
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Igor Podgainõi 164754IAPB

IMPLEMENTING AN INTEGRATION

COMPONENT FOR A FINANCIAL

PERFORMANCE MANAGEMENT SYSTEM

AS A MICROSOFT OFFICE 2019 OR 365

"ADD-IN" WITH THE USE OF MODERN

TECHNOLOGIES
Bachelor's thesis

Supervisor: Deniss Kumlander

 PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Igor Podgainõi 164754IAPB

FINANTSTULEMUSLIKKUSE

JUHTIMISSÜSTEEMILE

INTEGRATSIOONIKOMPONENDI

ARENDAMINE KASUTADES MICROSOFT

OFFICE 2019 VÕI 365 "ADD-IN"

KAASAEGSETE TEHNOLOOGIATE ABIL
bakalaureusetöö

Juhendaja: Deniss Kumlander

 Doktorikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Igor Podgainõi

22.05.2019

4

Abstract

The goal of this thesis is the development of an integration component for an existing

financial performance management system as an "add-in" for Microsoft Office. It may

be necessary for companies which perform accounting and financial consolidation using

Microsoft Office, but do not want to convert existing documents into a format used by

internal software for performance management. As a result, financial performance

utilities can be worked with directly inside an Office document, which may be more

convenient for employees. The thesis focuses on Excel, an application that is a part of

the Microsoft Office suite used for manipulating numbers.

This thesis describes different technologies and their appropriacy in relation to the

project so that the development can be completed.

The result of this thesis is a finished Microsoft Excel "add-in", which is connected to the

company data warehouse using a microservice and is able to place accounting data from

a database into a spreadsheet document.

This thesis is written in English and is 28 pages long, including 6 chapters, 10 figures.

5

Annotatsioon

Finantstulemuslikkuse juhtimissüsteemile integratsioonikomponendi

arendamine kasutades Microsoft Office 2019 või 365 "add-in" kaasaegsete

tehnoloogiate abil

Selle töö eesmärgiks on olemasoleva finantstulemuslikkuse juhtimissüsteemile

integratsioonikomponendi arendamine kasutades Microsoft Office "add-in". See võib

olla vajalik ettevõtetele, kes teostavad raamatupidamis- ja finantskonsolideerimist

Microsoft Office'i abil, kuid ei soovi tulemuslikkuse juhtimiseks muunduda

olemasolevad dokumendid sisemise tarkvara formaadile. Selle tulemusena saab

finantstulemuslikkuse utiliite kasutada otse Office'i dokumendi sees, mis võib olla

töötajatele mugavam. Töö keskendub Excel'ile, mis on Microsoft Office'i komplektist

rakendus numbrite manipuleerimiseks.

Selles töös kirjeldatakse erinevaid tehnoloogiaid ja nende asjakohasust seoses

projektiga, nii et arengut saaks lõpule viia.

Lõputöö tulemus on valmis Microsoft Excel'i "add-in", mis on ühendatud ettevõtte

andmehoidlaga mikroserveri abil, ning on võimeline panna arvestusandmeid

andmebaasist arvutustabeli dokumendile.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 28 leheküljel, 6 peatükki ja 10

joonist.

6

List of abbreviations and terms

API Application Programming Interface

C# C# programming language

CA Certification Authority

CFO Chief Financial Officer

CORS Cross-Origin Resource Sharing

CSS Cascading Style Sheets

CSV Comma-Separated Values file format

DNS Domain Name System

FPM Financial Performance Management

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IAT Issued at Claim field

IP Internet Protocol

ISO International Organization for Standardization

JSON JavaScript Object Notation

JWT JSON Web Token

LSTM Long Short-Term Memory neural network

NPM Node Package Manager

PWA Progressive Web Application

RNN Recurrent Neural Network

SQL Structured Query Language

TLS Transport Layer Security

URL Uniform Resource Locator

VBA Visual Basic for Applications

XLS Excel Spreadsheet file format

XLSX Microsoft Office Open XML Format Spreadsheet file format

7

Table of contents

1 Introduction ... 9

1.1 Initial analysis ... 10

2 Data warehouse microservice development .. 12

2.1 User authentication and authorisation ... 13

2.2 Database structure and mock-up ... 14

3 "Add-in" development ... 16

3.1 API limitations for HTTP requests ... 17

3.2 Currency conversion ... 18

3.3 Financial forecasting ... 18

3.4 Implementing custom functions .. 19

3.5 Sidebar as the main GUI ... 20

4 Application testing ... 21

4.1 Using the "add-in" ... 22

4.2 Unit testing .. 23

5 Possible improvements .. 24

6 Summary .. 25

References .. 27

8

List of figures

Figure 1. Diagram of data flow between the server and the client 12

Figure 2. JSON Web Token example representation in Postman 13

Figure 3. phpLiteAdmin version 1.9.7.1 main interface .. 14

Figure 4. Relationships between database tables in Microsoft Access 15

Figure 5. Opened HTTPS server certificate with DNS names shown............................ 17

Figure 6. Model training in the "forecasting generator" with the help of TensorFlow .. 18

Figure 7. FPM main interface with "Build Report" mode shown (step 1) 20

Figure 8. Spreadsheet with summary view ... 21

Figure 9. Main FPM Graphical User Interface with login form shown 22

Figure 10. Available custom functions provided by the "add-in" 23

9

1 Introduction

A substantial amount of companies and enterprises nowadays use a specific set of

applications in order to organise their internal workflow. Such a selection of programs is

commonly known as an "office suite". Office suites are designed to transfer work done

typically in an office from paper-based materials to electronic-based ones while

providing compatibility with legacy mediums and increasing workplace productivity

[1].

One of the most popular office suites today is Microsoft Office. It is being developed by

Microsoft Corporation since 1990 [2]. The newest version of the suite going by the

names Office 2019 and Office 365 [3] contains applications such as Word, Excel,

PowerPoint, OneNote, Skype for Business and many others. For example, Microsoft

Word is an advanced text editor or "word processor", with support for text and

document formatting, font styling, tables and is designed to let customers replace

regular paper-based documents. Microsoft PowerPoint is designed to be used for

creating presentations, which consist of slides that are grouped together. Microsoft

Excel can be employed for accounting purposes and manipulating small to large

amounts of numerical data. These three applications are the most essential in the

Microsoft Office suite because they facilitate the typical processes that are carried out in

the office.

Excel makes it simpler for accountants or Chief Financial Officers (CFOs), as opposed

to manual calculation, to aggregate and consolidate numbers, because it provides many

built-in tools that automate such processes. It may also be possible that a company does

not have any specialised accounting software due to it being expensive, while Excel

would generally be available. Likewise, Excel provides mechanisms to export data to

plain text or CSV files [4], which may be the format used by enterprise performance

management applications to process large amounts of data. Finally, spreadsheet

documents using the native XLS(X) file format are commonly used for sharing purposes

and can be imported to other office suites, such as Google Docs [5]. Therefore, it is

10

useful to deploy an Excel "add-in" to be used by the company employees, so that they

can retrieve data directly from the company's data warehouse and complete their work.

This data may consist of information such as budget, revenue or spendings, as well as

the time and date of financial transactions. Then they can make use of existing utilities

to complete the accounting processes.

During the course of the thesis, I worked with a representative of a company that faces

the posed problem, and was willing to identify the important features necessary to

complete the development of the Excel "add-in".

1.1 Initial analysis

Before the development of the integration component began, I analysed the needs of the

company. First of all, it required a possibility to create custom functions to be used

inside documents to return the total amount of money from a financial account during a

specified time span. Microsoft Excel already contains functions related to statistical

work [6], so when integrating additional functionality, the syntax can be made similar to

them for the sake of simplicity. Microsoft is providing developers with the Application

Programming Interface (API) and documentation to do exactly that [7]. I used this API

because it is modern and more actively developed, than the old one [8].

To actually transfer the data from the data warehouse into the "add-in", a microservice

was created as an intermediary. The goal of this microservice is to fetch information

from the data warehouse's database, convert it into an easy-to-process format, and then

pass the data to the "add-in" for an Excel custom function. Such a technique has several

benefits. Unlike the direct use of database API, there is no limitation as to what database

software should be used by the "add-in". This is an advantage, because the database

structure may be modified in the future, while the interface of the microservice is going

to stay the same. Since I did not have access to the real internal database of the company

I worked with, I created my own with a "mocked" structure. In case there is a need to

change the structure of the database, only the database-related programming code within

the microservice will have to be modified to account for the changes, while the "add-in"

in this case will keep using the same routines.

11

The second requirement for the "add-in" is the ability to build a detailed report,

consisting of financial data taken from the database. I realised that in this case custom

functions would not be fit for this task, because they only directly apply to one

spreadsheet cell, while the database contains information spanning across many

columns and rows, all of which would need to be placed into the report.

For this reason, I chose a different API [9], which provides ways to build a Graphical

User Interface (GUI) to input required data using the keyboard, and afterwards place the

produced output data into the spreadsheet without using the Excel function syntax. Even

though this method of input does not provide the ability to dynamically refresh columns

and rows with updated information over time, it is actually not required here, because

reports are meant to be static and unaffected by any subsequent updates. With this API I

was able to allow the user to type filtering data as an input, and pass it to the

microservice to generate only the output data that is necessary at the moment. After this,

the "add-in" would receive the data and using the Office API, it would be inserted into a

separate worksheet inside the document as static text. As an addition, a PivotTable is

also automatically generated. PivotTables are external dynamic table structures created

by Microsoft for Office Excel, and the contents of PivotTables can be modified by users

[10].

Another requested feature is to be able to transfer information from Excel cells into the

"add-in" for further processing. While I did not have a clear indication of what actions

need to be taken with the received information, I chose to implement a method of

dynamically inserting the primary custom function into the document. Instead of

specifying the function parameters manually, they would be generated as cell references

based on the data was selected by the user using the mouse before the generation occurs.

This feature aims to make it easier to change parameters after generation, since their

values, in this case, are located within the spreadsheet itself, unlike the typical method,

where they would be stored in the function's parameter list.

Finally, a specific custom function to enable financial forecasting was optionally

requested. Because TensorFlow is a popular and applicable machine learning

framework [11] that is also available for JavaScript, I chose it for this purpose.

12

2 Data warehouse microservice development

The data warehouse microservice is an additional layer with a stateless architecture,

exposing its APIs to be used by the "add-in" to exchange data with the database. It

utilises the Hypertext Transfer Protocol/Secure (HTTP/S) protocols for client

communication and is written in modern JavaScript based on the ECMAScript 2018

standard using Node.js version 10.15.3 [12]. Because Node.js provides many

embeddable packages for use within projects using the NPM package manager,

including the Express package [13] for making lightweight web servers, the process of

creating the data warehouse microservice has been greatly optimised. A major benefit to

Express is the ability to execute code after the HTTP headers and data have already

been received by the microservice, but before they reach the specified endpoint.

Equivalently, it is also possible to alter data in the other direction after the endpoint

function has completed its work, but before the reply is sent back to the client. This

way, request headers can be "prepared" for further processing. Editing headers is

necessary, because of several "add-in" limitations, such as Simple Cross-Origin

Resource Sharing (CORS) [14].

Figure 1. Diagram of data flow between the server and the client

13

To fetch data from the SQLite 3 database, an NPM package named "better-sqlite3" [15]

was used. The database is opened in "read-only" mode to prevent accidental writes

during testing.

2.1 User authentication and authorisation

Since the microservice uses the HTTP and HTTPS protocols to communicate with

clients, it is normally reachable from any device in the same local network or possibly

even the Internet. Therefore, to protect the microservice from potential attacks, it is a

good idea to require authorisation to be able to access its APIs.

The authorisation system for corporate users should include privilege separation, since

there may be parts of the API that are supposed to be accessible only by certain groups

of people and not others. Another feature, which can be considered "nice-to-have" but

not necessarily a requirement, is static token generation. Tokens are pieces of

information that are used to identify a specific log-in session. Since HTTP(S) requests

are stateless by nature, meaning they do not directly contain any relational information

about the previous requests made, it could help to minimise the need to keep track of

logged in users on the server side.

For these reasons, I chose JSON Web Token (JWT) as the system to be used for

authorisation and authenticating users. The main and most important advantage I

consider of JWT is that the tokens are automatically encrypted using a secure algorithm

Figure 2. JSON Web Token example representation in Postman

14

(HMAC-SHA256) [16] and a secret value or key, which is never disclosed outside of

microservice's own code. This way, as long as the key stays confidential within the

software, the integrity of a JWT token can be guaranteed, because a potential attacker

will not be able to simply alter it. Another benefit is that JWT tokens contain all the

necessary information about a user inside of themselves, such as the user's full name,

without the need to make additional queries to the database. The microservice decrypts

the token using the same secret key and immediately receives all needed contextual

information about the user. This helps to keep tokens stateless as well, however, a

potential vulnerability could be utilising expired tokens for new API requests, which

can be classified as a "replay attack" [17]. Fortunately, JWT tokens also include a

timestamp in the "IAT" field [18], capturing the time at which it was generated. This

means the attack can be mitigated by writing only this timestamp to the database in

place of a user's session if necessary and disallowing all other tokens that have their

timestamp set to a prior moment. In this project, I have not implemented such protective

measures, but it is possible to improve the microservice further by adding additional

security features like this one.

2.2 Database structure and mock-up

Figure 3. phpLiteAdmin version 1.9.7.1 main interface

15

For the project's back-end database system, SQLite version 3 was chosen, because it is

lightweight yet in many ways compatible with the standard SQL syntax [19]. Each

SQLite database is stored in one separate file in any preferred directory [20].

phpLiteAdmin version 1.9.7.1 running on PHP 7 was used to create and manage the

database. Because PHP contains the entire SQLite engine in itself, there is no need to

install additional software or perform separate SQL backup dumps. For use in Node.js

however, an additional package named "better-sqlite3" had to be installed to support

and read SQLite files.

The created database represents a hypothetical data warehouse of a company and

contains the following tables: Account, Company, Department, Period, Version,

UserGroups, Data, Users. The listed tables except the last two are classifier tables,

which means they contain descriptional data to be joined with other tables by using a

foreign key. The "Data" table contains a list of financial transactions made, with some

information referencing classifier tables, and the "Users" table contains a list of all

registered users for the service.

Microsoft Access was also used to visualise the relationships between the tables of the

"mocked" database.

Figure 4. Relationships between database tables in Microsoft Access

16

3 "Add-in" development

The creation of the "add-in" itself was made possible by a set of APIs that Microsoft

provides for Office developers. The specific APIs I used in the course of this thesis are a

relatively new addition because they are designed to be used with a modern form of the

JavaScript programming language, unlike the former ones, that were meant to be used

with Visual Basic for Applications (VBA) or C# [21].

The first API includes functions related to the Graphical User Interface (to be

implemented as a sidebar or task pane), as well as spreadsheet manipulation. This was

used to create the main Financial Performance Management (FPM) user interface. The

sidebar is a wrapper around Internet Explorer, which displays an HTML page at a

predefined Uniform Resource Locator (URL). From this page, JavaScript code can be

loaded into memory and afterwards, the Office API can be initialised. This allowed me

to design the application the same way as it is typically done when targeting a regular

web browser by web developers.

Another API that was used for the "add-in" is a separate custom functions API. At the

time of writing this thesis, this API was still in "preview" stage [22], but Microsoft aims

to update it and its related documentation from time to time. Since this API is

independent, most function calls to the main Office API cannot be performed within it.

Besides, it does not utilise Internet Explorer as a backbone, but a custom JavaScript

engine, which means it is more functionally limited. To transfer information between

the main API and the custom functions API, a class named AsyncStorage is exposed for

this purpose. This class provides dictionary-type storage in an asynchronous manner,

which is shared between the two APIs. Methods getItem and setItem allow the

developer to respectively read and write an element to this internal storage [23].

17

3.1 API limitations for HTTP requests

The "add-in" APIs provided by Microsoft require that HTTP requests are only made

with Transport Layer Security (TLS) encryption enabled. This type of request is also

known as HTTPS, where S stands for "secure", and is a layer on top of regular HTTP

[24]. Apart from that, the custom functions API only allows Simple CORS requests,

which means that most HTTP headers are denied, with the exception of "Accept",

"Accept-Language", "Content-Language" and "Content-Type" [25]. Also, loopback

connections using a reserved address such as "localhost" to the same computer are

disallowed as well. This means, that for manually testing the "add-in" before

deployment into production, self-signed HTTPS certificates and a "trusted root"

Certification Authority (CA) must be generated. To make sure that the requests are able

to contact a host by DNS name instead of an IP address, all required DNS names must

also be added into the certificate body. The project folder for the thesis includes

OpenSSL scripts with DNS names "localhost", "reverse.connect" and "fpm.host"

attached, which can generate the appropriate files.

Figure 5. Opened HTTPS server certificate with DNS names shown

18

3.2 Currency conversion

To implement currency conversion, two currency-related functions are available in a

separate file named "currencyconversion.js". This code is temporary and since it

contains fixed currency rates allowing conversion only from Euro and to Euro, it should

be replaced in production by developers more familiar with the field of finance. It also

utilises the Big.js library to avoid floating point inaccuracies. Currency conversion is

used by the "add-in" when letting the user select any supported type of currency in the

output.

3.3 Financial forecasting

Using modern frameworks such as TensorFlow, it can be trivial to define and train

machine learning models. In this project, I used the TensorFlow JavaScript API to

enable financial forecasting functionality within the "add-in". Unfortunately, the

JavaScript variant of TensorFlow named TensorFlow.js does not yet fully support back-

ends other than Node.js and Google Chrome's underlying browser engine [26], which

means that I was not able to embed TensorFlow to the "add-in" itself for forecasting

purposes, so I had to import its functionality to the data warehouse microservice instead,

which works on top of Node.js.

For testing the forecasting abilities, I made use of a variant of Recurrent Neural

Networks (RNN) called Long Short-Term Memory (LSTM). Recurrent Neural

Networks are usually used for sequential numerical data and are designed to predict

future outcomes, based on all trained data from the past at once [27].

Figure 6. Model training in the "forecasting generator" with the help of TensorFlow

19

Training data and resulting models are generated by a separate program, which is named

"forecasting generator". This application logs in to the data warehouse service using

credentials of a specified privileged user and requests all financial data within a time

frame denoted by a year and week, and afterwards computes the resulting price per year

in Euros. The data is then saved as a local file to speed up the generation process during

later launches. Afterwards, the financial data is normalised using a mathematical

normalisation function and passed to TensorFlow as it trains the LSTM model for 2000

cycles (epochs). The epoch count, as well as other settings, can, of course, be tweaked

in the future by other developers. The resulting model is saved as a local file, along with

the information needed to denormalise the predicted values in other programs.

3.4 Implementing custom functions

The two defined custom functions are designed to output only one piece of information

to an Excel spreadsheet cell, in both cases containing an amount of money and its

respective currency code according to the ISO 4217 standard. The data type of the

output is "string", which means it can consist of any textual information. For example,

in case of a failed request, an error message is being output instead of the expected

value.

To actually output the value itself, the custom functions first retrieve a previously saved

JWT authentication token from AsyncStorage to be used as an HTTP(S) header and

then send it to the microservice along with the input parameters. Here, the "Currency"

parameter is optional, and if no value for it is specified, it defaults to "EUR" (Euros).

For the first function, the microservice sends back an array of values to the client that

denote either a negative or positive amount of money and/or the currency. Then all the

amounts are summed up on the client side with the help of the Big.js library.

The second function behaves the same way, except for actions taken after the data has

been received from the microservice. In this case, it is only a single amount in Euros,

which does not need to be added up and can be directly converted to another currency

using a currency conversion function.

20

3.5 Sidebar as the main GUI

With the sidebar, a user of the "add-in" can access the main Graphical User Interface,

where several modes of operations (labelled as "Function") may be selected. The GUI

represents all available functionality that is not available via the custom Excel functions.

It is made with the help of HTML, CSS and JavaScript, which are the primary web

development technologies.

The first mode instructs the user to go through a series of steps and select the desired

data to filter by inputting classifier values. If no mistake has been made, a separate

worksheet is created, where the output is written to.

The second mode allows the user to automatically insert the main custom function into

the spreadsheet, however, the parameters, in this case, are being taken from nearby cells

and selected using the mouse.

Figure 7. FPM main interface with "Build Report" mode shown (step 1)

21

The third and final mode provides a summary of the database's classifiers through a

special microservice endpoint and outputs it to a separate worksheet.

4 Application testing

Testing is a crucial part of the development process so that it can be made sure that all

prerequisites are still fulfilled after making changes to the code. Both manual testing

and unit testing principles are used in the course of the project.

Figure 8. Spreadsheet with summary view

22

4.1 Using the "add-in"

To enable the "add-in", a new document has to be created via NPM scripts in the folder

"AddinFinancial". This will open Excel automatically with an extra button that launches

the main interface. Before using any of the features provided by the "add-in", a user

must first authenticate using his or her corporate credentials. A login form is provided in

the sidebar, and upon successful login, the resulting JWT token is saved to

AsyncStorage. After that, modes of operation on the main screen of the sidebar are

available for usage. Whereas some of them do not need any feedback from the user to

complete, others require that either a certain action is taken beforehand, or a GUI form

is filled in. If by chance this action was not done properly, an error message is

displayed.

Figure 9. Main FPM Graphical User Interface with login form shown

23

Custom functions can make use of the saved token as well. There are two custom

functions available: "=A.FPM" and "=A.FPM_FORECAST". They both need a correct

token to retrieve any data and can be used the same way as standard Excel functions.

After the necessary work is done, the user can log out of the "add-in" by clicking the

"Log Out" button, and after this operation, the JWT token is cleared and no longer

available.

4.2 Unit testing

To avoid regressions and software bugs in the project's code, it was suitable to employ

unit testing during development, in which typical scenarios are being tested at the level

of a unit, here specifically a function. A specific unit test succeeds if for a given defined

input the output is the same as the expected one. The strategy of unit testing I chose has

the characteristics of white-box testing, where apart from testing the input and output of

a unit, the correctness of internal variables or states is checked as well [28].

The unit testing program was written in JavaScript, just like the main project. Even

though there is an abundance of ready-to-use unit testing frameworks available for

JavaScript [29], I required "stubbing" functionality that was not commonly available. In

addition to that, I wanted to have the ability to extract separate functions from another

file and load them using the "Function" object built into the language. Therefore, I built

the unit testing program from scratch. The created application contains a small set of

functions that can be used in place of a regular comprehensive testing framework.

Apart from locally verifying source code files, endpoint-level testing over the network

is used as well, because the format of endpoint definitions utilised by the Express

Figure 10. Available custom functions provided by the "add-in"

24

library within the data warehouse microservice does not reflect standard JavaScript

functions.

5 Possible improvements

The "add-in" can be improved further by remaking the Graphical User Interface as a

Progressive Web Application (PWA) using frameworks such as React or Vue.js. This

way, the modularity of GUI components is increased.

Another enhancement that could be made is the tweaking the financial forecasting

functionality, for example by changing the current neural network settings, or using a

different one altogether. Additionally, more ways to normalise financial data can be

used.

Finally, the support for Google Sheets, a web-based Microsoft Excel alternative and a

part of the Google Docs office suite, can be explored as well. The bare minimum

implementation for a financial performance management integration component for

Google Sheets is already present in the project as "database summary" and "financial

forecasting" functions in the "GoogleSheets" folder.

25

6 Summary

The main goal of the thesis was to make an integration component for a financial

performance management system. An analysis was made to determine the correct ways

to complete the work. After the completion and testing of the project, I can conclude,

that all of the necessary required features have been implemented, and the result is a

finished "add-in" for Microsoft Office Excel. In brief, it is able to utilise a microservice

to be able to retrieve data from the company's databases seamlessly to the user and

modify a spreadsheet document in different ways.

All of the contained features of the project include:

• The ability for the "add-in" to connect to the data warehouse microservice

• The ability for the data warehouse microservice to connect the company's

databases

• The ability to use a custom function to fetch and aggregate data from the

microservice

• The ability to convert financial values across currencies

• The ability for the user to use a Graphical User Interface via the sidebar

• The ability to create a report on a separate worksheet that displays static filtered

data to the user

• The ability to dynamically insert a custom function into the spreadsheet based on

user's input

• The ability to predict financial information based on the past data (forecasting)

• The ability for the data warehouse microservice to alter HTTP(S) request

headers

26

• The ability for the user to log into the "add-in" using enterprise credentials

• The ability to store the user's session token locally after a login

• The ability to retrieve information about the user and generation time directly

from the token

• The ability to transfer the session token from the "add-in" to the microservice

• The ability to automatically test the project's code for correctness (unit testing)

• The ability to write custom support for Google Sheets, based on the data

provided

The finished project directory contains everything necessary to be able to use the "add-

in" and develop it further.

27

References

[1] “Productivity software. Office suite,” 22 5 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Productivity_software#Office_suite.

[2] “History of Microsoft Office,” 22 5 2019. [Online]. Available:

https://en.wikipedia.org/wiki/History_of_Microsoft_Office.

[3] “Microsoft Office 2019,” 22 5 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Microsoft_Office_2019.

[4] “Import or export text (.txt or .csv) files,” 22 5 2019. [Online]. Available:

https://support.office.com/en-us/article/import-or-export-text-txt-or-csv-files-

5250ac4c-663c-47ce-937b-339e391393ba.

[5] “Import data sets & spreadsheets,” 22 5 2019. [Online]. Available:

https://support.google.com/docs/answer/40608.

[6] “Statistical functions (reference),” 22 5 2019. [Online]. Available:

https://support.office.com/en-us/article/statistical-functions-reference-624dac86-

a375-4435-bc25-76d659719ffd.

[7] “Custom functions parameter options,” 9 5 2019. [Online]. Available:

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/custom-functions-

parameter-options.

[8] “Create custom functions in Excel,” 22 5 2019. [Online]. Available:

https://support.office.com/en-us/article/create-custom-functions-in-excel-2f06c10b-

3622-40d6-a1b2-b6748ae8231f.

[9] “Build an Excel task pane add-in,” 2 5 2019. [Online]. Available:

https://docs.microsoft.com/en-us/office/dev/add-ins/quickstarts/excel-quickstart-

jquery.

[10] “Create a PivotTable to analyze worksheet data,” 22 5 2019. [Online]. Available:

https://support.office.com/en-ie/article/create-a-pivottable-to-analyze-worksheet-

data-a9a84538-bfe9-40a9-a8e9-f99134456576.

[11] “Why TensorFlow always tops machine learning and artificial intelligence tool

surveys,” 23 8 2018. [Online]. Available: https://hub.packtpub.com/tensorflow-

always-tops-machine-learning-artificial-intelligence-tool-surveys/.

[12] “Node.js ES2018 Support,” 22 5 2019. [Online]. Available:

https://node.green/#ES2018.

[13] “Installing Express,” 22 5 2019. [Online]. Available:

http://expressjs.com/en/starter/installing.html#installing.

[14] “Runtime for Excel custom functions,” 8 5 2019. [Online]. Available:

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/custom-functions-

runtime.

[15] “better-sqlite3 - npm,” 22 5 2019. [Online]. Available:

https://www.npmjs.com/package/better-sqlite3.

[16] “Introduction to JSON Web Tokens,” 22 5 2019. [Online]. Available:

https://jwt.io/introduction/.

[17] “Use JWT The Right Way!,” 7 10 2014. [Online]. Available:

https://stormpath.com/blog/jwt-the-right-way.

28

[18] “JSON Web Token - Structure,” 22 5 2019. [Online]. Available:

https://en.wikipedia.org/wiki/JSON_Web_Token#Structure.

[19] “SQLite - SQL As Understood By SQLite,” 22 5 2019. [Online]. Available:

https://www.sqlite.org/lang.html.

[20] “SQLite - Database File Format,” 22 5 2019. [Online]. Available:

https://www.sqlite.org/fileformat.html.

[21] “AddIn object (Excel),” 29 3 2019. [Online]. Available:

https://docs.microsoft.com/en-us/office/vba/api/excel.addin.

[22] “Create custom functions in Excel (preview),” 1 5 2019. [Online]. Available:

https://github.com/OfficeDev/office-js-docs-

pr/blob/296f6364b12a794c886e03de80b6d041786e714f/docs/excel/custom-

functions-overview.md.

[23] “OfficeRuntime.AsyncStorage,” 1 5 2019. [Online]. Available:

https://bit.ly/2JXHVkP.

[24] “HTTPS - Wikipedia,” 22 5 2019. [Online]. Available:

https://en.wikipedia.org/wiki/HTTPS.

[25] “Fetch Standard - Headers,” 3 5 2019. [Online]. Available:

https://fetch.spec.whatwg.org/#cors-safelisted-request-header.

[26] “Platform and environment | TensorFlow.js,” 22 5 2019. [Online]. Available:

https://www.tensorflow.org/js/guide/platform_environment.

[27] “The magic of LSTM neural networks,” 2 2 2018. [Online]. Available:

https://medium.com/datathings/the-magic-of-lstm-neural-networks-6775e8b540cd.

[28] “Testing advice. Chapter 9. Software Testing,” 22 5 2019. [Online]. Available:

https://www.cs.uct.ac.za/mit_notes/software/htmls/ch09s06.html.

[29] “JavaScript Unit Testing Frameworks,” 22 5 2019. [Online]. Available:

https://www.guru99.com/javascript-unit-testing-frameworks.html.

