
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Martin Mihalovic 223593IVCM

GENETIC MALWARE ANALYSIS

Master’s Thesis

Supervisor: Alejandro Guerra Manzanares
PhD

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Martin Mihalovic 223593IVCM

PAHAVARA GENEETILINE ANALÜÜS

Magistritöö

Juhendaja: Alejandro Guerra Manzanares
PhD

Tallinn 2024

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Martin Mihalovic

12.05.2024

1

Abstract

Today’s Internet landscape witnesses the emergence of thousands of new malware variants
daily, necessitating continuous vigilance from security teams. These teams must promptly
counteract the evolving Techniques, Tactics, and Procedures (TTPs) embedded within
malicious code. This study introduces a proactive approach to collecting and processing
malware from the Internet, termed Genetic Malware Analysis. This domain combines
the principles of Data Science with Malware analysis to make malware analysis in an on-
premise environment more efficient. Genetic Malware Analysis encompasses fundamental
static analysis, sample preprocessing via static code analysis, and subsequent analytics
employing machine learning techniques. This research introduces a novel interpretation
of malware genes and their feature engineering, with experimentation on various config-
urations of supervised machine learning algorithms. Experimental results demonstrate
that the classification accuracy of malware families reaches up to 80%, with testing time
reduced by up to ten times. The experiments confirmed that the developed algorithm can
process up to 1000 samples within one hour. Additionally, this study contributes research
findings in the form of code to an advanced malware analysis platform named MalTraits.
Through the MalTraits web application, malware analysts can conduct and customize
experiments involving machine learning, visually correlating samples using a 3D graph
and percentage-based similarity calculations. Ultimately, this work facilitates the practical
application of static malware genes and machine learning across various current malware
families.

The thesis is written in English and is 83 pages long, including 8 chapters, 19 figures and 6
tables.

2

List of Abbreviations and Terms

IR Incident Response
TLP Traffic Light Protocol
IOC Indicators of Compromise
APT Advance Persistence Threat
CISC Complex Instruction Set Computer
ML Machine Learning
CERT Computer Emergency Response Team
EP Entry Point
PE Portable Executable
OS Operating System
ELF Executable and Linkable Format
IL Intermediate Language
SIEM Security Information and Event Management
CBA Cost-Benefit Analysis
IAT Import Address Table
TTP Tactics, Techniques and Procedures
CFG Control Flow Graph
DBI Dynamic Binary Instrumentation
KNN K-Nearest Neighbors
LSH Local Sensitive Hashing
FCG Function Call Graph
AV Antivirus Program
MFA Multi-Factor Authentication
RAM Random-access memory
ORM Object Relational Mapping
PCA Principal Component Analysis

3

Table of Contents

1 Motivation . 8
1.1 Hypothesis . 10
1.2 Scope . 11
1.3 Research Questions . 12
1.4 Novelty . 13
1.5 Limitations . 14
1.6 Research Methods . 15
1.7 Structure Description . 16

2 Terms and Notations . 17

3 Background . 18
3.1 Malware Analysis . 21
3.2 Genetic Malware Analysis . 24
3.3 MalTraits . 27

3.3.1 Platform Architecture . 28
3.4 K-Nearest Neighbors . 29
3.5 K-means . 30

4 Related work . 32
4.1 Review Protocol . 32
4.2 Static Malware Analysis Techniques . 33
4.3 Machine Learning in Malware Analysis 33
4.4 Attribution of Malware to APT Groups 34
4.5 Primary Studies . 34
4.6 Assessment of Study Quality . 36
4.7 Data Extraction . 37
4.8 Data Synthesis . 37
4.9 Review Report . 38
4.10 Challenges in Malware Analysis . 38

5 Contribution . 40
5.1 Feature Engineering . 41

5.1.1 Categorical Data Representation 43
5.1.2 Numerical Data Representation 44
5.1.3 Optimalizations . 45

4

5.2 Data Pre-processing . 46
5.2.1 Exclusion of Packed Samples . 47
5.2.2 Malware Family Name Aliases 48

5.3 Software Design . 49
5.3.1 Experiment Environment . 50
5.3.2 Wireframes . 50

5.4 Implementation . 52
5.4.1 Integrations . 53
5.4.2 Malware Correlations . 54

6 Validation . 56
6.1 Identification of Custom Packer by Malware Genes 56
6.2 Classification of the Zeus Malware Family 59
6.3 Malpedia Dataset Experiment . 61

6.3.1 Selection of Representative Malware Families 62
6.3.2 KNN Classification of Whole Dataset 62
6.3.3 KNN Classification of Subset Malware Families 63

6.4 Performance Benchmarking of the Solution 64

7 Discussion . 66
7.1 Future Work . 67

8 Conclusion . 68

References . 69

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 77

Appendix 2 – QakBot Malware Analysis . 78

5

List of Figures

1 Virustotal submission statistics between 8.3.2024-15.3.2024 [7]. 11
2 Side to side comparison between statically and dynamically linking of the

binary. 14

3 NIST Incident Response Lifecycle [21]. 19
4 Pyramid of Pain created by David Bianco [25]. 20
5 Malware genes visualized by MalTraits. 24
6 Type “block” Malware genes represented in IDA as basic blocks. 26
7 Malware analysis page of MalTraits platform. 27

8 Database logical model of the Sample and the Malware gene. 41
9 The process of generating a vector of categorical data. 44
10 PeID identification of packer and programming languages. 48
11 Design Wireframe of the Experiment page. 51
12 Contributed Integrations to the research 53

13 PeID packer detection in QakBot sample 56
14 Flare Capa plugin in IDA Pro. 58
15 QakBot correlation based on genes of custom Packer. 59
16 Zeus malware experiment High-level design (HLD). 60
17 Experiment 1. - KNN Classification Zeus Dataset 61
18 Experiment 2 - Classification results. 64

19 Debugging and unpacking QakBot malware 79

6

List of Tables

1 Malware names assigned by Antivirus products 49

2 Basic Static Analysis of QakBot sample 57
3 Basic Static Analysis of Unknown sample 59
4 Representative Malware Families . 62
5 Benchmarking of the Solution . 64

6 Qakbot Basic Static Analysis . 78

7

1. Motivation

Malware, sometimes referred to as malicious software (further referred to as malware),
constitutes a crucial element of the well-established cybersecurity framework known as
the Cyber Kill Chain 1, developed by Lockheed Martin. One of the common objectives
of malware analysis is to answer questions about the various capabilities of the malware.
Frequent questions on malware analysis are connected with malware capabilities, whether
it can communicate to the Internet, damage data, or stay undetected by antivirus software
[1].However, uncovering malware capabilities is not the sole objective of malware analysis.
In practice, malware analysis is often applied as part of the Incident Response (IR) process,
aiming to investigate the incident and attribute the threat actor. Malware analysis should
also answer whether the malware was targeted, attribution of the author, or whether
malware has already been seen in the past. Answering these questions requires a lot of
experienced personnel, time and data. The Independent IT-Security Institute has published
that they register more than 450,000 malware specimens per day [2]. Therefore, manual
correlation and malware sample attribution represent a major challenge for cybersecurity
teams. Moreover because of “Traffic Light Protocol” (TLP), malware specimen from
incident cannot be submitted to cloud analyzers such as Virustotal 2. In such cases, malware
analysis teams are often referred to internal capacities and resources in an offline/on-
premise environment.

Malware analysis poses a significant time and technical challenge, particularly in Incident
Response scenarios where swift answers to critical questions - Who, When, Where, What,
Why, and How - are essential. However, malware analysis takes significantly longer, often
several weeks. The factor that significantly complicates the analysis process is mainly the
offline environment due to high TLP. Many security teams view malware analysis as a
reactive service, focusing solely on incident-related samples. This reactive approach proves
inefficient, lacking the necessary data to expedite analysis in the offline environment. Cyber
defense teams frequently struggle to verify whether similar samples have been encountered
or analyzed previously. Consequently, they cannot promptly classify samples as unique,
potentially targeted, or just ordinary cyber crime malware. Moreover, these teams typically
rely on correlations between samples based on common Indicators of Compromise (IOCs),
such as IP addresses, domains, or Mutexes. However, machine code-level correlations
offer more excellent utility for detection, correlation, and classification.

1https://www.lockheedmartin.com/en-us/capabilities/ cyber/cyber-kill-chain.html
2https://www.virustotal.com

8

This research represents malware similar to genes in the human body. Each malware
has its characteristics based on which it is possible to cluster similar entities and identify
anomalies quickly. Thus, the primary objective of this study is to bridge the gap between
Data Science and Malware Analysis. The first prerequisite for effective "Malware Data
Analysis" is access to up-to-date and sufficiently abundant data. The second assumption is
to create an efficient format for representing malware samples, such as hash values, arrays
of bytes, and images. An essential contribution of this research is introducing a format
known as "malware genes," which entails sequences of disassembled basic blocks from
binary files. On average, each malware specimen comprises thousands of such genes [3].
Lastly, successful "Malware Data Analysis" necessitates the selection of features conducive
to supervised and unsupervised machine learning methods. Thesis contribution extends
to enhancing an advanced malware analysis platform named MalTraits. Specifically, this
research contributes to malware classification on the MalTraits platform using the k-nearest
neighbors (KNN) algorithm and clustering techniques.

The primary objective of this research is to create a solution for malware correlation by
applying machine learning algorithms. The research product empowers organizations
to automatically gather malware samples from the Internet and assess them within their
infrastructure, capable of handling thousands of samples daily. The main reason why such
a volume of samples can be analyzed is the effectiveness of static analysis. Static analysis is
generally faster and less demanding on resources than dynamic analysis. Applied advanced
algorithmic methods such as classifying and clustering malware samples can significantly
reduce the time required to identify and initially analyze an unknown sample. This solution
addresses the research problem by enabling security teams to establish their own malware
repository equipped with advanced analytics. This solution eliminates the need to rely on
third-party services on the Internet or cloud.

This research facilitates the application of machine learning models to the dataset of
malware genes within an on-premise environment. This approach enhances the efficiency
of various processes in malware analysis. These processes include identifying correlations
between samples, deciphering code-writing techniques employed by different malware
developers, clustering samples into malware families, attributing samples to specific groups
or authors, and detecting anomalies. The solution’s validation entails applying the research
to malicious samples from well-known malware families and Advanced Persistent Threat
(APT) groups. By leveraging malware genes and machine learning, it is possible to uncover
the techniques employed by malicious code authors. It improves the ability to attribute
samples to specific attackers.

9

1.1 Hypothesis

Proposed solution is grounded in the belief that, even within an on-premise environment,
it’s feasible to establish a sophisticated malware repository with advanced analytical
capabilities. The criterion for ‘Malware Data Analysis’ is a large number of latest malware
samples, and their diversity in the categories of malware families. Many malware samples
are uploaded daily to public places on the Internet. Even with the utilization of static
analysis and optimized sample representation via malware genes, the analysis process
remains complex. Consequently, formulated research hypothesis is as follows:

■ H0: Using this research solution, it is possible to automatically analyze more than
1000 samples per day.

This research solution encompasses two primary types of analysis: Genetic and Static
analysis. Malware genes (refer to Section 3.2) serve as the foundational units for Genetic
analysis. Static analysis generates these genes through a process known as disassembling.
After disassembling the code, it is split into malware gene blocks, which are subsequently
enriched with necessary metadata. However, Static analysis presents limitations, as detailed
in the Limitations section (see Section 1.5). Packers compress and safeguard binary files
and pose challenges for static analysis. As a result, malware genes are generated solely
from the packer program rather than from the program itself being packed. Nevertheless,
excluding packed samples enables the establishment of advanced correlations based on
malware genetic characteristics. Packed samples will not be disregarded; instead, dynamic
analysis will be employed for unpacking. Unpacked samples can be later used in static and
genetic analysis. Section 3.3 provides further details on how this procedure operates on
the MalTraits platform.

■ H1: Genetic malware analysis can reveal correlations with great accuracy in malware
which is not packed.

The primary hypothesis of this research project is that the application of data science
methods in malware analysis can substantially enhance efficiency. Data science involves
automation elements such as automated malware fetching, preprocessing, and sample
analysis. However, for organizations, these processed samples in the form of malware
genes represent a significant advantage in TLP Red/Amber incident cases. Organizations
are liberated from manual sample classification and attribution tasks by leveraging a
genome database. With a sufficiently high-quality set of malware, organizations can reduce
reliance on third-party services.

10

1.2 Scope

Malware analysis is a vast area that one thesis cannot cover. Computer science recognizes
several computer architectures with completely different instruction sets [4]. Notably,
there is a growing trend of malware targeting MacOS with ARM architecture or embedded
systems with MIPS architecture [5, 6]. Malware genes in this research solution are
created by disassembling the binary code and depend on the specific type of instruction
set. Research scope is limited to Complex Instruction Set Computer (CISC) architectures,
specifically malware designed for x86 and x86-64 architectures. Malware still mostly
targets selected architectures, and for this reason, this research decided to focus only on
them 1.

Figure 1. Virustotal submission statistics between 8.3.2024-15.3.2024 [7].

Malware genes rely on the functionality of the disassembler, which falls under the category
of static analysis methods. The scope of this research was selected only for malware
targeting Intel architectures. The disassembler used in this research works for all types
of x86 and x86-64 binary files, regardless of their file type. A binary program is usually
written in the header of the file, where the program’s executable code is located, often also
called Entry Point (EP). The structure of the header, as well as the structure of the binary
program itself, varies slightly depending on the file type. Portable Executable (PE) files for
Windows Operating System (OS) have a different structure than Executable and Linkable
Format (ELF) on Linux OS [8]. Given that PE files represent the most prevalent category
among all file types [7], this study exclusively focuses on analyzing PE files.

Considering the complexity of the issue, this research opted to exclude binary programs
developed within the .NET framework. The main reason is the different structure of the
binary code since it is an Intermediate Language (IL). When compiling .NET programs,
‘Microsoft Intermediate Language’ (MSIL) is created instead of machine code [9]. It is
generally possible to create malware genes from these programs, but this research does not
deal with Intermediate Languages such as .NET and Java.

11

1.3 Research Questions

This thesis continues the research from the bachelor’s thesis by Mihalovic et al., who
described the possibilities of using malware genes [3]. One of the main problems of the
previous solution was the many-to-many comparison, which represented n2 complexity. In
practice, comparing thousands of samples using the many-to-many technique is unfeasible.
This thesis aims to create an applied research that will come with a valuable tool for
Genetic Malware Analysis. For this reason, developing another, more effective technique
than analyzing malware genes was necessary. Machine learning (ML) is one of the possible
methods to analyze malware genes more effectively, which makes it possible to analyze
a specific volume of samples described in Hypothesis 1.1 every day. The main research
question, which forms the essence of this research, is as follows.

How can machine learning be applied to genetic malware analysis?

However, the machine learning process consists of several steps, which are complex in the
application to malware genes [10]. For this reason, the main research question is divided
into three research subquestions. Pre-processing is one of the initial steps, sometimes
called "Data Cleaning" [11]. Genetic malware analysis that applies machine learning is
not practical in all cases. Packed malware samples are the main problem when Genetic
malware analysis fails. Data cleaning is an initial research problem that is defined by
the first sub-research question. The following research problem consists of architecture
and feature selection for machine learning. There are several possible representations
of machine learning features in malware genes. This issue was defined in the second
research sub-question. Finally, one of the main parts of this research is verification and
experimentation with machine learning in an application with malware genes. The third
research sub-question seeks to identify the machine learning method or algorithm that is
most effective for genetic malware analysis.

1. How can the data cleaning process be optimized to exclude packed malware samples?
2. What machine learning features can be extracted from the genetic characteristics of

malware?
3. Which machine learning method or algorithm demonstrates the highest suitability

for correlating malware?

This research involves analyzing raw data from malware binaries, requiring comprehen-
sive preprocessing to enable machine learning application. This process encompasses
normalizing data into malware genes, collecting data through integration with diverse

12

malware repositories, and cleaning data by excluding irrelevant samples. The core focus
of this research involves feature engineering of malware genes and testing the resultant
machine learning model. When samples indicate poor correlation, conducting a reverse
engineering analysis becomes crucial. The research contributes by analyzing the problem,
proposing feature engineering for malware genes, and creating functional software to
correlate malware samples.

1.4 Novelty

In most research studies, malware genes are typically generated through dynamic analysis
[12]. However, this approach doesn’t align with the practical need to analyze thousands of
malware samples daily. Many studies employ n-gram analysis to interpret malware genes,
which introduces significant overhead and lacks efficiency [13].

This research interprets malware genes by utilizing disassembled code segments enriched
with analytical metadata. This approach interprets the logical structure of malware as its
fundamental unit. To the best of author’s knowledge, there hasn’t been any application of
machine learning to this interpretation of malware genes.

The novelty of this research lies in its examination of the challenges outlined in Section
4.10 regarding malware analysis research and the practical needs of the field. This research
introduces the concept of integrating Data Analysis and Malware Analysis. More precisely,
it merges a distinctive interpretation of malware with machine learning, termed "Genetic
Malware Analysis". This research thesis is motivated by two main factors:

■ Malware is not just one indivisible part
■ The absence of machine learning integration in malware analysis remains a gap,

especially in on-premise environments.

In practical terms, there exists a limited number of open-source tools that integrate both
malware analysis and machine learning. The MWDB software 3, developed by the Polish
Computer Emergency Response Team (CERT), stands out as one of the top tools for
malware analysis, particularly for handling large volumes of malware. However, its
primary focus lies in storing malware rather than correlating it. The objective of this
applied research is to bridge the gap between practical requirements and academic research.
The distinctiveness of this study resides in both the development of novel tools and the
capability to analyze malware at scale.

3https://mwdb.readthedocs.io

13

Figure 2. Side to side comparison between statically and dynamically linking of the binary.

1.5 Limitations

This research faces several limitations, primarily concerning the properties of static code
analysis (see Section 3.1). These limitations were categorized into two main parts.

■ Statically linked binaries
■ Obfuscation Techniques, Packers and binary Protectors

During the compilation process, binary programs can be linked statically with libraries,
which brings several advantages and disadvantages. From the programmer’s point of view,
it is an enormous advantage that the binary program does not depend on the libraries on
the host device. Developers can compile a statically linked PE file that can be executed
on different versions of Windows [14]. For malware authors, the advantage is that static
linking significantly complicates the static analysis of the code since the code of the
libraries is mixed with the code of the program. Statically linked programs are thus
significantly more complex for static code analysis 2, and in such cases, library signatures
such as FLIRT 4 can help us. A slight disadvantage of statically linked programs is the
much larger size of the program since it also contains a library program. Static linking
adds complexity to the research but does not make it impossible to analyze samples. Such
solutions for proper distinguishing can be comparing malware gene libraries and analyzing
binary programs, writing signatures, or using linear regression. Although this research
only briefly touches on this topic, the MalTraits project actively investigates this problem.

4https://hex-rays.com/products/ida/tech/flirt/

14

Packer, protectors, and obfuscation techniques essentially take full-fledged static code
analysis. Packer and protector are software designed to protect code, whether for a
legitimate or malicious purpose. Packers can be compared to postal envelopes in real life.
The envelope protects the letter or the contents that are sent in it. However, the recipient
can open it and become familiar with its contents. It is similar to packers, which unpack
the code in the runtime process. When the program is not running, the code is protected
by various techniques such as encryption, virtualization of instructions, or obfuscation.
The MalTraits project integrates static and dynamic approaches to unpack packed samples.
However, this research does not delve into an exhaustive analysis of packers or the tools
employed for unpacking.

1.6 Research Methods

This thesis adopts a hybrid approach that integrates both Quantitative and Qualitative
research methodologies. The objective of this approach is to initially utilize Quantitative
Research to gather fundamental information about a vast array of samples across various
malware families. The primary sources of data in the form of malware for this research
are platforms such as Malpedia 5, MalwareBazaar 6, VirusShare 7 and Vx Underground
8. The size of the tested datasets ranges from 100 malware samples to 2000. In each
experiment of this research, there are at least ten malware families. Through quantitative
research, it can be created a malware data model and find correlations between groups of
malware families, threat actors and the malware samples themselves. One of the outputs of
quantitative research are the statistics of the solution with which accuracy it is possible to
classify malware.

A significant role in this research is the qualitative method, which is carried out only after
quantitative research. The main objectives of the qualitative method are divided into two
parts:

■ Analysis of selected samples that were not successfully classified or clustered.
■ Verification of the significance of selected malware genes using reverse engineering.

The initial phase of the qualitative research entails conducting a thorough analysis of
the malware families to which the sample belongs. Various factors may contribute to
misclassification, including the possibility that the sample was packed and the developed

5https://malpedia.caad.fkie.fraunhofer.de/
6https://bazaar.abuse.ch/
7https://virusshare.com/
8https://vx-underground.org/

15

solution failed to detect the packer. Additionally, misclassification may occur due to
the close relationship between certain malware families, with significant code overlap
observed, as is often the case with sub-families of the "Zeus" family.

The subsequent stage of the qualitative research involves assessing the significance of the
correlated malware genes present in the selected samples. This analysis aims to determine
whether these genes hold significance and explore methods for automatic identification. In
the mentioned qualitative methods, it has been used a professional malware analysis tool
called IDA Pro 9.

1.7 Structure Description

Section 2 describes some frequently used terms in this research. Following that, Section
3 theoretically analyzes the most essential parts of the research. This section further
elaborates on essential concepts previously examined in previous research, upon which the
present study is built [3]. Section 4 is an essential part of the thesis, involving a literature
review and selecting primary studies.

The contribution of this research, including code examples, is detailed in Section 5.
Following that, Section 6 primarily presents the results of the research verification. The
Discussion section (Section 7) summarizes these results and evaluates potential paths of
further research.

9https://hex-rays.com/ida-pro/

16

2. Terms and Notations

Throughout this thesis, certain terms are frequently utilized, and it is imperative for the
clarity and coherence of the research that their meanings remain consistent. In order to
understand the essence of the research, it is crucial to understand the following terms.

Malware is a piece of code that can cause unwanted behavior to the endpoint, such as
excessive use of system resources, remote access, destruction or exfiltration of personal
data. Detailed features of the malware can be found in the MITRE Att&ck framework 1.

Benign sample is just an ordinary program that is not malicious. Such programs are used
for several reasons, such as improving machine learning models for malware analysis.
Adding benign samples to the data model can reduce the probability of a false positive rate
in detection accuracy [15].

Malware Gene is a sequence of bytes that consists of disassembled parts of instructions.
Each malware gene is enriched with metadata such as hash, cyclomatic complexity, and
entropy. It recognizes two types of malware genes, the “block” type and the “function”
type. It is the basic logical atom with which this thesis work.

Malware Genetics represents a novel approach to malware analysis, enabling automated
analysis of binary files through data analytics [16].

Malware analysis is a broad area that is interested in researching the behavior/properties
of malicious samples. Malware analysis often uses reverse engineering, which examines
binary programs using disassembly or decompilation. From a procedural standpoint,
malware analysis of binary files can be categorized into Basic static analysis, Behavioral
analysis, and Code analysis [17].

Incident Response is a reactive event to a cyber incident, during which security teams try
to mitigate the effects of the attack and analyze the course and consequences of the attack.
Incident response usually consists of several sub-areas, such as data acquisition, forensic
analysis, and malware analysis [18].

1https://attack.mitre.org/matrices/enterprise/

17

3. Background

In general, actions in security can be divided into three categories: reactive, proactive, and
quality management services [19].In this thesis, the primary focus lies on the first two
categories. Reactive services already react to a cyber incident and try to investigate it. On
the contrary, proactive services take action before an incident occurs to prevent or prepare
for an incident. Incident Response (IR) is often considered a reactive service or action.
Malware analysis is part of the IR and therefore based on the water flow principle, this
could also be considered as a reactive action. However, there are several problems that
occur with the "reactive" approach in malware analysis. An example is a situation when
an organization receives a TLP Red incident. The sample, as evidence from the incident,
cannot be provided to third parties for analysis. Malware analysis should bring answers to
questions such as:

■ Sample classification - It is a well-known malware that is often spread on the
Internet or it is a malware that has not been seen yet. The answers to these questions
could indicate whether it is, for example, a targeted attack.

■ Malware attribution - Attribution based solely on malware analysis is challenging.
However, when combining information from other areas of IR (such as forensic
analysis), it becomes possible to attribute a threat actor.

■ Detection of code reusing - Code reuse is not a new phenomenon in malware, but
it is becoming more frequent. Several malware such as Havoc 1, Covenant 2 or
Metasploit 3 are open-source and many other malware developers adopt these parts
of the code. Obtaining information about code usage can speed up malware analysis
and can also provide important "Threat intelligence" information.

■ Threat actors monitoring - It is very important for security teams to know who
is attacking them. In this case, the consideration extends to simple phishing at-
tacks, which contain malicious attachments, as part of the threat landscape. In this
way, every organization can evaluate and create a Threat Model based on malware
samples.

These questions are difficult to answer in offline enviornment and without preparation in
the form of creating and maintaining a malware dataset. In general, proactive activities in
cybersecurity are very important. "Preparation" 3 is the first and one of the four phases

1https://github.com/HavocFramework/Havoc
2https://github.com/cobbr/Covenant
3https://github.com/rapid7/metasploit-framework

18

of the IR lifecycle in the NIST 800-61 manual [20]. The entire following IR lifecycle
depends on this phase. If high-quality monitoring in the form of Security Information
and Event Management (SIEM) has been deployed, the attack chain can be detected in
the early stages. If the organization is preparing in the area of malware analysis, the
"Containment" and "Eradication" phases can be much faster and more efficient. Proactive
steps are therefore very important in malware analysis, but the question is what should this
"Preparation" phase look like.

Figure 3. NIST Incident Response Lifecycle [21].

One of the frequently used methods in malware analysis and forensic analysis are Yara
rules. The advantage is that these rules can be easily shared. In the case of an incident,
it is enough to pull rules into an offline environment, where rules can be used to hunt
and sometimes classify malware. However, the general problem with signatures is that
they only look for a partial number of binary strings in the binary program. The author
of the malware can change, for example, the library or the string, and his or her malware
is become undetected. Moreover, based on the research data from Malpedia from March
2024, there is 37,38% malware families, which are not covered by YARA rules [22].
Finally, YARA signatures cannot react to unknown malware families since there are no
rules for them.

In proactive malware analysis, it is necessary to collect samples in large volumes from the
Internet, partner organizations, or the perimeter of the organization. However, scraping
and simply downloading malware samples are not enough. From the point of view of
Cost-Benefit Analysis (CBA), the biggest cost is considered to be the space for storing the
sample. According to the mentioned statistics, 450,000 malware samples are registered

19

every day [2]. Based on the research experiments described in section 6.2 and 6.3, the
average sample size is 592 Kilobytes (kB). Testing dataset in these experiments contains
1916 malware samples. If it were possible to capture all these malware samples, one
would need 266GB of storage space every day. Despite the factor that the given amount of
malware is unlikely to be caught on a daily basis, this number represents a relatively large
cost. The only benefit of this technique is obtaining metadata such as hash or file size.

A hash is a one-way mathematical operation that is often used to verify the integrity of
content [23]. One of its key properties of the hash function is the so-called ‘Avalanche
effect’. This effect represents a phenomenon when the input changes minimally, for
example only a single bit changes, so the output of the function is completely different [24].
This operation is very valuable in forensic analysis, but it has no great value in malware
analysis. The model that describes what is difficult for the malware author to change is
called the “Pyramid of Pain” 4. The hash value in the ‘Pyramid of Pain’ model is at the
bottom in terms of usefulness for detecting and classifying malware. It is trivial task for an
attacker to change an arbitrary parameter at the level of the entire sample, which is resulted
in completely different hash.

Figure 4. Pyramid of Pain created by David Bianco [25].

Research objective of the thesis is to find correlations between malware specimen at the
code level, which represent the highest layer of Pyramid of Pain model. The code of
various penetration tools can often be embedded in malware. Several programmers, and
not necessarily only malware, have their habits, style, templates, and techniques that they
learned during their careers. These features of programmers are very difficult to change,

20

unlike, for example, the hash of the program or the IP address on which the malware
communicates. For this reason, detection at the TTP’s of the malware developer level is
one of the most accurate technique for malware detection or categorization.

Malware or binary programs are not considered as one large chunk of bytes. On the contrary,
malware is viewed as a commodity that can be effectively utilized for analytical purposes.
A binary malware sample typically comprises hundreds or thousands of small logical
particles. These particles, referred to as malware genes, encapsulate the compiler code, but
primarily represent the code of the malware developer. Malware genes contain reused code,
templates, techniques, tactics, and programming styles of the malware developer. This
information stands at the top of the "Pyramid of Pain" 4, and it can effectively correlate,
attribute, and analyze malware samples based on it.

3.1 Malware Analysis

Malware analysis is an area that examines samples of various file formats and evaluates
whether it is a malicious or benign sample. In the case of malicious samples, the task
of malware analysis is to detect "Indicators of the Compromise (IOC)", TTP and also to
answer the questions mentioned in the previous section 3. At the highest level, malware
analysis is divided into two methods [17]:

■ Static analysis - is part of the analysis, where the code is analyzed without executing
it. Static analysis is excellent for obtaining the overview of the analyzed sample.
With this technique, an overview of the places where the encryption routine, network
communication, or persistence are located can be obtained.

■ Dynamic analysis - the code was executed directly in a "safe" environment, and
the analyst observed how the sample behaved. In dynamic analysis, it is possible to
monitor network communication, activity on the file system or at a lower level such
as stack, memory or registers.

Each of the given methods can be divided into two submethods, which are basic and
advanced [17] code. Basic static and dynamic analysis focus on sample expressions
without analyzing the binary code. Among the outputs of the basic static analysis are the
detection of imported functions from the Import Address Table (IAT), entry point (EP),
hash values. Basic dynamic analysis is sometimes also called behavioral analysis [26]. The
analysis is performed in an isolated environment, which is called a sandbox. The aim of
this analysis is to monitor the behavioral properties of the sample, such as communication
to the Internet, changing registers or creating new files. These basic analyzes provide
important information for code analysis such as if sample is packed or not.

21

The second submethod of static and dynamic analysis is called ‘advanced’. ‘Advanced
Static Analysis’, examines binary code statically without running the sample. In this thesis,
the term ’Static Code Analysis’ is utilized, which is more descriptive than ’Advanced
Static Analysis’, but denotes the same concept. In practice, this method is frequently
employed for expedited comprehension of the program as a whole. Thanks to advanced
static analysis, places where interesting occurrences such as encryption routines arise can
be identified. Advanced dynamic analysis is often used by analysts when they unpack code.
However, each of these two main methods has its strengths and weaknesses. Therefore,
the ideal strategy for malware analysis is to combine these methods.

Basic Dynamic analysis can be done manually using various tools such as Sysinternals 4,
Wireshark 5, Regshot 6, FakeNET 7. The second option is to use a Sandbox solution such
as Cuckoo 8, Cape 9 or Drakvuf 10. Manual basic dynamic analysis is time-consuming
and technically more demanding. In this research, a semi-automated solution is sought;
therefore, manual dynamic analysis is not examined in more detail. Sandbox solutions
are complex tools that can automatically analyze a sample and thus simplify the analyst’s
work. However, malware sandboxes have several disadvantages from the point of view of
this research.

■ Evasion Techniques - There are several techniques that malware can use to deter-
mine whether a sample is running in a sandbox. An example can be an outdated API
hooking technique ("NtLoadKeyEx") from the ntdll library. This evasion technique
applies to Cape and Cuckoo sandboxes and causes the virtual environment to crash
[27]. Cape uses a DLL called "capemon" for monitoring, which is injected into the
process using APC injection and then hooks functions [28]. Malware can thus detect
whether its process has been injected using APC and thus reveal the CAPE sandbox.
There are many possible techniques for evading the sandbox - from simple sleep
functions to targeted techniques per sandbox.

■ Hard to scale - Analysis of a sample in a sandbox is very time and resource-intensive.
One sample can be analyzed in several minutes/tens of minutes. This presents an
issue for the objective, which aims to analyze malware in large volumes, in an
on-premise environment, and semi-automated. To process at least one-hundredth
of the malware published daily, thousands of samples need to be analyzed per day.
Dynamic analysis is hard to scale to such an amount of samples each day.

4https://learn.microsoft.com/en-us/sysinternals/
5https://www.wireshark.org/
6https://github.com/Seabreg/Regshot
7https://github.com/mandiant/flare-fakenet-ng
8https://cuckoosandbox.org/
9https://capesandbox.com/
10https://github.com/CERT-Polska/drakvuf-sandbox

22

Basic static analysis is not sufficient in many cases. An example can be a technique where
malware loads imports dynamically based on the hash value of library names and functions.
Basic static analysis cannot detect this technique because it does not examine the code.
In malware analysis, code analysis is often necessary to reveal and understand Tactics,
Techniques and Procedures (TTP).

Static code analysis necessitates an understanding of reverse engineering. However, this
thesis is not delve into the manual execution a static code analysis using tools such as IDA
11, Ghidra 12 or Binary ninja 13. On the contrary, research objective is to make the job of
the analyst more effective and to alert him to possible traps in the binary code. Examples
of such alerts include identifying whether any analysts have previously examined a similar
sample. Another aim is to classify the sample into a malware family cluster or potentially
attribute malware to the threat actor. Static analysis has the advantage that it is fast. By
statically analyzing and normalizing binary code, sophisticated analyses such as correlation
and clustering can be conducted. The technique for normalizing statically analyzed binary
code is referred to as malware genes (see Figure 5).

However, static analysis also has some disadvantages when analyzing malware. One of
the most common problems for static analysis is packed and protected samples. These
samples are unpacked during the program, which makes static analysis impossible. There
are several statistics about percentage of packed malware samples. Some research says
that 80% of malware samples are packed [29], another that it’s 34,79% of all samples
[30]. Because of such inconsistent results, a small experiment was conducted based on
samples from MalwareBazaar 14, which were submitted between 25.-31. October 2023.
This dataset contain 2023 samples, from which 60,11% represent PE files. A more detailed
description of this experiment and its results is attached to the Appendix??.

Another problem for static analysis method are anti-analytical techniques such as anti-
disassembling. These techniques attack the vulnerability of disassembly algorithms and
the subsequent creation of a Control Flow Graph (CFG). Examples of this technique are
"Opaque predicates", "Control Flow Flattering" or "Dead code". This thesis is focused on
creating malware genes from static analysis. The Maltraits project, of which this thesis is a
part, combines methods of static and dynamic analysis 3.3.

11https://hex-rays.com/ida-pro/
12https://ghidra-sre.org/
13https://binary.ninja/
14https://bazaar.abuse.ch/

23

3.2 Genetic Malware Analysis

Genetic malware analysis is a new term which was created by combining data analysis and
malware genes. In this research malware genes are created by static analysis method. In
general, it is also possible to have malware genes that are created using dynamic analysis.
One of the option for such solution is utilize Dynamic Binary Instrumentation (DBI).
DBI is software which is similar to debugger which can create malware genes during the
runtime of the program [31]. However, this research focuses on malware genes that are
created by static analysis. Genetic analysis works on outputs from static code analysis. It
is important that if the static analysis fails, the genetic analysis of the malware will also
fail by implication.

Figure 5. Malware genes visualized by MalTraits.

Malware genes are disassembled parts of the code, which are enriched with advanced
analytical metadata. Each sample has on average hundreds or thousands of such genes. A
Canadian researcher with the nickname ‘c3rb3r3u5d3d53c’ came up with the idea of binary
traits in a project called Binlex [32]. Malware genes are a continuation and improvement
of this format, which is modified for use in Machine Learning algorithms. At the level of
malware genes, advanced analyses can be performed, such as classification, clustering, and
anomaly detection. This brings enormous added value to malware analysts, as samples
can then be easily categorized and clustered based on parameters. Malware genes can be
evaluated based on entropy, number of instructions, and size. A malware gene with two
instructions certainly has no analytical value like, for example, another malware gene with

24

twenty instructions. In the MalTraits project 3.3, three analytical instances are utilized,
namely, (malware) sample, family, and threat actor. Each of these instances consists of a
corpus of malware genes whose correlations can be graphically visualized as shown at 5.

Correlations in malware analysis are very important, because they can reveal similarities
between samples, malware families and threat actors. In the case of malware, it is common
that the authors copy some part of the code from another program. This code may contain
anti-analytic techniques such as obfuscation, anti-debugging, anti-virtual machine or other
evasion techniques. If a given technique has already been seen in another malware from
the dataset, the analyst can be automatically alerted instead of manual analysis. Use case
for such alert can be example, where address 12345678 and the function “sub_87654321”
contains a technique that has already been observed in the past. This is one of the possible
examples of using correlation to make manual code analysis more efficient. The result of
the correlation can be an automated list of the sample techniques that have already been
seen in other samples.

However, with the help of malware genes, this can also be achieved. Certain parts of the
code may be identified as suspicious and not found in other samples. On the image 5 you
can see the correlations between the five malware samples. The analyzed sample is in the
middle of the graph, which is represented by only one (dark blue) node. From the graph,
which is created from the correlation of the malware genes of the samples, it is evident
that the pale blue sample (at the bottom of the graph) has many genes in common with the
analyzed sample. Malware gene correlation is powerful technique for determining sample
similarity.

1 {

2 "id" : 43,

3 "architecture" : "x86",

4 "average_instructions_per_block" : 7,

5 "block" : 1,

6 "bytes" : "00 00 04 17 6f 45 00 00 0a 03 7b e6",

7 "bytes_entropy" : 2.9182956218719482,

8 "bytes_sha256" :

"525ed8951a4726a0f6d40c230db6f441233cc0370f0d8dd6b07356fa793df86a",

9 "corpus" : "default",

10 "cyclomatic_complexity" : 3,

11 "edges" : 2,

12 "instructions" : 7,

13 "invalid_instructions" : 0,

14 "offset" : 1337,

25

15 "size" : 12,

16 "trait" : "00 00 04 17 6f 45 00 00 0a 03 7b e6",

17 "trait_entropy" : 2.9182956218719482,

18 "trait_sha256" :

"525ed8951a4726a0f6d40c230db6f441233cc0370f0d8dd6b07356fa793df86a",

19 "type" : "block"

20 }

Procedure 3.1. Example of malware gene

Malware genes are thus the basic atom of the MalTraits project. In genetic malware
analysis, two basic types of malware genes are distinguished: functions or blocks. A block
is a sequence of bytes up to the nearest conditional or unconditional jump 6. Malware
genes of type ‘function’ contain several malware genes of type ‘block’. Metadata of
malware genes is very important for machine learning, which helps to add value to them.
In practice, a malware gene that contains, for example, ten instructions has a greater value
than a malware gene that contains only two instructions.

Figure 6. Type “block” Malware genes represented in IDA as basic blocks.

26

3.3 MalTraits

The MalTraits project was created as product of the author’s previous bachelor thesis [3].
The aim of this platform is to connect research questions in the field of malware analysis
with the needs of practice. The goal of this work is to do applied research and apply
the acquired knowledge to the platform in the form of code. The goal of this research is
to support organizations for proactive collection and analysis of malware samples. This
industry was named "Malware Data Analysis." However, since there are not many tools
in practice that would enable this approach in an offline environment, the decision was
made to create MalTraits. The objective of MalTraits is to be a full-fledged platform for
"Malware Data Analysis" in an on-premise environment.

The scope of the MalTraits project is much wider than the scope of this research 1.2. The
ultimate goal of this platform is to create a platform for advanced malware analysis in an
on-premise environment. This platform supports the creation of an on-premise malware
repository and the modification of the binary program to malware genes. As described
in the Limitation 1.5 section, static analysis is not effective when the sample is packed.
For this reason, dynamic analysis was employed in the MalTraits research project. The
objective of this method is to unpack the sample and return it for static analysis, where it
can be analyzed using static and later genetic analysis.

Figure 7. Malware analysis page of MalTraits platform.

It is important to note that this thesis nor project MalTraits are not trying to create an
Antivirus solution that will tell the analyst whether the sample is malicious or benign.
This research is created for malware analysts and malware researchers, who decide for
themselves whether the sample is malicious or not. Main objective of the thesis is to help
simplify their work by research method called ‘Malware Data Analysis’.

27

3.3.1 Platform Architecture

Malware analysis is a complex process that consists of several parts as described in section
3.1. This research connects malware analysis and data science, or increases the complexity
of the solution architecture itself. The architecture of the MalTraits research platform
consists of several main components.

■ Sample Preprocessing - C/C++
■ Backend - Python Django, Celery workers 15, Channels websockets 16

■ Frontend - React, Material UI 17

■ Databases - PostgreSQL, MinIO, MongoDB, Redis
■ Machine Learning - Python scikit-learn 18

The sample preprocessing code is a forked code of the open-source tool Binlex, which
is written in the C/C++ language [32]. The purpose of this code is to disassemble the
code and enrich malware genes with important metadata. The C language is very well
suited for this, since disassembly requires work. In addition, a complicated operation
such as disassembly requires an effective language such as C/C++. The Binlex program
communicates with the Backend using Python bindings and the ‘pybind11’ library.

An important component of the entire research is the Backend written in the Django
Python framework. Since automated analysis is a difficult process that takes several
seconds to minutes, Celery workers are added to the Backend. Workers together with the
Redis message broker enable the execution of complex processes distributed on several
server nodes in the future. Instead of waiting for HTTP responses, workers work in
the background and communicate with Frotend using web sockets. This research can
effectively and distributedly process malware using tasks, queues and workers.

Frotend for this research is significant in terms of data representation and results. Since
the aim of the research is to process a large amount of malware, one of the critical areas
of the research are databases. Several types of databases are used in the research. The
PostgreSQL relational database is utilized to store relational data such as malware genes,
samples, and malware families. Each of the mentioned classes has some relationship with
another class. An example is a malware family that contains one or more malware samples.
However, the malware platform also needs to store binary programs as such, should they be

15https://docs.celeryq.dev
16https://channels.readthedocs.io
17https://mui.com/
18https://scikit-learn.org/stable/

28

needed in the future. Therefore, the MinIO database, which works with buckets, is used to
store malware samples. Redis in this architecture is used as a message broker that enables
communication between multiple workers and other application components [33]. Finally,
the NoSQL database MongoDB is added to the architecture. In research, this database is
intended for data related to machine learning.

In this research, the Python library Scikit-learn was used for problems related to machine
learning. This library has available a large number of algorithms from the category of
supervised or unsupervised machine learning [34]. The technological stack of this research
is relatively demanding, regardless of the fact that the main technical requirement is
experience in malware analysis. From this point of view, this research does not go into
depth in several technologies, but only uses their basic parts.

3.4 K-Nearest Neighbors

One of the first supervised machine learning methods used in this research is called K-
Nearest Neighbors (KNN). This method is useful when there is malware available that
has a label, that is, it is known which malware family it belongs to. The objective of the
KNN algorithm is to classify malware that does not contain a label. This classification is
based on the calculation of the distance of the sample from the elements in the data model.
This method is relatively simple and consists of only a few steps. The main step is the
creation of a data model, which can represent, for example, an array of vectors. When a
malware sample is received without a label, it is detected using the distance algorithm. A
frequently used algorithm for determining the distance in KNN is actually the Euclidian
distance algorithm [35].

∥p− q∥2 =

√√√√ n∑
i=1

(pi − qi)2 (3.1)

The Euclidean distance equation in equation 3.1 calculates the distance between two points
represented by vectors p and q in n-dimensional space. In this case variable p represent
labeled malware, from the model and another variable q represent unlabeled malware.
Euclidian algorithm measures the length of the shortest path between analyzed malware
samples and samples from the model. There are also other methods for obtaining the
distance between vectors, such as the Manhattan or Minkowski distance [36, 37]. The
algorithm for calculating the distance between vectors is very important for the results of
the KNN algorithm itself [35].

29

The last step in the KNN algorithm is to determine the k coefficient itself. This coefficient
determines how many nearest ‘neighbors’ to the analyzed sample are selected. Finally, the
malware family that has the largest representation among the selected ‘nearest neighbors’
is selected. M. Rao et al. [38] used the KNN algorithm for malware classification and
achieved an accuracy of 98.02%. The accuracy of KNN in the given research was better
than that of the Random Forest or Decision Tree algorithm.

Among the main benefits of KNN is the simplicity of the algorithm combined with generally
good classification results. The biggest disadvantages and concerns of the KNN algorithm
in this research lie mainly in two points:

■ High dimensionality
■ Memory demanding

Malware sample represented as a sequence of malware genes may be described as mul-
tidimensional array. In high-dimensional spaces there is often problem that concept of
proximity becomes less meaningful. Result of such phenomenon is that distances tend to
be more uniform [39].

3.5 K-means

Malware samples often do not have a label that represents the name of the malware family
to which it is assigned. In addition, malware families are constantly growing and creating
new ones. The clustering of malware families and threat actors is significant from several
points of view, such as:

■ Discovery of new malware families. This area is interesting from a research point of
view, being the "first" researcher who labeled a new malware family. However, it
also has a practical dimension in revealing TTP’s new family.

■ Code correlations between threat actors at the TTP level in binary code.
■ Finding anomalous malware samples that contain, for example, exploits for new

vulnerabilities. These vulnerabilities are often called zero-day vulnerabilities.

Supervised Machine Learning algorithms classify malware based on pre-existing data.
When dealing with a new malware family, supervised machine learning struggles to detect
its emergence. One potential approach involves establishing a static threshold for minimal
distances to neighboring instances. Nonetheless, this method proves inefficient and prone
to inaccuracies.

30

An effective solution for responding to newly emerging malware families is the use of
unsupervised machine learning algorithms. One of the methods of unsupervised ML are
clustering algorithms such as k-means. Clustering algorithms can create clusters of similar
samples and also point to samples that do not contain similar malware. The K-means
algorithm is one of the simplest clustering algorithms [40]. K-means algorithm can create
the mentioned clusters and thus detect newly emerging malware families. The K-means
algorithm utilizes centroids as pivotal points for clustering. Nevertheless, the selection
of centroids represents a critical step in the algorithm, often susceptible to significant
inaccuracies [41].

Similar to KNN, k-means employs the Euclidean algorithm to compute distances between
centroids. However, the Euclidean algorithm can suffer from inflation in high-dimensional
spaces, a phenomenon known as the "curse of dimensionality" [42]. One solution to
mitigate the effects of high-dimensional space is Principal Component Analysis (PCA).
The objective of the PCA algorithm is to condense the maximum amount of information
into a reduced number of dimensions, typically two columns [43]. Employing PCA makes
it feasible to enhance algorithms that are reliant on the Euclidean distance algorithm.

31

4. Related work

Malware analysis is a very broad area for research, because it can include many topics
such as unpackers, decryptors, custom file formats, binary instrumentation, correlation of
samples or involvement of machine learning. On the other hand, static analysis of malware
genes is a new area that is not yet very well researched. In the study of related research,
two areas closely connected with the topic of the thesis and the MalTraits research project
were defined.

4.1 Review Protocol

The strategy for the literature review was the Systematic Literature Review (SLR) method,
which consists of several steps. At the beginning of the research of related works, scientific
databases were specified in which subsequent searches for related research were conducted.
These libraries were selected based on the general qualities of the given databases and at
the same time the possibility of access to them. The scientific databases that were selected
for this thesis are IEEExplore 1, SpringerLink 2, ACM Digital library 3.

Since malware analysis is too broad a topic, the analysis of related works was defined in
three parts, which were examined separately.

■ Static malware analysis techniques
■ Machine learning in malware analysis
■ Attribution of malware to APT groups

Inclusion criteria for searching resources were based on key words that were defined and
simple queries created. Another criterion was the year of viewing the work, where it was
required that the work be newer than 2016. Due to time boundaries, the criteria were
defined that the research from which the current state of the art will be analyzed should
already have some citations or evaluation. The language criterion was that the work must
be in English. The scope of work was included in the advanced search, focusing only on
PE files. This criterion excluded a lot of research that was done for Android or mobile
malware samples, which are different. For searching in scientific libraries, advanced search
with the query 4.1 was used.
1https://ieeexplore.ieee.org
2https://link.springer.com
3https://dl.acm.org

32

1 ("All Metadata": static malware analysis)

2 NOT ("All Metadata":mobile)

3 NOT ("All Metadata":Android)

4 OR ("All Metadata":malware genes)

5 AND ("All Metadata":machine learning)

Procedure 4.1. Review protocol queries

4.2 Static Malware Analysis Techniques

Malware genes are not the only static method that can be used for the classification
and correlation of malware. Well-known static methods are based on data from Control
Flow Graph (CFG) [44], Function Call Graph (FCG) [45, 12]. Other static techniques
include visualization of a binary [46, 47, 48], n-gram analysis of a binary program [49],
machine learning based on imports [50], and also various types of hashes, from classic
fuzzy hashes [51] to Local Sensitive Hashing (LSH) [52]. Each of these methods has its
strengths and weaknesses. The problem with classic hashing for malware detection was
previously mentioned in Section 3. Although common hashing is simple, it proves to be
very ineffective in practice.

4.3 Machine Learning in Malware Analysis

Most of the research work on the involvement of machine learning in malware analysis
was done based on data from dynamic analysis. I. Muhammad et al. [53] used machine
learning in their research on data from static and dynamic analysis. Interestingly, the static
analysis had a better accuracy of 99.36 %, while the dynamic analysis had only 94.64 %.
D. Nikolopoulos and I. Polenakis [54] proposed in their research the interception of system
calls using dynamic analysis. They called this technique System-call Dependency Graphs,
from which they then transformed the data into a Gr-Graph structure.

Dynamic analysis was also used by J. Vrancken [55] when they captured the program’s API
calls and its arguments to detect malware capabilities. The sequence of API calls together
with the values of the arguments that are sent, is a very valuable source of information for
the analyst and also for a potential data model. This information is difficult to obtain from
static analysis because it can often be prevented by obfuscation of the program, such as
API hashing [56].

33

4.4 Attribution of Malware to APT Groups

The research topic of C. Boot [57] proposed the attribution of the malware to the threat ac-
tor. The author of this research gets data from dynamic malware analysis, more concretely
sandbox software. This research analyzes in great detail the possible approaches and uses
of machine learning in malware analysis, focusing primarily on the comparison of deep
neural networks and random forest classifiers. The objective of the research is to find out
to what extent it is possible to attribute a sample to Advanced Persistence Threats (APT)
groups using a machine learning model. The accuracy of the results depended, among
other things, on the sandbox solution itself. There are slight differences between several
sandbox solutions. In general, deep neural networks emerged in this research as a slightly
more suitable algorithm for clustering and attributing samples to threat actors.

One of the essential benefits of malware gene format is the search for “code reusing” in
malware programs. Research of Upchurch et al. [52] was focused on problem of code
reusing in malware. They tried to find code reuse in malware using the Locality Sensitive
Hashing (LSH) scheme. The advantage of this approach is the relatively small complexity
of the solution. On the other hand, there is a possible problem if the LSH scheme is
combined with n-gram code blocks. In such a case, there is a large overhead, and a large
volume of blocks is needlessly hashed. In this case, hashes at the level of malware genes
are significantly more effective.

4.5 Primary Studies

After a broader analysis of the current state of the art in the field of static analysis techniques
and the use of machine learning in malware analysis, the primary sources of this thesis
were specified in the following section. The factors on the basis of which these works
were selected included the topic of the research, the potential benefit for the thesis, and the
quality of the research.

Detecting Code Reuse in Malware via Decompilation and Machine Learning

O. Mirzaei et al. [58] created unique research, where they linked dynamic analysis with
static. The motivation for this solution was the fact that both methods have their strengths
and weaknesses. The applied methods in their research consisted in dynamic executing of
the malware, and when the malware reached a “critical” location, a memory snapshot was
taken. The code from memory was subsequently unmapped and decompiled in the open-

34

source tool Ghidra 4. In the decompiled pseudocode, the authors also used static methods
such as n-grams and LSH to search for functions and finally vectorized the pseudocode
using the Clang AST 5. This vectorized output sends as input to an unsupervised machine
learning algorithm. This research used a combination of dynamic and static analysis,
which made it qualitatively different from the others. Disadvantages of this research are the
enormous demand for resources required for this kind of sample analysis. Applying this
procedure to data malware analysis would be very expensive in terms of resources. On the
other hand, by using a combination of analytical methods, it can even analyze obfuscated
samples.

Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

Y. Fang et al. [59] created research which combined dynamic and static analysis. In
research, they come up with a solution for measuring the similarity of malware samples
and the use of clustering with the help of semi-supervised machine learning. Precisely in the
technique of clustering and involving machine learning, this research is very similar to this
thesis topic. The combination of supervised and unsupervised machine learning is essential
for recognizing even previously unknown malware or malware families. The algorithm
used for machine learning is called Density-Based Spatial Clustering of Applications with
Noise (DBSCAN). Accuracy achieved during research testing reached 98.7 %.

Exploring Function Call Graph Vectorization and File Statistical Features in Mali-
cious PE File Classification

Y. Zhang et al. [45] divided static code analysis into two categories, which are graph-based
and non-graph features. This research focused only on PE files. The primary technique
used by the authors was the Function Call Graph (FCG), which they then vectorized
(FCGV). They enriched this vectorized graph with non-graph statics. These features
include cross-references in the disassembled PE file to Windows artifacts, such as the
Registry. The authors used n-gram and LSH techniques for static analysis. They vectorized
the vector composed of six distributed data sources and created a model using the Random
Forest machine learning algorithm. The results of this research reached an accuracy level
of 99.57 % on the Microsoft dataset (Kaggle BIG 2015).

A Gene-Inspired Malware Detection Approach

Y. Chen et al. [60] created gene-inspired malware detection research. This research agrees
with belief that the often popular n-gram analysis for static analysis is fragmented and has
a large overhead. In their solution, the authors use the IDA Pro disassembler by which they

4https://ghidra-sre.org
5https://clang.llvm.org/docs/IntroductionToTheClangAST.html

35

create malware genes. The authors use the Smith-Waterman algorithm to determine the
difference between samples with “n” number of genes. These samples are clustered using
the Neighbor-Joining (NJ) algorithm. During testing, this technique achieved an accuracy
of 96.14 %. The advantage of the malware genes is that it generates much less data than
n-grams and is therefore more easily scalable for malware data analysis use.

MGeT: Malware Gene-Based Malware Dynamic Analyses

J. Ding et al. [13] researched the field of dynamic malware genes, and their research is
called “MGeT”. This research described very precisely what malware genes are, why they
are termed as such, and their connection with genes from biology. It has many similarities
to this research topic, although the authors based the research on dynamic analysis. The
authors represent the sample as a sequence of behavioral traits that they try to correlate
with the behavioral set. The accuracy of the research was compared with three other
methods - Hidden Markov model (HMM), n-gram algorithm, and Dynamic Time Wrap
(DTW-SVM). The MGeT method of the authors was significantly better in the evaluation
of accuracy, which was at the level of 90

End-to-End Deep Neural Networks and Transfer Learning for Automatic Analysis of
Nation-State Malware

Rosenberg et al. [61] focused their research on the attribution of APT malware samples.
Deep neural networks (DNN) were used as classifiers for the attribution and clustering of
threat actors into individual groups. As input data for machine learning, they used dynamic
analysis in the form of a raw report from the Sandbox tool Cuckoo 6. This research showed
an accuracy of more than 98.6% in sample attribution. These results were tested on a
dataset of only a thousand samples, which may be questionable what the results would be
in a large dataset consisting of benign programs, common malware, and APT malware.
The second problem of this research may be that the samples came primarily from Russian
and Chinese APT groups. In another research [62], the same authors with the same method
focused on the identification of new malware families. In this research, they achieved a
result at a level of 97.7 % accuracy.

4.6 Assessment of Study Quality

The static analysis of malware genes is a topic that has not yet been extensively researched,
and so far, based on available knowledge, only a few studies have been found on the given
topic. On the other hand, several high-quality studies were found that were based either on
another static method or on data from dynamic analysis. This research brought the field

6https://cuckoosandbox.org

36

closer to many problems that researchers aim to avoid. Examples of such problems include
an uneven dataset during sample attribution or excessive reliance on a single analytical
method in malware analysis. With the help of a literature review, the connection between
malware analysis and machine learning’s significant advantages was confirmed. However,
to conduct machine learning, high-quality and up-to-date data are required. Overall,
through the analysis of the current state of the art, a better overview of the algorithms
used for machine learning was obtained. The result of this is the specification of machine
learning algorithms for the research based on the results of previous studies.

4.7 Data Extraction

During the analysis of primary sources, several pieces of information were found that
can assist in analyzing the research questions. Data vectorization is the most frequently
applied method of editing input data for machine learning in selected primary sources.
The Graph Edit Distance (GED) algorithm was often used to determine the difference
between samples. Most of the research from primary sources used supervised machine
learning. However, the research from [58], which applied a combination of supervised
and unsupervised machine learning, was the most interesting for us. As a result of this
combination, the machine learning algorithm should be able to recognize even previously
unknown malware. The concrete machine learning algorithm is highly dependent on the
input data. This input data is in the unique format of malware genes, making it difficult to
find an answer from primary sources as to which machine learning algorithm is right for
the data.

Another group of primary studies consists of the detection of APT threat actors and
undetected malware [61]. This research demonstrated that samples from a given APT
group can be attributed with great accuracy. However, leveraging malware genomes and
machine learning, advancements in this research topic are sought to discern the common
tactics, techniques, and procedures (TTPs) of APT groups at the binary code level. To
the best of author knowledge, this area has not been explored yet, and it is believed that
insights can be gleaned with the assistance of malware genes.

4.8 Data Synthesis

During the literature review, several high-quality studies on the topic of machine learning
in malware analysis were found. The result of query in 4.1 was 361 research articles, from
which the primary studies for the thesis are selected in Section 4.5. 298 research articles
were excluded from the SLR as they did not align with the focus area of this research.

37

Examples included areas beyond the scope of this study, such as Linux binary programs,
excessive emphasis on dynamic analysis, or binary programs in IL languages. 54 research
articles were analyzed, of which 6 were selected as primary sources for this research.
The research topic of the analyzed literature is the main criterion for the selection of the
primary source. This topic has to be related to this thesis questions. Research topic of the
most thesis is machine learning based on data from static or dynamic analysis.However,
most of the research did not apply to an environment where the analysis of thousands of
samples per day could be conducted semi-automatically. This poses a problem because
when investigating the automatic correlation and detection of samples at the level of a
machine learning model, it is necessary to constantly enrich the data model. However,
several kinds of research, despite a high percentage of accuracy, are not applicable in
practice due to high demands on resources.

4.9 Review Report

In this work, the methodology called "Systematic review" was followed. The main criterion
for the literature review was the identification of research related to the research questions
set. In the initial analysis of sources, a wider range of sources was selected, from which
primary sources were subsequently chosen. Primary sources were selected on the basis of
the similarity of the researched topic, those that dealed with similar research questions and
at the same time met the qualitative standards set by us.

4.10 Challenges in Malware Analysis

There are several challenges in malware analysis that are not solved by current solutions.
These problems were divided into several points. These challenges are addressed in the
present work with the help of research questions defined in Section 1.3.

Lack of work with malware samples in the field of data analysis

Apart from antivirus companies, only a few security teams work in data analysis with
malware samples. Data malware analysis includes operations such as sample collection,
normalization and data analysis. One of the main reasons why security teams do not work
with malware in the field of data analysis is the lack of methods to normalize malware
samples. So far, one of the most frequently studied n-gram methods 4.2 has a large
overhead and in practice often turns out to be inefficient. With malware genes, the aim is
to address this issue and normalize malware at the code level, enriching it with a wealth
of metadata and information that can be effectively utilized during analysis. In the first
research question 1.3, the focus lies on identifying the ideal inputs from malware genes for

38

machine learning. Subsequently, efforts are directed towards identifying enhancements to
malware genes that would bolster machine learning clustering, correlation, and attribution
of malware.

The use of machine learning in malware analysis

In recent years, several researchers have tried to use machine learning in the field of
malware analysis. However, many of these solutions were not put into practice primarily
due to high resource costs for analysis [58]. Thesis solution is based on malware genes that
can analyze correlations in the malware gene dataset within seconds. Challenges in the
current MalTraits solution and also in the field of genetic malware analysis is the effective
use of machine learning. It is not defined what the input from malware genes should be for
machine learning, how to calculate “distances” between malware genes, and also how to
cluster samples. Finally, none of the analyzes of the use of machine learning in malware
analysis solved the problem of sharing these data models. From security principles, it is
known that sharing information with selected parties is critically important. That is why in
the second and third research questions 1.3, these gaps of the current state of the art are
analyzed.

Lack of information on the similarity of APT groups at the TTP and code level

From the "Pyramid of Pain" model 4, it is understood that the attacker’s TTP is the most
valuable artifact for the cyber defense team. Thanks to this, better attribution of samples
and attacks can be achieved, along with enhanced recognition of attackers. Insights into
where attackers obtained the code, whether open-source code was used, whether traces
were left during code download, and the tools or templates utilized, can all be gleaned
from code analysis. Rosenberg et al. [61] adeptly attributed samples to APT groups in
their research. However, this problem is approached differently here. The objective is to
identify common malware genes and perform attribution at the code level, with all the
aforementioned information being derived from code analysis in the form of malware
genes. This technique aids in improved recognition of APT groups as threat actors. The
fourth research question 1.3 addresses this issue.

39

5. Contribution

This research falls under the category of applied research, with one of its main objectives
being the development of software aimed at enhancing the state-of-the-art in Malware
Analysis. However, rather than developing an entirely new software, this research opted
to enhance the MalTraits project further, acknowledging the complexity of the task. This
platform aims to conduct proactive analysis of large malware volumes within an on-premise
environment. Section 3.3 provides a detailed description of this platform. This research’s
primary contribution lies in utilizing machine learning instead of the comparative scale
method. Given the complexity of the research, its contributions can be summarized in
several key points:

1. Data Model and Architecture Design - one of the main results of the research is
the description and data model engineering of malware genes. This type of malware
genes has not been studied by any of the researchers so far, so it represents a crucial
part of the research.

2. Software Design & Programming - during this research, the platform’s experiments,
algorithms, and analytical environment needed to be applied. Several screens were
designed in wireframes from September 2023 to April 2024, and 174 Github commits
were contributed. Together, thousands of lines of code in Python, React, and C++
were contributed to the research. The code for this research, as well as the entire
MalTraits project, is currently accessible only through a link [63]. Following the
conclusion of the research, there are plans to publicly release the project.

3. Experimentation - proved to be the most time-consuming aspect, involving ex-
tensive work with large datasets, editing, and testing various configurations and
parameters. The most challenging aspect of experimentation lies in interpreting
the results, understanding why an experiment succeeded or failed, and addressing
instances of low accuracy.

4. Reverse Enigeering & Malware Analysis - an in-depth analysis was conducted
on four malware samples, specifically from the QakBot and Emotet families, as a
qualitative research component. Additionally, a program for extracting malware
configurations was developed as a part of this study.

All four described areas were iterated linearly in consecutive cycles. Initially, a simple
representation of the extracted features of malware genes described in the section 5.1 was
prototyped. This representation was implemented as generic code that analysts can run

40

Figure 8. Database logical model of the Sample and the Malware gene.

and use in the application environment of a web browser. Subsequently, experiments
and their evaluation were carried out on this designed and implemented architecture. In
this document, the experiments are described in the Validation of the part in section 6.
From this perspective, the Validation section stands out as a significant contribution of this
research. It offers valuable insights into the application of machine learning in analyzing
malware genes.

In certain instances, when deeper comprehension of the experimental results was required,
malware samples underwent analysis via reverse engineering. After each iteration, the ar-
chitecture was modified and improved. Main improvements define optimizations described
in the section 5.1.3 or a new dataset representation described in the section 5.2.

5.1 Feature Engineering

Feature Engineering is critical in Genetic Analysis as it facilitates the transition from
large-scale malware gene comparison to machine learning. In Figure 8, part of the logical
database design illustrates the many-to-many relationship between the Trait (the term for
the Malware gene) and the Sample of the malware. However, large-scale comparison
poses challenges in terms of performance and fails to consider the significance of malware
genes. This research does not aim to enhance the performance of large-scale malware gene
comparison methods. Instead, this and subsequent sections outline a potential application
and representation of machine learning in Genetic Malware Analysis.

41

The primary objective of this research is to define and extract inputs for machine learning,
known as features. This process, termed feature engineering, forms a crucial aspect of
the study [64]. In this research, features are represented as unique malware genes in the
Genom Database. This database of unique genomes is shown in the Figure 8 under the
table name ‘Trait’. In this research, feature selection involves representing each unique
malware gene in the ’Trait’ table as an individual feature. This approach offers a highly
accurate sample description through features. However, its potential drawback lies in the
high dimensionality. A schematic representation of this method is depicted in matrix 5.1.

Malware Gene 1 Malware Gene 2 . . . Malware Gene N

value1,1 value1,2 . . . value1,N

value2,1 value2,2 . . . value2,N
...

...
valueM,1 valueM,2 . . . valueM,N

(5.1)

When the MalTraits database contains thousands of samples, a single sample may possess
a vector comprising millions of distinct malware genes. While solving the issue of storing
and processing such a data model may not be necessary for research purposes, it presents
a practical challenge. In practice, recalculating the machine learning model after each
update becomes demanding. Consequently, this research addresses this challenge through
two distinct approaches:

■ Continuous storage of the data model in the database.
■ Select only representative samples for the model.

A representative model can be made up of samples from databases such as Malpedia. The
Malpedia dataset contains samples belonging to more than 2000 malware families and is
very well maintained. Additionally, MalTraits analysts have the capability to supplement
the core data model with samples they deem belong to specific families. As a result,
the core data model comprises solely representative samples, thereby reducing the data
requirements and algorithmic complexity.

This research categorizes two primary types of feature extraction of malware genes. The
initial category of features is denoted by a binary style, commonly referred to as categor-
ical data representation in the literature [65]. This method is detailed in Section 5.1.1.
Conversely, the alternate approach assigns a feature value determined by the size of the
malware gene. Consequently, a feature can assume values within the range [0,∞), as
explained in Section 5.1.2.

42

5.1.1 Categorical Data Representation

The original idea of this research is the use of a categorical representation of the selected
features. Machine learning algorithms tend to work on numeric values instead of strings.
For this reason, Categorical Attributes is a method that statically assigns numeric values
[65] to objects. In practice, these objects can be colors or animals. In this research, two
categories were created:

■ 0 - Malware gene values1,i from the genome database is not found in the sample
■ 1 - Malware gene values1,i from the genome database is found in the sample

The algorithm for generating vector features of malware genes within a given sample
iterates cyclically through the Genome Database, depicted as the initial gene chain in
Figure 9. Subsequently, it conducts lookups to determine whether the sample contains any
malware genes from the genome database, disregarding their position within the binary
code. Upon finding a match between a gene from the genome database and a malware gene
in the sample, the resulting vector stores the value 1; otherwise, it stores 0. Notably, the
size of the resulting vector matches the number of unique malware genes in the Genome
Database. The algorithm implementation is depicted in Procedure 5.1, utilizing the Numpy
library 1.

1 def vectorize_genes(self, sample: Sample):

2 sample_traits =

np.array(sample.trait.values_list("trait_sha256",

flat=True))

3 return np.isin(self.traits_experiment_all,

sample_traits).astype(int)

Procedure 5.1. Function which vectorize malware genes

The choice of machine learning method or distance algorithm heavily depends on the
data representation utilized. While algorithms like Cosine similarity or Jaccard index are
commonly employed for categorical data representation [66, 67], the Euclidean distance
algorithm may not be the most suitable for multi-dimensional datasets containing cate-
gorical data. Thus, it is crucial to comprehend both the data and the algorithms being
employed thoroughly. This study evaluates and experiments with various methods and
data representations.

1https://numpy.org/doc/

43

Figure 9. The process of generating a vector of categorical data.

Categorical representation is the most straightforward approach in machine learning for
malware genes. However, this representation overlooks other crucial properties of malware
genes, such as their size, entropy, or frequency of occurrence within samples. A malware
gene’s structure typically includes the number of bytes comprising it and the count of
disassembled instructions. Consequently, it becomes feasible to store the size of a given
malware gene instead of a singular value, thereby transforming the representation of the
vector from categorical to numerical. In section 5.1.3, a more in-depth analysis is provided,
accounting for the frequency of occurrence of malware genes from the Genome Database
within malware samples.

5.1.2 Numerical Data Representation

Categorical data representation lacks the inclusion of malware gene size within the feature
vector. Consequently, categorical representation fails to differentiate between a malware

44

genome comprising more than a hundred disassembled instructions and a vector containing
only one or two instructions. In reverse engineering terms, larger genes generally hold
higher correlation values than smaller ones. This observation stems from the fact that
larger genes encompass more program logic. Figure 6 illustrates the IDA CFG, where
smaller IDA basic blocks often denote simple conditions and are thus less significant.
Moreover, such genes are prevalent in numerous benign programs. Conversely, a malware
gene containing up to 13 instructions possesses a considerably higher value. Therefore,
this research also represents malware genes numerically based on their instruction count.

Malware Gene 1 Malware Gene 2 . . . Malware Gene N

no_instructions1,1 no_instructions1,2 . . . no_instructions1,N
9 13 . . . 93
...

...
51 3 . . . 17

(5.2)

The schematic design of the feature matrix 5.2 utilizes the numbers of disassembled
instructions solely for illustrative purposes. Numerical data representation is expected to
provide more precise distance values for malware samples. Both numerical and categorical
representations share a common feature: the interpretation of a malware gene’s absence
in a sample, denoted by a value of zero. However, if the malware gene is present in the
malware at position i, its value is not merely one, but rather the value of the malware gene
itself.

5.1.3 Optimalizations

During experimentation with machine learning of malware genes, several possible opti-
mization algorithms were invented. These optimizations are designed to speed up the time
needed to analyze malware genes or improve the accuracy of algorithms.

Selection of Relevant Genes

The initial optimization seeks to enhance the program’s performance and reduce its time
requirements. The optimization strategy selects only the relevant malware genes from
the Genom Database rather than considering all available genes. This technique enables
the selection of genes categorized as "function" type or those containing more than 15
instructions. In practice, databases may contain hundreds of thousands of malware samples,
representing millions of malware genes. Managing such a vast volume of genes poses
significant challenges, especially considering that genes are represented as features in

45

machine learning.

It’s common to define the set from which the model is generated to classify an unknown
sample. Malpedia hosts a vast array of malware families. In practice, leveraging the
Malpedia model to classify unknown samples, totaling 8118 samples, relieves the need to
incorporate all database samples. When the sample is identified as belonging to one of the
n malware families, the ML model can be restricted solely to these n families, significantly
reducing computational complexity.

Frequency of Malware Genes

The basic algorithm’s logic, exemplified in Listing 5.1, overlooks the frequency of malware
genes within a sample. For instance, specific malware genes may be repeatedly present in
various locations within the sample. As the Genome Database dictates the final structure
of the feature vector, these recurrent genomes are tallied only once.

no_instructions × no_occurences = feature_value (5.3)

The formula for calculating the feature value is presented in equation 5.3. This equation
involves multiplying the sizes of malware genes by the number of occurrences of each gene
in the sample. Utilizing these optimized values can enhance the structural representation
of malware through vector features.

Neighboring Malware Genes

The final optimization technique aims to identify clusters or groups of neighboring malware
genes. However, this approach is not applicable when creating the feature vector itself;
instead, it is suitable for comparing or calculating distances between two vectors. The
concept behind this optimization is that consecutive identical malware genes between
samples exhibit a higher correlation value. Employing this technique makes it possible to
enhance the contextual aspect of machine learning.

5.2 Data Pre-processing

Data selection and preprocessing represent crucial stages in machine learning. In this study,
they hold particular significance as not all dataset samples are suitable for machine learning
purposes. Genetic malware analysis employs static code analysis and machine learning
techniques. This method is described in Section 3.2. Statically analyzing packed samples

46

proves inefficient due to code obfuscation or storing code in non-executable segments and
resources. Consequently, these samples must first undergo unpacking before static analysis
can proceed. Addressing packer detection was thus an initial limitation to enable Genetic
Malware analysis via machine learning.

5.2.1 Exclusion of Packed Samples

The purpose of this research is not to detect whether the sample is packed or not. However,
in sections 1.5 and 3.1 it is mentioned that excluding packed samples helps the accuracy
and efficiency of malware correlation. The solution to detect packers can be implemented
using a malware gene, but it is beyond the scope of this research 1.2. Therefore, in this
research, an already existing solution for detecting packed binaries named PeID 2 was
integrated and improved. This tool contains more than 5500 static rules to detect languages,
packers, compilers and also linkers.

1 [Simple UPX Cryptor V30.4.2005 -> MANtiCORE]

2 signature = 60 B8 ?? ?? ?? ?? B9 ?? ?? ?? ?? ?? ?? ?? ?? E2 FA

3 ep_only = true

Procedure 5.2. Example of PeID rule

The characters "??" in the example PeID rule in Listing 5.2 represent wildcard bytes.
These wildcard bytes most often replace address bytes, since they depend on the Image
Base Address in the PE header [68]. Despite the large community that actively creates
signatures, the PeID software has three main disadvantages.

■ Cannot load binaries from the memory
■ Signatures are not divided into categories, whether it is the detection of a program-

ming language, packer, compiler or something else.
■ PeID cannot detect multiple custom packers

The initial drawback of this tool has been addressed by rewriting it to enable the analysis
of in-memory samples, in addition to those stored on disk. Beyond merely integrating
PeID, this study also enhanced its functionality by categorizing signatures. PeID holds
significant relevance in this research as it aids in excluding samples falling outside the
defined scope 1.2. For example, the samples are written in the ".NET" programming
framework, which were excluded from the research scope. The PeID tool allows a better
understanding of sample categories in terms of qualitative research 1.6. This research can

2https://github.com/packing-box/peid

47

answer questions such as what have in common malware written in the "Delphi" or what
correlation accuracy do have samples compiled in "MSVC" in comparison to "gcc". On
the figure 10 it is possible to see based on Tags that the rewritten version of PeID managed
to detect samples packed by UPX 3, written in C++ or Delphi.

Figure 10. PeID identification of packer and programming languages.

However, the detection of custom packers in this research still represents a challenge. The
primary reason of it is that there are no rules in PeID that can detect these packers. On the
figure 10 it may be seen the top sample, which was detected to be written in the Delphi
programming language. From an analytical point of view, malware written in Delphi is
not common, but it does occur occasionally. However, several packers and protectors are
written in Delphi languages, such as BobSoft [69]. Therefore, this sample was more deeply
examined from the point of view of qualitative research in the 6.1 section. The objective of
this examination is to validate if PeID correctly matched sample to be written in Delphi.

5.2.2 Malware Family Name Aliases

One of the biggest challenges of this research as well as other research focused on mal-
ware analysis is the inconsistency in the naming of malware families [70]. With su-
pervised machine learning, it is important to have a label to which malware family the
samples belong. This assignment to a malware family is often referred to as the ‘la-
bel’ of the malware sample. Hurier et al. [71] in research describes this problem on
Android malware. This problem is most obvious primarily with Antivirus programs
(AV). The problem with malware naming is demonstrated in Table 1, where several AV
products were selected. The sample analyzed by these products has the SHA256 value
‘3d574af4a43dd7ae7244cdbb6381af34fbad237a93627c47b6ca07ff7a8f04c6’ 4. This sam-
ple is labeled as MarsStealer on the MalwareBazaar malware repository. The goal of
this malware is often stealing cryptocurrencies and attacking Multi-Factor authentication
(MFA) [22].
3https://upx.github.io/
4https://bazaar.abuse.ch/sample/3d574af4a43dd7ae7244cdbb6381af34fbad237a93627c47b6ca07ff7a8f04c6/

48

Some AV companies classify malware with a generic name. Trellix 5 assigned the name to
the sample in the name table ‘Generic.mg.b9c5f3129fee3344’. Other AV products have
labeled this malware based on the type of malware, such as trojan or ransomware. Several
AV products did not even match the type of malware. Finally, some AV products, instead of
naming the malware based on the type or malware family, only evaluated it as ‘Malicious’.

Antivirus Product Name Malware name
AVAST Win32:RansomX-gen [Ransom]
Elastic Malicious (high Confidence)
Eset A Variant Of Win32/Kryptik.HVIU
Malwarebytes Trojan.MalPack.GS
Microsoft Trojan:Win32/Amadey.GAA!MTB
McAfee Artemis!B9C5F3129FEE
Symantec ML.Attribute.HighConfidence

Table 1. Malware names assigned by Antivirus products

The problem of inconsistency does not belong to the scope of this research. However it is
necessary to solve it to be possible correlate samples from several sources. Two strategies
were chosen in this research:

■ Malware family aliases
■ Name mangling

The solution to this problem was partially simplified for us by the excellent Database
of malware families on the Malpedia [22] platform. Malpedia contains more than 2200
malware families, which also contain aliases for tax families. The malware called QakBot
6.1 contains four other aliases under which it is identified by other AV products or on
other malware repositories. The second strategy was “Name mangling”, which was created
during the experiment described in section 6.3. This strategy tries to respond to a slight
inconsistency in the names of malware families.

5.3 Software Design

Software design is a section that serves chronologically before implementation as a speci-
fication of requirements. A major aspect of the design phase focused on creating a new
module within the MalTraits project named "Experiments." This part aims to specify a
generic environment for the preparation, execution, and evaluation of experiments. It is
important to defend and specify the programmed components for the applied part of this
research, which represent a software platform. Therefore, the following sections describe

5https://www.trellix.com

49

the implemented components and also simple wireframes.

5.3.1 Experiment Environment

One of the most important parts of this research is experimentation in the 6 section, which
verifies which implemented algorithms are the best for malware correlation. However, in
order to be able to perform experiments effectively, it is necessary to have a pre-prepared
analytical environment. The purpose of this Experiment Environment is to simplify the
evaluation of results in machine learning of malware genes. This research explores a
completely new approach to malware analysis, which is built on data made up of millions
of malware genes. In addition, the research tests several kinds of datasets and experiments.
For this reason, the goal is to create a uniform experimental environment that will enable
the evaluation of the results. In the results, it is possible to obtain the accuracy rate of
machine learning, evaluate the quality of the dataset and also configure various parameters.
This environment should meet the following requirements:

■ Download and static analysis of selected samples. These samples are finally assigned
to the experiment.

■ Dataset overview and statistics from the point of view of packers, programming
languages.

■ Configuration of the correlation algorithm and exclusion criteria.
■ Summary of results from the last experiment
■ History of all attempts in a given experiment.

5.3.2 Wireframes

The experiment in this research represents specific dataset or research approach that is
evaluated. The experiment includes datasets from Zeusmuseum, Malpedia and other
malware sources, which are listed in the section 1.6. The aim of these experiments is to
evaluate to what extent malware gene correlation is effective.

The main part of the screen contains two buttons as can be seen in the figure 11. The
first ‘Download’ button downloads samples from the given source. However, the sample
download format is not uniform depending on the platform from which the data is drawn.
Somewhere it is necessary to hack the HTML code of the website and get URL links
to the malware. This approach is applied in the Zeusmuseum experiment 6.2. In other
cases, it is enough to simply call the API, which returns the sample itself in the response.
However, the sample in the background is not just downloaded. After downloading, a basic

50

Figure 11. Design Wireframe of the Experiment page.

static analysis is automatically started, which evaluates whether the sample is suitable
for Genetic malware analysis. If the sample is supported and not packed, the static code
analysis is automatically started. This process is described in more detail in section 3.2.

The main part ‘Overview’ shows statistics about the analyzed dataset as a whole. These
statistics are important, because in them it is possible to find many answers for very positive
or negative results. For example, negative results can occur when the dataset contains a
large number of packed samples. Detection of the programming language is a parameter
that plays an important role in the interpretation of the results.

The second screen presents the configuration of the experiment and the machine learning
algorithm. The aim is to compare various parameters of the experiments, such as the ‘k’
count in the KNN algorithm. Exclusion parameters were also included in the configuration,
such as the minimum number of labeled samples per malware family. This configuration
option enables a better understanding of the nature of the dataset.

Finally, an important part of experiments is their evaluation. The experiment can be
evaluated at the level of a sample, malware family or the whole. Functional requirements
also include recording the history of experiment results and their parameters for a better

51

evaluation of the results. The experiment environment gives security analysts better options
for interpreting the results of Genetic Malware Analysis.

5.4 Implementation

The research objective is not only to provide insights into feature engineering through
experimental results but also to deliver software capable of analyzing malware samples
in an on-premise environment. This software, known as MalTraits, was developed in the
author’s previous research and facilitates the proactive collection and automated analysis
of malware samples from the internet. As emphasized in previous sections, the main focus
of this research is to establish an environment for the application of machine learning.
Hence, the following modules were developed as part of this endeavor:

■ Experiment environment - The implementation of a versatile environment for
conducting experiments involves several components. This includes developing
functionality for fetching malware samples, automating static analysis, vectorizing
genes, and integrating machine learning algorithms.

■ Integrations - Integrating MalTraits with various platforms enables automatic re-
trieval of malware samples. The implementation of this solution incorporates auto-
mated sample processing, depicted in Figure 5.

■ Computation of the malware correlations - The visual representation of malware
correlations has been previously implemented in prior research. In this study, ad-
ditional correlations were computed to determine the extent of similarity between
samples. Furthermore, enhancements have been made to the visual representation of
sample correlations.

■ Other tasks - The other tasks in this research primarily served a supportive role
and were not directly related to the main objective, which is the application of
machine learning. Nonetheless, these tasks encompassed essential enhancements for
a practical platform, such as developing preliminary analysis, ensuring clarity in the
malware tables, and establishing connections with malware families.

The main objective of the implementation was to establish an experimental environment
that was facilitative in testing machine learning algorithms. However, the scope of the
experiments extended beyond merely programming the algorithms themselves. Research
contribution encompassed developing an automated pipeline capable of downloading sam-
ples from the Internet and executing "Preliminary analysis" automatically. This preliminary
analysis involved extracting strings and categorizing them, checking for certificates in
signed samples, and utilizing the PeID tool for detection. The PeID tool was completely
rewritten to enable sample analysis in memory. Subsequently, based on the preliminary

52

Figure 12. Contributed Integrations to the research

analysis results, a decision was made regarding whether a given sample fell within the
scope of this research. The scope of this research was set to analyze samples that were
not packed and written by a supported programming language. Contribution in the field of
machine learning and experiments is described in detail in the Validations sections 6.2 and
6.3.

5.4.1 Integrations

Integrations played a pivotal role in the research, as they established connections to
the data sources crucial for genetic malware analysis and experimentation. Notably,
automatic integrations were implemented for MalwareBazaar, Malpedia, and Zeusmuseum.
Additionally, the PeID tool was forked and customized for research objectives, enabling
the incorporation of custom rulesets. Moreover, integration with the MITRE Att&ck
framework was implemented, providing access to a dataset encompassing threat actors,
malware families, and TTPs.

Integration with MalwareBazaar can be configured via a web browser to download newly
added samples from the Internet every hour. During experimentation with this integration,
it was discovered that automated sample post-processing can yield IOCs that have not been

53

publicly shared.

5.4.2 Malware Correlations

This module aims to facilitate visual and percentage-based assessment of correlations
between samples categorized under specific malware families. Given the complexity of
the database model, certain cases necessitated using raw PostgreSQL queries instead of
Django Object Relational Mapping (ORM). An example of such a complex SQL query
is provided in Procedure 5.3, which retrieves the top three malware families exhibiting
the highest correlation with the sample. The graphically implemented functionality is
illustrated in Figure 15.

This functionality is invaluable for a malware analyst who analyzing an unknown sample,
aiming to assess correlations swiftly. The malware analyst can thus answer very quickly
whether it is custom malware or a known malware family if the dataset of malware samples
is sufficient. If it does belong to a known family, leveraging public malware analyses can
expedite the overall analysis process. In the case of custom malware, identifying shared
Tactics, Techniques, and Procedures (TTP) within the code becomes feasible. Currently, the
visual correlation functionality for samples is tailored exclusively for at-scale comparison
methods, but there is potential to enhance it with machine learning correlation results.

1 SELECT * FROM (

2 SELECT DISTINCT ON (sub2.mf_name)

3 sub2.s1 ,

4 sub2.s2 ,

5 COUNT(*) OVER (PARTITION BY sub2.s2),

6 sub2.mf_name,

7 sub2.mf_id

8 FROM (

9 SELECT DISTINCT

10 sub1.sample_id AS s1,

11 jt .sample_id AS s2,

12 sub1. trait_id ,

13 mf.name AS mf_name,

14 mf.id as mf_id

15 FROM (

16 SELECT

17 st .sample_id,

18 trait . id AS trait_id

19 FROM api_sampletrait AS st

54

20 INNER JOIN api_trait AS trait ON st. trait_id = trait . id AND st.sample_id

= %s

21 WHERE trait."size" > 0

22) AS sub1

23 INNER JOIN api_sampletrait AS jt ON sub1. trait_id = jt . trait_id AND NOT

jt.sample_id = %s

24 INNER JOIN api_samplemalwarefamily AS smf ON jt.sample_id = smf.sample_id

25 INNER JOIN api_malwarefamily mf ON mf.id = smf.malware_family_id

26) sub2

27 ORDER BY sub2.mf_name, COUNT(*) OVER (PARTITION BY sub2.s2) DESC

28) AS sub3

29 ORDER BY count DESC

30 LIMIT 3;

Procedure 5.3. Get top three malware family correlations

55

6. Validation

This research tries to bring a new method of involving data analysis in malware analysis.
For this reason, it is very important to validate the solution, because whether in static or
genetic analysis, many borderline cases can occur. Validation is based on the implemented
parts in the Contribution section 5. Its goal is to reveal whether this solution works as it
should and, above all, to better understand the research problem. This section contains
only part of the experiments that were carried out during the research. The experiments
were a key point that shifted the value of this research and at the same time opened up
other research questions.

6.1 Identification of Custom Packer by Malware Genes

Section 5.2.1 analyzed the possibilities of detecting packers using static PeID signatures.
These signatures are open-source and therefore community-created. The figure 13 shows
the use of the PeID tool, which did not detect any use of the packer and also detected
that the code is written in the Delphi language. The aim of this qualitative research is to
validate these results. To validate this, it was reversed engineer sample from the QakBot
family. QakBot malware family is categorized as information stealer malware [22]. This
malware is often used by threat actors as an entry vector for ransomware [72].

Figure 13. PeID packer detection in QakBot sample

In the table 2 is the identification of the analyzed sample based on the hash value as well as
part of its basic static analysis. Executable section with the name ‘CODE’ of the analyzed
sample has an entropy at the level of 6.54. Entropy is a property that statistically determines
the randomness factor. It is often used to detect packed samples, since compressed or
encrypted parts have high entropy [73]. On the contrary, clean code without any protection
often has a lower entropy.

Packed samples usually have high entropy at the section level, have few imports and IATs,
and also do not contain meaningful strings. This sample does not have a high entropy

56

executable section, but its ‘DATA’ section contains a high entropy (7.95). For this reason,
the assumption of the analysis is that the strings are decrypted during the execution runtime.
However, this technique is quite common in malware and does not confirm or refute
whether the sample is packed. There are enough imported libraries and methods in the IAT
structure. However, based on publicly available malware analyses, it can be said that most
QakBot samples use the custom packer [74]. Therefore, the next part of this research deals
with verifying whether it is really a packed sample and therefore the PeID signatures failed
to detect the packer.

Sample Attribute Attribute Value
SHA1 Hash 93b1ab0a9e70a546c4b89dcb20a158dfc90b1421
File Size 2,43MB
Entrypoint 0x551f5c
Machine Type I386
Subsystem WINDOWS_GUI
Signed False
File Type PE
File Arch 32
Number of malware genes 102108
Number of block genes 96779
Number of function genes 5329
Number of invalid instructions 0

Table 2. Basic Static Analysis of QakBot sample

The analyzed sample is a PE Dynamic-link library (DLL), therefore the program
‘rundll32.exe’ is needed to execute it. Only one entry named ‘DLLRegisterServer’
was found in the Export Address Table. It was used a debugger named x32dbg 1 for
unpacking. Breakpoints were set in the debugger for the following Windows API calls:

■ VirtualAlloc
■ VirtualProtect 2

■ CreateProcessW 3

One of the frequently used unpacking strategies is to set a breakpoint on the API called
‘VirtualAlloc’. VirtualAlloc is used when programming to allocate memory on Windows
OS and contains four parameters [75]. Based on the arguments for VirtualAlloc, it is
possible to find the address, size and privileges of the allocated space. When the program
unpacks the malware, it often allocates a memory location where the given code is stored.

1https://x64dbg.com/
2https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
3https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-
createprocessw

57

This strategy also worked in this case, when after the fifth breakpoint on VirtualAlloc it
copied an unpacked QakBot sample.

Figure 14. Flare Capa plugin in IDA Pro.

After unpacking the QakBot sample, it was used the IDA Pro tool and an excellent plugin
called Flare CAPA 4. In the results of the plugin, it is possible to clearly see places where
HTTP communication, string decryption or dynamic loading of libraries takes place. After
the static analysis of the code of the unpacked sample, it can be confirmed that it is the final
stage of unpacking. In Appendix 8 it is attached a more detailed analysis of the code with
string decryption. This analysis proves that the PeID tool could not capture the custom
packer for the QakBot malware.

However, with the help of malware genes, it is also possible to solve this lack of static
rules. From public malware analyses it is known that QakBot uses a custom packer written
in Delphi [74]. Genetic malware analysis examines correlations at the binary code level
and does not distinguish whether it is the packer code or the malware sample itself. For
this reason, it is possible to use the fact that it is a custom packer specifically for QakBot.
In another experiment, it was verified whether it is possible to correlate QakBot malware
based on their custom packer.

4https://github.com/mandiant/capa

58

Figure 15. QakBot correlation based on genes of custom Packer.

For malware analysis, it has been obtained a sample that has a TLP, which does not allow it
to be provided to third parties. Its basic static parameters are in Table 3. Genetic Malware
Analysis was used for the initial classification of the sample. The aim of this classification
was to find out whether it is a known malware family. The classification on the MalTraits
platform is captured in the Figure 15. After a few seconds of automated Genetic Analysis,
it was revealed that the sample contains a high correlation factor with the QakBot malware
family.

Sample Attribute Attribute Value
SHA1 Hash 19434176868e295ae703d60e61751d9f755831bd
File Size 712kB
File Type PE
File Arch 32
Number of malware genes 29663
Number of block genes 27997
Number of function genes 1666
Number of invalid instructions 0

Table 3. Basic Static Analysis of Unknown sample

6.2 Classification of the Zeus Malware Family

Zeus is a complex malware that is categorized as a ‘banking trojan’ [76, 22]. Malicious
features of this malware include keylogging, personal data stealing, but also Antivirus

59

Evasion techniques [77]. This research experiment was inspired by the excellent project
‘zeusmuseum’ 5. In 2011, the source of the Zeus malware was published 6, which caused a
large increase of its modifications [78]. Several of these modifications were actually given
the malware family name. The aim of this experiment is to try to classify sub-families of
Zeus malware using Genetic Malware Analysis and KNN algorithm.

Figure 16. Zeus malware experiment High-level design (HLD).

This experiment showed values that are very important for benchmarking the Genetic
Malware Analysis itself. In total, it was possible to obtain 566 labeled malware samples
belonging to 37 Zeus sub-families. From this dataset, it is possible to obtain up to 1,521,505
unique malware genes after static analysis. Based on the results of the experiment, it was
found that one sample has an average of 9,975 malware genes. Static analysis may not
always be possible due to several possibilities, such as an unsupported disassembler for
.NET binary programs 3.1. In other cases, the sample may not have a standard structure.
In this experiment, algorithm managed to process the malware genes of 96.28% of the
samples.

5https://zeusmuseum.com/
6https://github.com/Visgean/Zeus

60

After downloading the samples and the subsequent static analysis, it is necessary to
configure the exclusion parameters and the configuration of the KNN algorithm. The
configuration parameters reflect the scope of the research and their design is described in
section 5.3.2.

Figure 17. Experiment 1. - KNN Classification Zeus Dataset

The results of this experiment indicate only a 43.75% accuracy rate. These results can be
caused by several factors:

■ The code failed to detect and subsequently exclude packers
■ The sub-families are so closely related that it is difficult to find differences, since

they come from the same source code.
■ The KNN algorithm fails in multidimensional spaces.

In order to answer these questions, in this research continues with further experiments with
other datasets and malware correlation methods.

6.3 Malpedia Dataset Experiment

Malpedia offers researchers a malware dataset that contains more than 2000 malware
families composed of PE files. One of the great advantages of the dataset from Malpedia
is that it already contains a classification of samples that are packed, unpacked and
dumped. Only samples marked as unpacked in the Malpedia dataset were included in this
experiment.

61

6.3.1 Selection of Representative Malware Families

The first experiments were conducted on the entire malware family dataset from the
Malpedia dataset. However, testing all malware families in a given dataset is not an ideal
solution for experimentation for several reasons:

■ It is not straightforward to look for corner cases, where it is necessary to use
qualitative research and take a closer look at the malware samples and why they are
misclassified.

■ Malware families with a small number of samples are often misclassified.
■ The classification process, particularly the KNN algorithm, places significant de-

mands on Random-access memory (RAM). Consequently, the analysis of thousands
of samples at once becomes a memory-intensive operation.

For this reason, ten malware families were selected for the experiments. These families
were selected based on the number of samples that meet predefined criteria from the
research scope. Selected representative malware families are located in Table 4.

Malware Family Name no. Samples Malware Family Category
QakBot 103 Information Stealer
Gozi ISFB 46 Trojan
Emotet 27 Trojan
DreamBot 19 Trojan
BianLian 15 Ransomware
DarkGate 14 Loader/Dropper
DBatLoader 12 Loader/Dropper
DoppelDridex 11 Trojan
Cobalt Strike 11 Penetration testing toolkit
BazarBackdoor 9 Loader/Dropper

Table 4. Representative Malware Families

The experiment includes 267 malware samples from 10 different malware families. These
samples represent different malware categories written by different programming languages.
The malware samples of the BianLian family are written in the GoLang language. Other
malware families, such as Emotet, are written in C/C++. This set of samples from different
malware families represents a broad spectral data sample.

6.3.2 KNN Classification of Whole Dataset

KNN was chosen as the malware classification algorithm. The Euclidian distance algorithm
was used to determine the distances and the data representation was categorical. After

62

five experiments, a classification accuracy of 70.08% was achieved. The most accurate
experiment run achieved accuracy at the level of 78.19%. Its configuration was as follows:

■ Labeled samples: 266
■ Unlabeled samples: 135
■ k parameter: 3
■ Exclusion criteria - Minimal number of "block" malware genes: 1000
■ Exclusion criteria - Minimal number of "function" malware genes: 100

The achieved accuracy rate is possibly even improved by applying numerical data repre-
sentation. The fact that some malware families contain only a small number of samples
also has an impact on the results of this experiment.

6.3.3 KNN Classification of Subset Malware Families

In the 6.3.1 section, ten malware families are selected that meet the specified criteria for
experimentation. In this dataset, several experiments were conducted to determine the
correct configuration of malware genes for machine learning.

The first experiment was performed completely basic, without any optimizations or ex-
clusion criteria for samples. The representation of samples was used in its basic form —
as a categorical representation of data. The KNN algorithm was set to three neighbors,
i.e., k = 3. Labeled samples in this experiment represented 73.78% of the dataset, and the
remaining were unlabeled.

The experiment included all 267 representative malware samples and lasted 26 minutes
and 55 seconds. The overall accuracy achieved in this experiment was 80%, and with the
malware families QakBot, Cobalt Strike, DoppelDridex, and others, it was possible to
achieve 100% accuracy.

Figure 18 graphically shows the accuracy of this experiment at the level of individual
malware families. This experiment misclassified four malware families. The DreamBot
malware family has a classification accuracy of 25%. However, it is important to interpret
this result to understand the history and origin of the DreamBot malware family. The
reason for misclassification of the DreamBot family is similar to the case of the first
Experiment with the Zeus family. DreamBot is a malware family that is a successor and
variant of the ISFB family. In 2013, the source code of the ISFB malware was leaked along
with detailed [79] documentation. Although the experiment misclassified the malware
family, it precisely revealed the similarity of the malware. This information is also very

63

Figure 18. Experiment 2 - Classification results.

important for malware analysis.

Some optimizations described in the 5.1.3 section were also tested in this experiment. The
first goal was to reduce the time and memory complexity of the algorithm. During testing,
there were 1920 malware samples in the database, which had 4787021. By selecting only
the selected dataset, it was possible to reduce the time complexity up to 10 times. The final
time complexity of the algorithm was 2 minutes and 41 seconds.

6.4 Performance Benchmarking of the Solution

This study evaluated various actions commonly undertaken during malware analysis
through benchmarking. One benchmark assessed the processing time required for con-
ducting Preliminary Analysis on thousands of samples. The benchmarking process was
conducted using a personal laptop with specifications outlined in Table 5. It took approxi-
mately 55 minutes to perform preliminary analysis on 1000 malware samples.

Hardware Component Hardware properties
CPU model Intel Core i9 13980HX Raptor Lake
CPU cores 32 cores
RAM 32GB
GPU NVIDIA GeForce RTX 4080 12GB

Table 5. Benchmarking of the Solution

Constructing a data model from 250 malware samples and subsequently classifying 150

64

samples generally takes around 30 minutes on average. However, it is important to note that
this benchmark accounts for the fact that the Genome Database already contains numerous
unrelated samples from other experiments. This fact resulted in the feature vectors being
much larger than the sum of the unique malware genes in the experiment.

The optimizations discussed in Sections 5.1.3 and 5.1.3 were also implemented during the
solution’s verification process. These optimizations significantly reduced the time required
for machine learning by more than ten times. Before optimization, the experiment duration
was 26 minutes and 55 seconds, whereas with optimization from Section 5.1.3, it was
reduced to just 2 minutes and 41 seconds. Following the implementation of the second
optimization, the experiment duration totaled 6 minutes and 8 seconds. These results
confirm the necessity of optimizations in achieving the objectives outlined in Hypothesis
H0 from Section 1.1.

65

7. Discussion

A pivotal aspect of this study involved exploring the potential applications of machine
learning for a novel category of malware genes. Given that this type of malware genes had
not been utilized in this context previously, it was imperative to establish a comprehensive
data representation framework from scratch. By utilizing the forked and modified PeID
tool, packed samples were effectively excluded during the Data Pre-processing stage. Addi-
tionally, it was discovered that setting a minimum size of 500 malware genes significantly
increased the probability of excluding packed samples.

This research identified various potential data representations as well as several opti-
mization techniques. The representation of malware gene feature vectors is grounded
in unique genes sourced from the Genome Database. Following the implementation of
optimizations, this representation of the input vector for machine learning proves highly
effective. While this solution offers advantages, it also presents drawbacks in the form of
high-dimensional space. However, the complexity of the high-dimensional space can be
mitigated by employing algorithms such as Principal Component Analysis (PCA) [80].

Experimental research achieved notable accuracy rates exceeding 80% in malware clas-
sification. After these results, it can be concluded that hypothesis H1 can be fulfilled
with this solution. The highest accuracy values were achieved by combining the KNN
algorithm with the first optimization detailed in Section 4.10. The K parameter was set
to three neighbors, and the Euclidean algorithm was employed to calculate the distance
between vectors. However, experimental results suggest that genetic malware analysis may
not yield high accuracy for malware families sharing the same code base. Low accuracy
was evident in the case of the Zeus families from the first experiment and the DreamBot
family from the second experiment. These families share a commonality: the root malware
family code is public, and many sub-families reuse a significant portion of the initial code.

Over 1000 samples were processed within an hour through automated processing across
various integrations. This solution enables the automated processing of 24 thousand
samples daily on a standard laptop. However, this benchmarking process only encompasses
preliminary analysis and does not incorporate the application of machine learning for
correlation. When utilizing machine learning, optimizations become necessary. Employing
machine learning with optimizations made it feasible to process 267 samples in less than
three minutes. This level of performance enables the fulfillment of the H0 hypothesis.

66

7.1 Future Work

Future work in this research involves designing new approaches to representing malware
genes and exploring alternative machine learning methods. A direct continuation of this
study would involve efforts to reduce the dimensionality of input vector features. While
proposed optimizations may contribute to this goal by selecting representative genes, it
will also be essential to systematically and algorithmically reduce the number of malware
features in future research endeavors.

The primary focus of this research was to explore the potential of supervised machine
learning. Future endeavors will involve exploring novel applications of artificial intelli-
gence algorithms such as clustering and deep learning. Further research aims to achieve an
accuracy rate exceeding 90% overall and 70% for similar malware families. The insights
and code developed in subsequent research phases are intended to enrich the MalTraits
project further, facilitating the practical application of research findings.

67

8. Conclusion

Genetic malware analysis is an emerging field that greatly assists cyber teams in malware
correlation and classification. This research analyzes the methods of how and when to
use the field of Genetic Malware Analysis. The research findings confirm the primary
research question, demonstrating the feasibility of applying machine learning to a unique
representation of malware genes. Machine learning was assessed using both categorical
and numerical data representations. This study encompasses the introduction of entirely
novel approaches to malware genes, ranging from feature engineering to the assessment of
machine learning experiments.

The analytical part of the research describes the strengths and weaknesses inherent in
malware genes.Among the notable weaknesses of Genetic Malware Analysis is its reliance
on static analysis, which generates malware genes through disassembly. While static
analysis offers rapid processing of malware samples, it falls short in effectively analyzing
packed samples.

The research’s significance lies in its practical application of advanced technology, such
as distributed workers, diverse databases, and machine learning. This solution involved
programming several thousand lines of code, analyzing various malware samples, and
evaluating multiple experiments. The results were promising, with machine learning
achieving an impressive 80% accuracy over malware genes.

Genetic Malware Analysis is a methodology that enables organizations to analyze large
quantities of malware within their infrastructure, bridging the fields of data and malware
analysis. This integration has notably enhanced the efficiency of malware analysis through
classification and correlation processes. Moreover, organizations can leverage malware
genes for tasks like threat actor attribution and developing signature detection rules.

68

References

[1] Doaa Wael and Marianne A. Azer. “Malware Incident Handling and Analysis Work-
flow”. In: 2018 14th International Computer Engineering Conference (ICENCO).
2018, pp. 242–248. DOI: 10.1109/ICENCO.2018.8636144.

[2] The Independent IT-Security Institute. Malware statistics amp; trends report: AV-

TEST. URL: https://www.av-test.org/en/statistics/malware/.

[3] Martin Mihalovič. Malware Analysis of Cyber Attacks. May 2022. URL: https://
opac.crzp.sk/?fn=detailBiblioFormChildI22150&sid=

4F55101800366CEF55F6C3DB109A&seo=CRZP-detail-kniha.

[4] A.D. George. “An overview of RISC vs. CISC”. In: [1990] Proceedings. The

Twenty-Second Southeastern Symposium on System Theory. 1990, pp. 436–438. DOI:
10.1109/SSST.1990.138185.

[5] Tran Nghi Phu et al. “A Novel Framework to Classify Malware in MIPS
Architecture-Based IoT Devices”. In: Sec. and Commun. Netw. 2019 (Jan. 2019).
ISSN: 1939-0114. DOI: 10.1155/2019/4073940. URL: https://doi.
org/10.1155/2019/4073940.

[6] Patrick Wardle. Oct. 2021. URL: https://vblocalhost.com/uploads/
VB2021-Wardle.pdf.

[7] Mar. 2024. URL: https://www.virustotal.com/gui/stats.

[8] Anandharaju Durai Raju et al. “A Survey on Cross-Architectural IoT Malware
Threat Hunting”. In: IEEE Access 9 (2021), pp. 91686–91709. DOI: 10.1109/
ACCESS.2021.3091427.

[9] Francesca Arcelli Fontana, Davide Franzosi, and Claudia Raibulet. “.NET reverse
engineering with MARPLE”. In: Aug. 2010, pp. 227–231. DOI: 10.1109/ICSEA.
2010.41.

[10] Valentina Bellini et al. “Understanding basic principles of artificial intelligence: a
practical guide for intensivists”. In: Acta Bio Medica: Atenei Parmensis 93.5 (2022).

[11] Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-

Flow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd. O’Reilly
Media, Inc., 2019. ISBN: 1492032646.

69

https://doi.org/10.1109/ICENCO.2018.8636144
https://www.av-test.org/en/statistics/malware/
https://opac.crzp.sk/?fn=detailBiblioFormChildI22150&sid=4F55101800366CEF55F6C3DB109A&seo=CRZP-detail-kniha
https://opac.crzp.sk/?fn=detailBiblioFormChildI22150&sid=4F55101800366CEF55F6C3DB109A&seo=CRZP-detail-kniha
https://opac.crzp.sk/?fn=detailBiblioFormChildI22150&sid=4F55101800366CEF55F6C3DB109A&seo=CRZP-detail-kniha
https://doi.org/10.1109/SSST.1990.138185
https://doi.org/10.1155/2019/4073940
https://doi.org/10.1155/2019/4073940
https://doi.org/10.1155/2019/4073940
https://vblocalhost.com/uploads/VB2021-Wardle.pdf
https://vblocalhost.com/uploads/VB2021-Wardle.pdf
https://www.virustotal.com/gui/stats
https://doi.org/10.1109/ACCESS.2021.3091427
https://doi.org/10.1109/ACCESS.2021.3091427
https://doi.org/10.1109/ICSEA.2010.41
https://doi.org/10.1109/ICSEA.2010.41

[12] Mehadi Hassen and Philip K. Chan. “Scalable Function Call Graph-Based Malware
Classification”. In: Proceedings of the Seventh ACM on Conference on Data and

Application Security and Privacy. CODASPY ’17. Scottsdale, Arizona, USA: As-
sociation for Computing Machinery, 2017, pp. 239–248. ISBN: 9781450345231.
DOI: 10.1145/3029806.3029824. URL: https://doi.org/10.1145/
3029806.3029824.

[13] Jianwei Ding et al. “MGeT: Malware Gene-Based Malware Dynamic Analyses”. In:
Proceedings of the 2017 International Conference on Cryptography, Security and

Privacy. ICCSP ’17. Wuhan, China: Association for Computing Machinery, 2017,
pp. 96–101. ISBN: 9781450348676. DOI: 10.1145/3058060.3058065. URL:
https://doi-org.ezproxy.utlib.ut.ee/10.1145/3058060.

3058065.

[14] Christian Collberg et al. “Slinky: Static Linking Reloaded”. In: (Mar. 2004).

[15] Mamoru Mimura. “Impact of benign sample size on binary classification accu-
racy”. In: Expert Systems with Applications 211 (2023), p. 118630. ISSN: 0957-
4174. DOI: https://doi.org/10.1016/j.eswa.2022.118630.
URL: https://www.sciencedirect.com/science/article/pii/
S0957417422016773.

[16] Roy Halevi. What is genetic malware analysis? Jan. 2019. URL: https://
intezer . com / blog / malware - analysis / defining - genetic -

malware-analysis/.

[17] Michael Sikorski and Andrew Honig. Practical Malware Analysis: The Hands-On

Guide to Dissecting Malicious Software. 1st. USA: No Starch Press, 2012. ISBN:
1593272901.

[18] Erik Guttman and Nevil Brownlee. RFC FT-IETF-grip-framework-IRT: Expec-

tations for computer security incident response. June 1998. URL: https://
datatracker.ietf.org/doc/html/rfc2350#section-3.5.1.

[19] Software Engineering Institute. CSIRT Services - Carnegie Mellon University.
Jan. 2017. URL: https://resources.sei.cmu.edu/asset_files/
WhitePaper/2022_019_001_884490.pdf.

[20] Paul Cichonski et al. URL: https://nvlpubs.nist.gov/nistpubs/
specialpublications/nist.sp.800-61r2.pdf.

[21] Anjali Udasi. The Incident Response Lifecycle: Strategies for Effective Incident Man-

agement. July 2023. URL: https://www.zenduty.com/blog/incident-
response-lifecycle/.

[22] Fraunhofer FKIE. Malpedia General Statistics. URL: https://malpedia.
caad.fkie.fraunhofer.de/stats/general.

70

https://doi.org/10.1145/3029806.3029824
https://doi.org/10.1145/3029806.3029824
https://doi.org/10.1145/3029806.3029824
https://doi.org/10.1145/3058060.3058065
https://doi-org.ezproxy.utlib.ut.ee/10.1145/3058060.3058065
https://doi-org.ezproxy.utlib.ut.ee/10.1145/3058060.3058065
https://doi.org/https://doi.org/10.1016/j.eswa.2022.118630
https://www.sciencedirect.com/science/article/pii/S0957417422016773
https://www.sciencedirect.com/science/article/pii/S0957417422016773
https://intezer.com/blog/malware-analysis/defining-genetic-malware-analysis/
https://intezer.com/blog/malware-analysis/defining-genetic-malware-analysis/
https://intezer.com/blog/malware-analysis/defining-genetic-malware-analysis/
https://datatracker.ietf.org/doc/html/rfc2350#section-3.5.1
https://datatracker.ietf.org/doc/html/rfc2350#section-3.5.1
https://resources.sei.cmu.edu/asset_files/WhitePaper/2022_019_001_884490.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2022_019_001_884490.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-61r2.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-61r2.pdf
https://www.zenduty.com/blog/incident-response-lifecycle/
https://www.zenduty.com/blog/incident-response-lifecycle/
https://malpedia.caad.fkie.fraunhofer.de/stats/general
https://malpedia.caad.fkie.fraunhofer.de/stats/general

[23] Abdulaziz Ali Alkandari, Imad Fakhri Al-Shaikhli, and Mohammad A. Alahmad.
“Cryptographic Hash Function: A High Level View”. In: 2013 International Confer-

ence on Informatics and Creative Multimedia. 2013, pp. 128–134. DOI: 10.1109/
ICICM.2013.29.

[24] Darshana Upadhyay et al. “Investigating the Avalanche Effect of Various Crypto-
graphically Secure Hash Functions and Hash-Based Applications”. In: IEEE Access

10 (2022), pp. 112472–112486. DOI: 10.1109/ACCESS.2022.3215778.

[25] Kamran Saifullah. The Crown Jewels and the Pyramid of Pain. July 2021. URL:
https://www.gispp.org/2021/07/25/the-crown-jewels-and-

the-pyramid-of-pain/.

[26] Ivan Firdausi et al. “Analysis of Machine learning Techniques Used in Behavior-
Based Malware Detection”. In: Advances in Computing, Control, and Telecommuni-

cation Technologies, International Conference on 0 (Dec. 2010), pp. 201–203. DOI:
10.1109/ACT.2010.33.

[27] Alexey Bukhteyev. Invisible sandbox evasion. Mar. 2023. URL: https : / /
research . checkpoint . com / 2022 / invisible - cuckoo - cape -

sandbox-evasion/.

[28] Ondřej Maňhal. “Evading CAPE Sandbox Detection”. PhD thesis. CVUT DSpace,
2022, pp. 16–18.

[29] Dr. Mafaz. “Generic packing detection using several complexity analysis for accurate
malware detection”. In: International Journal of Advanced Computer Science and

Applications 5.1 (2014). DOI: 10.14569/ijacsa.2014.050102.

[30] Rodrigo Branco, Gabriel Barbosa, and Pedro Neto. Scientific but not academi-

cal overview of malware anti-debugging, anti ... Dec. 2012. URL: https://
media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_

Branco_Scientific_Academic_WP.pdf.

[31] Ricardo J. Rodríguez, Juan Antonio Artal, and Jose Merseguer. “Performance
Evaluation of Dynamic Binary Instrumentation Frameworks”. In: IEEE Latin Amer-

ica Transactions 12.8 (2014), pp. 1572–1580. DOI: 10.1109/TLA.2014.
7014530.

[32] c3rb3ru5d3d53c. C3RB3RU5D3D53C/binlex: A binary genetic traits lexer frame-

work. URL: https://github.com/c3rb3ru5d3d53c/binlex.

[33] Ranjith G Hegde. “Low Latency Message Brokers”. In: 2020. URL: https://
api.semanticscholar.org/CorpusID:235816029.

[34] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (Jan. 2012).

71

https://doi.org/10.1109/ICICM.2013.29
https://doi.org/10.1109/ICICM.2013.29
https://doi.org/10.1109/ACCESS.2022.3215778
https://www.gispp.org/2021/07/25/the-crown-jewels-and-the-pyramid-of-pain/
https://www.gispp.org/2021/07/25/the-crown-jewels-and-the-pyramid-of-pain/
https://doi.org/10.1109/ACT.2010.33
https://research.checkpoint.com/2022/invisible-cuckoo-cape-sandbox-evasion/
https://research.checkpoint.com/2022/invisible-cuckoo-cape-sandbox-evasion/
https://research.checkpoint.com/2022/invisible-cuckoo-cape-sandbox-evasion/
https://doi.org/10.14569/ijacsa.2014.050102
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://doi.org/10.1109/TLA.2014.7014530
https://doi.org/10.1109/TLA.2014.7014530
https://github.com/c3rb3ru5d3d53c/binlex
https://api.semanticscholar.org/CorpusID:235816029
https://api.semanticscholar.org/CorpusID:235816029

[35] Kilian Q. Weinberger and Lawrence K. Saul. “Distance Metric Learning for Large
Margin Nearest Neighbor Classification”. In: J. Mach. Learn. Res. 10 (June 2009),
pp. 207–244. ISSN: 1532-4435.

[36] Zhongheng Zhang. “Introduction to machine learning: K-nearest neighbors”. In:
Annals of Translational Medicine 4 (June 2016), pp. 218–218. DOI: 10.21037/
atm.2016.03.37.

[37] S. Zhang, J. Li, and Y. Li. “Reachable Distance Function for KNN Classification”.
In: IEEE Transactions on Knowledge amp; Data Engineering 35.07 (July 2023),
pp. 7382–7396. ISSN: 1558-2191. DOI: 10.1109/TKDE.2022.3185149.

[38] M. Raj Shekhar Rao, Deepanshu Yadav, and V. Anbarasu. “An Improvised Machine
Learning Model KNN for Malware Detection and Classification”. In: 2023 Interna-

tional Conference on Computer Communication and Informatics (ICCCI). 2023,
pp. 1–4. DOI: 10.1109/ICCCI56745.2023.10128189.

[39] Julio López and Sebastián Maldonado. “Redefining nearest neighbor classification
in high-dimensional settings”. In: Pattern Recognition Letters 110 (2018), pp. 36–
43. ISSN: 0167-8655. DOI: https://doi.org/10.1016/j.patrec.
2018.03.023. URL: https://www.sciencedirect.com/science/
article/pii/S0167865518301028.

[40] Feiping Nie et al. “An Effective and Efficient Algorithm for K-Means Clustering
With New Formulation”. In: IEEE Transactions on Knowledge and Data Engineer-

ing 35.4 (2023), pp. 3433–3443. DOI: 10.1109/TKDE.2022.3155450.

[41] Hussein Al Khansa, Fadi Yamout, and Fatima Salam. “Deriving Centroids for K-
means Algorithm”. In: 2018 International Conference on Computational Science

and Computational Intelligence (CSCI). 2018, pp. 266–269. DOI: 10.1109/
CSCI46756.2018.00058.

[42] URL: https://scikit-learn.org/stable/modules/clustering.
html.

[43] Shruti Sehgal et al. “Data analysis using principal component analysis”. In: 2014

International Conference on Medical Imaging, m-Health and Emerging Commu-

nication Systems (MedCom). 2014, pp. 45–48. DOI: 10.1109/MedCom.2014.
7005973.

[44] Rima Asmar Awad and Kirk D. Sayre. “Automatic clustering of malware variants”.
In: 2016 IEEE Conference on Intelligence and Security Informatics (ISI). 2016,
pp. 298–303. DOI: 10.1109/ISI.2016.7745494.

[45] Yipin Zhang et al. “Exploring Function Call Graph Vectorization and File Statistical
Features in Malicious PE File Classification”. In: IEEE Access 8 (2020), pp. 44652–
44660. DOI: 10.1109/ACCESS.2020.2978335.

72

https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.1109/TKDE.2022.3185149
https://doi.org/10.1109/ICCCI56745.2023.10128189
https://doi.org/https://doi.org/10.1016/j.patrec.2018.03.023
https://doi.org/https://doi.org/10.1016/j.patrec.2018.03.023
https://www.sciencedirect.com/science/article/pii/S0167865518301028
https://www.sciencedirect.com/science/article/pii/S0167865518301028
https://doi.org/10.1109/TKDE.2022.3155450
https://doi.org/10.1109/CSCI46756.2018.00058
https://doi.org/10.1109/CSCI46756.2018.00058
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://doi.org/10.1109/MedCom.2014.7005973
https://doi.org/10.1109/MedCom.2014.7005973
https://doi.org/10.1109/ISI.2016.7745494
https://doi.org/10.1109/ACCESS.2020.2978335

[46] Jianwen Fu et al. “Malware Visualization for Fine-Grained Classification”. In: IEEE

Access 6 (2018), pp. 14510–14523. DOI: 10.1109/ACCESS.2018.2805301.

[47] Putu Sukma Dharmalaksana et al. “Improved Malware Detection Results using
Visualization-Based Detection Techniques ant Convolutional Neural Network”. In:
2022 IEEE 8th International Conference on Computing, Engineering and Design

(ICCED). 2022, pp. 1–5. DOI: 10.1109/ICCED56140.2022.10010439.

[48] Guosong Sun and Quan Qian. “Deep Learning and Visualization for Identifying
Malware Families”. In: IEEE Transactions on Dependable and Secure Computing

18.1 (2021), pp. 283–295. DOI: 10.1109/TDSC.2018.2884928.

[49] Richard Zak, Edward Raff, and Charles Nicholas. “What can N-grams learn for
malware detection?” In: 2017 12th International Conference on Malicious and

Unwanted Software (MALWARE). 2017, pp. 109–118. DOI: 10.1109/MALWARE.
2017.8323963.

[50] N. Visweswaran et al. “Automated PE32 Threat Classification using Import Table
and Deep Neural Networks”. In: 2019 IEEE International Conference on Clean

Energy and Energy Efficient Electronics Circuit for Sustainable Development (INC-

CES). 2019, pp. 1–5. DOI: 10.1109/INCCES47820.2019.9167732.

[51] Michal Kida and Oluwafemi Olukoya. “Nation-State Threat Actor Attribution Using
Fuzzy Hashing”. In: IEEE Access 11 (2023), pp. 1148–1165. DOI: 10.1109/
ACCESS.2022.3233403.

[52] Jason Upchurch and Xiaobo Zhou. Malware provenance: code reuse detection in

malicious software at scale. 2016. DOI: 10.1109/MALWARE.2016.7888735.

[53] Muhammad Ijaz, Muhammad Hanif Durad, and Maliha Ismail. “Static and Dynamic
Malware Analysis Using Machine Learning”. In: 2019 16th International Bhurban

Conference on Applied Sciences and Technology (IBCAST). 2019, pp. 687–691. DOI:
10.1109/IBCAST.2019.8667136.

[54] Stavros D. Nikolopoulos and Iosif Polenakis. “A graph-based model for malware
detection and classification using system-call groups”. In: Journal of Computer Vi-

rology and Hacking Techniques 13.1 (2016), pp. 29–46. DOI: 10.1007/s11416-
016-0267-1.

[55] Joren Vrancken. Detecting Capabilities in Malware Binaries by Searching for

Function Calls. URL: https://www.ru.nl/publish/pages/769526/
joren_vrancken.pdf.

[56] O’Meara and Kyle CERT Insider Threat Center. API Hashing Tool, imagine that.
Mar. 2019. URL: https : / / insights . sei . cmu . edu / blog / api -
hashing-tool-imagine-that/.

73

https://doi.org/10.1109/ACCESS.2018.2805301
https://doi.org/10.1109/ICCED56140.2022.10010439
https://doi.org/10.1109/TDSC.2018.2884928
https://doi.org/10.1109/MALWARE.2017.8323963
https://doi.org/10.1109/MALWARE.2017.8323963
https://doi.org/10.1109/INCCES47820.2019.9167732
https://doi.org/10.1109/ACCESS.2022.3233403
https://doi.org/10.1109/ACCESS.2022.3233403
https://doi.org/10.1109/MALWARE.2016.7888735
https://doi.org/10.1109/IBCAST.2019.8667136
https://doi.org/10.1007/s11416-016-0267-1
https://doi.org/10.1007/s11416-016-0267-1
https://www.ru.nl/publish/pages/769526/joren_vrancken.pdf
https://www.ru.nl/publish/pages/769526/joren_vrancken.pdf
https://insights.sei.cmu.edu/blog/api-hashing-tool-imagine-that/
https://insights.sei.cmu.edu/blog/api-hashing-tool-imagine-that/

[57] Coen Boot. Applying supervised learning on malware authorship attribution - ru.nl.
URL: https://www.ru.nl/publish/pages/769526/b_coen_boot.
pdf.

[58] Omid Mirzaei et al. “SCRUTINIZER: Detecting Code Reuse in Malware via De-
compilation and Machine Learning”. In: Detection of Intrusions and Malware, and

Vulnerability Assessment. Ed. by Leyla Bilge et al. Cham: Springer International
Publishing, 2021, pp. 130–150. ISBN: 978-3-030-80825-9.

[59] Yong Fang et al. “Semi-Supervised Malware Clustering Based on the Weight of
Bytecode and API”. In: IEEE Access 8 (2020), pp. 2313–2326. DOI: 10.1109/
ACCESS.2019.2962198.

[60] Yihang Chen et al. “A Gene-Inspired Malware Detection Approach”. In: Journal of

Physics: Conference Series 1168 (Feb. 2019), p. 062004. DOI: 10.1088/1742-
6596/1168/6/062004.

[61] Ishai Rosenberg, Guillaume Sicard, and Eli David. “End-to-End Deep Neural Net-
works and Transfer Learning for Automatic Analysis of Nation-State Malware”. In:
Entropy 20 (May 2018), p. 390. DOI: 10.3390/e20050390.

[62] Ilay Cordonsky et al. “DeepOrigin: End-To-End Deep Learning For Detection
Of New Malware Families”. In: 2018 International Joint Conference on Neural

Networks (IJCNN). 2018, pp. 1–7. DOI: 10.1109/IJCNN.2018.8489667.

[63] Martin Mihalovic, Matej Las, and Michal Minar. URL: https : / / drive .
google . com / drive / folders / 1OFqLiP9GBt3cuwJB0IXJ6b87 -

XBwcuvu?usp=sharing.

[64] Masafumi Oyamada. “Extracting Feature Engineering Knowledge from Data Sci-
ence Notebooks”. In: 2019 IEEE International Conference on Big Data (Big Data).
2019, pp. 6172–6173. DOI: 10.1109/BigData47090.2019.9006522.

[65] Debajyoti Bera, Rameshwar Pratap, and Bhisham Dev Verma. “Dimensionality
Reduction for Categorical Data”. In: IEEE Trans. on Knowl. and Data Eng. 35.4
(Apr. 2023), pp. 3658–3671. ISSN: 1041-4347. DOI: 10.1109/TKDE.2021.
3132373. URL: https://doi.org/10.1109/TKDE.2021.3132373.

[66] Ranjani S. Anitha et al. “Categorical Data Clustering using Cosine based sim-
ilarity for Enhancing the Accuracy of Squeezer Algorithm”. In: International

Journal of Computer Applications 45 (2012), pp. 41–45. URL: https://api.
semanticscholar.org/CorpusID:1464229.

[67] Luciano da Fontoura Costa. “Further Generalizations of the Jaccard Index”. In:
ArXiv abs/2110.09619 (2021). URL: https://api.semanticscholar.
org/CorpusID:239024336.

74

https://www.ru.nl/publish/pages/769526/b_coen_boot.pdf
https://www.ru.nl/publish/pages/769526/b_coen_boot.pdf
https://doi.org/10.1109/ACCESS.2019.2962198
https://doi.org/10.1109/ACCESS.2019.2962198
https://doi.org/10.1088/1742-6596/1168/6/062004
https://doi.org/10.1088/1742-6596/1168/6/062004
https://doi.org/10.3390/e20050390
https://doi.org/10.1109/IJCNN.2018.8489667
https://drive.google.com/drive/folders/1OFqLiP9GBt3cuwJB0IXJ6b87-XBwcuvu?usp=sharing
https://drive.google.com/drive/folders/1OFqLiP9GBt3cuwJB0IXJ6b87-XBwcuvu?usp=sharing
https://drive.google.com/drive/folders/1OFqLiP9GBt3cuwJB0IXJ6b87-XBwcuvu?usp=sharing
https://doi.org/10.1109/BigData47090.2019.9006522
https://doi.org/10.1109/TKDE.2021.3132373
https://doi.org/10.1109/TKDE.2021.3132373
https://doi.org/10.1109/TKDE.2021.3132373
https://api.semanticscholar.org/CorpusID:1464229
https://api.semanticscholar.org/CorpusID:1464229
https://api.semanticscholar.org/CorpusID:239024336
https://api.semanticscholar.org/CorpusID:239024336

[68] Karl-Bridge-Microsoft. PE format - win32 apps. Feb. 2024. URL: https :
//learn.microsoft.com/en-us/windows/win32/debug/pe-

format.

[69] Trivikram Muralidharan et al. “File Packing from the Malware Perspective: Tech-
niques, Analysis Approaches, and Directions for Enhancements”. In: ACM Com-

put. Surv. 55.5 (Dec. 2022). ISSN: 0360-0300. DOI: 10.1145/3530810. URL:
https://doi.org/10.1145/3530810.

[70] Fahad Alswaina and Khaled Elleithy. “Android Malware Family Classification and
Analysis: Current Status and Future Directions”. In: Electronics 9.6 (2020). ISSN:
2079-9292. DOI: 10.3390/electronics9060942. URL: https://www.
mdpi.com/2079-9292/9/6/942.

[71] Médéric Hurier et al. “Euphony: Harmonious Unification of Cacophonous Anti-
Virus Vendor Labels for Android Malware”. In: 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR). 2017, pp. 425–435. DOI:
10.1109/MSR.2017.57.

[72] Europol. Qakbot botnet infrastructure shattered after international operation. URL:
https://www.europol.europa.eu/media- press/newsroom/

news / qakbot - botnet - infrastructure - shattered - after -

international-operation.

[73] J. Hamrock and R. Lyda. “Using Entropy Analysis to Find Encrypted and Packed
Malware”. In: IEEE Security amp; Privacy 5.02 (Mar. 2007), pp. 40–45. ISSN:
1558-4046. DOI: 10.1109/MSP.2007.48.

[74] Matt Green. Automating qakbot decode at scale. Apr. 2023. URL: https://docs.
velociraptor.app/blog/2023/2023-04-05-qakbot/.

[75] Karl-Bridge-Microsoft. VirtualAlloc function (memoryapi.h) - win32 apps. Feb.
2024. URL: https://learn.microsoft.com/en- us/windows/
win32/api/memoryapi/nf-memoryapi-virtualalloc.

[76] Najla Etaher, George R.S. Weir, and Mamoun Alazab. “From ZeuS to Zitmo:
Trends in Banking Malware”. In: 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1.
2015, pp. 1386–1391. DOI: 10.1109/Trustcom.2015.535.

[77] Dennis Schwarz. Zeusmuseum. URL: https://zeusmuseum.com/.

[78] Kurt Baker. What is zeus trojan malware? - crowdstrike. Jan. 2024. URL: https:
//www.crowdstrike.com/cybersecurity-101/malware/trojan-

zeus-malware/.

75

https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://doi.org/10.1145/3530810
https://doi.org/10.1145/3530810
https://doi.org/10.3390/electronics9060942
https://www.mdpi.com/2079-9292/9/6/942
https://www.mdpi.com/2079-9292/9/6/942
https://doi.org/10.1109/MSR.2017.57
https://www.europol.europa.eu/media-press/newsroom/news/qakbot-botnet-infrastructure-shattered-after-international-operation
https://www.europol.europa.eu/media-press/newsroom/news/qakbot-botnet-infrastructure-shattered-after-international-operation
https://www.europol.europa.eu/media-press/newsroom/news/qakbot-botnet-infrastructure-shattered-after-international-operation
https://doi.org/10.1109/MSP.2007.48
https://docs.velociraptor.app/blog/2023/2023-04-05-qakbot/
https://docs.velociraptor.app/blog/2023/2023-04-05-qakbot/
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://doi.org/10.1109/Trustcom.2015.535
https://zeusmuseum.com/
https://www.crowdstrike.com/cybersecurity-101/malware/trojan-zeus-malware/
https://www.crowdstrike.com/cybersecurity-101/malware/trojan-zeus-malware/
https://www.crowdstrike.com/cybersecurity-101/malware/trojan-zeus-malware/

[79] Jerome Cruz. Dreambot 2017 vs. ISFB 2013. Mar. 2018. URL: https://www.
fortinet.com/blog/threat- research/dreambot- 2017- vs-

isfb-2013.

[80] Abdulrahman Alkandari and Soha Jaber Aljaber. “Principle Component Analysis
algorithm (PCA) for image recognition”. In: 2015 Second International Conference

on Computing Technology and Information Management (ICCTIM). 2015, pp. 76–
80. DOI: 10.1109/ICCTIM.2015.7224596.

76

https://www.fortinet.com/blog/threat-research/dreambot-2017-vs-isfb-2013
https://www.fortinet.com/blog/threat-research/dreambot-2017-vs-isfb-2013
https://www.fortinet.com/blog/threat-research/dreambot-2017-vs-isfb-2013
https://doi.org/10.1109/ICCTIM.2015.7224596

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Martin Mihalovic

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Genetic Malware Analysis”, supervised by Alejandro Guerra Manzanares
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

12.05.2024

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

77

Appendix 2 – Experiment QakBot Malware Analysis

In section 6.1, the Qakbot malware was discussed in more detail. This analysis aims to
verify whether QakBot uses a custom packer and whether the sample is packed at all. This
qualitative research results in a better understanding of custom packers in general and how
they can be detected using malware genes. The first part of the malware analysis consists
of a Basic static analysis.

Attribute Value
Analysis Name QakBot ExploitReversing
Analysis ID/Ticket PAT24MAR08
Analysis Result Malicious
TLP White
TTP

- T1083: File and Directory Discovery
- T1057: Process Discovery

Taxonomies Malware-type="Loader"
Type of Analysis

- Code Analysis
File Type PE64
PDB Info -
SHA256 73e4969db4253f9aeb2cbc7462376fb7e26cc4bb5bd23b82e2af0eaaf5ae66a8

Table 6. Qakbot Basic Static Analysis

Based on the small number of meaningful strings, as well as the API function, it was
suspected that the sample is packed. This suspicion is also indicated by a higher entropy.
Therefore, the sample was debugged in the x64dbg tool, where the unpacking strategy was
chosen using breakpoints on several selected API calls.

■ VirtualAlloc
■ CreateProcessW
■ WriteProcessMemory
■ ZwUnmapViewOfSection

After a thorough analysis, it was found that the sample wants to be unpacked by injecting
the unpacked code into the process named "msra.exe". The unpacking process was revealed
after the 6th hit of the VirtualAlloc breakpoint.

78

Figure 19. Debugging and unpacking QakBot malware

After unpacking the sample, the code was analyzed statically using the IDA Pro tool.
Among other things, a decryption routine was found in the code, which decrypted the
string table of the malware. Python script was written by us to decipher the strings

1 import binascii

2 import pefile

3

4

5 def calc(num1, num2) -> int:

6 return int(num1, 16) - int(num2, 16)

7

8

9 def getPE(file_pathname: str):

10 return pefile.PE(file_pathname)

11

12

13 def extractSection(pe, section_name: str):

14 for section in pe.sections:

15 name = section.Name.decode()

16

17 if section_name in name:

18 return section.VirtualAddress, section.get_data(

19 section.VirtualAddress, section.SizeOfRawData

20)

21 return None

22

23

79

24 def getImageBase(pe):

25 return pe.OPTIONAL_HEADER.ImageBase

26

27

28 def decrypt(enc_data, key, offset=0):

29 sz_key = len(key)

30 dec_data = []

31 dec_string = ""

32

33 for i, byte in enumerate(enc_data[offset:], start=offset):

34 dec_char = byte ^ key[i % sz_key]

35 if dec_char == 0:

36 if offset != 0:

37 return dec_string

38 dec_data.append(dec_string)

39 dec_string = ""

40 else:

41 dec_string += chr(dec_char)

42

43 return dec_data

44

45

46 def getEndOfByteBlob(section_data, blob_offset):

47 if b"\x00\x00" in section_data[blob_offset:]:

48 return section_data[blob_offset:].index(b"\x00\x00")

49 return -1

50

51

52 def stringDecrypt(string_table_addr, key_addr):

53 pe = getPE("./evidence/va5_rundll32_04FE0000.bin")

54 base_addr = getImageBase(pe)

55

56 data_section_offset, data_section = extractSection(pe,

".data")

57 data_section_addr = base_addr + data_section_offset

58

59 string_table_offset = string_table_addr -

data_section_addr

60 key_offset = key_addr - data_section_addr

61

62 string_table_end_offset = getEndOfByteBlob(data_section,

80

string_table_offset)

63 key_end_offset = getEndOfByteBlob(data_section,

key_offset)

64

65 if string_table_end_offset == -1 or key_offset == -1:

66 return

67

68 enc_string_table = data_section[

69 string_table_offset : string_table_offset +

string_table_end_offset

70]

71 xor_key = data_section[key_offset : key_offset +

key_end_offset]

72

73 dec_string_table = decrypt(enc_string_table, xor_key)

74 return enc_string_table, xor_key, dec_string_table

75

76

77 def main():

78 enc_string_table, xor_key, dec_string_table =

stringDecrypt(0x1001D5A8, 0x1001E3F8)

79

80 iat = [1486, 2912, 531, 1533, 1645, 764, 3648, 3042]

81 for library in iat:

82 library_string = decrypt(enc_string_table, xor_key,

library)

83 print(f"Decrypted library {library_string} on offset

{library}")

84

85 print(f"Decrypted string table: {dec_string_table}")

86

87

88 main()

After decryption, several library names were revealed, which were then used for the API
Hashing technique. A more detailed static analysis was not performed, because the goal
was to verify whether the sample is really packed. This suspicion was confirmed by
dynamic analysis of the code using a debugger.

81

	Motivation
	Hypothesis
	Scope
	Research Questions
	Novelty
	Limitations
	Research Methods
	Structure Description

	Terms and Notations
	Background
	Malware Analysis
	Genetic Malware Analysis
	MalTraits
	Platform Architecture

	K-Nearest Neighbors
	K-means

	Related work
	Review Protocol
	Static Malware Analysis Techniques
	Machine Learning in Malware Analysis
	Attribution of Malware to APT Groups
	Primary Studies
	Assessment of Study Quality
	Data Extraction
	Data Synthesis
	Review Report
	Challenges in Malware Analysis

	Contribution
	Feature Engineering
	Categorical Data Representation
	Numerical Data Representation
	Optimalizations

	Data Pre-processing
	Exclusion of Packed Samples
	Malware Family Name Aliases

	Software Design
	Experiment Environment
	Wireframes

	Implementation
	Integrations
	Malware Correlations

	Validation
	Identification of Custom Packer by Malware Genes
	Classification of the Zeus Malware Family
	Malpedia Dataset Experiment
	Selection of Representative Malware Families
	KNN Classification of Whole Dataset
	KNN Classification of Subset Malware Families

	Performance Benchmarking of the Solution

	Discussion
	Future Work

	Conclusion
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – QakBot Malware Analysis

