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1 INTRODUCTION 

Starting from the mid-twentieth century Robotics is one of the major topics in the field 

of industrial automation and automation research. The first industrial robot was 

developed in the year 1959 [1] and ever since the technologies behind robotics are 

being modernized. The latest motivation in robotics research is concentrated on 

improved vision systems, artificial intelligence and machine learnings. Despite that as 

always speed, connectivity and programmability are still among the top concerns in 

industrial automation. Especially in the recent concept of industry 4.0, connectivity 

and decentralized decision making are the factors that are going to get more 

importance in future industrial processes. 

 

The trend in the manufacturing industries is shifting toward flexibility and 

connectivity. Because of extensive modernization in information technology and 

communication across the globe, nowadays it is practical to execute the ideas that 

were once impossible. In recent time customer's expectation is changing faster than 

ever. And as a result, it is getting more challenging to upgrade the manufacturing 

process for making sure the product's diversity. The idea of mass production is 

turning to be obsolete and instead customized production is making its place. In this 

context industrial automation and more specifically industrial robotics going through a 

technology revolution, when it is a priority for automation engineers to deliver 

according to the demand from consumers and industrial planners. 

 

The question going to be addressed in this thesis is, how effectively an old industrial 

robot can be integrated into a modern production facility when the technology is 

rapidly shifting and the demand is under constant change. A description of the 

industrial robot's evolution is given in chapter 2 of this thesis. But in short, we are in 

the transition period toward the fourth industrial revolution or industry 4.0 and this 

revolution is expected to be a combination of several major innovations in digital 

technology. The first and foremost factor of industry 4.0 is the interconnection 

between machines, devices, sensors and peoples. It gives us a clear indication that in 

the coming years, interconnected machines will play a big role in industrial automated 

process. In this thesis, the problem of integrating old generation machines into a 

modern industry is addressed in the context of current trends and requirements. 

 

This thesis is intended to give a solution for upgrading the control system of older 

industrial robots. Primarily this research is supposed to benefit small and medium size 

industries who operate a comparatively small fleet of robots. As industrial robots are 
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rather expensive machines they cannot be procured on a frequent basis. And for 

smaller industries, it is a burden to finance the purchasing money for a new robot. In 

that situation, just updating or replacing the robot's control system is a much 

economic decision for small industries. 

 

This thesis will act as a sample case study for smaller industries to evaluate the idea 

of replacing an old robot controller with newer control systems. Moreover this thesis 

will also work as a ground for future academic research on automation and industrial 

robotics. As technology is under continuous change, the priorities of industrial 

automation are also expected to change over time. In that alternating scenario, this 

thesis will provide important information about industrial robots and control systems, 

for conducting further research in this field. 
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2 HISTORICAL BACKGROUND AND LITERATURE 

REVIEW 

In this chapter, a chronological description is given about the evolution of industrial 

robotics and technological changes. Afterward, a brief overview of existing industrial 

robot control systems is given and recent researches done in this field are discussed. 

 

2.1 Problem statement  

Typical industrial robots used in factories usually have specific controllers for their 

operations. The majority of these controllers are suitable for a single mode of 

operation with a specific robot model. But when it comes to versatility and flexibility 

they are not the best option to work with. Because almost every OEM (Original 

Equipment Manufacturer) robot controller works with only a few robot models. And 

many of these controllers do not have enough options to integrate the machine with 

other equipment in a factory. When connectivity is a major concern for factory 

automation, these OEM controllers bring a huge drawback to the industrial planners. 

It makes the users dependant on a few hardware and as a result, reduces the 

flexibility for future changes.  

 

With proper maintenance, the hardware of an industrial robot can provide the desired 

service over a decade; but the control system cannot do the same for more than few 

years. Because of the rapid modernization of technologies, they need to be updated 

quite often. But control system upgrade is not always supported by the companies. 

Besides that, purchasing a new OEM controller is also an expensive decision. In this 

scenario, taking the approach of developing a universal control system for industrial 

robotics is a much reliable option, since it is less expensive compared to OEM 

controllers and more flexible for upgrades and modifications. 

 

2.2 Objectives 

The main objective of this thesis is to verify the concept of replacing the OEM 

controller of an older generation mechanically viable robot with a modern industrial 

control system. The background research of relevant literature and experiment is 

done during the thesis to support this proposal. The goal of the experiment is to 

replace an existing controller of a third-generation SCARA robot with a newer 
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generation Beckhoff industrial controller. The tasks include interfacing the robot's 

hardware with the control system devices and making a properly functional control 

interface to operate the system directly from a computer . The experiment is 

evaluated by running motion control programs in the new controller and the robot 

should demonstrate an exact point to point movements as it is commanded by the 

user. In short, there are three stages of this experiment.  

1) Establishing a functional interface between robot and control hardware;  

2) Executing robotic motion with structured text program;  

3) Configuring communication protocol for remote operation.  

 

2.3 Progress of industrial robotics 

The age of industrial robots started from the mid of twentieth century approximately 

during the same time of the third industrial revolution. Although the concept of 

robotics was not entirely new at that time, because the idea of artificial mechanical 

manipulator and machine's intelligence was present long before that mostly in forms 

of science fictions and stories. The first known use of the word 'Robot' was in a 

science fiction play by a Czech writer Karel Čapek in 1920 [2]. The term 'Robotics' 

first mentioned between the years 1940 and 1950 by another science fiction writer 

Isaac Asimov in science fiction stories under his novel called 'I, Robot'. In this novel 

he also brought up the widely known 'Three Laws of Robotics' that is also called as 

'Asimov's Law' [3].  

 

The advancement of robotics is generally categorized in four generations. The first 

generation of robotics began from 1950 and it lasted till 1967. In 1954 a scientist 

name George Devol designed the first industrial robot [2]. George Devol together with 

an entrepreneur Joseph Engelberger founded a company in 1956 to manufacture 

robots for industrial applications. The company was named 'Unimation' and their first 

development in the year 1959 was called UNIMATE [1]. That robot was installed in 

General Motor's production line in New Jersey, USA in 1962. It was programmed for 

doing single task like extracting materials from casting machine [2]. 

 

The significance of robotics in industrial sector influenced many other companies to 

devote in robotics development, and as a result by 1960s several new robot 

manufacturers emerged. One of these companies was AMF (American Machine and 

Foundry) Corporation, who was the first company to brought robotics in Japanese 

industries as well by their 'Versatran' robot in 1967 [2]. The first robot in Europe was 
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installed in the same year 1967 at 'Svenska Metallverken', a company in Sweden. Like 

most of the first generation robots it was programmed for doing simple monotonous 

pick and place work [4]. 

 

The second generation robotics are described by the years of development between 

1968 and 1977. During this time sensors were introduced in robotics that helped to 

develop close loop systems for motion control. At this similar time PLCs were also 

invented, that leads to the ability to control robotic systems from digital equipments 

[5]. In 1973 German automation company KUKA developed a robot that had six 

electromechanically driven axes, it was named 'Famulus'. One year after that in 1974 

the first microcomputer controlled robot called T3 (The Tomorrow Tool) was made by 

'Cincinnati Milacron' [1]. The major users of these earlier industrial robots were 

automotive industries where they were mainly operated for sensitive jobs like welding. 

Because of high reliability and accuracy, those robots gained immense popularity. It is 

considered that the era of robotics started from 1980s, because during this time many 

scientific and technological improvements contributed to robotics research [2] [5]. 

 

With the rise of digitalization and automation in industries, and the developments of 

programmable controllers and digital equipments started a new era in industrial 

robotics [6]. The third generation robotics are defined by the developing year from 

1978 to 1999. In 1978 a new design was proposed by a Japanese scientist Hiroshi 

Makino from the University of Yamanashi [2]. It was named SCARA (Selective 

Compliance Assembly Robot Arm) because of its limited maneuverability in horizontal 

direction and rigidity in vertical direction. In 1992 another new robotic kinematic 

structure was proposed by a Swiss scholar Reymond Clavel from the Swiss Federal 

Institute of Technology in Lausanne [2]. It was known as the Delta robot, and the 

design was based on parallel kinematics instead of serial kinematics. It had three 

translational axes and one rotational axis and was able to operate at a much faster 

speed because of its lightweight and relatively simpler kinematic chain. 

 

From the 1980s robot manufacturers also commenced developing robot programming 

languages for their machines. For instance, Unimation created a language called VAL 

(Variable Assembly Language), Fanuc started to use Karel programming language 

from 1988 and ABB developed their own language called Rapid in 1994 [7]. In 1994, 

synchronization of robots was attained by a company called Motoman, which is a 

subsidiary of Yaskawa Corporation. Motoman made the robot control system MRC that 

was able to synchronize control of two robots with up to 21 axes [2]. In 2004 they 
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released their improved control system NX100 that was capable to synchronize control 

of 38 axes from four robots [1]. 

 

The begin of fourth generation robotic is considered from the year 2000 and that is 

still underway. Significant additions in this time are the inclusion of superior 

computing ability, sophisticated sensors, artificial intelligence and machine learning 

ability. In addition, standardization of communication protocols and development of 

common platform for robot programming is also initiated in this period [5]. The high 

reliability in control systems and sensors leads the robots for non-commercial 

applications, for instance robotic vacuum cleaner and robotic loan mowers are being 

used by private owners. In addition collaborative robot or cobot has also been 

introduced by number of companies. 

 

2.4 Industry 4.0 and current trends in industries 

The term Industry 4.0 that refers to the fourth industrial revolution is believed to be 

underway in recent years. The fourth industrial revolution is triggered by the 

advancement of Information and Communication Technology (ICT) and it is a 

combined outcome of innovations in digital technology. The concept of Industry 4.0 

appeared in 2011 when the idea was presented by Henning Kagermann on behalf of 

the German federal government at Hannover fair [8]. The idea behind industry 4.0 is 

to establish cyber-physical systems and smart factories, where every machine and 

sensor will be connected under one system, which will lead to smart automation and 

the establishment of distributed control and the Internet of things (IoT).  

 

In industry 4.0 concept, the technical process and the business process of a company 

are proposed to merge in one system to improve the flexibility in decision making, 

optimization in production quantity and in mass custom production. Industry 4.0 is 

comprised of several design principles, that technically serve as a guideline to 

understand and implement this concept in a company. There are often six design 

principles as explained by experts; however, in 2016, it has been depicted through a 

study that there are four main design principles for industry 4.0 [9]. These design 

principles are namely Interconnection, Information transparency, Decentralized 

decisions and Technical assistance. 

 

From these design principles, it is understandable that industry 4.0 is not only about 

technical innovation, but it has to be an improvement of technical and business 
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process combined. And at the core of this concept is cyber-physical systems and 

Internet of things, where all of the process and machines need to be connected in one 

platform. This brings the issue of optimizing previously existing processes, when it 

becomes necessary to reengineer old equipments and configure both hardware and 

software platforms to make sure the interconnectivity. At the same time 

standardizations of technologies are important because of diversity in equipments and 

processes to ensure flexibility in automation planning. 

 

2.5 Methods and standards in industrial robotics 

The field of industrial robot is quite heterogeneous in terms of hardware, 

communication protocols and languages used for programming. Since industrial 

robot's market is dominated by major robot manufacturers, it is also challenging for 

open source developers to implement new technologies unless they are approved by 

bigger organizations. As most robot manufacturers and control system builders are 

intense to provide complete solution for their robot, there is lack of common 

benchmark for evaluating the performance of one robot controller with another. As a 

result, technological improvements in industrial robotics are comparatively sloth. 

While currently researches are taking place on artificial neural networks (ANN), 

machine learning and big data; technologies used industrial robotics are relatively old, 

that includes PID control loop, forward/inverse kinematics and so on.  

 

There are distinct standardizations exist for PLC programming, motion control and 

communication protocols. For instance, IEC 61131-3 is an open international standard 

that defines a guideline for software architecture and programming languages for 

programmable controllers. The current edition of this standard has published in 2013, 

and this version specifies the syntax and semantics of two textual languages: 

structured text (ST) and instruction list (IL); and two graphical languages: ladder 

diagram (LD) and function block diagram (FBD). 'PLCopen' is another common 

standards that creates vendor independent libraries for different PLC applications. 

Especially for motion control applications PLCopen function blocks are widely accepted 

to automation system designers. 

 

Particularly for robotic applications there are few standards, that is recently developed 

or under development. 'ISO/TC 299' (Standardization in the field of robotics, 

excluding toys and military applications) is one of these standards that deals to 

ensure proper safety, standardized interfaces and performance criteria [10]. IEEE 
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1872 (Ontologies for Robotics and Automation) is another standard developed by IEEE 

that provides a unified way of representing knowledge and a common set of term 

definitions from robotics and automation domain [11]. 

 

The robot controllers currently being used in industries are mostly modular type, they 

are built to operate with specific types of robot in mind. Some of current generation 

controllers are ABB's IRC5 controller and KUKA KR C4 controller. IRC5 is ABB's fifth 

generation controller, that is designed to operate mainly with ABB robots. IRC5 has 

different variants suitable for specific applications areas. IRC5 is programmed in ABB's 

'RAPID' programming language [12]. On the other hand, KUKA KR C4 controller has 

five variants, each has a different size factor and different numbers of drive axes. KR 

C4 supports high level PLC programming that is useful for I/O interfacing and 

utilization of motion control function blocks [13]. 

 

There are different existing approaches in industrial robot control development; 

namely, model-based development, cost/performance driven development, 

automation technology driven development and application driven robot control 

development. Each of these approaches has its own advantage, especially in recent 

time model based development is the fundamental one used in industrial robotic 

developments [14]. Researches has been done in the past for developing  open robot 

control systems such as OROCOS (Open Robot Control Software) and PC-ORC (PC-

based open robot control system) [15], [16]. Robot Operating System (ROS) was 

created in 2007 with the intention of making an open platform for robotic 

developments. Especially the development of 'ROS-Industrial' in 2012 opened 

possibilities for vendor-independent open-source drivers and prospects of  

interchangeable hardware components through standardized interfaces. 

 

2.6 Related researches and outcomes 

Numerous researches has been conducted on industrial robotics for improving 

performance and acceptance criteria. Many of these researches addressed the issue of 

reengineering and reusing industrial robots with new generation equipments and 

standardised protocols. 

 

In 2018 a conference paper was presented in IFAC PapersOnLine [17], that 

demonstrates the result of an experiment to re-engineer an industrial robot for 

performing new set of tasks. The objective of that study was to make modification of 



16 
 

an industrial KUKA robot and to reuse it with new control system in a different 

industrial setting. The objective was accomplished and outlined in the form of 

simulation and execution with real machine. In that study communication method was 

partly covered and the new system was prepared with unconventional hardware and 

software. 

 

Alternatively, several researches was done to evaluate the performance and reliability 

of different industrial protocols. For instance in 2012 a research paper was published 

by two researchers from Korea Electronic Technology Institute [18], who proposed a 

centralised soft robot control approach based on EtherCAT protocol. They executed an 

experiment to control a 6 joints robot from a software based master device with 10 

KHz main data transfer frequency and 1 KHz position control frequency. The 

experiment demonstrated a short response time and real time performance while the 

delay among the slave devices was less than 50 µs. 

 

In 2017 another study was published by a group of researchers from Slovak University 

of Technology in Bratislava [19]. They experimented standard Ethernet based TCP/IP 

protocol for controlling a robotic cell with three robots. The aim was to find a reliable 

solution for robot control in a non-Real-time network of communication. Although 

different industrial protocols were also discussed in the paper, the experiment was 

concentrated on TCP/IP and UDP protocols. According to the researchers, the concept 

is applicable for equipments that is programmed for autonomous behaviour up to 

certain extant and not dependable on precise timing of control instruction. 

 

2.7 Thesis structure 

This thesis is comprised of seven chapters. Chapter 1 is about an introduction of the 

thesis topic. Chapter 2 gives a historical overview and researches on industrial 

robotics. Chapter 3 is about the technical description of the hardware and software 

used in this thesis. In chapter 4 detail explanation is given about the hardware 

integration process. Chapter 5 is about describing the process of software 

commissioning and device parameterizations. In chapter 6 test executions have been 

described and performance is analyzed based on test results. In chapter 7, an overall 

summary of the entire thesis is given. 
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3 DESCRIPTION OF HARDWARE AND SOFTWARE  

In this chapter, detail explanation is given about the hardware and software tools used 

in this thesis including the robot and control system devices. As the motive of the 

thesis is to demonstrate an optimum solution with available equipments; the selection 

of the tools was made primarily based on availability and compatibility. In addition 

technical specifications were analysed in order to maximize the performance of the 

new development. 

 

3.1 Hirata AR-S350 SCARA robot 

This SCARA robot from industrial robotics laboratory in mechatronics and autonomous 

systems centre was taken into account for the experiment. This robot was made by 

Hirata company in Japan and it was required to replace previous OEM controller with a 

new control system. A brief specification of the OEM controller is given in appendix. 

This model (AR-S350-4-200) of the robot was primarily designed in 1997 [20] and this 

unit was manufactured in 1999. A picture of this robot and manufacturer's label is 

shown in figure 3.1. 

 

 
Figure 3.1 Hirata AR-S350 robot used in this thesis. 
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Like a typical SCARA robot, this is a 4-axis robot. Three of these axes are rotational 

axis and one is translational axis. Where A and B axes are responsible for horizontal 

movements, Z-axis adjusts the height and W-axis determines the orientation of the 

end effector. There is one AC servo motor connected with each axis and all of these 

motors are attached with encoders. These encoders are used for getting position 

feedback about motor's shaft. In addition there is one sensor connected with every 

axis, that indicates the limit of robot's working area for each axis. Detail technical 

parameters and physical construction of this robot is given in appendix 1. 

 

3.1.1 Motors 

There are four AC servo motors in this robot, that performs all physical movements 

through gears connected with each axis. All of these motors are AC 3-phase 

synchronous motor. Motor parameters are given in table 3.1. Since these motors are 

enclosed inside the robot, it was not possible to access the motor's nameplate. The 

only available approach was to acquire these parameters from third party sources. 

Motor's of the similar model has been searched online, and the values were taken 

from nameplate pictures of corresponding motor models. Pictures are given in 

appendix 3. 

Table 3.1 Hirata AR-S350 robot's basic motor parameters [21] 

 A-Axis motor B-Axis motor Z-Axis motor W-Axis motor 

Motor's Model Panasonic 
MSM042A2UE 

Panasonic 
MSM022A2UE 

Panasonic 
MSM022A2UE 

Panasonic 
MQMZ012A2U 

Motor Type 3 Ø AC Servo 3 Ø AC Servo 3 Ø AC Servo 3 Ø AC Servo 

Power Output 400 W 200 W 200 W 100 W 

Rated Input 
Voltage 

106 V 92 V 92 V 63 V 

Rated Input 
Current 

2,5 A 1,6 A 1,6 A 1,0 A 

Rated Frequency 200 Hz 200 Hz 200 Hz 200 Hz 

Rated Speed 3000 rpm 3000 rpm 3000 rpm 3000 rpm 

Connection Y Y Y Y 

Rated Torque 1,3 Nm 0,64 Nm 0,64 Nm 0,32 Nm 

 

By construction all of these motors are permanent magnet synchronous motor or 

PMSM; where the rotor is installed with permanent magnets and the stator has 

electromagnets connected with three phase AC power supply. When the  stator is 

energised with AC current, a rotating magnetic field is produced. The rotor takes turns 

because of interactions between the permanent  magnet's magnetic field and the 

stator's rotating magnetic field. Internal construction of a PMSM is shown in figure 3.2. 
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Figure 3.2 Internal construction of permanent magnet synchronous motor [22] 

 

As this is synchronous motor, slip is always zero, and the rotor always rotates at the 

synchronised speed with the rotating magnetic field. Speed of rotating magnetic field 

is directed by the frequency of the electric current in stator winding. As a result, by 

changing the current's frequency in stator winding, speed of synchronous motor is 

controlled. This speed can be calculated using equation 3.1. 

 
p

f
N S

120
  (3.1) 

where   NS – synchronous speed, rpm, 

  f – frequency of AC supply, Hz, 

  P – number of poles. 

 

3.1.2 Encoders 

As mentioned earlier, encoders are used for getting feedback about the motor's shaft 

position. There are primarily two types of encoders; incremental type and absolute 

type. In this robot, all of these four encoders are incremental type encoder. Since 

these encoders give data about the angular position, they are categorized as rotary 

encoder and a rotary encoder works following the movement of a disks connected with 

shaft. In figure3.3, structure and working principle of an incremental rotary encoder is 

shown. 
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Figure 3.3 Incremental rotary encoder structure [23] 

 

An incremental encoder gives the output as electrical pulses. These pulses are 

generated by sensors connected next to the encoder disk. For a known pattern in the 

encoder disk, number of pulses are counted to calculate the angular rotation, velocity 

and acceleration. To identify the direction of rotation a second sensor is required in 

addition to extra slits in the disk. Alongside these two sensors a third sensor is used to 

detect full revolutions of the shaft. In figure 3.4, output signal patterns are shown for 

an incremental encoder. 

 

Figure 3.4 Output pulses of TTL incremental encoder 

 

From the figure it is seen that, channel A and channel B sensors give output square 

wave that is 90° phase shifted. The direction of rotation can be detected by identifying 

the leading and lagging phases of these channels. The encoders used in this robot are 

TTL-2500-5V encoder. The speciality of TTL encoder is that, they output 

complementary signal for each channel. Complementary signals are useful for 
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eliminating the noise induced in transmission wire because of electromagnetic 

interference. 

 

This encoder gives 2500 pulses in one revolution. But because of the channel's phase 

offset, it outputs one rising edge or falling edge in every 90° either in channel A or in 

channel B. As a result, this encoder takes four count in one pulse, that makes the 

entire number of counts 10000 in one revolution. By observing this counts, it is 

possible to calculate exact angle of rotation, angular velocity and acceleration of the 

motor's shaft.  

 
10000

360*n
  (3.2) 

where   ϕ – motor's angle of rotation, °, 

  n – number of encoder counts. 

 

Unlike an absolute encoder, an incremental encoder does not give original position 

data by default. Therefore it is required to perform homing operation to identify the 

real shaft position. 

 

3.1.3 Sensors 

There are four proximity sensors installed in this robot. These are digital type sensors, 

so that they do not give information about analogue distance. These sensors can only 

be turned on or off and they are used as limit switch for each axis. The list of installed 

sensors is given in table 3.2. 

Table 3.2 List of sensors in AR-S350 robot [21], [24] 

 Model no. Sensor 
type 

Output 
type 

Output operation Axis operational 
limit 

A-Axis sensor GXL-8FB-R Inductive NPN Normally closed -110° to 110° 

B-Axis sensor GXL-8FB-R Inductive NPN Normally closed -135° to 135° 

Z-Axis sensor GXL-8HB-R Inductive NPN Normally closed  

W-Axis sensor GXL-8HB-R Inductive NPN Normally closed  

 

As these are inductive sensors, they only detect metals targets. Since that there are 

metal sensor tabs mounted with each axis in the robot. NPN type sensors are also 

known as sinking sensor as they sink the output to the ground. Sample wiring diagram 

and internal construction of a NPN type sensor is shown in figure 3.5. 
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Figure 3.5 Sample wiring diagram of GXL-series npn type sensor [24] 

 

In the case of these sensors, outputs are NC or normally closed. This indicates they 

output high signal when there is no metal object detected; and when the sensor 

detects metal, the outputs turn low. 

 

3.2 Beckhoff CX2030 controller 

Beckhoff controller has been selected for this work because of several advantages 

over other controllers. The foremost is the ease of integration and programming using 

TwinCAT system. As Twin CAT supports all of IEC 61131-3 programming languages, 

Beckhoff controllers are programmable with IEC 61131-3 recognised graphical and 

textual languages; In addition, TwinCAT can also compiles C/C++ programs, that 

makes it easier to write high level programs for automation tasks. 

 

In addition, Beckhoff controllers are quite modular in type, because of their easily 

detachable and configurable I/O terminals. And almost all of Beckhoff controllers are 

configured for EtherCAT protocols, and with additional modules they can also work 

with other industrial protocols. Beckhoff also has specific libraries for robotic motion 

control, that includes SCARA robot, delta robot and 6dof robot. Utilizing this pre built 

libraries, robotic motion control can be performed in more effective and easy manner. 
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CX2030-0120 is an embedded PC type programmable controller made by Beckhoff. 

This was one of the newest type of controllers available in the industrial robotics 

laboratory at the time of this thesis. This controller has Intel core i7 dual core 

processor with 1,5 GHz of processing speed and it has a memory (RAM) of 2 GB. This 

controller was installed with Microsoft windows embedded standard 7P, 32 bit 

operating system. In figure 3.6, a simple combination of this module with power 

supply unit is shown. 

 

 

Figure 3.6 Simplest combination of CX2030 controller with power supply module [25] 

 

The basic CX2030 controller has four USB 2.0 interface, two RJ45 Ethernet interface 

for connecting to LAN or EtherCAT, one DVI-I interface to connect with monitor or 

panel and one CFast card slot. Typically this controller is used in conjunction with 

additional modules. Following are the some of the modules used in this work. 

 

CX2100-0914 power supply unit is used to power up the basic CX2030 module. It 

takes 24 V DC as power source and serves as the primary mean to connect the 

controller with power source. In addition it connects the terminal bus (K-bus or E-bus) 

with the main controller, and also provide power supply to bus terminals via power 

contacts. 

 

EL2008 is an EtherCAT terminal (E-bus) used for digital outputs. It has 8 output 

channels with maximum output current of 0,5 A per channel. The outputs are single 

wire connection and they use 24 V DC. So the other end of connected load device has 

to be at 0 V for proper uses. 
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EL1018 is a 8 channel EtherCAT terminal (E-bus) for digital inputs. This is also a 24 V 

DC module with 10 µs input filters. These inputs are single wire connections and they 

are internally grounded at 0 V. So, it requires logical high (15 V to 30 V) potential to 

turn on the inputs. 

 

EK1100 module is used for coupling EtherCAT terminals (E-bus terminals) with 

EtherCAT network. It has two RJ45 port, for EtherCAT in and EtherCAT out 

connections. This module needs 24 V DC power supply for the power contacts and 

powering up E-bus modules. 

 

EK1110 module is used at the end of E-bus terminal blocks to further extend the 

EtherCAT network. It has one RJ45 connector that is used for EtherCAT out 

connection. This module converts E-bus signals into 100BASE-TX Ethernet signals. 

 

3.3 Beckhoff AX5203 servo drive 

This is an AX5000 series servo drive from Beckhoff company and its specific model 

number is AX5203-0000-0210. In addition to the CX2030 controller, this servo drive 

was used as part of the control system for running high power circuits in the systems. 

Essentially it worked as a power amplifier in servo control loop, and it performed the 

commutation task for the connected synchronous motors. 

 

Figure 3.7 Beckhoff AX5203 servo drive [26] 

 

This servo drive is able run up to two motors at same time with its channel A and 

channel B. There are separate encoder and resolver interfaces for position feedback in 

each channel. This drive needs two separate power source for its operation. 24 VDC 
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power is needed for running control and communication related tasks. And high 

voltage single phase or three phase AC is required for powering the motors. 24 V 

system can work independent of the high voltage side, so it is possible to configure 

the drive in case of uncontrolled situation by turning the AC power off. Important 

electrical data for output channels are given in table 3.3. 

 

Table 3.3 AX5203 electrical data for single phase 230 V power connection [27] 

Electrical parameters Approximate values 

Rated output current / channel 3 A 

Maximum rated current / channel 4,5 A 

Maximum output current /channel 10 A 

Total rated output current 4,5 A 

Total maximum output current 20 A 

Rated apparent power 2,4 kVA 

Power dissipation 85 W 

 

This drive has two RJ45 communication ports. These ports are configured for EtherCAT 

protocol, one is for incoming and the other is for outgoing line. AX5203 drive's 

Physical configurations and electrical connection example are shown in appendix 2. 

 

3.4 TwinCAT 

TwinCAT is a software platform used in PC based automation projects. This was used 

in this thesis for configuring and programming the PLC and servo drive. This platform 

is developed by Beckhoff company. TwinCAT uses different software tools to make the 

entire system work. 

 

TwinCAT XAR (eXtended Automation Runtime) is one of the tools used by 

TwinCAT. IT creates a real-time kernel inside windows operating system and dedicates 

one or more cores inside a multi-core processor for TwinCAT specific tasks. As a 

result, other applications in OS do not share processing memory with TwinCAT. So it 

ensures uninterrupted use of processing memory for controlling automation 

equipments directly from PC in real-time speed. 
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Figure 3.8 Processor's core distribution in TwinCAT XAR [28] 

 

TwinCAT XAE (eXtended Automation Engineering) is the development 

environment for automation projects. It works based on Visual Studio IDE (Integrated 

Development Environment). TwinCAT projects are created in XML file format. In this 

thesis TwinCAT version 3.1 was used that was installed on top of Visual studio 2017. 

TwinCAT XAE is required only in the development PC where projects are created; on 

the other hand, TwinCAT XAR is required both in development PC and in the remote 

embedded PC (controller in this case) where the projects are activated. 

 

In TwinCAT it is possible to write programs in five IEC 61131-3 standardized 

programming languages. These languages are: ladder diagram (LD), function block 

diagram (FBD), structured text (ST), instruction list (IL) and sequential function chart 

(SFC). In this thesis mainly structured text format was used for programming. 

 

3.4.1 TwinCAT drive manager 

TwinCAT Drive Manager (TCDM) is an application inside TwinCAT system, that is used 

for configuration and parameterization of servo drives. Drive manager is automatically 

added in TwinCAT projects when the system finds a servo drive after device scan. In 

connection to every channels of the drive, it is required to create one NC/CNC axis 

configuration. Axis configurations work as an abstraction layer inside TwinCAT system 

that links hardware configurations with controller's main program. TwinCAT Drive 

Manager user interface is shown in figure 3.9. 

 



27 
 

 

Figure 3.9 TwinCAT drive manager user interface 

 

Few parameters are essential to specify inside drive manager. Device power 

management is one that required to match with the power connection type. In this 

case '230 V|1 phase|50 Hz| (Europe AC)' was selected as power setting. For a multi 

channel drive, motor and feedback data are added individually for each channel. Drive 

manager loads motor data from XML files stored in a folder name 'MotorPool' inside 

TwinCAT directory. There is one data file for each available motor types and for 

missing motor types this file needs to be created manually. These files are created 

using 'TC Motor Data File Generator' software that was provided by Beckhoff. 
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3.4.2 TC Motor data file generator 

As mentioned above this software is used for making motor data file in XML format. It 

is a supplementary software provided by Beckhoff. For making the data files it is 

required to know certain motor parameters and the type of the motor. In following 

table the list of required parameters are given. 

Table 3.4 Required parameters for generating motor data file 

Motor Parameters 
Motor's construction (rotary/linear) 
Functional principle (motor type) 
Maximum motor speed 
Number of pole pairs 
Motor Back EMF constant 
Motor peak torque 
Motor continuous stall torque 
Rotor moment of inertia 
Motor peak current 

Motor continuous stall current 
winding resistance: phase to phase 

winding inductance: phase to phase 
Motor feedback type 
Motor temperature sensor type 
Motor brake type 

 

3.5 EtherCAT communication protocol 

In industries, communication protocols are used to maintain connectivity between 

machines and workstations. In this thesis it was used to make real-time 

communication between the control system devices. There are few widely popular 

communication protocols used in industries nowadays. EtherCAT (Ethernet for Control 

Automation Technology) is one of those, that was first developed in 2003 by Beckhoff 

Automation. From 2004 the rights of EtherCAT are belongs to an independent 

organization called 'EtherCAT Technology Group' (ETG). Currently ETG is responsible 

for maintenance and standardization of EtherCAT protocol. EtherCAT is currently 

standardised under fieldbus standard IEC 61158 and IEC 61784 [29]. 

 

3.5.1 EtherCAT communication layers 

EtherCAT is an application layer protocol. It works based on IEEE 802.3 Ethernet 

protocol. EtherCAT uses two types of data transfer. Standard data utilizes layer 1 up 

to layer 4, just like ordinary Ethernet protocol. But the real time data follows only 
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physical layer (layer 1) and data link layer (layer 2), and bypasses the other layers. It 

reduces the cycle time to ensure real-time communication. In figure 3.10, layers of 

EtherCAT communication protocol are shown. 

 

Figure 3.10 OSI model of EtherCAT communication [30] 

 

3.5.2 EtherCAT frame structure 

EtherCAT network follows Master-Slave configuration. EtherCAT master is normally a 

controller that sends data frames through every nodes in network. Each slave device 

connected to the nodes process the relevant data to that node from the data frame. 

Each slave device reads and adds to only particular bits into the data frame. EtherCAT 

master uses only standard Ethernet MAC address. It makes it possible to implement 

the master in any hardware platform that has RJ45 ports with Ethernet functionality. 

On the other hand EtherCAT slave devices need to have EtherCAT Slave Controller 

(ECS) chip in their hardware to process the data frames on the fly. The size of data 

frames targeted at each node can vary between a 1 bit to 60 Kbytes. 
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Figure 3.11 EtherCAT data in a standard Ethernet frame [31] 

 

Within one standard Ethernet frame there can be several EtherCAT datagram. Each 

datagram consists of a datagram header, data itself and the working counter (WKC). 

The datagram header contains the command, address, length and various check bits. 

The data holds the message that has to transfer to the slave. The working counter 

counts the number of actions in the datagram. When the datagram pass through 

several nodes, each nodes that addressed by that datagram increment the working 

counter. If the WKC value in the returned data frame does not match with the 

expected value, it is identified as an transmission error in network. EtherCAT follows a 

distributed clock mechanism. The I/O functionality of the slave devices can be 

triggered from master's clock cycle or from the local clock in the slave. The local clock 

is synchronised with a reference clock in the system. 

 

3.5.3 EtherCAT network topologies 

EtherCAT protocol is quite flexible in terms of network topologies. Star, tree, line, bus 

or combination of these topologies can be used in EtherCAT network. Because of the 

cable redundancy feature, ring topology is the most appropriate for EtherCAT network. 

In case of cable break in a ring topology, EtherCAT master can keep the 

communication on by implementing separate loops using full-duplex operation. 
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Figure 3.12 An EtherCAT network with ring topology [32] 

 

Every EtherCAT device normally has two ports. One port is connected to receive data 

frame from previous device and the other port is used for sending the data frame to 

the next device in network. EtherCAT nodes have self terminating feature. That 

suggests if a node is disconnected from the next node, the network detects this as 

open connection and terminate the network at that point. Because of this reason, 

EtherCAT network does not need any extra module or resistor for bus ending. In an 

EtherCAT network up to 65535 slaves can be connected regardless of their network 

topology [29]. 
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4 HARDWARE INTEGRATION 

 

 

 

4.1 Test development 

Considering the level of risks and complexity of working with the real machine, it was 

decided to go through a testing procedure with a simplified hardware setup. It was 

found to be more acceptable and helpful to break down the complexity of the 

integration process. There were few approaches to conduct the testing procedures. It 

could be done either in software-in-the-loop method, hardware-in-the-loop testing or 

with simplified hardware setup. Considering the phase of this work, either hardware-

in-the-loop testing or testing with real hardware were the appropriate testing 

approach. 

 

Hardware-in-the-loop (HIL) testing is the testing method, where real control devices 

are used to run a process in virtual environment. In this case hardware-in-the-loop 

testing was omitted, because it requires extra hardware modules for interfacing 

controller with virtual environment. And making a virtual model would cost 

unreasonable time. As the control hardware have already been chosen, decision was 

made to conduct testing with real hardware by making a simplified physical setup of 

the system, that can resemble the process but in small scale. 

 

4.1.1 Testing model 

The testing model was created to resemble a simple servo control loop using real 

control system equipments chosen for the robot. In addition to controller and servo 

drive, one spare servo motor was added in this system. This was a Panasonic servo 

motor and it belongs to the same series that is installed inside the robot. Besides that, 

one inductive proximity sensor and EtherCAT digital input module were used in the 

model. In figure 4.1, block diagram of this model and in figure 4.2 picture of this setup 

is shown. 
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Figure 4.1 Block diagram of the test setup 

 

 

Figure 4.2 Hardware test setup. 

 

4.1.2 Test outcomes 

There were few objectives of this testing that include, finding any flaws in system 

configuration, sorting out malfunctionality of any hardware modules, applicability of 

the current drive with the Panasonic servo motors and verifying the usability of TTL 

encoder's feedback for position calculation. This testing was incredibly helpful to 

understand the working methods of TwinCAT system and different Beckhoff modules.  

 

Moreover, it lead to find out the problem in the servo drive that was primarily use in 

the system. The original servo drive (AX5203-0000-0011) installed in this setup was 

found malfunctional. Steps had been taken to find solution of this problems, that 

include firmware updating and running the drive with different motor; but they were 

ineffective to solve the issue. So, finally decision was taken to move on experimenting 

with another version (AX5203-0000-0210) of the servo drive. 
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With the new drive, similar problem was not encountered and motion control was 

found working as it was programmed in the controller. Encoder's feedback was also as 

expected; after parameterization of the scaling factors it was giving exact position 

data following the shaft movements. After getting a reliable outcome from this test, it 

was time to proceed to the integration of the robot with new control system. 

 

4.2 Interfacing the robot 

Robot's control hardware combination had basic similarity with the model used for 

testing. But in this case there were multiple motors to drive and in addition it was also 

required to interface the robot's sensors with the I/O modules. In figure 4.3, a block 

diagram of the new control system hardware is shown. 

 

Figure 4.3 Block diagram of the robot's control system 

 

For this new control system, ring network topology was chosen, because of its 

redundancy advantage, as it was discussed in the chapter 3. Considering an industrial 

scenario, it was assumed that control hardware and the robot placed at separate 

location in a factory. As a result of that I/O terminal blocks were divided into two 

sections, one section was mounted next to the controller itself and the other section 

was installed near the robot for interfacing the sensors. 
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Since there was one servo drive available with two drive channels, it was only possible 

to run two axes of the robot. Axis-A and axis-B was chosen to operate in this case, 

because of their greater significance in end effector positioning. Axis-A and axis-B 

motors and encoders were connected with the channel-A and channel-B of the drive 

respectively. For the power connections X13 and X23 connection ports were used 

(figure A.2.1). These ports utilize four connecting wires (U, V, W, and PE) for three 

phase motors. The respective connecting wires in robot's motor line are marked 

correspondingly as A, B, C, and D for axis-A motor and E, F, G and H for axis-B motor 

(figure A.1.3). 

 

4.2.1 Encoders connections 

The encoder's connection with the servo drive was relatively critical to ensure, as for 

TTL type encoders, wire break detection is not supported, there was no way to identify 

wrong combination or disconnections of wires. This connections utilize D-sub 15 pin 

(DA-15) connector. It was required to manually match and solder each wire from 

motor's encoder cable to the D-sub plug. As described earlier in chapter 3 (3.1.2) 

about encoders, TTL incremental type encoders give the output from three sensors 

with six connecting wires. In addition to these six wires there are four more wires 

used for US (+5 V) and GND (0 V). The wiring configuration of D-sub connector and 

motor's encoder wires along with TTL encode functions are given in table 4.1. 

 

Table 4.1 Axis-A and axis-B encoder's wiring chart 

TTL encoder 
function 

Channel-A encoder connection Channel-B encoder connection 

DA-15 connector 
pin number 

(X11) 

Wire in robot's 
A/B-axis encoder 

line 

DA-15 connector 
pin number 

(X21) 

Wire in robot's 
A/B-axis encoder 

line 
n.c. 1 – 1 – 

Gnd 0V 2 X 2 Y 
n.c. 3 – 3 – 

US 5V 4 Z 4 a 
B+ 5 C 5 N 
n.c. 6 – 6 – 

Ref Z 7 F 7 S 
A+ 8 A 8 L 
n.c. 9 – 9 – 

Gnd 0V (sense) 10 X 10 Y 
n.c. 11 – 11 – 

US 5V (sense) 12 Z 12 a 
B- 13 D 13 P 
Z 14 E 14 R 
A- 15 B 15 M 
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4.2.2 Sensors connections 

As discussed in previous chapter, the sensors installed in the robot are NPN type 

inductive proximity sensors with normally closed output. This type of sensors sink 

output to the ground, so the other end of the output need to be positively biased for 

proper application. On the other hand, digital input terminals (EL1018) used in this 

work has single wire input channels that is internally grounded. That made it 

impossible to directly connect the sensors with these input terminals.  

 

 

Figure 4.4 Relay circuit used for axis-A and axis-B sensor output conversion 

 

This problem was solved by adding an extra layer of interposing relays between the 

sensors and the input terminal blocks. In figure 4.4 the circuit of sensors connection is 

shown. This circuit converts the sensor's sinking outputs into sourcing outputs, which 

is applicable with EL1018 input terminals. The connections of a three wire sensor are 

typically marked with colours; brown (+v), blue (-v) and black (output). In this case 

the corresponding wires in robot's cable are marked respectively as d, b, and G for 

axis-A sensor and e, c, and T for axis-B sensor (figure A.1.4). 
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4.3 Motor's parameter identification  

Motor parameter identification was an important part in the experiment. As the robot's 

motors are third party motor, their data files were not readily available. For generating 

the data files it was required to know certain motor parameters as mentioned in table 

3.4. The motors used in the robot are belongs to Panasonic MINAS X series. The 

original motor's datasheet [33] was useful to identify some of the required 

parameters. In following table, motor data acquired from the datasheet are shown. 

 

Table 4.2 Motor's Parameters taken from datasheet [33] 

Motor Parameter A-axis motor 
(MSM042A2UE) 

B-axis motor 
(MSM022A2UE) 

Motor's construction (rotary/linear) Rotary Rotary 

Functional principle (motor type) Synchronous Synchronous 

Maximum motor speed 5000 rpm 5000 rpm 

Number of pole pairs 4 4 

Motor peak torque 3,36 Nm 1,91 Nm 

Motor continuous stall torque 1,3 Nm 0,64 Nm 

Rotor moment of inertia 0,37 * 10-4 Kg.m2 0,17 * 10-4 Kg.m2 

Motor continuous stall current 2,5 A 1,6 A 

Motor feedback type Incremental 2500 P/r Incremental 2500 P/r 

Motor temperature sensor type No temperature sensor No temperature sensor 

Motor brake type No brake No brake 

 

Number of pole pairs is calculated using equation 3.1 and the values from table 3.1.  

8
3000

200*120120
 poles, ofNumber 

SN

f
P  

So, the number of pole pairs is 4, that is same for both motors. 

 

Data about winding resistance, winding inductance, Motor's peak current and Back 

EMF constant were missing in datasheet. These parameters either had to measure 

manually or to find out from alternative source. 

 

4.3.1 Resistance and inductance measurement 

Winding resistance was measures manually by a multimeter. Since the required 

resistance value was between phases, and as the motor's internal construction is Y 

connected, this value can be found by measuring resistance from the end of one phase 

to the next phase. In figure 4.5 the connection of resistance measurement is shown. 

This measurement was taken between each phases and the average value was used in 

the motor data. In ideal case, these three values should be equal or very close. 
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Figure 4.5 Motor's phase to phase resistance measurement [34] 

 

The next required parameter was winding inductance. The most reliable way of 

measuring inductance is by using LCR meter. In absence of that, it was required to 

calculate it from electrical measurement values. Following formulas were applied for 

calculation. 

Ohm's law, 
I

V
Z   (4.1) 

where   Z – winding impedance, Ω, 

  V – phase to phase voltage, V, 

  I – phase to phase current, A. 

 

Eddy current inspection formula, 

 

22
LXRZ   

22 RZX L   (4.2) 

where   R – phase to phase resistance, Ω, 

  XL – inductive reactance, Ω. 

 

Reactance formula, fLX L  2  

f

X
L L




2
 

(4.3) 

where   f – signal frequency, Hz, 

  L – winding inductance, H. 

 

In this method it was required to know four parameters; voltage (V), current (I), 

resistance (R) and frequency (f). Winding resistance was already been measured as 

described above. Rest of measurement values were taken from the circuit shown in 

figure 4.6. 
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Figure 4.6 Winding inductance measurement circuit 

 

Here the circuit was powered from 50 HZ AC source and the voltage and the current 

values were taken from the voltmeter and ammeter respectively. This measurements 

were taken separately for both axis-A motor and axis-B motors. In table 4.3, values 

taken from the measurements are shown. 

 

Table 4.3 Motor's electrical measurement values 

A-axis Motor (MSM042A2UE) 

Phases Phase to phase 
resistance (R) 

Phase to phase 
voltage (V) 

Frequency (f) Phase to phase 
current (I) 

U-V 2,56 Ω 4,57 V 50 Hz 0,84 A 

V-W 2,56 Ω 4,42 V 50 Hz 1,20 A 

W-U 2,53 Ω 4,45 V 50 Hz 1,02 A 

Average 2,55 Ω 4,48 V 50 Hz 1,02 A 

B-axis Motor (MSM022A2UE) 

Phases Phase to phase 
resistance (R) 

Phase to phase 
voltage (V) 

Frequency (f) Phase to phase 
current (I) 

U-V 4,48 Ω 4,77 V 50 Hz 0,55 A 

V-W 4,49 Ω 4,81 V 50 Hz 0,59 A 

W-U 4,47 Ω 4,66 V 50 Hz 0,80 A 

Average 4,48 Ω 4,75 V 50 Hz 0,65 A 

 

A-axis motor inductance calculation: 

  39,4 
02,1

48,4
Z  

  57,3 55,239,4 22
LX  

mH 36,11H 01136,0H 
50**2

57,3



L  

 

B-axis motor inductance calculation: 
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  31,7 
65,0

75,4
Z  

  78,5 48,431,7 22
LX  

mH 39,18H 01839,0H 
50**2

78,5



L  

 

4.3.2 Complete parameter list 

Two parameters; maximum current and back EMF constant were still missing for 

making the motor data files. Motor's maximum current is the parameter that is 

normally measured by mean of destructive testing. It is done in industries under 

safety precaution. It was not practical to execute it in this situation. On the other 

hand, for measuring motor's back EMF constant, it is required a special setup, where 

the testing motor is driven by another motor at constant speed. This test was also 

impractical in during the thesis because, the motors were already installed inside the 

robot, and it is not possible to manually turn the robot's arm in constant speed. 

 

The only way to get these parameters was to find the values from another motor's 

datasheet with same type of construction and closely similar values. Hiwin AC servo 

motor datasheet was found useful in this case. The required values for axis-A and 

axis-B were taken respectively from Hiwin FRLS402 and Hiwin FRLS202 servo motor 

parameters. 

 

Table 4.4 Motor's complete parameter list [33], [35] 

Motor Parameters A-axis Motor 
(MSM042A2UE) 

B-axis Motor 
(MSM022A2UE) 

Motor's construction (rotary/linear) Rotary Rotary 

Functional principle (motor type) Synchronous Synchronous 

Maximum motor speed 5000 rpm 5000 rpm 

Number of pole pairs 4 4 

Motor peak torque 3,36 Nm 1,91 Nm 

Motor continuous stall torque 1,3 Nm 0,64 Nm 

Rotor moment of inertia 0,37 * 10-4 Kg.m2 0,17 * 10-4 Kg.m2 

Motor continuous stall current 2,5 A 1,6 A 

Motor feedback type Incremental 2500 P/r Incremental 2500 P/r 

Motor temperature sensor type No temperature sensor No temperature sensor 

Motor brake type No brake No brake 

winding resistance: phase to phase 2,55 Ω 4,48 Ω 

winding inductance: phase to phase 11,36 mH 18,39 mH 

Motor peak current 7 A 5,1 A 

Motor Back EMF constant 30 mV/rpm 23 mV/rpm 
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4.3.3 Motor data file creation 

From the acquired values shown in table 4.4, the motor data files were created both 

for axis-A and axis-B motors. 'TC Motor Data File Generator' software was used for 

making the data files. The desired file format 'AxisInfo(.xml)' was chosen from 

menu>>Schema. Then after defining the motor types, respective parameters were 

added in the data files. The data files were then saved in default directory 

(C:\TwinCAT\3.1\Components\Base\Addins\TcDriveManager\MotorPool). In following 

figure, parameters of the data files are shown. 

 

 

Figure 4.7 Motor data file parameters for axis-A motor (up) and axis-B motor (down) 
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5 COMMISSIONING AND PARAMETERIZATION 

In this chapter the steps regarding software commissioning and drive 

parameterization is described in a chronological order. Later on a homing application is 

developed and controller is programmed for operation in automatic and manual mode. 

 

 

 

5.1 Commissioning 

The commissioning process begins with opening a new TwinCAT XAE project in visual 

studio IDE. TwinCAT project requires to specify the target system, where a 

communication link is created between the controller and the TwinCAT project. The 

target controller was added in the project using 'Add Route Dialog' box that appeared 

after clicking 'Choose Target System'. By pressing broadcast search, TwinCAT shows 

the list of all devices physically connected with the computer. From this list preferred 

controller was selected and the route was created by means of device's IP address 

through Ethernet protocol. 

 

Figure 5.1 Adding route to target system from TwinCAT XAE project 

 

As in this case the target device (CX2030) is a 32 bit system, the solution platform 

was also required to change to 32 bit. Before adding devices in the project it was also 

necessary to turn the TwinCAT into 'Config' mode. It was changed and verified from 

'TwinCAT XAE Base' toolbar at top of visual studio screen. After that a device scan was 
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performed from Solution Explorer window. This scan function brings a list of all devices 

and adapters that is physically connected with the controller. Only the devices related 

to this work were added in the project. 

 

Figure 5.2 TwinCAT system manager tree after performing device scan and creating NC axes 

 

Since, automatic scan also identified the servo drive in the device list, TwinCAT could 

also scan for motors connected with the drive. This step was skipped, since the motor 

used in this work are third party motors, they did not have electronic name plates. But 

TwinCAT needs electronic name plate to identify motors. After the device scan, two NC 

axis configurations were created, linked with the servo drive's each output channel. 

 

5.1.1 Drive configuration setting 

After adding the required devices and NC configurations, the devices were configured. 

For drive parameterization, the drive manager was opened from  solution 

explorer>>'Drive 6 (AX5203-0000-0210)'. Since the automatic motor scan was 

skipped, the motor data had to be entered manually. The XML motor data files have 

already been created explained in chapter 4. Before loading the motor data it was 
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important to correct the drive's power setting. The power supply setting was chosen 

'230 V|1 phase|50 Hz (Europe AC)' from device>>power management in drive 

manager tree. 

 

Figure 5.3 Drive manager power configuration screen 

 

After setting the power configurations, 'Motor and Feedback' tab was opened from 

drive manager tree consecutively for both channel A and channel B. After pressing the 

'Select motor' button following screen appeared. 

 

Figure 5.4 TwinCAT's motor selection window 

 

This screen shows all of the motors types that is available in the default motorpool 

directory. The created motor data files for this project are highlighted in the figure. 

These two files were added in channel A and channel B in according order. Selecting 

the motors also added the feedback 1 type in drive manager, since this data was also 

given during motor data file generation. 
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5.1.2 NC parameters scaling 

Before adjusting the NC scaling parameters, it was required to define the unit of 

movement in each axis. As both of the robot's operating axes (axis-A and axis-B) give 

rotational movement, the unit of movement was selected 'Degree' from axis 

configuration settings. After a thorough analysis of TwinCAT's NC scaling it was found 

that TwinCAT primarily needs two values called 'feed constant' and 'position resolution' 

for adjusting scaling parameters. These two numbers are used for calculating the 

value of 'NC scaling factor'. 

 
resolutionPosition 

constant Feed
factor scaling NC   (5.1) 

 

Position resolution is the bitwise resolution used in controller side to identify the 

movement position. This number should always be higher than maximum resolution of 

the encoder, that is the number of total counts in one motor revolution. In this case 

the resolutions of the encoders are 10000 as explained in chapter 3 (3.1.2). So, 

position resolution should be higher than 10000. In drive manager the lowest option 

was 2^20 or 1048576 that is much higher than the required value. So, 2^20 was 

selected as position resolution. 

 

On the other hand feed constant is an application related parameter that describes the 

amount of physical movement in one motor revolution. To identify the desired value it 

was required to examine the robot's physical construction. It was found out that the 

robot has a gear ratio 1:80 in axis-A and 1:50 in axis-B (table A.1.1 in appendix 1). 

So, one motor revolution (360 degree) was divided with the gear ratio numbers to find 

the feed constant values. These resultant values were 4,5 and 7,2 respectively for 

axis-A and in axis-B. 

 

 

Figure 5.5 Scaling and NC parameter settings for axis-A (up) and axis-B (down) 
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The values were entered from 'Scaling and NC parameters' setting inside drive 

manager. It was also important to recheck the values are same in encoder's 

parameter setting in axis configurations. Both of drive configuration and axis 

configuration need similar values of scaling factor, since without that encoder's count 

would give wrong position data. The values of axes' velocity, acceleration and jerk are 

dependent on scaling factor. So, these values were also updated after defining scaling 

factor for each axes. Once device configurations and scaling was done, it was time to 

transfer the settings to the drive. It was done by pressing 'Activate Configuration' 

button in toolbar. The system took few moments to upload all configurations and then 

the TwinCAT restarted in run mode. 

 

5.1.3 Phase sequence check and commutation search 

Before moving the axes in manual mode it was required to execute few drive 

commands from drive manager's service functions. These commands were executed in 

run mode, after enabling the axes; so it caused certain movement and vibration of the 

axes. 

 

'P-0-0166: Motor and feedback connection check' command was executed for 

comparing the motor's phase and the encoder's counting directions. Because by 

default, the drive cannot know whether motor phases are connected in the right 

sequence or not. In case of a wrong sequence in phase connection, encoder could 

identify the reverse direction as forward and that would ultimately lead to incorrect 

counting by the controller. This is avoided by running 'P-0-0166: Motor and feedback 

connection check' command in drive commands window. Picture shown in figure 5.6. 



47 
 

 

Figure 5.6 Motor and feedback connection check drive command 

After execution of the command, the text ' Succeeded to start the command' appeared 

in screen and values under P-0-0167 were changed. It was important that the 'Equal 

Directions' active value was '1:Yes'. That ensures motor phases and encoder counting 

are in same direction. In case of '0:No' in 'Equal Directions' field, it was necessary to 

swap the connection of any two phases in motor's power line. 

 

'P-0-0160: Calibrate commutation offset' command was used for executing the 

commutation search for the drive to identify the rotor's exact position. It is required 

because the drive has to know the correct phase to excite at the time of starting the 

motors. As in this case the motors are permanent magnet motor, by construction they 

are brushless type. And it is known, brushless motors uses electronic commutation 

instead of mechanical brushes. So, it is necessary to find the corresponding stator 

windings to excite, to keep an electrical commutation offset of 90 for shaft rotation. 

 

This is done with the help of feedback systems in this case the encoders. When 

executing this command, motor's winding is excited for a while and the rotor makes a 

bit of movements. Encoder registered that movement data, and the drive calculates 

rotor' exact position in the magnetic field. This process is useful to avoid unexpected 

axis alignments when operation begins. This procedure need to follow at least once 

while commissioning. In case of using absolute encoders position data are stored in 

the system and it is not necessary to check every time when drive restarts. But in this 

case, because of using incremental encoders position data gets lost with power off, 

and commutation search need to be done every time drive restarts. 
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Figure 5.7 Commutation search drive command 

P-0-0160 was selected from drive commands list. Under P-0-0165 command mode 

was selected '1:Wake and Shake', since this mode causes less movement of the axis. 

Activation was selected '1:On enable request' to automatically run this check after 

every restart. Executing the command took few seconds and after execution the 

message 'Succeeded to start the command' appeared at the bottom of screen. The 

drive was then ready to run in manual mode. 

 

5.2 Homing 

Homing refers to the process of axis movements that helps the controller to identify 

the absolute axis position. Homing is done with the help of a reference signal, that 

used to be at a known position. When the axis takes certain movements and detects 

the reference signals, that particular location is registered with the known position 

value. And following this process the controller identifies the axis actual position in the 

workplace. In the case of using incremental type encoders, homing is a mandatory 

procedure when machine starts up, since incremental encoders does not store position 

values, there is no other way to identify the actual position by the controller.  

 

In this development homing has been done with the help of proximity sensors that is 

installed with every axes. As explained in chapter 3, these sensors are inductive 

proximity sensors, with a normally closed output. They give high output when there is 

no detection, but when they detect the metal tabs connected with axes the state 

changed to low. By following this detection controller registers that position with a 
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known position value. From robot's manual it is known that each axes has a  

maximum working range and that is detectable by the sensors. As a result, in this 

case the sensors serve as reference signals and the maximum working ranges are the 

known positions for homing. 

 

In TwinCAT there are several modes of homing procedure, they are categorised by 

mean of compatibility with position measuring systems or encoders. The TTL-

incremental encoders, used in this robot fall under the relative position category. For 

this category the applicable homing mode is the 'homing based on reference cam' or 

'Plc Cam' called in TwinCAT. This mode is relatable with the basic method of homing, 

which is discussed above. In this mode a digital signal is used as reference at a 

defined point in travel path. The controller detects the signal edge for allocating the 

reference position to that position. For other homing modes absolute encoder or part-

absolute encoder are required. 

 

5.2.1 Homing parameterization 

Homing parameterization was required inside NC configurations>>Encoder under 

Parameter settings. Reference System was selected 'incremental' as incremental 

encoders were used. 'Encoder mask' value was kept the original values as 0xFFFFFFFF. 

This number refers to bit width of encoder counting position and used in range 

overflow. Since the robots axes works in certain range that falls much below this 

number, there was almost no chance of range overflow. 'Invert encoder counting 

direction' was kept false since encoder counting direction complied with direction of 

axis rotation. 'Reference mode' was selected 'Plc CAM' as explained above it is the 

most appropriate one for incremental encoders. 
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Figure 5.8 Axis-A homing parameter settings 

 

'Invert direction for calibration cam search' determines the direction of axis rotation 

for searching reference signal. Standard movement is the negative direction. It was 

selected false that ensures the axes moves toward negative direction during homing. 

Calibration values were chosen according to the data about maximum working range 

of the robot axes (Appendix 1). These values were -110 and -135 respectively for 

axis-A and Axis-B. Negative values were given, because the axes moves toward 

negative direction during homing and it refers that, sensor's activation point will be on 

the negative side. 

 

5.2.2 Program for automatic homing 

Since in TwinCAT, homing procedure does not operate in manual control mode it was 

required to make program for homing application. The program was designed to run in 

automatic mode by the controller for executing two different type of tasks. In addition 

to automatic homing, it is also useful for point to point move by jogging function.  

 

This program was written in structured text format using Beckhoff's 'Tc2_MC2' and 

'Tc2_NC' libraries in addition to default libraries. These libraries comply with PLCopen 

standard motion control functions. The copy of this program is added in appendix 4. 

This program was structure as a state machine diagram. In figure 5.9 the state 

diagram of this program is shown. 
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Figure 5.9 State machine diagram of homing and jogging operation 

 

There are ten states in this state machine including the initial state. Three of these 

states are used for operation selections and axis selections. These selections are made 

by operator from HMI input. The rest of the states execute the movements by motion 

functions. Jogging operation is more similar to manual control, that is directly 

manoeuvred by operator from HMI buttons. And the homing function is entirely 

autonomous that results automatic movement for axis homing. After completing 

homing, axes take another automatic move to be placed at zero position. The 

transitions in this state machine are controlled by input buttons from HMI. In figure 

5.10, the HMI of this program is shown. 
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Figure 5.10 HMI for axes homing and axes jogging 

 

In this HMI, the two buttons at upper left corner are dedicated for axis enabling and 

disabling at any point of operation. At upper right corner there are four parameters to 

observe; axis-A and  axis-B current positions and sensor status. Green colour of 

sensor indicators imply that sensors are on. In lower part of HMI two separated tabs 

indicate two different applications. Here the gray buttons are responsible for operation 

mode selection and axis selection. Aqua coloured buttons cause axis movement either 

in jog mode or by confirming autonomous movement. 
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6 TESTING AND ANALYSIS 

In this chapter, few tests has been executed and results are analysed for evaluating 

the robot's movements and the controller's performance. Brief explanation is given 

about the test parameters and the result are shown in graphs. 

 

6.1 Motion analysis 

Robot's axes Motion is an important criteria to test, since almost all of robotic 

applications are directly related to the accuracy of relevant axes positioning. In this 

case, few test has been done from the new controller by executing point to point 

movements. The results of these test are analysed by observing the encoder's position 

feedback and the received position information is compared with the given commands. 

 

6.1.1 Axis-A motion tests 

Three tests has been executed with axis-A in manual mode. Six motion parameters 

were varied during these tests, to ensure back and forth axis movement with different 

velocity and acceleration. The testing parameters and the test results are shown in 

table 6.1 and in figure 6.1 to 6.3 respectively. 

 

Table 6.1 Axis-A motion tests settings 

Motion parameters Test-1 Test-2 Test-3 

Initial position 0 degree 10 degree -10 degree 

Target position 10 degree -10 degree 35 degree 

Target velocity 5 degree/s 10 degree/s 25 degree/s 

Acceleration 10 degree/s2 20 degree/s2 20 degree/s2 

Deceleration 10 degree/s2 20 degree/s2 20 degree/s2 

Jerk 200 degree/s3 40 degree/s3 50 degree/s3 
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Figure 6.1 Axis-A motion test-1 result 

 

 

Figure 6.2 Axis-A motion test-2 result 
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Figure 6.3 Axis-A motion test-3 result 

 

Analysis 

From these tests it is visible that the axis reached the target position every time 

without any overshoot. Here it is significant to observe that, despite of a point to point 

move, axis is controlled in a continuous mean by generating a new set position in each 

controller's cycle time. And the set position is always followed by the actual axis 

position. In the graphs, they are hardly distinguishable as they mostly overlapped. 

 

The velocity and acceleration also followed the commanded values, that it 

comprehensible from the peak values in the graphs. In test-3 actual velocity did not 

reach the target value because, the deceleration started at corresponding moment for 

stabilizing the axis at target position. In these tests, the actual velocity lags the set 

velocity with an approximate value between 0,2 s and 0,4 s. The possible reason can 

be the mechanical inertia of the motor and gear assembly. 
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6.1.2 Axis-B motion tests 

Similar to axis-A, three tests has been done for axis-B by varying parameters in 

manual mode. Test parameters are shown in table 6.2 and results are in figure 6.4 to 

figure 6.6. 

 

Table 6.2 Axis-B motion tests settings 

Motion parameters Test-1 Test-2 Test-3 

Initial position 0 degree -15 degree 10 degree 

Target position -15 degree 10 degree 60 degree 

Target velocity 5 degree/s 15 degree/s 25 degree/s 

Acceleration 20 degree/s2 30 degree/s2 30 degree/s2 

Deceleration 20 degree/s2 30 degree/s2 30 degree/s2 

Jerk 100 degree/s3 50 degree/s3 40 degree/s3 

 

 

 

Figure 6.4 Axis-B motion test-1 result 
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Figure 6.5 Axis-B motion test-2 result 

 

 

Figure 6.6 Axis-B motion test-3 result 
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Analysis 

In all of these three tests axis attained the target positions without any noticeable 

overshoot or destabilizations. Actual velocity was in accordance with the target 

velocity. From the graphs it is visible that, velocity was not totally stable throughout 

the movement in comparison to axis-A. This might happened because of uneven 

torque distribution, or any mechanical flaws belongs to motor. In test-2 acceleration 

did not reach maximum point because, the target velocity was low and the jerk limited 

the rate of acceleration rise before getting to the maximum point. 

 

6.2 Controller's performance analysis 

It is really hard to represent a control system's performance in numerical form. And 

since the controller used in this thesis is able to run much complicated tasks, this 

robotic application had very less impact on the controller's overall performance. For 

analyzing the controller's performance, few parameters have been monitored, while 

executing the axes motions. In figure 6.7, online monitored data of the controller's 

system latency is shown. 

 

 

Figure 6.7 Controller's system latency during task execution 

 

From graph it is seen that, the default system latency was about 1 µs. The peaks in 

the graph indicates the moments while controller executed any active or passive 

tasks. And while executing the axes motions there were no significance rise of system 

latency. As it is observed from the graph, latency was always below 8 µs. In figure 

6.8, controller's task execution time is for different tasks shown in time domain. 
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Figure 6.8 Controller's task execution times 

 

'CPU' (blue) graph shows the time required by the CPU for task execution. The 'Total' 

(red) graph displays the total time spent from starting of the task till the end. The 

difference of these two lines indicates the waiting time, while CPU was executing 

higher priority tasks.  
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In the figure three types of tasks are monitored. 'NC-Task 1 SAF' refers to block 

execution tasks for NC operations. This tasks include setpoint generations and feeding 

the fieldbus I/O to NC. The rises in this graph indicates the time when the axes were 

in motion. In the third there are rises at similar times, since these motion commands 

were given from manual I/O, they were handeled as I/O tasks. 'Plc Task' graph follows 

the similar pattern and the maximum task execution time during axis motion was 

between 60 to 65 µs. And at no motion time it was about 55 µs. NC Task has almost 

zero waiting time, since it is a higher priority task for CPU. 

 

6.3 Recommendations for future work 

Despite being a fully functional system, there is much space of continuing this work 

for improvements. Since, the inverse and forward kinematics is a primary mean of 

robotic motion, it is advised to develop this in the future. The currently utilized 

structured text or function blocks can be used for the kinematic control as well. In 

addition C/C++ can be utilized for programming, which lot more flexible and object 

oriented programming language. Alternatively, 'TwinCAT Kinematic Transformation' 

can be added in future developments. In kinematic transformation there are specific 

function blocks, that is useful for robotic motion control and SCARA robot's kinematic 

is also included in this library. For using this feature an additional library name, 

'Tc2_NcKinematic Transformation' need to add in solution project. 

 

In addition, for ensuring the full utilization of the robot, it is required to run all four 

axis of the robot axes. Currently, because of limited number of drive channels, only 

two axes are used. For full scale movement, this setup needs another similar servo 

drive or different servo drive with two channels. This is not a technically challenging 

task, since the entire process is already described in this thesis. Full scale use of this 

robot will be very useful for making application that is more focused on specific task 

by running all axes,. 

 

Furthermore, Machine vision can be added in this system by installing cameras to the 

robot's workstation and using TwinCAT machine vision feature. As, machine vision is 

extremely important in industrial robotics nowadays, it will be a significant addition to 

this robot and potentially lead to conduct more comprehensive research on machine 

vision for SCARA robot controlling. 
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There are few mechanical issues that need to overlook for this robot's performance 

improvement. As it is seen from the motion tests, axis-B velocity is not as smooth as 

axis-A; this issue need to be investigated. Few additional test can be done to this axis 

with different test parameters. If this symptom exist, then motor data file for the 

corresponding motor may need to recreate after taking new electrical measurements. 

Specially for motor's inductance measurement a better method can be followed. It can 

be either tested with an LCR meter; otherwise the similar method can be followed but 

using a variable frequency signal generator for powering the circuit at a different 

frequency. 

 

It has been observed during the experiments that, robot's sensor tabs are not 

perfectly aligned. As a result, the axes did not take position exactly at centre after 

homing; even though, according to the NC values they were at zero positions. This 

can be fixed by physically moving the sensor tabs and placing at right position. It 

might require to use some manual measurement tools for accurate angule 

measurement. The another way to solve this, is by assigning manipulated axis position 

value for homing. 

 

Finally, there is scope of improvement in the safety features of this control system. 

Although, because of careful operations during experiments there was no unexpected 

movement occurred. And in case of autonomous operation, correct axis programming 

and accurate NC parameterization ensured the safe movement within operational 

range. But it was always important to take extra caution during axis movement and it 

is advised to developed an extra layer in motion safety. In current setup, the robot 

can only be immobilized by turning the main power off, for the sake of stopping 

uncontrolled movement. This can be improved by integrating safe torque off (STO) 

feature in this system. STO is a quite accepted technique as industrial motion safety 

measures. It can be added to the system by installing TwinSAFE drive option card to 

the AX5203 servo drive's safety slot. 
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7 CONCLUSIONS 

This thesis was started with the goal of integrating a new generation control system 

with a comparatively older generation less utilized robot. The aim was to prove the 

concept that, replacement and integration of industrial robots with customised control 

system is a convenient approach. The concept has been proven through experiments 

with an industrial SCARA robot and control hardware from a different vendor, by 

developing a common interface for fully functional control system. 

 

The significance of this research topic is justified by a thorough literature search 

related to the history and evolution of industrial robots. In a sequence of that current 

trends and international standards about industrial automation and robotics has been 

explored during this thesis. Later during development stage these knowledge has 

created a positive influence that ensured the developed control system complies with 

the current industrial requirements. 

 

This thesis has been done to solve a particular problem in industries. That is flexibility 

of industrial automation processes specifically about industrial robotics. The new 

controller developed in this thesis much flexible in terms of integration and 

modifications compared to the original controller. Beckhoff controller, in addition to 

TwinCAT automation platform and EtherCAT communication protocol has been used in 

this development. The advantages these systems has been described in the thesis and 

verified by experiments. 

 

For making the proper control system the robot itself and the control hardware had 

been thoroughly  investigated for specifications and relevant parameters. Especially, it 

was challenging to find all necessary parameters belongs to the robot's motors. They 

have been acquired and calculated from various sources and by following different 

methods. In addition, necessary electrical circuitry was prepared for proper 

communication between devices and modules including, sensors, encoders, servo 

drive, and controller. 

 

After ensuring all necessary steps of proper hardware combination, parameter 

identifications, and device configurations, it was possible to generate automation tasks 

from software environment. Program has been written form TwinCAT system using 

structured text language, to testify basic movements of the robot axes. Finally, the 

system performance has been observed and analysed from the results found from test 

runs. 
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The performance was analyzed under two test categories. One was about motion 

control accuracy, where robot's actual position, velocity and acceleration were 

compared with set values. The received results in this test was quite satisfactory, 

because in almost every test actual parameters have matched with target parameters. 

The other category was about the controller's performance testing. The result found 

from this test was relative to conclude, although the controller performed all tasks 

without any sign of error. In reality, this controller is able to execute much-

complicated tasks. For analyzing the true performance level, more complex 

applications have to be developed in the future based on the current solution. 
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JÄRELDUS 

Selle lõputöö eesmärk oli integreerida uue põlvkonna juhtimissüsteem vanema 

põlvkonna vähemkasutatud robotiga. Eesmärk oli tõestada kontseptsiooni, et 

tööstusrobotite asendamine ja integreerimine kohandatud juhtimissüsteemiga on 

mugav lähenemisviis. Kontseptsioon on tõestatud katsetega tööstusliku SCARA roboti 

ja juhtimisriistvaraga, mis pärineb teiselt tootjalt, töötades välja ühise liidese täielikult 

funktsionaalseks juhtimissüsteemiks. 

 

Selle uurimisteema olulisust õigustab põhjalik kirjandusotsing, mis on seotud 

tööstusrobotite ajaloo ja arenguga. Selle lõputöö käigus on uuritud praeguseid trende 

ja rahvusvahelisi standardeid tööstusautomaatika ja robootika kohta. Hilisemas 

arendusetapis on need teadmised loonud positiivse mõju, mis tagas väljatöötatud 

juhtimissüsteemi vastavuse praegustele tööstusnõuetele. 

 

See lõputöö on tehtud konkreetse probleemi lahendamiseks tööstuses. See on 

tööstusautomaatika protsesside paindlikkus, eriti seoses tööstusliku robootikaga. 

Selles väitekirjas on uus kontroller välja töötatud on võrreldes algse kontrolleriga 

integreerimise ja modifikatsioonide osas palju paindlikum. Selles arenduses on lisaks 

TwinCAT automaatikaplatvormile ja EtherCAT-i kommunikatsiooniprotokollile 

kasutatud ka Beckhoffi kontrollerit. Nende süsteemide eeliseid on lõputöös kirjeldatud 

ja katsetega kontrollitud. 

 

Nõuetekohase juhtimissüsteemi loomiseks oli robot ise ja juhtimisriistvara tehniliste 

kirjelduste ja asjakohaste parameetrite osas põhjalikult läbi uuritud. Eriti keeruline oli 

leida kõik vajalikud parameetrid roboti mootoritele. Need on saadud ja arvutatud 

erinevatest allikatest ja erinevaid meetodeid järgides. Lisaks valmistati ette vajalik 

elektriskeem nõuetekohaseks suhtluseks seadmete ja moodulite vahel, kaasa arvatud 

andurid, kooderid, servoajam ja kontroller. 

 

Pärast kõigi riistvara korrektsete kombinatsioonide, parameetrite tuvastamise ja 

seadme konfiguratsioonide vajalike sammude tagamist oli tarkvarakeskkonnast 

võimalik genereerida automatiseerimisülesandeid. Programm on kirjutatud TwinCAT-i 

süsteemist, kasutades struktureeritud tekstikeelt, et tõendada robotitelgede põhilisi 

liikumisi. Lõpuks on süsteemi jõudlust jälgitud ja analüüsitud katsete tulemuste 

põhjal. 
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Tulemusi analüüsiti kahes katsekategoorias. Üks käsitles liikumise juhtimise täpsust, 

kus võrreldi roboti tegelikku asukohta, kiirust ja kiirendust seatud väärtustega. Selle 

testi tulemused olid üsna rahuldavad, kuna peaaegu igas testis olid tegelikud 

parameetrid vastavusse seatud parameetritega. Teine kategooria puudutas kontrolleri 

jõudluskontrolli. Selle testi tulemus oli lõplik, kuigi kontroller täitis kõiki ülesandeid 

ilma veamärkideta. Tegelikult on see kontroller võimeline täitma palju keerukaid 

ülesandeid. Tegeliku jõudluse taseme analüüsimiseks tuleb tulevikus praeguse 

lahenduse põhjal välja töötada keerukamad rakendused. 
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APPENDICES 

Appendix 1 : Hirata AR-S350 Robot Technical Specifications 

Table A.1.1 Hirata AR-S350 robot's physical parameters 

 

 

 

Figure A.1.1 AR-S350 robot's operational area 
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Table A.1.2 Parts list of AR-S350 robot 

 

 

 

Figure A.1.2 AR-S350 robot's structure 
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Figure A.1.3 Motor's wiring diagram for AR-S350 robot 

 



73 
 

 

Figure A.1.4 Wiring diagram for A/B axis encoders 
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Figure A.1.5 Wiring diagram for Z/W axis encoders 
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Appendix 2 : AX5203 Servo Drive Descriptions 

 

 

Figure A.2.1 AX5203 visual description [26] 
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Figure A.2.2 AX5203 servo drive connection example [26] 
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Appendix 3 : Panasonic Motor Data 

 

Figure A.3.1 Panasonic MINAS X series motor classifier [33] 

 

 

Figure A.3.2 Panasonic MINAS X series motor data [33] 
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Figure A.3.3 Panasonic MSM042A2UE motor's nameplate 

 

 

Figure A.3.4 Panasonic MSM022A2UE motor's nameplate 

 

 

Figure A.3.5 Panasonic MQMZ012A2U motor's nameplate 

 



79 
 

Appendix 4 : Structured Text Program for Axes Homing 

 

PROGRAM MAIN 

VAR  

 power_button AT %I* : BOOL; 

 stop_button AT %I* : BOOL; 

 button AT %I* : BOOL; 

  

 jog_mode_btn AT %I* : BOOL; 

 hom_mode_btn AT %I* : BOOL; 

 opr_mode_select AT %I* : INT; 

  

 jog_axis_A_btn AT %I* : BOOL; 

 jog_axis_B_btn AT %I* : BOOL; 

 jogging_axis_select AT %I* : INT; 

  

 hom_axis_A_btn AT %I* : BOOL; 

 hom_axis_B_btn AT %I* : BOOL; 

 homing_axis_select AT %I* : INT; 

   

 axis_move_forward AT %I* : BOOL; 

 axis_move_backward AT %I* : BOOL; 

  

 homing_start_btn AT %I* : BOOL; 

 Zero_pos_btn AT %I* : BOOL; 

  

 sens_A AT %I* : BOOL; 

 sens_B AT %I* : BOOL; 

  

 Axis_A : AXIS_REF; 

 Axis_B : AXIS_REF;  

  

 Power : MC_Power; 

 Reset : MC_Reset; 

 Jogging : MC_Jog; 

 McVelocity : MC_MoveVelocity; 

 Stop : MC_Stop;  

 Homing : MC_Home; 

 AbsoluteMove : MC_MoveAbsolute; 

  

 State : DINT; 
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END_VAR 

 

Axis_A.ReadStatus(); 

Axis_B.ReadStatus(); 

 

IF power_button THEN 

Power(Axis:=Axis_A, 

  Enable:=TRUE, 

  Enable_Positive:=TRUE, 

  Enable_Negative:=TRUE); 

Power(Axis:=Axis_B, 

  Enable:=TRUE, 

  Enable_Positive:=TRUE, 

  Enable_Negative:=TRUE); 

Reset(Axis:=Axis_A); 

Reset(Axis:=Axis_B); 

END_IF 

 

IF stop_button THEN 

Stop(Axis:=Axis_A, 

  Execute:=TRUE); 

Stop(Axis:=Axis_B, 

  Execute:=TRUE);  

END_IF 

 

////Mode selection buttons//// 

 IF jog_mode_btn THEN 

  opr_mode_select := 1; 

 ELSIF hom_mode_btn THEN 

  opr_mode_select := 2; 

 END_IF 

  

 IF jog_axis_A_btn THEN 

  jogging_axis_select := 1; 

 ELSIF jog_axis_B_btn THEN 

  jogging_axis_select := 2; 

 END_IF 

  

 IF hom_axis_A_btn THEN 

  homing_axis_select := 1; 

 ELSIF hom_axis_B_btn THEN 

  homing_axis_select := 2; 

 END_IF 
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CASE State OF 

  

 0:   //State initial 

  State := 50; 

 50:   //State Operation mode select 

  IF opr_mode_select=1 THEN 

   State := 300; 

  END_IF   

  IF opr_mode_select=2 THEN 

   State := 100; 

  END_IF 

 100:   //State Homing Axis select 

  IF homing_axis_select=1 THEN 

   State := 110; 

  ELSIF homing_axis_select=2 THEN 

   State := 120; 

  ELSIF opr_mode_select=1 THEN 

   State := 50; 

  END_IF 

 110:   //State Axis-A Homing 

  Homing (Axis:=Axis_A, 

    bCalibrationCam:=sens_A, 

    Execute:=homing_start_btn); 

  IF Homing.Done THEN 

   State := 210; 

  ELSIF homing_axis_select=2 THEN 

   State := 100; 

  ELSIF opr_mode_select=1 THEN 

   State := 50; 

  END_IF 

 120:   //State Axis-B Homing 

  Homing (Axis:=Axis_B, 

    bCalibrationCam:=sens_B, 

    Execute:=homing_start_btn); 

  IF Homing.Done THEN 

   State := 220; 

  ELSIF homing_axis_select=1 THEN 

   State := 100; 

  ELSIF opr_mode_select=1 THEN 

   State := 50; 

  END_IF 

 210:   //State Axis-A zero position move 
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  AbsoluteMove (Axis:=Axis_A, 

     Position:=0, 

     Velocity:=10, 

     Acceleration:=20, 

     Deceleration:=20, 

     Jerk:=50, 

     Execute:=Zero_pos_btn); 

  IF AbsoluteMove.Done THEN 

   State := 100; 

  END_IF 

 220:   //State Axis-B zero position move 

  AbsoluteMove (Axis:=Axis_B, 

     Position:=0, 

     Velocity:=10, 

     Acceleration:=20, 

     Deceleration:=20, 

     Jerk:=50, 

     Execute:=Zero_pos_btn);   

  IF AbsoluteMove.Done THEN 

   State := 100; 

  END_IF 

 300:   //State Jogging Axis select 

  IF jogging_axis_select=1 THEN 

   State := 310; 

  ELSIF jogging_axis_select=2 THEN 

   State := 320; 

  ELSIF opr_mode_select=2 THEN 

   State := 50; 

  END_IF 

 310:   //State Axis-A Jogging 

  Jogging (Axis:=Axis_A, 

    JogForward:=axis_move_forward, 

    JogBackwards:=axis_move_backward, 

    Mode:=MC_JOGMODE_STANDARD_SLOW); 

  IF Jogging.Done THEN 

   State := 300; 

  ELSIF jogging_axis_select=2 THEN 

   State := 300; 

  ELSIF opr_mode_select=2 THEN 

   State := 50; 

  END_IF 

 320:   //State Axis-B Jogging 

  Jogging (Axis:=Axis_B, 
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    JogForward:=axis_move_forward, 

    JogBackwards:=axis_move_backward, 

    Mode:=MC_JOGMODE_STANDARD_SLOW); 

  IF Jogging.Done THEN 

   State := 300; 

  ELSIF jogging_axis_select=1 THEN 

   State := 300; 

  ELSIF opr_mode_select=2 THEN 

   State := 50; 

  END_IF 

END_CASE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


