
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Aleksei Lutkov 243440IAIB

INTEGRATION AND OPTIMIZATION OF COMPUTER

VISION MODELS FOR FISH SPECIES, SIZE, AND

BEHAVIOR CLASSIFICATION IN THE SMART FISH

COUNTER APPLICATION

Bachelor’s Thesis

Supervisor: Jeffrey A. Tuhtan

Tenured Associate Professor Dr.-Eng.

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Aleksei Lutkov 243440IAIB

KALA LIIGI, SUURUSE JA KÄITUMISE

KLASSIFIKATSIOONI ARVUTINÄGEMISMUDELITE

INTEGREERIMINE JA OPTIMEERIMINE SMART FISH

COUNTER RAKENDUSES

Bakalaureusetöö

Juhendaja: Jeffrey A. Tuhtan

Kaasprofessor tenuuris Dr.-Eng.

Tallinn 2025

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Aleksei Lutkov

12.01.2025

3

Abstract

Climate change and anthropogenic impacts are leading to a rapid decline in freshwater

biodiversity worldwide, which has decreased by more than 80% since 1970. Technologies

are therefore urgently needed to automate freshwater biodiversity monitoring, and the

TalTech Smart Fish Counter Application has been developed to leverage the most recent

advances in computer vision methods for fish detection, size and species classification, and

migration behavior analysis.

In this bachelor’s thesis, the author developed the Smart Fish Counter Application further.

The objectives of this work include integrating three new ML (Machine Learning) modules

for fish species, size, and behavior classification, testing and validating the integrated

modules, and optimizing the application’s computational efficiency. The author addresses

the challenges of integrating these new modules into the application and improves the

performance of the individual modules, leading to a substantial reduction in the video

processing times.

The results of this work include a fully functional, new Smart Fish Counter Application with

integrated, tested, and validated algorithms for fish species, size, and behavior classification

and includes an overview of the optimization, which reduced the average processing time

from 216 seconds to 27 seconds per video.

The thesis is in English and contains 35 pages of text, 6 chapters, 9 figures, 2 tables.

4

Annotatsioon
Kala liigi, suuruse ja käitumise klassifikatsiooni

arvutinägemismudelite integreerimine ja optimeerimine Smart Fish

Counter rakenduses

Kliimamuutus ja antropogeensed tegurid kahandavad kiiresti magevee bioloogilist mit-

mekesisust kogu maailmas, mis 1970. aastast on vähenenud enam kui 80% võrra. Selle

kahanemise tõttu on magevee bioloogilise mitmekesisuse seire automatiseerimiseks hä-

dasti vaja tehnoloogiaid nagu TalTech Smart Fish Counter Application. See rakendus oli

välja töötanud arvutinägemise meetodite uusimate edusammude ärakasutamiseks ja ku-

jutab endast avatud lähtekoodiga seiresüsteemi keskkonnatingimuste hindamiseks, kalade

loendamiseks, nende rändekäitumise uurimiseks ning nende suuruse ja liigi tuvastamiseks.

See bakalaureusetöö on pühendatud Smart Fish Counter Application edasiarendamisele.

Selle eesmärgid hõlmavad kolme masinõppe mooduli integreerimist kala rändekäitumise,

liigi ja suuruse klassifitseerimiseks, integreeritud moodulite testimist ja valideerimist

ning rakenduse arvutusliku efektiivsuse optimeerimist. Lõputöö vältel autor käsitleb

uute moodulite integreerimisega seotud väljakutseid, nagu tihe seos moodulite vahel ja

videotöötlusaegade optimeerimine.

Selle töö tulemused hõlmavad esiteks, täielikult funktsionaalset uut rakenduse versiooni

integreeritud, testitud ja valideeritud algoritmidega kala rändekäitumise, liigi ja suuruse

klassifitseerimiseks ning teiseks, ülevaadet teostatud optimeerimistest, mille käigus suutis

autor vähendada keskmist videotöötlusaega 216 sekundilt 27 sekundile.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 35 leheküljel, 6 peatükki, 9 joonist,

2 tabelit.

5

List of Abbreviations and Terms

AI Artificial Intelligence

BfG Bundesanstalt für Gewässerkunde. German Federal Institute

of Hydrology

BRAIN Biotactic Research Artificial Intelligence Network

CPU Central Processing Unit

DB Database

FC Fish Counter

FNF Fish/No-Fish

FPS Frames Per Second

GIL Global Interpreter Lock

GPU Graphics Processing Unit

HD High-Definition

HPC High-Performance Computing

IO Input/Output

ML Machine Learning

OS Operating System

QA Quality Assurance

SPA Single-Page Application

SSR Server-Side Rendering

UI User Interface

VM Virtual Machine

YOLO You Only Look Once

6

Table of Contents

1 Introduction . 11

2 Background . 13

2.1 Motivation . 13

2.2 River Fish Counters . 13

2.2.1 VAKI Riverwatcher . 14

2.2.2 Simsonar FC . 14

2.2.3 TiVA FC . 14

2.2.4 BRAVO G3 . 15

2.2.5 I AM HYDROCam . 15

2.2.6 Counters Comparison . 15

3 Methods . 17

3.1 Technology Overview . 17

3.2 Initial Application State . 17

3.3 Functional Requirements . 19

3.4 Non-Functional Requirements . 20

4 Development Work . 21

4.1 Development Preparation . 21

4.2 DB Updates . 22

4.3 UI Updates . 22

4.4 FNF Module Updates . 23

4.5 Behavior Module . 24

4.6 Fish Size Module . 24

4.7 Fish Species Module . 25

4.8 Additional Updates . 25

4.9 Testing and Validation . 26

5 Optimization Work . 27

5.1 Optimization Goal . 27

5.2 Optimization Preparation . 27

5.3 Python, Libraries, and Environmental Conditions Updates 29

7

5.4 Introduction of GPU Usage . 30

5.5 Video Frame Extraction Optimization 31

5.6 Multiprocessing and Threading . 32

5.7 Optimization Results Summary . 34

6 Summary . 35

References . 36

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Gradu-

ation Thesis . 38

Appendix 2 – New Columns of the videos_fish Table and the Schema of the

videos_fishlabelmapping Table . 39

Appendix 3 – Django Migration for the videos_fish Table Column Defaults 39

Appendix 4 – Acknowledgments . 41

8

List of Figures

1 Main application view with all the primary functionality. 18

2 Expandable video view with fish counts. 19

3 Initial action drop-down menu. 22

4 Updated action drop-down menu. 22

5 Initial average processing times. 28

6 Average processing times after the first optimization. 29

7 Average processing times after the second optimization. 31

8 Average processing times after the third optimization. 32

9 Average processing times after the fourth optimization. 33

9

List of Tables

1 Commercial video river fish counter systems comparison. 16

2 Average processing times comparison. 34

10

1 Introduction

The Smart Fish Counter is an open source full-stack web application developed by Tal-

Tech’s Center for Environmental Intelligence and Sensing for the BfG (Bundesanstalt für

Gewässerkunde, German Federal Institute of Hydrology). It is the most advanced ML

system for the detection of freshwater fish in Europe and provides a versatile tool for the

identification of individual fish species and the study of their migration behavior, replacing

most of the expensive and time-consuming tasks currently performed by trained biologists

to evaluate fish migration [1].

The application includes five core computer vision modules. The first two modules were

integrated before this thesis work, and the remaining three are in development and have

not yet been integrated into the application. Module 1 classifies videos according to six

commonly occurring environmental conditions, sorting the videos for further processing.

Module 2 labels videos with fish and videos without fish. Module 3 detects the species and

family of fish. Module 4 determines the size class of the fish. Module 5 classifies eight

different migration behaviors of individual fish during their passage through the counter.

The main contributions of this work relate to integrating the computer vision algorithms

for modules 3, 4, and 5 and optimizing the video processing time. Due to the technical

challenges associated with integrating the remaining modules, they have not yet been

integrated into the application. The trained personnel manually define the classifications

for which those modules are responsible. The major challenges addressed in this work are:

■ Interdependence between the modules. The three remaining modules are not

completely independent of each other, which poses a challenge in their integration.

For example, the species module relies on the previously determined size of the fish

to correct species estimations based on biological studies that determine maximum

and minimum species sizes. The fish behavior module also uses species information.

For example, some small-bodied fish tend to migrate in groups of five or more fish

at a time. In contrast, other species, such as European eel, prefer to migrate alone.

11

■ Video processing time. The full validation dataset consists of more than 400,000

human-annotated videos completed by eight human raters over 2.5 years, with

more than 40 terabytes of video material. The current training dataset for all

modules consists of several hundred gigabytes, which results in large network

weights. Although large models tend to perform well because of their inherent

flexibility, the speed of processing videos in the application is reduced. Therefore,

the performance of the application must be optimized after the remaining modules

have been integrated.

The main objectives of this bachelor’s thesis are three-fold:

■ Integration of computer vision ML algorithms for the automated detection of fish

species, size class, and individual fish behavioral evaluation;

■ Testing and validation of the integrated algorithms;

■ Optimization of the application’s ML algorithms to improve computational efficiency

and reduce processing times.

The primary result of the work is a new version of the web application with integrated,

tested, validated, and optimized computer vision algorithms for the automated detection of

fish species, size class, and individual fish behavior classification. The secondary result

is the comparative analysis of optimization methods tested by the author to improve the

computational efficiency of the application’s computer vision algorithms.

A literature review is used in this work to give an overview of the background, examine ex-

isting analogous solutions, and clearly establish the significance, novelty, and contributions

of the thesis topic. To manage the project related to this bachelor’s thesis and achieve set

objectives and results, a simplified version of Scrum methodology [2] is used, according

to which increments of work are delivered in short cycles called sprints. Validation of

the modules is based on a documented QA (Quality Assurance) process for each module

separately. The BfG also provided direct feedback throughout this thesis work on the model

integration and processing times, as they have a stand-alone web application installation

on their own HPC (High-Performance Computing) center in Koblenz, Germany.

12

2 Background

In this chapter, background information is provided explaining the need and purpose of

automated fish biodiversity monitoring systems. An overview and comparison of the

existing river fish counter systems are also given in this chapter, explaining the need for

the development of the Smart Fish Counter Application.

2.1 Motivation

Freshwater ecosystems, home to approximately a third of all vertebrate species, are rapidly

declining, with global wetland destruction occurring three times faster than forest loss [1].

In addition, the combined effects of climate and human changes are causing freshwater

vertebrate populations to decline more than twice as fast as terrestrial or marine populations.

Taking into account this trajectory, measures must be taken to bring the situation under

control, and monitoring of freshwater biodiversity could play a crucial role in slowing the

rate of decline in the freshwater vertebrate population. Automated freshwater biodiver-

sity monitoring systems are therefore urgently needed to examine, predict, and support

sustainable freshwater fisheries, as well as assess the effectiveness of conservation actions.

2.2 River Fish Counters

River fish counter systems are installed to support freshwater biodiversity monitoring

by studying fish migration during their passage through the counter. They are usually

strategically placed at fish passes and other natural or man-made narrow points, such as

dams, weirs, and bypasses, where fish tend to migrate.

Multiple technologies are used for river fish counter systems and could be divided into the

following types: hydroacoustic counters, resistivity counters, optical beam counters, and

video counters [3]. In this work, the focus is maintained only on the video fish counters

because the Smart Fish Counter represents this type of counter.

13

Several different video river fish counter systems, each with unique features, are available

to increase the ease and rate of video processing. The following is an overview of the five

most dominant systems currently available, including their descriptions and characteristics.

2.2.1 VAKI Riverwatcher

VAKI Riverwatcher fish counter system is developed by an Icelandic company, Vaki

Aquaculture Systems Ltd., and uses infrared scanning technology and high-resolution

cameras to monitor fish migration during their passage through the counter [4], [5]. The

Riverwatcher automatically counts the fish, measures their size and saves fish silhouette

images or videos, which can be later used by users to identify fish species.

The system includes a scanner on a river and a weatherproof control unit on the river bank.

The scanner data are sent to the control unit for storage and can be analyzed by users with

the proprietary software WinAri, also developed by Vaki Aquaculture Systems Ltd.

2.2.2 Simsonar FC

Simsonar FC (Fish Counter) is a product of the Finnish company Simsonar Oy [6]. The

system utilizes a 3D stereo camera to capture HD (High-Definition) fish videos as the

fish passes through the counter. The system also uses neural networks with cloud-based

services to analyze fish movement and behavior and classify their species and size.

The system features cloud-based services for species identification, allowing Simsonar FC

to identify the twelve most common species of Nordic fish and recognize adipose salmon

and trout fins, indicating that the fish was not cultivated.

2.2.3 TiVA FC

TiVA FC is a fish counting and monitoring system developed by the Swedish company

TiVA AB [7], [8]. The system is coupled with a dedicated cloud-based web platform for

real-time data processing using AI (Artificial Intelligence) algorithms. It can track and

analyze fish movement, identify species and size, and detect adipose fin and fungal growth.

14

The TiVA FC has an HD video camera for capturing passing fish video data and a 3D

camera for precise fish size measurement. The initial data processing is performed by

embedded hardware, which also uploads the data to the web platform for further processing.

2.2.4 BRAVO G3

BRAVO G3 is a fish monitoring system developed by a Canadian company, Biotactic Inc.

[9]. It employs HD cameras with built-in infrared illumination to improve video capture at

night and a self-cleaning lens system that eliminates the need for underwater maintenance.

It is possible to connect BRAVO G3 to the Internet, allowing live uploading of video data to

central BRAVO computers or other desired locations. Central BRAVO computers process

video data with Biotactic’s proprietary AI software, BRAIN (Biotactic Research Artificial

Intelligence Network). BRAIN allows counting fish and identifying their movement

direction, but species identification and size estimation must be performed manually.

2.2.5 I AM HYDROCam

I AM HYDROCam, developed by I AM HYDRO GmbH, is an underwater camera system

for aquaculture, fisheries management, and ecological research, used to monitor fish

migration [10]. It is a dual-sensor camera system that features separate day and night

sensors that allow the system to operate under varying lighting conditions [11].

The I AM HYDROCam manufacturer has partnered with TalTech’s Center for Environmen-

tal Intelligence and Sensing. It is the first camera system to use the modules integrated into

the Smart Fish Counter Application on the embedded hardware on the camera. Currently,

it processes videos using an AI module to sort videos with and without fish. In the future,

it will also use the modules to classify fish species, size, and migration behavior.

2.2.6 Counters Comparison

Each of the commercial video river fish counter systems discussed has unique features.

Table 1 shows general information about each of these systems.

15

Table 1. Commercial video river fish counter systems comparison.

VAKI

Riverwatcher

Simsonar

FC

TiVA FC BRAVO

G3

I AM

HYDROCam

Tracking Yes Yes Yes Yes Yes

Behavior Yes Yes Yes Yes Yes

Size Yes Yes Yes No Yes

Species No Yes Yes No Yes

Software

location

Local

installation

Local

installation

Cloud-

based

Cloud-

based

Cloud-

based

Software type Closed-

source

Closed-

source

Closed-

source

Closed-

source

Open-source

Environmental

conditions

No No No No Yes

Independent

manual

validation

No No No No Yes

Although existing systems are sophisticated and advanced, they still lack the features

needed for their efficient and convenient use. For example, not all of the systems discussed

can identify the size and species of fish. Similarly, the software for some of the systems

has to be installed locally, which is inconvenient compared to using cloud-based solutions.

Even more importantly, only the software coupled with the I AM HYDROCam system is

open source, which greatly reduces the development potential because interested parties

cannot make contributions. Noteworthy is also that, other than the I AM HYDROCam,

existing systems do not contain environmental conditions and do not allow the user to

validate the system’s performance independently of the ML models they apply.

Due to these reasons, there is a need for a more transparent fish monitoring tool that is

released open source and includes environmental conditions during data processing, and

allows the user to independently validate the system’s performance.

16

3 Methods

This chapter describes the Smart Fish Counter Application state before the work on this

bachelor’s thesis and outlines the requirements and technical features of the work.

3.1 Technology Overview

The Smart Fish Counter Application is a complex, full-stack system developed according

to modern software development practices. The application’s front-end represents a SPA

(Single-Page Application) written in the React Library and pre-rendered on the server

side, where the Razzle build tool, Node.js runtime, and Koa.js framework handle the SSR

(Server-Side Rendering). The back-end of the application represents a complex system

combining technologies such as Django, Celery, Redis, and PostgreSQL.

In addition to the technologies used in the application’s front-end and back-end, the

application also uses Docker. This open source tool enables the building, running, and

managing of containers that combine the source code with the libraries and dependencies

of the OS (Operating System) [12]. This allows the code to run in any environment and

provides isolation and scalability of applications.

Furthermore, the application also uses Ansible, an open source automation software

written in Python that enables infrastructure as code and features software provisioning,

configuration management, and application deployment [13]. In the Smart Fish Counter

Application context, it is used to configure the server host and deploy the application to it.

3.2 Initial Application State

The Smart Fish Counter Application is an open science development project that started

in early 2021. Its goal is to create versatile open source ML software with a web applica-

tion UI (User Interface) for use with freshwater fish counters that automatically detects

environmental conditions in processed videos and allows the user to validate the system’s

17

performance independently.

Before this bachelor’s thesis, a team of developers had already worked on the application

and implemented its general functionality. Since the application is a SPA, all its primary

functionality is available from the main application view, as illustrated in Figure 1.

Figure 1. Main application view with all the primary functionality.

In the application, it is also possible to open an expandable view by selecting the name of

the video of interest, as shown in Figure 2. This view contains a video player and details

on fish species, behavior, occurrence times, size, count, and whether the fish appear to

have visible external injuries. The user can verify or modify this information and delete

individual data rows.

Before this thesis work, the application could only run the environmental conditions and

the FNF (Fish/No-Fish) modules. The application saved the results of the environmental

conditions module in the DB (Database) and displayed them in the main application view.

The FNF module could detect fish but did not save any results. It stopped processing as

the first fish was detected, offering only "fish" and "no fish" classifications. Fish counting

and identifying the species, size, and behavior had to be performed manually.

18

Figure 2. Expandable video view with fish counts.

3.3 Functional Requirements

Functional requirements specify the desired behavior and functions of the system [14].

During the requirement analysis, the author, in collaboration with BfG and TalTech’s Center

for Environmental Intelligence and Sensing, defined the following functional requirements:

■ The application must allow the running of each processing module independently

and in conjunction with other modules.

■ The application must allow for batch processing of the videos, which will not be

interrupted by a processing error in individual videos.

■ The FNF module must not stop when the first fish is detected.

■ The FNF module must classify videos as "fish," "no fish," and "fish swarm" videos.

■ The FNF module must be able to obtain fish bounding-box images and tracking data.

■ The results of the FNF module must be saved in the DB for later use in other modules.

■ The behavior module must be able to classify videos as "fish behavior".

■ The application must save the behavior evaluation results to the DB.

19

■ The application must save the size estimation results to the DB.

■ The application must save the species prediction results to the DB.

■ Users should be able to map user-defined fish species labels to the labels used by the

species module.

■ The application must allow the users to override the results of the modules, preserving

both user-defined data and module results in the DB.

■ The application must determine whether the modules or a user saved the fish data

and display the correct one; user data always has priority over the modules’ data.

3.4 Non-Functional Requirements

Non-functional requirements define how the system should work to achieve the functional

requirements, considering performance, security, reliability, and scalability. Below are the

defined non-functional requirements with a focus on computational efficiency.

■ The application must use the most recent applicable Python and library versions to

ensure high reliability and optimal execution time.

■ The application must utilize the GPU (Graphics Processing Unit) to perform the

prediction steps on the systems where the GPU is available.

■ If the user starts the processing with multiple modules, video frame extraction must

be performed only once at the beginning of the processing workflow; the frames

must be kept in memory to be reused in later processing stages.

■ If the user starts the processing with multiple modules, the bounding-box images

must be prepared and saved to storage only once during the processing workflow;

the image paths must then be kept in memory to be reused in later processing stages.

■ If the user starts the processing with multiple modules, the FNF module results must

be saved in the DB and also kept in memory, and reused in later processing stages.

■ If the user starts the processing with multiple modules, the size module results must

be kept in memory and reused in the species module.

■ The application must use threading or multiprocessing in frame extraction and

bounding-box image preparation steps.

■ The processing time of a single three-minute video must be thirty or fewer seconds.

20

4 Development Work

This chapter describes the development work performed as part of this bachelor’s thesis.

The main contributions of this thesis to the development work are described in the following

sections.

4.1 Development Preparation

During the development preparation phase, the author performed the work required to

further develop the Smart Fish Counter Application. The preparations included installing

the application on the author’s laptop and obtaining and examining a special preannotation

script along with the ML models to be integrated into the application.

Although the Smart Fish Counter Application uses Docker to containerize its different

parts, it is intended for use in Linux-based operating systems and has been developed

to work under the 22 version of Ubuntu. To be able to start the development work, the

author set up the dual boot with the Windows 11 operating system already installed on his

laptop and Ubuntu 22.04.5. After the successful dual boot setup, the author installed the

application on his laptop, performed its initial configuration, and examined its functionality

and the code base to familiarize himself with its structure, components, and technology.

The TalTech’s Center for Environmental Intelligence and Sensing also provided the author

with the pre-trained ML models that must be integrated into the application and used in the

behavior, size, and species modules, along with the preannotation script previously used to

run all the models in sequence to analyze the fish videos locally. The script is a complex

pipeline with various processing steps consisting of almost 4,000 lines of code. The

author thoroughly analyzed the script and its different parts and planned its refactoring and

adaptation to the Smart Fish Counter Application, considering the application’s structure

and required modifications to run the processing modules as independently as possible.

21

4.2 DB Updates

After the preparation work was completed, the DB structure was updated to accommodate

the new modules. As Appendix 2 shows, several columns were added to the videos_fish

table, and a videos_fishlabelmapping table was created to satisfy the requirement that users

should be able to map user-defined fish species labels to those used by the species module.

The author also identified the need to create a new Django migration to alter the schema of

the videos_fish table, specifying the default values of the columns. Appendix 3 shows the

migration for the videos_fish table column defaults.

4.3 UI Updates

Before the work on this bachelor’s thesis, a drop-down menu was used to initiate processing.

As shown in Figure 3, it contained options to delete and download videos and to start

environmental conditions and FNF modules independently and together.

Figure 3. Initial action drop-down menu.

With the integration of the new modules, the menu was updated, as shown in Figure 4.

Figure 4. Updated action drop-down menu.

22

Five new options were added to launch the behavior, size, and species modules: three

options to launch them independently, an option to launch all three new modules, and

an option to launch all five modules available in the application. This update covers the

functional requirement of allowing each processing module to run independently or in

conjunction with other modules. The author also updated the logic behind the menu to

start selected actions in the back-end.

4.4 FNF Module Updates

Several updates were performed in the FNF module before integrating the three new

modules. First, the detection model was updated from YOLOv5 (You Only Look Once v5)

6.1 to the 7th version to make the FNF module consistent with the preannotation script.

Afterward, the module was adjusted according to the following functional requirements:

■ The FNF module must not stop when the first fish is detected.

■ The FNF module must classify videos as "fish," "no fish," and "fish swarm" videos.

■ The FNF module must be able to obtain fish bounding-box images and tracking data.

■ The results of the FNF module must be saved in the DB for later use in other modules.

To start with, the author changed the detection logic to satisfy the requirement that the

module is not to be stopped as soon as the first fish is detected. The module could now go

through all the video frames and run the detection model for each frame. This update was

a substantial change because the obtained YOLO detections are needed in other modules.

To meet the requirement of classifying the videos as "fish," "no fish," and "fish swarm"

videos, the author integrated two helper ML models from the preannotation script. Both

models represent neural networks that draw conclusions based on the input that is fed to

them. The logic for preparing the models’ input from the detection data was taken from the

preannotation script, refactored, and adapted for the application. The first integrated model

determines if the video contains fish and is used in addition to the existing classification,

minimizing the number of videos falsely classified as "fish" videos. The second model

determines whether the video contains a fish swarm or individual fish and is used to classify

the videos as "fish swarm" videos if detected.

23

To satisfy the third requirement of obtaining fish bounding-box images and tracking data

in the FNF module, the author updated and adapted the logic of the preannotation script

for the bounding-box image extraction and tracking data retrieval into the application. The

implemented logic allowed the extraction of bounding-box images using the video frames

and previously retrieved detections, saving them into internal storage, holding the image

paths in memory, and deleting the images after the processing was finished.

Finally, the author performed analysis and development work to meet the requirement of

saving the FNF module results to the DB for later use in other modules. Several options

were considered, including storing each individual detection as a DB row and finding a way

to store consolidated data, and it was decided to use Pandas DataFrames as the module’s

output, allowing effective manipulation and storage of large amounts of data [15]. The

output comprises YOLO model detections merged with the tracking data and saved in

internal storage, whose reference is held in the DB. If processing was started with multiple

modules, this output is also stored in memory and reused in later processing stages.

4.5 Behavior Module

During the integration of the behavior module, the author reviewed and updated the

complex logic used to determine the behavior of the fish in the preannotation script, which

consisted of over 600 lines of code. As a result of the code refactoring and optimization,

the code base was reduced by half, with a final module’s length of 291 lines of code. The

module uses the previously obtained tracking data, which is passed directly to it if the

processing was started with multiple modules or retrieved from the DB.

To meet the requirement of classifying the videos as "fish behavior", a new logic was added

to the module that checks its output. Additionally, new functionality was implemented to

satisfy the requirement of saving behavior evaluation results to the DB.

4.6 Fish Size Module

Several steps were taken to integrate the fish size module into the application. Firstly, since

the module required the paths to the previously obtained fish bounding-box images, the

24

author added the logic of forwarding those paths to the module along with the tracking

data passed to the module in the same way as in the behavior module. Secondly, the author

adapted the logic of preparing the size estimation dataset and obtaining the predictions

from the preannotation script. The size is estimated by utilizing three helper ML models:

■ A model for retrieving embeddings from the fish bounding-box images.

■ A model for estimating the fish size based on the previously retrieved embeddings.

■ A model for correcting the initial size estimation to improve its accuracy.

To meet the requirement of saving the size estimation results in the DB, they are combined

with fish tracking data, and the obtained result is saved in the existing fish row in the DB.

4.7 Fish Species Module

The last module integrated into the application was the fish species module, for which the

author also used the logic of the preannotation script. The module required the same input

as the fish size module; therefore, the fish bounding-box images and tracking data were

also transmitted to this module.

The module also required the fish size data to correct the initial species estimations based

on the maximum and minimum species sizes from the biological studies, and for that,

saving the size data was adjusted to hold it in memory and reuse it in the species module

when the processing is started for both the size and species modules. Additionally, to satisfy

the requirement of saving the species prediction results to the DB, they are combined with

fish tracking data, and the obtained result is saved in the existing fish row in the DB.

4.8 Additional Updates

After all the modules were successfully integrated, a few additional updates were performed

to meet the following three functional requirements:

■ The application must allow for batch processing of the videos, which will not be

interrupted by a processing error in individual videos.

25

■ The application must allow the users to override the results of the modules, preserving

both user-defined data and module results in the DB.

■ The application must determine whether the modules or a user saved the fish data

and display the correct one; user data always has priority over the modules’ data.

To meet the first requirement, the application’s batch-processing functionality was updated,

introducing the ability to process videos uninterruptedly and skip those with errors.

Afterwards, updates were performed to meet the requirement of allowing users to override

the modules’ results while preserving both user-defined data and module results in the DB.

A helper method was created in the back-end triggered the first time the user updated the

fish data and used to sync AI data with the fish data fields not updated by the user.

Finally, the author updated the back-end’s fish data serializer to forward the correct data to

the front-end, meeting the last requirement of displaying the correct fish data depending on

whether the user-defined data are available. For this update, the last_modified_by column

of the videos_fish table was used, defined when the user saves fish data.

4.9 Testing and Validation

During the development work, the author continuously tested and validated the integrated

functionality using the local installation of the Smart Fish Counter Application and its

installation on the staging environment. The staging environment is hosted in TalTech

HPC and provides the resources needed to test the application under real-life conditions.

For testing purposes, the author was given 30 videos of different lengths with single fish,

fish swarms, and not containing any fish. At the beginning of the development work,

the author processed those videos with the preannotation script and saved the processing

results for later comparison with the results obtained from the application.

In addition to the author’s testing, the supervisor and BfG representatives also conducted

testing rounds and shared their feedback on the integrated functionality. This feedback

cycle allowed for the timely identification of issues and bugs, which the author later fixed.

26

5 Optimization Work

This chapter describes the second main objective of this bachelor’s thesis: optimizing the

application’s ML algorithms to improve computational efficiency and reduce processing

times. Information on the optimization goal, specific optimization methods used by the

author, and optimization results are presented in the following sections.

5.1 Optimization Goal

The main optimization goal of this thesis work was defined as a non-functional requirement:

■ The processing time of a single three-minute video must be thirty or fewer seconds.

Meeting this goal is crucial for the effective operation of the Smart Fish Counter Applica-

tion as the thirty-second objective represents a processing speed roughly three times faster

than that of a human rater, based on the statistics gathered by TalTech from eight human

raters of more than 400,000 videos. This objective would, therefore, allow for a single

instance of the application to replace three human raters, justifying any additional costs

required for the initial setup and maintenance of the system by end-users.

5.2 Optimization Preparation

During the optimization preparation phase, the author prepared a balanced sample of fish

videos to test different optimizations and added functionality to measure the execution

time of each module and the individual processing steps with millisecond precision.

To prepare a balanced sample of fish videos for optimization testing, the author used the

400,000 human-annotated fish videos provided by TalTech’s Center for Environmental

Intelligence and Sensing, recorded at three different BfG sites in Germany in different

rivers. The video durations differed, but approximately one-quarter of the videos were

three minutes long. The author examined more than 5,000 human-annotated fish videos

27

and carefully selected three-minute ones to represent the worst-case scenario for human

raters, which is to watch the longest-duration videos.

The selected sample included 50 videos: 25 with a single fish and 25 with fish swarms.

All selected videos have a frame rate of 5 FPS (Frames Per Second); 16 videos have a

resolution of 1280 x 960 pixels, and the remaining 34 have a resolution of 800 x 600 pixels.

The difference in resolutions is due to the different cameras used at the BfG sites.

After preparing the balanced sample, the author implemented the logic for measuring the

execution time of each module and processed the selected videos on the staging server

hosted in TalTech HPC to determine their initial average processing times, which were later

used as a baseline for further optimizations. Figure 5 shows the initial average processing

times, with the following numbers for different modules:

■ Environmental conditions module: 53.24 seconds.

■ FNF module: 150.96 seconds.

■ Behavior module: 0.08 seconds.

■ Size module: 3.79 seconds.

■ Species module: 8.20 seconds.

■ Total: 216.28 seconds.

Figure 5. Initial average processing times.

28

5.3 Python, Libraries, and Environmental Conditions Updates

After the preparation work was completed, the author started the work on the first opti-

mization. Possible updates to the Python and library versions were analyzed, as utilizing

the most recent versions ensures reliability and performance. As a result of this analysis,

the Python version was updated from 3.8 to 3.10 (the latest version compatible with some

utilized libraries), and numerous libraries were updated to the latest compatible versions.

In addition, the author also performed updates in the environmental conditions module.

Before the work on this bachelor’s thesis, the environmental conditions module used the

Keras library, which is used in Python to work with neural networks, to load and use the

models for determining environmental conditions levels. To bring all prediction logic to

a common form, TalTech’s Center for Environmental Intelligence and Sensing retrained

environmental condition models using the PyTorch library, which is also used in the FNF,

size, and species modules, and adapted those new models in the preannotation script. The

author also performed a similar adaptation to load and use the new environmental condition

models with PyTorch in the application for consistency and performance reasons.

As a result of this optimization, the total average processing time was reduced by 31.88%

compared to the initial total average. Figure 6 shows the first optimization results.

Figure 6. Average processing times after the first optimization.

29

As can be seen in the figure, the average processing times after the first optimization were:

■ Environmental conditions module: 23.97 seconds.

■ FNF module: 114.65 seconds.

■ Behavior module: 0.07 seconds.

■ Size module: 3.91 seconds.

■ Species module: 4.72 seconds.

■ Total: 147.33 seconds.

5.4 Introduction of GPU Usage

During the second optimization, the author focused on introducing GPU usage into the

application. The use of the GPU provides faster processing times for ML applications

than that of the CPU (Central Processing Unit), because these applications require large

amounts of data to be processed in parallel, and GPUs are specifically designed for parallel

processing [16].

To use the GPU in the application, the author first updated the configuration of the Django

Docker container. Afterward, a new logic was introduced into the application, which

allows loading the models to obtain environmental conditions, fish object detections, fish

bounding-box image embeddings, and species to the GPU via the PyTorch library.

The introduction of GPU usage resulted in a 71.07% improvement in total average process-

ing time compared to the first optimization’s total average and an 80.29% improvement

compared to the initial total average. Figure 7 shows the average processing times after the

second optimization, with the following numbers for different modules:

■ Environmental conditions module: 16.10 seconds.

■ FNF module: 22.15 seconds.

■ Behavior module: 0.08 seconds.

■ Size module: 3.39 seconds.

■ Species module: 0.90 seconds.

■ Total: 42.63 seconds.

30

Figure 7. Average processing times after the second optimization.

5.5 Video Frame Extraction Optimization

After the first two optimizations, the author began to optimize frame extraction. Initially, the

application extracted the frames eight times, mainly because each module was developed

independently: once for each of the five environmental conditions and once in the FNF,

size, and species modules. The author adjusted this to retrieve the frames only once at the

beginning of the processing workflow, hold them in memory, and reuse them for each of

the mentioned processing steps.

These changes improved the total average processing time by 30.46% compared to the

previous optimization and by 86.29% compared to the initial total average. Figure 8 shows

the average processing times after the third optimization, with the following numbers:

■ Environmental conditions module: 3.95 seconds.

■ FNF module: 21.23 seconds.

■ Behavior module: 0.09 seconds.

■ Size module: 3.46 seconds.

■ Species module: 0.92 seconds.

■ Total: 29.65 seconds.

31

Figure 8. Average processing times after the third optimization.

5.6 Multiprocessing and Threading

The last optimization on which the author worked was the use of multiprocessing and

threading. The analysis was performed to determine which parts of the processing workflow

could be optimized and whether multiprocessing or threading would best suit their specifics.

This analysis showed that the most suitable processing workflow steps for multiprocessing

and threading are video frame extraction and fish bounding-box image preparation due to

their iterative nature.

The author had to consider several nuances when determining whether to utilize multipro-

cessing or threading for the selected processing steps. First of all, in Python, there is a

lock called GIL (Global Interpreter Lock) which restricts the usage of threading. The GIL

allows only one thread to control the interpreter at any given time, and it is needed due to

the specifics of Python’s memory management [17]. Since the GIL prevents the threads

from running simultaneously, they could only be run concurrently. However, several

Python libraries and frameworks, such as NumPy and OpenCV, can release the GIL to

run their functions. Additionally, the specifics of Python’s threading and multiprocess-

ing implementations dictate their application areas: threading is a better option for IO

(Input/Output)-bound tasks and multiprocessing is for CPU-bound tasks [18].

32

As a result of the analysis, the author chose threading for both frame extraction and fish

bounding-box image preparation. In the case of frame extraction, threading usage is condi-

tioned by the fact that the frame extraction is performed via the OpenCV library, which

can release the GIL. Additionally, there are several issues with OpenCV’s multiprocessing,

which significantly complicates its implementation. In the case of fish bounding-box image

preparation, threading is preferable to multiprocessing because this task involves saving

the images to internal storage, which is an IO-bound task.

The use of threading for frame extraction and fish bounding-box image preparation im-

proved the total average processing time by 8.76% compared to the previous optimization

and by 87.49% compared to the initial total average. Figure 9 shows the average processing

times after the fourth optimization, with the following numbers for different modules:

■ Environmental conditions module: 3.31 seconds.

■ FNF module: 19.21 seconds.

■ Behavior module: 0.08 seconds.

■ Size module: 3.48 seconds.

■ Species module: 0.96 seconds.

■ Total: 27.05 seconds.

Figure 9. Average processing times after the fourth optimization.

33

5.7 Optimization Results Summary

During the optimization phase of this bachelor’s thesis, the author performed four different

optimizations to achieve the non-functional requirement of processing a single three-minute

video in thirty seconds or fewer. Table 2 shows the initial average processing times and

the optimizations’ results, including the average processing times for each module and the

total average processing times in seconds with their respective percentage gains from the

initial times.

Table 2. Average processing times comparison.

Env.

condi-

tions

FNF Behavior Size Species Total

Initial times 53.24 150.96 0.08 3.79 8.20 216.28

First

optimization

23.97

(54.98%)

114.65

(24.05%)

0.07

(10.38%)

3.91

(-3.07%)

4.72

(42.41%)

147.33

(31.88%)

Second

optimization

16.10

(69.76%)

22.15

(85.32%)

0.08

(2.32%)

3.39

(10.58%)

0.90

(89.02%)

42.63

(80.29%)

Third

optimization

3.95

(92.59%)

21.23

(85.94%)

0.09

(-13.41%)

3.46

(8.94%)

0.92

(88.75%)

29.65

(86.29%)

Fourth

optimization

3.31

(93.79%)

19.21

(87.27%)

0.08

(-0.05%)

3.48

(8.28%)

0.96

(88.24%)

27.05

(87.49%)

As the table shows, during the course of the four optimizations, the initial total average

processing time was reduced from 216.28 to 27.05 seconds, which is an improvement of

87.49% or eight times. The goal of reducing the processing time of a single three-minute

video to thirty seconds or fewer was achieved.

34

6 Summary

The objectives of this bachelor’s thesis were:

■ Integration of computer vision ML algorithms for the automated detection of fish

species, size class, and individual fish behavioral evaluation;

■ Testing and validation of the integrated algorithms;

■ Optimization of the application’s ML algorithms to improve computational efficiency

and reduce processing times.

Multiple steps were taken to achieve the first objective, including comparing the proposed

solution with the existing ones, providing a technology overview, analyzing the functional

requirements, and conducting development work. During the development work, in

addition to integrating the new modules, the existing modules and other application parts

were also updated to accommodate the integrated functionality.

The second objective was achieved by multiple means, such as testing cycles conducted by

the supervisor, having meetings and obtaining feedback from the BfG representatives, and

continuous testing and validation of the integrated functionality performed by the author

using the application’s local installation and its installation on the staging environment.

The third objective was achieved by analyzing the non-functional requirements and using

them for the optimization work. The main non-functional requirement of this thesis was

to reduce the processing time of a single three-minute video to thirty seconds or fewer.

This requirement was successfully met, and the average processing time was reduced from

216.28 seconds to 27.05 seconds, which represents an 87.49% improvement.

The Smart Fish Counter Application was successfully updated per this work’s objectives.

The next steps in the application development involve further enhancing the ML models

that were already pre-trained before this bachelor’s thesis and provided to the author and

adding an analytics UI to enable users to post-process the results.

35

References

[1] J. Soom, V. Pattanaik, M. Leier, and J. A. Tuhtan, “Environmentally adaptive

fish or no-fish classification for river video fish counters using high-performance

desktop and embedded hardware,” Ecological Informatics, vol. 72, 2022. DOI:

10.1016/j.ecoinf.2022.101817.

[2] K. Schwaber and J. Sutherland, The 2020 Scrum Guide, Accessed: Nov. 17, 2024.

[Online]. Available: https://scrumguides.org/scrum-guide.html.

[3] “Technical, Logistical, and Economic Considerations for the Development and

Implementation of a Scottish Salmon Counter Network,” Scottish Marine and

Freshwater Science, vol. 7, no. 2, 2016.

[4] Riverwatcher | Fish Monitoring for Rivers, Accessed: Nov. 13, 2024. [Online].

Available: https://www.riverwatcher.is.

[5] VAKI Riverwatcher - FISHBIO | Fisheries Consultants, Accessed: Nov. 13, 2024.

[Online]. Available: https://fishbio.com/technology/riverwatcher.

[6] Optical Simsonar FishCounters for monitoring the migration of fish, Accessed: Nov.

27, 2024. [Online]. Available: https://www.simsonar.com.

[7] TiVa FC Product Sheet, Accessed: Nov. 27, 2024. [Online]. Available: https://tiva.

se/wp-content/uploads/2024/03/2024-product-sheet-fc.pdf.

[8] Fish algorithms and AI | TiVa, Accessed: Nov. 27, 2024. [Online]. Available: https:

//tiva.se/en/fish-ai.

[9] Autonomous Fish Monitoring Systems and Fish Counting Equipment - Biotactic

Inc. Accessed: Nov. 17, 2024. [Online]. Available: https://www.biotactic.com/fish-

monitoring-fish-counting-services.

[10] I AM HydroCam EN flyer, Accessed: Nov. 27, 2024. [Online]. Available: https:

//iamhydro.com/wp-content/uploads/2024/04/i-am-hydro_flyer_hydrocam_2021_

en.pdf.

36

https://doi.org/10.1016/j.ecoinf.2022.101817
https://scrumguides.org/scrum-guide.html
https://www.riverwatcher.is
https://fishbio.com/technology/riverwatcher
https://www.simsonar.com
https://tiva.se/wp-content/uploads/2024/03/2024-product-sheet-fc.pdf
https://tiva.se/wp-content/uploads/2024/03/2024-product-sheet-fc.pdf
https://tiva.se/en/fish-ai
https://tiva.se/en/fish-ai
https://www.biotactic.com/fish-monitoring-fish-counting-services
https://www.biotactic.com/fish-monitoring-fish-counting-services
https://iamhydro.com/wp-content/uploads/2024/04/i-am-hydro_flyer_hydrocam_2021_en.pdf
https://iamhydro.com/wp-content/uploads/2024/04/i-am-hydro_flyer_hydrocam_2021_en.pdf
https://iamhydro.com/wp-content/uploads/2024/04/i-am-hydro_flyer_hydrocam_2021_en.pdf

[11] S16 DualFlex | MOBOTIX AG, Accessed: Nov. 27, 2024. [Online]. Available:

https://www.mobotix.com/en/products/outdoor-cameras/s16-dualflex.

[12] S. Susnjara and I. Smalley, What Is Docker? | IBM, Accessed: Dec. 01, 2024.

[Online]. Available: https://www.ibm.com/topics/docker.

[13] How Ansible works | Ansible Collaborative, Accessed: Dec. 01, 2024. [Online].

Available: https://www.ansible.com/how-ansible-works.

[14] Functional vs. Non Functional Requirements - GeeksforGeeks, Accessed: Dec. 03,

2024. [Online]. Available: https://www.geeksforgeeks.org/functional-vs- non-

functional-requirements.

[15] Pandas - Python Data Analysis Library, Accessed: Dec. 06, 2024. [Online]. Avail-

able: https://pandas.pydata.org.

[16] FPGA vs. GPU vs. CPU – hardware options for AI applications | Avnet Silica,

Accessed: Dec. 11, 2024. [Online]. Available: https://my.avnet.com/silica/resources/

article/fpga-vs-gpu-vs-cpu-hardware-options-for-ai-applications.

[17] A. Ajitsaria, What Is the Python Global Interpreter Lock (GIL)? – Real Python,

Accessed: Dec. 13, 2024. [Online]. Available: https://realpython.com/python-gil.

[18] Difference Between Multithreading vs Multiprocessing in Python - GeeksforGeeks,

Accessed: Dec. 13, 2024. [Online]. Available: https://www.geeksforgeeks.org/

difference-between-multithreading-vs-multiprocessing-in-python.

37

https://www.mobotix.com/en/products/outdoor-cameras/s16-dualflex
https://www.ibm.com/topics/docker
https://www.ansible.com/how-ansible-works
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements
https://pandas.pydata.org
https://my.avnet.com/silica/resources/article/fpga-vs-gpu-vs-cpu-hardware-options-for-ai-applications
https://my.avnet.com/silica/resources/article/fpga-vs-gpu-vs-cpu-hardware-options-for-ai-applications
https://realpython.com/python-gil
https://www.geeksforgeeks.org/difference-between-multithreading-vs-multiprocessing-in-python
https://www.geeksforgeeks.org/difference-between-multithreading-vs-multiprocessing-in-python

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Aleksei Lutkov

1. Grant Tallinn University of Technology free license (non-exclusive license) for my

thesis “Integration and Optimization of Computer Vision Models for Fish Species,

Size, and Behavior Classification in the Smart Fish Counter Application”, supervised

by Jeffrey A. Tuhtan

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library

of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to

be entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive license.

3. I confirm that granting the non-exclusive license does not infringe other persons’

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

12.01.2025

1The non-exclusive license is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive license, the non-exclusive
license shall not be valid for the period.

38

Appendix 2 – New Columns of the videos_fish Table and
the Schema of the videos_fishlabelmapping Table

New columns of videos_fish table.

Column Type Nullable Default

behaviour_probability integer not null 100

label_probability integer not null 100

size_uncertainty double precision not null 0

ai_exact_size double precision not null 5

track_id double precision not null -1

videos_fishlabelmapping table schema

Column Type Nullable Default

id integer not null nextval(’videos_fishlabelmapping_id_seq’

::regclass)

name character

varying(255)

not null ""

created_at timestamp

with time zone

not null timezone(’utc’, now())

updated_at timestamp

with time zone

not null timezone(’utc’, now())

label_id integer null

39

Appendix 3 – Django Migration for the videos_fish Table
Column Defaults

from d ja ngo . db i m p o r t m i g r a t i o n s

c l a s s M i g r a t i o n (m i g r a t i o n s . M i g r a t i o n) :

d e p e n d e n c i e s = [
(’ v ideos ’ , ’0014 _ f i s h _ t r a c k i n g _ i d ’) ,

]

o p e r a t i o n s = [
m i g r a t i o n s . RunSQL (

" " "
ALTER TABLE v i d e o s _ f i s h
ALTER c r e a t e d _ a t SET DEFAULT now () ,
ALTER u p d a t e d _ a t SET DEFAULT now () ,
ALTER u s e r _ b e h a v i o u r SET DEFAULT ’UNDEFINED’ ,
ALTER u s e r _ e n d SET DEFAULT ’ 0 0 : 0 0 : 0 0 ’ ,
ALTER i n j u r e d SET DEFAULT f a l s e ,
ALTER u s e r _ s i z e SET DEFAULT 5 ,
ALTER u s e r _ s t a r t SET DEFAULT ’ 0 0 : 0 0 : 0 0 ’ ,
ALTER u s e r _ c o u n t SET DEFAULT 1 ,
ALTER a i _ b e h a v i o u r SET DEFAULT ’UNDEFINED’ ,
ALTER a i _ c o u n t SET DEFAULT 1 ,
ALTER a i _ e n d SET DEFAULT ’ 0 0 : 0 0 : 0 0 ’ ,
ALTER a i _ s i z e SET DEFAULT 5 ,
ALTER a i _ s t a r t SET DEFAULT ’ 0 0 : 0 0 : 0 0 ’ ,
ALTER b e h a v i o u r _ p r o b a b i l i t y SET DEFAULT 100 ,
ALTER l a b e l _ p r o b a b i l i t y SET DEFAULT 100 ,
ALTER s i z e _ u n c e r t a i n t y SET DEFAULT 0 ,
ALTER a i _ e x a c t _ s i z e SET DEFAULT 5 ,
ALTER t r a c k i n g _ i d SET DEFAULT −1;
" " "

) ,
]

40

Appendix 4 – Acknowledgments

I, Aleksei Lutkov, the author of this bachelor’s thesis, would like to thank my supervisor,

Jeffrey A. Tuhtan, for his assistance and support during the writing of this thesis.

I would also like to thank Aleksandr Ivanov and Alexandra Kolosova from TalTech’s

Center for Environmental Intelligence and Sensing for their help and guidance throughout

this thesis work.

It has been a great pleasure working with you on the Smart Fish Counter Application and

contributing to the development of such an important tool that can help preserve freshwater

vertebrate populations and impact the future of sustainable fisheries.

41

	Introduction
	Background
	Motivation
	River Fish Counters
	VAKI Riverwatcher
	Simsonar FC
	TiVA FC
	BRAVO G3
	I AM HYDROCam
	Counters Comparison

	Methods
	Technology Overview
	Initial Application State
	Functional Requirements
	Non-Functional Requirements

	Development Work
	Development Preparation
	DB Updates
	UI Updates
	FNF Module Updates
	Behavior Module
	Fish Size Module
	Fish Species Module
	Additional Updates
	Testing and Validation

	Optimization Work
	Optimization Goal
	Optimization Preparation
	Python, Libraries, and Environmental Conditions Updates
	Introduction of GPU Usage
	Video Frame Extraction Optimization
	Multiprocessing and Threading
	Optimization Results Summary

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – New Columns of the videos_fish Table and the Schema of the videos_fishlabelmapping Table
	Appendix 3 – Django Migration for the videos_fish Table Column Defaults
	Appendix 4 – Acknowledgments

