correctly classified in 113 out of 178 cases, while
Defense Evasion is accurately identified in 158 out of 364 instances, with 105 misclassifi-
cations as Execution. This misclassification is likely due to the overlap between Defense
Evasion and Execution, as many defense evasion techniques necessitate execution, either
directly or via services like scheduled tasks, LNK exploits, or WMI. Consequently, these
two attack categories exhibit similar behavioral patterns, leading to frequent confusion.

Impact and Initial Access remain challenging to classify, likely because of their broad and
somewhat ambiguous definitions. Despite these challenges, Benign Activity continues
to be accurately identified, demonstrating consistent performance in distinguishing non-
malicious activity. These trends indicate that while 3-shot prompting improves accuracy
over zero-shot and one-shot methods, certain attack categories still present significant
challenges due to their inherent complexity or conceptual overlap.
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Recall Precision F1-score
Collection 0.28 0.3684210526 0.3181818182
Lateral Movement 0.3888888889 0.3333333333 0.358974359
Command And Control 0.24 0.3243243243 0.275862069
Discovery 0.6348314607 0.5947368421 0.6141304348
Execution 0.4310344828 0.1243781095 0.1930501931
Defense Evasion 0.4340659341 0.7745098039 0.5563380282
Impact 0.2222222222 0.6 0.3243243243
Exfiltration 0.9090909091 0.2702702703 0.4166666667
Initial Access 0.1111111111 0.125 0.1176470588
Persistence 0.4210526316 0.2376237624 0.3037974684
Credential Access 0.5130434783 0.6860465116 0.5870646766
Privilege Escalation 0.2155172414 0.3125 0.2551020408
Benign Activity 0.986804901 0.9561643836 0.9712430427

Table 33. 3-shot Recall, Precision, F1-Score Per Class

Macro Recall = 0.4452048662
Macro Precision = 0.4390237226
Macro F1 = 0.4071063216
Micro F1 = 0.7151747247

Macro Recall Macro Precision Macro F1 Micro F1
Zero-shot 0.3900461657 0.3829080743 0.3499308112 0.6386278195
3-shot 0.4452048662 0.4390237226 0.4071063216 0.7151747247
Difference 0.05515870057 0.05611564827 0.05717551036 0.0765469052

Table 34. Zero-shot vs 3-shot Macro and Micro Metrics

Overall, while some class-specific metrics remain low (e.g., Privilege Escalation with recall
= 0.21551, precision = 0.3125, F1 = 0.255; Persistence with recall = 0.4210, precision =
0.2376, F1 = 0.3037; and others like Initial Access, Impact, and Command and Control),
examining the macro and micro metrics reveals a clear improvement with the 3-shot
prompt. Compared to the Zero-shot approach, the 3-shot method shows an increase in all
key metrics: macro recall improves by 0.0551, macro precision by 0.0561, macro F1 by
0.0571, and micro F1 by 0.0765. This indicates that the use of a 3-shot prompt provides
a more robust classification performance, especially in handling class misclassifications,
improving both overall accuracy and consistency across different attack techniques. More
detailed discussion and comparison of achieved results is provided in the Discussion
subsection.
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5-Shot Classification
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Collection 9 1 4 1
Lateral Movement 11 2 3 3 5 3
Command And Control 1 13 6 2 7 1 7 2 1
Discovery 4 1 7 108 10 30 1 1 3 10 3
Execution 4 1 13 18 29 95 3 2 4 15 23
Defense Evasion 2 1 2 5 4 140 5 1 5 2 12
Impact 1 1 11
Exfiltration 1 1 4 1 1 8 1 1
Initial Access 2 1 1 2
Persistence 2 21 1 29 35
Credential Access 1 9 1 8 1 1 65 11
Privilege Escalation 1 8 2 27 3 1 13 7 27
Benign Activity 1 3 15 2 25 1 1 1 1057
Total 23 16 48 176 56 362 25 9 7 55 113 114 1059

Table 35. 5-shot Classification Results Table

Using a 5-shot classification prompt, the main trends from previous results persist, but
with improvements in some classes. Lateral Movement is now identified with greater
accuracy, occurring correctly in 11 out of 16 cases, compared to lower performance in
earlier prompts. Impact is also more reliably classified, being identified in 11 out of 25
cases. Benign Activity continues to be classified accurately, with only 2 false positives.
Additionally, the Defense Evasion continues to be misclassified as Execution frequently.
However, the overall performance benefits from the additional context provided by the
5-shot approach.
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Recall Precision F1-score
Collection 0.3913043478 0.6 0.4736842105
Lateral Movement 0.6875 0.4074074074 0.511627907
Command And Control 0.2708333333 0.325 0.2954545455
Discovery 0.6136363636 0.606741573 0.6101694915
Execution 0.5178571429 0.1400966184 0.2205323194
Defense Evasion 0.3867403315 0.782122905 0.5175600739
Impact 0.44 0.8461538462 0.5789473684
Exfiltration 0.8888888889 0.4444444444 0.5925925926
Initial Access 0.1428571429 0.1666666667 0.1538461538
Persistence 0.5272727273 0.3295454545 0.4055944056
Credential Access 0.5752212389 0.6701030928 0.619047619
Privilege Escalation 0.2368421053 0.3033707865 0.2660098522
Benign Activity 0.9981114259 0.9556962025 0.976443418

Table 36. 5-shot Recall, Precision, F1-Score Per Class

Macro Recall = 0.5136203883
Macro Precision = 0.5059499229
Macro F1 = 0.478577689
Micro F1 = 0.7309743093

Macro Recall Macro Precision Macro F1 Micro F1
Zero-shot 0.3900461657 0.3829080743 0.3499308112 0.6386278195
5-shot 0.5136203883 0.5059499229 0.478577689 0.7309743093
Difference 0.1235742227 0.1230418486 0.1286468778 0.09234648971

Table 37. Zero-shot vs 5-shot Macro and Micro Metrics

Comparing zero-shot to 5-shot in a multiclass classification task, we can see a significant
improvement in all metrics. Macro Recall increases by 0.1236, indicating a better ability
to identify different classes across the entire dataset. Macro Precision also improves by
0.1230, suggesting a reduction in false positives. Similarly, Macro F1 shows a notable
increase of 0.1286 The Micro F1 score increases by 0.0923, indicating that the 5-shot
model is more effective in handling the overall distribution of classes. More detailed
discussion and comparison of achieved results is provided in the Discussion subsection
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5.3.3 Chain of Thought

Class C
ol

le
ct

io
n

L
at

er
al

M
ov

em
en

t

C
om

m
an

d
A

nd
C

on
tr

ol

D
is

co
ve

ry

E
xe

cu
tio

n

D
ef

en
se

E
va

si
on

Im
pa

ct

E
xfi

ltr
at

io
n

In
iti

al
A

cc
es

s

Pe
rs

is
te

nc
e

C
re

de
nt

ia
lA

cc
es

s

Pr
iv

ile
ge

E
sc

al
at

io
n

B
en

ig
n

A
ct

iv
ity

Collection 4 3 5
Lateral Movement 2 2 1 1
Command And Control 2 1 13 4 1 5 1
Discovery 5 9 95 10 70 9 2 1 11 13 14
Execution 7 8 19 33 39 137 6 3 4 25 38 47 10
Defense Evasion 3 4 3 80 8 2 2 3 7 2
Impact 1 2
Exfiltration 1 2 1 1 5 1 2
Initial Access 3 1 1 1 2
Persistence 19 2 14 1 23 1
Credential Access 1 2 6 7 2 37 8
Privilege Escalation 1 3 2 4 1 9 1 1 5 3 7
Benign Activity 4 4 6 32 7 39 3 2 3 11 10 1049
total 28 21 53 181 61 367 30 14 12 60 118 119 1064

Table 38. Chain-of-Thought Classification Results Table

Based on the table 42, we can observe that using CoT classification prompt, Defense
Evasion was classified as Execution 137 times, but only 80 times as Defense Evasion
itself. This suggests that the model struggles to distinguish between these two classes,
which could be due to their behavioral similarities in some attack scenarios. A similar
trend is observed for Persistence, which was correctly identified 14 out of 60 times but
misclassified as Execution 25 times. This further indicates challenges in differentiating
between techniques that involve similar processes. Likewise, Credential Access was
misclassified as Execution 38 times, while being correctly identified as Credential Access
only 37 times, suggesting confusion in distinguishing these two concepts. Finally, for
Benign Activity, there is a noticeable drop in correct classifications compared to previous
results, pointing to potential issues in effectively separating benign and malicious activities,
particularly when they share similar characteristics in the system’s behavior.
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Recall Precision F1-score
Collection 0.1428571429 0.3333333333 0.2
Lateral Movement 0.09523809524 0.3333333333 0.1481481481
Command And Control 0.2452830189 0.4814814815 0.325
Discovery 0.5248618785 0.3974895397 0.4523809524
Execution 0.6393442623 0.1037234043 0.1784897025
Defense Evasion 0.2179836512 0.701754386 0.3326403326
Impact 0.06666666667 0.6666666667 0.1212121212
Exfiltration 0.3571428571 0.3846153846 0.3703703704
Initial Access 0 0 0
Persistence 0.2333333333 0.2333333333 0.2333333333
Credential Access 0.313559322 0.5873015873 0.408839779
Privilege Escalation 0.05882352941 0.1891891892 0.08974358974
Benign Activity 0.9859022556 0.8965811966 0.93912265

Table 39. CoT Recall, Precision, F1-Score Per Class

Macro Recall = 0.2985381549
Macro Precision = 0.4083694489
Macro F1 = 0.292252383
Micro F1 = 0.6329887218

Macro Recall Macro Precision Macro F1 Micro F1
Zero-shot 0.3900461657 0.3829080743 0.3499308112 0.6386278195
CoT 0.2985381549 0.4083694489 0.292252383 0.6329887218
Difference -0.09150801081 0.02546137459 -0.05767842819 -0.005639097744

Table 40. Zero-shot vs CoT Macro and Micro Metrics

One possible explanation for this is that while Chain of Thought (CoT) allows the model to
reason through more complex relationships and processes, it may also introduce unneces-
sary complexity that detracts from the model’s performance in a task like this. The added
reasoning steps could cause the model to misinterpret certain attack techniques or their
relationships, leading to a drop in classification accuracy. For instance, when the model
attempts to break down a classification task into multiple steps or logical deductions, it
might lose focus on key features or attributes of a class, resulting in a decrease in both recall
and precision. Additionally, CoT might introduce more room for error when distinguishing
between similar classes or when context is critical, as seen in the misclassifications of
Defense Evasion and Persistence as Execution. Thus, the reasoning process introduced by
CoT could potentially increase misclassifications and reduce the model’s overall efficiency
in the multiclass classification task. More detailed discussion and comparison of achieved
results is provided in the Discussion subsection
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5.3.4 Few-shot + CoT
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Collection 5 3 1 3
Lateral Movement 5 1 1 2 4
Command And Control 1 11 1 4 2 6 2
Discovery 5 1 5 91 7 63 5 1 2 16 8
Execution 4 3 19 26 41 104 5 1 1 5 26 27
Defense Evasion 1 1 1 1 88 1 7 5
Impact 6 1
Exfiltration 1 3 1 1 7 1
Initial Access 1 1 1 4 2 2
Persistence 1 14 1 20 1 34
Credential Access 2 8 1 7 2 44 9 1
Privilege Escalation 3 1 2 8 19 2 9 7 13
Benign Activity 4 2 6 35 2 58 4 8 9 13 1058
total 23 16 48 176 56 362 25 9 7 55 113 114 1059

Table 41. Chain-of-Thought + 5-shot Classification Results Table

By examining the results from the CoT + 5-shot classification, we observe that the existing
trends largely persist. The Discovery category stands out with a high classification accuracy
(albeit still mostly misclassified as Execution), identified 91 times. Likewise, the Defense
Evasion category also shows strong results, being correctly classified 88 times. However,
there remains a challenge as Defense Evasion is still frequently misclassified as Execution,
even with the addition of k-shots and a clarifying CoT prompt explaining their differences.
The Persistence category shows more consistency, with correct classification in 20 out of
55 instances. Meanwhile, benign activities continue to be correctly identified as benign in
strong majority of cases.
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Recall Precision F1-score
Collection 0.2173913043 0.4166666667 0.2857142857
Lateral Movement 0.3125 0.3846153846 0.3448275862
Command And Control 0.2291666667 0.4074074074 0.2933333333
Discovery 0.5170454545 0.4460784314 0.4789473684
Execution 0.7321428571 0.1564885496 0.2578616352
Defense Evasion 0.2430939227 0.8380952381 0.3768736617
Impact 0.24 0.8571428571 0.375
Exfiltration 0.7777777778 0.5 0.6086956522
Initial Access 0.5714285714 0.3636363636 0.4444444444
Persistence 0.3636363636 0.2816901408 0.3174603175
Credential Access 0.389380531 0.5945945946 0.4705882353
Privilege Escalation 0.1140350877 0.203125 0.1460674157
Benign Activity 0.9990557129 0.8824020017 0.9371124889

Table 42. CoT + 5-shot Recall, Precision, F1-Score Per Class

Macro Recall = 0.4389734038
Macro Precision = 0.4870725104
Macro F1 = 0.4105328019
Micro F1 = 0.6752302472

Macro Recall Macro Precision Macro F1 Micro F1
Zero-shot 0.3900461657 0.3829080743 0.3499308112 0.6386278195
CoT+5-shot 0.4389734038 0.4870725104 0.4105328019 0.6752302472
Difference 0.04892723817 0.1041644361 0.06060199068 0.03660242766

Table 43. Zero-shot vs CoT Macro and Micro Metrics

The comparison between the Zero-shot and CoT + 5-shot methods reveals improvements
in the classification performance when using the latter approach. Specifically, the Macro
Recall increases from 0.390 to 0.439, reflecting a gain of approximately 4.89%. This
suggests that CoT + 5-shot improves the model’s ability to correctly identify instances
across different classes. Moreover, Macro Precision demonstrates a more significant
improvement, rising from 0.383 to 0.487 (an increase of 10.41%), indicating better accuracy
in predicting positive instances without misclassifying them as other classes.

The Macro F1 score also shows an increase from 0.350 to 0.411 (a 6.06% improvement).
The Micro F1 score increases from 0.639 to 0.675, reflecting an overall enhancement in the
model’s classification capabilities. More detailed discussion and comparison of achieved
results is provided in the Discussion subsection.
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5.3.5 Multiclass Classification Discussion

This section summarizes the results from the Multiclass Classification Detection task
across various prompting methods, including zero-shot, one-shot, 3-shot, 5-shot, Chain-of-
Thought (CoT), and CoT combined with 5-shot. Below are presented micro and macro
metrics from the utilized prompting techniques

Prompt Macro Recall Macro Precision Macro F1 Micro F1
Zero-shot 0.3900 0.3829 0.3499 0.6386
One-shot 0.4469 0.4673 0.4149 0.7101
3-shot 0.4452 0.4390 0.4071 0.7151
5-shot 0.5136 0.5059 0.4785 0.7309
CoT 0.2985 0.4083 0.2922 0.6329
CoT+5-shot 0.4389 0.4870 0.4105 0.6752

Table 44. Comparison of Prompts Micro and Macro Metrics in Classification Task

In the multiclass classification task, 5-shot prompting emerged as the most effective ap-
proach, achieving the highest micro F1 score of 0.7309. This performance highlights the
importance of providing multiple examples to the model, particularly in the analysis Win-
dows logs, where understanding normal system behavior plays a critical role in successful
classification. However, the performance on other metrics, such as macro recall and macro
precision, is less impressive. This discrepancy likely arises due to the wide diversity of
tactics, many of which exploit unique and highly varied attack vectors.

The limitations of 5-shot prompting are partly attributable to the fixed context length, which
restricts the number of relevant examples that can be included in a single prompt. Conse-
quently, while the approach excels in identifying common or well-represented patterns, it
struggles with classes that require nuanced differentiation or have less representation in
the models training data.
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Class Zero-shot One-shot 3-shot 5-shot CoT CoT + 5-shot
Collection 0.2500 0.2593 0.2800 0.3913 0.1429 0.2174
Lateral Movement 0.2381 0.3000 0.3889 0.6875 0.0952 0.3125
Command And Control 0.1698 0.2308 0.2400 0.2708 0.2453 0.2292
Discovery 0.6851 0.6500 0.6348 0.6136 0.5249 0.5170
Execution 0.5574 0.4833 0.4310 0.5179 0.6393 0.7321
Defense Evasion 0.3406 0.4590 0.4341 0.3867 0.2180 0.2431
Impact 0.1667 0.3103 0.2222 0.4400 0.0667 0.2400
Exfiltration 0.7857 0.8462 0.9091 0.8889 0.3571 0.7778
Initial Access 0.0000 0.1818 0.1111 0.1429 0.0000 0.5714
Persistence 0.3333 0.4407 0.4211 0.5273 0.2333 0.3636
Credential Access 0.4831 0.5128 0.5130 0.5752 0.3136 0.3894
Privilege Escalation 0.1765 0.1610 0.2155 0.2368 0.0588 0.1140
Benign Activity 0.8844 0.9746 0.9868 0.9981 0.9859 0.9991

Table 45. Comparison Of Per-class Recall in Classification Task

Analyzing the per-class recall, it is evident that 5-shot prompting generally achieves
the highest scores across most classes, though the results remain moderate for several
categories. Notable improvements with 5-shot are observed in classes such as Lateral
Movement (0.6875), Impact (0.4400), and Persistence (0.5273). This suggests that provid-
ing additional examples often enhances the model’s understanding, particularly for more
nuanced activities.

However, the results also indicate diminishing returns or even potential confusion in certain
cases. For instance, in the Discovery class, recall drops slightly from the highest zero-shot
score of 0.6851 to 0.6136 in 5-shot. Similarly, for Defense Evasion, recall declines from its
peak of 0.4590 (one-shot) to 0.3867 in 5-shot. This might be due to the increased context
introducing ambiguity or overlapping features between classes, especially for conceptually
similar tactics.

Moreover, certain classes such as Exfiltration (0.9091 in 3-shot) and Benign Activity
(0.9991 in CoT + 5-shot) demonstrate that the approach performs exceptionally well for
more distinct or well-defined behaviors. Yet, for inherently ambiguous categories like
Command and Control or Privilege Escalation, even 5-shot does not drastically improve
recall, possibly reflecting a need for more context beyond the fixed prompt size.

Overall, while 5-shot prompting provides measurable gains in some cases, it also under-
scores challenges in multiclass classification when faced with overlapping tactics or limited
capacity for nuanced differentiation.
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6. Discussion

This section presents the results of utilizing various prompting methods for Binary Detec-
tion and Multiclass Classification of both malicious and benign Windows Event logs.

Binary Detection Task Discussion
The Binary Detection task results reveal key insights into the effectiveness of various
prompting techniques: zero-shot, one-shot, three-shot, five-shot, Chain-of-Thought (CoT),
and CoT + 5-shot. Each method demonstrates unique strengths and limitations.

The CoT + 5-shot method achieves the highest Precision score (0.9988), driven by struc-
tured reasoning and detailed context from 5-shot examples. This combination sharpens
decision boundaries, enhancing precision but lowering recall due to stricter thresholds that
exclude some true positives, increasing false negatives. Conversely, standalone CoT excels
in Recall (CoT Recall of 0.9624 vs CoT+5-shot Recall of 0.8874) and F1 score (CoT F1 of
0.9507 vs CoT+5-shot F1 of 0.9398), relying on reasoning rather than contextual examples.
This flexibility helps it identify a broader range of incidents, though at a slight precision
tradeoff compared to CoT + 5-shot.

Minority classes like Initial Access and Exfiltration show inflated recall under 3-shot and
5-shot prompts, indicating overfitting to narrow patterns due to limited data. While these
methods improve recall for smaller classes, they risk sacrificing generalization for unseen
examples. For majority classes, such as Benign Activity and Defense Evasion, CoT delivers
strong recall by leveraging nuanced reasoning to capture diverse behaviors. However,
lower recall for Discovery and Lateral Movement highlights challenges in generalizing
across their wide technique range and overlap with benign actions.

Overall, CoT’s strong recall across varied classes underscores its potential, though overfit-
ting in smaller classes with 3-shot and 5-shot methods stresses the need for balanced data
distribution and prompt selection to enhance model reliability.

Multiclass Classification Task Discussion
The multiclass classification analysis highlights both the strengths and limitations of various
prompting methods, with 5-shot prompting standing out in certain areas. Achieving the
highest micro F1 score of 0.7309, it demonstrates the effectiveness of providing multiple
examples, particularly in the context of complex tasks like analyzing Windows logs, where
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distinguishing between diverse system behaviors is crucial. This suggests that carefully
selected examples enhance the model’s ability to generalize across recurring patterns.

However, the metrics such as macro recall and macro precision, reveal the constraints
of 5-shot prompting in handling the diversity and complexity of attack tactics. The
limited prompt size struggles to encompass the wide range of behaviors, particularly for
underrepresented or highly variable tactics requiring more intricate differentiation.

Per-class recall analysis shows significant improvements for classes like Lateral Movement,
Impact, and Persistence, where additional examples enrich the model’s contextual under-
standing. Yet, declines in recall for Discovery and Defense Evasion indicate challenges
arising from overlapping features or ambiguities introduced by constrained prompt sizes.

Exceptional recall scores in Exfiltration (0.9091) and Benign Activity (0.9991) reflect the
method’s ability to identify distinct and well-defined patterns. Conversely, performance
for classes like Command and Control and Privilege Escalation remains less effective,
indicating difficulties in accommodating complex contexts within fixed prompts.

In summary, while 5-shot prompting enhances classification for specific classes, it under-
scores persistent challenges in differentiating overlapping tactics and managing prompt size
constraints. Future research should explore dynamic context incorporation and adaptive
prompt strategies to build more robust models for incident response and digital forensics
using LLMs.

Overall, this research demonstrates that the choice of prompting method should align with
the complexity of the task - binary detection versus more detailed activity classification.
Cyberattack activities often blur the lines between categories, as their classification depends
heavily on context, including preceding and subsequent actions. For instance, creating
a scheduled task to execute a malicious file at system boot would typically be classified
as a persistence technique. However, if the attacker initially escalated privileges to gain
access necessary to configure the scheduled task, the same action might also be considered
privilege escalation. Similarly, during intra-network lateral movement, the preceding
activity often involves enumeration and analysis of available hosts on the network, which
would typically be classified as discovery. However, if the attacker subsequently leverages
this information to move laterally across the network, the activity shifts classification to
lateral movement - even though the initial steps are more closely aligned with discovery.

As such, accurately classifying activity without understanding the full picture is incredibly
challenging. This contextual dependence makes it unsurprising that the LLMs struggled to
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achieve consistently strong scores. One key observation from this research is that the Chain
of Thought prompting strategy performed the best in binary classification tasks, achieving
the highest F1-score of 95.07%. In contrast, all prompting strategies yielded relatively
low F1-scores in multiclass scenarios. This suggests that binary classification may be
more appropriate for practical use, as identifying an issue from the logs can be much more
challenging for human analysts, while classifying an already identified log fragment is a
more straightforward task. The CoT strategy, which excels in binary classification, stands
out because it does not rely on a set of pre-existing examples, distinguishing it from other
strategies that use previously created examples in the prompt. In the context of LLMs,
such approaches can be referred to as unsupervised LLM-based methods.

6.1 Limitations

The study is subject to several limitations. First, the experimentation with LLM, specifically
GPT-4o, was cost-constrained, allowing each prompt to be executed only once. This is a
significant limitation, as LLMs are non-deterministic, and their outputs can vary across
different executions. Ideally, multiple executions per prompt would provide a more accurate
assessment of the variability in the detection metrics and results. Another limitation is
the use of public LLMs, which, in the context of log analysis, could lead to sensitive log
data being shared with a third-party service provider. In a real-world scenario, it would be
preferable to use a self-hosted model to ensure greater data privacy and security.

Secondly, the study’s focus was limited to Windows 10, despite the existence of numerous
other operating systems, including legacy Windows (XP, 7 etc.) versions, various Linux
distributions (Ubuntu, Fedora etc.), and cloud-based environments (AWS, GCP, Azure
etc.), which are also frequent targets of cyber attacks. This narrow focus restricts the
generalizability of the findings.

Thirdly, the dataset used in the study was generated using more aggressive simulated attack
tactics, suitable for detecting "smash and grab" style attacks but inadequate for analyz-
ing Advanced Persistent Threats style of attacks that employ more strategic, prolonged
methodologies frequently spanning weeks or even months. The current dataset and the
context window size limitations of LLMs do not support such analysis.

Additionally, the malicious dataset was generated using Windows virtual machines, while
the benign dataset was sourced from the author’s physical, non-virtualized PC. Although
efforts were made to standardize the logging configuration across both datasets, the
difference in the underlying environments likely introduced inconsistencies and slight
structural differences. Ideally, both datasets would have been generated on the same
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machine or host to minimize such discrepancies and ensure greater consistency between
the datasets.

Lastly, the rapidly evolving landscape of LLMs presents another limitation. The study
exclusively used GPT-4o, without exploring models which are more oriented towards
technical content such as DeepSeek or employing fine-tuning techniques that could enhance
performance (Guo et al., 2024). This reliance on a single, non-finetuned model further
constrains the study’s scope and applicability.

6.2 Future Work

The future of research on the application of large language models for log analysis in
incident response and digital forensics offers numerous avenues to explore. It is based
on addressing key areas of development and innovation to improve the effectiveness and
reliability of LLMs and related advances.

Enhancing dataset diversity remains a critical priority. Future studies should integrate a
broader range of operating systems and environments, encompassing legacy Windows
versions, diverse Linux distributions, and cloud-based platforms. This expansion has the
potential to improve the generalizability of findings and also provide a more nuanced
understanding of LLM applicability across heterogeneous systems and contexts.

Another possible avenue could be the inclusion of Advanced Persistent Threat attack
scenarios (e.g., based on known APT TTPs) or simply more advanced attack types in
datasets. APTs frequently have more sophisticated and delicate tactics & techniques,
and hence demand datasets that authentically reflect such activities. Incorporating these
scenarios would enable researchers to better evaluate LLM capabilities to identify complex
and stealthy attack patterns over extended timeframes.

To address the inherent non-deterministic nature of LLMs, future work should involve
conducting multiple execution trials for each prompt. This practice would help quantify
variability in detection metrics, thus ensuring a more robust and reliable evaluation of LLM
performance across different scenarios.

Exploring alternative LLM models, such as DeepSeek, alongside fine-tuning techniques is
another promising avenue. These efforts could potentially enhance models specialization
and adaptability to cybersecurity-specific contexts, potentially uncovering new capabilities
for detecting and mitigating threats in a targeted and efficient manner.
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Additionally, research could focus on dynamic context incorporation and adaptive prompt
engineering. These techniques could help with tackling problems encountered in this
research, such as overlapping attack tactics and constrained prompt sizes.

Achieving balanced data representation is equally important. Ensuring equitable distribu-
tion across different simulated attack type classes, particularly for minority attack vectors,
will help mitigate overfitting and provide further insight into the detection capability of the
underrepresented classes. This step is essential for assessing the accuracy of detections,
especially with less frequent but highly significant cyber threats.
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7. Conclusion

This thesis makes several important contributions to the existing body of knowledge and
addresses a significant gap in current research. Specifically, it offers a comprehensive
examination of the capabilities of Large Language Models in cyber threat detection - an
area that has received relatively little attention in prior studies.

The research highlights that binary classification may be a more practical application of
LLMs in this domain. While human analysts often find it challenging to identify issues
directly from raw logs, classifying pre-identified log fragments is a comparatively simpler
and more effective task. Among the various strategies analyzed, the Chain-of-Thought
(CoT) approach emerges as particularly effective for binary classification. Unlike other
methods that rely on pre-existing examples embedded within the prompt, the CoT strategy
operates independently of such examples, offering both flexibility and adaptability across
diverse operational environments. Within the context of LLMs, this approach can be
characterized as an unsupervised LLM-based detection method.

Another major accomplishment of this study is the creation of a new dataset consisting of
1064 unique attack technique logs. Each attack log contains to detailed set of Windows
Event logs, which include Sysmon, Security, System, Application, and PowerShell logs.
This dataset stands out due to its breadth and pertinence, overcoming the constraints of
existing host-intrusion datasets that are either outdated or narrowly focused on certain
types of attacks. This dataset covers 13 different categories from the MITRE ATT&CK
framework and includes a range of attacks from simple to complex, making it a valuable
resource for further study and experimentation. The accompanying dataset generation
scripts brings further value to the field, allowing users to customize the dataset creation
process. Instead of relying solely on the default Windows 10 setup, users can replace it with
their own system snapshot. This flexibility makes it possible to simulate attacks tailored to
specific research needs or organizational setups, enabling researchers and practitioners to
create scenarios that better reflect their unique environments. The dataset can be accessed
from the following Atomic EVTX GitHub Repository . The dataset generation script is
available in the appendices of this document.

In addressing the main research question, whether Large Language Models can enhance
the operational efficiency of incident response and digital forensic processes, this thesis
unveils promising insights and identifies areas where further development is required.

103

https://github.com/arniki/atomic-evtx


Preliminary findings indicate that LLMs indeed have the potential to augment the detection
of cyberattacks through the analysis of Windows logs. In regard to RQ1, the study
established that LLMs, when employing Chain-of-Thought (CoT) or CoT combined with a
5-shot prompt strategy, perform exceptionally well in binary detection of malicious activity.
Pure CoT achieved Precision of 0.9394, Recall of 0.9624, F1 of 0.9507 while CoT+5-
shot achieved Precision of 0.9988, Recall of 0.8874, F1 of 0.9398. This demonstrates a
substantial advancement in detection capabilities, showcasing LLMs as viable tools in
cyber threat detection tasks.

For RQ2, the potential of LLMs in classifying cyberattacks was validated, although the
results suggest that the current model configuration necessitates additional refinement.
The 5-shot prompting strategy yielded the highest scores with Micro F1 score of 0.7309,
Macro F1 score of 0.4785, Macro Precision of 0.5059 and Macro Recall of 0.5136. The
complexity of multiclass classification appears to require further fine-tuning of the model
parameters to reach optimal efficacy or more refined prompting strategy. This reveals a
path for future research, aimed at enhancing the adaptability and specificity of LLMs in
nuanced forensic scenarios.

Lastly, RQ3 explored optimal prompting strategies, concluding that CoT and CoT with a
5-shot strategy are most effective for binary detection tasks, while 5-shot prompts excel
in multiclass classification contexts. These findings provide a systematic approach to
employing LLMs efficiently, offering a tactical advantage in real-world incident response
and digital forensic applications.

Overall, the study affirms the transformative potential of LLMs and their potential value in
incident response and digital forensics. Nonetheless, more research is required to ensure
that these LLMs can be leveraged to their fullest potential in the rapidly evolving landscape
of cybersecurity. Through continued exploration and refinement, LLMs are poised to
become indispensable assets in the digital forensic and incident response toolkit.
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Appendix 2 - VM Orchestration and Attack Simulation
Powershell Script

GITHUB LINK HERE

1

2 # Start the script block

3 $startTime = Get-Date

4 Set-Location "D:\Virtual Box\"

5

6 # Define the array of TTP IDs

7 $ttpArray = @("T1562.002-1", "T1562.002-2", "T1562.002-3", ...)

8

9 # VM management functions

10 function Start-TargetVM {

11 param (

12 [int]$Timeout = 300,

13 [int]$Interval = 5

14 )

15 .\VBoxManage.exe startvm VM-WIN10-TRGT --type headless

16 $elapsedTime = 0

17 while (-not (Test-VMReady)) {

18 if ($elapsedTime -ge $Timeout) {

19 Write-Host "Timed out waiting for the VM to boot." -

ForegroundColor Red

20 exit 1

21 }

22 Write-Host " [?] Waiting for the VM to boot..." -

ForegroundColor Yellow

23 Start-Sleep -Seconds $Interval

24 $elapsedTime += $Interval

25 }

26 Write-Host "[+] Target Machine has fully booted" -ForegroundColor

Green

27 }

28

29 function Test-VMReady {

30 $result = .\VBoxManage.exe guestproperty get "VM-WIN10-TRGT" "/

VirtualBox/GuestInfo/OS/LoggedInUsers"

31 return ($result -notmatch "No value set!")

32 }

33

34 function Stop-TargetVM {
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35 $vmState = Get-VMState

36 switch -Regex ($vmState) {

37 ’running|paused|starting’ {

38 Write-Host "[+] VM is $vmState. Powering off..." -

ForegroundColor Yellow

39 .\VBoxManage.exe controlvm VM-WIN10-TRGT poweroff

40 }

41 ’saved’ {

42 Write-Host "[+] VM is in saved state. Discarding..." -

ForegroundColor Yellow

43 .\VBoxManage.exe discardstate VM-WIN10-TRGT

44 }

45 }

46 Wait-For-VMState -TargetState ’poweroff’

47 Write-Host "[+] VM is powered off and ready to restore the snapshot

." -ForegroundColor Green

48 }

49

50 function Get-VMState {

51 return (.\VBoxManage.exe showvminfo "VM-WIN10-TRGT" --

machinereadable | Select-String "VMState=").ToString().Split(’=’)

[1].Trim(’"’)

52 }

53

54 function Wait-For-VMState {

55 param (

56 [string]$TargetState,

57 [int]$Timeout = 60,

58 [int]$Interval = 3

59 )

60 $elapsedTime = 0

61 do {

62 Start-Sleep -Seconds $Interval

63 $currentState = Get-VMState

64 $elapsedTime += $Interval

65 if ($elapsedTime -ge $Timeout) {

66 Write-Host "Timed out waiting for VM state $TargetState" -

ForegroundColor Red

67 exit 1

68 }

69 } while ($currentState -ne $TargetState)

70 }

71

72 function New-RetryPSSession {

73 param (

74 [string]$ComputerName,

75 [PSCredential]$Credential,
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76 [int]$MaxAttempts = 5,

77 [int]$RetryIntervalSeconds = 10

78 )

79 Add-Type -AssemblyName System.Windows.Forms

80 for ($attempt = 1; $attempt -le $MaxAttempts; $attempt++) {

81 try {

82 Write-Host "Attempt $attempt to establish remote session

..." -ForegroundColor Yellow

83 $session = New-PSSession -ComputerName $ComputerName -

Credential $Credential -ErrorAction Stop

84 Write-Host "Remote session established successfully." -

ForegroundColor Green

85 return $session

86 }

87 catch {

88 Write-Host "Failed to establish remote session (Attempt

$attempt of $MaxAttempts)" -ForegroundColor Red

89 Write-Host "Error: $_" -ForegroundColor Red

90 if ($attempt -lt $MaxAttempts) {

91 Write-Host "Retrying in $RetryIntervalSeconds seconds

..." -ForegroundColor Yellow

92 Start-Sleep -Seconds $RetryIntervalSeconds

93 } else {

94 Write-Host "Max attempts reached. Unable to establish

remote session." -ForegroundColor Red

95 # Create and show Windows Notification

96 $notification = New-Object System.Windows.Forms.

NotifyIcon

97 $notification.Icon = [System.Drawing.SystemIcons]::

Error

98 $notification.BalloonTipIcon = [System.Windows.Forms.

ToolTipIcon]::Error

99 $notification.BalloonTipTitle = "Remote Session

Connection Failed"

100 $notification.BalloonTipText = "Failed to establish a

remote session with $ComputerName after $MaxAttempts attempts."

101 $notification.Visible = $true

102 $notification.ShowBalloonTip(5000)

103 # Exit the script

104 exit

105 }

106 }

107 }

108 }

109

110 # Preliminary configurations

111 Enable-PSRemoting -SkipNetworkProfileCheck -Force

112



112 winrm set winrm/config/client/auth ’@{Basic="true"}’

113 winrm set winrm/config/service/auth ’@{Basic="true"}’

114 winrm set winrm/config/client ’@{AllowUnencrypted="true"}’

115 winrm set winrm/config/service ’@{AllowUnencrypted="true"}’

116 Set-NetFirewallRule -Name ’WINRM-HTTP-In-TCP’ -RemoteAddress Any

117 Set-Item WSMan:\localhost\Client\TrustedHosts -Value ’*’ -Force

118

119 Import-Module "C:\AtomicRedTeam\invoke-atomicredteam\Invoke-

AtomicRedTeam.psd1" -Force

120 $PSDefaultParameterValues = @{"Invoke-AtomicTest:PathToAtomicsFolder"="

C:\AtomicRedTeam\atomics"}

121

122 $targetComputer = "Server002"

123 $credential = New-Object System.Management.Automation.PSCredential ("

admin_test", (ConvertTo-SecureString "123123" -AsPlainText -Force))

124 foreach ($ttp in $ttpArray) {

125 $startTime_ttp = Get-Date

126 $outputFolder = "D:\atomic_results\$ttp"

127 Write-Host "[*] Processing TTP: $ttp" -ForegroundColor Cyan

128 Start-TargetVM

129 Start-Sleep -Seconds 30

130 $session = New-RetryPSSession -ComputerName $targetComputer -

Credential $credential

131 if ($null -eq $session) {

132 Write-Host "Skipping TTP $ttp due to connection failure." -

ForegroundColor Red

133 continue

134 }

135 New-Item -Path $outputFolder -ItemType Directory -Force | Out-Null

136 Write-Host "Output folder created at $outputFolder" -

ForegroundColor Green

137 Write-Host "[*] Executing Pre-req installation" -ForegroundColor

Yellow

138 Invoke-AtomicTest $ttp -GetPrereqs -Session $session -

ExecutionLogPath "$outputFolder\$ttp.csv" *>&1 | Tee-Object "

$outputFolder\$ttp.txt" -Append

139 Write-Host "[*] Clearing pre-attack logs" -ForegroundColor Yellow

140 Invoke-Command -Session $session -ScriptBlock {

141 @("Microsoft-Windows-Sysmon/Operational", "Application", "

System", "Security", "Windows PowerShell") | ForEach-Object {

142 Write-Host "Clearing $_ logs..."

143 wevtutil cl $_

144 }

145 }

146 Write-Host "[*] Executing TTP" -ForegroundColor Yellow

147 Invoke-AtomicTest $ttp -Session $session -ExecutionLogPath "

$outputFolder\$ttp.csv" *>&1 | Tee-Object "$outputFolder\$ttp.txt"
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-Append

148 Start-Sleep -Seconds 30

149 Write-Host "[*] Exporting logs" -ForegroundColor Yellow

150 @("Microsoft-Windows-Sysmon/Operational", "Application", "System",

"Security", "Windows PowerShell") | ForEach-Object {

151 $logName = $_

152 $outputFile = Join-Path $outputFolder "$ttp‘_$($logName -

replace ’/’, ’_’).evtx"

153 try {

154 Invoke-Command -Session $session -ScriptBlock {

155 param($LogName)

156 $tempPath = Join-Path $env:TEMP "TempLog.evtx"

157 wevtutil epl $LogName $tempPath

158 Get-Content -Path $tempPath -Raw -Encoding Byte

159 Remove-Item -Path $tempPath -Force

160 } -ArgumentList $logName | Set-Content -Path $outputFile -

Encoding Byte

161 Write-Host "Log $logName exported successfully" -

ForegroundColor Green

162 }

163 catch {

164 Write-Host "Error exporting $logName : $_" -ForegroundColor

Red

165 }

166 }

167 Remove-PSSession $session

168 Stop-TargetVM

169 Write-Host "[*] Restoring backup" -ForegroundColor Yellow

170 .\VBoxManage.exe snapshot VM-WIN10-TRGT restorecurrent

171 $executionTime_ttp = (Get-Date) - $startTime_ttp

172 Write-Host "TTP $ttp completed. Execution time: $executionTime_ttp"

-ForegroundColor Cyan

173 Write-Host "--------------------------------------------" -

ForegroundColor Cyan

174 }

175 $totalExecutionTime = (Get-Date) - $startTime

176 Write-Host "Total script execution time: $totalExecutionTime" -

ForegroundColor Green

Listing 1. PowerShell Script For Dataset Generation
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