
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

Chair of Software Engineering

Security Analysis of Instant Messenger TorChat

Master’s Thesis

Student: Rain Viigipuu

Student code: 072125

Supervisor: Alexander Norta, PhD

External Supervisor: Arnis Paršovs, MSc

TALLINN 2015

Declaration

I declare that this master thesis is the result of my own research except as cited

in the references. The thesis has not been submitted before for any other degree

or examination.

(Date) (Signature)

2

Abstract

TorChat is a peer-to-peer instant messenger built on top of Tor network

which not only provides authentication and end-to-end encryption, but also

allows communication parties to stay anonymous and prevents third parties

from even learning that communication is taking place.

The aim of this thesis is to document protocol used by TorChat

and analyze security of TorChat and its reference implementation. The

work shows that although TorChat design is sound, the implementation

has several flaws which make TorChat users vulnerable to impersonation,

communication confirmation and denial-of-service attacks.

This work is written in English and contains 53 pages of text, 68 chapters

and 11 figures.

3

Annotatsioon

TorChat on võrdõiguslikus võrgus (peer-to-peer) töötav kiirsuhtlus

vahend, mis on loodud kasutades Tor võrgu komponente ja mis ainult ei

paku autentimist ja täielikku krüpteerimist, vaid lisaks sellele võimaldab

ka omavahel suhtlevatel partneritel jääda täielikult anonüümseks ja vältida

seda, et kolmandad osapooled ei saaks teada, et vestlus on üldse toimunud.

Selle magistritöö eesmärgiks on dokumenteerida TorChati protokoll ja

analüüsida TorChati ja tema näidisrakenduse turvalisust. Töö tulemus

näitab, et kuigi TorChati disain on korralik, leidub selle näidisrakenduses

mitmeid vigu mis muudavad TorChat-i kasutajad haavatavaks identiteedi

üle võtmise, suhtluse olemasolu tõestamise ja teenusest keeldumise

rünnakutele.

See töö on kirjutatud inglise keeles ja sisaldab 56 lehekülge teksti, 68

peatükki ning 11 joonist.

4

Abbreviations

IP - Internet Protocol, a set of rules for sending data across a network

DNS - The Domain Name System, hierarchical distributed naming system for

Internet

AES - Advanced Encryption Standard, a specification for the encryption of

electronic data

RSA - the Rivest-Shamir-Adleman cryptosystem, a cryptosystem for public-key

encryption

SHA-1 - Secure Hashing Algorithm 1

DER - Distinguished Encoding Rules to encode any data object into a binary file

ASN.1 - Abstract Syntax Notation One, standard for representing data in computer

networking

PKCS.1 - Public-Key Cryptography Standards

TLS - Transport Layer Security, a cryptographic protocol for secure Internet

communication

TCP - Transmission Control Protocol, one of the core protocols of the Internet

protocol suite

UTF-8 - Universal Coded Character Set Transformation Format 8-bit

PGP - Pretty Good Privacy, data encryption and decryption program

GTK - cross-platform widget toolkit for creating graphical user interfaces

EFF - Electronic Frontier Foundation

IM - Instant messaging

DoS - Denial-of-Service

5

List of Figures

1 Network traffic moving through Tor network from A to B. 13

2 TorChat main window with application menu opened. 17

3 TorChat “Add contact” window. 18

4 Contact’s profile information box. 18

5 Conversation window. 19

6 File transfer window (receiving in progress). 19

7 TorChat configuration window. 20

8 Handshake process. 21

9 Two similarly looking TorChat contacts. The second one has been

added automatically by the attacker. 39

10 Clickable links in TorChat. 43

11 Denial-of-service attack by multiple file transfer windows. 47

6

Contents

1 Introduction 10

2 Tor and Hidden Services 12

2.1 Hidden Services . 13

2.1.1 Hidden service address . 14

3 TorChat 16

3.1 Managing Contacts and Conversations 16

3.2 Configuration Options . 20

4 TorChat Protocol 21

4.1 Handshake . 21

4.2 File Transfers . 22

4.3 Protocol Messages . 23

4.3.1 not implemented . 23

4.3.2 ping . 24

4.3.3 pong . 25

4.3.4 client . 26

4.3.5 version . 26

4.3.6 status . 26

4.3.7 profile name . 27

4.3.8 profile text . 27

4.3.9 profile avatar alpha . 28

4.3.10 profile avatar . 28

4.3.11 add me . 28

4.3.12 remove me . 29

4.3.13 message . 29

4.3.14 filename . 29

4.3.15 filedata . 30

4.3.16 filedata ok . 30

4.3.17 filedata error . 31

4.3.18 file stop sending . 31

7

4.3.19 file stop receiving . 31

5 Analysis Methodology 32

5.1 Is the communication protected in transit? 32

5.2 Is the communication protected from abuse by the provider? 32

5.3 Can someone impersonate user’s identity? 32

5.4 Are past communications secure if user’s keys are stolen? 33

5.5 Is the source code available, crypto design well-documented, open

to independent review? . 33

5.6 Can the service be used anonymously? 33

5.7 Who has access to the user’s profile information? 33

5.8 Who has access to the user’s presence information? 34

5.9 Who has access to the user’s contacts information? 34

5.10 Is the user protected from denial-of-service attacks? 34

5.11 What forensic evidence the software leaves on the user’s device? . . 34

5.12 Is the software available from trusted source and can its integrity

be verified? . 35

6 Security Analysis 36

6.1 Is the communication protected in transit? 36

6.2 Is the communication protected from abuse by the provider? 36

6.3 Can someone impersonate user’s identity? 37

6.3.1 Impersonating Tor hidden service 37

6.3.2 Spoofing pong message . 38

6.3.3 Impersonation at GUI level 39

6.4 Are past communications secure if user’s keys are stolen? 40

6.5 Is the source code available, crypto design well-documented, open

to independent review? . 41

6.6 Can the service be used anonymously? 41

6.6.1 Deanonymization by a malicious guard node 41

6.6.2 Deanonymization by message contents 42

6.7 Who has access to the user’s profile information? 43

6.8 Who has access to the user’s presence information? 43

8

6.9 Who has access to the user’s contact information? 44

6.10 Is the user protected from denial-of-service attacks? 45

6.10.1 Memory exhaustion through network read 45

6.10.2 Memory exhaustion through chat message 45

6.10.3 Attacking via profile name message 46

6.10.4 Attacking via multiple add me messages 46

6.10.5 Attacking vie multiple filename messages 47

6.11 What forensic evidence the software leaves on the user’s device? . . 48

6.12 Is the software available from trusted source and can its integrity

be verified? . 48

6.12.1 Linux . 49

6.12.2 Windows . 49

7 Summary of Findings 50

8 Conclusions 51

9

1 Introduction

Today secure communication over the Internet is a challenging task. Recently it

became known that the architecture of the most popular instant messenger Skype

has been redesigned to enable communication surveillance on its users [1]. U.S.

government is using secret warrantless requests to obtain personal information

stored by service providers [2] and is using legal means to obtain encryption

keys from service providers [3]. Another aspect recently realized by society is

that privacy cannot be achieved just by securing communication content. The

communication metadata showing parties involved in the communication and their

location might be even more sensitive information than the communication content

and thus must be protected as well [4].

Therefore, in order to achieve communication privacy, a solution is needed

which provides end-to-end encryption between communication parties and makes

collection of metadata very hard.

TorChat [5] instant messenger is such a technology which is build on the top

of Tor [6] and which not only provides end-to-end encryption between TorChat

clients, but also hides location of TorChat users and prevents third parties from

determining whom TorChat client is communicating with.

TorChat has been allegedly used to provide secure communication between doctor

and his patients [7], and as recently revealed by court documents also to protect the

location of the master mind behind the notorious marketplace Silk Road [8].

It is not simple to estimate the size of current TorChat user base. The study

performed on February 4th, 2013, which used Tor hidden service address harvesting

method described in [9], from the harvested 39,824 unique Tor hidden service onion

addresses found 385 TorChat clients [10].

The security guarantees provided by TorChat have not been analyzed before and

the only source for TorChat protocol description has been the source code of

TorChat reference implementation.

The goal of this work is to describe protocol used by TorChat, provide security

10

analysis of the TorChat protocol and report on the vulnerabilities found in the

audit of the latest TorChat original Python implementation version 0.9.9.553.

Note, that there are also other TorChat implementations available. TorChat2 [11]

which is a Pidgin IM plugin, jTorChat [12] – TorChat implementation in Java, and

Ruby-torchat [13] – TorChat implementation in Ruby. However, this work focuses

only on the TorChat original Python implementation, which is available for MS

Windows and is included in most Linux distributions and therefore is believed to

have the largest user base. It serves also as a reference implementation of TorChat

protocol, which means that all other implementations have been developed based

on the Python implementation.

The rest of the thesis is organized in the following way. The next section provides

introduction to Tor anonymity network and Tor hidden services. Section 3 gives

overview of TorChat and its features from user’s perspective. Section 4 documents

protocol as used by TorChat. Section 5 defines methodology for analyzing security

of instant messengers. Section 6 provides security analysis of TorChat instant

messenger and its original Python implementation by answering the questions

defined in Section 5. Finally, Section 7 provides summary of findings and Section 8

concludes the work.

11

2 Tor and Hidden Services

This section provides short description of Tor and Tor hidden services feature. The

reader is welcome to skip over this section if he is familiar with Tor. The remaining

part of the thesis assumes that the reader knows how Tor and its location hidden

services work.

Tor is a software which allows people to keep their Internet activity private and

anonymous. It also provides the tools and platform for developers who can

create new applications with built in encryption, privacy and anonymity features.

Those applications not only allow users to use the Internet services anonymously,

but also allow them to provide different kind of Internet services like websites,

instant messaging services or some other service while not compromising their

privacy.

On the Internet privacy can be achieved partially by using the Internet services

over encrypted connections. In this way only the data moving over the network

is private. However the metadata which shows the source and the destination of

the data and other properties which are not encrypted can still be monitored and

analyzed. Tor network solves that problem by encrypting not only the data moving

over the network, but metadata as well. This way it is not possible by interested

parties (governments, intelligence agencies, companies, law enforcement, criminals

etc.) to analyze the network traffic in order to find out user’s behaviour and his

interests.

To achieve that, Tor client creates private and secure pathway called Tor circuit

through Tor network to the destination. The circuit is made out of three Tor

nodes. The circuit is extended one hop at a time and each node only knows where

the data came from (previous node) and where it should go (next node). There

is no single node which knows all the nodes in the circuit. The client negotiates

separate set of encryption keys for each hop in the circuit to make sure, that the

connections cannot be traced.

When user wants to use regular Internet service anonymously, the connection has

to exit from Tor network at some point. This happens through an exit node, which

12

+

+

+ +

+

encrypted connection

unencrypted connection

+ Tor nodeA

BB

Figure 1: Network traffic moving through Tor network from A to B.

is the last node of Tor circuit. From that node forward the connection is encrypted

only when the destination service supports encrypted communication. The way

how traffic moves through Tor network is illustrated on Figure 1.

2.1 Hidden Services

Tor location hidden services is a feature of Tor that enables users to offer various

services like websites or instant messaging server without revealing their location

or identity. Other Tor users can connect to those services without knowing the

service provider’s network identity and without revealing their own. To achieve

this goal Tor’s rendezvous protocol is used [14].

When Tor client is configured to provide Hidden Service and is launched for the

first time, it generates 1024-bit RSA key pair. From the public key it derives 16

character long hidden service address, also called as onion address.

In order to be reachable by other Tor users, hidden service has to advertise its

existence in the Tor network. To do this the hidden service randomly picks some

Tor relays, builds circuits to them and publishes in the public directory its hidden

13

service descriptor. The descriptor contains public key of the hidden service and

list of introduction points where the service can be reached. Since there is a full

Tor circuit established between the hidden service and the introduction point, the

hidden service’s IP address is hidden from the introduction point.

If someone wants to connect to the hidden service, it needs to know the onion

address of the service. After the client has obtained the onion address of the service

(by some out of band means), it can download the hidden service descriptor from

the public directory. From the descriptor the client can extract hidden service’s

public key and list of introduction points through which the service can be reached.

The client chooses one random Tor relay to be the rendezvous point for itself and

the service, builds a Tor circuit to it and sends one time secret (rendezvous cookie)

to it.

After the rendezvous point is set up the client puts together an introduce message

containing the address of rendezvous point and one time secret. The client connects

to one of the hidden service’s introduction points via Tor circuit and sends the

introduction message requesting it to be sent to the hidden service.

The hidden service receives the introduction message, decrypts it with it’s private

key and finds the information about the rendezvous point and the one time secret.

Hidden service creates a circuit to the rendezvous point and sends a message with

the on time secret.

The rendezvous point notifies the client, that the connection with hidden service

is established and now the client and hidden service can use their circuits to the

rendezvous point to communicate with each other. Rendezvous point simply relays

the messages from the client to the hidden service and the other way around. Since

the messages are end-to-end encrypted, the rendezvous point can’t learn about the

content of the messages.

2.1.1 Hidden service address

In Tor network, hidden services are identified and accessed by their so called onion

addresses. An onion address is a 16 character hash with “.onion” suffix. The 16

14

character hash is computed as follows:

The SHA-1 hash is calculated from hidden service’s DER-encoded ASN.1

RSA public key (as specified in PKCS.1) [15]. Hash will be 160 bit long.

The first half of the hash (80 bit long) is encoded to Base32, so it will only

contain digits 2-7, letters a-z and will be exactly 16 characters long [16].

The reason why onion addresses are hashes and not human meaningful names is

described in Zooko’s Distnames essay. The essay argues, that a system giving

out names in a network protocol has three desirable properties [17]: “human

meaningful” – it means that they are highly memorable for human beings,

“decentralized” – there is no centralized authority to hold the meaning of a name,

and “secure” – there is only one, unique entity to which the name maps.

The essay states that a name system cannot have all three properties at the

same time, but only two: decentralized and human meaningful (for example

nicknames that people are choosing for themselves), secure and human meaningful

(for example the current DNS system) and secure and decentralized (OpenPGP

has those properties).

Onion addresses have been chosen to be secure and decentralized and therefore

have the disadvantage of not being meaningful for humans. The reason for

that kind of choice, is that while the onion addresses are secure, they are also

self-authenticating. It means that when a client gets an onion addresses and

requests the descriptor from Hidden Service Directory service, then it also receives

the hidden service’s public key and it can derive the onion address from it. It

allows client to make sure that it is encrypting and sending the data to the right

hidden service [16].

15

3 TorChat

TorChat is a peer to peer instant messaging solution built on top of Tor and its

location hidden services feature. It can be used to interactively chat and exchange

files between participants.

On a very high level view TorChat works by making every TorChat client available

through Tor network as a hidden service. The hidden service’s onion address is

used as a unique identifier in TorChat. The onion address is a domain name

allowing anyone to establish end-to-end encrypted and authenticated connection

over the Tor network to the service behind that address.

TorChat is written in Python and uses wxPython library to draw GUI objects.

To provide end-to-end encryption and anonymity features TorChat relies on the

official Tor client software.

TorChat has been designed to be simple to use. For Windows version of TorChat

everything required to run TorChat is included in TorChat Windows archive.

On other platforms (Linux and Mac) TorChat requires to have Tor client and

wxPython libraries installed. Besides that there is no configuration required –

Tor hidden service is started by TorChat and keypair for the hidden service is

generated when TorChat is launched for the first time.

However, the last update to the TorChat main code base was made on June 12,

2013. The executable packages have not been updated either. Because of this the

latest TorChat Windows package available for download ships with out-dated Tor

client which cannot be used anymore for connecting to the Tor network.

3.1 Managing Contacts and Conversations

TorChat’s user interface is very simple and minimalist. The TorChat main window

holds contact list and has only one button for changing the status (see Figure 2).

The application menu is available through right mouse click somewhere inside the

contact list window (see Figure 2).

16

Figure 2: TorChat main window with application menu opened.

After TorChat is started for the first time it adds to the contact list user’s own

TorChat contact with profile name set to “myself” (see Figure 2). This allows for a

user to easily find his TorChat identifier and see whether he is online, i.e., whether

his onion address is reachable over the Tor network, since after the TorChat client

is started, it may take a while until Tor circuits are established and hidden service

descriptor published in the Tor directory.

To add a contact the “Add contact...” entry must be selected from the application

menu (see Figure 2). The “Add new contact” window will open (see Figure 3)

where the user can enter peer’s TorChat identifier, profile name and introduction

message which will be sent to the contact. If the profile name is omitted (the field

is left empty), the profile name will be set to one received from the peer.

To remove a contact the “Delete contact...” entry must be selected from the

application menu. After user confirms the deletion, the remote peer will be

informed about deletion request and corresponding contact will be deleted from

peers contact lists. Note, that if the peer is not online, the deletion request will

not reach the peer and after peer will come back online the contact will be added

back to the peer’s contact list.

Contact’s profile information can be seen when the user hovers mouse cursor over

the contact’s entry in contact list. The profile information shows always the latest

profile name, profile text and avatar received from the contact (see Figure 4).

17

Figure 3: TorChat “Add contact” window.

Figure 4: Contact’s profile information box.

The icon in front of the contact indicates the status of the contact. If the icon

is grey then the contact is offline. If the icon is blue ball/globe then TorChat is

in the middle of handshake process with that contact. If the icon is green, then

the contact is online. The icon can also be yellow and red, which means that the

contact is online, but has set his availability status to away or long time away,

respectively.

To start the conversation with a contact, a double click must be made on the

contact name. This will open a conversation window with that contact (see

Figure 5). The messages entered for the contact who is offline will be saved

in ~/.torchat/<TorChat identifier> offline.txt file and will be sent to the

peer when it comes back online. In the conversation window these messages will

be marked with “[delayed]” prefix.

18

Figure 5: Conversation window.

The conversation window has its own menu which can be accessed via right click

on the upper part of the window. The menu allows to send files to that contact,

edit profile name shown in the contact list and turn on/off message logging (off

by default). If the logging is enable the conversation with the peer is saved in the

~/.torchat/<TorChat identifier>.log file.

To send a file the “Send file...” entry must be selected from the application

menu. Files sent from the contacts are automatically saved as temporary files in

~/.torchat/torchat incoming <unique identifier>. The user receiving the

file can click on the “Cancel” button to stop the download and delete temporary

file or ”Save as...” button which will save the file and remove the temporary file

(see Figure 6).

Figure 6: File transfer window (receiving in progress).

19

3.2 Configuration Options

TorChat can be configured using the “Settings” dialog of the application menu.

The settings are stored in ~/.torchat/torchat.ini configuration file, which can

be edited also using a text editor.

TorChat’s Settings dialog has three tabs: “Network”, “User interface” and “Misc”

(see Figure 7). Under the “Network” tab it is possible to change the network

configuration stored in torchat.ini. There is no need to modify default network

settings unless the user wants to run several TorChat clients in parallel [18].

The “User interface” tab can be used to set whether the TorChat contact window

should be minimized when the application starts, whether the new windows should

be opened automatically, the user interface language and whether the application

should notify the user about new messages.

Under the “Misc” tab it is possible to configure whether the temporary files should

be stored inside data directory (which is the folder from which the TorChat was

executed), in operating system default location or user specified location.

Figure 7: TorChat configuration window.

20

4 TorChat Protocol

This section describes protocol used by TorChat. The description provided here

has been obtained by examining the source code.

4.1 Handshake

Before two parties can start to exchange messages they must perform handshake

process. The goal of the handshake process is to establish trusted connections

between parties, so after the process is completed, both parties know who they are

communicating with, i.e., what Tor hidden service the other party controls.

Figure 8: Handshake process.

Handshake process (see Figure 8) between TorChat clients party A and B:

1. Party A knows party B’s onion address (established by out-of-band means).

Party A establishes TCP connection over Tor network to party B onion

address to port 11009. Party A sends ping message with its own onion

address and a large random number. At this point party A knows with

whom it has established secure outgoing connection. However, party B does

not know who is behind the anonymous incoming connection.

21

2. Party B establishes TCP connection over Tor network to party A onion

address received in step 1 to port 11009. Over the established connection

party B sends ping message with its onion address and new random number

generated by B.

3. Party B sends pong message with the random number received in step 1

to party A. At this point party B knows with whom the secure outgoing

connection has been established and party A knows that the anonymous

incoming connection belongs to party B, because only party B could have

replied with the same random number as sent in step 1.

4. Party A takes parties B random number received in step 2 and sends it

in the pong message over the outgoing connection established in step 1.

At this point also the party B knows that anonymous incoming connection

established in step 1 belongs to party A, since only the party A could have

replied with the random number sent by party B in step 2.

After the handshake is completed, there are two end-to-end encrypted TCP

connections between A and B and both A and B know the identity (onion address)

of the other party.

4.2 File Transfers

File transfers are implemented using file* protocol messages. The files are

split into blocks and sent using filedata protocol messages. To speed up a file

transfer, several blocks can be sent before acknowledgement filedata ok message

is received. Block size used by TorChat is set to 8192 bytes and the number of

blocks sent before receiving the acknowledgement is 16.

As an exception, all file* protocol messages are accepted on both – incoming

and outgoing connections. However, TorChat sends only filename and filedata

protocol messages on the incoming connection to avoid delaying of chat

messages.

22

4.3 Protocol Messages

TorChat protocol messages are exchanged over TCP sockets. The messages

are separated by a newline character ‘\n’ (0x0a in hex). Whenever a full

message (ending with a newline character) is received, it should be immediately

processed.

Protocol message format is as follows:

<command> <optional parameters> <UTF-8 encoded data>

The <command> part may contain only lowercase characters a-z and underscore

character ‘ ’. Command and encoded data is separated by a space character (0x20

in hex). Data part is UTF-8 encoded binary string.

Backslash and newline characters inside the data part must be escaped. Backslash

character ‘\’ (0x5c in hex) must be replaced with two characters “\/” (0x5c and

0x2f in hex) and newline character ‘\n’ (0x0a in hex) must be replaced by two

characters “\n” (0x5c and 0x6e in hex). The opposite replacement must be done

after receiving a message.

In addition to command, the message might also contain parameters to the

command. The parameters are separated between other parameters and data

with a space character. Parameters cannot contain space and have the same rules

for formatting as the command has.

The following subsections describe protocol messages, their purpose, when they

can be sent and how they should be processed when received by the client

application.

The words “must” and “should” are used interchangeably and do not have any

special meaning.

4.3.1 not implemented

If a peer receives unknown message, he should send not implemented over the

outgoing connection. If the outgoing connection does not exist, the connection on

which the unknown message was received should be closed.

23

4.3.2 ping

This message should be sent immediately after establishing outgoing connection

to a peer. It should contain peers own address without “.onion” suffix and 32 byte

random cookie unique for the peer to which ping is sent.

Example: ping vrn54zduj27fkmmq 138830801853815824808159869621794

When a peer receives ping message on the incoming connection he should first

check:

1. If the address in the ping message is 16 characters long and contains valid

base32 encoding. If the address is not valid then the message should not be

processed and the incoming connection must be closed.

2. If a repeated ping message contains different address than in the previous

ping message received on the same connection then the message should not

be processed and the incoming connection should be closed.

3. If a ping message contains address which is already assigned with

another incoming connection for which the handshake process has

been completed then the message should not be processed and the

not implemented double connection message should be sent on the

incoming connection on which the ping message was received, but the

connection should not be closed.

4. If the received ping message contains peer’s own address, but cookie different

from the one expected, the message should not be processed and the

connection on which the message was received should be closed.

Note that after a TorChat client is started it establishes connection to its

own hidden service. If such bogus message is received when the TorChat has

already established connection to itself, the case will be handled by “double

connection” check above.

If the checks above succeed then a buddy with the peer’s address specified in the

ping message and status STATUS OFFLINE should be created. Once the buddy

is created, an outgoing connection should be established to the peer’s address

24

specified in the ping message. Once the outgoing connection is established, the

outgoing connection should be assigned to the buddy and buddy status should be

updated to STATUS HANDSHAKE. Over the outgoing connection established the peer

should send the following messages:

1. his own ping message;

2. the pong message with the random cookie received in ping message;

3. client message;

4. version message;

5. profile name and profile text messages (if set);

6. profile avatar alpha and profile avatar messages (if avatar is set);

7. add me message (if the contact is in peer’s buddy list);

8. status message.

If a repeated ping message is received, but buddy already has outgoing connection

on which pong message has been sent then the ping message received should be

ignored, unless pong reply from peer has not been received yet, in which case ping

message should be sent over the outgoing connection.

4.3.3 pong

This message should be sent over outgoing connection as an answer to ping

message received over incoming connection. The message must contain the random

cookie received in ping message.

Example: pong 138830801853815824808159869621794

When a peer receives pong message on an incoming connection, he must process

it as follows:

1. Extract random cookie from the message and find the first buddy who has

been ping’ed with this random cookie. If a buddy with the random cookie

cannot be found the pong message should be ignored.

25

2. If the buddy is found it must be checked whether the address assigned to

buddy is the same address that has been specified in the ping message

received over this incoming connection. If this check fails, the pong message

should be ignored.

If these checks succeed the incoming connection should be assigned to the buddy

and previous incoming connection (if it exists and is not the same) should be

closed.

4.3.4 client

This message is sent in an answer to ping message (see Section 4.3.2). The message

must contain the name of the client software.

Example: client TorChat

When received the peer should assign the received client software name to the

contact.

4.3.5 version

This message is sent in an answer to ping message (see Section 4.3.2). The message

must contain the version string of the client software.

Example: version 0.9.9.553

When received the peer should assign the received version string to the

contact.

4.3.6 status

This message must be sent in an answer to ping message (see Section 4.3.2),

immediately after the user has changed the status or profile information and

in every 120 seconds. The message can contain three different status values:

“available”, “away” and “xa” where “xa” stands for “extended away”.

26

Example: status available

When receiving this message, the client should update the contact’s status

information accordingly. If the status message is not received from a peer in

240 seconds the incoming connection should be closed.

4.3.7 profile name

This message is sent in an answer to ping message (see Section 4.3.2) and to all

peers whenever the user changes his profile information. The message is not sent

if the user has not specified his profile name or the user changes his profile name

to empty name.

Example: profile_name John Smith

If a client receives this message and the profile name for the peer is not set, the

client should store the profile name in the contact list and show it next to peer’s

TorChat identifier in the contact window. If a client receives this message, but the

profile name for the peer is already set, the profile name should not be changed,

but the profile name received should be shown when a mouse is moved over the

contact’s entry in the contact window (see Section 3.1).

4.3.8 profile text

This message is sent in an answer to ping message (see Section 4.3.2) and to all

peers whenever the user changes his profile information. The message is not sent

if the user has not specified his profile text or the user changes his profile text to

empty text.

Example: profile_text Business consultant with extensive experience

The profile text received in this message should not be stored in the contact list,

but should be shown when a mouse is moved over the contact’s entry in the contact

window (see Section 3.1).

27

4.3.9 profile avatar alpha

This message is sent in an answer to ping message (see Section 4.3.2) and to all

peers whenever the user changes his avatar. The message is not sent if the user

has not specified his avatar or the user removes his avatar.

This message contains uncompressed 64*64*8bit alpha channel. If there is no

alpha channel in the avatar, the message has to be sent without the data part.

This message has to be sent before sending profile avatar message.

Example: profile_avatar_alpha <alpha channel binary data>

When receiving this message, the client should wait for peer’s profile avatar

message to construct the avatar.

4.3.10 profile avatar

This message is sent in an answer to ping message (see Section 4.3.2) and to all

peers whenever the user changes his avatar. The message is not sent if the user

has not specified his avatar or the user removes his avatar.

The message contains uncompressed 64*64*24bit image. This message must be

sent after profile avatar alpha message is sent.

Example: profile_avatar <image data as raw binary data>

When receiving this message, the client should construct avatar taking into account

alpha channel received in profile avatar alpha message and make peer’s avatar

visible when a mouse is moved over the contact’s entry in the contact window (see

Section 3.1).

4.3.11 add me

This message is sent in an answer to ping message (see Section 4.3.2) if the peer

is in the sender’s contact list.

Example: add_me

28

4.3.12 remove me

This message is sent to the peer when a user removes peer from the contact list.

If the peer is not online, this message is not sent. After removing the peer from

the contact list, peer’s offline message queue file should also be wiped.

Example: remove_me

When receiving this message, the client should remove the peer from the contact

lists and contact window, wipe peer’s offline message queue file and close incoming

and outgoing connection associated with the peer.

4.3.13 message

This message is sent to the peer whenever the user has entered text in the

conversation window or after the peer comes online and there are unsent messages

in the offline message queue.

The message may be sent only after add me message has been sent or it is known

that the peer is in the receiver’s contact list.

Example: message Hello, how are you?

4.3.14 filename

The filename message is message initiating the file transfer.

The data part of the message contains information about the file being sent:

id – identifier generated by sender which uniquely identifies the file transfer.

file size – size of the file in bytes.

block size – specifies the chunk size that will be sent in filedata messages

(the actual filedata messages can contain block in a different size).

file name – specifies the name of the file as stored in the sender’s system.

29

Every field is separated by a space character.

Example: filename 2665323703 11 8192 testfile.txt

4.3.15 filedata

This message is used to transport the actual data in a fixed size blocks. Every

message contains the file transfer identifier, offset in the original file, lower case

MD5 hash of the current data block and arbitrary size block of data itself. Each

message should be answered with filedata ok message after the receiver has

successfully verified the hash of the data block. Hash of the block is calculated on

unescaped data block.

The sender should send only a limited number of blocks ahead of incoming

filedata ok messages. For example, the sender should send the 5th block only

after the 1st block’s arrival is confirmed (filedata ok message for the 1st block

has arrived), the 6th only after the second block’s arrival is confirmed and so on.

The filedata messages must be sent in sequential order.

Example:

filedata 2665323703 0 ee5a58024a155466b43bc559d953e018 line1\nline2

4.3.16 filedata ok

This message is sent as an answer to filedata message after receiver has

successfully verified the filedata message. File sender can use this message

to update the file transfer progress bar and to know that more blocks can be

sent.

The message contains file transfer identifier and the offset position of the block

that has been successfully received.

Example: filedata_ok 2665323703 0

30

4.3.17 filedata error

The message is sent in case there have been some problem receiving the filedata

message. The possible problem might be that the hash was wrong or the file offset

was not the expected one (too much ahead that it should be, meaning that some

blocks have been skipped or lost during temporary network outage).

The sender must respond to this message by restarting the file transfer at the offset

specified in the message.

The message contains file transfer identifier and the file offset from which the file

transfer should be resumed.

Example: filedata_error 2665323703 0

4.3.18 file stop sending

The message is sent to the file sender if the receiver has canceled the file transfer.

After this message is received, the sender should stop sending the file. The user

must be notified that the file receiver has canceled the file transfer.

Example: file_stop_sending 2665323703

4.3.19 file stop receiving

The message is sent to the file receiver if the sender has canceled the file transfer

or the sender has received from the receiver file stop sending message. After

this message is received, the receiver should not expect any more messages related

to file transfer identified. All allocated resources should be freed, temporary files

should be wiped and user should be notified about the cancellation.

Example: file_stop_receiving 2665323703

31

5 Analysis Methodology

Security analysis methodology presented in this section is based on EFF’s “Secure

Messaging Scorecard” [19], but extend with additional criteria which concern

not only the privacy of message contents but also the privacy of communication

metadata and other issues related to secure and anonymous use of instant

messaging in practice.

5.1 Is the communication protected in transit?

This criteria considers an attacker who controls network connection between the

user and IM service provider. This question should answer how the data is

protected from such attacker. What the attacker can learn by observing the

connection? Can he learn whether the user is using IM service? Can he learn

who the user is communicating with? Can he use his powers to tamper with

the communication line to execute some attack, other than the denial-of-service

attack?

5.2 Is the communication protected from abuse by the

provider?

This criteria considers malicious IM service provider whose objective is to

compromise user’s privacy, communication integrity or even user’s device on which

the IM software is running. The question should give an answer what the user is

trusting to the service provider.

5.3 Can someone impersonate user’s identity?

This criteria should answer whether the user has means to verify cryptographic

binding between the communication channel and his contact’s identity or he has

to trust IM service provider on that.

32

5.4 Are past communications secure if user’s keys are

stolen?

This criteria considers an attacker who has collected encrypted communication on

any point between the user and the intended recipient and then obtains long-term

encryption key from the user in order to decrypt collected past communication.

This question should answer whether the forward secrecy is used, i.e., whether

the user’s long-term asymmetric key is used in signing mode only to establish

short-term encryption key?

5.5 Is the source code available, crypto design well-

documented, open to independent review?

This criteria considers whether the source code of the software is freely available

and whether the design of the software is well documented.

5.6 Can the service be used anonymously?

Can the user register IM service account anonymously? Is the user’s connection

IP address concealed from his contacts and from the IM service provider?

5.7 Who has access to the user’s profile information?

This criteria considers how the user’s provided profile information is protected

from third parties. Is this information available only to the persons in the contact

list, to IM service provider or someone else?

33

5.8 Who has access to the user’s presence informa-

tion?

This criteria considers both – the presence information (reveals whether the user

is logged into the IM service) and availability information (reveals user’s specified

status in IM service, i.e., busy, away, available). Is this information available only

to the persons in the contact list, to IM service provider or someone else?

5.9 Who has access to the user’s contacts information?

This criteria should answer who except the parties involved in the communication

can learn about these parties being in contact.

5.10 Is the user protected from denial-of-service at-

tacks?

The question to be answered here is whether the IM service is vulnerable to any

attack which could be used by an attacker to deny user’s access to the service.

This includes any kind of targeted attacks which will result in messaging client

crash, intensive CPU or memory usage or in any other way will create trouble for

user to use the service.

5.11 What forensic evidence the software leaves on the

user’s device?

This criteria should answer what kind of IM related information can be extracted

from the device in case the device is obtained by third party. Things to look for

— contact list, messaging history, logs, keys, file transfer history, offline message

queue, etc.

34

5.12 Is the software available from trusted source and can

its integrity be verified?

This criteria should answer to the following questions:

1. How the software is made available? Are the distribution methods and

channels trusted?

2. If the binary packages are provided, are there ways to reproduce them?

3. Are there ways available to verify package authenticity?

35

6 Security Analysis

This section gives detailed answers to the questions defined in the previous

section.

6.1 Is the communication protected in transit?

TorChat does not implement its own encryption, but fully relies on confidentiality

and authenticity guarantees provided by Tor and Tor hidden service design.

Adversary eavesdropping on communication channel between the TorChat client

and Tor network would see encrypted traffic protected by 4 layers of encryption,

where the innermost layer contains end-to-end encrypted TorChat protocol data

exchanged between TorChat peers. Every layer is protected by 128-bit AES key

negotiated using 1024-bit RSA ephemeral DH keys [15].

Therefore, the only information the attacker can learn is that the user is using Tor.

This fact is easy to learn since entry nodes of the Tor network can be identified

by their IP addresses.

6.2 Is the communication protected from abuse by the

provider?

In the TorChat context we can consider the Tor network being the IM service

provider.

There are several entities involved in establishing connection between two Tor

hidden services (TorChat peers).

If the hidden service directory where TorChat’s hidden service descriptor is

published is under adversary control, the adversary can only learn the same

information as these who are requesting that descriptor. This includes introduction

points which can be used to contact the hidden service, public key (onion address)

of the hidden service and the time when the descriptor was published.

36

An adversary operating node which acts as rendezvous point between TorChat

peers would still have to break the final layer of end-to-end encryption between

TorChat peers. The attack by rendezvous point is complicated even further,

because rendezvous points are chosen randomly by Tor client, both end-points

from the perspective of rendezvous point are anonymous, and most likely a single

rendezvous point would route only one direction of TorChat communication.

To sum up, if the security assumptions implied by Tor hold, the IM service provider

is not capable of attacking TorChat users.

6.3 Can someone impersonate user’s identity?

The following subsections contain discussion on several attacks that can be used

to impersonate TorChat user.

6.3.1 Impersonating Tor hidden service

For authenticity guarantees TorChat exploits the self-authenticating nature of

onion addresses, where the onion address represents public key of hidden service

long-term 1024-bit RSA key.

As can be seen in the description of handshake process (see Section 4.1), after the

handshake is completed both TorChat peers are sure that the opposite party is in

control of the private key corresponding to the onion address.

In order to impersonate TorChat peer an adversary would have to compromise

hidden service 1024-bit RSA key. The RSA keypair is generated by Tor on the

first use of TorChat. In Unix systems the generated key is stored in the file

~/.torchat/Tor/hidden service/private key, which is readable only by the

user.

While the security of 1024-bit RSA today is considered weak [20], there are not

know any cases where 1024-bit RSA key would have been compromised. Since

this long-term key is used only for authentication, the use of 1024-bit RSA for the

present is tolerable.

37

Alternatively, since the onion address is base32 encoded first 80-bits of SHA-1

digest of RSA public key, an adversary may try to find different RSA key which

would collide to the same onion address. However, the complexity of such attack

is estimated 280, which is nearly the same as factoring 1024-bit RSA key. In case

the attacker can find a different RSA key which produces the same onion address,

there would be a race condition with the legitimate user’s published hidden service

descriptor [21].

6.3.2 Spoofing pong message

As can be seen from the TorChat protocol description (see Section 4.1) a peer

authenticates incoming connection by checking if the random number received

in pong message matches the random number that was sent in ping message

over the outgoing connection. Thus, if the attacker is able to guess the random

number which was sent in the ping message, he can spoof pong message thereby

impersonating incoming connection.

In TorChat implementation the random number sent in ping message is generated

by calling random.getrandombits(256) method which will return integer from

0 to 2256 − 1 generated by MersenneTwister pseudo random number generator.

The Python manual states that it should not be used for security purposes and

suggests to use cryptographically secure pseudo-random number os.urandom() or

SystemRandom [22] instead.

Even if the attacker can predict random number used in ping message, the

impact of the attack is limited, since the attack has to be executed at the time

when vulnerable victim performs handshake and before the legitimate peer has

answered with his pong message. Furthermore, in case of successful impersonation

the attacker can only send impersonated messages, but not read the responses.

The exceptions are file transfers which are sent over the incoming connection (see

Section 4.2). Thus, if the attacker could convince the victim to send a file, the file

would be received by the attacker over victims incoming connection.

38

6.3.3 Impersonation at GUI level

Since in the TorChat peer identities are onion addresses which are hard to

memorize, the TorChat provides possibility to assign arbitrary name to the contact

which will be shown next to TorChat identifier in the contact list. However, the

way it is implemented in the TorChat opens contact list confusion attacks which

may lead to a successful impersonation attack.

As described in Section 3.1, when adding a new contact, It is possible to specify

contact’s profile name/ If the name is left empty then it is set to the name which

is specified in the profile name message received from the contact. Although, if

the name is set either manually or by receiving profile name message, it will not

be overwritten.

This allows for the remote peer to set profile name specified by him if the user

does not specify one when adding the contact. This is not a problem since adding

the contact is an operation consciously performed by the user and the user has

opportunity to set the profile name. However, if someone adds user to his contact

list that someone is added to the user’s contact list automatically and contact’s

profile name is set to the name sent by that someone in profile name message.

The user has no way to control what gets added to his contact list.

Thus if the attacker knows whom the victim is chatting with, the attacker can

generate similarly looking onion address [23] and set the same profile name and

add victim to the contact list. This way the victim will have several contacts with

the same contact name and similar TorChat identifier which can be used by the

attacker to start the conversation and trick the user into thinking that the window

with attackers conversation is the intended TorChat peer (see Figure 9).

Figure 9: Two similarly looking TorChat contacts. The second one has been added
automatically by the attacker.

39

The hint which can be used by the victim to determine the impersonated TorChat

identity is to look at the order of contacts in contact list. The contacts in the

contact list are ordered by adding newly added or edited contact to the bottom of

the list.

This kind of attack would be prevented if TorChat would ask for confirmation

before contact is added to the contact list. Note, that arbitrary contacts can be

added to the contact list also by exploiting the contact list manipulation flaw

described further in Section 6.10.3.

6.4 Are past communications secure if user’s keys are

stolen?

According to the chapter ”1.1 Keys and names” in Tor specification [24] there a 3

kinds of keys used in Tor:

A long term ”Identity key” used only for signing. In TorChat this is the key

that is used to identify the Hidden Service (TorChat user).

A medium term ”Onion key” which is used to decrypt onion skins when the

circuit is in the making. This key is rotated once a week.

A short term ”Connection key”, used to negotiate TLS connections. Those

keys can be rotated as often as they like but at least once a day.

From chapter ”2. Connections” [25] in Tor specification it is written that all

the connections between Tor relays or between Tor client and Tor relay use

TLS/SSLv3 for link authentication and encryption. If the adversary has collected

some encrypted network traffic, then it is encrypted with short term ”Connection

key(s)” which are rotated at least once day. So even if the long term ”Identity key”

is compromised, it cannot be used to decrypt the collected network traffic.

40

6.5 Is the source code available, crypto design well-

documented, open to independent review?

Both TorChat and Tor source code is freely available and open to independent

review. Regarding the documentation situation is different.

Tor has high level overview of main features and principles published in Tor’s

website. The code repository contains specifications which describe in depth the

protocol and how Tor network operates.

TorChat, on the other hand, doesn’t have much documentation available. There

is some general information available on its GitHub page and there is also some

general documentation regarding the configuration and different working modes

available in the ”docs” folder together with source code. The protocol of the

TorChat is not described in any separate document.

6.6 Can the service be used anonymously?

The anonymity of person using TorChat can be reduced to anonymity guarantees

provided by Tor and hidden services design. In literature there have been several

attacks described which could be used to locate Tor hidden service or Tor user [9].

The most popular being traffic confirmation attacks.

The subsections below discusses some anonymity aspects which affect specifically

TorChat.

6.6.1 Deanonymization by a malicious guard node

One of the weaknesses of Tor and other low-latency anonymity networks is that

if the attacker can monitor both ends of the communication channel, then he can

correlate the data volume and timing information and this way compromise the

anonymity. In Tor network it means that attacker needs to control the circuit’s

first and last relay. In case of hidden services it means that attacker needs to

41

control just the entry node which is chosen by the hidden service, since the other

end is already under the control of attacker.

If Tor client would always choose new entry guard for each circuit the Tor

would eventually pick attackers controlled entry node and user’s privacy would

be compromised. To protect against this, Tor client is randomly choosing set of

fixed relays which will act as entry guards. Guard node rotation time is set by the

configuration parameter "GuardLifeTime" and by default it is 60 days [26].

In the configuration file that is shipped with TorChat

(~/.torchat/Tor/torrc.txt) the number of entry guards is set to 6

(NumEntryGuards 6). Considering, that Tor’s default value is coming from

directory authority and is usually 1 or 2 or if the number isn’t found in consensus

file, it defaults to 3 [27] then TorChat’s use of 6 nodes compared to Tor’s default

setting increase the risk of TorChat user deanonymization by half and therefore

should be reconsidered.

6.6.2 Deanonymization by message contents

It is well known fact that Tor provides anonymity only on the transport protocol

level. If the user in his TorChat profile or messages sent exposes information which

can be used to identify him, the Tor anonymity guarantees will not help.

The TorChat users have to be especially careful with the links that are sent to them

in the conversation. If the user uses Tor only for TorChat and other applications

go directly to the Internet, the user by opening link from the TorChat window can

expose his real IP address to the server hosting the web site, which if under the

control of attacker, will allow attacker to find out TorChat user’s real IP address.

To make it easier to slip TorChat makes all the links clickable (see Figure 10).

This is the simplest way to deanonymize TorChat user. It is not recommended to

remove link clickability, since the user will most likely copy and paste the same

URL in browser. However, it is recommended that when the user clicks on the

link, the warning message is displayed which warns about deanonymization threat,

with the option to click checkbox to not warn again.

42

Figure 10: Clickable links in TorChat.

6.7 Who has access to the user’s profile information?

It would be expected that user’s profile information (profile name, description and

avatar) would be available only to contacts in the contact list.

However, there is no contact authorization in TorChat. Anyone who knows

user’s TorChat identifier can add that address to TorChat contact list and after

handshake is performed successfully that “anyone” will be added to the victims

contact list and victim’s TorChat client will send profile information without

authorization to that “anyone”. Even more, that “anyone” does not even have

to perform successful handshake. The profile information will be disclosed right

after receiving that “anyone’s” ping message.

The correct behaviour would be for TorChat to ask authorization from TorChat

user before contact is added to the contact list and profile information is

disclosed.

6.8 Who has access to the user’s presence informa-

tion?

It would be desirable that user’s presence information is disclosed only to contacts

in the user’s contact list. As described in the previous section, TorChat discloses

profile information including availability information to anyone who establish TCP

connection to TorChat.

However, even if TorChat would disclose availability only to contacts in the contact

list, the presence information is available to every client in Tor network who is

43

able to download hidden service descriptor. The descriptor is updated in directory

server once an hour or whenever its content changes [28].

By observing those times the adversary can build activity graph and use it to

correlate TorChat activity with other activities thereby disclosing the real identity

of the TorChat user.

There is no solution for that and the only recommendation would be to make sure

that TorChat is on all the time.

Interesting to note, that someone who is in the TorChat user’s contact list can

distinguish between network outage and TorChat client restart, since the random

number used to authenticate the peer is not regenerated if the connection between

peer tears down.

6.9 Who has access to the user’s contact information?

Thanks to the Tor and hidden service design, the TorChat peers communicating

should be the only parties that know about communication taking place and for

anyone else finding who communicates with whom should be very difficult.

However, there is basic communication confirmation attack possible due to the

way how TorChat protocol handles ping message received which contains TorChat

identifier from a peer with whom the handshake has already been established.

As can be seen in the protocol description (see Section 4.3.2), if the ping

message is received with a peer identifier with whom the handshake has already

been established, the TorChat will ignore the ping message and will send

not implemented double connection on the connection on which ping message

has been received. This can be used by an adversary test if the victim has

established handshake with some other TorChat peer.

The simple fix would seem to just ignore the double ping message without

informing the sender about the double connection. However, the proper fix would

be to handle double ping message in a way which prevents attacker to distinguish

from the case when double ping message is ignored and the case when TorChat

44

tries to establish the back-connection to the address specified in the spoofed ping

message.

6.10 Is the user protected from denial-of-service at-

tacks?

Since TorChat relies on Tor hidden service design, any denial-of-service attack

against Tor hidden services is applicable also to TorChat. To make TorChat

client unavailable one can use general attacks against Tor hidden services described

in [9].

The subsections below focuses on application level denial-of-service attacks which

apply specially to TorChat.

6.10.1 Memory exhaustion through network read

TorChat does not limit the length of any message and buffers bytes into the

memory until command separator (newline character) is received. This can be

used trivially by the attacker to exhaust available memory on victims system

by sending endless stream of data over the victim’s outgoing connection (since

victim’s incoming connection expects to receive keep alive status message every

120 seconds). How fast the memory will be exhausted on the victim’s system

depends on victim’s system memory size and the speed in which victim can receive

data over the Tor network.

6.10.2 Memory exhaustion through chat message

More efficient but also less invisible memory exhaustion attack can be achieved

by sending large chat message in message command. For instance, 20MB large

message command displayed in chat window will cause TorChat process to

consume around 1GB of memory.

45

6.10.3 Attacking via profile name message

As described above, TorChat does not enforce size limit for messages received.

This allows an attacker to send arbitrary large profile name. Large profile name

will cause TorChat GUI to hang while GTK tries to update contact list window.

This will also prevent victim from removing the attacker from the contact list since

the profile name is shown in “confirm deletion” window, which will not be created

by GTK if wider or taller than 32767 pixels. Victim can remove the attacker by

first deleting profile name in “Edit contact” menu.

TorChat also fails to validate the profile name before writing it into the contact

list (buddy-list.txt). The file stores every contact in a separate line. The line

starts with contact’s TorChat identifier (onion address) and follows with contact’s

profile name separated from TorChat identifier with a space character.

The lack of validation allows to add arbitrary lines into the contact list by sending

profile name which contains escaped newline characters.

The contact list is saved right after the profile name message is received, however,

injected lines will be read only after TorChat is restarted. The injected lines will

be lost if some contact is added or removed from the contact list before TorChat

is restarted.

This can be exploited by an attacker to cause effective DoS attack by adding

thousands of contacts in the contact list. On start-up TorChat will try to create

and establish connection to all the contacts in the contact list which will cause large

Tor activity and will prevent TorChat GUI from starting. The only solution for the

victim to be able to use TorChat again is to manually clean buddy-list.txt.

6.10.4 Attacking via multiple add me messages

TorChat does not ask for user’s consent before peer’s request to be added to the

contact list is processed. The attacker can exploit this by flooding the user with

dummy contacts and messages.

There has been a discussion about adding a block list feature to the TorChat [29],

46

however, no solution has been implemented. The blacklist approach might not

be effective since the attacker can introduce new TorChat identity without a

significant cost. More appropriate solution would the whitelist approach were

user is asked for confirmation before contact is added to his contact list.

6.10.5 Attacking vie multiple filename messages

Peers being in the contact list can send files which will be automatically accepted by

the TorChat and download will start in a separate window (see Section 3.1).

The attacker can initiate many file transfers by sending many filename messages.

This will fill up victim’s screen with file transfer windows and cause memory

on the victim’s machine to be exhausted very fast resulting in a very efficient

denial-of-service attack (see Figure 11).

Figure 11: Denial-of-service attack by multiple file transfer windows.

The impact of the attack could be significantly reduced if the file transfers would

be shown in a single file transfer window and if arbitrary contacts would not be

added to the contact list without the user’s consent.

47

6.11 What forensic evidence the software leaves on the

user’s device?

All user-specific TorChat related files are stored in ~/.torchat/

directory. This includes buddy-list.txt containing user’s contacts,

torchat.ini containing TorChat configuration parameters including

user’s profile name and profile text, avatar.png (if set by the

user), logged conversations in <TorChat identifier>.log files (by

default logging is not enabled), offline message queue in files of form

<TorChat identifier> offline.txt, and temporary files received from

other peers in form torchat incoming <unique identifier>.

The ~/.torchat/Tor/ directory stores Tor hidden service long-term private key

in the hidden service/private key file, Tor configuration in torrc.txt file and

Tor cache in tor data/ directory.

TorChat uses secure erasing (wiping) in several occasions. Received temporary

files are wiped as soon as user saves the file or cancels the download. The offline

message queue files are wiped as soon as messages have been delivered or contact

has been removed from the contact list.

6.12 Is the software available from trusted source and can

its integrity be verified?

It is important to obtain the TorChat application from a trusted source to be sure

about its integrity. The original source of TorChat is available in the TorChat’s

project page on GitHub [5]. Since GitHub is available over secure connection

and all version history is preserved in GitHub, it is safe to assume that TorChat

obtained from the GitHub has not been modified by some adversary.

The GitHub’s download section [30] contains prebuilt packages of TorChat releases

available for MS Windows operating system and Debian Linux distribution.

48

6.12.1 Linux

TorChat is available also in several Linux distribution package repositories:

Debian Linux stable version 8 has the latest version of TorChat 0.9.9.553 [31].

Ubuntu Linux version 14.04 [32] and the latest version 15.04 [33] both have

TorChat version 0.9.9.553.

Arch Linux has TorChat 0.9.9.553 available in their Arch User Repository

(AUR) [34].

Both Debian and Ubuntu apply minor patches to the versions they are providing

through package repository: Spanish translation of TorChat, change the way how

SOCKS proxy Python module is found in the system and update the wxWidgets

Python library version upgrade from 2.8 to 3.0. Only Ubuntu 14.04 is missing the

patch to upgrade wxWidgets Python module.

Arch Linux does not apply any patches and provides unmodified TorChat

version.

6.12.2 Windows

For MS Windows users TorChat GitHub page provides executable which contains

everything needed to run TorChat out of box – including the Tor client. The

Windows executable allegedly [35] has been compiled using PyInstaller [36].

However, the latest windows executable ships with outdated Tor client version

0.2.2.39 [37]. This Tor version has several vulnerabilities including the heartbleed,

which allows a malicious Tor guard node [38] to compromise TorChat’s long-term

private key. Fortunately, the version of Tor is too outdated to even connect to the

Tor network [39].

49

7 Summary of Findings

Here is the list of security issues found ordered by their significance.

1. TorChat processes contact requests and updates contact list without

asking for user’s consent. This allows an attacker to harvest profile

(Section 6.7) and availability (Section 6.8) information, allows to execute

contact confusion and impersonation attacks at GUI level (Section 6.3.3)

and makes denial-of-service attacks (Section 6.10.2, 6.10.3, 6.10.4, 6.10.5)

easier to execute.

2. Due to the way how TorChat handshaking process is implemented it is

possible for an attacker to verify if two TorChat clients who are online

have established TorChat handshake thus allowing an attacker to execute

communication confirmation attacks (Section 6.9).

3. TorChat does not enforce length limit for the received protocol messages

and their parts. This allows an attacker to execute efficient denial-of-service

attacks against TorChat client (Section 6.10.1, 6.10.2, 6.10.3).

4. TorChat fails to validate contents of received profile name message before

writing it into the contact file. This can be exploited by an attacker to add

arbitrary contacts to the victims contact list and can be used to execute

permanent denial-of-service attack which will result in victim’s TorChat

client failing to start (Section 6.10.3).

5. TorChat uses cryptographically insecure pseudo-random number generator

to generate random numbers used in TorChat handshaking process. This

may allow an attacker to impersonate incoming connection of victim’s

contact thus being able to send messages on behalf of that contact and

receive file transfers designated for that contact (Section 6.3.2).

6. TorChat runs Tor with non-default parameters which makes TorChat users

compared to other Tor users being more easier to deanonymize by a malicious

Tor guard node (Section 6.6.1).

7. TorChat makes links automatically clickable without warning the user about

possible deanonymization attacks (Section 6.6.2).

50

8 Conclusions

The objectives set in the introduction were achieved. TorChat protocol has been

documented, reference implementation audited and as a result of security analysis

several security considerations were revealed which needs to be considered when

using TorChat.

The designer of TorChat has made several smart design choices by exploiting

Tor hidden service’s self-authenticating nature to provide authentication between

TorChat peers and by leaving all the encryption and anonymity part to be handled

by well tested and widely used Tor software.

However, several implementation flaws were found in the TorChat implementation

which open TorChat users to denial-of-service attacks and prevent TorChat from

achieving privacy guarantees it could provide in theory.

Despite the flaws found, the use of TorChat might still be secure in scenario where

peer’s onion address does not became known to an adversary interested in attacking

the person behind the TorChat address.

Fortunately, the fixes for the vulnerabilities found can be relatively easily

implemented in the code without requiring to change the design of TorChat.

51

Kokkuvõte

Sissejuhatuses püstitatud töö eesmärgid on täidetud. TorChat-i proto-

koll on dokumenteeritud, näidisrakenduse audit läbi viidud ja turvaanalüüsi

tulemusena leitud asjaolud, mida tuleb arvestada TorChat-i kasutades, sel-

gitatud.

TorChat-i looja on teinud mitmeid tarku otsuseid rakendust disaini-

des otsustades ära kasutada Tor-i peidetud teenuste omadust olla iseennast

autentivad ning kasutada seda TorChat-i klientide omavaheliseks autenti-

miseks. Samuti on mõistlik otsus jätta kõik krüptograafia ja anonüümsuse

tagamisega seotu laialt kasutuses oleva ning põhjalikult testitud Tor tark-

vara hooleks.

Siiski on TorChat-i näidisrakenduses mitmeid realisatsioonist tulenevaid

puudusi mis võimaldavad TorChat-i kasutajate vastu teha teenuse kasuta-

mist takistavaid ründeid ning ei täida täielikult TorChat-i lubadust privaat-

susele, kuigi rakendus seda teoorias võimaldab.

Kuid hoolimata leitud puudustest võib TorChat-i kasutamine olla en-

diselt turvaline olukorras, kus kasutaja aaadress ei ole potentsiaalsele

ründajale teada.

Õnneks on leitud puudused suhteliselt lihtsalt kõrvaldatavad rakenduse

koodi parandades ning ei vaja TorChat-i rakenduse disaini muutmist.

52

References

[1] Ryan Gallagher. Timeline: How the World Was Misled About Government

Skype Eavesdropping. July 2013. http://www.slate.com/blogs/future_

tense/2013/07/12/skype_surveillance_a_timeline_of_public_

claims_and_private_government_dealings.html.

[2] James Risen and Nick Wingfield. Web’s Reach Binds N.S.A. and Silicon Valley

Leaders. June 2013. http://www.nytimes.com/2013/06/20/technology/

silicon-valley-and-spy-agency-bound-by-strengthening-web.html.

[3] Glenn Greenwald, Ewen MacAskill, Laura Poitras, Spencer Ackerman,

and Dominic Rushe. Microsoft handed the NSA access to encrypted

messages. July 2013. http://www.theguardian.com/world/2013/jul/11/

microsoft-nsa-collaboration-user-data.

[4] Privacy International. What is metadata? https://www.

privacyinternational.org/?q=node/53 (last visited 16.05.2015).

[5] Bernd Kreuss (author of TorChat). TorChat, January 2014. https://

github.com/prof7bit/TorChat.

[6] The Tor Project, Inc. Tor: Overview. https://www.torproject.org/about/

overview.html.en (last visited 16.05.2015).

[7] Bernd Kreuss. Interview with Bernd Kreuss of TorChat, October

2013. http://www.reddit.com/r/onions/comments/1l9k8m/interview_

with_bernd_kreuss_of_torchat/ccnmivi.

[8] Joe Mullin. Silk Road trial: FBI reveals what’s on Ross Ulbrichts computer,

January 2015. http://arstechnica.com/tech-policy/2015/01/silk-

road-trial-fbi-reveals-whats-on-ross-ulbrichts-computer/.

[9] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for

Tor Hidden Services: Detection, Measurement, Deanonymization. In IEEE

Symposium on Security and Privacy’13, pages 80–94, 2013.

53

http://www.slate.com/blogs/future_tense/2013/07/12/skype_surveillance_a_timeline_of_public_claims_and_private_government_dealings.html
http://www.slate.com/blogs/future_tense/2013/07/12/skype_surveillance_a_timeline_of_public_claims_and_private_government_dealings.html
http://www.slate.com/blogs/future_tense/2013/07/12/skype_surveillance_a_timeline_of_public_claims_and_private_government_dealings.html
http://www.nytimes.com/2013/06/20/technology/silicon-valley-and-spy-agency-bound-by-strengthening-web.html
http://www.nytimes.com/2013/06/20/technology/silicon-valley-and-spy-agency-bound-by-strengthening-web.html
http://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
http://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://www.privacyinternational.org/?q=node/53
https://www.privacyinternational.org/?q=node/53
https://github.com/prof7bit/TorChat
https://github.com/prof7bit/TorChat
https://www.torproject.org/about/overview.html.en
https://www.torproject.org/about/overview.html.en
http://www.reddit.com/r/onions/comments/1l9k8m/interview_with_bernd_kreuss_of_torchat/ccnmivi
http://www.reddit.com/r/onions/comments/1l9k8m/interview_with_bernd_kreuss_of_torchat/ccnmivi
http://arstechnica.com/tech-policy/2015/01/silk-road-trial-fbi-reveals-whats-on-ross-ulbrichts-computer/
http://arstechnica.com/tech-policy/2015/01/silk-road-trial-fbi-reveals-whats-on-ross-ulbrichts-computer/

[10] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Content and

popularity analysis of Tor hidden services. CoRR, abs/1308.6768, 2013.

[11] Bernd Kreuss (author of TorChat). Torchat2 readme. https://github.com/

prof7bit/TorChat/blob/torchat2/README.markdown.

[12] jTorchat, October 2014. https://github.com/jtorchat/jtorchat.

[13] torchat - the Ruby implementation, August 2012. https://github.com/meh/

ruby-torchat.

[14] The Tor Project, Inc. Tor: Hidden Service Protocol. https://www.

torproject.org/docs/hidden-services.html.en (last visited 16.05.2015).

[15] The Tor Project, Inc. Tor Protocol Specification, 0.3. Ciphers, Feb 2015.

https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt#n71.

[16] Tor Project Wiki. Hidden Service Names. 2013. https://trac.torproject.

org/projects/tor/wiki/doc/HiddenServiceNames.

[17] Wikipedia. Zooko’s triangle. http://en.wikipedia.org/wiki/Zooko%27s_

triangle (last visited 16.05.2015).

[18] Howto: Run more than one instance of TorChat, May 2008.

https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/

doc/howto_second_instance.html.

[19] Electronic Frontier Foundation. Secure Massaging Scorecard, January 2015.

https://www.eff.org/secure-messaging-scorecard.

[20] Elaine Barker and Allen Roginsky. Transitions: Recommendation for

Transitioning the Use of Cryptographic Algorithms and Key Lengths. January

2011. http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-

131A.pdf.

[21] Roger Dingledine. Two relays serving same hidden service. April 2011. http:

//archives.seul.org/tor/relays/Apr-2011/msg00022.html.

[22] Python documentation: 9.6. random — Generate pseudo-random numbers.

https://docs.python.org/2/library/random.html.

54

https://github.com/prof7bit/TorChat/blob/torchat2/README.markdown
https://github.com/prof7bit/TorChat/blob/torchat2/README.markdown
https://github.com/jtorchat/jtorchat
https://github.com/meh/ruby-torchat
https://github.com/meh/ruby-torchat
https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/docs/hidden-services.html.en
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt#n71
https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames
https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames
http://en.wikipedia.org/wiki/Zooko%27s_triangle
http://en.wikipedia.org/wiki/Zooko%27s_triangle
https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/doc/howto_second_instance.html
https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/doc/howto_second_instance.html
https://www.eff.org/secure-messaging-scorecard
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://archives.seul.org/tor/relays/Apr-2011/msg00022.html
http://archives.seul.org/tor/relays/Apr-2011/msg00022.html
https://docs.python.org/2/library/random.html

[23] Shallot, July 2012. https://github.com/katmagic/Shallot.

[24] The Tor Project, Inc. Tor Protocol Specification, 1.1. Keys and names, Feb

2015. https://gitweb.torproject.org/torspec.git/tree/tor-spec.

txt#n140.

[25] The Tor Project, Inc. Tor Protocol Specification, 2. Connections, Feb

2015. https://gitweb.torproject.org/torspec.git/tree/tor-spec.

txt#n157.

[26] The Tor Project, Inc. Tor directory protocol, version 3 - guard life

time, Mar 2015. https://gitweb.torproject.org/torspec.git/tree/

dir-spec.txt#n1617.

[27] The Tor Project, Inc. Tor directory protocol, version 3 - num entry

guard, Mar 2015. https://gitweb.torproject.org/torspec.git/tree/

dir-spec.txt#n1612.

[28] The Tor Project, Inc. Tor Rendezvous Specification, 1.4. Bob’s OP advertises

his service descriptor(s), Feb 2015. https://gitweb.torproject.org/

torspec.git/tree/rend-spec.txt#n471.

[29] Bernd Kreuss (author of TorChat). Issue 13: Implement a block list, 2008.

https://code.google.com/p/torchat/issues/detail?id=13.

[30] Bernd Kreuss (author of TorChat). TorChat Download page in Github,

September 2012. https://github.com/prof7bit/TorChat/downloads.

[31] Debin Linux - Package: torchat (0.9.9.553-1.1). https://packages.debian.

org/jessie/torchat.

[32] Ubuntu Linux 14.04 Trusty - Package: torchat (0.9.9.553-1). http://

packages.ubuntu.com/trusty/web/torchat.

[33] Ubuntu Linux 15.04 Vivid - Package: torchat (0.9.9.553-1.1). http://

packages.ubuntu.com/vivid/web/torchat.

[34] Arch Linux - Package Details: torchat 0.9.9.553-2. https://aur.archlinux.

org/packages/torchat/.

55

https://github.com/katmagic/Shallot
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt#n140
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt#n140
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt#n157
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt#n157
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt#n1617
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt#n1617
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt#n1612
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt#n1612
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt#n471
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt#n471
https://code.google.com/p/torchat/issues/detail?id=13
https://github.com/prof7bit/TorChat/downloads
https://packages.debian.org/jessie/torchat
https://packages.debian.org/jessie/torchat
http://packages.ubuntu.com/trusty/web/torchat
http://packages.ubuntu.com/trusty/web/torchat
http://packages.ubuntu.com/vivid/web/torchat
http://packages.ubuntu.com/vivid/web/torchat
https://aur.archlinux.org/packages/torchat/
https://aur.archlinux.org/packages/torchat/

[35] Bernd Kreuss (author of TorChat). TorChat SVN commit r292, December

2010. https://code.google.com/p/torchat/source/detail?r=292.

[36] PyInstaller, March 2015. https://github.com/pyinstaller/pyinstaller/

wiki.

[37] Bernd Kreuss. TorChat change log, September 2012. https://github.com/

prof7bit/TorChat/blob/torchat_py/torchat/src/changelog.txt.

[38] Roger Dingledine. OpenSSL bug CVE-2014-0160, April 2014. https://blog.

torproject.org/blog/openssl-bug-cve-2014-0160.

[39] Tor Binary Too Outdated Again #62 , October 2014. https://github.com/

prof7bit/TorChat/issues/62.

56

https://code.google.com/p/torchat/source/detail?r=292
https://github.com/pyinstaller/pyinstaller/wiki
https://github.com/pyinstaller/pyinstaller/wiki
https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/src/changelog.txt
https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/src/changelog.txt
https://blog.torproject.org/blog/openssl-bug-cve-2014-0160
https://blog.torproject.org/blog/openssl-bug-cve-2014-0160
https://github.com/prof7bit/TorChat/issues/62
https://github.com/prof7bit/TorChat/issues/62

	Introduction
	Tor and Hidden Services
	Hidden Services
	Hidden service address

	TorChat
	Managing Contacts and Conversations
	Configuration Options

	TorChat Protocol
	Handshake
	File Transfers
	Protocol Messages
	not_implemented
	ping
	pong
	client
	version
	status
	profile_name
	profile_text
	profile_avatar_alpha
	profile_avatar
	add_me
	remove_me
	message
	filename
	filedata
	filedata_ok
	filedata_error
	file_stop_sending
	file_stop_receiving

	Analysis Methodology
	Is the communication protected in transit?
	Is the communication protected from abuse by the provider?
	Can someone impersonate user's identity?
	Are past communications secure if user's keys are stolen?
	Is the source code available, crypto design well-documented, open to independent review?
	Can the service be used anonymously?
	Who has access to the user's profile information?
	Who has access to the user's presence information?
	Who has access to the user's contacts information?
	Is the user protected from denial-of-service attacks?
	What forensic evidence the software leaves on the user's device?
	Is the software available from trusted source and can its integrity be verified?

	Security Analysis
	Is the communication protected in transit?
	Is the communication protected from abuse by the provider?
	Can someone impersonate user's identity?
	Impersonating Tor hidden service
	Spoofing pong message
	Impersonation at GUI level

	Are past communications secure if user's keys are stolen?
	Is the source code available, crypto design well-documented, open to independent review?
	Can the service be used anonymously?
	Deanonymization by a malicious guard node
	Deanonymization by message contents

	Who has access to the user's profile information?
	Who has access to the user's presence information?
	Who has access to the user's contact information?
	Is the user protected from denial-of-service attacks?
	Memory exhaustion through network read
	Memory exhaustion through chat message
	Attacking via profile_name message
	Attacking via multiple add_me messages
	Attacking vie multiple filename messages

	What forensic evidence the software leaves on the user's device?
	Is the software available from trusted source and can its integrity be verified?
	Linux
	Windows

	Summary of Findings
	Conclusions

