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CHAPTER 1 
 
INTRODUCTION 
 
Electrical impedance has been used for characterization of different objects for 
several decades. The most known fields of successful implementations are 
electrochemistry and material science, but also in biology and biotechnology. 
Food technology and especially medicine are the most interesting application 
fields for electrical bioimpedance [1] nowadays. At the same time, the creation 
of new methods and devices for impedance measurement are required, for 
example, wearable and implantable devices for medical monitoring and 
diagnosing and microfluidic devices for detection and identification of 
biological objects like living cells, cell cultures and different pathogens.  

The creation and implementation of bioimpedance based methods is a highly 
multidisciplinary field of science and technology, which requires the 
collaboration of experts in physics, chemistry, biology and medicine together 
with specialists and scientists from electrical and electronic engineering and 
information technology. Collaboration of the above mentioned professionals 
from such different fields requires common understanding of problems and a 
common language for their communication. It is expected that mathematical 
modelling on the bases of such physical models as electrical equivalent circuits 
can serve as common tools for that. Measurement of impedance is mostly time 
dependent (time-variant or non-stationary dynamic systems). Therefore, the 
time domain approach is used together with the frequency domain analysis. 

The implementation of bioimpedance based methods for monitoring and 
diagnosing in medicine has been one of the main research fields of Thomas 
Johann Seebeck Department of Electronics at Tallinn University of Technology 
for more than 20 years already. The present thesis work was carried out within 
the framework of the institutional research funded project IUT19-11 (2014-
2019) “Impedance spectroscopy based identification and control of objects: 
signals, algorithms, energy efficient solutions”. The ongoing research at the 
Department is also supported by Horizon2020-WIDESPREAD-2014-2-668995-
ERA Chair project Cognitive Electronics (2015-2019), which endeavours to 
spread excellence and greater participation in the European Research Area 
(ERA). Therefore neural networks have also been underlined in the thesis as 
artificial intelligence tools for achieving cognition ability. 

The results of the thesis will be used by the consortium of Horizon 2020 
flagship project FLAG-ERA JTC 2016 CONVERGENCE (proposal)  -  Energy 
Efficient Convergent Wearables for Healthcare and Lifestyle Applications 
(2016-2019). The consortium connects 15 European universities (leaders are 
EPF Lausanne and ETH Zürich) and several companies to offer unique 
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solutions for new generations of continuous healthcare and environmental 
monitoring and for development of smart apparel with embedded autonomous 
sensing. Such wearable systems enable personalized assistance for promoting a 
healthier lifestyle and improving preventive healthcare. The role of Tallinn 
University of Technology is to develop electrical bioimpedance based sensing 
methods for cardiovascular monitoring and to implement these methods 
together with European end users’ networks in healthcare. 

This thesis presents the methods of mathematical and physical modelling of the 
dynamic electrical bioimpedance of such biological objects in medicine as 
neuron, thymus and tooth, as well as the dynamic fluidic impedance of arteries 
using their electrical impedance equivalents. These models were developed 
theoretically and evaluated with the use of electronic simulation software   and 
it is hoped that they will be the basis for future experimental work. Safety of 
electrical bioimpedance measurements of patients is considered as a pertaining 
specific requirement for human experiments. Artificial neural networks have 
been discussed in the thesis as the tools for the diagnostic decision making in 
medicine on the bases of bioimpedance measurement results. Methods of 
electrical bioimpedance measurements and the subsequent safety of these 
methods in human experiments are of utmost importance. 
 
1.1 Motivation 
Rapid advances in technology as well as the fact that a large proportion of the 
population in the developed world lead a fast pace of life has been partly 
responsible for the sedentary lifestyle which many people have today. One 
possible consequence of this has been an increase in disorders such as 
Parkinson’s disease [2], cardiovascular problems (cause about 50% of deaths in 
developed countries [3]) and autoimmune diseases [4]. 

Parkinson's disease occurs when nerve cells or neurons that control movement 
become impaired and may die. Healthy neurons usually produce an important 
brain chemical called dopamine [5].  However, when the neurons die or become 
impaired, they produce less dopamine, a shortage of which causes mobility 
problems to sufferers of the disease. Over 4 million people worldwide are 
affected by the disease [6]. The fact that the human life span has increased in 
recent years means a larger number of people are likely to be afflicted by this 
disease. It would be both useful and practical to develop an equivalent electrical 
circuit which simulates and predicts the behaviour of a healthy neuron and one 
affected by Parkinson’s disease. Hypothetically, this model could be used to test 
the effects of different treatments on neurons.    

Atherosclerosis is a common cardiovascular condition which leads to the 
hardening of arteries [7]. It affects the inner lining of an artery and typically 
deposits of plaque narrow the diameter of the artery as the artery wall itself 
thickens impeding blood flow and restricting oxygen delivery. High blood 
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pressure and diseases as diabetes or just normal aging can cause atherosclerosis. 
For this reason it would be beneficial to simulate the fluidic bioimpedance of an 
artery by developing equivalent electrical circuits. Theoretically, this model 
could be used to compare a healthy artery with one with atherosclerosis.  

The immune system’s T-cells develop in a gland called the thymus but if these 
cells fail to recognize just one of the body’s myriad of proteins as its own, then 
autoimmunity, when the body no longer recognizes its own cells and attacks 
itself,   results [8]. The complex process of the development of B-cells in the 
bone marrow is a delicate balance between cell proliferation and apoptotic 
selection. If this balance is disturbed it causes an autoimmune reaction. With the 
use of artificial neural networks we can simulate the interaction between these 
cells and in theory we can better understand autoimmune diseases.    

 
1.2 Problem formulation 
For a better understanding of the physiological processes in biological systems, 
it is necessary to model the electric bioimpedance of these systems. The 
development of mathematical and physical models based on RLC electrical 
components and active operational amplifier (OpAmp) circuits is of interest. 
For example, such models enable the calculation of the electrical bioimpedance 
of both a healthy neuron and one affected by Parkinson’s disease.  
It would also be helpful to develop such electrical and mathematical models 
with the intention of calculating both the electrical impedance of an equivalent 
circuit and the fluidic impedance as of a healthy artery, as well as of one 
affected by atherosclerosis. 
In addition, with the use of artificial neural networks, which are very important 
tools in the field of artificial intelligence, we can develop a mathematical model 
to simulate the interaction between neural T-cells and B-cells in brain. This has 
been of particular interest in recent years as analogies between the brain and the 
immune system have been exploited to build artificial immune systems and 
immune algorithms with applications in computer science. 
 
1.3 Contributions 
The main contributions of this thesis towards the study of the aforementioned 
diseases and conditions are summarized as follows: 

(a) Electrical models based on RLC and OpAmp circuits were developed. With 
the aid of these (changing the values of their components), opened an ability to 
calculate the bioimpedance of a healthy neuron and of another one affected by 
Parkinson’s disease.  

(b) Similarly, electrical models which were based on RLC and RL components 
and OpAmp circuits were developed to calculate both the electrical impedance 
of the equivalent circuit and the fluidic impedance of a healthy artery or another 
one affected by atherosclerosis. 
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(c) Third, a detailed mathematical and physical model for simulating the 
immune system was also developed. The model uses neural networks of three 
neuron module to simulate the interaction between T-cells and B-cells taking 
into account that the biompedance is represented by the transfer functions from 
antigens to immune responses. This model also compares the dynamic 
behaviour of the cells of immune system, particularly the immune memories 
and the bifurcations from normal to abnormal behaviour.  

(d) Finally, a detailed mathematical and physical model for calculating the 
bioimpedance of a tooth was developed on the bases of a parallel RC equivalent 
circuit. The model helps to examine the root canal of a diseased tooth. 
 
1.4 Thesis structure 
The thesis contains 4 chapters and 1 appendix with 5 sub-sections. 

Chapter 1 introduces and describes the essence and role of the electrical 
impedance based approach in different fields of science and technology, 
concentrating the main attention onto implementation of electrical 
bioimpedance base methods in medical diagnostics. 

Chapter 2 provides background information related to this work. It describes 
dielectric material properties and their relative complex permittivity as well as 
its dependence on frequency. The expression of complex permittivity for 
different approaches such as Debye, Cole-Cole, Cole-Davidson and Havriliak-
Negami are discussed. In addition, the dielectric polarization is studied, the 
dielectric measurements are analysed, and both serial and parallel RC 
equivalent circuits are compared. Subsequently, a study of the dielectric 
response in time domain as the reaction to stepwise excitation is analysed. 

Chapter 3 describes the electrical impedance of biological specimens. Different 
equivalent circuits of tissues are studied, e.g. such as the Fricke-Morse model 
and the Debye model. Frequency dispersion, which defines the frequency 
dependence of the conductivity and the permittivity of a tissue, is presented. In 
addition, the two electrode and the four electrode methods for measuring 
impedance are analysed. 

The final chapter, Chapter 4, represents different mathematical and physical 
methods for analytical modelling of dynamic electrical bioimpedance. It begins 
with the mathematical and physical modelling of the dynamic electrical 
impedance of a neuron based on RLC and operational amplifier circuits and 
with the modelling of the dynamic fluidic impedance of arteries using electrical 
impedance equivalents such as RLC, RL and operational amplifier circuits. 
Subsequently, a mathematical and physical modelling of immune disease in 
terms of the alterations of the dynamic electrical impedance of thymus and bone 
marrow based on artificial neural networks and in non-linear components is 
studied, as well as mathematical and physical RC circuit based modelling of a 
tooth. 
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The Appendix gives the facts, aspects and results, which support the scientific 
part of the thesis and consists of the following 5 sub-sections.  
A-I presents the copies of selected research papers relevant to the thesis.  
A-II gives the programming codes developed.  
A-III describes the mathematical calculations with RC circuit. 
A-IV presents and compares the methods of impedance measurement. 
A-V considers the basics of electrical safety and analyses measurement safety. 
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CHAPTER 2 

DIELECTRIC MATERIALS AND MEASUREMENTS  

This chapter gives a brief overview of dielectric properties, relative complex 
permittivity and its dependence on frequency [9]. The significance of different 
approaches to complex permittivity is also discussed. The different mechanisms 
of polarization are then presented. Dielectric measurements are given and a 
comparison of RC serial and parallel equivalent circuits is made and the way in 
which the impedance of these circuits is affected by frequency is illustrated in 
the respective diagrams. The way in which dielectric properties change with 
time and frequency are also discussed. 

2.1 Dielectric Materials 
When an electric field (EF) can be maintained with zero or almost zero power 
losses in a material, then it is characterised as a dielectric or electrical insulator. 
In fact, the dielectric is not an ideal insulator, because a number of electrons can 
pass through the material. Because of the processes of changing the polarity in 
the material, part of the electrical energy is lost as heat. Dielectric material is 
one that has the ability to store energy when an external EF is applied. When a 
constant voltage is applied across the parallel plates of a capacitor with a 
dielectric between them, then more energy is stored. This means that the 
dielectric increases the ability of energy storage in the capacitor, eliminating 
some of the charges of the electrodes that would help in increasing the EF 
strength between the plates. The measured capacity with dielectric depends on 
the electrical loads of the material and is related to the dielectric constant. The 
following equation applies 

 r O r
O

C
C C

C
     ,        (2.1) 

where C and Co are the capacities with a dielectric and vacuum, respectively, 
and εr΄ is the relative dielectric permittivity of the material. Dielectric materials 
used in the manufacture of capacitors, are the most suitable for preventing the 
creation of electrical currents through their mass while at the same time 
maintaining the voltage in the different parts of the electrical devices. 
The relative dielectric constant of an insulating material should be close to 1 
while for a dielectric it can generally be up to 10. The terms dielectric and 
insulator are often used almost synonymously, but with the former we focus on 
the physical properties of the material while with the latter its use in practical 
applications. 
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2.2 Dielectric sizes 
2.2.1 Force between charges 
The electric force between the charges in a material is given by the following 
formula (Coulomb’s law) [1] 

  1 2
2

1

4 o

Q Q
F

r
                              (2.2) 

where εο = 8.854.10-12 F/m is the electric permittivity of free space. 
If material is inserted between the charges, power is reduced according to the 
formula 

 1 2
2

1

4

QQ
F

r
                                                                        (2.3) 

where ε is the absolute permittivity of the medium, which is given as 

or   , and εr is the relative permittivity of the medium. The dimensions of 

ε and εο are F/m in SI, but εr is a dimensionless number greater or equal to 1 in 
the case of the vacuum.  
The capacitance of a capacitor consisting of two parallel plates is given by the 
equation 

o A
C

d


                                                                         (2.4) 

where A is the area of each plate and d is the distance between them. 
The presence of a dielectric material between the plates reduces the electrical 
field between the plates due to the existence of a polarized field in the opposite 
direction within the material in which case the above equation becomes 

r o AA
C C

d d

 
    or 0rC C .                                           (2.5) 

For an ideal dielectric material ε is a real number but in practice for any 
dielectric material there is also an imaginary component that is associated with 
the dielectric loss because of the poor conductivity of the material which is why 
ε is called absolute complex permittivity which is also denoted by ε * and 
describes the total interaction of the dielectric materials with the variable 
electrical field. In this case the following equation is used  

j     .                                                                               (2.6) 

 
2.2.2 Relative complex permittivity (εr) 
In practice the relative complex permittivity is used instead of the absolute 
complex permittivity because it is dimensionless and takes simple numerical 
values. It is equal to the absolute complex permittivity divided by the electrical 
permittivity of free space, as given in equation (2.7) on the next page [1]: 
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 r r r
o o o

j j
    
  

             
   

                                      (2.7) 

where εο = 8.854·10-12 F/m is the electrical permittivity of free space. 
The component ε' in eq. (2.7) is the real part of the relative complex permittivity 

which is related to the stored energy within the medium, and r
 is the 

imaginary part of the relative complex permittivity which is related to the 
dissipation (or loss) of energy within the medium. 
The εr΄ is an indication of how much energy can be stored in the material by the 
applied EF and is called relative permittivity. For the vacuum εr΄ = 1 while for 
gaseous dielectric materials εr΄ ≈ 1, but for most liquid and solid insulators: 1 ≤ 
εr΄ ≤ 10. For semiconductors it is usually 10 ≤ εr΄ ≤ 20 and for metals εr΄ → ∞ 
because there are no dielectrics. The εr΄΄   is related to the loss of energy in the 
medium and is an indication of how polar loose the material is to the external 
imposed EF. Loose material in a frequency occurs when the polarization 
mechanism of the material is able to follow the EF changes applied to the 
material. The εr΄΄ is always a positive quantity much smaller than the εr΄.  
Another symbol for r is the *

r  or *
rk , in which case * ' ''

rk k jk  , where       

k΄= εr΄ and k΄΄= εr΄΄. 
 
2.2.3 Alternative approach of the relative complex permittivity  
When alternating voltage is applied to an ideal capacitor with a dielectric 
material but without losses, then the current in the circuit charges and 
discharges the capacitor every period (I charge). This current has a phase 
difference of 900 to the voltage and is equal to 

argch e O rI I Vj C I Vj C       .                    (2.8) 

If the same voltage is applied to real capacitor containing a dielectric, the total 
current will be a sum of two currents. Apart from the charging current I charge, 
there is a current loss I   loss, which is related to the energy loss in the material and 
therefore has the same phase as the voltage. The losses are modeled as a 

conductance (G) connected in parallel with the capacitance '
0rC C of the 

capacitor. The parallel CG equivalent circuit is shown in Fig. 2.1. 
 

 
Fig.2.1 Parallel equivalent circuit capacity-conductivity 
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The total current I is a sum: 
  

   arg 0

0

,

ch e loss r

O r

I I I V j C G I V j C G

G
I Vj C j

C

  

 


       

   
 

      (2.9) 

                                                                                                             

having ''

0
r

G

C



   and  ' ''

r r rj    . So the equation (2.9) becomes 

O rI Vj C  .                                 (2.10) 
 

This equation has the same form as eq. (2.8), but the real relative permittivity 

r
has been replaced by the relative complex permittivity r . The complex 

capacitance *
0rC C  can also be defined in the same way and includes both 

the actual capacity and losses due to the conductivity of the dielectric material. 
The complex dielectric permittivity εr consists of the real part (εr΄), which is 
related to the storage of electrical charges in an ideal capacitor and an 
imaginary part (εr΄΄) which is related to the losses of electrical charges through 
the conductance (G) of the tested dielectric material. 
 
2.2.4 Loss tangent 
When the relative complex dielectric permittivity εr is designed in vector format 
then the real and imaginary component of the equivalent circuit must have a 
phase difference of 90ο. The vector sum forms the angle δ with the real axis εr΄ 
(Fig.2.2).The tangent of this angle tanδ is an important factor in characterizing 
dielectrics and is called tangent losses. 

 
Fig.2.2 Vector diagram of the relative complex dielectric permittivity 

 
The currents charges and losses are proportional to the energy stored in the 
capacitance and the energy released in the form of heat, respectively. The 
expected levels of relaxation of any material are derived from the ratio of 
emitted and stored energy in a period of time.  
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For each cycle the following applies 

arg

tan lossr

ch er

I

I





   .                              (2.11) 

For good insulating materials, the vector εr approaches that of εr΄, while tanδ → 
0. So when the measure of vector error εerror of the metering device is greater 
than εr΄΄ of the material, the total measured δerror angle can be negative 
(Fig.2.3). 

 

  
Fig.2.3 Vector diagram of measurement of the relative complex dielectric permittivity 

taking into account the vector error 
 
To calculate the tanδ a reduction of the measurement error is necessary. The 
accurate measurement of the current loss (I loss) is normally difficult because this 
current is very small (I loss→ 0) which is why the geometry of the measuring 
electrode must be  suitable so it can  amplify the signal of I loss,in order to be 
recorded by a high precision LCR bridge in a wide range of frequencies. This is 
achieved by increasing the surface area of the capacitor plates. 
 
2.2.5 Dependence of dielectric permittivity on frequency  
The dependence of the frequency of dielectric permittivity is associated with the 
mechanisms of polarization which take place in each frequency range (Fig.2.4). 
At low frequencies all mechanisms are present. Increasing the frequency and 
reaching the microwave region (105-1010 Hz), the permanent dipoles, due to 
inertia, can monitor changes in the field and align with it. The polarization 
orientation stops and the dielectric permittivity declines. Also some energy no 
longer goes to the circuit but is absorbed by the material indicating the 
existence of losses. The curve ε΄΄ in this region takes the form of a resonance 
curve. 
At higher frequencies in the infrared the mechanism of ionic polarization stops 
while in the UV the mechanism of electronic polarization stops.  
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Fig.2.4 Variations of the real part ε’ and imaginary part ε’’ of the dielectric permittivity 

ε versus frequency f [10] 
 
The real part of dielectric permittivity ε΄varies between a maximum value εs, 
corresponding to static fields or very low frequencies and a minimum value ε∞, 
corresponding to very high frequencies. The imaginary part ε΄΄is related to 
losses and has a maximum at the resonance frequency. The ε΄ and ε΄΄ are given 
by Debye’s equations [11] 
 

s s

2 2 2 2

ε ε ε εε΄ ε ,  ε΄΄ ωτ
1 ω τ 1 ω τ

 


 
  

 
 ,                                   (2.12) 

      

where τ is the relaxation time of the material. 
 
From the above equations we get the following relationship (2.13): 

    
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2 2 2 2
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s

ε ε ε εε ε΄ε j ε΄́ jω τ
1 ω τ 1 ω τ

ε΄ ε ε΄́ ε΄ ε ε ε

 
 

  

 
     

 

     

ε
       

 

 2 2
s sε΄ ε΄́ ε΄ ε ε ε ε     .                                             (2.13) 

 
The above equation (2.13) represents a circle in the diagram, which has its 
center at the point (εs + ε∞) / 2 on the axis ε΄, see Fig.2.5 on the next page. This 
diagram is a graph called Cole-Cole plot (Fig.2.5). 
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Fig.2.5 Cole-Cole graph of the complex permittivity ε [10] 

 
A dielectric material subjected to a field can be visualized at any frequency 
from an equivalent circuit of a capacitance and a resistance in series or parallel. 
For materials that exhibit dielectric losses the parallel equivalent is usually 
considered more suitable.  
 

 
Fig.2.6 Real part ε’and imaginary part ε’’ of the dielectric permittivity ε for a Debye 

mechanism [10] 
 
As shown in the Fig. 2.6, in a frequency range around the value ω = 1 / τ we 
observe a peak in ε'', which is because in this region energy losses are 
maximized due to the frequencies ω and 1/τ being comparable. The maximum 
peak located at the frequency ωmax = 1/τ.               (2.14) 
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We also see a step in ε because in much smaller frequencies than ωmax the 
dipoles have time to follow the changes in the field whereas at much higher 
frequencies they don’t thus they are not involved in the polarization which is 
why at low frequencies ε΄ = εs and at high frequencies ε΄ = ε.                      
Debye’s dispersion equations describe a relaxation process which is 
characterised by a single relaxation time and each relaxation process is 
described separately. The experimental results are consistent with the 
theoretical in the case of polar liquids. However, when studying systems in 
condensed matter, due to interactions between atoms and molecules, several 
relaxation times appear and the experimental data deviates from Debye’s 
theory. For a description of the experimental data different theories are used 
such as the Cole-Cole, Cole-Davidson and Havriliak-Negami because they take 
into account different types of distribution of relaxation times [12]. The 
expression of the complex permittivity for each approach (theory Debye [11], 
Cole-Cole [13], Cole-Davidson [14], Havriliak-Negami [15]) is given by the 
relations (2.15-2.17) below:  

Debye: 
  s

2 2

ε ε 1
ε ε

1 ω τ
j


 

 


,                          (2.15) 

Cole-Cole: 
 
 

s

1

ε ε
ε ε

1 jω 


 


 


,    0 1  ,                               (2.16) 

where α is a parameter and the distribution of relaxation times is symmetrical 
around τ (if α = 0, then it gives the Debye equation (2.15)). Next, the relation of 

Cole-Davidson: 
 sε ε

ε ε
(1 jω )





 


,  0 1  ,                                     (2.17)     

in which the distribution of relaxation times is not symmetrical and β is a 
parameter, which determines the shape of function. If β = 1, then it gives the 
Debye equation.  
And last, the relation of Havriliak-Negami [16], [17], [18]: 

 s

1

ε ε
ε ε

[1 ( jω ) ] 


 


 


, in which 0 1   and 0 (1 ) 1    .       (2.18)  

The equation (2.18) gives the Cole-Cole relation, if β = 1, the Cole-Davidson 
relation, if α = 0, and the Debye relation, if β = 1 and α = 0 [19]. 
       
2.3 Dielectric polarization 
There are different mechanisms of polarization, the main ones being: electronic 
(Fig.2.7), ionic (Fig.2.8), bipolar, and atomic [20]. 
• The Electronic polarization effect on each atom or molecule as the center of 
mass of the electron cloud that surrounds the atom will shift because of the EF. 
This effect is extremely fast, as the electrons are very light, and can be observed 
by optical frequencies. 
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Fig.2.7 Electronic polarization in the electric field E [21] 
 
• Atomic or ionic polarization refers to materials whose molecules form ions. 
When an EF is applied then cations and anions become displaced in opposite 
directions. Apart from electric polarization elastic displacements of the 
electrical charges (nuclei and electrons) will also occur. This means that these 
types of molecules are polar compounds that can be polarized up to infrared 
frequencies. 

 
Fig.2.8 Ionic polarization [21]  

 
• Bipolar polarization refers to materials that contain molecules with permanent 
dipole moments. Under the influence of EF, the dipoles are oriented in the 
direction of the EF.  
In conclusion, the dielectric polarization is the result of the relative 
displacement of positive and negative charges in a material. During this process 
the EF is not able to force the charge to escape from the material which would 
cause electrical conductivity. Each of the dielectric polarization mechanisms is 
associated with a characteristic resonance frequency (sharp increase of 
dielectric permittivity at a given frequency) and relaxation frequency (gradual 
decrease in dielectric permittivity with increasing frequency). As the frequency 
increases, the slower dielectric polarization mechanisms are eliminated, leaving 
only the fastest to contribute to the phenomena of energy storage (εr΄). 
Similarly, the rate of loss (εr΄΄) is incremented at each critical frequency. The 
resonance is usually associated with electronic polarization. 
 
2.4 Parallel plates with a dielectric 
The most common dielectric characterization device is a capacitor with parallel 
plates between which the dielectric material under study is located. 
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The capacity of a pair of parallel charged plates is increased by introducing a 
dielectric material. The capacitance is inversely proportional to the electric 
field, while the presence of the dielectric reduces the field between the plates 
due to the existence of a field with opposite direction within the material 
because of the polarization of the material (Fig.2.9). 
The capacity of a pair of parallel charged plates increases when a dielectric 
material is introduced.  It is known that the dielectric is characterised by the 
dielectric permittivity εr and the capacity is multiplied by this factor. Overview 
of the capacity is  

d

A
C or 



,                      (2.19) 

but if there is air between the plates then
d

A
C o 


.                            (2.20) 

 

 
Fig.2.9 Parallel plates charged: polarized molecules (left) and electric field (right) [22] 
 
When there is air or other dielectric material between the plates, the electric 
field E is expressed as 

d

V
E 




 ,   and                                                                       (2.21) 

or
onpolarizatieffective EEE





  ,                                                     (2.22) 

where V is the applied voltage and d the distance between the plates and σ is the 
surface charge density in each plate. The relative dielectric permittivity ε r 
shows the amount of reduction of the active field in relation to the initial field. 
This reduction of the field results in the ability for more energy to be stored in 
the capacitor having the same voltage between the plates. 
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Along with energy storage, non-ideal capacitor is characterised by power 
consumption (losses). In the dielectric we have two types of losses: 

i ) Ohmic losses: there is a difference between the volume resistance (R v) and 
surface resistance (R s). The total resistance is  

SV

SV
total RR

RR
R




 .                                                                    (2.23) 

The ohmic losses are greater when the temperature of the insulator is increased. 

ii) Dielectric losses: They are the result of a change of polarity of the dielectric 
due to changing the direction of the field in each period. This change causes 
oscillations that produce heat due to friction so part of the electrical energy 
turns to heat. The extent of loss expresses as   

2 2 tanrmsP V fC  ,                                                                  (2.24) 

where tanδ is the loss factor and is a measure of dielectric losses depending on 
the frequency. 
 
2.5 Comparison of serial and parallel equivalent circuit 
The electrical equivalent circuit, which is used to simulate a parallel plate 
capacitor may consist of a resistor and an ideal capacitor connected either in 
series or parallel (Fig.2.10).  

 
Fig.2.10 Series (left) and parallel (right) electrical RC circuits 

 
The vector diagrams of voltages and currents for the two equivalent circuits in 
Fig. 2.10 are respectively given in Fig.2.11:  
 
 
 

 
                                                                                                                                  
 
 
 
 
 
 
 

Fig.2.11 Vector diagrams of voltages and currents of series (left) and parallel (right) 
electrical circuits 
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Fig.2.12 Frequency responses (Bode diagrams) of the series (left) and the parallel 
(right) electrical circuits 
 
These two circuits describe the same system which is why the result concerning 
the relation between voltage and current must be the same. In this case the 
angles θ, δ in both diagrams and the complex impedance must be the same. 
Subsequently, the necessary definitions are given to determine the analytical 
equations which connect the elements of the serial equivalent circuit with the 
complex dielectric permittivity and the loss tangent obtained from the parallel 
equivalent circuit.  

The loss tangent from the parallel circuit is 

1
tan r

p p r
C R


 


                                                       (2.25) 

and from the series circuit the loss tangent is 

tan s sR C  .                                (2.26) 

The complex impedance of the parallel circuit is 

1
1p

p
p

Z
j R

R





                                                                         (2.27) 

and from the series circuit it is 
1

s s
s

Z R
j C

  .                                                                    (2.28) 

Given that p sZ Z means the real parts must be equal as must the imaginary 

parts, and by solving the equation system we get 

 
2 2 2 2

1

1 tan 1
S

P P
S S

C
C C

R C 
  

 
.                                         (2.29) 

The ratio of resistors is: 
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2
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So the real and the imaginary parts of dielectric permittivity are 
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but r r rj     .                                                                   (2.32) 

Finally, the complex permittivity is 
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The last equation describes the complex dielectric permittivity with the help a 
serial equivalent circuit. In practice, the result which is obtained for the material 
under test does not depend on which equivalent circuit was used. The parallel 

circuit is more commonly used because the calculation of r
  and r

  is 

simpler.  
 
2.6 Dielectric spectroscopy 
In the above analysis we assumed that the electrical field applied to the 
dielectric is a sinusoidal waveform with stable frequency. Dielectric 
spectroscopy studies the change in dielectric properties of the material with 
time and frequency.  Inside in an isotropic and homogeneous dielectric the 
polarization density vector P and the intensity E of the EF have the same 
direction and are linked as in the following equation [23, 24]: 

OP E ,                                    (2.34) 

where χ is the electrical susceptibility of the material. The χ indicates the degree 
of all kinds of polarizing of a dielectric and is dimensionless (for the vacuum it 
is equal to zero). The ε0 = 8.85419·10-12 A· s / V· m is the dielectric constant of 
the vacuum. The electric displacement D is determined by the overall positive 
or negative electric charge per unit area induced in the corresponding electrode. 
The electrical charge of two electrodes is the origin of all the electrical field 
lines. In the area between the electrodes without a dielectric, the electrical 
displacement is parallel to the electric field E and is connected to it by the 
equation D = ε0 E. When there is an isotropic dielectric between the electrodes, 
then the electrical displacement increases by the polarization density P and the 
equation becomes D = ε0E + P [25, 26]. This happens, because in each of 
electrode part of the charge creates the electric field E, while the remaining 
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charge compensates polarization charges of the dielectric. Considering the 
above equations, we get  

(1 )O O OD E E E       .                                                      (2.35) 

Thus the electrical displacement D is proportional to E, and for isotropic 
dielectric materials, the vectors P and D are parallel to E. The proportionality 
factor (1 + χ) ε0 is the dielectric permittivity ε of the material, and 1 + χ is the 
relative dielectric permittivity εr. In this case the use of complex equations is 
not necessary. 
 
2.6.1 Dielectric Response - Spectroscopy in time domain 
When the electrical field is time varying, E (t), then the D in the vacuum 
immediately follows changes in the field D (t) = ε0 E (t). The charge density at 
electrodes is determined by the displacement current, which is derived from the 
voltage source and equals to d Q / d t, where Q is the total charge on each 
electrode. 
When the vacuum is replaced by an isotropic dielectric material, then the 
electric displacement D is 

D (t) = εο Ε (t) + P (t).                                                                   (2.36)  

The time dependence of P (t) is not the same as E (t), because the polarization of 
the dielectric is not directly related to the applied field but has a time delay, 
which is different for the various types of polarization. To find the relationship 
between the field and the polarization, we will try to determine a time-varying 
function of the electrical susceptibility χ = χ (t), and hence the relative dielectric 
permittivity εr = 1+χ (t) applies to the equations: 

( ) ( ) ( )OP t t E t                                                                  (2.37) 

and  
 

D(t) = (1+χ(t)) εο E(t).                                                                   (2.38) 
 

2.6.2 Response to stepwise excitation 
It is assumed that a temporal changing EF is applied: that is E (t) = E0 u (t - t0), 
where u (t - t0) is the step function of the temporal change. Initially the field is 
zero and at t0 the applied EF has a constant value E0, which is maintained for t > 
t0 (Fig.2.13). 
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Fig.2.13 Temporal variation of the dielectric polarization P(t) as a result of stepping 

electric field 
 
In this case the polarization P (t) of dielectric is associated with the time-
dependent susceptibility of χ (t) according to the equation 

     0o
o

P t
t u t t

E
   .                                                        (2.39) 

That is, the time-dependence of the polarization follows that of susceptibility 
χ (t), which is a characteristic function of the material, and the magnitude of the 
polarization is proportional to the applied field. 
The function of polarization and susceptibility is generally distinguished into 
three time domains. In principle, there are very fast processes of polarization 
(mainly electronic) that can be considered to be affected in a very short time 
close to zero. Simultaneously with the application of the field, there is an 
instantaneous polarization P (t = t0), denoted P∞ because it is performed at very 
high speed. This part of the polarization function cannot be recorded with the 
usual measuring equipment. After a long period of time, the polarization 
eventually becomes constant and takes the value Ps. Considering these two 
extreme values, the polarization can be given by the equation 
 

     S oP t P P P g t t                                                        (2.40) 

where g(t) is a dimensionless, monotonically increasing function (characteristic 
of the material), which determines the way the polarization goes from the 
baseline value P∞ to the final value Ps. 
Using the indices s and ∞ for the respective values of χ, the polarization can be 
written as follows: 

        ( )o S o o o oP t g t t E P t t E                              (2.41) 

where 

   ( ) S ot g t t        .                                                    (2.42) 
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If   1+ χs = εs   χs = εs  1, and 1+ χ∞ = ε∞  χ∞ = ε∞  1,                          (2.43) 

then the above equations become as 

       1o S o oP t g t t E           ,                                   (2.44) 

and 

     ( ) 1 S ot g t t          .                                         (2.45) 
 

According to equation D = (1+ χ) ε0 E, we obtain 
 

     o S o oD t g t t E           ,                                           (2.46) 

in which  

   ( ) 1 ( ) S ot t g t t                                                  (2.47) 

is the time depending relative permittivity of the dielectric material. All of the 
above are valid only for the simple case of stepping. 
 
2.7 Summary 
The goal of this chapter was to give an analytical overview of the characteristics 
of dielectrics and how frequency affects relative complex permittivity, and to 
present different approaches to and equations for relative complex permittivity 
such as that of Debye, Cole-Cole, Cole-Davidson and Havriliak-Negami. In 
addition, the three mechanisms of polarization, namely electronic, atomic and 
bipolar, are presented. The most common dielectric characterization device, a 
capacitor with parallel plates, between which the dielectric material under study 
is located, is also discussed. Ohmic and dielectric losses of a non-ideal capacitor 
were accounted for. Furthermore, we studied the equivalent circuits of a non-
ideal parallel plate capacitor, those being a resistor and an ideal capacitor 
connected either in series or parallel. Finally, dielectric responses to both time 
domain and to stepwise excitation are given. 
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CHAPTER 3 
 
ELECTRICAL BIOIMPEDANCE AND METHODS OF 
MEASUREMENT 
 
A description of electrical bioimpedance as well as the Fricke-Morse model and 
the Debye model of different equivalent circuits of a tissue are given in this 
chapter. Next frequency dispersion is discussed. Lastly, the two methods of 
measuring bioimpedance are given. 
 
3.1 Electrical bioimpedance 
Electrical bioimpedance describes how a living organism responds to an 
externally applied electrical current [1]. It can be defined as the impedance of 
biological specimens. It is a measure of the difficulty of the flow of electrical 
current through the tissues. A biological tissue can be modeled from a structural 
viewpoint as the grouping of a number of elements called cells, which are 
immersed in an ionic medium (Na+ , K+ , Ca2+ , Cl- ) called extracellular fluid. 
This fluid contains also proteins and can be divided into plasma and interstitial 
fluid. We can consider any biological tissue as an electrolyte because of the ions 
it contains. Inside the cell membrane there is also a fluid (cytosol or 
intracellular fluid) and ion concentration in the intracellular environment, which 
is where the body’s metabolic processes take place. It also contains the nucleus 
of the cell and numerous organelles (Fig.3.1).  
 

 
 

Fig.3.1 Cell contents [27]  
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The cell membrane consists of proteins and phospholipids forming a bilayer 
lipid membrane (Fig.3.2). Each monolayer has very small electrical 
conductance (10-6 A/V) and for that reason we can consider it as a dielectric 
material. Also there are ion gates in the membrane, which control the ion 
conductance (which is the inverse of the resistance).  
For these reasons we can model the cell membrane as a two plated capacitor 
connected to a resistor in parallel (Cm Rm). The intracellular medium of the cell 
also behaves as a resistor (R  i ). 
Taking into account the ions in the extracellular fluid, we can add another 
resistor (Re) to represent the extracellular fluid to the equivalent circuit [28], 
given in Fig.3.3.  
 

 
Fig.3.2 Plasma membrane structural components [29]  

 
 

 
 

Fig.3.3 Equivalent electrical circuit of a cell and tissue [28] 
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By simplifying the above circuit taking into account that the two Rm resistors 
are connected in series and also the capacitors Cm, then the circuit becomes to a 
configuration sown in Fig.3.4. 

 
Fig.3.4 Simplified equivalent electrical circuit of a tissue 

 
As aforementioned, the conductance of the membrane is very low in which case 
Rm takes a very high value. So the above circuit is further simplified (this is the 
Fricke-Morse model [30], see Fig.3.5): 

 
Fig.3.5 Fricke-Morse model 

 
 
The impedance of the above circuit is equal to 

 1

1 ( )
e i

i e

R jR C
Z

jC R R






 

.                                  (3.1) 
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At low frequencies most of the current flows around the cell and only a little 
goes through the cell the membrane impedance is very high (Fig.3.6). If in eq. 
(3.1) the frequency ω  0, then Z = Re due to that fact.  
 

                                       
Fig.3.6 Passage of low frequency currents      Fig.3.7 Passage of high frequency 
currents through a cell suspension or tissue   through a cell suspension or tissue 
 

At high frequencies the current flows through both the extracellular and 
intracellular fluid because the membrane capacitance doesn’t act as an 
impediment (Fig.3.7). When ω  , then 
 

1
0CZ

jC
  .  Thus Re // R  i , and e i

e i

R R
Z

R R



.                                  (3.2) 

 

 
Fig.3.8 Impedance vs frequency in a tissue 
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3.2 Dispersion 
The conductivity and the permittivity of tissue are frequency dependent. This 
phenomenon is called dispersion [1, 31, 32, 33] of which there are four types: α, 
β, δ and γ (Fig.3.9) in different frequency ranges. 

 
 

Fig.3.9 Frequency dispersions of the tissue permittivity [32] 
 
The Fricke-Morse model is not very accurate, so the Cole impedance model 
was proposed for tissue. The Cole empirical equation [1] is expressed by the 
following equation 

0

1 ( )

R R
Z R

j 





 


,                                 (3.3) 

where Z is the complex impedance, R0 is the resistance at zero frequency, R is 
the resistance when f   (only resistive parts), ω is the angular frequency, τ is 
the characteristic relaxation time constant and α is an introduced parameter with 
values between 0 and 1. For example, if α = 1, we obtain Fricke-Morse model. 
  
In the Fricke-Morse model we substitute the capacitance (Debye model in 
Fig.3.10, next page) with the Constant Phase Element (CPE) [34], which is 
described as an imperfect capacitor. The impedance of the CPE is 

1

( )CPE a
Z

j C
  .                                                                      (3.4) 
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When α = 1 in (3.4), then the CPE behaves as an ideal capacitor C. 
 

 
Fig.3.10 Debye model for tissues 

 
By applying the Cole equation to this model we obtain: 

R0 = R1 + R2, R = R1 and τ = R2C.                                                    (3.5) 
 
3.3 Electrode Impedance and measuring methods 
The interface between the body and the measuring device is where the bio-
potential electrodes are located. Most electrodes are made from noble metals or 
stainless steel. These electrodes are called blocking electrodes because the 
current flowing into the body is the result of the ions but in the measuring 
device is the result of the electrons. So, there is no electronic exchange between 
electrodes and the tissue, which means direct current can’t flow from the 
electrodes to the body or vice-versa. It is only possible for alternating current to 
flow through the body. Chemical reactions between the electrode and the 
electrolyte create a potential difference between them which is called half-cell 
potential. The equivalent circuit for a bio-potential electrode is shown in the 
following figure Fig.3.11, acquired from [35]:  
 

 
Fig.3.11 Equivalent circuit of a bio-potential electrode [35] 

 
In the circuit, there is the half-cell potential E hc, whereas Rd and Cd are the 
resistance and the capacitance of the electrode-electrolyte interface and R s is the 
resistance of the electrolyte.   
There are two common measurement methods in electrical bioimpedance, the 
two electrode or bipolar method and the four electrode or tetrapolar method 
[36]. 
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3.3.1 Two electrode or bipolar method 
An electrical current is injected into the body using two electrodes. In this 
configuration there are three impedances in series: the tissue impedance and the 
two electrode-electrolyte impedances (Fig.3.12). The voltmeter, which is 
connected to the tissue with the help of the same electrodes, as shown in the 
next Fig. 3.12, measures a voltage containing all the voltages of the three 
impedances, so the measured impedance is 

1 2
measured

measured e e x
measured

V
Z Z Z Z

I
    .                            (3.6) 

 

 
Fig.3.12 Two electrode or bipolar measurement method 

 
3.3.2 Four electrode or tetrapolar method 
With this method, the current is injected into the tissue through two electrodes, 
and with the use of another two electrodes we can measure the voltage [37], see 
Fig.3.13. With this method, the influence of the impedance of electrode-
electrolyte is canceled. The measured impedance is 

measured
measured x

measured

V
Z Z

I
  .                               (3.7) 

 
Fig.3.13 Four electrode or tetrapolar measurement method 
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3.4 Summary 
In chapter 3 we analytically looked at the electrical bioimpedance which 
describes how tissue responds to an external electrical current. Electrical 
circuits equivalent to tissue are studied, namely those of the Fricke-Morse 
model and the Debye model. The four types of dispersion, which show the 
dependence of conductivity and the permittivity of tissue on frequency, are also 
analysed. Finally, the two electrode or bipolar and the four electrode or 
tetrapolar methods are given for impedance measurements. The latter method is 
preferred owing to the fact that the impedance of the electrode-electrolyte 
interface is canceled. 
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CHAPTER 4  
 
MATHEMATICAL AND PHYSICAL MODELLING OF 
DYNAMIC ELECTRICAL BIOIMPEDANCE  
 
In this chapter we develop different mathematical and physical models 
simulating dynamic electrical bioimpedance. The first model, based on RLC 
and operational amplifier circuits, represents the dynamic electrical impedance 
of a neuron. Next, using electrical impedance equivalents based on RLC, RL 
and operational amplifier circuits, a mathematical and physical modelling of the 
dynamic fluidic impedance of arteries is analysed. Then a mathematical and 
physical modelling of immune disease in terms of the alterations of the dynamic 
electrical impedance of thymus and bone marrow based on artificial neural 
networks and in non-linear components is studied. Finally, a mathematical and 
physical modelling of a tooth based on a RC circuit is developed. 
 
4.1 Dynamic electrical impedance of a neuron 
The basic structural and functional unit of the nervous system is the nerve cell 
or neuron [38, 39]. The nerve cells produce electrical signals transmitted from 
one part of the cell to another, while generating biochemical substances 
(acetylcholine - Ach) in order to communicate with other cells. A neuron 
consists of the cell body, the axon and the dendrites (Fig. 4.1). The neurons 
exchange information through a synapse (Fig. 4.2).  

 

 
Fig.4.1 The structure of a neuron [40] 
 

 
 

Fig.4.2 Synapse between two neurons [41]  
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One of the functions of synapses is to determine the conduction of electrical 
impulses in one direction only. Therefore we can say that the synapses function 
as a transistor that allows the passage of electrical current in one direction [38] 
(Fig.4.3).  

 
 

Fig.4.3 Comparison between a transistor and a neuron conductance vs membrane 
voltage diagram [38] 

 
Along the surface of each neuron, potential electrical difference is due to the 
presence of excess negative charges on the inside and excess positive charges 
on the outer membrane which is why the neuron is polarized. The interior of the 
cell is typically 60-90 mV more negative than the outside. This potential 
difference is called the resting potential of the neuron (Fig.4.4 and Fig.4.5). 
When the neuron is stimulated an immediate change in the resting potential 
occurs. The change in the potential difference is called action potential (Fig.4.6) 
and is transmitted along the axis. 
 

 
 

Fig.4.4 Membrane potential vs time [42]  
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Fig.4.5 Resting potential of a neuron 

 

 
 

Fig.4.6 Active response of a neuron to current injection [43]  
 
The developed models were based on RLC and Operational Amplifier circuits 
[44]. By changing the values of the components, we can calculate the 
bioimpedance of a healthy neuron or one affected by Parkinson’s disease. With 
the use of the appropriate computational software, namely Maxima [45] and 
Maple [46, 47], the relevant equations of the models can be solved analytically. 
The next step is to use electronic simulation software in order to evaluate the 
performance of the models. Lastly, we check the biompedance of neurons 
which have undergone medical treatment, using the above models.  
We assume the following RLC circuit (Fig.4.7): 

 
 

Fig.4.7 Electrical RLC equivalent circuit of a neuron 
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The differential equation in terms of the charge for the RLC circuit in Fig. 4.7 is 
the following [48], see eq. (4.1) below: 
   

     2

2
0.

q td d
L q t R q t

dt dt C

        
  

                                             (4.1) 

 
Next assume that we have a RLC circuit with time depending resistance R (t). 
So the differential equation (4.1) above is expressed as 
 

       2

2
0.

q td d
L q t R t q t

dt dt C

        
  

                (4.2)               

If the R (t) decreases exponentially, then  
t

R t Re 


 , and eq. (4.2) becomes 

 

     2

2
0.

t q td d
L q t Re q t

dt dt C


        
  

                                                (4.3)  

 
The transfer function of the circuit is 
 

 

2

2

( ) 1

( ) 1 ( ) ( )
out

i

V s CLs

V s CR s CL s




 
,                                                   (4.4) 

          
The transfer function (4.4) has a damping factor  

,
2

R

L
                                                                           (4.5) 

 
a resonant frequency 

0

1

LC
   ,                                                                   (4.6) 

 
and a quality factor  

0

2
Q




                                                                            (4.7) 

or 

1
.

L
Q

R C
                                                                                        (4.8) 
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Fig.4.8 Phase shift vs frequency of the RLC circuit 

Fig.4.9 Step response of the RLC circuit 

Fig.4.10 Gain vs frequency 
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Fig.4.11 Pole-zero placement plot 

 

 
Fig.4.12 Impulse response 

 
 
Instead of a typical RLC circuit we can use the following circuits [44] which 
behave in a manner very similar to an RLC circuit taking into account that bio 
inductors do not exist so in this case L in a similar differential equation is 
replaced with a combination of resistances and capacitors [49], see Fig.4.13. 
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Fig.4.13 An active circuit, which behaves similarly to the RLC circuit given in Fig. 4.7 

 
 
The impedance model of the above given circuit (Fig. 4.13) is shown in the next 
figure (Fig. 4.14). 
 

 
Fig.4.14 Impedance model of the circuit in fig.4.13 

 
 
The transfer function of this circuit in Fig. 4.13 is the following: 
 
 

2 2
2

1 1 2 1 1 2 1 2

( )

( ) 1 ( ) ( )
out

i

V s C R s

V s C R C R s C C R R s




  
.                                    (4.9) 

 
The inverse Laplace function of eq. (4.9) gives eq. (4.10) in the time domain: 
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     (4.10)           
   

The time domain response (4.10) has a damping factor 
  

1 2

1 2 2

,
2

C C

C C R
 
                                             (4.11) 

 
a resonant frequency    

0
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1

C C R R
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and a quality factor  
 

1 2 1 2
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C C R R
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C R C R
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                      (4.13) 

 

 
 

Fig.4.15 Phase vs frequency of the circuit in fig.4.13 
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Fig4.16 Step response of the circuit in fig.4.13 

 

 
Fig.4.17 Gain vs frequency 

 

 
Fig.4.18 Pole-zero plot 
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Fig.4.19 Impulse response 

 
Another similar circuit is the following in Fig.4.20. 
 

 
Fig.4.20 Circuit which behave similar to an RLC circuit 

 
The impedance model of the above circuit is shown in the next figure 
(Fig.4.21). 
 

 
Fig.4.21 Impedance model of the circuit in fig.4.20 
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The transfer function of this circuit is 
 

2
1 2 1 2

2
1 1 2 1 1 2 1 2

( )

( ) 1 ( )
out

i

V s C C R R s

V s C R C R s C C R R s
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.                                  (4.14) 

 
The inverse Laplace function of eq. (4.14) describing the circuit in Fig. 4.20 in 
the time domain is given below.   
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                       (4.15) 
The time domain response above has a damping factor  
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and a quality factor                       
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Fig.4.22 Phase vs frequency of the circuit in fig.4.20 

 

 
Fig.4.23 Step response of the circuit in fig.4.20 

 

 
Fig.4.24 Gain vs frequency 
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Fig.4.25 Pole-zero plot 

 
 
 

 
Fig.4.26 Impulse response 

 
 
The solution to eq. (4.1) is as follows: 
 

  
   2 2 2 24 41 1

2 2
1 2( ) _ _ .

CR C R CL t CR C R CL t

CL CLq t C e C e

   
 

                                (4.19) 

 
The condition for no oscillation, which a healthy neuron satisfies but a defective 
neuron doesn’t, is as follows:  
                                                                       

2 20 4C R CL  ,                         (4.20) 
 



66 

which is frequently expressed as  
 

2
L

R
C
                                                                             (4.21)                     

 
For the initial conditions q (0) = 0 and i (0) = 0, we choose _C1 = 1 and _C2 = -1, 
and eq. (4.19) is turned to (4.22) now:   

                           

   2 2 2 24 41 1

2 2( ) .

CR C R CL t CR C R CL t

CL CLq t e e

   
 

    (4.22) 
         
Experimental results show that a neuron’s response time is 10-4 s and according 
to eq. (4.19), the effective time is R/2L and according to eq. (4.21), it is possible 
to find appropriate values for the parameters L and C, the above give the 
following values: L = 10-3 H and C = 10-6 F [50]. 

With the above values eq. (4.22) becomes 
                  

8 85.10 2 5.10 2
6 12 7 6 12 7

1 1 1 1 1 1
( )

10 10 25.10 10 10 25.10
q t e R R t e R R t    

           
   

  

(4.23) 
 

 

and eq. (4.21) gives the following result as 63.24 .R                       (4.24) 
                                                                       
With the value of R = 70 Ω , eq. (4.23) becomes 
 

4 42.10 5.10( ) .t tq t e e                                                                                 (4.25) 
 

According to eq. (4.25), graph q = f (t) is drawn as follows (Fig. 4.27). 
 

 
 

Fig.4.27 Charge vs time 
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If the resistance R is very low, close to zero, then eq. (4.23) becomes 
                    

31622.7766 31622.7766( ) .jt jtq t e e                   (4.26) 
 
According to eq. (4.23), the following graph q = f (t), given that the charge q is 
in Coulombs, and time t is in seconds, can be drawn as a sine wave in Fig.4.28. 

 

 
 

Fig.4.28 Charge vs time 
 
As we can see when resistance is high (R = 70 Ω) there is no oscillation (no 
shaking) but when resistance is low (close to zero) there is oscillation (shaking). 
Thus, it appears that this behavior which is similar to the symptoms of 
Parkinson’s disease is caused by decreasing resistance in the neuron. The 
solution to differential equations (4.2) and (4.3) expresses in terms of Bessel 
functions [51] in a very complicated form which is given in Appendix A-III on 
p.149. 
Assume a neuron affected by Parkinson’s disease, considering that the disease 
takes approximately 5 years (60 months) to develop and taking into account that 
the effective time is R/2L according to eq. (4.22), it is possible to find 
appropriate values for the parameters L and C. The above give the following 
values: L = 10 H and C =20 F. Also as we calculated before, values for R for 
the affected neuron should be under 63 Ω approximately. We can choose any 
value below that, so we choose R = 10 Ω (any value in R under 63 Ω will give 
similar results). The fact that the disease causes total degeneration within 10 
years (120 months) after its first appearance and the life span of a person 
affected by Parkinson’s disease after that is approximately 15 years (180 
months) should be taken into account. Considering all the above as well as the 
fact that, hypothetically, the time required for the neuron to lose its resistance is 
approximately 15 months, τ = 15 months, so now eq. (4.3) becomes 

     
12

15
2

1
10 10 0.

20

td d
q t e q t q t

dt dt

        
  

                       (4.27) 
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According to eq. (4.27) the following graphs q = f (t) in Fig.4.29 and I = f (q) in 
Fig.4.30 have been drawn, given that q is in C, current I is in A and t is in 
months. 
 

 
 

Fig.4.29 Charge vs time 

 
 

Fig.4.30 Current vs charge 
 
 
4.2 Dynamic fluidic impedance of arteries using electrical impedance 
equivalents 
In this work a detailed mathematical and physical model for calculating the 
bioimpedance of an artery is developed. Initially the model calculates the 
biompedance of a healthy artery and then it compares this with the alteration in 
the bioimpedance of an artery with atherosclerosis [52].  
Arteries are elastic blood vessels which carry oxygenated blood away from the 
heart, except the pulmonary artery which carries deoxygenated blood [53]. The 
structure of an artery wall consists of three layers (Fig.4.31): 
a. Tunica Adventitia – this is the outer covering of the walls of the arteries. It is 
very strong and it is composed of connective tissues, collagen and also elastic 
fibres which can stretch to stop overexpansion because of the pressure of the 
blood. b. Tunica Media – this is the middle layer of the walls of arteries. It 
consists of smooth muscle and elastic fibres. c. Tunica Intima – this is the inner 
layer of the walls of arteries. It consists of an elastic membrane and smooth 
endothelial cells. The blood flows in the lumen which is the hollow centre of 
this layer.  
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Fig.4.31 Structure of an artery [54]  
 
Atherosclerosis (ASVD) occurs when the artery wall becomes thicker and 
hardens because of fatty material (such as cholesterol) build up on the artery 
wall. These hard formations are called atheromatous plaques (Fig.4.32). 
Atheromatous plaques consist of the atheroma which is a soft yellow material at 
the center of the plaque, cholesterol crystals and calcium deposition. The result 
is that the artery hardens and narrows which limits the normal flow of the blood 
(Fig.4.33). 
 

 
 

Fig.4.32 Atheromatous plaques [55]  

 
 

Fig.4.33 Narrowing of artery [56]   
 
The developed models were based on RLC, RL and Operational Amplifier 
circuits [44]. By changing the values of the components, we can calculate the 
bioimpedance of a healthy artery or one affected by atherosclerosis. With the 
use of the appropriate computational software, namely Maxima [45] and Maple 
[46], the relevant equations of the models can be solved analytically. The next 
step is to use electronic simulation software in order to evaluate the 
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performance of the models.  The Navier-Stokes equation for the incompressible 
flow of Newtonian fluids is 
 

  
2. p F

t

                               (4.28) 

 

where υ is flow velocity, ρ is fluid density, p is pressure, F are forces (such as 
gravity or centrifugal force) per unit volume, η dynamic viscosity,  is the del 

operator and 2  is the vector Laplacian. The derivative 
t




 is unsteady 

acceleration, .   is convective acceleration, p  is the pressure gradient 

and 2   is viscosity. The parameters η dynamic viscosity and ρ fluid density 
are space and time independent. 
Considering that an artery is cylindrical we can study the Poiseuille flow in the 
artery [57]. Because of the cylindrical symmetry of the artery and assuming that 
the blood flow is axisymmetric in one dimension through a rigid artery which 
means the pressure inside the artery will be assumed to be independent of the 
radial coordinate then the Navier-Stokes equation becomes 

2 1
( , ) [ ] ( , ) ( , ) .t x r r x rr t r t p r t

r
                     (4.29) 

 

The boundary and initial conditions for υ χ (r, t) are 
 

( , ) 0,x a t  (0, ) 0,x x t  2 2( ,0) ( ),
4x

p
r a r




 


( , ) 0x r  
 

                                                                     (4.30) 
where Δp is the change in pressure between the inlet and the outlet of the artery 
and   is the length of the artery taking into account that the blood stops flowing 
in the end. 

The no-slip condition ( , ) 0,x a t   refers to the assumption that concerns the 

fluid-solid interface or blood-vessel wall interface. No-slip boundary condition 
refers to the condition when the flow velocity at the tube wall is the same as the 
wall velocity, such that there is no “jump” or a step change in velocity to cause 
discontinuity. The general assumption is that the fluid in contact with the wall 
does not move at all (Fig.4.34).  
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Fig.4.34 Blood flow in an artery 

 
In the event that a Poiseuille flow starts in a circular channel the Navier-Stokes 
equation becomes an inhomogeneous, linear partial differential equation. 
In this case the pressure gradient is 
 

 
(0, ) ( , )

( , )r

p t p t p
p r t

 
  


 

                                        (4.31) 

where p (0,t) and p (  ,t) are the pressure at the inlet and the outlet of the artery 
respectively.  
Therefore eq. (4.29) becomes 

2 1
( , ) [ ] ( , ) .t x r r x

p
r t r t

r
    
     


                                       (4.32) 

The equation which gives the final result for the velocity field υχ(r,t) of a 
stopping Poiseuille flow in the form of a Fourier-Bessel eigen-function 
expansion is the following [58]: 
 

2
2

03 2
1 1

8
( , ) ( ) exp( )

4 ( )x n n
n n n

a p r
r t J t

J a a

  
  






                                

(4.33) 

where the values of γn are the roots of the Bessel function.    
 
Considering that the dynamic viscosity of blood (in 370 C) is approx. η = 3.10-3 

Pas and the density of the blood is approx. ρ = 1060 Kg/m3, we can calculate 
the kinematic viscosity of the blood. So, v = η/ρ = 2.83 10-6 m2/s. 
The time scale can be calculated with the following equation: 
 

2

02 2
1 1

1 1
acc

a
t T

  
                                                                    (4.34) 

    
where tacc is the time scale, α the radius of the artery, v the kinematic viscocity 
of the blood and T0 is the momentum diffusion time.   
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Taking into account that the smallest Bessel function root is γ1 = 2.405, 
according to eq. (4.34), the time scale of blood in an artery with the radius α = 1 
cm = 10-2 m is calculated to be tacc = 6.1 s and for an artery with atherosclerosis 
with radius α = 1 mm = 10-3 m is calculated to be tacc = 0.061 s. 
 

With the initial conditions 
 

( , ) 0,x a t  (0, ) 0,x x t   ( ,0) 0,x r   ( , ) ,x r                    (4.35) 
 

eq. (4.33) becomes 
 

2 2
2

02 3 2
1 1

8
( , ) [1 ( )exp( )].

4 ( )x n n
n n n

a p r r
r t J t

a J a a

  
  






   

                    (4.36) 

 

The volumetric flow rate Q for the elliptic channel (when an artery takes on an 
elliptic shape) can be calculated with the following equation [58]: 
 

3 3
2 1

2 20 0

1
( , ) ( , ) .

4x xC

a b
Q d ydz y z ab d d p

a b

     


   
   

        (4.37) 

 

In the case of a circular channel using α = b, eq. (4.37) becomes 
4

.
8

a
Q p




 


                                                                     (4.38) 

 

To calculate the volumetric flow rate Q for a randomly deformed artery, the 
following equation can be applied: 
 

3

2

1

2

p A
Q

P 





                       (4.39) 

where A is the cross sectional area and P the perimeter.  

When 2A a and 2P a  eq. (4.39) is reduced to eq. (4.38).                     
If ( )q s is the Laplace transform of Q(t) and ( )p s  is the Laplace transform of 
p(t), then 

1

0

2 ( )( )
( ) (1 )

( )

J i sp s
q s

s i sJ i s


                                                                (4.40) 

where 

( ) ( ) ( ),q s p s K s    1

0

2 ( )
( ) (1 )

( )

J i s
K s

s i s J i s


                                      (4.41) 

 

and where K(s) is the hydrodynamic admittance and J0 and J1 are the Bessel 
functions of order 0 and 1 respectively, given that the Bessel function can be 
expressed as a series of gamma functions then eq. (4.41) can be expressed as 
follows: 
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so the result is 

211
( ) .

8 48 3072

s s
K s

  
                     (4.43) 

 

Considering that the impedance is 
1

( ) ,
( )

H s
K s


                                                                             (4.44)  

the eq. (4.44) with the help of eq. (4.43) becomes 
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11
8 48 3072

H s
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(4.45)

 
 

If we compare the above impedance with the impedance of an RLC circuit in 
series 
 

2

1
( )

1
H s

Ls Rs
C


 

                                                                                       (4.46) 
where L is the inductance, R the resistor and C the capacitance, we get the 
values 
 

11 8
,  ,

3072
L H C F




   and .
48

R


  

  
Taking into account the negative resistance we calculated above, we need to 
replace the resistance R in the RLC circuit in series with the following 
operational amplifier (Fig.4.35), which has an effective negative resistance Reff 

[44]: 

2 1

3

.eff

R R
R

R
 

                                                                  (4.47)                     
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Fig.4.35 Operational amplifier with negative resistance Reff 

 
The new circuit is following (Fig.4.36): 
 

 
Fig.4.36 Equivalent circuit model of an artery 

 
Figure 4.36 shows an equivalent circuit model of an artery with an arbitrary 
pressure gradient (pressure gradient with any temporal variation). Choosing the 
output V out as given in Fig.4.37, we get the transfer function (4.48): 
 

2 3 1 2
2

1 2 1 2

( )
.

( )
o

i

V s R R R R

V s R R CLR R s





                                                (4.48) 

 

 
 

Fig.4.37 Equivalent circuit model of an artery 
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The inverse Laplace function of eq. (4.48) in time domain is following: 
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                                                                    (4.49) 

 

Putting the values for R, L and C which we calculated before, eq. (4.49) 
becomes 
 

( ) 2 1
sinh 11 384 11 384.

( ) 11 11
o

i

V t
t

V t
     
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                                            (4.50) 

 

With the help of the above equation we can draw the sine wave plot of ( )

( )
o

i

V s

V s
      

versus time (Fig.4.38). 
 

 
 

Fig.4.38 Function  
( )

( )
o

i

V s

V s
 vs time 

 
The step response (Fig. 4.39) and the impulse response (Fig. 4.40) plot of the 
circuit are shown below. 
 

 
Fig.4.39 Step-response plot of the circuit in fig.4.37 
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Fig.4.40 Impulse response plot of the circuit in fig.4.37 

 
The following equation [58] derives from eq. (4.41): 
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The terms in the summation of eq. (4.51) are decreasing exponentials, so when 
the time tends to infinity then only the first term contributes to the sum, so eq. 
(4.51) becomes eq. (4.52) given below  
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                                                             (4.52) 

The eq. (4.52) is similar to an equation of an RL circuit in series. The following 
circuit (Fig.4.41) is equivalent to an artery in the case where the pressure 
gradient is fixed (constant pressure gradient) and it represents normal operation 
of the artery. 

 
Fig.4.41 Equivalent circuit model of an artery at fixed pressure gradient 

 
The differential equation for the above circuit is 
 

1

1 1

1
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Comparing eq. (4.52) and eq. (4.53) we obtain 
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The transfer function of the above circuit is 
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The step response (Fig.4.42) and the impulse response (Fig.4.43) plots are given  
below. 

 
Fig.4.42 Step response plot of the circuit in fig.4.41 

 

 
Fig.4.43 Impulse response plot of the circuit in fig.4.41 

 
 
4.3 Immune disease in terms of the alterations of the dynamic 
electrical impedance 
In this work a detailed mathematical and physical model for simulating the 
immune system is developed. The neural networks [59, 60] are very important 
tools in the field of artificial intelligence. Recently the analogies between the 
brain and the immune system [61] were exploited to build artificial immune 
systems and immune algorithms [62, 63, 64] with applications in computer 
science. The model uses neural networks of two and three neuron module to 
simulate the interactions between T-cells and B-cells taking into account that 
the biompedance is represented by the transfer functions from antigens to 
immune responses. Also this model compares the dynamical behaviour of the 
cells of the immune system, particularly the immune memories and the 
bifurcations from a normal behaviour to an abnormal behaviour. 
Lymphocyte is a type of white blood cell. The most abundant lymphocytes are 
the B lymphocytes (B-cells) and the T lymphocytes (T-cells). The B-cells are 
produced in the bone marrow, which is a tissue inside the bones. Also the 
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precursors of T-cells produced in the bone marrow and after they mature in the 
thymus.   
Thymus is a glad of the immune system. It is located in the chest, between the 
breast bone and the heart (Fig.4.44). It has two lobes, the left and the right. Each 
lobe is composed of a number of lobules together. Each lobule consists of the 
outer cortex and the inner medulla. The cortex has a very large number of 
developing T-cells and a smaller number of associated epithelial cells. T-cells 
migrate to the medulla in order to mature and to learn how to recognize self 
from non self so that inappropriate immune responses are prevented.   
Immune diseases are caused of different reasons such as lack of enough T-cells 
production because of improper development of the thymus gland or an 
excessive immune response or even an autoimmune attack. 
 

 
Fig.4.44 Thymus [65]  

 
The developed models are based on neural network of two and three neuron 
module which they can be constructed by non linear circuits. By changing the 
values of the synaptic weights and the activation functions, we can simulate the 
dynamical behaviour of the cells when the immune system is working without a 
problem and when is affected by a disease. With the use of the appropriate 
computational software, namely Maxima [45] and Maple [46], the relevant 
equations of the models can be solved analytically.  
The next figure (Fig.4.45) [60] represents a T-cell or a B-cell either of which 
can be simulated using a non linear component.   
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Fig.4.45 T-cell or B-cell [60] 

In fig. 4.45, x1, x2 to xn is the set of input signals, y k is the output signal, and 
wk1, wk2m … to wkn are the synaptic weight between the cells, φ is the activation 
functions and b k is the bias. In electrical terms x1, x2, to xn are the input 
voltages, yk is the output voltage, wk1, wk2,..,w kn are the mutual inductances, φ is 
the threshold of a nonlinear component and bk is the noise margin. 
The activation potential and the output are given by the following equations 
respectively: 

,  ( ).k k k k kw x b y                                                                          (4.56) 

The next two figures represent different immune networks.  
Figure 4.46 shows a feedforward single-layer network and figure 4.47 is a 
feedforward neural network with one hidden layer. Inputs (x) represent the 
antigens and outputs (y) represent the lymphocytes (T-cells or B-cells) and the 
antibodies. The impedance of these networks is the transference functions from 
antigens to immune responses (antibodies and lymphocytes). Electrically that 
could be a circuit with non-linear components. 
 

 
Fig.4.46  A feedforward single-layer 

network 
 

 
Fig.4.47 A feedforward neural network with 

one hidden layer 
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The following Figure 4.48 represents a recurrent Hopfield neural network with 
feedback. It is a network, whose purpose is to recognise self-antigens in such a 
way that the immune system does not attack the cells of the body.  
 

 
Fig.4.48 Hopfield neural network 

 
Fig.4.49 Two neuron network 

 
Figure 4.49 and 4.50 show a two-neuron and a three-neuron module 
respectively. It also shows the interactions between the cells which can be either 
an activation interaction or inhibition interaction. 
 
  

 
Fig.4.50 Three neuron network 
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For the two-cell module we can calculate the following: 
 

1,1 1,2
1 1 1 1n nn x y

w w
x b

e e    
 

                      (4.57)

  

2,1 2,2
1 2 1 1n nn x y

w w
y b

e e    
 

                                                 (4.58) 
 

where x’s and y’s are the output voltages (in mV), b’s are the external voltages 
(in mV) and w’s are inductances and mutual inductances (in mH) of the cells.     
Pasemann and Stollenwerk [60] considered the model with the following 
parameter values:  
 

1 2 1,1 1,2 2,1 2,22,  b 3,  w 20,  w 6,  w 6,  w 0.b                            (4.59) 

 
Eq. (4.57) and eq. (4.58) become 
 

1 1
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                                    (4.60) 

 
When xn+1=xn and yn+1=yn (equilibrium point) then eq. (4.60) become 
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1 1 1x y x
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e e e       
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                                    (4.61) 

 
The solution is following: 
 

1.28037,  y=1.69508.x                                (4.62) 
 
If eq. (4.61) is written as a vector with the right hand sides, then we get: 

20 6 6
2 ,3 .

1 1 1x y xe e e  
        

                                     (4.63) 

 
Using the Jacobian of eq. (4.63), see Appendix A-III, and taking into account 
eq. (4.62), we get:  
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In the case of a MOSFET (non-linear component) the derivative of the voltage 
(output) respect to the current (input) is the equivalent resistance. In this case 
eq. (4.64) is the equivalent impedance for the linearized model. 
 
The eigenvalues (in sec-1) of the impedance matrix of eq. (4.64) are 
 

[ 3.14872,  0.25499].                                                              (4.65) 
 

Because of at least one of the absolute values in the eq. (4.65) is greater than 1, 
according to the stability theorem for discrete systems represented by difference 
equations. The system is unstable. 
Subsequent equations are the same with the higher memory states. Eq. (4.66) 
represents the equation that determines the equilibrium point of the order of 2 
(excited memory state) being in eq. (4.62) the fundamental memory state: 
 

1 1 12 2

20 6 6
2 , 3

1 1 1n n nn nx y x
x y

e e e     
          

                                 (4.66) 

 
In this case the solution and the eigenvalues are (Appendix A-III):   
  

1.28037,  y=1.69508x                                                                             (4.67) 
and        
[ 3.14872,  0.25499]  .                                                                        (4.68) 
 
Using the appropriate programs (program 1 and program 2 in Appendix A-II), 
we get Figures 4.51 and 4.52, respectively. 
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Fig.4.51 Chaotic attractor for a minimal chaotic neuron module where the output 
voltage is represented on the horizontal axis for one of the cells and the vertical axis for 
the other cell  
 
Figures 4.51 and 4.52 show the dynamical behaviour of the cells of the immune 
system, particularly the immune memories and the bifurcations from a normal 
behaviour (Figure 4.51) to an abnormal behaviour (Figure 4.52).  
The horizontal axis shows the voltage gradient (in mV) between the inside and 
outside of a cell, and the vertical axis shows the voltage of another cell in a 
system of two with feedback. 
    

 
Fig.4.52 Bifurcation diagram for a bi-stable neuron module which displays 
quasiperiodic and bi-stable behaviours. The horizontal axis shows the voltage gradient 
between the inside and outside of a cell, and the vertical axis shows the voltage of 
another cell in a system of two with feedback. 
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Figure 4.52 shows how the state of a cell changes when the connectivity 
between the cells is altered. If the connectivity between the cells is altered the 
memories are lost and the immune system will attack the body and create self-
immune disease. 
With the use of another program (program 3 in Appendix A-II) we get a 
numerical solution for a system of two normal cells and the equivalent Figure 
4.53 which represents a stable immune memory and a normal immune system. 
The immune system keeps the memory of the self-antigens and the immune 
system does not attack the body. 
   

 
Fig.4.53 System of two normal cells where the output voltage is represented on 
 the horizontal axis for one of the cells and the vertical axis is for the other cell  

 
For a three cell module, taking into account that the state at time n+1 is 
determined by the state at time n, means that we must use difference equations. 
Then the dynamic equations are 

1,1 1,2 1,3
1 1 1 1 1n n nn x y z

w w w
x b

e e e      
  

                           (4.69) 

2,1 2,2 2,3
1 2 1 1 1n n nn x y z

w w w
y b

e e e      
  

                                       (4.70) 

3,1 3,2 3,3
1 3 1 1 1n n nn x y z

w w w
z b

e e e      
  

                                  (4.71) 

 
where x’s, y’s, z’s are the output voltages (in mV), b’s are the external voltages 
(in mV) and w’s are the inductances and mutual inductances (in mH) of the 
cells. The values are as follows: 
 

1 2 3 1,1 1,2 1,3 2,1 2,2 2,3 3,1

3,2 3,3

2, 3, 1, 20, 6, 5, 6, 0, 0, 0, 

0, 10.

b b b w w w w w w w

w w

         

 
   

                            (4.72)            
Eq. (4.69), eq. (4.70) and eq. (4.71) become 
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                                           (4.73) 

                         
            
When x n+1 = x n, yn+1 = y n and z n+1 = z n (equilibrium point), then eq. (4.73) 
becomes as follows 
 

 

20 6 5
2 ,

1 1 1
6 10

3 , 1
1 1

x y z

x z

x
e e e

y z
e e

  

 

    
  

   
 

            (4.74)

                              
The solution is (see Appendix A-III):  
     

1.07704, 1.47561, 1.24159.x y z                                                 (4.75) 
If eq. (4.74) is written as a vector with the right hand sides, then it becomes 
 

20 6 5 6 10
2 ,3 ,1 .

1 1 1 1 1x y z x ze e e e e    

            
                 (4.76)

                
Taking into account eq. (4.76) and using the Jacobian of eq. (4.76) (Appendix 
A-III) we get the following eigenvalues (in sec-1) of the impedance matrix: 

 [ 3.49461,  0.29569,  1.73911].                                                          (4.77) 

Because of at least one of the absolute values in the eq. (4.77) is greater than 1, 
the system is unstable according to the stability theorem for discrete systems 
represented by difference equations.  
Subsequent equations are the same with the higher memory states. Eq. (4.78) 
represents the equation that determines the equilibrium point of order of 2 
(excited memory state) being the fundamental memory state. 
 

1 1 1 1 12 2 2

20 6 5 6 10
2 , 3 , 1

1 1 1 1 1n n n n nn n nx y z x zx y z
e e e e e          

              
      (4.78) 

 

In this case the solution and the eigenvalues are given in Appendix A-III.  

The results are following: 
 

14.18518,  2.37301,  0.98117x y z     .                                          (4.79) 
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The eigenvalues (in sec-1) of the impedance matrix are given below: 

[ 0.000006 0.001392 j, -0.000006-0.001392 j, -1.983156].                                       (4.80)  
The equilibrium point   of eq. (4.78) represents the memory of  one self-antigen, 
given that such memory is unstable the immune systems is not able to 
remember such states and the immune system generates antibodies against the 
self-antigen and the self-immune disease is developed. 
Using the appropriate program (program 4 in Appendix A-II) we get the figures 
4.54, 4.55, 4.56 and 4.57. Figures 4.55 – 4.57 show that the values on the 
vertical axis fluctuate which means that the cell system is unstable.  
 

 
 

Fig.4.54 Chaotic attractor where the 
output voltage for each of the three cells is 
represented on each axis respectively  

 

 
 

Fig.4.55 Cell state x vs time where the 
vertical axis represents the output voltage 
of cell x and on the horizontal axis is time  

 
Fig.4.56 Cell state y vs time where the 
vertical axis represents the output voltage 
of cell y and on the horizontal axis is time 

 
Fig.4.57 Cell state z vs time where the 
vertical axis represents the output voltage 
of cell z and on the horizontal axis is time 
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4.4 Dynamic electrical impedance of a tooth 
In this work a detailed mathematical and physical model for calculating the 
bioimpedance of a tooth is developed based on a parallel R-C equivalent circuit 
[66] and a balanced Wien bridge oscillator. With the use of the appropriate 
computational software, namely Maxima [45] and Maple [46, 67], the relevant 
equations of the models can be solved analytically. 
Tooth consists out of the following parts [68], see Fig.4.58: 
a) Enamel, which is the hardest part. It covers and protects the exposed part of 
the tooth. b) Dentin, which is supports the enamel. It has microscopic channels 
the dentinal tubules. c) The Pulp is a soft tissue in the centre of the tooth. It 
contains lymph vessels and nerves. d) Cementum is the part, which covers most 
of the root of the tooth. 

 
 

Fig.4.58 Structure of a tooth [68] 
 
Different types of teeth have different impedances. Tooth decay occurs when 
bacteria produce acids as a result of exposure to the sugars that we consume 
thus affecting the tooth’s impedance. These acids dissolve the minerals in the 
enamel and demineralization begins. Subsequently the decay reaches the dentin 
and then the pulp. In that stage the root canal must be cleaned form the diseased 
pulp and root filling must be applied.  
We assume that the electrical equivalent of a tooth is a parallel RC circuit [66, 
69, 70] (Fig.4.59). In order to measure the electrical impedance of the tooth 
[66], we are going to use a Wien bridge oscillator [71] showing in the following 
figure (Fig.4.60). 
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Fig.4.59 RC circuit 
 

Fig.4.60 Wien bridge oscillator 
 
By analyzing [44] the above circuit (Fig.4.61 and Fig.4.62), we get the equation 
(4.81) and other mathematical derivatives following on the next page. 

 
 
 

Fig.4.61 Determining the transfer function 
of the Wien bridge oscillator (resistive 

shoulder) 

 
Fig.4.62 Determining the transfer function 

of the Wien bridge oscillator (complex 
impedance shoulder) 

 

4
1

4 3

( ) ,iV R
v s

R R



                    (4.81) 

2 1
2 2

1 1 2 2 2 1 2 1 1 2

( ) ,
1 ( )

iV C R s
v s

C R C R C R s C C R R s


   
                                    (4.82) 

2 1( ) ( ( ) ( ))outV s A v s v s  ,                                                      
(4.83)

 

where A is the voltage gain. 
 
From eq. (4.81), eq. (4.82) and eq. (4.83) we get 
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2 1 4
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i i
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 
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            (4.84) 

or 
 

2 1 4
2

1 1 2 2 2 1 2 1 1 2 4 3

( )
.

( ) 1
out

i

V s AC R s AR

V s sC R sC R sC R C C R R s R R
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    
            (4.85) 

 

Considering that for the bridge to balance, it must be R1 = R2 and C1 = C2 then 
eq. (4.85) becomes 
 

2 2 4
2 2 2

2 2 2 2 4 3

( )
.

( ) 1 3
out

i

V s AC R s AR

V s sC R C R s R R
 
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(4.86)
 

If R2 = R and C2 = C, then the eq. (4.86) becomes 

4
2 2 2

4 3

( )
.

( ) 1 3
out

i

V s ARACRs

V s sCR C R s R R
 

  
                                   (4.87) 

Taking into consideration the oscillation condition which is the above equation 
to be equal with 1 (loop gain of 1 causes sustained constant output), then we get 
 

4
2 2 2

4 3

1.
1 3

ARACRs

sCR C R s R R
 

                                                     (4.88)
 

 

Substituting s = jω, we get 
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or                    
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(4.90) 
 

Assuming R>0, C>0, R3>0, R4>0, A>0 and ω>0 and bridge is balanced (the 
phase shift is 0), then the imaginary part of eq. (4.90) should be equal to zero:  

 2 2 2

2 2 2 4 4 4

1
0.

1 7

A C R CR

C R C R

 

 

 
 

 
                                                      (4.91) 

Solving eq. (4.91) we get 
1

,
RC

                                               (4.92) 

And eq. (4.92) calculates the resonant radian frequency and the real part of eq. 
(4.90) should be equal to 1: 
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Considering eq. (4.92), eq. (4.93) becomes 
 

 4 3

4 3

6 31
1.

9

A R R

R R





                                 (4.94)

 

By solving eq. (4.94) for R3 we get 
 

4 4
3

2 3
.

3

R A R
R

A




                                                                             (4.95) 
Considering that A is very big in op amps then eq. (4.95) gives that 

R3 = 2R4.                                                   (4.96) 

With the help of an oscilloscope we can find the resonant frequency, then from 
the equation ω = 2πf we can calculate ω. Knowing the value of the R, we can 
calculate, solving eq. (4.92), the value of C = 1/ωR (or knowing the value of C 
we can calculate the value of R in the same way). 

 
Fig.4.63  Resposce curve 

 
Fig.4.64 Phase vs frequency 

Having balanced the bridge, we get in the output of the bridge a sine wave 
oscillation V (t) = A sin (ωt).                                                                            
Next step is to connect the tooth to the bridge (Fig.4.65). The output signal 
Vout (t) from the oscillator will drive a known resistor R5 which is connected in 
series with the electrodes to the tooth. The R5 and the R6 of the tooth will create 
a voltage divider.  
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Fig.4.65 The tooth connected to the Wien bridge oscillator 

 
Solving the equivalent circuit for the tooth, we get 
 

6

6 5 3 5 6

( )
( ) i

o

V s R
V s

R R C R R s


                                                               (4.97) 
where Vo (s) is the output of the parallel R6 C3 circuit and Vi (s) is the input 
voltage in the R5, which is the output voltage of the Wien bridge oscillator. 
So, the input voltage on the R5 is a sine wave: 

Vi (t) = A sin (ωt).                                                               (4.98) 
The Laplace transformation for the eq. (4.98) is    

2 2
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A
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
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                                 (4.99) 

Eq. (4.97) becomes 
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The inverse Laplace transform is     
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Theoretically, when t   (t = 5C3R5R6 / (R6+R5)), the exponential becomes:  
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Eq. (4.101) gives 
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(4.103)
 

 

Using an oscilloscope attached to the tooth (where V0 is shown in the figure 
4.65) we can find the amplitude (A1) of the waveform and the phase shift (Δ φ) 
comparing it to the phase of the wave form we took in the output of the Wien 
bridge oscillator (Vout is shown in the figure 4.65). 
Knowing the new amplitude A1 and the phase shift, then we solve the following 
equations. According to trigonometric function  

2 2.cos( ) .sin( ) sin( arctan( )),
a

a b a b
b

                             (4.104) 

eq. (4.103) becomes 
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                                         (4.105) 

which is equivalent to the equation  0 1( ) sin .V t A t                     (4.106)       
 

From eq. (4.105) and eq. (4.106) we get 
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More compactly, 
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                                                       (4.108)   

and  
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                                                                       (4.109) 

Solving eq. (4.108) and eq. (4.109), we can obtain the values for R6 and C3 of 
the tooth. Additionally we can calculate the resistivity ρ, the conductivity σ and 
the relative permittivity εr of the tooth. Having calculated the values of R6 and 
C3 of the tooth and measuring the surface area S of the electrodes and the 
distance L between them, then the following equations can be used: 
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  
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and   
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The model can predict the values of the resistance and the capacitance of any 
type of tooth.  Numerical calculation of the electrical impedance of the tooth 
can also be useful for evaluation of the root canal length of a tooth [72]. In 
addition, measurements can be made in order to study how the temperature 
variations of an extracted tooth can influence the electrical impedance of the 
tooth [66].   
 
4.5 Summary 
The goal of this chapter was to develop a number of models to simulate 
dynamic electrical bioimpedance, fluidic bioimpedance and interaction between 
T-cells and B-cells using the concept of impedance. The first model, which is 
based on an RLC circuit in series, represents a neuron. By solving the 
respective differential equation and taking into account several different 
parameters, we are able to estimate the values for the electrical impedance of a 
healthy neuron and one affected by Parkinson’s disease.  The second model, 
which simulates the dynamic fluidic impedance of an artery, can be used to 
calculate the electrical bioimpedance of a healthy artery and one with 
atherosclerosis [73]. It is based on an RLC, RL and operational amplifier 
circuits. The third model, based on artificial neural networks, simulates the 
interactions between T-cells and B-cells considering that the bioimpedance of 
the artificial neuronal network state variable is represented by the transfer 
functions from antigens to immune response. The final model is a simulation of 
the dynamic electrical impedance of a tooth and is based on a parallel RC 
circuit using a Wien bridge oscillator.  
It is hoped that these models will contribute to the further understanding of the 
electrical  bioimpedance  of  neurons,  fluidic  bioimpedance  of  arteries  and 
electrical  bioimpedance  of teeth as well as interactions between T-cells and B-
cells  applying  the unified impedance concept for characterisation of dynamic 
physiological processes in different biological systems.                                         
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CONCLUSIONS 

 
The thesis focuses on the unified mathematical and physical modelling of 
dynamic electrical bioimpedance, fluidic bioimpedance and interaction between 
T-cells and B-cells using the impedance concept. Different models are 
developed which deepen the understanding of the electrical and fluidic 
impedance of biological tissues and help to implement the electrical 
bioimpedance based sensing principles in medical practice. In particular, the 
following results can be highlighted. 
 

1. A model which uses electrical impedance circuits with operational 
amplifiers, resistors, inductors and capacitors for modelling the fluidic 
impedance of a healthy artery and for an artery with atherosclerosis is 
developed. For both the former and the latter we can calculate and 
compare the values of the electrical equivalent components which are 
involved in the above model (Papers 2 and 4). 

 
2. Both the electrical bioimpedance of a healthy neuron and a defective 

one are studied in detail through the use of a mathematical and physical 
model. Simulations were obtained by solving the differential equation 
for the RLC circuit. The model predicts the values of resistance of a 
healthy neuron and for a neuron which is affected by Parkinson’s 
disease (Papers 1 and 3). According to the model, the latter of these 
neurons undergoes a loss of resistance which can, hypothetically, create 
a dysfunctional neuron.   

 
3. The dynamic behaviour of the T-cells and B-cells of the immune 

system is studied in detail through the use of a mathematical and 
physical model. Simulations were obtained by solving the equation for 
the appropriate neuron models, in particular a three cell module. By 
calculating the equilibrium point of the system and taking into account 
the bioimpedance of the linearized model, we can determine whether 
the system is stable or not and whether a self immune disease is 
developing (Papers 8 and 10). 

 
4. The electrical bioimpedance of a tooth is studied in detail through the 

use of a mathematical and physical model. Simulations were obtained 
by solving the equation for the appropriate parallel RC circuit. The 
model can predict the values of the resistance and the capacitance of a 
tooth (Papers 7 and 11) thus helping in the diagnosis and treatment of 
the diseased tooth.  

 
It is expected that this work will encourage future research concerning 
Parkinson’s disease, atherosclerosis and autoimmune disease, and could give 
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rise to innovations in dentistry. The aforementioned models could be further 
developed to expand our understanding in some other particular cases in 
biology and medicine, for example those which are to be solved within the 
framework of the following projects. 
The results are already partly in use in the new research project “Analysis of the 
dynamic response of the vascular system: determination of arterial stiffness and 
dynamic fullness by the aid of non-invasive bioimpedance measurements 
(2016-2019)” signed between the East-Tallinn Central Hospital, Competence 
Centre ELIKO and Tallinn University of Technology in December 2015. The 
final goal is to develop a non-invasive method for the continuous monitoring of 
the central aortic blood pressure (CAP) curve through the measurement of 
bioimpedance of the radial artery in the wrist. Also in the Horizon 2020 – 
WIDESPREAD – 2014 – 2 – 668995 - ERA Chair project “Cognitive 
Electronics (2015-2019)” the use of the results of the thesis work is anticipated. 
Bioimpedance based sensing for the monitoring of cardiovascular and 
respiratory systems is the ultimate goal of this demanding project. Moreover, 
the results also support the new proposals for Horizon 2020 FLAG-ERA JTC 
project “Convergence (2016-2019)” and COST project “Europe To Be (2016-
2019)” submitted in April 2016. 
 
 
 
 
. 
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ABSTRACT 
 

In recent years electrical impedance has been growingly used in a variety of 
scientific fields to characterise different objects, but especially in the 
technology of medical diagnosing.  Electrical impedance Z is the complex ratio 
of the voltage to an alternative current flowing through the subject. The 
impedance depends on the frequency of current. The complex impedance can be 
expressed through its real and imaginary parts or by magnitude and phase. The 
magnitude is the ratio of the amplitude of applied voltage to the amplitude of 
response current and the phase is the phase shift between the current and 
voltage, which is caused by capacitive and inductive components in the subject. 

Electrical bioimpedance describes how a living organism responds to an 
externally applied low level electrical current. It can be defined as the 
impedance of biological specimens like organs, tissues, cells, bio-molecules. It 
is an opposing measure of the subject to the flow of electrical current. 

The thesis analytically describes also the properties of the dielectric materials 
(non-conductive or poorly conductive ones) and the dependence of their 
dielectric permittivity on frequency. Different methods of impedance and 
bioimpedance measurement as well as safety standards for the measurement are 
presented.  

In the most important part of the thesis different mathematical and physical 
models of dynamic electrical bioimpedance are developed. More specifically, 
mathematical and physical modelling of the dynamic electrical impedance of a 
neuron which uses electrical circuits with operational amplifiers, resistors, 
inductors and capacitors is analysed. Also the dynamic fluidic (hydraulic) 
impedance of arteries using electrical impedance equivalents RLC and 
operational amplifiers circuits is studied. Furthermore, a model is developed 
using artificial neural networks to describe the dynamic behaviour of the T-cells 
and B-cells of the immune system and its diseases in terms of the alterations of 
the dynamic electrical impedance of thymus and bone marrow. Finally the 
dynamic electrical impedance of a tooth is studied using a RC circuit and a 
Wien bridge oscillator.  

The current thesis work was supported by the institutional research funded 
project IUT19-11 of Estonian Research Agency: “Impedance spectroscopy 
based identification and control of objects: signals, algorithms, energy efficient 
solutions (2014-2019)”, as well as partly by Horizon 2020 European Research 
Area (ERA Chair) project: “Cognitive Electronics (2015-2019)”, which is 
aimed at spreading excellence and widening participation in European research 
in the field of sensing and cognition. The results were used by the consortium of 
Horizon 2020 flagship project application FLAG-ERA JTC 2016 - Energy 
Efficient Convergent Wearables for Healthcare and Lifestyle Applications 
(2016-2019) for justifying the development of sensing methods for continuous 
monitoring of cardiovascular system.  
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KOKKUVÕTE

Viimastel aastatel on elektrilise impedantsi kasutamine erinevate objektide 
iseloomustamiseks saanud kasvava tähenduse mitmetes teadussuundades, kuid 
eriti just meditsiinilise diagnostika jaoks loodavas tehnikas. Elektriline 
impedants Z on kompleksarvudes väljenduv suhe elektrilise vahelduvvoolu 
pinge ja objekti läbiva voolu vahel, mis avaldub kas reaal- ja imaginaarosa või 
mooduli ja faasi kaudu. Elektriline impedants sõltub teda läbiva elektrivoolu 
sagedusest. Impedantsi moodul on suhe rakendatud elektripinge amplituudi 
ning selle tulemusena tekkiva voolu amplituudi vahel, kusjuures faas kajastab 
faasinihet pinge ja voolu vahel põhjustatuna mahtuvuslike ja induktiivsete 
komponentide olemasolust objektis.   

Elektriline bioimpedants kirjeldab seda, kuidas elusorganism reageerib 
väljastpoolt rakendatud nõrgale elektrivoolule. Seda võib määratleda kui 
bioloogiliste olluste ehk substantside (organ, kude, rakk, biomolekul) elektrilist 
impedantsi. See on füüsikaline mõõde, mis iseloomustab kuivõrd on 
raskendatud elektrivoolu tee läbi bioloogiliste kudede. Doktoritöö kirjeldab 
analüütiliselt ka elektrit mittejuhtivate või halvasti juhtivate dielektriliste 
materjalide omadusi nende dielektrilise läbitavuse sagedussõltuvuse kaudu. 
Esitatud on erinevad meetodid elektrilise impedantsi mõõtmiseks, samuti on 
käsitletud rangelt reguleeritud ohutusnõudeid bioimpedantsi mõõtmise juures. 

   Kõige olulisem osa käsitleb dünaamilise elektrilise bioimpedantsi 
modelleerimist erinevate matemaatiliste ja füüsikaliste meetodite abil kasutades 
operatsioonvõimenditest, resistoridest, induktiivsustest ja mahtuvustest 
koosnevaid elektrilisi ekvivalent-lülitusi. Välja arendatud on impedantsi 
kontseptsioonil põhinevad matemaatilis-füüsikalised mudelid neuroni ning 
sidestuses oleva neuronkogumi käitumise kohta, leitud on mudelid vedeliku 
(vere) voolule avalduva arteri mehaanilise (hüdraulilise) impedantsi kohta 
ekvivalentsete elektrilist impedantsi kirjeldavate matemaatiliste mudelite 
kaudu. Analüüsitud on organismi immuunsüsteemi haiguslikke muutusi 
harknäärme ning luuüdi käitumises dünaamilise impedantsi mudelite abil. 
Rakendatud on Wieni sillal põhinevaid elektrilise impedantsi mudeleid 
hamba seisundi määramiseks.  

Käesolev uurimistöö tugines institutsionaalsele uurimistööle IUT19-11: 
“Impedants-spektroskoopia põhine objektide identifitseerimine ja juhtimine: 
signaalid, algoritmid, energiasäästlikud lahendused (2014-2019)” ning osaliselt 
ka Horisont 2020 Euroopa teadusruumi projektile (ERA Chair): 
“Kognitiivelektroonika (2015-2019)”, mis on suunatud teadustöö kõrgtaseme 
saavutamisele ja levitamisele Euroopas sensoorika ja kognitiivtehnoloogia 
vallas. Tulemusi kasutati ka Horizon 2020 projekti taotluse FLAG-ERA JTC 
2016: “Energia-efektiivsed kantavad seadmed tervishoiu ja elustiili rakendustes 
(2016-2019)” konsortsiumi poolt kardiovaskulaar-süsteemi pidevjälgimise 
vahendite loomisele suunatud tegevuste põhjendamiseks. 
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COPIES OF THE SELECTED PAPERS  
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I.1 Paper I: Mathematical and physical modelling of the dynamic fluidic 

impedance of arteries using electrical impedance equivalents. 

I.2 Paper II: Using Neural Networks to model self-immune disease in 

terms of the alterations of the dynamic electrical impedance.  

I.3 Paper III: Mathematical and Physical Modelling of the Dynamic 

Electrical Impedance of a Neuron. 

I.4 Paper IV: Mathematical modelling of the dynamic electrical 

impedance of a parallel RC circuit using a Wien bridge oscillator. 
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I.1 
 

Paper I 

 

Georgios Giannoukos, Mart Min, “Mathematical and physical modelling 

of the dynamic fluidic impedance of arteries using electrical impedance 

equivalents” Mathematical Methods in Applied Science, Volume 37, 

Issue 5, pp. 711-717, 2014, John Wiley and Sons, Ltd, Chichester, UK 

DOI: http://dx.doi.org/10.1002/mma.2829 

This paper is cited in a comprehensive analysis ‘A Review on Carotid 

Ultrasound Atherosclerotic Tissue Characterization and Stroke Risk 

Stratification in Machine Learning Framework’ by Sharma AM1, Gupta 

A, Kumar PK, Rajan J, Saba L, Nobutaka I, Laird JR, Nicolades A,    

Suri JS in the Springer journal ‘Current Atherosclerosis Reports’ (Curr 

Atheroscler Rep 2015). DOI: http://dx.doi.org/10.1007/s11883-015-
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I.2 
 

Paper II 

  

Georgios Giannoukos, Mart Min “Using Neural Networks to model self-
immune disease in terms of the alterations of the dynamic electrical 
impedance” NUMERICAL ANALYSIS AND APPLIED 
MATHEMATICS (ICNAAM 2014): International Conference of 
Numerical Analysis and Applied Mathematics, 22–28 September 2014, 
Rhodes, Greece, 1648, 850001 (2015), American Institute of Physics AIP 
Conference Proceedings, AIP Publishing, Melville, NY, USA.                    
DOI: http://dx.doi.org/10.1063/1.4913056 
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I.3 
 

Paper III 

 

Georgios Giannoukos, Mart Min, “Mathematical and Physical Modelling 

of the Dynamic Electrical Impedance of a Neuron” International Journal 

of Circuits, Systems and Signal Processing, Volume 6, Issue 5, 2012, pp. 

359-366, ISSN: 1998-4464, North Atlantic University Union, (NAUN), 

Salem, Oregon, USA. 

URL:http://www.naun.org/multimedia/NAUN/circuitssystemssignal/16-
587.pdf 
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Paper IV 

 

Georgios Giannoukos, Mart Min “Mathematical modelling of the dynamic 
electrical impedance of a parallel RC circuit using a Wien bridge oscillator” 
Journal of Computational Methods in Sciences and Engineering (JCMSE), 
ISSN print: 1472-7978, ISSN online: 1875-8983, Volume 15, Issue 2, 2015 
pp.287-293, IOS Press, Amsterdam, The Netherlands. 
DOI:  http://dx.doi.org/10.3233/JCM-150543 
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A-II. 
 
PROGRAMMING CODES 
 
Program 1: Chaotic attractor for a minimal chaotic neuromodule 
x:=array(0..100000):y:=array(0..100000): 
b1:=-2:b2:=3:w11:=-20:w21:=-6:w12:=6:imax:=10000: 
x[0]:=1:y[0]:=0.2: 
for i from 0 to imax do 
x[i+1]:=evalf(b1+w11/(1+exp(-x[i]))+w12/(1+exp(-y[i]))): 
y[i+1]:=evalf(b2+w21/(1+exp(-x[i]))): 
end do: 
with(plots): 
points:=[[x[n],y[n]]$n=50..imax]: 
pointplot(points,style=point,symbol=point,color=blue,axes=BOXED, 
font=[TIMES,ROMAN,15]); 
 
 
Program 2: Bifurcation diagram for a bi-stable neuron module which displays 
quasiperiodic and bi-stable behaviours 
start:=7:Max:=7:b2:=3:b1:=2:w12:=-4:w21:=5: 
halfN:=9999:N1:=1+halfN:itermax:=2*halfN+1: 
x[0]:=-3:y[0]:=-2: 
for n from 0 to halfN do 
w11:=start-n*Max/halfN: 
x[n+1]:=evalf(b1+w11*tanh(x[n])+w12*tanh(0.3*y[n])): 
y[n+1]:=evalf(b2+w21*tanh(x[n])): 
end do: 
with(plots): 
points:=[[start-j*Max/N1,x[j]]$j=0..halfN] : 
P1 :=pointplot(points,style=point,symbol=point,color=blue,axes=BOXED, 
font=[TIMES,ROMAN,15]); 
for n from N1 to itermax do 
w11:=(n-N1)*Max/halfN: 
x[n+1]:=evalf(b1+w11*tanh(x[n])+w12*tanh(0.3*y[n])): 
y[n+1]:=evalf(b2+w21*tanh(x[n])): 
end do: 
points:=[[start+(j-N1)*Max/N1,x[N1+j]]$j=0..halfN] : 
P2 :=pointplot(points,style=point,symbol=point,color=blue,axes=BOXED, 
font=[TIMES,ROMAN,15]); 
display({P1,P2},labels=[’w11’,’x[n]’]); 
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Program 3: System of two normal cells 
restart: 
x:=array(0..100000):y:=array(0..100000): 
imax:=15000: 
x[0]:=1:y[0]:=0.2: 
for i from 0 to imax do 
x[i+1]:=evalf(2+3.5*tanh(x[i])-4*tanh(0.3*y[i])): 
y[i+1]:=evalf(3+5*tanh(x[i])):end do: 
with(plots): 
points:=[[x[n],y[n]]$n=50..imax]: 
pointplot(points,style=point,symbol=point,color=blue,axes=BOXED, 
font=[TIMES,ROMAN,15]);   
 
 
Program 4: Chaotic attractor, Cell state x vs time, Cell state y vs time, Cell state 
z vs time 
x:=array(0..100000):y:=array(0..100000):z:=array(0..100000): 
b[1]:=-2:b[2]:=3:b[3]:=1:w[1,1]:=-20:w[1,2]:=6:w[2,1]:= 
6:w[2,2]:=0:w[1,3]:=5:w[2,3]:=-4:w[3,3]:=-10:w[3,1]:=-3:w[3,2]:=0: 
imax:=100: [0]:=1:y[0]:=0.2: z[0]:=0.1: 
for i from 0 to imax do 
x[i+1]:=evalf(b[1]+w[1,1]/(1+exp(x[i]))+w[1,2]/(1+exp(y[i]))+w[1,3]/(1+exp(-
z[i]))): 
y[i+1]:=evalf(b[2]+w[2,1]/(1+exp(x[i]))+w[2,2]/(1+exp(y[i]))+w[2,3]/(1+exp(-
z[i]))): 
z[i+1]:=evalf(b[3]+w[3,1]/(1+exp(-x[i]))+w[3,2]/(1+exp(y[i]))+w[3,3]/(1+exp(-
z[i]))): 
end do:with(plots): 
points:=[[x[n],y[n],z[n]]$n=0..imax]: 
points1:=[[n,x[n]]$n=0..imax]: 
points2:=[[n,y[n]]$n=0..imax]: 
points3:=[[n,z[n]]$n=0..imax]: 
pointplot3d(points,connect=true,style=line,symbol=point,color=blue,axes=BOXED,f
ont=[TIMES,ROMAN,15]); 
pointplot(points1,connect=true,style=line,symbol=point,color=blue,axes=BOXED,fo
nt=[TIMES,ROMAN,15]); 
pointplot(points2,connect=true,style=line,symbol=point,color=blue,axes=BOXED,fo
nt=[TIMES,ROMAN,15]); 
pointplot(points3,connect=true,style=line,symbol=point,color=blue,axes=BOXED,fo
nt=[TIMES,ROMAN,15]); 
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A-III.  
MATHEMATICAL CALCULATIONS  

Solution of the differential equation (4.3) of neuron (page 54) on the basis of 
equivalent circuit (Fig. 4.7, page 55) derived through Bessel functions: 
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Solution of the equation (4.61) on page 81 

given as III-1 below: 
 

20 6 6
2 ,  3 .

1 1 1x y x
x y

e e e       
  

                  (III-1) 

 
The solution of eq. (III-1) is 
 

1.28037,  y=1.69508x                                                                                    (III-2) 

If eq. (III-1) is written as a vector with the right hand sides, then it becomes 
 

20 6 6
2 ,3

1 1 1x y xe e e  

        
                        (III-3) 

 
The Jacobian of eq. (III-3) is 
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                                                            (III-4)

                                   
Taking into account eq. (III-2), then the eq. (III-4) becomes to eq. (III-5): 
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                                (III-5)

                                                     
The eigenvalues (in sec-1) of the impedance matrix of eq. (III-5) are: 

[ 3.14872,  0.25499].                                                           (III-6) 
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Solution of the eq. (4.66) on page 82 

given as eq. (III-7) below: 
 
 

1 1 12 2

20 6 6
2 , 3

1 1 1n n nn nx y x
x y

e e e     
          

                                 (III-7)

                                                       
The solution of eq. (III-7) is following:  

1.28037,  y=1.69508x                                                                                    (III-8) 

The Jacobian of eq. (III-7) is 
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The eigenvalues (in sec-1) of the impedance matrix of eq. (III-9) are 
 
[ 3.14872,  0.25499]   .                                                        (III-10) 

 

The solution of eq. (4.74) on page 85                                                              
given as III-11 below: 

20 6 5
2 ,

1 1 1
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                  (III-11) 

                         
The solution of eq. (136), here of (III-11), is: 

1.07704, 1.47561, 1.24159x y z     .                                                     (III-12) 
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If eq. (III-11) is written as a vector with the right hand sides, then it becomes 
 

20 6 5 6 10
2 ,3 ,1

1 1 1 1 1x y z x ze e e e e    

            
       (III-13)

                                                    
The Jacobian of eq. (III-13) is 
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If we taking into account eq. (III-12), then eq. (III-14) becomes 
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The eigenvalues (in sec-1) of the impedance matrix of the eq. (III-15) are: 
 
[ 3.49461,  0.29569,  1.73911].                                                                  (III-16) 
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                          Solution of the eq. (4.78) on page 85       

  given as eq. III-19 below: 

 

1 1 1 1 12 2 2

20 6 5 6 10
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  (III-17)                        

   
The solution of eq. (III-17) is following: 
 

14.18518,  2.37301,  0.98117x y z     .                                                 (III-18) 
 
The Jacobian of eq. (III-17) expresses as given below: 
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                                  (III-19)     

                                                                                                  
The eigenvalues (in sec-1) of the impedance matrix of the eq. (III-23) are as follows 
below, eq. (III-24): 

[ 0.000006 0.001392 j, -0.000006-0.001392 j, -1.983156].            (III-24) 
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A-IV. 
 
METHODS OF IMPEDANCE MEASUREMENT 
 
Appendix IV gives a short overview of the various methods of impedance 
measurement. The measurement of dielectric properties of a material, according to 
the prior analysis, determines the size of an equivalent circuit, thus the impedance 
of a device. In practice the impedance measurements performed depend on the type 
and form of the device being measured (device under test, DUT), the frequency 
range of measurement and the desired accuracy of the results, always in combination 
with the cost and usability of the equipment [74]. 
 
IV.1 Bridge method 
When there is no current flow through the detector D (Fig. IV-1), which means the 
bridge is balanced, the value of the unknown impedance Zx can be calculated from 
the equation: 

                      1 3

2
x

Z Z
Z

Z
 .                    (IV-1) 

  

 
 

Fig.IV-1 Bridge method [74] 
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IV.2 Resonant method 
The resonance of the circuit (Fig. IV-2) is achieved setting the value of the variable 
capacitor C. Then the unknown parameters Rx and Lx are calculated from the value of 
C, the resonant frequency and the quality factor Q the latter of which is directly 
measured with a voltmeter connected to the variable capacitor. Considering the low 
loss of the circuit, it is possible to measure very large values of Q up to 300.  
 

 
Fig.IV-2 Resonant method [74] 

 
 
IV.3 Current-to-Voltage I-V method 
The unknown impedance Zx can be calculated from measured values of current and 
voltage (Fig. IV-3). The current is calculated by measuring the voltage drop across a 
resistor R, whose value is precisely known and is relatively small. In practice instead 
of R a low loss transformer is often used, but this introduces a lower limit to the 
frequency range of the method. The following equation applies: 

 

            1 1

2
x

V V
Z R

I V
   .                                                               (IV-2) 

 
Fig.IV-3 I-V method [74]
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IV.4 Radio frequency (RF) current-to-voltage (I-V) method 
The RF I-V method is based on the same principle as the simple I-V method, but it 
uses a matched measuring circuit (50 Ω) and a coaxial accuracy test connector for 
operation at higher frequencies. There are two configurations suitable for low and 
high impedance values. The equation below applies for low frequencies (Fig. IV-4):  

 

1

2 2 1

1

22

1
x x

RVV R
Z Z

VI V V
V

   


 .                     (IV-3) 

 
Fig.IV-4 RF I-V method for low frequencies (Low impedance type) [74] 

For high frequencies (Fig. IV-5) the impedance is expressed as 

 1 21

2 2

1
2 2x x

R V VVV R
Z Z

I V V

 
     

 
.                                 (IV-4) 

 
Fig.IV-5 RF I-V method for high frequencies (High impedance type) [74] 
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IV.5 Network analysis method 
This method is suitable for high frequencies, especially microwave. It obtains the 
reflection coefficient as the ratio of the reflected to the incident signal. The 
impedance is determined by the reflection coefficient according to the microwave 
theory [75]. A Network Analyzer is used for the production and measurement of 
signals and a directional coupler or bridge to detect the reflected signal (Fig. IV-6). 
 

 
Fig.IV-6 Network analysis method: a circuit diagram [74] 

 
  
IV.6 Auto-balanced bridge method 
With the operation of the I-V converter, the current which flows through the 
unknown impedance Zx and the current which flows through the resistance R r will be 
in balance. Point L is maintained at potential zero potential and is called as a virtual 
ground. The impedance Zx is estimated by measuring the potential at point H and the 
potential difference at the ends of R (Fig. IV-7).  
 

 
Fig.IV-7 Auto-balanced bridge method [74] 
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The following equation applies: 

x x
x x

x x

V V
I Z

Z I
                                               (IV-5)   

Knowing that r
r

r

V
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R
 ,                                     (IV-6) 

and considering that r
x r x

r

V
I I I

R
   .                                 (IV-7) 

From eq. (IV-5) and eq. (IV-7) we get x x
x r

x r

V V
Z R

I V
  .                      (IV-8) 

The advantage of this method is the wide frequency range and the precision for a 
wide range of impedances. It is the primary method used for measurements at low 
and medium frequencies. 
At higher frequencies, the accuracy of results is reduced because of performance 
limits of the operational amplifier. The wideband LCR bridges and impedance 
analyzers use a sophisticated null detector, phase detector, loop filter and a vector 
modulator to increase the available frequency range above 1 MHz, with a maximum 
of 110 MHz. 
The following Fig. IV-8 shows a simplified diagram of the Agilent impedance 
analyser [76]. 
 

 
 

 

Fig.IV-8 Simplified diagram of the Agilent impedance analyser [74] 
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As seen from the figure IV-8, the analog part of the device consists of the signal 
source section, the auto balancing bridge section, and the vector ratio detector 
section. There is also the digital part, which controls the operation of the analog 
section, converts the measured data to digital with an A/D converter, processes and 
stores measurement data and communicates with the user through a connection to a 
computer. 
 
IV.7 Summary 
In this sub-section of the Appendix we analysed the different methods of measuring 
impedance. The most common methods were used for these measurements, those 
being the bridge method, the resonant method, the I-V method, the RF I-V method, 
the network analysis method and the auto-balanced bridge method. The equivalent 
circuits for each of these are given. It is expected that this analysis will help in 
choosing the right method and device of measurement for the particular task at hand 
in order to obtain the most credible results. 
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A-V. 
 
MEASUREMENT SAFETY  
 
Measurement safety, more specifically, possible dangers when using medical 
equipment is discussed as well as the impact of electric shock on the human body. 
Additionally, the different classifications and types of medical equipment as well as 
the standards and the medical equipment nomenclature are presented. Then a 
description is given of the measurement of leakage currents, namely the enclosure 
leakage current, the patient leakage current, the earth leakage current and the capacity 
leakage current. Finally, the SELV-PELV system protection against electric shock is 
mentioned.  
 
V.1 Hazards in use of medical devices 
Medical equipment use is not always safe as technical staff and patients may be 
directly exposed to electrical or electronic hazards. Briefly some of the most common 
risks are the following. 
Firstly, there are risks related to the malfunction of the device itself or the absence of 
required electrical safety measures such as: 

 Fire or explosion. 
 Improper or insufficient output terminals. 
 Total shutdown or extensive electrical / mechanical failures 
 Mechanical hazards. 
 Electromagnetic Interference. 
 Exposure to non-permitted electrical currents. 

 

Additionally, as a result of the use of faulty equipment or faulty operation there may 
be serious consequences for the patients, such as: 

 Cessation of cardiac function. 
 Atrial fibrillation or cardiac arrhythmias. 
 Injuries. 
 Burns. 
 Respiratory problems or even cessation of respiratory function. 
 Muscle aches. 
 Damage to the nervous system. 
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V.2 Electric shock and effects on the human body 
 Electrical current has the following effects on the human body [77]: 

 Interference with the operation of the neuromuscular system because of a 
change in the resting potential of the cell membrane. 

 Burns due to the conversion of electrical energy to heat. 
 Mechanical injury resulting in violent muscle contractions. 

The predominantly electric nature of the transmission of nerve impulses is 
responsible for the high sensitivity of the body to the external electric current. 
Electric charges which are too small to cause thermal damage can cause a change in 
the formation of proteins and perforation integrity of cell membranes that is 
threatening to normal cell function. Momentary contact with live cables can cause 
cellular damage (breakage and cell lysis) not related to heat release and with more 
prolonged contact thermal burns may occur. The blood vessels may undergo 
thrombosis and occlusion, resulting in tissue ischemia and necrosis. The muscle 
wasting can lead to acute renal failure (due to occlusion of the renal tubules, 
myoglobin is released). Broken bones, muscle and tendon rupture can occur during 
the violent muscle contractions. Studies have shown that less than 1% of people can 
feel an alternative electrical current of 0.3 mA and frequency 50 Hz. The usual value 
for which electricity is felt by men is 1.1 mA and women 0.7 mA of frequency of 50 
Hz. The current is felt by the human in the form of a tingling sensation. The 
maximum current which is considered harmless to humans is 5 mA though the shock 
it causes is acutely felt. At this point we should emphasize that if a man takes hold of 
current carrying conductor then the muscles of the hand are stimulated and contract. 
Thus a person is involuntarily forced to hold tighter although he is being 
electrocuted. In relatively low amperage the person can control his muscles, 
overcoming the current and thus free himself from the current carrying conductor. 
These levels depend on muscle mass but when the value of electrical current is high 
then the danger can be life threatening. The electrical current values and the 
symptoms are given below. 
 
Current (mA)        Symptoms 
0.7-1.1 The threshold of perception of electricity 
5 The maximum harmless value. Causes annoying shock 
20 Tetanic muscle contractions 
100 Ventricular fibrillation 
2000 Cardiopulmonary arrest. Burns 

 
Table V-1: AC effects in humans, f=50Hz 

 
The main resistance of the electrical current in humans is the resistance of the skin 
which can vary depending on the thickness and the moisture of the contact surface.  
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The resistance of patients in the intensive-care unit (ICU) is sufficiently smaller than 
the resistance of a healthy person mainly because: 

 Skin resistance is reduced in the area where the electrodes of bioelectric 
metering have been placed. 

 The use of intravenous fluids or catheters may have the effect of bypassing 
the current path to the skin. 

 It has been found that the skin resistance of the patient is directly related to 
the use of drugs and many psychological and clinical factors. 

 
The effect of reducing the resistance of the patient is the risk he runs of electric shock 
from current values which are considered harmless to a healthy person. A table with 
various tissues and corresponding resistance features is shown below. 
 
Tissue Resistance 
Mucosal lacerations 100 - 500 Ω/cm2 
Wet skin 500 - 1500 Ω/cm2 
Sweaty skin 1500 - 2500 Ω/cm2 
Palm, medial thigh (vascular areas) 2500 - 10000 Ω/cm2 
Dry skin 10.000 – 100.000 Ω/cm2 

 
Table V-2:  Resistance of different tissues 

 
The nerves, muscles and blood vessels have lower resistance. In general, the body 
fluids are good conductors because of significant concentrations of ions. The bones 
have the greatest resistance. It should be noted that children have thinner skin and a 
higher percentage of water in the body than adults and therefore are more vulnerable 
to electric shocks. So when the skin resistance is low then the electricity enters 
internal structures of the body, but if the resistance is greater, the electricity causes 
skin burns in most cases because it is turned into thermal energy. Through studies an 
empirical equation has been found which relates the period of time with the minimum 
current that is required to induce ventricular fibrillation. It is given as Imin = 115/t1/2 

(mA) for short-term shocks lower than the cardiac cycle (< 1 s). This is the electrical 
current, which will induce ventricular fibrillation and is large enough to affect the 
vulnerable phase of the cardiac cycle (T wave, repolarization phase of the ventricles). 
Shock longer than the cardiac cycle cause premature extensor contractions, which 
make the myocardium more vulnerable after 4 to 5 cycles. The amount of heat 
generated is equal to Q = I 

2
 · R· t. So, for a given current the greater the duration of 

exposure the greater thermal damage is for the tissues. Finally, we should note that 
when a person is subject to an electric shock, then the sweat glands are stimulated 
resulting in the secretion of sweat which reduces the resistance of the skin thereby 
increasing electrical current, as time passes. 
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Fig.V-1 Duration curve to electrical current [78] 

 
The explanation of each zone in Fig.V-1 is given below [78]. 
 

• Zone AC-1: Not perceived. 
• Zone AC-2: Perceived. 
• Zone AC-3: Reversible effect - muscle contraction. 
• Zone AC-4.1: Up to 5% probability of ventricular fibrillation. 
• Zone AC-4.2: Up to 50% probability of ventricular fibrillation. 
• Zone AC-4.3: Over 50% probability of ventricular fibrillation. 
 
The explanation of each curve in Fig.V-1 is given below: 
 

• Curve A: Threshold of perception 
• Curve B: The limit of muscular reactions 
• Curve C1: Limit: 0% probability of ventricular fibrillation 
• Curve C2: Limit: 5% probability of ventricular fibrillation 
• Curve C3: Limit: 50% probability of ventricular fibrillation 
 
V.3 Safety standards for medical equipment 
The application of safety and quality checks in the use of medical devices ensures the 
best possible level of security is provided to both patients and medical staff [79, 80] 
Checking electrical safety refers to all medical devices used in areas such as 
operating theaters and ICU and those used for diagnostic purposes which transfer 
energy to the patient or record vital signs such as ECG and patient monitor. 
 
Safety checks are carried out in accordance with international standards, some of 
which are given below: 

Duration (ms) 
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 IEC 60601-1 «Medical electrical equipment – Part 1: General requirements 
for safety 1»  

These ensure that medical devices operate within the set safety limits. 
 IEC 60601-2: «Medical electrical equipment - Part 1: General requirements 

for safety 2»  
These include checking important devices such as diathermy, defibrillators and 
monitors and ensure that critical parameters such as output power, leakage currents 
etc are within limits and therefore the operation is safe. 
Certain subcategories of the above standard are given below: 

 IEC 60601-2-4: «Medical electrical equipment - Part 2: Particular 
requirements for the safety of cardiac defibrillators and cardiac defibrillator 
– monitors» 

 IEC 60601-2-2: «Medical electrical equipment - Part 2: Particular 
requirements for the safety of high frequency surgical equipment» 

 IEC 60601-2-27: «Medical electrical equipment - Part 2: Particular 
requirements for the safety of electrocardiographic monitoring equipment» 

Also standards related to the safety of medical equipment are shown in the following 
table: 
 
NFPA NFPA 99 Standards for health care facilities 1993 
AAMI/ANSI American National Standards: Safe Current Limits for 

Electromedical Apparatus 1993 
DIN/VDE DIN/VDE 0751-1 Repair, modification and testing of 

medical electrical equipment; general requirements 
1990 

 
Table V-3: Standards related to the safety of medical equipment 

 
V.4 Electrical safety checks for medical devices 
To ensure a safe medical environment and detection - prevention of adverse effects 
on patients and users, electrical safety checks are probably the most important issue. 
By conducting a series of controlled tests the existence of leakage currents which 
may cause electric shock, can be detected and in most cases the electrical safety 
check can provide strong evidence of a failure of the device to operate as it should. 
The aim is the systematic checking of electrical safety of all those devices that 
operate either in vital medical facilities (operating rooms, intensive care units, etc.) or 
come in contact with the patient (defibrillators, ECG, Patient Monitor etc). For this 
purpose, certain control protocols-standards in accordance with international 
standards IEC 60601-1 are applied. With these control protocols the medical devices 
are checked to determine if their operation is safe and if they are within the specified 
safety limits so that they operate correctly for both the patient and for the user. The 
standard defines the requirements of the tests for protection against possible hazards 
including electrical grounding protection, earth leakage currents, patient leakage 
currents and patient auxiliary currents, which will be analysed below. Also HEI 95 
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and DB9801 standards are recommended for the checking of medical devices [81, 
82]. 
The electrical devices are distinguished by the means of protection they have which 
is either single or double insulation. There are two categories which are given below: 
a) the type of protection against electrical accident are the following: class I, whose 
devices have an additional means of protection with a permanent protective earth 
conductor connection with the metal parts of the casing, and class II, whose devices 
include basic insulation as well as enhanced insulation; 
b) the degree of protection provided by the applied parts, including devices that 
provide a specific degree of security, which may have leakage currents within 
acceptable limits and reliability of the protective earth conductor. 
For the proper checking of medical devices there are tests for the insulation to check 
whether there are leakage currents. These tests use AC current and test equipment at 
certain levels of humidity. The measuring resistance value for class I devices (Fig.V-
2) should be greater than 50 MΩ, but in some rare cases may be less [83].  
 

Applicable to: Class I, all types 
Limits: Not less than 50 ΜΩ 
DB9801 
recommended: 

Yes 

HEI 95 
recommended: 

Yes 

Notes: Equipment containing mineral insulated 
heaters may give values down to 1ΜΩ. Check 
equipment is switched on. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.V-2 Insulation resistance measurement for Class I devices [83]  
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Applicable to Class II, all types having applied parts 
Limits: Not less than 50 ΜΩ 
DB9801 
recommended: 

No 

HEI 95 
recommended: 

Yes 

Notes: Move probe to find worst case 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.V-3 Insulation resistance measurement for Class II devices [83]  

 
As regards the devices of Class II (Fig.V-3), the measuring value of the resistance 
should not be less than 50 MΩ [82, 84]. 
 
V.5 Measurement of leakage currents 
Measurement circuits have been designed to simulate the average typical electrical 
characteristics of the human body in order to ensure a traceable simulation of current 
as if flowing through a human body and these circuits are known as Body Models or 
Measuring Devices (MD in IEC 60601-1 standard). The diagram below shows the 
MD (Fig.V-4). 
 

 
Fig.V-4 Circuit for the measuring device (MD) [83] 
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V.6 Enclosure Leakage Current 
The current flowing from the enclosure or other accessible metal parts of the 
appliance to earth or to another part of the enclosure through another conductive path 
other than of the protective earth conductor is called Enclosure Leakage Current 
(Fig.V-5) [83]. Such currents are likely to flow on the housing even when the 
protective earth conductor presents no discontinuity through another conductive path 
other than that of the protective earth conductor. The schematic interpretation of the 
enclosure leakage current measurement is shown in the following figure. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                  Fig.V-5 Test circuit for Enclosure Leakage Current [83]  
 
 
V.7 Patient leakage current 
Patient leakage current is the leakage current that flows through a patient connected 
to an applied part or parts. It can either flow from the applied parts via the patient to 
earth or from an external source of high potential via the patient and the applied parts 
to earth (Fig.V-6 and Fig.V-7) [83]. A patient being exposed to external voltage due 
to an external voltage source would result in a serious accident and although it is 
unlikely to occur it is advisable to safeguard against it [85, 86]. 
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Fig.V-6 Patient leakage current from an electrical equipment [83]  

 

 
 

Fig.V-7 Patient leakage current to an electrical equipment [83]  
 

Checking the patient leakage current is divided into two checks of which the first 
examines the current flowing through the applied parts and from the device, while the 
second examines the current that will flow through the parts when a potential 
difference appears in the patient because of the existence of an external power 
supply. For the first check, all electrodes are connected together and the measuring 
device is placed between the protective earth conductor and the connection of the 
electrodes. In the second check an external voltage is applied to the electrodes 
through the checking device and a power supply is inserted between the terminals of 
the measuring device and the protective earth conductor. For internally powered 
devices with accessible metal parts in particular, the patient leakage current is 
measured between the electrodes and a point on the housing and the terminals of the 
measuring device are placed accordingly. 
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The following figure (Fig.V-8) [83] shows the schematic interpretation of the patient 
leakage current measurement. 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

Fig.V-8 Test circuit for patient leakage current measurement [83]  
 
 
V.8 Earth leakage current 
Earth leakage current is the current that escapes from the device to the protective 
earth conductor leaking from the main parts and is due to capacitive effects (Fig.V-9)  
[83]. In the event of interruption of the protective earth conductor, current will flow 
(leak) to earth through the patient [85, 86]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.V-9 A route of the leakage current to earth [83]  
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The following figure (Fig.V-10) shows the schematic interpretation of the 
measurement of the leakage current to earth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.V-10 Test circuit for the measurement of leakage current to earth [83]  
 
V.9 Patient protection using grounding system 
Medical facilities are different from ordinary household and industrial premises, 
because they should combine smooth functioning with some increased security 
requirements. A typical example is the emergency electrical loads of a hospital (for 
instance operating theatres, blood refrigerator and intensive care unit) which, in the 
event of a power failure, are powered by a power generator. All buildings should 
have a grounding system to eliminate any risk of leaking electricity. For this reason, 
there should be a distribution network with three lines which are responsible for the 
insulation. The earth normally encountered is the operating ground and the protective 
earth. The difference between grounding and earthing protection function is shown 
below (Fig.V-11). 
 
 
 
 
 
 
 
 
 
 
 

Fig.V-11: (a) Operating ground, (b) Protective earth 
 

The grounding function is necessary for the operation of the circuit and the grounding 
protection is designed to protect people from the leakage current to the metal casing 
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of an electrical device with which they come in contact. The way in which the 
protective grounding works is shown below (Fig.V-12), where the resistance of the 
human consists of two parts: the core (about 500 Ω) and skin (1 ... 100 KΩ depending 
on its humidity) [85]. 

 
Fig.V-12 Explanation of circuit protective earth circuit [83] 

 
The more humid the skin the smaller the resistance. When a person comes into 
contact with the metal housing of a shielded electrical device, in which a leakage 
current occurs ((a) in the above figure), then the leakage current is limited (resistance 
Ra), depending on the value of total resistance of the ground circuit. The equivalent 
circuit of the above arrangement of the leakage current is shown in (b) of the above 
figure. From the equivalent circuit above we see that if Req << Ra then Ir >> Ia   
Therefore, for the best possible protection we should seek a grounding resistance 
value, which approaches the theoretical value R = 0. The total value of earth 
resistance is, in practice, a few Ω. According to the above, when there is no 
protective earth installation, or the value of the ground resistance is large (and the 
resistance of the human body is small) then there are risks to humans who come into 
contact with the metal casings of the various electrical devices [86]. 
 
V.10 Measurement of the capacitive leakage current 
The leakage current is due to capacitive or magnetic coupling and damage of 
insulation, the most important causes of which are: 
a) the capacity between the phase conductor and the grounding conductor of the 
power supply cable of a device; 
b) the capacities of the primary winding of the transformer to earth (in almost all 
electrical devices there is a transformer for different voltages); 
c) the capacity with respect to the external sources. 
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Fig.V-13 Basic root cause of leakage currents of capacitive couplings in bioelectric 
measurements devices [86] 

 
The value of the current because of C1 is a few mA (5-20 μA for 3m cable length). 
This value of the current penetrates the patient when the earth conductor is 
disconnected and the patient is in contact (e.g. by hand) with the metal housing of the 
device. So when other leakage currents are caused, then the total value of the leakage 
current can be dangerous for the patient. 
The checks conducted on the measurement of the leakage current are the following 
[36]: 
a) from the phase conductor to the metal housing of an electrical device when there is 
(for some reason) a grounding conductor. The maximum value of the current is 100 
mA; 
b) from the phase conductor to the connection terminals of the electrodes on the 
measuring bioelectric device. The maximum value of the leakage current is 20 μA for 
devices of emergency medical units and 50 μA for other units; 
c) from external sources. The maximum value of the current is 20 μA. 
 
The circuit for measuring the leakage current from external sources is given in Fig. 
V-14 on the next page. The value of the resistors and capacitors (R = 120 kΩ, R1 = 1 
kΩ, R2 = 10 Ω and C = 0.15 μF) in Fig.V-13 apply to the network 110 V, 60 Hz (US 
specifications).  
 
Tests with the circuit in Fig.V-14 (and also other circuits for the remaining 
measurements) are carried out in the following four cases: 
• supply voltage switch in ‘on position’, 
• supply voltage switch in ‘off position’, 
• normal polarity, 
• reverse polarity. 
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Fig.V-14 Measuring the leakage currents from capacitive coupling to external sources   (by 

the standards of the U.S.: R = 120 KΩ, R1 = 1 KΩ, R2 = 10 Ω and C = 0.15 μF) [86] 
 

V.11 SELV-PELV system 
The ultra low voltage circuits SELV, PELV (Fig.V-15) are very important protection 
against electric shock [87]. 

 SELV: Safety extra-low voltage  
 PELV: Protected extra-low voltage 

The nominal low voltage does not exceed 50 V (RMS) for alternating current or 120 
V for DC. 
 
V.11.1 SELV protection 
The separation of the active parts of the circuit to which SELV is applied from the 
active parts of other circuits and from earth must be ascertained by measuring the 
insulation resistance. The value of resistance must comply with Table 4. Measuring 
the grounding resistance in SELV systems should adhered to the following: 
• The measurements should be made between SELV conductors and the grounding 
conductor and between the active conductors of other circuits in the system and the 
minimum value taken by the resistance should be 0.25 MΩ. 
• Any electrical appliances affecting the measurement should to be disconnected. 
• The voltage of the gauge should be 250 V. 
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V.11.2 PELV protection 

The separation of the active part of the circuit to which PELV is applied from active 
parts of other circuits must be ascertained by measuring the insulation resistance. The 
values of resistance must comply with Table V-4. 
 
Circuit voltage (V) DC test voltage (V) Minimum insulation 

resistance (MΩ) 

SELV, PELV 250 0.25 

Up to 500V 500 0.5 

Over 500V 1000 1 

 
Table V-4: Minimum value of acceptable insulation resistance 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.V-15 SELV –PELV systems 
 
 
From tests it has been noticed that the most reliable protection is from safety extra 
low voltage (SELV), which is not grounded unlike PELV which is grounded. 
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V.12 Summary 
The aim of this sub-section of the Appendix was to discuss the importance of 
measurement safety. We analysed the hazards involved in the use of medical 
equipment as well as such effects of electric shock on the human body as burns, 
muscle spasms and respiratory problems. For electrical safety and protection 
purposes, classes and types of medical equipment are then given, the former of which 
are categorized as Class I, II and III and the latter Type B, BF and CF. The 
significance of safety standards are then discussed. After that different types of 
leakage current are analysed, specifically the enclosure leakage current, the patient 
leakage current, the earth leakage current and the capacity leakage current, and then 
the respective test circuit is given.  Finally, the SELV (safety extra-low voltage) and 
PELV (protected extra-low voltage) systems against electric shock are mentioned. 
It is hoped that, owing to the importance of measurement safety, this work will 
encourage further study in this domain in order to perform human experiments 
properly and to design new experimental devices in full accordance with the 
requirements. 
See also: 
Georgios Giannoukos, Mart Min, “Modelling of Dynamic Electrical Bioimpedance 
and Measurements Safety”, 2nd American Applied Sciences Research Institute 
(AASRI) Conference on Computational Intelligence and Bioinformatics (CIB 2013), 
December 27-28, 2013, Jeju Island, Korea. AASRI Procedia (ELSEVIER), volume 6, 
pp. 12-18, 2014, DOI:  http://dx.doi.org/10.1016/j.aasri.2014.05.003 
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