
TALLINN UNIVERSITY OF TECHNOLOGY
SCHOOL OF ENGINEERING
Department of Electrical Power Engineering and Mechatronics

INTEGRATION OF SCARA
BECKHOFF INDUSTRIAL

SCARA ROBOTI
TÖÖSTUSKONTROLLERIGA

UNIVERSITY OF TECHNOLOGY
SCHOOL OF ENGINEERING
Department of Electrical Power Engineering and Mechatronics

INTEGRATION OF SCARA ROBOT WITH
BECKHOFF INDUSTRIAL CONTROLLER

ROBOTI INTEGREERIMINE BECKH
TÖÖSTUSKONTROLLERIGA

MASTER THESIS

Student: Md Arifur Rahman

Student code: 165594MAHM

Supervisor: Mart Tamre, Professor and
Programme Director (Mechatronics)

Tallinn, 2019

ROBOT WITH
CONTROLLER

INTEGREERIMINE BECKHOFFI

Professor and
Programme Director (Mechatronics)

2

(On the reverse side of title page)

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“.......” 20…..

Author:

/signature /

Thesis is in accordance with terms and requirements

“.......” 20….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20… .

Chairman of theses defence commission: ...

 /name and signature/

3

Department of Electrical Power Engineering and Mechatronics

THESIS TASK

Student: Md Arifur Rahman, 165594MAHM

Study programme: MAHM02/13 - Mechatronics

Main speciality: Mechatronics

Supervisor(s): Professor, Mart Tamre, +372 620 3202

Consultants: None

Thesis topic:

(in English) Integration of Scara Robot with Beckhoff Industrial Controller

(in Estonian) Scara Roboti Integreerimine Beckhoffi Tööstuskontrolleriga

Thesis tasks and time schedule:

No Task description Deadline

1.
Study of available Literatures and evaluating the suitability of Proposed
idea

2. Getting familiarized of the Beckhoff controller and TwinCAT system

3. Get detail knowledge of the robot's parameters

4. Building Demo setup for safe testing proposed method

5. Finalizing the control algorithm

6. Executing test run with the main robot

7. Analyzing the outcome and making improvement as required

8. Compiling the thesis report

Language: English

Deadline for submission of thesis: 03.01.2020

Student: Md Arifur Rahman ……........ “.......”……........2020

Supervisor: Prof. Mart Tamre ……........ “.......”……........2020

Head of study programme: Prof. Mart Tamre ……........ “.......”……........2020

4

CONTENTS

CONTENTS .. 4

PREFACE ... 6

List of abbreviations and symbols .. 7

1 INTRODUCTION ... 8

2 HISTORICAL BACKGROUND AND LITERATURE REVIEW 10

2.1 Problem statement ..10

2.2 Objectives ..10

2.3 Progress of industrial robotics ...11

2.4 Industry 4.0 and current trends in industries ..13

2.5 Methods and standards in industrial robotics ...14

2.6 Related researches and outcomes ...15

2.7 Thesis structure ..16

3 DESCRIPTION OF HARDWARE AND SOFTWARE 17

3.1 Hirata AR-S350 SCARA robot ..17

3.1.1 Motors ..18

3.1.2 Encoders ...19

3.1.3 Sensors ...21

3.2 Beckhoff CX2030 controller ..22

3.3 Beckhoff AX5203 servo drive ..24

3.4 TwinCAT ..25

3.4.1 TwinCAT drive manager ...26

3.4.2 TC Motor data file generator ..28

3.5 EtherCAT communication protocol ...28

3.5.1 EtherCAT communication layers ...28

3.5.2 EtherCAT frame structure ..29

3.5.3 EtherCAT network topologies ...30

4 HARDWARE INTEGRATION ... 32

4.1 Test development ..32

4.1.1 Testing model ..32

4.1.2 Test outcomes..33

4.2 Interfacing the robot..34

5

4.2.1 Encoders connections ..35

4.2.2 Sensors connections ...36

4.3 Motor's parameter identification ..37

4.3.1 Resistance and inductance measurement ...37

4.3.2 Complete parameter list ..40

4.3.3 Motor data file creation ...41

5 COMMISSIONING AND PARAMETERIZATION ... 42

5.1 Commissioning ...42

5.1.1 Drive configuration setting ...43

5.1.2 NC parameters scaling ..45

5.1.3 Phase sequence check and commutation search46

5.2 Homing ..48

5.2.1 Homing parameterization ..49

5.2.2 Program for automatic homing ...50

6 TESTING AND ANALYSIS .. 53

6.1 Motion analysis ...53

6.1.1 Axis-A motion tests ...53

6.1.2 Axis-B motion tests ...56

6.2 Controller's performance analysis ..58

6.3 Recommendations for future work ...60

7 CONCLUSIONS ... 62

JÄRELDUS ... 64

LIST OF REFERENCES .. 66

APPENDICES ... 70

Appendix 1 : Hirata AR-S350 Robot Technical Specifications70

Appendix 2 : AX5203 Servo Drive Descriptions ..75

Appendix 3 : Panasonic Motor Data ..77

Appendix 4 : Structured Text Program for Axes Homing..................................79

6

PREFACE

This thesis and the experiments are done in industrial robotics laboratory at

mechatronics and autonomous systems centre of Tallinn University of Technology.

This thesis idea was initially originated by Prof. Mart Tamre, and later on the proper

reasoning of this research was found out by thorough study of research articles

journals. Mr. Tamre deserves special gratitude because of his cooperation and support

for completing this research. In addition, I am also thankful to all members of

mechatronic engineering department, who indirectly facilitated my study and research

during the whole duration. I also like to thank Tallinn University of Technology for

giving me the opportunity to conduct my masters study. I am also thankful to the ABB

company, from where I got important technical knowledge related to the field and

came to understand the technological needs from industrial perspective. I also

appreciate my friends and colleagues for their cooperation and advice during my stay

in Estonia. Finally I am grateful to my family who was always at my side, gave me

financial and moral support and inspiration for accomplishing greater goals.

7

List of abbreviations and symbols

ANN Artificial Neural Networks

EtherCAT Ethernet for Control Automation Technology

FBD Function Block Diagram

HMI Human Machine Interface

ICT Information and Communication Technology

IDE Integrated Development Environment

IL Instruction List

IoT Internet of Things

LD Ladder Diagram

OEM Original Equipment Manufacturer

OROCOS Open Robot Control Software

PC-ORC PC-based Open Robot Control

PLC Programmable Logic Controller

PMSM Permanent Magnet Synchronous Motor

SCARA Selective Compliance Assembly Robot Arm

ST Structured Text

8

1 INTRODUCTION

Starting from the mid-twentieth century Robotics is one of the major topics in the field

of industrial automation and automation research. The first industrial robot was

developed in the year 1959 [1] and ever since the technologies behind robotics are

being modernized. The latest motivation in robotics research is concentrated on

improved vision systems, artificial intelligence and machine learnings. Despite that as

always speed, connectivity and programmability are still among the top concerns in

industrial automation. Especially in the recent concept of industry 4.0, connectivity

and decentralized decision making are the factors that are going to get more

importance in future industrial processes.

The trend in the manufacturing industries is shifting toward flexibility and

connectivity. Because of extensive modernization in information technology and

communication across the globe, nowadays it is practical to execute the ideas that

were once impossible. In recent time customer's expectation is changing faster than

ever. And as a result, it is getting more challenging to upgrade the manufacturing

process for making sure the product's diversity. The idea of mass production is

turning to be obsolete and instead customized production is making its place. In this

context industrial automation and more specifically industrial robotics going through a

technology revolution, when it is a priority for automation engineers to deliver

according to the demand from consumers and industrial planners.

The question going to be addressed in this thesis is, how effectively an old industrial

robot can be integrated into a modern production facility when the technology is

rapidly shifting and the demand is under constant change. A description of the

industrial robot's evolution is given in chapter 2 of this thesis. But in short, we are in

the transition period toward the fourth industrial revolution or industry 4.0 and this

revolution is expected to be a combination of several major innovations in digital

technology. The first and foremost factor of industry 4.0 is the interconnection

between machines, devices, sensors and peoples. It gives us a clear indication that in

the coming years, interconnected machines will play a big role in industrial automated

process. In this thesis, the problem of integrating old generation machines into a

modern industry is addressed in the context of current trends and requirements.

This thesis is intended to give a solution for upgrading the control system of older

industrial robots. Primarily this research is supposed to benefit small and medium size

industries who operate a comparatively small fleet of robots. As industrial robots are

9

rather expensive machines they cannot be procured on a frequent basis. And for

smaller industries, it is a burden to finance the purchasing money for a new robot. In

that situation, just updating or replacing the robot's control system is a much

economic decision for small industries.

This thesis will act as a sample case study for smaller industries to evaluate the idea

of replacing an old robot controller with newer control systems. Moreover this thesis

will also work as a ground for future academic research on automation and industrial

robotics. As technology is under continuous change, the priorities of industrial

automation are also expected to change over time. In that alternating scenario, this

thesis will provide important information about industrial robots and control systems,

for conducting further research in this field.

10

2 HISTORICAL BACKGROUND AND LITERATURE

REVIEW

In this chapter, a chronological description is given about the evolution of industrial

robotics and technological changes. Afterward, a brief overview of existing industrial

robot control systems is given and recent researches done in this field are discussed.

2.1 Problem statement

Typical industrial robots used in factories usually have specific controllers for their

operations. The majority of these controllers are suitable for a single mode of

operation with a specific robot model. But when it comes to versatility and flexibility

they are not the best option to work with. Because almost every OEM (Original

Equipment Manufacturer) robot controller works with only a few robot models. And

many of these controllers do not have enough options to integrate the machine with

other equipment in a factory. When connectivity is a major concern for factory

automation, these OEM controllers bring a huge drawback to the industrial planners.

It makes the users dependant on a few hardware and as a result, reduces the

flexibility for future changes.

With proper maintenance, the hardware of an industrial robot can provide the desired

service over a decade; but the control system cannot do the same for more than few

years. Because of the rapid modernization of technologies, they need to be updated

quite often. But control system upgrade is not always supported by the companies.

Besides that, purchasing a new OEM controller is also an expensive decision. In this

scenario, taking the approach of developing a universal control system for industrial

robotics is a much reliable option, since it is less expensive compared to OEM

controllers and more flexible for upgrades and modifications.

2.2 Objectives

The main objective of this thesis is to verify the concept of replacing the OEM

controller of an older generation mechanically viable robot with a modern industrial

control system. The background research of relevant literature and experiment is

done during the thesis to support this proposal. The goal of the experiment is to

replace an existing controller of a third-generation SCARA robot with a newer

11

generation Beckhoff industrial controller. The tasks include interfacing the robot's

hardware with the control system devices and making a properly functional control

interface to operate the system directly from a computer . The experiment is

evaluated by running motion control programs in the new controller and the robot

should demonstrate an exact point to point movements as it is commanded by the

user. In short, there are three stages of this experiment.

1) Establishing a functional interface between robot and control hardware;

2) Executing robotic motion with structured text program;

3) Configuring communication protocol for remote operation.

2.3 Progress of industrial robotics

The age of industrial robots started from the mid of twentieth century approximately

during the same time of the third industrial revolution. Although the concept of

robotics was not entirely new at that time, because the idea of artificial mechanical

manipulator and machine's intelligence was present long before that mostly in forms

of science fictions and stories. The first known use of the word 'Robot' was in a

science fiction play by a Czech writer Karel Čapek in 1920 [2]. The term 'Robotics'

first mentioned between the years 1940 and 1950 by another science fiction writer

Isaac Asimov in science fiction stories under his novel called 'I, Robot'. In this novel

he also brought up the widely known 'Three Laws of Robotics' that is also called as

'Asimov's Law' [3].

The advancement of robotics is generally categorized in four generations. The first

generation of robotics began from 1950 and it lasted till 1967. In 1954 a scientist

name George Devol designed the first industrial robot [2]. George Devol together with

an entrepreneur Joseph Engelberger founded a company in 1956 to manufacture

robots for industrial applications. The company was named 'Unimation' and their first

development in the year 1959 was called UNIMATE [1]. That robot was installed in

General Motor's production line in New Jersey, USA in 1962. It was programmed for

doing single task like extracting materials from casting machine [2].

The significance of robotics in industrial sector influenced many other companies to

devote in robotics development, and as a result by 1960s several new robot

manufacturers emerged. One of these companies was AMF (American Machine and

Foundry) Corporation, who was the first company to brought robotics in Japanese

industries as well by their 'Versatran' robot in 1967 [2]. The first robot in Europe was

12

installed in the same year 1967 at 'Svenska Metallverken', a company in Sweden. Like

most of the first generation robots it was programmed for doing simple monotonous

pick and place work [4].

The second generation robotics are described by the years of development between

1968 and 1977. During this time sensors were introduced in robotics that helped to

develop close loop systems for motion control. At this similar time PLCs were also

invented, that leads to the ability to control robotic systems from digital equipments

[5]. In 1973 German automation company KUKA developed a robot that had six

electromechanically driven axes, it was named 'Famulus'. One year after that in 1974

the first microcomputer controlled robot called T3 (The Tomorrow Tool) was made by

'Cincinnati Milacron' [1]. The major users of these earlier industrial robots were

automotive industries where they were mainly operated for sensitive jobs like welding.

Because of high reliability and accuracy, those robots gained immense popularity. It is

considered that the era of robotics started from 1980s, because during this time many

scientific and technological improvements contributed to robotics research [2] [5].

With the rise of digitalization and automation in industries, and the developments of

programmable controllers and digital equipments started a new era in industrial

robotics [6]. The third generation robotics are defined by the developing year from

1978 to 1999. In 1978 a new design was proposed by a Japanese scientist Hiroshi

Makino from the University of Yamanashi [2]. It was named SCARA (Selective

Compliance Assembly Robot Arm) because of its limited maneuverability in horizontal

direction and rigidity in vertical direction. In 1992 another new robotic kinematic

structure was proposed by a Swiss scholar Reymond Clavel from the Swiss Federal

Institute of Technology in Lausanne [2]. It was known as the Delta robot, and the

design was based on parallel kinematics instead of serial kinematics. It had three

translational axes and one rotational axis and was able to operate at a much faster

speed because of its lightweight and relatively simpler kinematic chain.

From the 1980s robot manufacturers also commenced developing robot programming

languages for their machines. For instance, Unimation created a language called VAL

(Variable Assembly Language), Fanuc started to use Karel programming language

from 1988 and ABB developed their own language called Rapid in 1994 [7]. In 1994,

synchronization of robots was attained by a company called Motoman, which is a

subsidiary of Yaskawa Corporation. Motoman made the robot control system MRC that

was able to synchronize control of two robots with up to 21 axes [2]. In 2004 they

13

released their improved control system NX100 that was capable to synchronize control

of 38 axes from four robots [1].

The begin of fourth generation robotic is considered from the year 2000 and that is

still underway. Significant additions in this time are the inclusion of superior

computing ability, sophisticated sensors, artificial intelligence and machine learning

ability. In addition, standardization of communication protocols and development of

common platform for robot programming is also initiated in this period [5]. The high

reliability in control systems and sensors leads the robots for non-commercial

applications, for instance robotic vacuum cleaner and robotic loan mowers are being

used by private owners. In addition collaborative robot or cobot has also been

introduced by number of companies.

2.4 Industry 4.0 and current trends in industries

The term Industry 4.0 that refers to the fourth industrial revolution is believed to be

underway in recent years. The fourth industrial revolution is triggered by the

advancement of Information and Communication Technology (ICT) and it is a

combined outcome of innovations in digital technology. The concept of Industry 4.0

appeared in 2011 when the idea was presented by Henning Kagermann on behalf of

the German federal government at Hannover fair [8]. The idea behind industry 4.0 is

to establish cyber-physical systems and smart factories, where every machine and

sensor will be connected under one system, which will lead to smart automation and

the establishment of distributed control and the Internet of things (IoT).

In industry 4.0 concept, the technical process and the business process of a company

are proposed to merge in one system to improve the flexibility in decision making,

optimization in production quantity and in mass custom production. Industry 4.0 is

comprised of several design principles, that technically serve as a guideline to

understand and implement this concept in a company. There are often six design

principles as explained by experts; however, in 2016, it has been depicted through a

study that there are four main design principles for industry 4.0 [9]. These design

principles are namely Interconnection, Information transparency, Decentralized

decisions and Technical assistance.

From these design principles, it is understandable that industry 4.0 is not only about

technical innovation, but it has to be an improvement of technical and business

14

process combined. And at the core of this concept is cyber-physical systems and

Internet of things, where all of the process and machines need to be connected in one

platform. This brings the issue of optimizing previously existing processes, when it

becomes necessary to reengineer old equipments and configure both hardware and

software platforms to make sure the interconnectivity. At the same time

standardizations of technologies are important because of diversity in equipments and

processes to ensure flexibility in automation planning.

2.5 Methods and standards in industrial robotics

The field of industrial robot is quite heterogeneous in terms of hardware,

communication protocols and languages used for programming. Since industrial

robot's market is dominated by major robot manufacturers, it is also challenging for

open source developers to implement new technologies unless they are approved by

bigger organizations. As most robot manufacturers and control system builders are

intense to provide complete solution for their robot, there is lack of common

benchmark for evaluating the performance of one robot controller with another. As a

result, technological improvements in industrial robotics are comparatively sloth.

While currently researches are taking place on artificial neural networks (ANN),

machine learning and big data; technologies used industrial robotics are relatively old,

that includes PID control loop, forward/inverse kinematics and so on.

There are distinct standardizations exist for PLC programming, motion control and

communication protocols. For instance, IEC 61131-3 is an open international standard

that defines a guideline for software architecture and programming languages for

programmable controllers. The current edition of this standard has published in 2013,

and this version specifies the syntax and semantics of two textual languages:

structured text (ST) and instruction list (IL); and two graphical languages: ladder

diagram (LD) and function block diagram (FBD). 'PLCopen' is another common

standards that creates vendor independent libraries for different PLC applications.

Especially for motion control applications PLCopen function blocks are widely accepted

to automation system designers.

Particularly for robotic applications there are few standards, that is recently developed

or under development. 'ISO/TC 299' (Standardization in the field of robotics,

excluding toys and military applications) is one of these standards that deals to

ensure proper safety, standardized interfaces and performance criteria [10]. IEEE

15

1872 (Ontologies for Robotics and Automation) is another standard developed by IEEE

that provides a unified way of representing knowledge and a common set of term

definitions from robotics and automation domain [11].

The robot controllers currently being used in industries are mostly modular type, they

are built to operate with specific types of robot in mind. Some of current generation

controllers are ABB's IRC5 controller and KUKA KR C4 controller. IRC5 is ABB's fifth

generation controller, that is designed to operate mainly with ABB robots. IRC5 has

different variants suitable for specific applications areas. IRC5 is programmed in ABB's

'RAPID' programming language [12]. On the other hand, KUKA KR C4 controller has

five variants, each has a different size factor and different numbers of drive axes. KR

C4 supports high level PLC programming that is useful for I/O interfacing and

utilization of motion control function blocks [13].

There are different existing approaches in industrial robot control development;

namely, model-based development, cost/performance driven development,

automation technology driven development and application driven robot control

development. Each of these approaches has its own advantage, especially in recent

time model based development is the fundamental one used in industrial robotic

developments [14]. Researches has been done in the past for developing open robot

control systems such as OROCOS (Open Robot Control Software) and PC-ORC (PC-

based open robot control system) [15], [16]. Robot Operating System (ROS) was

created in 2007 with the intention of making an open platform for robotic

developments. Especially the development of 'ROS-Industrial' in 2012 opened

possibilities for vendor-independent open-source drivers and prospects of

interchangeable hardware components through standardized interfaces.

2.6 Related researches and outcomes

Numerous researches has been conducted on industrial robotics for improving

performance and acceptance criteria. Many of these researches addressed the issue of

reengineering and reusing industrial robots with new generation equipments and

standardised protocols.

In 2018 a conference paper was presented in IFAC PapersOnLine [17], that

demonstrates the result of an experiment to re-engineer an industrial robot for

performing new set of tasks. The objective of that study was to make modification of

16

an industrial KUKA robot and to reuse it with new control system in a different

industrial setting. The objective was accomplished and outlined in the form of

simulation and execution with real machine. In that study communication method was

partly covered and the new system was prepared with unconventional hardware and

software.

Alternatively, several researches was done to evaluate the performance and reliability

of different industrial protocols. For instance in 2012 a research paper was published

by two researchers from Korea Electronic Technology Institute [18], who proposed a

centralised soft robot control approach based on EtherCAT protocol. They executed an

experiment to control a 6 joints robot from a software based master device with 10

KHz main data transfer frequency and 1 KHz position control frequency. The

experiment demonstrated a short response time and real time performance while the

delay among the slave devices was less than 50 µs.

In 2017 another study was published by a group of researchers from Slovak University

of Technology in Bratislava [19]. They experimented standard Ethernet based TCP/IP

protocol for controlling a robotic cell with three robots. The aim was to find a reliable

solution for robot control in a non-Real-time network of communication. Although

different industrial protocols were also discussed in the paper, the experiment was

concentrated on TCP/IP and UDP protocols. According to the researchers, the concept

is applicable for equipments that is programmed for autonomous behaviour up to

certain extant and not dependable on precise timing of control instruction.

2.7 Thesis structure

This thesis is comprised of seven chapters. Chapter 1 is about an introduction of the

thesis topic. Chapter 2 gives a historical overview and researches on industrial

robotics. Chapter 3 is about the technical description of the hardware and software

used in this thesis. In chapter 4 detail explanation is given about the hardware

integration process. Chapter 5 is about describing the process of software

commissioning and device parameterizations. In chapter 6 test executions have been

described and performance is analyzed based on test results. In chapter 7, an overall

summary of the entire thesis is given.

17

3 DESCRIPTION OF HARDWARE AND SOFTWARE

In this chapter, detail explanation is given about the hardware and software tools used

in this thesis including the robot and control system devices. As the motive of the

thesis is to demonstrate an optimum solution with available equipments; the selection

of the tools was made primarily based on availability and compatibility. In addition

technical specifications were analysed in order to maximize the performance of the

new development.

3.1 Hirata AR-S350 SCARA robot

This SCARA robot from industrial robotics laboratory in mechatronics and autonomous

systems centre was taken into account for the experiment. This robot was made by

Hirata company in Japan and it was required to replace previous OEM controller with a

new control system. A brief specification of the OEM controller is given in appendix.

This model (AR-S350-4-200) of the robot was primarily designed in 1997 [20] and this

unit was manufactured in 1999. A picture of this robot and manufacturer's label is

shown in figure 3.1.

Figure 3.1 Hirata AR-S350 robot used in this thesis.

18

Like a typical SCARA robot, this is a 4-axis robot. Three of these axes are rotational

axis and one is translational axis. Where A and B axes are responsible for horizontal

movements, Z-axis adjusts the height and W-axis determines the orientation of the

end effector. There is one AC servo motor connected with each axis and all of these

motors are attached with encoders. These encoders are used for getting position

feedback about motor's shaft. In addition there is one sensor connected with every

axis, that indicates the limit of robot's working area for each axis. Detail technical

parameters and physical construction of this robot is given in appendix 1.

3.1.1 Motors

There are four AC servo motors in this robot, that performs all physical movements

through gears connected with each axis. All of these motors are AC 3-phase

synchronous motor. Motor parameters are given in table 3.1. Since these motors are

enclosed inside the robot, it was not possible to access the motor's nameplate. The

only available approach was to acquire these parameters from third party sources.

Motor's of the similar model has been searched online, and the values were taken

from nameplate pictures of corresponding motor models. Pictures are given in

appendix 3.

Table 3.1 Hirata AR-S350 robot's basic motor parameters [21]

 A-Axis motor B-Axis motor Z-Axis motor W-Axis motor

Motor's Model Panasonic
MSM042A2UE

Panasonic
MSM022A2UE

Panasonic
MSM022A2UE

Panasonic
MQMZ012A2U

Motor Type 3 Ø AC Servo 3 Ø AC Servo 3 Ø AC Servo 3 Ø AC Servo

Power Output 400 W 200 W 200 W 100 W

Rated Input
Voltage

106 V 92 V 92 V 63 V

Rated Input
Current

2,5 A 1,6 A 1,6 A 1,0 A

Rated Frequency 200 Hz 200 Hz 200 Hz 200 Hz

Rated Speed 3000 rpm 3000 rpm 3000 rpm 3000 rpm

Connection Y Y Y Y

Rated Torque 1,3 Nm 0,64 Nm 0,64 Nm 0,32 Nm

By construction all of these motors are permanent magnet synchronous motor or

PMSM; where the rotor is installed with permanent magnets and the stator has

electromagnets connected with three phase AC power supply. When the stator is

energised with AC current, a rotating magnetic field is produced. The rotor takes turns

because of interactions between the permanent magnet's magnetic field and the

stator's rotating magnetic field. Internal construction of a PMSM is shown in figure 3.2.

19

Figure 3.2 Internal construction of permanent magnet synchronous motor [22]

As this is synchronous motor, slip is always zero, and the rotor always rotates at the

synchronised speed with the rotating magnetic field. Speed of rotating magnetic field

is directed by the frequency of the electric current in stator winding. As a result, by

changing the current's frequency in stator winding, speed of synchronous motor is

controlled. This speed can be calculated using equation 3.1.

p

f
N S

120
 (3.1)

where NS – synchronous speed, rpm,

 f – frequency of AC supply, Hz,

 P – number of poles.

3.1.2 Encoders

As mentioned earlier, encoders are used for getting feedback about the motor's shaft

position. There are primarily two types of encoders; incremental type and absolute

type. In this robot, all of these four encoders are incremental type encoder. Since

these encoders give data about the angular position, they are categorized as rotary

encoder and a rotary encoder works following the movement of a disks connected with

shaft. In figure3.3, structure and working principle of an incremental rotary encoder is

shown.

20

Figure 3.3 Incremental rotary encoder structure [23]

An incremental encoder gives the output as electrical pulses. These pulses are

generated by sensors connected next to the encoder disk. For a known pattern in the

encoder disk, number of pulses are counted to calculate the angular rotation, velocity

and acceleration. To identify the direction of rotation a second sensor is required in

addition to extra slits in the disk. Alongside these two sensors a third sensor is used to

detect full revolutions of the shaft. In figure 3.4, output signal patterns are shown for

an incremental encoder.

Figure 3.4 Output pulses of TTL incremental encoder

From the figure it is seen that, channel A and channel B sensors give output square

wave that is 90° phase shifted. The direction of rotation can be detected by identifying

the leading and lagging phases of these channels. The encoders used in this robot are

TTL-2500-5V encoder. The speciality of TTL encoder is that, they output

complementary signal for each channel. Complementary signals are useful for

21

eliminating the noise induced in transmission wire because of electromagnetic

interference.

This encoder gives 2500 pulses in one revolution. But because of the channel's phase

offset, it outputs one rising edge or falling edge in every 90° either in channel A or in

channel B. As a result, this encoder takes four count in one pulse, that makes the

entire number of counts 10000 in one revolution. By observing this counts, it is

possible to calculate exact angle of rotation, angular velocity and acceleration of the

motor's shaft.

10000

360*n
 (3.2)

where ϕ – motor's angle of rotation, °,

 n – number of encoder counts.

Unlike an absolute encoder, an incremental encoder does not give original position

data by default. Therefore it is required to perform homing operation to identify the

real shaft position.

3.1.3 Sensors

There are four proximity sensors installed in this robot. These are digital type sensors,

so that they do not give information about analogue distance. These sensors can only

be turned on or off and they are used as limit switch for each axis. The list of installed

sensors is given in table 3.2.

Table 3.2 List of sensors in AR-S350 robot [21], [24]

 Model no. Sensor
type

Output
type

Output operation Axis operational
limit

A-Axis sensor GXL-8FB-R Inductive NPN Normally closed -110° to 110°

B-Axis sensor GXL-8FB-R Inductive NPN Normally closed -135° to 135°

Z-Axis sensor GXL-8HB-R Inductive NPN Normally closed

W-Axis sensor GXL-8HB-R Inductive NPN Normally closed

As these are inductive sensors, they only detect metals targets. Since that there are

metal sensor tabs mounted with each axis in the robot. NPN type sensors are also

known as sinking sensor as they sink the output to the ground. Sample wiring diagram

and internal construction of a NPN type sensor is shown in figure 3.5.

22

Figure 3.5 Sample wiring diagram of GXL-series npn type sensor [24]

In the case of these sensors, outputs are NC or normally closed. This indicates they

output high signal when there is no metal object detected; and when the sensor

detects metal, the outputs turn low.

3.2 Beckhoff CX2030 controller

Beckhoff controller has been selected for this work because of several advantages

over other controllers. The foremost is the ease of integration and programming using

TwinCAT system. As Twin CAT supports all of IEC 61131-3 programming languages,

Beckhoff controllers are programmable with IEC 61131-3 recognised graphical and

textual languages; In addition, TwinCAT can also compiles C/C++ programs, that

makes it easier to write high level programs for automation tasks.

In addition, Beckhoff controllers are quite modular in type, because of their easily

detachable and configurable I/O terminals. And almost all of Beckhoff controllers are

configured for EtherCAT protocols, and with additional modules they can also work

with other industrial protocols. Beckhoff also has specific libraries for robotic motion

control, that includes SCARA robot, delta robot and 6dof robot. Utilizing this pre built

libraries, robotic motion control can be performed in more effective and easy manner.

23

CX2030-0120 is an embedded PC type programmable controller made by Beckhoff.

This was one of the newest type of controllers available in the industrial robotics

laboratory at the time of this thesis. This controller has Intel core i7 dual core

processor with 1,5 GHz of processing speed and it has a memory (RAM) of 2 GB. This

controller was installed with Microsoft windows embedded standard 7P, 32 bit

operating system. In figure 3.6, a simple combination of this module with power

supply unit is shown.

Figure 3.6 Simplest combination of CX2030 controller with power supply module [25]

The basic CX2030 controller has four USB 2.0 interface, two RJ45 Ethernet interface

for connecting to LAN or EtherCAT, one DVI-I interface to connect with monitor or

panel and one CFast card slot. Typically this controller is used in conjunction with

additional modules. Following are the some of the modules used in this work.

CX2100-0914 power supply unit is used to power up the basic CX2030 module. It

takes 24 V DC as power source and serves as the primary mean to connect the

controller with power source. In addition it connects the terminal bus (K-bus or E-bus)

with the main controller, and also provide power supply to bus terminals via power

contacts.

EL2008 is an EtherCAT terminal (E-bus) used for digital outputs. It has 8 output

channels with maximum output current of 0,5 A per channel. The outputs are single

wire connection and they use 24 V DC. So the other end of connected load device has

to be at 0 V for proper uses.

24

EL1018 is a 8 channel EtherCAT terminal (E-bus) for digital inputs. This is also a 24 V

DC module with 10 µs input filters. These inputs are single wire connections and they

are internally grounded at 0 V. So, it requires logical high (15 V to 30 V) potential to

turn on the inputs.

EK1100 module is used for coupling EtherCAT terminals (E-bus terminals) with

EtherCAT network. It has two RJ45 port, for EtherCAT in and EtherCAT out

connections. This module needs 24 V DC power supply for the power contacts and

powering up E-bus modules.

EK1110 module is used at the end of E-bus terminal blocks to further extend the

EtherCAT network. It has one RJ45 connector that is used for EtherCAT out

connection. This module converts E-bus signals into 100BASE-TX Ethernet signals.

3.3 Beckhoff AX5203 servo drive

This is an AX5000 series servo drive from Beckhoff company and its specific model

number is AX5203-0000-0210. In addition to the CX2030 controller, this servo drive

was used as part of the control system for running high power circuits in the systems.

Essentially it worked as a power amplifier in servo control loop, and it performed the

commutation task for the connected synchronous motors.

Figure 3.7 Beckhoff AX5203 servo drive [26]

This servo drive is able run up to two motors at same time with its channel A and

channel B. There are separate encoder and resolver interfaces for position feedback in

each channel. This drive needs two separate power source for its operation. 24 VDC

25

power is needed for running control and communication related tasks. And high

voltage single phase or three phase AC is required for powering the motors. 24 V

system can work independent of the high voltage side, so it is possible to configure

the drive in case of uncontrolled situation by turning the AC power off. Important

electrical data for output channels are given in table 3.3.

Table 3.3 AX5203 electrical data for single phase 230 V power connection [27]

Electrical parameters Approximate values

Rated output current / channel 3 A

Maximum rated current / channel 4,5 A

Maximum output current /channel 10 A

Total rated output current 4,5 A

Total maximum output current 20 A

Rated apparent power 2,4 kVA

Power dissipation 85 W

This drive has two RJ45 communication ports. These ports are configured for EtherCAT

protocol, one is for incoming and the other is for outgoing line. AX5203 drive's

Physical configurations and electrical connection example are shown in appendix 2.

3.4 TwinCAT

TwinCAT is a software platform used in PC based automation projects. This was used

in this thesis for configuring and programming the PLC and servo drive. This platform

is developed by Beckhoff company. TwinCAT uses different software tools to make the

entire system work.

TwinCAT XAR (eXtended Automation Runtime) is one of the tools used by

TwinCAT. IT creates a real-time kernel inside windows operating system and dedicates

one or more cores inside a multi-core processor for TwinCAT specific tasks. As a

result, other applications in OS do not share processing memory with TwinCAT. So it

ensures uninterrupted use of processing memory for controlling automation

equipments directly from PC in real-time speed.

26

Figure 3.8 Processor's core distribution in TwinCAT XAR [28]

TwinCAT XAE (eXtended Automation Engineering) is the development

environment for automation projects. It works based on Visual Studio IDE (Integrated

Development Environment). TwinCAT projects are created in XML file format. In this

thesis TwinCAT version 3.1 was used that was installed on top of Visual studio 2017.

TwinCAT XAE is required only in the development PC where projects are created; on

the other hand, TwinCAT XAR is required both in development PC and in the remote

embedded PC (controller in this case) where the projects are activated.

In TwinCAT it is possible to write programs in five IEC 61131-3 standardized

programming languages. These languages are: ladder diagram (LD), function block

diagram (FBD), structured text (ST), instruction list (IL) and sequential function chart

(SFC). In this thesis mainly structured text format was used for programming.

3.4.1 TwinCAT drive manager

TwinCAT Drive Manager (TCDM) is an application inside TwinCAT system, that is used

for configuration and parameterization of servo drives. Drive manager is automatically

added in TwinCAT projects when the system finds a servo drive after device scan. In

connection to every channels of the drive, it is required to create one NC/CNC axis

configuration. Axis configurations work as an abstraction layer inside TwinCAT system

that links hardware configurations with controller's main program. TwinCAT Drive

Manager user interface is shown in figure 3.9.

27

Figure 3.9 TwinCAT drive manager user interface

Few parameters are essential to specify inside drive manager. Device power

management is one that required to match with the power connection type. In this

case '230 V|1 phase|50 Hz| (Europe AC)' was selected as power setting. For a multi

channel drive, motor and feedback data are added individually for each channel. Drive

manager loads motor data from XML files stored in a folder name 'MotorPool' inside

TwinCAT directory. There is one data file for each available motor types and for

missing motor types this file needs to be created manually. These files are created

using 'TC Motor Data File Generator' software that was provided by Beckhoff.

28

3.4.2 TC Motor data file generator

As mentioned above this software is used for making motor data file in XML format. It

is a supplementary software provided by Beckhoff. For making the data files it is

required to know certain motor parameters and the type of the motor. In following

table the list of required parameters are given.

Table 3.4 Required parameters for generating motor data file

Motor Parameters
Motor's construction (rotary/linear)
Functional principle (motor type)
Maximum motor speed
Number of pole pairs
Motor Back EMF constant
Motor peak torque
Motor continuous stall torque
Rotor moment of inertia
Motor peak current

Motor continuous stall current
winding resistance: phase to phase

winding inductance: phase to phase
Motor feedback type
Motor temperature sensor type
Motor brake type

3.5 EtherCAT communication protocol

In industries, communication protocols are used to maintain connectivity between

machines and workstations. In this thesis it was used to make real-time

communication between the control system devices. There are few widely popular

communication protocols used in industries nowadays. EtherCAT (Ethernet for Control

Automation Technology) is one of those, that was first developed in 2003 by Beckhoff

Automation. From 2004 the rights of EtherCAT are belongs to an independent

organization called 'EtherCAT Technology Group' (ETG). Currently ETG is responsible

for maintenance and standardization of EtherCAT protocol. EtherCAT is currently

standardised under fieldbus standard IEC 61158 and IEC 61784 [29].

3.5.1 EtherCAT communication layers

EtherCAT is an application layer protocol. It works based on IEEE 802.3 Ethernet

protocol. EtherCAT uses two types of data transfer. Standard data utilizes layer 1 up

to layer 4, just like ordinary Ethernet protocol. But the real time data follows only

29

physical layer (layer 1) and data link layer (layer 2), and bypasses the other layers. It

reduces the cycle time to ensure real-time communication. In figure 3.10, layers of

EtherCAT communication protocol are shown.

Figure 3.10 OSI model of EtherCAT communication [30]

3.5.2 EtherCAT frame structure

EtherCAT network follows Master-Slave configuration. EtherCAT master is normally a

controller that sends data frames through every nodes in network. Each slave device

connected to the nodes process the relevant data to that node from the data frame.

Each slave device reads and adds to only particular bits into the data frame. EtherCAT

master uses only standard Ethernet MAC address. It makes it possible to implement

the master in any hardware platform that has RJ45 ports with Ethernet functionality.

On the other hand EtherCAT slave devices need to have EtherCAT Slave Controller

(ECS) chip in their hardware to process the data frames on the fly. The size of data

frames targeted at each node can vary between a 1 bit to 60 Kbytes.

30

Figure 3.11 EtherCAT data in a standard Ethernet frame [31]

Within one standard Ethernet frame there can be several EtherCAT datagram. Each

datagram consists of a datagram header, data itself and the working counter (WKC).

The datagram header contains the command, address, length and various check bits.

The data holds the message that has to transfer to the slave. The working counter

counts the number of actions in the datagram. When the datagram pass through

several nodes, each nodes that addressed by that datagram increment the working

counter. If the WKC value in the returned data frame does not match with the

expected value, it is identified as an transmission error in network. EtherCAT follows a

distributed clock mechanism. The I/O functionality of the slave devices can be

triggered from master's clock cycle or from the local clock in the slave. The local clock

is synchronised with a reference clock in the system.

3.5.3 EtherCAT network topologies

EtherCAT protocol is quite flexible in terms of network topologies. Star, tree, line, bus

or combination of these topologies can be used in EtherCAT network. Because of the

cable redundancy feature, ring topology is the most appropriate for EtherCAT network.

In case of cable break in a ring topology, EtherCAT master can keep the

communication on by implementing separate loops using full-duplex operation.

31

Figure 3.12 An EtherCAT network with ring topology [32]

Every EtherCAT device normally has two ports. One port is connected to receive data

frame from previous device and the other port is used for sending the data frame to

the next device in network. EtherCAT nodes have self terminating feature. That

suggests if a node is disconnected from the next node, the network detects this as

open connection and terminate the network at that point. Because of this reason,

EtherCAT network does not need any extra module or resistor for bus ending. In an

EtherCAT network up to 65535 slaves can be connected regardless of their network

topology [29].

32

4 HARDWARE INTEGRATION

4.1 Test development

Considering the level of risks and complexity of working with the real machine, it was

decided to go through a testing procedure with a simplified hardware setup. It was

found to be more acceptable and helpful to break down the complexity of the

integration process. There were few approaches to conduct the testing procedures. It

could be done either in software-in-the-loop method, hardware-in-the-loop testing or

with simplified hardware setup. Considering the phase of this work, either hardware-

in-the-loop testing or testing with real hardware were the appropriate testing

approach.

Hardware-in-the-loop (HIL) testing is the testing method, where real control devices

are used to run a process in virtual environment. In this case hardware-in-the-loop

testing was omitted, because it requires extra hardware modules for interfacing

controller with virtual environment. And making a virtual model would cost

unreasonable time. As the control hardware have already been chosen, decision was

made to conduct testing with real hardware by making a simplified physical setup of

the system, that can resemble the process but in small scale.

4.1.1 Testing model

The testing model was created to resemble a simple servo control loop using real

control system equipments chosen for the robot. In addition to controller and servo

drive, one spare servo motor was added in this system. This was a Panasonic servo

motor and it belongs to the same series that is installed inside the robot. Besides that,

one inductive proximity sensor and EtherCAT digital input module were used in the

model. In figure 4.1, block diagram of this model and in figure 4.2 picture of this setup

is shown.

33

Figure 4.1 Block diagram of the test setup

Figure 4.2 Hardware test setup.

4.1.2 Test outcomes

There were few objectives of this testing that include, finding any flaws in system

configuration, sorting out malfunctionality of any hardware modules, applicability of

the current drive with the Panasonic servo motors and verifying the usability of TTL

encoder's feedback for position calculation. This testing was incredibly helpful to

understand the working methods of TwinCAT system and different Beckhoff modules.

Moreover, it lead to find out the problem in the servo drive that was primarily use in

the system. The original servo drive (AX5203-0000-0011) installed in this setup was

found malfunctional. Steps had been taken to find solution of this problems, that

include firmware updating and running the drive with different motor; but they were

ineffective to solve the issue. So, finally decision was taken to move on experimenting

with another version (AX5203-0000-0210) of the servo drive.

34

With the new drive, similar problem was not encountered and motion control was

found working as it was programmed in the controller. Encoder's feedback was also as

expected; after parameterization of the scaling factors it was giving exact position

data following the shaft movements. After getting a reliable outcome from this test, it

was time to proceed to the integration of the robot with new control system.

4.2 Interfacing the robot

Robot's control hardware combination had basic similarity with the model used for

testing. But in this case there were multiple motors to drive and in addition it was also

required to interface the robot's sensors with the I/O modules. In figure 4.3, a block

diagram of the new control system hardware is shown.

Figure 4.3 Block diagram of the robot's control system

For this new control system, ring network topology was chosen, because of its

redundancy advantage, as it was discussed in the chapter 3. Considering an industrial

scenario, it was assumed that control hardware and the robot placed at separate

location in a factory. As a result of that I/O terminal blocks were divided into two

sections, one section was mounted next to the controller itself and the other section

was installed near the robot for interfacing the sensors.

35

Since there was one servo drive available with two drive channels, it was only possible

to run two axes of the robot. Axis-A and axis-B was chosen to operate in this case,

because of their greater significance in end effector positioning. Axis-A and axis-B

motors and encoders were connected with the channel-A and channel-B of the drive

respectively. For the power connections X13 and X23 connection ports were used

(figure A.2.1). These ports utilize four connecting wires (U, V, W, and PE) for three

phase motors. The respective connecting wires in robot's motor line are marked

correspondingly as A, B, C, and D for axis-A motor and E, F, G and H for axis-B motor

(figure A.1.3).

4.2.1 Encoders connections

The encoder's connection with the servo drive was relatively critical to ensure, as for

TTL type encoders, wire break detection is not supported, there was no way to identify

wrong combination or disconnections of wires. This connections utilize D-sub 15 pin

(DA-15) connector. It was required to manually match and solder each wire from

motor's encoder cable to the D-sub plug. As described earlier in chapter 3 (3.1.2)

about encoders, TTL incremental type encoders give the output from three sensors

with six connecting wires. In addition to these six wires there are four more wires

used for US (+5 V) and GND (0 V). The wiring configuration of D-sub connector and

motor's encoder wires along with TTL encode functions are given in table 4.1.

Table 4.1 Axis-A and axis-B encoder's wiring chart

TTL encoder
function

Channel-A encoder connection Channel-B encoder connection

DA-15 connector
pin number

(X11)

Wire in robot's
A/B-axis encoder

line

DA-15 connector
pin number

(X21)

Wire in robot's
A/B-axis encoder

line
n.c. 1 – 1 –

Gnd 0V 2 X 2 Y
n.c. 3 – 3 –

US 5V 4 Z 4 a
B+ 5 C 5 N
n.c. 6 – 6 –

Ref Z 7 F 7 S
A+ 8 A 8 L
n.c. 9 – 9 –

Gnd 0V (sense) 10 X 10 Y
n.c. 11 – 11 –

US 5V (sense) 12 Z 12 a
B- 13 D 13 P
Z 14 E 14 R
A- 15 B 15 M

36

4.2.2 Sensors connections

As discussed in previous chapter, the sensors installed in the robot are NPN type

inductive proximity sensors with normally closed output. This type of sensors sink

output to the ground, so the other end of the output need to be positively biased for

proper application. On the other hand, digital input terminals (EL1018) used in this

work has single wire input channels that is internally grounded. That made it

impossible to directly connect the sensors with these input terminals.

Figure 4.4 Relay circuit used for axis-A and axis-B sensor output conversion

This problem was solved by adding an extra layer of interposing relays between the

sensors and the input terminal blocks. In figure 4.4 the circuit of sensors connection is

shown. This circuit converts the sensor's sinking outputs into sourcing outputs, which

is applicable with EL1018 input terminals. The connections of a three wire sensor are

typically marked with colours; brown (+v), blue (-v) and black (output). In this case

the corresponding wires in robot's cable are marked respectively as d, b, and G for

axis-A sensor and e, c, and T for axis-B sensor (figure A.1.4).

37

4.3 Motor's parameter identification

Motor parameter identification was an important part in the experiment. As the robot's

motors are third party motor, their data files were not readily available. For generating

the data files it was required to know certain motor parameters as mentioned in table

3.4. The motors used in the robot are belongs to Panasonic MINAS X series. The

original motor's datasheet [33] was useful to identify some of the required

parameters. In following table, motor data acquired from the datasheet are shown.

Table 4.2 Motor's Parameters taken from datasheet [33]

Motor Parameter A-axis motor
(MSM042A2UE)

B-axis motor
(MSM022A2UE)

Motor's construction (rotary/linear) Rotary Rotary

Functional principle (motor type) Synchronous Synchronous

Maximum motor speed 5000 rpm 5000 rpm

Number of pole pairs 4 4

Motor peak torque 3,36 Nm 1,91 Nm

Motor continuous stall torque 1,3 Nm 0,64 Nm

Rotor moment of inertia 0,37 * 10-4 Kg.m2 0,17 * 10-4 Kg.m2

Motor continuous stall current 2,5 A 1,6 A

Motor feedback type Incremental 2500 P/r Incremental 2500 P/r

Motor temperature sensor type No temperature sensor No temperature sensor

Motor brake type No brake No brake

Number of pole pairs is calculated using equation 3.1 and the values from table 3.1.

8
3000

200*120120
 poles, ofNumber 

SN

f
P

So, the number of pole pairs is 4, that is same for both motors.

Data about winding resistance, winding inductance, Motor's peak current and Back

EMF constant were missing in datasheet. These parameters either had to measure

manually or to find out from alternative source.

4.3.1 Resistance and inductance measurement

Winding resistance was measures manually by a multimeter. Since the required

resistance value was between phases, and as the motor's internal construction is Y

connected, this value can be found by measuring resistance from the end of one phase

to the next phase. In figure 4.5 the connection of resistance measurement is shown.

This measurement was taken between each phases and the average value was used in

the motor data. In ideal case, these three values should be equal or very close.

38

Figure 4.5 Motor's phase to phase resistance measurement [34]

The next required parameter was winding inductance. The most reliable way of

measuring inductance is by using LCR meter. In absence of that, it was required to

calculate it from electrical measurement values. Following formulas were applied for

calculation.

Ohm's law,
I

V
Z  (4.1)

where Z – winding impedance, Ω,

 V – phase to phase voltage, V,

 I – phase to phase current, A.

Eddy current inspection formula,

22
LXRZ 

22 RZX L  (4.2)

where R – phase to phase resistance, Ω,

 XL – inductive reactance, Ω.

Reactance formula, fLX L  2

f

X
L L




2

(4.3)

where f – signal frequency, Hz,

 L – winding inductance, H.

In this method it was required to know four parameters; voltage (V), current (I),

resistance (R) and frequency (f). Winding resistance was already been measured as

described above. Rest of measurement values were taken from the circuit shown in

figure 4.6.

39

Figure 4.6 Winding inductance measurement circuit

Here the circuit was powered from 50 HZ AC source and the voltage and the current

values were taken from the voltmeter and ammeter respectively. This measurements

were taken separately for both axis-A motor and axis-B motors. In table 4.3, values

taken from the measurements are shown.

Table 4.3 Motor's electrical measurement values

A-axis Motor (MSM042A2UE)

Phases Phase to phase
resistance (R)

Phase to phase
voltage (V)

Frequency (f) Phase to phase
current (I)

U-V 2,56 Ω 4,57 V 50 Hz 0,84 A

V-W 2,56 Ω 4,42 V 50 Hz 1,20 A

W-U 2,53 Ω 4,45 V 50 Hz 1,02 A

Average 2,55 Ω 4,48 V 50 Hz 1,02 A

B-axis Motor (MSM022A2UE)

Phases Phase to phase
resistance (R)

Phase to phase
voltage (V)

Frequency (f) Phase to phase
current (I)

U-V 4,48 Ω 4,77 V 50 Hz 0,55 A

V-W 4,49 Ω 4,81 V 50 Hz 0,59 A

W-U 4,47 Ω 4,66 V 50 Hz 0,80 A

Average 4,48 Ω 4,75 V 50 Hz 0,65 A

A-axis motor inductance calculation:

 39,4
02,1

48,4
Z

 57,3 55,239,4 22
LX

mH 36,11H 01136,0H
50**2

57,3



L

B-axis motor inductance calculation:

40

 31,7
65,0

75,4
Z

 78,5 48,431,7 22
LX

mH 39,18H 01839,0H
50**2

78,5



L

4.3.2 Complete parameter list

Two parameters; maximum current and back EMF constant were still missing for

making the motor data files. Motor's maximum current is the parameter that is

normally measured by mean of destructive testing. It is done in industries under

safety precaution. It was not practical to execute it in this situation. On the other

hand, for measuring motor's back EMF constant, it is required a special setup, where

the testing motor is driven by another motor at constant speed. This test was also

impractical in during the thesis because, the motors were already installed inside the

robot, and it is not possible to manually turn the robot's arm in constant speed.

The only way to get these parameters was to find the values from another motor's

datasheet with same type of construction and closely similar values. Hiwin AC servo

motor datasheet was found useful in this case. The required values for axis-A and

axis-B were taken respectively from Hiwin FRLS402 and Hiwin FRLS202 servo motor

parameters.

Table 4.4 Motor's complete parameter list [33], [35]

Motor Parameters A-axis Motor
(MSM042A2UE)

B-axis Motor
(MSM022A2UE)

Motor's construction (rotary/linear) Rotary Rotary

Functional principle (motor type) Synchronous Synchronous

Maximum motor speed 5000 rpm 5000 rpm

Number of pole pairs 4 4

Motor peak torque 3,36 Nm 1,91 Nm

Motor continuous stall torque 1,3 Nm 0,64 Nm

Rotor moment of inertia 0,37 * 10-4 Kg.m2 0,17 * 10-4 Kg.m2

Motor continuous stall current 2,5 A 1,6 A

Motor feedback type Incremental 2500 P/r Incremental 2500 P/r

Motor temperature sensor type No temperature sensor No temperature sensor

Motor brake type No brake No brake

winding resistance: phase to phase 2,55 Ω 4,48 Ω

winding inductance: phase to phase 11,36 mH 18,39 mH

Motor peak current 7 A 5,1 A

Motor Back EMF constant 30 mV/rpm 23 mV/rpm

41

4.3.3 Motor data file creation

From the acquired values shown in table 4.4, the motor data files were created both

for axis-A and axis-B motors. 'TC Motor Data File Generator' software was used for

making the data files. The desired file format 'AxisInfo(.xml)' was chosen from

menu>>Schema. Then after defining the motor types, respective parameters were

added in the data files. The data files were then saved in default directory

(C:\TwinCAT\3.1\Components\Base\Addins\TcDriveManager\MotorPool). In following

figure, parameters of the data files are shown.

Figure 4.7 Motor data file parameters for axis-A motor (up) and axis-B motor (down)

42

5 COMMISSIONING AND PARAMETERIZATION

In this chapter the steps regarding software commissioning and drive

parameterization is described in a chronological order. Later on a homing application is

developed and controller is programmed for operation in automatic and manual mode.

5.1 Commissioning

The commissioning process begins with opening a new TwinCAT XAE project in visual

studio IDE. TwinCAT project requires to specify the target system, where a

communication link is created between the controller and the TwinCAT project. The

target controller was added in the project using 'Add Route Dialog' box that appeared

after clicking 'Choose Target System'. By pressing broadcast search, TwinCAT shows

the list of all devices physically connected with the computer. From this list preferred

controller was selected and the route was created by means of device's IP address

through Ethernet protocol.

Figure 5.1 Adding route to target system from TwinCAT XAE project

As in this case the target device (CX2030) is a 32 bit system, the solution platform

was also required to change to 32 bit. Before adding devices in the project it was also

necessary to turn the TwinCAT into 'Config' mode. It was changed and verified from

'TwinCAT XAE Base' toolbar at top of visual studio screen. After that a device scan was

43

performed from Solution Explorer window. This scan function brings a list of all devices

and adapters that is physically connected with the controller. Only the devices related

to this work were added in the project.

Figure 5.2 TwinCAT system manager tree after performing device scan and creating NC axes

Since, automatic scan also identified the servo drive in the device list, TwinCAT could

also scan for motors connected with the drive. This step was skipped, since the motor

used in this work are third party motors, they did not have electronic name plates. But

TwinCAT needs electronic name plate to identify motors. After the device scan, two NC

axis configurations were created, linked with the servo drive's each output channel.

5.1.1 Drive configuration setting

After adding the required devices and NC configurations, the devices were configured.

For drive parameterization, the drive manager was opened from solution

explorer>>'Drive 6 (AX5203-0000-0210)'. Since the automatic motor scan was

skipped, the motor data had to be entered manually. The XML motor data files have

already been created explained in chapter 4. Before loading the motor data it was

44

important to correct the drive's power setting. The power supply setting was chosen

'230 V|1 phase|50 Hz (Europe AC)' from device>>power management in drive

manager tree.

Figure 5.3 Drive manager power configuration screen

After setting the power configurations, 'Motor and Feedback' tab was opened from

drive manager tree consecutively for both channel A and channel B. After pressing the

'Select motor' button following screen appeared.

Figure 5.4 TwinCAT's motor selection window

This screen shows all of the motors types that is available in the default motorpool

directory. The created motor data files for this project are highlighted in the figure.

These two files were added in channel A and channel B in according order. Selecting

the motors also added the feedback 1 type in drive manager, since this data was also

given during motor data file generation.

45

5.1.2 NC parameters scaling

Before adjusting the NC scaling parameters, it was required to define the unit of

movement in each axis. As both of the robot's operating axes (axis-A and axis-B) give

rotational movement, the unit of movement was selected 'Degree' from axis

configuration settings. After a thorough analysis of TwinCAT's NC scaling it was found

that TwinCAT primarily needs two values called 'feed constant' and 'position resolution'

for adjusting scaling parameters. These two numbers are used for calculating the

value of 'NC scaling factor'.

resolutionPosition

constant Feed
factor scaling NC  (5.1)

Position resolution is the bitwise resolution used in controller side to identify the

movement position. This number should always be higher than maximum resolution of

the encoder, that is the number of total counts in one motor revolution. In this case

the resolutions of the encoders are 10000 as explained in chapter 3 (3.1.2). So,

position resolution should be higher than 10000. In drive manager the lowest option

was 2^20 or 1048576 that is much higher than the required value. So, 2^20 was

selected as position resolution.

On the other hand feed constant is an application related parameter that describes the

amount of physical movement in one motor revolution. To identify the desired value it

was required to examine the robot's physical construction. It was found out that the

robot has a gear ratio 1:80 in axis-A and 1:50 in axis-B (table A.1.1 in appendix 1).

So, one motor revolution (360 degree) was divided with the gear ratio numbers to find

the feed constant values. These resultant values were 4,5 and 7,2 respectively for

axis-A and in axis-B.

Figure 5.5 Scaling and NC parameter settings for axis-A (up) and axis-B (down)

46

The values were entered from 'Scaling and NC parameters' setting inside drive

manager. It was also important to recheck the values are same in encoder's

parameter setting in axis configurations. Both of drive configuration and axis

configuration need similar values of scaling factor, since without that encoder's count

would give wrong position data. The values of axes' velocity, acceleration and jerk are

dependent on scaling factor. So, these values were also updated after defining scaling

factor for each axes. Once device configurations and scaling was done, it was time to

transfer the settings to the drive. It was done by pressing 'Activate Configuration'

button in toolbar. The system took few moments to upload all configurations and then

the TwinCAT restarted in run mode.

5.1.3 Phase sequence check and commutation search

Before moving the axes in manual mode it was required to execute few drive

commands from drive manager's service functions. These commands were executed in

run mode, after enabling the axes; so it caused certain movement and vibration of the

axes.

'P-0-0166: Motor and feedback connection check' command was executed for

comparing the motor's phase and the encoder's counting directions. Because by

default, the drive cannot know whether motor phases are connected in the right

sequence or not. In case of a wrong sequence in phase connection, encoder could

identify the reverse direction as forward and that would ultimately lead to incorrect

counting by the controller. This is avoided by running 'P-0-0166: Motor and feedback

connection check' command in drive commands window. Picture shown in figure 5.6.

47

Figure 5.6 Motor and feedback connection check drive command

After execution of the command, the text ' Succeeded to start the command' appeared

in screen and values under P-0-0167 were changed. It was important that the 'Equal

Directions' active value was '1:Yes'. That ensures motor phases and encoder counting

are in same direction. In case of '0:No' in 'Equal Directions' field, it was necessary to

swap the connection of any two phases in motor's power line.

'P-0-0160: Calibrate commutation offset' command was used for executing the

commutation search for the drive to identify the rotor's exact position. It is required

because the drive has to know the correct phase to excite at the time of starting the

motors. As in this case the motors are permanent magnet motor, by construction they

are brushless type. And it is known, brushless motors uses electronic commutation

instead of mechanical brushes. So, it is necessary to find the corresponding stator

windings to excite, to keep an electrical commutation offset of 90 for shaft rotation.

This is done with the help of feedback systems in this case the encoders. When

executing this command, motor's winding is excited for a while and the rotor makes a

bit of movements. Encoder registered that movement data, and the drive calculates

rotor' exact position in the magnetic field. This process is useful to avoid unexpected

axis alignments when operation begins. This procedure need to follow at least once

while commissioning. In case of using absolute encoders position data are stored in

the system and it is not necessary to check every time when drive restarts. But in this

case, because of using incremental encoders position data gets lost with power off,

and commutation search need to be done every time drive restarts.

48

Figure 5.7 Commutation search drive command

P-0-0160 was selected from drive commands list. Under P-0-0165 command mode

was selected '1:Wake and Shake', since this mode causes less movement of the axis.

Activation was selected '1:On enable request' to automatically run this check after

every restart. Executing the command took few seconds and after execution the

message 'Succeeded to start the command' appeared at the bottom of screen. The

drive was then ready to run in manual mode.

5.2 Homing

Homing refers to the process of axis movements that helps the controller to identify

the absolute axis position. Homing is done with the help of a reference signal, that

used to be at a known position. When the axis takes certain movements and detects

the reference signals, that particular location is registered with the known position

value. And following this process the controller identifies the axis actual position in the

workplace. In the case of using incremental type encoders, homing is a mandatory

procedure when machine starts up, since incremental encoders does not store position

values, there is no other way to identify the actual position by the controller.

In this development homing has been done with the help of proximity sensors that is

installed with every axes. As explained in chapter 3, these sensors are inductive

proximity sensors, with a normally closed output. They give high output when there is

no detection, but when they detect the metal tabs connected with axes the state

changed to low. By following this detection controller registers that position with a

49

known position value. From robot's manual it is known that each axes has a

maximum working range and that is detectable by the sensors. As a result, in this

case the sensors serve as reference signals and the maximum working ranges are the

known positions for homing.

In TwinCAT there are several modes of homing procedure, they are categorised by

mean of compatibility with position measuring systems or encoders. The TTL-

incremental encoders, used in this robot fall under the relative position category. For

this category the applicable homing mode is the 'homing based on reference cam' or

'Plc Cam' called in TwinCAT. This mode is relatable with the basic method of homing,

which is discussed above. In this mode a digital signal is used as reference at a

defined point in travel path. The controller detects the signal edge for allocating the

reference position to that position. For other homing modes absolute encoder or part-

absolute encoder are required.

5.2.1 Homing parameterization

Homing parameterization was required inside NC configurations>>Encoder under

Parameter settings. Reference System was selected 'incremental' as incremental

encoders were used. 'Encoder mask' value was kept the original values as 0xFFFFFFFF.

This number refers to bit width of encoder counting position and used in range

overflow. Since the robots axes works in certain range that falls much below this

number, there was almost no chance of range overflow. 'Invert encoder counting

direction' was kept false since encoder counting direction complied with direction of

axis rotation. 'Reference mode' was selected 'Plc CAM' as explained above it is the

most appropriate one for incremental encoders.

50

Figure 5.8 Axis-A homing parameter settings

'Invert direction for calibration cam search' determines the direction of axis rotation

for searching reference signal. Standard movement is the negative direction. It was

selected false that ensures the axes moves toward negative direction during homing.

Calibration values were chosen according to the data about maximum working range

of the robot axes (Appendix 1). These values were -110 and -135 respectively for

axis-A and Axis-B. Negative values were given, because the axes moves toward

negative direction during homing and it refers that, sensor's activation point will be on

the negative side.

5.2.2 Program for automatic homing

Since in TwinCAT, homing procedure does not operate in manual control mode it was

required to make program for homing application. The program was designed to run in

automatic mode by the controller for executing two different type of tasks. In addition

to automatic homing, it is also useful for point to point move by jogging function.

This program was written in structured text format using Beckhoff's 'Tc2_MC2' and

'Tc2_NC' libraries in addition to default libraries. These libraries comply with PLCopen

standard motion control functions. The copy of this program is added in appendix 4.

This program was structure as a state machine diagram. In figure 5.9 the state

diagram of this program is shown.

51

Figure 5.9 State machine diagram of homing and jogging operation

There are ten states in this state machine including the initial state. Three of these

states are used for operation selections and axis selections. These selections are made

by operator from HMI input. The rest of the states execute the movements by motion

functions. Jogging operation is more similar to manual control, that is directly

manoeuvred by operator from HMI buttons. And the homing function is entirely

autonomous that results automatic movement for axis homing. After completing

homing, axes take another automatic move to be placed at zero position. The

transitions in this state machine are controlled by input buttons from HMI. In figure

5.10, the HMI of this program is shown.

52

Figure 5.10 HMI for axes homing and axes jogging

In this HMI, the two buttons at upper left corner are dedicated for axis enabling and

disabling at any point of operation. At upper right corner there are four parameters to

observe; axis-A and axis-B current positions and sensor status. Green colour of

sensor indicators imply that sensors are on. In lower part of HMI two separated tabs

indicate two different applications. Here the gray buttons are responsible for operation

mode selection and axis selection. Aqua coloured buttons cause axis movement either

in jog mode or by confirming autonomous movement.

53

6 TESTING AND ANALYSIS

In this chapter, few tests has been executed and results are analysed for evaluating

the robot's movements and the controller's performance. Brief explanation is given

about the test parameters and the result are shown in graphs.

6.1 Motion analysis

Robot's axes Motion is an important criteria to test, since almost all of robotic

applications are directly related to the accuracy of relevant axes positioning. In this

case, few test has been done from the new controller by executing point to point

movements. The results of these test are analysed by observing the encoder's position

feedback and the received position information is compared with the given commands.

6.1.1 Axis-A motion tests

Three tests has been executed with axis-A in manual mode. Six motion parameters

were varied during these tests, to ensure back and forth axis movement with different

velocity and acceleration. The testing parameters and the test results are shown in

table 6.1 and in figure 6.1 to 6.3 respectively.

Table 6.1 Axis-A motion tests settings

Motion parameters Test-1 Test-2 Test-3

Initial position 0 degree 10 degree -10 degree

Target position 10 degree -10 degree 35 degree

Target velocity 5 degree/s 10 degree/s 25 degree/s

Acceleration 10 degree/s2 20 degree/s2 20 degree/s2

Deceleration 10 degree/s2 20 degree/s2 20 degree/s2

Jerk 200 degree/s3 40 degree/s3 50 degree/s3

54

Figure 6.1 Axis-A motion test-1 result

Figure 6.2 Axis-A motion test-2 result

55

Figure 6.3 Axis-A motion test-3 result

Analysis

From these tests it is visible that the axis reached the target position every time

without any overshoot. Here it is significant to observe that, despite of a point to point

move, axis is controlled in a continuous mean by generating a new set position in each

controller's cycle time. And the set position is always followed by the actual axis

position. In the graphs, they are hardly distinguishable as they mostly overlapped.

The velocity and acceleration also followed the commanded values, that it

comprehensible from the peak values in the graphs. In test-3 actual velocity did not

reach the target value because, the deceleration started at corresponding moment for

stabilizing the axis at target position. In these tests, the actual velocity lags the set

velocity with an approximate value between 0,2 s and 0,4 s. The possible reason can

be the mechanical inertia of the motor and gear assembly.

56

6.1.2 Axis-B motion tests

Similar to axis-A, three tests has been done for axis-B by varying parameters in

manual mode. Test parameters are shown in table 6.2 and results are in figure 6.4 to

figure 6.6.

Table 6.2 Axis-B motion tests settings

Motion parameters Test-1 Test-2 Test-3

Initial position 0 degree -15 degree 10 degree

Target position -15 degree 10 degree 60 degree

Target velocity 5 degree/s 15 degree/s 25 degree/s

Acceleration 20 degree/s2 30 degree/s2 30 degree/s2

Deceleration 20 degree/s2 30 degree/s2 30 degree/s2

Jerk 100 degree/s3 50 degree/s3 40 degree/s3

Figure 6.4 Axis-B motion test-1 result

57

Figure 6.5 Axis-B motion test-2 result

Figure 6.6 Axis-B motion test-3 result

58

Analysis

In all of these three tests axis attained the target positions without any noticeable

overshoot or destabilizations. Actual velocity was in accordance with the target

velocity. From the graphs it is visible that, velocity was not totally stable throughout

the movement in comparison to axis-A. This might happened because of uneven

torque distribution, or any mechanical flaws belongs to motor. In test-2 acceleration

did not reach maximum point because, the target velocity was low and the jerk limited

the rate of acceleration rise before getting to the maximum point.

6.2 Controller's performance analysis

It is really hard to represent a control system's performance in numerical form. And

since the controller used in this thesis is able to run much complicated tasks, this

robotic application had very less impact on the controller's overall performance. For

analyzing the controller's performance, few parameters have been monitored, while

executing the axes motions. In figure 6.7, online monitored data of the controller's

system latency is shown.

Figure 6.7 Controller's system latency during task execution

From graph it is seen that, the default system latency was about 1 µs. The peaks in

the graph indicates the moments while controller executed any active or passive

tasks. And while executing the axes motions there were no significance rise of system

latency. As it is observed from the graph, latency was always below 8 µs. In figure

6.8, controller's task execution time is for different tasks shown in time domain.

59

Figure 6.8 Controller's task execution times

'CPU' (blue) graph shows the time required by the CPU for task execution. The 'Total'

(red) graph displays the total time spent from starting of the task till the end. The

difference of these two lines indicates the waiting time, while CPU was executing

higher priority tasks.

60

In the figure three types of tasks are monitored. 'NC-Task 1 SAF' refers to block

execution tasks for NC operations. This tasks include setpoint generations and feeding

the fieldbus I/O to NC. The rises in this graph indicates the time when the axes were

in motion. In the third there are rises at similar times, since these motion commands

were given from manual I/O, they were handeled as I/O tasks. 'Plc Task' graph follows

the similar pattern and the maximum task execution time during axis motion was

between 60 to 65 µs. And at no motion time it was about 55 µs. NC Task has almost

zero waiting time, since it is a higher priority task for CPU.

6.3 Recommendations for future work

Despite being a fully functional system, there is much space of continuing this work

for improvements. Since, the inverse and forward kinematics is a primary mean of

robotic motion, it is advised to develop this in the future. The currently utilized

structured text or function blocks can be used for the kinematic control as well. In

addition C/C++ can be utilized for programming, which lot more flexible and object

oriented programming language. Alternatively, 'TwinCAT Kinematic Transformation'

can be added in future developments. In kinematic transformation there are specific

function blocks, that is useful for robotic motion control and SCARA robot's kinematic

is also included in this library. For using this feature an additional library name,

'Tc2_NcKinematic Transformation' need to add in solution project.

In addition, for ensuring the full utilization of the robot, it is required to run all four

axis of the robot axes. Currently, because of limited number of drive channels, only

two axes are used. For full scale movement, this setup needs another similar servo

drive or different servo drive with two channels. This is not a technically challenging

task, since the entire process is already described in this thesis. Full scale use of this

robot will be very useful for making application that is more focused on specific task

by running all axes,.

Furthermore, Machine vision can be added in this system by installing cameras to the

robot's workstation and using TwinCAT machine vision feature. As, machine vision is

extremely important in industrial robotics nowadays, it will be a significant addition to

this robot and potentially lead to conduct more comprehensive research on machine

vision for SCARA robot controlling.

61

There are few mechanical issues that need to overlook for this robot's performance

improvement. As it is seen from the motion tests, axis-B velocity is not as smooth as

axis-A; this issue need to be investigated. Few additional test can be done to this axis

with different test parameters. If this symptom exist, then motor data file for the

corresponding motor may need to recreate after taking new electrical measurements.

Specially for motor's inductance measurement a better method can be followed. It can

be either tested with an LCR meter; otherwise the similar method can be followed but

using a variable frequency signal generator for powering the circuit at a different

frequency.

It has been observed during the experiments that, robot's sensor tabs are not

perfectly aligned. As a result, the axes did not take position exactly at centre after

homing; even though, according to the NC values they were at zero positions. This

can be fixed by physically moving the sensor tabs and placing at right position. It

might require to use some manual measurement tools for accurate angule

measurement. The another way to solve this, is by assigning manipulated axis position

value for homing.

Finally, there is scope of improvement in the safety features of this control system.

Although, because of careful operations during experiments there was no unexpected

movement occurred. And in case of autonomous operation, correct axis programming

and accurate NC parameterization ensured the safe movement within operational

range. But it was always important to take extra caution during axis movement and it

is advised to developed an extra layer in motion safety. In current setup, the robot

can only be immobilized by turning the main power off, for the sake of stopping

uncontrolled movement. This can be improved by integrating safe torque off (STO)

feature in this system. STO is a quite accepted technique as industrial motion safety

measures. It can be added to the system by installing TwinSAFE drive option card to

the AX5203 servo drive's safety slot.

62

7 CONCLUSIONS

This thesis was started with the goal of integrating a new generation control system

with a comparatively older generation less utilized robot. The aim was to prove the

concept that, replacement and integration of industrial robots with customised control

system is a convenient approach. The concept has been proven through experiments

with an industrial SCARA robot and control hardware from a different vendor, by

developing a common interface for fully functional control system.

The significance of this research topic is justified by a thorough literature search

related to the history and evolution of industrial robots. In a sequence of that current

trends and international standards about industrial automation and robotics has been

explored during this thesis. Later during development stage these knowledge has

created a positive influence that ensured the developed control system complies with

the current industrial requirements.

This thesis has been done to solve a particular problem in industries. That is flexibility

of industrial automation processes specifically about industrial robotics. The new

controller developed in this thesis much flexible in terms of integration and

modifications compared to the original controller. Beckhoff controller, in addition to

TwinCAT automation platform and EtherCAT communication protocol has been used in

this development. The advantages these systems has been described in the thesis and

verified by experiments.

For making the proper control system the robot itself and the control hardware had

been thoroughly investigated for specifications and relevant parameters. Especially, it

was challenging to find all necessary parameters belongs to the robot's motors. They

have been acquired and calculated from various sources and by following different

methods. In addition, necessary electrical circuitry was prepared for proper

communication between devices and modules including, sensors, encoders, servo

drive, and controller.

After ensuring all necessary steps of proper hardware combination, parameter

identifications, and device configurations, it was possible to generate automation tasks

from software environment. Program has been written form TwinCAT system using

structured text language, to testify basic movements of the robot axes. Finally, the

system performance has been observed and analysed from the results found from test

runs.

63

The performance was analyzed under two test categories. One was about motion

control accuracy, where robot's actual position, velocity and acceleration were

compared with set values. The received results in this test was quite satisfactory,

because in almost every test actual parameters have matched with target parameters.

The other category was about the controller's performance testing. The result found

from this test was relative to conclude, although the controller performed all tasks

without any sign of error. In reality, this controller is able to execute much-

complicated tasks. For analyzing the true performance level, more complex

applications have to be developed in the future based on the current solution.

64

JÄRELDUS

Selle lõputöö eesmärk oli integreerida uue põlvkonna juhtimissüsteem vanema

põlvkonna vähemkasutatud robotiga. Eesmärk oli tõestada kontseptsiooni, et

tööstusrobotite asendamine ja integreerimine kohandatud juhtimissüsteemiga on

mugav lähenemisviis. Kontseptsioon on tõestatud katsetega tööstusliku SCARA roboti

ja juhtimisriistvaraga, mis pärineb teiselt tootjalt, töötades välja ühise liidese täielikult

funktsionaalseks juhtimissüsteemiks.

Selle uurimisteema olulisust õigustab põhjalik kirjandusotsing, mis on seotud

tööstusrobotite ajaloo ja arenguga. Selle lõputöö käigus on uuritud praeguseid trende

ja rahvusvahelisi standardeid tööstusautomaatika ja robootika kohta. Hilisemas

arendusetapis on need teadmised loonud positiivse mõju, mis tagas väljatöötatud

juhtimissüsteemi vastavuse praegustele tööstusnõuetele.

See lõputöö on tehtud konkreetse probleemi lahendamiseks tööstuses. See on

tööstusautomaatika protsesside paindlikkus, eriti seoses tööstusliku robootikaga.

Selles väitekirjas on uus kontroller välja töötatud on võrreldes algse kontrolleriga

integreerimise ja modifikatsioonide osas palju paindlikum. Selles arenduses on lisaks

TwinCAT automaatikaplatvormile ja EtherCAT-i kommunikatsiooniprotokollile

kasutatud ka Beckhoffi kontrollerit. Nende süsteemide eeliseid on lõputöös kirjeldatud

ja katsetega kontrollitud.

Nõuetekohase juhtimissüsteemi loomiseks oli robot ise ja juhtimisriistvara tehniliste

kirjelduste ja asjakohaste parameetrite osas põhjalikult läbi uuritud. Eriti keeruline oli

leida kõik vajalikud parameetrid roboti mootoritele. Need on saadud ja arvutatud

erinevatest allikatest ja erinevaid meetodeid järgides. Lisaks valmistati ette vajalik

elektriskeem nõuetekohaseks suhtluseks seadmete ja moodulite vahel, kaasa arvatud

andurid, kooderid, servoajam ja kontroller.

Pärast kõigi riistvara korrektsete kombinatsioonide, parameetrite tuvastamise ja

seadme konfiguratsioonide vajalike sammude tagamist oli tarkvarakeskkonnast

võimalik genereerida automatiseerimisülesandeid. Programm on kirjutatud TwinCAT-i

süsteemist, kasutades struktureeritud tekstikeelt, et tõendada robotitelgede põhilisi

liikumisi. Lõpuks on süsteemi jõudlust jälgitud ja analüüsitud katsete tulemuste

põhjal.

65

Tulemusi analüüsiti kahes katsekategoorias. Üks käsitles liikumise juhtimise täpsust,

kus võrreldi roboti tegelikku asukohta, kiirust ja kiirendust seatud väärtustega. Selle

testi tulemused olid üsna rahuldavad, kuna peaaegu igas testis olid tegelikud

parameetrid vastavusse seatud parameetritega. Teine kategooria puudutas kontrolleri

jõudluskontrolli. Selle testi tulemus oli lõplik, kuigi kontroller täitis kõiki ülesandeid

ilma veamärkideta. Tegelikult on see kontroller võimeline täitma palju keerukaid

ülesandeid. Tegeliku jõudluse taseme analüüsimiseks tuleb tulevikus praeguse

lahenduse põhjal välja töötada keerukamad rakendused.

66

LIST OF REFERENCES

[1] B. Singh, N. Sellappan, and P. Kumaradhas, “Evolution of Industrial Robots and

their Applications,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 5, pp. 763–

768, 2013.

[2] A. Gasparetto and L. Scalera, “A Brief History of Industrial Robotics in the 20th

Century,” Sci. Res. Publ., pp. 24–35, 2019.

[3] M. Boden et al., “Principles of robotics : regulating robots in the real world,”

Conn. Sci., vol. 29, no. 2, pp. 124–129, 2017.

[4] J. Wallén, “The history of the industrial robot,” 2008.

[5] I. Zamalloa, R. Kojcev, and A. Hern, “Dissecting Robotics — historical overview

and future perspectives,” Acutronic Robot., 2017.

[6] A. Rojko, “Industry 4 . 0 Concept : Background and Overview,” Spec. Focus

Pap., vol. 11, no. 5, pp. 77–90, 2017.

[7] J. Lapham, “RobotScript TM : the introduction of a universal robot programming

language,” Ind. Rob., vol. 26, no. 1, pp. 17–25, 1999.

[8] S. Vaidya, P. Ambad, and S. Bhosle, “Industry 4 . 0 – A Glimpse,” in 2nd

International Conference on Materials Manufacturing and Design Engineering,

2018, pp. 233–238.

[9] M. Hermann, T. Pentek, and B. Otto, “Design Principles for Industrie 4 . 0

Scenarios,” in 2016 49th Hawaii International Conference on System Sciences

(HICSS), 2016, pp. 3928–3937.

[10] ISO, About ISO/TC 299 Robotics. 2018.

[11] IEEE, IEEE 1872-2015 - IEEE Standard Ontologies for Robotics and Automation.

2015.

[12] ABB, “IRC5 Industrial Robot Controller.” [Online]. Available:

https://new.abb.com/products/robotics/controllers/irc5. [Accessed: 22-Dec-

2019].

[13] KUKA, “KUKA KR C4.” [Online]. Available: https://www.kuka.com/en-

de/products/robot-systems/robot-controllers/kr c4. [Accessed: 22-Dec-2019].

67

[14] T. Brogardh, “Robot Control Overview : An Industrial Perspective,” Model.

Identif. Control, vol. 30, no. 3, pp. 167–180, 2009.

[15] H. Bruyninckx, “Open Robot Control Software: the OROCOS project,” in

International Conference on Robotics 8 Automation, pp. 2523–2538.

[16] K.-S. Hong, K.-H. Choi, J.-G. Kim, and S. Lee, “A PC-based open robot control

system: PC-ORC,” Robot. Comput. Integr. Manuf., pp. 355–365.

[17] D. Karastoyanov and S. Karastanev, “Reuse Industrial Robots,” in IFAC

(International Federation of Automatic Control) PapersOnLine, 2018, pp. 44–47.

[18] I.-K. Jung and S. Lim, “An EtherCAT based Real-time Centralized Soft Robot

Motion Controller,” 2012 Int. Symp. Instrum. Meas. Sens. Netw. Autom., vol. 1,

pp. 117–120, 2012.

[19] J. Bohuslava, J. Martin, and H. Igor, “TCP / IP Protocol Utilisation in Process of

Dynamic Control of Robotic Cell According Industry 4 . 0 Concept,” 2017 IEEE

15th Int. Symp. Appl. Mach. Intell. Informatics, pp. 217–222, 2017.

[20] “Hirata History - Hirata Engineering Europe.” [Online]. Available:

http://uk.hirata.de/unternehmen_historie.php. [Accessed: 31-Dec-2019].

[21] Hirata, “BASE ROBOT USER ’ S GUIDE AR-S series.” Tokyo.

[22] C. JASZCZOLT, “Understanding permanent magnet motors,” Applied Automation

supplement for Control Engineering and Plant Engineering.

[23] “Position Sensors | Types, LVDT, Rotary Encoder,” 2019. [Online]. Available:

https://www.electronicshub.org/position-sensors/. [Accessed: 22-Nov-2019].

[24] “Micro-size Inductive Proximity Sensor.” [Online]. Available:

https://elcodis.com/parts/5201212/GXL-8FB.html.

[25] “Manual CX2020, CX2030, CX2040 Embedded PC.” Beckhoff.

[26] Beckhoff, “System manual Servo Drives AX5000.” 2018.

[27] Beckhoff, “Startup Servo Drive AX5000,” vol. 5.9. p. 20, 2018.

[28] Beckhoff, “TwinCAT 3 | eXtended Automation.” [Online]. Available:

https://www.beckhoff.com/twincat/. [Accessed: 26-Nov-2019].

68

[29] “EtherCAT Technology Group (ETG).” [Online]. Available:

https://www.ethercat.org/en/tech_group.html. [Accessed: 28-Nov-2019].

[30] G. Johnson, “Determinism in industrial ethernet: A technology overview — Part

2.” [Online]. Available: https://www.processonline.com.au/content/industrial-

networks-buses/article/determinism-in-industrial-ethernet-br-a-technology-

overview-part-2-966929628. [Accessed: 28-Nov-2019].

[31] I. Jung and S. Lim, “An EtherCAT based Control System for Human-Robot

Cooperation,” in 2011 16th International Conference on Methods & Models in

Automation & Robotics, 2011, pp. 341–344.

[32] F. Essler, “EtherCAT topology variations drive system performance.” [Online].

Available:

https://iebmedia.com/index.php?id=11375&parentid=63&themeid=255&hft=92

&showdetail=true&bb=1. [Accessed: 28-Nov-2019].

[33] Panasonic, “MINAS Xseries Digital AC Servo Motor & Driver.” .

[34] V. Bobek, “PMSM Electrical Parameters Measurement,” 2013. [Online].

Available: https://docplayer.net/6038811-Pmsm-electrical-parameters-

measurement.html. [Accessed: 01-Dec-2019].

[35] HIWIN, “AC Servo Motor & D2 Drive Technical Information.” Taiwan, 2017.

69

[32] A. Kruglov, “HIRATA ROBOTI JUHTIMINE LÄBI BECKHOFF PLC,” Tallinn

University of Technology, 2017.

70

APPENDICES

Appendix 1 : Hirata AR-S350 Robot Technical Specifications

Table A.1.1 Hirata AR-S350 robot's physical parameters

Figure A.1.1 AR-S350 robot's operational area

71

Table A.1.2 Parts list of AR-S350 robot

Figure A.1.2 AR-S350 robot's structure

72

Figure A.1.3 Motor's wiring diagram for AR-S350 robot

73

Figure A.1.4 Wiring diagram for A/B axis encoders

74

Figure A.1.5 Wiring diagram for Z/W axis encoders

75

Appendix 2 : AX5203 Servo Drive Descriptions

Figure A.2.1 AX5203 visual description [26]

76

Figure A.2.2 AX5203 servo drive connection example [26]

77

Appendix 3 : Panasonic Motor Data

Figure A.3.1 Panasonic MINAS X series motor classifier [33]

Figure A.3.2 Panasonic MINAS X series motor data [33]

78

Figure A.3.3 Panasonic MSM042A2UE motor's nameplate

Figure A.3.4 Panasonic MSM022A2UE motor's nameplate

Figure A.3.5 Panasonic MQMZ012A2U motor's nameplate

79

Appendix 4 : Structured Text Program for Axes Homing

PROGRAM MAIN

VAR

 power_button AT %I* : BOOL;

 stop_button AT %I* : BOOL;

 button AT %I* : BOOL;

 jog_mode_btn AT %I* : BOOL;

 hom_mode_btn AT %I* : BOOL;

 opr_mode_select AT %I* : INT;

 jog_axis_A_btn AT %I* : BOOL;

 jog_axis_B_btn AT %I* : BOOL;

 jogging_axis_select AT %I* : INT;

 hom_axis_A_btn AT %I* : BOOL;

 hom_axis_B_btn AT %I* : BOOL;

 homing_axis_select AT %I* : INT;

 axis_move_forward AT %I* : BOOL;

 axis_move_backward AT %I* : BOOL;

 homing_start_btn AT %I* : BOOL;

 Zero_pos_btn AT %I* : BOOL;

 sens_A AT %I* : BOOL;

 sens_B AT %I* : BOOL;

 Axis_A : AXIS_REF;

 Axis_B : AXIS_REF;

 Power : MC_Power;

 Reset : MC_Reset;

 Jogging : MC_Jog;

 McVelocity : MC_MoveVelocity;

 Stop : MC_Stop;

 Homing : MC_Home;

 AbsoluteMove : MC_MoveAbsolute;

 State : DINT;

80

END_VAR

Axis_A.ReadStatus();

Axis_B.ReadStatus();

IF power_button THEN

Power(Axis:=Axis_A,

 Enable:=TRUE,

 Enable_Positive:=TRUE,

 Enable_Negative:=TRUE);

Power(Axis:=Axis_B,

 Enable:=TRUE,

 Enable_Positive:=TRUE,

 Enable_Negative:=TRUE);

Reset(Axis:=Axis_A);

Reset(Axis:=Axis_B);

END_IF

IF stop_button THEN

Stop(Axis:=Axis_A,

 Execute:=TRUE);

Stop(Axis:=Axis_B,

 Execute:=TRUE);

END_IF

////Mode selection buttons////

 IF jog_mode_btn THEN

 opr_mode_select := 1;

 ELSIF hom_mode_btn THEN

 opr_mode_select := 2;

 END_IF

 IF jog_axis_A_btn THEN

 jogging_axis_select := 1;

 ELSIF jog_axis_B_btn THEN

 jogging_axis_select := 2;

 END_IF

 IF hom_axis_A_btn THEN

 homing_axis_select := 1;

 ELSIF hom_axis_B_btn THEN

 homing_axis_select := 2;

 END_IF

81

CASE State OF

 0: //State initial

 State := 50;

 50: //State Operation mode select

 IF opr_mode_select=1 THEN

 State := 300;

 END_IF

 IF opr_mode_select=2 THEN

 State := 100;

 END_IF

 100: //State Homing Axis select

 IF homing_axis_select=1 THEN

 State := 110;

 ELSIF homing_axis_select=2 THEN

 State := 120;

 ELSIF opr_mode_select=1 THEN

 State := 50;

 END_IF

 110: //State Axis-A Homing

 Homing (Axis:=Axis_A,

 bCalibrationCam:=sens_A,

 Execute:=homing_start_btn);

 IF Homing.Done THEN

 State := 210;

 ELSIF homing_axis_select=2 THEN

 State := 100;

 ELSIF opr_mode_select=1 THEN

 State := 50;

 END_IF

 120: //State Axis-B Homing

 Homing (Axis:=Axis_B,

 bCalibrationCam:=sens_B,

 Execute:=homing_start_btn);

 IF Homing.Done THEN

 State := 220;

 ELSIF homing_axis_select=1 THEN

 State := 100;

 ELSIF opr_mode_select=1 THEN

 State := 50;

 END_IF

 210: //State Axis-A zero position move

82

 AbsoluteMove (Axis:=Axis_A,

 Position:=0,

 Velocity:=10,

 Acceleration:=20,

 Deceleration:=20,

 Jerk:=50,

 Execute:=Zero_pos_btn);

 IF AbsoluteMove.Done THEN

 State := 100;

 END_IF

 220: //State Axis-B zero position move

 AbsoluteMove (Axis:=Axis_B,

 Position:=0,

 Velocity:=10,

 Acceleration:=20,

 Deceleration:=20,

 Jerk:=50,

 Execute:=Zero_pos_btn);

 IF AbsoluteMove.Done THEN

 State := 100;

 END_IF

 300: //State Jogging Axis select

 IF jogging_axis_select=1 THEN

 State := 310;

 ELSIF jogging_axis_select=2 THEN

 State := 320;

 ELSIF opr_mode_select=2 THEN

 State := 50;

 END_IF

 310: //State Axis-A Jogging

 Jogging (Axis:=Axis_A,

 JogForward:=axis_move_forward,

 JogBackwards:=axis_move_backward,

 Mode:=MC_JOGMODE_STANDARD_SLOW);

 IF Jogging.Done THEN

 State := 300;

 ELSIF jogging_axis_select=2 THEN

 State := 300;

 ELSIF opr_mode_select=2 THEN

 State := 50;

 END_IF

 320: //State Axis-B Jogging

 Jogging (Axis:=Axis_B,

83

 JogForward:=axis_move_forward,

 JogBackwards:=axis_move_backward,

 Mode:=MC_JOGMODE_STANDARD_SLOW);

 IF Jogging.Done THEN

 State := 300;

 ELSIF jogging_axis_select=1 THEN

 State := 300;

 ELSIF opr_mode_select=2 THEN

 State := 50;

 END_IF

END_CASE

