
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

Chair of Software Engineering

Grounded architectural decisions for the
development of multi-platform mobile

application. Case study of "Online Chess
Tournaments " application

Bachelor's thesis

Student: Elina Muhhamedjanova

Student code: 121101IAPB

Supervisor: Martin Rebane

Tallinn
2015

Author’s Declaration

Herewith I declare that this thesis is based on my own work. All ideas, major views and data from

different sources by other authors are used only with a reference to the source. The thesis has not

been submitted for any degree or examination in any other university.

Elina Muhhamedjanova

(date) (signature)

Oleme teadlikud ja nõustume, et Elina Muhhamedjanova käsitleb oma TTÜ

Informaatikainstituudis kaitstavas lõputöös “Online Сhess Tournaments” tarkvara, mille ta on

arendanud meie firmas töötades.

Remarc Systems OÜ

Lastekodu tn 48 Tallinn 10144, Eesti

Aleksandr Voronkov

(date) (signature)

Annotatsioon

Lõputöö eesmärgiks on mitmel platvormil töötava - “Online Сhess Tournaments”

mobiilirakenduse arendamiseks arhitektuurivalikute tegemine ja põhjendamine.

Lõputöö esimeses lõigus annan ülevaate erinevatest erinevad arhitektuuriprintsiipidest: mobiili-

rakenduse mudel, kasutajaliidese raamistik, andmesideprotokollid ja päringute meetod.

Nimetatud arhitektuurilahenduste võimalikute variantide võrdlemisel on hinnatatud konkreetse

lahenduse nõrkused ja tugevused.

Lõputöö teises jaos põhjendatakse eelneva analüüsi alusel mitmel platvormil töötava

mobiilirakenduse arendamiseks tehtavaid konkreetseid arhitektuurivalikuid. Selles jaos on

käsitletakse ka mobiilirakenduse arendamise põhilisi protsesse.

Töös käsitletud juhtumianalüüsis valiti mitmel platvormil töötava mobiilirakenduse arendamiseks

on hübriidne mobiilirakenduse mudel kasutades Ionic raamistikku. Arhitektuuristiilina valiti

REST – the Representational State Transfer. Päringute meetodite variantidest on valitud

traditsiooniline päringute meetod.

Valitatud arhitektuurilahenduste alusel realiseeriti Chess Rating Agency (international) Ltd

tellimusel “Online Сhess Tournaments” mobiilirakendus.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 66 leheküljel, 6 peatükki, 28 joonist, 14

tabelit.

Abstract

The main objective of this thesis is to make a grounded architectural decisions for the

development of multi-platform mobile application “Online Chess Tournaments ”.

The first section of this work is devoted to establishing the notion of different architectural

approaches, such as - mobile application model, UI framework, communication protocols and

polling techniques. Different varieties of approach methods were compared.

The second part of the thesis focuses on the making grounded decisions on the basis of studies

conducted in the first part of the work. Also, in this section the main parts of the “Online Chess

Tournaments” mobile application implementation process are examined.

As a result, it was choosen for the development of multi-platform mobile application “Online

Chess Tournaments” a hybrid mobile application model with using Ionic UI framework. REST –

the Representational State Transfer - was choosen as an architectural style and as polling

techniques it was choosen the traditional polling method.

After selecting the above architectural solutions, “Online Chess Tournaments” mobile application

was implemented for Chess Rating Agency (International) Ltd company for FIDE.

The thesis is in English language and contains 66 pages of text, 6 chapters, 28 figures, 14 tables.

Abbreviations

FIDE Fédération Internationale des Échecs (french); World Chess

Federation(eng)

UI User Interface

REST Representational State Transfer

SOAP Simple Object Access Protocol

UX User eXperience

SDK Software Development Kit

CSS Cascading Style Sheets

HTML5 HyperText Markup Language, version 5

API Application Programming Interface

OS Operating System

DOM Document Object Model

WebGL Web-based Graphics Library

IDE Integrated Development Environment

XML eXtensible Markup Language

URL Uniform Resource L?ocator

RDF Resource Description Framework

HTTP HyperText Transfer Protocol

CRUD Create/Read/Update/Delete

HTML HyperText Markup Language

JSON JavaScript Object Notation

SMTP Simple Mail Transfer Protocol

WS Web Services

WSDL Web Services Description Language

RCP Rich Client Platform

FTP File Transfer Protocol

CPU Central Processing Unit

ASAP As Soon As Possible

UTC Coordinated Universal Time

AI Artificial intelligence

List of Figures

Figure 1 Smartphones sales statistic. [46] ..12

Figure 2 Number of mobile app downloads worldwide. [45] ..12

Figure 3 high level architecture of Apache Cordova. [10] ...16

Figure 4 Relation between budget and perfomance [7]..19

Figure 5 The difference between action sheets for iOS and Android platform in Ionic [9].....20

Figure 6 Example of Famo.us rendering to WebGL ...21

Figure 7 The TabStrip for iOS and Android in Kendu UI [13]...22

Figure 8 Client-server architecture ...25

Figure 9 Simple SOAP messaging [27]..27

Figure 10 Request/response message exchange pattern [27] ...27

Figure 11 SOAP message structure ...28

Figure 12 Protocol usage by APIs ..29

Figure 13 Traditional polling..31

Figure 14 Long-polling request ..32

Figure 15 List of tournaments screen mockup ...34

Figure 16 List of rounds screen mockup ..35

Figure 17 List of game screen mockup ..35

Figure 18 chessboard screen mockup...36

Figure 19 List of move and chess engine screen mockups...36

Figure 20 Domain object model………………………………………………………………41

Figure 21 Game broadcasting………………………………………………………………...50

Figure 22 Updating a tournament list………………………………………………………...53

Figure 23 Updating a round list………………………………………………………………54

Figure 24 Updating a game data……………………………………………………………...55

Figure 25 "Online chess tournaments" application's screenshots...56

Figure 26 Lichess mobile application...57

Figure 27 "Follow chess" mobile application...58

Figure 28 Worldwide mobile market share chart [44] ...60

List of tables

Table 1 The most common mobile development environments and their programming

languages ..17

Table 2 The overview of mobile applications models..18

Table 3 The advantages and the disadvantages of the UI frameworks23

Table 4 HTTP Response status codes...26

Table 5 SOAP Fault Codes...28

Table 6 Comparison between SOAP and REST ..30

Table 7 tournament object's attributes description ...42

Table 8 round object's attributes description ..43

Table 9 Game object's attributes description...45

Table 10 Player object's attributes description ...46

Table 11 Team object's attributes description ..46

Table 12 Move object's attributes description ..48

Table 13 EngineMoveVariant object's attributes description...48

Table 14 Annotation object's attributes description...49

Table of Contents

1. INTRODUCTION..12

1.1 RESEARCH PROBLEM AND OBJECTIVES ...13

1.2 RESEARCH SCOPE AND LIMITATIONS ...13

1.3 RESEARCH METHODOLOGY ...14

1.4 THESIS STRUCTURE ..14

2. MOBILE APPLICATIONS MODELS AND UI FRAMEWORKS....................................15

2.1 MOBILE APPLICATIONS MODELS..15

2.1.1 Web applications ..15

2.1.2 Hybrid applications ...16

2.1.3 Native applications ..17

2.1.4 Summary..18

2.2 UI FRAMEWORKS FOR HYBRID MOBILE APPLICATIONS................................20

2.2.1 Ionic Framework ...20

2.2.2 Famo.us ...21

2.2.3 Kendo UI ...22

2.2.4 Summary..23

3. PROTOCOLS AND STANDARTS. SOAP vs REST. ..24

3.1 REST ..24

3.1.1 REST architecture constraints ...24

3.1.2 HTTP methods...26

3.1.3 Response status codes..26

3.2 SOAP...27

3.2.1 SOAP MESSAGES...28

3.3 SUMMARY..29

4. POLLING TECHNIQUES...31

4.1 TRADITIONAL POLLING...31

4.2 LONG-POLLING REQUEST...32

5. THE CASE STUDY...33

5.1 PROJECT’s TARGET..33

5.2 PROJECT DESCRIPTION ..34

5.2.1 Clients-Requirements ..34

5.2.2 Selection of application model ..37

5.2.3 Selection of UI framework ..38

5.2.4 Selection of communication protocol...39

5.2.5 Selection of pooling technique ..40

5.3 PROJECT IMPLEMENTATION...41

5.3.1 Domain Object Model...41

5.3.2 Description of receiving information process...50

5.3.3 Description of updating information processes. ..53

5.3.4 User Interface ..56

5.4 REVIEW OF SIMILAR APPS...57

5.4.1 Lichess...57

5.4.2 Follow Chess ...58

5.5 RESULTS AND ANALYSIS ..59

6. CONCLUSION ..61

KOKKUVÕTTE...62

REFERENCES...63

12

1. INTRODUCTION

Nowadays popularity of mobile phones among people is growing rapidly. Today people use

their phones not only for calling, but for a whole range of online activities: playing games,

searching the web, listening to music, taking photos and filming, checking email, online

shopping, GPS navigation. The only limitations to use are the apps available. In order to show

the situation more clearly, I would like to give some statistics. In recent years, the mobile

phones have taken a dominant part of the market compared to corporate and consumer’

personal computers and tablets. The line graph bellow shows that mobile devices are

replacing computers. (Figure 1)

Figure 1 Smartphones sales statistic. [46]

With popularity of smartphones and with the growth of the technology, the usage of mobile

applications increases significantly every year. The statistic (figure 2) shows a forecast for the

number of mobile app downloads from 2009 to 2017.

Figure 2 Number of mobile app downloads worldwide. [45]

13

This trend is the reason that more and more companies want to have both mobile and desktop

versions of their software. The Chess Rating Agency (international) Ltd for FIDE is not the

exception. The target of this work is to implement a mobile version of the product for the

Chess Rating Agency. The idea is to provide users with a fast access to international

tournament broadcasting system via their mobile phones. The main idea, why the application

will be demand among users, is that a temporary lack of access to the Internet should not be a

hindrance to the work of the whole application. At the same time the web application requires

a permanent Internet connection.

1.1 RESEARCH PROBLEM AND OBJECTIVES

This thesis is envisioned as a starting point of addressing the problem of the making correct

architectural decisions for the development of multi-platform “Online Chess Tournaments ”

mobile application. “Online Chess Tournaments” is mobile application for Chess Rating

Agency (international) Ltd for FIDE. The Chess Rating Agency has already got a web

application for broadcasting the international chess tournaments – “Online Chess

Tournaments Broadcasting” system. Because of speedily increasing usage of mobile phones

and mobile applications, as it has been said before, the aim is to implement the system in

mobile version for Android and iOS platform. In this bachelor's thesis a lot of attention will

be paid to the following aspects: the choice of the most suitable mobile application model, UI

framework and selection of communication protocol between client and server and also the

polling technique without increasing the load on the server. The target is to make grounded

decisions for the selection of architecture and service types for the system.

1.2 RESEARCH SCOPE AND LIMITATIONS

The first target is to choose a suitable model and a UI framework for the implementation of

mobile application for cross-platform mobile devices. Secondly, a communication protocol

and polling technique are needed to be choosen.

The third goal that needs to be achieved is that the application will replay tournaments which

are already finished in offline mode. So, the application has to know if there are any updates

to download. Overall, the aim is to implement the “Online Chess Tournaments” mobile

application with all the requirements that have been set by the customer. For this reason, we

should analyse all approaches and make correct architectural decisions for the development

of multi-platform mobile application.

14

1.3 RESEARCH METHODOLOGY

To achieve the solution for the problem, this bachelor's thesis was made through documentary

analysis. Documentary analysis involves obtaining data from existing documents without

having to question people through interview, questionnaires or to observe their behavior. [47]

Also, The Case Study was used as a research method. Case Study research excels at bringing

us to an understanding of a complex issue of object and can extend experience or add strength

to what is already known through previous research. [48]

1.4 THESIS STRUCTURE

Literature review is divided into three sections: “Mobile applications models”, “UI

frameworks”, “Protocols and standards: SOAP vs. REST” and “Polling techniques”. “Mobile

applications models” chapter serves as an introduction of the notion of available mobile

application models such as: native, hybrid and web. In this chapter the features of each model

with the advantages and the disadvantages will be summarized. In “UI frameworks” chapter

the UI frameworks for realization the hybrid mobile applications will be presented. “Protocols

and standards” chapter presents SOAP and REST. This chapter explains the main

characteristics of each method. After a short overview of each approach these two methods

are compared to each other. In chapter “Polling techniques” are presented two polling

methods: traditional polling and long-polling. The chapter discusses strong and weak points of

each approach.

Case study section focuses on application implementation and making the grounded

architectural decision for “Online Chess Tournaments” system. “Project description” section

examines the process choices such as selection of the application model, UI framework and

communication protocols between client and server. Also in this chapter are presented the

client requirements for the system. “Project implementation” is devoted to a detailed

examination of evolution of the project concept, its architecture, design and main processes of

the implementation. In the chapter “Review of similar apps” a brief inquiry into the state of

analogous applications is presented and a reason why this application is a unique product on

the market is also explained. “Results and analysis” section describes the final result of

developing the “Online Chess Tournaments” system.

Conclusion chapter summarizes all the goals achieved and presents prospects for further

development.

15

2. MOBILE APPLICATIONS MODELS AND UI

FRAMEWORKS

2.1 MOBILE APPLICATIONS MODELS

It is important to investigate different types of application models in order to find out which

one fits present-day demands in the best possible way.

There are three main types of mobile applications: native, hybrid and web applications.

This chapter serves as a comparison between the three mobile applications types and presents

possible technical advantages and disadvantages between different solutions that are currently

available for developing mobile applications.

2.1.1 Web applications

Web apps are designed to look and behave like apps and in general are ideal when the purpose

is simply to make content or functionality available on mobile. Web application use

JavaScript, CSS, HTML5 or other languages. A developer would not have access to a

standardized SDK. This approach creates cross-platform applications that work on multiple

devices and platforms through the web browser.

Advantages:

• A single code, which can be accessed by any browser-enabled mobile device.

• No approval process needed, and updates to the application can happen instantaneously.

Disadvantages:

• Do not have full access to all the methods exposed by the device’s operating system.

• Cannot be found on the applications stores.

• Need access to the Internet.

16

2.1.2 Hybrid applications

The main part of the applications is built using cross-compatible web technologies, such as

HTML5, CSS and JavaScript that are later packed into a native container. Such application

model is called hybrid.

Figure 3 high level architecture of Apache Cordova. [10]

The figure 3 illustrates the high-level architecture of Apache Cordova. Cordova is a platform

for web-based hybrid apps. It does the heavy lifting of supporting and interacting with various

device-specific APIs and combining the essence of all native APIs in one JavaScript API that

is accessible by the hybrid app. [10] The native application contains a hidden browser, which

called WebView that is linked to HTML files. Using frameworks for developing hybrid

applications, it is possible to wrap the HTML code with native code. Hybrid applications are

available to users from the applications Stores and markets. [16]

Advantages:

• Faster and easier to develop.

• Cross-platform.

• Lower budget costs and a huge community of supporters and developers.

• Can be featured and searched for in the app store.

Disadvantages:

• Mobile phones are not fast enough to smoothly run a hybrid app.

• Not all native capabilities are supported.

17

2.1.3 Native applications

Native applications are specific to a given platform (OSX, Windows, Linux, iOS, Android)

using the development tools and languages that the respective platform supports.

Each mobile platform offers developers their own development tools, interface elements and

standardized SDK. [5] Native applications are downloaded and installed on the device

through applications stores and markets.

The most common mobile development environments and their programming languages are

illustrated below. (Table 1)

IOS Android BlackBerry Windows Phone

Languages Obj-C,

C, C++, Swift

Java

(Some C, C++)

Java C#, VB.NET

Tools Xcode Android SDK BB java

Eclipse plugin

VisualStudio,

WindowsPhone,

Dev Tools

Executable Files .app .apk .cod .xap

Application Stores Apple Store Google Play

Market

BlackBerry

App world

Windows Phone

Market

Table 1 The most common mobile development environments and their programming languages

Advantages:

• They offer the fastest, most reliable and most responsive experience to users.

• Full access to the device’s hardware and OS features.

• Very fast and polished, making them great for high-performance apps or games.

• Can be featured and searched for in the application store.

Disadvantages:

• Native apps often cost more to develop and distribute because of the distinct language and

tooling ecosystems, which require more investment in developer skills if you need to

develop for more than one platform. [3]

• It might take a longer period of time to develop.

18

2.1.4 Summary

Each way of designing and building apps comes with its own set of benefits and drawbacks.

To summarize all features there is presented the comparison table for each mobile

development method. (Table 2)

Native Hybrid Mobile web

Languages/tools
/intstuments needed
for cross-platform
apps

Objective-C
Java , C , C++ , C#
VB.net, Swift

HTML,
CSS, Javascript,
Mobile development
framework

HTML, CSS,
Javascript

Distribution App Store/Market App Store/Market Web-browser
Development Speed Slow Medium Fast
Number of
applications needed
to reach major
smartphone
platforms

4 1
Notice:
Some frameworks
Maintain only android and
iOS platforms)

1

Ongoing application
maintenance

Difficult Moderate Low

Device access Full access Full access, excepting
some features.

Notice: nowadays almost
all frameworks maintain
full access to OS.

Partial access

Offline access Yes Yes No

Advantages Opportunity to create
applications
with rich and clear
user interfaces and/or
heavy graphics.

Combines the
development speed of
mobile web apps with
the device access and
app store distribution
of native apps.

Offers fast
development, simple
maintenance,
and full application
portability.
One mobile web app
works on any
platform.

Disadvantages Development time,
development cost,
no portability (apps
cannot be used on
other platforms).

Cannot handle heavy
graphics.
Requires familiarity
with a mobile
framework.

Cannot handle heavy
graphics.
Cannot access
camera or
microphone.
The internet
connection is
required.

Table 2 The overview of mobile applications models [4]

19

It is important to evaluate the technical and non-technical merits of each mobile application

model - especially as it relates to mobile application’s requirements. There are several aspects,

which are worth paying attention before embarking upon development of a mobile

application.

Some of them are presented here:

� Which mobile platforms are to be targeted?

� Is distribution of application via app stores required?

� What are the technical abilities of development team?

� Does application require offline support?

� What technical requirements does the application have?

If the aim is to target more than one platform the fastest and cheapest way is to build a hybrid

or web mobile application.

If optimal performance is required, native apps are the best choice because of their ability to

take full advantage of the device's software and hardware. [7] On the other hand, it takes more

time and resourses to develop high quality products, because for each platform you have to

write new a code and use different tools and instruments.

The chart bellow illustrates relation between budget and perfomance among three mobile

applications models. (Figure 4)

Figure 4 Relation between budget and perfomance [7].

20

2.2 UI FRAMEWORKS FOR HYBRID MOBILE APPLICATIONS

User Interface Frameworks for hybrid mobile applications are libraries that will enable

developers to create a professional grade user experience for their mobile application easily

and fast. A hybrid mobile application needs a correct framework choice. Here we present

some of the most popular UI framework for hybrid mobile applications.

2.2.1 Ionic Framework

Ionic is an open source front-end SDK for developing hybrid mobile apps with HTML5,

CSS3 and Javascript. [12]

Ionic is a front-end framework built on top of Apache Cordova (Phone Gap) that allows web

developers to deploy mobile apps using AngularJS, which allows developers to develop

serious, robust mobile applications.[8] It supports iOS 6+ and Android 4.1 + platforms.

The UI is clean, simple and based on functionality and speed. Applications are designed to

work and display beautifully on all mobile devices and the framework offers a number of

mobile components all based on a stunning extensible base theme.

Ionic allows customizing settings, such as headers, tabs, transitions, toggles, action sheets,

back-buttons, checkboxes, navigation-buttons, and fonts, for each major platform.

Figure 5 The difference between action sheets for iOS and Android platform in Ionic [9]

The figure 5 illustrates the difference between action sheets for iOS and Android platform.

Ionic provides unique UI for each platform. It automatically looks like iOS action sheet on

iOS and Android action sheet on Android.

21

2.2.2 Famo.us

Famo.us is a free, open source JavaScript framework that helps to create smooth, complex

mobile applications. [14]

Famo.us is made for hybrid mobile development, it supports iOS and Android platforms.

This kind of framework is suitable for game and animation applications.

This is because Famo.us is the only JavaScript framework that includes an open source 3D

layout engine fully integrated with a 3D physics animation engine that can render to DOM,

Canvas, or WebGL.[14]

Figure 6 Example of Famo.us rendering to WebGL

The figure 6 is an example of Famo.us rendering to WebGL. It is an artistic transitioning from

a sphere to a cube and back. To see it in action there is a reference to famo.us showcase in

codepen.io -http://codepen.io/befamous/.

However, Famo.us has some disadvantages. This kind of framework does not provide basic

skeletons (menus, tabs, basic app structure/layout). Moreover, it is the newest framework on

the market nowadays. For this reason the documentation is pure and it is hard to find real

examples and show cases.

22

2.2.3 Kendo UI

Kendo UI is a product of Telerik and it is not free of charge. Kendo is based on HTML5 and

JavaScript and the features of this framework include a complete set of HTML5 widgets and

features.

Kendo UI is comes in complect with AngularJS integration and Bootstrap support. Because

this is a commercial product it comes in two separate packages: Kendo UI Core- open source

and Kendo UI Professional - with additional charge. From the visual perspective, Kendo UI

provides an adaptive theming. Kendo UI will recognize application platform and then makes

specific adjustments according to it. [13]

Figure 7 The TabStrip for iOS and Android in Kendu UI [13]

The same application will look different on iOS and Android. On iOS, for example, the

TabStrip is at the bottom, while on Android it is moved to the top. (Figure 7)

Currently Kendo UI Mobile supports iOS, Android, BlackBerry, and Meego.

Also, the big advantage of the framework is that Kendo UI provides the Telerik AppBuilder –

redactor, which makes the development process faster and more comfortable.

Built-in simulator makes it easy to debug and deploy applications for any mobile device.

23

2.2.4 Summary

It is important to notice that it is only the small part of UI frameworks for developing hybrid

mobile applications. In the last year the big number of UI frameworks joined the list, and

many more are on the way, presenting more efficient and more performant hybrid experience.

The table 3 bellow summarizes all advantages and disadvantages of the three UI frameworks:

Ionic framework, Famo.us and Kendo UI mobile framework.

Ionic Famo.us Kendo UI mobile

Advantages

Full UI components,
clean and simple UI,
native-like UX,
fast start,
good documentation,
widely used .

Provide great
opportunity to create
powerful animations.
Suitable for game
developing.

Full UI components,
rich ,native-like UX,
faster development
time.
Easy Unit testing,
developing with
app builder redactor,
supporting the variety
of mobile platforms.

Disadvantages

Slow translations and
animations.
Supporting only
Android and
iOS platforms.

Not providing basic
skeletons.
Not widely use.
It is hard to find real
examples and show
cases.
Supporting only
Android and
IOS platforms.

Paid model of
licensing.

Table 3 The advantages and the disadvantages of the UI frameworks

To draw the conclusion, it can be said that choice of user interface framework for mobile

application is depends on result, which exactly needed to be achieved. If the target is to make

impressive animations and transition, the best option will be using Famo.US framework. And

if the aim is to make native like - UX, the Kendo UI or Ionic framework will be suitable.

24

3. PROTOCOLS AND STANDARDS. SOAP vs REST.

3.1 REST

REST stands for Representational State Transfer. REST was introduced and defined in 2000

by Roy Fielding in his doctoral dissertation.[22] REST is often used in mobile applications,

social networking Web sites and automated business processes. REST is an architecture style

for designing distributed systems. It relies on a stateless, client-server, cacheable

communications protocol.[21] Simple HTTP is used to make calls between machines.

3.1.1 REST architecture const raints

REST constraints are design rules that are applied to establish the distinct characteristics of

the REST architectural style.[25]

All REST architecture constraints bellow are taken directly from the source for evaluation

purposes.

• Uniform Interface

All interactions should be built around a uniform interface, which supports all the interactions

with resources by providing general and functionally sufficient set of methods.

- Resource Identifications.

Each URL identifies a resource and has a strictly defined format.

- Resource representation.

It is how the resource will return to the client. This representation can be in HTML, XML,

JSON, TXT, and more. [26]

- Self-explanatory answer.

The passage of meta information is needed in the request and response. Some of this

information are HTTP response code, Host, Content-Type. [26]

• Cacheable

Because many clients access the same server, and often requesting the same resources, it is

necessary that these responses might be cached, avoiding unnecessary processing and

significantly increasing performance.[26]

25

• Client- server

This constraint is based on the principle of Separation of concerns. The purpose of this

division is to separate architecture and responsibilities in both environments. This constraint

requires the existence of a client component that sends requests and a server component that

receives requests. (Figure 8) [26]

Figure 8 Client-server architecture

• Stateless Interaction

Each interaction between a client and a server has to be entirely self-contained. There should

be no client state maintained on the server which would allow an interaction to depend on

both the exchanged representation and on the session associated with the client. This

constraint is important to ensure that the scalability of servers is bound only by the number of

concurrent client requests and not by the total number of clients that they have to interact

with. [20]

• Layered System

The layered system constraints enable network-based intermediaries such as proxies and

gateways to be transparently deployed between a client and server using the uniform

interface. A network-based intermediary will intercept client-server communication for a

specific purpose. Network-based intermediaries are commonly used for enforcement of

security, response cashing and load balancing. [19]

• Code-On-Demand

This condition allows the customer to run some code on demand, that is, to extend part of

server logic to the client, either through an applet or scripts. [26]

26

3.1.2 HTTP methods

HTTP-request type (also called HTTP-method) instructs the server to what action is needed to

make to the resource. RESTful applications use HTTP requests to post data (create and/or

update), read data, and delete data. REST uses HTTP for all four CRUD

(Create/Read/Update/Delete) operations.

GET - method retrieves information. Get is a safe method – it never modifies resources.

POST - Requests that the resource at the URI does something with the provided entity. Often

POST is used to create a new entity, but it can also be used to update an entity.

PUT - Stores an entity at a URI. PUT can create a new entity or update an existing one.

DELETE -A client uses DELETE to request that a resource be completely removed from its

parent. Once a DELETE request has been processed for a given resource, clients can not

longer find the resource.

3.1.3 Response status codes

REST API-s use the Status – Line part of an HTTP response message to inform clients of

their request’s overarching result. HTTP defines forty standard status codes that can be used

to convey the results of a client’s request. The status codes are divided into the five categories

presented in the table 4.

Category Description

1xx: Informational Communicates transfer protocol-level information.

2xx: Success Indicates that client’s request was accepted successfully.

3xx: Redirection Indicates that the client must take some additional action in order to

complete request.

4xx: Client Error This category of errors status codes points the finger at clients.

5xx: Server Error The server takes responsibility for these error status codes.

Table 4 HTTP Response status codes.

27

3.2 SOAP

The Simple Object Access Protocol (SOAP) based web services interact over XML data

which is well defined and standard message format that uses web service description language

(WSDL). SOAP has the following features: protocol independence, language independence,

platform and operating system independence.

SOAP defines a way to move XML messages from point A to point B. The Figure 9

illustrates a simple one-way message where the sender does not receive a response. The

receiver could, however, send a response back to the sender (Figure 10). Usually HTTP is

used to exchange SOAP messages. However, it should be noticed that SOAP is protocol

independence, so it is not necessary to use SOAP with the HyperText Transfer Protocol

transport. There is an actual specification for using SOAP over Simple Mail Transfer Protocol

(SMTP) and others. (Figure 9)

Figure 9 Simple SOAP messaging [27]

Figure 10 Request/response message exchange pattern [27]

SOAP allows different message exchange patterns, of which request/response is just one.

Other examples include solicit/response (the reverse of request/response), notifications, and

peer-to-peer conversations. [27]

28

3.2.1 SOAP MESSAGES

SOAP is based on message exchanges. A SOAP message is an ordinary XML document

containing the following elements: An Envelope element that identifies the XML document as

a SOAP message, a Header element that contains header information, a Body element that

contains call and response information and a Fault element containing errors and status

information. Figure 11 illustrates the SOAP message structure.

Every envelope element must contain exactly one Body

element. The body element may contain as many child

nodes as are required. The contents of the Body

element are the message. If an envelope contains

header, it must be the one header and header location is

always before body. The header can contain, like a

body element, any valid, well-formed XML. Each

element contained by the Header is called Header

block. The purpose of header blocks is to communicate

contextual information relevant to the processing of a

Figure 11 SOAP message structure SOAP message. If a Fault element is present, it must

appear as a child element of the Body element. A Fault element can only appear once in a

SOAP message SOAP Fault Codes. (Table 5)

Error Description

VersionMismatch Found an invalid namespace for the SOAP Envelope element.

MustUnderstand An immediate child element of the Header element, with the

mustUnderstand attribute set to “1”, was not understood.

Client The message was incorrectly formed or contained incorrect

information.

Server There was a problem with the server so the message could not proceed.

Table 5 SOAP Fault Codes [17]

29

3.3 SUMMARY

First of all, let us summarize information about REST and SOAP. Below is the comparison

between the two approaches.

One of the major benefits of RESTful API is that it is flexible for data representation, for

example you could serialize your data in either XML, JSON format or any other format.

RESTful services are also lightweight - they do not have a lot of extra XML markup. To

invoke RESTful API all what is needed is a browser or HTTP stack and the machine or device

with the Internet connection.

RESTful applications typically use normal HTTP methods instead of a big XML format

describing everything.

Moreover, it is important to keep in mind that SOAP has significantly more advanced tooling

support in some languages, and other languages strongly prefer REST. For example, if it is a

Java client for service, there will be no problems to use SOAP. On the other hand, if it is a

JavaScript client then it will be better to deal with the REST interface. JavaScript works great

with REST.

However, there are two particular scenarios where SOAP may win out over REST. If

application needs a high level of end-to-end security and absolute distributed transactional

reliability, SOAP extensions WS-Security, WS-Reliable Messaging and WS-Atomic

transactions make meeting such requirements far easier to accomplish than in REST. For

instance, the classic application in this regard is banking account transfers. Also, SOAP

supports distributed communication whereas REST assumes communication between only

two endpoints.

The pie chart (figure 12) illustrates the protocol usage

statistics by popular APIs. According to the diagram, it

could be seen that today the API world is moving more and

more to REST based approaches. As of the end of March,

REST accounted for 70% of the APIs. (Retrieved from:

Programmableweb).

Figure 12 Protocol usage by APIs

30

The table bellow illustrates the brief comparison between SOAP and REST. (Table 6)

SOAP REST

A XML- based protocol. An architectural style protocol.

SOAP has WSDL, which is an XML-based

language for describing Web services and

how to access them.

REST has no strong interface definition

and structure validation.

SOAP only permits XML format. Also, other

data types could be encapsulate into XML

format.

REST permits many different data formats

– XML, plain text, JSON, HTML and

others.

Invokes services by calling RCP method. Simply calls services via URL path.

Transfer is over HTTP. Also it could be used

other protocols such as SMTP, FTP and

others.

Transfer is over HTTP only.

JavaScript can call SOAP, but it is difficult to

implement.

Easy to call from JavaScript.

Caching situations: If the information needs

to be cached.

REST services are easily cacheable.

Performance is not great compared to REST. Less CPU intensive, leaner code.

Using SOAP is little bit complex, It takes

more time to learn and develop.

REST is much more lightweight and can

be implemented using almost any tool,

leading to lower bandwidth and shorter

learning curve.

Table 6 Comparison between SOAP and REST

Each protocol has definite advantages and equally problematic disadvantages. The choice to

use SOAP or REST is dependent on a number of factors including security, transactional,

performance, development and other application requirements.

31

4. POLLING TECHNIQUES

In this chapter we shall consider request - response model and its two types of receiving a

response from server. To begin with, let us introduce the notion of request – response

communication model between applications. This type of communication model is generally

used by HTTP and all extended protocols based on HTTP, for instance, as discussed in the

previous chapter, the REST and SOAP. The main principle of work of this model is: a client,

typically a web browser, sends a request for a resource to a server, and the server sends back a

response corresponding to the resource. So there are two different ways to poll servers.

4.1 TRADITIONAL POLLING

Traditional polling is a way to get data generated from the server side at known intervals. The

definite time interval is set to execute the request to get the server events as soon as possible,

the polling interval (time between requests) must be as low as possible. . However, it leads to

a problem that half of the request is useless, a waste of bandwidth and server resources. After

that, the server creates a response for each request ASAP and sends it back. The new

connection to the server must be opened each time the request method is called. (Figure 13)

Figure 13 Traditional polling

This method is simple in realization. Although it has some disadvantages. There may be a

delay between the appearance and receiving the data, just in the amount of seconds between

requests and as it has been said before, it is a waste of bandwidth and server resources due to

useless requests.

32

4.2 LONG-POLLING REQUEST

The main idea of the long-pulling request is: the client polls the server requesting new

information and the server holds the request open until new data is available. When there is

new information, the server sends it to the client. The client receives the new information and

immediately sends another request to the server, starting the waiting process of receiving

updates again. (Figure 14)

Figure 14 Long-polling request

Disadvantages:

• Long-polling technique works great only with a couple of connections. In other words,

Long polling takes significantly more server resources. Server has to handle a big amount

of long-lived connections. However, there is a limit - the maximum number of open

sockets. Different OS have different limit in number of open sockets.

Advantages:

• You are notified when the server event happens with no delay.

• Instead of sending a request, for example, each five second to check for new messages,

requests will be sent continuously on the long-term. For example, instead of 12 requests

in one minute, there will be approximately only 1-2 requests.

33

5. THE CASE STUDY

In this chapter there will be a detailed consideration of project implementation process. The

chapter is devoted to a detailed examination of evolution of the project concept, its

architecture, design, justification of the design, toolset and process choices.

5.1 PROJECT’s TARGET

The “Online Chess Tournaments” system is the project for Chess Rating Agency

(International) Ltd for FIDE. FIDE is a French organization and abbreviation means -

Fédération Internationale des Échecs. In English it reads: World Chess Federation.

Chess Rating Agency (International) Ltd acts as a customer for the second time. It was

already developed a web application to broadcast international tournaments – “Online Chess

Tournaments Broadcasting” system. The main idea of the system is to enable users to watch

international tournaments and chess games online in real time. Also there is an opportunity to

see games already finished. User could see the chess board with the state of each move and

its notation.

Now it is needed to implement a system for mobile phone users. The main difference between

the web version of the system that for the web application a user must always have an internet

connection, however, the mobile application would be implemented in such a way that the

user will need to have the internet access only to receive updates or to watch the game in real

time. The functionality might not be full without the Internet connection. It means that some

updates could not be received without the Internet access. But the application’s work will not

be disrupted.

 Furthermore, the second difference between web applications is that mobile application is

responsive and adaptive for mobile screens. Mobile applications are more comfortable to use

on mobile devises instead of web applications. Also, the aim is to implement the cross-

platformed application. It means that it would be available on two major mobile platforms:

Android and IOS .

34

5.2 PROJECT DESCRIPTION

This chapter presents a list of client-requirements that would help us understand the targets

and functionality of the project more clearly. Also it explains the technical choices which

have been made in the project architecture, such as selection of application model, framework

and the communication protocol with the server side.

5.2.1 Clients-Requirements

Here client-requirements made by customer and mockups of the application to visualize those

requirements are shown.

1. The application should show a list of tournaments. User has an opportunity to search and

select a particular chess tournament from the list of all possible tournaments. (Figure 15)

Figure 15 List of tournaments screen mockup

35

2. The application should display a list of all rounds of the selected tournament with the

date of the round in UTC time format. The user should be able to select a particular chess

round. (Figure 16)

Figure 16 List of rounds screen mockup

3. The application should specify a list of all games of the current tournament or round. The

list of games presents the table with information of players (first name, last name,

federation , rating, FIDE-ID, the last move, the last move evaluation using the chess

engine or if game is over-game score. Also there is the availability to choose a particular

chess game. (Figure 17)

Figure 17 List of game screen mockup

36

4. After selecting the particular game the current game situation (chessboard, chessboard

state) should be displayed. User should be able to see game history on chessboard.

Position on the board should correspond to the chosen game move. Move is chosen from

table with content of all moves in current game.

5. Integration with the block "Comments" - the application should show comments in the

"body" of the game notation.

6. Integration with the block "Analyses from chess engine" – the application should show an

evaluation made by the chess engine.

7. Automatic update for moves and the board position during online-broadcasting.

 Figure 18 chessboard screen mockup

Figure 19 List of move and chess engine screen mockups

37

5.2.2 Selection of application model

The choice of mobile application will depend on the characteristics summarized of three main

mobile applications models: native, hybrid and mobile web application.

One of the aims of “Online Chess Tournaments” system ensure the applications work on

multiple systems with a short period of time.

 For that reason it will be more suitable to use mobile web application or hybrid application If

we select to develop native applications it would require twice as much time to implement

applications for two main mobile platforms such as Android and iOS, because it would be

necessary to write two different mobile applications in different programming languages, one

for each platform.

The main advantages of the native mobile is clear UI and UX, maintaining of heavy graphics

and full access to all hardware and OS tools. However, all these characteristics are not

important in “Online Chess Tournaments“ system. This interface of this project does not

contain heavy graphics, the UI will be simple without any heavy load on the system.

Nonetheless-, nowadays there are a lot of frameworks which provide clear and native-like UI

for mobile applications.

Furthemore, no specific hardware and OS functions and features for the implementation the

system are needed. As a consequence, the native mobile application is not applicable in this

case.

Now let’s compare and decide which model will be more suitable – mobile web application or

hybrid mobile application. The technologies of hybrid and mobile web applications are quite

similar. So this factor could not influence our choise. However, the web model outperforms

the hybrid model because it maintains almost all platforms. All is needed is a browser and an

Internet access, while not all frameworks of the hybrid mobile application maintain all

mobile platforms. The majority of frameworks make application available only for Android

and IOS, leaving out Windows Mobile. Also the development speed of the web mobile

applications is faster than in other models. Although all these features of mobile web apps

are lost in this case, because for using web mobile app the Internet access is required. But one

of the aims of the system is stable work without Internet access. Also, the disadvantage of the

web model is that the application is not available the platform-specific marketplace.

For these reasons, the choice has been made in favor of hybrid mobile applications.

38

5.2.3 Selection of UI framework

As the hybrid mobile application was chosen, it is necessary to choose the correct UI

framework to implement hybrid mobile application. As it has been said before, nowadays

there is a variety of different UI frameworks for hybrid and web mobile applications. The

majority of frameworks are quite similar. For this reason sometimes it is difficult to make a

choice. But in chapter about UI frameworks were presented the three most popular

frameworks for discussion. Therefore, this chapter will explain the selection on the basis of

the results and conclusions of chapter “UI frameworks”.

For the realization of the project, it was decided to choose Ionic as the cross-platform hybrid

mobile development framework. Ionic framework is free licensed, what means no additional

costs for the use of the framework, and open source.

 First of all lets decide if Famo.us will be suitable for realisation the project.

As mentioned above, Famo.us is the one framework which provides wide graphics

maintaining. It is an excellent choice for implementation games. However, The “Online chess

tournaments” application is not a game with 3d graphics or complicated animation.

This is a first reason why Famo.us framework does not gain advantage for using in the

project. However, with Famo.us it is also possible to do casual mobile applications. But it

does not provide basic layouts. It will be very difficult to design application with this

framework. For instance, in “Online Сhess Tournaments” mobile application it is designed to

do swipe between three screens: screen with chessboard, screen with moves and screen with

evaluation of chess engine. Also the application uses the toggle left menu for navigation

system. It will be more suitable to not program it by yourself, but to use the basic skeletons.

So the Famo.us framework is not suitable for usage in project.

As a consequence, Kendo UI mobile and IONIC are more suitable for this kind of projects.

Kendo UI has a lot of advantages such as maintaining a variety of platforms, while Ionic only

supports Android and IOS platforms. Also, the developing with Kendo UI is much easier

because it provides developing tools such as a special redactor for developing. However, the

Kendo UI mobile is not free of charge. It has a free demo version, but this version has limited

opportunities.

Still, one supporting argument for Ionic is that Ionic framework provides the fastest, most

reliable and most responsive user experience and its UI is very close to native.

39

The choice was made in honor of the Ionic. Despite the fact that Kendo UI has a lot of

advantages, client was not ready to cover the additional costs that using Kendo would have

caused.

Currently platforms, which are supported by Ionic are iOS and Android. It is quite enough.

Because iOS and Android make up the largest part of the market , this is still acceptable for a

client.

5.2.4 Selection of communica tion protocol.

The communication protocols and standards are a big diversity. In chapter 3 two approaches

for communication between client and server – REST and SOAP were presented. In this

chapter we shall discuss which approach is better for “Online Сhess Tournaments” system.

 First of all, it should be said that because of hybrid application model was chosen, it would

be implemented using JavaScript and jQuery. According to the summary of difference

between SOAP and REST from the table 6 (chapter 3), it could be seen that REST is easy to

call from JavaScript, it simply calls services via URL path, while SOAP is difficult to

implement using JS and jQuery.

Secondly, our system does not need the high level end-to-end security and absolute

distributed transactional reliability for which SOAP will be the best approach.

REST permits many different data formats. Because data format will be JSON, the SOAP

protocol will not be suitable for realization of this system because SOAP only permits XML

data format.

Obviously, the REST is the most suitable way of communication between client and server

side because it is easier and faster to implement than the communication using SOAP

protocol.

40

5.2.5 Selection of polling techn ique

After the choice of communication standard has been made, it is necessary to choose what

kind of polling technique to use in project implementation. From two types of polling the

server the choice was made towards traditional polling for several reasons. As explained in

chapter about polling techniques, the long- polling request is better than traditional polling for

a lot of reasons. However, it would only work excellent only with a small amount of

connections. The Chess Rating Agency (international) Ltd is a global company. In our case,

the number of clients increases at a fast pace. So for this reason it will take a lot of server

resources to hold all connection in open state. The limits of open sockets are also one of the

barriers in implementing the large-scale use of the system.

Moreover, long-polling request require an open connection. This leads to one more problem.

Sometimes mobile devices rapidly switch between WIFI and cellular networks or lose

connections, and the IP address changes. It is problematic for server to automatically re-

establish connections.

With traditional polling there will be an amount with useless requests which leads to the waste

of bandwidth and server resources. However, to compare with long-polling request, if there

are many connections at once, the server load by traditional polling will be much less. Also, in

chapter about traditional polling it was said that one of the disadvantages is that it might be a

delay between the appearance and receiving the data. But in “Online Сhess Tournaments”

system the data will not be updated so often, except when a chess game is translated in the

real time.

After discussing all pro- and contra arguments, it is possible to conclude that traditional

polling communication type is more suitable for our project than the long-polling way.

41

5.3 PROJECT IMPLEMENTATION

5.3.1 Domain Object Model

A domain object model of the “Online chess tournament” system is presented bellow. It

describes the various entities, their attributes, roles, and relationships. (figure 20)

Figure 20 Domain object model

 class Domain Object Model

Tournament

- tournamentId: int
- tournamentName: string
- startDate: date
- endDate: date
- utcOffset: string
- city: string
- region: string
- country: string
- gameType: string
- translationEnabled: boolean
- engineDepth: int
- refreshGameInterval: int

Round

- roundId: int
- tournamentId: int
- roundNumber: int
- roundName: string
- roundStartDate: date
- roundEndDate: date
- roundDate: string
- roundTime: string
- teamRound: boolean
- gameType: string

Game

- gameId: int
- tournamentId: int
- roundId: int
- playerIdWhite: int
- teamIdWhite: int
- playerIdBlack: int
- teamIdBlack: int
- startDate: date
- result: string
- initialFen: string
- finishFen: string
- lastMove: string
- lastMoveScore: double
- gamepointsWhite: double
- gamepointsBlack: double
- countryWhite: string
- countryBlack: string
- blackClock: string
- whiteClock: string
- board: string
- engineStage: int

Player

- playerId: int
- fi rstName: string
- lastName: string
- federation: string
- fideId: string
- photoImageId: int

Team

- teamId: int
- teamName: string
- city: string
- region: string
- country: string

EngineMov eVariant

- engineMoveVariantsId: int
- gameId: int
- moveId: int
- engineName: string
- score: double
- moveTime: int
- depth: int

Annotation

- annotationId: int
- gameId: int
- moveId: int
- language: string
- text: string
- official: boolean

Mov e

- moveId: int
- gameId: int
- moveNumber: int
- ful lMove: string
- fromSquare: string
- toSquare: string
- piece: string
- color: string
- positionFEN: string
- playerClock: string
- elapsedGameTime: string
- elapsedMoveTime: string
- bestMove: string
- engineStage: int
- score: double

0..*

1 0..*

1

0..*

1

1

0..*

1

0..*

0..*

teamIdBlack

0..1

0..*

teamIdWhite

0..1

0..*

playerIdWhite

1

0..*

playerIdBlack

1

1

0..*

1 0..*

42

Tournament
- An international chess tournaments for broadcasting.

Attribute Type Description

tournamentId

int Tournament identifier

tournamentName string Tournament name

startDate date

Start date of tournament

endDate date

End date of tournament

utcOffset string This is the offset to add to UTC to get local
time. In hours.

city string Tournament city

region string

Tournament region

country

string Tournament country

gameType string

Tournament game type

translationEnabled boolean

Is translation enabled or not

engineDepth

int Chess engine analyse depth

refreshGameInterval

int Refresh game interval in ms

Table 7 tournament object's attributes description

43

Round – a chess round of the selected tournament.

Attribute Type Description

roundId

int Round identifier

tournamentId int Reference to the tournament

roundNumber int Round number

roundName

string Round name

roundStartDate date Start date of round

roundEndDate date Round end date

roundDate

string Date: the starting date of the game, in
YYYY.MM.DD form. "??" are used for
unknown values.

roundTime string Time: Time the game started, in "HH:MM:SS"
format, in local clock time.

teamRound boolean Is it a team round or not

gameType string Game type

Table 8 round object's attributes description

44

Game – a chess game of the selected round.

Attribute Type Description

gameId int Game identifier

tournamentId

int Reference to the tournament

roundId

int Reference to the round

playerIdWhite

int Reference to the player of white pieces

teamIdWhite

int Reference to the team of white pieces

playerIdBlack

int Reference to the player of black pieces

teamIdBlack

int Reference to the team of black pieces

startDate

date The starting date and time of the game, in local
clock time

result

string the result of the game. This can only have four
possible values: "1-0" (White won), "0-1"
(Black won), "1/2-1/2" (Draw), or "*" (other,
e.g., the game is ongoing).

initialFen

string The initial position of the chess board, in
Forsyth-Edwards Notation. This is used to
record partial games (starting at some initial
position).

finishFen

string The last position of the chess board, in Forsyth-
Edwards Notation. This is used to record partial
games (starting at some initial position)

lastMove

string Last move

45

Attribute Type Description

lastMoveScore

double Last move score

gamepointsWhite

double Current result of the player playing of white
pieces (the number of points scored in the
tournament by default - 0)

gamepointsBlack

double Current result of the player playing of black
pieces (the number of points scored in the
tournament by default - 0)

countryWhite

string the three-letter International Olympic
Committee code for the country of player of
white pieces

countryBlack

string the three-letter International Olympic
Committee code for the country of player of
black pieces

blackClock

string Black player clock in game

whiteClock

string White player clock in game

board

string Board

engineStage

int Engine calculation stage: 0 - none, 1, 2

Table 9 Game object's attributes description

46

Player - a player of white or black pieces.

Attribute Type Description

playerId

int Player identifier

firstName

string First name of player

lastName

string Last name of player

federation

string the three-letter International Olympic
Committee code for the country

fideId

string FIDE player identifier

photoImageId

int Reference to the image

Table 10 Player object's attributes description

Team – a team of white or black pieces.

Attribute Type Description

teamId

int Team identifier

teamName

string Team name

city

string City of team

region

string Team region

country string Team country

Table 11 Team object's attributes description

47

Move – a move of the selected game

Attribute Type Description

moveId

int Move identifier

gameId

int Reference to the game

moveNumber

int Move number

fullMove

string Full move

fromSquare

string From square

toSquare string To square

piece

string Piece

color

string Color – black or white

positionFEN

string Position after move in FEN

playerClock

string The clock command. This is the time displayed
on the players clock.

elapsedGameTime string Elapsed Game Time : the egt command. The
elapsed time that a player has used for all
moves in the game up to that point.

elapsedMoveTime

string
Elapsed Move Time : the emt command

48

Attribute Type Description

bestMove

string Best move in UCI notation

engineStage

int Engine calculation stage: 0 - none, 1, 2

score

double move score

Table 12 Move object's attributes description

EngineMoveVariant – variants for move made by chess engine.

Attribute Type Description

engineMoveVariantsId int Engine move variants identifier

gameId int Referemce to the Game

moveId int Referemce to the Move

engineName string Name of engine

score double Variant score

moveTime int Engine move time

depth int Engine depth calculation

Table 13 EngineMoveVariant object's attributes description

49

Annotation – an annotation of the move or of the game.

Attribute Type Description

annotationId int Annotation identifier

gameId int Reference to the Game

moveId int Reference to the Move

language string Annotation language.

text

string Annotation text

official boolean Is annotation official or not

Table 14 Annotation object's attributes description

50

5.3.2 Description of receiving information process.

In this chapter examines the process of receiving information about tournaments, rounds and

game data for games broadcasting in two different cases: with an Internet connection and

without.

 sd Games broadcasting

User
Mobile application

Online Chess
Tournaments

Broadcasting System

«file»

Local storage

1.Start

[the Internet not exists]: 2. loadTournamentList :tournamentList

[the Internet exists]: 3. loadTournamentList

4. :tournamentList

5. storeTournamentList(tournamentList)

6. showTournamentList :tournamentList

7. Tournament selection

[the Internet not exists]: 8. loadRoundList(tournamentId) :roundList

[the Internet exists]: 9. loadRoundList(tournamentId)

10. :roundList

11. storeRoundList(roundsList)

12. showRoundList :roundsList

13. Round selection

[the Internet not exists]: 14. loadGameList(tournamentId , roundId) :gameList

[the Internet exists]: 15. loadGameList(tournamentId , roundId)

16. :gameList

17. storeGameList(gameList)

18. showGameList :gameList

19. Game Selection

[the Internet not exists]: 20. loadGameData(gameId) :gameData

[the Internet exists]: 21. loadGameData(gameId)

22. :gameData

23. storeGameData(gameData)

24. showGameData :gameData

Figure 21 Game broadcasting

51

Internet connection exists.

1. An user starts an application (1).

2. A request to load a tournament list is sent to the “Online chess tournaments broadcasting”

system (3).

3. The tournament list is returned from the “Online chess tournaments broadcasting” system

(4).

4. The tournament list is saved to the local storage (5).

5. The tournament list is shown to the user (6).

6. The user selects the tournament (7).

7. A request to load a round list for the selected tournament is sent to the “Online chess

tournaments broadcasting” system (9).

8. The round list is returned from the “Online chess tournaments broadcasting” system (10).

9. The round list is saved to the local storage (11).

10. The round list is shown to the user (12).

11. The user selects the round (13).

12. A request to load a game list for the selected tournament and round is sent to the “Online

chess tournaments broadcasting” system (15).

13. The game list is returned from the “Online chess tournaments broadcasting” system (16).

14. The game list is saved to the local storage (17).

15. The game list is shown to the user (18).

16. The user selects the game (18).

17. A request to load a game data for the the selected game is sent to the “Online chess

tournaments broadcasting” system (21).

18. The game data is returned from the “Online chess tournaments broadcasting” system (22).

19. The game data is saved to the local storage (23).

20. The game data is shown to the user (24).

52

Alternative: Internet connection not exists.

1. An user starts an application (1).

2. A request to load a tournament list is sent to the local storage. The tournament list is

returned from the local storage (2).

3. The tournament list is shown to the user (6).

4. The user selects the tournament (7).

5. A request to load a round list for the selected tournament is sent to the local storage. The

local storage returns the round list (8).

6. The round list is shown to the user (12).

7. The user selects the round (13).

8. A request to load a game list for the selected tournament and round is sent to the local

storage. The local storage returns the game list (14).

9. The game list is shown to the user (18).

10. The user selects the game (19).

11. A request to load a game data for the selected game is sent to the local storage. The local

storage returns the game data (20).

12. The game data is shown to the user (24).

53

5.3.3 Description of updating information processes.

Updating a tournament list

1. Every N seconds a request to get a local version of the tournaments is sent to a local

storage. The local storage returns the local version (1).

2. Request to get a current version of the tournaments is sent to the “Online chess

tournaments broadcasting” system (2).

3. The “Online chess tournaments broadcasting” system returns the current version (3).

4. If the current version is higher than the local version, the request to load tournaments list

is sent to the “Online chess tournaments broadcasting” system (4).

5. The “Online chess tournaments broadcasting” system returns the tournament list (5).

6. The tournament list is saved to the local storage (6).

7. The tournament list is shown to the user (7).

Figure 22 Updating a tournament list

 sd Updating tournaments list

User
Mobile application

«fi le»

Local storage

Online Chess
Tournaments

Broadcasting System

{every N seconds }
*1.getLocalVersion :localVersion

2.getVersion

3. :currentVersion

[currentVersion > localVersion]: 4.loadTournamentList

5. :tournamentList

6. storeTournamentList(tournamentList)

7. showTournamentList :tournamentList

54

Updating a round list

1. Every N seconds a request to get a local version of a round list is sent to a local storage.

The local storage returns the local version (1).

2. Request to get a current version of the round list is sent to the “Online chess tournaments

broadcasting” system (2).

3. The “Online chess tournaments broadcasting” system returns the current version (3).

4. If the current version is higher than the local version, the request to load the round list is

sent to the “Online chess tournaments broadcasting” system (4).

5. The “Online chess tournaments broadcasting” system returns the round list (5).

6. The round list is saved to the local storage (6).

7. The round list is shown to the user (7).

 sd Updating round list

Online Chess
Tournaments

Broadcasting System

«file»

Local storage

Mobile application
User

{every N seconds } *1.getLocalVersion :localVersion

2.getVersion

3. :currentVersion

[currentVersion > localVersion]: 4. loadRoundList(tournamentId)

5. :roundList

6. storeRoundList(roundList)

7. showRoundList :roundList

Figure 23 updating a round list

55

Updating a game data

1. Every N seconds a request to get a local version of a game list is sent to a local storage.

The local storage returns a local version (1).

2. The request to get a current version of the game list is sent to the “Online chess

tournaments broadcasting” system (2).

3. The “Online chess tournaments broadcasting” system returns the current version (3).

4. If the current version is higher than the local version, the request to load the game list is

sent to the local storage (4).

5. For each game in the game list, the request to get a current game version is sent to the

“Online chess tournaments broadcasting” system (5).

6. The “Online chess tournaments broadcasting” system returns the game version for each

game (6).

7. If the current game version is higher than the local game version, the request to get a

game data for each game in the list is sent to the “Online chess tournaments broadcasting”

system (7).

sd Updating game data

Mobile application
User

«file»

Local storage

Online Chess
Tournaments

Broadcasting System

{every N seconds }
*1. getLocalVersion :localVersion

2. getVersion

3. :currentVersion

[currentVersion > localVersion]: 4. loadGameList :gameList

{for each game }
*5. getGameVersion(gameId)

6. :gameVersion

[gameVersion > localGameVersion]: 7. loadGameData(gameId)

8. :gameData

9. storeGameData(gameData)

10. showGameData :gameData

Figure 24 Updating a game data

56

8. The “Online chess tournaments broadcasting” system returns the game data for each game

(8).

9. The game data is saved to the local storage (9).

10. The game data is shown to the user (10)

5.3.4 User Interface

The main user interface color of FIDE official web-site is blue. For this reason the “Online

Сhess Tournaments” application was designed in blue tones. Below are presented screenshots

of the application. (Figure 25)

 Figure 25 “Online Сhess Tournaments” application's screenshots

57

5.4 REVIEW OF SIMILAR APPS

5.4.1 Lichess

“Lichess” mobile application is made for lichess.org web-site and available in 80 languages.

The Lichess is an online environment for playing chess games with each other. Moreover, it is

available to see games broadcasting move by move. The figure 26 illustrates three screens that

are made from Lichess application on the mobile phone with android platform. The Lichess

TV – opportunity to see games online move by move. The screen with toggle left menu

provides information about all application’s opportunities divided into to modes: online and

offline mode. In online mode user could create new game, play with friends and watch

Litchess TV. In the offline mode user could play with computer or play for black and white

side for himself. Finally, the third screen illustrates the game with AI (computer).

Figure 26 Lichess mobile application

The main advantage is that application is cross-platform. It is available on the App Store for

iOS platform and on the Play Market for Android platform. Furthermore, it should be noticed

that “Lichess” is open source. So, it is generally known what technical solutions were used for

implementation the application. For implementation was used hybrid mobile model and was

realisated such tools as Cordova platform, Tarifa toolchain and Mithril JS framework.

The shortcoming of the application is that the Internet connection is requeired for watching

the games broadcasts.

58

5.4.2 Follow Chess

“Follow Chess” is mobile application where user could check out moves from multiple chess

tournaments. So, the main application idea is identical with “Online Сhess Tournaments”

application. The user has opportunity to choose tournament from the list, choose the round,

game and then see the game with move’s notation. Screenshots from application are presented

bellow. (figure 27)

Figure 27 "Follow chess" mobile application

The system works in offline mode but not smoothly.

“Follow chess” has some disadvantages in comparison to “Online Сhess Tournaments”

application. This application is made only for Android platform. In Apple Store user could not

find this application. It means that it has lost a big part of mobile phones users.

Also, it should be noticed that the board will not auto-refresh if new moves are made in the

actual game. Furthemore, for analysis of the game, user should download the separate

application: “Chess – Analyze This”. This application provides opportunity to analyze chess

game with chess engines, simultaneously. Installing separate application for analyze chess

game takes a long time. So it is not comfortable for users.

59

5.5 RESULTS AND ANALYSIS

As a result “Online Сhess Tournaments” mobile application was successfully implemented

with all required functionality.

It is achieving the goal to create a multi-platform mobile application. It means that one

application is available for both Android and iOS users. For that reason was choosen hybrid

mobile application model and Ionic framework for imlementation clear user interface.

Also, the distinctive feature is that the application works in both online and offline mode. The

data is stored locally using local storage, which does not allow violating the application work

without the Internet connection.

Also, with the Internet access, the application’s state is updated in the real time. To achieve

this goal REST architecture style with traditional polling technique with 5 seconds interval

was used or administrator could set updating interval by himself.

Furthermore, it has been made the overview of similar applications on the market. To

summarize all information, it could be said that despite the fact that “Follow chess” presents

the identical main idea, the “Online Сhess Tournaments” system introduces a new, more

convenient functionality such as opportunity to make evaluation of the game with chess

engine, without downloading the separate application or availability to write comments with

facebook account for each move.

Also, the “Litchess” presents a good implemented application, but it would not stay in the

market on the same level as “Online Сhess Tournaments” because it does not translate

international tournaments.

To summarize, two main applications features could be distinguished, which set apart from

the rest:

• Application is for multi-platforms mobile devises that have inscreased usage two times.

According to the latest statistics by Net Market Share (2014), Android is leading the

market with 45.86% and iOS is the second popular OS worldwide with 43.15% of share.

(Figure 28)

• Application is available in offline mode using localStorage technique.

60

• Additional features like evaluation of the game with chess engine and the availability to

write comments for each move with facebook account.

In conclusion, it should be said that “Online Сhess Tournaments” mobile application is a

completely unique product on the mobile applications market.

Figure 28 Worldwide mobile market share chart [44]

61

6. CONCLUSION

In every software development process it is very important to make correct architectural

decisions to implement the safe, stable and user – friendly system.

In this thesis the big attention was focused on making grounded architectural decisions for the

development of multi-platform mobile application "Online chess tournaments ".

Based on the result of the researches the architectural decisions for the implementation

“Online Сhess Tournaments” application were made. In the course of this work a hybrid

mobile application model was chosen. As an UI framework the decision was made in favor of

Ionic framework. As an architectural style the REST – the Representational State Transfer

was chosen and traditional polling method was used.

All these approaches have been realized in the case study of “Online Сhess Tournaments”

application. As a consequence, the application works in two major platforms such as: Android

and iOS. Application broadcasts the international tournaments in real time. Also, the goal, to

ensure the application work in offline mode without disruption, has been achieved

successfully.

As future development of the application it could be implemented such things like

maintaining the different languages, display information about starting lists of players and

information about the course of the tournament pairs paring.

Application passed all customer’s accepting tests and now is available for download on the

Google Play Market and in future it will be also available on the Apple Store.

62

KOKKUVÕTTE

Tarkvaraarenduse protsessi üks oluliseim osa on õigete arhitektuurivalikute tegemine, mille

järgi on võimalik usaldusväärse, stabiilse ja kasutajasõbraliku süsteemi realiseerimine.

Lõputöös tehti ja põhjendati arhitektuurivalikud mitmel platvormil töötava “Online Сhess

Tournaments” mobiilirakenduse arendamiseks.

Tehtud analüüsi alusel põhjendatakse käesolevas töös mitmel platvormil töötava

mobiilirakenduse arendamiseks konkreetseid arhitektuurivalikuid. Mitmel platvormil töötava

mobiilirakenduse arendamiseks on valitud hübriidne mobiilirakenduse mudel Ionic

raamistikku kasutades. Arhitektuuristiilina on valitud REST – the Representational State

Transfer. Päringumeetodite variantidest on valitud traditsiooniline päringute meetod.

Kõik sellised arhitektuurilahendused on realiseeritud “Online chess tournament”

mobiilirakenduses. Tulemusena töötab rakendus nii Androidi kui iOS platformil. Süsteem

edastab mängude seisu rahvusvahelistel turniiridel reaalajas. Samuti saavutati eesmärk, et

tagada rakenduse töö võrguta režiimis.

Mobiilrakenduse edaspidine arendamine on võimalik järgmistes suunades: erinevate keelde

toetamine, turniiride mängijate nimekirjade lisamine ja info mängijate paaride loosimise

kohta.

Tellija võttis rakenduse vastu ja praegu on seda võimalik laadida Google Play Market-ist.

Plaanil on mobiili rakenduse kättesaadavus Apple Store-ist.

63

REFERENCES

Mobile application models

1. Dragan Gaić (2014). Hybrid vs Native mobile apps.
Retrieved from: http://www.gajotres.net/hybrid-vs-native-apps/

2. John Bristowe (2014). What is a Hybrid Mobile App?
Retrieved from: http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/

3. Mitch Pronschinske (2014). The State of Native vs. Web vs. Hybrid.
Retrieved from: http://java.dzone.com/articles/state-native-vs-web-vs-hybrid

4. Joe Stangarone (2012) . Hybrid vs. Native vs. Mobile web comparison chart.
Retrieved from: http://www.mrc-productivity.com/blog/2012/03/hybrid-vs-native-vs-

mobile-web-comparison-chart/

5. Pietro Saccomani (2012) . Native, Web or Hybrid Apps? What’s The Difference?
Retrieved from: http://www.mobiloud.com/blog/2012/06/native-web-or-hybrid-apps/

6. Jake Hird (2011). The fight gets technical: mobile apps vs. mobile sites.
Retrieved from: https://econsultancy.com/blog/7832-the-fight-gets-technical-mobile-

apps-vs-mobile-sites/

7. Ted Wallin. WEB, HYBRID OR NATIVE?
Retrieved from: http://www.gambitgroup.fi/our-work/web-hybrid-or-native/

UI frameworks for hybrid mobile applications

8. Kevin Meurer(2014). Impressions of the Ionic Framework: Not Quite Native.
Retrieved from: http://kevinmeurer.com/impressions-of-the-ionic-framework-not-

quite-native/

9. Katie (2014). Platform Continuity.
Retrieved from: http://blog.ionic.io/platform-continuity/

10. Ben Ripkens (2014). Ionic: An AngularJS based framework on the rise.
Retrieved from: https://blog.codecentric.de/en/2014/11/ionic-angularjs-framework-

on-the-rise/

11. Dragan Gaić(2013). Ionic vs OnsenUI
Retrieved from: http://www.gajotres.net/ionic-vs-onsenui/

12. Ionic framework official web-site.
Retrieved from: http://ionicframework.com/

13. Telerik. Kendo UI.
Retrieved from: http://www.telerik.com/kendo-ui

64

14. Famo.us framework official web-site.
Retrieved from: http://famo.us/

15. Choosing the right HTML5 Framework.
Retrieved from: http://rapidvaluesolutions.com/whitepapers/HTML5-Framework.html

16. Tal Gleichger. Hybrid UI framework shootout: Ionic vs. Famo.us vs. F7 vs. OnsenUI.
Retrieved from: https://www.airpair.com/ionic-framework/posts/hybrid-apps-ionic-

famous-f7-onsen

REST / SOAP

17. James Snell,Doug Tidwell,Pavel Kulchenko (2002). Published by O’Reilly & Associates.
Programming Web Services with SOAP.

18. M. Papazoglou .(2008) Web Services: Principles and Technology .

19. Mark Masse. (2012) Published by O’Reilly . REST API Design Rulebook .

20. Erik Wilde,Cesare Pautasso. Published by Springer . REST: From Research to Practice.

21. Learn REST: A Tutorial.
Retrieved from: http://rest.elkstein.org/2008/02/what-is-rest.html

22. Understanding REST.
Retrieved from: https://spring.io/understanding/REST

23. Margaret Rouse.(2014). REST (representational state transfer).
Retrieved from : http://searchsoa.techtarget.com/definition/REST

24. Ludovico Fischer(2013). A Beginner’s Guide to HTTP and REST
Retrieved from: http://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--
net-16340

25. Manisha Patil. REST Architectural Elements and Constraints.
Retrieved from: http://mrbool.com/rest-architectural-elements-and-constraints/29339

26. Ricardo Plansky (2015). REST Architecture Model: Definition, Constraints and Benefits
Retrieved from: http://imasters.expert/rest-architecture-model-definition-constraints-
benefits/

27. Aaron Skonnard(2003). Understanding SOAP
Retrieved from : https://msdn.microsoft.com/en-us/library/ms995800.aspx

28. REST vs. SOAP: Selecting a Web Service (2015)
Retrieved from :http://www.optimusinfo.com/rest-vs-soap-selecting-a-web-service/

29. Jack Cox. SOAP vs. REST For Mobile Services
Retrieved from : https://www.captechconsulting.com/blogs/soap-vs-rest-for-mobile-
services

65

30. Arvind Rai.(2014). When to Use SOAP and REST Web Services
Retrieved from : http://www.concretepage.com/webservices/when-to-use-soap-and-
rest-web-services

31. REST Vs SOAP Web Services : Which one to use ?
Retrieved from : http://www.tutorialsdesk.com/2014/10/rest-vs-soap-web-services-
which-one-to.html

POLLING TECNIQUES.

32. Joe Hanson (2014) What is HTTP Long Polling?
Retrieved from : http://www.pubnub.com/blog/http-long-polling/

33. Mathieu Carbou (2011) Reverse Ajax, Part 1: Introduction to Comet.
Retrieved from: http://www.ibm.com/developerworks/library/wa-reverseajax1/

34. The HTTP Request/Response Model.
Retrieved from: https://www.safaribooksonline.com/library/view/javaserver-pages-
3rd/0596005636/ch02s01.html

35. Mohsen Elgendy. Understanding Ajax Long-Polling Requests
Retrieved from: http://webcooker.net/ajax-polling-requests-php-jquery/

36. Seventh Octave. Simple Long Polling Example with JavaScript and jQuery
Retrieved from: http://techoctave.com/c7/posts/60-simple-long-polling-example-with-
javascript-and-jquery

37. Михаил Русаков (2014) Что такое Long-Polling, WebSockets, SSE и Comet.
Retrieved from:http://myrusakov.ru/long-polling-websockets-sse-and-comet.html

38. COMET с XMLHttpRequest: длинные опросы.
Retrieved from: https://learn.javascript.ru/xhr-longpoll

ANALOGOUS APPS

39. Asim Pereira.(2014) Follow Chess 1.0 released!! Now follow moves from multiple Chess
tournaments.

Retrieved from: http://www.mychessapps.com/2014/04/follow-chess-10-released-
now-analyze.html

40. “Follow Chess” on Play Market :
Retrieved from: https://play.google.com/store/apps/details?id=com.pereira.live

41. Lichess official web-site:
Retrieved from: http://lichess.org/

42. Lichess on Play Market:
Retrieved from:https://play.google.com/store/apps/details?id=org.lichess.mobileapp

66

43. Lichess on Apple Store:
Retrieved from: https://itunes.apple.com/us/app/lichess-free-online-chess/id968371784

OTHERS

44. Ahmad Wahid (2015). Windows Phone gains 0.15% of market share in December 2014
with 2.28% worldwide.

Retrieved from: http://www.windows8core.com/windows-phone-gains-0-15-market-
share-december-2014-2-28-worldwide/

45. Statista 2015. Number of mobile app downloads worldwide from 2009 to 2017
(in millions)

Retrieved from: http://www.statista.com/statistics/266488/forecast-of-mobile-app-
downloads/

46. Benedict Evans (2013). Mobile is eating the world
Retrieved from: http://ben-evans.com/benedictevans/2013/11/5/mobile-is-eating-the-
world-autumn-2013-edition

47. Writing your Dissertation: Methodology. From Dissertation Writing section.
Retrieved from: http://www.skillsyouneed.com/learn/dissertation-methodology.html

48. The Case Study as a Research Method.
Retrieved from : https://www.ischool.utexas.edu/~ssoy/usesusers/l391d1b.htm

